Sample records for targeting egfr induced

  1. Rutin inhibits B[a]PDE-induced cyclooxygenase-2 expression by targeting EGFR kinase activity.

    PubMed

    Choi, Seunghwan; Lim, Tae-Gyu; Hwang, Mun Kyung; Kim, Yoon-A; Kim, Jiyoung; Kang, Nam Joo; Jang, Tae Su; Park, Jun-Seong; Yeom, Myeong Hun; Lee, Ki Won

    2013-11-15

    Rutin is a well-known flavonoid that exists in various natural sources. Accumulative studies have represented the biological effects of rutin, such as anti-oxidative and anti-inflammatory effects. However, the underlying mechanisms of rutin and its direct targets are not understood. We investigated whether rutin reduced B[a]PDE-induced-COX-2 expression. The transactivation of AP-1 and NF-κB were inhibited by rutin. Rutin also attenuated B[a]PDE-induced Raf/MEK/ERK and Akt activation, but had no effect on the phosphorylation of EGFR. An in vitro kinase assay revealed rutin suppressed EGFR kinase activity. We also confirmed direct binding between rutin and EGFR, and found that the binding was regressed by ATP. The EGFR inhibitor also inhibited the B[a]PDE-induced MEK/ERK and Akt signaling pathways and subsequently, suppressed COX-2 expression and promoter activity, in addition to suppressing the transactivation of AP-1 and NF-κB. In EGFR(-/-)mouse embryonic fibroblast cells, B[a]PDE-induced COX-2 expression was also diminished. Collectively, rutin inhibits B[a]PDE-induced COX-2 expression by suppressing the Raf/MEK/ERK and Akt signaling pathways. EGFR appeared to be the direct target of rutin. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Isorhapontigenin induced cell growth inhibition and apoptosis by targeting EGFR-related pathways in prostate cancer.

    PubMed

    Zhu, Cuicui; Zhu, Qingyi; Wu, Zhaomeng; Yin, Yingying; Kang, Dan; Lu, Shan; Liu, Ping

    2018-02-01

    Isorhapontigenin (ISO), a naturally phytopolyphenol compound existing in Chinese herb, apples, and various vegetables, has attracted extensive interest in recent years for its diverse pharmacological characteristics. Increasing evidences reveal that ISO can inhibit cancer cell growth by induced apoptosis, however, the molecular mechanisms is not fully understood. In this study, we found for the first time that ISO apparently induced cell growth inhibition and apoptosis by targeting EGFR and its downstream signal pathways in prostate cancer (PCa) cells both in vitro and in vivo, whereas no obviously effect on normal prostate cells. From the results, we found that ISO competitively targeted EGFR with EGF and inhibited EGFR auto-phosphorylation, and then decreased the levels of p-Erk1/2, p-PI3 K, and p-AKT, and further induced down-regulation of p-FOXO1 and promoted FOXO1 nuclear translocation; and finally resulted in a significantly up-regulation of Bim/p21/27/Bax/cleaved Caspase-3/cleaved PARP-1 and a markedly down-regulation of Sp1/Bcl-2/XIAP/Cyclin D1. Moreover, our experimental data demonstrated that treatment of ISO decreased protein level of AR via both inhibiting the expression of AR gene and promoting the ubiquitination/degradation of AR proteins in proteasome. In vivo, we also found that ISO inhibited the growth of subcutaneous xenotransplanted tumor in nude mice by inducing PCa cell growth inhibition and apoptosis. Taken together, all findings here clearly implicated that EGFR-related signal pathways, including EGFR-PI3K-Akt and EGFR-Erk1/2 pathways, were involved in ISO-induced cell growth inhibition and apoptosis in PCa cells, providing a more solid theoretical basis for the application of ISO to treat patients with prostate cancer in clinic. © 2017 Wiley Periodicals, Inc.

  3. Brk/PTK6 Sustains Activated EGFR Signaling through Inhibiting EGFR Degradation and Transactivating EGFR

    PubMed Central

    Li, X; Lu, Y; Liang, K; Hsu, J -M.; Albarracin, C; Mills, G B; Hung, M-C; Fan, Z

    2011-01-01

    Epidermal growth factor receptor (EGFR)-mediated cell signaling is critical for mammary epithelial cell growth and survival; however, targeting EGFR has shown no or only minimal therapeutic benefit in patients with breast cancer. Here, we report a novel regulatory mechanism of EGFR signaling that may explain the low response rates. We found that breast tumor kinase (Brk)/protein-tyrosine kinase 6 (PTK6), a nonreceptor protein tyrosine kinase highly expressed in most human breast tumors, interacted with EGFR and sustained ligand-induced EGFR signaling. We demonstrate that Brk inhibits ligand-induced EGFR degradation through uncoupling activated EGFR from Cbl-mediated EGFR ubiquitination. In addition, upon activation by EGFR, Brk directly phosphorylated Y845 in the EGFR kinase domain, thereby further potentiating EGFR kinase activity. Experimental elevation of Brk conferred resistance of breast cancer cells to cetuximab (an EGFR-blocking antibody)-induced inhibition of cell signaling and proliferation, whereas knockdown of Brk sensitized the cells to cetuximab by inducing apoptosis. Our findings reveal a previously unknown role of Brk in EGFR-targeted therapy. PMID:22231447

  4. Stress-induced EGFR trafficking: mechanisms, functions, and therapeutic implications

    PubMed Central

    Tan, Xiaojun; Lambert, Paul F.; Rapraeger, Alan C.; Anderson, Richard A.

    2016-01-01

    Epidermal growth factor receptor (EGFR) has fundamental roles in normal physiology and in cancer, making it a rational target for cancer therapy. Surprisingly, however, inhibitors that target canonical, ligand-stimulated EGFR signaling have proven to be largely ineffective in treating many EGFR-dependent cancers. Recent evidence indicates that both intrinsic and therapy-induced cellular stress triggers robust, non-canonical pathways of ligand-independent EGFR trafficking and signaling, which provides cancer cells with a survival advantage and resistance to therapeutics. Here we review the mechanistic regulation of non-canonical EGFR trafficking and signaling, the pathological and therapeutic stresses that activate it, and discuss the implications of this pathway in clinical treatment of EGFR-overexpressing cancers. PMID:26827089

  5. Dual inhibition of Met kinase and angiogenesis to overcome HGF-induced EGFR-TKI resistance in EGFR mutant lung cancer.

    PubMed

    Takeuchi, Shinji; Wang, Wei; Li, Qi; Yamada, Tadaaki; Kita, Kenji; Donev, Ivan S; Nakamura, Takahiro; Matsumoto, Kunio; Shimizu, Eiji; Nishioka, Yasuhiko; Sone, Saburo; Nakagawa, Takayuki; Uenaka, Toshimitsu; Yano, Seiji

    2012-09-01

    Acquired resistance to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) is a serious problem in the management of EGFR mutant lung cancer. We recently reported that hepatocyte growth factor (HGF) induces resistance to EGFR-TKIs by activating the Met/PI3K pathway. HGF is also known to induce angiogenesis in cooperation with vascular endothelial growth factor (VEGF), which is an important therapeutic target in lung cancer. Therefore, we hypothesized that dual inhibition of HGF and VEGF may be therapeutically useful for controlling HGF-induced EGFR-TKI-resistant lung cancer. We found that a dual Met/VEGF receptor 2 kinase inhibitor, E7050, circumvented HGF-induced EGFR-TKI resistance in EGFR mutant lung cancer cell lines by inhibiting the Met/Gab1/PI3K/Akt pathway in vitro. HGF stimulated VEGF production by activation of the Met/Gab1 signaling pathway in EGFR mutant lung cancer cell lines, and E7050 showed an inhibitory effect. In a xenograft model, tumors produced by HGF-transfected Ma-1 (Ma-1/HGF) cells were more angiogenic than vector control tumors and showed resistance to gefitinib. E7050 alone inhibited angiogenesis and retarded growth of Ma-1/HGF tumors. E7050 combined with gefitinib induced marked regression of tumor growth. Moreover, dual inhibition of HGF and VEGF by neutralizing antibodies combined with gefitinib also markedly regressed tumor growth. These results indicate the therapeutic rationale of dual targeting of HGF-Met and VEGF-VEGF receptor 2 for overcoming HGF-induced EGFR-TKI resistance in EGFR mutant lung cancer. Copyright © 2012 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  6. EGFR Targeted Therapies and Radiation: Optimizing Efficacy by Appropriate Drug Scheduling and Patient Selection

    PubMed Central

    Cuneo, Kyle C.; Nyati, Mukesh K.; Ray, Dipankar; Lawrence, Theodore S.

    2015-01-01

    The epidermal growth factor receptor (EGFR) plays an important role in tumor progression and treatment resistance for many types of malignancies including head and neck, colorectal, and nonsmall cell lung cancer. Several EGFR targeted therapies are efficacious as single agents or in combination with chemotherapy. Given the toxicity associated with chemoradiation and poor outcomes seen in several types of cancers, combinations of EGFR targeted agents with or without chemotherapy have been tested in patients receiving radiation. To date, the only FDA approved use of an anti-EGFR therapy in combination with radiation therapy is for locally advanced head and neck cancer. Given the important role EGFR plays in lung and colorectal cancer and the benefit of EGFR inhibition combined with chemotherapy in these disease sites, it is perplexing why EGFR targeted therapies in combination with radiation or chemoradiation have not been more successful. In this review we summarize the clinical findings of EGFR targeted therapies combined with radiation and chemoradiation regimens. We then discuss the interaction between EGFR and radiation including radiation induced EGFR signaling, the effect of EGFR on DNA damage repair, and potential mechanisms of radiosensitization. Finally, we examine the potential pitfalls with scheduling EGFR targeted therapies with chemoradiation and the use of predictive biomarkers to improve patient selection. PMID:26205191

  7. A view on EGFR-targeted therapies from the oncogene-addiction perspective.

    PubMed

    Perez, Rolando; Crombet, Tania; de Leon, Joel; Moreno, Ernesto

    2013-01-01

    Tumor cell growth and survival can often be impaired by inactivating a single oncogen- a phenomenon that has been called as "oncogene addiction." It is in such scenarios that molecular targeted therapies may succeed. among known oncogenes, the epidermal growth factor receptor (EGFR) has become the target of different cancer therapies. So far, however, the clinical benefit from EGFR-targeted therapies has been rather limited. a critical review of the large amount of clinical data obtained with anti-EGFR agents, carried out from the perspective of the oncogene addiction concept, may help to understand the causes of the unsatisfactory results. In this article we intend to do such an exercise taking as basis for the analysis a few case studies of anti-EGFR agents that are currently in the clinic. There, the "EGFR addiction" phenomenon becomes apparent in high-responder patients. We further discuss how the concept of oncogene addiction needs to be interpreted on the light of emerging experimental evidences and ideas; in particular, that EGFR addiction may reflect the interconnection of several cellular pathways. In this regard we set forth several hypotheses; namely, that requirement of higher glucose uptake by hypoxic tumor cells may reinforce EGFR addiction; and that chronic use of EGFR-targeted antibodies in EGFR-addicted tumors would induce stable disease by reversing the malignant phenotype of cancer stem cells and also by sustaining an anti-tumor T cell response. Finally, we discuss possible reasons for the failure of certain combinatorial therapies involving anti-EGFR agents, arguing that some of these agents might produce either a negative or a positive trans-modulation effect on other oncogenes. It becomes evident that we need operational definitions of EGFR addiction in order to determine which patient populations may benefit from treatment with anti-EGFR drugs, and to improve the design of these therapies.

  8. EGFR-targeted therapies in the post-genomic era.

    PubMed

    Xu, Mary Jue; Johnson, Daniel E; Grandis, Jennifer R

    2017-09-01

    Over 90% of head and neck cancers overexpress the epidermal growth factor receptor (EGFR). In diverse tumor types, EGFR overexpression has been associated with poorer prognosis and outcomes. Therapies targeting EGFR include monoclonal antibodies, tyrosine kinase inhibitors, phosphatidylinositol 3-kinase (PI3K) inhibitors, and antisense gene therapy. Few EGFR-targeted therapeutics are approved for clinical use. The monoclonal antibody cetuximab is a Food and Drug Administration (FDA)-approved EGFR-targeted therapy, yet has exhibited modest benefit in clinical trials. The humanized monoclonal antibody nimotuzumab is also approved for head and neck cancers in Cuba, Argentina, Colombia, Peru, India, Ukraine, Ivory Coast, and Gabon in addition to nasopharyngeal cancers in China. Few other EGFR-targeted therapeutics for head and neck cancers have led to as significant responses as seen in lung carcinomas, for instance. Recent genome sequencing of head and neck tumors has helped identify patient subgroups with improved response to EGFR inhibitors, for example, cetuximab in patients with the KRAS-variant and the tyrosine kinase inhibitor erlotinib for tumors harboring MAPK1 E322K mutations. Genome sequencing has furthermore broadened our understanding of dysregulated pathways, holding the potential to enhance the benefit derived from therapies targeting EGFR.

  9. Interrogation of EGFR Targeted Uptake of TiO2 Nanoconjugates by X-ray Fluorescence Microscopy.

    PubMed

    Yuan, Ye; Paunesku, Tatjana; Arora, Hans; Ward, Jesse; Vogt, Stefan; Woloschak, Gayle

    2011-09-01

    We are developing TiO 2 nanoconjugates that can be used as therapeutic and diagnostic agents. Nanoscale TiO 2 can be surface conjugated with various molecules and has the unique ability to induce the production of reactive oxygen species after radiation activation. One way to improve the potential clinical usefulness of TiO 2 nanoparticles is to control their delivery to malignant cells by targeting them to cancer cell specific antigens. Epidermal Growth Factor Receptor is one potential target that is enriched in epithelial cancers and is rapidly internalized after ligand binding. Hence, we have synthesized TiO 2 nanoparticles and functionalized them with a short EGFR binding peptide to create EGFR-targeted NCs. X-ray Fluorescence Microscopy was used to image nanoconjugates within EGFR positive HeLa cells. Further labeling of fixed cells with antibodies against EGFR and Protein A nanogold showed that TiO 2 nanoconjugates can colocalize with receptors at the cell's plasma membrane. Interestingly, with increased incubation times, EGFR targeted nanoconjugates could also be found colocalized with EGFR within the cell nucleus. This suggests that EGFR-targeted nanoconjugates can bind the receptor at the cell membrane, which leads to the internalization of NC-receptor complexes and the subsequent transport of nanoconjugates into the nucleus.

  10. Autophagosome-mediated EGFR down-regulation induced by the CK2 inhibitor enhances the efficacy of EGFR-TKI on EGFR-mutant lung cancer cells with resistance by T790M.

    PubMed

    So, Kwang Sup; Kim, Cheol Hyeon; Rho, Jin Kyung; Kim, Sun Ye; Choi, Yun Jung; Song, Joon Seon; Kim, Woo Sung; Choi, Chang Min; Chun, Young Jin; Lee, Jae Cheol

    2014-01-01

    Protein kinase CK2 has diverse functions promoting and maintaining cancer phenotypes. We investigated the effect of CK2 inhibition in lung cancer cells with T790M-mediated resistance to the EGFR-TK inhibitor. Resistant sublines of PC-9 to gefitinib (PC-9/GR) and erlotinib (PC-9/ER) were established by previous study, and T790M secondary mutation was found in both resistant sublines. A decrease of EGFR by siRNA treatment effectively controlled the growth of resistant cells, thus suggesting that they still have EGFR-dependency. CX-4945, a potent and selective CK2 inhibitor, induced autophagy in PC-9/GR and PC-9/ER, and which was supported by the induction of autophagic vacuoles and microtubule-associated protein 1 light chain 3 (LC3) expression, and the increase of punctate fluorescent signals in resistant cells pre-transfected with green fluorescent protein (GFP)-tagged LC3. However, the withdrawal of CX-4945 led to the recovery of cancer cells with autophagy. We found that the induction of autophagy by CX-4945 in both resistant cells was CK2 dependent by using small interfering RNA against CK2. The treatment with CX-4945 alone induced a minimal growth inhibition in resistant cells. However, combined treatment of CX-4945 and EGFR-TKI effectively inhibited cancer-cell proliferation and induced apoptosis. CX-4945 increased the translocation of EGFR from the cell surface into the autophagosome, subsequently leading to the decrease of EGFR while inhibition of autophagy by 3MA or Atg7-targeted siRNA pretreatment reduced the decrease of EGFR by CX-4945. Accordingly, apoptosis by a combination of CX-4945 and EGFR-TKI was suppressed by 3MA or Atg7-targeted siRNA pretreatment, thus suggesting that autophagosome-mediated EGFR down-regulation would have an important role regarding apoptotic cell death by EGFR-TKI. Combined treatment of the CK2 inhibitor and EGFR-TKI may be a promising strategy for overcoming T790M-mediated resistance.

  11. Gallic acid induces apoptosis in EGFR-mutant non-small cell lung cancers by accelerating EGFR turnover.

    PubMed

    Nam, Boas; Rho, Jin Kyung; Shin, Dong-Myung; Son, Jaekyoung

    2016-10-01

    Gallic acid is a common botanic phenolic compound, which is present in plants and foods worldwide. Gallic acid is implicated in various biological processes such as cell growth and apoptosis. Indeed, gallic acid has been shown to induce apoptosis in many cancer types. However, the molecular mechanisms of gallic acid-induced apoptosis in cancer, particularly lung cancer, are still unclear. Here, we report that gallic acid induces apoptosis in EGFR-mutant non-small cell lung cancer (NSCLC) cells, but not in EGFR-WT NSCLC cells. Treatment with gallic acid resulted in a significant reduction in proliferation and induction of apoptosis, only in EGFR-mutant NSCLC cells. Interestingly, treatment with gallic acid led to a robust decrease in EGFR levels, which is critical for NSCLC survival. Treatment with gallic acid had no significant effect on transcription, but induced EGFR turnover. Indeed, treatment with a proteasome inhibitor dramatically reversed gallic acid-induced EGFR downregulation. Moreover, treatment with gallic acid induced EGFR turnover leading to apoptosis in EGFR-TKI (tyrosine kinase inhibitor)-resistant cell lines, which are dependent on EGFR signaling for survival. Thus, these studies suggest that gallic acid can induce apoptosis in EGFR-dependent lung cancers that are dependent on EGFR for growth and survival via acceleration of EGFR turnover. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. EGFR as a therapeutic target for human, canine, and mouse ACTH-secreting pituitary adenomas

    PubMed Central

    Fukuoka, Hidenori; Cooper, Odelia; Ben-Shlomo, Anat; Mamelak, Adam; Ren, Song-Guang; Bruyette, Dave; Melmed, Shlomo

    2011-01-01

    Cushing disease is a condition in which the pituitary gland releases excessive adrenocorticotropic hormone (ACTH) as a result of an adenoma arising from the ACTH-secreting cells in the anterior pituitary. ACTH-secreting pituitary adenomas lead to hypercortisolemia and cause significant morbidity and mortality. Pituitary-directed medications are mostly ineffective, and new treatment options are needed. As these tumors express EGFR, we tested whether EGFR might provide a therapeutic target for Cushing disease. Here, we show that in surgically resected human and canine corticotroph cultured tumors, blocking EGFR suppressed expression of proopiomelanocortin (POMC), the ACTH precursor. In mouse corticotroph EGFR transfectants, ACTH secretion was enhanced, and EGF increased Pomc promoter activity, an effect that was dependent on MAPK. Blocking EGFR activity with gefitinib, an EGFR tyrosine kinase inhibitor, attenuated Pomc expression, inhibited corticotroph tumor cell proliferation, and induced apoptosis. As predominantly nuclear EGFR expression was observed in canine and human corticotroph tumors, we preferentially targeted EGFR to mouse corticotroph cell nuclei, which resulted in higher Pomc expression and ACTH secretion, both of which were inhibited by gefitinib. In athymic nude mice, EGFR overexpression enhanced the growth of explanted ACTH-secreting tumors and further elevated serum corticosterone levels. Gefitinib treatment decreased both tumor size and corticosterone levels; it also reversed signs of hypercortisolemia, including elevated glucose levels and excess omental fat. These results indicate that inhibiting EGFR signaling may be a novel strategy for treating Cushing disease. PMID:22105169

  13. EGFR-targeted gelatin nanoparticles for systemic administration of gemcitabine in an orthotopic pancreatic cancer model.

    PubMed

    Singh, Amit; Xu, Jing; Mattheolabakis, George; Amiji, Mansoor

    2016-04-01

    In this study, we have formulated redox-responsive epidermal growth factor receptor (EGFR)-targeted type B gelatin nanoparticles as a targeted vector for systemic delivery of gemcitabine therapy in pancreatic cancer. The gelatin nanoparticles were formed by ethanol-induced desolvation process to encapsulate the bound drug. The surface of the nanoparticles was decorated either with poly(ethylene glycol) (PEG) chains to impart enhanced circulation time or with EGFR targeting peptide to confer target specificity. Our in vitro studies in Panc-1 human pancreatic ductal adenocarcinoma cells confirm that gemcitabine encapsulated in EGFR-targeted gelatin nanoparticles, released through disulfide bond cleavage, had a significantly improved cytotoxic profile. Further, the in vivo anticancer activity was evaluated in an orthotopic pancreatic adenocarcinoma tumor bearing SCID beige mice, which confirmed that EGFR-targeted gelatin nanoparticles could efficiently deliver gemcitabine to the tumor leading to higher therapeutic benefit as compared to the drug in solution. The treatment of pancreatic cancer remains unsatisfactory, with an average 5-year survival of less than 5%. New treatment modalities are thus urgently needed. In this study, the authors presented their formulation of redox-responsive epidermal growth factor receptor (EGFR)-targeted type B gelatin nanoparticles as a carrier for gemcitabine. In-vitro and in-vivo experiments showed encouraging results. It is hoped that the findings would provide a novel and alternative drug delivery platform for the future. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. EGFR, HER2 and VEGF pathways: validated targets for cancer treatment.

    PubMed

    Press, Michael F; Lenz, Heinz-Josef

    2007-01-01

    Targeted therapies are rationally designed to interfere with specific molecular events that are important in tumour growth, progression or survival. Several targeted therapies with anti-tumour activity in human cancer cell lines and xenograft models have now been shown to produce objective responses, delay disease progression and, in some cases, improve survival of patients with advanced malignancies. These targeted therapies include cetuximab, an anti-epidermal growth factor receptor (EGFR) monoclonal antibody; gefitinib and erlotinib, EGFR-specific tyrosine kinase inhibitors; trastuzumab, an anti-human EGFR type 2 (HER2)-related monoclonal antibody; lapatinib, a dual inhibitor of both EGFR- and HER2-associated tyrosine kinases; and bevacizumab, an anti-vascular endothelial growth factor (VEGF) monoclonal antibody. On the basis of preclinical and clinical evidence, EGFR, HER2 and VEGF represent validated targets for cancer therapy and remain the subject of intensive investigation. Both EGFR and HER2 are targets found on cancer cells, whereas VEGF is a target that acts in the tumour microenvironment. Clinical studies are focusing on how to best incorporate targeted therapy into current treatment regimens and other studies are exploring whether different strategies for inhibiting these targets will offer greater benefit. It is clear that optimal use of targeted therapy will depend on understanding how these drugs work mechanistically, and recognising that their activities may differ across patient populations, tumour types and disease stages, as well as when and how they are used in cancer treatment. The results achieved with targeted therapies to date are promising, although they illustrate the need for additional preclinical and clinical study.

  15. Ligand-independent Dimer Formation of Epidermal Growth Factor Receptor (EGFR) Is a Step Separable from Ligand-induced EGFR Signaling

    PubMed Central

    Yu, Xiaochun; Sharma, Kailash D.; Takahashi, Tsuyoshi; Iwamoto, Ryo; Mekada, Eisuke

    2002-01-01

    Dimerization and phosphorylation of the epidermal growth factor (EGF) receptor (EGFR) are the initial and essential events of EGF-induced signal transduction. However, the mechanism by which EGFR ligands induce dimerization and phosphorylation is not fully understood. Here, we demonstrate that EGFRs can form dimers on the cell surface independent of ligand binding. However, a chimeric receptor, comprising the extracellular and transmembrane domains of EGFR and the cytoplasmic domain of the erythropoietin receptor (EpoR), did not form a dimer in the absence of ligands, suggesting that the cytoplasmic domain of EGFR is important for predimer formation. Analysis of deletion mutants of EGFR showed that the region between 835Ala and 918Asp of the EGFR cytoplasmic domain is required for EGFR predimer formation. In contrast to wild-type EGFR ligands, a mutant form of heparin-binding EGF-like growth factor (HB2) did not induce dimerization of the EGFR-EpoR chimeric receptor and therefore failed to activate the chimeric receptor. However, when the dimerization was induced by a monoclonal antibody to EGFR, HB2 could activate the chimeric receptor. These results indicate that EGFR can form a ligand-independent inactive dimer and that receptor dimerization and activation are mechanistically distinct and separable events. PMID:12134089

  16. EGFR Amplification as a Target in Gastroesophageal Adenocarcinoma: Do Anti-EGFR Therapies Deserve a Second Chance?

    PubMed

    Strickler, John H

    2018-06-01

    Anti-EGFR therapies have failed to improve survival for unselected patients with metastatic gastroesophageal cancer, but in a subset of patients, EGFR amplification may predict treatment benefit. Maron and colleagues report the clinical activity of anti-EGFR therapies in a cohort of patients with EGFR -amplified metastatic gastroesophageal cancer and utilize serial blood and tumor tissue collection to identify molecular drivers of treatment sensitivity and resistance. Their insights offer a path to overcome technical limitations associated with EGFR amplification and facilitate molecularly targeted therapeutic strategies. Cancer Discov; 8(6); 679-81. ©2018 AACR See related article by Maron et al., p. 696 . ©2018 American Association for Cancer Research.

  17. Targeting the Kinase-Independent Pro-survival Function of EGFR in Prostate Cancer

    DTIC Science & Technology

    2013-06-01

    AD AWARD NUMBER: W81XWH-09-1-0343 TITLE: Targeting the Kinase-Independent Pro -survival Function of EGFR in Prostate Cancer...SUBTITLE Targeting the Kinase-Independent, Pro -survival Function of EGFR in Prostate Cancer 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-09-1...Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT The proposed study, targeting the kinase independent pro -survival function of EGFR in prostate

  18. Anti-EGFR-Conjugated Hollow Gold Nanospheres Enhance Radiocytotoxic Targeting of Cervical Cancer at Megavoltage Radiation Energies

    NASA Astrophysics Data System (ADS)

    Liu, Jiao; Liang, Ying; Liu, Ting; Li, Dengke; Yang, Xingsheng

    2015-05-01

    The study aimed to confirm that anti-epidermal growth factor receptor (EGFR) monoclonal antibody-conjugated hollow gold nanospheres (anti-EGFR/HGNs) can be selectively uptaken by cervical cancer cells and induce its apoptosis when combined with radiotherapy, as a result enhancing radiosensitivity of cervical cancer cells. HGNs with a mean diameter of 54.6 ± 7.11 nm and wall thickness of 5.01 ± 2.23 nm were viewed by transmission electron microscopy (TEM). Cell uptake was assayed by inductively coupled plasma atomic emission spectroscopy (ICP-AES). The cytotoxicity on HeLa cells, which were used in our experiment, was assessed by CCK-8 assay. Cell cycle and apoptosis were examined by an Annexin V-FITC/propidium iodide (PI) kit with flow cytometry (FCM). The expression of several critical apoptosis-related proteins, including Bcl-2, Bax, Bad, and active caspase 3, was tested by western blot analysis. Cells treated by anti-EGFR/HGNs showed an obvious increase in nanoparticle uptake compared to naked HGNs. Anti-EGFR/HGNs combined with radiation resulted in a significant growth inhibition, compared with radiation combined with naked HGNs. Anti-EGFR/HGNs remarkably increased the ratio of HeLa cells in the G2/M phase and induced more apoptosis by an obvious deregulation of Bcl-2 and upregulation of Bax, Bad, and caspase 3 when combined with radiation. Therefore, anti-EGFR/HGNs can increase the targeted uptake of HGNs by HeLa cells and enhance radiocytotoxic targeting of cervical cancer at megavoltage radiation energies.

  19. STAT3 signaling mediates tumour resistance to EGFR targeted therapeutics.

    PubMed

    Zulkifli, Ahmad A; Tan, Fiona H; Putoczki, Tracy L; Stylli, Stanley S; Luwor, Rodney B

    2017-08-15

    Several EGFR inhibitors are currently undergoing clinical assessment or are approved for the clinical management of patients with varying tumour types. However, treatment often results in a lack of response in many patients. The majority of patients that initially respond eventually present with tumours that display acquired resistance to the original therapy. A large number of receptor tyrosine and intracellular kinases have been implicated in driving signaling that mediates this tumour resistance to anti-EGFR targeted therapy, and in a few cases these discoveries have led to overall changes in prospective tumour screening and clinical practice (K-RAS in mCRC and EGFR T790M in NSCLC). In this mini-review, we specifically focus on the role of the STAT3 signaling axis in providing both intrinsic and acquired resistance to inhibitors of the EGFR. We also focus on STAT3 pathway targeting in an attempt to overcome resistance to anti-EGFR therapeutics. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. EGFR transactivation is involved in TNF-α-induced expression of thymic stromal lymphopoietin in human keratinocyte cell line.

    PubMed

    Segawa, Ryosuke; Shigeeda, Kenichi; Hatayama, Takahiro; Dong, Jiangxu; Mizuno, Natsumi; Moriya, Takahiro; Hiratsuka, Masahiro; Hirasawa, Noriyasu

    2018-03-01

    Thymic stromal lymphopoietin (TSLP) is an epithelial cell-derived cytokine involved in the pathology of inflammatory skin diseases, such as atopic dermatitis and psoriasis. Tumor necrosis factor (TNF)-α, a key cytokine in inflammatory skin diseases, is a known TSLP inducer. TNF-α activates NF-κB and induces transactivation of epidermal growth factor receptor (EGFR) in epithelial cells. However, the detailed mechanism of TSLP induction by TNF-α has remained unclear. We investigated the involvement of TNF-α-induced EGFR transactivation in TSLP expression. HaCaT cells were stimulated with TNF-α or EGF in the presence or absence of an EGFR kinase inhibitor or other signaling inhibitors. The expression of TSLP mRNA was analyzed by RT-PCR and the phosphorylation level of signal proteins was analyzed by western blot. TSLP promoter and NF-κB transcription activities were analyzed by luciferase assay. TNF-α-induced TSLP expression was inhibited by the EGFR kinase inhibitor AG1478. While TSLP expression was induced by EGF, it was inhibited by the MEK inhibitor, U0126. Inhibitors of p38 and ADAM proteases suppressed the TNF-α-induced TSLP expression and EGFR phosphorylation, but not the EGF-induced expression. TNF-α-induced EGFR transactivation results in TSLP induction through ERK activation. The activation of p38 and ADAM proteases mediates TNF-α-induced EGFR phosphorylation. These findings suggested that the TNF-α-induced EGFR transactivation pathway could be a target for the treatment of inflammatory skin diseases. Copyright © 2017 Japanese Society for Investigative Dermatology. Published by Elsevier B.V. All rights reserved.

  1. Targeted Therapies in NSCLC: Emerging oncogene targets following the success of EGFR

    PubMed Central

    Berge, Eamon M; Doebele, Robert C

    2014-01-01

    The diagnostic testing, treatment and prognosis of non-small cell lung cancer (NSCLC) has undergone a paradigm shift since the discovery of sensitizing mutations in the epidermal growth factor receptor (EGFR) gene in a subset of NSCLC patients. Several additional oncogenic mutations, including gene fusions and amplifications have since been discovered, with a number of drugs that target each specific oncogene. This review focuses on oncogenes in NSCLC other than EGFR and their companion ‘targeted therapies’. Particular emphasis is placed on the role of ALK, ROS1, RET, MET, BRAF, and HER2 in NSCLC. PMID:24565585

  2. Fatty acid synthase mediates EGFR palmitoylation in EGFR mutated non-small cell lung cancer.

    PubMed

    Ali, Azhar; Levantini, Elena; Teo, Jun Ting; Goggi, Julian; Clohessy, John G; Wu, Chan Shuo; Chen, Leilei; Yang, Henry; Krishnan, Indira; Kocher, Olivier; Zhang, Junyan; Soo, Ross A; Bhakoo, Kishore; Chin, Tan Min; Tenen, Daniel G

    2018-02-15

    Metabolic reprogramming is widely known as a hallmark of cancer cells to allow adaptation of cells to sustain survival signals. In this report, we describe a novel oncogenic signaling pathway exclusively acting in mutated epidermal growth factor receptor (EGFR) non-small cell lung cancer (NSCLC) with acquired tyrosine kinase inhibitor (TKI) resistance. Mutated EGFR mediates TKI resistance through regulation of the fatty acid synthase (FASN), which produces 16-C saturated fatty acid palmitate. Our work shows that the persistent signaling by mutated EGFR in TKI-resistant tumor cells relies on EGFR palmitoylation and can be targeted by Orlistat, an FDA-approved anti-obesity drug. Inhibition of FASN with Orlistat induces EGFR ubiquitination and abrogates EGFR mutant signaling, and reduces tumor growths both in culture systems and in vivo Together, our data provide compelling evidence on the functional interrelationship between mutated EGFR and FASN and that the fatty acid metabolism pathway is a candidate target for acquired TKI-resistant EGFR mutant NSCLC patients. © 2018 The Authors. Published under the terms of the CC BY 4.0 license.

  3. Tyrosine dephosphorylation enhances the therapeutic target activity of epidermal growth factor receptor (EGFR) by disrupting its interaction with estrogen receptor (ER).

    PubMed

    Ma, Shao; Yin, Ning; Qi, Xiaomei; Pfister, Sandra L; Zhang, Mei-Jie; Ma, Rong; Chen, Guan

    2015-05-30

    Protein-protein interactions can increase or decrease its therapeutic target activity and the determining factors involved, however, are largely unknown. Here, we report that tyrosine-dephosphorylation of epidermal growth factor receptor (EGFR) increases its therapeutic target activity by disrupting its interaction with estrogen receptor (ER). Protein tyrosine phosphatase H1 (PTPH1) dephosphorylates the tyrosine kinase EGFR, disrupts its interaction with the nuclear receptor ER, and increases breast cancer sensitivity to small molecule tyrosine kinase inhibitors (TKIs). These effects require PTPH1 catalytic activity and its interaction with EGFR, suggesting that the phosphatase may increase the sensitivity by dephosphorylating EGFR leading to its dissociation with ER. Consistent with this notion, a nuclear-localization defective ER has a higher EGFR-binding activity and confers the resistance to TKI-induced growth inhibition. Additional analysis show that PTPH1 stabilizes EGFR, stimulates the membranous EGFR accumulation, and enhances the growth-inhibitory activity of a combination therapy of TKIs with an anti-estrogen. Since EGFR and ER both are substrates for PTPH1 in vitro and in intact cells, these results indicate that an inhibitory EGFR-ER protein complex can be switched off through a competitive enzyme-substrate binding. Our results would have important implications for the treatment of breast cancer with targeted therapeutics.

  4. PGE2/EP3/SRC signaling induces EGFR nuclear translocation and growth through EGFR ligands release in lung adenocarcinoma cells

    PubMed Central

    Bazzani, Lorenzo; Donnini, Sandra; Finetti, Federica; Christofori, Gerhard; Ziche, Marina

    2017-01-01

    Prostaglandin E2 (PGE2) interacts with tyrosine kinases receptor signaling in both tumor and stromal cells supporting tumor progression. Here we demonstrate that in non-small cell lung carcinoma (NSCLC) cells, A549 and GLC82, PGE2 promotes nuclear translocation of epidermal growth factor receptor (nEGFR), affects gene expression and induces cell growth. Indeed, cyclin D1, COX-2, iNOS and c-Myc mRNA levels are upregulated following PGE2 treatment. The nuclear localization sequence (NLS) of EGFR as well as its tyrosine kinase activity are required for the effect of PGE2 on nEGFR and downstream signaling activities. PGE2 binds its bona fide receptor EP3 which by activating SRC family kinases, induces ADAMs activation which, in turn, releases EGFR-ligands from the cell membrane and promotes nEGFR. Amphiregulin (AREG) and Epiregulin (EREG) appear to be involved in nEGFR promoted by the PGE2/EP3-SRC axis. Pharmacological inhibition or silencing of the PGE2/EP3/SRC-ADAMs signaling axis or EGFR ligands i.e. AREG and EREG expression abolishes nEGFR induced by PGE2. In conclusion, PGE2 induces NSCLC cell proliferation by EP3 receptor, SRC-ADAMs activation, EGFR ligands shedding and finally, phosphorylation and nEGFR. Since nuclear EGFR is a hallmark of cancer aggressiveness, our findings reveal a novel mechanism for the contribution of PGE2 to tumor progression. PMID:28415726

  5. ROLE OF GRB2-ASSOCIATED BINDER 1 (GAB1) IN EPIDERMAL GROWTH FACTOR RECEPTOR (EGFR)-INDUCED SIGNALING IN HEAD AND NECK SQUAMOUS CELL CARCINOMA

    PubMed Central

    Hoeben, A.; Martin, D.; Clement, P. M.; Cools, J.; Gutkind, J. S.

    2012-01-01

    The Epidermal Growth Factor Receptor (EGFR) plays an important role in the pathogenesis of head and neck squamous cell carcinoma (HNSCC). Despite the high expression of EGFR in HNSCC, EGFR inhibitors have only limited success as monotherapy. The Grb2-associated binder (GAB) family of adaptor proteins acts as docking/scaffolding molecules downstream of tyrosine kinase receptors. We hypothesized that GAB1 may amplify EGFR-induced signaling in HNSCCs and therefore could play a role in the reduced sensitivity of HNSCC to EGFR inhibitors. We used representative human HNSCC cell lines overexpressing wild type EGFR, and expressing GAB1 but not GAB2. We demonstrated that baseline Akt and MAPK signaling were reduced in HNSCC cells in which GAB1 expression was reduced. Furthermore, the maximal EGF-induced activation of the Akt and MAPK pathway was reduced and delayed, and the duration of the EGF-induced activation of these pathways was reduced in cells with GAB1 knock-down. In agreement with this, HNSCC cells in which GAB1 levels were reduced showed an increased sensitivity to the EGFR inhibitor gefitinib. Our work demonstrates that GAB1 plays an important role as part of the mechanism of by which EGFR induces induced activation of the MAPK and AKT pathway. Our results identify GAB1 as an amplifier of the EGFR-initiated signaling, which may also interfere with EGFR degradation. These findings support the emerging notion that reducing GAB1 function may sensitize HNSCC to EGFR inhibitors, hence representing a new therapeutic target HNSCC treatment in combination with EGFR targeting agents. PMID:22865653

  6. Combined targeting of PDK1 and EGFR triggers regression of glioblastoma by reversing the Warburg effect.

    PubMed

    Velpula, Kiran Kumar; Bhasin, Arnima; Asuthkar, Swapna; Tsung, Andrew J

    2013-12-15

    Glioblastoma multiforme is the most aggressive primary brain tumor in adults. Overexpression of the EGF receptor (EGFR) is recognized as a widespread oncogenic signature in glioblastoma multiforme, but the complexity of its contributions is not fully understood, nor the most effective ways to leverage anti-EGFR therapy in this setting. Hypoxia is known to drive the aggressive character of glioblastoma multiforme by promoting aerobic glycolysis rather than pyruvate oxidation carried out in mitochondria (OXPHOS), a phenomenon termed the Warburg effect, which is a general feature of oncogenesis. In this study, we report that hypoxia drives expression of the pyruvate dehydrogenase kinase (PDK1) and EGFR along with the hypoxia-inducing factor (HIF)-1α in human glioblastoma multiforme cells. PDK1 is a HIF-1-regulated gene and our findings indicated that hypoxia-induced PDK1 expression may promote EGFR activation, initiating a feed-forward loop that can sustain malignant progression. RNAi-mediated attenuation of PDK1 and EGFR lowered PDK1-EGFR activation and decreased HIF-1α expression, shifting the Warburg phenotype to OXPHOS and inhibiting glioblastoma multiforme growth and proliferation. In clinical specimens of glioblastoma multiforme, we found that immunohistochemical expression of PDK1, EGFR, and HIF-1α were elevated in glioblastoma multiforme specimens when compared with normal brain tissues. Collectively, our studies establish PDK1 as a key driver and candidate therapeutic target in glioblastoma multiforme. ©2013 AACR.

  7. Receptor tyrosine kinase inhibitors and cytotoxic drugs affect pleural mesothelioma cell proliferation: insight into EGFR and ERK1/2 as antitumor targets.

    PubMed

    Barbieri, Federica; Würth, Roberto; Favoni, Roberto E; Pattarozzi, Alessandra; Gatti, Monica; Ratto, Alessandra; Ferrari, Angelo; Bajetto, Adriana; Florio, Tullio

    2011-11-15

    Malignant pleural mesothelioma (MPM) is an aggressive chemotherapy-resistant cancer. Up-regulation of epidermal growth factor receptor (EGFR) plays an important role in MPM development and EGFR-tyrosine kinase inhibitors (TKIs) may represent novel therapeutic options. We tested the effects of the EGFR TKIs gefitinib and erlotinib and TKIs targeted to other growth factors (VEGFR and PDGFR), in comparison to standard antineoplastic agents, in two human MPM cell lines, IST-Mes2 and ZL55. All drugs showed IC(50) values in the micromolar range: TKIs induced cytostatic effects at concentrations up to the IC(50,) while conventional drug growth-inhibitory activity was mainly cytotoxic. Moreover, the treatment of IST-Mes2 with TKIs (gefitinib and imatinib mesylate) in combination with cisplatin and gemcitabine did not show additivity. Focusing on the molecular mechanisms underlying the antiproliferative and pro-apoptotic effects of EGFR-TKIs, we observed that gefitinib induced the formation and stabilization of inactive EGFR homodimers, even in absence of EGF, as demonstrated by EGFR B(max) and number of sites/cell. The analysis of downstream effectors of EGFR signaling demonstrated that EGF-induced proliferation, reverted by gefitinib, involved ERK1/2 activation, independently from Akt pathway. Gefitinib inhibits MPM cell growth and survival, preventing EGF-dependent activation of ERK1/2 pathway by blocking EGFR-TK phosphorylation and stabilizing inactive EGFR dimers. Along with the molecular definition of TKIs pharmacological efficacy in vitro, these results may contribute to delve deep into the promising but still controversial role for targeted and conventional drugs in the therapy of MPM. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Inhibition of EGFR attenuates fibrosis and stellate cell activation in diet-induced model of nonalcoholic fatty liver disease.

    PubMed

    Liang, Dandan; Chen, Hongjin; Zhao, Leping; Zhang, Wenxin; Hu, Jie; Liu, Zhiguo; Zhong, Peng; Wang, Wei; Wang, Jingying; Liang, Guang

    2018-01-01

    Nonalcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease. NAFLD begins with steatosis and advances to nonalcoholic steatohepatitis (NASH) and cirrhosis. The molecular mechanisms involved in NAFLD progression are not understood. Based on recent studies showing dysregulation of epidermal growth factor receptor (EGFR) in animal models of liver injury, we sought to determine if inhibition of EGFR mitigates liver fibrosis and HSC activation in NAFLD. We utilized the high fat diet (HFD)-induced murine model of liver injury to study the role of EGFR in NAFLD. The lipid accumulation, oxidative stress, hepatic stellate cell (HSC) activation and matrix deposition were examined in the liver tissues. We also evaluated the EGFR signaling pathway, ROS activation and pro-fibrogenic phenotype in oxidized low density lipoproteins (ox-LDL) challenged cultured HSCs. We demonstrate that EGFR was phosphorylated in liver tissues of HFD murine model of NAFLD. Inhibition of EGFR prevented diet-induced lipid accumulation, oxidative stress, and HSC activation and matrix deposition. In cultured HSCs, we show that ox-LDL caused rapid activation of the EGFR signaling pathway and induce the production of reactive oxygen species. EGFR also mediated HSC activation and promoted a pro-fibrogenic phenotype. In conclusion, our data demonstrate that EGFR plays an important role in NAFLD and is an attractive target for NAFLD therapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Inhibition of Shp2 suppresses mutant EGFR-induced lung tumors in transgenic mouse model of lung adenocarcinoma

    PubMed Central

    Schneeberger, Valentina E.; Ren, Yuan; Luetteke, Noreen; Huang, Qingling; Chen, Liwei; Lawrence, Harshani R.; Lawrence, Nicholas J.; Haura, Eric B.; Koomen, John M.; Coppola, Domenico; Wu, Jie

    2015-01-01

    Epidermal growth factor receptor (EGFR) mutants drive lung tumorigenesis and are targeted for therapy. However, resistance to EGFR inhibitors has been observed, in which the mutant EGFR remains active. Thus, it is important to uncover mediators of EGFR mutant-driven lung tumors to develop new treatment strategies. The protein tyrosine phosphatase (PTP) Shp2 mediates EGF signaling. Nevertheless, it is unclear if Shp2 is activated by oncogenic EGFR mutants in lung carcinoma or if inhibiting the Shp2 PTP activity can suppress EGFR mutant-induced lung adenocarcinoma. Here, we generated transgenic mice containing a doxycycline (Dox)-inducible PTP-defective Shp2 mutant (tetO-Shp2CSDA). Using the rat Clara cell secretory protein (CCSP)-rtTA-directed transgene expression in the type II lung pneumocytes of transgenic mice, we found that the Gab1-Shp2 pathway was activated by EGFRL858R in the lungs of transgenic mice. Consistently, the Gab1-Shp2 pathway was activated in human lung adenocarcinoma cells containing mutant EGFR. Importantly, Shp2CSDA inhibited EGFRL858R-induced lung adenocarcinoma in transgenic animals. Analysis of lung tissues showed that Shp2CSDA suppressed Gab1 tyrosine phosphorylation and Gab1-Shp2 association, suggesting that Shp2 modulates a positive feedback loop to regulate its own activity. These results show that inhibition of the Shp2 PTP activity impairs mutant EGFR signaling and suppresses EGFRL858R-driven lung adenocarcinoma. PMID:25730908

  10. Targeting MET and EGFR crosstalk signaling in triple-negative breast cancers

    PubMed Central

    Essenburg, Curt J.; Turner, Lisa; Madaj, Zachary; Winn, Mary E.; Melnik, Marianne K.; Korkaya, Hasan; Maroun, Christiane R.; Christensen, James G.; Steensma, Matthew R.; Boerner, Julie L.; Graveel, Carrie R.

    2016-01-01

    There is a vital need for improved therapeutic strategies that are effective in both primary and metastatic triple-negative breast cancer (TNBC). Current treatment options for TNBC patients are restricted to chemotherapy; however tyrosine kinases are promising druggable targets due to their high expression in multiple TNBC subtypes. Since coexpression of receptor tyrosine kinases (RTKs) can promote signaling crosstalk and cell survival in the presence of kinase inhibitors, it is likely that multiple RTKs will need to be inhibited to enhance therapeutic benefit and prevent resistance. The MET and EGFR receptors are actionable targets due to their high expression in TNBC; however crosstalk between MET and EGFR has been implicated in therapeutic resistance to single agent use of MET or EGFR inhibitors in several cancer types. Therefore it is likely that dual inhibition of MET and EGFR is required to prevent crosstalk signaling and acquired resistance. In this study, we evaluated the heterogeneity of MET and EGFR expression and activation in primary and metastatic TNBC tumorgrafts and determined the efficacy of MET (MGCD265 or crizotinib) and/or EGFR (erlotinib) inhibition against TNBC progression. Here we demonstrate that combined MET and EGFR inhibition with either MGCD265 and erlotinib treatment or crizotinib and erlotinib treatment were highly effective at abrogating tumor growth and significantly decreased the variability in treatment response compared to monotherapy. These results advance our understanding of the RTK signaling architecture in TNBC and demonstrate that combined MET and EGFR inhibition may be a promising therapeutic strategy for TNBC patients. PMID:27655711

  11. Targeting SHP2 for EGFR inhibitor resistant non-small cell lung carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Jie; Zeng, Li-Fan; Shen, Weihua

    Highlights: •SHP2 is required for EGFR inhibitor resistant NSCLC H1975 cell proliferation. •SHP2 inhibitor blocks EGF-stimulated ERK1/2 activation and proliferation. •SHP2 inhibitor exhibits marked anti-tumor activity in H1975 xenograft mice. •SHP2 inhibitor synergizes with PI3K inhibitor in suppressing cell growth. •Targeting SHP2 represents a novel strategy for EGFR inhibitor resistant NSCLCs. -- Abstract: Targeted therapy with inhibitors of epidermal growth factor receptor (EGFR) has produced a noticeable benefit to non-small cell lung cancer (NSCLC) patients whose tumors carry activating mutations (e.g. L858R) in EGFR. Unfortunately, these patients develop drug resistance after treatment, due to acquired secondary gatekeeper mutations in EGFRmore » (e.g. T790M). Given the critical role of SHP2 in growth factor receptor signaling, we sought to determine whether targeting SHP2 could have therapeutic value for EGFR inhibitor resistant NSCLC. We show that SHP2 is required for EGF-stimulated ERK1/2 phosphorylation and proliferation in EGFR inhibitor resistant NSCLC cell line H1975, which harbors the EGFR T790M/L858R double-mutant. We demonstrate that treatment of H1975 cells with II-B08, a specific SHP2 inhibitor, phenocopies the observed growth inhibition and reduced ERK1/2 activation seen in cells treated with SHP2 siRNA. Importantly, we also find that II-B08 exhibits marked anti-tumor activity in H1975 xenograft mice. Finally, we observe that combined inhibition of SHP2 and PI3K impairs both the ERK1/2 and PI3K/AKT signaling axes and produces significantly greater effects on repressing H1975 cell growth than inhibition of either protein individually. Collectively, these results suggest that targeting SHP2 may represent an effective strategy for treatment of EGFR inhibitor resistant NSCLCs.« less

  12. Gefitinib targets EGFR dimerization and ERK1/2 phosphorylation to inhibit pleural mesothelioma cell proliferation.

    PubMed

    Favoni, Roberto E; Pattarozzi, Alessandra; Lo Casto, Michele; Barbieri, Federica; Gatti, Monica; Paleari, Laura; Bajetto, Adriana; Porcile, Carola; Gaudino, Giovanni; Mutti, Luciano; Corte, Giorgio; Florio, Tullio

    2010-03-01

    Altered EGFR activity is a causal factor for human tumor development, including malignant pleural mesotheliomas. The aim of the present study was the evaluation of the effects of Gefitinib on EGF-induced mesothelioma cell proliferation and the intracellular mechanisms involved. Cell proliferation, DNA synthesis and apoptosis were measured by MTT, thymidine incorporation and FACS analysis; EGFR, ERK1/2 and Akt expression and phosphorylation by Western blot, whereas receptor sites were analyzed by binding studies. Gefitinib inhibited EGF-induced proliferation in two mesothelioma cell lines, derived from pleural effusion (IST-Mes2) or tumor biopsy (ZL55). The treatment with Gefitinib induced cell cycle arrest in both cell lines, while apoptosis was observed only for high concentrations and prolonged drug exposure. EGF-dependent mesothelioma cell proliferation was mediated by EGFR and ERK1/2 phosphorylation, while Akt was not affected. Gefitinib inhibited both EGFR and ERK1/2 activation, being maximal at drug concentrations that induce cytostatic effects, suggesting that the proapoptotic activity of Gefitinib is independent from EGFR inhibition. Gefitinib treatment increased EGFR Bmax, possibly through membrane stabilization of inactive receptor dimers that we show to be induced by the drug also in the absence of EGF. EGFR activation of ERK1/2 represents a key pathway for pleural mesothelioma cell proliferation. Low concentrations of Gefitinib cause mesothelioma cell cycle arrest through the blockade of EGFR activity while high concentrations induce apoptosis. Finally, we propose that the formation of inactive EGFR dimers may contribute to the antitumoral activity of Gefitinib.

  13. Combined EGFR/MEK Inhibition Prevents the Emergence of Resistance in EGFR mutant Lung Cancer

    PubMed Central

    Uddin, Sharmeen; Capelletti, Marzia; Ercan, Dalia; Ogino, Atsuko; Pratilas, Christine A.; Rosen, Neal; Gray, Nathanael S.; Wong, Kwok-Kin; Jänne, Pasi A.

    2016-01-01

    Irreversible pyrimidine based EGFR inhibitors, including WZ4002, selectively inhibit both EGFR activating and EGFR inhibitor resistant T790M mutations more potently than wild type EGFR. While this class of mutant selective EGFR inhibitors is effective clinically in lung cancer patients harboring EGFR T790M, prior preclinical studies demonstrate that acquired resistance can occur through genomic alterations that activate ERK1/2 signaling. Here we find that ERK1/2 reactivation occurs rapidly following WZ4002 treatment. Concomitant inhibition of ERK1/2 by the MEK inhibitor trametinib prevents ERK1/2 reactivation, enhances WZ4002 induced apoptosis and inhibits the emergence of resistance in WZ4002 sensitive models known to acquire resistance via both T790M dependent and independent mechanisms. Resistance to WZ4002 in combination with trametinib eventually emerges due to AKT/mTOR reactivation. These data suggest that initial co-targeting of EGFR and MEK could significantly impede the development of acquired resistance in mutant EGFR lung cancer. PMID:26036643

  14. Effect of verteporfin-PDT on epithelial growth factor receptor (EGFR) signaling pathway in cholangiocarcinoma cell lines

    NASA Astrophysics Data System (ADS)

    Andreola, Fausto; Cerec, Virginie; Pereira, Stephen P.

    2009-06-01

    EGFR, a member of the ERBB family, plays a pivotal role in carcinogenesis. EGFR overexpression is implicated in DNA repair and synergistic interactions between EGFR-targeting drugs and conventional chemo/radiotherapy have been reported in preclinical studies for different cancers but not cholangiocarcinoma (CCA). To date there are no in vitro data available on the cellular response and effect of either photodynamic therapy (PDT) or EGFR-targeting drugs on CCA. Therefore, we aimed to study the: (i) response to Verteporfin PDT and to EGFR-targeting drugs, as single agents; (ii) effect of PDT on ERBBs expression, phosporylation status and activation of its signaling pathways; (iii) response to combination of PDT and EGFR-targeting agents. We showed that two cholangiocarcinoma cell lines (HuCCT1 and TFK1 cells, intra- and extrahepatic, respectively) differentially respond to verteporfin-PDT treatment and are resistant to EGFR-targeting agents. A constitutive activation of EGFR in both cell lines was also observed, which could partly account for the observed resistance to EGFR-targeting drugs. In addition, verteporfin-PDT induced further phosphorylation of both EGFR and other Receptor Tyrosine Kinases. Mitochondria-independent apoptosis was induced by PDT in both CCA cell lines; in particular, PDT modulated the expression of members of the Inhibitor of Apoptosis (IAP) family of proteins. Interestingly, there was a PDT-induced EGFR nuclear translocation in both cell lines; co-treatment with either an EGFR-inhibitor (Cetuximab) or a nuclear import blocking agent (Wheat Germ Agglutinin) had an additive effect on PDT cell killing, thus implying a role of EGFR in repairing the potential PDT-induced DNA damage.

  15. Collagen type I induces EGFR-TKI resistance in EGFR-mutated cancer cells by mTOR activation through Akt-independent pathway.

    PubMed

    Yamazaki, Shota; Higuchi, Youichi; Ishibashi, Masayuki; Hashimoto, Hiroko; Yasunaga, Masahiro; Matsumura, Yasuhiro; Tsuchihara, Katsuya; Tsuboi, Masahiro; Goto, Koichi; Ochiai, Atsushi; Ishii, Genichiro

    2018-06-01

    Primary resistance to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) is a serious problem in lung adenocarcinoma patients harboring EGFR mutations. The aim of this study was to examine whether and how collagen type I (Col I), the most abundantly deposited matrix in tumor stroma, affects EGFR-TKI sensitivity in EGFR-mutant cells. We evaluated the EGFR-TKI sensitivity of EGFR-mutated cancer cells cultured with Col I. Changes in the activation of downstream signaling molecules of EGFR were analyzed. We also examined the association between the Col I expression in tumor stroma in surgical specimens and EGFR-TKI response of postoperative recurrence patients with EGFR mutations. Compared to cancer cells without Col I, the survival rate of cancer cells cultured with Col I was significantly higher after EGFR-TKI treatment. In cancer cells cultured with and without Col I, EGFR-TKI suppressed the levels of phosphorylated (p-)EGFR, p-ERK1/2, and p-Akt. When compared to cancer cells without Col I, expression of p-P70S6K, a hallmark of mTOR activation, was dramatically upregulated in cancer cells with Col I. This activation was maintained even after EGFR-TKI treatment. Simultaneous treatment with EGFR-TKI and mTOR inhibitor abrogated Col I-induced resistance to EGFR-TKI. Patients with Col I-rich stroma had a significantly shorter progression-free survival time after EGFR-TKI therapy (238 days vs 404 days; P < .05). Collagen type I induces mTOR activation through an Akt-independent pathway, which results in EGFR-TKI resistance. Combination therapy using EGFR-TKI and mTOR inhibitor could be a possible strategy to combat this resistance. © 2018 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  16. Activation of the EGFR/p38/JNK Pathway by Mitochondrial-Derived Hydrogen Peroxide Contributes To Oxygen-induced Contraction Of Ductus Arteriosus

    PubMed Central

    Hong, Zhigang; Cabrera, Jésus A; Mahapatra, Saswati; Kutty, Shelby; Weir, E. Kenneth; Archer, Stephen L.

    2014-01-01

    Oxygen-induced contraction of the ductus arteriosus (DA) involves a mitochondrial oxygen-sensor, which signals pO2 in the DA smooth muscle cell (DASMC) by increasing production of diffusible hydrogen peroxide (H2O2). H2O2 stimulates vasoconstriction by regulating ion channels and rho kinase, leading to calcium influx and calcium sensitization. Because epidermal growth factor receptor (EGFR) signaling is also redox regulated and participates in oxygen sensing and vasoconstriction in other systems, we explored the role of the EGFR and its signaling cascade (p38 and JNK) in DA contraction. Experiments were performed in DA rings isolated from full-term New Zealand White rabbits and human DASMC. In human DASMCs increasing pO2 from hypoxia to normoxia (40 to 100 mmHg) significantly increased cytosolic calcium, p<0.01. This normoxic rise in intracellular calcium was mimicked by EGF and inhibited by EGFR siRNA. In DA rings, EGF caused contraction whilst the specific EGFR inhibitor (AG1478) and the tyrosine kinase inhibitors (genistein or tyrphostin A23) selectively attenuated oxygen-induced contraction (p <0.01). Conversely, orthovanadate, a tyrosine phosphatase inhibitor known to activate EGFR signaling, caused dose-dependent contraction of hypoxic DA and superimposed increases in oxygen caused minimal additional contraction. Ansomycin, an activator of EGFR’s downstream kinases, p38 and JNK, caused DA contraction; conversely, oxygen-induced DA contraction was blocked by inhibitors of p38 MAPK (SB203580) or JNK (JNK inhibitor II). O2-induced phosphorylation of EGFR occurred within 5-minutes of increasing pO2 and was inhibited by mitochondrial-targeted overexpression of catalase. AG1478 prevented the oxygen-induced p38 and JNK phosphorylation. In conclusion, O2-induced EGFR transactivation initiates p38/JNK-mediated increases in cytosolic calcium and contributes to DA contraction. The EGFR/p38/JNK pathway is regulated by mitochondrial redox signaling and is a promising

  17. Biodistribution and Pharmacokinetics of EGFR-Targeted Thiolated Gelatin Nanoparticles Following Systemic Administration in Pancreatic Tumor-Bearing Mice

    PubMed Central

    Xu, Jing; Gattacceca, Florence; Amiji, Mansoor

    2013-01-01

    The objective of this study was to evaluate qualitative and quantitative biodistribution of epidermal growth factor receptor (EGFR)-targeted thiolated type B gelatin nanoparticles in vivo in a subcutaneous human pancreatic adenocarcinoma (Panc-1) bearing female SCID Beige mice. EGFR-targeted nanoparticles showed preferential and sustained accumulation in the tumor mass, especially at early time points. Higher blood concentrations and higher tumor accumulations were observed with PEG-modified and EGFR-targeted nanoparticles during the study (AUClast: 17.38 and 19.56 %ID/mL*h in blood, 187 and 322 %ID/g*h in tumor for PEG-modified and EGFR-targeted nanoparticles, respectively), as compared to control, unmodified particles (AUClast: 10.71 %ID/mL*h in blood and 138 %ID/g*h in tumor). EGFR-targeted nanoparticles displayed almost twice tumor targeting efficiency than either PEG-modified or the unmodified nanoparticles, highlighting the efficacy of the active targeting strategy. In conclusion, this study shows that EGFR-targeted and PEG-modified nanoparticles were suitable vehicles for specific systemic delivery in subcutaneous Panc-1 tumor xenograft models. PMID:23544877

  18. Biodistribution and pharmacokinetics of EGFR-targeted thiolated gelatin nanoparticles following systemic administration in pancreatic tumor-bearing mice.

    PubMed

    Xu, Jing; Gattacceca, Florence; Amiji, Mansoor

    2013-05-06

    The objective of this study was to evaluate qualitative and quantitative biodistribution of epidermal growth factor receptor (EGFR)-targeted thiolated type B gelatin nanoparticles in vivo in subcutaneous human pancreatic adenocarcinoma (Panc-1) bearing female SCID Beige mice. EGFR-targeted nanoparticles showed preferential and sustained accumulation in the tumor mass, especially at early time points. Higher blood concentrations and higher tumor accumulations were observed with PEG-modified and EGFR-targeted nanoparticles during the study (AUClast: 17.38 and 19.56%ID/mL·h in blood, 187 and 322%ID/g·h in tumor for PEG-modified and EGFR-targeted nanoparticles, respectively), as compared to control, unmodified particles (AUClast: 10.71%ID/mL·h in blood and 138%ID/g·h in tumor). EGFR-targeted nanoparticles displayed almost twice tumor targeting efficiency than either PEG-modified or the unmodified nanoparticles, highlighting the efficacy of the active targeting strategy. In conclusion, this study shows that EGFR-targeted and PEG-modified nanoparticles were suitable vehicles for specific systemic delivery in subcutaneous Panc-1 tumor xenograft models.

  19. Conformationally constrained peptides target the allosteric kinase dimer interface and inhibit EGFR activation.

    PubMed

    Fulton, Melody D; Hanold, Laura E; Ruan, Zheng; Patel, Sneha; Beedle, Aaron M; Kannan, Natarajan; Kennedy, Eileen J

    2018-03-15

    Although EGFR is a highly sought-after drug target, inhibitor resistance remains a challenge. As an alternative strategy for kinase inhibition, we sought to explore whether allosteric activation mechanisms could effectively be disrupted. The kinase domain of EGFR forms an atypical asymmetric dimer via head-to-tail interactions and serves as a requisite for kinase activation. The kinase dimer interface is primarily formed by the H-helix derived from one kinase monomer and the small lobe of the second monomer. We hypothesized that a peptide designed to resemble the binding surface of the H-helix may serve as an effective disruptor of EGFR dimerization and activation. A library of constrained peptides was designed to mimic the H-helix of the kinase domain and interface side chains were optimized using molecular modeling. Peptides were constrained using peptide "stapling" to structurally reinforce an alpha-helical conformation. Peptide stapling was demonstrated to notably enhance cell permeation of an H-helix derived peptide termed EHBI2. Using cell-based assays, EHBI2 was further shown to significantly reduce EGFR activity as measured by EGFR phosphorylation and phosphorylation of the downstream signaling substrate Akt. To our knowledge, this is the first H-helix-based compound targeting the asymmetric interface of the kinase domain that can successfully inhibit EGFR activation and signaling. This study presents a novel, alternative targeting site for allosteric inhibition of EGFR. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. EGFR Targeted Theranostic Nanoemulsion For Image-Guided Ovarian Cancer Therapy

    PubMed Central

    Ganta, Srinivas; Singh, Amit; Kulkarni, Praveen; Keeler, Amanda W.; Piroyan, Aleksandr; Sawant, Rupa R.; Patel, Niravkumar R.; Davis, Barbara; Ferris, Craig; O’Neal, Sara; Zamboni, William; Amiji, Mansoor M.; Coleman, Timothy P.

    2015-01-01

    Purpose Platinum-based therapies are the first line treatments for most types of cancer including ovarian cancer. However, their use is associated with dose-limiting toxicities and resistance. We report initial translational studies of a theranostic nanoemulsion loaded with a cisplatin derivative, myrisplatin and pro-apoptotic agent, C6-ceramide. Methods The surface of the nanoemulsion is annotated with an endothelial growth factor receptor (EGFR) binding peptide to improve targeting ability and gadolinium to provide diagnostic capability for image-guided therapy of EGFR overexpressing ovarian cancers. A high shear microfludization process was employed to produce the formulation with particle size below 150 nm. Results Pharmacokinetic study showed a prolonged blood platinum and gadolinium levels with nanoemulsions in nu/nu mice. The theranostic nanoemulsions also exhibited less toxicity and enhanced the survival time of mice as compared to an equivalent cisplatin treatment. Conclusions Magnetic resonance imaging (MRI) studies indicate the theranostic nanoemulsions were effective contrast agents and could be used to track accumulation in a tumor. The MRI study additionally indicate that significantly more EGFR-targeted theranostic nanoemulsion accumulated in a tumor than non-targeted nanoemulsuion providing the feasibility of using a targeted theranostic agent in conjunction with MRI to image disease loci and quantify the disease progression. PMID:25732960

  1. The combi-targeting concept: a novel 3,3-disubstituted nitrosourea with EGFR tyrosine kinase inhibitory properties.

    PubMed

    Qiu, Qiyu; Dudouit, Fabienne; Matheson, Stephanie L; Brahimi, Fouad; Banerjee, Ranjita; McNamee, James P; Jean-Claude, Bertrand J

    2003-01-01

    To study the dual mechanism of action of FD137, a 3,3-disubstituted nitrosourea designed to block signaling mediated by the epidermal growth factor receptor (EGFR) on its own and to be hydrolyzed to an inhibitor of EGFR plus a DNA-damaging species. HPLC was used to determine the half-life (t(1/2)) of FD137 and to characterize its derived metabolite FD110. The dual mechanisms of DNA damaging and EGFR tyrosine kinase (TK) targeting were ascertained by the comet assay for DNA damage and by inmunodetection of phosphotyrosine in an ELISA and a whole-cell assay for EGFR-mediated signaling. The antiproliferative effects of the different drugs and their combinations were determined by the sulforhodamine B (SRB) assay. In contrast to BCNU, FD137 significantly blocked EGF-induced EGFR autophosphorylation (IC(50) 4 micro M) in the human solid tumor cell line A431. DNA damage induced by FD137 could only be observed after 24 h exposure, but the level of DNA damage remained 3.6-fold lower than that induced by BCNU. This difference was rationalized by the 160-fold greater stability of FD137 when compared with BCNU in serum-containing medium. Further, degradation of FD137 was accompanied by the slow release of FD110, an extremely potent inhibitor of EGFR TK [IC(50) (EGFR autophosphorylation) <0.3 micro M]. The complex properties of FD137 translated into a 55-fold greater antiproliferative activity than BCNU against the EGFR-overexpressing A431 cells that coexpresses the O(6)-alkylguanine transferase (AGT). Depletion of AGT in these cells by the use of O(6)-benzylguanine (O(6)-BG) enhanced their sensitivity to BCNU by 8-fold, but only by 3-fold to FD137. The results overall suggest that the superior antiproliferative activity of FD137 when compared with BCNU may be associated with its ability to behave as a combination of many species with different mechanisms of action. However, the enhancement of its potency by O(6)-BG suggests that its antiproliferative effect was at least

  2. Renal toxicity of anticancer agents targeting HER2 and EGFR.

    PubMed

    Cosmai, Laura; Gallieni, Maurizio; Porta, Camillo

    2015-12-01

    EGFR and HER2 are found overexpressed and/or activated in many different human malignancies (e.g. breast and colon cancer), and a number of drugs specifically targeting these two tyrosine kinases have been developed over the years as anticancer agents. In the present review, the renal safety profile of presently available agents targeting either HER2 or EGFR will be discussed, together with the peculiarities related to their clinical use in patients with impaired renal function, or even in dialysis. Indeed, even though renal toxicity is not so common with these agents, it may nevertheless happen, especially when these agents are combined with traditional chemotherapeutic agents. As a whole, kidney impairment or dialysis should not be regarded per se as reasons not to administer or to stop an active anti-HER or anti-EGFR anticancer treatment, especially given the possibility of significantly improving the life expectancy of many cancer patients with the use of these agents.

  3. MiR-615 inhibits cell proliferation, migration and invasion by targeting EGFR in human glioblastoma.

    PubMed

    Ji, Yanwei; Sun, Qingshan; Zhang, Jianbin; Hu, Haoran

    2018-05-15

    MiR-615 and epidermal growth factor receptor (EGFR) are associated with a number of disease processes and pathogenesis. However, little is known about the mechanisms of miR-615 and EGFR in human glioblastoma multiforme (GBM). Here, we found that down-regulation of miR-615 expression occurred in GBM tissues and cells, and was inversely correlated with overall survival, relapse-free survival, WHO grade as well as EGFR expression. We further determined that miR-615 functions as a tumor suppressor by inhibiting GBM cell proliferation, cell cycle, migration and invasion, and promoting cell apoptosis. In-vivo assay validated the inhibition effect of miR-615 on tumor growth and EGFR expression. Luciferase reporter assays demonstrated that miR-615 targeted the 3'-untranslated region (3'-UTR) of EGFR. Besides, over-expression of EGFR reversed the inhibition effects of miR-615, while silencing of EGFR aggravated these inhibition effects. In conclusions, we identified that miR-615 plays a tumor suppressor role in GBM cell proliferation, migration and invasion by targeting EGFR expression, and miR-615 may act as a novel biomarker for early diagnosis or therapeutic targets of GBM. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Known and putative mechanisms of resistance to EGFR targeted therapies in NSCLC patients with EGFR mutations—a review

    PubMed Central

    Stewart, Erin L.; Tan, Samuel Zhixing; Liu, Geoffrey

    2015-01-01

    Lung cancer is the leading cause of cancer related deaths in Canada with non-small cell lung cancer (NSCLC) being the predominant form of the disease. Tumor characterization can identify cancer-driving mutations as treatment targets. One of the most successful examples of cancer targeted therapy is inhibition of mutated epidermal growth factor receptor (EGFR), which occurs in ~10-30% of NSCLC patients. While this treatment has benefited many patients with activating EGFR mutations, almost all who initially benefited will eventually acquire resistance. Approximately 50% of cases of acquired resistance (AR) are due to a secondary T790M mutation in exon 20 of the EGFR gene; however, many of the remaining mechanisms of resistance are still unknown. Much work has been done to elucidate the remaining mechanisms of resistance. This review aims to highlight both the mechanisms of resistance that have already been identified in patients and potential novel mechanisms identified in preclinical models which have yet to be validated in the patient settings. PMID:25806347

  5. Antibodies Specifically Targeting a Locally Misfolded Region of Tumor Associated EGFR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garrett, T.; Burgess, A; Gan, H

    2009-01-01

    Epidermal Growth Factor Receptor (EGFR) is involved in stimulating the growth of many human tumors, but the success of therapeutic agents has been limited in part by interference from the EGFR on normal tissues. Previously, we reported an antibody (mab806) against a truncated form of EGFR found commonly in gliomas. Remarkably, it also recognizes full-length EGFR on tumor cells but not on normal cells. However, the mechanism for this activity was unclear. Crystallographic structures for Fab:EGFR{sub 287-302} complexes of mAb806 (and a second, related antibody, mAb175) show that this peptide epitope adopts conformations similar to those found in the wtEGFR.more » However, in both conformations observed for wtEGFR, tethered and untethered, antibody binding would be prohibited by significant steric clashes with the CR1 domain. Thus, these antibodies must recognize a cryptic epitope in EGFR. Structurally, it appeared that breaking the disulfide bond preceding the epitope might allow the CR1 domain to open up sufficiently for antibody binding. The EGFR{sub C271A/C283A} mutant not only binds mAb806, but binds with 1:1 stoichiometry, which is significantly greater than wtEGFR binding. Although mAb806 and mAb175 decrease tumor growth in xenografts displaying mutant, overexpressed, or autocrine stimulated EGFR, neither antibody inhibits the in vitro growth of cells expressing wtEGFR. In contrast, mAb806 completely inhibits the ligand-associated stimulation of cells expressing EGFR{sub C271A/C283A}. Clearly, the binding of mAb806 and mAb175 to the wtEGFR requires the epitope to be exposed either during receptor activation, mutation, or overexpression. This mechanism suggests the possibility of generating antibodies to target other wild-type receptors on tumor cells.« less

  6. Modification of cytokine-induced killer cells with chimeric antigen receptors (CARs) enhances antitumor immunity to epidermal growth factor receptor (EGFR)-positive malignancies.

    PubMed

    Ren, Xuequn; Ma, Wanli; Lu, Hong; Yuan, Lei; An, Lei; Wang, Xicai; Cheng, Guanchang; Zuo, Shuguang

    2015-12-01

    Epidermal growth factor receptor (EGFR, ErbB1, Her-1) is a cell surface molecule overexpressing in a variety of human malignancies and, thus, is an excellent target for immunotherapy. Immunotherapy targeting EGFR-overexpressing malignancies using genetically modified immune effector cells is a novel and promising approach. In the present study, we have developed an adoptive cellular immunotherapy strategy based on the chimeric antigen receptor (CAR)-modified cytokine-induced killer (CAR-CIK) cells specific for the tumor cells expressing EGFR. To generate CAR-CIK cells, a lentiviral vector coding the EGFR-specific CAR was constructed and transduced into the CIK cells. The CAR-CIK cells showed significantly enhanced cytotoxicity and increased production of cytokines IFN-γ and IL-2 when co-cultured with EGFR-positive cancer cells. In tumor xenografts, adoptive immunotherapy of CAR-CIK cells could inhibit tumor growth and prolong the survival of EGFR-overexpressing human tumor xenografts. Moreover, tumor growth inhibition and prolonged survival in mice with EGFR(+) human cancer were associated with the increased persistence of CAR-CIK cells in vivo. Our study indicates that modification with EGFR-specific CAR strongly enhances the antitumor activity of the CIK cells against EGFR-positive malignancies.

  7. Design, synthesis and biological evaluation of novel 4-aminoquinazolines as dual target inhibitors of EGFR-PI3Kα.

    PubMed

    Ding, Huai-Wei; Deng, Cheng-Long; Li, Dan-Dan; Liu, Dan-Dan; Chai, Shao-Meng; Wang, Wei; Zhang, Yan; Chen, Kai; Li, Xin; Wang, Jian; Song, Shao-Jiang; Song, Hong-Rui

    2018-02-25

    The overexpression of EGFR correlates with rapidly progressive disease, resistance to chemotherapy and poor prognosis. In certain human cancers, PI3K works synergistically with EGFR to promote proliferation, survival, invasion and metastasis. Development of dual-target drugs against EGFR and PI3K has therapeutic advantage and was an attractive approach against tumors. In this work, based on the molecular docking and previous studies, a series of 4-aminoquinazolines derivatives containing 6-sulfonamide substituted pyridyl group were rationally designed and identified as potent EGFR and PI3K dual inhibitors. The cytotoxicity experiment results showed that this series of compounds could effectively inhibit cell growth. The kinase assay demonstrated that 6c and 6i had high inhibition for EGFR and selectivity for PI3Kα distinguished from other isoforms. Further experiments showed that 6c could induce cell cycle arrest in G1 phase and apoptosis in BT549 cells. The western blot assay indicated that 6c inhibited the proliferation of BT549 cell through EGFR and PI3Kα/Akt signaling pathway. Our study suggested that compound 6c was a potential dual inhibitors of EGFR and PI3Kα. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  8. Radionuclide therapy using ¹³¹I-labeled anti-epidermal growth factor receptor-targeted nanoparticles suppresses cancer cell growth caused by EGFR overexpression.

    PubMed

    Li, Wei; Liu, Zhongyun; Li, Chengxia; Li, Ning; Fang, Lei; Chang, Jin; Tan, Jian

    2016-03-01

    Anti-epidermal growth factor receptor (EGFR)-targeted nanoparticles can be used to deliver a therapeutic and imaging agent to EGFR-overexpressing tumor cells. (131)I-labeled anti-EGFR nanoparticles derived from cetuximab were used as a tumor-targeting vehicle in radionuclide therapy. This paper describes the construction of the anti-EGFR nanoparticle EGFR-BSA-PCL. This nanoparticle was characterized for EGFR-targeted binding and cellular uptake in EGFR-overexpressing cancer cells by using flow cytometry and confocal microscopy. Anti-EGFR and non-targeted nanoparticles were labeled with (131)I using the chloramine-T method. Analyses of cytotoxicity and targeted cell killing with (131)I were performed using the MTT assay. The time-dependent cellular uptake of (131)I-labeled anti-EGFR nanoparticles proved the slow-release effects of nanoparticles. A radioiodine therapy study was also performed in mice. The EGFR-targeted nanoparticle EGFR-BSA-PCL and the non-targeted nanoparticle BSA-PCL were constructed; the effective diameters were approximately 100 nm. The results from flow cytometry and confocal microscopy revealed significant uptake of EGFR-BSA-PCL in EGFR-overexpressing tumor cells. Compared with EGFR-BSA-PCL, BSA-PCL could also bind to cells, but tumor cell retention was minimal and weak. In MTT assays, the EGFR-targeted radioactive nanoparticle (131)I-EGFR-BSA-PCL showed greater cytotoxicity and targeted cell killing than the non-targeted nanoparticle (131)I-BSA-PCL. The radioiodine uptake of both (131)I-labeled nanoparticles, (131)I-EGFR-BSA-PCL and (131)I-BSA-PCL, was rapid and reached maximal levels 4 h after incubation, but the (131)I uptake of (131)I-EGFR-BSA-PCL was higher than that of (131)I-BSA-PCL. On day 15, the average tumor volumes of the (131)I-EGFR-BSA-PCL and (131)I-BSA-PCL groups showed a slow growth relationship compared with that of the control group. The EGFR-targeted nanoparticle EGFR-BSA-PCL demonstrated superior cellular binding and uptake

  9. β-catenin contributes to lung tumor development induced by EGFR mutations

    PubMed Central

    Nakayama, Sohei; Sng, Natasha; Carretero, Julian; Welner, Robert; Hayashi, Yuichiro; Yamamoto, Mihoko; Tan, Alistair J.; Yamaguchi, Norihiro; Yasuda, Hiroyuki; Li, Danan; Soejima, Kenzo; Soo, Ross A.; Costa, Daniel B.; Wong, Kwok-Kin; Kobayashi, Susumu S.

    2014-01-01

    The discovery of somatic mutations in epidermal growth factor receptor (EGFR) and development of EGFR tyrosine kinase inhibitors (TKIs) have revolutionized treatment for lung cancer. However, resistance to TKIs emerges in almost all patients and currently no effective treatment is available. Here we show that β-catenin is essential for development of EGFR mutated lung cancers. β-catenin was upregulated and activated in EGFR mutated cells. Mutant EGFR preferentially bound to and tyrosine-phosphorylated β-catenin, leading to increase in β-catenin-mediated transactivation, particularly in cells harboring the gefitinib/erlotinib-resistant gatekeeper EGFR-T790M mutation. Pharmacological inhibition of β-catenin suppressed EGFR-L858R-T790M mutated lung tumor growth and genetic deletion of the β-catenin gene dramatically reduced lung tumor formation in EGFR-L858R-T790M transgenic mice. These data suggest that β-catenin plays an essential role in lung tumorigenesis and that targeting the β-catenin pathway may provide novel strategies to prevent lung cancer development or overcome resistance to EGFR TKIs. PMID:25164010

  10. Targeting TORC1/2 enhances sensitivity to EGFR inhibitors in head and neck cancer preclinical models.

    PubMed

    Cassell, Andre; Freilino, Maria L; Lee, Jessica; Barr, Sharon; Wang, Lin; Panahandeh, Mary C; Thomas, Sufi M; Grandis, Jennifer R

    2012-11-01

    Head and neck squamous cell carcinoma (HNSCC) is characterized by overexpression of the epidermal growth factor receptor (EGFR) where treatments targeting EGFR have met with limited clinical success. Elucidation of the key downstream-pathways that remain activated in the setting of EGFR blockade may reveal new therapeutic targets. The present study was undertaken to test the hypothesis that inhibition of the mammalian target of rapamycin (mTOR) complex would enhance the effects of EGFR blockade in HNSCC preclinical models. Treatment of HNSCC cell lines with the newly developed TORC1/TORC2 inhibitor OSI-027/ASP4876 resulted in dose-dependent inhibition of proliferation with abrogation of phosphorylation of known downstream targets including phospho-AKT (Ser473), phospho-4E-BP1, phospho-p70s6K, and phospho-PRAS40. Furthermore, combined treatment with OSI-027 and erlotinib resulted in enhanced biochemical effects and synergistic growth inhibition in vitro. Treatment of mice bearing HNSCC xenografts with a combination of the Food and Drug Administration (FDA)-approved EGFR inhibitor cetuximab and OSI-027 demonstrated a significant reduction of tumor volumes compared with either treatment alone. These findings suggest that TORC1/TORC2 inhibition in conjunction with EGFR blockade represents a plausible therapeutic strategy for HNSCC.

  11. Structural insights into drug development strategy targeting EGFR T790M/C797S.

    PubMed

    Zhu, Su-Jie; Zhao, Peng; Yang, Jiao; Ma, Rui; Yan, Xiao-E; Yang, Sheng-Yong; Yang, Jing-Wen; Yun, Cai-Hong

    2018-03-02

    Treatment of non-small-cell lung cancers (NSCLCs) harboring primary EGFR oncogenic mutations such as L858R and exon 19 deletion delE746_A750 (Del-19) using gefitinib/erlotinib ultimately fails due to the emergence of T790M mutation. Though WZ4002/CO-1686/AZD9291 are effective in overcoming EGFR T790M by targeting Cys797 via covalent bonding, their efficacy is again limited due to the emergence of C797S mutation. New agents effectively inhibiting EGFR T790M without covalent linkage through Cys 797 may solve this problem. We presented here crystal structures of EGFR activating/drug-resistant mutants in complex with a panel of reversible inhibitors along with mutagenesis and enzyme kinetic data. These data revealed a previously un-described hydrophobic clamp structure in the EGFR kinase which may be exploited to facilitate development of next generation drugs targeting EGFR T790M with or without concomitant C797S. Interestingly, mutations in the hydrophobic clamp that hinder drug binding often also weaken ATP binding and/or abolish kinase activity, thus do not readily result in resistance to the drugs.

  12. EGFR targeted PLGA nanoparticles using gemcitabine for treatment of pancreatic cancer.

    PubMed

    Aggarwal, Sahil; Yadav, Sachin; Gupta, Swati

    2011-02-01

    The present study aimed to prepare and characterize anti EGFR monoclonal antibody (mab) conjugated Gemcitabine loaded PLGA nanoparticles for their selective delivery to pancreatic cells and evaluation of the systems in vitro. It was observed that direct covalent coupling of antibodies to glutaraldehyde activated nanoparticles is an appropriate method to achieve cell-type specific drug carrier systems based on polymeric nanoparticles that have potential to be applied for targeted chemotherapy in EGFR positive cancer.

  13. Uncovering the Origin of Skin Side Effects from EGFR-Targeted Therapies | Center for Cancer Research

    Cancer.gov

    The epidermal growth factor receptor (EGFR), a key regulator of cell proliferation, is often mutated or overexpressed in a variety of cancer types. EGFR-targeted therapies, including monoclonal antibodies and small molecule inhibitors, can effectively treat patients whose tumors depend on aberrant EGFR signaling. Within a few weeks of initiating therapy, however, patients

  14. Involvement of lipid rafts in adhesion-induced activation of Met and EGFR.

    PubMed

    Lu, Ying-Che; Chen, Hong-Chen

    2011-10-27

    Cell adhesion has been shown to induce activation of certain growth factor receptors in a ligand-independent manner. However, the mechanism for such activation remains obscure. Human epidermal carcinoma A431 cells were used as a model to examine the mechanism for adhesion-induced activation of hepatocyte growth factor receptor Met and epidermal growth factor receptor (EGFR). The cells were suspended and replated on culture dishes under various conditions. The phosphorylation of Met at Y1234/1235 and EGFR at Y1173 were used as indicators for their activation. The distribution of the receptors and lipid rafts on the plasma membrane were visualized by confocal fluorescent microscopy and total internal reflection microscopy. We demonstrate that Met and EGFR are constitutively activated in A431 cells, which confers proliferative and invasive potentials to the cells. The ligand-independent activation of Met and EGFR in A431 cells relies on cell adhesion to a substratum, but is independent of cell spreading, extracellular matrix proteins, and substratum stiffness. This adhesion-induced activation of Met and EGFR cannot be attributed to Src activation, production of reactive oxygen species, and the integrity of the cytoskeleton. In addition, we demonstrate that Met and EGFR are independently activated upon cell adhesion. However, partial depletion of Met and EGFR prevents their activation upon cell adhesion, suggesting that overexpression of the receptors is a prerequisite for their self-activation upon cell adhesion. Although Met and EGFR are largely distributed in 0.04% Triton-insoluble fractions (i.e. raft fraction), their activated forms are detected mainly in 0.04% Triton-soluble fractions (i.e. non-raft fraction). Upon cell adhesion, lipid rafts are accumulated at the cell surface close to the cell-substratum interface, while Met and EGFR are mostly excluded from the membrane enriched by lipid rafts. Our results suggest for the first time that cell adhesion to a

  15. Coupling Gd-DTPA with a bispecific, recombinant protein anti-EGFR-iRGD complex improves tumor targeting in MRI

    PubMed Central

    XIN, XIAOYAN; SHA, HUIZI; SHEN, JINGTAO; ZHANG, BING; ZHU, BIN; LIU, BAORUI

    2016-01-01

    Recombinant anti-epidermal growth factor receptor-internalizing arginine-glycine-aspartic acid (anti-EGFR single-domain antibody fused with iRGD peptide) protein efficiently targets the EGFR extracellular domain and integrin αvβ/β5, and shows a high penetration into cells. Thus, this protein may improve penetration of conjugated drugs into the deep zone of gastric cancer multicellular 3D spheroids. In the present study, a novel tumor-targeting contrast agent for magnetic resonance imaging (MRI) was developed, by coupling gadolinium-diethylene triamine pentaacetate (Gd-DTPA) with the bispecific recombinant anti-EGFR-iRGD protein. The anti-EGFR-iRGD protein was extracted from Escherichia coli and Gd was loaded onto the recombinant protein by chelation using DTPA anhydride. Single-targeting agent anti-EGFR-DTPA-Gd, which served as the control, was also prepared. The results of the present study showed that anti-EGFR-iRGD-DTPA-Gd exhibited no significant cyto toxicity to human gastric carcinoma cells (BGC-823) under the experimental conditions used. Compared with a conventional contrast agent (Magnevist), anti-EGFR-iRGD-DTPA-Gd showed higher T1 relaxivity (10.157/mM/sec at 3T) and better tumor-targeting ability. In addition, the signal intensity and the area under curve for the enhanced signal time in tumor, in vivo, were stronger than Gd-DTPA alone or the anti-EGFR-Gd control. Thus, Gd-labelled anti-EGFR-iRGD has potential as a tumor-targeting contrast agent for improved MRI. PMID:27035336

  16. Targeting EGFR with photodynamic therapy in combination with Erbitux enhances in vivo bladder tumor response

    PubMed Central

    Bhuvaneswari, Ramaswamy; Gan, Yik Yuen; Soo, Khee Chee; Olivo, Malini

    2009-01-01

    Background Photodynamic therapy (PDT) is a promising cancer treatment modality that involves the interaction of the photosensitizer, molecular oxygen and light of specific wavelength to destroy tumor cells. Treatment induced hypoxia is one of the main side effects of PDT and efforts are underway to optimize PDT protocols for improved efficacy. The aim of this study was to investigate the anti-tumor effects of PDT plus Erbitux, an angiogenesis inhibitor that targets epidermal growth factor receptor (EGFR), on human bladder cancer model. Tumor-bearing nude mice were assigned to four groups that included control, PDT, Erbitux and PDT plus Erbitux and tumor volume was charted over 90-day period. Results Our results demonstrate that combination of Erbitux with PDT strongly inhibits tumor growth in the bladder tumor xenograft model when compared to the other groups. Downregulation of EGFR was detected using immunohistochemistry, immunofluorescence and western blotting. Increased apoptosis was associated with tumor inhibition in the combination therapy group. In addition, we identified the dephosphorylation of ErbB4 at tyrosine 1284 site to play a major role in tumor inhibition. Also, at the RNA level downregulation of EGFR target genes cyclin D1 and c-myc was observed in tumors treated with PDT plus Erbitux. Conclusion The combination therapy of PDT and Erbitux effectively inhibits tumor growth and is a promising therapeutic approach in the treatment of bladder tumors. PMID:19878607

  17. Label-Free Raman Microspectral Analysis for Comparison of Cellular Uptake and Distribution between Non-Targeted and EGFR-Targeted Biodegradable Polymeric Nanoparticles

    PubMed Central

    Chernenko, Tatyana; Buyukozturk, Fulden; Miljkovic, Milos; Carrier, Rebecca; Diem, Max; Amiji, Mansoor

    2013-01-01

    Active targeted delivery of nanoparticle-encapsulated agents to tumor cells in vivo is expected to enhance therapeutic effect with significantly less non-specific toxicity. Active targeting is based on surface modification of nanoparticles with ligands that bind with extracellular targets and enhance payload delivery in the cells. In this study, we have used label-free Raman micro-spectral analysis and kinetic modeling to study cellular interactions and intracellular delivery of C6-ceramide using a non-targeted and an epidermal growth factor receptor (EGFR) targeted biodegradable polymeric nano-delivery systems, in EGFR-expressing human ovarian adenocarcinoma (SKOV3) cells. The results show that EGFR peptide-modified nanoparticles were rapidly internalized in SKOV3 cells leading to significant intracellular accumulation as compared to non-specific uptake by the non-targeted nanoparticles. Raman micro-spectral analysis enables visualization and quantification of the carrier system, drug-load, and responses of the biological systems interrogated, without exogenous staining and labeling procedures. PMID:24298430

  18. Prognostic value of plasma EGFR ctDNA in NSCLC patients treated with EGFR-TKIs.

    PubMed

    Zhang, Chengjuan; Wei, Bing; Li, Peng; Yang, Ke; Wang, Zhizhong; Ma, Jie; Guo, Yongjun

    2017-01-01

    Epidermal growth factor receptor (EGFR) specific mutations have been known to improve survival of patients with non-small-cell lung carcinoma (NSCLC). However, whether there are any changes of EGFR mutations after targeted therapy and its clinical significance is unclear. This study was to identify the status of EGFR mutations after targeted therapy and predict the prognostic significance for NSCLC patients. A total of forty-five (45) NSCLC patients who received EGFR-TKI therapy were enrolled. We identified the changes of EGFR mutations in plasma ctDNA by Amplification Refractory Mutation System (ARMS) PCR technology. In the 45 cases of NSCLC with EGFR mutations, the EGFR mutation status changed in 26 cases, in which, 12 cases (26.7%) from positive to negative, and 14 cases (31.1%) from T790M mutation negative to positive after TKI targeted therapy. The T790M occurance group had a shorter Progression -Free-Survival (PFS) than the groups of EGFR mutation undetected and EGFR mutation turned out to have no change after EGFR-TKI therapy (p < 0.05). According to this study, it's necessary to closely monitor EGFR mutations during follow-up to predict the prognosis of NSCLC patients who are to receive the TKI targeted therapy.

  19. Protein-intrinsic and signaling network-based sources of resistance to EGFR- and ErbB family-targeted therapies in head and neck cancer

    PubMed Central

    Mehra, Ranee; Serebriiskii, Ilya G.; Dunbrack, Roland L.; Robinson, Matthew K.; Burtness, Barbara; Golemis, Erica A.

    2011-01-01

    Agents targeting EGFR and related ErbB family proteins are valuable therapies for the treatment of many cancers. For some tumor types, including squamous cell carcinomas of the head and neck (SCCHN), antibodies targeting EGFR were the first protein-directed agents to show clinical benefit, and remain a standard component of clinical strategies for management of the disease. Nevertheless, many patients display either intrinsic or acquired resistance to these drugs; hence, major research goals are to better understand the underlying causes of resistance, and to develop new therapeutic strategies that boost the impact of EGFR/ErbB inhibitors. In this review, we first summarize current standard use of EGFR inhibitors in the context of SCCHN, and described new agents targeting EGFR currently moving through pre-clinical and clinical development. We then discuss how changes in other transmembrane receptors, including IGF1R, c-Met, and TGF-β, can confer resistance to EGFR-targeted inhibitors, and discuss new agents targeting these proteins. Moving downstream, we discuss critical EGFR-dependent effectors, including PLC-γ; PI3K and PTEN; SHC, GRB2, and RAS and the STAT proteins, as factors in resistance to EGFR-directed inhibitors and as alternative targets of therapeutic inhibition. We summarize alternative sources of resistance among cellular changes that target EGFR itself, through regulation of ligand availability, post-translational modification of EGFR, availability of EGFR partners for hetero-dimerization and control of EGFR intracellular trafficking for recycling versus degradation. Finally, we discuss new strategies to identify effective therapeutic combinations involving EGFR-targeted inhibitors, in the context of new system level data becoming available for analysis of individual tumors. PMID:21920801

  20. EGFR-TKI-induced HSP70 degradation and BER suppression facilitate the occurrence of the EGFR T790 M resistant mutation in lung cancer cells.

    PubMed

    Cao, Xiang; Zhou, Yi; Sun, Hongfang; Xu, Miao; Bi, Xiaowen; Zhao, Zhihui; Shen, Binghui; Wan, Fengyi; Hong, Zhuan; Lan, Lei; Luo, Lan; Guo, Zhigang; Yin, Zhimin

    2018-06-28

    Non-small cell lung cancer (NSCLC) patients harboring EGFR-activating mutations initially respond to EGFR tyrosine kinase inhibitors (EGFR-TKIs) and have shown favorable outcomes. However, acquired drug resistance to EGFR-TKIs develops in almost all patients mainly due to the EGFR T790 M mutation. Here, we show that treatment with low-dose EGFR-TKI results in the emergence of the EGFR T790 M mutation and in the reduction of HSP70 protein levels in HCC827 cells. Erlotinib treatment inhibits HSP70 phosphorylation at tyrosine 41 and increases HSP70 ubiquitination, resulting in HSP70 degradation. We show that EGFR-TKI treatment causes increased DNA damage and enhanced gene mutation rates, which are secondary to the EGFR-TKI-induced reduction of HSP70 protein. Importantly, HSP70 overexpression delays the occurrence of Erlotinib-induced EGFR T790 M mutation. We further demonstrate that HSP70 interacts with multiple enzymes in the base excision repair (BER) pathway and promotes not only the efficiency but also the fidelity of BER. Collectively, our findings show that EGFR-TKI treatment facilitates gene mutation and the emergence of EGFR T790 M secondary mutation by the attenuation of BER via induction of HSP70 protein degradation. Copyright © 2018. Published by Elsevier B.V.

  1. Targeting TORC1/2 Enhances Sensitivity to EGFR Inhibitors in Head and Neck Cancer Preclinical Models1

    PubMed Central

    Cassell, Andre; Freilino, Maria L; Lee, Jessica; Barr, Sharon; Wang, Lin; Panahandeh, Mary C; Thomas, Sufi M; Grandis, Jennifer R

    2012-01-01

    Head and neck squamous cell carcinoma (HNSCC) is characterized by overexpression of the epidermal growth factor receptor (EGFR) where treatments targeting EGFR have met with limited clinical success. Elucidation of the key downstream-pathways that remain activated in the setting of EGFR blockade may reveal new therapeutic targets. The present study was undertaken to test the hypothesis that inhibition of the mammalian target of rapamycin (mTOR) complex would enhance the effects of EGFR blockade in HNSCC preclinical models. Treatment of HNSCC cell lines with the newly developed TORC1/TORC2 inhibitor OSI-027/ASP4876 resulted in dose-dependent inhibition of proliferation with abrogation of phosphorylation of known downstream targets including phospho-AKT (Ser473), phospho-4E-BP1, phospho-p70s6K, and phospho-PRAS40. Furthermore, combined treatment with OSI-027 and erlotinib resulted in enhanced biochemical effects and synergistic growth inhibition in vitro. Treatment of mice bearing HNSCC xenografts with a combination of the Food and Drug Administration (FDA)-approved EGFR inhibitor cetuximab and OSI-027 demonstrated a significant reduction of tumor volumes compared with either treatment alone. These findings suggest that TORC1/TORC2 inhibition in conjunction with EGFR blockade represents a plausible therapeutic strategy for HNSCC. PMID:23226094

  2. Anti-EGFR monoclonal antibody in cancer treatment: in vitro and in vivo evidence

    PubMed

    Quatrale, Anna Elisa; Petriella, Daniela; Porcelli, Letizia; Tommasi, Stefania; Silvestris, Nicola; Colucci, Giuseppe; Angelo, Angelo; Azzariti, Amalia

    2011-01-01

    The complexity of EGFR signaling network suggests that the receptor could be promising targets for new personalised therapy. In clinical practice two strategies targeting the receptor are available; they utilise monoclonal antibodies, directed towards the extracellular domain of EGFR, and small molecule tyrosine kinase inhibitors, which bind the catalytic kinase domain of the receptor. In this review, we summarise currently known pre-clinical data on the antitumor effects of monoclonal antibodies, which bind to EGFR in its inactive configuration, competing for ligand binding and thereby blocking ligand-induced EGFR tyrosine kinase activation. As a consequence of treatment, key EGFR-dependent intracellular signals in cancer cells are affected. Data explaining the mechanisms of action of anti-EGFR monoclonal antibodies, currently used in clinical setting and under development for the treatment of solid tumors, are revised with the aim to provide an overview of the most important preclinical studies showing the impact of this class of EGFR targeted agents on tumor biology.

  3. Targeted Therapies in Non-Small Cell Lung Cancer—Beyond EGFR and ALK

    PubMed Central

    Rothschild, Sacha I.

    2015-01-01

    Systemic therapy for non-small cell lung cancer (NSCLC) has undergone a dramatic paradigm shift over the past decade. Advances in our understanding of the underlying biology of NSCLC have revealed distinct molecular subtypes. A substantial proportion of NSCLC depends on oncogenic molecular aberrations (so-called “driver mutations”) for their malignant phenotype. Personalized therapy encompasses the strategy of matching these subtypes with effective targeted therapies. EGFR mutations and ALK translocation are the most effectively targeted oncogenes in NSCLC. EGFR mutations and ALK gene rearrangements are successfully being targeted with specific tyrosine kinase inhibitors. The number of molecular subgroups of NSCLC continues to grow. The scope of this review is to discuss recent data on novel molecular targets as ROS1, BRAF, KRAS, HER2, c-MET, RET, PIK3CA, FGFR1 and DDR2. Thereby the review will focus on therapeutic strategies targeting these aberrations. Moreover, the emerging challenge of acquired resistance to initially effective therapies will be discussed. PMID:26018876

  4. Targeted Therapies in Non-Small Cell Lung Cancer-Beyond EGFR and ALK.

    PubMed

    Rothschild, Sacha I

    2015-05-26

    Systemic therapy for non-small cell lung cancer (NSCLC) has undergone a dramatic paradigm shift over the past decade. Advances in our understanding of the underlying biology of NSCLC have revealed distinct molecular subtypes. A substantial proportion of NSCLC depends on oncogenic molecular aberrations (so-called "driver mutations") for their malignant phenotype. Personalized therapy encompasses the strategy of matching these subtypes with effective targeted therapies. EGFR mutations and ALK translocation are the most effectively targeted oncogenes in NSCLC. EGFR mutations and ALK gene rearrangements are successfully being targeted with specific tyrosine kinase inhibitors. The number of molecular subgroups of NSCLC continues to grow. The scope of this review is to discuss recent data on novel molecular targets as ROS1, BRAF, KRAS, HER2, c-MET, RET, PIK3CA, FGFR1 and DDR2. Thereby the review will focus on therapeutic strategies targeting these aberrations. Moreover, the emerging challenge of acquired resistance to initially effective therapies will be discussed.

  5. microRNA-874 suppresses tumor proliferation and metastasis in hepatocellular carcinoma by targeting the DOR/EGFR/ERK pathway.

    PubMed

    Zhang, Yi; Wei, Yangchao; Li, Xuan; Liang, Xingsi; Wang, Liming; Song, Jun; Zhang, Xiuzhong; Zhang, Chong; Niu, Jian; Zhang, Pengbo; Ren, Zeqiang; Tang, Bo

    2018-01-26

    The δ opioid receptor (DOR) is involved in the regulation of malignant transformation and tumor progression of hepatocellular carcinoma (HCC). However, regulation of the DOR in HCC remains poorly defined. We found that miR-874 was identified as a negative regulator of the DOR, which is a direct and functional target of miR-874 via its 3' untranslated region (UTR). Moreover, miR-874 was downregulated in HCC and its expression was inversely correlated with DOR expression. Downregulation of miR-874 was also associated with larger tumor size, more vascular invasion, a poor TNM stage, poor tumor differentiation, and inferior patient outcomes. Functionally, overexpression of miR-874 in the HCC cell line SK-hep-1 inhibited cell growth, migration, in vitro invasion, and in vivo tumorigenicity. Furthermore, miR-874 overexpression suppressed the DOR, resulting in a downregulated epidermal growth factor receptor (EGFR) and extracellular signal-regulated kinase (ERK) phosphorylation. The EGFR activator-epidermal growth factor (EGF)-can rescue the proliferation and migration suppression induced by miR-874 overexpression, and the rescue effects of the EGF were blocked by an ERK inhibitor. Our study results suggest that miRNA-874 is a negative regulator of the DOR that can suppress tumor proliferation and metastasis in HCC by targeting the DOR/EGFR/ERK pathway, which may be a potential target for HCC treatment.

  6. Celecoxib induces proliferation and Amphiregulin production in colon subepithelial myofibroblasts, activating erk1-2 signaling in synergy with EGFR.

    PubMed

    Benelli, Roberto; Venè, Roberta; Minghelli, Simona; Carlone, Sebastiano; Gatteschi, Beatrice; Ferrari, Nicoletta

    2013-01-01

    The COX-2 inhibitor Celecoxib, tested in phase III trials for the prevention of sporadic colon adenomas, reduced the appearance of new adenomas, but was unable to affect the incidence of colon cancer. Moreover the 5years follow-up showed that patients discontinuing Celecoxib treatment had an increased incidence of adenomas as compared to the placebo arm. In the APC(min/+) mouse model short term treatment with Celecoxib reduced gut adenomas, but a prolonged administration of the drug induced fibroblast activation and intestinal fibrosis with a final tumor burden. The way Celecoxib could directly activate human colon myofibroblasts (MF) has not yet been investigated. We found that MF are activated by non toxic doses of Celecoxib. Celecoxib induces erk1-2 and Akt phosphorylation within 5'. This short term activation is apparently insufficient to cause phenotypic changes, but the contemporary triggering of EGFR causes an impressive synergic effect inducing MF proliferation and the neo-expression and release of Amphiregulin (AREG), a well known EGFR agonist involved in colon cancer progression. As a confirm to these observations, the erk inhibitor U0126 and the EGFR inhibitors Tyrphostin and Cetuximab were able to contrast AREG induction. Our data provide evidence that Celecoxib directly activates MF empowering EGFR signaling. According to these results the association with EGFR (or erk1-2) inhibitors could abolish the off-target activity of Celecoxib, possibly extending the potential of this drug for colon cancer prevention. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  7. Anti-EGFR Targeted Monoclonal Antibody Isotype Influences Antitumor Cellular Immunity in Head and Neck Cancer Patients.

    PubMed

    Trivedi, Sumita; Srivastava, Raghvendra M; Concha-Benavente, Fernando; Ferrone, Soldano; Garcia-Bates, Tatiana M; Li, Jing; Ferris, Robert L

    2016-11-01

    EGF receptor (EGFR) is highly overexpressed on several cancers and two targeted anti-EGFR antibodies which differ by isotype are FDA-approved for clinical use. Cetuximab (IgG1 isotype) inhibits downstream signaling of EGFR and activates antitumor, cellular immune mechanisms. As panitumumab (IgG2 isotype) may inhibit downstream EGFR signaling similar to cetuximab, it might also induce adaptive immunity. We measured in vitro activation of cellular components of the innate and adaptive immune systems. We also studied the in vivo activation of components of the adaptive immune system in patient specimens from two recent clinical trials using cetuximab or panitumumab. Both monoclonal antibodies (mAb) primarily activate natural killer (NK) cells, although cetuximab is significantly more potent than panitumumab. Cetuximab-activated neutrophils mediate antibody-dependent cellular cytotoxicity (ADCC) against head and neck squamous cell carcinomas (HNSCC) tumor cells, and interestingly, this effect was FcγRIIa- and FcγRIIIa genotype-dependent. Panitumumab may activate monocytes through CD32 (FcγRIIa); however, monocytes activated by either mAb are not able to mediate ADCC. Cetuximab enhanced dendritic cell (DC) maturation to a greater extent than panitumumab, which was associated with improved tumor antigen cross-presentation by cetuximab compared with panitumumab. This correlated with increased EGFR-specific cytotoxic CD8 + T cells in patients treated with cetuximab compared with those treated with panitumumab. Although panitumumab effectively inhibits EGFR signaling to a similar extent as cetuximab, it is less effective at triggering antitumor, cellular immune mechanisms which may be crucial for effective therapy of HNSCC. Clin Cancer Res; 22(21); 5229-37. ©2016 AACR. ©2016 American Association for Cancer Research.

  8. Mechanisms of skin aging induced by EGFR inhibitors.

    PubMed

    Gerber, Peter Arne; Buhren, Bettina Alexandra; Schrumpf, Holger; Hevezi, Peter; Bölke, Edwin; Sohn, Dennis; Jänicke, Reiner U; Belum, Viswanath Reddy; Robert, Caroline; Lacouture, Mario E; Homey, Bernhard

    2016-10-01

    The mechanisms of skin aging have not been completely elucidated. Anecdotal data suggests that EGFR inhibition accelerates aging-like skin changes. The objective of the study was to evaluate the clinical characteristics and investigate the cellular and molecular mechanisms underlying skin changes associated with the use of EFGRIs. Patients during prolonged treatment with EGFRIs (>3 months) were analyzed for aging-like skin changes. Baseline EGFR expression was compared in young (<25 years old) vs. old (> 65 years old) skin. In addition, the regulation of extracellular matrix, senescence-associated genes, and cell cycle status was measured in primary human keratinocytes treated with erlotinib in vitro. There were progressive signs of skin aging, including xerosis cutis, atrophy, rhytide formation, and/or actinic purpura in 12 patients. Keratinocytes treated with erlotinib in vitro showed a significant down-modulation of hyaluronan synthases (HAS2 and HAS3), whereas senescence-associated genes (p21, p53, IL-6, maspin) were upregulated, along with a G1 cell cycle arrest and stronger SA β-Gal activity. There was significantly decreased baseline expression in EGFR density in aged skin, when compared to young controls. EGFR inhibition results in molecular alterations in keratinocytes that may contribute to the observed skin aging of patients treated with respective targeted agents.

  9. Mechanisms of skin aging induced by EGFR inhibitors

    PubMed Central

    Gerber, Peter Arne; Buhren, Bettina Alexandra; Schrumpf, Holger; Hevezi, Peter; Bölke, Edwin; Sohn, Dennis; Jänicke, Reiner; Belum, Viswanath Reddy; Robert, Caroline; Lacouture, Mario E.; Homey, Bernhard

    2017-01-01

    BACKGROUND The mechanisms of skin aging have not been completely elucidated. Anecdotal data suggests that EGFR inhibition accelerates aging-like skin changes. OBJECTIVE To evaluate the clinical characteristics and investigate the cellular and molecular mechanisms underlying skin changes associated with the use of EFGRIs. PATIENTS AND METHODS Patients during prolonged treatment with EGFRIs (>3 months) were analyzed for aging-like skin changes. Baseline EGFR expression was compared in young (< 25 years old) vs. old (> 65 years old) skin. In addition, the regulation of extracellular matrix, senescence-associated genes, and cell cycle status was measured in primary human keratinocytes treated with erlotinib in vitro. RESULTS Progressive signs of skin aging, including xerosis cutis, atrophy, rhytide formation and/or actinic purpura in 12 patients. Keratinocytes treated with erlotinib in vitro showed a significant down-modulation of hyaluronan synthases (HAS2 and HAS3), whereas senescence-associated genes (p21, p53, IL-6, maspin) were upregulated, along with a G1 cell cycle arrest and stronger SA β-Gal activity. There was significantly decreased baseline expression in EGFR-density in aged skin, when compared to young controls. CONCLUSIONS EGFR inhibition results in molecular alterations in keratinocytes that may contribute to the observed skin aging of patients treated with respective targeted agents. PMID:27165055

  10. EGFR-mediated interleukin enhancer-binding factor 3 contributes to formation and survival of cancer stem-like tumorspheres as a therapeutic target against EGFR-positive non-small cell lung cancer.

    PubMed

    Cheng, Chun-Chia; Chou, Kuei-Fang; Wu, Cheng-Wen; Su, Nai-Wen; Peng, Cheng-Liang; Su, Ying-Wen; Chang, Jungshan; Ho, Ai-Sheng; Lin, Huan-Chau; Chen, Caleb Gon-Shen; Yang, Bi-Ling; Chang, Yu-Cheng; Chiang, Ya-Wen; Lim, Ken-Hong; Chang, Yi-Fang

    2018-02-01

    YM155, an inhibitor of interleukin enhancer-binding factor 3 (ILF3), significantly suppresses cancer stemness property, implying that ILF3 contributes to cell survival of cancer stem cells. However, the molecular function of ILF3 inhibiting cancer stemness remains unclear. This study aimed to uncover the potential function of ILF3 involving in cell survival of epidermal growth factor receptor (EGFR)-positive lung stem-like cancer, and to investigate the potential role to improve the efficacy of anti-EGFR therapeutics. The association of EGFR and ILF3 in expression and regulations was first investigated in this study. Lung cancer A549 cells with deprivation of ILF3 were created by the gene-knockdown method and then RNAseq was applied to identify the putative genes regulated by ILF3. Meanwhile, HCC827- and A549-derived cancer stem-like cells were used to investigate the role of ILF3 in the formation of cancer stem-like tumorspheres. We found that EGFR induced ILF3 expression, and YM155 reduced EGFR expression. The knockdown of ILF3 reduced not only EGFR expression in mRNA and protein levels, but also cell proliferation in vitro and in vivo, demonstrating that ILF3 may play an important role in contributing to cancer cell survival. Moreover, the knockdown and inhibition of ILF3 by shRNA and YM155, respectively, reduced the formation and survival of HCC827- and A549-derived tumorspheres through inhibiting ErbB3 (HER3) expression, and synergized the therapeutic efficacy of afatinib, a tyrosine kinase inhibitor, against EGFR-positive A549 lung cells. This study demonstrated that ILF3 plays an oncogenic like role in maintaining the EGFR-mediated cellular pathway, and can be a therapeutic target to improve the therapeutic efficacy of afatinib. Our results suggested that YM155, an ILF3 inhibitor, has the potential for utilization in cancer therapy against EGFR-positive lung cancers. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Targeting EGFR in lung cancer: Lessons learned and future perspectives

    PubMed Central

    Steuer, Conor E.; Ramalingam, Suresh S.

    2016-01-01

    The development of individualized therapies has become the focus of current oncology research. Precision medicine has demonstrated great potential for bringing safe and effective drugs to those patients stricken with cancer, and is becoming a reality as more oncogenic drivers of malignancy are discovered. The discovery of Epidermal Growth Factor Receptor (EGFR) mutations as a driving mutation in non-small cell lung cancer (NSCLC) and the subsequent success of the tyrosine kinase inhibitors (TKI) have led the way for NSCLC to be at the forefront of biomarker-based drug development. However, this direction was not always so clear, and this article describes the lessons learned in targeted therapy development from EGFR in NSCLC. PMID:26022942

  12. EGFR Is Regulated by TFAP2C in Luminal Breast Cancer and Is a Target for Vandetanib.

    PubMed

    De Andrade, James P; Park, Jung M; Gu, Vivian W; Woodfield, George W; Kulak, Mikhail V; Lorenzen, Allison W; Wu, Vincent T; Van Dorin, Sarah E; Spanheimer, Philip M; Weigel, Ronald J

    2016-03-01

    Expression of TFAP2C in luminal breast cancer is associated with reduced survival and hormone resistance, partially explained through regulation of RET. TFAP2C also regulates EGFR in HER2 breast cancer. We sought to elucidate the regulation and functional role of EGFR in luminal breast cancer. We used gene knockdown (KD) and treatment with a tyrosine kinase inhibitor (TKI) in cell lines and primary cancer isolates to determine the role of RET and EGFR in regulation of p-ERK and tumorigenesis. KD of TFAP2C decreased expression of EGFR in a panel of luminal breast cancers, and chromatin immunoprecipitation sequencing (ChIP-seq) confirmed that TFAP2C targets the EGFR gene. Stable KD of TFAP2C significantly decreased cell proliferation and tumor growth, mediated in part through EGFR. While KD of RET or EGFR reduced proliferation (31% and 34%, P < 0.01), combined KD reduced proliferation greater than either alone (52% reduction, P < 0.01). The effect of the TKI vandetanib on proliferation and tumor growth response of MCF-7 cells was dependent upon expression of TFAP2C, and dual KD of RET and EGFR eliminated the effects of vandetanib. The response of primary luminal breast cancers to TKIs assessed by ERK activation established a correlation with expression of RET and EGFR. We conclude that TFAP2C regulates EGFR in luminal breast cancer. Response to vandetanib was mediated through the TFAP2C target genes EGFR and RET. Vandetanib may provide a therapeutic effect in luminal breast cancer, and RET and EGFR can serve as molecular markers for response. ©2016 American Association for Cancer Research.

  13. EGFR Is Regulated by TFAP2C in Luminal Breast Cancer and Is a Target for Vandetanib

    PubMed Central

    De Andrade, James P.; Park, Jung M.; Gu, Vivian W.; Woodfield, George W.; Kulak, Mikhail V.; Lorenzen, Allison W.; Wu, Vincent T.; Van Dorin, Sarah E.; Spanheimer, Philip M.; Weigel, Ronald J.

    2016-01-01

    Expression of TFAP2C in luminal breast cancer is associated with reduced survival and hormone resistance, partially explained through regulation of RET. TFAP2C also regulates EGFR in HER2 breast cancer. We sought to elucidate the regulation and functional role of EGFR in luminal breast cancer. We used gene knockdown (KD) and treatment with a tyrosine kinase inhibitor (TKI) in cell lines and primary cancer isolates to determine the role of RET and EGFR in regulation of p-ERK and tumorigenesis. KD of TFAP2C decreased expression of EGFR in a panel of luminal breast cancers and ChIP-seq confirmed that TFAP2C targets the EGFR gene. Stable KD of TFAP2C significantly decreased cell proliferation and tumor growth, mediated in part through EGFR. While KD of RET or EGFR reduced proliferation (31% and 34%, p < 0.01), combined KD reduced proliferation greater than either alone (52% reduction, p < 0.01). The effect of the TKI vandetanib on proliferation and tumor growth response of MCF-7 cells was dependent upon expression of TFAP2C and dual KD of RET and EGFR eliminated the effects of vandetanib. The response of primary luminal breast cancers to TKIs assessed by ERK activation established a correlation with expression of RET and EGFR. We conclude that TFAP2C regulates EGFR in luminal breast cancer. Response to vandetanib was mediated though the TFAP2C target genes EGFR and RET. Vandetanib may provide a therapeutic effect in luminal breast cancer, and RET and EGFR can serve as molecular markers for response. PMID:26832794

  14. Epiregulin and EGFR interactions are involved in pain processing

    PubMed Central

    Martin, Loren J.; Smith, Shad B.; Khoutorsky, Arkady; Magnussen, Claire A.; Samoshkin, Alexander; Sorge, Robert E.; Cho, Chulmin; Yosefpour, Noosha; Sivaselvachandran, Sivaani; Tohyama, Sarasa; Cole, Tiffany; Khuong, Thang M.; Mir, Ellen; Gibson, Dustin G.; Wieskopf, Jeffrey S.; Sotocinal, Susana G.; Austin, Jean Sebastien; Meloto, Carolina B.; Gitt, Joseph H.; Sonenberg, Nahum; Greenspan, Joel D.; Fillingim, Roger B.; Slade, Gary D.; Knott, Charles; Dubner, Ronald; Nackley, Andrea G.; Ribeiro-da-Silva, Alfredo; Neely, G. Gregory; Maixner, William; Zaykin, Dmitri V.; Mogil, Jeffrey S.; Diatchenko, Luda

    2017-01-01

    The EGFR belongs to the well-studied ErbB family of receptor tyrosine kinases. EGFR is activated by numerous endogenous ligands that promote cellular growth, proliferation, and tissue regeneration. In the present study, we have demonstrated a role for EGFR and its natural ligand, epiregulin (EREG), in pain processing. We show that inhibition of EGFR with clinically available compounds strongly reduced nocifensive behavior in mouse models of inflammatory and chronic pain. EREG-mediated activation of EGFR enhanced nociception through a mechanism involving the PI3K/AKT/mTOR pathway and matrix metalloproteinase-9. Moreover, EREG application potentiated capsaicin-induced calcium influx in a subset of sensory neurons. Both the EGFR and EREG genes displayed a genetic association with the development of chronic pain in several clinical cohorts of temporomandibular disorder. Thus, EGFR and EREG may be suitable therapeutic targets for persistent pain conditions. PMID:28783046

  15. Concordant and Discordant EGFR Mutations in Patients with Multifocal Adenocarcinomas: Implications for EGFR Targeted Therapy

    PubMed Central

    Chuang, Jody C.; Shrager, Joseph B.; Wakelee, Heather A.; Neal, Joel W.

    2016-01-01

    Purpose Adenocarcinoma remains the most common subtype of lung cancer in the United States. Most patients present with tumors that are invasive and often metastatic, but some patients develop multiple precursor in-situ or minimally invasive adenocarcinoma tumors which can be synchronous and metachronous. These precursor lesions harbor the same spectrum of genetic mutations found in pure-invasive adenocarcinomas, such as EGFR, KRAS and p53 mutations. It is less clear, however, if separate lesions in patients who present with multifocal disease share common underlying genetic driver mutations. Methods Here we review the relevant literature on molecular driver alterations in adenocarcinoma precursor lesions. We then report four cases with multifocal EGFR mutant adenocarcinomas in whom we performed molecular testing on 2 separate lesions. Findings In two of these patients, the mutations are concordant, and in two cases the mutations are discordant. A review of the literature demonstrates increasing evidence that lesions with discordant mutations may confer a more favorable prognosis, since they are unlikely to represent metastases. Implications Our findings suggest that the emergence of the dominant EGFR driver alteration is often independent between lesions in patients with multifocal adenocarcinomas, and thus the same targeted therapy may not be effective for all lesions. However, genetic testing of multiple lesions can help distinguish separate primary tumors from metastatic disease. PMID:27368115

  16. Dual silencing of EGFR and HER2 enhances the sensitivity of gastric cancer cells to gefitinib.

    PubMed

    Wang, Liying; Zhang, Hongfeng; Zheng, Jiaxin; Wei, Xiaoli; Du, Jingwen; Lu, Haibo; Sun, Qiuying; Zhou, Weiyu; Zhang, Rui; Han, Yu

    2018-04-10

    Gefitinib exhibits very limited efficacy in gastric cancer (GC). Indeed, the limited clinical results obtained with gefitinib alone justify investigation of additional therapeutic strategies. Here, we demonstrate the importance of EGFR and HER2 in GC malignancy using RNA interference (RNAi). Additionally, we explored the ability of RNAi targeting EGFR and HER2 to enhance the sensitivity of GC cells to gefitinib. Specific small interfering RNAs (siRNAs) significantly inhibited mRNA and protein expression of target genes. EGFR-specific siRNA, EGFR/HER2 siRNAs, and gefitinib inhibited growth and induced apoptosis in GC cell lines in a dose-dependent manner. In contrast, resistance to HER2-siRNA-induced growth inhibition and apoptosis was linked to compensatory activation of EGFR. Moreover, gefitinib dramatically reduced p-EGFR and p-HER2 levels in the cell lines tested, and sensitivity to gefitinib was enhanced through dual silencing of EGFR and HER2 via suppression of AKT and ERK activation. These findings are in agreement with the profound inhibitory effect of gefitinib on activation of both EGFR and HER2. Overall, EGFR/HER2 knockdown by siRNAs further decreased the growth of GC cells treated with gefitinib alone, confirming that single-agent drug targeting does not achieve a maximal biological effect. The combination of gefitinib with EGFR/HER2 siRNAs should be further investigated as a new strategy for the treatment of GC and other EGFR/HER2-dependent cancers. © 2018 Wiley Periodicals, Inc.

  17. EGFR trans-activation mediates pleiotrophin-induced activation of Akt and Erk in cultured osteoblasts.

    PubMed

    Fan, Jian-Bo; Liu, Wei; Yuan, Kun; Zhu, Xin-Hui; Xu, Da-Wei; Chen, Jia-Jia; Cui, Zhi-Ming

    2014-05-09

    Pleiotrophin (Ptn) plays an important role in bone growth through regulating osteoblasts' functions. The underlying signaling mechanisms are not fully understood. In the current study, we found that Ptn induced heparin-binding epidermal growth factor (HB-EGF) release to trans-activate EGF-receptor (EGFR) in both primary osteoblasts and osteoblast-like MC3T3-E1 cells. Meanwhile, Ptn activated Akt and Erk signalings in cultured osteoblasts. The EGFR inhibitor AG1478 as well as the monoclonal antibody against HB-EGF (anti-HB-EGF) significantly inhibited Ptn-induced EGFR activation and Akt and Erk phosphorylations in MC3T3-E1 cells and primary osteoblasts. Further, EGFR siRNA depletion or dominant negative mutation suppressed also Akt and Erk activation in MC3T3-E1 cells. Finally, we observed that Ptn increased alkaline phosphatase (ALP) activity and inhibited dexamethasone (Dex)-induced cell death in both MC3T3-E1 cells and primary osteoblasts, such effects were alleviated by AG1478 or anti-HB-EGF. Together, these results suggest that Ptn-induced Akt/Erk activation and some of its pleiotropic functions are mediated by EGFR trans-activation in cultured osteoblasts. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. EGFR-TKIs resistance via EGFR-independent signaling pathways.

    PubMed

    Liu, Qian; Yu, Shengnan; Zhao, Weiheng; Qin, Shuang; Chu, Qian; Wu, Kongming

    2018-02-19

    Tyrosine kinase inhibitors (TKIs)-treatments bring significant benefit for patients harboring epidermal growth factor receptor (EGFR) mutations, especially for those with lung cancer. Unfortunately, the majority of these patients ultimately develop to the acquired resistance after a period of treatment. Two central mechanisms are involved in the resistant process: EGFR secondary mutations and bypass signaling activations. In an EGFR-dependent manner, acquired mutations, such as T790 M, interferes the interaction between TKIs and the kinase domain of EGFR. While in an EGFR-independent manner, dysregulation of other receptor tyrosine kinases (RTKs) or abnormal activation of downstream compounds both have compensatory functions against the inhibition of EGFR through triggering phosphatidylinositol 3-kinase (PI3K)/Akt and mitogen-activated protein kinase (MAPK) signaling axes. Nowadays, many clinical trials aiming to overcome and prevent TKIs resistance in various cancers are ongoing or completed. EGFR-TKIs in accompany with the targeted agents for resistance-related factors afford a promising first-line strategy to further clinical application.

  19. Epidermal growth factor receptor (EGFR) density may not be the only determinant for the efficacy of EGFR-targeted photoimmunotherapy in human head and neck cancer cell lines.

    PubMed

    Peng, Wei; de Bruijn, Henriette S; Farrell, Eric; Sioud, Mouldy; Mashayekhi, Vida; Oliveira, Sabrina; van Dam, Go M; Roodenburg, Jan L N; Witjes, Max J H; Robinson, Dominic J

    2018-05-19

    The aim of this study was to investigate the effects of targeted photoimmunotherapy (PIT) in vitro on cell lines with various expression levels of epidermal growth factor receptor (EGFR) using an anti-EGFR targeted conjugate composed of Cetuximab and IR700DX, phthalocyanine dye. Relative EGFR density and cell binding assay was conducted in three human head & neck cancer cell lines (scc-U2, scc-U8, and OSC19) and one reference cell line A431. After incubation with the conjugate for 1 or 24 hours, cellular uptake and localization were investigated by confocal laser scanning microscopy and quantified by image analysis. Cell survival was determined using the MTS assay and alamarBlue assay after PIT with a 690 nm laser to a dose of 7 J.cm -2 (at 5 mW.cm -2 ). The mode of cell death was examined with flow cytometry using apoptosis/necrosis staining by Annexin V/propidium iodide, together with immunoblots of anti-apoptotic Bcl-2 family proteins Bcl-2 and Bcl-xL. A431 cells had the highest EGFR density followed by OSC19, and then scc-U2 and scc-U8. The conjugates were localized both on the surface and in the cytosol of the cells after 1- and 24-hour incubation. After 24-hour incubation the granular pattern was more pronounced and in a similar pattern of a lysosomal probe, suggesting that the uptake of conjugates by cells was via receptor-mediated endocytosis. The results obtained from the quantitative imaging analysis correlate with the level of EGFR expression. Targeted PIT killed scc-U8 and A431 cells efficiently; while scc-U2 and OSC19 were less sensitive to this treatment, despite having similar EGFR density, uptake and localization pattern. Scc-U2 cells showed less apoptotic cell dealth than in A431 after 24-hour targeted PIT. Immunoblots showed significantly higher expression of anti-apoptotic Bcl-2 and Bcl-xL proteins in scc-U2 cell lines compared to scc-U8. Our study suggests that the effectiveness of EGFR targeted PIT is not only dependent upon EGFR density

  20. Optimization of a Nanomedicine-based Pc 4-PDT Strategy for Targeted Treatment of EGFR-Overexpressing Cancers

    PubMed Central

    Master, Alyssa M.; Livingston, Megan; Oleinick, Nancy L.; Gupta, Anirban Sen

    2012-01-01

    The current clinical mainstays for cancer treatment, namely, surgical resection, chemotherapy and radiotherapy, can cause significant trauma, systemic toxicity, and functional/cosmetic debilitation of tissue, especially if repetitive treatment becomes necessary due to tumor recurrence. Hence there is significant clinical interest in alternate treatment strategies like photodynamic therapy (PDT) which can effectively and selectively eradicate tumors and can be safely repeated if needed. We have previously demonstrated that the second-generation photosensitizer Pc 4 can be formulated within polymeric micelles, and these micelles can be specifically targeted to EGFR-overexpressing cancer cells using GE11 peptide ligands, to enhance cell-specific Pc 4 delivery and internalization. In the current study, we report on the in vitro optimization of the EGFR-targeting, Pc 4 loading of the micellar nanoformulation, along with optimization of the corresponding photoirradiation conditions to maximize Pc 4 delivery, internalization and subsequent PDT-induced cytotoxicity in EGFR-overexpressing cells in vitro. In our studies, absorption and fluorescence spectroscopy were used to monitor the cell-specific uptake of the GE11-decorated Pc 4-loaded micelles and the cytotoxic singlet oxygen production from the micelle-encapsulated Pc 4, to determine the optimum ligand density and Pc 4 loading. It was found that the micelle formulations bearing 10 mole% of GE11-modified polymer component resulted in the highest cellular uptake in EGFR-overexpressing A431 cells within the shortest incubation periods. Also, the loading of ~50 μg Pc 4 per mg of polymer in these micellar formulations resulted in the highest levels of singlet oxygen production. When formulations bearing these optimized parameters were tested in vitro on A431 cells for PDT effect, a formulation dose containing 400 nM Pc 4 and photoirradiation duration of 400 seconds at a fluence of 200 mJ/cm2 yielded close to 100% cell

  1. EGFR-Targeted Adenovirus Dendrimer Coating for Improved Systemic Delivery of the Theranostic NIS Gene

    PubMed Central

    Grünwald, Geoffrey K; Vetter, Alexandra; Klutz, Kathrin; Willhauck, Michael J; Schwenk, Nathalie; Senekowitsch-Schmidtke, Reingard; Schwaiger, Markus; Zach, Christian; Wagner, Ernst; Göke, Burkhard; Holm, Per S; Ogris, Manfred; Spitzweg, Christine

    2013-01-01

    We recently demonstrated tumor-selective iodide uptake and therapeutic efficacy of combined radiovirotherapy after systemic delivery of the theranostic sodium iodide symporter (NIS) gene using a dendrimer-coated adenovirus. To further improve shielding and targeting we physically coated replication-selective adenoviruses carrying the hNIS gene with a conjugate consisting of cationic poly(amidoamine) (PAMAM) dendrimer linked to the peptidic, epidermal growth factor receptor (EGFR)-specific ligand GE11. In vitro experiments demonstrated coxsackie-adenovirus receptor-independent but EGFR-specific transduction efficiency. Systemic injection of the uncoated adenovirus in a liver cancer xenograft mouse model led to high levels of NIS expression in the liver due to hepatic sequestration, which were significantly reduced after coating as demonstrated by 123I-scintigraphy. Reduction of adenovirus liver pooling resulted in decreased hepatotoxicity and increased transduction efficiency in peripheral xenograft tumors. 124I-PET-imaging confirmed EGFR-specificity by significantly lower tumoral radioiodine accumulation after pretreatment with the EGFR-specific antibody cetuximab. A significantly enhanced oncolytic effect was observed following systemic application of dendrimer-coated adenovirus that was further increased by additional treatment with a therapeutic dose of 131I. These results demonstrate restricted virus tropism and tumor-selective retargeting after systemic application of coated, EGFR-targeted adenoviruses therefore representing a promising strategy for improved systemic adenoviral NIS gene therapy. PMID:24193032

  2. Targeted Quantification of Phosphorylation Dynamics in the Context of EGFR-MAPK Pathway.

    PubMed

    Yi, Lian; Shi, Tujin; Gritsenko, Marina A; X'avia Chan, Chi-Yuet; Fillmore, Thomas L; Hess, Becky M; Swensen, Adam C; Liu, Tao; Smith, Richard D; Wiley, H Steven; Qian, Wei-Jun

    2018-04-17

    Large-scale phosphoproteomics with coverage of over 10,000 sites of phosphorylation have now been routinely achieved with advanced mass spectrometry (MS)-based workflows. However, accurate targeted MS-based quantification of phosphorylation dynamics, an important direction for gaining quantitative understanding of signaling pathways or networks, has been much less investigated. Herein, we report an assessment of the targeted workflow in the context of signal transduction pathways, using the epidermal growth factor receptor (EGFR)-mitogen-activated protein kinase (MAPK) pathway as our model. A total of 43 phosphopeptides from the EGFR-MAPK pathway were selected for the study. The recovery and sensitivity of two commonly used enrichment methods, immobilized metal affinity chromatography (IMAC) and titanium oxide (TiO 2 ), combined with selected reaction monitoring (SRM)-MS were evaluated. The recovery of phosphopeptides by IMAC and TiO 2 enrichment was quantified to be 38 ± 5% and 58 ± 20%, respectively, based on internal standards. Moreover, both enrichment methods provided comparable sensitivity from 1 to 100 μg starting peptides. Robust quantification was consistently achieved for most targeted phosphopeptides when starting with 25-100 μg peptides. However, the numbers of quantified targets significantly dropped when peptide samples were in the 1-25 μg range. Finally, IMAC-SRM was applied to quantify signaling dynamics of EGFR-MAPK pathway in Hs578T cells following 10 ng/mL EGF treatment. The kinetics of phosphorylation clearly revealed early and late phases of phosphorylation, even for very low abundance proteins. These results demonstrate the feasibility of robust targeted quantification of phosphorylation dynamics for specific pathways, even starting with relatively small amounts of protein.

  3. Inhibition of EGFR Induces a c-MET Driven Stem Cell Population in Glioblastoma

    PubMed Central

    Jun, Hyun Jung; Bronson, Roderick T.; Charest, Al

    2015-01-01

    Glioblastoma multiforme (GBM) is the most lethal form of primary brain tumors, characterized by highly invasive and aggressive tumors that are resistant to all current therapeutic options. GBMs are highly heterogeneous in nature and contain a small but highly tumorigenic and self-renewing population of stem or initiating cells (Glioblastoma stem cells or GSCs). GSCs have been shown to contribute to tumor propagation and resistance to current therapeutic modalities. Recent studies of human GBMs have elucidated the genetic alterations common in these tumors, but much remains unknown about specific signaling pathways that regulate GSCs. Here we identify a distinct fraction of cells in a genetically engineered mouse model of EGFR-driven GBM that respond to anti-EGFR therapy by inducing high levels of c-MET expression. The MET positive cells displayed clonogenic potential and long-term self-renewal ability in vitro and are capable of differentiating into multiple lineages. The MET positive GBM cells are resistant to radiation and highly tumorigenic in vivo. Activation of MET signaling led to an increase in expression of the stemness transcriptional regulators Oct4, Nanog and Klf4. Pharmacological inhibition of MET activity in GSCs prevented the activation of Oct4, Nanog and Klf4 and potently abrogated stemness. Finally, the MET expressing cells were preferentially localized in perivascular regions of mouse tumors consistent with their function as GSCs. Together, our findings indicate that EGFR inhibition in GBM induces MET activation in GSCs, which is a functional requisite for GSCs activity and thus represents a promising therapeutic target. PMID:24115218

  4. Radiosensitization of HNSCC cells by EGFR inhibition depends on the induction of cell cycle arrests

    PubMed Central

    Kriegs, Malte; Kasten-Pisula, Ulla; Riepen, Britta; Hoffer, Konstantin; Struve, Nina; Myllynen, Laura; Braig, Friederike; Binder, Mascha; Rieckmann, Thorsten; Grénman, Reidar; Petersen, Cordula; Dikomey, Ekkehard; Rothkamm, Kai

    2016-01-01

    The increase in cellular radiosensitivity by EGF receptor (EGFR) inhibition has been shown to be attributable to the induction of a G1-arrest in p53-proficient cells. Because EGFR targeting in combination with radiotherapy is used to treat head and neck squamous cell carcinomas (HNSCC) which are predominantly p53 mutated, we tested the effects of EGFR targeting on cellular radiosensitivity, proliferation, apoptosis, DNA repair and cell cycle control using a large panel of HNSCC cell lines. In these experiments EGFR targeting inhibited signal transduction, blocked proliferation and induced radiosensitization but only in some cell lines and only under normal (pre-plating) conditions. This sensitization was not associated with impaired DNA repair (53BP1 foci) or induction of apoptosis. However, it was associated with the induction of a lasting G2-arrest. Both, the radiosensitization and the G2-arrest were abrogated if the cells were re-stimulated (delayed plating) with actually no radiosensitization being detectable in any of the 14 tested cell lines. Therefore we conclude that EGFR targeting can induce a reversible G2 arrest in p53 deficient HNSCC cells, which does not consequently result in a robust cellular radiosensitization. Together with recent animal and clinical studies our data indicate that EGFR inhibition is no effective strategy to increase the radiosensitivity of HNSCC cells. PMID:27281611

  5. CAR-Engineered NK Cells Targeting Wild-Type EGFR and EGFRvIII Enhance Killing of Glioblastoma and Patient-Derived Glioblastoma Stem Cells.

    PubMed

    Han, Jianfeng; Chu, Jianhong; Keung Chan, Wing; Zhang, Jianying; Wang, Youwei; Cohen, Justus B; Victor, Aaron; Meisen, Walter H; Kim, Sung-hak; Grandi, Paola; Wang, Qi-En; He, Xiaoming; Nakano, Ichiro; Chiocca, E Antonio; Glorioso, Joseph C; Kaur, Balveen; Caligiuri, Michael A; Yu, Jianhua

    2015-07-09

    Glioblastoma (GB) remains the most aggressive primary brain malignancy. Adoptive transfer of chimeric antigen receptor (CAR)-modified immune cells has emerged as a promising anti-cancer approach, yet the potential utility of CAR-engineered natural killer (NK) cells to treat GB has not been explored. Tumors from approximately 50% of GB patients express wild-type EGFR (wtEGFR) and in fewer cases express both wtEGFR and the mutant form EGFRvIII; however, previously reported CAR T cell studies only focus on targeting EGFRvIII. Here we explore whether both wtEGFR and EGFRvIII can be effectively targeted by CAR-redirected NK cells to treat GB. We transduced human NK cell lines NK-92 and NKL, and primary NK cells with a lentiviral construct harboring a second generation CAR targeting both wtEGFR and EGFRvIII and evaluated the anti-GB efficacy of EGFR-CAR-modified NK cells. EGFR-CAR-engineered NK cells displayed enhanced cytolytic capability and IFN-γ production when co-cultured with GB cells or patient-derived GB stem cells in an EGFR-dependent manner. In two orthotopic GB xenograft mouse models, intracranial administration of NK-92-EGFR-CAR cells resulted in efficient suppression of tumor growth and significantly prolonged the tumor-bearing mice survival. These findings support intracranial administration of NK-92-EGFR-CAR cells represents a promising clinical strategy to treat GB.

  6. Acquired resistance to EGFR targeted therapy in non-small cell lung cancer: Mechanisms and therapeutic strategies.

    PubMed

    Lim, Sun Min; Syn, Nicholas L; Cho, Byoung Chul; Soo, Ross A

    2018-04-01

    The tyrosine kinase inhibitors (TKIs) directed at sensitizing mutations in the epidermal growth factor receptor (EGFR) gene represents a critical pillar in non-small cell lung cancer treatment. Despite the excellent disease control with initial EGFR TKI therapy, acquired resistance is ubiquitous and remains a key challenge. Investigations into the mechanisms which foster resistance to EGFR TKIs has led to the discovery of novel biomarkers and drug targets, and in turn has enabled the development of third-generation TKIs and proposals for rational therapeutic combinations. The threonine-to-methionine substitution mutation at position 790 (T790M) is clinically validated to engender refractoriness to first- and second-generation TKIs, and is a standard-of-care predictive biomarker used in therapeutic stratification. Clinical use of liquid biopsy approaches for assessment of T790M mutations continues to increase, with growing advocacy for serial monitoring of tumor evolution. For patients who are T790M-negative, cytotoxic chemotherapy or protracted EGFR TKI treatment are acceptable treatment standards after disease progression, although combinations of targeted therapies and checkpoint blockade immunotherapy may offer promising alternatives in the future. Among T790M-positive patients, the third-generation EGFR TKI, osimertinib, has shown superiority over both platinum-doublet chemotherapy and 1st generation EGFR TKI in randomized clinical trials, and exhibits enhanced in vitro selectivity for mutant EGFR receptors and pharmacokinetics compared to earlier-generation TKIs. This article appraises the key literature on the contemporary management of non-small cell lung cancer patients with acquired resistance to EGFR TKIs, and envisions future directions in translational and clinical research. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Uncovering the Origin of Skin Side Effects from EGFR-Targeted Therapies | Center for Cancer Research

    Cancer.gov

    The epidermal growth factor receptor (EGFR), a key regulator of cell proliferation, is often mutated or overexpressed in a variety of cancer types. EGFR-targeted therapies, including monoclonal antibodies and small molecule inhibitors, can effectively treat patients whose tumors depend on aberrant EGFR signaling. Within a few weeks of initiating therapy, however, patients develop a characteristic rash with leukocyte infiltration into the skin accompanied by pruritus (itching), scaling of the skin, hair loss, and even changes in skin cell differentiation. The side effects can become so severe that patients take reduced doses, which can limit efficacy, or stop treatment altogether. To understand how EGFR inhibitors cause these skin changes in the hopes of identifying a means of preventing them, Stuart Yuspa, M.D., of CCR’s Laboratory of Cancer Biology and Genetics, and his colleagues examined patient samples and generated a mouse model of EGFR loss in the skin.

  8. Lipopolysaccharide induces VCAM-1 expression and neutrophil adhesion to human tracheal smooth muscle cells: Involvement of Src/EGFR/PI3-K/Akt pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, W.-N.; Luo, S.-F.; Wu, C.-B.

    2008-04-15

    In our previous study, LPS has been shown to induce vascular cell adhesion molecule-1(VCAM-1) expression through MAPKs and NF-{kappa}B in human tracheal smooth muscle cells (HTSMCs). In addition to these pathways, the non-receptor tyrosine kinases (Src), EGF receptor (EGFR), and phosphatidylinositol 3-kinase (PI3K) have been shown to be implicated in the expression of several inflammatory target proteins. Here, we reported that LPS-induced up-regulation of VCAM-1 enhanced the adhesion of neutrophils onto HTSMC monolayer, which was inhibited by LY294002 and wortmannin. LPS stimulated phosphorylation of protein tyrosine kinases including Src, PYK2, and EGFR, which were further confirmed using specific anti-phospho-Src, PYK2,more » or EGFR Ab, respectively, revealed by Western blotting. LPS-stimulated Src, PYK2, EGFR, and Akt phosphorylation and VCAM-1 expression were attenuated by the inhibitors of Src (PP1), EGFR (AG1478), PI3-K (LY294002 and wortmannin), and Akt (SH-5), respectively, or transfection with siRNAs of Src or Akt and shRNA of p110. LPS-induced VCAM-1 expression was also blocked by pretreatment with curcumin (a p300 inhibitor) or transfection with p300 siRNA. LPS-stimulated Akt activation translocated into nucleus and associated with p300 and VCAM-1 promoter region was further confirmed by immunofluorescence, immunoprecipitation, and chromatin immunoprecipitation assays. This association of Akt and p300 to VCAM-1 promoter was inhibited by pretreatment with PP1, AG1478, wortmannin, and SH-5. LPS-induced p300 activation enhanced VCAM-1 promoter activity and VCAM-1 mRNA expression. These results suggested that in HTSMCs, Akt phosphorylation mediated through transactivation of Src/PYK2/EGFR promoted the transcriptional p300 activity and eventually led to VCAM-1 expression induced by LPS.« less

  9. Preclinical PET imaging of EGFR levels: pairing a targeting with a non-targeting Sel-tagged Affibody-based tracer to estimate the specific uptake.

    PubMed

    Cheng, Qing; Wållberg, Helena; Grafström, Jonas; Lu, Li; Thorell, Jan-Olov; Hägg Olofsson, Maria; Linder, Stig; Johansson, Katarina; Tegnebratt, Tetyana; Arnér, Elias S J; Stone-Elander, Sharon; Ahlzén, Hanna-Stina Martinsson; Ståhl, Stefan

    2016-12-01

    Though overexpression of epidermal growth factor receptor (EGFR) in several forms of cancer is considered to be an important prognostic biomarker related to poor prognosis, clear correlations between biomarker assays and patient management have been difficult to establish. Here, we utilize a targeting directly followed by a non-targeting tracer-based positron emission tomography (PET) method to examine some of the aspects of determining specific EGFR binding in tumors. The EGFR-binding Affibody molecule ZEGFR:2377 and its size-matched non-binding control ZTaq:3638 were recombinantly fused with a C-terminal selenocysteine-containing Sel-tag (ZEGFR:2377-ST and ZTaq:3638-ST). The proteins were site-specifically labeled with DyLight488 for flow cytometry and ex vivo tissue analyses or with (11)C for in vivo PET studies. Kinetic scans with the (11)C-labeled proteins were performed in healthy mice and in mice bearing xenografts from human FaDu (squamous cell carcinoma) and A431 (epidermoid carcinoma) cell lines. Changes in tracer uptake in A431 xenografts over time were also monitored, followed by ex vivo proximity ligation assays (PLA) of EGFR expressions. Flow cytometry and ex vivo tissue analyses confirmed EGFR targeting by ZEGFR:2377-ST-DyLight488. [Methyl-(11)C]-labeled ZEGFR:2377-ST-CH3 and ZTaq:3638-ST-CH3 showed similar distributions in vivo, except for notably higher concentrations of the former in particularly the liver and the blood. [Methyl-(11)C]-ZEGFR:2377-ST-CH3 successfully visualized FaDu and A431 xenografts with moderate and high EGFR expression levels, respectively. However, in FaDu tumors, the non-specific uptake was large and sometimes equally large, illustrating the importance of proper controls. In the A431 group observed longitudinally, non-specific uptake remained at same level over the observation period. Specific uptake increased with tumor size, but changes varied widely over time in individual tumors. Total (membranous and cytoplasmic) EGFR

  10. Targeted treatment of mutated EGFR-expressing non-small-cell lung cancer: focus on erlotinib with companion diagnostics

    PubMed Central

    Karachaliou, Niki; Rosell, Rafael

    2014-01-01

    Deeper understanding of the pathobiology of non-small-cell lung cancer (NSCLC) has led to the development of small molecules that target genetic mutations known to play critical roles in the progression to metastatic disease. The discovery of epidermal growth factor receptor (EGFR) mutations in 15%–20% of lung adenocarcinomas and the associated response to EGFR tyrosine kinase inhibitors have provided a successful avenue of attack in late-stage adenocarcinomas. Use of the EGFR tyrosine kinase inhibitors gefitinib, erlotinib, and afatinib is limited to patients who have adenocarcinomas with known activating EGFR mutations. However, the EGFR mutation testing landscape is varied and includes many screening and targeted methods, each with its own benefits and limitations. These tests can simplify the drug discovery process, make clinical trials more efficient and informative, and individualize cancer therapy. In practice, the choice of method should be determined by the nature of the sample to be tested, the testing laboratory’s expertise and access to equipment, and whether the detection of only known activating EGFR mutations, or of all possible mutations, is required. Development of companion diagnostic tests for this identification is advancing; nevertheless, the use of such tests merits greater attention. PMID:28210145

  11. Anterior Gradient 2 (AGR2) Induced Epidermal Growth Factor Receptor (EGFR) Signaling Is Essential for Murine Pancreatitis-Associated Tissue Regeneration

    PubMed Central

    Wodziak, Dariusz; Dong, Aiwen; Basin, Michael F.; Lowe, Anson W.

    2016-01-01

    A recently published study identified Anterior Gradient 2 (AGR2) as a regulator of EGFR signaling by promoting receptor presentation from the endoplasmic reticulum to the cell surface. AGR2 also promotes tissue regeneration in amphibians and fish. Whether AGR2-induced EGFR signaling is essential for tissue regeneration in higher vertebrates was evaluated using a well-characterized murine model for pancreatitis. The impact of AGR2 expression and EGFR signaling on tissue regeneration was evaluated using the caerulein-induced pancreatitis mouse model. EGFR signaling and cell proliferation were examined in the context of the AGR2-/- null mouse or with the EGFR-specific tyrosine kinase inhibitor, AG1478. In addition, the Hippo signaling coactivator YAP1 was evaluated in the context of AGR2 expression during pancreatitis. Pancreatitis-induced AGR2 expression enabled EGFR translocation to the plasma membrane, the initiation of cell signaling, and cell proliferation. EGFR signaling and tissue regeneration were partially inhibited by the tyrosine kinase inhibitor AG1478, but absent in the AGR2-/- null mouse. AG1478-treated and AGR2-/- null mice with pancreatitis died whereas all wild-type controls recovered. YAP1 activation was also dependent on pancreatitis-induced AGR2 expression. AGR2-induced EGFR signaling was essential for tissue regeneration and recovery from pancreatitis. The results establish tissue regeneration as a major function of AGR2-induced EGFR signaling in adult higher vertebrates. Enhanced AGR2 expression and EGFR signaling are also universally present in human pancreatic cancer, which support a linkage between tissue injury, regeneration, and cancer pathogenesis. PMID:27764193

  12. Enhanced EGFR Targeting Activity of Plasmonic Nanostructures with Engineered GE11 Peptide.

    PubMed

    Biscaglia, Francesca; Rajendran, Senthilkumar; Conflitti, Paolo; Benna, Clara; Sommaggio, Roberta; Litti, Lucio; Mocellin, Simone; Bocchinfuso, Gianfranco; Rosato, Antonio; Palleschi, Antonio; Nitti, Donato; Gobbo, Marina; Meneghetti, Moreno

    2017-12-01

    Plasmonic nanostructures show important properties for biotechnological applications, but they have to be guided on the target for exploiting their potentialities. Antibodies are the natural molecules for targeting. However, their possible adverse immunogenic activity and their cost have suggested finding other valid substitutes. Small molecules like peptides can be an alternative source of targeting agents, even if, as single molecules, their binding affinity is usually not very good. GE11 is a small dodecapeptide with specific binding to the epidermal growth factor receptor (EGFR) and low immunogenicity. The present work shows that thousands of polyethylene glycol (PEG) chains modified with lysines and functionalized with GE11 on clusters of naked gold nanoparticles, obtained by laser ablation in water, achieves a better targeting activity than that recorded with nanoparticles decorated with the specific anti-EGFR antibody Cetuximab (C225). The insertion of the cationic spacer between the polymeric part of the ligand and the targeting peptide allows for a proper presentation of GE11 on the surface of the nanosystems. Surface enhanced resonance Raman scattering signals of the plasmonic gold nanoparticles are used for quantifying the targeting activity. Molecular dynamic calculations suggest that subtle differences in the exposition of the peptide on the PEG sea are important for the targeting activity. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Novel multi-targeted ErbB family inhibitor afatinib blocks EGF-induced signaling and induces apoptosis in neuroblastoma.

    PubMed

    Mao, Xinfang; Chen, Zhenghu; Zhao, Yanling; Yu, Yang; Guan, Shan; Woodfield, Sarah E; Vasudevan, Sanjeev A; Tao, Ling; Pang, Jonathan C; Lu, Jiaxiong; Zhang, Huiyuan; Zhang, Fuchun; Yang, Jianhua

    2017-01-03

    Neuroblastoma is the most common extracranial solid tumor in children. The ErbB family of proteins is a group of receptor tyrosine kinases that promote the progression of various malignant cancers including neuroblastoma. Thus, targeting them with small molecule inhibitors is a promising strategy for neuroblastoma therapy. In this study, we investigated the anti-tumor effect of afatinib, an irreversible inhibitor of members of the ErbB family, on neuroblastoma. We found that afatinib suppressed the proliferation and colony formation ability of neuroblastoma cell lines in a dose-dependent manner. Afatinib also induced apoptosis and blocked EGF-induced activation of PI3K/AKT/mTOR signaling in all neuroblastoma cell lines tested. In addition, afatinib enhanced doxorubicin-induced cytotoxicity in neuroblastoma cells, including the chemoresistant LA-N-6 cell line. Finally, afatinib exhibited antitumor efficacy in vivo by inducing apoptosis in an orthotopic xenograft neuroblastoma mouse model. Taken together, these results show that afatinib inhibits neuroblastoma growth both in vitro and in vivo by suppressing EGFR-mediated PI3K/AKT/mTOR signaling. Our study supports the idea that EGFR is a potential therapeutic target in neuroblastoma. And targeting ErbB family protein kinases with small molecule inhibitors like afatinib alone or in combination with doxorubicin is a viable option for treating neuroblastoma.

  14. GPCRs and EGFR - Cross-talk of membrane receptors in cancer.

    PubMed

    Köse, Meryem

    2017-08-15

    G protein-coupled receptors (GPCRs) and receptor-tyrosine kinases (RTKs) are two important classes of cell surface receptors proven to be highly tractable as drug targets. Both receptor classes are involved in various complex (patho-) physiological processes in the human body including cellular growth and differentiation. More recently, accumulating data suggest that GPCR-induced activation of EGFR, the prototyp of RTKs represents a major mechanism in various cancers. The present review will focus on this cross-talk with particular emphasis on intracellular scaffold proteins regulating EGFR transactivation. It will give an overview about the current status of the research and future directions, highlight recent trends in the field, and discuss the potential of therapeutic strategies combining GPCR and EGFR targeting on the one hand and specific targeting of the cross-talk on the other hand in cancer therapy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Sphingosine 1-Phosphate Activation of EGFR As a Novel Target for Meningitic Escherichia coli Penetration of the Blood-Brain Barrier

    PubMed Central

    Wang, Xiangru; Maruvada, Ravi; Morris, Andrew J.; Liu, Jun O.; Baek, Dong Jae; Kim, Kwang Sik

    2016-01-01

    Central nervous system (CNS) infection continues to be an important cause of mortality and morbidity, necessitating new approaches for investigating its pathogenesis, prevention and therapy. Escherichia coli is the most common Gram-negative bacillary organism causing meningitis, which develops following penetration of the blood–brain barrier (BBB). By chemical library screening, we identified epidermal growth factor receptor (EGFR) as a contributor to E. coli invasion of the BBB in vitro. Here, we obtained the direct evidence that CNS-infecting E. coli exploited sphingosine 1-phosphate (S1P) for EGFR activation in penetration of the BBB in vitro and in vivo. We found that S1P was upstream of EGFR and participated in EGFR activation through S1P receptor as well as through S1P-mediated up-regulation of EGFR-related ligand HB-EGF, and blockade of S1P function through targeting sphingosine kinase and S1P receptor inhibited EGFR activation, and also E. coli invasion of the BBB. We further found that both S1P and EGFR activations occurred in response to the same E. coli proteins (OmpA, FimH, NlpI), and that S1P and EGFR promoted E. coli invasion of the BBB by activating the downstream c-Src. These findings indicate that S1P and EGFR represent the novel host targets for meningitic E. coli penetration of the BBB, and counteracting such targets provide a novel approach for controlling E. coli meningitis in the era of increasing resistance to conventional antibiotics. PMID:27711202

  16. The Significance of MMP-1 in EGFR-TKI-Resistant Lung Adenocarcinoma: Potential for Therapeutic Targeting.

    PubMed

    Saito, Ryoko; Miki, Yasuhiro; Ishida, Naoya; Inoue, Chihiro; Kobayashi, Masayuki; Hata, Shuko; Yamada-Okabe, Hisafumi; Okada, Yoshinori; Sasano, Hironobu

    2018-02-18

    Epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) resistance is one of the most important problems in lung cancer therapy. Lung adenocarcinoma with EGFR-TKI resistance was reported to have higher abilities of invasion and migration than cancers sensitive to EGFR-TKI, but the function of matrix metalloproteinases (MMPs) has not been explored in EGFR-TKI-resistant lung adenocarcinoma. This study aims to clarify the significance of MMP-1 in EGFR-TKI-resistant lung adenocarcinoma. From the results of in vitro studies of migration and invasion assays using EGFR-TKI-sensitive and -resistant cell lines and phosphorylation antibody arrays using EGF and rapamycin, we first demonstrate that overexpression of MMP-1, which might follow activation of a mammalian target of rapamycin (mTOR) pathway, plays an important role in the migration and invasion abilities of EGFR-TKI-resistant lung adenocarcinoma. Additionally, immunohistochemical studies using 89 cases of lung adenocarcinoma demonstrate that high expression of MMP-1 is significantly correlated with poor prognosis and factors such as smoking history and the subtype of invasive mucinous adenocarcinoma. These are consistent with the results of this in vitro study. To conclude, this study provides insights into the development of a possible alternative therapy manipulating MMP-1 and the mTOR signaling pathway in EGFR-TKI-resistant lung adenocarcinoma.

  17. EGFR and Ras regulate DDX59 during lung cancer development.

    PubMed

    Yang, Lin; Zhang, Hanyin; Chen, Dan; Ding, Peikun; Yuan, Yunchang; Zhang, Yandong

    2018-02-05

    Oncogenes EGFR and ras are frequently mutated and activated in human lung cancers. In this report, we found that both EGFR and Ras signaling can upregulate RNA helicase DDX59 in lung cancer cells. DDX59 can be induced through the mitogen activated protein kinase (MAPK) pathway after EGFR or Ras activation. Inhibitors for Ras/Raf/MAP pathway significantly decreased DDX59 expression at both protein and mRNA levels. Through immunohistochemistry, we found that DDX59 protein expression correlated with Ras and EGFR mutation status in human lung adenocarcinoma. Finally, through a xenograft nude mice model, we demonstrated that DDX59 is pivotal for EGFR mutated lung cancer cell growth in vivo. Our study identified a novel protein downstream of Ras and EGFR, which may serve as a potential therapeutic drug target for lung cancer patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. CDK4/6 or MAPK blockade enhances efficacy of EGFR inhibition in oesophageal squamous cell carcinoma.

    PubMed

    Zhou, Jin; Wu, Zhong; Wong, Gabrielle; Pectasides, Eirini; Nagaraja, Ankur; Stachler, Matthew; Zhang, Haikuo; Chen, Ting; Zhang, Haisheng; Liu, Jie Bin; Xu, Xinsen; Sicinska, Ewa; Sanchez-Vega, Francisco; Rustgi, Anil K; Diehl, J Alan; Wong, Kwok-Kin; Bass, Adam J

    2017-01-06

    Oesophageal squamous cell carcinoma is a deadly disease where systemic therapy has relied upon empiric chemotherapy despite the presence of genomic alterations pointing to candidate therapeutic targets, including recurrent amplification of the gene encoding receptor tyrosine kinase epidermal growth factor receptor (EGFR). Here, we demonstrate that EGFR-targeting small-molecule inhibitors have efficacy in EGFR-amplified oesophageal squamous cell carcinoma (ESCC), but may become quickly ineffective. Resistance can occur following the emergence of epithelial-mesenchymal transition and by reactivation of the mitogen-activated protein kinase (MAPK) pathway following EGFR blockade. We demonstrate that blockade of this rebound activation with MEK (mitogen-activated protein kinase kinase) inhibition enhances EGFR inhibitor-induced apoptosis and cell cycle arrest, and delays resistance to EGFR monotherapy. Furthermore, genomic profiling shows that cell cycle regulators are altered in the majority of EGFR-amplified tumours and a combination of cyclin-dependent kinase 4/6 (CDK4/6) and EGFR inhibitors prevents the emergence of resistance in vitro and in vivo. These data suggest that upfront combination strategies targeting EGFR amplification, guided by adaptive pathway reactivation or by co-occurring genomic alterations, should be tested clinically.

  19. Compounds identified by virtual docking to a tetrameric EGFR extracellular domain can modulate Grb2 internalization.

    PubMed

    Ramirez, Ursula D; Nikonova, Anna S; Liu, Hanqing; Pecherskaya, Anna; Lawrence, Sarah H; Serebriiskii, Ilya G; Zhou, Yan; Robinson, Matthew K; Einarson, Margret B; Golemis, Erica A; Jaffe, Eileen K

    2015-05-28

    Overexpression or mutation of the epidermal growth factor receptor (EGFR) potently enhances the growth of many solid tumors. Tumor cells frequently display resistance to mechanistically-distinct EGFR-directed therapeutic agents, making it valuable to develop therapeutics that work by additional mechanisms. Current EGFR-targeting therapeutics include antibodies targeting the extracellular domains, and small molecules inhibiting the intracellular kinase domain. Recent studies have identified a novel prone extracellular tetrameric EGFR configuration, which we identify as a potential target for drug discovery. Our focus is on the prone EGFR tetramer, which contains a novel protein-protein interface involving extracellular domain III. This EGFR tetramer is computationally targeted for stabilization by small molecule ligand binding. This study performed virtual screening of a Life Chemicals, Inc. small molecule library of 345,232 drug-like compounds against a molecular dynamics simulation of protein-protein interfaces distinct to the novel tetramer. One hundred nine chemically diverse candidate molecules were selected and evaluated using a cell-based high-content imaging screen that directly assessed induced internalization of the EGFR effector protein Grb2. Positive hits were further evaluated for influence on phosphorylation of EGFR and its effector ERK1/2. Fourteen hit compounds affected internalization of Grb2, an adaptor responsive to EGFR activation. Most hits had limited effect on cell viability, and minimally influenced EGFR and ERK1/2 phosphorylation. Docked hit compound poses generally include Arg270 or neighboring residues, which are also involved in binding the effective therapeutic cetuximab, guiding further chemical optimization. These data suggest that the EGFR tetrameric configuration offers a novel cancer drug target.

  20. Co-targeting of EGFR and autophagy signaling is an emerging treatment strategy in metastatic colorectal cancer.

    PubMed

    Koustas, Evangelos; Karamouzis, Michalis V; Mihailidou, Chrysovalantou; Schizas, Dimitrios; Papavassiliou, Athanasios G

    2017-06-28

    The epidermal growth factor receptor (EGFR) and its associated pathway is a critical key regulator of CRC development and progression. The monoclonal antibodies (MoAbs) cetuximab and panitumumab, directed against EGFR, represent a major step forward in the treatment of metastatic colorectal cancer (mCRC), in terms of progression-free survival and overall survival in several clinical trials. However, the activity of anti-EGFR MoAbs appears to be limited to a subset of patients with mCRC. Studies have highlighted that acquired-resistance to anti-EGFR MoAbs biochemically converge into Ras/Raf/Mek/Erk and PI3K/Akt/mTOR pathways. Recent data also suggest that acquired-resistance to anti-EGFR MoAbs is accompanied by inhibition of EGFR internalization, ubiqutinization, degradation and prolonged downregulation. It is well established that autophagy, a self-cannibalization process, is considered to be associated with resistance to the anti-EGFR MoAbs therapy. Additionally, autophagy induced by anti-EGFR MoAbs acts as a protective response in cancer cells. Thus, inhibition of autophagy after treatment with EGFR MoAbs can result in autophagic cell death. A combination therapy comprising of anti-EGFR MoAbs and autophagy inhibitors would represent a multi-pronged approach that could be evolved into an active therapeutic strategy in mCRC patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Anti-HER2 antibody and ScFvEGFR-conjugated antifouling magnetic iron oxide nanoparticles for targeting and magnetic resonance imaging of breast cancer

    PubMed Central

    Chen, Hongwei; Wang, Liya; Yu, Qiqi; Qian, Weiping; Tiwari, Diana; Yi, Hong; Wang, Andrew Y; Huang, Jing; Yang, Lily; Mao, Hui

    2013-01-01

    Antifouling magnetic iron oxide nanoparticles (IONPs) coated with block copolymer poly(ethylene oxide)-block-poly(γ-methacryloxypropyltrimethoxysilane) (PEO-b-PγMPS) were investigated for improving cell targeting by reducing nonspecific uptake. Conjugation of a HER2 antibody, Herceptin®, or a single chain fragment (ScFv) of antibody against epidermal growth factor receptor (ScFvEGFR) to PEO-b-PγMPS-coated IONPs resulted in HER2-targeted or EGFR-targeted IONPs (anti-HER2-IONPs or ScFvEGFR-IONPs). The anti-HER2-IONPs bound specifically to SK-BR-3, a HER2-overexpressing breast cancer cell line, but not to MDA-MB-231, a HER2-underexpressing cell line. On the other hand, the ScFvEGFR-IONPs showed strong reactivity with MDA-MB-231, an EGFR-positive human breast cancer cell line, but not with MDA-MB-453, an EGFR-negative human breast cancer cell line. Transmission electron microscopy revealed internalization of the receptor-targeted nanoparticles by the targeted cancer cells. In addition, both antibody-conjugated and non-antibody-conjugated IONPs showed reduced nonspecific uptake by RAW264.7 mouse macrophages in vitro. The developed IONPs showed a long blood circulation time (serum half-life 11.6 hours) in mice and low accumulation in both the liver and spleen. At 24 hours after systemic administration of ScFvEGFR-IONPs into mice bearing EGFR-positive breast cancer 4T1 mouse mammary tumors, magnetic resonance imaging revealed signal reduction in the tumor as a result of the accumulation of the targeted IONPs. PMID:24124366

  2. Development of EGFR Targeted Nanoemulsion for Imaging and Novel Platinum Therapy of Ovarian Cancer

    PubMed Central

    Ganta, Srinivas; Singh, Amit; Patel, Niravkumar R.; Cacaccio, Joseph; Rawal, Yashesh H.; Davis, Barbara J.; Amiji, Mansoor M.; Coleman, Timothy P.

    2014-01-01

    Purpose Platinum-based chemotherapy is the treatment of choice for malignant epithelial ovarian cancers, but generalized toxicity and platinum resistance limits its use. Theranostic nanoemulsion with a novel platinum prodrug, myrisplatin, and the pro-apoptotic agent, C6-ceramide, were designed to overcome these limitations. Methods The nanoemulsions, including ones with an EGFR binding peptide and gadolinium, were made using generally regarded as safe grade excipients and a high shear microfluidization process. Efficacy was evaluated in ovarian cancer cells, SKOV3, A2780 and A2780CP. Results The nanoemulsion with particle size <150 nm were stable in plasma and parenteral fluids for 24 h. Ovarian cancer cells in vitro efficiently took up the non-targeted and EGFR-targeted nanoemulsions; improved cytotoxicity was observed for the these nanoemulsions with the latter showing a 50-fold drop in the IC50 in SKOV3 cells as compared to cisplatin alone. The addition of gadolinium did not affect cell viability in vitro, but showed relaxation times comparable to Magnevist®. Conclusion The myrisplatin/C6-ceramide nanoemulsion synergistically enhanced in vitro cytotoxicity. An EGFR binding peptide addition further increased in vitro cytotoxicity in EGFR positive cancer cells. The diagnostic version showed MR imaging similar to the clinically relevant Magnevist® and may be suitable as a theranostic for ovarian cancer. PMID:24643932

  3. The combi-targeting concept: synthesis of stable nitrosoureas designed to inhibit the epidermal growth factor receptor (EGFR).

    PubMed

    Domarkas, Juozas; Dudouit, Fabienne; Williams, Christopher; Qiyu, Qiu; Banerjee, Ranjita; Brahimi, Fouad; Jean-Claude, Bertrand Jacques

    2006-06-15

    According to the "combi-targeting" concept, the EGFR tyrosine kinase (TK) inhibitory potency of compounds termed "combi-molecules" is critical for selective growth inhibition of tumor cells with disordered expression of EGFR or its closest family member erbB2. Here we report on the optimization of the EGFR TK inhibitory potency of the combi-molecules of the nitrosourea class by comparison with their aminoquinazoline and ureidoquinazoline precursors. This led to the discovery of a new structural parameter that influences their EGFR TK inhibitory potency, i.e., the torsion angle between the plane of the quinazoline ring and the ureido or the nitrosoureido moiety of the synthesized drugs. Compounds (3'-Cl and Br series) with small angles (0.5-3 degrees ) were generally stronger EGFR TK inhibitors than those with large angles (18-21 degrees ). This was further corroborated by ligand-receptor van der Waals interaction calculations that showed significant binding hindrance imposed by large torsion angles in the narrow ATP cleft of EGFR. Selective antiproliferative studies in a pair of mouse fibroblast NIH3T3 cells, one of which NIH3T3/neu being transfected with the erbB2 oncogene, showed that IC(50) values for inhibition of EGFR TK could be good predictors of their selective potency against the serum-stimulated growth of the erbB2-tranfected cell line (Pearson r = 0.8). On the basis of stability (t(1/2)), EGFR TK inhibitory potency (IC(50)), and selective erbB2 targeting, compound 23, a stable nitrosourea, was considered to have the structural requirements for further development.

  4. Optical Imaging of Targeted β-Galactosidase in Brain Tumors to Detect EGFR Levels

    PubMed Central

    Broome, Ann-Marie; Ramamurthy, Gopal; Lavik, Kari; Liggett, Alexander; Kinstlinger, Ian; Basilion, James

    2015-01-01

    A current limitation in molecular imaging is that it often requires genetic manipulation of cancer cells for noninvasive imaging. Other methods to detect tumor cells in vivo using exogenously delivered and functionally active reporters, such as β-gal, are required. We report the development of a platform system for linking β-gal to any number of different ligands or antibodies for in vivo targeting to tissue or cells, without the requirement for genetic engineering of the target cells prior to imaging. Our studies demonstrate significant uptake in vitro and in vivo of an EGFR-targeted β-gal complex. We were then able to image orthotopic brain tumor accumulation and localization of the targeted enzyme when a fluorophore was added to the complex, as well as validate the internalization of the intravenously administered β-gal reporter complex ex vivo. After fluorescence imaging localized the β-gal complexes to the brain tumor, we topically applied a bioluminescent β-gal substrate to serial sections of the brain to evaluate the delivery and integrity of the enzyme. Finally, robust bioluminescence of the EGFR-targeted β-gal complex was captured within the tumor during noninvasive in vivo imaging. PMID:25775241

  5. Optical imaging of targeted β-galactosidase in brain tumors to detect EGFR levels.

    PubMed

    Broome, Ann-Marie; Ramamurthy, Gopal; Lavik, Kari; Liggett, Alexander; Kinstlinger, Ian; Basilion, James

    2015-04-15

    A current limitation in molecular imaging is that it often requires genetic manipulation of cancer cells for noninvasive imaging. Other methods to detect tumor cells in vivo using exogenously delivered and functionally active reporters, such as β-gal, are required. We report the development of a platform system for linking β-gal to any number of different ligands or antibodies for in vivo targeting to tissue or cells, without the requirement for genetic engineering of the target cells prior to imaging. Our studies demonstrate significant uptake in vitro and in vivo of an EGFR-targeted β-gal complex. We were then able to image orthotopic brain tumor accumulation and localization of the targeted enzyme when a fluorophore was added to the complex, as well as validate the internalization of the intravenously administered β-gal reporter complex ex vivo. After fluorescence imaging localized the β-gal complexes to the brain tumor, we topically applied a bioluminescent β-gal substrate to serial sections of the brain to evaluate the delivery and integrity of the enzyme. Finally, robust bioluminescence of the EGFR-targeted β-gal complex was captured within the tumor during noninvasive in vivo imaging.

  6. Novel mutant-selective EGFR kinase inhibitors against EGFR T790M

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Wenjun; Ercan, Dalia; Chen, Liang

    2010-01-12

    The clinical efficacy of epidermal growth factor receptor (EGFR) kinase inhibitors in EGFR-mutant non-small-cell lung cancer (NSCLC) is limited by the development of drug-resistance mutations, including the gatekeeper T790M mutation. Strategies targeting EGFR T790M with irreversible inhibitors have had limited success and are associated with toxicity due to concurrent inhibition of wild-type EGFR. All current EGFR inhibitors possess a structurally related quinazoline-based core scaffold and were identified as ATP-competitive inhibitors of wild-type EGFR. Here we identify a covalent pyrimidine EGFR inhibitor by screening an irreversible kinase inhibitor library specifically against EGFR T790M. These agents are 30- to 100-fold more potentmore » against EGFR T790M, and up to 100-fold less potent against wild-type EGFR, than quinazoline-based EGFR inhibitors in vitro. They are also effective in murine models of lung cancer driven by EGFR T790M. Co-crystallization studies reveal a structural basis for the increased potency and mutant selectivity of these agents. These mutant-selective irreversible EGFR kinase inhibitors may be clinically more effective and better tolerated than quinazoline-based inhibitors. Our findings demonstrate that functional pharmacological screens against clinically important mutant kinases represent a powerful strategy to identify new classes of mutant-selective kinase inhibitors.« less

  7. Next-Generation EGFR Tyrosine Kinase Inhibitors for Treating EGFR-Mutant Lung Cancer beyond First Line

    PubMed Central

    Sullivan, Ivana; Planchard, David

    2017-01-01

    Tyrosine kinase inhibitors (TKIs) against the human epidermal growth factor receptor (EGFR) are now standard treatment in the clinic for patients with advanced EGFR mutant non-small-cell lung cancer (NSCLC). First-generation EGFR TKIs, binding competitively and reversibly to the ATP-binding site of the EGFR tyrosine kinase domain, have resulted in a significant improvement in outcome for NSCLC patients with activating EGFR mutations (L858R and Del19). However, after a median duration of response of ~12 months, all patients develop tumor resistance, and in over half of these patients this is due to the emergence of the EGFR T790M resistance mutation. The second-generation EGFR/HER TKIs were developed to treat resistant disease, targeting not only T790M but EGFR-activating mutations and wild-type EGFR. Although they exhibited promising anti-T790M activity in the laboratory, their clinical activity among T790M+ NSCLC was poor mainly because of dose-limiting toxicity due to simultaneous inhibition of wild-type EGFR. The third-generation EGFR TKIs selectively and irreversibly target EGFR T790M and activating EGFR mutations, showing promising efficacy in NSCLC resistant to the first- and second-generation EGFR TKIs. They also appear to have lower incidences of toxicity due to the limited inhibitory effect on wild-type EGFR. Currently, the first-generation gefitinib and erlotinib and second-generation afatinib have been approved for first-line treatment of metastatic NSCLC with activating EGFR mutations. Among the third-generation EGFR TKIs, osimertinib is today the only drug approved by the Food and Drug Administration and the European Medicines Agency to treat metastatic EGFR T790M NSCLC patients who have progressed on or after EGFR TKI therapy. In this review, we summarize the available post-progression therapies including third-generation EGFR inhibitors and combination treatment strategies for treating patients with NSCLC harboring EGFR mutations and address the

  8. Heptameric Targeting Ligands against EGFR and HER2 with High Stability and Avidity

    PubMed Central

    Kim, Dongwook; Yan, Yitang; Valencia, C. Alexander; Liu, Rihe

    2012-01-01

    Multivalency of targeting ligands provides significantly increased binding strength towards their molecular targets. Here, we report the development of a novel heptameric targeting system, with general applications, constructed by fusing a target-binding domain with the heptamerization domain of the Archaeal RNA binding protein Sm1 through a flexible hinge peptide. The previously reported affibody molecules against EGFR and HER2, ZEGFR and ZHER2, were used as target binding moieties. The fusion molecules were highly expressed in E. coli as soluble proteins and efficiently self-assembled into multimeric targeting ligands with the heptamer as the predominant form. We demonstrated that the heptameric molecules were resistant to protease-mediated digestion or heat- and SDS-induced denaturation. Surface plasmon resonance (SPR) analysis showed that both heptameric ZEGFR and ZHER2 ligands have a significantly enhanced binding strength to their target receptors with a nearly 100 to 1000 fold increase relative to the monomeric ligands. Cellular binding assays showed that heptameric ligands maintained their target-binding specificities similar to the monomeric forms towards their respective receptor. The non-toxic property of each heptameric ligand was demonstrated by the cell proliferation assay. In general,, the heptamerization strategy we describe here could be applied to the facile and efficient engineering of other protein domain- or short peptide-based affinity molecules to acquire significantly improved target-binding strengths with potential applications in the targeted delivery of various imaging or therapeutic agents.. PMID:22912791

  9. Safe and Effective Sarcoma Therapy through Bispecific Targeting of EGFR and uPAR

    PubMed Central

    Borgatti, Antonella; Koopmeiners, Joseph S.; Sarver, Aaron L.; Winter, Amber L.; Stuebner, Kathleen; Todhunter, Deborah; Rizzardi, Anthony E.; Henriksen, Jonathan C.; Schmechel, Stephen; Forster, Colleen L.; Kim, Jong-Hyuk; Froelich, Jerry; Walz, Jillian; Henson, Michael S.; Breen, Matthew; Lindblad-Toh, Kerstin; Oh, Felix; Pilbeam, Kristy; Modiano, Jaime F.; Vallera, Daniel A.

    2017-01-01

    Sarcomas differ from carcinomas in their mesenchymal origin. Therapeutic advancements have come slowly so alternative drugs and models are urgently needed. These studies report a new drug for sarcomas that simultaneously targets both tumor and tumor neovasculature. eBAT is a bispecific angiotoxin consisting of truncated, deimmunized Pseudomonas exotoxin fused to epidermal growth factor (EGF) and the amino terminal fragment (ATF) of urokinase. Here, we study the drug in an in vivo “ontarget” companion dog trial since eBAT effectively kills canine hemangiosarcoma (HSA) and human sarcoma cells in vitro. We reasoned the model has value due to the common occurrence of spontaneous sarcomas in dogs and a limited lifespan allowing for rapid accrual and data collection. Splenectomized dogs with minimal residual disease were given one cycle of eBAT followed by adjuvant doxorubicin in an adaptive dose-finding, phase I–II study of 23 dogs with spontaneous, stage I–II, splenic HSA. eBAT improved 6-month survival from <40% in a comparison population to ~70% in dogs treated at a biologically active dose (50 μg/kg). Six dogs were long-term survivors, living >450 days. eBAT abated expected toxicity associated with EGFR-targeting, a finding supported by mouse studies. Urokinase plasminogen activator receptor (uPAR) and EGFR are targets for human sarcomas, so thorough evaluation is crucial for validation of the dog model. Thus, we validated these markers for human sarcoma targeting in the study of 212 human and 97 canine sarcoma samples. Our results support further translation of eBAT for human patients with sarcomas and perhaps other EGFR-expressing malignancies. PMID:28193671

  10. Ofloxacin induces apoptosis via β1 integrin-EGFR-Rac1-Nox2 pathway in microencapsulated chondrocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheng, Zhi-Guo; Huang, Wei; Liu, Yu-Xiang

    2013-02-15

    Quinolones (QNs)-induced arthropathy is an important toxic side-effect in immature animals leading to the restriction of their therapeutic use in pediatrics. Ofloxacin, a typical QN, was found to induce the chondrocytes apoptosis in the early phase (12–48 h) of arthropathy in our previous study. However, the exact mechanism(s) is unclear. Microencapsulated juvenile rabbit joint chondrocytes, a three-dimensional culture system, is utilized to perform the present study. Ofloxacin, at a therapeutically relevant concentration (10 μg/ml), disturbs the interaction between β1 integrin and activated intracellular signaling proteins at 12 h, which is inhibited when supplementing Mg{sup 2+}. Intracellular reactive oxygen species (ROS)more » significantly increases in a time-dependent manner after exposure to ofloxacin for 12–48 h. Furthermore, ofloxacin markedly enhances the level of activated Rac1 and epidermal growth factor receptor (EGFR) phosphorylation, and its inhibition in turn reduces the ROS production, apoptosis and Rac1 activation. Silencing Nox2, Rac1 or supplementing Mg{sup 2+} inhibits ROS accumulation, apoptosis occurrence and EGFR phosphorylation induced by ofloxacin. However, depletion of Nox2, Rac1 and inhibition of EGFR do not affect ofloxacin-mediated loss of interaction between β1 integrin and activated intracellular signaling proteins. In addition, ofloxacin also induces Vav2 phosphorylation, which is markedly suppressed after inactivating EGFR or supplementing Mg{sup 2+}. These results suggest that ofloxacin causes Nox2-mediated intracellular ROS production by disrupting the β1 integrin function and then activating the EGFR-Vav2-Rac1 pathway, finally resulting in apoptosis within 12–48 h exposure. The present study provides a novel insight regarding the potential role of Nox-driven ROS in QNs-induced arthropathy. - Highlights: ► Ofloxacin induces Nox2-driven ROS in encapsulated chondrocyte at 12–48 h. ► Ofloxacin stimulates ROS

  11. Differential responses of EGFR-/AGT-expressing cells to the "combi-triazene" SMA41.

    PubMed

    Matheson, Stephanie L; McNamee, James P; Jean-Claude, Bertrand J

    2003-01-01

    Previous studies have demonstrated enhanced potency associated with the binary [DNA/epidermal growth factor receptor (EGFR)] targeting properties of SMA41 (a chimeric 3-(alkyl)-1,2,3-triazene linked to a 4-anilinoquinazoline backbone) in the A431 (epidermal carcinoma of the vulva) cell line. We now report on the dependence of its antiproliferative effects (e.g. DNA damage, cell survival) on the EGFR and the DNA repair protein O6-alkylguanine DNA alkyltransferase (AGT) contents of 12 solid tumor cell lines, two of which, NIH3T3 and NIH3T3 HER14 (engineered to overexpress EGFR), were isogenic. Receptor type specificity was determined using ELISA for competitive binding, as well as growth factor-stimulation assays. DNA damage was studied using single-cell microelectrophoresis (comet) assays, and levels of EGFR were determined by Western blotting. The effects of SMA41 on the cell cycle of NIH3T3 cells were investigated using univariate flow cytometry. Studies of receptor type specificity showed that SMA41: (a) preferentially inhibited the kinase activity of EGFR over those of Src, insulin receptor and protein kinase C (PKC, a serine/threonine kinase), (b) induced stronger inhibition of growth stimulated with EGF than of growth stimulated with platelet-derived growth factor (PDGF) or fetal bovine serum (FBS). Despite the EGFR specificity of SMA41, there was an absence of a linear correlation between the EGFR status of our solid tumor cell lines and levels of DNA damage induced by the alkylating component. Similarly, EGFR levels did not correlate with IC(50) values. The antiproliferative activities of SMA41 correlated more with the AGT status of these cells and paralleled those of the clinical triazene temozolomide (TEM). However, throughout the panel, tumor cell sensitivity to SMA41 was consistently stronger than to its closest analogue TEM. Experiments performed with the isogenic cells showed that SMA41 was capable of inducing twofold higher levels of DNA damage in the

  12. EPHA2 Blockade Overcomes Acquired Resistance to EGFR Kinase Inhibitors in Lung Cancer.

    PubMed

    Amato, Katherine R; Wang, Shan; Tan, Li; Hastings, Andrew K; Song, Wenqiang; Lovly, Christine M; Meador, Catherine B; Ye, Fei; Lu, Pengcheng; Balko, Justin M; Colvin, Daniel C; Cates, Justin M; Pao, William; Gray, Nathanael S; Chen, Jin

    2016-01-15

    Despite the success of treating EGFR-mutant lung cancer patients with EGFR tyrosine kinase inhibitors (TKI), all patients eventually acquire resistance to these therapies. Although various resistance mechanisms have been described, there are currently no FDA-approved therapies that target alternative mechanisms to treat lung tumors with acquired resistance to first-line EGFR TKI agents. Here we found that EPHA2 is overexpressed in EGFR TKI-resistant tumor cells. Loss of EPHA2 reduced the viability of erlotinib-resistant tumor cells harboring EGFR(T790M) mutations in vitro and inhibited tumor growth and progression in an inducible EGFR(L858R+T790M)-mutant lung cancer model in vivo. Targeting EPHA2 in erlotinib-resistant cells decreased S6K1-mediated phosphorylation of cell death agonist BAD, resulting in reduced tumor cell proliferation and increased apoptosis. Furthermore, pharmacologic inhibition of EPHA2 by the small-molecule inhibitor ALW-II-41-27 decreased both survival and proliferation of erlotinib-resistant tumor cells and inhibited tumor growth in vivo. ALW-II-41-27 was also effective in decreasing viability of cells with acquired resistance to the third-generation EGFR TKI AZD9291. Collectively, these data define a role for EPHA2 in the maintenance of cell survival of TKI-resistant, EGFR-mutant lung cancer and indicate that EPHA2 may serve as a useful therapeutic target in TKI-resistant tumors. ©2016 American Association for Cancer Research.

  13. w09, a novel autophagy enhancer, induces autophagy-dependent cell apoptosis via activation of the EGFR-mediated RAS-RAF1-MAP2K-MAPK1/3 pathway.

    PubMed

    Zhang, Pinghu; Zheng, Zuguo; Ling, Li; Yang, Xiaohui; Zhang, Ni; Wang, Xue; Hu, Maozhi; Xia, Yu; Ma, Yiwen; Yang, Haoran; Wang, Yunyi; Liu, Hongqi

    2017-07-03

    The EGFR (epidermal growth factor receptor) signaling pathway is frequently deregulated in many malignancies. Therefore, targeting the EGFR pathway is regarded as a promising strategy for anticancer drug discovery. Herein, we identified a 2-amino-nicotinonitrile compound (w09) as a novel autophagy enhancer, which potently induced macroautophagy/autophagy and consequent apoptosis in gastric cancer cells. Mechanistic studies revealed that EGFR-mediated activation of the RAS-RAF1-MAP2K-MAPK1/3 signaling pathway played a critical role in w09-induced autophagy and apoptosis of gastric cancer cells. Inhibition of the MAPK1/3 pathway with U0126 or blockade of autophagy by specific chemical inhibitors markedly attenuated the effect of w09-mediated growth inhibition and caspase-dependent apoptosis. Furthermore, these conclusions were supported by knockdown of ATG5 or knockout of ATG5 and/or ATG7. Notably, w09 increased the expression of SQSTM1 by transcription, and knockout of SQSTM1 or deleting the LC3-interaction region domain of SQSTM1, significantly inhibited w09-induced PARP1 cleavage, suggesting the central role played by SQSTM1 in w09-induced apoptosis. In addition, in vivo administration of w09 effectively inhibited tumor growth of SGC-7901 xenografts. Hence, our findings not only suggested that activation of the EGFR-RAS-RAF1-MAP2K-MAPK1/3 signaling pathway may play a critical role in w09-induced autophagy and apoptosis, but also imply that induction of autophagic cancer cell death through activation of the EGFR pathway may be a potential therapeutic strategy for EGFR-disregulated gastric tumors.

  14. FTS is responsible for radiation-induced nuclear phosphorylation of EGFR and repair of DNA damage in cervical cancer cells.

    PubMed

    Muthusami, Sridhar; Prabakaran, D S; Yu, Jae-Ran; Park, Woo-Yoon

    2015-02-01

    Radiation-induced nuclear stabilization and phosphorylation of epidermal growth factor receptor (EGFR) confers radioresistance. Understanding of the factor(s) regulating the nuclear stabilization and phosphorylation of EGFR is important for the modulation of radioresistance. Present study was designed to delineate the regulation of EGFR nuclear stabilization and phosphorylation by fused toes homolog (FTS), an oncoprotein, which is responsible for the radioresistance in cervical cancer cells. A cervical cancer cell line, ME180 was used. Radiation-induced change in the levels of EGFR, p-EGFR and FTS were evaluated in the cytoplasm and nucleus using Western blot analyses. FTS was silenced using siRNA-based approach. Interaction between EGFR and FTS was assessed using immunofluorescence and immunoprecipitation analyses. Double-strand breaks (DSB) of DNA were assessed using γ H2AX. Radiation increased the levels of EGFR and FTS in the cytoplasm and nucleus. EGFR and FTS are in physical association with each other and are co-localized in the cells. FTS silencing largely reduced the nuclear stabilization and phosphorylation of EGFR and DNA-protein kinase along with increased initial and residual DSBs. EGFR and FTS physically associate with each other and FTS silencing radiosensitizes ME180 cells through impaired nuclear EGFR signaling.

  15. Discovery of a series of novel phenylpiperazine derivatives as EGFR TK inhibitors

    NASA Astrophysics Data System (ADS)

    Sun, Juan; Wang, Xin-Yi; Lv, Peng-Cheng; Zhu, Hai-Liang

    2015-09-01

    Human epidermal growth factor receptor (EGFR) is an important drug target that plays a fundamental role in signal transduction pathways in oncology. We report herein the discovery of a novel class of phenylpiperazine derivatives with improved potency toward EGFR. The biological activity of compound 3p as inhibitor of EGFR was further investigated both in vitro and in vivo. Notably, compound 3p exhibited an IC50 in the nanomolar range in A549 cell cultures and induced a cessation of tumor growth with no toxicity, as determined by loss of body weight and death of treated mice. Compoutational docking studies also showed that compound 3p has interaction with EGFR key residues in the active site.

  16. Inactivation of EGFR/AKT signaling enhances TSA-induced ovarian cancer cell differentiation.

    PubMed

    Shao, Genbao; Lai, Wensheng; Wan, Xiaolei; Xue, Jing; Wei, Ye; Jin, Jie; Zhang, Liuping; Lin, Qiong; Shao, Qixiang; Zou, Shengqiang

    2017-05-01

    Ovarian tumor is one of the most lethal gynecologic cancers, but differentiation therapy for this cancer is poorly characterized. Here, we show that thrichostatin A (TSA), the well known inhibitor of histone deacetylases (HDACs), can induce cell differentiation in HO8910 ovarian cancer cells. TSA-induced cell differentiation is characterized by typical morphological change, increased expression of the differentiation marker FOXA2, decreased expression of the pluripotency markers SOX2 and OCT4, suppressing cell proliferation, and cell cycle arrest in the G1 phase. TSA also induces an elevated expression of cell cycle inhibitory protein p21Cip1 along with a decrease in cell cycle regulatory protein cyclin D1. Significantly, blockage of epidermal growth factor receptor (EGFR) signaling pathway with specific inhibitors of this signaling cascade promotes the TSA-induced differentiation of HO8910 cells. These results imply that the EGFR cascade inhibitors in combination with TSA may represent a promising differentiation therapy strategy for ovarian cancer.

  17. Large-scale manufacturing of GMP-compliant anti-EGFR targeted nanocarriers: production of doxorubicin-loaded anti-EGFR-immunoliposomes for a first-in-man clinical trial.

    PubMed

    Wicki, Andreas; Ritschard, Reto; Loesch, Uli; Deuster, Stefanie; Rochlitz, Christoph; Mamot, Christoph

    2015-04-30

    We describe the large-scale, GMP-compliant production process of doxorubicin-loaded and anti-EGFR-coated immunoliposomes (anti-EGFR-ILs-dox) used in a first-in-man, dose escalation clinical trial. 10 batches of this nanoparticle have been produced in clean room facilities. Stability data from the pre-GMP and the GMP batch indicate that the anti-EGFR-ILs-dox nanoparticle was stable for at least 18 months after release. Release criteria included visual inspection, sterility testing, as well as measurements of pH (pH 5.0-7.0), doxorubicin HCl concentration (0.45-0.55 mg/ml), endotoxin concentration (<1.21 IU/ml), leakage (<10%), particle size (Z-average of Caelyx ± 20 nm), and particle uptake (uptake absolute: >0.50 ng doxorubicin/μg protein; uptake relatively to PLD: >5 fold). All batches fulfilled the defined release criteria, indicating a high reproducibility as well as batch-to-batch uniformity of the main physico-chemical features of the nanoparticles in the setting of the large-scale GMP process. In the clinical trial, 29 patients were treated with this nanoparticle between 2007 and 2010. Pharmacokinetic data of anti-EGFR-ILs-dox collected during the clinical study revealed stability of the nanocarrier in vivo. Thus, reliable and GMP-compliant production of anti-EGFR-targeted nanoparticles for clinical application is feasible. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Ibrutinib targets mutant-EGFR kinase with a distinct binding conformation.

    PubMed

    Wang, Aoli; Yan, Xiao-E; Wu, Hong; Wang, Wenchao; Hu, Chen; Chen, Cheng; Zhao, Zheng; Zhao, Peng; Li, Xixiang; Wang, Li; Wang, Beilei; Ye, Zi; Wang, Jinhua; Wang, Chu; Zhang, Wei; Gray, Nathanael S; Weisberg, Ellen L; Chen, Liang; Liu, Jing; Yun, Cai-Hong; Liu, Qingsong

    2016-10-25

    Ibrutinib, a clinically approved irreversible BTK kinase inhibitor for Mantle Cell Lymphoma (MCL) and Chronic Lymphocytic Leukemia (CLL) etc, has been reported to be potent against EGFR mutant kinase and currently being evaluated in clinic for Non Small Cell Lung Cancer (NSCLC). Through EGFR wt/mutant engineered isogenic BaF3 cell lines we confirmed the irreversible binding mode of Ibrutinib with EGFR wt/mutant kinase via Cys797. However, comparing to typical irreversible EGFR inhibitor, such as WZ4002, the washing-out experiments revealed a much less efficient covalent binding for Ibrutinib. The biochemical binding affinity examination in the EGFR L858R/T790M kinase revealed that, comparing to more efficient irreversible inhibitor WZ4002 (Kd: 0.074 μM), Ibrutinib exhibited less efficient binding (Kd: 0.18 μM). An X-ray crystal structure of EGFR (T790M) in complex with Ibrutinib exhibited a unique DFG-in/c-Helix-out inactive binding conformation, which partially explained the less efficiency of covalent binding and provided insight for further development of highly efficient irreversible binding inhibitor for the EGFR mutant kinase. These results also imply that, unlike the canonical irreversible inhibitor, sustained effective concentration might be required for Ibrutinib in order to achieve the maximal efficacy in the clinic application against EGFR driven NSCLC.

  19. TGF{beta} induces proHB-EGF shedding and EGFR transactivation through ADAM activation in gastric cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ebi, Masahide; Kataoka, Hiromi, E-mail: hkataoka@med.nagoya-cu.ac.jp; Shimura, Takaya

    2010-11-19

    Research highlights: {yields} TGF{beta} induces EGFR transactivation through proHB-EGF shedding by activated ADAM members in gastric cancer cells. {yields} TGF{beta} induces nuclear translocation of HB-EGF-CTF cleaved by ADAM members. {yields} TGF{beta} enhances cell growth by EGFR transactivation and HB-EGF-CTF nuclear translocation and ADAM inhibitors block these effects. {yields} Silencing of ADAM17 also blocks EGFR transactivation, HB-EGF-CTF nuclear translocation and cancer cell growth by TGF{beta}. {yields} ADAM17 may play a crucial role in this TGF{beta}-HB-EGF signal transduction. -- Abstract: Background and aims: Transforming growth factor-beta (TGF{beta}) is known to potently inhibit cell growth. Loss of responsiveness to TGF{beta} inhibition on cellmore » growth is a hallmark of many types of cancer, yet its mechanism is not fully understood. Membrane-anchored heparin-binding EGF-like growth factor (proHB-EGF) ectodomain is cleaved by a disintegrin and metalloproteinase (ADAM) members and is implicated in epidermal growth factor receptor (EGFR) transactivation. Recently, nuclear translocation of the C-terminal fragment (CTF) of pro-HB-EGF was found to induce cell growth. We investigated the association between TGF{beta} and HB-EGF signal transduction via ADAM activation. Materials and methods: The CCK-8 assay in two gastric cancer cell lines was used to determine the effect for cell growth by TGF{beta}. The effect of two ADAM inhibitors was also evaluated. Induction of EGFR phosphorylation by TGF{beta} was analyzed and the effect of the ADAM inhibitors was also examined. Nuclear translocation of HB-EGF-CTF by shedding through ADAM activated by TGF{beta} was also analyzed. EGFR transactivation, HB-EGF-CTF nuclear translocation, and cell growth were examined under the condition of ADAM17 knockdown. Result: TGF{beta}-induced EGFR phosphorylation of which ADAM inhibitors were able to inhibit. TGF{beta} induced shedding of proHB-EGF allowing HB-EGF-CTF to

  20. EPHA2 blockade overcomes acquired resistance to EGFR kinase inhibitors in lung cancer

    PubMed Central

    Amato, Katherine R.; Wang, Shan; Tan, Li; Hastings, Andrew K.; Song, Wenqiang; Lovly, Christine M.; Meador, Catherine B.; Ye, Fei; Lu, Pengcheng; Balko, Justin M.; Colvin, Daniel C.; Cates, Justin M.; Pao, William; Gray, Nathanael S.; Chen, Jin

    2015-01-01

    Despite the success of treating EGFR mutant lung cancer patients with EGFR tyrosine kinase inhibitors (TKIs), all patients eventually acquire resistance to these therapies. Although various resistance mechanisms have been described, there are currently no FDA-approved therapies that target alternative mechanisms to treat lung tumors with acquired resistance to first-line EGFR TKI agents. Here we found that EPHA2 is overexpressed in EGFR TKI resistant tumor cells. Loss of EPHA2 reduced the viability of erlotinib resistant tumor cells harboring EGFRT790M mutations in vitro and inhibited tumor growth and progression in an inducible EGFRL858R+T790M mutant lung cancer model in vivo. Targeting EPHA2 in erlotinib resistant cells decreased S6K1-mediated phosphorylation of cell death agonist BAD, resulting in reduced tumor cell proliferation and increased apoptosis. Furthermore, pharmacologic inhibition of EPHA2 by the small molecule inhibitor, ALW-II-41-27, decreased both survival and proliferation of erlotinib resistant tumor cells and inhibited tumor growth in vivo. ALW-II-41-27 was also effective in decreasing viability of cells with acquired resistance to the third generation EGFR TKI, AZD9291. Collectively, these data define a role for EPHA2 in the maintenance of cell survival of TKI resistant, EGFR mutant lung cancer and indicate that EPHA2 may serve as a useful therapeutic target in TKI resistant tumors. PMID:26744526

  1. Aliphatic acetogenin constituents of avocado fruits inhibit human oral cancer cell proliferation by targeting the EGFR/RAS/RAF/MEK/ERK1/2 pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D'Ambrosio, Steven M.; Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210; Han, Chunhua

    2011-06-10

    Highlights: {yields} The aliphatic acetogenins [(2S,4S)-2,4-dihydroxyheptadec-16-enyl acetate] (1) and [(2S,4S)-2,4-dihydroxyheptadec-16-ynyl acetate] (2) isolated from avocado fruit inhibit phosphorylation of c-RAF (Ser338) and ERK1/2 (Thr202/Tyr204). {yields} Aliphatic acetogenin 2, but not 1, prevents EGF-induced activation of EGFR (Tyr1173). {yields} Combination of both aliphatic acetogenins synergistically inhibits c-RAF (Ser338) and ERK1/2 (Thr202/Tyr204) phosphorylation and human oral cancer cell proliferation. {yields} The potential anticancer activity of avocado fruits is due to a combination of specific aliphatic acetogenins targeting two key components of the EGFR/RAS/RAF/MEK/ERK1/2 cancer pathway. {yields} Providing a double hit on a critical cancer pathway such as EGFR/RAS/RAF/MEK/ERK1/2 by phytochemicals like thosemore » found in avocado fruit could lead to more effective approach toward cancer prevention. -- Abstract: Avocado (Persea americana) fruits are consumed as part of the human diet and extracts have shown growth inhibitory effects in various types of human cancer cells, although the effectiveness of individual components and their underlying mechanism are poorly understood. Using activity-guided fractionation of the flesh of avocado fruits, a chloroform-soluble extract (D003) was identified that exhibited high efficacy towards premalignant and malignant human oral cancer cell lines. From this extract, two aliphatic acetogenins of previously known structure were isolated, compounds 1 [(2S,4S)-2,4-dihydroxyheptadec-16-enyl acetate] and 2 [(2S,4S)-2,4-dihydroxyheptadec-16-ynyl acetate]. In this study, we show for the first time that the growth inhibitory efficacy of this chloroform extract is due to blocking the phosphorylation of EGFR (Tyr1173), c-RAF (Ser338), and ERK1/2 (Thr202/Tyr204) in the EGFR/RAS/RAF/MEK/ERK1/2 cancer pathway. Compounds 1 and 2 both inhibited phosphorylation of c-RAF (Ser338) and ERK1/2 (Thr202/Tyr204). Compound 2, but

  2. Comparative experimental/theoretical studies on the EGFR dimerization under the effect of EGF/EGF analogues binding: Highlighting the importance of EGF/EGFR interactions at site III interface.

    PubMed

    Mehrabi, Masomeh; Mahdiuni, Hamid; Rasouli, Hassan; Mansouri, Kamran; Shahlaei, Mohsen; Khodarahmi, Reza

    2018-04-14

    Epidermal growth factor receptors (EGFRs) and their cytoplasmic tyrosine kinases play significant roles in cell proliferation and signaling. All the members of the EGFR/ErbB family are primary goals for cancer therapy, particularly for tumors of breast, cervix, ovaries, kidney, esophagus, prostate and non-small-cell lung carcinoma and head and neck tumors. However, the therapeutic ability of accessible anti-ErbB agents is limited. Therefore, recognizing EGF analogues or small organic molecules with high affinity for the extracellular domain of the EGFR is a critical target on cancer research. An effective EGF analogue should have a comparable binding affinity for EGFR in order to create an effective ligand competitive inhibition against circulating wild EGF while fails to transduce appropriate downstream signaling into the cancer cell. In our earlier study we have developed a mutant form of human EGF (mEGF, lacking the four critical amino acid residues; Gln 43 , Tyr 44 , Arg 45 and Asp 46 at the C-terminal of the protein) and its binding properties and mitogenic activity were assessed. The mEGF showed high affinity for EGFR binding domains but caused poor EGFR dimerization and phosphorylation and especially, mEGF induced EGFR internalization. However, underlying mechanism of action of EGF analogues is still unclear and thus considered to be worthwhile for further study. With regard to different effects of the EGF analogue on EGFR activating process, computational analysis of wild EGF/EGFR and mEGF/EGFR complexes (along with EGFt/EGFR complex) were done. Results of the protein dissection identified several interactions within "ligand/EGFR" that are common among EGF and EGFt/mEGF. These results disclose that while several interactions are conserved within EGF/EGFR interfaces, EGF/EGFR interactions on site III interface controls the affinity, EGFR dimerization and subsequent downstream signaling through a heterogeneous set of non-covalent interactions. These findings

  3. EGFR-targeted nonviral NIS gene transfer for bioimaging and therapy of disseminated colon cancer metastases

    PubMed Central

    Urnauer, Sarah; Müller, Andrea M.; Schug, Christina; Schmohl, Kathrin A.; Tutter, Mariella; Schwenk, Nathalie; Rödl, Wolfgang; Morys, Stephan; Ingrisch, Michael; Bertram, Jens; Bartenstein, Peter; Clevert, Dirk-André; Wagner, Ernst; Spitzweg, Christine

    2017-01-01

    Liver metastases present a serious problem in the therapy of advanced colorectal cancer (CRC), as more than 20% of patients have distant metastases at the time of diagnosis with less than 5% being cured. Consequently, new therapeutic approaches are of major need together with high-resolution imaging methods that allow highly specific detection of small metastases. The unique combination of reporter and therapy gene function of the sodium iodide symporter (NIS) may represent a promising theranostic strategy for CRC liver metastases allowing non-invasive imaging of functional NIS expression and therapeutic application of 131I. For targeted NIS gene transfer polymers containing linear polyethylenimine (LPEI), polyethylene glycol (PEG) and the epidermal growth factor receptor (EGFR)-specific ligand GE11 were complexed with human NIS DNA (LPEI-PEG-GE11/NIS). Tumor specificity and transduction efficiency were examined in high EGFR-expressing LS174T metastases by non-invasive imaging using 18F-tetrafluoroborate (18F-TFB) as novel NIS PET tracer. Mice that were injected with LPEI-PEG-GE11/NIS 48 h before 18F-TFB application showed high tumoral levels (4.8±0.6% of injected dose) of NIS-mediated radionuclide uptake in comparison to low levels detected in mice that received untargeted control polyplexes. Three cycles of intravenous injection of EGFR-targeted NIS polyplexes followed by therapeutic application of 55.5 MBq 131I resulted in marked delay in metastases spread, which was associated with improved animal survival. In conclusion, these preclinical data confirm the enormous potential of EGFR-targeted synthetic polymers for systemic NIS gene delivery in an advanced multifocal CRC liver metastases model and open the exciting prospect of NIS-mediated radionuclide therapy in metastatic disease. PMID:29190908

  4. Quantitative targeted proteomic analysis of potential markers of tyrosine kinase inhibitor (TKI) sensitivity in EGFR mutated lung adenocarcinoma.

    PubMed

    Awasthi, Shivangi; Maity, Tapan; Oyler, Benjamin L; Qi, Yue; Zhang, Xu; Goodlett, David R; Guha, Udayan

    2018-04-13

    Lung cancer causes the highest mortality among all cancers. Patients harboring kinase domain mutations in the epidermal growth factor receptor (EGFR) respond to EGFR tyrosine kinase inhibitors (TKIs), however, acquired resistance always develops. Moreover, 30-40% of patients with EGFR mutations exhibit primary resistance. Hence, there is an unmet need for additional biomarkers of TKI sensitivity that complement EGFR mutation testing and predict treatment response. We previously identified phosphopeptides whose phosphorylation is inhibited upon treatment with EGFR TKIs, erlotinib and afatinib in TKI sensitive cells, but not in resistant cells. These phosphosites are potential biomarkers of TKI sensitivity. Here, we sought to develop modified immuno-multiple reaction monitoring (immuno-MRM)-based quantitation assays for select phosphosites including EGFR-pY1197, pY1172, pY998, AHNAK-pY160, pY715, DAPP1-pY139, CAV1-pY14, INPPL1-pY1135, NEDD9-pY164, NF1-pY2579, and STAT5A-pY694. These sites were significantly hypophosphorylated by erlotinib and a 3rd generation EGFR TKI, osimertinib, in TKI-sensitive H3255 cells, which harbor the TKI-sensitizing EGFR L858R mutation. However, in H1975 cells, which harbor the TKI-resistant EGFR L858R/T790M mutant, osimertinib, but not erlotinib, could significantly inhibit phosphorylation of EGFR-pY-1197, STAT5A-pY694 and CAV1-pY14, suggesting these sites also predict response in TKI-resistant cells. We could further validate EGFR-pY-1197 as a biomarker of TKI sensitivity by developing a calibration curve-based modified immuno-MRM assay. In this report, we have shown the development and optimization of MRM assays coupled with global phosphotyrosine enrichment (modified immuno-MRM) for a list of 11 phosphotyrosine peptides. Our optimized assays identified the targets reproducibly in biological samples with good selectivity. We also developed and characterized quantitation methods to determine endogenous abundance of these targets and

  5. Interaction of galectin-3 with MUC1 on cell surface promotes EGFR dimerization and activation in human epithelial cancer cells.

    PubMed

    Piyush, Tushar; Chacko, Anisha R; Sindrewicz, Paulina; Hilkens, John; Rhodes, Jonathan M; Yu, Lu-Gang

    2017-11-01

    Epidermal growth factor receptor (EGFR) is an important regulator of epithelial cell growth and survival in normal and cancerous tissues and is a principal therapeutic target for cancer treatment. EGFR is associated in epithelial cells with the heavily glycosylated transmembrane mucin protein MUC1, a natural ligand of galectin-3 that is overexpressed in cancer. This study reveals that the expression of cell surface MUC1 is a critical enhancer of EGF-induced EGFR activation in human breast and colon cancer cells. Both the MUC1 extracellular and intracellular domains are involved in EGFR activation but the predominant influence comes from its extracellular domain. Binding of galectin-3 to the MUC1 extracellular domain induces MUC1 cell surface polarization and increases MUC1-EGFR association. This leads to a rapid increase of EGFR homo-/hetero-dimerization and subsequently increased, and also prolonged, EGFR activation and signalling. This effect requires both the galectin-3 C-terminal carbohydrate recognition domain and its N-terminal ligand multi-merization domain. Thus, interaction of galectin-3 with MUC1 on cell surface promotes EGFR dimerization and activation in epithelial cancer cells. As MUC1 and galectin-3 are both commonly overexpressed in most types of epithelial cancers, their interaction and impact on EGFR activation likely makes important contribution to EGFR-associated tumorigenesis and cancer progression and may also influence the effectiveness of EGFR-targeted cancer therapy.

  6. Effect of simvastatin on the resistance to EGFR tyrosine kinase inhibitors in a non-small cell lung cancer with the T790M mutation of EGFR.

    PubMed

    Hwang, Ki-Eun; Kwon, Su-Jin; Kim, Young-Suk; Park, Do-Sim; Kim, Byoung-Ryun; Yoon, Kwon-Ha; Jeong, Eun-Taik; Kim, Hak-Ryul

    2014-05-01

    Although non-small cell lung cancer (NSCLC) tumors with activating mutations in the epidermal growth factor receptor (EGFR) are highly responsive to EGFR tyrosine kinase inhibitors (TKIs) including gefitinib and erlotinib, development of acquired resistance is almost inevitable. Statins show antitumor activity, but it is unknown whether they can reverse EGFR-TKIs resistance in NSCLC with the T790M mutation of EGFR. This study investigated overcoming resistance to EGFR-TKI using simvastatin. We demonstrated that addition of simvastatin to gefitinib enhanced caspase-dependent apoptosis in T790M mutant NSCLC cells. Simvastatin also strongly inhibited AKT activation, leading to suppression of β-catenin activity and the expression of its targets, survivin and cyclin D1. Both insulin treatment and AKT overexpression markedly increased p-β-catenin and survivin levels, even in the presence of gefitinib and simvastatin. However, inhibition of AKT by siRNA or LY294002 treatment decreased p-β-catenin and survivin levels. To determine the role of survivin in simvastatin-induced apoptosis of gefitinib-resistant NSCLC, we showed that the proportion of apoptotic cells following treatment with survivin siRNA and the gefitinib-simvastatin combination was greater than the theoretical additive effects, whereas survivin up-regulation could confer protection against gefitinib and simvastatin-induced apoptosis. Similar results were obtained in erlotinib and simvastatin-treated HCC827/ER cells. These findings suggest that survivin is a key molecule that renders T790M mutant NSCLC cells resistant to apoptosis induced by EGFR-TKIs and simvastatin. Overall, these data indicate that simvastatin may overcome EGFR-TKI resistance in T790M mutant NSCLCs via an AKT/β-catenin signaling-dependent down-regulation of survivin and apoptosis induction. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Chemovirotherapy for head and neck squamous cell carcinoma with EGFR-targeted and CD/UPRT-armed oncolytic measles virus.

    PubMed

    Zaoui, K; Bossow, S; Grossardt, C; Leber, M F; Springfeld, C; Plinkert, P K; Kalle, C von; Ungerechts, G

    2012-03-01

    First-line treatment of recurrent and/or refractory head and neck squamous cell carcinoma (HNSCC) is based on platinum, 5-fluorouracil (5-FU) and the monoclonal antiEGFR antibody cetuximab. However, in most cases this chemoimmunotherapy does not cure the disease, and more than 50% of HNSCC patients are dying because of local recurrence of the tumors. In the majority of cases, HNSCC overexpress the epidermal growth factor receptor (EGFR), and its presence is associated with a poor outcome. In this study, we engineered an EGFR-targeted oncolytic measles virus (MV), armed with the bifunctional enzyme cytosine deaminase/uracil phosphoribosyltransferase (CD/UPRT). CD/UPRT converts 5-fluorocytosine (5-FC) into the chemotherapeutic 5-FU, a mainstay of HNSCC chemotherapy. This virus efficiently replicates in and lyses primary HNSCC cells in vitro. Arming with CD/UPRT mediates efficient prodrug activation with high bystander killing of non-infected tumor cells. In mice bearing primary HNSCC xenografts, intratumoral administration of MV-antiEGFR resulted in statistically significant tumor growth delay and prolongation of survival. Importantly, combination with 5-FC is superior to virus-only treatment leading to significant tumor growth inhibition. Thus, chemovirotherapy with EGFR-targeted and CD/UPRT-armed MV is highly efficacious in preclinical settings with direct translational implications for a planned Phase I clinical trial of MV for locoregional treatment of HNSCC.

  8. Dynamics of multiple resistance mechanisms in plasma DNA during EGFR-targeted therapies in non-small cell lung cancer.

    PubMed

    Tsui, Dana Wai Yi; Murtaza, Muhammed; Wong, Alvin Seng Cheong; Rueda, Oscar M; Smith, Christopher G; Chandrananda, Dineika; Soo, Ross A; Lim, Hong Liang; Goh, Boon Cher; Caldas, Carlos; Forshew, Tim; Gale, Davina; Liu, Wei; Morris, James; Marass, Francesco; Eisen, Tim; Chin, Tan Min; Rosenfeld, Nitzan

    2018-06-01

    Tumour heterogeneity leads to the development of multiple resistance mechanisms during targeted therapies. Identifying the dominant driver(s) is critical for treatment decision. We studied the relative dynamics of multiple oncogenic drivers in longitudinal plasma of 50 EGFR -mutant non-small-cell lung cancer patients receiving gefitinib and hydroxychloroquine. We performed digital PCR and targeted sequencing on samples from all patients and shallow whole-genome sequencing on samples from three patients who underwent histological transformation to small-cell lung cancer. In 43 patients with known EGFR mutations from tumour, we identified them accurately in plasma of 41 patients (95%, 41/43). We also found additional mutations, including EGFR T790M (31/50, 62%), TP53 (23/50, 46%), PIK3CA (7/50, 14%) and PTEN (4/50, 8%). Patients with both TP53 and EGFR mutations before treatment had worse overall survival than those with only EGFR Patients who progressed without T790M had worse PFS during TKI continuation and developed alternative alterations, including small-cell lung cancer-associated copy number changes and TP53 mutations, that tracked subsequent treatment responses. Longitudinal plasma analysis can help identify dominant resistance mechanisms, including non-druggable genetic information that may guide clinical management. © 2018 The Authors. Published under the terms of the CC BY 4.0 license.

  9. Mig6 Puts the Brakes on Mutant EGFR-Driven Lung Cancer | Center for Cancer Research

    Cancer.gov

    Lung cancer is the most common cause of cancer-related death worldwide. These cancers are often induced by mutations in the epidermal growth factor receptor (EGFR), resulting in constitutive activation of the protein’s tyrosine kinase domain. Lung cancers expressing these EGFR mutants are initially sensitive to tyrosine kinase inhibitors (TKIs), such as erlotinib, but often become resistant by developing compensatory mutations in EGFR or other growth-promoting pathways. To better understand how mutant EGFR initiates and maintains tumor growth in the hopes of identifying novel targets for drug development, Udayan Guha, M.D., Ph.D., of CCR’s Thoracic and Gastrointestinal Oncology Branch, and his colleagues examined the landscape of proteins phosphorylated in EGFR wild type and mutant cells. One protein hyper-phosphorylated in mutant EGFR cells was Mig6, a putative tumor suppressor.

  10. Identifying EGFR-Expressed Cells and Detecting EGFR Multi-Mutations at Single-Cell Level by Microfluidic Chip

    NASA Astrophysics Data System (ADS)

    Li, Ren; Zhou, Mingxing; Li, Jine; Wang, Zihua; Zhang, Weikai; Yue, Chunyan; Ma, Yan; Peng, Hailin; Wei, Zewen; Hu, Zhiyuan

    2018-03-01

    EGFR mutations companion diagnostics have been proved to be crucial for the efficacy of tyrosine kinase inhibitor targeted cancer therapies. To uncover multiple mutations occurred in minority of EGFR-mutated cells, which may be covered by the noises from majority of un-mutated cells, is currently becoming an urgent clinical requirement. Here we present the validation of a microfluidic-chip-based method for detecting EGFR multi-mutations at single-cell level. By trapping and immunofluorescently imaging single cells in specifically designed silicon microwells, the EGFR-expressed cells were easily identified. By in situ lysing single cells, the cell lysates of EGFR-expressed cells were retrieved without cross-contamination. Benefited from excluding the noise from cells without EGFR expression, the simple and cost-effective Sanger's sequencing, but not the expensive deep sequencing of the whole cell population, was used to discover multi-mutations. We verified the new method with precisely discovering three most important EGFR drug-related mutations from a sample in which EGFR-mutated cells only account for a small percentage of whole cell population. The microfluidic chip is capable of discovering not only the existence of specific EGFR multi-mutations, but also other valuable single-cell-level information: on which specific cells the mutations occurred, or whether different mutations coexist on the same cells. This microfluidic chip constitutes a promising method to promote simple and cost-effective Sanger's sequencing to be a routine test before performing targeted cancer therapy.[Figure not available: see fulltext.

  11. SMOC Binds to Pro-EGF, but Does Not Induce Erk Phosphorylation via the EGFR.

    PubMed

    Thomas, J Terrig; Chhuy-Hy, Lina; Andrykovich, Kristin R; Moos, Malcolm

    2016-01-01

    In an attempt to identify the cell-associated protein(s) through which SMOC (Secreted Modular Calcium binding protein) induces mitogen-activated protein kinase (MAPK) signaling, the epidermal growth factor receptor (EGFR) became a candidate. However, although in 32D/EGFR cells, the EGFR was phosphorylated in the presence of a commercially available human SMOC-1 (hSMOC-1), only minimal phosphorylation was observed in the presence of Xenopus SMOC-1 (XSMOC-1) or human SMOC-2. Analysis of the commercial hSMOC-1 product demonstrated the presence of pro-EGF as an impurity. When the pro-EGF was removed, only minimal EGFR activation was observed, indicating that SMOC does not signal primarily through EGFR and its receptor remains unidentified. Investigation of SMOC/pro-EGF binding affinity revealed a strong interaction that does not require the C-terminal extracellular calcium-binding (EC) domain of SMOC or the EGF domain of pro-EGF. SMOC does not appear to potentiate or inhibit MAPK signaling in response to pro-EGF, but the interaction could provide a mechanism for retaining soluble pro-EGF at the cell surface.

  12. PGE2 mediates EGFR internalization and nuclear translocation via caveolin endocytosis promoting its transcriptional activity and proliferation in human NSCLC cells

    PubMed Central

    Bazzani, Lorenzo; Donnini, Sandra; Giachetti, Antonio; Christofori, Gerhard; Ziche, Marina

    2018-01-01

    Prostaglandin E2 (PGE2) contributes to tumor progression by promoting cancer cell growth, invasion and by creating a favorable pro-tumor microenvironment. PGE2 has been reported to transactivate and internalize into the nucleus receptor tyrosine kinases such as Epidermal growth factor receptor (EGFR), thereby supporting tumor progression. Here we demonstrate that in non-small cell lung carcinoma (NSCLC) cells, PGE2 induces EGFR nuclear translocation via different dynamin-dependent endocytic pathways, promotes the formation of an EGFR-STAT3 complex, affects nuclear EGFR target gene expression and mediates tumor cell proliferation. Indeed, we find that PGE2 induces EGFR internalization and consequent nuclear import through Clathrin- and Caveolin-mediated endocytosis and through the interaction of EGFR with Importin β1. Within the nucleus, EGFR forms a complex with STAT3, an event blocked by ablation of Clathrin Heavy Chain or Caveolin-1. The combination of EGF and PGE2 prolongs nuclear EGFR transcriptional activity manifested by the upregulation of CCND1, PTGS2, MYC and NOS2 mRNA levels and potentiates nuclear EGFR-induced NSCLC cell proliferation. Additionally, NSCLC patients with high expression of a nuclear EGFR gene signature display shorter survival times than those with low expression, thus showing a putative correlation between nuclear EGFR and poor prognosis in NSCLC. Together, our findings indicate a complex mechanism underlying PGE2-induced EGF/EGFR signaling and transcriptional control, which plays a key role in cancer progression. PMID:29599917

  13. PGE2 mediates EGFR internalization and nuclear translocation via caveolin endocytosis promoting its transcriptional activity and proliferation in human NSCLC cells.

    PubMed

    Bazzani, Lorenzo; Donnini, Sandra; Giachetti, Antonio; Christofori, Gerhard; Ziche, Marina

    2018-03-13

    Prostaglandin E 2 (PGE 2 ) contributes to tumor progression by promoting cancer cell growth, invasion and by creating a favorable pro-tumor microenvironment. PGE 2 has been reported to transactivate and internalize into the nucleus receptor tyrosine kinases such as Epidermal growth factor receptor (EGFR), thereby supporting tumor progression. Here we demonstrate that in non-small cell lung carcinoma (NSCLC) cells, PGE 2 induces EGFR nuclear translocation via different dynamin-dependent endocytic pathways, promotes the formation of an EGFR-STAT3 complex, affects nuclear EGFR target gene expression and mediates tumor cell proliferation. Indeed, we find that PGE 2 induces EGFR internalization and consequent nuclear import through Clathrin- and Caveolin-mediated endocytosis and through the interaction of EGFR with Importin β1. Within the nucleus, EGFR forms a complex with STAT3, an event blocked by ablation of Clathrin Heavy Chain or Caveolin-1. The combination of EGF and PGE 2 prolongs nuclear EGFR transcriptional activity manifested by the upregulation of CCND1 , PTGS2 , MYC and NOS2 mRNA levels and potentiates nuclear EGFR-induced NSCLC cell proliferation. Additionally, NSCLC patients with high expression of a nuclear EGFR gene signature display shorter survival times than those with low expression, thus showing a putative correlation between nuclear EGFR and poor prognosis in NSCLC. Together, our findings indicate a complex mechanism underlying PGE 2 -induced EGF/EGFR signaling and transcriptional control, which plays a key role in cancer progression.

  14. Knockdown of HIP1 expression promotes ligand‑induced endocytosis of EGFR in HeLa cells.

    PubMed

    Li, Dan; Chen, Fenglin; Ding, Jian; Lin, Na; Li, Zonghai; Wang, Xiaozhong

    2017-12-01

    Huntington-interacting protein 1 (HIP1) is associated with various tumor types; however, its precise functions in tumor cells are unclear. In this study, the effects of HIP1 on the degradation of EGFR, which have important roles in carcinogenesis after EGF stimulation, were examined. After screening 17 cell lines, the coexpression of HIP1 and EGFR was detected in HeLa cells. Accordingly, the expression of HIP1 was knocked down in HeLa cells using various HIP1 siRNA sequences. The endocytosis of EGFR and localization of clathrin in HeLa cells were examined after stimulation by EGF at various concentrations (i.e., 1.5 and 100 ng/ml). After HIP1 expression was blocked by siRNAs, EGFR endocytosis was accelerated and this effect was dependent on the EGF concentration. This endocytosis was colocalized with clathrin expression. These findings indicate that the inhibition of HIP1 can accelerate the endocytosis and degradation of EGFR. Furthermore, they suggest that HIP1 is a potential therapeutic target for various cancer types, particularly those with high EGFR expression, but further research is needed to examine this hypothesis.

  15. Knockdown of HIP1 expression promotes ligand-induced endocytosis of EGFR in HeLa cells

    PubMed Central

    Li, Dan; Chen, Fenglin; Ding, Jian; Lin, Na; Li, Zonghai; Wang, Xiaozhong

    2017-01-01

    Huntington-interacting protein 1 (HIP1) is associated with various tumor types; however, its precise functions in tumor cells are unclear. In this study, the effects of HIP1 on the degradation of EGFR, which have important roles in carcinogenesis after EGF stimulation, were examined. After screening 17 cell lines, the coexpression of HIP1 and EGFR was detected in HeLa cells. Accordingly, the expression of HIP1 was knocked down in HeLa cells using various HIP1 siRNA sequences. The endocytosis of EGFR and localization of clathrin in HeLa cells were examined after stimulation by EGF at various concentrations (i.e., 1.5 and 100 ng/ml). After HIP1 expression was blocked by siRNAs, EGFR endocytosis was accelerated and this effect was dependent on the EGF concentration. This endocytosis was colocalized with clathrin expression. These findings indicate that the inhibition of HIP1 can accelerate the endocytosis and degradation of EGFR. Furthermore, they suggest that HIP1 is a potential therapeutic target for various cancer types, particularly those with high EGFR expression, but further research is needed to examine this hypothesis. PMID:29039605

  16. Intratumoral heterogeneity in EGFR mutant NSCLC results in divergent resistance mechanisms in response to EGFR tyrosine kinase inhibition

    PubMed Central

    Soucheray, Margaret; Capelletti, Marzia; Pulido, Inés; Kuang, Yanan; Paweletz, Cloud P.; Becker, Jeffrey H.; Kikuchi, Eiki; Xu, Chunxiao; Patel, Tarun B.; Al-shahrour, Fatima; Carretero, Julián; Wong, Kwok-Kin; Jänne, Pasi A.; Shapiro, Geoffrey I.; Shimamura, Takeshi

    2015-01-01

    Non-small cell lung cancers (NSCLC) that have developed resistance to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs), including gefitinib and erlotinib, are clinically linked to an epithelial-to-mesenchymal transition (EMT) phenotype. Here we examined whether modulating EMT maintains the responsiveness of EGFR-mutated NSCLCs to EGFR TKI therapy. Using human NSCLC cell lines harboring mutated-EGFR and a transgenic mouse model of lung cancer driven by mutant EGFR (EGFR-Del19-T790M), we demonstrate that EGFR inhibition induces TGFβ secretion followed by SMAD pathway activation, an event that promotes EMT. Chronic exposure of EGFR-mutated NSCLC cells to TGFβ was sufficient to induce EMT and resistance to EGFR TKI treatment. Furthermore, NSCLC HCC4006 cells with acquired resistance to gefitinib were characterized by a mesenchymal phenotype and displayed a higher prevalence of the EGFR T790M mutated allele. Notably, combined inhibition of EGFR and the TGFβ receptor in HCC4006 cells prevented EMT, but was not sufficient to prevent acquired gefitinib resistance because of an increased emergence of the EGFR T790M allele compared to cells treated with gefitinib alone. Conversely, another independent NSCLC cell line, PC9, reproducibly develops EGFR T790M mutations as the primary mechanism underlying EGFR TKI resistance, even though the prevalence of the mutant allele is lower than that in HCC4006 cells. Thus, our findings underscore heterogeneity within NSCLC cells lines harboring EGFR kinase domain mutations that give rise to divergent resistance mechanisms in response to treatment and anticipate the complexity of EMT suppression as a therapeutic strategy. PMID:26282169

  17. Erlotinib induced target-like purpura.

    PubMed

    Rungtrakulchai, R; Rerknimitr, P

    2014-02-18

    Erlotinib is an epidermal growth factor receptor (EGFR) inhibitor, used as a treatment for advanced stage cancer. The most common side effect is cutaneous toxicity including the already known papulopustular reaction. We herein report a case of erlotinib induced target-like purpura, a peculiar cutaneous adverse event. A 57-year-old patient with advanced non-small cell lung cancer was treated by erolotinib 150 mg daily. After taking the drug for three days, an unusual target-like purpura developed on her lower legs. Skin biopsy specimen taken from the lesion revealed an extravasation of erythrocytes in the upper dermis without destruction of blood vessel walls. This skin eruption cleared after the drug was withdrawn and recurred after erlotinib was re-challenged. The mechanism underlying this cutaneous adverse event remains to be elucidated. Physicians should be aware of the rare side effect of this increasingly used drug.

  18. EGFR TKI as first-line treatment for patients with advanced EGFR mutation-positive non-small-cell lung cancer

    PubMed Central

    Nan, Xueli; Xie, Chao; Yu, Xueyan; Liu, Jie

    2017-01-01

    After the discovery of activating mutations in EGFR, EGFR tyrosine kinase inhibitors (TKIs) have been introduced into the first-line treatment of non-small-cell lung cancer (NSCLC). A series of studies have shown that EGFR TKI monotherapy as first-line treatment can benefit NSCLC patients harbouring EGFR mutations. Besides, combination strategies based on EGFR TKIs in the first line treatment have also been proved to delay the occurrence of resistance. In this review, we summarize the scientific literature and evidence of EGFR TKIs as first-line therapy from the first-generation EGFR TKIs to conceptually proposed fourth-generation EGFR TKI, and also recommend the application of monotherapy and combination therapies of the EGFR-based targeted therapy with other agents such as chemotherapy, anti-angiogenic drugs and immunecheckpoint inhibitors. PMID:29088904

  19. Targeted Quantification of Phosphorylation Dynamics in the Context of EGFR-MAPK Pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yi, Lian; Shi, Tujin; Gritsenko, Marina A.

    2018-03-27

    Large-scale phosphoproteomics with coverage of over 10,000 sites of phosphorylation have now been routinely achieved with advanced mass spectrometry (MS)-based workflows. However, accurate targeted MS-based quantification of phosphorylation dynamics, an important direction for gaining quantitative understanding of signaling pathways or networks, has been much less investigated. Herein, we report an assessment of the targeted workflow in the context of signal transduction pathways, using the epidermal growth factor receptor (EGFR)–mitogen-activated protein kinase (MAPK) pathway as our model. 43 phosphopeptides from the EGFR–MAPK pathway were selected for the study. The recovery and sensitivity of a workflow consisted of two commonly used enrichmentmore » methods, immobilized metal affinity chromatography (IMAC) and titanium oxide (TiO2), combined with selected reaction monitoring (SRM)-MS, were evaluated. The recovery of phosphopeptides by IMAC and TiO2 enrichment was quantified to be 38 ± 5% and 58 ± 20%, respectively, based on internal standards. Moreover, both enrichment methods provided comparable sensitivity from 1-100 g starting peptides. Robust quantification was consistently achieved for most targeted phosphopeptides when starting with 25-100 g peptides. However, the numbers of quantified targets significantly dropped when peptide samples were in the 1-25g range. Finally, IMAC-SRM was applied to quantify signaling dynamics of EGFR-MAPK pathway in Hs578T cells following 3 ng/mL EGF treatment. The kinetics of phosphorylation clearly revealed early and late phases of phosphorylation, even for very low abundance proteins. These results demonstrate the feasibility of robust targeted quantification of phosphorylation dynamics for specific pathways, even starting with relatively small amounts of protein.« less

  20. EGFR-SGLT1 interaction does not respond to EGFR modulators, but inhibition of SGLT1 sensitizes prostate cancer cells to EGFR tyrosine kinase inhibitors.

    PubMed

    Ren, Jiangong; Bollu, Lakshmi R; Su, Fei; Gao, Guang; Xu, Lei; Huang, Wei-Chien; Hung, Mien-Chie; Weihua, Zhang

    2013-09-01

    Overexpression of epidermal growth factor receptor (EGFR) is associated with poor prognosis in malignant tumors. Sodium/glucose co-transporter 1 (SGLT1) is an active glucose transporter that is overexpressed in many cancers including prostate cancer. Previously, we found that EGFR interacts with and stabilizes SGLT1 in cancer cells. In this study, we determined the micro-domain of EGFR that is required for its interaction with SGLT1 and the effects of activation/inactivation of EGFR on EGFR-SGLT1 interaction, measured the expression of EGFR and SGLT1 in prostate cancer tissues, and tested the effect of inhibition of SGLT1 on the sensitivity of prostate cancer cells to EGFR tyrosine inhibitors. We found that the autophosphorylation region (978-1210 amino acids) of EGFR was required for its sufficient interaction with SGLT1 and that this interaction was independent of EGFR's tyrosine kinase activity. Most importantly, the EGFR-SGLT1 interaction does not respond to EGFR tyrosine kinase modulators (EGF and tyrosine kinase inhibitors). EGFR and SGLT1 co-localized in prostate cancer tissues, and inhibition of SGLT1 by a SGLT1 inhibitor (Phlorizin) sensitized prostate cancer cells to EGFR inhibitors (Gefitinib and Erlotinib). These data suggest that EGFR in cancer cells can exist as either a tyrosine kinase modulator responsive status or an irresponsive status. SGLT1 is a protein involved in EGFR's functions that are irresponsive to EGFR tyrosine kinase inhibitors and, therefore, the EGFR-SGLT1 interaction might be a novel target for prostate cancer therapy. © 2013 Wiley Periodicals, Inc. This article is a U.S. Government work and is in the public domain in the USA.

  1. Bioinformatics-driven discovery of rational combination for overcoming EGFR-mutant lung cancer resistance to EGFR therapy.

    PubMed

    Kim, Jihye; Vasu, Vihas T; Mishra, Rangnath; Singleton, Katherine R; Yoo, Minjae; Leach, Sonia M; Farias-Hesson, Eveline; Mason, Robert J; Kang, Jaewoo; Ramamoorthy, Preveen; Kern, Jeffrey A; Heasley, Lynn E; Finigan, James H; Tan, Aik Choon

    2014-09-01

    Non-small-cell lung cancer (NSCLC) is the leading cause of cancer death in the United States. Targeted tyrosine kinase inhibitors (TKIs) directed against the epidermal growth factor receptor (EGFR) have been widely and successfully used in treating NSCLC patients with activating EGFR mutations. Unfortunately, the duration of response is short-lived, and all patients eventually relapse by acquiring resistance mechanisms. We performed an integrative systems biology approach to determine essential kinases that drive EGFR-TKI resistance in cancer cell lines. We used a series of bioinformatics methods to analyze and integrate the functional genetics screen and RNA-seq data to identify a set of kinases that are critical in survival and proliferation in these TKI-resistant lines. By connecting the essential kinases to compounds using a novel kinase connectivity map (K-Map), we identified and validated bosutinib as an effective compound that could inhibit proliferation and induce apoptosis in TKI-resistant lines. A rational combination of bosutinib and gefitinib showed additive and synergistic effects in cancer cell lines resistant to EGFR TKI alone. We have demonstrated a bioinformatics-driven discovery roadmap for drug repurposing and development in overcoming resistance in EGFR-mutant NSCLC, which could be generalized to other cancer types in the era of personalized medicine. K-Map can be accessible at: http://tanlab.ucdenver.edu/kMap. Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  2. Targeting the Golgi apparatus to overcome acquired resistance of non-small cell lung cancer cells to EGFR tyrosine kinase inhibitors

    PubMed Central

    Katayama, Ryohei; Fang, Siyang; Tsutsui, Saki; Akatsuka, Akinobu; Shan, Mingde; Choi, Hyeong-Wook; Fujita, Naoya; Yoshimatsu, Kentaro; Shiina, Isamu; Yamori, Takao; Dan, Shingo

    2018-01-01

    Epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (EGFR-TKIs) were demonstrated to provide survival benefit in patients with non-small cell lung cancer (NSCLC) harboring activating mutations of EGFR; however, emergence of acquired resistance to EGFR-TKIs has been shown to cause poor outcome. To overcome the TKI resistance, drugs with different mode of action are required. We previously reported that M-COPA (2-methylcoprophilinamide), a Golgi disruptor, suppressed the growth of gastric cancers overexpressing receptor tyrosine kinases (RTKs) such as hepatocyte growth factor receptor (MET) via downregulating their cell surface expression. In this study, we examined the antitumor effect of M-COPA on NSCLC cells with TKI resistance. As a result, M-COPA effectively downregulated cell surface EGFR and its downstream signals, and finally exerted in vivo antitumor effect in NSCLC cells harboring secondary (T790M/del19) and tertiary (C797S/T790M/del19) mutated EGFR, which exhibit acquired resistance to first- and third generation EGFR-TKIs, respectively. M-COPA also downregulated MET expression potentially involved in the acquired resistance to EGFR-TKIs via bypassing the EGFR pathway blockade. These results provide the first evidence that targeting the Golgi apparatus might be a promising therapeutic strategy to overcome the vicious cycle of TKI resistance in EGFR-mutated NSCLC cells via downregulating cell surface RTK expression. PMID:29416720

  3. Polarization of macrophages in the tumor microenvironment is influenced by EGFR signaling within colon cancer cells

    PubMed Central

    Zhang, Weina; Chen, Lechuang; Ma, Kai; Zhao, Yahui; Liu, Xianghe; Wang, Yu; Liu, Mei; Liang, Shufang; Zhu, Hongxia; Xu, Ningzhi

    2016-01-01

    Epidermal growth factor receptor (EGFR) is a target of colon cancer therapy, but the effects of this therapy on the tumor microenvironment remain poorly understood. Our in vivo studies showed that cetuximab, an anti-EGFR monoclonal antibody, effectively inhibited AOM/DSS-induced, colitis-associated tumorigenesis, downregulated M2-related markers, and decreased F4/80+/CD206+ macrophage populations. Treatment with conditioned medium of colon cancer cells increased macrophage expression of the M2-related markers arginase-1 (Arg1), CCL17, CCL22, IL-10 and IL-4. By contrast, conditioned medium of EGFR knockout colon cancer cells inhibited expression of these M2-related markers and induced macrophage expression of the M1-related markers inducible nitric oxide synthase (iNOS), IL-12, TNF-α and CCR7. EGFR knockout in colon cancer cells inhibited macrophage-induced promotion of xenograft tumor growth. Moreover, colon cancer-derived insulin-like growth factor-1 (IGF-1) increased Arg1 expression, and treatment with the IGF1R inhibitor AG1024 inhibited that increase. These results suggest that inhibition of EGFR signaling in colon cancer cells modulates cytokine secretion (e.g. IGF-1) and prevents M1-to-M2 macrophage polarization, thereby inhibiting cancer cell growth. PMID:27683110

  4. K-RAS(V12) Induces Autocrine Production of EGFR Ligands and Mediates Radioresistance Through EGFR-Dependent Akt Signaling and Activation of DNA-PKcs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minjgee, Minjmaa; Toulany, Mahmoud; Kehlbach, Rainer

    2011-12-01

    Purpose: It is known that postirradiation survival of tumor cells presenting mutated K-RAS is mediated through autocrine activation of epidermal growth factor receptor (EGFR). In this study the molecular mechanism of radioresistance of cells overexpressing mutated K-RAS(V12) was investigated. Methods and Materials: Head-and-neck cancer cells (FaDu) presenting wild-type K-RAS were transfected with empty vector or vector expressing mutated K-RAS(V12). The effect of K-RAS(V12) on autocrine production of EGFR ligands, activation of EGFR downstream pathways, DNA damage repair, and postirradiation survival was analyzed. Results: Conditioned medium collected from K-RAS(V12)-transfected cells enhanced activation of the phosphatidylinositol-3-kinase-Akt pathway and increased postirradiation survival ofmore » wild-type K-RAS parental cells when compared with controls. These effects were reversed by amphiregulin (AREG)-neutralizing antibody. In addition, secretion of the EGFR ligands AREG and transforming growth factor {alpha} was significantly increased upon overexpression of K-RAS(V12). Expression of mutated K-RAS(V12) resulted in an increase in radiation-induced DNA-dependent protein kinase catalytic subunit (DNA-PKcs) phosphorylation at S2056. This increase was accompanied by increased repair of DNA double-strand breaks. Abrogation of DNA-PKcs phosphorylation by serum depletion or AREG-neutralizing antibody underscored the role of autocrine production of EGFR ligands, namely, AREG, in regulating DNA-PKcs activation in K-RAS mutated cells. Conclusions: These data indicate that radioresistance of K-RAS mutated tumor cells is at least in part due to constitutive production of EGFR ligands, which mediate enhanced repair of DNA double-strand breaks through the EGFR-phosphatidylinositol-3-kinase-Akt cascade.« less

  5. Inhibition of DYRK1A destabilizes EGFR and reduces EGFR-dependent glioblastoma growth

    PubMed Central

    Pozo, Natividad; Zahonero, Cristina; Fernández, Paloma; Liñares, Jose M.; Ayuso, Angel; Hagiwara, Masatoshi; Pérez, Angel; Ricoy, Jose R.; Hernández-Laín, Aurelio; Sepúlveda, Juan M.; Sánchez-Gómez, Pilar

    2013-01-01

    Glioblastomas (GBMs) are very aggressive tumors that are resistant to conventional chemo- and radiotherapy. New molecular therapeutic strategies are required to effectively eliminate the subpopulation of GBM tumor–initiating cells that are responsible for relapse. Since EGFR is altered in 50% of GBMs, it represents one of the most promising targets; however, EGFR kinase inhibitors have produced poor results in clinical assays, with no clear explanation for the observed resistance. We uncovered a fundamental role for the dual-specificity tyrosine phosphorylation–regulated kinase, DYRK1A, in regulating EGFR in GBMs. We found that DYRK1A was highly expressed in these tumors and that its expression was correlated with that of EGFR. Moreover, DYRK1A inhibition promoted EGFR degradation in primary GBM cell lines and neural progenitor cells, sharply reducing the self-renewal capacity of normal and tumorigenic cells. Most importantly, our data suggest that a subset of GBMs depends on high surface EGFR levels, as DYRK1A inhibition compromised their survival and produced a profound decrease in tumor burden. We propose that the recovery of EGFR stability is a key oncogenic event in a large proportion of gliomas and that pharmacological inhibition of DYRK1A could represent a promising therapeutic intervention for EGFR-dependent GBMs. PMID:23635774

  6. Anti-EGFR Agents: Current Status, Forecasts and Future Directions.

    PubMed

    Kwapiszewski, Radoslaw; Pawlak, Sebastian D; Adamkiewicz, Karolina

    2016-12-01

    The epidermal growth factor receptor (EGFR) is one of the most important and attractive targets for specific anticancer therapies. It is a robust regulator of pathways involved in cancer pathogenesis and progression. Thus far, clinical trials have demonstrated the benefits of monoclonal antibodies and synthetic tyrosine kinase inhibitors in targeting this receptor; however, novel strategies are still being developed. This article reviews the current state of efforts in targeting the EGFR in cancer therapy. Following a brief characterization of EGFR, we will present a complete list of anti-EGFR agents that are already approved, and available in clinical practice. Aside from the indications, we will present the sales forecasts and expiry dates of product patents for the selected agents. Finally, we discuss the novel anti-EGFR strategies that are currently in preclinical development.

  7. Role for the epidermal growth factor receptor in chemotherapy-induced alopecia.

    PubMed

    Bichsel, Kyle J; Gogia, Navdeep; Malouff, Timothy; Pena, Zachary; Forney, Eric; Hammiller, Brianna; Watson, Patrice; Hansen, Laura A

    2013-01-01

    Treatment of cancer patients with chemotherapeutics like cyclophosphamide often causes alopecia as a result of premature and aberrant catagen. Because the epidermal growth factor receptor (EGFR) signals anagen hair follicles to enter catagen, we hypothesized that EGFR signaling may be involved in cyclophosphamide-induced alopecia. To test this hypothesis, skin-targeted Egfr mutant mice were generated by crossing floxed Egfr and Keratin 14 promoter-driven Cre recombinase mice. Cyclophosphamide treatment of control mice resulted in alopecia while Egfr mutant skin was resistant to cyclophosphamide-induced alopecia. Egfr mutant skin entered catagen normally, as indicated by dermal papilla condensation and decreased follicular proliferation, but did not progress to telogen as did Egfr wild type follicles. Egfr mutant follicles responded with less proliferation, apoptosis, and fewer p53-positive cells after cyclophosphamide. Treatment of control mice with the EGFR inhibitors erlotinib or gefitinib similarly suppressed alopecia and catagen progression by cyclophosphamide. Secondary analysis of clinical trials utilizing EGFR-targeted therapies and alopecia-inducing chemotherapy also revealed evidence for involvement of EGFR in chemotherapy-induced alopecia. Taken together, our results demonstrated the involvement of EGFR signaling in chemotherapy-induced alopecia, which will help in the design of novel therapeutic regimens to minimize chemotherapy-induced alopecia.

  8. Increased EGFR expression induced by a novel oncogene, CUG2, confers resistance to doxorubicin through Stat1-HDAC4 signaling.

    PubMed

    Kaowinn, Sirichat; Jun, Seung Won; Kim, Chang Seok; Shin, Dong-Myeong; Hwang, Yoon-Hwae; Kim, Kyujung; Shin, Bosung; Kaewpiboon, Chutima; Jeong, Hyeon Hee; Koh, Sang Seok; Krämer, Oliver H; Johnston, Randal N; Chung, Young-Hwa

    2017-12-01

    Previously, it has been found that the cancer upregulated gene 2 (CUG2) and the epidermal growth factor receptor (EGFR) both contribute to drug resistance of cancer cells. Here, we explored whether CUG2 may exert its anticancer drug resistance by increasing the expression of EGFR. EGFR expression was assessed using Western blotting, immunofluorescence and capacitance assays in A549 lung cancer and immortalized bronchial BEAS-2B cells, respectively, stably transfected with a CUG2 expression vector (A549-CUG2; BEAS-CUG2) or an empty control vector (A549-Vec; BEAS-Vec). After siRNA-mediated EGFR, Stat1 and HDAC4 silencing, antioxidant and multidrug resistance protein and mRNA levels were assessed using Western blotting and RT-PCR. In addition, the respective cells were treated with doxorubicin after which apoptosis and reactive oxygen species (ROS) levels were measured. Stat1 acetylation was assessed by immunoprecipitation. We found that exogenous CUG2 overexpression induced EGFR upregulation in A549 and BEAS-2B cells, whereas EGFR silencing sensitized these cells to doxorubicin-induced apoptosis. In addition, we found that exogenous CUG2 overexpression reduced the formation of ROS during doxorubicin treatment by enhancing the expression of antioxidant and multidrug resistant proteins such as MnSOD, Foxo1, Foxo4, MRP2 and BCRP, whereas EGFR silencing congruently increased the levels of ROS by decreasing the expression of these proteins. We also found that EGFR silencing and its concomitant Akt, ERK, JNK and p38 MAPK inhibition resulted in a decreased Stat1 phosphorylation and, thus, a decreased activation. Since also acetylation can affect Stat1 activation via a phospho-acetyl switch, HDAC inhibition may sensitize cells to doxorubicin-induced apoptosis. Interestingly, we found that exogenous CUG2 overexpression upregulated HDAC4, but not HDAC2 or HDAC3. Conversely, we found that HDAC4 silencing sensitized the cells to doxorubicin resistance by

  9. Nuclear EGFR-PKM2 axis induces cancer stem cell-like characteristics in irradiation-resistant cells.

    PubMed

    Shi, Ying; Liu, Na; Lai, Weiwei; Yan, Bin; Chen, Ling; Liu, Shouping; Liu, Shuang; Wang, Xiang; Xiao, Desheng; Liu, Xiaoli; Mao, Chao; Jiang, Yiqun; Jia, Jiantao; Liu, Yating; Yang, Rui; Cao, Ya; Tao, Yongguang

    2018-05-28

    Radiation therapy has become an important tool in the treatment of cancer patients, but most patients relapse within 5 years. Relapse is due to the presence of cancer stem cells (CSCs), but the molecular mechanism of radioresistance in CSCs remains largely elusive. Here, we found that irradiation-resistant (IR) cells exhibited increased stem cell-like properties together with elevated anchorage-independent growth and metastasis ability. EGFR not only leads to increased acquisition of endometrial cancer stem cell markers in radioresistant sublines but is critical for the cancer stem-cell phenotype and tumorigenicity. Moreover, PKM2 functions as an interacting partner of EGFR, which induces the EMT phenotype and stem cell-like properties in IR cells. Finally, we found that the regulatory function of the EGFR-PKM2 axis is dependent on nuclear EGFR. In sum, our study indicated that EGFR and PKM2 directly interact and bind with each other to regulate the transcription of stemness-related genes and promote the stem-like phenotype, thus promoting invasion and metastasis. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Brigatinib combined with anti-EGFR antibody overcomes osimertinib resistance in EGFR-mutated non-small-cell lung cancer

    NASA Astrophysics Data System (ADS)

    Uchibori, Ken; Inase, Naohiko; Araki, Mitsugu; Kamada, Mayumi; Sato, Shigeo; Okuno, Yasushi; Fujita, Naoya; Katayama, Ryohei

    2017-03-01

    Osimertinib has been demonstrated to overcome the epidermal growth factor receptor (EGFR)-T790M, the most relevant acquired resistance to first-generation EGFR-tyrosine kinase inhibitors (EGFR-TKIs). However, the C797S mutation, which impairs the covalent binding between the cysteine residue at position 797 of EGFR and osimertinib, induces resistance to osimertinib. Currently, there are no effective therapeutic strategies to overcome the C797S/T790M/activating-mutation (triple-mutation)-mediated EGFR-TKI resistance. In the present study, we identify brigatinib to be effective against triple-mutation-harbouring cells in vitro and in vivo. Our original computational simulation demonstrates that brigatinib fits into the ATP-binding pocket of triple-mutant EGFR. The structure-activity relationship analysis reveals the key component in brigatinib to inhibit the triple-mutant EGFR. The efficacy of brigatinib is enhanced markedly by combination with anti-EGFR antibody because of the decrease of surface and total EGFR expression. Thus, the combination therapy of brigatinib with anti-EGFR antibody is a powerful candidate to overcome triple-mutant EGFR.

  11. Biodistribution and Pharmacokinetic Analysis of Combination Lonidamine and Paclitaxel Delivery in an Orthotopic Animal Model of Multi-drug Resistant Breast Cancer Using EGFR-Targeted Polymeric Nanoparticles

    PubMed Central

    Milane, Lara; Duan, Zhen-feng; Amiji, Mansoor

    2011-01-01

    The aim of this study was to assess the biodistribution and pharmacokinetics of epidermal growth factor receptor (EGFR)-targeted polymer blend nanoparticles loaded with the anticancer drugs lonidamine and paclitaxel. Plasma, tumor, and tissue distribution profiles were quantified in an orthotopic animal model of multi-drug resistant (MDR) breast cancer and were compared to treatment with non-targeted nanoparticles and to treatment with drug solution. Poly(D,L-lactide-co-glycolide)/poly(ethylene glycol)/EGFR targeting peptide (PLGA/PEG/EFGR peptide) construct was synthesized for incorporation in poly(ε-caprolactone) (PCL) particles to achieve active EGFR targeting. An isocratic HPLC method was developed to quantify lonidamine and paclitaxel in mice plasma, tumors, and vital organs. The targeted nanoparticles demonstrated superior pharmacokinetic profile relative to drug solution and non-targeted nanoparticles, particularly for lonidamine delivery. The first target site of accumulation is the liver, followed by the kidneys, and then the tumor mass; maximal tumor accumulation occurs at 3 hours post-administration. Lonidamine/paclitaxel combination therapy administered via EGFR-targeted polymer blend nanocarriers may become a viable platform for the future treatment of MDR cancer. PMID:21220050

  12. NF-κB-dependent transcriptional upregulation of cyclin D1 exerts cytoprotection against hypoxic injury upon EGFR activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Zhi-Dong; Xu, Liang; Tang, Kan-Kai

    Apoptosis of neural cells is one of the main pathological features in hypoxic/ischemic brain injury. Nuclear factor-κB (NF-κB) might be a potential therapeutic target for hypoxic/ischemic brain injury since NF-κB has been found to be inactivated after hypoxia exposure, yet the underlying molecular mechanisms of NF-κB inactivation are largely unknown. Here we report that epidermal growth factor receptor (EGFR) activation prevents neuron-like PC12 cells apoptosis in response to hypoxia via restoring NF-κB-dependent transcriptional upregulation of cyclin D1. Functionally, EGFR activation by EGF stimulation mitigates hypoxia-induced PC12 cells apoptosis in both dose- and time-dependent manner. Of note, EGFR activation elevates IKKβmore » phosphorylation, increases IκBα ubiquitination, promotes P65 nuclear translocation and recruitment at cyclin D1 gene promoter as well as upregulates cyclin D1 expression. EGFR activation also abrogates the decrease of IKKβ phosphorylation, reduction of IκBα ubiquitination, blockade of P65 nuclear translocation and recruitment at cyclin D1 gene promoter as well as downregulation of cyclin D1 expression induced by hypoxia. Furthermore, NF-κB-dependent upregulation of cyclin D1 is instrumental for the EGFR-mediated cytoprotection against hypoxic apoptosis. In addition, the dephosphorylation of EGFR induced by either EGF siRNA transfection or anti-HB-EGF neutralization antibody treatment enhances hypoxic cytotoxicity, which are attenuated by EGF administration. Our results highlight the essential role of NF-κB-dependent transcriptional upregulation of cyclin D1 in EGFR-mediated cytoprotective effects under hypoxic preconditioning and support further investigation of EGF in clinical trials of patients with hypoxic/ischemic brain injury. - Highlights: • EGFR activation significantly decreases hypoxia-induced PC12 cells injury. • EGFR activation abrogates the transcriptional repression of cyclin D1 induced by hypoxia in a

  13. A combinatorial approach of inclusion complexation and dendrimer synthesization for effective targeting EGFR-TK.

    PubMed

    Shende, Pravin; Patil, Sampada; Gaud, R S

    2017-07-01

    The aim of the present study was to use a combinatorial approach of inclusion complexation and dendrimer synthesization of gefitinib using solvent-free technique for targeting EGFR-TK to treat Non-Small-Cell Lung Cancer (NSCLC). The inclusion complex of gefitinib with β-cyclodextrin was prepared by trituration method. This complex encapsulated G4 PAMAM dendrimers were synthesized by Michael addition and amidation reactions using green chemistry and then PEGylated by conjugation reaction. FTIR and DSC confirmed the formation of inclusion complex of gefitinib and β-cyclodextrin and PEGylation of G4 PAMAM dendrimers. Gefitinib showed higher solubility, encapsulation efficiency and controlled release profile from PEGylated dendrimers compared to inclusion complex. The PEGylated dendrimers of inclusion complex of gefitinib were found to reduce hemolytic toxicity and lesser GI 50 value on Human lung cancer cell line A-549 by effective targeting EGFR-TK. A combinatorial approach of inclusion complexation and dendrimer synthesization is one of the alternative advanced approaches to treat NSCLC. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Mimicking the BIM BH3 domain overcomes resistance to EGFR tyrosine kinase inhibitors in EGFR-mutant non-small cell lung cancer

    PubMed Central

    Xia, Jinjing; Bai, Hao; Yan, Bo; Li, Rong; Shao, Minhua; Xiong, Liwen; Han, Baohui

    2017-01-01

    Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR TKIs) are widely applied to treat EGFR-mutant non-small cell lung cancer (NSCLC). BIM is a BH3 domain-containing protein encoded by BCL2L11. Some EGFR-mutant NSCLC patients showing BIM deletion polymorphism are resistant to EGFR TKIs. We retrospectively investigated BIM deletion polymorphism in NSCLC patients, its correlation with EGFR TKI (erlotinib) resistance, and the mechanism underlying the drug resistance. Among 245 EGFR-mutant NSCLC patients examined, BIM deletion polymorphism was detected in 43 (12.24%). Median progression-free and overall survival was markedly shorter in patients with BIM deletion polymorphism than with BIM wide-type. Moreover, NSCLC cells expressing EGFR-mutant harboring BIM polymorphism were more resistant to erlotinib-induced apoptosis than BIM wide-type cells. However, combined use of erlotinib and the BH3-mimetic ABT-737 up-regulated BIM expression and overcame erlotinib resistance in EGFR-mutant NSCLC cells harboring BIM deletion polymorphism. In vivo, erlotinib suppressed growth of BIM wide-type NSCLC cell xenographs by inducing apoptosis. Combined with ABT-737, erlotinib also suppressed NSCLC xenographs expressing EGFR-mutant harboring BIM deletion polymorphism. These results indicate that BIM polymorphism is closely related to a poor clinical response to EGFR TKIs in EGFR-mutant NSCLC patients, and that the BH3-mimetic ABT-737 restores BIM functionality and EGFR-TKI sensitivity. PMID:29312548

  15. Mimicking the BIM BH3 domain overcomes resistance to EGFR tyrosine kinase inhibitors in EGFR-mutant non-small cell lung cancer.

    PubMed

    Xia, Jinjing; Bai, Hao; Yan, Bo; Li, Rong; Shao, Minhua; Xiong, Liwen; Han, Baohui

    2017-12-12

    Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR TKIs) are widely applied to treat EGFR-mutant non-small cell lung cancer (NSCLC). BIM is a BH3 domain-containing protein encoded by BCL2L11. Some EGFR-mutant NSCLC patients showing BIM deletion polymorphism are resistant to EGFR TKIs. We retrospectively investigated BIM deletion polymorphism in NSCLC patients, its correlation with EGFR TKI (erlotinib) resistance, and the mechanism underlying the drug resistance. Among 245 EGFR-mutant NSCLC patients examined, BIM deletion polymorphism was detected in 43 (12.24%). Median progression-free and overall survival was markedly shorter in patients with BIM deletion polymorphism than with BIM wide-type. Moreover, NSCLC cells expressing EGFR-mutant harboring BIM polymorphism were more resistant to erlotinib-induced apoptosis than BIM wide-type cells. However, combined use of erlotinib and the BH3-mimetic ABT-737 up-regulated BIM expression and overcame erlotinib resistance in EGFR-mutant NSCLC cells harboring BIM deletion polymorphism. In vivo , erlotinib suppressed growth of BIM wide-type NSCLC cell xenographs by inducing apoptosis. Combined with ABT-737, erlotinib also suppressed NSCLC xenographs expressing EGFR-mutant harboring BIM deletion polymorphism. These results indicate that BIM polymorphism is closely related to a poor clinical response to EGFR TKIs in EGFR-mutant NSCLC patients, and that the BH3-mimetic ABT-737 restores BIM functionality and EGFR-TKI sensitivity.

  16. [Influence of Different Therapies on EGFR Mutants by Circulating Cell-free DNA of Lung Adenocarcinoma and Prognosis].

    PubMed

    Su, Fei; Zheng, Ke; Fu, Yiyun; Wu, Qian; Tang, Yuan; Wang, Weiya; Jiang, Lili

    2018-05-20

    Epidermal growth factor receptor (EGFR) gene mutation is closely related to the EGFR-TKI target treatment and prognosis of lung adenocarcinoma patients. The mutation status of EGFR is limited by tissue detection. The purpose of this study was to investigate the difference of EGFR mutants in plasmacirculating cell-free DNA (cfDNA) obtained from patients with non-small cell lung cancer (NSCLC) in three groups: pre-therapy, after traditional chemotherapy and targeted therapy. The aim of this study was to analyze whether the plasma cfDNA could effectively determine the EGFR mutations and monitor the drug resistant gene T790M, as well as its prognostic prediction value in patients with targeted therapy. ARMS (amplification refractory mutation system)-PCR was used to detect EGFR mutations in 107 (50 of pre-therapy, 29 after traditional chemotherapy and 28 after targeted therapy) cases of paired plasma and tumor tissue specimens, followed by comparing their concordance. The sensitivity, specificity and the prognostic value of plasma cfDNA detection were also observed. The total rate of EGFR mutation was 56% (60/107) in all plasma samples and 77.6% (83/107) in corresponding tumor tissues. Completely the same mutants and wild-type EGFR were found in 68.2% cases of paired specimens. The sensitivity of plasma cfDNA detection was 72.3% and the specificity was up to 100%. Patients were sub-categorized according to therapy. The results showed that the highest consistent rate of cfDNA and tumor tissues was found in the group of pre-therapy (74%, 37/50). Whereas, the lowest consistent rate was observed in the targeted therapy group (57.1%, 16/28). It indicated that the targeted treatment could change the EGFR status in plasma cfDNA. Further analyses on inconsistent cases in this group revealed that 50% of them were compound EGFR mutations with T790M. Thereby, it suggested that targeted therapy might induce the emergence of drug resistance gene T790M. This speculation was confirmed

  17. Biodistribution and pharmacokinetics of Mad2 siRNA-loaded EGFR-targeted chitosan nanoparticles in cisplatin sensitive and resistant lung cancer models.

    PubMed

    Nascimento, Ana Vanessa; Gattacceca, Florence; Singh, Amit; Bousbaa, Hassan; Ferreira, Domingos; Sarmento, Bruno; Amiji, Mansoor M

    2016-04-01

    The present study focuses on biodistribution profile and pharmacokinetic parameters of EGFR-targeted chitosan nanoparticles (TG CS nanoparticles) for siRNA/cisplatin combination therapy of lung cancer. Mad2 siRNA was encapsulated in EGFR targeted and nontargeted (NTG) CS nanoparticles by electrostatic interaction. The biodistribution of the nanoparticles was assessed qualitatively and quantitatively in cisplatin (DDP) sensitive and resistant lung cancer xenograft model. TG nanoparticles showed a consistent and preferential tumor targeting ability with rapid clearance from the plasma to infiltrate and sustain within the tumor up to 96 h. They exhibit a sixfold higher tumor targeting efficiency compared with the NTG nanoparticles. TG nanoparticles present as an attractive drug delivery platform for RNAi therapeutics against NSCLC.

  18. MicroRNA-566 activates EGFR signaling and its inhibition sensitizes glioblastoma cells to nimotuzumab.

    PubMed

    Zhang, Kai-Liang; Zhou, Xuan; Han, Lei; Chen, Lu-Yue; Chen, Ling-Chao; Shi, Zhen-Dong; Yang, Ming; Ren, Yu; Yang, Jing-Xuan; Frank, Thomas S; Zhang, Chuan-Bao; Zhang, Jun-Xia; Pu, Pei-Yu; Zhang, Jian-Ning; Jiang, Tao; Wagner, Eric J; Li, Min; Kang, Chun-Sheng

    2014-03-20

    Epidermal growth factor receptor (EGFR) is amplified in 40% of human glioblastomas. However, most glioblastoma patients respond poorly to anti-EGFR therapy. MicroRNAs can function as either oncogenes or tumor suppressor genes, and have been shown to play an important role in cancer cell proliferation, invasion and apoptosis. Whether microRNAs can impact the therapeutic effects of EGFR inhibitors in glioblastoma is unknown. miR-566 expression levels were detected in glioma cell lines, using real-time quantitative RT-PCR (qRT-PCR). Luciferase reporter assays and Western blots were used to validate VHL as a direct target gene of miR-566. Cell proliferation, invasion, cell cycle distribution and apoptosis were also examined to confirm whether miR-566 inhibition could sensitize anti-EGFR therapy. In this study, we demonstrated that miR-566 is up-regulated in human glioma cell lines and inhibition of miR-566 decreased the activity of the EGFR pathway. Lentiviral mediated inhibition of miR-566 in glioblastoma cell lines significantly inhibited cell proliferation and invasion and led to cell cycle arrest in the G0/G1 phase. In addition, we identified von Hippel-Lindau (VHL) as a novel functional target of miR-566. VHL regulates the formation of the β-catenin/hypoxia-inducible factors-1α complex under miR-566 regulation. miR-566 activated EGFR signaling and its inhibition sensitized glioblastoma cells to anti-EGFR therapy.

  19. Contribution of EGFR and ErbB-3 Heterodimerization to the EGFR Mutation-Induced Gefitinib- and Erlotinib-Resistance in Non-Small-Cell Lung Carcinoma Treatments.

    PubMed

    Wang, Debby D; Ma, Lichun; Wong, Maria P; Lee, Victor H F; Yan, Hong

    2015-01-01

    EGFR mutation-induced drug resistance has become a major threat to the treatment of non-small-cell lung carcinoma. Essentially, the resistance mechanism involves modifications of the intracellular signaling pathways. In our work, we separately investigated the EGFR and ErbB-3 heterodimerization, regarded as the origin of intracellular signaling pathways. On one hand, we combined the molecular interaction in EGFR heterodimerization with that between the EGFR tyrosine kinase and its inhibitor. For 168 clinical subjects, we characterized their corresponding EGFR mutations using molecular interactions, with three potential dimerization partners (ErbB-2, IGF-1R and c-Met) of EGFR and two of its small molecule inhibitors (gefitinib and erlotinib). Based on molecular dynamics simulations and structural analysis, we modeled these mutant-partner or mutant-inhibitor interactions using binding free energy and its components. As a consequence, the mutant-partner interactions are amplified for mutants L858R and L858R_T790M, compared to the wild type EGFR. Mutant delL747_P753insS represents the largest difference between the mutant-IGF-1R interaction and the mutant-inhibitor interaction, which explains the shorter progression-free survival of an inhibitor to this mutant type. Besides, feature sets including different energy components were constructed, and efficient regression trees were applied to map these features to the progression-free survival of an inhibitor. On the other hand, we comparably examined the interactions between ErbB-3 and its partners (EGFR mutants, IGF-1R, ErbB-2 and c-Met). Compared to others, c-Met shows a remarkably-strong binding with ErbB-3, implying its significant role in regulating ErbB-3 signaling. Moreover, EGFR mutants corresponding to poor clinical outcomes, such as L858R_T790M, possess lower binding affinities with ErbB-3 than c-Met does. This may promote the communication between ErbB-3 and c-Met in these cancer cells. The analysis verified

  20. Targeted therapy against EGFR and VEGFR using ZD6474 enhances the therapeutic potential of UV-B phototherapy in breast cancer cells.

    PubMed

    Sarkar, Siddik; Rajput, Shashi; Tripathi, Amit Kumar; Mandal, Mahitosh

    2013-10-20

    The hypoxic environment of tumor region stimulated the up regulation of growth factors responsible for angiogenesis and tumor proliferation. Thus, targeting the tumor vasculature along with the proliferation by dual tyrosine kinase inhibitor may be the efficient way of treating advanced breast cancers, which can be further enhanced by combining with radiotherapy. However, the effectiveness of radiotherapy may be severely compromised by toxicities and tumor resistance due to radiation-induced adaptive response contributing to recurrence and metastases of breast cancer. The rational of using ZD6474 is to evaluate the feasibility and efficacy of combined VEGFR2 and EGFR targeting with concurrent targeted and localized UV-B phototherapy in vitro breast cancer cells with the anticipation to cure skin lesions infiltrated with breast cancer cells. Breast cancer cells were exposed to UV-B and ZD6474 and the cell viability, apoptosis, invasion and motility studies were conducted for the combinatorial effect. Graphs and statistical analyses were performed using Graph Pad Prism 5.0. ZD6474 and UV-B decreased cell viability in breast cancers in combinatorial manner without affecting the normal human mammary epithelial cells. ZD6474 inhibited cyclin E expression and induced p53 expression when combined with UV-B. It activated stress induced mitochondrial pathway by inducing translocation of bax and cytochrome-c. The combination of ZD6474 with UV-B vs. either agent alone also more potently down-regulated the anti-apoptotic bcl-2 protein, up-regulated pro-apoptotic signaling events involving expression of bax, activation of caspase-3 and caspase-7 proteins, and induced poly (ADP-ribose) polymerase resulting in apoptosis. ZD6474 combined with UV-B inhibited invasion of breast cancer cells in vitro as compared to either single agent, indicating a potential involvement of pro-angiogenic growth factors in regulating the altered expression and reorganization of cytoskeletal proteins

  1. Preselection of EGFR mutations in non-small-cell lung cancer patients by immunohistochemistry: comparison with DNA-sequencing, EGFR wild-type expression, gene copy number gain and clinicopathological data.

    PubMed

    Gaber, Rania; Watermann, Iris; Kugler, Christian; Vollmer, Ekkehard; Perner, Sven; Reck, Martin; Goldmann, Torsten

    2017-01-01

    Targeting epidermal growth factor receptor (EGFR) in patients with non-small-cell lung cancer (NSCLC) having EGFR mutations is associated with an improved overall survival. The aim of this study is to verify, if EGFR mutations detected by immunohistochemistry (IHC) is a convincing way to preselect patients for DNA-sequencing and to figure out, the statistical association between EGFR mutation, wild-type EGFR overexpression, gene copy number gain, which are the main factors inducing EGFR tumorigenic activity and the clinicopathological data. Two hundred sixteen tumor tissue samples of primarily chemotherapeutic naïve NSCLC patients were analyzed for EGFR mutations E746-A750del and L858R and correlated with DNA-sequencing. Two hundred six of which were assessed by IHC, using 6B6 and 43B2 specific antibodies followed by DNA-sequencing of positive cases and 10 already genotyped tumor tissues were also included to investigate debugging accuracy of IHC. In addition, EGFR wild-type overexpression was IHC evaluated and EGFR gene copy number determination was performed by fluorescence in situ hybridization (FISH). Forty-one÷206 (19.9%) cases were positive for mutated EGFR by IHC. Eight of them had EGFR mutations of exons 18-21 by DNA-sequencing. Hit rate of 10 already genotyped NSCLC mutated cases was 90% by IHC. Positive association was found between EGFR mutations determined by IHC and both EGFR overexpression and increased gene copy number (p=0.002 and p<0.001, respectively). Additionally, positive association was detected between EGFR mutations, high tumor grade and clinical stage (p<0.001). IHC staining with mutation specific antibodies was demonstrated as a possible useful screening test to preselect patients for DNA-sequencing.

  2. HER2 induced EMT and tumorigenicity in breast epithelial progenitor cells is inhibited by coexpression of EGFR.

    PubMed

    Ingthorsson, S; Andersen, K; Hilmarsdottir, B; Maelandsmo, G M; Magnusson, M K; Gudjonsson, T

    2016-08-11

    The members of the epidermal growth factor receptor (EGFR) kinase family are important players in breast morphogenesis and cancer. EGFR2/HER2 and EGFR expression have a prognostic value in certain subtypes of breast cancer such as HER2-amplified, basal-like and luminal type B. Many clinically approved small molecular inhibitors and monoclonal antibodies have been designed to target HER2, EGFR or both. There is, however, still limited knowledge on how the two receptors are expressed in normal breast epithelium, what effects they have on cellular differentiation and how they participate in neoplastic transformation. D492 is a breast epithelial cell line with stem cell properties that can undergo epithelial to mesenchyme transition (EMT), generate luminal- and myoepithelial cells and form complex branching structures in three-dimensional (3D) culture. Here, we show that overexpression of HER2 in D492 (D492(HER2)) resulted in EMT, loss of contact growth inhibition and increased oncogenic potential in vivo. HER2 overexpression, furthermore, inhibited endogenous EGFR expression. Re-introducing EGFR in D492(HER2) (D492(HER2/EGFR)) partially reversed the mesenchymal state of the cells, as an epithelial phenotype reappeared both in 3D cultures and in vivo. The D492(HER2/EGFR) xenografts grow slower than the D492(HER2) tumors, while overexpression of EGFR alone (D492(EGFR)) was not oncogenic in vivo. Consistent with the EGFR-mediated epithelial phenotype, overexpression of EGFR drove the cells toward a myoepithelial phenotype in 3D culture. The effect of two clinically approved anti-HER2 and EGFR therapies, trastuzumab and cetuximab, was tested alone and in combination on D492(HER2) xenografts. While trastuzumab had a growth inhibitory effect compared with untreated control, the effect of cetuximab was limited. When administered in combination, the growth inhibitory effect of trastuzumab was less pronounced. Collectively, our data indicate that in HER2-overexpressing D492

  3. HER2 induced EMT and tumorigenicity in breast epithelial progenitor cells is inhibited by coexpression of EGFR

    PubMed Central

    Ingthorsson, S; Andersen, K; Hilmarsdottir, B; Maelandsmo, G M; Magnusson, M K; Gudjonsson, T

    2016-01-01

    The members of the epidermal growth factor receptor (EGFR) kinase family are important players in breast morphogenesis and cancer. EGFR2/HER2 and EGFR expression have a prognostic value in certain subtypes of breast cancer such as HER2-amplified, basal-like and luminal type B. Many clinically approved small molecular inhibitors and monoclonal antibodies have been designed to target HER2, EGFR or both. There is, however, still limited knowledge on how the two receptors are expressed in normal breast epithelium, what effects they have on cellular differentiation and how they participate in neoplastic transformation. D492 is a breast epithelial cell line with stem cell properties that can undergo epithelial to mesenchyme transition (EMT), generate luminal- and myoepithelial cells and form complex branching structures in three-dimensional (3D) culture. Here, we show that overexpression of HER2 in D492 (D492HER2) resulted in EMT, loss of contact growth inhibition and increased oncogenic potential in vivo. HER2 overexpression, furthermore, inhibited endogenous EGFR expression. Re-introducing EGFR in D492HER2 (D492HER2/EGFR) partially reversed the mesenchymal state of the cells, as an epithelial phenotype reappeared both in 3D cultures and in vivo. The D492HER2/EGFR xenografts grow slower than the D492HER2 tumors, while overexpression of EGFR alone (D492EGFR) was not oncogenic in vivo. Consistent with the EGFR-mediated epithelial phenotype, overexpression of EGFR drove the cells toward a myoepithelial phenotype in 3D culture. The effect of two clinically approved anti-HER2 and EGFR therapies, trastuzumab and cetuximab, was tested alone and in combination on D492HER2 xenografts. While trastuzumab had a growth inhibitory effect compared with untreated control, the effect of cetuximab was limited. When administered in combination, the growth inhibitory effect of trastuzumab was less pronounced. Collectively, our data indicate that in HER2-overexpressing D492 cells, EGFR can

  4. Ubiquitin ligase Cbl-b is involved in icotinib (BPI-2009H)-induced apoptosis and G1 phase arrest of EGFR mutation-positive non-small-cell lung cancer.

    PubMed

    Mu, Xiaodong; Zhang, Ye; Qu, Xiujuan; Hou, Kezuo; Kang, Jian; Hu, Xuejun; Liu, Yunpeng

    2013-01-01

    Epidermal growth factor receptor (EGFR) is one of the most promising targets for non-small-cell lung cancer (NSCLC). Icotinib, a highly selective EGFR tyrosine kinase inhibitor (EGFR-TKI), has shown promising clinical efficacy and safety in patients with NSCLC. The exact molecular mechanism of icotinib remains unclear. In this study, we first investigated the antiproliferative effect of icotinib on NSCLC cells. Icotinib significantly inhibited proliferation of the EGFR-mutated lung cancer HCC827 cells. The IC50 values at 48 and 72 h were 0.67 and 0.07 μ M, respectively. Flow cytometric analysis showed that icotinib caused the G1 phase arrest and increased the rate of apoptosis in HCC827 cells. The levels of cyclin D1 and cyclin A2 were decreased. The apoptotic process was associated with activation of caspase-3, -8, and poly(ADP-ribose) polymerase (PARP). Further study revealed that icotinib inhibited phosphorylation of EGFR, Akt, and extracellular signal-regulated kinase. In addition, icotinib upregulated ubiquitin ligase Cbl-b expression. These observations suggest that icotinib-induced upregulation of Cbl-b is responsible, at least in part, for the antitumor effect of icotinib via the inhibition of phosphoinositide 3-kinase (PI3K)/Akt and mitogen-activated protein kinase pathways in EGFR-mutated NSCLC cells.

  5. Identification of a novel fusion gene HMGA2-EGFR in glioblastoma.

    PubMed

    Komuro, Akiyoshi; Raja, Erna; Iwata, Caname; Soda, Manabu; Isogaya, Kazunobu; Yuki, Keiko; Ino, Yasushi; Morikawa, Masato; Todo, Tomoki; Aburatani, Hiroyuki; Suzuki, Hiromichi; Ranjit, Melissa; Natsume, Atsushi; Mukasa, Akitake; Saito, Nobuhito; Okada, Hitoshi; Mano, Hiroyuki; Miyazono, Kohei; Koinuma, Daizo

    2018-04-15

    Glioblastoma is one of the most malignant forms of cancer, for which no effective targeted therapy has been found. Although The Cancer Genome Atlas has provided a list of fusion genes in glioblastoma, their role in progression of glioblastoma remains largely unknown. To search for novel fusion genes, we obtained RNA-seq data from TGS-01 human glioma-initiating cells, and identified a novel fusion gene (HMGA2-EGFR), encoding a protein comprising the N-terminal region of the high-mobility group AT-hook protein 2 (HMGA2) fused to the C-terminal region of epidermal growth factor receptor (EGFR), which retained the transmembrane and kinase domains of the EGFR. This fusion gene product showed transforming potential and a high tumor-forming capacity in cell culture and in vivo. Mechanistically, HMGA2-EGFR constitutively induced a higher level of phosphorylated STAT5B than EGFRvIII, an in-frame exon deletion product of the EGFR gene that is commonly found in primary glioblastoma. Forced expression of HMGA2-EGFR enhanced orthotopic tumor formation of the U87MG human glioma cell line. Furthermore, the EGFR kinase inhibitor erlotinib blocked sphere formation of TGS-01 cells in culture and inhibited tumor formation in vivo. These findings suggest that, in addition to gene amplification and in-frame exon deletion, EGFR signaling can also be activated by gene fusion, suggesting a possible avenue for treatment of glioblastoma. © 2017 UICC.

  6. MECHANISMS OF ZN-INDUCED SIGNAL INITIATION THROUGH THE EPIDERMAL GROWTH FACTOR RECEPTOR (EGFR)

    EPA Science Inventory

    MECHANISMS OF Zn-INDUCED SIGNAL INITIATION THROUGH THE EPIDERMAL GROWTH FACTOR RECEPTOR (EGFR)
    James M. Samet*, Lee M. Graves? and Weidong Wu?. *Human Studies Division, NHEERL, ORD, Research Triangle Park, NC 27711, and ?Center for Environmental Medicine, University of North C...

  7. Graf regulates hematopoiesis through GEEC endocytosis of EGFR.

    PubMed

    Kim, Sungdae; Nahm, Minyeop; Kim, Najin; Kwon, Yumi; Kim, Joohyung; Choi, Sukwoo; Choi, Eun Young; Shim, Jiwon; Lee, Cheolju; Lee, Seungbok

    2017-11-15

    GTPase regulator associated with focal adhesion kinase 1 (GRAF1) is an essential component of the GPI-enriched endocytic compartment (GEEC) endocytosis pathway. Mutations in the human GRAF1 gene are associated with acute myeloid leukemia, but its normal role in myeloid cell development remains unclear. We show that Graf, the Drosophila ortholog of GRAF1, is expressed and specifically localizes to GEEC endocytic membranes in macrophage-like plasmatocytes. We also find that loss of Graf impairs GEEC endocytosis, enhances EGFR signaling and induces a plasmatocyte overproliferation phenotype that requires the EGFR signaling cascade. Mechanistically, Graf-dependent GEEC endocytosis serves as a major route for EGFR internalization at high, but not low, doses of the predominant Drosophila EGFR ligand Spitz (Spi), and is indispensable for efficient EGFR degradation and signal attenuation. Finally, Graf interacts directly with EGFR in a receptor ubiquitylation-dependent manner, suggesting a mechanism by which Graf promotes GEEC endocytosis of EGFR at high Spi. Based on our findings, we propose a model in which Graf functions to downregulate EGFR signaling by facilitating Spi-induced receptor internalization through GEEC endocytosis, thereby restraining plasmatocyte proliferation. © 2017. Published by The Company of Biologists Ltd.

  8. Sonic Hedgehog modulates EGFR dependent proliferation of neural stem cells during late mouse embryogenesis through EGFR transactivation

    PubMed Central

    Reinchisi, Gisela; Parada, Margarita; Lois, Pablo; Oyanadel, Claudia; Shaughnessy, Ronan; Gonzalez, Alfonso; Palma, Verónica

    2013-01-01

    Sonic Hedgehog (Shh/GLI) and EGFR signaling pathways modulate Neural Stem Cell (NSC) proliferation. How these signals cooperate is therefore critical for understanding normal brain development and function. Here we report a novel acute effect of Shh signaling on EGFR function. We show that during late neocortex development, Shh mediates the activation of the ERK1/2 signaling pathway in Radial Glial cells (RGC) through EGFR transactivation. This process is dependent on metalloprotease activity and accounts for almost 50% of the EGFR-dependent mitogenic response of late NSCs. Furthermore, in HeLa cancer cells, a well-known model for studying the EGFR receptor function, Shh also induces cell proliferation involving EGFR activation, as reflected by EGFR internalization and ERK1/2 phosphorylation. These findings may have important implications for understanding the mechanisms that regulate NSC proliferation during neurogenesis and may lead to novel approaches to the treatment of tumors. PMID:24133411

  9. Redox Regulation of EGFR Signaling Through Cysteine Oxidation1

    PubMed Central

    Truong, Thu H.; Carroll, Kate S.

    2012-01-01

    Epidermal growth factor receptor (EGFR) exemplifies the family of receptor tyrosine kinases that mediate numerous cellular processes including growth, proliferation and differentiation. Moreover, gene amplification and EGFR mutations have been identified in a number of human malignancies, making this receptor an important target for the development of anticancer drugs. In addition to ligand-dependent activation and concomitant tyrosine phosphorylation, EGFR stimulation results in the localized generation of H2O2 by NADPH-dependent oxidases. In turn, H2O2 functions as a secondary messenger to regulate intracellular signaling cascades, largely through the modification of specific cysteine residues within redox-sensitive protein targets, including Cys797 in the EGFR active site. In this review, we highlight recent advances in our understanding of the mechanisms that underlie redox regulation of EGFR signaling and how these discoveries may form the basis for development of new therapeutic strategies to target this and other H2O2-modulated pathways. PMID:23186290

  10. Emerging functions of the EGFR in cancer.

    PubMed

    Sigismund, Sara; Avanzato, Daniele; Lanzetti, Letizia

    2018-01-01

    The physiological function of the epidermal growth factor receptor (EGFR) is to regulate epithelial tissue development and homeostasis. In pathological settings, mostly in lung and breast cancer and in glioblastoma, the EGFR is a driver of tumorigenesis. Inappropriate activation of the EGFR in cancer mainly results from amplification and point mutations at the genomic locus, but transcriptional upregulation or ligand overproduction due to autocrine/paracrine mechanisms has also been described. Moreover, the EGFR is increasingly recognized as a biomarker of resistance in tumors, as its amplification or secondary mutations have been found to arise under drug pressure. This evidence, in addition to the prominent function that this receptor plays in normal epithelia, has prompted intense investigations into the role of the EGFR both at physiological and at pathological level. Despite the large body of knowledge obtained over the last two decades, previously unrecognized (herein defined as 'noncanonical') functions of the EGFR are currently emerging. Here, we will initially review the canonical ligand-induced EGFR signaling pathway, with particular emphasis to its regulation by endocytosis and subversion in human tumors. We will then focus on the most recent advances in uncovering noncanonical EGFR functions in stress-induced trafficking, autophagy, and energy metabolism, with a perspective on future therapeutic applications. © 2017 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

  11. CHIP is a novel tumor suppressor in pancreatic cancer and inhibits tumor growth through targeting EGFR

    PubMed Central

    Wang, Tianxiao; Yang, Jingxuan; Xu, Jianwei; Li, Jian; Cao, Zhe; Zhou, Li; You, Lei; Shu, Hong; Lu, Zhaohui; Li, Huihua; Li, Min; Zhang, Taiping; Zhao, Yupei

    2014-01-01

    Carboxyl terminus of heat shock protein 70-interacting protein (CHIP) is an E3 ubiquitin ligase that is involved in protein quality control and mediates several tumor-related proteins in many cancers, but the function of CHIP in pancreatic cancer is not known. Here we show that CHIP interacts and ubiquitinates epidermal growth factor receptor (EGFR) for proteasome-mediated degradation in pancreatic cancer cells, thereby inhibiting the activation of EGFR downstream pathways. CHIP suppressed cell proliferation, anchor-independent growth, invasion and migration, as well as enhanced apoptosis induced by erlotinib in vitro and in vivo. The expression of CHIP was decreased in pancreatic cancer tissues or sera. Low CHIP expression in tumor tissues was correlated with tumor differentiation and shorter overall survival. These observations indicate that CHIP serves as a novel tumor suppressor by down-regulating EGFR pathway in pancreatic cancer cells, decreased expression of CHIP was associated with poor prognosis in pancreatic cancer. PMID:24722501

  12. Biomarker-driven EGFR therapy improves outcomes in patients with metastatic colorectal cancer.

    PubMed

    Hendifar, Andrew; Tan, Carlyn-Rose; Annamalai, Anand; Tuli, Richard

    2014-09-01

    As new data from randomized studies comparing EGFR-targeting therapies with VEGF inhibitors emerge, the treatment landscape for metastatic colorectal cancer is expected to change. Although both the VEGF inhibitor bevacizumab and the anti-EGFR antibody cetuximab are approved in the first-line setting, they have not until recently been compared directly in randomized studies. Unlike targeted therapy in the EGFR pathway, there are no biomarkers guiding VEGF treatment. Recent data, discussed in this review, demonstrate that patients with KRAS/NRAS wild-type tumors benefit from anti-EGFR therapy in the first-line setting and that anti-EGFR therapy may be superior when compared with anti-VEGF approaches. This review focuses on the clinical utility of targeting EGFR by revisiting the biologic rationale for EGFR inhibition in metastatic colorectal cancer and providing new insight on the advancements in biomarker analyses with the potential to change practice.

  13. Brigatinib combined with anti-EGFR antibody overcomes osimertinib resistance in EGFR-mutated non-small-cell lung cancer

    PubMed Central

    Uchibori, Ken; Inase, Naohiko; Araki, Mitsugu; Kamada, Mayumi; Sato, Shigeo; Okuno, Yasushi; Fujita, Naoya; Katayama, Ryohei

    2017-01-01

    Osimertinib has been demonstrated to overcome the epidermal growth factor receptor (EGFR)-T790M, the most relevant acquired resistance to first-generation EGFR–tyrosine kinase inhibitors (EGFR–TKIs). However, the C797S mutation, which impairs the covalent binding between the cysteine residue at position 797 of EGFR and osimertinib, induces resistance to osimertinib. Currently, there are no effective therapeutic strategies to overcome the C797S/T790M/activating-mutation (triple-mutation)-mediated EGFR–TKI resistance. In the present study, we identify brigatinib to be effective against triple-mutation-harbouring cells in vitro and in vivo. Our original computational simulation demonstrates that brigatinib fits into the ATP-binding pocket of triple-mutant EGFR. The structure–activity relationship analysis reveals the key component in brigatinib to inhibit the triple-mutant EGFR. The efficacy of brigatinib is enhanced markedly by combination with anti-EGFR antibody because of the decrease of surface and total EGFR expression. Thus, the combination therapy of brigatinib with anti-EGFR antibody is a powerful candidate to overcome triple-mutant EGFR. PMID:28287083

  14. Propofol enhances the cisplatin-induced apoptosis on cervical cancer cells via EGFR/JAK2/STAT3 pathway.

    PubMed

    Li, Haoran; Lu, Yan; Pang, Yangyang; Li, Mengjiao; Cheng, Xi; Chen, Jiawei

    2017-02-01

    The main purpose of this study was to evaluate propofol and its combined effect with cisplatin on apoptosis of cervical cancer cells and molecular mechanisms of this phenomenon. The effects of propofol and cisplatin on cell viability and apoptosis were detected by cell counting kit-8 (CCK-8) assay, colony formation assay and flow cytometry assay. Besides, protein expression of EGFR/JAK2/STAT3 pathway was determined by western blot. STAT3 was over-expressed in cervical cancer cells by STAT3 cDNA. Expression of EGFR and STAT3 protein of human tissues was evaluated by immunohistochemistry (IHC) assay. In this study, we found that not only propofol alone could inhibit cervical cancer cells viability but also could increase the inhibitory effect of cisplatin on cervical cancer cells growth. Meanwhile, propofol sensitized cervical cancer cells to cisplatin-induced apoptosis but not affected normal cervical cells. In genetic level, propofol could enhance the anti-tumor effect of cisplatin through EGFR/JAK2/STAT3 pathway. Further studies indicated that overexpression of EGFR and STAT3 is related to poor prognoses in cervical cancer patients, which contributed to confirm the clinical role of combined application of propofol and cisplatin. Propofol enhances the cisplatin-induced cell apoptosis cervical cancer cells via EGFR/JAK2/STAT3 pathway and may be developed as a potential therapeutic agent to treat cervical cancer. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  15. In vivo evaluation of cetuximab-conjugated poly(γ-glutamic acid)-docetaxel nanomedicines in EGFR-overexpressing gastric cancer xenografts.

    PubMed

    Sreeranganathan, Maya; Uthaman, Saji; Sarmento, Bruno; Mohan, Chethampadi Gopi; Park, In-Kyu; Jayakumar, Rangasamy

    2017-01-01

    Epidermal growth factor receptor (EGFR), upregulated in gastric cancer patients, is an oncogene of interest in the development of targeted cancer nanomedicines. This study demonstrates in silico modeling of monoclonal antibody cetuximab (CET MAb)-conjugated docetaxel (DOCT)-loaded poly(γ-glutamic acid) (γ-PGA) nanoparticles (Nps) and evaluates the in vitro/in vivo effects on EGFR-overexpressing gastric cancer cells (MKN-28). Nontargeted DOCT-γ-PGA Nps (NT Nps: 110±40 nm) and targeted CET MAb-DOCT-γ-PGA Nps (T Nps: 200±20 nm) were prepared using ionic gelation followed by 1-Ethyl-3-(3-dimethyl aminopropyl)carbodiimide-N-Hydoxysuccinimide (EDC-NSH) chemistry. Increased uptake correlated with enhanced cytotoxicity induced by targeted Nps to EGFR +ve MKN-28 compared with nontargeted Nps as evident from MTT and flow cytometric assays. Nanoformulated DOCT showed a superior pharmacokinetic profile to that of free DOCT in Swiss albino mice, indicating the possibility of improved therapeutic effect in the disease model. Qualitative in vivo imaging showed early and enhanced tumor targeted accumulation of CET MAb-DOCT-γ-PGA Nps in EGFR +ve MKN-28-based gastric cancer xenograft, which exhibited efficient arrest of tumor growth compared with nontargeted Nps and free DOCT. Thus, actively targeted CET MAb-DOCT-γ-PGA Nps could be developed as a substitute to conventional nonspecific chemotherapy, and hence could become a feasible strategy for cancer therapy for EGFR-overexpressing gastric tumors.

  16. ROLE OF THE EPIDERMAL GROWTH FACTOR RECEPTOR (EGFR) IN THE ACTIVATION OF MEK INDUCED BY ZN EXPOSURE

    EPA Science Inventory

    Zn is a ubiquitous ambient air pollutant typically found associated with particulate matter. Divalent Zn inhibits tyrosine phosphatases and induces EGFR- and MAPK- dependent signaling in human airway epithelial cells. To further characterize Zn-induced intracellular signaling, ...

  17. Development of new mouse lung tumor models expressing EGFR T790M mutants associated with clinical resistance to kinase inhibitors.

    PubMed

    Regales, Lucia; Balak, Marissa N; Gong, Yixuan; Politi, Katerina; Sawai, Ayana; Le, Carl; Koutcher, Jason A; Solit, David B; Rosen, Neal; Zakowski, Maureen F; Pao, William

    2007-08-29

    The EGFR T790M mutation confers acquired resistance to kinase inhibitors in human EGFR mutant lung adenocarcinoma, is occasionally detected before treatment, and may confer genetic susceptibility to lung cancer. To study further its role in lung tumorigenesis, we developed mice with inducible expression in type II pneumocytes of EGFR(T790M) alone or together with a drug-sensitive L858R mutation. Both transgenic lines develop lung adenocarcinomas that require mutant EGFR for tumor maintenance but are resistant to an EGFR kinase inhibitor. EGFR(L858R+T790M)-driven tumors are transiently targeted by hsp90 inhibition. Notably, EGFR(T790M)-expressing animals develop tumors with longer latency than EGFR(L858R+T790M)-bearing mice and in the absence of additional kinase domain mutations. These new mouse models of mutant EGFR-dependent lung adenocarcinomas provide insight into clinical observations. The models should also be useful for developing improved therapies for patients with lung cancers harboring EGFR(T790M) alone or in conjunction with drug-sensitive EGFR kinase domain mutations.

  18. EGFR oligomerization organizes kinase-active dimers into competent signalling platforms

    PubMed Central

    Needham, Sarah R.; Roberts, Selene K.; Arkhipov, Anton; Mysore, Venkatesh P.; Tynan, Christopher J.; Zanetti-Domingues, Laura C.; Kim, Eric T.; Losasso, Valeria; Korovesis, Dimitrios; Hirsch, Michael; Rolfe, Daniel J.; Clarke, David T.; Winn, Martyn D.; Lajevardipour, Alireza; Clayton, Andrew H. A.; Pike, Linda J.; Perani, Michela; Parker, Peter J.; Shan, Yibing; Shaw, David E.; Martin-Fernandez, Marisa L.

    2016-01-01

    Epidermal growth factor receptor (EGFR) signalling is activated by ligand-induced receptor dimerization. Notably, ligand binding also induces EGFR oligomerization, but the structures and functions of the oligomers are poorly understood. Here, we use fluorophore localization imaging with photobleaching to probe the structure of EGFR oligomers. We find that at physiological epidermal growth factor (EGF) concentrations, EGFR assembles into oligomers, as indicated by pairwise distances of receptor-bound fluorophore-conjugated EGF ligands. The pairwise ligand distances correspond well with the predictions of our structural model of the oligomers constructed from molecular dynamics simulations. The model suggests that oligomerization is mediated extracellularly by unoccupied ligand-binding sites and that oligomerization organizes kinase-active dimers in ways optimal for auto-phosphorylation in trans between neighbouring dimers. We argue that ligand-induced oligomerization is essential to the regulation of EGFR signalling. PMID:27796308

  19. Ubiquitin Ligase Cbl-b Is Involved in Icotinib (BPI-2009H)-Induced Apoptosis and G1 Phase Arrest of EGFR Mutation-Positive Non-Small-Cell Lung Cancer

    PubMed Central

    Mu, Xiaodong; Zhang, Ye; Qu, Xiujuan; Hou, Kezuo; Kang, Jian; Hu, Xuejun; Liu, Yunpeng

    2013-01-01

    Epidermal growth factor receptor (EGFR) is one of the most promising targets for non-small-cell lung cancer (NSCLC). Icotinib, a highly selective EGFR tyrosine kinase inhibitor (EGFR-TKI), has shown promising clinical efficacy and safety in patients with NSCLC. The exact molecular mechanism of icotinib remains unclear. In this study, we first investigated the antiproliferative effect of icotinib on NSCLC cells. Icotinib significantly inhibited proliferation of the EGFR-mutated lung cancer HCC827 cells. The IC50 values at 48 and 72 h were 0.67 and 0.07 μM, respectively. Flow cytometric analysis showed that icotinib caused the G1 phase arrest and increased the rate of apoptosis in HCC827 cells. The levels of cyclin D1 and cyclin A2 were decreased. The apoptotic process was associated with activation of caspase-3, -8, and poly(ADP-ribose) polymerase (PARP). Further study revealed that icotinib inhibited phosphorylation of EGFR, Akt, and extracellular signal-regulated kinase. In addition, icotinib upregulated ubiquitin ligase Cbl-b expression. These observations suggest that icotinib-induced upregulation of Cbl-b is responsible, at least in part, for the antitumor effect of icotinib via the inhibition of phosphoinositide 3-kinase (PI3K)/Akt and mitogen-activated protein kinase pathways in EGFR-mutated NSCLC cells. PMID:23586056

  20. Induction of anaplastic lymphoma kinase (ALK) as a novel mechanism of EGFR inhibitor resistance in head and neck squamous cell carcinoma patient-derived models.

    PubMed

    Ouyang, Xiaoming; Barling, Ashley; Lesch, Aletha; Tyner, Jeffrey W; Choonoo, Gabrielle; Zheng, Christina; Jeng, Sophia; West, Toni M; Clayburgh, Daniel; Courtneidge, Sara A; McWeeney, Shannon K; Kulesz-Martin, Molly

    2018-06-01

    Head and neck squamous cell carcinoma (HNSCC) currently only has one FDA-approved cancer intrinsic targeted therapy, the epidermal growth factor receptor (EGFR) inhibitor cetuximab, to which only approximately 10% of tumors are sensitive. In order to extend therapy options, we subjected patient-derived HNSCC cells to small-molecule inhibitor and siRNA screens, first, to find effective combination therapies with an EGFR inhibitor, and second, to determine a potential mechanistic basis for repurposing the FDA approved agents for HNSCC. The combinations of EGFR inhibitor with anaplastic lymphoma kinase (ALK) inhibitors demonstrated synergy at the highest ratio in our cohort, 4/8 HNSCC patients' derived tumor cells, and this corresponded with an effectiveness of siRNA targeting ALK combined with the EGFR inhibitor gefitinib. Co-targeting EGFR and ALK decreased HNSCC cell number and colony formation ability and increased annexin V staining. Because ALK expression is low and ALK fusions are infrequent in HNSCC, we hypothesized that gefitinib treatment could induce ALK expression. We show that ALK expression was induced in HNSCC patient-derived cells both in 2D and 3D patient-derived cell culture models, and in patient-derived xenografts in mice. Four different ALK inhibitors, including two (ceritinib and brigatinib) FDA approved for lung cancer, were effective in combination with gefitinib. Together, we identified induction of ALK by EGFR inhibitor as a novel mechanism potentially relevant to resistance to EGFR inhibitor, a high ratio of response of HNSCC patient-derived tumor cells to a combination of ALK and EGFR inhibitors, and applicability of repurposing ALK inhibitors to HNSCC that lack ALK aberrations.

  1. A study of therapy targeted EGFR/ALK mutations in Indian patients with lung adenocarcinoma: A clinical and epidemiological study.

    PubMed

    Rana, Vandana; Ranjan, Praveer; Jagani, Rajat; Rathi, K R; Kumar, Dharmesh; Khera, Anurag

    2018-04-01

    Established predictive biomarkers for Non-Small Cell Lung Carcinoma (NSCLC) include sensitizing Epidermal Growth Factor Receptor (EGFR) mutations and Anaplastic Lymphoma Kinase (ALK) fusion oncogene. The primary aim of the study is to ascertain the prevalence of EGFR mutation and ALK gene rearrangement in patients of lung adenocarcinoma in Indian population and the second objective is to impress upon the importance of adequate processing of limited tissue samples. Histopathologically confirmed cases of lung adenocarcinoma, whose tumour had been tested for both EGFR and ALK gene mutations, were included in this study. The EGFR mutations were analyzed using PCR and Gene Sequencing. ALK fusion oncogene was found by Fluorescence In Situ Hybridization (FISH) technique using kit of Vysis LSI ALK Dual colour Break Apart Rearrangement probe. A total of 152 cases of lung adenocarcinoma were included. Out of which, 92 (60.5%) were male and 60 (39.5%) were female. After exclusion of 17 cases due to unsatisfactory result, EGFR mutations were found positive in 35.5% cases (48/135). ALK gene rearrangement was found in 7.6% (10/131) after excluding 21 cases with unsatisfactory result. EGFR mutations and ALK gene rearrangement was found to be mutually exclusive. Incidence of EGFR mutations (35.5%) is much higher in Indian population than in Caucasians (13%) and is close to the incidence in East Asian countries. The 7.6% incidence of ALK fusion oncogene in Indian patients establishes the importance of molecular studies to give maximum benefit of targeted therapy to the patients.

  2. Inhibition of N-acetylglucosaminyltransferase V enhances the cetuximab-induced radiosensitivity of nasopharyngeal carcinoma cells likely through EGFR N-glycan alterations.

    PubMed

    Huang, Xiaomin; Liu, Ting; Wang, Qiongyao; Zhu, Weiliang; Meng, Hui; Guo, Linlang; Wei, Ting; Zhang, Jian

    2017-05-23

    N-acetylglucosaminyltransferase V (GnT-V), an enzyme that catalyses the formation of the N-linked β-1-6 branching of oligosaccharides, is related to the radiosensitivity of nasopharyngeal carcinoma (NPC). Cetuximab (C225) is an epidermal growth factor receptor (EGFR) inhibitor used as a radiosensitizer in the treatment of NPC. In this study, we used GnT-V as a molecular target to further sensitize cetuximab-treated NPC cells to radiation. The results from two NPC cell lines (CNE1 and CNE2) revealed that the silencing of GnT-V enhanced cetuximab-induced radiosensitivity by decreasing the β-1-6 branching of oligosaccharides on the EGFR. GnT-V down-regulation combined with cetuximab decreased the survival fraction, healing rate and cell viability and increased the apoptosis rate. Concomitantly, the combination of cetuximab and irradiation did not change the EGFR mRNA and protein levels and decreased the β-1-6 branching on the EGFR. Subsequently, we further explored the signalling downstream of EGF, particularly the PI3K/Akt signalling pathway, and discovered that treatment consisting of GnT-V down-regulation, irradiation and cetuximab was negatively correlated with phospho-Akt and phspho-PI3K. Finally, an in vivo experiment with radiotherapy revealed that the combination of GnT-V down-regulation and cetuximab decelerated tumour growth. In summary, our study demonstrated that the combination of decreased GnT-V activity and cetuximab enhanced NPC radiosensitivity, and the possible mechanism underlying this effect might involve the N-linked β1-6 branching of the EGFR. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Acquired Resistance Mechanisms to Combination Met-TKI/EGFR-TKI Exposure in Met-Amplified EGFR-TKI-Resistant Lung Adenocarcinoma Harboring an Activating EGFR Mutation.

    PubMed

    Yamaoka, Toshimitsu; Ohmori, Tohru; Ohba, Motoi; Arata, Satoru; Kishino, Yasunari; Murata, Yasunori; Kusumoto, Sojiro; Ishida, Hiroo; Shirai, Takao; Hirose, Takashi; Ohnishi, Tsukasa; Sasaki, Yasutsuna

    2016-12-01

    Met-amplified EGFR-tyrosine kinase inhibitor (TKI)-resistant non-small cell lung cancer (NSCLC) harboring an activating EGFR mutation is responsive to concurrent EGFR-TKI and Met-TKI treatment in a preclinical model. Here, we determined that Met-amplified gefitinib-resistant cells acquire dual resistance to inhibition of EGFR and Met tyrosine kinase activities. PC-9 lung adenocarcinoma cells harboring 15-bp deletions (Del E746_A750) in EGFR exon 19 were treated with increasing concentrations of the Met-TKI PHA665752 and 1 μmol/L gefitinib for 1 year; three resistant clones were established via Met amplification. The three dual-resistance cell lines (PC-9DR2, PC-9DR4, and PC-9DR6, designated as DR2, DR4, and DR6, respectively) exhibited different mechanisms for evading both EGFR and Met inhibition. None of the clones harbored a secondary mutation of EGFR T790M or a Met mutation. Insulin-like growth factor (IGF)/IGF1 receptor activation in DR2 and DR4 cells acted as a bypass signaling pathway. Met expression was attenuated to a greater extent in DR2 than in PC-9 cells, but was maintained in DR4 cells by overexpression of IGF-binding protein 3. In DR6 cells, Met was further amplified by association with HSP90, which protected Met from degradation and induced SET and MYND domain-containing 3 (SMYD3)-mediated Met transcription. This is the first report describing the acquisition of dual resistance mechanisms in NSCLC harboring an activating EGFR mutation to Met-TKI and EGFR-TKI following previous EGFR-TKI treatment. These results might inform the development of more effective therapeutic strategies for NSCLC treatment. Mol Cancer Ther; 15(12); 3040-54. ©2016 AACR. ©2016 American Association for Cancer Research.

  4. InsR/IGF1R pathway mediates resistance to EGFR inhibitors in glioblastoma

    PubMed Central

    Ma, Yufang; Tang, Nan; Thompson, Reid; Mobley, Bret C.; Clark, Steven W.; Sarkaria, Jann N.; Wang, Jialiang

    2015-01-01

    Purpose Aberrant activation of epidermal growth factor receptor (EGFR) is a hallmark of glioblastoma. However, EGFR inhibitors exhibit at best modest efficacy in glioblastoma. This is in sharp contrast to the observations in EGFR-mutant lung cancer. We examined whether activation of functionally redundant receptor tyrosine kinases (RTKs) conferred resistance to EGFR inhibitors in glioblastoma. Experimental Design We collected a panel of patient-derived glioblastoma xenograft (PDX) lines that maintained expression of wild type or mutant EGFR in serial xenotransplantation and tissue cultures. Using this physiologically relevant platform, we tested the abilities of several RTK ligands to protect glioblastoma cells against an EGFR inhibitor, gefitinib. Based on the screening results, we further developed a combination therapy co-targeting EGFR and insulin receptor (InsR)/insulin-like growth factor 1 receptor (IGF1R). Results Insulin and IGF1 induced significant protection against gefitinib in the majority of EGFR-dependent PDX lines with one exception that did not expression InsR or IGF1R. Blockade of the InsR/IGF1R pathway synergistically improved sensitivity to gefitinib or dacomitinib. Gefitinib alone effectively attenuated EGFR activities and the downstream MEK/ERK pathway. However, repression of AKT and induction of apoptosis required concurrent inhibition of both EGFR and InsR/IGF1R. A combination of gefitinib and OSI-906, a dual InsR/IGF1R inhibitor, was more effective than either agent alone to treat subcutaneous glioblastoma xenograft tumors. Conclusions Our results suggest that activation of the InsR/IGF1R pathway confers resistance to EGFR inhibitors in EGFR-dependent glioblastoma through AKT regulation. Concurrent blockade of these two pathways holds promise to treat EGFR-dependent glioblastoma. PMID:26561558

  5. In-silico evidences for binding of Glucokinase activators to EGFR C797S to overcome EGFR resistance obstacle with mutant-selective allosteric inhibition.

    PubMed

    Patel, Harun; Pawara, Rahul; Surana, Sanjay

    2018-03-29

    The tyrosine kinase inhibitors (TKI) against epidermal growth factor receptor (EGFR) are generally utilized as a part of patients with non-small cell lung carcinoma (NSCLC). However, EGFR T790M mutation results in resistance to most clinically available EGFR TKIs. Third-generation EGFR TKIs against the T790M mutation has been in active clinical development to triumph the resistance problem; they covalently bind with conserved Cys797 inside the EGFR active site, offering both potency and kinase-selectivity. Third generation drugs target C797, which makes the C797S resistance mutation more subtle. EGFR C797S mutation was accounted to be a main mechanism of resistance to the third-generation inhibitors. The C797S mutation gives off an impression of being an ideal target for conquering the acquired resistance to the third generation inhibitors. We have performed structure based-virtual screening strategies for binding of glucokinase activator to EGFR C797S, which can overcome EGFR resistance impediment with mutant-selective allosteric inhibition towards all kinds of mutant EGFR (T790M, L858R, TMLR) and WT EGFR. The final filter of Lipinski's Rule of Five, Jargan's Rule of Three and in silico ADME predictions gave 23 hits, which conform to Lipinski's rule and Jorgensen's rule and all their pharmacokinetic parameters are inside the appropriate range characterized for human use, in this manner demonstrating their potential as a drug-like molecule. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Aliphatic acetogenin constituents of avocado fruits inhibit human oral cancer cell proliferation by targeting the EGFR/RAS/RAF/MEK/ERK1/2 pathway

    PubMed Central

    D’Ambrosio, Steven M.; Han, Chunhua; Pan, Li; Kinghorn, A. Douglas; Ding, Haiming

    2011-01-01

    Avocado (Persea americana) fruits are consumed as part of the human diet and extracts have shown growth inhibitory effects in various types of human cancer cells, although the effectiveness of individual components and their underlying mechanism are poorly understood. Using activity-guided fractionation of the flesh of avocado fruits, a chloroform-soluble extract (D003), was identified that exhibited high efficacy towards premalignant and malignant human oral cancer cell lines. From this extract, two aliphatic acetogenins of previously known structure were isolated, compounds 1 [(2S,4S)-2,4-dihydroxyheptadec-16-enyl acetate] and 2 [(2S,4S)-2,4-dihydroxyheptadec-16-ynyl acetate]. In this study, we show for the first time that the growth inhibitory efficacy of this chloroform extract is due to blocking the phosphorylation of EGFR (Tyr1173), c-RAF (Ser338), and ERK1/2 (Thr202/Tyr204) in the EGFR/RAS/RAF/MEK/ERK1/2 cancer pathway. Compound 1 and 2 both inhibited phosphorylation of c-RAF (Ser338) and ERK1/2 (Thr202/Tyr204). Compound 2, but not compound 1, prevented EGF-induced activation of EGFR (Tyr1173). When compounds 1 and 2 were combined they synergistically inhibited c-RAF (Ser338) and ERK1/2 (Thr202/Tyr204) phosphorylation, and human oral cancer cell proliferation. The present data suggest that the potential anticancer activity of avocado fruits is due to a combination of specific aliphatic acetogenins that target two key components of the EGFR/RAS/RAF/MEK/ERK1/2 cancer pathway. PMID:21596018

  7. Sulforaphane attenuates EGFR signaling in NSCLC cells.

    PubMed

    Chen, Chi-Yuan; Yu, Zhu-Yun; Chuang, Yen-Shu; Huang, Rui-Mei; Wang, Tzu-Chien V

    2015-06-03

    EGFR, a receptor tyrosine kinase (RTK), is frequently overexpressed and mutated in non-small cell lung cancer (NSCLC). Tyrosine kinase inhibitors (TKIs) have been widely used in the treatment of many cancers, including NSCLC. However, intrinsic and acquired resistance to TKI remains a common obstacle. One strategy that may help overcome EGFR-TKI resistance is to target EGFR for degradation. As EGFR is a client protein of heat-shock protein 90 (HSP90) and sulforaphane is known to functionally regulate HSP90, we hypothesized that sulforaphane could attenuate EGFR-related signaling and potentially be used to treat NSCLC. Our study revealed that sulforaphane displayed antitumor activity against NSCLC cells both in vitro and in vivo. The sensitivity of NSCLC cells to sulforaphane appeared to positively correlate with the inhibition of EGFR-related signaling, which was attributed to the increased proteasomal degradation of EGFR. Combined treatment of NSCLC cells with sulforaphane plus another HSP90 inhibitor (17-AAG) enhanced the inhibition of EGFR-related signaling both in vitro and in vivo. We have shown that sulforaphane is a novel inhibitory modulator of EGFR expression and is effective in inhibiting the tumor growth of EGFR-TKI-resistant NSCLC cells. Our findings suggest that sulforaphane should be further explored for its potential clinical applications against NSCLC.

  8. Targeted sequencing identifies genetic alterations that confer primary resistance to EGFR tyrosine kinase inhibitor (Korean Lung Cancer Consortium).

    PubMed

    Lim, Sun Min; Kim, Hye Ryun; Cho, Eun Kyung; Min, Young Joo; Ahn, Jin Seok; Ahn, Myung-Ju; Park, Keunchil; Cho, Byoung Chul; Lee, Ji-Hyun; Jeong, Hye Cheol; Kim, Eun Kyung; Kim, Joo-Hang

    2016-06-14

    Non-small-cell lung cancer (NSCLC) patients with activating epidermal growth factor receptor (EGFR) mutations may exhibit primary resistance to EGFR tyrosine kinase inhibitor (TKI). We aimed to examine genomic alterations associated with de novo resistance to gefitinib in a prospective study of NSCLC patients. One-hundred and fifty two patients with activating EGFR mutations were included in this study and 136 patients' tumor sample were available for targeted sequencing of genomic alterations in 22 genes using the Colon and Lung Cancer panel (Ampliseq, Life Technologies). All 132 patients with EGFR mutation were treated with gefitinib for their treatment of advanced NSCLC. Twenty patients showed primary resistance to EGFR TKI, and were classified as non-responders. A total of 543 somatic single-nucleotide variants (498 missense, 13 nonsense) and 32 frameshift insertions/deletions, with a median of 3 mutations per sample. TP53 was most commonly mutated (47%) and mutations in SMAD4 was also common (19%), as well as DDR2 (16%), PIK3CA (15%), STK11 (14%), and BRAF (7%). Genomic mutations in the PI3K/Akt/mTOR pathway were commonly found in non-responders (45%) compared to responders (27%), and they had significantly shorter progression-free survival and overall survival compared to patients without mutations (2.1 vs. 12.8 months, P=0.04, 15.7 vs. not reached, P<0.001). FGFR 1-3 alterations, KRAS mutations and TP53 mutations were more commonly detected in non-responders compared to responders. Genomic mutations in the PI3K/Akt/mTOR pathway were commonly identified in non-responders and may confer resistance to EGFR TKI. Screening lung adenocarcinoma patients with clinical cancer gene test may aid in selecting out those who show primary resistance to EGFR TKI (NCT01697163).

  9. TUSC2(FUS1)-erlotinib Induced Vulnerabilities in Epidermal Growth Factor Receptor(EGFR) Wildtype Non-small Cell Lung Cancer(NSCLC) Targeted by the Repurposed Drug Auranofin.

    PubMed

    Xiaobo, Cao; Majidi, Mourad; Feng, Meng; Shao, Ruping; Wang, Jing; Zhao, Yang; Baladandayuthapani, Veerabhadran; Song, Juhee; Fang, Bingliang; Ji, Lin; Mehran, Reza; Roth, Jack A

    2016-11-15

    Expression of the TUSC2/FUS1 tumor suppressor gene in TUSC2 deficient EGFR wildtype lung cancer cells increased sensitivity to erlotinib. Microarray mRNA expression analysis of TUSC2 inducible lung cancer cells treated with erlotinib uncovered defects in the response to oxidative stress suggesting that increasing reactive oxygen species (ROS) would enhance therapeutic efficacy. Addition of the thioredoxin reductase 1 inhibitor (TXNRD1) auranofin (AF) to NSCLC cells treated with combination of TUSC2 forced expression with erlotinib increased tumor cell apoptosis and inhibited colony formation. TXNRD1 overexpression rescued tumors from AF-TUSC2-erlotinib induced apoptosis. Neutralizing ROS with nordihydroguaiaretic acid (NDGA) abrogated cell death induced by AF-TUSC2-erlotinib, indicating a regulatory role for ROS in the efficacy of the three drug combination. Isobologram-based statistical analysis of this combination demonstrated superior synergism, compared with each individual treatment at lower concentrations. In NSCLC tumor xenografts, tumor growth was markedly inhibited and animal survival was prolonged over controls by AF-TUSC2-erlotinib. Microarray mRNA expression analysis uncovered oxidative stress and DNA damage gene signatures significantly upregulated by AF-TUSC2-erlotinib compared to TUSC2-erlotinib. Pathway analysis showed the highest positive z-score for the NRF2-mediated oxidative stress response. Taken together these findings show that the combination of TUSC2-erlotinib induces additional novel vulnerabilities that can be targeted with AF.

  10. Osimertinib, a third-generation tyrosine kinase inhibitor targeting non-small cell lung cancer with EGFR T790M mutations.

    PubMed

    McCoach, C E; Jimeno, A

    2016-10-01

    Oncogenic driver mutations in the epidermal growth factor receptor (EGFR) gene have provided a focus for effective targeted therapy. Unfortunately, all patients eventually develop resistance to frontline therapy with EGFR tyrosine kinase inhibitors (TKIs). The majority of patients develop a large subclonal population of tumor cells with a T790M mutation that renders these cells resistant to first-generation TKIs. Osimertinib is a third-generation EGFR TKI that was designed to overcome resistance from T790M mutations. This agent has demonstrated strong preclinical activity, and in the clinic it has demonstrated a high objective response rate and progression-free survival in patients with EGFR double mutations (L858R/T790M and exon 19 deletion/T790M). It is now approved by the FDA for patients who have a documented T790M mutation and who have progressed on a prior TKI. Osimertinib is also approved in the E.U. and Japan. Copyright 2016 Prous Science, S.A.U. or its licensors. All rights reserved.

  11. Cancer stem cell-like population is preferentially suppressed by EGFR-TKIs in EGFR-mutated PC-9 tumor models.

    PubMed

    Yang, Fan; Li, Yang; Liu, Bin; You, Jiacong; Zhou, Qinghua

    2018-01-01

    Although the epidermal growth factor receptor (EGFR) and Wnt/β-catenin signaling systems synergistically regulate many essential developmental and regenerative processes in lung cancer, the mechanisms of their crosstalk remain poorly defined. Our study aimed to investigate an interaction between EGFR and the β-catenin signal. In this study, we described a potent activation of β-catenin by EGFR, which is dependent of the PtdIns3K/AKT pathway. We found EGF activated β-catenin signaling via phosphorylation of EGFR and AKT in EGFR-mutated PC-9 lung cancer cells. Meanwhile, EGFR tyrosine kinase inhibitors (EGFR-TKIs) regulated cancer stem-like cells (CSCs) by inhibiting autophosphorylation of EGFR and downstream signaling proteins, as well as β-catenin. Further, β-catenin depletion by RNA interference virtually eliminated cancer stem cell-like population in PC-9 cells in vitro. The nude mice transplantation model was also performed to confirm EGFR-TKIs strongly inhibited the β-catenin signal and decreased CSCs. Importantly, the reduction of CSCs that sorted out by side population (SP) cells significantly reduced the migration capability. Thus, our results improved the understanding of this process to provide insights into mechanisms of responding to EGFR-TKIs. Our discoveries raise an intriguing question of the role of β-catenin in EGFR-TKIs-treated cancer stem cell-like population(s) and its potential as a new therapeutic target for NSCLC in the future. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. NOX4 mediates cytoprotective autophagy induced by the EGFR inhibitor erlotinib in head and neck cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sobhakumari, Arya; Department of Pathology, The University of Iowa, Iowa City, IA; Schickling, Brandon M.

    2013-11-01

    Most head and neck squamous cell carcinomas (HNSCCs) overexpress epidermal growth factor receptor (EGFR) and EGFR inhibitors are routinely used in the treatment of HNSCC. However, many HNSCC tumors do not respond or become refractory to EGFR inhibitors. Autophagy, which is a stress-induced cellular self-degradation process, has been reported to reduce the efficacy of chemotherapy in various disease models. The purpose of this study is to determine if the efficacy of the EGFR inhibitor erlotinib is reduced by activation of autophagy via NOX4-mediated oxidative stress in HNSCC cells. Erlotinib induced the expression of the autophagy marker LC3B-II and autophagosome formationmore » in FaDu and Cal-27 cells. Inhibition of autophagy by chloroquine and knockdown of autophagy pathway genes Beclin-1 and Atg5 sensitized both cell lines to erlotinib-induced cytotoxicity, suggesting that autophagy may serve as a protective mechanism. Treatment with catalase (CAT) and diphenylene iodonium (DPI) in the presence of erlotinib suppressed the increase in LC3B-II expression in FaDu and Cal-27 cells. Erlotinib increased NOX4 mRNA and protein expression by increasing its promoter activity and mRNA stability in FaDu cells. Knockdown of NOX4 using adenoviral siNOX4 partially suppressed erlotinib-induced LC3B-II expression, while overexpression of NOX4 increased expression of LC3B-II. These studies suggest that erlotinib may activate autophagy in HNSCC cells as a pro-survival mechanism, and NOX4 may play a role in mediating this effect. - Highlights: • Erlotinib increased LC3B-II and autophagosome formation in HNSCC cells. • Inhibition of autophagy sensitized HNSCC cells to erlotinib. • Erlotinib increased NOX4 promoter and 3′UTR luciferase activity. • Manipulating NOX4 decreases or increases autophagy.« less

  13. Graphene-induced apoptosis in lung epithelial cells through EGFR

    NASA Astrophysics Data System (ADS)

    Tsai, Shih-Ming; Bangalore, Preeti; Chen, Eric Y.; Lu, David; Chiu, Meng-Hsuen; Suh, Andrew; Gehring, Matthew; Cangco, John P.; Garcia, Santiago G.; Chin, Wei-Chun

    2017-07-01

    Expanding interest in nanotechnology applied to electronic and biomedical fields has led to fast-growing development of various nanomaterials. Graphene is a single-atom thick, two-dimensional sheet of hexagonally arranged carbon atoms with unique physical and chemical properties. Recently, graphene has been used in many studies on electronics, photonics, composite materials, energy generation and storage, sensors, and biomedicine. However, the current health risk assessment for graphene has been relatively limited and inconclusive. This study evaluated the toxicity effects of graphene on the airway epithelial cell line BEAS-2B, which represents the first barrier of the human body to interact with airborne graphene particles. Our result showed that graphene can induce the cellular Ca2+ by phospholipase C (PLC) associated pathway by activating epidermal growth factor receptor (EGFR). Subsequently, inositol 1,4,5-triphosphate (IP3) receptors activate the release of Ca2+ from the endoplasmic reticulum (ER) Ca2+ stores. Those Ca2+ signals further trigger the calcium-regulated apoptosis in the cell. Furthermore, the stimulation can cause EGFR upregulation, which have been demonstrated to associate with diseases such as lung cancer, chronic obstructive pulmonary disease (COPD), and cardiovascular diseases. This study highlights the additional health risk considering that it can function as a contributing factor for other respiratory diseases.

  14. Epidermal Growth Factor Receptor (EGFR) Kinase Inhibitors and Non-Small Cell Lung Cancer (NSCLC) - Advances in Molecular Diagnostic Techniques to Facilitate Targeted Therapy.

    PubMed

    Ghafoor, Qamar; Baijal, Shobhit; Taniere, Phillipe; O'Sullivan, Brendan; Evans, Matthew; Middleton, Gary

    2017-12-21

    A subset of patients with non-small cell lung cancer (NSCLC) respond well to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR TKIs), due to the presence of sensitising mutations in the gene encoding EGFR. Mutations associated with resistance to first generation EGFR TKIs have also been identified, which lead to therapeutic failure and the requirement for new drugs. Three generations of EGFR TKIs have been developed and either have been, or are being, evaluated as first and/or second line therapeutic agents. In this review, we consider the advances in molecular diagnostic techniques that are used, or are in development, to facilitate the targeted EGFR TKI therapy of patients with NSCLC. A literature search was conducted in May 2017 using PubMed, and spanning the period September 2005 (EU approval date of erlotinib) to May 2017. Search terms used were: EGFR TKI, NSCLC, clinical trial, erlotinib, gefitinib, afatinib, EGFR mutations, Exon 19 deletion, and Leu858Arg. The use of molecular data, in conjunction with other clinical and diagnostic information, will assist physicians to make the best therapeutic choice for each patient with advanced NSCLC. Personalized medicine and a rapidly developing therapy landscape will enable these patients to achieve optimal responses to EGFR TKIs.

  15. Differential signaling and regulation of apical vs. basolateral EGFR in polarized epithelial cells.

    PubMed

    Kuwada, S K; Lund, K A; Li, X F; Cliften, P; Amsler, K; Opresko, L K; Wiley, H S

    1998-12-01

    Overexpression of the epidermal growth factor receptors (EGFR) in polarized kidney epithelial cells caused them to appear in high numbers at both the basolateral and apical cell surfaces. We utilized these cells to look for differences in the regulation and signaling of apical vs. basolateral EGFR. Apical and basolateral EGFR were biologically active and mediated EGF-induced cell proliferation to similar degrees. Receptor downregulation and endocytosis were less efficient at the apical surface, resulting in prolonged EGF-induced tyrosine kinase activity at the apical cell membrane. Tyrosine phosphorylation of EGFR substrates known to mediate cell proliferation, Src-homologous and collagen protein (SHC), extracellularly regulated kinase 1 (ERK1), and ERK2 could be induced similarly by activation of apical or basolateral EGFR. Focal adhesion kinase was tyrosine phosphorylated more by basolateral than by apical EGFR; however, beta-catenin was tyrosine phosphorylated to a much greater degree following the activation of mislocalized apical EGFR. Thus EGFR regulation and EGFR-mediated phosphorylation of certain substrates differ at the apical and basolateral cell membrane domains. This suggests that EGFR mislocalization could result in abnormal signal transduction and aberrant cell behavior.

  16. Prevention of Bronchial Hyperplasia by EGFR Pathway Inhibitors in an Organotypic Culture Model

    PubMed Central

    Lee, Jangsoon; Ryu, Seung-Hee; Kang, Shin Myung; Chung, Wen-Cheng; Gold, Kathryn Ann; Kim, Edward S.; Hittelman, Walter N.; Hong, Waun Ki; Koo, Ja Seok

    2011-01-01

    Lung cancer is the leading cause of cancer-related mortality worldwide. Early detection or prevention strategies are urgently needed to increase survival. Hyperplasia is the first morphologic change that occurs in the bronchial epithelium during lung cancer development, followed by squamous metaplasia, dysplasia, carcinoma in situ, and invasive tumor. The current study was designed to determine the molecular mechanisms that control bronchial epithelium hyperplasia. Using primary normal human tracheobronchial epithelial (NHTBE) cells cultured using the 3-dimensional organotypic method, we found that the epidermal growth factor receptor (EGFR) ligands EGF, transforming growth factor-alpha, and amphiregulin induced hyperplasia, as determined by cell proliferation and multilayered epithelium formation. We also found that EGF induced increased cyclin D1 expression, which plays a critical role in bronchial hyperplasia; this overexpression was mediated by activating the mitogen-activated protein kinase pathway but not the phosphoinositide 3-kinase/Akt signaling pathway. Erlotinib, an EGFR tyrosine kinase inhibitor, and U0126, a MEK inhibitor, completely inhibited EGF-induced hyperplasia. Furthermore, a promoter analysis revealed that the activator protein-1 transcription factor regulates EGF-induced cyclin D1 overexpression. Activator protein-1 depletion using siRNA targeting its c-Jun component completely abrogated EGF-induced cyclin D1 expression. In conclusion, we demonstrated that bronchial hyperplasia can be modeled in vitro using primary NHTBE cells maintained in a 3-dimensional (3-D) organotypic culture. EGFR and MEK inhibitors completely blocked EGF-induced bronchial hyperplasia, suggesting that they have a chemopreventive role. PMID:21505178

  17. Are EGFR tyrosine kinase inhibitors effective in elderly patients with EGFR-mutated non-small cell lung cancer?

    PubMed

    Roviello, Giandomenico; Zanotti, Laura; Cappelletti, Maria Rosa; Gobbi, Angela; Dester, Martina; Paganini, Giovanni; Pacifico, Chiara; Generali, Daniele; Roudi, Raheleh

    2018-02-01

    EGFR tyrosine kinase inhibitors (TKIs) such as erlotinib, gefitinib, and afatinib changed dramatically the history of metastatic non-small cell lung cancer (NSCLC) harbouring EGFR mutations. However, not enough data are available on the efficacy of these targeted drugs in elderly patients. The aim of this study is to analyse the available clinical data evaluating the efficacy of anti-EGFR therapies in elderly patients with advanced NSCLC carrying EGFR mutations. A literature-based meta-analysis of the results of randomized clinical trials was undertaken. Relevant publications from PubMed, the Cochrane Library, and abstracts from American Society of Clinical Oncology meetings were searched. Progression-free survival (PFS), as a measure of the efficacy of treatment, was the primary outcome investigated. The pooled analysis revealed an overall significant improvement in PFS (HR = 0.44, 95% CI 0.28-0.69; p = 0.0004) with the use of EGFR TKIs in EGFR-mutated NSCLC. The data stratification per age subgroups showed that EGFR TKIs were more effective in prolonging PFS in elderly patients, with HR 0.39 (p = 0.008), in comparison with young patients (HR = 0.48; p = 0.04). The results of this study suggest that EGFR TKIs have a significant effect in slowing down diseases progression in elderly patients with advanced NSCLC, therefore representing a valid therapeutic option in this age group.

  18. Biomarkers that currently affect clinical practice: EGFR, ALK, MET, KRAS

    PubMed Central

    Vincent, M.D.; Kuruvilla, M.S.; Leighl, N.B.; Kamel–Reid, S.

    2012-01-01

    New drugs such as pemetrexed, the epidermal growth factor receptor (egfr) tyrosine kinase inhibitors, and the Alk inhibitor crizotinib have recently enabled progress in the management of advanced non-small-cell lung cancer (nsclc). More drugs, especially Met inhibitors, will follow. However, the benefits of these agents are not uniform across the spectrum of nsclc, and optimizing their utility requires some degree of subgrouping of nsclc by the presence or absence of certain biomarkers. The biomarkers of current or imminent value are EGFR and KRAS mutational status, ALK rearrangements, and MET immunohistochemistry. As a predictor of benefit for anti-egfr monoclonal antibodies, EGFR immunohistochemistry is also of potential interest. Some of the foregoing biomarkers (EGFR, ALK, MET) are direct drivers of the malignant phenotype. As such, they are, quite rationally, the direct targets of inhibitory drugs. However, KRAS, while definitely a driver, has resisted attempts at direct pharmacologic manipulation, and its main value might lie in its role as part of an efficient testing algorithm, because KRAS mutations appear to exclude EGFR and ALK mutations. The indirect value of KRAS in determining sensitivity to other targeted agents or to pemetrexed remains controversial. The other biomarkers (EGFR, ALK, MET) may also have indirect value as predictors of sensitivity to chemotherapy in general, to pemetrexed specifically, and to radiotherapy and molecularly targeted agents. These biomarkers have all enabled the co-development of new drugs with companion diagnostics, and they illustrate the paradigm that will govern progress in oncology in the immediate future. However, in nsclc, the acquisition of sufficient biopsy material remains a stubborn obstacle to the evolution of novel targeted therapies. PMID:22787409

  19. Selective growth inhibition of human breast cancer cells by graviola fruit extract in vitro and in vivo involving downregulation of EGFR expression.

    PubMed

    Dai, Yumin; Hogan, Shelly; Schmelz, Eva M; Ju, Young H; Canning, Corene; Zhou, Kequan

    2011-01-01

    The epidermal growth factor receptor (EGFR) is an oncogene frequently overexpressed in breast cancer (BC), and its overexpression has been associated with poor prognosis and drug resistance. EGFR is therefore a rational target for BC therapy development. This study demonstrated that a graviola fruit extract (GFE) significantly downregulated EGFR gene expression and inhibited the growth of BC cells and xenografts. GFE selectively inhibited the growth of EGFR-overexpressing human BC (MDA-MB-468) cells (IC(50) = 4.8 μg/ml) but had no effect on nontumorigenic human breast epithelial cells (MCF-10A). GFE significantly downregulated EGFR mRNA expression, arrested cell cycle in the G0/G1 phase, and induced apoptosis in MDA-MB-468 cells. In the mouse xenograft model, a 5-wk dietary treatment of GFE (200 mg/kg diet) significantly reduced the protein expression of EGFR, p-EGFR, and p-ERK in MDA-MB-468 tumors by 56%, 54%, and 32.5%, respectively. Overall, dietary GFE inhibited tumor growth, as measured by wet weight, by 32% (P < 0.01). These data showed that dietary GFE induced significant growth inhibition of MDA-MB-468 cells in vitro and in vivo through a mechanism involving the EGFR/ERK signaling pathway, suggesting that GFE may have a protective effect for women against EGFR-overexpressing BC.

  20. CoGAPS matrix factorization algorithm identifies transcriptional changes in AP-2alpha target genes in feedback from therapeutic inhibition of the EGFR network

    PubMed Central

    Thakar, Manjusha; Howard, Jason D.; Kagohara, Luciane T.; Krigsfeld, Gabriel; Ranaweera, Ruchira S.; Hughes, Robert M.; Perez, Jimena; Jones, Siân; Favorov, Alexander V.; Carey, Jacob; Stein-O'Brien, Genevieve; Gaykalova, Daria A.; Ochs, Michael F.; Chung, Christine H.

    2016-01-01

    Patients with oncogene driven tumors are treated with targeted therapeutics including EGFR inhibitors. Genomic data from The Cancer Genome Atlas (TCGA) demonstrates molecular alterations to EGFR, MAPK, and PI3K pathways in previously untreated tumors. Therefore, this study uses bioinformatics algorithms to delineate interactions resulting from EGFR inhibitor use in cancer cells with these genetic alterations. We modify the HaCaT keratinocyte cell line model to simulate cancer cells with constitutive activation of EGFR, HRAS, and PI3K in a controlled genetic background. We then measure gene expression after treating modified HaCaT cells with gefitinib, afatinib, and cetuximab. The CoGAPS algorithm distinguishes a gene expression signature associated with the anticipated silencing of the EGFR network. It also infers a feedback signature with EGFR gene expression itself increasing in cells that are responsive to EGFR inhibitors. This feedback signature has increased expression of several growth factor receptors regulated by the AP-2 family of transcription factors. The gene expression signatures for AP-2alpha are further correlated with sensitivity to cetuximab treatment in HNSCC cell lines and changes in EGFR expression in HNSCC tumors with low CDKN2A gene expression. In addition, the AP-2alpha gene expression signatures are also associated with inhibition of MEK, PI3K, and mTOR pathways in the Library of Integrated Network-Based Cellular Signatures (LINCS) data. These results suggest that AP-2 transcription factors are activated as feedback from EGFR network inhibition and may mediate EGFR inhibitor resistance. PMID:27650546

  1. Tyrosine kinase receptor EGFR regulates the switch in cancer cells between cell survival and cell death induced by autophagy in hypoxia.

    PubMed

    Chen, Yongqiang; Henson, Elizabeth S; Xiao, Wenyan; Huang, Daniel; McMillan-Ward, Eileen M; Israels, Sara J; Gibson, Spencer B

    2016-06-02

    Autophagy is an intracellular lysosomal degradation pathway where its primary function is to allow cells to survive under stressful conditions. Autophagy is, however, a double-edge sword that can either promote cell survival or cell death. In cancer, hypoxic regions contribute to poor prognosis due to the ability of cancer cells to adapt to hypoxia in part through autophagy. In contrast, autophagy could contribute to hypoxia induced cell death in cancer cells. In this study, we showed that autophagy increased during hypoxia. At 4 h of hypoxia, autophagy promoted cell survival whereas, after 48 h of hypoxia, autophagy increased cell death. Furthermore, we found that the tyrosine phosphorylation of EGFR (epidermal growth factor receptor) decreased after 16 h in hypoxia. Furthermore, EGFR binding to BECN1 in hypoxia was significantly higher at 4 h compared to 72 h. Knocking down or inhibiting EGFR resulted in an increase in autophagy contributing to increased cell death under hypoxia. In contrast, when EGFR was reactivated by the addition of EGF, the level of autophagy was reduced which led to decreased cell death. Hypoxia led to autophagic degradation of the lipid raft protein CAV1 (caveolin 1) that is known to bind and activate EGFR in a ligand-independent manner during hypoxia. By knocking down CAV1, the amount of EGFR phosphorylation was decreased in hypoxia and amount of autophagy and cell death increased. This indicates that the activation of EGFR plays a critical role in the switch between cell survival and cell death induced by autophagy in hypoxia.

  2. Aliphatic acetogenin constituents of avocado fruits inhibit human oral cancer cell proliferation by targeting the EGFR/RAS/RAF/MEK/ERK1/2 pathway.

    PubMed

    D'Ambrosio, Steven M; Han, Chunhua; Pan, Li; Kinghorn, A Douglas; Ding, Haiming

    2011-06-10

    Avocado (Persea americana) fruits are consumed as part of the human diet and extracts have shown growth inhibitory effects in various types of human cancer cells, although the effectiveness of individual components and their underlying mechanism are poorly understood. Using activity-guided fractionation of the flesh of avocado fruits, a chloroform-soluble extract (D003) was identified that exhibited high efficacy towards premalignant and malignant human oral cancer cell lines. From this extract, two aliphatic acetogenins of previously known structure were isolated, compounds 1 [(2S,4S)-2,4-dihydroxyheptadec-16-enyl acetate] and 2 [(2S,4S)-2,4-dihydroxyheptadec-16-ynyl acetate]. In this study, we show for the first time that the growth inhibitory efficacy of this chloroform extract is due to blocking the phosphorylation of EGFR (Tyr1173), c-RAF (Ser338), and ERK1/2 (Thr202/Tyr204) in the EGFR/RAS/RAF/MEK/ERK1/2 cancer pathway. Compounds 1 and 2 both inhibited phosphorylation of c-RAF (Ser338) and ERK1/2 (Thr202/Tyr204). Compound 2, but not compound 1, prevented EGF-induced activation of the EGFR (Tyr1173). When compounds 1 and 2 were combined they synergistically inhibited c-RAF (Ser338) and ERK1/2 (Thr202/Tyr204) phosphorylation, and human oral cancer cell proliferation. The present data suggest that the potential anticancer activity of avocado fruits is due to a combination of specific aliphatic acetogenins that target two key components of the EGFR/RAS/RAF/MEK/ERK1/2 cancer pathway. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Novel agents that downregulate EGFR, HER2, and HER3 in parallel

    PubMed Central

    Ferreira, Renan Barroso; Law, Mary Elizabeth; Jahn, Stephan Christopher; Davis, Bradley John; Heldermon, Coy Don; Reinhard, Mary; Castellano, Ronald Keith; Law, Brian Keith

    2015-01-01

    EGFR, HER2, and HER3 contribute to the initiation and progression of human cancers, and are therapeutic targets for monoclonal antibodies and tyrosine kinase inhibitors. An important source of resistance to these agents arises from functional redundancy among EGFR, HER2, and HER3. EGFR family members contain conserved extracellular structures that are stabilized by disulfide bonds. Compounds that disrupt extracellular disulfide bonds could inactivate EGFR, HER2, and HER3 in unison. Here we describe the identification of compounds that kill breast cancer cells that overexpress EGFR or HER2. Cell death parallels downregulation of EGFR, HER2, and HER3. These compounds disrupt disulfide bonds and are termed Disulfide Bond Disrupting Agents (DDAs). DDA RBF3 exhibits anticancer efficacy in vivo at 40 mg/kg without evidence of toxicity. DDAs may complement existing EGFR-, HER2-, and HER3-targeted agents that function through alternate mechanisms of action, and combination regimens with these existing drugs may overcome therapeutic resistance. PMID:25865227

  4. DNA methylation down-regulates EGFR expression in chicken

    USDA-ARS?s Scientific Manuscript database

    The epidermal growth factor receptor (EGFR), a growth-factor-receptor tyrosine kinase, was found up-regulated in numerous tumors, which provides a good target for cancer therapy. Although it was documented that oncoviruses are responsible for the activation of EGFR in tumors, the impact of Marek’s d...

  5. egr-4, a target of EGFR signaling, is required for the formation of the brain primordia and head regeneration in planarians.

    PubMed

    Fraguas, Susanna; Barberán, Sara; Iglesias, Marta; Rodríguez-Esteban, Gustavo; Cebrià, Francesc

    2014-05-01

    During the regeneration of freshwater planarians, polarity and patterning programs play essential roles in determining whether a head or a tail regenerates at anterior or posterior-facing wounds. This decision is made very soon after amputation. The pivotal role of the Wnt/β-catenin and Hh signaling pathways in re-establishing anterior-posterior (AP) polarity has been well documented. However, the mechanisms that control the growth and differentiation of the blastema in accordance with its AP identity are less well understood. Previous studies have described a role of Smed-egfr-3, a planarian epidermal growth factor receptor, in blastema growth and differentiation. Here, we identify Smed-egr-4, a zinc-finger transcription factor belonging to the early growth response gene family, as a putative downstream target of Smed-egfr-3. Smed-egr-4 is mainly expressed in the central nervous system and its silencing inhibits anterior regeneration without affecting the regeneration of posterior regions. Single and combinatorial RNA interference to target different elements of the Wnt/β-catenin pathway, together with expression analysis of brain- and anterior-specific markers, revealed that Smed-egr-4: (1) is expressed in two phases - an early Smed-egfr-3-independent phase and a late Smed-egfr-3-dependent phase; (2) is necessary for the differentiation of the brain primordia in the early stages of regeneration; and (3) that it appears to antagonize the activity of the Wnt/β-catenin pathway to allow head regeneration. These results suggest that a conserved EGFR/egr pathway plays an important role in cell differentiation during planarian regeneration and indicate an association between early brain differentiation and the proper progression of head regeneration.

  6. Role of Epidermal Growth Factor Receptor (EGFR) Inhibitors and Radiation in the Management of Brain Metastases from EGFR Mutant Lung Cancers.

    PubMed

    Khandekar, Melin J; Piotrowska, Zofia; Willers, Henning; Sequist, Lecia V

    2018-04-27

    The growth of genotype-directed targeted therapies, such as inhibitors of the epidermal growth factor receptor (EGFR), has revolutionized treatment for some patients with oncogene-addicted lung cancer. However, as systemic control for these patients has improved, brain metastases remain an important source of morbidity and mortality. Traditional treatment for brain metastases has been radiotherapy, either whole-brain radiation or stereotactic radiosurgery. The growing availability of drugs that can cross the blood-brain barrier and have activity in the central nervous system (CNS) has led to many studies investigating whether targeted therapy can be used in combination with or in lieu of radiation. In this review, we summarize the key literature about the incidence and nature of EGFR-mutant brain metastases (EGFR BMs), the data about the activity of EGFR inhibitors in the CNS, and whether they can be used as front-line therapy for brain metastases. Although initial use of tyrosine kinase inhibitors for EGFR BMs can often be an effective treatment strategy, multidisciplinary evaluation is critical, and prospective studies are needed to clarify which patients may benefit from early radiotherapy. Management of brain metastases in epidermal growth factor receptor (EGFR) mutant lung cancer is a common clinical problem. The question of whether to start initial therapy with an EGFR inhibitor or radiotherapy (either whole-brain radiotherapy or stereotactic radiosurgery) is controversial. The development of novel EGFR inhibitors with enhanced central nervous system (CNS) penetration is an important advance in the treatment of CNS disease. Multidisciplinary evaluation and evaluation of extracranial disease status are critical to choosing the best treatment option for each patient. © AlphaMed Press 2018.

  7. Cellular Plasticity and Heterogeneity of EGFR Mutant Lung Cancer

    DTIC Science & Technology

    2015-09-01

    AWARD NUMBER: W81XWH-14-1-0177 TITLE: Cellular Plasticity and Heterogeneity of EGFR Mutant Lung Cancer PRINCIPAL INVESTIGATOR: Katerina Politi...CONTRACT NUMBER Cellular Plasticity and Heterogeneity of EGFR Mutant Lung Cancer 5b. GRANT NUMBER W81XWH-14-1-0177 5c. PROGRAM ELEMENT NUMBER 6...Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Phenotypic changes have been observed in EGFR mutant lung cancers that become resistant to targeted

  8. Targeting Nuclear EGFR: Strategies for Improving Cetuximab Therapy in Lung Cancer

    DTIC Science & Technology

    2015-12-01

    xenograft models to determine if, in vivo, SFK or AKT inhibition can block EGFR translocation to the nucleus leading to increased membrane expression...resistant NSCLC tumors using mouse xenografts . Mice bearing resistant tumors will be treated with 1) vehicle, 2) cetuximab, 3) dasatinib, 4) MK2206...phosphorylation of Y1101 and EGFR dimerization with HER3 leading to nuclear translocation. Key Research Accomplishments for Aim 2: • In vivo xenograft tumors

  9. Antitumor Activity of Osimertinib, an Irreversible Mutant-Selective EGFR Tyrosine Kinase Inhibitor, in NSCLC Harboring EGFR Exon 20 Insertions.

    PubMed

    Floc'h, Nicolas; Martin, Matthew J; Riess, Jonathan W; Orme, Jonathan P; Staniszewska, Anna D; Ménard, Ludovic; Cuomo, Maria Emanuela; O'Neill, Daniel J; Ward, Richard A; Finlay, M Raymond V; McKerrecher, Darren; Cheng, Mingshan; Vang, Daniel P; Burich, Rebekah A; Keck, James G; Gandara, David R; Mack, Philip C; Cross, Darren A E

    2018-05-01

    EGFR exon 20 insertions (Ex20Ins) account for 4% to 10% of EGFR activating mutations in non-small cell lung cancer (NSCLC). EGFR Ex20Ins tumors are generally unresponsive to first- and second-generation EGFR inhibitors, and current standard of care for NSCLC patients with EGFR Ex20Ins is conventional cytotoxic chemotherapy. Therefore, the development of an EGFR TKI that can more effectively target NSCLC with EGFR Ex20Ins mutations represents a major advance for this patient subset. Osimertinib is a third-generation EGFR TKI approved for the treatment of advanced NSCLC harboring EGFR T790M; however, the activity of osimertinib in EGFR Ex20Ins NSCLC has yet to be fully assessed. Using CRISPR-Cas 9 engineered cell lines carrying the most prevalent Ex20Ins mutations, namely Ex20Ins D770_N771InsSVD (22%) or Ex20Ins V769_D770InsASV (17%), and a series of patient-derived xenografts, we have characterized osimertinib and AZ5104 (a circulating metabolite of osimertinib) activities against NSCLC harboring Ex20Ins. We report that osimertinib and AZ5104 inhibit signaling pathways and cellular growth in Ex20Ins mutant cell lines in vitro and demonstrate sustained tumor growth inhibition of EGFR-mutant tumor xenograft harboring the most prevalent Ex20Ins in vivo The antitumor activity of osimertinib and AZ5104 in NSCLC harboring EGFR Ex20Ins is further described herein using a series of patient-derived xenograft models. Together these data support clinical testing of osimertinib in patients with EGFR Ex20Ins NSCLC. Mol Cancer Ther; 17(5); 885-96. ©2018 AACR . ©2018 American Association for Cancer Research.

  10. Berberine inhibits EGFR signaling and enhances the antitumor effects of EGFR inhibitors in gastric cancer.

    PubMed

    Wang, Junxiong; Yang, Shuo; Cai, Xiqiang; Dong, Jiaqiang; Chen, Zhangqian; Wang, Rui; Zhang, Song; Cao, Haichao; Lu, Di; Jin, Tong; Nie, Yongzhan; Hao, Jianyu; Fan, Daiming

    2016-11-15

    Cetuximab plus chemotherapy for advanced gastric cancer (GC) shows an active result in phase 2 trials. Unfortunately, Combination of cetuximab does not provide enough benefit to chemotherapy alone in phase 3 trials. Studies have demonstrated that berberine can suppress the activation of EGFR in tumors. In this study, we evaluated whether berberine could enhance the effects of EGFR-TKIs in GC cell lines and xenograft models. Our data suggest that berberine could effectively enhance the activity of erlotinib and cetuximab in vitro and in vivo. Berberine was found to inhibit growth in GC cell lines and to induce apoptosis. These effects were linked to inhibition of EGFR signaling activation, including the phosphorylation of STAT3. The expressions of Bcl-xL and Cyclind1 proteins were decreased, whereas the levels of cleavage of poly-ADP ribose polymerase (PARP) were considerably increased in the cell lines in response to berberine treatment. These results suggest a potential role for berberine in the treatment of GC, particularly in combination with EGFR-TKIs therapy. Berberine may be a competent therapeutic agent in GC where it can enhance the effects of EGFR inhibitors.

  11. Berberine inhibits EGFR signaling and enhances the antitumor effects of EGFR inhibitors in gastric cancer

    PubMed Central

    Wang, Junxiong; Yang, Shuo; Cai, Xiqiang; Dong, Jiaqiang; Chen, Zhangqian; Wang, Rui; Zhang, Song; Cao, Haichao; Lu, Di; Jin, Tong; Nie, Yongzhan; Hao, Jianyu; Fan, Daiming

    2016-01-01

    Cetuximab plus chemotherapy for advanced gastric cancer (GC) shows an active result in phase 2 trials. Unfortunately, Combination of cetuximab does not provide enough benefit to chemotherapy alone in phase 3 trials. Studies have demonstrated that berberine can suppress the activation of EGFR in tumors. In this study, we evaluated whether berberine could enhance the effects of EGFR-TKIs in GC cell lines and xenograft models. Our data suggest that berberine could effectively enhance the activity of erlotinib and cetuximab in vitro and in vivo. Berberine was found to inhibit growth in GC cell lines and to induce apoptosis. These effects were linked to inhibition of EGFR signaling activation, including the phosphorylation of STAT3. The expressions of Bcl-xL and Cyclind1 proteins were decreased, whereas the levels of cleavage of poly-ADP ribose polymerase (PARP) were considerably increased in the cell lines in response to berberine treatment. These results suggest a potential role for berberine in the treatment of GC, particularly in combination with EGFR-TKIs therapy. Berberine may be a competent therapeutic agent in GC where it can enhance the effects of EGFR inhibitors. PMID:27738318

  12. EGFR kinase-dependent and kinase-independent roles in clear cell renal cell carcinoma.

    PubMed

    Cossu-Rocca, Paolo; Muroni, Maria R; Sanges, Francesca; Sotgiu, Giovanni; Asunis, Anna; Tanca, Luciana; Onnis, Daniela; Pira, Giovanna; Manca, Alessandra; Dore, Simone; Uras, Maria G; Ena, Sara; De Miglio, Maria R

    2016-01-01

    Epidermal growth factor receptor (EGFR) is associated with progression of many epithelial malignancies and represents a significant therapeutic target. Although clear cell renal cell carcinoma (CCRCC) has been widely investigated for EGFR molecular alterations, genetic evidences of EGFR gene activating mutations and/or gene amplification have been rarely confirmed in the literature. Therefore, until now EGFR-targeted therapies in clinical trials have been demonstrated unsuccessful. New evidence has been given about the interactions between EGFR and the sodium glucose co-transporter-1 (SGLT1) in maintaining the glucose basal intracellular level to favour cancer cell growth and survival; thus a new functional role may be attributed to EGFR, regardless of its kinase activity. To define the role of EGFR in CCRCC an extensive investigation of genetic changes and functional kinase activities was performed in a series of tumors by analyzing the EGFR mutational status and expression profile, together with the protein expression of downstream signaling pathways members. Furthermore, we investigated the co-expression of EGFR and SGLT1 proteins and their relationships with clinic-pathological features in CCRCC. EGFR protein expression was identified in 98.4% of CCRCC. Furthermore, it was described for the first time that SGLT1 is overexpressed in CCRCC (80.9%), and that co-expression with EGFR is appreciable in 79.4% of the tumours. Moreover, the activation of downstream EGFR pathways was found in about 79.4% of SGLT1-positive CCRCCs. The mutational status analysis of EGFR failed to demonstrate mutations on exons 18 to 24 and the presence of EGFR-variantIII (EGFRvIII) in all CCRCCs analyzed. FISH analysis revealed absence of EGFR amplification, and high polysomy of chromosome 7. Finally, the EGFR gene expression profile showed gene overexpression in 38.2% of CCRCCs. Our study contributes to define the complexity of EGFR role in CCRCC, identifying its bivalent kinase

  13. EGFR kinase-dependent and kinase-independent roles in clear cell renal cell carcinoma

    PubMed Central

    Cossu-Rocca, Paolo; Muroni, Maria R; Sanges, Francesca; Sotgiu, Giovanni; Asunis, Anna; Tanca, Luciana; Onnis, Daniela; Pira, Giovanna; Manca, Alessandra; Dore, Simone; Uras, Maria G; Ena, Sara; De Miglio, Maria R

    2016-01-01

    Epidermal growth factor receptor (EGFR) is associated with progression of many epithelial malignancies and represents a significant therapeutic target. Although clear cell renal cell carcinoma (CCRCC) has been widely investigated for EGFR molecular alterations, genetic evidences of EGFR gene activating mutations and/or gene amplification have been rarely confirmed in the literature. Therefore, until now EGFR-targeted therapies in clinical trials have been demonstrated unsuccessful. New evidence has been given about the interactions between EGFR and the sodium glucose co-transporter-1 (SGLT1) in maintaining the glucose basal intracellular level to favour cancer cell growth and survival; thus a new functional role may be attributed to EGFR, regardless of its kinase activity. To define the role of EGFR in CCRCC an extensive investigation of genetic changes and functional kinase activities was performed in a series of tumors by analyzing the EGFR mutational status and expression profile, together with the protein expression of downstream signaling pathways members. Furthermore, we investigated the co-expression of EGFR and SGLT1 proteins and their relationships with clinic-pathological features in CCRCC. EGFR protein expression was identified in 98.4% of CCRCC. Furthermore, it was described for the first time that SGLT1 is overexpressed in CCRCC (80.9%), and that co-expression with EGFR is appreciable in 79.4% of the tumours. Moreover, the activation of downstream EGFR pathways was found in about 79.4% of SGLT1-positive CCRCCs. The mutational status analysis of EGFR failed to demonstrate mutations on exons 18 to 24 and the presence of EGFR-variantIII (EGFRvIII) in all CCRCCs analyzed. FISH analysis revealed absence of EGFR amplification, and high polysomy of chromosome 7. Finally, the EGFR gene expression profile showed gene overexpression in 38.2% of CCRCCs. Our study contributes to define the complexity of EGFR role in CCRCC, identifying its bivalent kinase

  14. Signal integration: a framework for understanding the efficacy of therapeutics targeting the human EGFR family

    PubMed Central

    Shepard, H. Michael; Brdlik, Cathleen M.; Schreiber, Hans

    2008-01-01

    The human EGFR (HER) family is essential for communication between many epithelial cancer cell types and the tumor microenvironment. Therapeutics targeting the HER family have demonstrated clinical success in the treatment of diverse epithelial cancers. Here we propose that the success of HER family–targeted monoclonal antibodies in cancer results from their ability to interfere with HER family consolidation of signals initiated by a multitude of other receptor systems. Ligand/receptor systems that initiate these signals include cytokine receptors, chemokine receptors, TLRs, GPCRs, and integrins. We further extrapolate that improvements in cancer therapeutics targeting the HER family are likely to incorporate mechanisms that block or reverse stromal support of malignant progression by isolating the HER family from autocrine and stromal influences. PMID:18982164

  15. Naturally occurring phenolic acids modulate TPA-induced activation of EGFR, AP-1, and STATs in mouse epidermis.

    PubMed

    Cichocki, Michał; Dałek, Miłosz; Szamałek, Mateusz; Baer-Dubowska, Wanda

    2014-01-01

    Epidermal growth factor receptor (EGFR) plays an important role in epithelial carcinogenesis and appears to be involved in STATs activation. In this study we investigated the possible interference of naturally occurring phenolic acids with EGFR, activator protein-1 (AP-1), and signal transducers and activators of transcription (STATs) pathways activated by topical application of tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) in Balb/c mice epidermis. Pretreatment with tannic or chlorogenic acid resulted in a significant decrease in the phosphorylation of EGFR Y-1068 and Y-1173 tyrosine residues, which was accompanied by reduced activation of AP-1. Tannic acid decreased also the c-Jun AP-1 subunit level and binding to TPA response element (TRE) (3- and 2-fold in comparison with TPA-treated group respectively). Simultaneous reduction of JNK activity might be responsible for reduced activation of AP-1. In contrast to these more complex phenolics, protocatechuic acid increased the activity of JNK and was also the most efficient inhibitor of STATs activation. These results indicate that naturally occurring phenolic acids, by decreasing EGFR, AP-1, and STATs activation, may modulate other elements both upstream and downstream in these pathways and thus inhibit the tumor development. Although more complex phenolics affect mainly the EGFR/AP-1 pathway, STATs seem to be the most important targets for simple compounds, such as protocatechuic acid.

  16. Epidermal Growth Factor Receptor Mutation (EGFR) Testing for Prediction of Response to EGFR-Targeting Tyrosine Kinase Inhibitor (TKI) Drugs in Patients with Advanced Non-Small-Cell Lung Cancer: An Evidence-Based Analysis.

    PubMed

    2010-01-01

    In February 2010, the Medical Advisory Secretariat (MAS) began work on evidence-based reviews of the literature surrounding three pharmacogenomic tests. This project came about when Cancer Care Ontario (CCO) asked MAS to provide evidence-based analyses on the effectiveness and cost-effectiveness of three oncology pharmacogenomic tests currently in use in Ontario.Evidence-based analyses have been prepared for each of these technologies. These have been completed in conjunction with internal and external stakeholders, including a Provincial Expert Panel on Pharmacogenetics (PEPP). Within the PEPP, subgroup committees were developed for each disease area. For each technology, an economic analysis was also completed by the Toronto Health Economics and Technology Assessment Collaborative (THETA) and is summarized within the reports.THE FOLLOWING REPORTS CAN BE PUBLICLY ACCESSED AT THE MAS WEBSITE AT: http://www.health.gov.on.ca/mas or at www.health.gov.on.ca/english/providers/program/mas/mas_about.htmlGENE EXPRESSION PROFILING FOR GUIDING ADJUVANT CHEMOTHERAPY DECISIONS IN WOMEN WITH EARLY BREAST CANCER: An Evidence-Based AnalysisEpidermal Growth Factor Receptor Mutation (EGFR) Testing for Prediction of Response to EGFR-Targeting Tyrosine Kinase Inhibitor (TKI) Drugs in Patients with Advanced Non-Small-Cell Lung Cancer: an Evidence-Based AnalysisK-RAS testing in Treatment Decisions for Advanced Colorectal Cancer: an Evidence-Based Analysis The Medical Advisory Secretariat undertook a systematic review of the evidence on the clinical effectiveness and cost-effectiveness of epidermal growth factor receptor (EGFR) mutation testing compared with no EGFR mutation testing to predict response to tyrosine kinase inhibitors (TKIs), gefitinib (Iressa(®)) or erlotinib (Tarceva(®)) in patients with advanced non-small cell lung cancer (NSCLC). TARGET POPULATION AND CONDITION With an estimated 7,800 new cases and 7,000 deaths last year, lung cancer is the leading cause of cancer

  17. Epidermal Growth Factor Receptor (EGFR) mutation analysis, gene expression profiling and EGFR protein expression in primary prostate cancer

    PubMed Central

    2011-01-01

    Background Activating mutations of the epidermal growth factor receptor (EGFR) confer sensitivity to the tyrosine kinase inhibitors (TKi), gefitinib and erlotinib. We analysed EGFR expression, EGFR mutation status and gene expression profiles of prostate cancer (PC) to supply a rationale for EGFR targeted therapies in this disease. Methods Mutational analysis of EGFR TK domain (exons from 18 to 21) and immunohistochemistry for EGFR were performed on tumour tissues derived from radical prostatectomy from 100 PC patients. Gene expression profiling using oligo-microarrays was also carried out in 51 of the PC samples. Results EGFR protein overexpression (EGFRhigh) was found in 36% of the tumour samples, and mutations were found in 13% of samples. Patients with EGFRhigh tumours experienced a significantly increased risk of biochemical relapse (hazard ratio-HR 2.52, p=0.02) compared with patients with tumours expressing low levels of EGFR (EGFRlow). Microarray analysis did not reveal any differences in gene expression between EGFRhigh and EGFRlow tumours. Conversely, in EGFRhigh tumours, we were able to identify a 79 gene signature distinguishing mutated from non-mutated tumours. Additionally, 29 genes were found to be differentially expressed between mutated/EGFRhigh (n=3) and mutated/EGFRlow tumours (n=5). Four of the down-regulated genes, U19/EAF2, ABCC4, KLK3 and ANXA3 and one of the up-regulated genes, FOXC1, are involved in PC progression. Conclusions Based on our findings, we hypothesize that accurate definition of the EGFR status could improve prognostic stratification and we suggest a possible role for EGFR-directed therapies in PC patients. Having been generated in a relatively small sample of patients, our results warrant confirmation in larger series. PMID:21266046

  18. Epidermal Growth Factor Receptor (EGFR) mutation analysis, gene expression profiling and EGFR protein expression in primary prostate cancer.

    PubMed

    Peraldo-Neia, Caterina; Migliardi, Giorgia; Mello-Grand, Maurizia; Montemurro, Filippo; Segir, Raffaella; Pignochino, Ymera; Cavalloni, Giuliana; Torchio, Bruno; Mosso, Luciano; Chiorino, Giovanna; Aglietta, Massimo

    2011-01-25

    Activating mutations of the epidermal growth factor receptor (EGFR) confer sensitivity to the tyrosine kinase inhibitors (TKi), gefitinib and erlotinib. We analysed EGFR expression, EGFR mutation status and gene expression profiles of prostate cancer (PC) to supply a rationale for EGFR targeted therapies in this disease. Mutational analysis of EGFR TK domain (exons from 18 to 21) and immunohistochemistry for EGFR were performed on tumour tissues derived from radical prostatectomy from 100 PC patients. Gene expression profiling using oligo-microarrays was also carried out in 51 of the PC samples. EGFR protein overexpression (EGFRhigh) was found in 36% of the tumour samples, and mutations were found in 13% of samples. Patients with EGFRhigh tumours experienced a significantly increased risk of biochemical relapse (hazard ratio-HR 2.52, p=0.02) compared with patients with tumours expressing low levels of EGFR (EGFRlow). Microarray analysis did not reveal any differences in gene expression between EGFRhigh and EGFRlow tumours. Conversely, in EGFRhigh tumours, we were able to identify a 79 gene signature distinguishing mutated from non-mutated tumours. Additionally, 29 genes were found to be differentially expressed between mutated/EGFRhigh (n=3) and mutated/EGFRlow tumours (n=5). Four of the down-regulated genes, U19/EAF2, ABCC4, KLK3 and ANXA3 and one of the up-regulated genes, FOXC1, are involved in PC progression. Based on our findings, we hypothesize that accurate definition of the EGFR status could improve prognostic stratification and we suggest a possible role for EGFR-directed therapies in PC patients. Having been generated in a relatively small sample of patients, our results warrant confirmation in larger series.

  19. HDAC9 promotes glioblastoma growth via TAZ-mediated EGFR pathway activation.

    PubMed

    Yang, Rui; Wu, Yanan; Wang, Mei; Sun, Zhongfeng; Zou, Jiahua; Zhang, Yundong; Cui, Hongjuan

    2015-04-10

    Histone deacetylase 9 (HDAC9), a member of class II HDACs, regulates a wide variety of normal and abnormal physiological functions. We found that HDAC9 is over-expressed in prognostically poor glioblastoma patients. Knockdown HDAC9 decreased proliferation in vitro and tumor formation in vivo. HDAC9 accelerated cell cycle in part by potentiating the EGFR signaling pathway. Also, HDAC9 interacted with TAZ, a key downstream effector of Hippo pathway. Knockdown of HDAC9 decreased the expression of TAZ. We found that overexpressed TAZ in HDAC9-knockdown cells abrogated the effects induced by HDAC9 silencing both in vitro and in vivo. We demonstrated that HDAC9 promotes tumor formation of glioblastoma via TAZ-mediated EGFR pathway activation, and provide the evidence for promising target for the treatment of glioblastoma.

  20. Predicting Drug Combination Index and Simulating the Network-Regulation Dynamics by Mathematical Modeling of Drug-Targeted EGFR-ERK Signaling Pathway

    NASA Astrophysics Data System (ADS)

    Huang, Lu; Jiang, Yuyang; Chen, Yuzong

    2017-01-01

    Synergistic drug combinations enable enhanced therapeutics. Their discovery typically involves the measurement and assessment of drug combination index (CI), which can be facilitated by the development and applications of in-silico CI predictive tools. In this work, we developed and tested the ability of a mathematical model of drug-targeted EGFR-ERK pathway in predicting CIs and in analyzing multiple synergistic drug combinations against observations. Our mathematical model was validated against the literature reported signaling, drug response dynamics, and EGFR-MEK drug combination effect. The predicted CIs and combination therapeutic effects of the EGFR-BRaf, BRaf-MEK, FTI-MEK, and FTI-BRaf inhibitor combinations showed consistent synergism. Our results suggest that existing pathway models may be potentially extended for developing drug-targeted pathway models to predict drug combination CI values, isobolograms, and drug-response surfaces as well as to analyze the dynamics of individual and combinations of drugs. With our model, the efficacy of potential drug combinations can be predicted. Our method complements the developed in-silico methods (e.g. the chemogenomic profile and the statistically-inferenced network models) by predicting drug combination effects from the perspectives of pathway dynamics using experimental or validated molecular kinetic constants, thereby facilitating the collective prediction of drug combination effects in diverse ranges of disease systems.

  1. Apatinib enhances antitumour activity of EGFR-TKIs in non-small cell lung cancer with EGFR-TKI resistance.

    PubMed

    Li, Fang; Zhu, Tengjiao; Cao, Baoshan; Wang, Jiadong; Liang, Li

    2017-10-01

    Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs)-rechallenged therapy for EGFR-mutant non-small cell lung cancer (NSCLC) patients who acquired resistance showed moderate efficacy. Considering the high interrelation between EGFR and vascular endothelial growth factor/vascular endothelial growth factor receptor (VEGF/VEGFR) pathways, we firstly evaluated EGFR-TKI combined with apatinib (a highly selective VEGFR2 inhibitor) in EGFR-TKI-resistant model and patients. Effects of apatinib, gefitinib and gefitinib plus apatinib were assessed on four NSCLC cell lines (A549 with wild-type EGFR, H1975 harbouring L858R and T790M, H1650 and HCC827 harbouring E746_A750 deletion) and xenograft model of acquired resistance that was established by injecting H1975 cells. Furthermore, we retrospectively evaluated EGFR-TKI rechallenge with apatinib in 16 patients. Gefitinib plus apatinib strengthened the effect of gefitinib and apatinib alone on the four NSCLC cell lines, and H1975 was the most susceptible one. Co-administration delayed the tumour growth than mono-therapy in the xenograft model and had better effect on inhibiting the activation of EGFR and VEGFR2 and expression of CD31 (an angiogenesis marker) and vascular endothelial growth factor A (an important pro-angiogenesis factor in the tumour microenvironment). Changes in protein expression of protein kinase B/mammalian target of rapamycin and extracellular signal-regulated kinase pathways demonstrated the potent inhibitory effect on the pro-survival signalling pathways by combined therapy. EGFR-TKI rechallenge with apatinib achieved a median progression-free survival of 4.60 months (95% confidence interval, 2.23-12.52 months) in the patients. Apatinib significantly potentiated the antitumour effect of gefitinib in NSCLC with T790M-related EGFR-TKI resistance both in vivo and vitro. EGFR-TKI rechallenge with apatinib might represent a new option for NSCLC with T790M or unknown resistance mechanism

  2. In vitro modeling to determine mutation specificity of EGFR tyrosine kinase inhibitors against clinically relevant EGFR mutants in non-small-cell lung cancer

    PubMed Central

    Yasuda, Hiroyuki; Hamamoto, Junko; Oashi, Ayano; Ishioka, Kota; Arai, Daisuke; Nukaga, Shigenari; Miyawaki, Masayoshi; Kawada, Ichiro; Naoki, Katsuhiko; Costa, Daniel B.; Kobayashi, Susumu S.; Betsuyaku, Tomoko; Soejima, Kenzo

    2015-01-01

    EGFR mutated lung cancer accounts for a significant subgroup of non-small-cell lung cancer (NSCLC). Over the last decade, multiple EGFR tyrosine kinase inhibitors (EGFR-TKIs) have been developed to target mutated EGFR. However, there is little information regarding mutation specific potency of EGFR-TKIs against various types of EGFR mutations. The purpose of this study is to establish an in vitro model to determine the “therapeutic window” of EGFR-TKIs against various types of EGFR mutations, including EGFR exon 20 insertion mutations. The potency of 1st (erlotinib), 2nd (afatinib) and 3rd (osimertinib and rociletinib) generation EGFR-TKIs was compared in vitro for human lung cancer cell lines and Ba/F3 cells, which exogenously express mutated or wild type EGFR. An in vitro model of mutation specificity was created by calculating the ratio of IC50 values between mutated and wild type EGFR. The in vitro model identified a wide therapeutic window of afatinib for exon 19 deletions and L858R and of osimertinib and rociletinib for T790M positive mutations. The results obtained with our models matched well with previously reported preclinical and clinical data. Interestingly, for EGFR exon 20 insertion mutations, most of which are known to be resistant to 1st and 2nd generation EGFR-TKIS, osimertinib was potent and presented a wide therapeutic window. To our knowledge, this is the first report that has identified the therapeutic window of osimertinib for EGFR exon 20 insertion mutations. In conclusion, this model will provide a preclinical rationale for proper selection of EGFR-TKIs against clinically-relevant EGFR mutations. PMID:26515464

  3. EGFR mediates astragaloside IV-induced Nrf2 activation to protect cortical neurons against in vitro ischemia/reperfusion damages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, Da-min; Lu, Pei-Hua, E-mail: lphty1_1@163.com; Zhang, Ke

    In this study, we tested the potential role of astragaloside IV (AS-IV) against oxygen and glucose deprivation/re-oxygenation (OGD/R)-induced damages in murine cortical neurons, and studied the associated signaling mechanisms. AS-IV exerted significant neuroprotective effects against OGD/R by reducing reactive oxygen species (ROS) accumulation, thereby attenuating oxidative stress and neuronal cell death. We found that AS-IV treatment in cortical neurons resulted in NF-E2-related factor 2 (Nrf2) signaling activation, evidenced by Nrf2 Ser-40 phosphorylation, and its nuclear localization, as well as transcription of antioxidant-responsive element (ARE)-regulated genes: heme oxygenase-1 (HO-1), NAD(P)H:quinone oxidoreductase 1 (NQO-1) and sulphiredoxin 1 (SRXN-1). Knockdown of Nrf2 throughmore » lentiviral shRNAs prevented AS-IV-induced ARE genes transcription, and abolished its anti-oxidant and neuroprotective activities. Further, we discovered that AS-IV stimulated heparin-binding-epidermal growth factor (HB-EGF) release to trans-activate epidermal growth factor receptor (EGFR) in cortical neurons. Blockage or silencing EGFR prevented Nrf2 activation by AS-IV, thus inhibiting AS-IV-mediated anti-oxidant and neuroprotective activities against OGD/R. In summary, AS-IV protects cortical neurons against OGD/R damages through activating of EGFR-Nrf2 signaling. - Highlights: • Pre-treatment of astragaloside IV (AS-IV) protects murine cortical neurons from OGD/R. • AS-IV activates Nrf2-ARE signaling in murine cortical neurons. • Nrf2 is required for AS-IV-mediated anti-oxidant and neuroprotective activities. • AS-IV stimulates HB-EGF release to trans-activate EGFR in murine cortical neurons. • EGFR mediates AS-IV-induced Nrf2 activation and neuroprotection against OGD/R.« less

  4. Effects of miR‑138‑5p and miR‑204‑5p on the migration and proliferation of gastric cancer cells by targeting EGFR.

    PubMed

    Wang, Yi; Zhang, Haiyang; Ge, Shaohua; Fan, Qian; Zhou, Likun; Li, Hongli; Bai, Ming; Ning, Tao; Liu, Rui; Wang, Xia; Deng, Ting; Zhang, Le; Ying, Guoguang; Ba, Yi

    2018-06-01

    GC (gastric cancer) remains one of the most lethal malignancies worldwide. EGFR (epidermal growth factor receptor) plays an important role in the malignant process of GC, therefore, the present study addressed the relationship between EGFR and its potential regulators and examined their regulatory mechanisms in GC. We examined differences in the expression levels of EGFR in GC and adjacent non‑cancerous tissues. Bioinformatics analyses and dual luciferase reporter assays were used to confirm the putative relationship between miR‑138 or miR‑204 and EGFR, and their relationship was further detected using western blotting, RT‑PCR, and a series of cell studies. EGFR proteins were abundantly expressed in GC tissues, however EGFR mRNA levels remained indistinctive. Consequently, EGFR was revealed as a putative target of miR‑138 and miR‑204 which bound to the 3'UTR of EGFR mRNA. Further analysis revealed that miR‑138 and miR‑204 were significantly downregulated in GC tissues and the overexpression of miR‑138 and miR‑204 in GC cell lines resulted in the significant inhibition of EGFR protein levels and GC cell proliferation and metastasis. Rescue experiments confirmed that the roles of the two microRNAs were specific to EGFR. EGFR is a pivotal oncogene in GC progression that may be regulated by miR‑138 and miR‑204.

  5. Single molecule force spectroscopy for in-situ probing oridonin inhibited ROS-mediated EGF-EGFR interactions in living KYSE-150 cells.

    PubMed

    Pi, Jiang; Jin, Hua; Jiang, Jinhuan; Yang, Fen; Cai, Huaihong; Yang, Peihui; Cai, Jiye; Chen, Zheng W

    2017-05-01

    As the active anticancer component of Rabdosia Rubescens, oridonin has been proved to show strong anticancer activity in cancer cells, which is also found to be closely related to its specific inhibition effects on the EGFR tyrosine kinase activity. In this study, atomic force microscopy based single molecule force spectroscopy (AFM-SMFS) was used for real-time and in-situ detection of EGF-EGFR interactions in living esophageal cancer KYSE-150 cells to evaluate the anticancer activity of oridonin for the first time. Oridonin was found to induce apoptosis and also reduce EGFR expression in KYSE-150 cells. AFM-SMFS results demonstrated that oridonin could inhibit the binding between EGF and EGFR in KYSE-150 cells by decreasing the unbinding force and binding probability for EGF-EGFR complexes, which was further proved to be closely associated with the intracellular ROS level. More precise mechanism studies based on AFM-SMFS demonstrated that oridonin treatment could decrease the energy barrier width, increase the dissociation off rate constant and decrease the activation energy of EGF-EGFR complexes in ROS dependent way, suggesting oridonin as a strong anticancer agent targeting EGF-EGFR interactions in cancer cells through ROS dependent mechanism. Our results not only suggested oridonin as a strong anticancer agent targeting EGF-EGFR interactions in ROS dependent mechanism, but also highlighted AFM-SMFS as a powerful technique for pharmacodynamic studies by detecting ligand-receptor interactions, which was also expected to be developed into a promising tool for the screening and mechanism studies of drugs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Targeting Signal Transducers and Activators of Transcription-3 (Stat3) As a Novel Strategy In Sensitizing Breast Cancer To Egfr-Targeted Therapy

    DTIC Science & Technology

    2008-06-01

    Distribution Unlimited The views, opinions and/or findings contained in this report are those of the author( s ) and...Novel Strategy In Sensitizing Breast Cancer To Egfr-Targeted Therapy 5b. GRANT NUMBER W81XWH-07-1-0390 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR( S ...Hui-Wen Lo, Ph.D. 5d. PROJECT NUMBER 5e. TASK NUMBER Email: huiwen.lo@duke.edu 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME( S

  7. EGFR-targeted granzyme B expressed in NK cells enhances natural cytotoxicity and mediates specific killing of tumor cells.

    PubMed

    Oberoi, Pranav; Jabulowsky, Robert A; Bähr-Mahmud, Hayat; Wels, Winfried S

    2013-01-01

    Natural killer (NK) cells are highly specialized effectors of the innate immune system that hold promise for adoptive cancer immunotherapy. Their cell killing activity is primarily mediated by the pro-apoptotic serine protease granzyme B (GrB), which enters targets cells with the help of the pore-forming protein perforin. We investigated expression of a chimeric GrB fusion protein in NK cells as a means to augment their antitumoral activity. For selective targeting to tumor cells, we fused the epidermal growth factor receptor (EGFR) peptide ligand transforming growth factor α (TGFα) to human pre-pro-GrB. Established human NKL natural killer cells transduced with a lentiviral vector expressed this GrB-TGFα (GrB-T) molecule in amounts comparable to endogenous wildtype GrB. Activation of the genetically modified NK cells by cognate target cells resulted in the release of GrB-T together with endogenous granzymes and perforin, which augmented the effector cells' natural cytotoxicity against NK-sensitive tumor cells. Likewise, GrB-T was released into the extracellular space upon induction of degranulation with PMA and ionomycin. Secreted GrB-T fusion protein displayed specific binding to EGFR-overexpressing tumor cells, enzymatic activity, and selective target cell killing in the presence of an endosomolytic activity. Our data demonstrate that ectopic expression of a targeted GrB fusion protein in NK cells is feasible and can enhance antitumoral activity of the effector cells.

  8. Celecoxib Induced Tumor Cell Radiosensitization by Inhibiting Radiation Induced Nuclear EGFR Transport and DNA-Repair: A COX-2 Independent Mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dittmann, Klaus H.; Mayer, Claus; Ohneseit, Petra A.

    2008-01-01

    Purpose: The purpose of the study was to elucidate the molecular mechanisms mediating radiosensitization of human tumor cells by the selective cyclooxygenase (COX)-2 inhibitor celecoxib. Methods and Materials: Experiments were performed using bronchial carcinoma cells A549, transformed fibroblasts HH4dd, the FaDu head-and-neck tumor cells, the colon carcinoma cells HCT116, and normal fibroblasts HSF7. Effects of celecoxib treatment were assessed by clonogenic cell survival, Western analysis, and quantification of residual DNA damage by {gamma}H{sub 2}AX foci assay. Results: Celecoxib treatment resulted in a pronounced radiosensitization of A549, HCT116, and HSF7 cells, whereas FaDu and HH4dd cells were not radiosensitized. The observedmore » radiosensitization could neither be correlated with basal COX-2 expression pattern nor with basal production of prostaglandin E2, but was depended on the ability of celecoxib to inhibit basal and radiation-induced nuclear transport of epidermal growth factor receptor (EGFR). The nuclear EGFR transport was strongly inhibited in A549-, HSF7-, and COX-2-deficient HCT116 cells, which were radiosensitized, but not in FaDu and HH4dd cells, which resisted celecoxib-induced radiosensitization. Celecoxib inhibited radiation-induced DNA-PK activation in A549, HSF7, and HCT116 cells, but not in FaDu and HH4dd cells. Consequentially, celecoxib increased residual {gamma}H2AX foci after irradiation, demonstrating that inhibition of DNA repair has occurred in responsive A549, HCT116, and HSF7 cells only. Conclusions: Celecoxib enhanced radiosensitivity by inhibition of EGFR-mediated mechanisms of radioresistance, a signaling that was independent of COX-2 activity. This novel observation may have therapeutic implications such that COX-2 inhibitors may improve therapeutic efficacy of radiation even in patients whose tumor radioresistance is not dependent on COX-2.« less

  9. STAT1-Induced HLA class I Upregulation Enhances Immunogenicity and Clinical Response to anti-EGFR mAb Cetuximab Therapy in HNC Patients

    PubMed Central

    Srivastava, Raghvendra M.; Trivedi, Sumita; Concha-Benavente, Fernando; Hyun-bae, Jie; Wang, Lin; Seethala, Raja R.; Branstetter, Barton F.; Ferrone, Soldano; Ferris, Robert L.

    2015-01-01

    The goal of this study was to characterize the molecular mechanisms underlying cetuximab-mediated upregulation of HLA class I antigen-processing machinery components in head and neck cancer (HNC) cells and to determine the clinical significance of these changes in cetuximab-treated HNC patients. Flow cytometry, signaling studies and chromatin immunoprecipitation (ChIP) assays were performed using HNC cells treated with cetuximab alone or with Fcγ receptor (FcγR)-bearing lymphocytes to establish the mechanism of EGFR-dependent regulation of HLA APM expression. A prospective phase II clinical trial of neoadjuvant cetuximab was utilized to correlate HLA class I expression with clinical response in HNC patients. EGFR blockade triggered STAT1 activation and HLA upregulation, in a src homology-containing protein (SHP)-2-dependent fashion, more prominently in HLA-B/C than in HLA-A alleles. EGFR signaling blockade also enhanced IFNγ receptor 1 (IFNAR) expression, augmenting induction of HLA class I and TAP1/2 expression by IFNγ, which was abrogated in STAT1−/− cells. Cetuximab enhanced HNC cell recognition by EGFR853–861-specific CTLs, and notably enhanced surface presentation of a non-EGFR peptide (MAGE-3271–279). HLA class I upregulation was significantly associated with clinical response in cetuximab-treated HNC patients. EGFR induces HLA downregulation through SHP-2/STAT1 suppression. Reversal of HLA class I downregulation was more prominent in clinical responders to cetuximab therapy, supporting an important role for adaptive immunity in cetuximab antitumor activity. Abrogating EGFR-induced immune escape mechanisms and restoring STAT1 signaling to reverse HLA downregulation using cetuximab should be combined with strategies to enhance adaptive cellular immunity. PMID:25972070

  10. EGFR and HER2 signaling in breast cancer brain metastasis

    PubMed Central

    Sirkisoon, Sherona R.; Carpenter, Richard L.; Rimkus, Tadas; Miller, Lance; Metheny-Barlow, Linda; Lo, Hui-Wen

    2016-01-01

    Breast cancer occurs in approximately 1 in 8 women and 1 in 37 women with breast cancer succumbed to the disease. Over the past decades, new diagnostic tools and treatments have substantially improved the prognosis of women with local diseases. However, women with metastatic disease still have a dismal prognosis without effective treatments. Among different molecular subtypes of breast cancer, the HER2-enriched and basal-like subtypes typically have higher rates of metastasis to the brain. Basal-like metastatic breast tumors frequently express EGFR. Consequently, HER2- and EGFR-targeted therapies are being used in the clinic and/or evaluated in clinical trials for treating breast cancer patients with brain metastases. In this review, we will first provide an overview of the HER2 and EGFR signaling pathways. The roles that EGFR and HER2 play in breast cancer metastasis to the brain will then be discussed. Finally, we will summarize the preclinical and clinical effects of EGFR- and HER2-targeted therapies on breast cancer metastasis. PMID:26709660

  11. Economic Evaluation of Companion Diagnostic Testing for EGFR Mutations and First-Line Targeted Therapy in Advanced Non-Small Cell Lung Cancer Patients in South Korea.

    PubMed

    Lim, Eun-A; Lee, Haeyoung; Bae, Eunmi; Lim, Jaeok; Shin, Young Kee; Choi, Sang-Eun

    2016-01-01

    As targeted therapy becomes increasingly important, diagnostic techniques for identifying targeted biomarkers have also become an emerging issue. The study aims to evaluate the cost-effectiveness of treating patients as guided by epidermal growth factor receptor (EGFR) mutation status compared with a no-testing strategy that is the current clinical practice in South Korea. A cost-utility analysis was conducted to compare an EGFR mutation testing strategy with a no-testing strategy from the Korean healthcare payer's perspective. The study population consisted of patients with stage 3b and 4 lung adenocarcinoma. A decision tree model was employed to select the appropriate treatment regimen according to the results of EGFR mutation testing and a Markov model was constructed to simulate disease progression of advanced non-small cell lung cancer. The length of a Markov cycle was one month, and the time horizon was five years (60 cycles). In the base case analysis, the testing strategy was a dominant option. Quality-adjusted life-years gained (QALYs) were 0.556 and 0.635, and total costs were $23,952 USD and $23,334 USD in the no-testing and testing strategy respectively. The sensitivity analyses showed overall robust results. The incremental cost-effectiveness ratios (ICERs) increased when the number of patients to be treated with erlotinib increased, due to the high cost of erlotinib. Treating advanced adenocarcinoma based on EGFR mutation status has beneficial effects and saves the cost compared to no testing strategy in South Korea. However, the cost-effectiveness of EGFR mutation testing was heavily affected by the cost-effectiveness of the targeted therapy.

  12. Discovery of 2,4,6-trisubstitued pyrido[3,4-d]pyrimidine derivatives as new EGFR-TKIs.

    PubMed

    Zhang, Hao; Wang, Jin; Shen, Ying; Wang, Hui-Yan; Duan, Wei-Ming; Zhao, Hong-Yi; Hei, Yuan-Yuan; Xin, Minhang; Cao, Yong-Xiao; Zhang, San-Qi

    2018-03-25

    Targeting acquired drug resistance is the major challenge in the treatment of EGFR-driven non-small cell lung cancer (NSCLC). In this study, a novel class of compounds containing pyrido[3,4-d]pyrimidine scaffold was designed as new generation EGFR-TKIs to overcome this challenge. The most promising compound B30 inhibited HCC827 and H1975 cells growth with the IC 50 values of 0.044 μM and 0.40 μM, respectively. Meanwhile, B30 displayed potent inhibitory activity against the EGFR L858R (IC 50  = 1.1 nM) and EGFR L858R/T790M/C797S (IC 50  = 7.2 nM). B30 could suppress EGFR phosphorylation in a dose-dependent manner in HCC827 cell line and significantly induce the apoptosis of HCC827 cells. Molecular docking indicated that the hydroxyl in B30 could form additional hydrogen bond with mutant Ser797. These findings strongly support our assumption that 2,4,6-trisubstitued pyrido[3,4-d] pyrimidine derivatives can serve as EGFR-TKIs. The predicted hydrogen bond interaction formed by a small molecule inhibitor with mutant Ser797 is available to design the fourth-generation EGFR-TKIs. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  13. Stress-specific p38 MAPK activation is sufficient to drive EGFR endocytosis but not its nuclear translocation.

    PubMed

    Tomas, Alejandra; Jones, Sylwia; Vaughan, Simon O; Hochhauser, Daniel; Futter, Clare E

    2017-08-01

    EGF receptor (EGFR) endocytosis is induced by stress in a manner dependent on the p38 MAPK family. Ligand and stresses such as X-rays, reportedly promote nuclear trafficking of endocytosed EGFR for regulation of gene transcription and DNA repair. We fail to detect EGFR endocytosis or nuclear transport following X-ray treatment of HeLa or head and neck cancer cells, despite extensive DNA damage induction. Apparent nuclear staining with EGFR extracellular domain antibody remained present despite reduced/absent EGFR expression, and so did not represent nuclear EGFR. UVB and UVC, but not X-ray or UVA, treatment induced p38 activation and EGFR endocytosis, although all of these stresses induced DNA damage, indicating that DNA damage alone is not sufficient to induce EGFR endocytosis. Increased reactive oxygen species (ROS) levels following UVB treatment, compared to that seen with X-rays, do not alone explain differences in p38 activation. UVB, like UVC, induced EGFR accumulation predominantly in perinuclear endosomes, rather than in the nucleus. Our morphological techniques identifying major changes in receptor distribution do not exclude the possibility that small but biologically relevant amounts of EGFR enter the nucleus. This study highlights the importance and limitations of morphological analyses of receptor distribution in understanding signaling outcome. © 2017. Published by The Company of Biologists Ltd.

  14. Direct interaction between surface β1,4-galactosyltransferase 1 and epidermal growth factor receptor (EGFR) inhibits EGFR activation in hepatocellular carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Wenqing; Weng, Shuqiang; Zhang, Si

    2013-05-10

    Highlights: •β1,4GT1 interacts with EGFR both in vitro and in vivo. •β1,4GT1 co-localizes with EGFR on the cell surface. •β1,4GT1 inhibits {sup 125}I-EGF binding to EGFR. •β1,4GT1 inhibits EGF induced EGFR dimerization and phosphorylation. -- Abstract: Our previous studies showed that cell surface β1,4-galactosyltransferase 1 (β1,4GT1) negatively regulated cell survival through inhibition and modulation of the epidermal growth factor receptor (EGFR) signaling pathway in human hepatocellular carcinoma (HCC) SMMC-7721 cells. However, the underlying mechanism remains unclear. Here we demonstrated that β1,4-galactosyltransferase 1 (β1,4GT1) interacted with EGFR in vitro by GST pull-down analysis. Furthermore, we demonstrated that β1,4GT1 bound to EGFRmore » in vivo by co-immunoprecipitation and determined the co-localization of β1,4GT1 and EGFR on the cell surface via confocal laser scanning microscopy analysis. Finally, using {sup 125}I-EGF binding experiments and Western blot analysis, we found that overexpression of β1,4GT1 inhibited {sup 125}I-EGF binding to EGFR, and consequently reduced the levels of EGFR dimerization and phosphorylation. In contrast, RNAi-mediated knockdown of β1,4GT1 increased the levels of EGFR dimerization and phosphorylation. These data suggest that cell surface β1,4GT1 interacts with EGFR and inhibits EGFR activation.« less

  15. Characterization of 7A7, an anti-mouse EGFR monoclonal antibody proposed to be the mouse equivalent of cetuximab.

    PubMed

    He, Xuzhi; Cruz, Jazmina L; Joseph, Shannon; Pett, Nicola; Chew, Hui Yi; Tuong, Zewen K; Okano, Satomi; Kelly, Gabrielle; Veitch, Margaret; Simpson, Fiona; Wells, James W

    2018-02-23

    The Epidermal Growth Factor Receptor (EGFR) is selectively expressed on the surface of numerous tumours, such as non-small cell lung, ovarian, colorectal and head and neck carcinomas. EGFR has therefore become a target for cancer therapy. Cetuximab is a chimeric human/mouse monoclonal antibody (mAb) that binds to EGFR, where it both inhibits signaling and induces cell death by antibody-dependent cell mediated cytotoxicity (ADCC). Cetuximab has been approved for clinical use in patients with head and neck squamous cell carcinoma (HNSCC) and colorectal cancer. However, only 15-20% patients benefit from this drug, thus new strategies to improve cetuximab efficiency are required. We aimed to develop a reliable and easy preclinical mouse model to evaluate the efficacy of EGFR-targeted antibodies and examine the immune mechanisms involved in tumour regression. We selected an anti-mouse EGFR mAb, 7A7, which has been reported to be "mouse cetuximab" and to exhibit similar properties to its human counterpart. Unfortunately, we were unable to reproduce previous results obtained with the 7A7 mAb. In our hands, 7A7 failed to recognize mouse EGFR, both in native and reducing conditions. Moreover, in vivo administration of 7A7 in an EGFR-expressing HPV38 tumour model did not have any impact on tumour regression or animal survival. We conclude that 7A7 does not recognize mouse EGFR and therefore cannot be used as the mouse equivalent of cetuximab use in humans. As a number of groups have spent effort and resources with similar issues we feel that publication is a responsible approach.

  16. Cross-talk between EGFR and IL-6 drives oncogenic signaling and offers therapeutic opportunities in cancer.

    PubMed

    Ray, Kriti; Ujvari, Beata; Ramana, Venkata; Donald, John

    2018-04-07

    Epidermal growth factor receptor (EGFR) is a known target in cancer therapy and targeting the receptor has proven to be extremely successful in treating cancers that are dependent on EGFR signaling. To that effect, targeted therapies to EGFR such as Cetuximab, Panitumumab-monoclonal antibodies and Gefitinib, Erlotinib-tyrosine kinase inhibitors have had success in therapeutic scenarios. However, the development of resistance to these drugs makes it necessary to combine anti- EGFR therapies with other inhibitors, so that resistance can be overcome by the targeting of alternate signaling pathways. On the other hand, components of the inflammatory pathway, within and around a tumor, provide a conducive environment for tumor growth by supplying numerous cytokines and chemokines that foster carcinogenesis. Interleukin 6 (IL-6) is one such cytokine that is found to be associated with inflammation-driven cancers and which also plays a crucial role in acquired resistance to anti-EGFR drugs. The EGFR and IL-6 signaling pathways crosstalk in multiple ways, through various mediators and downstream signaling pathways driving resistance and hence co-targeting them has potential for future cancer treatments. Here we provide an overview on the crosstalk between the EGFR and IL-6 pathways, and discuss how co-targeting these two pathways could be a promising combination therapy of the future. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Detection of EGFR Gene Mutation by Mutation-oriented LAMP Method.

    PubMed

    Matsumoto, Naoyuki; Kumasaka, Akira; Ando, Tomohiro; Komiyama, Kazuo

    2018-04-01

    Epidermal growth factor receptor (EGFR) is a target of molecular therapeutics for non-small cell lung cancer. EGFR gene mutations at codons 746-753 promote constitutive EGFR activation and result in worst prognosis. However, these mutations augment the therapeutic effect of EGFR-tyrosine kinase inhibitor. Therefore, the detection of EGFR gene mutations is important for determining treatment planning. The aim of the study was to establish a method to detect EGFR gene mutations at codons 746-753. EGFR gene mutation at codons 746-753 in six cancer cell lines were investigated. A loop-mediated isothermal amplification (LAMP)-based procedure was developed, that employed peptide nucleic acid to suppress amplification of the wild-type allele. This mutation-oriented LAMP can amplify the DNA fragment of the EGFR gene with codons 746-753 mutations within 30 min. Moreover, boiled cells can work as template resources. Mutation oriented-LAMP assay for EGFR gene mutation is sensitive on extracted DNA. This procedure would be capable of detecting EGFR gene mutation in sputum, pleural effusion, broncho-alveolar lavage fluid or trans-bronchial lung biopsy by chair side. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  18. Development of New Mouse Lung Tumor Models Expressing EGFR T790M Mutants Associated with Clinical Resistance to Kinase Inhibitors

    PubMed Central

    Regales, Lucia; Balak, Marissa N.; Gong, Yixuan; Politi, Katerina; Sawai, Ayana; Le, Carl; Koutcher, Jason A.; Solit, David B.; Rosen, Neal; Zakowski, Maureen F.; Pao, William

    2007-01-01

    Background The EGFR T790M mutation confers acquired resistance to kinase inhibitors in human EGFR mutant lung adenocarcinoma, is occasionally detected before treatment, and may confer genetic susceptibility to lung cancer. Methodology/Principal Findings To study further its role in lung tumorigenesis, we developed mice with inducible expression in type II pneumocytes of EGFRT790M alone or together with a drug-sensitive L858R mutation. Both transgenic lines develop lung adenocarcinomas that require mutant EGFR for tumor maintenance but are resistant to an EGFR kinase inhibitor. EGFRL858R+T790M-driven tumors are transiently targeted by hsp90 inhibition. Notably, EGFRT790M-expressing animals develop tumors with longer latency than EGFRL858R+T790M-bearing mice and in the absence of additional kinase domain mutations. Conclusions/Significance These new mouse models of mutant EGFR-dependent lung adenocarcinomas provide insight into clinical observations. The models should also be useful for developing improved therapies for patients with lung cancers harboring EGFRT790M alone or in conjunction with drug-sensitive EGFR kinase domain mutations. PMID:17726540

  19. Benzo[g]quinazolin-based scaffold derivatives as dual EGFR/HER2 inhibitors.

    PubMed

    Ghorab, Mostafa M; Alsaid, Mansour S; Soliman, Aiten M; Al-Mishari, Abdullah A

    2018-12-01

    Targeting EGFR has proven to be beneficial in the treatment of several types of solid tumours. So, a series of novel 2-(4-oxo-3-(4-sulfamoylphenyl)-3,4-dihydrobenzo[g]quinazolin-2-ylthio)-N-substituted acetamide 5-19 were synthesised from the starting material 4-(2-mercapto-4-oxobenzo[g]quinazolin-3(4H)-yl) benzenesulfonamide 4, to be evaluated as dual EGFR/HER2 inhibitors. The target compounds 5-19, were screened for their cytotoxic activity against A549 lung cancer cell line. The percentage inhibition of EGFR enzyme was measured and compared with erlotinib as the reference drug. Compounds 6, 8, 10, and 16 showed excellent EGFR inhibitory activity and were further selected for screening as dual EGFR/HER2 inhibitors. The four selected compounds showed IC 50 ranging from 0.009 to 0.026 µM for EGFR and 0.021 to 0.069 µM for the HER2 enzyme. Compound 8 was found to be the most potent in this study with IC 50 0.009 and 0.021 µM for EGFR and HER2, respectively.

  20. The use of radiocobalt as a label improves imaging of EGFR using DOTA-conjugated Affibody molecule.

    PubMed

    Garousi, Javad; Andersson, Ken G; Dam, Johan H; Olsen, Birgitte B; Mitran, Bogdan; Orlova, Anna; Buijs, Jos; Ståhl, Stefan; Löfblom, John; Thisgaard, Helge; Tolmachev, Vladimir

    2017-07-20

    Several anti-cancer therapies target the epidermal growth factor receptor (EGFR). Radionuclide imaging of EGFR expression in tumours may aid in selection of optimal cancer therapy. The 111 In-labelled DOTA-conjugated Z EGFR:2377 Affibody molecule was successfully used for imaging of EGFR-expressing xenografts in mice. An optimal combination of radionuclide, chelator and targeting protein may further improve the contrast of radionuclide imaging. The aim of this study was to evaluate the targeting properties of radiocobalt-labelled DOTA-Z EGFR:2377 . DOTA-Z EGFR:2377 was labelled with 57 Co (T 1/2  = 271.8 d), 55 Co (T 1/2  = 17.5 h), and, for comparison, with the positron-emitting radionuclide 68 Ga (T 1/2  = 67.6 min) with preserved specificity of binding to EGFR-expressing A431 cells. The long-lived cobalt radioisotope 57 Co was used in animal studies. Both 57 Co-DOTA-Z EGFR:2377 and 68 Ga-DOTA-Z EGFR:2377 demonstrated EGFR-specific accumulation in A431 xenografts and EGFR-expressing tissues in mice. Tumour-to-organ ratios for the radiocobalt-labelled DOTA-Z EGFR:2377 were significantly higher than for the gallium-labelled counterpart already at 3 h after injection. Importantly, 57 Co-DOTA-Z EGFR:2377 demonstrated a tumour-to-liver ratio of 3, which is 7-fold higher than the tumour-to-liver ratio for 68 Ga-DOTA-Z EGFR:2377 . The results of this study suggest that the positron-emitting cobalt isotope 55 Co would be an optimal label for DOTA-Z EGFR:2377 and further development should concentrate on this radionuclide as a label.

  1. NF-κB activating complex engaged in response to EGFR oncogene inhibition drives tumor cell survival and residual disease in lung cancer

    PubMed Central

    Blakely, Collin M.; Pazarentzos, Evangelos; Olivas, Victor; Asthana, Saurabh; Yan, Jenny Jiacheng; Tan, Irena; Hrustanovic, Gorjan; Chan, Elton; Lin, Luping; Neel, Dana S.; Newton, William; Bobb, Kathryn; Fouts, Timothy; Meshulam, Jeffrey; Gubens, Matthew A.; Jablons, David M.; Johnson, Jeffrey R.; Bandyopadhyay, Sourav; Krogan, Nevan J.; Bivona, Trever G.

    2015-01-01

    Summary Although oncogene-targeted therapy often elicits profound initial tumor responses in patients, responses are generally incomplete because some tumor cells survive initial therapy as residual disease that enables eventual acquired resistance. The mechanisms underlying tumor cell adaptation and survival during initial therapy are incompletely understood. Here, through the study of EGFR-mutant lung adenocarcinoma we show that NF-κB signaling is rapidly engaged upon initial EGFR inhibitor treatment to promote tumor cell survival and residual disease. EGFR oncogene inhibition induced an EGFR-TRAF2-RIP1-IKK complex that stimulated an NF-κB-mediated transcriptional survival program. The direct NF-κB inhibitor PBS-1086 suppressed this adaptive survival program and increased the magnitude and duration of initial EGFR inhibitor response in multiple NSCLC models, including a patient-derived xenograft. These findings unveil NF-κB activation as a critical adaptive survival mechanism engaged by EGFR oncogene inhibition and provide rationale for EGFR and NF-κB co-inhibition to eliminate residual disease and enhance patient responses. PMID:25843712

  2. Triple Inhibition of EGFR, Met, and VEGF Suppresses Regrowth of HGF-Triggered, Erlotinib-Resistant Lung Cancer Harboring an EGFR Mutation

    PubMed Central

    Nakade, Junya; Takeuchi, Shinji; Nakagawa, Takayuki; Ishikawa, Daisuke; Sano, Takako; Nanjo, Shigeki; Yamada, Tadaaki; Ebi, Hiromichi; Zhao, Lu; Yasumoto, Kazuo; Matsumoto, Kunio; Yonekura, Kazuhiko

    2014-01-01

    Introduction: Met activation by gene amplification and its ligand, hepatocyte growth factor (HGF), imparts resistance to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) in EGFR-mutant lung cancer. We recently reported that Met activation by HGF stimulates the production of vascular endothelial growth factor (VEGF) and facilitates angiogenesis, which indicates that HGF induces EGFR-TKI resistance and angiogenesis. This study aimed to determine the effect of triple inhibition of EGFR, Met, and angiogenesis on HGF-triggered EGFR-TKI resistance in EGFR-mutant lung cancer. Methods: Three clinically approved drugs, erlotinib (an EGFR inhibitor), crizotinib (an inhibitor of anaplastic lymphoma kinase and Met), and bevacizumab (anti-VEGF antibody), and TAS-115, a novel dual TKI for Met and VEGF receptor 2, were used in this study. EGFR-mutant lung cancer cell lines PC-9, HCC827, and HGF-gene–transfected PC-9 (PC-9/HGF) cells were examined. Results: Crizotinib and TAS-115 inhibited Met phosphorylation and reversed erlotinib resistance and VEGF production triggered by HGF in PC-9 and HCC827 cells in vitro. Bevacizumab and TAS-115 inhibited angiogenesis in PC-9/HGF tumors in vivo. Moreover, the triplet erlotinib, crizotinib, and bevacizumab, or the doublet erlotinib and TAS-115 successfully inhibited PC-9/HGF tumor growth and delayed tumor regrowth associated with sustained tumor vasculature inhibition even after cessation of the treatment. Conclusion: These results suggest that triple inhibition of EGFR, HGF/Met, and VEGF/VEGF receptor 2, by either a triplet of clinical drugs or TAS-115 combined with erlotinib, may be useful for controlling progression of EGFR-mutant lung cancer by reversing EGFR-TKI resistance and for inhibiting angiogenesis. PMID:24828661

  3. Development of the Third Generation EGFR Tyrosine Kinase Inhibitors for Anticancer Therapy.

    PubMed

    Cheng, Weiyan; Zhou, Jianhua; Tian, Xin; Zhang, Xiaojian

    2016-01-01

    Epidermal growth factor receptor (EGFR) is one of the most important targets in anticancer therapy. Till date, a large number of first and second generation EGFR tyrosine kinase inhibitors (TKIs) have been marketed or advanced into clinical studies. However, the occurrence of TKI-resistant mutations has led to the loss of efficacy of these inhibitors. In the purpose of overcoming resistant mutations and reducing side effects, lots of third generation EGFR inhibitors are explored with promising potencies against EGFR mutations while sparing wild-type EGFR. This review outlines the current landscape of the development of third generation EGFR inhibitors, mainly focusing on the biological properties, clinical status and structure-activity relationships.

  4. Identification of the zinc finger 216 (ZNF216) in human carcinoma cells: a potential regulator of EGFR activity

    PubMed Central

    Mincione, Gabriella; Di Marcantonio, Maria Carmela; Tarantelli, Chiara; Savino, Luca; Ponti, Donatella; Marchisio, Marco; Lanuti, Paola; Sancilio, Silvia; Calogero, Antonella; Di Pietro, Roberta; Muraro, Raffaella

    2016-01-01

    Epidermal Growth Factor Receptor (EGFR), a member of the ErbB family of receptor tyrosine kinase (RTK) proteins, is aberrantly expressed or deregulated in tumors and plays pivotal roles in cancer onset and metastatic progression. ZNF216 gene has been identified as one of Immediate Early Genes (IEGs) induced by RTKs. Overexpression of ZNF216 protein sensitizes 293 cell line to TNF-α induced apoptosis. However, ZNF216 overexpression has been reported in medulloblastomas and metastatic nasopharyngeal carcinomas. Thus, the role of this protein is still not clearly understood. In this study, the inverse correlation between EGFR and ZNF216 expression was confirmed in various human cancer cell lines differently expressing EGFR. EGF treatment of NIH3T3 cells overexpressing both EGFR and ZNF216 (NIH3T3-EGFR/ZNF216), induced a long lasting activation of EGFR in the cytosolic fraction and an accumulation of phosphorylated EGFR (pEGFR) more in the nuclear than in the cytosolic fraction compared to NIH3T3-EGFR cells. Moreover, EGF was able to stimulate an increased expression of ZNF216 in the cytosolic compartment and its nuclear translocation in a time-dependent manner in NIH3T3-EGFR/ZNF216. A similar trend was observed in A431 cells endogenously expressing the EGFR and transfected with Znf216. The increased levels of pEGFR and ZNF216 in the nuclear fraction of NIH3T3-EGFR/ZNF216 cells were paralleled by increased levels of phospho-MAPK and phospho-Akt. Surprisingly, EGF treatment of NIH3T3-EGFR/ZNF216 cells induced a significant increase of apoptosis thus indicating that ZNF216 could sensitize cells to EGF-induced apoptosis and suggesting that it may be involved in the regulation and effects of EGFR signaling. PMID:27732953

  5. Traditional Chinese Medicine CFF-1 induced cell growth inhibition, autophagy, and apoptosis via inhibiting EGFR-related pathways in prostate cancer.

    PubMed

    Wu, Zhaomeng; Zhu, Qingyi; Yin, Yingying; Kang, Dan; Cao, Runyi; Tian, Qian; Zhang, Yu; Lu, Shan; Liu, Ping

    2018-04-01

    Traditional Chinese medicine (TCM) has a combined therapeutic result in cancer treatment by integrating holistic and local therapeutical effects, by which TCM can enhance the curative effect and reduce the side effect. In this study, we analyzed the effect of CFF-1 (alcohol extract from an anticancer compound Chinese medicine) on prostate cancer (PCa) cell lines and studied in detail the mechanism of cell death induced by CFF-1 in vitro and in vivo. From our data, we found for the first time that CFF-1 obviously arrested cell cycle in G1 phase, decreased cell viability and then increased nuclear rupture in a dose-dependent manner and finally resulted in apoptosis in prostate cancer cells. In molecular level, our data showed that CFF-1 induced inhibition of EGFR auto-phosphorylation and inactivation of EGFR. Disruption of EGFR activity in turn suppressed downstream PI3K/AKT and Raf/Erk signal pathways, resulted in the decrease of p-FOXO1 (Ser256) and regulated the expression of apoptosis-related and cycle-related genes. Moreover, CFF-1 markedly induced cell autophagy through inhibiting PI3K/AKT/mTOR pathway and then up-regulating Beclin-1 and LC-3II and down-regulating phosphorylation of p70S6K. In vivo, CFF-1-treated group exhibited a significant decrease in tumor volume compared with the negative control group in subcutaneous xenograft tumor in nude mice via inhibiting EGFR-related signal pathways. Thus, bio-functions of Chinese medicine CFF-1 in inducing PCa cell growth inhibition, autophagy, and apoptosis suggested that CFF-1 had the clinical potential to treat patients with prostate cancer. © 2018 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  6. Mutation analysis of the EGFR pathway genes, EGFR, RAS, PIK3CA, BRAF, and AKT1, in salivary gland adenoid cystic carcinoma.

    PubMed

    Saida, Kosuke; Murase, Takayuki; Ito, Mayuko; Fujii, Kana; Takino, Hisashi; Masaki, Ayako; Kawakita, Daisuke; Ijichi, Kei; Tada, Yuichiro; Kusafuka, Kimihide; Iida, Yoshiyuki; Onitsuka, Tetsuro; Yatabe, Yasushi; Hanai, Nobuhiro; Hasegawa, Yasuhisa; Shinomiya, Hitomi; Nibu, Ken-Ichi; Shimozato, Kazuo; Inagaki, Hiroshi

    2018-03-30

    Adenoid cystic carcinoma (AdCC), one of the most common salivary gland carcinomas, usually has a fatal outcome. Epidermal growth factor receptor (EGFR) pathway gene mutations are important in predicting a patient's prognosis and estimating the efficacy of molecular therapy targeting the EGFR pathway. In this study of salivary gland AdCC (SAdCC), we looked for gene mutations in EGFR, RAS family ( KRAS, HRAS, and NRAS ), PIK3CA, BRAF, and AKT1 , using a highly sensitive single-base extension multiplex assay, SNaPshot. Out of 70 cases, EGFR pathway missense mutations were found in 13 (18.6%): RAS mutations in 10 (14.3%), EGFR in one (1.4%), and PIK3CA in 5 (7.1%). None of the cases showed an EGFR deletion by direct sequencing. Concurrent gene mutations were found in three cases (4.3%). EGFR pathway mutations were significantly associated with a shorter disease-free ( p = 0.011) and overall survival ( p = 0.049) and RAS mutations were as well; ( p = 0.010) and ( p = 0.024), respectively. The gene fusion status as determined by a FISH assay had no significant association with mutations of the genes involved in the EGFR pathway. In conclusion, EGFR pathway mutations, especially RAS mutations, may be frequent in SAdCC, and associated with a poor prognosis for the patient.

  7. Icariside II activates EGFR-Akt-Nrf2 signaling and protects osteoblasts from dexamethasone.

    PubMed

    Liu, Weidong; Mao, Li; Ji, Feng; Chen, Fengli; Wang, Shouguo; Xie, Yue

    2017-01-10

    The potential effect of icariside II on dexamethasone-induced osteoblast cell damages was evaluated here. In MC3T3-E1 osteoblastic cells and the primary murine osteoblasts, co-treatment with icariside II dramatically attenuated dexamethasone- induced cell death and apoptosis. Icariside II activated Akt signaling, which is required for its actions in osteoblasts. Akt inhibitors (LY294002, perifosine and MK-2206) almost abolished icariside II-induced osteoblast cytoprotection against dexamethasone. Further studies showed that icariside II activated Nrf2 signaling, downstream of Akt, to inhibit dexamethasone-induced reactive oxygen species (ROS) production in MC3T3-E1 cells and primary osteoblasts. On the other hand, Nrf2 shRNA knockdown inhibited icariside II-induced anti-dexamethasone cytoprotection in MC3T3-E1 cells. Finally, we showed that icariside II induced heparin-binding EGF (HB-EGF) production and EGFR trans-activation in MC3T3-E1 cells. EGFR inhibition, via anti-HB-EGF antibody, EGFR inhibitor AG1478 or EGFR shRNA knockdown, almost blocked icariside II-induced Akt-Nrf2 activation in MC3T3-E1 cells. Collectively, we conclude that icariside II activates EGFR-Akt-Nrf2 signaling and protects osteoblasts from dexamethasone. Icariside II might have translational value for the treatment of dexamethasone-associated osteoporosis/osteonecrosis.

  8. Comparison of targeted next-generation sequencing with conventional sequencing for predicting the responsiveness to epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) therapy in never-smokers with lung adenocarcinoma.

    PubMed

    Han, Ji-Youn; Kim, Sun Hye; Lee, Yeon-Su; Lee, Seung-Youn; Hwang, Jung-Ah; Kim, Jin Young; Yoon, Sung Jin; Lee, Geon Kook

    2014-08-01

    To investigate the clinical utility of targeted next-generation sequencing (NGS) for predicting the responsiveness to epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitor (TKI) therapy, we compared the efficacy with conventional sequencing in never-smokers with lung adenocarcinoma (NSLAs). We obtained DNA from 48 NSLAs who received gefitinib or erlotinib for their recurrent disease after surgery. Sanger sequencing and peptide nucleic acid clamp polymerase chain reaction (PCR) were used to analyze EGFR, KRAS, BRAF, and PIK3CA mutations. We analyzed ALK, RET, and ROS1 rearrangements by fluorescent in situ hybridization or reverse transcriptase-PCR and quantitative real-time PCR. After molecular screening, Ion Torrent NGS was performed in 31 cases harboring only EGFR exon 19 deletions (19DEL), an L858R mutation, or none of the above mutations. The 31 samples were divided into four groups: (1) responders to EGFR-TKIs with only 19DEL or L858R (n=15); (2) primary resistance to EGFR-TKI with only 19DEL or L858R (n=4); (3) primary resistance to EGFR-TKI without any mutations (n=8); (4) responders to EGFR-TKI without any mutations (n=4). With NGS, all conventionally detected mutations were confirmed except for one L858R in group 2. Additional uncovered predictive mutations with NGS included one PIK3CA E542K in group 2, two KRAS (G12V and G12D), one PIK3CA E542K, one concomitant PIK3CA and EGFR L858R in group 3, and one EGFR 19DEL in group 4. Targeted NGS provided a more accurate and clinically useful molecular classification of NSLAs. It may improve the efficacy of EGFR-TKI therapy in lung cancer. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  9. Afatinib and Cetuximab in Four Patients With EGFR Exon 20 Insertion-Positive Advanced NSCLC.

    PubMed

    van Veggel, Bianca; de Langen, Adrianus J; Hashemi, Sayed M S; Monkhorst, Kim; Heideman, Daniëlle A M; Thunnissen, Erik; Smit, Egbert F

    2018-04-24

    EGFR exon 20 insertions comprise 4% to 9% of EGFR mutated NSCLC. Despite being an oncogenic driver, they are associated with primary resistance to EGFR tyrosine kinase inhibitors (TKIs). We hypothesized that dual EGFR blockade with afatinib, an irreversible EGFR TKI, and cetuximab, a monoclonal antibody against EGFR, could induce tumor responses. Four patients with EGFR exon 20 insertion-positive NSCLC were treated with afatinib 40 mg once daily and cetuximab 250 mg/m 2 to 500 mg/m 2 every 2 weeks. All patients had stage IV adenocarcinoma of the lung harboring an EGFR exon 20 insertion mutation. Previous lines of treatment consisted of platinum doublet chemotherapy (n = 4) and EGFR TKI (n = 2). Three of four patients showed a partial response according to Response Evaluation Criteria in Solid Tumors (RECIST 1.1). Median progression-free survival was 5.4 months (95% confidence interval: 0.0 - 14.2 months; range 2.7 months - 17.6 months). Toxicity was manageable with appropriate skin management and dose reduction being required in two patients. Dual EGFR blockade with afatinib and cetuximab may induce tumor responses in patients with EGFR exon 20 insertion-positive NSCLC. Copyright © 2018 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.

  10. JAK2 inhibition sensitizes resistant EGFR-mutant lung adenocarcinoma to tyrosine kinase inhibitors

    PubMed Central

    Gao, Sizhi P.; Chang, Qing; Mao, Ninghui; Daly, Laura A.; Vogel, Robert; Chan, Tyler; Liu, Shu Hui; Bournazou, Eirini; Schori, Erez; Zhang, Haiying; Brewer, Monica Red; Pao, William; Morris, Luc; Ladanyi, Marc; Arcila, Maria; Manova-Todorova, Katia; de Stanchina, Elisa; Norton, Larry; Levine, Ross L.; Altan-Bonnet, Gregoire; Solit, David; Zinda, Michael; Huszar, Dennis; Lyden, David; Bromberg, Jacqueline F.

    2016-01-01

    Lung adenocarcinomas with mutant epidermal growth factor receptor (EGFR) respond to EGFR-targeted tyrosine kinase inhibitors (TKIs), but resistance invariably occurs. We found that the Janus kinase (JAK)/signal transduction and activator of transcription 3 (STAT3) signaling pathway was aberrantly increased in TKI-resistant EGFR-mutant non–small cell lung cancer (NSCLC) cells. JAK2 inhibition restored sensitivity to the EGFR inhibitor erlotinib in TKI-resistant cell lines and xenograft models of EGFR-mutant TKI-resistant lung cancer. JAK2 inhibition uncoupled EGFR from its negative regulator, suppressor of cytokine signaling 5 (SOCS5), consequently increasing EGFR abundance and restoring the tumor cells’ dependence on EGFR signaling. Furthermore, JAK2 inhibition led to heterodimerization of mutant and wild-type EGFR subunits, the activity of which was then blocked by TKIs. Our results reveal a mechanism whereby JAK2 inhibition overcomes acquired resistance to EGFR inhibitors and support the use of combination therapy with JAK and EGFR inhibitors for the treatment of EGFR-dependent NSCLC. PMID:27025877

  11. Cellular Response to Titanium Dioxide Nanoparticles in Intestinal Epithelial Caco-2 Cells is Dependent on Endocytosis-Associated Structures and Mediated by EGFR

    PubMed Central

    Krüger, Kristin; Schrader, Katrin; Klempt, Martin

    2017-01-01

    Titanium dioxide (TiO2) is one of the most applied nanomaterials and widely used in food and non-food industries as an additive or coating material (E171). It has been shown that E171 contains up to 37% particles which are smaller than 100 nm and that TiO2 nanoparticles (NPs) induce cytotoxicity and inflammation. Using a nuclear factor Kappa-light-chain enhancer of activated B cells (NF-κB) reporter cell line (Caco-2nfkb-RE), Real time polymerase chain reaction (PCR), and inhibition of dynamin and clathrin, it was shown that cellular responses induced by 5 nm and 10 nm TiO2 NPs (nominal size) depends on endocytic processes. As endocytosis is often dependent on the epithelial growth factor receptor (EGFR), further investigations focused on the involvement of EGFR in the uptake of TiO2 NPs: (1) inhibition of EGFR reduced inflammatory markers of the cell (i.e., nuclear factor (NF)-κB activity, mRNA of IL8, CCL20, and CXCL10); and (2) exposure of Caco-2 cells to TiO2 NPs activated the intracellular EGFR cascade beginning with EGFR-mediated extracellular signal-regulated kinases (ERK)1/2, and including transcription factor ELK1. This was followed by the expression of ERK1/2 target genes CCL2 and CXCL3. We concluded that TiO2 NPs enter the cell via EGFR-associated endocytosis, followed by activation of the EGFR/ERK/ELK signaling pathway, which finally induces NF-κB. No changes in inflammatory response are observed in Caco-2 cells exposed to 32 nm and 490 nm TiO2 particles. PMID:28387727

  12. Cellular Response to Titanium Dioxide Nanoparticles in Intestinal Epithelial Caco-2 Cells is Dependent on Endocytosis-Associated Structures and Mediated by EGFR.

    PubMed

    Krüger, Kristin; Schrader, Katrin; Klempt, Martin

    2017-04-07

    Titanium dioxide (TiO₂) is one of the most applied nanomaterials and widely used in food and non-food industries as an additive or coating material (E171). It has been shown that E171 contains up to 37% particles which are smaller than 100 nm and that TiO₂ nanoparticles (NPs) induce cytotoxicity and inflammation. Using a nuclear factor Kappa-light-chain enhancer of activated B cells (NF-κB) reporter cell line (Caco-2 nfkb-RE ), Real time polymerase chain reaction (PCR), and inhibition of dynamin and clathrin, it was shown that cellular responses induced by 5 nm and 10 nm TiO₂ NPs (nominal size) depends on endocytic processes. As endocytosis is often dependent on the epithelial growth factor receptor (EGFR), further investigations focused on the involvement of EGFR in the uptake of TiO₂ NPs: (1) inhibition of EGFR reduced inflammatory markers of the cell (i.e., nuclear factor (NF)-κB activity, mRNA of IL8, CCL20, and CXCL10); and (2) exposure of Caco-2 cells to TiO₂ NPs activated the intracellular EGFR cascade beginning with EGFR-mediated extracellular signal-regulated kinases (ERK)1/2, and including transcription factor ELK1. This was followed by the expression of ERK1/2 target genes CCL2 and CXCL3. We concluded that TiO₂ NPs enter the cell via EGFR-associated endocytosis, followed by activation of the EGFR/ERK/ELK signaling pathway, which finally induces NF-κB. No changes in inflammatory response are observed in Caco-2 cells exposed to 32 nm and 490 nm TiO₂ particles.

  13. Cordycepin Induces Apoptosis and Inhibits Proliferation of Human Lung Cancer Cell Line H1975 via Inhibiting the Phosphorylation of EGFR.

    PubMed

    Wang, Zheng; Wu, Xue; Liang, Yan-Ni; Wang, Li; Song, Zhong-Xing; Liu, Jian-Li; Tang, Zhi-Shu

    2016-09-27

    Cordycepin is an active component of the traditional Chinese medicine Cordyceps sinensis and Cordyceps militaris with notable anticancer activity. Though the prominent inhibitory activity was reported in different kinds of cancer cell lines, the concrete mechanisms remain elusive. It was reported that cordycepin could be converted into tri-phosphates in vivo to confuse a number of enzymes and interfere the normal cell function. For the inhibitory mechanism of EGFR inhibitors and the structure similarity of ATP and tri-phosphated cordycepin, human lung cancer cell line H1975 was employed to investigate the inhibitory effect of cordycepin. The results showed that cordycepin could inhibit cell proliferation and induce apoptosis in a dose-dependent manner. Cell cycle analysis revealed that H1975 cells could be arrested at the G₀/G₁ phase after cordycepin treatment. The expression levels of apoptosis-related protein Caspase-3 and Bcl-2 and phosphorylated expression levels of EGFR, AKT and ERK1/2 were all decreased compared with the control group stimulated with EGF. However, the protein expression levels of proapoptotic protein Bax and cleaved caspase-3 were increased. These results implied that cordycepin could inhibit cell proliferation and induce apoptosis via the EGFR signaling pathway. Our results indicated that there was potential to seek a novel EGFR inhibitor from cordycepin and its chemical derivatives.

  14. Novel strategy for a bispecific antibody: induction of dual target internalization and degradation.

    PubMed

    Lee, J M; Lee, S H; Hwang, J-W; Oh, S J; Kim, B; Jung, S; Shim, S-H; Lin, P W; Lee, S B; Cho, M-Y; Koh, Y J; Kim, S Y; Ahn, S; Lee, J; Kim, K-M; Cheong, K H; Choi, J; Kim, K-A

    2016-08-25

    Activation of the extensive cross-talk among the receptor tyrosine kinases (RTKs), particularly ErbB family-Met cross-talk, has emerged as a likely source of drug resistance. Notwithstanding brilliant successes were attained while using small-molecule inhibitors or antibody therapeutics against specific RTKs in multiple cancers over recent decades, a high recurrence rate remains unsolved in patients treated with these targeted inhibitors. It is well aligned with multifaceted properties of cancer and cross-talk and convergence of signaling pathways of RTKs. Thereby many therapeutic interventions have been actively developed to overcome inherent or acquired resistance. To date, no bispecific antibody (BsAb) showed complete depletion of dual RTKs from the plasma membrane and efficient dual degradation. In this manuscript, we report the first findings of a target-specific dual internalization and degradation of membrane RTKs induced by designed BsAbs based on the internalizing monoclonal antibodies and the therapeutic values of these BsAbs. Leveraging the anti-Met mAb able to internalize and degrade by a unique mechanism, we generated the BsAbs for Met/epidermal growth factor receptor (EGFR) and Met/HER2 to induce an efficient EGFR or HER2 internalization and degradation in the presence of Met that is frequently overexpressed in the invasive tumors and involved in the resistance against EGFR- or HER2-targeted therapies. We found that Met/EGFR BsAb ME22S induces dissociation of the Met-EGFR complex from Hsp90, followed by significant degradation of Met and EGFR. By employing patient-derived tumor models we demonstrate therapeutic potential of the BsAb-mediated dual degradation in various cancers.

  15. Association between BIM deletion polymorphism and clinical outcome of EGFR-mutated NSCLC patient with EGFR-TKI therapy: A meta-analysis.

    PubMed

    Ma, Ji-Yong; Yan, Hai-Jun; Gu, Wei

    2015-01-01

    BIM deletion polymorphism was deemed to be associated with downregulation of BIM, resulting in a decreased apoptosis induced by epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) in EGFR mutation-positive non-small cell lung cancer (NSCLC). However, accumulating evidences concerning the association between BIM deletion polymorphism and efficacy of EGFR-TKI and survival in EGFR-mutation-driven NSCLC patient reported contradictory results. A meta-analysis was conducted by combing six original eligible studies including 871 NSCLC patients. Our study showed that BIM deletion polymorphism was significantly associated with poor response to EGFR-TKI therapy in mutant EGFRNSCLC patients (P(h) = 0.309, P(z) = 0.001, OR = 0.39, 95% confidence interval (CI) = 0.23-0.67). Disease control rate (DCR) in mutant EGFRNSCLC patient with treatment of EGFR-TKI was significantly decreased in patients with BIM deletion polymorphism comparing to patients harbored BIM wild variant (P(h) = 0.583, P(Z) = 0.007, OR = 0.46, 95%CI = 0.25-0.85). EGFR mutation-derived NSCLC patient carrying BIM deletion polymorphism had a shorter progression-free survival (PFS; P(h) < 0.001, P(z) < 0.001, hazard ratio (HR) = 1.37, 95%CI = 1.09-1.71) and overall survival (OS; P(h) = 0.90, P(z) = 0.003, HR = 1.25, 95%CI = 1.08-1.45), than those harbored BIM wild variant. These results suggested that BIM deletion polymorphism might be a cause that contributes to primary EGFR-TKI resistance, and it could be used as a genetic predictor for EGFR-TKI outcome and an independent prognostic factor of EGFR mutation-driven NSCLC patient.

  16. Molecular alterations of EGFR and PIK3CA in uterine serous carcinoma.

    PubMed

    Hayes, Monica Prasad; Douglas, Wayne; Ellenson, Lora Hedrick

    2009-06-01

    Uterine serous carcinoma (USC) is an aggressive endometrial cancer associated with poor prognosis despite comprehensive surgical staging and adjuvant chemotherapy and radiation therapy. Biologic targets have yet to be fully explored in this disease and research on such targets could lead to clinical trials utilizing a new class of therapeutics. This study sought to evaluate primary USC tumors for molecular alterations in epidermal growth factor receptor (EGFR) and the recently characterized oncogene PIK3CA, which encodes the catalytic p110-alpha subunit of phosphatidylinositol 3-kinase (PI3K) and thus activates the AKT-mTOR oncogenic pathway. Paraffin-embedded archival tissue of 45 primary USC tumors was utilized in this study. Immunohistochemical analysis of EGFR was performed and cases given a score of 0 to 12 calculated as the product of staining intensity (0 to 3+) and the percentage of positively stained cells (0-4), with 1=1-25%, 2=26-50%, 3=51-75%, and 4=76-100%. For mutational analysis, neoplastic tissue was microdissected and DNA was extracted with phenol-chloroform. Exons 18 through 21 of EGFR and exons 9 and 20 of PIK3CA, the most commonly mutated exons of these genes, were amplified and directly sequenced. When EGFR was evaluated, moderate or strong EGFR membranous staining was observed in 25/45 (56%) USC cases. Thus, a mutational analysis was performed on 35 cases, including all cases with moderate and strong EGFR staining. No mutations were identified in EGFR. In contrast, PIK3CA mutations were confirmed in 5/34 (15%) of USC cases. Four cases were mutated in exon 20 and one case was mutated in exon 9. Since optimal treatment of uterine serous carcinoma remains unknown, novel therapeutic approaches need to be actively pursued. In the current study of primary USC tumors, oncogenic mutations of the PIK3CA gene were seen in 15% of USC cases. This represents the first report of this gene mutation in USC. In addition, EGFR stained positively in the majority

  17. Dual targeting of glioblastoma with chimeric antigen receptor-engineered natural killer cells overcomes heterogeneity of target antigen expression and enhances antitumor activity and survival.

    PubMed

    Genßler, Sabrina; Burger, Michael C; Zhang, Congcong; Oelsner, Sarah; Mildenberger, Iris; Wagner, Marlies; Steinbach, Joachim P; Wels, Winfried S

    2016-04-01

    Epidermal growth factor receptor (EGFR) and its mutant form EGFRvIII are overexpressed in a large proportion of glioblastomas (GBM). Immunotherapy with an EGFRvIII-specific vaccine has shown efficacy against GBM in clinical studies. However, immune escape by antigen-loss variants and lack of control of EGFR wild-type positive clones limit the usefulness of this approach. Chimeric antigen receptor (CAR)-engineered natural killer (NK) cells may represent an alternative immunotherapeutic strategy. For targeting to GBM, we generated variants of the clinically applicable human NK cell line NK-92 that express CARs carrying a composite CD28-CD3ζ domain for signaling, and scFv antibody fragments for cell binding either recognizing EGFR, EGFRvIII, or an epitope common to both antigens. In vitro analysis revealed high and specific cytotoxicity of EGFR-targeted NK-92 against established and primary human GBM cells, which was dependent on EGFR expression and CAR signaling. EGFRvIII-targeted NK-92 only lysed EGFRvIII-positive GBM cells, while dual-specific NK cells expressing a cetuximab-based CAR were active against both types of tumor cells. In immunodeficient mice carrying intracranial GBM xenografts either expressing EGFR, EGFRvIII or both receptors, local treatment with dual-specific NK cells was superior to treatment with the corresponding monospecific CAR NK cells. This resulted in a marked extension of survival without inducing rapid immune escape as observed upon therapy with monospecific effectors. Our results demonstrate that dual targeting of CAR NK cells reduces the risk of immune escape and suggest that EGFR/EGFRvIII-targeted dual-specific CAR NK cells may have potential for adoptive immunotherapy of glioblastoma.

  18. High expression of Bruton's tyrosine kinase (BTK) is required for EGFR-induced NF-κB activation and predicts poor prognosis in human glioma.

    PubMed

    Yue, Chenglong; Niu, Mingshan; Shan, Qian Qian; Zhou, Ting; Tu, Yiming; Xie, Peng; Hua, Lei; Yu, Rutong; Liu, Xuejiao

    2017-09-25

    Malignant glioma is the most common primary brain tumor in adults and has a poor prognosis. However, there are no effective targeted therapies for glioma patients. Thus, the development of novel targeted therapeutics for glioma is urgently needed. In this study, we examined the prognostic significance BTK expression in patients with glioma. Furthermore, we investigated the mechanism and therapeutic potential of ibrutinib in the treatment of human glioma in vitro and in vivo. Our data demonstrate that high expression of BTK is a novel prognostic marker for poor survival in patients with glioma. BTK-specific inhibitor ibrutinib effectively inhibits the proliferation, migration and invasion ability of glioma cells. Furthermore, ibrutinib can induce G1 cell-cycle arrest by regulating multiple cell cycle-associated proteins. More importantly, we found that BTK inhibition significantly blocks the degradation of IκBα and prevents the nuclear accumulation of NF-κB p65 subunit induced by EGF in glioma cells. Taken together, our study suggests that BTK is a novel prognostic marker and molecular therapeutic target for glioma. BTK is required for EGFR-induced NF-κB activation in glioma cells. These findings provide the basis for future clinical studies of ibrutinib for the treatment of glioma.

  19. Epidermal growth factor receptor signaling mediates aldosterone-induced profibrotic responses in kidney

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheng, Lili; Yang, Min; Ding, Wei

    Aldosterone has been recognized as a risk factor for the development of chronic kidney disease (CKD). Studies have indicated that enhanced activation of epidermal growth factor receptor (EGFR) is associated with the development and progression of renal fibrosis. But if EGFR is involved in aldosterone-induced renal fibrosis is less investigated. In the present study, we examined the effect of erlotinib, an inhibitor of EGFR tyrosine kinase activity, on the progression of aldosterone-induced renal profibrotic responses in a murine model underwent uninephrectomy. Erlotinib-treated rats exhibited relieved structural lesion comparing with rats treated with aldosterone alone, as characterized by glomerular hypertrophy, mesangialmore » cell proliferation and expansion. Also, erlotinib inhibited the expression of TGF-β, α-SMA and mesangial matrix proteins such as collagen Ⅳ and fibronectin. In cultured mesangial cells, inhibition of EGFR also abrogated aldosterone-induced expression of extracellular matrix proteins, cell proliferation and migration. We also demonstrated that aldosterone induced the phosphorylation of EGFR through generation of ROS. And the activation of EGFR resulted in the phosphorylation of ERK1/2, leading to the activation of profibrotic pathways. Taken together, we concluded that aldosterone-mediated tissue fibrosis relies on ROS induced EGFR/ERK activation, highlighting EGFR as a potential therapeutic target for modulating renal fibrosis. - Highlights: • EGFR was involved in aldosterone-induced renal profibrotic responses. • Aldosterone-induced EGFR activation was mediated by MR-dependent ROS generation. • EGFR activated the MAPK/ERK1/2 signaling to promote renal fibrosis.« less

  20. Irreversible EGFR Inhibitor EKB-569 Targets Low-LET γ-Radiation-Triggered Rel Orchestration and Potentiates Cell Death in Squamous Cell Carcinoma

    PubMed Central

    Aravindan, Natarajan; Thomas, Charles R.; Aravindan, Sheeja; Mohan, Aswathi S.; Veeraraghavan, Jamunarani; Natarajan, Mohan

    2011-01-01

    EKB-569 (Pelitinib), an irreversible EGFR tyrosine kinase inhibitor has shown potential therapeutic efficiency in solid tumors. However, cell-killing potential in combination with radiotherapy and its underlying molecular orchestration remain to be explored. The objective of this study was to determine the effect of EKB-569 on ionizing radiation (IR)-associated NFκB-dependent cell death. SCC-4 and SCC-9 cells exposed to IR (2Gy) with and without EKB-569 treatment were analyzed for transactivation of 88 NFκB pathway molecules, NFκB DNA-binding activity, translation of the NFκB downstream mediators, Birc1, 2 and 5, cell viability, metabolic activity and apoptosis. Selective targeting of IR-induced NFκB by EKB-569 and its influence on cell-fate were assessed by overexpressing (p50/p65) and silencing (ΔIκBα) NFκB. QPCR profiling after IR exposure revealed a significant induction of 74 NFκB signal transduction molecules. Of those, 72 were suppressed with EKB-569. EMSA revealed a dose dependent inhibition of NFκB by EKB-569. More importantly, EKB-569 inhibited IR-induced NFκB in a dose-dependent manner, and this inhibition was sustained up to at least 72 h. Immunoblotting revealed a significant suppression of IR-induced Birc1, 2 and 5 by EKB-569. We observed a dose-dependent inhibition of cell viability, metabolic activity and apoptosis with EKB-569. EKB-569 significantly enhanced IR-induced cell death and apoptosis. Blocking NFκB improved IR-induced cell death. Conversely, NFκB overexpression negates EKB-569 -induced cell-killing. Together, these pre-clinical data suggest that EKB-569 is a radiosensitizer of squamous cell carcinoma and may mechanistically involve selective targeting of IR-induced NFκB-dependent survival signaling. Further pre-clinical in-vivo studies are warranted. PMID:22242139

  1. Understanding resistance to EGFR inhibitors—impact on future treatment strategies

    PubMed Central

    Wheeler, Deric L.; Dunn, Emily F.; Harari, Paul M.

    2010-01-01

    EGFR is a tyrosine kinase that participates in the regulation of cellular homeostasis. Following ligand binding, EGFR stimulates downstream cell signaling cascades that influence cell proliferation, apoptosis, migration, survival and complex processes, including angiogenesis and tumorigenesis. EGFR has been strongly implicated in the biology of human epithelial malignancies, with therapeutic applications in cancers of the colon, head and neck, lung, and pancreas. Accordingly, targeting EGFR has been intensely pursued, with the development of a series of promising molecular inhibitors for use in clinical oncology. As is common in cancer therapy, challenges with respect to treatment resistance emerge over time. This situation is certainly true of EGFR inhibitor therapies, where intrinsic and acquired resistance is now well recognized. In this Review, we provide a brief overview regarding the biology of EGFR biology, preclinical and clinical development of EGFR inhibitors, and molecular mechanisms that underlie the development of treatment resistance. A greater understanding of the mechanisms that lead to EGFR resistance may provide valuable insights to help design new strategies that will enhance the impact of this promising class of inhibitors for the treatment of cancer. PMID:20551942

  2. Evolution and clinical impact of co-occurring genetic alterations in advanced-stage EGFR-mutant lung cancers

    PubMed Central

    Blakely, Collin M.; Watkins, Thomas B.K.; Wu, Wei; Gini, Beatrice; Chabon, Jacob J.; McCoach, Caroline E.; McGranahan, Nicholas; Wilson, Gareth A.; Birkbak, Nicolai J.; Olivas, Victor R.; Rotow, Julia; Maynard, Ashley; Wang, Victoria; Gubens, Matthew A.; Banks, Kimberly C.; Lanman, Richard B.; Caulin, Aleah F.; John, John St.; Cordero, Anibal R.; Giannikopoulos, Petros; Simmons, Andrew D.; Mack, Philip C.; Gandara, David R.; Husain, Hatim; Doebele, Robert C.; Riess, Jonathan W.; Diehn, Maximilian; Swanton, Charles; Bivona, Trever G.

    2017-01-01

    A widespread approach to modern cancer therapy is to identify a single oncogenic driver gene and target its mutant protein product (e.g. EGFR inhibitor treatment in EGFR-mutant lung cancers). However, genetically-driven resistance to targeted therapy limits patient survival. Through genomic analysis of 1122 EGFR-mutant lung cancer cell-free DNA samples and whole exome analysis of seven longitudinally collected tumor samples from an EGFR-mutant lung cancer patient, we identify critical co-occurring oncogenic events present in most advanced-stage EGFR-mutant lung cancers. We define new pathways limiting EGFR inhibitor response, including WNT/β-catenin and cell cycle gene (e.g. CDK4, CDK6) alterations. Tumor genomic complexity increases with EGFR inhibitor treatment and co-occurring alterations in CTNNB1, and PIK3CA exhibit non-redundant functions that cooperatively promote tumor metastasis or limit EGFR inhibitor response. This study challenges the prevailing single-gene driver oncogene view and links clinical outcomes to co-occurring genetic alterations in advanced-stage EGFR-mutant lung cancer patients. PMID:29106415

  3. [Regulation on EGFR function via its interacting proteins and its potential application].

    PubMed

    Zheng, Jun-Fang; Chen, Hui-Min; He, Jun-Qi

    2013-12-01

    Epidermal growth factor receptor (EGFR) is imptortant for cell activities, oncogenesis and cell migration, and EGFR inhibitor can treat cancer efficiently, but its side effects, for example, in skin, limited its usage. On the other hand, EGFR interacting proteins may also lead to oncogenesis and its interacting protein as drug targets can avoid cutaneous side effect, which implies possibly a better outcome and life quality of cancer patients. For the multiple EGFR interaction proteins, B1R enhances Erk/MAPK signaling, while PTPN12, Kek1, CEACAM1 and NHERF repress Erk/MAPK signaling. CaM may alter charge of EGFR juxamembrane domain and regulate activation of PI3K/Akt and PLC-gamma/PKC. STAT1, STAT5b are widely thought to be activated by EGFR, while there is unexpectedly inhibiting sequence within EGFR to repress the activity of STATs. LRIG1 and ACK1 enhance the internalization and degration of EGFR, while NHERF and HIP1 repress it. In this article, proteins interacting with EGFR, their interacting sites and their regulation on EGFR signal transduction will be reviewed.

  4. Hepatocyte growth factor induces resistance to anti-epidermal growth factor receptor antibody in lung cancer.

    PubMed

    Yamada, Tadaaki; Takeuchi, Shinji; Kita, Kenji; Bando, Hideaki; Nakamura, Takahiro; Matsumoto, Kunio; Yano, Seiji

    2012-02-01

    Epidermal growth factor receptor (EGFR) is an attractive drug target in lung cancer, with several anti-EGFR antibodies and small-molecule inhibitors showing efficacy in lung cancer patients. Patients, however, may develop resistance to EGFR inhibitors. We demonstrated previously that hepatocyte growth factor (HGF) induced resistance to EGFR tyrosine kinase inhibitors in lung cancers harboring EGFR mutations. We therefore determined whether HGF could induce resistance to the anti-EGFR antibody (EGFR Ab) cetuximab in lung cancer cells, regardless of EGFR gene status. Cetuximab sensitivity and signal transduction in lung cancer cells were examined in the presence or absence of HGF, HGF-producing fibroblasts, and cells tranfected with the HGF gene in vitro and in vivo. HGF induced resistance to cetuximab in H292 (EGFR wild) and Ma-1(EGFR mutant) cells. Western blotting showed that HGF-induced resistance was mediated by the Met/Gab1/Akt signaling pathway. Resistance of H292 and Ma-1 cells to cetuximab was also induced by coculture with lung fibroblasts producing high levels of HGF and by cells stably transfected with the HGF gene. This resistance was abrogated by treatment with anti-HGF neutralizing antibody. HGF-mediated resistance is a novel mechanism of resistance to EGFR Ab in lung cancers, with fibroblast-derived HGF inducing cetuximab resistance in H292 tumors in vivo. The involvement of HGF-Met-mediated signaling should be assessed in acquired resistance to EGFR Ab in lung cancer, regardless of EGFR gene status.

  5. CD147, CD44, and the epidermal growth factor receptor (EGFR) signaling pathway cooperate to regulate breast epithelial cell invasiveness.

    PubMed

    Grass, G Daniel; Tolliver, Lauren B; Bratoeva, Momka; Toole, Bryan P

    2013-09-06

    The immunoglobulin superfamily glycoprotein CD147 (emmprin; basigin) is associated with an invasive phenotype in various types of cancers, including malignant breast cancer. We showed recently that up-regulation of CD147 in non-transformed, non-invasive breast epithelial cells is sufficient to induce an invasive phenotype characterized by membrane type-1 matrix metalloproteinase (MT1-MMP)-dependent invadopodia activity (Grass, G. D., Bratoeva, M., and Toole, B. P. (2012) Regulation of invadopodia formation and activity by CD147. J. Cell Sci. 125, 777-788). Here we found that CD147 induces breast epithelial cell invasiveness by promoting epidermal growth factor receptor (EGFR)-Ras-ERK signaling in a manner dependent on hyaluronan-CD44 interaction. Furthermore, CD147 promotes assembly of signaling complexes containing CD147, CD44, and EGFR in lipid raftlike domains. We also found that oncogenic Ras regulates CD147 expression, hyaluronan synthesis, and formation of CD147-CD44-EGFR complexes, thus forming a positive feedback loop that may amplify invasiveness. Last, we showed that malignant breast cancer cells are heterogeneous in their expression of surface-associated CD147 and that high levels of membrane CD147 correlate with cell surface EGFR and CD44 levels, activated EGFR and ERK1, and activated invadopodia. Future studies should evaluate CD147 as a potential therapeutic target and disease stratification marker in breast cancer.

  6. CD147, CD44, and the Epidermal Growth Factor Receptor (EGFR) Signaling Pathway Cooperate to Regulate Breast Epithelial Cell Invasiveness*

    PubMed Central

    Grass, G. Daniel; Tolliver, Lauren B.; Bratoeva, Momka; Toole, Bryan P.

    2013-01-01

    The immunoglobulin superfamily glycoprotein CD147 (emmprin; basigin) is associated with an invasive phenotype in various types of cancers, including malignant breast cancer. We showed recently that up-regulation of CD147 in non-transformed, non-invasive breast epithelial cells is sufficient to induce an invasive phenotype characterized by membrane type-1 matrix metalloproteinase (MT1-MMP)-dependent invadopodia activity (Grass, G. D., Bratoeva, M., and Toole, B. P. (2012) Regulation of invadopodia formation and activity by CD147. J. Cell Sci. 125, 777–788). Here we found that CD147 induces breast epithelial cell invasiveness by promoting epidermal growth factor receptor (EGFR)-Ras-ERK signaling in a manner dependent on hyaluronan-CD44 interaction. Furthermore, CD147 promotes assembly of signaling complexes containing CD147, CD44, and EGFR in lipid raftlike domains. We also found that oncogenic Ras regulates CD147 expression, hyaluronan synthesis, and formation of CD147-CD44-EGFR complexes, thus forming a positive feedback loop that may amplify invasiveness. Last, we showed that malignant breast cancer cells are heterogeneous in their expression of surface-associated CD147 and that high levels of membrane CD147 correlate with cell surface EGFR and CD44 levels, activated EGFR and ERK1, and activated invadopodia. Future studies should evaluate CD147 as a potential therapeutic target and disease stratification marker in breast cancer. PMID:23888049

  7. EGFR is not a major driver for osteosarcoma cell growth in vitro but contributes to starvation and chemotherapy resistance.

    PubMed

    Sevelda, Florian; Mayr, Lisa; Kubista, Bernd; Lötsch, Daniela; van Schoonhoven, Sushilla; Windhager, Reinhard; Pirker, Christine; Micksche, Michael; Berger, Walter

    2015-11-02

    Enhanced signalling via the epidermal growth factor receptor (EGFR) is a hallmark of multiple human carcinomas. However, in recent years data have accumulated that EGFR might also be hyperactivated in human sarcomas. Aim of this study was to investigate the influence of EGFR inhibition on cell viability and its interaction with chemotherapy response in osteosarcoma cell lines. We have investigated a panel of human osteosarcoma cell lines regarding EGFR expression and downstream signalling. To test its potential applicability as therapeutic target, inhibition of EGFR by gefitinib was combined with osteosarcoma chemotherapeutics and cell viability, migration, and cell death assays were performed. Osteosarcoma cells expressed distinctly differing levels of functional EGFR reaching in some cases high amounts. Functionality of EGFR in osteosarcoma cells was proven by EGF-mediated activation of both MAPK and PI3K/AKT pathway (determined by phosphorylation of ERK1/2, AKT, S6, and GSK3β). The EGFR-specific inhibitor gefitinib blocked EGF-mediated downstream signal activation. At standard in vitro culture conditions, clinically achievable gefitinib doses demonstrated only limited cytotoxic activity, however, significantly reduced long-term colony formation and cell migration. In contrast, under serum-starvation conditions active gefitinib doses were distinctly reduced while EGF promoted starvation survival. Importantly, gefitinib significantly supported the anti-osteosarcoma activities of doxorubicin and methotrexate regarding cell survival and migratory potential. Our data suggest that EGFR is not a major driver for osteosarcoma cell growth but contributes to starvation- and chemotherapy-induced stress survival. Consequently, combination approaches including EGFR inhibitors should be evaluated for treatment of high-grade osteosarcoma patients.

  8. Targeted Doxorubicin-Loaded Bacterially Derived Nano-Cells for the Treatment of Neuroblastoma.

    PubMed

    Sagnella, Sharon M; Trieu, Jennifer; Brahmbhatt, Himanshu; MacDiarmid, Jennifer A; MacMillan, Alex; Whan, Renee M; Fife, Christopher M; McCarroll, Joshua A; Gifford, Andrew J; Ziegler, David S; Kavallaris, Maria

    2018-05-01

    Advanced stage neuroblastoma is an aggressive disease with limited treatment options for patients with drug-resistant tumors. Targeted delivery of chemotherapy for pediatric cancers offers promise to improve treatment efficacy and reduce toxicity associated with systemic chemotherapy. The EnGeneIC Dream Vector (EDV TM ) is a nanocell, which can package chemotherapeutic drugs and target tumors via attachment of bispecific proteins to the surface of the nanocell. Phase I trials in adults with refractory tumors have shown an acceptable safety profile. Herein we investigated the activity of EGFR-targeted and doxorubicin-loaded EDV TM ( EGFR EDV TM Dox ) for the treatment of neuroblastoma. Two independent neuroblastoma cell lines with variable expression of EGFR protein [SK-N-BE(2), high; SH-SY-5Y, low] were used. EGFR EDV TM Dox induced apoptosis in these cells compared to control, doxorubicin, or non-doxorubicin loaded EGFR EDV TM In three-dimensional tumor spheroids, imaging and fluorescence life-time microscopy revealed that EGFR EDV TM Dox had a marked enhancement of doxorubicin penetration compared to doxorubicin alone, and improved penetration compared to non-EGFR-targeted EDV TM Dox , with enhanced spheroid penetration leading to increased apoptosis. In two independent orthotopic human neuroblastoma xenograft models, short-term studies (28 days) of tumor-bearing mice led to a significant decrease in tumor size in EGFR EDV TM Dox -treated animals compared to control, doxorubicin, or non-EGFR EDV TM Dox There was increased TUNEL staining of tumors at day 28 compared to control, doxorubicin, or non-EGFR EDV TM Dox Moreover, overall survival was increased in neuroblastoma mice treated with EGFR EDV TM Dox ( P < 0007) compared to control. Drug-loaded bispecific-antibody targeted EDVs TM offer a highly promising approach for the treatment of aggressive pediatric malignancies such as neuroblastoma. Mol Cancer Ther; 17(5); 1012-23. ©2018 AACR . ©2018 American

  9. Surmounting the resistance against EGFR inhibitors through the development of thieno[2,3-d]pyrimidine-based dual EGFR/HER2 inhibitors.

    PubMed

    Milik, Sandra N; Abdel-Aziz, Amal Kamal; Lasheen, Deena S; Serya, Rabah A T; Minucci, Saverio; Abouzid, Khaled A M

    2018-06-06

    In light of the emergence of resistance against the currently available EGFR inhibitors, our study focuses on tackling this problem through the development of dual EGFR/HER2 inhibitors with improved enzymatic affinities. Guided by the binding mode of the marketed dual EGFR/HER2 inhibitor, Lapatinib, we proposed the design of dual EGFR/HER2 inhibitors based on the 6-phenylthieno[2,3-d]pyrimidine as a core scaffold and hinge binder. After two cycles of screening aiming to identify the optimum aniline headgroup and solubilizing group, we eventually identified 27b as a dual EGFR/HER2 inhibitor with IC 50 values of 91.7 nM and 1.2 μM, respectively. Notably, 27b dramatically reduced the viability of various patient-derived cancer cells preferentially overexpressing EGFR/HER2 (A431, MDA-MBA-361 and SKBr3 with IC 50 values of 1.45, 3.5 and 4.83 μM, respectively). Additionally, 27b efficiently thwarted the proliferation of lapatinib-resistant human non-small lung carcinoma (NCI-H1975) cells, harboring T790 M mutation, with IC 50 of 4.2 μM. Consistently, 27b significantly blocked EGF-induced EGFR activation and inactivated its downstream AKT/mTOR/S6 signalling pathway triggering apoptotic cell death in NCI-H1975 cells. The present study presents a promising candidate for further design and development of novel EGFR/HER2 inhibitors capable of overcoming EGFR TKIs resistance. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  10. Recruitment of the Adaptor Protein Grb2 to EGFR Tetramers

    PubMed Central

    2015-01-01

    Adaptor protein Grb2 binds phosphotyrosines in the epidermal growth factor (EGF) receptor (EGFR) and thereby links receptor activation to intracellular signaling cascades. Here, we investigated how recruitment of Grb2 to EGFR is affected by the spatial organization and quaternary state of activated EGFR. We used the techniques of image correlation spectroscopy (ICS) and lifetime-detected Förster resonance energy transfer (also known as FLIM-based FRET or FLIM–FRET) to measure ligand-induced receptor clustering and Grb2 binding to activated EGFR in BaF/3 cells. BaF/3 cells were stably transfected with fluorescently labeled forms of Grb2 (Grb2–mRFP) and EGFR (EGFR–eGFP). Following stimulation of the cells with EGF, we detected nanometer-scale association of Grb2–mRFP with EGFR–eGFP clusters, which contained, on average, 4 ± 1 copies of EGFR–eGFP per cluster. In contrast, the pool of EGFR–eGFP without Grb2–mRFP had an average cluster size of 1 ± 0.3 EGFR molecules per punctum. In the absence of EGF, there was no association between EGFR–eGFP and Grb2–mRFP. To interpret these data, we extended our recently developed model for EGFR activation, which considers EGFR oligomerization up to tetramers, to include recruitment of Grb2 to phosphorylated EGFR. The extended model, with adjustment of one new parameter (the ratio of the Grb2 and EGFR copy numbers), is consistent with a cluster size distribution where 2% of EGFR monomers, 5% of EGFR dimers, <1% of EGFR trimers, and 94% of EGFR tetramers are associated with Grb2. Together, our experimental and modeling results further implicate tetrameric EGFR as the key signaling unit and call into question the widely held view that dimeric EGFR is the predominant signaling unit. PMID:24697349

  11. Src-dependent EGFR transactivation regulates lung inflammation via downstream signaling involving ERK1/2, PI3Kδ/Akt and NFκB induction in a murine asthma model.

    PubMed

    El-Hashim, Ahmed Z; Khajah, Maitham A; Renno, Waleed M; Babyson, Rhema S; Uddin, Mohib; Benter, Ibrahim F; Ezeamuzie, Charles; Akhtar, Saghir

    2017-08-30

    The molecular mechanisms underlying asthma pathogenesis are poorly characterized. In this study, we investigated (1) whether Src mediates epidermal growth factor receptor (EGFR) transactivation; (2) if ERK1/2, PI3Kδ/Akt and NF-κB are signaling effectors downstream of Src/EGFR activation; and (3) if upstream inhibition of Src/EGFR is more effective in downregulating the allergic inflammation than selective inhibition of downstream signaling pathways. Allergic inflammation resulted in increased phosphorylation of EGFR, Akt, ERK1/2 and IκB in the lung tissues from ovalbumin (OVA)-challenged BALB/c mice. Treatment with inhibitors of Src (SU6656) or EGFR (AG1478) reduced EGFR phosphorylation and downstream signaling which resulted in the inhibition of the OVA-induced inflammatory cell influx in bronchoalveolar lavage fluid (BALF), perivascular and peribronchial inflammation, fibrosis, goblet cell hyper/metaplasia and airway hyper-responsiveness. Treatment with pathway-selective inhibitors for ERK1/2 (PD89059) and PI3Kδ/Akt (IC-87114) respectively, or an inhibitor of NF-κB (BAY11-7085) also reduced the OVA-induced asthmatic phenotype but to a lesser extent compared to Src/EGFR inhibition. Thus, Src via EGFR transactivation and subsequent downstream activation of multiple pathways regulates the allergic airway inflammatory response. Furthermore, a broader upstream inhibition of Src/EGFR offers an attractive therapeutic alternative in the treatment of asthma relative to selectively targeting the individual downstream signaling effectors.

  12. Cigarette smoke enhances oncogene addiction to c-MET and desensitizes EGFR-expressing non-small cell lung cancer to EGFR TKIs.

    PubMed

    Tu, Chih-Yen; Cheng, Fang-Ju; Chen, Chuan-Mu; Wang, Shu-Ling; Hsiao, Yu-Chun; Chen, Chia-Hung; Hsia, Te-Chun; He, Yu-Hao; Wang, Bo-Wei; Hsieh, I-Shan; Yeh, Yi-Lun; Tang, Chih-Hsin; Chen, Yun-Ju; Huang, Wei-Chien

    2018-05-01

    Cigarette smoking is one of the leading risks for lung cancer and is associated with the insensitivity of non-small cell lung cancer (NSCLC) to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs). However, it remains undetermined whether and how cigarette smoke affects the therapeutic efficacy of EGFR TKIs. In this study, our data showed that chronic exposure to cigarette smoke extract (CSE) or tobacco smoke-derived carcinogen benzo[α]pyrene, B[α]P, but not nicotine-derived nitrosamine ketone (NNK), reduced the sensitivity of wild-type EGFR-expressing NSCLC cells to EGFR TKIs. Treatment with TKIs almost abolished EGFR tyrosine kinase activity but did not show an inhibitory effect on downstream Akt and ERK pathways in B[α]P-treated NSCLC cells. CSE and B[α]P transcriptionally upregulate c-MET and activate its downstream Akt pathway, which is not inhibited by EGFR TKIs. Silencing of c-MET reduces B[α]P-induced Akt activation. The CSE-treated NSCLC cells are sensitive to the c-MET inhibitor crizotinib. These findings suggest that cigarette smoke augments oncogene addiction to c-MET in NSCLC cells and that MET inhibitors may show clinical benefits for lung cancer patients with a smoking history. © 2018 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

  13. Aberrantly activated AREG-EGFR signaling is required for the growth and survival of CRTC1-MAML2 fusion-positive mucoepidermoid carcinoma cells.

    PubMed

    Chen, Z; Chen, J; Gu, Y; Hu, C; Li, J-L; Lin, S; Shen, H; Cao, C; Gao, R; Li, J; Ha, P K; Kaye, F J; Griffin, J D; Wu, L

    2014-07-17

    Salivary gland tumors (SGT) are a group of highly heterogeneous head and neck malignancies with widely varied clinical outcomes and no standard effective treatments. The CRTC1-MAML2 fusion oncogene, encoded by a recurring chromosomal translocation t(11;19)(q14-21;p12-13), is a frequent genetic alteration found in >50% of mucoepidermoid carcinomas (MEC), the most common malignant SGT. In this study, we aimed to define the role of the CRTC1-MAML2 oncogene in the maintenance of MEC tumor growth and to investigate critical downstream target genes and pathways for therapeutic targeting of MEC. By performing gene expression analyses and functional studies via RNA interference and pharmacological modulation, we determined the importance of the CRTC1-MAML2 fusion gene and its downstream AREG-EGFR signaling in human MEC cancer cell growth and survival in vitro and in vivo using human MEC xenograft models. We found that CRTC1-MAML2 fusion oncogene was required for the growth and survival of fusion-positive human MEC cancer cells in vitro and in vivo. The CRTC1-MAML2 oncoprotein induced the upregulation of the epidermal growth factor receptor (EGFR) ligand Amphiregulin (AREG) by co-activating the transcription factor CREB, and AREG subsequently activated EGFR signaling in an autocrine manner that promoted MEC cell growth and survival. Importantly, CRTC1-MAML2-positive MEC cells were highly sensitive to EGFR signaling inhibition. Therefore, our study revealed that aberrantly activated AREG-EGFR signaling is required for CRTC1-MAML2-positive MEC cell growth and survival, suggesting that EGFR-targeted therapies will benefit patients with advanced, unresectable CRTC1-MAML2-positive MEC.

  14. A collagen-binding EGFR antibody fragment targeting tumors with a collagen-rich extracellular matrix.

    PubMed

    Liang, Hui; Li, Xiaoran; Wang, Bin; Chen, Bing; Zhao, Yannan; Sun, Jie; Zhuang, Yan; Shi, Jiajia; Shen, He; Zhang, Zhijun; Dai, Jianwu

    2016-02-17

    Many tumors over-express collagen, which constitutes the physical scaffold of tumor microenvironment. Collagen has been considered to be a target for cancer therapy. The collagen-binding domain (CBD) is a short peptide, which could bind to collagen and achieve the sustained release of CBD-fused proteins in collagen scaffold. Here, a collagen-binding EGFR antibody fragment was designed and expressed for targeting the collagen-rich extracellular matrix in tumors. The antibody fragment (Fab) of cetuximab was fused with CBD (CBD-Fab) and expressed in Pichia pastoris. CBD-Fab maintained antigen binding and anti-tumor activity of cetuximab and obtained a collagen-binding ability in vitro. The results also showed CBD-Fab was mainly enriched in tumors and had longer retention time in tumors in A431 s.c. xenografts. Furthermore, CBD-Fab showed a similar therapeutic efficacy as cetuximab in A431 xenografts. Although CBD-Fab hasn't showed better therapeutic effects than cetuximab, its smaller molecular and special target may be applicable as antibody-drug conjugates (ADC) or immunotoxins.

  15. A collagen-binding EGFR antibody fragment targeting tumors with a collagen-rich extracellular matrix

    PubMed Central

    Liang, Hui; Li, Xiaoran; Wang, Bin; Chen, Bing; Zhao, Yannan; Sun, Jie; Zhuang, Yan; Shi, Jiajia; Shen, He; Zhang, Zhijun; Dai, Jianwu

    2016-01-01

    Many tumors over-express collagen, which constitutes the physical scaffold of tumor microenvironment. Collagen has been considered to be a target for cancer therapy. The collagen-binding domain (CBD) is a short peptide, which could bind to collagen and achieve the sustained release of CBD-fused proteins in collagen scaffold. Here, a collagen-binding EGFR antibody fragment was designed and expressed for targeting the collagen-rich extracellular matrix in tumors. The antibody fragment (Fab) of cetuximab was fused with CBD (CBD-Fab) and expressed in Pichia pastoris. CBD-Fab maintained antigen binding and anti-tumor activity of cetuximab and obtained a collagen-binding ability in vitro. The results also showed CBD-Fab was mainly enriched in tumors and had longer retention time in tumors in A431 s.c. xenografts. Furthermore, CBD-Fab showed a similar therapeutic efficacy as cetuximab in A431 xenografts. Although CBD-Fab hasn’t showed better therapeutic effects than cetuximab, its smaller molecular and special target may be applicable as antibody–drug conjugates (ADC) or immunotoxins. PMID:26883295

  16. Carbon nanoparticles induce ceramide- and lipid raft-dependent signalling in lung epithelial cells: a target for a preventive strategy against environmentally-induced lung inflammation

    PubMed Central

    2012-01-01

    Background Particulate air pollution in lung epithelial cells induces pathogenic endpoints like proliferation, apoptosis, and pro-inflammatory reactions. The activation of the epidermal growth factor receptor (EGFR) is a key event responsible for signalling events involving mitogen activated protein kinases specific for these endpoints. The molecular events leading to receptor activation however are not well understood. These events are relevant for the toxicological evaluation of inhalable particles as well as for potential preventive strategies in situations when particulate air pollution cannot be avoided. The current study therefore had the objective to elucidate membrane-coupled events leading to EGFR activation and the subsequent signalling cascade in lung epithelial cells. Furthermore, we aimed to identify the molecular target of ectoine, a biophysical active substance which we described to prevent carbon nanoparticle-induced lung inflammation. Methods Membrane signalling events were investigated in isolated lipid rafts from lung epithelial cells with regard to lipid and protein content of the signalling platforms. Using positive and negative intervention approaches, lipid raft changes, subsequent signalling events, and lung inflammation were investigated in vitro in lung epithelial cells (RLE-6TN) and in vivo in exposed animals. Results Carbon nanoparticle treatment specifically led to an accumulation of ceramides in lipid rafts. Detailed analyses demonstrated a causal link of ceramides and subsequent EGFR activation coupled with a loss of the receptor in the lipid raft fractions. In vitro and in vivo investigations demonstrate the relevance of these events for carbon nanoparticle-induced lung inflammation. Moreover, the compatible solute ectoine was able to prevent ceramide-mediated EGFR phosphorylation and subsequent signalling as well as lung inflammation in vivo. Conclusion The data identify a so far unknown event in pro-inflammatory signalling and

  17. Novel irreversible EGFR tyrosine kinase inhibitor 324674 sensitizes human colon carcinoma HT29 and SW480 cells to apoptosis by blocking the EGFR pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Zhiwei; Cui, Binbin; Jin, Yinghu

    2011-08-12

    Highlights: {yields} This article described the effects of the EGFR tyrosine kinase inhibitor on the cell proliferation and the apoptosis induction of the colon carcinoma cell lines. {yields} Demonstrated that 326474 is a more potent EGFR inhibitor on colon cancer cells than other three TKIs. {yields} It can be important when considering chemotherapy for colonic cancer patients. -- Abstract: Background: Epidermal growth factor receptor (EGFR) is widely expressed in multiple solid tumors including colorectal cancer by promoting cancer cell growth and proliferation. Therefore, the inhibition of EGFR activity may establish a clinical strategy of cancer therapy. Methods: In this study,more » using human colon adenocarcinoma HT29 and SW480 cells as research models, we compared the efficacy of four EGFR inhibitors in of EGFR-mediated pathways, including the novel irreversible inhibitor 324674, conventional reversible inhibitor AG1478, dual EGFR/HER2 inhibitor GW583340 and the pan-EGFR/ErbB2/ErbB4 inhibitor. Cell proliferation was assessed by MTT analysis, and apoptosis was evaluated by the Annexin-V binding assay. EGFR and its downstream signaling effectors were examined by western blotting analysis. Results: Among the four inhibitors, the irreversible EGFR inhibitor 324674 was more potent at inhibiting HT29 and SW480 cell proliferation and was able to efficiently induce apoptosis at lower concentrations. Western blotting analysis revealed that AG1478, GW583340 and pan-EGFR/ErbB2/ErbB4 inhibitors failed to suppress EGFR activation as well as the downstream mitogen-activated protein kinase (MAPK) and PI3K/AKT/mTOR (AKT) pathways. In contrast, 324674 inhibited EGFR activation and the downstream AKT signaling pathway in a dose-dependent manner. Conclusion: Our studies indicated that the novel irreversible EGFR inhibitor 324674 may have a therapeutic application in colon cancer therapy.« less

  18. EGFR inhibition attenuates diabetic nephropathy through decreasing ROS and endoplasmic reticulum stress

    PubMed Central

    Zhong, Peng; Wang, Jingying; Weng, Qiaoyou; Qian, Yuanyuan; Han, Jibo; Zou, Chunpeng; Liang, Guang

    2017-01-01

    Diabetic nephropathy (DN) is a progressive kidney disease due to glomerular capillary damage in diabetic patients. Endoplasmic reticulum (ER) stress caused by reactive oxygen species (ROS) is associated with DN progression. Epidermal growth factor receptor (EGFR) mediates oxidative stress and damage of cardiomyocytes in diabetic mice. Here we demonstrated that AG1478, a specific inhibitor of EGFR, blocked EGFR and AKT phosphorylation in diabetic mice. Oxidative stress and ER stress markers were eliminated after AG1478 administration. AG1478 decreased pro-fibrotic genes TGF-β and collagen IV. Furthermore, we found that high glucose (HG) induced oxidative stress and ER stress, and subsequently increased ATF4 and CHOP. These changes were eliminated by either AG1478 or ROS scavenger N-acetyl-L-cysteine (NAC) administration. These results were confirmed by knock-down approaches in renal mesangial SV40 cells. However, AG1478, not NAC, reversed HG induced EGFR and AKT phosphorylation. These results suggest that EGFR/AKT/ROS/ER stress signaling plays an essential role in DN development and inhibiting EGFR may serve as a potential therapeutic strategy in diabetic kidney diseases. PMID:28427241

  19. Photonic modulation of EGFR: 280nm low level light arrests cancer cell activation and migration

    NASA Astrophysics Data System (ADS)

    Botelho, Cláudia M.; Marques, Rogério; Viruthachalam, Thiagarajan; Gonçalves, Odete; Vorum, Henrik; Gomes, Andreia C.; Neves-Petersen, Maria Teresa

    2017-02-01

    Overexpression of the Epidermal Growth Factor Receptor (EGFR) by cancer cells is associated with a poor prognosis for the patient. For several decades, therapies targeting EGFR have been designed, including the use of monoclonal antibodies and small molecule tyrosine kinase inhibitors. The use of these molecules had good clinical results, although its efficiency (and specificity) is still far from being optimal. In this paper, we present a new approach for a possible new cancer therapy targeting EGFR and using low intensity 280nm light. The influence of 280nm UVB illumination on cancer cells stimulated with 2nM of EGF was followed by time-lapse confocal microscopy. The 280nm illumination of the cancer cells blocks EGFR activation, inhibiting EGFR internalization and cell migration thus inhibiting the transition to the metastatic phenotype. Exposure time is a very important factor. The higher the illumination time the more significant differences were observed: 280nm light delayed or completely halted EGFR activation in the cell membrane, mainly at the cell junction level, and delayed or halted EGFR endocytic internalization, filopodia formation and cell migration.

  20. Combined effects of EGFR tyrosine kinase inhibitors and vATPase inhibitors in NSCLC cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Hyeon-Ok; Hong, Sung-Eun; Kim, Chang Soon

    2015-08-15

    Despite excellent initial clinical responses of non-small cell lung cancer (NSCLC) patients to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs), many patients eventually develop resistance. According to a recent report, vacuolar H + ATPase (vATPase) is overexpressed and is associated with chemotherapy drug resistance in NSCLC. We investigated the combined effects of EGFR TKIs and vATPase inhibitors and their underlying mechanisms in the regulation of NSCLC cell death. We found that combined treatment with EGFR TKIs (erlotinib, gefitinib, or lapatinib) and vATPase inhibitors (bafilomycin A1 or concanamycin A) enhanced synergistic cell death compared to treatments with each drugmore » alone. Treatment with bafilomycin A1 or concanamycin A led to the induction of Bnip3 expression in an Hif-1α dependent manner. Knock-down of Hif-1α or Bnip3 by siRNA further enhanced cell death induced by bafilomycin A1, suggesting that Hif-1α/Bnip3 induction promoted resistance to cell death induced by the vATPase inhibitors. EGFR TKIs suppressed Hif-1α and Bnip3 expression induced by the vATPase inhibitors, suggesting that they enhanced the sensitivity of the cells to these inhibitors by decreasing Hif-1α/Bnip3 expression. Taken together, we conclude that EGFR TKIs enhance the sensitivity of NSCLC cells to vATPase inhibitors by decreasing Hif-1α/Bnip3 expression. We suggest that combined treatment with EGFR TKIs and vATPase inhibitors is potentially effective for the treatment of NSCLC. - Highlights: • Co-treatment with EGFR TKIs and vATPase inhibitors induces synergistic cell death • EGFR TKIs enhance cell sensitivity to vATPase inhibitors via Hif-1α downregulation • Co-treatment of these inhibitors is potentially effective for the treatment of NSCLC.« less

  1. Mutational status of EGFR and KIT in thymoma and thymic carcinoma.

    PubMed

    Yoh, Kiyotaka; Nishiwaki, Yutaka; Ishii, Genichiro; Goto, Koichi; Kubota, Kaoru; Ohmatsu, Hironobu; Niho, Seiji; Nagai, Kanji; Saijo, Nagahiro

    2008-12-01

    This study was conducted to evaluate the prevalence of EGFR and KIT mutations in thymomas and thymic carcinomas as a means of exploring the potential for molecularly targeted therapy with tyrosine kinase inhibitors. Genomic DNA was isolated from 41 paraffin-embedded tumor samples obtained from 24 thymomas and 17 thymic carcinomas. EGFR exons 18, 19, and 21, and KIT exons 9, 11, 13, and 17, were analyzed for mutations by PCR and direct sequencing. Protein expression of EGFR and KIT was evaluated immunohistochemically. EGFR mutations were detected in 2 of 20 thymomas, but not in any of the thymic carcinomas. All of the EGFR mutations detected were missense mutations (L858R and G863D) in exon 21. EGFR protein was expressed in 71% of the thymomas and 53% of the thymic carcinomas. The mutational analysis of KIT revealed only a missense mutation (L576P) in exon 11 of one thymic carcinoma. KIT protein was expressed in 88% of the thymic carcinomas and 0% of the thymomas. The results of this study indicate that EGFR and KIT mutations in thymomas and thymic carcinomas are rare, but that many of the tumors express EGFR or KIT protein.

  2. Perturbation of the mutated EGFR interactome identifies vulnerabilities and resistance mechanisms.

    PubMed

    Li, Jiannong; Bennett, Keiryn; Stukalov, Alexey; Fang, Bin; Zhang, Guolin; Yoshida, Takeshi; Okamoto, Isamu; Kim, Jae-Young; Song, Lanxi; Bai, Yun; Qian, Xiaoning; Rawal, Bhupendra; Schell, Michael; Grebien, Florian; Winter, Georg; Rix, Uwe; Eschrich, Steven; Colinge, Jacques; Koomen, John; Superti-Furga, Giulio; Haura, Eric B

    2013-11-05

    We hypothesized that elucidating the interactome of epidermal growth factor receptor (EGFR) forms that are mutated in lung cancer, via global analysis of protein-protein interactions, phosphorylation, and systematically perturbing the ensuing network nodes, should offer a new, more systems-level perspective of the molecular etiology. Here, we describe an EGFR interactome of 263 proteins and offer a 14-protein core network critical to the viability of multiple EGFR-mutated lung cancer cells. Cells with acquired resistance to EGFR tyrosine kinase inhibitors (TKIs) had differential dependence of the core network proteins based on the underlying molecular mechanisms of resistance. Of the 14 proteins, 9 are shown to be specifically associated with survival of EGFR-mutated lung cancer cell lines. This included EGFR, GRB2, MK12, SHC1, ARAF, CD11B, ARHG5, GLU2B, and CD11A. With the use of a drug network associated with the core network proteins, we identified two compounds, midostaurin and lestaurtinib, that could overcome drug resistance through direct EGFR inhibition when combined with erlotinib. Our results, enabled by interactome mapping, suggest new targets and combination therapies that could circumvent EGFR TKI resistance.

  3. ADAM17 targets MMP-2 and MMP-9 via EGFR-MEK-ERK pathway activation to promote prostate cancer cell invasion.

    PubMed

    Xiao, Li-Jie; Lin, Ping; Lin, Feng; Liu, Xin; Qin, Wei; Zou, Hai-Feng; Guo, Liang; Liu, Wei; Wang, Shu-Juan; Yu, Xiao-Guang

    2012-05-01

    ADAM17, also known as tumor necrosis factor-α converting enzyme (TACE), is involved in proteolytic ectodomain shedding of cell surface molecules and cytokines. Although aberrant expression of ADAM17 has been shown in various malignancies, the function of ADAM17 in prostate cancer has not been clarified. In the present study, we sought to elucidate whether ADAM17 contributes to prostate cancer cell invasion, as well as the mechanism involved in the process. The expression pattern of ADAM17 was investigated in human prostate cancer cells. The results showed that ADAM17 expression levels are correlated with the invasive ability of androgen-independent prostate cancer cell lines. Further, ADAM17 was overexpressed in cells showing high invasion characteristics, activation of the EGFR-MEK-ERK pathway, up-regulation of MMP-2, MMP-9, and an increased TGF-α release into the supernatant. However, AG1478, PD98059 and antibody against TGF-α deactivating the EGFR-MEK-ERK signaling pathway, abolished up-regulation of MMP-2, MMP-9 and prevented cell invasion. In addition, cells with knockdown of ADAM17 by siRNA exhibited low invasive ability, deactivated EGFR-MEK-ERK signaling pathway, reduced TGF-α released and down-regulation of MMP-2, MMP-9. However, these effects could be reversed by simultaneous addition of TGF-α. These data demonstrated that ADAM17 contributes to androgen-independent prostate cancer cell invasion by shedding of EGFR ligand TGF-α, which subsequently activates the EGFR-MEK-ERK signaling pathway, leading finally to overexpression of MMP-2 and MMP-9. This study suggests that the ADAM17 expression level may be a new predictive biomarker of invasion and metastasis of prostate cancer, and ADAM17 could provide a target for treating metastatic PCa.

  4. The role of epidermal growth factor receptor (EGFR) signaling in SARS coronavirus-induced pulmonary fibrosis.

    PubMed

    Venkataraman, Thiagarajan; Frieman, Matthew B

    2017-07-01

    Many survivors of the 2003 outbreak of severe acute respiratory syndrome (SARS) developed residual pulmonary fibrosis with increased severity seen in older patients. Autopsies of patients that died from SARS also showed fibrosis to varying extents. Pulmonary fibrosis can be occasionally seen as a consequence to several respiratory viral infections but is much more common after a SARS coronavirus (SARS-CoV) infection. Given the threat of future outbreaks of severe coronavirus disease, including Middle East respiratory syndrome (MERS), it is important to understand the mechanisms responsible for pulmonary fibrosis, so as to support the development of therapeutic countermeasures and mitigate sequelae of infection. In this article, we summarize pulmonary fibrotic changes observed after a SARS-CoV infection, discuss the extent to which other respiratory viruses induce fibrosis, describe available animal models to study the development of SARS-CoV induced fibrosis and review evidence that pulmonary fibrosis is caused by a hyperactive host response to lung injury mediated by epidermal growth factor receptor (EGFR) signaling. We summarize work from our group and others indicating that inhibiting EGFR signaling may prevent an excessive fibrotic response to SARS-CoV and other respiratory viral infections and propose directions for future research. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. EGFR blockade enriches for lung cancer stem-like cells through Notch3-dependent signaling

    PubMed Central

    Arasada, Rajeswara Rao; Amann, Joseph M.; Rahman, Mohammad A; Huppert, Stacey S.; Carbone, David P.

    2014-01-01

    Mutations in the epidermal growth factor receptor (EGFR) are the most common actionable genetic abnormalities yet discovered in lung cancer. However, targeting these mutations with kinase inhibitors is not curative in advanced disease and has yet to demonstrate an impact on potentially curable, early-stage disease, with some data suggesting adverse outcomes. Here, we report that treatment of EGFR-mutated lung cancer cell lines with erlotinib, while showing robust cell death, enriches the ALDH+ stem-like cells through EGFR-dependent activation of Notch3. Additionally, we demonstrate that erlotinib treatment increases the clonogenicity of lung cancer cells in a sphere-forming assay, suggesting increased stem-like cell potential. We demonstrate that inhibition of EGFR kinase activity leads to activation of Notch transcriptional targets in a gamma secretase inhibitor sensitive manner and causes Notch activation. leading to an increase in ALDH high+ cells. We also find a kinase-dependent physical association between the Notch3 and EGFR receptors and tyrosine phosphorylation of Notch3. This could explain the worsened survival observed in some studies of erlotinib treatment at early-stage disease, and suggests that specific dual targeting might overcome this adverse effect. PMID:25125655

  6. Novel role of cannabinoid receptor 2 in inhibiting EGF/EGFR and IGF-I/IGF-IR pathways in breast cancer.

    PubMed

    Elbaz, Mohamad; Ahirwar, Dinesh; Ravi, Janani; Nasser, Mohd W; Ganju, Ramesh K

    2017-05-02

    Breast cancer is the second leading cause of cancer deaths among women. Cannabinoid receptor 2 (CNR2 or CB2) is an integral part of the endocannabinoid system. Although CNR2 is highly expressed in the breast cancer tissues as well as breast cancer cell lines, its functional role in breast tumorigenesis is not well understood. We observed that estrogen receptor-α negative (ERα-) breast cancer cells highly express epidermal growth factor receptor (EGFR) as well as insulin-like growth factor-I receptor (IGF-IR). We also observed IGF-IR upregulation in ERα+ breast cancer cells. In addition, we found that higher CNR2 expression correlates with better recurrence free survival in ERα- and ERα+ breast cancer patients. Therefore, we analyzed the role of CNR2 specific agonist (JWH-015) on EGF and/or IGF-I-induced tumorigenic events in ERα- and ERα+ breast cancers. Our studies showed that CNR2 activation inhibited EGF and IGF-I-induced migration and invasion of ERα+ and ERα- breast cancer cells. At the molecular level, JWH-015 inhibited EGFR and IGF-IR activation and their downstream targets STAT3, AKT, ERK, NF-kB and matrix metalloproteinases (MMPs). In vivo studies showed that JWH-015 significantly reduced breast cancer growth in ERα+ and ERα- breast cancer mouse models. Furthermore, we found that the tumors derived from JWH-015-treated mice showed reduced activation of EGFR and IGF-IR and their downstream targets. In conclusion, we show that CNR2 activation suppresses breast cancer through novel mechanisms by inhibiting EGF/EGFR and IGF-I/IGF-IR signaling axes.

  7. An LXR agonist promotes GBM cell death through inhibition of an EGFR/AKT/SREBP-1/LDLR-dependent pathway

    PubMed Central

    Guo, Deliang; Reinitz, Felicia; Youssef, Mary; Hong, Cynthia; Nathanson, David; Akhavan, David; Kuga, Daisuke; Amzajerdi, Ali Nael; Soto, Horacio; Zhu, Shaojun; Babic, Ivan; Tanaka, Kazuhiro; Dang, Julie; Iwanami, Akio; Gini, Beatrice; DeJesus, Jason; Lisiero, Dominique D.; Huang, Tiffany T.; Prins, Robert M.; Wen, Patrick Y.; Robins, H. Ian; Prados, Michael D.; DeAngelis, Lisa M.; Mellinghoff, Ingo K.; Mehta, Minesh P.; James, C. David; Chakravarti, Arnab; Cloughesy, Timothy F.; Tontonoz, Peter; Mischel, Paul S.

    2011-01-01

    Glioblastoma (GBM) is the most common malignant primary brain tumor of adults and one of the most lethal of all cancers. EGFR mutations (EGFRvIII) and PI3K hyperactivation are common in GBM, promoting tumor growth and survival, including through SREBP-1-dependent-lipogenesis. The role of cholesterol metabolism in GBM pathogenesis, its association with EGFR/PI3K signaling, and its potential therapeutic targetability are unknown. Here, studies in GBM cell lines, xenograft models and GBM clinical samples, including from patients treated with the EGFR tyrosine kinase inhibitor lapatinib, uncovered an EGFRvIII-activated, PI3K/SREBP-1-dependent tumor survival pathway through the LDL receptor. Targeting LDLR with the Liver X Receptor (LXR) agonist GW3965 caused IDOL (Inducible Degrader Of LDLR)-mediated LDLR degradation and increased expression of the ABCA1 cholesterol efflux transporter, potently promoting tumor cell death in an in vivo GBM model. These results demonstrate that EGFRvIII can promote tumor survival through PI3K-SREBP-1 dependent up-regulation of LDLR, and suggest a role for LXR agonists in the treatment of GBM patients. PMID:22059152

  8. Comparison of Two Site-Specifically 18F-Labeled Affibodies for PET Imaging of EGFR Positive Tumors

    DOE PAGES

    Su, Xinhui; Cheng, Kai; Jeon, Jongho; ...

    2014-06-27

    The epidermal growth factor receptor (EGFR) serves as an attractive target for cancer molecular imaging and therapy. Our previous positron emission tomography (PET) studies showed that the EGFR-targeting affibody molecules 64Cu-DOTA-Z EGFR:1907 and 18F-FBEM-Z EGFR:1907 can discriminate between high and low EGFR-expression tumors and have the potential for patient selection for EGFR-targeted therapy. Compared with 64Cu, 18F may improve imaging of EGFR-expression and is more suitable for clinical application, but the labeling reaction of 18F-FBEM-Z EGFR:1907 requires a long synthesis time. The aim of the present study is to develop a new generation of 18F labeled affibody probes (Al 18F-NOTA-Zmore » EGFR:1907 and 18F-CBT-Z EGFR:1907) and to determine whether they are suitable agents for imaging of EGFR expression. The first approach consisted of conjugating Z EGFR:1907 with NOTA and radiolabeling with Al 18F to produce Al 18F-NOTA-Z EGFR:1907. In a second approach the prosthetic group 18F-labeled-2-cyanobenzothiazole ( 18F-CBT) was conjugated to Cys-Z EGFR:1907 to produce 18F-CBT-Z EGFR:1907. Binding affinity and specificity of Al 18F-NOTA-Z EGFR:1907 and 18F-CBT-Z EGFR:1907 to EGFR were evaluated using A431 cells. Biodistribution and PET studies were conducted on mice bearing A431 xenografts after injection of Al 18F-NOTA-Z EGFR:1907 or 18F-CBT-Z EGFR:1907 with or without coinjection of unlabeled affibody proteins. The radiosyntheses of Al 18F-NOTA-Z EGFR:1907 and 18F-CBT-Z EGFR:1907 were completed successfully within 40 and 120 min with a decay-corrected yield of 15% and 41% using a 2-step, 1-pot reaction and 2-step, 2-pot reaction, respectively. Both probes bound to EGFR with low nanomolar affinity in A431 cells. Although 18F-CBT-Z EGFR:1907 showed instability in vivo, biodistribution studies revealed rapid and high tumor accumulation and quick clearance from normal tissues except the bones. In contrast, Al 18F-NOTA-Z EGFR:1907 demonstrated high in vitro and in

  9. Comparison of Two Site-Specifically 18F-Labeled Affibodies for PET Imaging of EGFR Positive Tumors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Xinhui; Cheng, Kai; Jeon, Jongho

    The epidermal growth factor receptor (EGFR) serves as an attractive target for cancer molecular imaging and therapy. Our previous positron emission tomography (PET) studies showed that the EGFR-targeting affibody molecules 64Cu-DOTA-Z EGFR:1907 and 18F-FBEM-Z EGFR:1907 can discriminate between high and low EGFR-expression tumors and have the potential for patient selection for EGFR-targeted therapy. Compared with 64Cu, 18F may improve imaging of EGFR-expression and is more suitable for clinical application, but the labeling reaction of 18F-FBEM-Z EGFR:1907 requires a long synthesis time. The aim of the present study is to develop a new generation of 18F labeled affibody probes (Al 18F-NOTA-Zmore » EGFR:1907 and 18F-CBT-Z EGFR:1907) and to determine whether they are suitable agents for imaging of EGFR expression. The first approach consisted of conjugating Z EGFR:1907 with NOTA and radiolabeling with Al 18F to produce Al 18F-NOTA-Z EGFR:1907. In a second approach the prosthetic group 18F-labeled-2-cyanobenzothiazole ( 18F-CBT) was conjugated to Cys-Z EGFR:1907 to produce 18F-CBT-Z EGFR:1907. Binding affinity and specificity of Al 18F-NOTA-Z EGFR:1907 and 18F-CBT-Z EGFR:1907 to EGFR were evaluated using A431 cells. Biodistribution and PET studies were conducted on mice bearing A431 xenografts after injection of Al 18F-NOTA-Z EGFR:1907 or 18F-CBT-Z EGFR:1907 with or without coinjection of unlabeled affibody proteins. The radiosyntheses of Al 18F-NOTA-Z EGFR:1907 and 18F-CBT-Z EGFR:1907 were completed successfully within 40 and 120 min with a decay-corrected yield of 15% and 41% using a 2-step, 1-pot reaction and 2-step, 2-pot reaction, respectively. Both probes bound to EGFR with low nanomolar affinity in A431 cells. Although 18F-CBT-Z EGFR:1907 showed instability in vivo, biodistribution studies revealed rapid and high tumor accumulation and quick clearance from normal tissues except the bones. In contrast, Al 18F-NOTA-Z EGFR:1907 demonstrated high in vitro and in

  10. Role of EGFR transactivation in preventing apoptosis in Pseudomonas aeruginosa-infected human corneal epithelial cells.

    PubMed

    Zhang, Jing; Li, Hui; Wang, Jinzhao; Dong, Zheng; Mian, Shahzad; Yu, Fu-Shin X

    2004-08-01

    To determine the role of epidermal growth factor (EGF) receptor (EGFR)-mediated signaling pathways in preventing infection-induced apoptosis in human corneal epithelial cells (HCECs). Epithelial monolayers of a telomerase-immortalized HCEC line, HUCL, and primary culture of HCECs were infected with Pseudomonas aeruginosa in the presence of the EGFR inhibitor tyrphostin AG1478, the extracellular signal-regulated kinase (ERK) inhibitor U0126, the phosphoinositide 3-kinase (PI3K) inhibitor LY294002, the heparin-binding EGF-like growth factor (HB-EGF) antagonist CRM197, the HB-EGF neutralizing antibody, or the matrix metalloproteinase inhibitor GM6001. The activation of EGFR was analyzed by immunoprecipitation using EGFR antibodies, followed by Western blot analysis with phosphotyrosine antibody. Phosphorylation of ERK and Akt, a major substrate of PI3K, and generation of cleaved caspase-3 and poly (ADP-ribose) polymerase (PARP) were determined by Western blot analysis. Apoptotic cells were characterized by positive staining of active caspase-3, loss of mitochondrial cytochrome c, and condensation of chromosomes. Apoptosis was also confirmed by measuring caspase-3 activity and assessing the generation of cleaved caspase-3 and PARP. P. aeruginosa infection of HUCL cells resulted in EGFR activation and EGFR-dependent ERK1/2 and PI3K phosphorylation. Inhibition of EGFR, ERK1/2, and PI3K activities with kinase-specific inhibitors (AG1478, U0126, and LY294002, respectively) resulted in an increase in the number of apoptotic cells, in elevated cellular caspase-3 activity, and/or in increased cleaved PARP in P. aeruginosa-infected HUCL cells or primary culture of HCECs. Blocking HB-EGF ectodomain shedding by inhibition of matrix metalloproteinase-mediated proteolysis, downregulation of HB-EGF, or neutralization of its activity retarded infection-induced EGFR transactivation and, as a consequence, increased infection-induced HUCL apoptosis. Bacterial infection of HCECs induces

  11. Role of EGFR Transactivation in Preventing Apoptosis in Pseudomonas aeruginosa–Infected Human Corneal Epithelial Cells

    PubMed Central

    Zhang, Jing; Li, Hui; Wang, Jinzhao; Dong, Zheng; Mian, Shahzad; Yu, Fu-Shin X.

    2009-01-01

    PURPOSE To determine the role of epidermal growth factor (EGF) receptor (EGFR)–mediated signaling pathways in preventing infection-induced apoptosis in human corneal epithelial cells (HCECs). METHODS Epithelial monolayers of a telomerase-immortalized HCEC line, HUCL, and primary culture of HCECs were infected with Pseudomonas aeruginosa in the presence of the EGFR inhibitor tyrphostin AG1478, the extracellular signal-regulated kinase (ERK) inhibitor U0126, the phosphoinositide 3-kinase (PI3K) inhibitor LY294002, the heparin-binding EGF-like growth factor (HB-EGF) antagonist CRM197, the HB-EGF neutralizing antibody, or the matrix metalloproteinase inhibitor GM6001. The activation of EGFR was analyzed by immunoprecipitation using EGFR antibodies, followed by Western blot analysis with phosphotyrosine antibody. Phosphorylation of ERK and Akt, a major substrate of PI3K, and generation of cleaved caspase-3 and poly (ADP-ribose) polymerase (PARP) were determined by Western blot analysis. Apoptotic cells were characterized by positive staining of active caspase-3, loss of mitochondrial cytochrome c, and condensation of chromosomes. Apoptosis was also confirmed by measuring caspase-3 activity and assessing the generation of cleaved caspase-3 and PARP. RESULTS P. aeruginosa infection of HUCL cells resulted in EGFR activation and EGFR-dependent ERK1/2 and PI3K phosphorylation. Inhibition of EGFR, ERK1/2, and PI3K activities with kinase-specific inhibitors (AG1478, U0126, and LY294002, respectively) resulted in an increase in the number of apoptotic cells, in elevated cellular caspase-3 activity, and/or in increased cleaved PARP in P. aeruginosa–infected HUCL cells or primary culture of HCECs. Blocking HB-EGF ectodomain shedding by inhibition of matrix metalloproteinase–mediated proteolysis, downregulation of HB-EGF, or neutralization of its activity retarded infection-induced EGFR transactivation and, as a consequence, increased infection-induced HUCL apoptosis

  12. Cetuximab Resistance in Head and Neck Cancer Is Mediated by EGFR-K521 Polymorphism.

    PubMed

    Braig, Friederike; Kriegs, Malte; Voigtlaender, Minna; Habel, Beate; Grob, Tobias; Biskup, Karina; Blanchard, Veronique; Sack, Markus; Thalhammer, Anja; Ben Batalla, Isabel; Braren, Ingke; Laban, Simon; Danielczyk, Antje; Goletz, Steffen; Jakubowicz, Elzbieta; Märkl, Bruno; Trepel, Martin; Knecht, Rainald; Riecken, Kristoffer; Fehse, Boris; Loges, Sonja; Bokemeyer, Carsten; Binder, Mascha

    2017-03-01

    Head and neck squamous cell carcinomas (HNSCC) exhibiting resistance to the EGFR-targeting drug cetuximab poses a challenge to their effective clinical management. Here, we report a specific mechanism of resistance in this setting based upon the presence of a single nucleotide polymorphism encoding EGFR-K 521 (K-allele), which is expressed in >40% of HNSCC cases. Patients expressing the K-allele showed significantly shorter progression-free survival upon palliative treatment with cetuximab plus chemotherapy or radiation. In several EGFR-mediated cancer models, cetuximab failed to inhibit downstream signaling or to kill cells harboring a high K-allele frequency. Cetuximab affinity for EGFR-K 521 was reduced slightly, but ligand-mediated EGFR activation was intact. We found a lack of glycan sialyation on EGFR-K 521 that associated with reduced protein stability, suggesting a structural basis for reduced cetuximab efficacy. CetuGEX, an antibody with optimized Fc glycosylation targeting the same epitope as cetuximab, restored HNSCC sensitivity in a manner associated with antibody-dependent cellular cytotoxicity rather than EGFR pathway inhibition. Overall, our results highlight EGFR-K 521 expression as a key mechanism of cetuximab resistance to evaluate prospectively as a predictive biomarker in HNSCC patients. Further, they offer a preclinical rationale for the use of ADCC-optimized antibodies to treat tumors harboring this EGFR isoform. Cancer Res; 77(5); 1188-99. ©2016 AACR . ©2016 American Association for Cancer Research.

  13. MUC4 modulates human glioblastoma cell proliferation and invasion by upregulating EGFR expression.

    PubMed

    Li, Weihua; Wu, Chunming; Yao, Yiqun; Dong, Bin; Wei, Zhenqing; Lv, Xiupeng; Zhang, Jian; Xu, Yinghui

    2014-04-30

    Glioblastoma (GBM), the most common primary brain tumor, is the leading cause of deaths related to tumors in the central nervous system. The prognosis of GBM patients is currently poor, and the mechanisms underlying GBM genesis remain unclear. The expression of MUC4, a high-molecular-weight and highly glycosylated protein, has been studied in many cancers. However, information on MUC4 expression in GBM is limited. In this study, we found that MUC4 was overexpressed in GBM cell lines and tissues. The proliferation and invasive potential of GBM cells were significantly increased by the ectopic expression of MUC4. By contrast, RNA interference targeting MUC4 in GBM cells significantly decreased the proliferation and invasive potential of GBM cells. We also found that the expression of epidermal growth factor receptor (EGFR) was modulated by MUC4. EGFR inhibition by siRNA reversed the MUC4-induced proliferation and invasion. These results indicated that MUC4 expression in GBM was important in GBM cell proliferation and invasion, which may be partly associated with EGFR overexpression. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  14. Epigenetic suppression of EGFR signaling in G-CIMP+ glioblastomas

    PubMed Central

    Goyal, Amit; Gonda, David; Akers, Johnny; Adhikari, Bandita; Patel, Kunal; Vandenberg, Scott; Yan, Wei; Bao, Zhaoshi; Carter, Bob S.; Wang, Renzhi; Mao, Ying; Jiang, Tao; Chen, Clark C.

    2014-01-01

    The intrinsic signaling cascades and cell states associated with the Glioma CpG Island Methylator Phenotype (G-CIMP) remain poorly understood. Using published mRNA signatures associated with EGFR activation, we demonstrate that G-CIMP+ tumors harbor decreased EGFR signaling using three independent datasets, including the Chinese Glioma Genome Atlas(CGGA; n=155), the REMBRANDT dataset (n=288), and The Cancer Genome Atlas (TCGA; n=406). Additionally, an independent collection of 25 fresh-frozen glioblastomas confirmed lowered pERK levels in G-CIMP+ specimens (p<0.001), indicating suppressed EGFR signaling. Analysis of TCGA glioblastomas revealed that G-CIMP+ glioblastomas harbored lowered mRNA levels for EGFR and H-Ras. Induction of G-CIMP+ state by exogenous expression of a mutated isocitrate dehydrogenase 1, IDH1-R132H, suppressed EGFR and H-Ras protein expression as well as pERK accumulation in independent glioblastoma models. These suppressions were associated with increased deposition of the repressive histone markers, H3K9me3 and H3K27me3, in the EGFR and H-Ras promoter regions. The IDH1-R132H expression-induced pERK suppression can be reversed by exogenous expression of H-RasG12V. Finally, the G-CIMP+ Ink4a-Arf−/− EGFRvIII glioblastoma line was more resistant to the EGFR inhibitor, Gefitinib, relative to its isogenic G-CIMP- counterpart. These results suggest that G-CIMP epigenetically regulates EGFR signaling and serves as a predictive biomarker for EGFR inhibitors in glioblastoma patients. PMID:25277177

  15. Epigenetic suppression of EGFR signaling in G-CIMP+ glioblastomas.

    PubMed

    Li, Jie; Taich, Zachary J; Goyal, Amit; Gonda, David; Akers, Johnny; Adhikari, Bandita; Patel, Kunal; Vandenberg, Scott; Yan, Wei; Bao, Zhaoshi; Carter, Bob S; Wang, Renzhi; Mao, Ying; Jiang, Tao; Chen, Clark C

    2014-09-15

    The intrinsic signaling cascades and cell states associated with the Glioma CpG Island Methylator Phenotype (G-CIMP) remain poorly understood. Using published mRNA signatures associated with EGFR activation, we demonstrate that G-CIMP+ tumors harbor decreased EGFR signaling using three independent datasets, including the Chinese Glioma Genome Atlas(CGGA; n=155), the REMBRANDT dataset (n=288), and The Cancer Genome Atlas (TCGA; n=406). Additionally, an independent collection of 25 fresh-frozen glioblastomas confirmed lowered pERK levels in G-CIMP+ specimens (p<0.001), indicating suppressed EGFR signaling. Analysis of TCGA glioblastomas revealed that G-CIMP+ glioblastomas harbored lowered mRNA levels for EGFR and H-Ras. Induction of G-CIMP+ state by exogenous expression of a mutated isocitrate dehydrogenase 1, IDH1-R132H, suppressed EGFR and H-Ras protein expression as well as pERK accumulation in independent glioblastoma models. These suppressions were associated with increased deposition of the repressive histone markers, H3K9me3 and H3K27me3, in the EGFR and H-Ras promoter regions. The IDH1-R132H expression-induced pERK suppression can be reversed by exogenous expression of H-RasG12V. Finally, the G-CIMP+ Ink4a-Arf-/- EGFRvIII glioblastoma line was more resistant to the EGFR inhibitor, Gefitinib, relative to its isogenic G-CIMP- counterpart. These results suggest that G-CIMP epigenetically regulates EGFR signaling and serves as a predictive biomarker for EGFR inhibitors in glioblastoma patients.

  16. Drug Resistance to EGFR Inhibitors in Lung Cancer | Office of Cancer Genomics

    Cancer.gov

    The discovery of mutations in epidermal growth factor receptor (EGFR) has dramatically changed the treatment of patients with non-small-cell lung cancer (NSCLC), the leading cause of cancer deaths worldwide. EGFR-targeted therapies show considerable promise, but drug resistance has become a substantial issue. We reviewed the literature to provide an overview of the drug resistance to EGFR tyrosine kinase inhibitors (TKIs) in NSCLC. The mechanisms causing primary, acquired and persistent drug resistance to TKIs vary.

  17. Evolution and clinical impact of co-occurring genetic alterations in advanced-stage EGFR-mutant lung cancers. | Office of Cancer Genomics

    Cancer.gov

    A widespread approach to modern cancer therapy is to identify a single oncogenic driver gene and target its mutant-protein product (for example, EGFR-inhibitor treatment in EGFR-mutant lung cancers). However, genetically driven resistance to targeted therapy limits patient survival. Through genomic analysis of 1,122 EGFR-mutant lung cancer cell-free DNA samples and whole-exome analysis of seven longitudinally collected tumor samples from a patient with EGFR-mutant lung cancer, we identified critical co-occurring oncogenic events present in most advanced-stage EGFR-mutant lung cancers.

  18. Differential roles of ERRFI1 in EGFR and AKT pathway regulation affect cancer proliferation.

    PubMed

    Cairns, Junmei; Fridley, Brooke L; Jenkins, Gregory D; Zhuang, Yongxian; Yu, Jia; Wang, Liewei

    2018-03-01

    AKT signaling is modulated by a complex network of regulatory proteins and is commonly deregulated in cancer. Here, we present a dual mechanism of AKT regulation by the ERBB receptor feedback inhibitor 1 (ERRFI1). We show that in cells expressing high levels of EGFR, ERRF1 inhibits growth and enhances responses to chemotherapy. This is mediated in part through the negative regulation of AKT signaling by direct ERRFI1-dependent inhibition of EGFR In cells expressing low levels of EGFR, ERRFI1 positively modulates AKT signaling by interfering with the interaction of the inactivating phosphatase PHLPP with AKT, thereby promoting cell growth and chemotherapy desensitization. These observations broaden our understanding of chemotherapy response and have important implications for the selection of targeted therapies in a cell context-dependent manner. EGFR inhibition can only sensitize EGFR-high cells for chemotherapy, while AKT inhibition increases chemosensitivity in EGFR-low cells. By understanding these mechanisms, we can take advantage of the cellular context to individualize antineoplastic therapy. Finally, our data also suggest targeting of EFFRI1 in EGFR-low cancer as a promising therapeutic approach. © 2018 The Authors. Published under the terms of the CC BY NC ND 4.0 license.

  19. Quantifying EGFR alterations in the lung cancer genome with nanofluidic digital PCR arrays.

    PubMed

    Wang, Jun; Ramakrishnan, Ramesh; Tang, Zhe; Fan, Weiwen; Kluge, Amy; Dowlati, Afshin; Jones, Robert C; Ma, Patrick C

    2010-04-01

    The EGFR [epidermal growth factor receptor (erythroblastic leukemia viral (v-erb-b) oncogene homolog, avian)] gene is known to harbor genomic alterations in advanced lung cancer involving gene amplification and kinase mutations that predict the clinical response to EGFR-targeted inhibitors. Methods for detecting such molecular changes in lung cancer tumors are desirable. We used a nanofluidic digital PCR array platform and 16 cell lines and 20 samples of genomic DNA from resected tumors (stages I-III) to quantify the relative numbers of copies of the EGFR gene and to detect mutated EGFR alleles in lung cancer. We assessed the relative number of EGFR gene copies by calculating the ratio of the number of EGFR molecules (measured with a 6-carboxyfluorescein-labeled Scorpion assay) to the number of molecules of the single-copy gene RPP30 (ribonuclease P/MRP 30kDa subunit) (measured with a 6-carboxy-X-rhodamine-labeled TaqMan assay) in each panel. To assay for the EGFR L858R (exon 21) mutation and exon 19 in-frame deletions, we used the ARMS and Scorpion technologies in a DxS/Qiagen EGFR29 Mutation Test Kit for the digital PCR array. The digital array detected and quantified rare gefitinib/erlotinib-sensitizing EGFR mutations (0.02%-9.26% abundance) that were present in formalin-fixed, paraffin-embedded samples of early-stage resectable lung tumors without an associated increase in gene copy number. Our results also demonstrated the presence of intratumor molecular heterogeneity for the clinically relevant EGFR mutated alleles in these early-stage lung tumors. The digital PCR array platform allows characterization and quantification of oncogenes, such as EGFR, at the single-molecule level. Use of this nanofluidics platform may provide deeper insight into the specific roles of clinically relevant kinase mutations during different stages of lung tumor progression and may be useful in predicting the clinical response to EGFR-targeted inhibitors.

  20. Balancing Selectivity and Efficacy of Bispecific Epidermal Growth Factor Receptor (EGFR) × c-MET Antibodies and Antibody-Drug Conjugates*

    PubMed Central

    Sellmann, Carolin; Doerner, Achim; Knuehl, Christine; Rasche, Nicolas; Sood, Vanita; Krah, Simon; Rhiel, Laura; Messemer, Annika; Wesolowski, John; Schuette, Mark; Becker, Stefan; Toleikis, Lars; Kolmar, Harald; Hock, Bjoern

    2016-01-01

    Bispecific antibodies (bsAbs) and antibody-drug conjugates (ADCs) have already demonstrated benefits for the treatment of cancer in several clinical studies, showing improved drug selectivity and efficacy. In particular, simultaneous targeting of prominent cancer antigens, such as EGF receptor (EGFR) and c-MET, by bsAbs has raised increasing interest for potentially circumventing receptor cross-talk and c-MET-mediated acquired resistance during anti-EGFR monotherapy. In this study, we combined the selectivity of EGFR × c-MET bsAbs with the potency of cytotoxic agents via bispecific antibody-toxin conjugation. Affinity-attenuated bispecific EGFR × c-MET antibody-drug conjugates demonstrated high in vitro selectivity toward tumor cells overexpressing both antigens and potent anti-tumor efficacy. Due to basal EGFR expression in the skin, ADCs targeting EGFR in general warrant early safety assessments. Reduction in EGFR affinity led to decreased toxicity in keratinocytes. Thus, the combination of bsAb affinity engineering with the concept of toxin conjugation may be a viable route to improve the safety profile of ADCs targeting ubiquitously expressed antigens. PMID:27694443

  1. Lead acetate induces EGFR activation upstream of SFK and PKC{alpha} linkage to the Ras/Raf-1/ERK signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, C.-Y.; Wang, Y.-T.; Tzeng, D.-W.

    2009-03-01

    Lead acetate (Pb), a probable human carcinogen, can activate protein kinase C (PKC) upstream of extracellular signal-regulated kinase 1 and 2 (ERK1/2). Yet, it remains unclear whether Pb activation of PKC {yields} ERK1/2 involves receptor/non-receptor tyrosine kinases and the Ras signaling transducer. Here we demonstrate a novel mechanism elicited by Pb for transmitting ERK1/2 signaling in CL3 human non-small-cell lung adenocarcinoma cells. Pb induction of higher steady-state levels of Ras-GTP was essential for increasing phospho-Raf-1{sup S338} and phospho-ERK1/2. Pre-treatment of the cells with a conventional PKC inhibitor Goe6976 or depleting PKC{alpha} using specific small interfering RNA blocked Pb induction ofmore » Ras-GTP. Pb also activated cellular tyrosine kinases. Specific pharmacological inhibitors, PD153035 for epidermal growth factor receptor (EGFR) and SU6656 for Src family tyrosine kinases (SFK), but not AG1296 for platelet-derived growth factor receptor, could suppress the Pb-induced tyrosine kinases, PKC{alpha}, Ras-GTP, phospho-Raf-1{sup S338} and phospho-ERK1/2. Furthermore, phosphorylation of tyrosines on the EGFR multiple autophosphorylation sites and the conserved SFK autophosphorylation site occurred during exposure of cells to Pb for 1-5 min and 5-30 min, respectively. Intriguingly, Pb activation of EGFR required the intrinsic kinase activity but not dimerization of the receptor. Inhibition of SFK or PKC{alpha} activities did not affect EGFR phosphorylation, while knockdown of EGFR blocked SFK phosphorylation and PKC{alpha} activation following Pb. Together, these results indicate that immediate activation of EGFR in response to Pb is obligatory for activation of SFK and PKC{alpha} and subsequent the Ras-Raf-1-MKK1/2-ERK1/2 signaling cascade.« less

  2. Ion channel TRPV1-dependent activation of PTP1B suppresses EGFR-associated intestinal tumorigenesis

    PubMed Central

    de Jong, Petrus R.; Takahashi, Naoki; Harris, Alexandra R.; Lee, Jihyung; Bertin, Samuel; Jeffries, James; Jung, Michael; Duong, Jen; Triano, Amy I.; Lee, Jongdae; Niv, Yaron; Herdman, David S.; Taniguchi, Koji; Kim, Chang-Whan; Dong, Hui; Eckmann, Lars; Stanford, Stephanie M.; Bottini, Nunzio; Corr, Maripat; Raz, Eyal

    2014-01-01

    The intestinal epithelium has a high rate of turnover, and dysregulation of pathways that regulate regeneration can lead to tumor development; however, the negative regulators of oncogenic events in the intestinal epithelium are not fully understood. Here we identified a feedback loop between the epidermal growth factor receptor (EGFR), a known mediator of proliferation, and the transient receptor potential cation channel, subfamily V, member 1 (TRPV1), in intestinal epithelial cells (IECs). We found that TRPV1 was expressed by IECs and was intrinsically activated upon EGFR stimulation. Subsequently, TRPV1 activation inhibited EGFR-induced epithelial cell proliferation via activation of Ca2+/calpain and resulting activation of protein tyrosine phosphatase 1B (PTP1B). In a murine model of multiple intestinal neoplasia (ApcMin/+ mice), TRPV1 deficiency increased adenoma formation, and treatment of these animals with an EGFR kinase inhibitor reversed protumorigenic phenotypes, supporting a functional association between TRPV1 and EGFR signaling in IECs. Administration of a TRPV1 agonist suppressed intestinal tumorigenesis in ApcMin/+ mice, similar to — as well as in conjunction with — a cyclooxygenase-2 (COX-2) inhibitor, which suggests that targeting both TRPV1 and COX-2 has potential as a therapeutic approach for tumor prevention. Our findings implicate TRPV1 as a regulator of growth factor signaling in the intestinal epithelium through activation of PTP1B and subsequent suppression of intestinal tumorigenesis. PMID:25083990

  3. Effects of different ligands on epidermal growth factor receptor (EGFR) nuclear translocation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faria, Jerusa A.Q.A.; Andrade, Carolina de; Goes, Alfredo M.

    The epidermal growth factor receptor (EGFR) is activated through binding to specific ligands and generates signals for proliferation, differentiation, migration, and cell survival. Recent data show the role of nuclear EGFR in tumors. Although many EGFR ligands are upregulated in cancers, little is known about their effects on EGFR nuclear translocation. We have compared the effects of six EGFR ligands (EGF, HB-EGF, TGF-α, β-Cellulin, amphiregulin, and epiregulin) on nuclear translocation of EGFR, receptor phosphorylation, migration, and proliferation. Cell fractionation and confocal immunofluorescence detected EGFR in the nucleus after EGF, HB-EGF, TGF-α and β-Cellulin stimulation in a dose-dependent manner. In contrast,more » amphiregulin and epiregulin did not generate nuclear translocation of EGFR. EGF, HB-EGF, TGF-α and β-Cellulin showed correlations between a higher rate of wound closure and increased phosphorylation of residues in the carboxy-terminus of EGFR, compared to amphiregulin and epiregulin. The data indicate that EGFR is translocated to the nucleus after stimulation with EGF, HB-EGF, TGF-α and β-Cellulin, and that these ligands are related to increased phosphorylation of EGFR tyrosine residues, inducing migration of SkHep-1 cells. - Highlights: • EGF, HB-EGF, TGF-α, β-Cellulin are involved in the EGFR nuclear translocation. • Amphiregulin and epiregulin did not promote nuclear translocation of EGFR. • EGF, HB-EGF, TGF-α and β-Cellulin have a role in SkHep-1 cells migration. • EGFR ligands associated with better prognosis don't stimulate EGFR translocation.« less

  4. Epitope mapping of epidermal growth factor receptor (EGFR) monoclonal antibody and induction of growth-inhibitory polyclonal antibodies by vaccination with EGFR mimotope.

    PubMed

    Navari, Mohsen; Zare, Mehrak; Javanmardi, Masoud; Asadi-Ghalehni, Majid; Modjtahedi, Helmout; Rasaee, Mohammad Javed

    2014-10-01

    One of the proposed approaches in cancer therapy is to induce and direct the patient's own immune system against cancer cells. In this study, we determined the epitope mapping of the rat anti-human epidermal growth factor receptor (EGFR) monoclonal antibody ICR-62 using a phage display of random peptide library and identified a 12 amino acids peptide, which was recognized as a mimotope. The peptide was synthesized and conjugated to bovine serum albumin (BSA) as carrier protein (P-BSA). We have shown that ICR-62 can react specifically with P-BSA as well as native EGFR. Two rabbits were immunized either by BSA or P-BSA and the rabbits IgGs were purified and examined for binding to the antigens, mimotope and the EGFR protein purified from the EGFR overexpressing A431 cell line. We showed that the rabbit IgG generated against the mimotope is capable of inhibiting the growth of A431 cells by 15%, but does not have any effect on the growth of EGFR-negative MDA-MB-453 cell line in vitro. Our results support the need for further investigations on the potential of vaccination with either mimotope of the EGFR or epitope displayed on the surface of phage particles for use in active immunotherapy of cancer.

  5. Treating EGFR mutation resistance in non-small cell lung cancer - role of osimertinib.

    PubMed

    Mazza, Valentina; Cappuzzo, Federico

    2017-01-01

    The discovery of mutations in EGFR significantly changed the treatment paradigm of patients with EGFR -mutant non-small cell lung cancer (NSCLC), a particular group of patients with different clinical characteristics and outcome to EGFR -wild-type patients. In these patients, the treatment of choice as first-line therapy is first- or second-generation EGFR-tyrosine kinase inhibitors (EGFR-TKIs), such as gefitinib, erlotinib, or afatinib. Inevitably, after the initial response, all patients become refractory to these drugs. The most common mechanism of acquired resistance to EGFR-TKIs is the development of a second mutation in exon 20 of EGFR ( T790M ). Osimertinib is a third-generation EGFR-TKI designed for overcoming T790M -mediated resistance. Based on the results of efficacy and tolerability of Phase II and Phase III studies, osimertinib has been approved for treatment of advanced EGFR T790M+ mutation NSCLC following progression on a prior EGFR-TKI. Occurrence of acquired resistance to osimertinib represents an urgent need for additional strategies including combination with other agents, such as other targeted therapies or checkpoint inhibitors, or development of new and more potent compounds.

  6. Broad Detection of Alterations Predicted to Confer Lack of Benefit From EGFR Antibodies or Sensitivity to Targeted Therapy in Advanced Colorectal Cancer.

    PubMed

    Rankin, Andrew; Klempner, Samuel J; Erlich, Rachel; Sun, James X; Grothey, Axel; Fakih, Marwan; George, Thomas J; Lee, Jeeyun; Ross, Jeffrey S; Stephens, Philip J; Miller, Vincent A; Ali, Siraj M; Schrock, Alexa B

    2016-09-28

    A KRAS mutation represented the first genomic biomarker to predict lack of benefit from anti-epidermal growth factor receptor (EGFR) antibody therapy in advanced colorectal cancer (CRC). Expanded RAS testing has further refined the treatment approach, but understanding of genomic alterations underlying primary and acquired resistance is limited and further study is needed. We prospectively analyzed 4,422 clinical samples from patients with advanced CRC, using hybrid-capture based comprehensive genomic profiling (CGP) at the request of the individual treating physicians. Comparison with prior molecular testing results, when available, was performed to assess concordance. We identified a RAS/RAF pathway mutation or amplification in 62% of cases, including samples harboring KRAS mutations outside of the codon 12/13 hotspot region in 6.4% of cases. Among cases with KRAS non-codon 12/13 alterations for which prior test results were available, 79 of 90 (88%) were not identified by focused testing. Of 1,644 RAS/RAF wild-type cases analyzed by CGP, 31% harbored a genomic alteration (GA) associated with resistance to anti-EGFR therapy in advanced CRC including mutations in PIK3CA, PTEN, EGFR, and ERBB2. We also identified other targetable GA, including novel kinase fusions, receptor tyrosine kinase amplification, activating point mutations, as well as microsatellite instability. Extended genomic profiling reliably detects alterations associated with lack of benefit to anti-EGFR therapy in advanced CRC, while simultaneously identifying alterations potentially important in guiding treatment. The use of CGP during the course of clinical care allows for the refined selection of appropriate targeted therapies and clinical trials, increasing the chance of clinical benefit and avoiding therapeutic futility. Comprehensive genomic profiling (CGP) detects diverse genomic alterations associated with lack of benefit to anti-epidermal growth factor receptor therapy in advanced

  7. Wogonin inhibits the proliferation and invasion, and induces the apoptosis of HepG2 and Bel7402 HCC cells through NF‑κB/Bcl-2, EGFR and EGFR downstream ERK/AKT signaling.

    PubMed

    Liu, Xiaodong; Tian, Shuo; Liu, Mei; Jian, Lingyan; Zhao, Limei

    2016-10-01

    The anticancer effects of the natural flavonoid, wogonin, have been reported. However, its molecular mechanisms of action have not yet been fully explored. In the present study, we aimed to examine the molecular mechanisms of action of wogonin and its effects on the biological behavior of the HepG2 and Bel7402 hepatocellular carcinoma (HCC) cell lines. We also examined the effects of wogonin on nuclear factor-κB (NF-κB)/Bcl-2 and epidermal growth factor receptor (EGFR) signaling, as well as on downstream pathways of EGFR, namely extracellular signal-regulated kinase (ERK)/AKT signaling. We found that treatment with wogonin inhibited the proliferation and invasion, and induced the apoptosis of the HepG2 and Bel7402 cells. In addition, treatment with wogonin decreased cyclin D1, cyclin E, CDK4/6, Bcl-2 and matrix metalloproteinase 2 (MMP2) expression, and promoted the cleavage of caspase-3 and caspase-9 in a concentration-dependent manner. Further experiments revealed that wogonin inhibited NF-κB/Bcl-2 signaling by decreasing the IκB and p65 phosphorylation levels. Wogonin also inhibited the activation of the EGFR (Tyr845) signaling pathway, and that of downstream pathways of EGFR, namely ERK/AKT/MMP2 signaling. The depletion of EGFR by siRNA partly abolished the inhibitory effects of wogonin on cyclin D1, MMP2 expression. On the whole, our our findings demonstrate that wogonin effectively suppresses the proliferation, invasion and survival of HCC cells through the modulation of the NF-κB and EGFR signaling pathways.

  8. Correlation of EGFR expression, gene copy number and clinicopathological status in NSCLC.

    PubMed

    Gaber, Rania; Watermann, Iris; Kugler, Christian; Reinmuth, Nils; Huber, Rudolf M; Schnabel, Philipp A; Vollmer, Ekkehard; Reck, Martin; Goldmann, Torsten

    2014-09-17

    Epidermal Growth Factor Receptor (EGFR) targeting therapies are currently of great relevance for the treatment of lung cancer. For this reason, in addition to mutational analysis immunohistochemistry (IHC) of EGFR in lung cancer has been discussed for the decision making of according therapeutic strategies. The aim of this study was to obtain standardization of EGFR-expression methods for the selection of patients who might benefit of EGFR targeting therapies. As a starting point of a broad investigation, aimed at elucidating the expression of EGFR on different biological levels, four EGFR specific antibodies were analyzed concerning potential differences in expression levels by Immunohistochemistry (IHC) and correlated with fluorescence in situ hybridization (FISH) analysis and clinicopathological data. 206 tumor tissues were analyzed in a tissue microarray format employing immunohistochemistry with four different antibodies including Dako PharmDx kit (clone 2-18C9), clone 31G7, clone 2.1E1 and clone SP84 using three different scoring methods. Protein expression was compared to FISH utilizing two different probes. EGFR protein expression determined by IHC with Dako PharmDx kit, clone 31G7 and clone 2.1E1 (p ≤ 0.05) correlated significantly with both FISH probes independently of the three scoring methods; best correlation is shown for 31G7 using the scoring method that defined EGFR positivity when ≥ 10% of the tumor cells show membranous staining of moderate and severe intensity (p=0.001). Overall, our data show differences in EGFR expression determined by IHC, due to the applied antibody. Highest concordance with FISH is shown for antibody clone 31G7, evaluated with score B (p=0.001). On this account, this antibody clone might by utilized for standard evaluation of EGFR expression by IHC. The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/13000_2014_165.

  9. Severe cutaneous adverse reactions induced by targeted anticancer therapies and immunotherapies

    PubMed Central

    Chen, Chun-Bing; Wu, Ming-Ying; Ng, Chau Yee; Lu, Chun-Wei; Wu, Jennifer; Kao, Pei-Han; Yang, Chan-Keng; Peng, Meng-Ting; Huang, Chen-Yang; Chang, Wen-Cheng; Hui, Rosaline Chung-Yee; Yang, Chih-Hsun; Yang, Shun-Fa; Chung, Wen-Hung; Su, Shih-Chi

    2018-01-01

    With the increasing use of targeted anticancer drugs and immunotherapies, there have been a substantial number of reports concerning life-threatening severe cutaneous adverse reactions (SCARs), including Stevens–Johnson syndrome (SJS), toxic epidermal necrolysis (TEN), drug rash with eosinophilia and systemic symptoms, drug-induced hypersensitivity syndrome, and acute generalized exanthematous pustulosis. Although the potential risks and characteristics for targeted anticancer agent- and immunotherapy-induced SCAR were not well understood, these serious adverse reactions usually result in morbidity and sequela. As a treatment guideline for this devastating condition is still unavailable, prompt withdrawal of causative drugs is believed to be a priority of patient management. In this review, we outline distinct types of SCARs caused by targeted anticancer therapies and immunotherapies. Also, we discuss the clinical course, latency, concomitant medication, tolerability of rechallenge or alternatives, tumor response, and mortality associated with these devastating conditions. Imatinib, vemurafenib, and rituximab were the top three offending medications that most commonly caused SJS/TEN, while EGFR inhibitors were the group of drugs that most frequently induced SJS/TEN. For drug rash with eosinophilia and systemic symptoms/drug-induced hypersensitivity syndrome and acute generalized exanthematous pustulosis, imatinib was also the most common offending drug. Additionally, we delineated 10 SCAR cases related to innovative immunotherapies, including PD1 and CTLA4 inhibitors. There was a wide range of latency periods: 5.5–91 days (median). Only eight of 16 reported patients with SCAR showed clinical responses. Targeted anticancer drugs and immunotherapies can lead to lethal SCAR (14 deceased patients were identified as suffering from SJS/TEN). The mortality rate of TEN was high: up to 52.4%. The information compiled herein will serve as a solid foundation to formulate

  10. Sex difference in EGFR pathways in mouse kidney-potential impact on the immune system.

    PubMed

    Liu, Fengxia; Jiao, Yan; Jiao, Yun; Garcia-Godoy, Franklin; Gu, Weikuan; Liu, Qingyi

    2016-11-24

    Epidermal growth factor receptor (Egfr) has been the target of several drugs for cancers. The potential gender differences in genes in the Egfr axis have been suggested in humans and in animal models. Female and male mice from the same recombinant inbred (RI) strain have the same genomic components except the sex difference. A population of different RI mouse strains allows to conduct precise analysis of molecular pathways and regulation of Egfr between female and male mice. The whole genome expression profiles of 70 genetically diverse RI strains of mice were used to compare three major molecular aspects of Egfr gene: the relative expression levels, gene network and expression quantitative trait loci (eQTL) that regulate the expression of Egfr between female and male mice. Our data showed that there is a significant sex difference in the expression levels in kidney. A considerable number of genes in the gene network of Egfr are sex differentially expressed. The expression levels of Egfr in mice are statistical significant different between C57BL/6 J (B6) and DBA/2 J (D2) genotypes in male while no difference in female mice. The eQTLs that regulate the expression levels of Egfr between female and male mice are also different. Furthermore, the differential expression levels of Egfr showed significantly different correlations with two known biological traits between male and female mice. Overall there is a substantial sex difference in the Egfr pathways in mice. These data may have significant impact on drug target design, development, formulation, and dosage determinant for women and men in clinical trials.

  11. Activation of EGFR Bypass Signaling by TGFα Overexpression Induces Acquired Resistance to Alectinib in ALK-Translocated Lung Cancer Cells.

    PubMed

    Tani, Tetsuo; Yasuda, Hiroyuki; Hamamoto, Junko; Kuroda, Aoi; Arai, Daisuke; Ishioka, Kota; Ohgino, Keiko; Miyawaki, Masayoshi; Kawada, Ichiro; Naoki, Katsuhiko; Hayashi, Yuichiro; Betsuyaku, Tomoko; Soejima, Kenzo

    2016-01-01

    Alectinib is a highly selective ALK inhibitor and shows promising efficacy in non-small cell lung cancers (NSCLC) harboring the EML4-ALK gene rearrangement. The precise mechanism of acquired resistance to alectinib is not well defined. The purpose of this study was to clarify the mechanism of acquired resistance to alectinib in ALK-translocated lung cancer cells. We established alectinib-resistant cells (H3122-AR) from the H3122 NSCLC cell line, harboring the EML4-ALK gene rearrangement, by long-term exposure to alectinib. The mechanism of acquired resistance to alectinib in H3122-AR cells was evaluated by phospho-receptor tyrosine kinase (phospho-RTK) array screening and Western blotting. No mutation of the ALK-TK domain was found. Phospho-RTK array analysis revealed that the phosphorylation level of EGFR was increased in H3122-AR cells compared with H3122. Expression of TGFα, one of the EGFR ligands, was significantly increased and knockdown of TGFα restored the sensitivity to alectinib in H3122-AR cells. We found combination therapy targeting ALK and EGFR with alectinib and afatinib showed efficacy both in vitro and in a mouse xenograft model. We propose a preclinical rationale to use the combination therapy with alectinib and afatinib in NSCLC that acquired resistance to alectinib by the activation of EGFR bypass signaling. ©2015 American Association for Cancer Research.

  12. Prognostic Significance of NSCLC and Response to EGFR-TKIs of EGFR-Mutated NSCLC Based on PD-L1 Expression.

    PubMed

    Kobayashi, Kenichi; Seike, Masahiro; Zou, Fenfei; Noro, Rintaro; Chiba, Mika; Ishikawa, Arimi; Kunugi, Shinobu; Kubota, Kaoru; Gemma, Akihiko

    2018-02-01

    Recent clinical trials have shown that immune checkpoint blockades that target either PD-1 or PD-L1 yield remarkable responses in a subgroup of patients with non-small cell lung cancer (NSCLC). We retrospectively examined, by immunohistochemical analysis, 211 NSCLC samples. Using 32 independent samples, we also evaluated PD-L1 expression in NSCLC patients with EGFR gene mutations treated by EGFR-TKIs. Overall survival of PD-L1-positive stages I-III NSCLC and stage I NSCLC and stages I-III squamous cell carcinoma (SQ) were significantly shorter than those of PD-L1-negative NSCLC (p<0.01 and p=0.02 and p=0.01, respectively). In stage I NSCLC and stages I-III SQ, PD-L1 expression was found to be independent predictor of death after multivariate analysis. Response to EGFR-TKIs was not significantly different between PD-L1-positive and PD-L1-negative NSCLC patients with EGFR mutations. PD-L1 expression was a significant independent predictor of poor outcome in NSCLC patients. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  13. BDNF/TrkB signaling protects HT-29 human colon cancer cells from EGFR inhibition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brunetto de Farias, Caroline; Children's Cancer Institute, 90420-140 Porto Alegre, RS; Laboratory of Neuropharmacology and Neural Tumor Biology, Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, 90050-170 Porto Alegre, RS

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer BDNF protected HT-29 colorectal cancer cells from the antitumor effect of cetuximab. Black-Right-Pointing-Pointer TrkB inhibition potentiated the antitumor effect of cetuximab. Black-Right-Pointing-Pointer BDNF/TrkB signaling might be involved in resistance to anti-EGFR therapy. -- Abstract: The clinical success of targeted treatment of colorectal cancer (CRC) is often limited by resistance to anti-epidermal growth factor receptor (EGFR) therapy. The neurotrophin brain-derived neurotrophic factor (BDNF) and its receptor TrkB have recently emerged as anticancer targets, and we have previously shown increased BDNF levels in CRC tumor samples. Here we report the findings from in vitro experiments suggesting that BDNF/TrkB signaling canmore » protect CRC cells from the antitumor effects of EGFR blockade. The anti-EGFR monoclonal antibody cetuximab reduced both cell proliferation and the mRNA expression of BDNF and TrkB in human HT-29 CRC cells. The inhibitory effect of cetuximab on cell proliferation and survival was counteracted by the addition of human recombinant BDNF. Finally, the Trk inhibitor K252a synergistically enhanced the effect of cetuximab on cell proliferation, and this effect was blocked by BDNF. These results provide the first evidence that increased BDNF/TrkB signaling might play a role in resistance to EGFR blockade. Moreover, it is possible that targeting TrkB could potentiate the anticancer effects of anti-EGFR therapy.« less

  14. Epidermal Growth Factor Receptor targeting in non-small cell lung cancer: revisiting different strategies against the same target.

    PubMed

    Castañón, Eduardo; Martín, Patricia; Rolfo, Christian; Fusco, Juan P; Ceniceros, Lucía; Legaspi, Jairo; Santisteban, Marta; Gil-Bazo, Ignacio

    2014-01-01

    Epidermal Growth Factor Receptor (EGFR) tyrosine kinase inhibitors (TKIs) have changed the paradigm of treatment in non-small cell lung cancer (NSCLC). The molecular biology study of EGFR has led to clinical trials that select patients more accurately, regarding the presence of EGFR activating mutations. Nonetheless, a lack of response or a temporary condition of the response has been detected in patients on EGFR TKIs. This has urged to study potential resistance mechanisms underneath. The most important ones are the presence of secondary mutations in EGFR, such as T790M, or the overexpression of mesenchymal-epithelial transition factor (MET) that may explain why patients who initially respond to EGFR TKIs, may ultimately become refractory. Several approaches have been taken and new drugs both targeting EGFR resistance-mutation or MET are currently being developed. Here we review and update the EGFR biological pathway as well as the clinical data leading to approval of the EGFR TKIs currently in the market. New compounds under investigation targeting resistance mutations or dually targeting EGFR and other relevant receptors are also reviewed and discussed.

  15. 2D-QSAR and 3D-QSAR Analyses for EGFR Inhibitors

    PubMed Central

    Zhao, Manman; Zheng, Linfeng; Qiu, Chun

    2017-01-01

    Epidermal growth factor receptor (EGFR) is an important target for cancer therapy. In this study, EGFR inhibitors were investigated to build a two-dimensional quantitative structure-activity relationship (2D-QSAR) model and a three-dimensional quantitative structure-activity relationship (3D-QSAR) model. In the 2D-QSAR model, the support vector machine (SVM) classifier combined with the feature selection method was applied to predict whether a compound was an EGFR inhibitor. As a result, the prediction accuracy of the 2D-QSAR model was 98.99% by using tenfold cross-validation test and 97.67% by using independent set test. Then, in the 3D-QSAR model, the model with q2 = 0.565 (cross-validated correlation coefficient) and r2 = 0.888 (non-cross-validated correlation coefficient) was built to predict the activity of EGFR inhibitors. The mean absolute error (MAE) of the training set and test set was 0.308 log units and 0.526 log units, respectively. In addition, molecular docking was also employed to investigate the interaction between EGFR inhibitors and EGFR. PMID:28630865

  16. Sialylation of EGFR by the ST6Gal-I sialyltransferase promotes EGFR activation and resistance to gefitinib-mediated cell death.

    PubMed

    Britain, Colleen M; Holdbrooks, Andrew T; Anderson, Joshua C; Willey, Christopher D; Bellis, Susan L

    2018-02-05

    The ST6Gal-I sialyltransferase is upregulated in numerous cancers, and high expression of this enzyme correlates with poor patient prognosis in various malignancies, including ovarian cancer. Through its sialylation of a select cohort of cell surface receptors, ST6Gal-I modulates cell signaling to promote tumor cell survival. The goal of the present study was to investigate the influence of ST6Gal-I on another important receptor that controls cancer cell behavior, EGFR. Additionally, the effect of ST6Gal-I on cancer cells treated with the common EGFR inhibitor, gefitinib, was evaluated. Using the OV4 ovarian cancer cell line, which lacks endogenous ST6Gal-I expression, a kinomics assay revealed that cells with forced overexpression of ST6Gal-I exhibited increased global tyrosine kinase activity, a finding confirmed by immunoblotting whole cell lysates with an anti-phosphotyrosine antibody. Interestingly, the kinomics assay suggested that one of the most highly activated tyrosine kinases in ST6Gal-I-overexpressing OV4 cells was EGFR. Based on these findings, additional analyses were performed to investigate the effect of ST6Gal-I on EGFR activation. To this end, we utilized, in addition to OV4 cells, the SKOV3 ovarian cancer cell line, engineered with both ST6Gal-I overexpression and knockdown, as well as the BxPC3 pancreatic cancer cell line with knockdown of ST6Gal-I. In all three cell lines, we determined that EGFR is a substrate of ST6Gal-I, and that the sialylation status of EGFR directly correlates with ST6Gal-I expression. Cells with differential ST6Gal-I expression were subsequently evaluated for EGFR tyrosine phosphorylation. Cells with high ST6Gal-I expression were found to have elevated levels of basal and EGF-induced EGFR activation. Conversely, knockdown of ST6Gal-I greatly attenuated EGFR activation, both basally and post EGF treatment. Finally, to illustrate the functional importance of ST6Gal-I in regulating EGFR-dependent survival, cells were

  17. [Current Possibilities for Predicting Responses to EGFR Blockade in Metastatic Colorectal Cancer].

    PubMed

    Němeček, R; Svoboda, M; Slabý, O

    2016-01-01

    The combination of modern systemic chemotherapy and anti-EGFR monoclonal antibodies improves overall survival and quality of life for patients with metastatic colorecal cancer. By contrast, the addition of anti-EGFR therapy to the treatment regime of resistant patients may lead to worse progression-free survival and overall survival. Therefore, identifying sensitive and resistant patients prior to targeted therapy of metastatic colorecal cancer is a key point during the initial decision making process. Previous research shows that primary resistance to EGFR blockade is in most cases caused by constitutive activation of signaling pathways downstream of EGFR. Of all relevant factors (mutation of KRAS, NRAS, BRAF, and PIK3CA oncogenes, inactivation of tumor suppressors PTEN and TP53, amplification of EGFR and HER2, and expression of epiregulin and amphiregulin, mikroRNA miR-31-3p, and miR-31-5p), only evaluation of KRAS and NRAS mutations has entered routine clinical practice. The role of the other markers still needs to be validated. The ongoing benefit of anti-EGFR therapy could be indicated by specific clinical parameters measured after the initiation of targeted therapy, including early tumor shrinkage, the deepness of the response, or hypomagnesemia. The accuracy of predictive dia-gnostic tools could be also increased by examining a combination of predictive markers using next generation sequencing methods. However, unjustified investigation of many molecular markers should be resisted as this may complicate interpretation of the results, particularly in terms of their specific clinical relevance. The aim of this review is to describe current possibilities with respect to predicting responses to EGFR blockade in the context of the EGFR pathway, and the utilization of such results in routine clinical practice.

  18. Monitoring of Circulating Tumor Cells and Their Expression of EGFR/Phospho-EGFR During Combined Radiotherapy Regimens in Locally Advanced Squamous Cell Carcinoma of the Head and Neck

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tinhofer, Ingeborg, E-mail: ingeborg.tinhofer@charite.de; Hristozova, Tsvetana; Stromberger, Carmen

    2012-08-01

    Purpose: The numbers of circulating tumor cells (CTCs) and their expression/activation of epidermal growth factor receptor (EGFR) during the course of combined chemo- or bioradiotherapy regimens as potential biomarkers of treatment efficacy in squamous cell carcinoma of the head and neck (SCCHN) were determined. Methods and Materials: Peripheral blood samples from SCCHN patients with locally advanced stage IVA/B disease who were treated with concurrent radiochemotherapy or induction chemotherapy followed by bioradiation with cetuximab were included in this study. Using flow cytometry, the absolute number of CTCs per defined blood volume as well as their expression of EGFR and its phosphorylatedmore » form (pEGFR) during the course of treatment were assessed. Results: Before treatment, we detected {>=}1 CTC per 3.75 mL blood in 9 of 31 patients (29%). Basal expression of EGFR was detected in 100% and pEGFR in 55% of the CTC+ cases. The frequency of CTC detection was not influenced by induction chemotherapy. However, the number of CTC+ samples significantly increased after radiotherapy. This radiation-induced increase in CTC numbers was less pronounced when radiotherapy was combined with cetuximab compared to its combination with cisplatin/5-fluorouracil. The former treatment regimen was also more effective in reducing pEGFR expression in CTCs. Conclusions: Definitive radiotherapy regimens of locally advanced SCCHN can increase the number of CTCs and might thus contribute to a systemic spread of tumor cells. Further studies are needed to evaluate the predictive value of the radiation-induced increase in CTC numbers and the persistent activation of the EGFR signalling pathway in individual CTC+ cases.« less

  19. Detection of EGFR Variants in Plasma: A Multilaboratory Comparison of the cobas EGFR Mutation Test v2 in Europe.

    PubMed

    Keppens, Cleo; Palma, John F; Das, Partha M; Scudder, Sidney; Wen, Wei; Normanno, Nicola; Van Krieken, J Han; Sacco, Alessandra; Fenizia, Francesca; de Castro, David Gonzalez; Hönigschnabl, Selma; Kern, Izidor; Lopez-Rios, Fernando; Lozano, Maria D; Marchetti, Antonio; Halfon, Philippe; Schuuring, Ed; Setinek, Ulrike; Sorensen, Boe; Taniere, Phillipe; Tiemann, Markus; Vosmikova, Hana; Dequeker, Elisabeth M C

    2018-04-25

    Molecular testing of EGFR is required to predict the response likelihood to targeted therapy in non-small-cell lung cancer. Analysis of circulating tumor DNA in plasma may complement limitations of tumor tissue. This study evaluated the interlaboratory performance and reproducibility of the cobas EGFR Mutation Test v2 to detect EGFR variants in plasma. Fourteen laboratories received two identical panels of 27 single-blinded plasma samples. Samples were wild-type or spiked with plasmid DNA to contain seven common EGFR variants at six predefined concentrations from 50 to 5000 copies per mL. The circulating tumor DNA was extracted by the cobas cfDNA Sample Preparation kit, followed by duplicate analysis with the EGFRv2 kit (Roche Molecular Systems, Pleasanton, CA). Lowest sensitivities were obtained for the c.2156G>C p.(Gly719Ala) and c.2573T>G p.(Leu858Arg) variants for the lowest target copies. For all other variants, sensitivities varied between 96.3% and 100.0%. Specificities were all 98.8% to 100.0%. Coefficients of variation indicated good intra and interlaboratory repeatability and reproducibility, but increased for decreasing concentrations. Prediction models revealed a significant correlation for all variants between the pre-defined copy number and the observed semiquantitative index values which reflects the samples' plasma mutation load. This study demonstrates an overall robust performance of the EGFRv2 kit in plasma. Prediction models may be applied to estimate the plasma mutation load for diagnostic or research purposes. Copyright © 2018 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  20. Immunoexpression of EGFR and EMMPRIN in a series of cases of head and neck squamous cell carcinoma.

    PubMed

    de Andrade, Ana Luiza Dias Leite; Ferreira, Stefânia Jeronimo; Ferreira, Sonia Maria Soares; Ribeiro, Camila Maria Beder; Freitas, Roseana de Almeida; Galvão, Hébel Cavalcanti

    2015-10-01

    The epidermal growth factor receptor (EGFR) and the extracellular matrix metalloproteinase inducer (EMMPRIN) have been identified as oncologically important targets. This study aimed to evaluate the immunoexpression of EGFR and EMMPRIN in a series of cases of head and neck squamous cell carcinoma (HNSCC). Forty-five cases of HNSCC were selected for this study and evaluated with anti-EGFR and anti-EMMPRIN antibodies. The percentage of positive cells was determined assessing to the following categories: score 1 (staining in 0-50% of cells), score 2 (staining in 51-75% of cells), and score 3 (staining in >75% of cells). Immunostaining intensity was graded according to the following parameters: score 1 (absent/weak expression) and score 2 (strong expression). For EGFR, a predominance of high median scores was observed in cases of both histological grades of malignancy and in different clinical stages (p>0.05). For EMMPRIN, a statistically significant difference was observed between the histological grades of malignancy (p=0.030). Regarding the immunostaining intensity of EMMPRIN, it was observed a predominance of score 1 in cases with stages I/II, whereas most cases with stages III/IV presented score 2 (p=0.032). Considering the anatomical location, most cases of buccal floor presented higher median score of EMMPRIN in comparison with the other sites (p=0.015). These findings suggest that both proteins are potential targets for cancer therapy and EMMPRIN can be used as a prognostic marker of a more aggressive biological behavior in patients with HNSCC. Copyright © 2015 Elsevier GmbH. All rights reserved.

  1. Tyrosine kinase inhibitor induced growth factor receptor upregulation enhances the efficacy of near-infrared targeted photodynamic therapy in esophageal adenocarcinoma cell lines.

    PubMed

    Hartmans, Elmire; Linssen, Matthijs D; Sikkens, Claire; Levens, Afra; Witjes, Max J H; van Dam, Gooitzen M; Nagengast, Wouter B

    2017-05-02

    Esophageal carcinoma (EC) is a global health problem, with disappointing 5-year survival rates of only 15-25%. Near-infrared targeted photodynamic therapy (NIR-tPDT) is a novel strategy in which cancer-targeted phototoxicity is able to selectively treat malignant cells. In this in vitro report we demonstrate the applicability of antibody-based NIR-tPDT in esophageal adenocarcinoma (EAC), using the phototoxic compounds cetuximab-IRDye700DX and trastuzumab-IRDye700DX, targeting respectively epidermal growth factor receptor 1 (EGFR) and 2 (HER2). Furthermore, we demonstrate that NIR-tPDT can be made more effective by tyrosine kinase inhibitor (TKI) induced growth receptor upregulation. Together, these results unveil a novel strategy for non-invasive EAC treatment, and by pretreatment-induced receptor upregulation its future clinical application may be optimized.

  2. Mitochondrial translocation of EGFR regulates mitochondria dynamics and promotes metastasis in NSCLC.

    PubMed

    Che, Ting-Fang; Lin, Ching-Wen; Wu, Yi-Ying; Chen, Yu-Ju; Han, Chia-Li; Chang, Yih-leong; Wu, Chen-Tu; Hsiao, Tzu-Hung; Hong, Tse-Ming; Yang, Pan-Chyr

    2015-11-10

    Dysfunction of the mitochondria is well-known for being associated with cancer progression. In the present study, we analyzed the mitochondria proteomics of lung cancer cell lines with different invasion abilities and found that EGFR is highly expressed in the mitochondria of highly invasive non-small-cell lung cancer (NSCLC) cells. EGF induces the mitochondrial translocation of EGFR; further, it leads to mitochondrial fission and redistribution in the lamellipodia, upregulates cellular ATP production, and enhances motility in vitro and in vivo. Moreover, EGFR can regulate mitochondrial dynamics by interacting with Mfn1 and disturbing Mfn1 polymerization. Overexpression of Mfn1 reverses the phenotypes resulting from EGFR mitochondrial translocation. We show that the mitochondrial EGFR expressions are higher in paired samples of the metastatic lymph node as compared with primary lung tumor and are inversely correlated with the overall survival in NSCLC patients. Therefore, our results demonstrate that besides the canonical role of EGFR as a receptor tyrosine, the mitochondrial translocation of EGFR may enhance cancer invasion and metastasis through regulating mitochondria dynamics.

  3. The endosomal transcriptional regulator RNF11 integrates degradation and transport of EGFR

    PubMed Central

    Boncompain, Gaelle; Laketa, Vibor; Poser, Ina; Beck, Martin; Bork, Peer

    2016-01-01

    Stimulation of cells with epidermal growth factor (EGF) induces internalization and partial degradation of the EGF receptor (EGFR) by the endo-lysosomal pathway. For continuous cell functioning, EGFR plasma membrane levels are maintained by transporting newly synthesized EGFRs to the cell surface. The regulation of this process is largely unknown. In this study, we find that EGF stimulation specifically increases the transport efficiency of newly synthesized EGFRs from the endoplasmic reticulum to the plasma membrane. This coincides with an up-regulation of the inner coat protein complex II (COPII) components SEC23B, SEC24B, and SEC24D, which we show to be specifically required for EGFR transport. Up-regulation of these COPII components requires the transcriptional regulator RNF11, which localizes to early endosomes and appears additionally in the cell nucleus upon continuous EGF stimulation. Collectively, our work identifies a new regulatory mechanism that integrates the degradation and transport of EGFR in order to maintain its physiological levels at the plasma membrane. PMID:27872256

  4. Acquired MET expression confers resistance to EGFR inhibition in a mouse model of glioblastoma multiforme.

    PubMed

    Jun, H J; Acquaviva, J; Chi, D; Lessard, J; Zhu, H; Woolfenden, S; Bronson, R T; Pfannl, R; White, F; Housman, D E; Iyer, L; Whittaker, C A; Boskovitz, A; Raval, A; Charest, A

    2012-06-21

    Glioblastoma multiforme (GBM) is an aggressive brain tumor for which there is no cure. Overexpression of wild-type epidermal growth factor receptor (EGFR) and loss of the tumor suppressor genes Ink4a/Arf and PTEN are salient features of this deadly cancer. Surprisingly, targeted inhibition of EGFR has been clinically disappointing, demonstrating an innate ability for GBM to develop resistance. Efforts at modeling GBM in mice using wild-type EGFR have proven unsuccessful to date, hampering endeavors at understanding molecular mechanisms of therapeutic resistance. Here, we describe a unique genetically engineered mouse model of EGFR-driven gliomagenesis that uses a somatic conditional overexpression and chronic activation of wild-type EGFR in cooperation with deletions in the Ink4a/Arf and PTEN genes in adult brains. Using this model, we establish that chronic activation of wild-type EGFR with a ligand is necessary for generating tumors with histopathological and molecular characteristics of GBMs. We show that these GBMs are resistant to EGFR kinase inhibition and we define this resistance molecularly. Inhibition of EGFR kinase activity using tyrosine kinase inhibitors in GBM tumor cells generates a cytostatic response characterized by a cell cycle arrest, which is accompanied by a substantial change in global gene expression levels. We demonstrate that an important component of this pattern is the transcriptional activation of the MET receptor tyrosine kinase and that pharmacological inhibition of MET overcomes the resistance to EGFR inhibition in these cells. These findings provide important new insights into mechanisms of resistance to EGFR inhibition and suggest that inhibition of multiple targets will be necessary to provide therapeutic benefit for GBM patients.

  5. Simultaneous EGFR and VEGF Alterations in Non-Small Cell Lung Carcinoma Based on Tissue Microarrays

    PubMed Central

    Tsiambas, Evangelos; Stamatelopoulos, Athanasios; Karameris, Andreas; Panagiotou, Ioannis; Rigopoulos, Dimitrios; Chatzimichalis, Antonios; Bouros, Demosthenes; Patsouris, Efstratios

    2007-01-01

    Background: Epidermal growth factor receptor (EGFR) overexpression is observed in significant proportions of non-small cell lung carcinomas (NSCLC). Furthermore, overactivation of vascular endothelial growth factor (VEGF) leads to increased angiogenesis implicated as an important factor in vascularization of those tumors. Patients and Methods: Using tissue microarray technology, forty-paraffin (n = 40) embedded, histologically confirmed primary NSCLCs were cored and re-embedded into a recipient block. Immunohistochemistry was performed for the determination of EGFR and VEGF protein levels which were evaluated by the performance of computerized image analysis. EGFR gene amplification was studied by chromogenic in situ hybridization based on the use of EGFR gene and chromosome 7 centromeric probes. Results: EGFR overexpression was observed in 23/40 (57.5%) cases and was correlated to the stage of the tumors (p = 0.001), whereas VEGF was overexpressed in 35/40 (87.5%) cases and was correlated to the stage of the tumors (p = 0.005) and to the smoking history of the patients (p = 0.016). Statistical significance was assessed comparing the protein levels of EGFR and VEGF (p = 0.043, k = 0.846). EGFR gene amplification was identified in 2/40 (5%) cases demonstrating no association to its overall protein levels (p = 0.241), whereas chromosome 7 aneuploidy was detected in 7/40 (17.5%) cases correlating to smoking history of the patients (p = 0.013). Conclusions: A significant subset of NSCLC is characterized by EGFR and VEGF simultaneous overexpression and maybe this is the eligible target group for the application of combined anti-EGFR/VEGF targeted therapies at the basis of genetic deregulation (especially gene amplification for EGFR). PMID:19455247

  6. Targeting Tyrosine Kinase Inhibitor-Resistant Non-Small Cell Lung Cancer by Inducing Epidermal Growth Factor Receptor Degradation via Methionine 790 Oxidation

    PubMed Central

    Leung, Elaine Lai-Han; Fan, Xing-Xing; Wong, Maria Pik; Jiang, Zhi-Hong; Liu, Zhong-Qiu; Yao, Xiao-Jun; Lu, Lin-Lin; Zhou, Yan-Ling; Yau, Li-Fong; Tin, Vicky Pui-Chi

    2016-01-01

    Abstract Aims: Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) have been developed to treat non-small cell lung cancer (NSCLC) patients with EGFR mutation, but TKI resistance is common. Almost half of the acquired resistance patients are due to additional T790M mutation on EGFR (EGFRT790M), thus overcoming TKI resistance is important. In this study, we aim to investigate the role of reactive oxygen species (ROS) in TKI resistance as well as the molecular and biological effects of EGFRT790M after redox manipulation. Results: The basal ROS levels in EGFRT790M-containing TKI-resistant NSCLC cell lines were substantially high. Sixty-three human lung tumors showed higher NADPH oxidase isoform 2 (NOX2) expression than normal lung tissues, which may contribute to high basal ROS in cancer and poor survival. Interestingly, only NOX3 was upregulated by sanguinarine, a pharmacological agent to elevate ROS, and resulted in EGFR overoxidation, degradation, and apoptosis. By contrast, such responses were lacking in EGFRWT cells. Selective EGFRT790M degradation was manipulated by redox imbalance between NOX3 and methionine reductase A (MsrA). Furthermore, the in vivo tumor suppression effect of sanguinarine, NOX3 upregulation, and EGFR degradation were confirmed. Innovation: We have found a new treatment strategy to overcome TKI resistance by selectively inducing EGFRT790M degradation via specific stimulation of methionine 790 (M790) oxidation. It can be achieved via manipulating redox imbalance between NOX3 and MsrA. Conclusion: Targeting EGFR by elevating ROS and redox imbalance is a potential new strategy to develop a new EGFR inhibitor for TKI-resistant patients with a wide therapeutic window between EGFRT790M and EGFRWT. Antioxid. Redox Signal. 24, 263–279. PMID:26528827

  7. Armored long non-coding RNA MEG3 targeting EGFR based on recombinant MS2 bacteriophage virus-like particles against hepatocellular carcinoma.

    PubMed

    Chang, Le; Wang, Guojing; Jia, Tingting; Zhang, Lei; Li, Yulong; Han, Yanxi; Zhang, Kuo; Lin, Guigao; Zhang, Rui; Li, Jinming; Wang, Lunan

    2016-04-26

    Hepatocellular carcinoma (HCC) is one of the most frequently diagnosed cancers worldwide. However, the treatment of patients with HCC is particularly challenging. Long non-coding RNA maternally expressed gene 3 (MEG3) has been identified as a potential suppressor of several types of tumors, but the delivery of long RNA remains problematic, limiting its applications. In the present study, we designed a novel delivery system based on MS2 virus-like particles (VLPs) crosslinked with GE11 polypeptide. This vector was found to be fast, effective and safe for the targeted delivery of lncRNA MEG3 RNA to the epidermal growth factor receptor (EGFR)-positive HCC cell lines without the activation of EGFR downstream pathways, and significantly attenuated both in vitro and in vivo tumor cell growth. Our study also revealed that the targeted delivery was mainly dependent on clathrin-mediated endocytosis and MEG3 RNA suppresses tumor growth mainly via increasing the expression of p53 and its downstream gene GDF15, but decreasing the expression of MDM2. Thus, this vector is promising as a novel delivery system and may facilitate a new approach to lncRNA based cancer therapy.

  8. NF-{kappa}B signaling is activated and confers resistance to apoptosis in three-dimensionally cultured EGFR-mutant lung adenocarcinoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakuma, Yuji, E-mail: ysakuma@gancen.asahi.yokohama.jp; Yamazaki, Yukiko; Nakamura, Yoshiyasu

    2012-07-13

    Highlights: Black-Right-Pointing-Pointer EGFR-mutant cells in 3D culture resist EGFR inhibition compared with suspended cells. Black-Right-Pointing-Pointer Degradation of I{kappa}B and activation of NF-{kappa}B are observed in 3D-cultured cells. Black-Right-Pointing-Pointer Inhibiting NF-{kappa}B enhances the efficacy of the EGFR inhibitor in 3D-cultured cells. -- Abstract: Epidermal growth factor receptor (EGFR)-mutant lung adenocarcinoma cells in suspension undergo apoptosis to a greater extent than adherent cells in a monolayer when EGFR autophosphorylation is inhibited by EGFR tyrosine kinase inhibitors (TKIs). This suggests that cell adhesion to a culture dish may activate an anti-apoptotic signaling pathway other than the EGFR pathway. Since the microenvironment of cellsmore » cultured in a monolayer are substantially different to that of cells existing in three-dimension (3D) in vivo, we assessed whether two EGFR-mutant lung adenocarcinoma cell lines, HCC827 and H1975, were more resistant to EGFR TKI-induced apoptosis when cultured in a 3D extracellular matrix (ECM) as compared with in suspension. The ECM-adherent EGFR-mutant cells in 3D were significantly less sensitive to treatment with WZ4002, an EGFR TKI, than the suspended cells. Further, a marked degradation of I{kappa}B{alpha}, the inhibitor of nuclear factor (NF)-{kappa}B, was observed only in the 3D-cultured cells, leading to an increase in the activation of NF-{kappa}B. Moreover, the inhibition of NF-{kappa}B with pharmacological inhibitors enhanced EGFR TKI-induced apoptosis in 3D-cultured EGFR-mutant cells. These results suggest that inhibition of NF-{kappa}B signaling would render ECM-adherent EGFR-mutant lung adenocarcinoma cells in vivo more susceptible to EGFR TKI-induced cell death.« less

  9. Differential effect of EGFR inhibitors on tamoxifen-resistant breast cancer cells.

    PubMed

    Kim, Sangmin; Lee, Jeongmin; Oh, Soo Jin; Nam, Seok Jin; Lee, Jeong Eon

    2015-09-01

    Although tamoxifen is the most common and effective therapy for treatment of estrogen receptor-α (ER-α) breast cancer patients, resistance of endocrine therapy occurs, either de novo or acquired during therapy. Here, we investigated the clinical value of epidermal growth factor receptor (EGFR) in tamoxifen-resistant (TamR) patients and the differential effect of EGFR inhibitors, neratinib and gefitinib, on TamR breast cancer cell model. The morphology of TamR MCF7 cells showed mesenchymal phenotypes and did not induce cell death by tamoxifen treatment compared with tamoxifen‑sensitive (TamS) MCF7 cells. In addition, mesenchymal marker proteins, including N-cadherin (N-cad), fibronectin (FN), and Slug, significantly increased in TamR cells. In contrast, ER-α and E-cadherin (E-cad) were greatly decreased. We also found that the levels of EGFR and HER2 expression were increased in TamR cells. Furthermore, we observed that EGFR expression was directly involved with poor prognosis of tamoxifen-treated breast cancer patients using the GSE1378 date set. Thus, we treated TamR and TamS cells with EGFR inhibitors, neratinib and gefitinib, respectively. Interestingly, neratinib induced apoptotic cell death of TamR but not gefitinib. Cleaved PARP-1 expression was also increased by neratinib treatment in TamR cells. Therefore, we suggest that neratinib may be a potential therapeutic drug for treating TamR breast cancer.

  10. BIM Gene Polymorphism Lowers the Efficacy of EGFR-TKIs in Advanced Nonsmall Cell Lung Cancer With Sensitive EGFR Mutations: A Systematic Review and Meta-Analysis.

    PubMed

    Huang, Wu Feng; Liu, Ai Hua; Zhao, Hai Jin; Dong, Hang Ming; Liu, Lai Yu; Cai, Shao Xi

    2015-08-01

    The strong association between bcl-2-like 11 (BIM) triggered apoptosis and the presence of epidermal growth factor receptor (EGFR) mutations has been proven in nonsmall cell lung cancer (NSCLC). However, the relationship between EGFR-tyrosine kinase inhibitor's (TKI's) efficacy and BIM polymorphism in NSCLC EGFR is still unclear.Electronic databases were searched for eligible literatures. Data on objective response rates (ORRs), disease control rates (DCRs), and progression-free survival (PFS) stratified by BIM polymorphism status were extracted and synthesized based on random-effect model. Subgroup and sensitivity analyses were conducted.A total of 6 studies that involved a total of 773 EGFR mutant advanced NSCLC patients after EGFR-TKI treatment were included. In overall, non-BIM polymorphism patients were associated with significant prolonged PFS (hazard ratio 0.63, 0.47-0.83, P = 0.001) compared to patients with BIM polymorphism. However, only marginal improvements without statistical significance in ORR (odds ratio [OR] 1.71, 0.91-3.24, P = 0.097) and DCR (OR 1.56, 0.85-2.89, P = 0.153) were observed. Subgroup analyses showed that the benefits of PFS in non-BIM polymorphism group were predominantly presented in pooled results of studies involving chemotherapy-naive and the others, and retrospective studies. Additionally, we failed to observe any significant benefit from patients without BIM polymorphism in every subgroup for ORR and DCR.For advanced NSCLC EGFR mutant patients, non-BIM polymorphism ones are associated with longer PFS than those with BIM polymorphism after EGFR-TKIs treatment. BIM polymorphism status should be considered an essential factor in studies regarding EGFR-targeted agents toward EGFR mutant patients.

  11. In vivo imaging of the dynamics of different variants of EGFR in glioblastomas.

    PubMed

    Shah, Khalid

    2011-01-01

    A number of altered pathways in cancer cells depend on growth factor receptors. The amplification/alteration of the epidermal growth factor receptor (EGFR) has been shown to play a significant role in enhancing tumor burden in a number of tumors, including malignant glioblastomas (GBM). To dissect the role of EGFR expression in tumor progression in mouse models of cancer and ultimately evaluate targeted therapies, it is necessary to visualize the dynamics of EGFR in real time in vivo. Non-invasive imaging based on quantitative and qualitative changes in light emission by fluorescent and bioluminescent markers offers a huge potential to facilitate drug development. Multiple approaches could be used to follow a molecular target or pathway with the fusion of a bioluminescent-fluorescent marker. This unit describes a protocol for simultaneously imaging EGFR activity and progression of GBM in a mouse model. Human glioma cells transduced with lentiviral vectors bearing different combinations of fluorescent and bioluminescent proteins either fused to EGFR or expressed alone can be grown as monolayers and maintained over several passages. The unit begins with a method for transducing glioma cells with lentiviral vectors for stable expression of these fluorescent and bioluminescent markers in vitro, followed by transplantation of engineered glioma cells in mice, and, finally, sequential bioluminescent imaging of EGFR expression and GBM progression in mice. The protocol details characterization of engineered glioma cells in culture, surgical preparation, craniotomy, cell implantation, animal recovery, and imaging procedures to study kinetics of EGFR expression and GBM progression.

  12. EGFR expression in circulating tumor cells from high-grade metastatic soft tissue sarcomas.

    PubMed

    Braun, Alexcia Camila; de Mello, Celso Abdon Lopes; Corassa, Marcelo; Abdallah, Emne Ali; Urvanegia, Ana Cláudia; Alves, Vanessa Silva; Flores, Bianca C T C P; Díaz, Mônica; Nicolau, Ulisses Ribaldo; Silva, Virgilio Souza E; Calsavara, Vinicius; Paterlini-Brechót, Patrizia; Chinen, Ludmilla Thomé Domingos

    2018-06-03

    Soft tissue Sarcomas (STS) are rare malignances, with high mortality rates. Half of patients develop metastasis. The presence of isolated Circulating Tumor Cells (CTCs) and Circulating Tumor Microemboli (CTM) in the blood may be early markers of tumor invasion. Epidermal Growth Factor (EGF) family receptors can also influence this process. to quantify CTCs and identify CTM as well as the EGF Receptor (EGFR) protein expression in these cells and correlate with clinical outcome in metastatic STS. Approximately 8mL of blood was prospectively collected from patients with different types of high-grade STS, before the beginning of chemotherapy. The samples were processed and filtered by ISET (Rarecells, France) for the isolation and quantification of CTCs and CTMs. EGFR expression was analyzed by immunocytochemistry (ICC) on CTCs/ CTMs. We analyzed 18 patients with median age of 49 years (18-77 y). The positivity for EGFR protein expression in CTCs was observed in 93.75% of the patients. This result shows that targeting EGFR positive CTCs from STS origen can be translated in clinical benefit for some patients. In addition, if target therapy is chosen, the EGFR expression in CTCs can be used in follow-up to measure treatment effectiveness. This is the first study to demonstrate the expression of EGFR protein in CTCs from sarcoma patients. It may open an area for future investigations. The next step is to characterize CTCs in a larger cohort of patients to better understand the role of EGFR in sustaining tumor metastasis in sarcomas.

  13. EGFR-TKIs plus chemotherapy demonstrated superior efficacy than EGFR-TKIs alone as first-line setting in advanced NSCLC patients with EGFR mutation and BIM deletion polymorphism.

    PubMed

    Liu, Sangtian; He, Yayi; Jiang, Tao; Ren, Shengxiang; Zhou, Fei; Zhao, Chao; Li, Xuefei; Zhang, Jie; Su, Chunxia; Chen, Xiaoxia; Cai, Weijing; Gao, Guanghui; Li, Wei; Wu, Fengying; Li, Jiayu; Zhao, Jing; Hu, Qiong; Zhao, Mingchuan; Zhou, Caicun; Hirsch, Fred R

    2018-06-01

    Non-small-cell lung cancer (NSCLC) patients with both epidermal growth factor receptor (EGFR) positive mutation and B-cell chronic lymphocytic leukemia/lymphoma-like 11 (BIM) deletion polymorphism had a poor clinical response to EGFR-tyrosine kinase inhibitors (TKIs). The current study aimed to investigate the clinical efficacy and tolerability of EGFR-TKIs plus chemotherapy versus EGFR-TKIs alone as first-line treatment in advanced NSCLC patients with EGFR mutations and BIM deletion polymorphism. A retrospective, non-randomized analysis was conducted. BIM deletion polymorphism was detected using polymerase chain reaction (PCR) analysis and direct sequencing of DNA from peripheral blood cells. Clinical characteristics, overall survival (OS), progress-free-survival (PFS), objective response rate (ORR) and treatment-related adverse events were compared between EGFR-TKIs alone versus EGFR-TKIs plus chemotherapy group. 65 patients were enrolled. 36 of them received EGFR-TKIs and 29 received EGFR-TKIs plus chemotherapy. EGFR-TKIs plus chemotherapy had significantly higher ORR than TKIs alone (65.5% vs. 38.9%, P = 0.046). Median PFS was significantly longer in EGFR-TKIs plus chemotherapy group than in TKIs group (7.2 vs 4.7 m; P = 0.008). Median OS was numerically longer in EGFR-TKIs plus chemotherapy group than in TKIs alone (18.5 vs 14.2 m; P = 0.107). EGFR-TKIs plus chemotherapy was associated with more grade 3 or 4 hematological toxic effects than EGFR-TKIs alone. EGFR-TKIs plus chemotherapy conferred a significantly higher ORR, prolonged PFS and numerically longer OS in advanced NSCLC patients with EGFR mutation and BIM deletion polymorphism. Further prospective studies are needed to validate these findings. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Simultaneous Inhibition of EGFR and PI3K Enhances Radiosensitivity in Human Breast Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Ping; Zhang Qing; Torossian, Artour

    2012-07-01

    Purpose: Mutations in the epidermal growth factor receptor (EGFR)/phosphoinositide 3-kinase (PI3K)/Akt signaling transduction pathway are common in cancer. This pathway is imperative to the radiosensitivity of cancer cells. We aimed to investigate the radiosensitizing effects of the simultaneous inhibition of EGFR and PI3K in breast cancer cells. Methods and Materials: MCF-7 cell lines with low expression of EGFR and wild-type PTEN and MDA-MB-468 cell lines with high expression of EGFR and mutant PTEN were used. The radiosensitizing effects by the inhibition of EGFR with AG1478 and/or PI3K with Ly294002 were determined by colony formation assay, Western blot was used tomore » investigate the effects on downstream signaling. Flow cytometry was used for apoptosis and cell cycle analysis. Mice-bearing xenografts of MDA-MB-468 breast cancer cells were also used to observe the radiosensitizing effect. Results: Simultaneous inhibition of EGFR and PI3K greatly enhanced radiosensitizing effect in MDA-MB-468 in terms of apoptosis and mitotic death, either inhibition of EGFR or PI3K alone could enhance radiosensitivity with a dose-modifying factor (DMF{sub SF2}) of 1.311 and 1.437, radiosensitizing effect was further enhanced by simultaneous inhibition of EGFR and PI3K with a DMF{sub SF2} at 2.698. DNA flow cytometric analysis indicated that dual inhibition combined with irradiation significantly induced G0/G1 phase arrest in MDA-MB-468 cells. The expression of phosphor-Akt and phosphor-Erk1/2 (induced by irradiation and PI3K inhibitor) were fully attenuated by simultaneous treatment with both inhibitors in combination with irradiation. In addition, dual inhibition combined with irradiation induced dramatic tumor growth delay in MDA-MB-468 xenografts. Conclusions: Our study indicated that simultaneous inhibition of EGFR and PI3K could further sensitize the cancer cells to irradiation compared to the single inhibitor with irradiation in vitro and in vivo. The approach may

  15. Efficient inhibition of EGFR signaling and of tumour growth by antagonistic anti-EFGR Nanobodies.

    PubMed

    Roovers, Rob C; Laeremans, Toon; Huang, Lieven; De Taeye, Severine; Verkleij, Arie J; Revets, Hilde; de Haard, Hans J; van Bergen en Henegouwen, Paul M P

    2007-03-01

    The development of a number of different solid tumours is associated with over-expression of ErbB1, or the epidermal growth factor receptor (EGFR), and this over-expression is often correlated with poor prognosis of patients. Therefore, this receptor tyrosine kinase is considered to be an attractive target for antibody-based therapy. Indeed, antibodies to the EGFR have already proven their value for the treatment of several solid tumours, especially in combination with chemotherapeutic treatment regimens. Variable domains of camelid heavy chain-only antibodies (called Nanobodies) have superior properties compared with classical antibodies in that they are small, very stable, easy to produce in large quantities and easy to re-format into multi-valent or multi-specific proteins. Furthermore, they can specifically be selected for a desired function by phage antibody display. In this report, we describe the successful selection and the characterisation of antagonistic anti-EGFR Nanobodies. By using a functional selection strategy, Nanobodies that specifically competed for EGF binding to the EGFR were isolated from "immune" phage Nanobody repertoires. The selected antibody fragments were found to efficiently inhibit EGF binding to the EGFR without acting as receptor agonists themselves. In addition, they blocked EGF-mediated signalling and EGF-induced cell proliferation. In an in vivo murine xenograft model, the Nanobodies were effective in delaying the outgrowth of A431-derived solid tumours. This is the first report describing the successful use of untagged Nanobodies for the in vivo treatment of solid tumours. The results show that functional phage antibody selection, coupled to the rational design of Nanobodies, permits the rapid development of novel anti-cancer antibody-based therapeutics.

  16. Anti-cancer synergy of dichloroacetate and EGFR tyrosine kinase inhibitors in NSCLC cell lines.

    PubMed

    Yang, Zheng; Tam, Kin Y

    2016-10-15

    Glycolysis has been observed as a predominant process for most cancer cells to utilize glucose, which was referred to as "Warburg Effect". Targeting critical enzymes, such as pyruvate dehydrogenase kinase (PDK) that inversely regulating the process of glycolysis could be a promising approach to work alone or in combination with other treatments for cancer therapy. EGFR inhibitors for Non-Small-Cell Lung Cancer (NSCLC) treatment have been applied for decades in clinical practices with great success, but also their clinical benefits were somewhat hampered by the rising acquired-resistance. Combination drug therapy is an effective strategy to cope with the challenge. In this study, we utilized Dichloroacetate (DCA), a widely regarded PDK inhibitor, together with Erlotinib and Gefitinib, two well-known EGFR inhibitors, and demonstrated that the applications of DCA in combination with either Erlotinib or Gefitinib significantly attenuated the viability of EGFR mutant NSCLC cells (NCI-H1975 and NCI-H1650) in a synergistic manner. This synergistic outcome appears to be a combination effect in promoting apoptosis, rather than co-suppression of either EGFR or PDK signaling pathways. Moreover, we have shown that the combination treatment did not exhibit synergistic effect in other NSCLC cell lines without EGFR mutations (A549 or NCI-H460). Together, these observations suggested that combined targeting of EGFR and PDK in NSCLC cells exerted synergistic effects in an EGFR mutation-dependent fashion. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. CUL4A overexpression enhances lung tumor growth and sensitizes lung cancer cells to Erlotinib via transcriptional regulation of EGFR

    DOE PAGES

    Wang, Yunshan; Zhang, Pengju; Liu, Ziming; ...

    2014-11-21

    CUL4A has been proposed as oncogene in several types of human cancer, but its clinical significance and functional role in human non-small cell lung cancer (NSCLC) remain unclear. Expression level of CUL4A was examined by RT-PCR and Western blot. Forced expression of CUL4A was mediated by retroviruses, and CUL4A silencing by shRNAs expressing lentiviruses. Growth capacity of lung cancer cells was measured by MTT in vitro and tumorigenesis in vivo, respectively. We found that CUL4A was highly expressed in human lung cancer tissues and lung cancer cell lines, and this elevated expression positively correlated with disease progression and prognosis. Overexpressionmore » of CUL4A in human lung cancer cell lines increased cell proliferation, inhibited apoptosis, and subsequently conferred resistance to chemotherapy. On other hand, silencing CUL4A expression in NSCLC cells reduced proliferation, promoted apoptosis and resulted in tumor growth inhibition in cancer xenograft model. Mechanistically, we revealed CUL4A regulated EGFR transcriptional expression and activation, and subsequently activated AKT. Targeted inhibition of EGFR activity blocked these CUL4A induced oncogenic activities. In conclusion, our results highlight the significance of CUL4A in NSCLC and suggest that CUL4A could be a promising therapy target and a potential biomarker for prognosis and EGFR target therapy in NSCLC patients.« less

  18. Tuning sensitivity of CAR to EGFR density limits recognition of normal tissue while maintaining potent anti-tumor activity

    PubMed Central

    Caruso, Hillary G.; Hurton, Lenka V.; Najjar, Amer; Rushworth, David; Ang, Sonny; Olivares, Simon; Mi, Tiejuan; Switzer, Kirsten; Singh, Harjeet; Huls, Helen; Lee, Dean A.; Heimberger, Amy B.; Champlin, Richard E.; Cooper, Laurence J. N.

    2015-01-01

    Many tumors over express tumor-associated antigens relative to normal tissue, such as epidermal growth factor receptor (EGFR). This limits targeting by human T cells modified to express chimeric antigen receptors (CARs) due to potential for deleterious recognition of normal cells. We sought to generate CAR+ T cells capable of distinguishing malignant from normal cells based on the disparate density of EGFR expression by generating two CARs from monoclonal antibodies which differ in affinity. T cells with low affinity Nimo-CAR selectively targeted cells over-expressing EGFR, but exhibited diminished effector function as the density of EGFR decreased. In contrast, the activation of T cells bearing high affinity Cetux-CAR was not impacted by the density of EGFR. In summary, we describe the generation of CARs able to tune T-cell activity to the level of EGFR expression in which a CAR with reduced affinity enabled T cells to distinguish malignant from non-malignant cells. PMID:26330164

  19. ZRBA1, a Mixed EGFR/DNA Targeting Molecule, Potentiates Radiation Response Through Delayed DNA Damage Repair Process in a Triple Negative Breast Cancer Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heravi, Mitra; Department of Radiation Oncology, McGill University, Montreal; Segal Cancer Center, Jewish General Hospital, Montreal

    2015-06-01

    Purpose: ZRBA1 is a combi-molecule designed to induce DNA alkylating lesions and to block epidermal growth factor receptor (EGFR) TK domain. Inasmuch as ZRBA1 downregulates the EGFR TK-mediated antisurvival signaling and induces DNA damage, we postulated that it might be a radiosensitizer. The aim of this study was to further investigate the potentiating effect of ZRBA1 in combination with radiation and to elucidate the possible mechanisms of interaction between these 2 treatment modalities. Methods and Materials: The triple negative human breast MDA-MB-468 cancer cell line and mouse mammary cancer 4T1 cell line were used in this study. Clonogenic assay, Westernmore » blot analysis, and DNA damage analysis were performed at multiple time points after treatment. To confirm our in vitro findings, in vivo tumor growth delay assay was performed. Results: Our results show that a combination of ZRBA1 and radiation increases the radiation sensitivity of both cell lines significantly with a dose enhancement factor of 1.56, induces significant numbers of DNA strand breaks, prolongs higher DNA damage up to 24 hours after treatment, and significantly increases tumor growth delay in a syngeneic mouse model. Conclusions: Our data suggest that the higher efficacy of this combination could be partially due to increased DNA damage and delayed DNA repair process and to the inhibition of EGFR. The encouraging results of this combination demonstrated a significant improvement in treatment efficiency and therefore could be applicable in early clinical trial settings.« less

  20. Necitumumab, a fully human IgG1 mAb directed against the EGFR for the potential treatment of cancer.

    PubMed

    Dienstmann, Rodrigo; Tabernero, Josep

    2010-12-01

    Necitumumab (IMC-11F8), under development by ImClone Systems in collaboration with Bristol-Myers Squibb, is a fully human IgG1 mAb targeting the epidermal growth factor receptor (EGFR), for the potential intravenous treatment of cancer, in particular NSCLC. In vitro studies demonstrate that necitumumab inhibits downstream targets in the EGFR pathway (eg, MAPK), which are important for cellular proliferation, differentiation, invasion and metastasis. Furthermore, because necitumumab is an IgG1 construct, it has the potential to induce antibody-dependent cell-mediated cytotoxicity against tumor cells. Preclinical studies indicated that the antitumor activity of necitumumab is either comparable with or superior to that of ImClone's chimeric anti-EGFR mAb cetuximab. In a phase I clinical trial in patients with advanced solid malignancies, necitumumab displayed nonlinear pharmacokinetic behavior. The toxicity profile of necitumumab is acceptable, with skin toxicity being the most frequently reported adverse event in the phase I and II clinical trials conducted to date. Preliminary data from a phase II clinical trial of necitumumab in combination with chemotherapy for the first-line treatment of advanced colon cancer are promising. Success in the ongoing phase III clinical trials in patients with advanced NSCLC would lead to necitumumab becoming a valuable addition to future therapeutic strategies in oncology.

  1. Wounding-induced synthesis of hyaluronic acid in organotypic epidermal cultures requires the release of heparin-binding egf and activation of the EGFR.

    PubMed

    Monslow, James; Sato, Nobuyuki; Mack, Judith A; Maytin, Edward V

    2009-08-01

    Hyaluronic acid (HA), a glycosaminoglycan located between keratinocytes in the epidermis, accumulates dramatically following skin wounding. To study inductive mechanisms, a rat keratinocyte organotypic culture model that faithfully mimics HA metabolism was used. Organotypic cultures were needle-punctured 100 times, incubated for up to 24 hours, and HA analyzed by histochemical and biochemical methods. Within 15 minutes post-injury, HA levels had elevated two-fold, increasing to four-fold by 24 hours. HA elevations far from the site of injury suggested the possible involvement of a soluble HA-inductive factor. Media transfer experiments (from wounded cultures to unwounded cultures) confirmed the existence of a soluble factor. From earlier evidence, we hypothesized that an EGF-like growth factor might be responsible. This was confirmed as follows: (1) EGFR kinase inhibitor (AG1478) completely prevented wounding-induced HA accumulation. (2) Rapid tyrosine-phosphorylation of EGFR correlated well with the onset of increased HA synthesis. (3) A neutralizing antibody that recognizes heparin binding EGF-like growth factor (HB-EGF) blocked wounding-induced HA synthesis by > or =50%. (4) Western analyses showed that release of activated HB-EGF (but neither amphiregulin nor EGF) occured after wounding. In summary, rapid HA accumulation after epidermal wounding occurs through a mechanism requiring cleavage of HB-EGF and activation of EGFR signaling.

  2. Bisphosphonates enhance EGFR-TKIs efficacy in advanced NSCLC patients with EGFR activating mutation: A retrospective study

    PubMed Central

    Cai, Xiao-Hong; Yao, Wen-Xiu; Xu, Yong; Liu, Xiao-Ke; Zhu, Wen-Jiang; Wang, Yan; Zhou, Jin; Lu, You; Wang, Yong-Sheng

    2016-01-01

    Background Bisphosphonates have exhibited anti-tumor activity in non-small cell lung cancer (NSCLC). We aimed to evaluate whether the combination of bisphosphonates with tyrosine kinase inhibitors of EGFR (EGFR-TKIs) could obtain a synergistic effect on advanced NSCLC patients with EGFR mutations. Methods Between January 2008 and October 2013, 114 advanced EGFR mutations NSCLC patients who received EGFR-TKIs as first-line therapy were recruited from two cancer centers. Patients were separated into EGFR-TKIs alone or EGFR-TKIs plus bisphosphonates (combination) group. Median progression free survival (mPFS), median overall survival (mOS) distributions and survival curves were analyzed. Results Among the 114 patients, 62 had bone metastases (19 patients treated with EGFR-TKIs, 43 patients treated with EGFR-TKIs + bisphosphonates). Median PFS and OS were significantly improved in combination group compared with EGFR-TKIs group (mPFS: 15.0 vs 7.3 months, P = 0.0017; mOS: 25.2 vs 10.4 months, P = 0.0015) in patients with bone metastases. Among the 71 patients (19 patients with bone metastases) treated with EGFR-TKIs alone, patients with bone metastases had poor survival prognosis (mPFS:7.3 vs 12.1 months, P = 0.0434; mOS:10.4 vs 22.0 months, P = 0.0036). The survival of patients with bone metastases who received EGFR-TKIs plus bisphosphonates therapy was non-inferior to patients without bone metastases treated with EGFR-TKIs alone (mPFS: 15.0 vs 12.1 months, p = 0.1871; mOS: 25.2 vs 22.0 months, p = 0.9798). Conclusions Concomitant use of bisphosphonates and EGFR-TKIs improves therapeutic efficacy and brings survival benefits to NSCLC patients with EGFR mutation and bone metastases. PMID:26624882

  3. EGFR gene copy number alterations are not a useful screening tool for predicting EGFR mutation status in lung adenocarcinoma.

    PubMed

    Russell, Prudence A; Yu, Yong; Do, Hongdo; Clay, Timothy D; Moore, Melissa M; Wright, Gavin M; Conron, Matthew; Wainer, Zoe; Dobrovic, Alexander; McLachlan, Sue-Anne

    2014-01-01

    We investigated if gene copy number (GCN) alterations of the epidermal growth factor receptor (EGFR), as detected by silver enhanced in situ hybridisation (SISH), could be used to select patients for EGFR mutation testing. Resected lung adenocarcinoma specimens with adequate tumour were identified. EGFR SISH was performed using the Ventana Benchmark Ultra platform. EGFR GCN was classified according to the Colorado Classification System. EGFR mutations were scanned by high resolution melting and confirmed by Sanger sequencing. Thirty-four of 96 tumours were EGFR SISH positive (35%), and 31 of 96 tumours harboured one or more EGFR mutations (32%). Of 31 EGFR-mutant tumours, 18 were EGFR SISH positive (58%). There was a statistically significant relationship between the presence of an EGFR mutation and EGFR GCN (p = 0.003). Thirteen of 31 EGFR-mutant tumours were EGFR SISH negative (42%), and 16 of 65 EGFR-wild type tumours were EGFR SISH positive (24%). The sensitivity, specificity, positive predictive value and negative predictive value were 58%, 75%, 52.9% and 79%, respectively. Despite a significant relationship between EGFR GCN alterations and EGFR mutations, our results indicate that EGFR GCN as detected by SISH is not a suitable way to select patients for EGFR mutation testing.

  4. EGFR alterations and EML4-ALK rearrangement in primary adenocarcinoma of the urinary bladder.

    PubMed

    Alexander, Riley E; Montironi, Rodolfo; Lopez-Beltran, Antonio; Williamson, Sean R; Wang, Mingsheng; Post, Kristin M; Sen, Joyashree D; Arnold, Ashley K; Zhang, Shaobo; Wang, Xiaoyan; Koch, Michael O; Hahn, Noah M; Masterson, Timothy A; MacLennan, Gregory T; Davidson, Darrell D; Compérat, Eva; Cheng, Liang

    2014-01-01

    The identification of mutations in epidermal growth factor receptor (EGFR) and translocations involving anaplastic lymphoma kinase (ALK) in lung adenocarcinoma has drastically changed understanding of the disease and led to the development of targeted therapies. Adenocarcinoma of the urinary bladder is rare and poorly understood at the molecular level. We undertook this study to determine whether EGFR mutations, increases in EGFR copy number, or ALK translocations are present in these tumors. Twenty-eight cases of primary bladder adenocarcinoma were analyzed. For EGFR mutational analysis, PCR-amplified products were analyzed on the Q24 Pyrosequencer with Qiagen EGFR Pyro Kits. All cases were analyzed via fluorescence in situ hybridization (FISH) using Vysis ALK Break Apart FISH Probes for detection of ALK chromosomal translocation and Vysis Dual Color Probes to assess for increased gene copy number of EGFR. None of the 28 cases examined showed mutational events in EGFR or ALK rearrangements. EGFR polysomy was seen in 10 out of 28 (36%) cases. No correlation with EGFR polysomy was seen in the tumors with respect to age, histologic subtypes, pathologic stage, or lymph node metastasis. In summary, EGFR mutations and ALK rearrangements do not appear to be involved in the development of primary adenocarcinoma of the urinary bladder. A subgroup of cases (36%), however, demonstrated increased gene copy number of EGFR by FISH.

  5. Overcoming resistance to molecularly targeted anticancer therapies: Rational drug combinations based on EGFR and MAPK inhibition for solid tumours and haematologic malignancies.

    PubMed

    Tortora, Giampaolo; Bianco, Roberto; Daniele, Gennaro; Ciardiello, Fortunato; McCubrey, James A; Ricciardi, Maria Rosaria; Ciuffreda, Ludovica; Cognetti, Francesco; Tafuri, Agostino; Milella, Michele

    2007-06-01

    Accumulating evidence suggests that cancer can be envisioned as a "signaling disease", in which alterations in the cellular genome affect the expression and/or function of oncogenes and tumour suppressor genes. This ultimately disrupts the physiologic transmission of biochemical signals that normally regulate cell growth, differentiation and programmed cell death (apoptosis). From a clinical standpoint, signal transduction inhibition as a therapeutic strategy for human malignancies has recently achieved remarkable success. However, as additional drugs move forward into the clinical arena, intrinsic and acquired resistance to "targeted" agents becomes an issue for their clinical utility. One way to overcome resistance to targeted agents is to identify genetic and epigenetic aberrations underlying sensitivity/resistance, thus enabling the selection of patients that will most likely benefit from a specific therapy. Since resistance often ensues as a result of the concomitant activation of multiple, often overlapping, signaling pathways, another possibility is to interfere with multiple, cross-talking pathways involved in growth and survival control in a rational, mechanism-based, fashion. These concepts may be usefully applied, among others, to agents that target two major signal transduction pathways: the one initiated by epidermal growth factor receptor (EGFR) signaling and the one converging on mitogen-activated protein kinase (MAPK) activation. Here, we review the molecular mechanisms of sensitivity/resistance to EGFR inhibitors, as well as the rationale for combining them with other targeted agents, in an attempt to overcome resistance. In the second part of the paper, we review MAPK-targeted agents, focusing on their therapeutic potential in haematologic malignancies, and examine the prospects for combinations of MAPK inhibitors with cytotoxic agents or other signal transduction-targeted agents to obtain synergistic anti-tumour effects.

  6. Near infrared photoimmunotherapy targeting bladder cancer with a canine anti-epidermal growth factor receptor (EGFR) antibody.

    PubMed

    Nagaya, Tadanobu; Okuyama, Shuhei; Ogata, Fusa; Maruoka, Yasuhiro; Knapp, Deborah W; Karagiannis, Sophia N; Fazekas-Singer, Judit; Choyke, Peter L; LeBlanc, Amy K; Jensen-Jarolim, Erika; Kobayashi, Hisataka

    2018-04-10

    Anti-epidermal growth factor receptor (EGFR) antibody therapy is used in EGFR expressing cancers including lung, colon, head and neck, and bladder cancers, however results have been modest. Near infrared photoimmunotherapy (NIR-PIT) is a highly selective tumor treatment that employs an antibody-photo-absorber conjugate which is activated by NIR light. NIR-PIT is in clinical trials in patients with recurrent head and neck cancers using cetuximab-IR700 as the conjugate. However, its use has otherwise been restricted to mouse models. This is an effort to explore larger animal models with NIR-PIT. We describe the use of a recombinant canine anti-EGFR monoclonal antibody (mAb), can225IgG, conjugated to the photo-absorber, IR700DX, in three EGFR expressing canine transitional cell carcinoma (TCC) cell lines as a prelude to possible canine clinical studies. Can225-IR700 conjugate showed specific binding and cell-specific killing after NIR-PIT on EGFR expressing cells in vitro . In the in vivo study, can225-IR700 conjugate demonstrated accumulation of the fluorescent conjugate with high tumor-to-background ratio. Tumor-bearing mice were separated into 4 groups: (1) no treatment; (2) 100 µg of can225-IR700 i.v. only; (3) NIR light exposure only; (4) 100 µg of can225-IR700 i.v., NIR light exposure. Tumor growth was significantly inhibited by NIR-PIT treatment compared with the other groups ( p < 0.001), and significantly prolonged survival was achieved ( p < 0.001 vs. other groups) in the treatment groups. In conclusion, NIR-PIT with can225-IR700 is a promising treatment for canine EGFR-expressing cancers, including invasive transitional cell carcinoma in pet dogs, that could provide a pathway to translation to humans.

  7. Near infrared photoimmunotherapy targeting bladder cancer with a canine anti-epidermal growth factor receptor (EGFR) antibody

    PubMed Central

    Nagaya, Tadanobu; Okuyama, Shuhei; Ogata, Fusa; Maruoka, Yasuhiro; Knapp, Deborah W.; Karagiannis, Sophia N.; Fazekas-Singer, Judit; Choyke, Peter L.; LeBlanc, Amy K.; Jensen-Jarolim, Erika; Kobayashi, Hisataka

    2018-01-01

    Anti-epidermal growth factor receptor (EGFR) antibody therapy is used in EGFR expressing cancers including lung, colon, head and neck, and bladder cancers, however results have been modest. Near infrared photoimmunotherapy (NIR-PIT) is a highly selective tumor treatment that employs an antibody-photo-absorber conjugate which is activated by NIR light. NIR-PIT is in clinical trials in patients with recurrent head and neck cancers using cetuximab-IR700 as the conjugate. However, its use has otherwise been restricted to mouse models. This is an effort to explore larger animal models with NIR-PIT. We describe the use of a recombinant canine anti-EGFR monoclonal antibody (mAb), can225IgG, conjugated to the photo-absorber, IR700DX, in three EGFR expressing canine transitional cell carcinoma (TCC) cell lines as a prelude to possible canine clinical studies. Can225-IR700 conjugate showed specific binding and cell-specific killing after NIR-PIT on EGFR expressing cells in vitro. In the in vivo study, can225-IR700 conjugate demonstrated accumulation of the fluorescent conjugate with high tumor-to-background ratio. Tumor-bearing mice were separated into 4 groups: (1) no treatment; (2) 100 µg of can225-IR700 i.v. only; (3) NIR light exposure only; (4) 100 µg of can225-IR700 i.v., NIR light exposure. Tumor growth was significantly inhibited by NIR-PIT treatment compared with the other groups (p < 0.001), and significantly prolonged survival was achieved (p < 0.001 vs. other groups) in the treatment groups. In conclusion, NIR-PIT with can225-IR700 is a promising treatment for canine EGFR-expressing cancers, including invasive transitional cell carcinoma in pet dogs, that could provide a pathway to translation to humans. PMID:29721181

  8. Comparison of cross-platform technologies for EGFR T790M testing in patients with non-small cell lung cancer

    PubMed Central

    Li, Xuefei; Zhou, Caicun

    2017-01-01

    Somatic mutations in the gene encoding epidermal growth factor receptor (EGFR) play an important role in determining targeted treatment modalities in non-small cell lung cancer (NSCLC). The EGFR T790M mutation emerges in approximately 50% of cases who acquire resistance to tyrosine kinase inhibitors. Detecting EGFR T790M mutation in tumor tissue is challenging due to heterogeneity of the tumor, low abundance of the mutation and difficulty for re-biopsy in patients with advanced disease. Alternatively, circulating tumor DNA (ctDNA) has been proposed as a non-invasive method for mutational analysis. The presence of EGFR mutations in ctDNA predicts response to the EGFR TKIs in the first-line setting. Molecular testing is now considered a standard care for NSCLC. The advent of standard commercially available kits and targeted mutational analysis has revolutionized the accuracy of mutation detection platforms for detection of EGFR mutations. Our review provides an overview of various commonly used platforms for detecting EGFR T790M mutation in tumor tissue and plasma. PMID:29246024

  9. Osimertinib for EGFR T790M mutation-positive non-small cell lung cancer.

    PubMed

    Soejima, Kenzo; Yasuda, Hiroyuki; Hirano, Toshiyuki

    2017-01-01

    Significant advances have been made since the development of epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) targeting EGFR mutations in non-small-cell lung cancer (NSCLC), however, lung cancer cells eventually acquire resistance to those agents. Osimertinib (AZD9291) has been developed as 3 rd generation EGFR-TKI with activities against sensitizing mutations and T790 M resistance mutation, which account for about 50% of the mechanisms of acquired resistance to 1 st or 2 nd generation EGFR-TKIs. A recent phase I/II clinical trial with osimertinib for advanced NSCLC patients with known sensitizing EGFR mutations and documented disease progression on prior EGFR-TKIs revealed promising effect with acceptable toxicities. Areas covered: This article summarizes current understanding and available preclinical and clinical data on osimertinib and also discusses future directions. The literature search included PubMed and the latest articles from international conferences. Expert commentary: The development of osimertinib has provided new therapeutic options for NSCLC patients harboring T790 M. Compared with other EGFR-TKIs including rociletinib, osimertinib seems to possess an advantage with respect to the effect and safety profile among existing EGFR-TKIs. However, tumor progression still occurs even when treating with osimertinib. A further understanding of the mechanisms of resistance is eagerly anticipated in order to develop next generation EGFR-TKIs.

  10. MicroRNA-1231 exerts a tumor suppressor role through regulating the EGFR/PI3K/AKT axis in glioma.

    PubMed

    Zhang, Jiale; Zhang, Jie; Qiu, Wenjin; Zhang, Jian; Li, Yangyang; Kong, Enjun; Lu, Ailin; Xu, Jia; Lu, Xiaoming

    2018-05-17

    MicroRNAs (miRNAs) have been shown to be involved in the initiation and progression of glioma. However, the underlying molecular mechanisms are still unclear. We performed microarray analysis to evaluate miRNA expression levels in 158 glioma tissue samples, and examined miR-1231 levels in glioma samples and healthy brain tissues using qRT-PCR. In vitro analyses were performed using miR-1231 mimics, inhibitors, and siRNA targeting EGFR. We used flow cytometry, CCK-8 assays, and colony formation assays to examine glioma proliferation and cell cycle analysis. A dual luciferase reporter assay was performed to examine miR-1231 regulation of EGFR, and the effect of upregulated miR-1231 was investigated in a subcutaneous GBM model. We found that miR-1231 expression was decreased in human glioma tissues and negatively correlated with EGFR levels. Moreover, the downregulation of miR-1231 negatively correlated with the clinical stage of human glioma patients. miR-1231 overexpression dramatically downregulated glioma cell proliferation, and suppressed tumor growth in a nude mouse model. Bioinformatics prediction and a luciferase assay confirmed EGFR as a direct target of miR-1231. EGFR overexpression abrogated the suppressive effect of miR-1231 on the PI3K/AKT pathway and G1 arrest. Taken together, these results demonstrated that EGFR is a direct target of miR-1231. Our findings suggest that the miR-1231/EGFR axis may be a helpful future diagnostic target for malignant glioma.

  11. Simultaneous targeting of EGFR, HER2, and HER4 by afatinib overcomes intrinsic and acquired cetuximab resistance in head and neck squamous cell carcinoma cell lines.

    PubMed

    De Pauw, Ines; Lardon, Filip; Van den Bossche, Jolien; Baysal, Hasan; Fransen, Erik; Deschoolmeester, Vanessa; Pauwels, Patrick; Peeters, Marc; Vermorken, Jan Baptist; Wouters, An

    2018-06-01

    The epidermal growth factor receptor (EGFR, HER1) is a therapeutic target in head and neck squamous cell carcinoma (HNSCC). After initial promising results with EGFR-targeted therapies such as cetuximab, therapeutic resistance has become a major clinical problem, and new treatment options are therefore necessary. Moreover, the relationship between HER receptors, anti-EGFR therapies, and the human papillomavirus (HPV) status in HNSCC is not fully understood. In contrast to first-generation EGFR inhibitors, afatinib irreversibly inhibits multiple HER receptors simultaneously. Therefore, treatment with afatinib might result in a more pronounced therapeutic benefit, even in patients experiencing cetuximab resistance. In this study, the cytotoxic effect of afatinib as single agent and in combination with cisplatin was investigated in cetuximab-sensitive, intrinsically cetuximab-resistant, and acquired cetuximab-resistant HNSCC cell lines with different HPV status under normoxia and hypoxia. Furthermore, the influence of cetuximab resistance, HPV, and hypoxia on the expression of HER receptors was investigated. Our results demonstrated that afatinib was able to establish cytotoxicity in cetuximab-sensitive, intrinsically cetuximab-resistant, and acquired cetuximab-resistant HNSCC cell lines, independent of the HPV status. However, cross-resistance between cetuximab and afatinib might be possible. Treatment with afatinib caused a G 0 /G 1 cell cycle arrest as well as induction of apoptotic cell death. Additive to antagonistic interactions between afatinib and cisplatin could be observed. Neither cetuximab resistance nor HPV status significantly influenced the expression of HER receptors in HNSCC cell lines. In contrast, the expression of EGFR, HER2, and HER3 was significantly altered under hypoxia. Oxygen deficiency is a common characteristic of HNSCC tumors, and these hypoxic tumor regions often contain cells that are more resistant to treatment. However, we observed

  12. Resistance to EGFR inhibitors in non-small cell lung cancer: Clinical management and future perspectives.

    PubMed

    Tomasello, Chiara; Baldessari, Cinzia; Napolitano, Martina; Orsi, Giulia; Grizzi, Giulia; Bertolini, Federica; Barbieri, Fausto; Cascinu, Stefano

    2018-03-01

    In the last few years, the development of targeted therapies for non-small cell lung cancer (NSCLC) expressing oncogenic driver mutations (e.g. EGFR) has changed the clinical management and the survival outcomes of this specific minority of patients. Several phase III trials demonstrated the superiority of epidermal growth factor receptor tyrosine kinase inhibitors (EGFR TKIs) over chemotherapy in EGFR-mutant NSCLC patients. However, in the vast majority of cases EGFR TKIs lose their clinical activity within 8-12 months. Many genetic aberrations have been described as possible mechanisms of EGFR TKIs acquired resistance and can be clustered in four main sub-groups: 1. Development of secondary EGFR mutations; 2. Activation of parallel signaling pathways; 3. Histological transformation; 4. Activation of downstream signaling pathways. In this review we will describe the molecular alterations underlying each of these EGFR TKIs resistance mechanisms, focusing on the currently available and future therapeutic strategies to overcome these phenomena. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. The impact of intermittent versus continuous exposure to EGFR tyrosine kinase inhibitor on selection of EGFR T790M-mutant drug-resistant clones in a lung cancer cell line carrying activating EGFR mutation

    PubMed Central

    Lee, Youngjoo; Choi, Yu-Ra; Kim, Kyoung-Yeon; Shin, Dong Hoon

    2016-01-01

    Drug-resistant cell lines are essential tools for investigating the mechanisms of resistance to molecular-targeted anti-cancer drugs. However, little is known about how to establish clinically relevant drug-resistant cell lines. Our study examined the impact of a drug-free period on the establishment of a cell line with clinically relevant resistance to molecular-targeted drugs. We used PC9 cells, a lung cancer cell line carrying EGFR mutation, because this is a validated target for EGFR tyrosine kinase inhibitors (TKI). PC9 cells were intermittently or continuously exposed to increasing concentrations of gefitinib (0.01 μM to 1.0 μM) and the emergence of the most common acquired resistance mutation in EGFR, T790M, was determined. T790M was detected at a 25-fold lower drug concentration in cells continuously exposed to gefitinib (PC9/GRc) than in cells intermittently exposed to gefitinib (PC9/GRi) (0.04 μM vs 1.0 μM, respectively). The mutation frequencies at those drug concentrations were 19.8% and 8.0% in PC9/GRc and PC9/GRi cells, respectively. After drug-free culture for 8 weeks, resistance to gefitinib decreased in the PC9/GRi cells but not in the PC9/GRc cells. In the PC9/GRc cells, the frequency of the T790M mutation was consistently about 20% from 0.04 μM to 1.0 μM of gefitinib. In the PC9/GRc cells, the T790M mutation was detected in all single-cell clones, at frequencies ranging from 7.0% to 37.0%, with a median of 19.5% (95% confidence interval, 17.3%–20.9%). In conclusion, compared with intermittent drug exposure, continuous exposure might select better minor drug-resistant clones when creating cell lines resistant to molecular-targeted drugs. PMID:27270313

  14. The impact of intermittent versus continuous exposure to EGFR tyrosine kinase inhibitor on selection of EGFR T790M-mutant drug-resistant clones in a lung cancer cell line carrying activating EGFR mutation.

    PubMed

    Lee, Youngjoo; Choi, Yu-Ra; Kim, Kyoung-Yeon; Shin, Dong Hoon

    2016-07-12

    Drug-resistant cell lines are essential tools for investigating the mechanisms of resistance to molecular-targeted anti-cancer drugs. However, little is known about how to establish clinically relevant drug-resistant cell lines. Our study examined the impact of a drug-free period on the establishment of a cell line with clinically relevant resistance to molecular-targeted drugs. We used PC9 cells, a lung cancer cell line carrying EGFR mutation, because this is a validated target for EGFR tyrosine kinase inhibitors (TKI). PC9 cells were intermittently or continuously exposed to increasing concentrations of gefitinib (0.01 μM to 1.0 μM) and the emergence of the most common acquired resistance mutation in EGFR, T790M, was determined. T790M was detected at a 25-fold lower drug concentration in cells continuously exposed to gefitinib (PC9/GRc) than in cells intermittently exposed to gefitinib (PC9/GRi) (0.04 μM vs 1.0 μM, respectively). The mutation frequencies at those drug concentrations were 19.8% and 8.0% in PC9/GRc and PC9/GRi cells, respectively. After drug-free culture for 8 weeks, resistance to gefitinib decreased in the PC9/GRi cells but not in the PC9/GRc cells. In the PC9/GRc cells, the frequency of the T790M mutation was consistently about 20% from 0.04 μM to 1.0 μM of gefitinib. In the PC9/GRc cells, the T790M mutation was detected in all single-cell clones, at frequencies ranging from 7.0% to 37.0%, with a median of 19.5% (95% confidence interval, 17.3%-20.9%). In conclusion, compared with intermittent drug exposure, continuous exposure might select better minor drug-resistant clones when creating cell lines resistant to molecular-targeted drugs.

  15. WASH and Tsg101/ALIX-dependent diversion of stress-internalized EGFR from the canonical endocytic pathway

    PubMed Central

    Tomas, Alejandra; Vaughan, Simon O.; Burgoyne, Thomas; Sorkin, Alexander; Hartley, John A.; Hochhauser, Daniel; Futter, Clare E.

    2015-01-01

    Stress exposure triggers ligand-independent EGF receptor (EGFR) endocytosis, but its post-endocytic fate and role in regulating signalling are unclear. We show that the p38 MAP kinase-dependent, EGFR tyrosine kinase (TK)-independent EGFR internalization induced by ultraviolet light C (UVC) or the cancer therapeutic cisplatin, is followed by diversion from the canonical endocytic pathway. Instead of lysosomal degradation or plasma membrane recycling, EGFR accumulates in a subset of LBPA-rich perinuclear multivesicular bodies (MVBs) distinct from those carrying EGF-stimulated EGFR. Stress-internalized EGFR co-segregates with exogenously expressed pre-melanosomal markers OA1 and fibrillar PMEL, following early endosomal sorting by the actin polymerization-promoting WASH complex. Stress-internalized EGFR is retained intracellularly by continued p38 activity in a mechanism involving ubiquitin-independent, ESCRT/ALIX-dependent incorporation onto intraluminal vesicles (ILVs) of MVBs. In contrast to the internalization-independent EGF-stimulated activation, UVC/cisplatin-triggered EGFR activation depends on EGFR internalization and intracellular retention. EGFR signalling from this MVB subpopulation delays apoptosis and might contribute to chemoresistance. PMID:26066081

  16. Heat-shock protein 27 (HSP27, HSPB1) is up-regulated by MET kinase inhibitors and confers resistance to MET-targeted therapy.

    PubMed

    Musiani, Daniele; Konda, John David; Pavan, Simona; Torchiaro, Erica; Sassi, Francesco; Noghero, Alessio; Erriquez, Jessica; Perera, Timothy; Olivero, Martina; Di Renzo, Maria Flavia

    2014-09-01

    The tyrosine kinase encoded by the MET oncogene is activated by gene mutation or amplification in tumors, which in most instances maintain addiction, i.e., dependency, to MET activation. This makes MET an attractive candidate for targeted therapies. Here we show that, in 3/3 MET-addicted human gastric cancer cell lines, MET kinase inhibition resulted in a 3- to 4-fold increased expression of the antiapoptotic small heat-shock protein of 27 kDa (HSP27, HSPB1). HSP27 increase depended on the inhibition of the MEK/ERK pathway and on heat-shock factor 1 (HSF1) and hypoxia-inducible factor-1α (HIF-1α) regulation. Importantly, HSP27-silenced MET-addicted cells underwent 2- and 3-fold more apoptosis following MET inhibition in vitro and in vivo, respectively. Likewise, in human cancer cells susceptible to epidermal growth factor receptor (EGFR) inhibition, EGFR inhibitors induced HSP27 expression and were strengthened by HSP27 suppression. In control cell lines that were not affected by drugs targeting MET or EGFR, these drugs did not induce HSP27 increase. Therefore, in cancer therapies targeting the MET pathway, the induction of HSP27 might limit the efficacy of anti-MET agents. As HSP27 increase also impairs the effectiveness of EGFR inhibitors and is known to protect cells from chemotherapeutics, the induction of HSP27 by targeted agents might strongly affect the success of combination treatments. © FASEB.

  17. Antagonism of EGFR and HER3 Enhances the Response to Inhibitors of the PI3K-Akt Pathway in Triple-Negative Breast Cancer

    PubMed Central

    Tao, Jessica J.; Castel, Pau; Radosevic-Robin, Nina; Elkabets, Moshe; Auricchio, Neil; Aceto, Nicola; Weitsman, Gregory; Barber, Paul; Vojnovic, Borivoj; Ellis, Haley; Morse, Natasha; Viola-Villegas, Nerissa Therese; Bosch, Ana; Juric, Dejan; Hazra, Saswati; Singh, Sharat; Kim, Phillip; Bergamaschi, Anna; Maheswaran, Shyamala; Ng, Tony; Penault-Llorca, Frédérique; Lewis, Jason S.; Carey, Lisa A.; Perou, Charles M.; Baselga, José; Scaltriti, Maurizio

    2014-01-01

    Both abundant epidermal growth factor receptor (EGFR or ErbB1) and high activity of the phosphatidyl-inositol 3-kinase (PI3K)–Akt pathway are common and therapeutically targeted in triple-negative breast cancer (TNBC). However, activation of another EGFR family member [human epidermal growth factor receptor 3 (HER3) (or ErbB3)] may limit the antitumor effects of these drugs. We found that TNBC cell lines cultured with the EGFR or HER3 ligand EGF or heregulin, respectively, and treated with either an Akt inhibitor (GDC-0068) or a PI3K inhibitor (GDC-0941) had increased abundance and phosphorylation of HER3. The phosphorylation of HER3 and EGFR in response to these treatments was reduced by the addition of a dual EGFR and HER3 inhibitor (MEHD7945A). MEHD7945A also decreased the phosphorylation (and activation) of EGFR and HER3 and the phosphorylation of downstream targets that occurred in response to the combination of EGFR ligands and PI3K-Akt pathway inhibitors. In culture, inhibition of the PI3K-Akt pathway combined with either MEHD7945A or knockdown of HER3 decreased cell proliferation compared with inhibition of the PI3K-Akt pathway alone. Combining either GDC-0068 or GDC-0941 with MEHD7945A inhibited the growth of xenografts derived from TNBC cell lines or from TNBC patient tumors, and this combination treatment was also more effective than combining either GDC-0068 or GDC-0941 with cetuximab, an EGFR-targeted antibody. After therapy with EGFR-targeted antibodies, some patients had residual tumors with increased HER3 abundance and EGFR/HER3 dimerization (an activating interaction). Thus, we propose that concomitant blockade of EGFR, HER3, and the PI3K-Akt pathway in TNBC should be investigated in the clinical setting. PMID:24667376

  18. Antagonism of EGFR and HER3 enhances the response to inhibitors of the PI3K-Akt pathway in triple-negative breast cancer.

    PubMed

    Tao, Jessica J; Castel, Pau; Radosevic-Robin, Nina; Elkabets, Moshe; Auricchio, Neil; Aceto, Nicola; Weitsman, Gregory; Barber, Paul; Vojnovic, Borivoj; Ellis, Haley; Morse, Natasha; Viola-Villegas, Nerissa Therese; Bosch, Ana; Juric, Dejan; Hazra, Saswati; Singh, Sharat; Kim, Phillip; Bergamaschi, Anna; Maheswaran, Shyamala; Ng, Tony; Penault-Llorca, Frédérique; Lewis, Jason S; Carey, Lisa A; Perou, Charles M; Baselga, José; Scaltriti, Maurizio

    2014-03-25

    Both abundant epidermal growth factor receptor (EGFR or ErbB1) and high activity of the phosphatidylinositol 3-kinase (PI3K)-Akt pathway are common and therapeutically targeted in triple-negative breast cancer (TNBC). However, activation of another EGFR family member [human epidermal growth factor receptor 3 (HER3) (or ErbB3)] may limit the antitumor effects of these drugs. We found that TNBC cell lines cultured with the EGFR or HER3 ligand EGF or heregulin, respectively, and treated with either an Akt inhibitor (GDC-0068) or a PI3K inhibitor (GDC-0941) had increased abundance and phosphorylation of HER3. The phosphorylation of HER3 and EGFR in response to these treatments was reduced by the addition of a dual EGFR and HER3 inhibitor (MEHD7945A). MEHD7945A also decreased the phosphorylation (and activation) of EGFR and HER3 and the phosphorylation of downstream targets that occurred in response to the combination of EGFR ligands and PI3K-Akt pathway inhibitors. In culture, inhibition of the PI3K-Akt pathway combined with either MEHD7945A or knockdown of HER3 decreased cell proliferation compared with inhibition of the PI3K-Akt pathway alone. Combining either GDC-0068 or GDC-0941 with MEHD7945A inhibited the growth of xenografts derived from TNBC cell lines or from TNBC patient tumors, and this combination treatment was also more effective than combining either GDC-0068 or GDC-0941 with cetuximab, an EGFR-targeted antibody. After therapy with EGFR-targeted antibodies, some patients had residual tumors with increased HER3 abundance and EGFR/HER3 dimerization (an activating interaction). Thus, we propose that concomitant blockade of EGFR, HER3, and the PI3K-Akt pathway in TNBC should be investigated in the clinical setting.

  19. Synthesis and evaluation of osimertinib derivatives as potent EGFR inhibitors.

    PubMed

    Gao, Hongying; Yang, Zimo; Yang, Xinglin; Rao, Yu

    2017-09-01

    Osimertinib has been identified as a promising therapeutic drug targeting for EGFR T790M mutant non-small cell lung cancer (NSCLC). A new series of N-oxidized and fluorinated osimertinib derivatives were designed and synthesized. The cellular anti-proliferative activity, kinase inhibitory activity and the activation of EGFR signaling pathways of 1-6 in vitro were determined against L858R/T790M and wild-type EGFR, the antitumor efficacy in NCI-H1975 xenografts in vivo were further studied. Compound 2, the newly synthesized N-oxide metabolite in N,N,N'-trimethylethylenediamine side chain of osimertinib, showed a comparable kinase selectivity in vitro and a slightly better antitumor efficacy in vivo to osimertinib, making it valuable and suitable for the potential lung cancer therapy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Transforming growth factor-{alpha} enhances corneal epithelial cell migration by promoting EGFR recycling.

    PubMed

    McClintock, Jennifer L; Ceresa, Brian P

    2010-07-01

    PURPOSE. The goal of this study was to determine the molecular mechanism by which transforming growth factor-alpha (TGF-alpha) is a more potent activator of epidermal growth factor receptor (EGFR)-mediated corneal wound healing than epidermal growth factor (EGF). METHODS. Telomerase immortalized human corneal epithelial (hTCEpi) cells and primary human corneal epithelial cells were tested for their ability to migrate in response to EGF and TGF-alpha. In parallel, the endocytic trafficking of the EGFR in response to these same ligands was examined using indirect immunofluorescence, immunoblots, and radioligand binding. RESULTS. TGF-alpha, compared with EGF, is a more potent activator of corneal epithelial cell migration. Although both TGF-alpha and EGF were able to induce EGFR internalization and phosphorylation, only those receptors that were stimulated with EGF progressed to lysosomal degradation. EGFRs stimulated with TGF-alpha recycled back to the plasma membrane, where they could be reactivated with ligand. CONCLUSIONS. This study reveals that EGFR-mediated cell migration is limited by ligand-stimulated downregulation of the EGFR. This limitation can be overcome by treating cells with TGF-alpha because TGF-alpha stimulates EGFR endocytosis, but not degradation. After internalization of the TGF-alpha/EGFR complex, EGFR recycles back to the plasma membrane, where it can be restimulated. This sequence of events provides the receptor multiple opportunities for stimulation. Thus, stimulation with TGF-alpha prolongs EGFR signaling compared with EGF.

  1. EGFR-dependent signalling reduced and p38 dependent apoptosis required by Gallic acid in Malignant Mesothelioma cells.

    PubMed

    Demiroglu-Zergeroglu, Asuman; Candemir, Gulsife; Turhanlar, Ebru; Sagir, Fatma; Ayvali, Nurettin

    2016-12-01

    The unrestrained EGFR signalling contributes to malignant phenotype in a number of cancers including Malignant Mesotheliomas. Present study was designed to evaluate EGFR-dependent anti-proliferative and apoptotic effects of Gallic acid in transformed Mesothelial (MeT-5A) and Malignant Mesothelioma (SPC212) cells. Gallic acid reduced the viability of Malignant Mesothelioma cells in a concentration and time-dependent manner. However, viability of mesothelial cells reduced only at high concentration and longer time periods. Gallic acid restrained the activation of EGFR, ERK1/2 and AKT proteins and down regulated expression of Cyclin D and Bcl-2 genes, but upregulated the expression of p21 gene in EGF-induced SPC212 cells. GA-induced transitory G1 arrest and triggered mitochondrial and death receptor mediated apoptosis, which requires p38MAPK activation. The data provided here indicate that GA is able to inhibit EGFR dependent proliferation and survival signals and induces p38 pathway dependent apoptosis in Malignant Mesothelioma cells. On the basis of these experimental findings it is worthwhile to investigate further the biological activity of Gallic acid on other Mesothelioma cell lines harbouring aberrant EGFR signals. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  2. Intrinsic resistance to EGFR tyrosine kinase inhibitors in advanced non-small-cell lung cancer with activating EGFR mutations

    PubMed Central

    Wang, Jun; Wang, Baocheng; Chu, Huili; Yao, Yunfeng

    2016-01-01

    Identifying activating EGFR mutations is a useful predictive strategy that helps select a population of advanced non-small-cell lung cancer (NSCLC) patients for treatment with EGFR tyrosine kinase inhibitors (TKIs). Patients with sensitizing EGFR mutations (predominantly an in-frame deletion in exon 19 and an L858R substitution) are highly responsive to first-generation EGFR TKIs, such as gefitinib and erlotinib, and show improved progression-free survival without serious side effects. However, all patients with activating EGFR mutations who are initially responsive to EGFR TKIs eventually develop acquired resistance after a median progression-free survival of 10–16 months, followed by disease progression. Moreover, ~20%–30% of NSCLC patients have no objective tumor regression on initial EGFR TKI treatment, although they harbor an activating EGFR mutation. These patients represent an NSCLC subgroup that is defined as having intrinsic or primary resistance to EGFR TKIs. Different mechanisms of acquired EGFR TKI resistance have been identified, and several novel compounds have been developed to reverse acquired resistance, but little is known about EGFR TKI intrinsic resistance. In this review, we summarize the latest findings involving mechanisms of intrinsic resistance to EGFR TKIs in advanced NSCLC with activating EGFR mutations and present possible therapeutic strategies to overcome this resistance. PMID:27382309

  3. Oleic acid blocks EGF-induced [Ca2+]i release without altering cellular metabolism in fibroblast EGFR T17.

    PubMed

    Zugaza, J L; Casabiell, X A; Bokser, L; Casanueva, F F

    1995-02-06

    EGFR-T17 cells were pretreated with oleic acid and 5-10 minutes later stimulated with EGF, to study if early ionic signals are instrumental in inducing metabolic cellular response. Oleic acid blocks EGF-induced [Ca2+]i rise and Ca2+ influx without altering 2-deoxyglucose and 2-aminobutiryc acid uptake nor acute, nor chronically. Oleic acid it is shown, in the first minutes favors the entrance of both molecules to modify the physico-chemical membrane state. On the other hand, oleic acid is unable to block protein synthesis. The results suggest that EGF-induced Ins(1,4,5)P3/Ca2+ pathway does not seem to be decisive in the control of cellular metabolic activity.

  4. Properties of resistant cells generated from lung cancer cell lines treated with EGFR inhibitors.

    PubMed

    Ghosh, Gargi; Lian, Xiaojun; Kron, Stephen J; Palecek, Sean P

    2012-03-20

    Epidermal growth factor receptor (EGFR) signaling plays an important role in non-small cell lung cancer (NSCLC) and therapeutics targeted against EGFR have been effective in treating a subset of patients bearing somatic EFGR mutations. However, the cancer eventually progresses during treatment with EGFR inhibitors, even in the patients who respond to these drugs initially. Recent studies have identified that the acquisition of resistance in approximately 50% of cases is due to generation of a secondary mutation (T790M) in the EGFR kinase domain. In about 20% of the cases, resistance is associated with the amplification of MET kinase. In the remaining 30-40% of the cases, the mechanism underpinning the therapeutic resistance is unknown. An erlotinib resistant subline (H1650-ER1) was generated upon continuous exposure of NSCLC cell line NCI-H1650 to erlotinib. Cancer stem cell like traits including expression of stem cell markers, enhanced ability to self-renew and differentiate, and increased tumorigenicity in vitro were assessed in erlotinib resistant H1650-ER1 cells. The erlotinib resistant subline contained a population of cells with properties similar to cancer stem cells. These cells were found to be less sensitive towards erlotinib treatment as measured by cell proliferation and generation of tumor spheres in the presence of erlotinib. Our findings suggest that in cases of NSCLC accompanied by mutant EGFR, treatment targeting inhibition of EGFR kinase activity in differentiated cancer cells may generate a population of cancer cells with stem cell properties.

  5. Cytotoxic Effects of PEGylated Anti-EGFR Immunoliposomes Combined with Doxorubicin and Rhenium-188 Against Cancer Cells.

    PubMed

    Hsu, Wei-Chuan; Cheng, Chu-Nian; Lee, Te-Wei; Hwang, Jeng-Jong

    2015-09-01

    We aimed to construct epidermal growth factor receptor (EGFR)-targeting cetuximab-immunoliposomes (IL-C225) for targeted delivery of doxorubicin and rhenium-188 (Re-188) to EGFR(+) cancer cells. Synthesized IL-C225 was analyzed by dynamic light scattering, transmission electron microscopy, and matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy. Cell binding and internalization were examined using doxorubicin-loaded IL-C225 (DXR-IL-C225) with confocal microscopy. IL-C225 combined with doxorubicin and Re-188 ((188)Re-DXR-IL-C225) was synthesized, and the cytotoxic effects of (188)Re-DXR-IL-C225 were analyzed in EGFR(+) cancer cells using cell viability assays. IL-C225 bound to EGFR on A431 cancer cells and was rapidly internalized. Furthermore, IL-C225 localized within the tumor cells efficiently. (188)Re-DXR-IL-C225 exhibited outstanding cytotoxic effects against EGFR(+) cancer cells in vitro and showed superior cytotoxic effects compared to DXR-IL-C225 or (188)Re-IL-C225 alone. The new formulation of (188)Re-DXR-IL-C225 may be a potential theranostic vehicle for delivery of drugs in the treatment of EGFR-overexpressing human cancer. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  6. Dual peptide-mediated targeted delivery of bioactive siRNAs to oral cancer cells in vivo.

    PubMed

    Alexander-Bryant, Angela A; Zhang, Haiwen; Attaway, Christopher C; Pugh, William; Eggart, Laurence; Sansevere, Robert M; Andino, Lourdes M; Dinh, Lu; Cantini, Liliana P; Jakymiw, Andrew

    2017-09-01

    Despite significant advances in cancer treatment, the prognosis for oral cancer remains poor in comparison to other cancer types, including breast, skin, and prostate. As a result, more effective therapeutic modalities are needed for the treatment of oral cancer. Consequently, in the present study, we examined the feasibility of using a dual peptide carrier approach, combining an epidermal growth factor receptor (EGFR)-targeting peptide with an endosome-disruptive peptide, to mediate targeted delivery of small interfering RNAs (siRNAs) into EGFR-overexpressing oral cancer cells and induce silencing of the targeted oncogene, cancerous inhibitor of protein phosphatase 2A (CIP2A). Fluorescence microscopy, real-time PCR, Western blot analysis, and in vivo bioimaging of mice containing orthotopic xenograft tumors were used to examine the ability of the dual peptide carrier to mediate specific delivery of bioactive siRNAs into EGFR-overexpressing oral cancer cells/tissues. Co-complexation of the EGFR-targeting peptide, GE11R9, with the endosome-disruptive 599 peptide facilitated the specific uptake of siRNAs into oral cancer cells overexpressing EGFR in vitro with optimal gene silencing observed at a 60:30:1 (GE11R9:599:siRNA) molar ratio. Furthermore, when administered systemically to mice bearing xenograft oral tumors, this dual peptide complex mediated increased targeted delivery of siRNAs into tumor tissues in comparison to the 599 peptide alone and significantly enhanced CIP2A silencing. Herein we provide the first report demonstrating the clinical potential of a dual peptide strategy for siRNA-based therapeutics by synergistically mediating the effective targeting and delivery of bioactive siRNAs into EGFR-overexpressing oral cancer cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Exosome production and its regulation of EGFR during wound healing in renal tubular cells.

    PubMed

    Zhou, Xiangjun; Zhang, Wei; Yao, Qisheng; Zhang, Hao; Dong, Guie; Zhang, Ming; Liu, Yutao; Chen, Jian-Kang; Dong, Zheng

    2017-06-01

    Kidney repair following injury involves the reconstitution of a structurally and functionally intact tubular epithelium. Growth factors and their receptors, such as EGFR, are important in the repair of renal tubules. Exosomes are cell-produced small (~100 nm in diameter) vesicles that contain and transfer proteins, lipids, RNAs, and DNAs between cells. In this study, we examined the relationship between exosome production and EGFR activation and the potential role of exosome in wound healing. EGFR activation occurred shortly after scratch wounding in renal tubular cells. Wound repair after scratching was significantly promoted by EGF and suppressed by EGFR inhibitor gefitinib. Interestingly, scratch wounding induced a significant increase of exosome production. The exosome production was decreased by EGF and increased by gefitinib, suggesting a suppressive role of EGFR signaling in exosome production. Conversely, inhibition of exosome release by GW4869 and manumycin A markedly increased EGFR activation and promoted wound healing. Moreover, exosomes derived from scratch-wounding cells could inhibit wound healing. Collectively, the results indicate that wound healing in renal tubular cells is associated with EGFR activation and exosome production. Although EGFR activation promotes wound healing, released exosomes may antagonize EGFR activation and wound healing. Copyright © 2017 the American Physiological Society.

  8. STAT1 Activation is Enhanced by Cisplatin and Variably Affected by EGFR Inhibition in HNSCC Cells

    PubMed Central

    Schmitt, Nicole C.; Trivedi, Sumita; Ferris, Robert L.

    2015-01-01

    Cisplatin is a cytotoxic chemotherapeutic drug frequently used to treat many solid tumors, including head and neck squamous cell carcinoma (HNSCC). EGFR inhibitors have also shown efficacy as alternatives to cisplatin in some situations. However, large clinical trials have shown no added survival benefit from the use of these two drugs in combination. Possible explanations for this include overlapping downstream signaling cascades. Using in vitro studies, we tested the hypothesis that cisplatin and EGFR inhibitors rely on the activation of the tumor suppressor STAT1, characterized by its phosphorylation at serine (S727) or tyrosine (Y701) residues. Cisplatin consistently increased the levels of p-S727-STAT1, and STAT1 siRNA knockdown attenuated cisplatin-induced cell death. EGFR stimulation also activated p-S727-STAT1 and p-Y701-STAT1 in a subset of cell lines, whereas EGFR inhibitors alone decreased levels of p-S727-STAT1 and p-Y701-STAT1 in these cells. Contrary to our hypothesis, EGFR inhibitors added to cisplatin treatment caused variable effects among cell lines, with attenuation of p-S727-STAT1 and enhancement of cisplatin-induced cell death in some cells and minimal effect in other cells. Using HNSCC tumor specimens from a clinical trial of adjuvant cisplatin plus the anti-EGFR antibody panitumumab, higher intratumoral p-S727-STAT1 appeared to correlate with worse survival. Together, these results suggest that cisplatin-induced cell death is associated with STAT1 phosphorylation, and the addition of anti-EGFR therapy to cisplatin has variable effects on STAT1 and cell death in HNSCC. PMID:26141950

  9. Osimertinib - effective treatment of NSCLC with activating EGFR mutations after progression on EGFR tyrosine kinase inhibitors.

    PubMed

    Skrzypski, Marcin; Szymanowska-Narloch, Amelia; Dziadziuszko, Rafał

    2017-01-01

    Non-small cell lung cancer (NSCLC) driven by activating mutations in epidermal growth factor receptor (EGFR) constitutes up to 10% of NSCLC cases. According to the NCCN recommendations, all patients (with the exception of smoking patients with squamous cell lung cancer) should be screened for the presence of activating EGFR mutations, i.e. deletion in exon 19 or point mutation L858R in exon 21, in order to select the group that benefits from EGFR tyrosine kinase inhibitors (EGFR TKIs) treatment. Among approved agents there are the 1 st generation reversible EGFR TKIs, erlotinib and gefitinib, and the 2 nd generation irreversible EGFR TKI, afatinib. The objective response rates to these drugs in randomised clinical trials were in the range of 56-74%, and median time to progression 9-13 months. The most common determinant of resistance to these drugs is the clonal expansion of cancer cells with T790M mutation (Thr790Met) in exon 20 of EGFR. Osimertinib (Tagrisso™), a 3 rd generation, irreversible EGFR tyrosine kinase inhibitor, constitutes a novel, highly efficacious treatment for NSCLC patients progressing on EGFR TKIs with T790M mutation confirmed as the resistance mechanism. Resistance mutation can be determined in tissue or liquid biopsy obtained after progression on EGFR TKIs. Osimertinib has a favourable toxicity profile, with mild rash and diarrhoea being the most common. In this article, we present three cases that were successfully treated with osimertinib after progression on 1st and 2nd generation EGFR TKIs.

  10. Differential role of EGF and BFGF in human GBM-TIC proliferation: relationship to EGFR-tyrosine kinase inhibitor sensibility.

    PubMed

    Bajetto, A; Porcile, C; Pattarozzi, A; Scotti, L; Aceto, A; Daga, A; Barbieri, F; Florio, T

    2013-01-01

    Glioblastoma multiforme (GBM) is among the most devastating human tumors being rapidly fatal despite aggressive surgery, radiation and chemotherapies. It is characterized by extensive dissemination of tumor cells within the brain that hinders complete surgical resection. GBM tumor initiating-cells (TICs) are a rare subpopulation of cells responsible for tumor development, growth, invasiveness and recurrence after chemotherapy. TICs from human GBM can be selected in vitro using the same conditions permissive for the growth of normal neural cells, of which share some features including marker expression, self-renewal capacity, long-term proliferation, and ability to differentiate into neuronal and glial cells. EGFR overexpression and its constitutive activation is one of the most important signaling alteration identified in GBM, and its pharmacological targeting represents an attractive therapeutic goal. We previously demonstrated that human GBM TICs have different sensitivity to the EGFR kinase inhibitors erlotinib and gefitinib, depending on the differential modulation of downstream signaling cascades. In this work we investigated the mechanisms of resistance to erlotinib in two human GBM TIC cultures, analyzing EGF and bFGF individual contribution to proliferation, clonogenicity, and migration. We demonstrated the presence of a small cell subpopulation whose proliferation is supported by EGF and a larger one mainly dependent on bFGF. Thus, insensitivity to EGFR kinase inhibitors as far as TIC proliferation results from a predominant FGFR activation that hides the inhibitory effects induced on EGFR signaling. Conversely, EGF and bFGF induced cell migration with similar efficacy. In addition, unlike neural stem/progenitors cells, the removal of chondroitin sulphate proteoglycans from cell surface was unable to discern EGF- and bFGF-dependent subpopulations in GBM TICs.

  11. Disulfide bond disrupting agents activate the unfolded protein response in EGFR- and HER2-positive breast tumor cells

    PubMed Central

    Law, Mary E.; Davis, Bradley J.; Bartley, Ashton N.; Higgins, Paul J.; Kilberg, Michael S.; Santostefano, Katherine E.; Terada, Naohiro; Heldermon, Coy D.; Castellano, Ronald K.; Law, Brian K.

    2017-01-01

    Many breast cancer deaths result from tumors acquiring resistance to available therapies. Thus, new therapeutic agents are needed for targeting drug-resistant breast cancers. Drug-refractory breast cancers include HER2+ tumors that have acquired resistance to HER2-targeted antibodies and kinase inhibitors, and “Triple-Negative” Breast Cancers (TNBCs) that lack the therapeutic targets Estrogen Receptor, Progesterone Receptor, and HER2. A significant fraction of TNBCs overexpress the HER2 family member Epidermal Growth Factor Receptor (EGFR). Thus agents that selectively kill EGFR+ and HER2+ tumors would provide new options for breast cancer therapy. We previously identified a class of compounds we termed Disulfide bond Disrupting Agents (DDAs) that selectively kill EGFR+ and HER2+ breast cancer cells in vitro and blocked the growth of HER2+ breast tumors in an animal model. DDA-dependent cytotoxicity was found to correlate with downregulation of HER1-3 and Akt dephosphorylation. Here we demonstrate that DDAs activate the Unfolded Protein Response (UPR) and that this plays a role in their ability to kill EGFR+ and HER2+ cancer cells. The use of breast cancer cell lines ectopically expressing EGFR or HER2 and pharmacological probes of UPR revealed all three DDA responses: HER1-3 downregulation, Akt dephosphorylation, and UPR activation, contribute to DDA-mediated cytotoxicity. Significantly, EGFR overexpression potentiates each of these responses. Combination studies with DDAs suggest that they may be complementary with EGFR/HER2-specific receptor tyrosine kinase inhibitors and mTORC1 inhibitors to overcome drug resistance. PMID:28423644

  12. Treating triple negative breast cancer cells with erlotinib plus a select antioxidant overcomes drug resistance by targeting cancer cell heterogeneity.

    PubMed

    Bao, Bin; Mitrea, Cristina; Wijesinghe, Priyanga; Marchetti, Luca; Girsch, Emily; Farr, Rebecca L; Boerner, Julie L; Mohammad, Ramzi; Dyson, Greg; Terlecky, Stanley R; Bollig-Fischer, Aliccia

    2017-03-10

    Among breast cancer patients, those diagnosed with the triple-negative breast cancer (TNBC) subtype have the worst prog-nosis. TNBC does not express estrogen receptor-alpha, progesterone receptor, or the HER2 oncogene; therefore, TNBC lacks targets for molecularly-guided therapies. The concept that EGFR oncogene inhibitor drugs could be used as targeted treatment against TNBC has been put forth based on estimates that 30-60% of TNBC express high levels of EGFR. However, results from clinical trials testing EGFR inhibitors, alone or in combination with cytotoxic chemotherapy, did not improve patient outcomes. Results herein offer an explanation as to why EGFR inhibitors failed TNBC patients and support how combining a select antioxidant and an EGFR-specific small molecule kinase inhibitor (SMKI) could be an effective, novel therapeutic strategy. Treatment with CAT-SKL-a re-engineered protein form of the antioxidant enzyme catalase-inhibited cancer stem-like cells (CSCs), and treatment with the EGFR-specific SMKI erlotinib inhibited non-CSCs. Thus, combining the antioxidant CAT-SKL with erlotinib targeted both CSCs and bulk cancer cells in cultures of EGFR-expressing TNBC-derived cells. We also report evidence that the mechanism for CAT-SKL inhibition of CSCs may depend on antioxidant-induced downregulation of a short alternative mRNA splicing variant of the methyl-CpG binding domain 2 gene, isoform MBD2c.

  13. EGFR inhibition by pentacyclic triterpenes exhibit cell cycle and growth arrest in breast cancer cells.

    PubMed

    Sathya, Shanmugaraj; Sudhagar, Selvaraj; Sarathkumar, Baskaran; Lakshmi, Baddireddi Subhadra

    2014-01-24

    Pentacyclic triterpenes are a group of molecules with promising anticancer potential, although their precise molecular target remains elusive. The current work aims to investigate the antiproliferative and associated mechanisms of triterpenes in breast cancer cells in vitro. Effect of triterpenes on cell cycle distribution, ROS and key regulatory proteins were analyzed in three breast cancer cells in vitro. Growth inhibition, new DNA synthesis, colony formation assays and Western blot analysis were performed to assess the EGFR inhibitory effect of triterpenes. Molecular docking was performed to study the interaction between EGFR and triterpenes. We have demonstrated the ability of dimethyl melaleucate (DMM), a pentacyclic triterpene to exhibit cell cycle arrest at G0/G1 phase by down-regulation of cyclin D1 through PI3K/AKT inhibition. Further, to identify the upstream target of DMM, potential EGFR inhibitory activity of DMM and three structurally related pentacyclic triterpenes, ursolic acid, 18α-glycyrrhetinic acid and carbenoxolone was investigated. Interestingly, pentacyclic triterpenes limit EGF mediated breast cancer proliferation through sustained inhibition of EGFR and its downstream effectors STAT3 and cyclin D1 in breast cancer lines. We also show pentacyclic triterpenes to bind at the ATP binding pocket of tyrosine kinase domain of EGFR leading to the hypothesis that pentacyclic triterpenes could be a novel class of EGFR inhibitors. In conclusion, pentacyclic triterpenes inhibit EGFR activation through binding with tyrosine kinase domain thereby suppressing breast cancer proliferation. Pentacyclic triterpenes may serve as a potential platform for development of novel drugs against breast cancer. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Inhibition of oxidative phosphorylation suppresses the development of osimertinib resistance in a preclinical model of EGFR-driven lung adenocarcinoma.

    PubMed

    Martin, Matthew J; Eberlein, Cath; Taylor, Molly; Ashton, Susan; Robinson, David; Cross, Darren

    2016-12-27

    Metabolic plasticity is an emerging hallmark of cancer, and increased glycolysis is often observed in transformed cells. Small molecule inhibitors that target driver oncogenes can potentially inhibit the glycolytic pathway. Osimertinib (AZD9291) is a novel EGFR tyrosine kinase inhibitor (TKI) that is potent and selective for sensitising (EGFRm) and T790M resistance mutations. Clinical studies have shown osimertinib to be efficacious in patients with EGFRm/ T790M advanced NSCLC who have progressed after EGFR-TKI treatment. However experience with targeted therapies suggests that acquired resistance may emerge. Thus there is a need to characterize resistance mechanisms and to devise ways to prevent, delay or overcome osimertinib resistance. We show here that osimertinib suppresses glycolysis in parental EGFR-mutant lung adenocarcinoma lines, but has not in osimertinib-resistant cell lines. Critically, we show osimertinib treatment induces a strict dependence on mitochondrial oxidative phosphorylation (OxPhos), as OxPhos inhibitors significantly delay the long-term development of osimertinib resistance in osimertinib-sensitive lines. Accordingly, growth conditions which promote a less glycolytic phenotype confer a degree of osimertinib resistance. Our data support a model in which the combination of osimertinib and OxPhos inhibitors can delay or prevent resistance in osimertinib-naïve tumour cells, and represents a novel strategy that warrants further pre-clinical investigation.

  15. Inhibition of oxidative phosphorylation suppresses the development of osimertinib resistance in a preclinical model of EGFR-driven lung adenocarcinoma

    PubMed Central

    Martin, Matthew J.; Eberlein, Cath; Taylor, Molly; Ashton, Susan; Robinson, David; Cross, Darren

    2016-01-01

    Metabolic plasticity is an emerging hallmark of cancer, and increased glycolysis is often observed in transformed cells. Small molecule inhibitors that target driver oncogenes can potentially inhibit the glycolytic pathway. Osimertinib (AZD9291) is a novel EGFR tyrosine kinase inhibitor (TKI) that is potent and selective for sensitising (EGFRm) and T790M resistance mutations. Clinical studies have shown osimertinib to be efficacious in patients with EGFRm/ T790M advanced NSCLC who have progressed after EGFR-TKI treatment. However experience with targeted therapies suggests that acquired resistance may emerge. Thus there is a need to characterize resistance mechanisms and to devise ways to prevent, delay or overcome osimertinib resistance. We show here that osimertinib suppresses glycolysis in parental EGFR-mutant lung adenocarcinoma lines, but has not in osimertinib-resistant cell lines. Critically, we show osimertinib treatment induces a strict dependence on mitochondrial oxidative phosphorylation (OxPhos), as OxPhos inhibitors significantly delay the long-term development of osimertinib resistance in osimertinib-sensitive lines. Accordingly, growth conditions which promote a less glycolytic phenotype confer a degree of osimertinib resistance. Our data support a model in which the combination of osimertinib and OxPhos inhibitors can delay or prevent resistance in osimertinib-naïve tumour cells, and represents a novel strategy that warrants further pre-clinical investigation. PMID:27861144

  16. Development of Cu-64 labeled EGF for In Vivo PET Imaging of EGFR Expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Backer, Joseph M.

    2009-07-12

    In this project we proposed to establish feasibility of the development of targeted tracers for radionuclide imaging of epidermal growth factor receptors (EGFR) in cancer patients. The significance and impact of the proposed radiotracers are determined by the crucial role that EGFR plays in many cancers and by the rapid entrance of EGFR-inhibiting drugs into clinic. Clinical experience, however, revealed that only 10-25% of patients that are defined as EGFR-positive by immunohistochemical analysis respond to EGFR-directed therapeutics and there is poor correlation between EGFR immunohistochemistry and treatment. Therefore, for more efficacious use of EGFR-targeting therapeutics, there is a need formore » information about EGFR activity in patients. We hypothesized that radionuclide imaging of functionally active EGFR will provide such information and would allow for 1) rational patient stratification, 2) rapid monitoring of responses to therapy, and 3) development of personalized treatment regimens. We hypothesized that tracers based epidermal growth factor (EGF), a natural EGFR ligand, as a targeting vector would be particularly advantageous. First, only functionally active and therefore critical for disease progression EGFRs will bind and internalize an EGF-based tracer. Second, continuous internalization of EGF-based tracers by recyclable EGFR would lead to intracellular accumulation of radionuclide and improved signal-to-background ratio. Third, small size of EGF relative to antibodies would facilitate tumor penetration with vastly better non-specific soft tissue and blood clearance rates. Fourth, as a human protein, EGF is not expected to be immunogenic. Finally, at the beginning of this project, we have already engineered and expressed functionally active EGF with an N-terminal Cys-tag for site-specific conjugation of various payloads, including radionuclide chelators. In the Phase I of this project, in collaboration with Dr. Blankenberg’s group at

  17. The activation of G protein-coupled estrogen receptor induces relaxation via cAMP as well as potentiates contraction via EGFR transactivation in porcine coronary arteries

    PubMed Central

    Yu, Xuan; Stallone, John N.; Heaps, Cristine L.

    2018-01-01

    Estrogen exerts protective effects against cardiovascular diseases in premenopausal women, but is associated with an increased risk of both coronary heart disease and stroke in older postmenopausal women. Studies have shown that activation of the G-protein-coupled estrogen receptor 1 (GPER) can cause either relaxation or contraction of arteries. It is highly likely that these dual actions of GPER may contribute to the seemingly paradoxical effects of estrogen in regulating coronary artery function. The objective of this study was to test the hypothesis that activation of GPER enhances agonist-stimulated porcine coronary artery contraction via epidermal growth factor receptor (EGFR) transactivation and its downstream extracellular signal-regulated kinases (ERK1/2) pathway. Isometric tension studies and western blot were performed to determine the effect of GPER activation on coronary artery contraction. Our findings demonstrated that G-1 caused concentration-dependent relaxation of ET-1-induced contraction, while pretreatment of arterial rings with G-1 significantly enhanced ET-1-induced contraction. GPER antagonist, G-36, significantly inhibited both the G-1-induced relaxation effect and G-1-enhanced ET-1 contraction. Gallein, a Gβγ inhibitor, significantly increased G-1-induced relaxation, yet inhibited G-1-enhanced ET-1-mediated contraction. Similarly, inhibition of EGFR with AG1478 or inhibition of Src with phosphatase 2 further increased G-1-induced relaxation responses in coronary arteries, but decreased G-1-enhanced ET-1-induced contraction. Western blot experiments in porcine coronary artery smooth muscle cells (PCASMC) showed that G-1 increased tyrosine phosphorylation of EGFR, which was inhibited by AG-1478. Furthermore, enzyme-linked immunosorbent assays showed that the level of heparin-binding EGF (HB-EGF) released by ET-1 treatment increased two-fold; whereas pre-incubation with G-1 further increased ET-1-induced HB-EGF release to four-fold over

  18. The activation of G protein-coupled estrogen receptor induces relaxation via cAMP as well as potentiates contraction via EGFR transactivation in porcine coronary arteries.

    PubMed

    Yu, Xuan; Stallone, John N; Heaps, Cristine L; Han, Guichun

    2018-01-01

    Estrogen exerts protective effects against cardiovascular diseases in premenopausal women, but is associated with an increased risk of both coronary heart disease and stroke in older postmenopausal women. Studies have shown that activation of the G-protein-coupled estrogen receptor 1 (GPER) can cause either relaxation or contraction of arteries. It is highly likely that these dual actions of GPER may contribute to the seemingly paradoxical effects of estrogen in regulating coronary artery function. The objective of this study was to test the hypothesis that activation of GPER enhances agonist-stimulated porcine coronary artery contraction via epidermal growth factor receptor (EGFR) transactivation and its downstream extracellular signal-regulated kinases (ERK1/2) pathway. Isometric tension studies and western blot were performed to determine the effect of GPER activation on coronary artery contraction. Our findings demonstrated that G-1 caused concentration-dependent relaxation of ET-1-induced contraction, while pretreatment of arterial rings with G-1 significantly enhanced ET-1-induced contraction. GPER antagonist, G-36, significantly inhibited both the G-1-induced relaxation effect and G-1-enhanced ET-1 contraction. Gallein, a Gβγ inhibitor, significantly increased G-1-induced relaxation, yet inhibited G-1-enhanced ET-1-mediated contraction. Similarly, inhibition of EGFR with AG1478 or inhibition of Src with phosphatase 2 further increased G-1-induced relaxation responses in coronary arteries, but decreased G-1-enhanced ET-1-induced contraction. Western blot experiments in porcine coronary artery smooth muscle cells (PCASMC) showed that G-1 increased tyrosine phosphorylation of EGFR, which was inhibited by AG-1478. Furthermore, enzyme-linked immunosorbent assays showed that the level of heparin-binding EGF (HB-EGF) released by ET-1 treatment increased two-fold; whereas pre-incubation with G-1 further increased ET-1-induced HB-EGF release to four-fold over

  19. Interactions between EGFR and PD-1/PD-L1 pathway: Implications for treatment of NSCLC.

    PubMed

    Li, Xue; Lian, Zhen; Wang, Shuai; Xing, Ligang; Yu, Jinming

    2018-04-01

    Immune checkpoint inhibitors targeting the programmed cell death receptor/ligand 1 (PD-1/PD-L1) pathway displayed striking and durable clinical responses in patients with non-small-cell lung cancer (NSCLC). However, it is still undefined about the efficacy of PD-1/PD-L1 inhibitors in NSCLC patients with EGFR activating mutations. Preclinical studies indicate the immune modulatory effect of EGFR signaling by regulating expression of MHC I/II and PD-L1 on tumor cells and activity of lymphocytes. Thus, it might be practicable for the use of PD-1/PD-L1 inhibitors as monotherapy or combined with EGFR-TKIs in patients with EGFR activating mutations. In this review, we discussed the regulation effect of EGFR signaling on PD-1/PD-L1 pathway and the potential mechanisms behind combing EGFR-TKIs with PD-1/PD-L1 inhibitors. We also reviewed current available data on PD-1/PD-L1 inhibitors as monotherapy or combined with EGFR-TKIs in NSCLC with EGFR activating mutations, and explored possible factors influence its efficacy, which would be important considerations for future clinical trial designs. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Loss of EGFR-ASAP1 signaling in metastatic and unresectable hepatoblastoma.

    PubMed

    Ranganathan, Sarangarajan; Ningappa, Mylarappa; Ashokkumar, Chethan; Higgs, Brandon W; Min, Jun; Sun, Qing; Schmitt, Lori; Subramaniam, Shankar; Hakonarson, Hakon; Sindhi, Rakesh

    2016-12-02

    Hepatoblastoma (HBL), the most common childhood liver cancer is cured with surgical resection after chemotherapy or with liver transplantation if local invasion and multifocality preclude resection. However, variable survival rates of 60-80% and debilitating chemotherapy sequelae argue for more informed treatment selection, which is not possible by grading the Wnt-β-catenin over activity present in most HBL tumors. A hypothesis-generating whole transcriptome analysis shows that HBL tumors removed at transplantation are enriched most for cancer signaling pathways which depend predominantly on epidermal growth factor (EGF) signaling, and to a lesser extent, on aberrant Wnt-β-catenin signaling. We therefore evaluated whether EGFR, ASAP1, ERBB2 and ERBB4, which signal downstream after ligation of EGF, and which show aberrant expression in several other invasive cancers, would also predict HBL tumor invasiveness. Immunohistochemistry of HBL tumors (n = 60), which are histologically heterogeneous, shows that compared with well-differentiated fetal cells, less differentiated embryonal and undifferentiated small cells (SCU) progressively lose EGFR and ASAP1 expression. This trend is exaggerated in unresectable, locally invasive or metastatic tumors, in which embryonal tumor cells are EGFR-negative, while SCU cells are EGFR-negative and ASAP1-negative. Loss of EGFR-ASAP1 signaling characterizes undifferentiated and invasive HBL. EGFR-expressing HBL tumors present novel therapeutic targeting opportunities.

  1. Structural signature of the G719S-T790M double mutation in the EGFR kinase domain and its response to inhibitors

    PubMed Central

    C., George Priya Doss; B., Rajith; Chakraborty, Chiranjib; N., NagaSundaram; Ali, Shabana Kouser; Zhu, Hailong

    2014-01-01

    Some individuals with non-small-cell lung cancer (NSCLC) benefit from therapies targeting epidermal growth factor receptor (EGFR), and the characterization of a new mechanism of resistance to the EGFR-specific antibody gefitinib will provide valuable insight into how therapeutic strategies might be designed to overcome this particular resistance mechanism. The G719S and T790M mutations and their combination were involved in causing different conformational redistribution of EGFR. In the present computational study, we analyzed the impact and structural influence of G719S/T790M double mutation (DM) in EGFR with ligand (gefitinib) through molecular dynamic simulation (50 ns) and docking analysis. We observed the escalation in distance between the functional loop and activation loop with respect to T790M mutation compared to the G719S mutation. Furthermore, we confirmed that the G719S mutation causes the ligand to move closer to the hinge region, whereas T790M makes the ligand escape from the binding pocket. Obtained results provide with an explanation for the resistance induced by T790M and a vital clue for the design of drugs to combat gefitinib resistance. PMID:25091415

  2. Cancer-associated fibroblasts promote epithelial-mesenchymal transition and EGFR-TKI resistance of non-small cell lung cancers via HGF/IGF-1/ANXA2 signaling.

    PubMed

    Yi, Yanmei; Zeng, Shanshan; Wang, Zhaotong; Wu, Minhua; Ma, Yuanhuan; Ye, Xiaoxia; Zhang, Biao; Liu, Hao

    2018-03-01

    The involvement of the tumor stromal cells in acquired resistance of non-small cell lung cancers (NSCLCs) to tyrosine kinase inhibitors (TKIs) has previously been reported, but the precise mechanism remains unclear. In the present study, we investigated the role and mechanism underlying Cancer-associated fibroblasts (CAFs) in TKI resistance of NSCLCs. In vitro and in vivo experiments showed that HCC827 and PC9 cells, non-small cell lung cancer cells with EGFR-activating mutations, became resistant to the EGFR-TKI gefitinib when cultured with CAFs isolated from NSCLC tissues. Moreover, we showed that CAFs could induce epithelial-mesenchymal transition (EMT) phenotype of HCC827 and PC9 cells, with an associated change in the expression of epithelial to mesenchymal transition markers. Using proteomics-based method, we identified that CAFs significantly increased the expression of the Annexin A2 (ANXA2). More importantly, knockdown of ANXA2 completely reversed EMT phenotype and gefitinib resistance induced by CAFs. Furthermore, we found that CAFs increased the expression and phosphorylation of ANXA2 by secretion of growth factors HGF and IGF-1 and by activation of the corresponding receptors c-met and IGF-1R. Dual inhibition of HGF/c-met and IGF-1/IGF-1R pathways could significantly suppress ANXA2, and markedly reduced CAFs-induced EMT and gefitinib resistance. Taken together, these findings indicate that CAFs promote EGFR-TKIs resistance through HGF/IGF-1/ANXA2/EMT signaling and may be an ideal therapeutic target in NSCLCs with EGFR-activating mutations. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Optimization of Dosing for EGFR-Mutant Non–Small Cell Lung Cancer with Evolutionary Cancer Modeling

    PubMed Central

    Chmielecki, Juliann; Foo, Jasmine; Oxnard, Geoffrey R.; Hutchinson, Katherine; Ohashi, Kadoaki; Somwar, Romel; Wang, Lu; Amato, Katherine R.; Arcila, Maria; Sos, Martin L.; Socci, Nicholas D.; Viale, Agnes; de Stanchina, Elisa; Ginsberg, Michelle S.; Thomas, Roman K.; Kris, Mark G.; Inoue, Akira; Ladanyi, Marc; Miller, Vincent A.; Michor, Franziska; Pao, William

    2012-01-01

    Non–small cell lung cancers (NSCLCs) that harbor mutations within the epidermal growth factor receptor (EGFR) gene are sensitive to the tyrosine kinase inhibitors (TKIs) gefitinib and erlotinib. Unfortunately, all patients treated with these drugs will acquire resistance, most commonly as a result of a secondary mutation within EGFR (T790M). Because both drugs were developed to target wild-type EGFR, we hypothesized that current dosing schedules were not optimized for mutant EGFR or to prevent resistance. To investigate this further, we developed isogenic TKI-sensitive and TKI-resistant pairs of cell lines that mimic the behavior of human tumors. We determined that the drug-sensitive and drug-resistant EGFR-mutant cells exhibited differential growth kinetics, with the drug-resistant cells showing slower growth. We incorporated these data into evolutionary mathematical cancer models with constraints derived from clinical data sets. This modeling predicted alternative therapeutic strategies that could prolong the clinical benefit of TKIs against EGFR-mutant NSCLCs by delaying the development of resistance. PMID:21734175

  4. The diagnosis and treatment of brain metastases in EGFR mutant lung cancer.

    PubMed

    Minchom, Anna; Yu, Ken C; Bhosle, Jaishree; O'Brien, Mary

    2014-05-01

    The epidemiology of non-small-cell lung cancer (NSCLC) has changed with a new pattern of disease emerging - a form of adenocarcinoma in mostly younger female patients, who are never or light smokers and more frequently in East Asian populations. Description of EGF receptor (EGFR) mutations has allowed new management strategies to evolve. Oral targeted therapies have broadened the treatment options in the advanced setting with the potential for periods of long term response. The brain is a common site of metastases with EGFR mutated lung cancer typically displaying asymptomatic, small volume, multiple lesions that respond to treatment. We explore the role of local and system therapies for brain metastases in this disease including the role of EGFR inhibitors.

  5. Protein Kinase G facilitates EGFR-mediated cell death in MDA-MB-468 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, Nicole M.; Ceresa, Brian P., E-mail: brian.ceresa@louisville.edu

    The Epidermal Growth Factor Receptor (EGFR) is a transmembrane receptor tyrosine kinase with critical implications in cell proliferation, migration, wound healing and the regulation of apoptosis. However, the EGFR has been shown to be hyper-expressed in a number of human malignancies. The MDA-MB-468 metastatic breast cell line is one example of this. This particular cell line hyper-expresses the EGFR and undergoes EGFR-mediated apoptosis in response to EGF ligand. The goal of this study was to identify the kinases that could be potential intermediates for the EGFR-mediated induction of apoptosis intracellularly. After identifying Cyclic GMP-dependent Protein Kinase G (PKG) as amore » plausible intermediate, we wanted to determine the temporal relationship of these two proteins in the induction of apoptosis. We observed a dose-dependent decrease in MDA-MB-468 cell viability, which was co-incident with increased PKG activity as measured by VASPSer239 phosphorylation. In addition, we observed a dose dependent decrease in cell viability, as well as an increase in apoptosis, in response to two different PKG agonists, 8-Bromo-cGMP and 8-pCPT-cGMP. MDA-MB-468 cells with reduced PKG activity had attenuated EGFR-mediated apoptosis. These findings indicate that PKG does not induce cell death via transphosphorylation of the EGFR. Instead, PKG activity occurs following EGFR activation. Together, these data indicate PKG as an intermediary in EGFR-mediated cell death, likely via apoptotic pathway.« less

  6. EMT and EGFR in CTCs cytokeratin negative non-metastatic breast cancer

    PubMed Central

    Alvarez-Cubero, Maria J.; Nadal, Rosa; Sanchez-Rovira, Pedro; Salido, Marta; Rodríguez, María; García-Puche, Jose L.; Delgado-Rodriguez, Miguel; Solé, Francisco; García, Maria A.; Perán, Macarena; Rosell, Rafael; Marchal, Juan A.; Lorente, Jose A.

    2014-01-01

    Circulating tumor cells (CTCs) are frequently associated with epithelialmesenchymal transition (EMT). The objective of this study was to detect EMT phenotype through Vimentin (VIM) and Slug expression in cytokeratin (CK)-negative CTCs in non-metastatic breast cancer patients and to determine the importance of EGFR in the EMT phenomenon. In CK-negative CTCs samples, both VIM and Slug markers were co-expressed in the most of patients. Among patients EGFR+, half of them were positive for these EMT markers. Furthermore, after a systemic treatment 68% of patients switched from CK- to CK+ CTCs. In our experimental model we found that activation of EGFR signaling by its ligand on MCF-7 cells is sufficient to increase EMT phenotypes, to inhibit apoptotic events and to induce the loss of CK expression. The simultaneous detection of both EGFR and EMT markers in CTCs may improve prognostic or predictive information in patients with operable breast cancer. PMID:25277187

  7. EGFR-dependent TOR-independent endocycles support Drosophila gut epithelial regeneration.

    PubMed

    Xiang, Jinyi; Bandura, Jennifer; Zhang, Peng; Jin, Yinhua; Reuter, Hanna; Edgar, Bruce A

    2017-05-09

    Following gut epithelial damage, epidermal growth factor receptor/mitogen-activated protein kinase (EGFR/MAPK) signalling triggers Drosophila intestinal stem cells to produce enteroblasts (EBs) and enterocytes (ECs) that regenerate the gut. As EBs differentiate into ECs, they become postmitotic, but undergo extensive growth and DNA endoreplication. Here we report that EGFR/RAS/MAPK signalling is required and sufficient to drive damage-induced EB/EC growth. Endoreplication occurs exclusively in EBs and newborn ECs that inherit EGFR and active MAPK from fast-dividing progenitors. Mature ECs lack EGF receptors and are refractory to growth signalling. Genetic tests indicated that stress-dependent EGFR/MAPK promotes gut regeneration via a novel mechanism that operates independently of Insulin/Pi3K/TOR signalling, which is nevertheless required in nonstressed conditions. The E2f1 transcription factor is required for and sufficient to drive EC endoreplication, and Ras/Raf signalling upregulates E2f1 levels posttranscriptionally. We illustrate how distinct signalling mechanisms direct stress-dependent versus homeostatic regeneration, and highlight the importance of postmitotic cell growth in gut epithelial repair.

  8. EGFR-dependent TOR-independent endocycles support Drosophila gut epithelial regeneration

    PubMed Central

    Xiang, Jinyi; Bandura, Jennifer; Zhang, Peng; Jin, Yinhua; Reuter, Hanna; Edgar, Bruce A.

    2017-01-01

    Following gut epithelial damage, epidermal growth factor receptor/mitogen-activated protein kinase (EGFR/MAPK) signalling triggers Drosophila intestinal stem cells to produce enteroblasts (EBs) and enterocytes (ECs) that regenerate the gut. As EBs differentiate into ECs, they become postmitotic, but undergo extensive growth and DNA endoreplication. Here we report that EGFR/RAS/MAPK signalling is required and sufficient to drive damage-induced EB/EC growth. Endoreplication occurs exclusively in EBs and newborn ECs that inherit EGFR and active MAPK from fast-dividing progenitors. Mature ECs lack EGF receptors and are refractory to growth signalling. Genetic tests indicated that stress-dependent EGFR/MAPK promotes gut regeneration via a novel mechanism that operates independently of Insulin/Pi3K/TOR signalling, which is nevertheless required in nonstressed conditions. The E2f1 transcription factor is required for and sufficient to drive EC endoreplication, and Ras/Raf signalling upregulates E2f1 levels posttranscriptionally. We illustrate how distinct signalling mechanisms direct stress-dependent versus homeostatic regeneration, and highlight the importance of postmitotic cell growth in gut epithelial repair. PMID:28485389

  9. The Design and Development of Potent Small Molecules as Anticancer Agents Targeting EGFR TK and Tubulin Polymerization

    PubMed Central

    Ihmaid, Saleh; Ahmed, Hany E. A.; Zayed, Mohamed F.

    2018-01-01

    Some novel anthranilate diamides derivatives 4a–e, 6a–c and 9a–d were designed and synthesized to be evaluated for their in vitro anticancer activity. Structures of all newly synthesized compounds were confirmed by infra-red (IR), high-resolution mass (HR-MS) spectra, 1H nuclear magnetic resonance (NMR) and 13C nuclear magnetic resonance (NMR) analyses. Cytotoxic screening was performed according to (3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide) tetrazolium (MTT) assay method using erlotinib as a reference drug against two different types of breast cancer cells. The molecular docking study was performed for representative compounds against two targets, epidermal growth factor receptor (EGFR) and tubulin in colchicine binding site to assess their binding affinities in order to rationalize their anticancer activity in a qualitative way. The data obtained from the molecular modeling was correlated with that obtained from the biological screening. These data showed considerable anticancer activity for these newly synthesized compounds. Biological data for most of the anthranilate diamide showed excellent activity with nanomolar or sub nanomolar half maximal inhibitory concentration (IC50) values against tumor cells. EGFR tyrosine kinase (TK) inhibition assay, tubulin inhibition assay and apoptosis analysis were performed for selected compounds to get more details about their mechanism of action. Extensive structure activity relationship (SAR) analyses were also carried out. PMID:29385728

  10. Targeting Epidermal Growth Factor Receptor-Related Signaling Pathways in Pancreatic Cancer.

    PubMed

    Philip, Philip A; Lutz, Manfred P

    2015-10-01

    Pancreatic cancer is aggressive, chemoresistant, and characterized by complex and poorly understood molecular biology. The epidermal growth factor receptor (EGFR) pathway is frequently activated in pancreatic cancer; therefore, it is a rational target for new treatments. However, the EGFR tyrosine kinase inhibitor erlotinib is currently the only targeted therapy to demonstrate a very modest survival benefit when added to gemcitabine in the treatment of patients with advanced pancreatic cancer. There is no molecular biomarker to predict the outcome of erlotinib treatment, although rash may be predictive of improved survival; EGFR expression does not predict the biologic activity of anti-EGFR drugs in pancreatic cancer, and no EGFR mutations are identified as enabling the selection of patients likely to benefit from treatment. Here, we review clinical studies of EGFR-targeted therapies in combination with conventional cytotoxic regimens or multitargeted strategies in advanced pancreatic cancer, as well as research directed at molecules downstream of EGFR as alternatives or adjuncts to receptor targeting. Limitations of preclinical models, patient selection, and trial design, as well as the complex mechanisms underlying resistance to EGFR-targeted agents, are discussed. Future clinical trials must incorporate translational research end points to aid patient selection and circumvent resistance to EGFR inhibitors.

  11. Early clinical development of epidermal growth factor receptor targeted therapy in breast cancer.

    PubMed

    Matsuda, Naoko; Lim, Bora; Wang, Xiaoping; Ueno, Naoto T

    2017-04-01

    Epidermal growth factor receptor (EGFR) targeted treatment has been evaluated but has not shown a clear clinical benefit for breast cancer. This review article aims to consider the knowledge of the biological background of EGFR pathways in dissecting clinical studies of EGFR targeted treatment in breast cancer. Areas covered: This review focuses on the role of the EGFR pathway and the investigational drugs that target EGFR for breast cancer. Expert opinion: Recent studies have indicated that EGFR targeted therapy for breast cancer has some promising effects for patients with triple-negative breast cancer, basal-like breast cancer, and inflammatory breast cancer. However, predictive and prognostic biomarkers for EGFR targeted therapy have not been identified. The overexpression or amplification of EGFR itself may not be the true factor of induction of the canonical pathway as an oncogenic driver of breast cancer. Instead, downstream, non-canonical pathways related to EGFR may contribute to some aspects of the biological behavior of breast cancer; therefore, the blockade of the receptor could result in sufficient suppression of downstream pathways to inhibit the aggressive behavior of breast cancer. Mechanistic studies to investigate the dynamic interaction between the EGFR pathway and non-canonical pathways are warranted.

  12. A novel anti-EGFR monoclonal antibody inhibiting tumor cell growth by recognizing different epitopes from cetuximab.

    PubMed

    Hong, Kwang-Won; Kim, Chang-Goo; Lee, Seung-Hyun; Chang, Ki-Hwan; Shin, Yong Won; Ryoo, Kyung-Hwan; Kim, Se-Ho; Kim, Yong-Sung

    2010-01-01

    The epidermal growth factor receptor (EGFR) overexpressed in many epithelial tumors is an attractive target for tumor therapy since numerous blocking agents of EGFR signaling have proven their anti-tumor activity. Here we report a novel monoclonal antibody (mAb), A13, which was generated from mice immunized with human cervical carcinoma A431 cells. In addition to binding to soluble EGFR with affinity of K(D) approximately 5.8nM, mAb A13 specifically bound to a variety of tumor cells and human placenta tissues expressing EGFR. A13 efficiently inhibited both EGF-dependant EGFR tyrosine phosphorylation in cervical and breast tumor cells and also in vitro colony formation of EGFR-overexpressing lung tumors. Competition and sandwich ELISAs, competitive surface plasmon resonance, and domain-level epitope mapping analyses demonstrated that mAb A13 competitively bound to the domain III (amino acids 302-503) of EGFR with EGF, but recognized distinct epitopes from those of cetuximab (Erbitux). Our results demonstrated that anti-EGFR mAb A13 interfered with EGFR proliferation signaling by blocking EGF binding to EGFR with different epitopes from those of cetuximab, suggesting that combination therapies of mAb A13 with cetuximab may prove beneficial for anti-tumor therapy.

  13. Immunoliposomal delivery of doxorubicin can overcome multidrug resistance mechanisms in EGFR-overexpressing tumor cells.

    PubMed

    Mamot, Christoph; Ritschard, Reto; Wicki, Andreas; Küng, Willy; Schuller, Jan; Herrmann, Richard; Rochlitz, Christoph

    2012-06-01

    Immunoliposomes (ILs) can be constructed to target the epidermal growth factor receptor (EGFR) to provide efficient intracellular drug delivery in tumor cells. We hypothesized that this approach might be able to overcome drug resistance mechanisms, which remain an important obstacle to better outcomes in cancer therapy. ILs were evaluated in vitro and in vivo against EGFR-overexpressing pairs of human cancer cells (HT-29 and MDA-MB-231) that either lack or feature the multidrug resistance (mdr) phenotype. In multidrug-resistant cell lines, ILs loaded with doxorubicin (DOX) produced 19-216-fold greater cytotoxicity than free DOX, whereas in nonresistant cells, immunoliposomal cytotoxicity of DOX was comparable with that of the free drug. In intracellular distribution studies, free DOX was efficiently pumped out of the multidrug-resistant tumor cells, whereas immunoliposomal DOX leads to 3.5-8 times higher accumulation of DOX in the cytoplasm and 3.5-4.9 times in the nuclei compared with the free drug. Finally, in vivo studies in the MDA-MB-231 Vb100 xenograft model confirmed the ability of anti-EGFR ILs-DOX to efficiently target multidrug-resistant cells and showed impressive antitumor effects, clearly superior to all other treatments. In conclusion, ILs provide efficient and targeted drug delivery to EGFR-overexpressing tumor cells and are capable of completely reversing the multidrug-resistant phenotype of human cancer cells.

  14. Predictive biomarkers for response to EGFR-directed monoclonal antibodies for advanced squamous cell lung cancer.

    PubMed

    Bonomi, P D; Gandara, D; Hirsch, F R; Kerr, K M; Obasaju, C; Paz-Ares, L; Bellomo, C; Bradley, J D; Bunn, P A; Culligan, M; Jett, J R; Kim, E S; Langer, C J; Natale, R B; Novello, S; Pérol, M; Ramalingam, S S; Reck, M; Reynolds, C H; Smit, E F; Socinski, M A; Spigel, D R; Vansteenkiste, J F; Wakelee, H; Thatcher, N

    2018-06-14

    Upregulated expression and aberrant activation of the epidermal growth-factor receptor (EGFR) are found in lung cancer, making EGFR a relevant target for non-small-cell lung cancer (NSCLC). Treatment with anti-EGFR monoclonal antibodies (mAbs) is associated with modest improvement in overall survival in patients with squamous cell lung cancer (SqCLC) who have a significant unmet need for effective treatment options. While there is evidence that using EGFR gene copy number, EGFR mutation, and EGFR protein expression as biomarkers can help select patients who respond to treatment, it is important to consider biomarkers for response in patients treated with combination therapies that include EGFR mAbs. Randomized trials of EGFR-directed mAbs cetuximab and necitumumab in combination with chemotherapy, immunotherapy, or anti-angiogenic therapy in patients with advanced NSCLC, including SqCLC, were searched in the literature. Results of associations of potential biomarkers and outcomes were summarized. Results. Data from phase III clinical trials indicate that patients with NSCLC, including SqCLC, whose tumors express high levels of EGFR protein (H-score of ≥ 200) and/or gene copy numbers of EGFR (e.g., ≥40% cells with ≥4 EGFR copies as detected by fluorescence in situ hybridization; gene amplification in ≥ 10% of analyzed cells) derive greater therapeutic benefits from EGFR-directed mAbs. Biomarker data are limited for EGFR mAbs used in combination with immunotherapy and are absent when used in combination with anti-angiogenic agents. Therapy with EGFR-directed mAbs in combination with chemotherapy is associated with greater clinical benefits in patients with NSCLC, including SqCLC, whose tumors express high levels of EGFR protein and/or have increased EGFR gene copy number. These data support validating the role of these as biomarkers to identify those patients who derive the greatest clinical benefit from EGFR mAb therapy. However, data on biomarkers

  15. Integrated Genomic Characterization Reveals Novel, Therapeutically Relevant Drug Targets in FGFR and EGFR Pathways in Sporadic Intrahepatic Cholangiocarcinoma

    PubMed Central

    Liang, Winnie S.; Fonseca, Rafael; Bryce, Alan H.; McCullough, Ann E.; Barrett, Michael T.; Hunt, Katherine; Patel, Maitray D.; Young, Scott W.; Collins, Joseph M.; Silva, Alvin C.; Condjella, Rachel M.; Block, Matthew; McWilliams, Robert R.; Lazaridis, Konstantinos N.; Klee, Eric W.; Bible, Keith C.; Harris, Pamela; Oliver, Gavin R.; Bhavsar, Jaysheel D.; Nair, Asha A.; Middha, Sumit; Asmann, Yan; Kocher, Jean-Pierre; Schahl, Kimberly; Kipp, Benjamin R.; Barr Fritcher, Emily G.; Baker, Angela; Aldrich, Jessica; Kurdoglu, Ahmet; Izatt, Tyler; Christoforides, Alexis; Cherni, Irene; Nasser, Sara; Reiman, Rebecca; Phillips, Lori; McDonald, Jackie; Adkins, Jonathan; Mastrian, Stephen D.; Placek, Pamela; Watanabe, Aprill T.; LoBello, Janine; Han, Haiyong; Von Hoff, Daniel; Craig, David W.; Stewart, A. Keith; Carpten, John D.

    2014-01-01

    Advanced cholangiocarcinoma continues to harbor a difficult prognosis and therapeutic options have been limited. During the course of a clinical trial of whole genomic sequencing seeking druggable targets, we examined six patients with advanced cholangiocarcinoma. Integrated genome-wide and whole transcriptome sequence analyses were performed on tumors from six patients with advanced, sporadic intrahepatic cholangiocarcinoma (SIC) to identify potential therapeutically actionable events. Among the somatic events captured in our analysis, we uncovered two novel therapeutically relevant genomic contexts that when acted upon, resulted in preliminary evidence of anti-tumor activity. Genome-wide structural analysis of sequence data revealed recurrent translocation events involving the FGFR2 locus in three of six assessed patients. These observations and supporting evidence triggered the use of FGFR inhibitors in these patients. In one example, preliminary anti-tumor activity of pazopanib (in vitro FGFR2 IC50≈350 nM) was noted in a patient with an FGFR2-TACC3 fusion. After progression on pazopanib, the same patient also had stable disease on ponatinib, a pan-FGFR inhibitor (in vitro, FGFR2 IC50≈8 nM). In an independent non-FGFR2 translocation patient, exome and transcriptome analysis revealed an allele specific somatic nonsense mutation (E384X) in ERRFI1, a direct negative regulator of EGFR activation. Rapid and robust disease regression was noted in this ERRFI1 inactivated tumor when treated with erlotinib, an EGFR kinase inhibitor. FGFR2 fusions and ERRFI mutations may represent novel targets in sporadic intrahepatic cholangiocarcinoma and trials should be characterized in larger cohorts of patients with these aberrations. PMID:24550739

  16. Genomic Profiling on an Unselected Solid Tumor Population Reveals a Highly Mutated Wnt/β-Catenin Pathway Associated with Oncogenic EGFR Mutations.

    PubMed

    Jiang, Jingrui; Protopopov, Alexei; Sun, Ruobai; Lyle, Stephen; Russell, Meaghan

    2018-04-09

    Oncogenic epidermal growth factor receptors (EGFRs) can recruit key effectors in diverse cellular processes to propagate oncogenic signals. Targeted and combinational therapeutic strategies have been successfully applied for treating EGFR-driven cancers. However, a main challenge in EGFR therapies is drug resistance due to mutations, oncogenic shift, alternative signaling, and other potential mechanisms. To further understand the genetic alterations associated with oncogenic EGFRs and to provide further insight into optimal and personalized therapeutic strategies, we applied a proprietary comprehensive next-generation sequencing (NGS)-based assay of 435 genes to systematically study the genomic profiles of 1565 unselected solid cancer patient samples. We found that activating EGFR mutations were predominantly detected in lung cancer, particularly in non-small cell lung cancer (NSCLC). The mutational landscape of EGFR-driven tumors covered most key signaling pathways and biological processes. Strikingly, the Wnt/β-catenin pathway was highly mutated (48 variants detected in 46% of the EGFR-driven tumors), and its variant number topped that in the TP53/apoptosis and PI3K-AKT-mTOR pathways. Furthermore, an analysis of mutation distribution revealed a differential association pattern of gene mutations between EGFR exon 19del and EGFR L858R. Our results confirm the aggressive nature of the oncogenic EGFR-driven tumors and reassure that a combinational strategy should have advantages over an EGFR-targeted monotherapy and holds great promise for overcoming drug resistance.

  17. Receptor-Mediated Uptake and Intracellular Sorting of Multivalent Lipid Nanoparticles Against the Epidermal Growth Factor Receptor (EGFR) and the Human EGFR 2 (HER2)

    NASA Astrophysics Data System (ADS)

    Tran, David Tu

    In the area of receptor-targeted lipid nanoparticles for drug delivery, efficiency has been mainly focused on cell-specificity, endocytosis, and subsequently effects on bioactivity such as cell growth inhibition. Aspects of targeted liposomal uptake and intracellular sorting are not well defined. This dissertation assessed a series of ligands as targeted functional groups against HER2 and EGFR for liposomal drug delivery. Receptor-mediated uptake, both mono-targeted and dual-targeted to multiple receptors of different ligand valence, and the intracellular sorting of lipid nanoparticles were investigated to improve the delivery of drugs to cancer cells. Lipid nanoparticles were functionalized through a new sequential micelle transfer---conjugation method, while the micelle transfer method was extended to growth factors. Through a combination of both techniques, anti-HER2 and anti-EGFR dual-targeted immunoliposomes with different combinations of ligand valence were developed for comparative studies. With the array of lipid nanoparticles, the uptake and cytotoxicity of lipid nanoparticles in relationship to ligand valence, both mono-targeting and dual-targeting, were evaluated on a small panel of breast cancer cell lines that express HER2 and EGFR of varying levels. Comparable uptake ratios of ligand to expressed receptor and apparent cooperativity were observed. For cell lines that express both receptors, additive dose-uptake effects were also observed with dual-targeted immunoliposomes, which translated to marginal improvements in cell growth inhibition with doxorubicin delivery. Colocalization analysis revealed that ligand-conjugated lipid nanoparticles settle to endosomal compartments similar to their attached ligands. Pathway transregulation and pathway saturation were also observed to affect trafficking. In the end, liposomes routed to the recycling endosomes were never observed to traffic beyond the endosomes nor to be exocytose like recycled ligands. Based on

  18. Structure-Directed and Tailored Diversity Synthetic Antibody Libraries Yield Novel Anti-EGFR Antagonists.

    PubMed

    Miersch, Shane; Maruthachalam, Bharathikumar Vellalore; Geyer, C Ronald; Sidhu, Sachdev S

    2017-05-19

    We tested whether grafting an interaction domain into the hypervariable loop of a combinatorial antibody library could promote targeting to a specific epitope. Formation of the epidermal growth factor receptor (EGFR) signaling heterodimer involves extensive contacts mediated by a "dimerization loop." We grafted the dimerization loop into the third hypervariable loop of a synthetic antigen-binding fragment (Fab) library and diversified other loops using a tailored diversity strategy. This structure-directed Fab library and a naı̈ve synthetic Fab library were used to select Fabs against EGFR. Both libraries yielded high affinity Fabs that bound to overlapping epitopes on cell-surface EGFR, inhibited receptor activation, and targeted epitopes distinct from those of cetuximab and panitumumab. Epitope mapping experiments revealed complex sites of interaction, comprised of domains I and II but not exclusively localized to the receptor dimerization loop. These results validate the grafting approach for designing Fab libraries and also underscore the versatility of naı̈ve synthetic libraries.

  19. Development of a Novel Human scFv Against EGFR L2 Domain by Phage Display Technology.

    PubMed

    Rahbarnia, Leila; Farajnia, Safar; Babaei, Hossein; Majidi, Jafar; Veisi, Kamal; Khosroshahi, Shiva Ahdi; Tanomand, Asghar

    2017-01-01

    Epidermal growth factor receptor (EGFR) as a transmembrane tyrosine kinase receptor frequently overexpresses in tumors with epithelial origin. The L2 domain from extracellular part of EGFR is involved in ligand binding and the blockage of this domain prevents activation of related signaling pathways. This study was aimed to develop a novel human scFv against EGFR L2 domain as a promising target for cancer therapy. The L2 recombinant protein was purified and used for panning a human scFv phage library (Tomlinson I). In this study, a novel screening strategy was applied to select clones with high binding and enrichment of rare specific phage clones of the L2 protein. After five biopanning rounds several specific clones were isolated which among them one phage clone with high binding was purified for further analysis. The specific interaction of selected clone against target antigen was confirmed by ELISA and western blotting. Immunofluorescence staining showed that purified scFv binds to A431 cells surface, displaying EGFR surface receptor. In the present study, we isolated for the first time a novel human scFv against EGFR L2 domain. This study can be the groundwork for developing more effective diagnostic and therapeutic agents against EGFR overexpressing cancers using this novel human anti-L2 ScFv. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. Overcoming resistance to molecularly targeted anticancer therapies: rational drug combinations based on EGFR and MAPK inhibition for solid tumours and haematologic malignancies

    PubMed Central

    Tortora, Giampaolo; Bianco, Roberto; Daniele, Gennaro; Ciardiello, Fortunato; McCubrey, James A; Ricciardi, Maria Rosaria; Ciuffreda, Ludovica; Cognetti, Francesco; Tafuri, Agostino; Milella, Michele

    2007-01-01

    Accumulating evidence suggests that cancer can be envisioned as a “signaling disease”, in which alterations in the cellular genome affect the expression and/or function of oncogenes and tumour suppressor genes. This ultimately disrupts the physiologic transmission of biochemical signals that normally regulate cell growth, differentiation and programmed cell death (apoptosis). From a clinical standpoint, signal transduction inhibition as a therapeutic strategy for human malignancies has recently achieved remarkable success. However, as additional drugs move forward into the clinical arena, intrinsic and acquired resistance to “targeted” agents becomes an issue for their clinical utility. One way to overcome resistance to targeted agents is to identify genetic and epigenetic aberrations underlying sensitivity/resistance, thus enabling the selection of patients that will most likely benefit from a specific therapy. Since resistance often ensues as a result of the concomitant activation of multiple, often overlapping, signaling pathways, another possibility is to interfere with multiple, cross-talking pathways involved in growth and survival control in a rational, mechanism-based, fashion. These concepts may be usefully applied, among others, to agents that target two major signal transduction pathways: the one initiated by epidermal growth factor receptor (EGFR) signaling and the one converging on mitogen-activated protein kinase (MAPK) activation. Here we review the molecular mechanisms of sensitivity/resistance to EGFR inhibitors, as well as the rationale for combining them with other targeted agents, in an attempt to overcome resistance. In the second part of the paper, we review MAPK-targeted agents, focusing on their therapeutic potential in hematologic malignancies, and examine the prospects for combinations of MAPK inhibitors with cytotoxic agents or other signal transduction-targeted agents to obtain synergistic anti-tumour effects. PMID:17482503

  1. BAG3 promotes tumour cell proliferation by regulating EGFR signal transduction pathways in triple negative breast cancer.

    PubMed

    Shields, Sarah; Conroy, Emer; O'Grady, Tony; McGoldrick, Alo; Connor, Kate; Ward, Mark P; Useckaite, Zivile; Dempsey, Eugene; Reilly, Rebecca; Fan, Yue; Chubb, Anthony; Matallanas, David Gomez; Kay, Elaine W; O'Connor, Darran; McCann, Amanda; Gallagher, William M; Coppinger, Judith A

    2018-03-20

    Triple-negative breast cancer (TNBC), is a heterogeneous disease characterised by absence of expression of the estrogen receptor (ER), progesterone receptor (PR) and lack of amplification of human epidermal growth factor receptor 2 (HER2). TNBC patients can exhibit poor prognosis and high recurrence stages despite early response to chemotherapy treatment. In this study, we identified a pro-survival signalling protein BCL2- associated athanogene 3 (BAG3) to be highly expressed in a subset of TNBC cell lines and tumour tissues. High mRNA expression of BAG3 in TNBC patient cohorts significantly associated with a lower recurrence free survival. The epidermal growth factor receptor (EGFR) is amplified in TNBC and EGFR signalling dynamics impinge on cancer cell survival and disease recurrence. We found a correlation between BAG3 and EGFR expression in TNBC cell lines and determined that BAG3 can regulate tumour cell proliferation, migration and invasion in EGFR expressing TNBC cells lines. We identified an interaction between BAG3 and components of the EGFR signalling networks using mass spectrometry. Furthermore, BAG3 contributed to regulation of proliferation in TNBC cell lines by reducing the activation of components of the PI3K/AKT and FAK/Src signalling subnetworks. Finally, we found that combined targeting of BAG3 and EGFR was more effective than inhibition of EGFR with Cetuximab alone in TNBC cell lines. This study demonstrates a role for BAG3 in regulation of distinct EGFR modules and highlights the potential of BAG3 as a therapeutic target in TNBC.

  2. BAG3 promotes tumour cell proliferation by regulating EGFR signal transduction pathways in triple negative breast cancer

    PubMed Central

    Shields, Sarah; Conroy, Emer; O’Grady, Tony; McGoldrick, Alo; Connor, Kate; Ward, Mark P.; Useckaite, Zivile; Dempsey, Eugene; Reilly, Rebecca; Fan, Yue; Chubb, Anthony; Matallanas, David Gomez; Kay, Elaine W.; O’Connor, Darran; McCann, Amanda; Gallagher, William M.; Coppinger, Judith A.

    2018-01-01

    Triple-negative breast cancer (TNBC), is a heterogeneous disease characterised by absence of expression of the estrogen receptor (ER), progesterone receptor (PR) and lack of amplification of human epidermal growth factor receptor 2 (HER2). TNBC patients can exhibit poor prognosis and high recurrence stages despite early response to chemotherapy treatment. In this study, we identified a pro-survival signalling protein BCL2- associated athanogene 3 (BAG3) to be highly expressed in a subset of TNBC cell lines and tumour tissues. High mRNA expression of BAG3 in TNBC patient cohorts significantly associated with a lower recurrence free survival. The epidermal growth factor receptor (EGFR) is amplified in TNBC and EGFR signalling dynamics impinge on cancer cell survival and disease recurrence. We found a correlation between BAG3 and EGFR expression in TNBC cell lines and determined that BAG3 can regulate tumour cell proliferation, migration and invasion in EGFR expressing TNBC cells lines. We identified an interaction between BAG3 and components of the EGFR signalling networks using mass spectrometry. Furthermore, BAG3 contributed to regulation of proliferation in TNBC cell lines by reducing the activation of components of the PI3K/AKT and FAK/Src signalling subnetworks. Finally, we found that combined targeting of BAG3 and EGFR was more effective than inhibition of EGFR with Cetuximab alone in TNBC cell lines. This study demonstrates a role for BAG3 in regulation of distinct EGFR modules and highlights the potential of BAG3 as a therapeutic target in TNBC. PMID:29644001

  3. Imaging and targeted therapy of pancreatic ductal adenocarcinoma using the theranostic sodium iodide symporter (NIS) gene

    PubMed Central

    Trajkovic-Arsic, Marija; Klutz, Kathrin; Braren, Rickmer; Schwaiger, Markus; Nelson, Peter J.; Ogris, Manfred; Wagner, Ernst; Siveke, Jens T.; Spitzweg, Christine

    2017-01-01

    The theranostic sodium iodide symporter (NIS) gene allows detailed molecular imaging of transgene expression and application of therapeutic radionuclides. As a crucial step towards clinical application, we investigated tumor specificity and transfection efficiency of epidermal growth factor receptor (EGFR)-targeted polyplexes as systemic NIS gene delivery vehicles in an advanced genetically engineered mouse model of pancreatic ductal adenocarcinoma (PDAC) that closely reflects human disease. PDAC was induced in mice by pancreas-specific activation of constitutively active KrasG12D and deletion of Trp53. We used tumor-targeted polyplexes (LPEI-PEG-GE11/NIS) based on linear polyethylenimine, shielded by polyethylene glycol and coupled with the EGFR-specific peptide ligand GE11, to target a NIS-expressing plasmid to high EGFR-expressing PDAC. In vitro iodide uptake studies in cell explants from murine EGFR-positive and EGFR-ablated PDAC lesions demonstrated high transfection efficiency and EGFR-specificity of LPEI-PEG-GE11/NIS. In vivo 123I gamma camera imaging and three-dimensional high-resolution 124I PET showed significant tumor-specific accumulation of radioiodide after systemic LPEI-PEG-GE11/NIS injection. Administration of 131I in LPEI-PEG-GE11/NIS-treated mice resulted in significantly reduced tumor growth compared to controls as determined by magnetic resonance imaging, though survival was not significantly prolonged. This study opens the exciting prospect of NIS-mediated radionuclide imaging and therapy of PDAC after systemic non-viral NIS gene delivery. PMID:28380420

  4. Redirecting T-Cell Specificity to EGFR Using mRNA to Self-limit Expression of Chimeric Antigen Receptor.

    PubMed

    Caruso, Hillary G; Torikai, Hiroki; Zhang, Ling; Maiti, Sourindra; Dai, Jianliang; Do, Kim-Anh; Singh, Harjeet; Huls, Helen; Lee, Dean A; Champlin, Richard E; Heimberger, Amy B; Cooper, Laurence J N

    2016-06-01

    Potential for on-target, but off-tissue toxicity limits therapeutic application of genetically modified T cells constitutively expressing chimeric antigen receptors (CARs) from tumor-associated antigens expressed in normal tissue, such as epidermal growth factor receptor (EGFR). Curtailing expression of CAR through modification of T cells by in vitro-transcribed mRNA species is one strategy to mitigate such toxicity. We evaluated expression of an EGFR-specific CAR coded from introduced mRNA in human T cells numerically expanded ex vivo to clinically significant numbers through coculture with activating and propagating cells (AaPC) derived from K562 preloaded with anti-CD3 antibody. The density of AaPC could be adjusted to affect phenotype of T cells such that reduced ratio of AaPC resulted in higher proportion of CD8 and central memory T cells that were more conducive to electrotransfer of mRNA than T cells expanded with high ratios of AaPC. RNA-modified CAR T cells produced less cytokine, but demonstrated similar cytolytic capacity as DNA-modified CAR T cells in response to EGFR-expressing glioblastoma cells. Expression of CAR by mRNA transfer was transient and accelerated by stimulation with cytokine and antigen. Loss of CAR abrogated T-cell function in response to tumor and normal cells expressing EGFR. We describe a clinically applicable method to propagate and modify T cells to transiently express EGFR-specific CAR to target EGFR-expressing tumor cells that may be used to limit on-target, off-tissue toxicity to normal tissue.

  5. Activation of the PD-1 pathway contributes to immune escape in EGFR-driven lung tumors

    PubMed Central

    Akbay, Esra A; Koyama, Shohei; Carretero, Julian; Altabef, Abigail; Tchaicha, Jeremy H; Christensen, Camilla L; Mikse, Oliver R; Cherniack, Andrew D; Beauchamp, Ellen M; Pugh, Trevor J; Wilkerson, Matthew D; Fecci, Peter E; Butaney, Mohit; Reibel, Jacob B; Soucheray, Margaret; Cohoon, Travis J; Janne, Pasi A; Meyerson, Matthew; Hayes, D. Neil; Shapiro, Geoffrey I; Shimamura, Takeshi; Sholl, Lynette M; Rodig, Scott J; Freeman, Gordon J; Hammerman, Peter S; Dranoff, Glenn; Wong, Kwok-Kin

    2013-01-01

    The success in lung cancer therapy with Programmed Death (PD)-1 blockade suggests that immune escape mechanisms contribute to lung tumor pathogenesis. We identified a correlation between Epidermal Growth Factor Receptor (EGFR) pathway activation and a signature of immunosuppression manifested by upregulation of PD-1, PD-L1, cytotoxic T lymphocyte antigen-4 (CTLA-4), and multiple tumor-promoting inflammatory cytokines. We observed decreased cytotoxic T cells and increased markers of T cell exhaustion in mouse models of EGFR-driven lung cancer. PD-1 antibody blockade improved the survival of mice with EGFR-driven adenocarcinomas by enhancing effector T cell function and lowering the levels of tumor-promoting cytokines. Expression of mutant EGFR in bronchial epithelial cells induced PD-L1, and PD-L1 expression was reduced by EGFR inhibitors in non-small cell lung cancer cell lines with activated EGFR. These data suggest that oncogenic EGFR signaling remodels the tumor microenvironment to trigger immune escape, and mechanistically link treatment response to PD-1 inhibition. PMID:24078774

  6. Cellular localization of the activated EGFR determines its effect on cell growth in MDA-MB-468 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hyatt, Dustin C.; Ceresa, Brian P.

    2008-11-01

    The epidermal growth factor (EGF) receptor (EGFR) is a ubiquitously expressed receptor tyrosine kinase that regulates diverse cell functions that are dependent upon cell type, the presence of downstream effectors, and receptor density. In addition to activating biochemical pathways, ligand stimulation causes the EGFR to enter the cell via clathrin-coated pits. Endocytic trafficking influences receptor signaling by controlling the duration of EGFR phosphorylation and coordinating the receptor's association with downstream effectors. To better understand the individual contributions of cell surface and cytosolic EGFRs on cell physiology, we used EGF that was conjugated to 900 nm polystyrene beads (EGF-beads). EGF-beads canmore » stimulate the EGFR and retain the activated receptor at the plasma membrane. In MDA-MB-468 cells, a breast cancer cell line that over-expresses the EGFR, only internalized, activated EGFRs stimulate caspase-3 and induce cell death. Conversely, signaling cascades triggered from activated EGFR retained at the cell surface inhibit caspase-3 and promote cell proliferation. Thus, through endocytosis, the activated EGFR can differentially regulate cell growth in MDA-MB-468 cells.« less

  7. Molecular assays in detecting EGFR gene aberrations: an updated HER2-dependent algorithm for interpreting gene signals; a short technical report.

    PubMed

    Tsiambas, Evangelos; Ragos, Vasileios; Lefas, Alicia Y; Georgiannos, Stavros N; Rigopoulos, Dimitrios N; Georgakopoulos, Georgios; Stamatelopoulos, Athanasios; Grapsa, Dimitra; Syrigos, Konstantinos

    2016-01-01

    Purpose: Among oncogenes that have already been identified and cloned, Epidermal Growth Factor Receptor (EGFR) remains one of the most significant. Understanding its deregulation mechanisms improves critically patients' selection for personalized therapies based on modern molecular biology and oncology guidelines. Anti-EGFR targeted therapeutic strategies have been developed based on specific genetic profiles and applied in subgroups of patients suffering by solid cancers of different histogenetic origin. Detection of specific EGFR somatic mutations leads to tyrosine kinase inhibitors (TKIs) application in subsets of them. Concerning EGFR gene numerical imbalances, identification of pure gene amplification is critical for targeting the molecule via monoclonal antibodies (mAbs). In the current technical paper we demonstrate the main molecular methods applied in EGFR analyses focused also on new data in interpreting numerical imbalances based on ASCO/ACAP guidelines for HER2 in situ hybridization (ISH) clarifications.

  8. Histone Deacetylase 3 Inhibition Overcomes BIM Deletion Polymorphism-Mediated Osimertinib Resistance in EGFR-Mutant Lung Cancer.

    PubMed

    Tanimoto, Azusa; Takeuchi, Shinji; Arai, Sachiko; Fukuda, Koji; Yamada, Tadaaki; Roca, Xavier; Ong, S Tiong; Yano, Seiji

    2017-06-15

    Purpose: The BIM deletion polymorphism is associated with apoptosis resistance to EGFR tyrosine kinase inhibitors (EGFR-TKI), such as gefitinib and erlotinib, in non-small cell lung cancer (NSCLC) harboring EGFR mutations. Here, we investigated whether the BIM deletion polymorphism contributes to resistance against osimertinib, a third-generation EGFR-TKI. In addition, we determined the efficacy of a histone deacetylase (HDAC) inhibitor, vorinostat, against this form of resistance and elucidated the underlying mechanism. Experimental Design: We used EGFR -mutated NSCLC cell lines, which were either heterozygous or homozygous for the BIM deletion polymorphism, to evaluate the effect of osimertinib in vitro and in vivo Protein expression was examined by Western blotting. Alternative splicing of BIM mRNA was analyzed by RT-PCR. Results: EGFR -mutated NSCLC cell lines with the BIM deletion polymorphism exhibited apoptosis resistance to osimertinib in a polymorphism dosage-dependent manner, and this resistance was overcome by combined use with vorinostat. Experiments with homozygous BIM deletion-positive cells revealed that vorinostat affected the alternative splicing of BIM mRNA in the deletion allele, increased the expression of active BIM protein, and thereby induced apoptosis in osimertinib-treated cells. These effects were mediated predominantly by HDAC3 inhibition. In xenograft models, combined use of vorinostat with osimertinib could regress tumors in EGFR -mutated NSCLC cells homozygous for the BIM deletion polymorphism. Moreover, this combination could induce apoptosis even when tumor cells acquired EGFR -T790M mutations. Conclusions: These findings indicate the importance of developing HDAC3-selective inhibitors, and their combined use with osimertinib, for treating EGFR -mutated lung cancers carrying the BIM deletion polymorphism. Clin Cancer Res; 23(12); 3139-49. ©2016 AACR . ©2016 American Association for Cancer Research.

  9. Preclinical Comparison of Osimertinib with Other EGFR-TKIs in EGFR-Mutant NSCLC Brain Metastases Models, and Early Evidence of Clinical Brain Metastases Activity.

    PubMed

    Ballard, Peter; Yates, James W T; Yang, Zhenfan; Kim, Dong-Wan; Yang, James Chih-Hsin; Cantarini, Mireille; Pickup, Kathryn; Jordan, Angela; Hickey, Mike; Grist, Matthew; Box, Matthew; Johnström, Peter; Varnäs, Katarina; Malmquist, Jonas; Thress, Kenneth S; Jänne, Pasi A; Cross, Darren

    2016-10-15

    Approximately one-third of patients with non-small cell lung cancer (NSCLC) harboring tumors with EGFR-tyrosine kinase inhibitor (TKI)-sensitizing mutations (EGFRm) experience disease progression during treatment due to brain metastases. Despite anecdotal reports of EGFR-TKIs providing benefit in some patients with EGFRm NSCLC brain metastases, there is a clinical need for novel EGFR-TKIs with improved efficacy against brain lesions. We performed preclinical assessments of brain penetration and activity of osimertinib (AZD9291), an oral, potent, irreversible EGFR-TKI selective for EGFRm and T790M resistance mutations, and other EGFR-TKIs in various animal models of EGFR-mutant NSCLC brain metastases. We also present case reports of previously treated patients with EGFRm-advanced NSCLC and brain metastases who received osimertinib in the phase I/II AURA study (NCT01802632). Osimertinib demonstrated greater penetration of the mouse blood-brain barrier than gefitinib, rociletinib (CO-1686), or afatinib, and at clinically relevant doses induced sustained tumor regression in an EGFRm PC9 mouse brain metastases model; rociletinib did not achieve tumor regression. Under positron emission tomography micro-dosing conditions, [ 11 C]osimertinib showed markedly greater exposure in the cynomolgus monkey brain than [ 11 C]rociletinib and [ 11 C]gefitinib. Early clinical evidence of osimertinib activity in previously treated patients with EGFRm-advanced NSCLC and brain metastases is also reported. Osimertinib may represent a clinically significant treatment option for patients with EGFRm NSCLC and brain metastases. Further investigation of osimertinib in this patient population is ongoing. Clin Cancer Res; 22(20); 5130-40. ©2016 AACR. ©2016 American Association for Cancer Research.

  10. Epidermal Growth Factor Receptor Variant III (EGFRvIII) Positivity in EGFR-Amplified Glioblastomas: Prognostic Role and Comparison between Primary and Recurrent Tumors.

    PubMed

    Felsberg, Jörg; Hentschel, Bettina; Kaulich, Kerstin; Gramatzki, Dorothee; Zacher, Angela; Malzkorn, Bastian; Kamp, Marcel; Sabel, Michael; Simon, Matthias; Westphal, Manfred; Schackert, Gabriele; Tonn, Jörg C; Pietsch, Torsten; von Deimling, Andreas; Loeffler, Markus; Reifenberger, Guido; Weller, Michael

    2017-11-15

    Purpose: Approximately 40% of all glioblastomas have amplified the EGFR gene, and about half of these tumors express the EGFRvIII variant. The prognostic role of EGFRvIII in EGFR -amplified glioblastoma patients and changes in EGFRvIII expression in recurrent versus primary glioblastomas remain controversial, but such data are highly relevant for EGFRvIII-targeted therapies. Experimental Design: EGFR -amplified glioblastomas from 106 patients were assessed for EGFRvIII positivity. Changes in EGFR amplification and EGFRvIII status from primary to recurrent glioblastomas were evaluated in 40 patients with EGFR -amplified tumors and 33 patients with EGFR -nonamplified tumors. EGFR single-nucleotide variants (SNV) were assessed in 27 patients. Data were correlated with outcome and validated in 150 glioblastoma patients from The Cancer Genome Atlas (TCGA) consortium. Results: Sixty of 106 EGFR -amplified glioblastomas were EGFRvIII-positive (56.6%). EGFRvIII positivity was not associated with different progression-free or overall survival. EGFRvIII status was unchanged at recurrence in 35 of 40 patients with EGFR -amplified primary tumors (87.5%). Four patients lost and one patient gained EGFRvIII positivity at recurrence. None of 33 EGFR- nonamplified glioblastomas acquired EGFR amplification or EGFRvIII at recurrence. EGFR SNVs were frequent in EGFR -amplified tumors, but were not linked to survival. Conclusions: EGFRvIII and EGFR SNVs are not prognostic in EGFR -amplified glioblastoma patients. EGFR amplification is retained in recurrent glioblastomas. Most EGFRvIII-positive glioblastomas maintain EGFRvIII positivity at recurrence. However, EGFRvIII expression may change in a subset of patients at recurrence, thus repeated biopsy with reassessment of EGFRvIII status is recommended for patients with recurrent glioblastoma to receive EGFRvIII-targeting agents. Clin Cancer Res; 23(22); 6846-55. ©2017 AACR . ©2017 American Association for Cancer Research.

  11. EGF-dependent re-routing of vesicular recycling switches spontaneous phosphorylation suppression to EGFR signaling

    PubMed Central

    Baumdick, Martin; Brüggemann, Yannick; Schmick, Malte; Xouri, Georgia; Sabet, Ola; Davis, Lloyd; Chin, Jason W; Bastiaens, Philippe IH

    2015-01-01

    Autocatalytic activation of epidermal growth factor receptor (EGFR) coupled to dephosphorylating activity of protein tyrosine phosphatases (PTPs) ensures robust yet diverse responses to extracellular stimuli. The inevitable tradeoff of this plasticity is spontaneous receptor activation and spurious signaling. We show that a ligand-mediated switch in EGFR trafficking enables suppression of spontaneous activation while maintaining EGFR’s capacity to transduce extracellular signals. Autocatalytic phosphorylation of tyrosine 845 on unliganded EGFR monomers is suppressed by vesicular recycling through perinuclear areas with high PTP1B activity. Ligand-binding results in phosphorylation of the c-Cbl docking tyrosine and ubiquitination of the receptor. This secondary signal relies on EGF-induced EGFR self-association and switches suppressive recycling to directional trafficking. The re-routing regulates EGFR signaling response by the transit-time to late endosomes where it is switched-off by high PTP1B activity. This ubiquitin-mediated switch in EGFR trafficking is a uniquely suited solution to suppress spontaneous activation while maintaining responsiveness to EGF. DOI: http://dx.doi.org/10.7554/eLife.12223.001 PMID:26609808

  12. Predictive value of EGFR overexpression and gene amplification on icotinib efficacy in patients with advanced esophageal squamous cell carcinoma

    PubMed Central

    Fan, Qingxia; Lu, Ping; Ma, Changwu; Liu, Wei; Liu, Ying; Li, Weiwei; Hu, Shaoxuan; Ling, Yun; Guo, Lei; Ying, Jianming; Huang, Jing

    2016-01-01

    This study aimed to search for a molecular marker for targeted epithelial growth factor receptor (EGFR) inhibitor Icotinib by analyzing protein expression and amplification of EGFR proto-oncogene in esophageal squamous cell carcinoma (ESCC) patients. Immunohistochemistry and fluorescence in situ hybridization (FISH) was used to assess EGFR expression and gene amplification status in 193 patients with ESCC. We also examined the association between EGFR overexpression and the efficacy of a novel EGFR TKI, icotinib, in 62 ESCC patients. Of the 193 patients, 95 (49.2%) patients showed EGFR overexpression (3+), and 47(24.4%) patients harbored EGFR FISH positivity. EGFR overexpression was significantly correlated with clinical stage and lymph node metastasis (p<0.05). In addition, EGFR overexpression was significantly correlated with EGFR FISH positivity (p<0.001). Among the 62 patients who received icotinib, the response rate was 17.6% for patients with high EGFR-expressing tumors, which was markedly higher than the rate (0%) for patients with low to moderate EGFR-expressing tumors (p=0.341). Furthermore, all cases responded to icotinib showed EGFR overexpression. In conclusion, our study suggests that EGFR overexpression might potentially be used in predicting the efficacy in patients treated with Icotinib. These data have implications for both clinical trial design and therapeutic strategies. PMID:27013591

  13. Predictive value of EGFR overexpression and gene amplification on icotinib efficacy in patients with advanced esophageal squamous cell carcinoma.

    PubMed

    Wang, Xi; Niu, Haitao; Fan, Qingxia; Lu, Ping; Ma, Changwu; Liu, Wei; Liu, Ying; Li, Weiwei; Hu, Shaoxuan; Ling, Yun; Guo, Lei; Ying, Jianming; Huang, Jing

    2016-04-26

    This study aimed to search for a molecular marker for targeted epithelial growth factor receptor (EGFR) inhibitor Icotinib by analyzing protein expression and amplification of EGFR proto-oncogene in esophageal squamous cell carcinoma (ESCC) patients.Immunohistochemistry and fluorescence in situ hybridization (FISH) was used to assess EGFR expression and gene amplification status in 193 patients with ESCC. We also examined the association between EGFR overexpression and the efficacy of a novel EGFR TKI, icotinib, in 62 ESCC patients.Of the 193 patients, 95 (49.2%) patients showed EGFR overexpression (3+), and 47(24.4%) patients harbored EGFR FISH positivity. EGFR overexpression was significantly correlated with clinical stage and lymph node metastasis (p<0.05). In addition, EGFR overexpression was significantly correlated with EGFR FISH positivity (p<0.001). Among the 62 patients who received icotinib, the response rate was 17.6% for patients with high EGFR-expressing tumors, which was markedly higher than the rate (0%) for patients with low to moderate EGFR-expressing tumors (p=0.341). Furthermore, all cases responded to icotinib showed EGFR overexpression.In conclusion, our study suggests that EGFR overexpression might potentially be used in predicting the efficacy in patients treated with Icotinib. These data have implications for both clinical trial design and therapeutic strategies.

  14. Curcumin: Updated Molecular Mechanisms and Intervention Targets in Human Lung Cancer

    PubMed Central

    Ye, Ming-Xiang; Li, Yan; Yin, Hong; Zhang, Jian

    2012-01-01

    Curcumin, a yellow pigment derived from Curcuma longa Linn, has attracted great interest in the research of cancer during the past decades. Extensive studies documented that curcumin attenuates cancer cell proliferation and promotes apoptosis in vivo and in vitro. Curcumin has been demonstrated to interact with multiple molecules and signal pathways, which makes it a potential adjuvant anti-cancer agent to chemotherapy. Previous investigations focus on the mechanisms of action for curcumin, which is shown to manipulate transcription factors and induce apoptosis in various kinds of human cancer. Apart from transcription factors and apoptosis, emerging studies shed light on latent targets of curcumin against epidermal growth factor receptor (EGFR), microRNAs (miRNA), autophagy and cancer stem cell. The present review predominantly discusses significance of EGFR, miRNA, autophagy and cancer stem cell in lung cancer therapy. Curcumin as a natural phytochemicals could communicate with these novel targets and show synergism to chemotherapy. Additionally, curcumin is well tolerated in humans. Therefore, EGFR-, miRNA-, autophagy- and cancer stem cell-based therapy in the presence of curcumin might be promising mechanisms and targets in the therapeutic strategy of lung cancer. PMID:22489192

  15. Early clinical development of epidermal growth factor receptor targeted therapy in breast cancer

    PubMed Central

    Matsuda, Naoko; Lim, Bora; Wang, Xiaoping; Ueno, Naoto T.

    2018-01-01

    Introduction Epidermal growth factor receptor (EGFR) targeted treatment has been evaluated but has not shown a clear clinical benefit for breast cancer. This review article aims to consider the knowledge of the biological background of EGFR pathways in dissecting clinical studies of EGFR targeted treatment in breast cancer. Areas covered This review focuses on the role of the EGFR pathway and the investigational drugs that target EGFR for breast cancer. Expert opinion Recent studies have indicated that EGFR targeted therapy for breast cancer has some promising effects for patients with triple-negative breast cancer, basal-like breast cancer, and inflammatory breast cancer. However, predictive and prognostic biomarkers for EGFR targeted therapy have not been identified. The overexpression or amplification of EGFR itself may not be the true factor of induction of the canonical pathway as an oncogenic driver of breast cancer. Instead, downstream, non-canonical pathways related to EGFR may contribute to some aspects of the biological behavior of breast cancer; therefore, the blockade of the receptor could result in sufficient suppression of downstream pathways to inhibit the aggressive behavior of breast cancer. Mechanistic studies to investigate the dynamic interaction between the EGFR pathway and non-canonical pathways are warranted. PMID:28271910

  16. Inhibition of non-small cell lung cancer (NSCLC) growth by a novel small molecular inhibitor of EGFR

    PubMed Central

    Fang, Yuanzhang; Vaughn, Amanda; Cai, Xiaopan; Xu, Leqin; Wan, Wei; Li, Zhenxi; Chen, Shijie; Yang, Xinghai; Wu, Song; Xiao, Jianru

    2015-01-01

    The epidermal growth factor receptor (EGFR) is a therapeutic target (oncotarget) in NSCLC. Using in vitro EGFR kinase activity system, we identified a novel small molecule, WB-308, as an inhibitor of EGFR. WB-308 decreased NSCLC cell proliferation and colony formation, by causing G2/M arrest and apoptosis. Furthermore, WB-308 inhibited the engraft tumor growths in two animal models in vivo (lung orthotopic transplantation model and patient-derived engraft mouse model). WB-308 impaired the phosphorylation of EGFR, AKT, and ERK1/2 protein. WB-308 was less cytotoxic than Gefitinib. Our study suggests that WB-308 is a novel EGFR-TKI and may be considered to substitute for Gefitinib in clinical therapy for NSCLC. PMID:25730907

  17. Crystal structure of EGFR T790 M/C797S/V948R in complex with EAI045.

    PubMed

    Zhao, Peng; Yao, Ming-Yu; Zhu, Su-Jie; Chen, Ji-Yun; Yun, Cai-Hong

    2018-05-23

    Lung cancer is the leading cause of cancer deaths. Epidermal growth factor receptor (EGFR) kinase domain mutations are a common cause of non-small cell lung cancers (NSCLCs), a major subtype of lung cancers. Patients harboring most of these mutations respond well to the anti-EGFR tyrosine kinase inhibitors (TKIs) gefitinib and erlotinib initially, but soon develop resistance to them in about half of the cases due to the emergence of the gatekeeper mutation T790 M. The third-generation TKIs such as AZD9291, HM61713, CO-1686 and WZ4002 can overcome T790 M through covalent binding to the EGFR kinase through Cys 797, but ultimately lose their efficacy upon emergence of the C797S mutation that abolishes the covalent bonding. Therefore to develop new TKIs to overcome EGFR drug-resistant mutants harboring T790 M/C797S is urgently demanded. EAI001 and EAI045 are a new type of EGFR TKIs that bind to EGFR reversibly and not relying on Cys 797. EAI045 in combination with cetuximab is effective in mouse models of lung cancer driven by EGFR L858 R/T790 M and L858 R/T790 M/C797S. Here we report the crystal structure of EGFR T790 M/C797S/V948R in complex with EAI045, and compare it to EGFR T790 M/V948R in complex with EAI001. The complex structure reveals why EAI045 binds tighter to EGFR than does EAI001, and why EAI001 and EAI045 prefer binding to EGFR T790 M. The knowledge may facilitate future drug development studies targeting this very important cancer target. Copyright © 2018. Published by Elsevier Inc.

  18. Anti-epidermal growth factor receptor (anti-EGFR) antibody conjugated fluorescent nanoparticles probe for breast cancer imaging

    NASA Astrophysics Data System (ADS)

    Hun, Xu; Zhang, Zhujun

    2009-10-01

    Fluorescent nanoparticles (FNs) with unique optical properties may be useful as biosensors in living cancer cell imaging and cancer targeting. In this study, anti-EGFR antibody conjugated fluorescent nanoparticles (FNs) (anti-EGFR antibody conjugated FNs) probe was used to detect breast cancer cells. FNs with excellent character such as non-toxicity and photostability were first synthesized with a simple, cost-effective and environmentally friendly modified Stőber synthesis method, and then successfully modified with anti-EGFR antibody. This kind of fluorescence probe based on the anti-EGFR antibody conjugated FNs has been used to detect breast cancer cells with fluorescence microscopy imaging technology. The experimental results demonstrate that the anti-EGFR antibody conjugated FNs can effectively recognize breast cancer cells and exhibited good sensitivity and exceptional photostability, which would provide a novel way for the diagnosis and curative effect observation of breast cancer cells and offer a new method in detecting EGFR.

  19. Epidermal Growth Factor Receptor (EGFR) and its Cross-Talks with Topoisomerases: Challenges and Opportunities for Multi-Target Anticancer Drugs.

    PubMed

    Chauhan, Monika; Sharma, Gourav; Joshi, Gaurav; Kumar, Raj

    2016-01-01

    The interactions of Epidermal Growth Factor Receptor (EGFR) and topoisomerases have been seen in various cancer including brain, breast, ovarian, colorectal, gastric, etc. The studies in adenocarcinoma patients, chromogenic in situ hybridization, western blotting, receptor binding assay and electromobility shift assays, etc. threw light on the biophysical and biochemical features of EGFR and Topoisomerase cross-talks. It has been revealed that both the isomers of topoisomerase (Topo I and Topo II) interact via different mechanisms with EGFR. Topo II and HER2 share the same location i.e. 17q12-21 regions which could be a possible cause of predominant interactions seen between them. Topo I and EGFR interactions are mechanically related to the nucleolar translocation of heparenase by EGF and c-Jun. We compiled literature findings including the mechanistic interventions, signaling pathways, patents, in vitro and in vivo data of tested inhibitors and combinations in clinical trials, which provide convincing confirmations for the interactions of EGFR and topoisomerases. These interactions may be used for deriving a consistent route of mechanism, design and development of standard drug combinations and dual or multi inhibitors.

  20. α-Lipoic acid inhibits human lung cancer cell proliferation through Grb2-mediated EGFR downregulation.

    PubMed

    Yang, Lan; Wen, Ya; Lv, Guoqing; Lin, Yuntao; Tang, Junlong; Lu, Jingxiao; Zhang, Manqiao; Liu, Wen; Sun, Xiaojuan

    2017-12-09

    Alpha lipoic acid (α -LA) is a naturally occurring antioxidant and metabolic enzyme co-factor. Recently, α -LA has been reported to inhibit the growth of various cancer cells, but the precise signaling pathways that mediate the effects of α -LA on non-small cell lung cancer (NSCLC) development remain unclear. The CCK-8 assay was used to assess cell proliferation in NSCLC cell lines after α -LA treatment. The expression of growth factor receptor-bound protein 2 (Grb2), cyclin-dependent kinase (CDK)-2, CDK4, CDK6, Cyclin D3, Cyclin E1, Ras, c-Raf, epidermal growth factor receptor (EGFR), ERK1/2 and activated EGFR and ERK1/2 was evaluated by western blotting. Grb2 levels were restored in α-LA-treated cells by transfection of a plasmid carrying Grb2 and were reduced in NSCLC cells via specific siRNA-mediated knockdown. α -LA dramatically decreased NSCLC cell proliferation by downregulating Grb2; in contrast, Grb2 overexpression significantly prevented α-LA-induced decrease in cell growth in vitro. Western blot analysis indicated that α-LA decreased the levels of phospho-EGFR, CDK2/4/6, Cyclins D3 and E1, which are associated with the inhibition of G1/S-phase transition. Additional experiments indicated that Grb2 inhibition partially abolished EGF-induced phospho-EGFR and phospho-ERK1/2 activity. In addition, α-LA exerted greater inhibitory effects than gefitinib on NSCLC cells by preventing EGF-induced EGFR activation. For the first time, these findings provide the first evidence that α-LA inhibits cell proliferation through Grb2 by suppressing EGFR phosphorylation and that MAPK/ERK is involved in this pathway. Copyright © 2017. Published by Elsevier Inc.

  1. EGFR-L858R mutant enhances lung adenocarcinoma cell invasive ability and promotes malignant pleural effusion formation through activation of the CXCL12-CXCR4 pathway

    PubMed Central

    Tsai, Meng-Feng; Chang, Tzu-Hua; Wu, Shang-Gin; Yang, Hsiao-Yin; Hsu, Yi-Chiung; Yang, Pan-Chyr; Shih, Jin-Yuan

    2015-01-01

    Malignant pleural effusion (MPE) is a common clinical problem in non-small cell lung carcinoma (NSCLC) patients; however, the underlying mechanisms are still largely unknown. Recent studies indicate that the frequency of the L858R mutant form of the epidermal growth factor receptor (EGFR-L858R) is higher in lung adenocarcinoma with MPE than in surgically resected specimens, suggesting that lung adenocarcinoma cells harboring this mutation tend to invade the adjacent pleural cavity. The purpose of this study was to clarify the relationship between the EGFR-L858R mutation and cancer cell invasion ability and to investigate the molecular mechanisms involved in the formation of MPE. We found that expression of EGFR-L858R in lung cancer cells resulted in up-regulation of the CXCR4 in association with increased cancer cell invasive ability and MPE formation. Ectopic expression of EGFR-L858R in lung cancer cells acted through activation of ERK signaling pathways to induce the expression of CXCR4. We also indicated that Inhibition of CXCR4 with small interfering RNA, neutralizing antibody, or receptor antagonist significantly suppressed the EGFR-L858R–dependent cell invasion. These results suggest that targeting the production of CXCR4 and blocking the CXCL12-CXCR4 pathway might be effective strategies for treating NSCLCs harboring a specific type of EGFR mutation. PMID:26338423

  2. Molecular Basis for Necitumumab Inhibition of EGFR Variants Associated with Acquired Cetuximab Resistance.

    PubMed

    Bagchi, Atrish; Haidar, Jaafar N; Eastman, Scott W; Vieth, Michal; Topper, Michael; Iacolina, Michelle D; Walker, Jason M; Forest, Amelie; Shen, Yang; Novosiadly, Ruslan D; Ferguson, Kathryn M

    2018-02-01

    Acquired resistance to cetuximab, an antibody that targets the EGFR, impacts clinical benefit in head and neck, and colorectal cancers. One of the mechanisms of resistance to cetuximab is the acquisition of mutations that map to the cetuximab epitope on EGFR and prevent drug binding. We find that necitumumab, another FDA-approved EGFR antibody, can bind to EGFR that harbors the most common cetuximab-resistant substitution, S468R (or S492R, depending on the amino acid numbering system). We determined an X-ray crystal structure to 2.8 Å resolution of the necitumumab Fab bound to an S468R variant of EGFR domain III. The arginine is accommodated in a large, preexisting cavity in the necitumumab paratope. We predict that this paratope shape will be permissive to other epitope substitutions, and show that necitumumab binds to most cetuximab- and panitumumab-resistant EGFR variants. We find that a simple computational approach can predict with high success which EGFR epitope substitutions abrogate antibody binding. This computational method will be valuable to determine whether necitumumab will bind to EGFR as new epitope resistance variants are identified. This method could also be useful for rapid evaluation of the effect on binding of alterations in other antibody/antigen interfaces. Together, these data suggest that necitumumab may be active in patients who are resistant to cetuximab or panitumumab through EGFR epitope mutation. Furthermore, our analysis leads us to speculate that antibodies with large paratope cavities may be less susceptible to resistance due to mutations mapping to the antigen epitope. Mol Cancer Ther; 17(2); 521-31. ©2017 AACR . ©2017 American Association for Cancer Research.

  3. Cocktail treatment with EGFR-specific and CD133-specific chimeric antigen receptor-modified T cells in a patient with advanced cholangiocarcinoma.

    PubMed

    Feng, Kai-Chao; Guo, Ye-Lei; Liu, Yang; Dai, Han-Ren; Wang, Yao; Lv, Hai-Yan; Huang, Jian-Hua; Yang, Qing-Ming; Han, Wei-Dong

    2017-01-05

    Cholangiocarcinoma (CCA) is one of the most fatal malignant tumors with increasing incidence, mortality, and insensitivity to traditional chemo-radiotherapy and targeted therapy. Chimeric antigen receptor-modified T cell (CART) immunotherapy represents a novel strategy for the management of many malignancies. However, the potential of CART therapy in treating advanced unresectable/metastatic CCA is uncharted so far. In this case, a 52-year-old female who was diagnosed as advanced unresectable/metastatic CCA and resistant to the following chemotherapy and radiotherapy was treated with CART cocktail immunotherapy, which was composed of successive infusions of CART cells targeting epidermal growth factor receptor (EGFR) and CD133, respectively. The patient finally achieved an 8.5-month partial response (PR) from the CART-EGFR therapy and a 4.5-month-lasting PR from the CART133 treatment. The CART-EGFR cells induced acute infusion-related toxicities such as mild chills, fever, fatigue, vomiting and muscle soreness, and a 9-day duration of delayed lower fever, accompanied by escalation of IL-6 and C reactive protein (CRP), acute increase of glutamic-pyruvic transaminase and glutamic-oxalacetic transaminase, and grade 2 lichen striatus-like skin pathological changes. The CART133 cells induced an intermittent upper abdominal dull pain, chills, fever, and rapidly deteriorative grade 3 systemic subcutaneous hemorrhages and congestive rashes together with serum cytokine release, which needed emergent medical intervention including intravenous methylprednisolone. This case suggests that CART cocktail immunotherapy may be feasible for the treatment of CCA as well as other solid malignancies; however, the toxicities, especially the epidermal/endothelial damages, require a further investigation. ClinicalTrials.gov NCT01869166 and NCT02541370 .

  4. Therapeutic value of EGFR inhibition in CRC and NSCLC: 15 years of clinical evidence.

    PubMed

    Troiani, Teresa; Napolitano, Stefania; Della Corte, Carminia Maria; Martini, Giulia; Martinelli, Erika; Morgillo, Floriana; Ciardiello, Fortunato

    2016-01-01

    Epidermal growth factor receptor (EGFR) plays a key role in tumour evolution, proliferation and immune evasion, and is one of the most important targets for biological therapy, especially for non-small-cell lung cancer (NSCLC) and colorectal cancer (CRC). In the past 15 years, several EGFR antagonists have been approved for the treatment of NSCLC and metastatic CRC (mCRC). To optimise the use of anti-EGFR agents in clinical practice, various clinical and molecular biomarkers have been investigated, thus moving their indication from unselected to selected populations. Nowadays, anti-EGFR drugs represent a gold-standard therapy for metastatic NSCLC harbouring EGFR activating mutation and for RAS wild-type mCRC. Their clinical efficacy is limited by the presence of intrinsic resistance or the onset of acquired resistance. In this review, we provide an overview of the antitumour activity of EGFR inhibitors in NSCLC and CRC and of mechanisms of resistance, focusing on the development of a personalised approach through 15 years of preclinical and clinical research.

  5. Identifying activating mutations in the EGFR gene: prognostic and therapeutic implications in non-small cell lung cancer *

    PubMed Central

    Lopes, Gabriel Lima; Vattimo, Edoardo Filippo de Queiroz; de Castro, Gilberto

    2015-01-01

    Abstract Lung cancer is the leading cause of cancer-related deaths worldwide. Promising new therapies have recently emerged from the development of molecular targeted drugs; particularly promising are those blocking the signal transduction machinery of cancer cells. One of the most widely studied cell signaling pathways is that of EGFR, which leads to uncontrolled cell proliferation, increased cell angiogenesis, and greater cell invasiveness. Activating mutations in the EGFR gene (deletions in exon 19 and mutation L858R in exon 21), first described in 2004, have been detected in approximately 10% of all non-squamous non-small cell lung cancer (NSCLC) patients in Western countries and are the most important predictors of a response to EGFR tyrosine-kinase inhibitors (EGFR-TKIs). Studies of the EGFR-TKIs gefitinib, erlotinib, and afatinib, in comparison with platinum-based regimens, as first-line treatments in chemotherapy-naïve patients have shown that the EGFR-TKIs produce gains in progression-free survival and overall response rates, although only in patients whose tumors harbor activating mutations in the EGFR gene. Clinical trials have also shown EGFR-TKIs to be effective as second- and third-line therapies in advanced NSCLC. Here, we review the main aspects of EGFR pathway activation in NSCLC, underscore the importance of correctly identifying activating mutations in the EGFR gene, and discuss the main outcomes of EGFR-TKI treatment in NSCLC. PMID:26398757

  6. Identifying activating mutations in the EGFR gene: prognostic and therapeutic implications in non-small cell lung cancer.

    PubMed

    Lopes, Gabriel Lima; Vattimo, Edoardo Filippo de Queiroz; Castro Junior, Gilberto de

    2015-01-01

    Lung cancer is the leading cause of cancer-related deaths worldwide. Promising new therapies have recently emerged from the development of molecular targeted drugs; particularly promising are those blocking the signal transduction machinery of cancer cells. One of the most widely studied cell signaling pathways is that of EGFR, which leads to uncontrolled cell proliferation, increased cell angiogenesis, and greater cell invasiveness. Activating mutations in the EGFR gene (deletions in exon 19 and mutation L858R in exon 21), first described in 2004, have been detected in approximately 10% of all non-squamous non-small cell lung cancer (NSCLC) patients in Western countries and are the most important predictors of a response to EGFR tyrosine-kinase inhibitors (EGFR-TKIs). Studies of the EGFR-TKIs gefitinib, erlotinib, and afatinib, in comparison with platinum-based regimens, as first-line treatments in chemotherapy-naïve patients have shown that the EGFR-TKIs produce gains in progression-free survival and overall response rates, although only in patients whose tumors harbor activating mutations in the EGFR gene. Clinical trials have also shown EGFR-TKIs to be effective as second- and third-line therapies in advanced NSCLC. Here, we review the main aspects of EGFR pathway activation in NSCLC, underscore the importance of correctly identifying activating mutations in the EGFR gene, and discuss the main outcomes of EGFR-TKI treatment in NSCLC.

  7. Loss of Activating EGFR Mutant Gene Contributes to Acquired Resistance to EGFR Tyrosine Kinase Inhibitors in Lung Cancer Cells

    PubMed Central

    Kubo, Takuya; Murakami, Yuichi; Kawahara, Akihiko; Azuma, Koichi; Abe, Hideyuki; Kage, Masayoshi; Yoshinaga, Aki; Tahira, Tomoko; Hayashi, Kenshi; Arao, Tokuzo; Nishio, Kazuto; Rosell, Rafael; Kuwano, Michihiko; Ono, Mayumi

    2012-01-01

    Non-small-cell lung cancer harboring epidermal growth factor receptor (EGFR) mutations attains a meaningful response to EGFR-tyrosine kinase inhibitors (TKIs). However, acquired resistance to EGFR-TKIs could affect long-term outcome in almost all patients. To identify the potential mechanisms of resistance, we established cell lines resistant to EGFR-TKIs from the human lung cancer cell lines PC9 and11–18, which harbored activating EGFR mutations. One erlotinib-resistant cell line from PC9 and two erlotinib-resistant cell lines and two gefitinib-resistant cell lines from 11–18 were independently established. Almost complete loss of mutant delE746-A750 EGFR gene was observed in the erlotinib-resistant cells isolated from PC9, and partial loss of the mutant L858R EGFR gene copy was specifically observed in the erlotinib- and gefitinib-resistant cells from 11–18. However, constitutive activation of EGFR downstream signaling, PI3K/Akt, was observed even after loss of the mutated EGFR gene in all resistant cell lines even in the presence of the drug. In the erlotinib-resistant cells from PC9, constitutive PI3K/Akt activation was effectively inhibited by lapatinib (a dual TKI of EGFR and HER2) or BIBW2992 (pan-TKI of EGFR family proteins). Furthermore, erlotinib with either HER2 or HER3 knockdown by their cognate siRNAs also inhibited PI3K/Akt activation. Transfection of activating mutant EGFR complementary DNA restored drug sensitivity in the erlotinib-resistant cell line. Our study indicates that loss of addiction to mutant EGFR resulted in gain of addiction to both HER2/HER3 and PI3K/Akt signaling to acquire EGFR-TKI resistance. PMID:22815900

  8. EGFR Overexpressed in Colonic Neoplasia Can be Detected on Wide-Field Endoscopic Imaging.

    PubMed

    Zhou, Juan; Joshi, Bishnu P; Duan, Xiyu; Pant, Asha; Qiu, Zhen; Kuick, Rork; Owens, Scott R; Wang, Thomas D

    2015-07-16

    Colorectal cancer initially lies dormant as dysplasia, a premalignant state that provides an opportunity for early cancer detection. Dysplasia can be flat in morphology, focal in size, and patchy in distribution, and thus it appears "invisible" on conventional wide-field endoscopy. We aim to develop and validate a peptide that is specific for epidermal growth factor receptor (EGFR), a cell surface target that is overexpressed in colonic adenomas and is readily accessible for imaging. We expressed and purified the extracellular domain of EGFR for use with phage display to identify a peptide QRHKPRE that binds to domain 2 of this target. A near-infrared fluorescence endoscope was used to perform in vivo imaging to validate specific peptide binding to spontaneous colonic adenomas in a mouse model with topical administration. We also validated specific peptide binding to human colonic adenomas on immunohistochemistry and immunofluorescence. After labeling with Cy5.5, we validated specific peptide binding to EGFR on knockdown and competition studies. Peptide binding to cells occurred within 2.46 min and had an affinity of 50 nm. No downstream signaling was observed. We measured a target-to-background ratio of 4.0±1.7 and 2.7±0.7, for polyps and flat lesions, respectively. On immunofluorescence of human colonic specimens, greater intensity from peptide binding to dysplasia than normal was found with a 19.4-fold difference. We have selected and validated a peptide that can be used as a specific contrast agent to identify colonic adenomas that overexpress EGFR in vivo on fluorescence endoscopy.

  9. The dual PI3K/mTOR inhibitor PKI-587 enhances sensitivity to cetuximab in EGFR-resistant human head and neck cancer models.

    PubMed

    D'Amato, V; Rosa, R; D'Amato, C; Formisano, L; Marciano, R; Nappi, L; Raimondo, L; Di Mauro, C; Servetto, A; Fusciello, C; Veneziani, B M; De Placido, S; Bianco, R

    2014-06-10

    Cetuximab is the only targeted agent approved for the treatment of head and neck squamous cell carcinomas (HNSCC), but low response rates and disease progression are frequently reported. As the phosphoinositide 3-kinase (PI3K) and the mammalian target of rapamycin (mTOR) pathways have an important role in the pathogenesis of HNSCC, we investigated their involvement in cetuximab resistance. Different human squamous cancer cell lines sensitive or resistant to cetuximab were tested for the dual PI3K/mTOR inhibitor PF-05212384 (PKI-587), alone and in combination, both in vitro and in vivo. Treatment with PKI-587 enhances sensitivity to cetuximab in vitro, even in the condition of epidermal growth factor receptor (EGFR) resistance. The combination of the two drugs inhibits cells survival, impairs the activation of signalling pathways and induces apoptosis. Interestingly, although significant inhibition of proliferation is observed in all cell lines treated with PKI-587 in combination with cetuximab, activation of apoptosis is evident in sensitive but not in resistant cell lines, in which autophagy is pre-eminent. In nude mice xenografted with resistant Kyse30 cells, the combined treatment significantly reduces tumour growth and prolongs mice survival. Phosphoinositide 3-kinase/mammalian target of rapamycin inhibition has an important role in the rescue of cetuximab resistance. Different mechanisms of cell death are induced by combined treatment depending on basal anti-EGFR responsiveness.

  10. Inhibition of Influenza A Virus Infection by Fucoidan Targeting Viral Neuraminidase and Cellular EGFR Pathway.

    PubMed

    Wang, Wei; Wu, Jiandong; Zhang, Xiaoshuang; Hao, Cui; Zhao, Xiaoliang; Jiao, Guangling; Shan, Xindi; Tai, Wenjing; Yu, Guangli

    2017-01-17

    Development of novel anti-influenza A virus (IAV) drugs with high efficiency and low toxicity is critical for preparedness against influenza outbreaks. Herein, we investigated the anti-IAV activities and mechanisms of fucoidan in vitro and in vivo. The results showed that a fucoidan KW derived from brown algae Kjellmaniella crassifolia effectively blocked IAV infection in vitro with low toxicity. KW possessed broad anti-IAV spectrum and low tendency of induction of viral resistance, superior to the anti-IAV drug amantadine. KW was capable of inactivating virus particles before infection and blocked some stages after adsorption. KW could bind to viral neuraminidase (NA) and inhibit the activity of NA to block the release of IAV. KW also interfered with the activation of EGFR, PKCα, NF-κB, and Akt, and inhibited both IAV endocytosis and EGFR internalization in IAV-infected cells, suggesting that KW may also inhibit cellular EGFR pathway. Moreover, intranasal administration of KW markedly improved survival and decreased viral titers in IAV-infected mice. Therefore, fucoidan KW has the potential to be developed into a novel nasal drop or spray for prevention and treatment of influenza in the future.

  11. Inhibition of Influenza A Virus Infection by Fucoidan Targeting Viral Neuraminidase and Cellular EGFR Pathway

    PubMed Central

    Wang, Wei; Wu, Jiandong; Zhang, Xiaoshuang; Hao, Cui; Zhao, Xiaoliang; Jiao, Guangling; Shan, Xindi; Tai, Wenjing; Yu, Guangli

    2017-01-01

    Development of novel anti-influenza A virus (IAV) drugs with high efficiency and low toxicity is critical for preparedness against influenza outbreaks. Herein, we investigated the anti-IAV activities and mechanisms of fucoidan in vitro and in vivo. The results showed that a fucoidan KW derived from brown algae Kjellmaniella crassifolia effectively blocked IAV infection in vitro with low toxicity. KW possessed broad anti-IAV spectrum and low tendency of induction of viral resistance, superior to the anti-IAV drug amantadine. KW was capable of inactivating virus particles before infection and blocked some stages after adsorption. KW could bind to viral neuraminidase (NA) and inhibit the activity of NA to block the release of IAV. KW also interfered with the activation of EGFR, PKCα, NF-κB, and Akt, and inhibited both IAV endocytosis and EGFR internalization in IAV-infected cells, suggesting that KW may also inhibit cellular EGFR pathway. Moreover, intranasal administration of KW markedly improved survival and decreased viral titers in IAV-infected mice. Therefore, fucoidan KW has the potential to be developed into a novel nasal drop or spray for prevention and treatment of influenza in the future. PMID:28094330

  12. Phthalocyanine-Peptide Conjugates for Epidermal Growth Factor Receptor Targeting1

    PubMed Central

    Ongarora, Benson G.; Fontenot, Krystal R.; Hu, Xiaoke; Sehgal, Inder; Satyanarayana-Jois, Seetharama D.; Vicente, M. Graça H.

    2012-01-01

    Four phthalocyanine (Pc)-peptide conjugates designed to target the epidermal growth factor receptor (EGFR) were synthesized and evaluated in vitro using four cell lines: human carcinoma A431 and HEp2, human colorectal HT-29, and kidney Vero (negative control) cells. Two peptide ligands for EGFR were investigated: EGFR-L1 and -L2, bearing 6 and 13 amino acid residues, respectively. The peptides and Pc-conjugates were shown to bind to EGFR using both theoretical (Autodock) and experimental (SPR) investigations. The Pc-EGFR-L1 conjugates 5a and 5b efficiently targeted EGFR and were internalized, in part due to their cationic charge, whereas the uncharged Pc-EGFR-L2 conjugates 4b and 6a poorly targeted EGFR maybe due to their low aqueous solubility. All conjugates were non-toxic (IC50 > 100 µM) to HT-29 cells, both in the dark and upon light activation (1 J/cm2). Intravenous (iv) administration of conjugate 5b into nude mice bearing A431 and HT-29 human tumor xenografts resulted in a near-IR fluorescence signal at ca. 700 nm, 24 h after administration. Our studies show that Pc-EGFR-L1 conjugates are promising near-IR fluorescent contrast agents for CRC, and potentially other EGFR over-expressing cancers. PMID:22468711

  13. Colon-specific delivery of a probiotic-derived soluble protein ameliorates intestinal inflammation in mice through an EGFR-dependent mechanism

    PubMed Central

    Yan, Fang; Cao, Hanwei; Cover, Timothy L.; Washington, M. Kay; Shi, Yan; Liu, LinShu; Chaturvedi, Rupesh; Peek, Richard M.; Wilson, Keith T.; Polk, D. Brent

    2011-01-01

    Probiotic bacteria can potentially have beneficial effects on the clinical course of several intestinal disorders, but our understanding of probiotic action is limited. We have identified a probiotic bacteria–derived soluble protein, p40, from Lactobacillus rhamnosus GG (LGG), which prevents cytokine-induced apoptosis in intestinal epithelial cells. In the current study, we analyzed the mechanisms by which p40 regulates cellular responses in intestinal epithelial cells and p40’s effects on experimental colitis using mouse models. We show that the recombinant p40 protein activated EGFR, leading to Akt activation. Activation of EGFR by p40 was required for inhibition of cytokine-induced apoptosis in intestinal epithelial cells in vitro and ex vivo. Furthermore, we developed a pectin/zein hydrogel bead system to specifically deliver p40 to the mouse colon, which activated EGFR in colon epithelial cells. Administration of p40-containing beads reduced intestinal epithelial apoptosis and disruption of barrier function in the colon epithelium in an EGFR-dependent manner, thereby preventing and treating DSS-induced intestinal injury and acute colitis. Furthermore, p40 activation of EGFR was required for ameliorating colon epithelial cell apoptosis and chronic inflammation in oxazolone-induced colitis. These data define what we believe to be a previously unrecognized mechanism of probiotic-derived soluble proteins in protecting the intestine from injury and inflammation. PMID:21606592

  14. Mig6 Puts the Brakes on Mutant EGFR-Driven Lung Cancer | Center for Cancer Research

    Cancer.gov

    Lung cancer is the most common cause of cancer-related death worldwide. These cancers are often induced by mutations in the epidermal growth factor receptor (EGFR), resulting in constitutive activation of the protein’s tyrosine kinase domain. Lung cancers expressing these EGFR mutants are initially sensitive to tyrosine kinase inhibitors (TKIs), such as erlotinib, but often

  15. Discovery of Potent Antiproliferative Agents Targeting EGFR Tyrosine Kinase Based on the Pyrido[3',2':4,5]thieno[3,2-d]pyrimidin-4-amine Scaffold.

    PubMed

    Aziz, Yasmine Mohamed Abdel; Said, Mohamed Mokhtar; El Shihawy, Hosam Ahmed; Tolba, Mai Fathy; Abouzid, Khaled Abouzid Mohamed

    2015-01-01

    A series of pyridothieno[3,2-d]pyrimidin-4-amines was designed and synthesized as congeners to the classical 4-anilinoquinazolines as ATP-competitive epidermal growth factor receptor (EGFR) inhibitors. Compound 5a exhibited the most potent and selective inhibitory activity against EGFR with an IC50 value of 36.7 nM. Moreover, compounds 4b and 5a showed remarkable cell growth inhibition against leukemia, central nervous system cancer, and non-small cell lung cancer cell lines that overexpress EGFR, with growth inhibition of 50% (GI50) values of around 10 nM in the full U.S. National Cancer Institute 60 cell panel assay. Cell cycle studies indicated that compounds 4b and 5a induced significant cell cycle arrest in the S-phase and G0/G1, respectively, in addition to boosting P27(kip) expression. Compound 5a did not alter the viability of placental trophoblasts, which reflects its safety for normal cells. The standard COMPARE analyses demonstrated considerable correlation levels between compounds 4b and 5a and erlotinib, with pyridinium chlorochromate (PCC) values of 0.707 and 0.727, respectively.

  16. Heat-shock protein 27 (HSP27, HSPB1) is up-regulated by MET kinase inhibitors and confers resistance to MET-targeted therapy

    PubMed Central

    Musiani, Daniele; Konda, John David; Pavan, Simona; Torchiaro, Erica; Sassi, Francesco; Noghero, Alessio; Erriquez, Jessica; Perera, Timothy; Olivero, Martina; Di Renzo, Maria Flavia

    2014-01-01

    The tyrosine kinase encoded by the MET oncogene is activated by gene mutation or amplification in tumors, which in most instances maintain addiction, i.e., dependency, to MET activation. This makes MET an attractive candidate for targeted therapies. Here we show that, in 3/3 MET-addicted human gastric cancer cell lines, MET kinase inhibition resulted in a 3- to 4-fold increased expression of the antiapoptotic small heat-shock protein of 27 kDa (HSP27, HSPB1). HSP27 increase depended on the inhibition of the MEK/ERK pathway and on heat-shock factor 1 (HSF1) and hypoxia-inducible factor-1α (HIF-1α) regulation. Importantly, HSP27-silenced MET-addicted cells underwent 2- and 3-fold more apoptosis following MET inhibition in vitro and in vivo, respectively. Likewise, in human cancer cells susceptible to epidermal growth factor receptor (EGFR) inhibition, EGFR inhibitors induced HSP27 expression and were strengthened by HSP27 suppression. In control cell lines that were not affected by drugs targeting MET or EGFR, these drugs did not induce HSP27 increase. Therefore, in cancer therapies targeting the MET pathway, the induction of HSP27 might limit the efficacy of anti-MET agents. As HSP27 increase also impairs the effectiveness of EGFR inhibitors and is known to protect cells from chemotherapeutics, the induction of HSP27 by targeted agents might strongly affect the success of combination treatments.—Musiani, D., Konda, J. D., Pavan, S., Torchiaro, E., Sassi, F., Noghero, A., Erriquez, J., Perera, T., Olivero, M., Di Renzo, M. F. Heat-shock protein 27 (HSP27, HSPB1) is up-regulated by MET kinase inhibitors and confers resistance to MET-targeted therapy. PMID:24903273

  17. Afatinib plus cetuximab delays resistance compared to single agent erlotinib or afatinib in mouse models of TKI-naïve EGFR L858R-induced lung adenocarcinoma

    PubMed Central

    Pirazzoli, Valentina; Ayeni, Deborah; Meador, Catherine B.; Sanganahalli, Basavaraju G.; Hyder, Fahmeed; de Stanchina, Elisa; Goldberg, Sarah; Pao, William; Politi, Katerina

    2015-01-01

    Purpose The EGFR tyrosine kinase inhibitors (TKIs), erlotinib and afatinib, have transformed the treatment of advanced EGFR mutant lung adenocarcinoma. However, almost all patients who respond develop acquired resistance on average ~1 year after starting therapy. Resistance is commonly due to a secondary mutation in EGFR (EGFRT790M). We previously found that the combination of the EGFR TKI afatinib and the EGFR antibody cetuximab could overcome EGFRT790M-mediated resistance in preclinical models. This combination has shown a 29% response rate in a clinical trial in patients with acquired resistance to first-generation TKIs. An outstanding question is whether this regimen is beneficial when used as front-line therapy. Experimental Design Using mouse models of EGFR mutant lung cancer, we tested whether the combination of afatinib plus cetuximab delivered upfront to mice with TKI-naïve EGFRL858R-induced lung adenocarcinomas delayed tumor relapse and drug-resistance compared to single agent TKI. Results Afatinib plus cetuximab markedly delayed the time to relapse and incidence of drug-resistant tumors, which occurred in only 63% of the mice, in contrast to erlotinib or afatinib treatment where 100% of mice developed resistance. Mechanisms of tumor escape observed in afatinib plus cetuximab resistant tumors include the EGFRT790M mutation and Kras mutations. Experiments in cell lines and xenografts confirmed that the afatinib plus cetuximab combination does not suppress the emergence of EGFRT790M. Conclusions These results highlight the potential of afatinib plus cetuximab as an effective treatment strategy for patients with TKI-naïve EGFR mutant lung cancer and indicate that clinical trial development in this area is warranted. PMID:26341921

  18. A novel nanobody-based target module for retargeting of T lymphocytes to EGFR-expressing cancer cells via the modular UniCAR platform

    PubMed Central

    Albert, Susann; Arndt, Claudia; Feldmann, Anja; Bachmann, Dominik; Koristka, Stefanie; Ludwig, Florian; Ziller-Walter, Pauline; Kegler, Alexandra; Gärtner, Sebastian; Schmitz, Marc; Ehninger, Armin; Cartellieri, Marc; Ehninger, Gerhard; Pietzsch, Hans-Jürgen; Steinbach, Jörg; Bachmann, Michael

    2017-01-01

    ABSTRACT Recent treatments of leukemias with chimeric antigen receptor (CAR) expressing T cells underline their impressive therapeutic potential. However, once adoptively transferred into patients, there is little scope left to shut them down after elimination of tumor cells or in case adverse side effects occur. This becomes of special relevance if they are directed against commonly expressed tumor associated antigens (TAAs) such as receptors of the ErbB family. To overcome this limitation, we recently established a modular CAR platform technology termed UniCAR. UniCARs are not directed against TAAs but instead against a unique peptide epitope on engineered recombinant targeting modules (TMs), which guide them to the target. In the absence of a TM UniCAR T cells are inactive. Thus an interruption of any UniCAR activity requires an elimination of unbound TM and the TM complexed with UniCAR T cells. Elimination of the latter one requires a disassembly of the UniCAR-TM complexes. Here, we describe a first nanobody (nb)-based TM directed against EGFR. The novel TM efficiently retargets UniCAR T cells to EGFR positive tumors and mediates highly efficient target-specific and target-dependent tumor cell lysis both in vitro and in vivo. After radiolabeling of the novel TM with 64Cu and 68Ga, we analyzed its biodistribution and clearance as well as the stability of the UniCAR-TM complexes. As expected unbound TM is rapidly eliminated while the elimination of the TM complexed with UniCAR T cells is delayed. Nonetheless, we show that UniCAR-TM complexes dissociate in vitro and in vivo in a concentration-dependent manner in line with the concept of a repeated stop and go retargeting of tumor cells via the UniCAR technology. PMID:28507794

  19. Discovery and characterization of a novel irreversible EGFR mutants selective and potent kinase inhibitor CHMFL-EGFR-26 with a distinct binding mode

    PubMed Central

    Chen, Cheng; Yu, Kailin; Zou, Fengming; Wang, Wenchao; Wang, Wei; Wu, Jiaxin; Liu, Juan; Wang, Beilei; Wang, Li; Ren, Tao; Zhang, Shanchun; Yun, Cai-Hong; Liu, Jing; Liu, Qingsong

    2017-01-01

    EGFR T790M mutation accounts for about 40-55% drug resistance for the first generation EGFR kinase inhibitors in the NSCLC. Starting from ibrutinib, a highly potent irreversible BTK kinase inhibitor, which was also found to be moderately active to EGFR T790M mutant, we discovered a highly potent irreversible EGFR inhibitor CHMFL-EGFR-26, which is selectively potent against EGFR mutants including L858R, del19, and L858R/T790M. It displayed proper selectivity window between the EGFR mutants and the wide-type. CHMFL-EGFR-26 exhibited good selectivity profile among 468 kinases/mutants tested (S score (1)=0.02). In addition, X-ray crystallography revealed a distinct “DFG-in” and “cHelix-out” inactive binding mode between CHMFL-EGFR-26 and EGFR T790M protein. The compound showed highly potent anti-proliferative efficacy against EGFR mutant but not wide-type NSCLC cell lines through effective inhibition of the EGFR mediated signaling pathway, induction of apoptosis and arresting of cell cycle progression. CHMFL-EGFR-26 bore acceptable pharmacokinetic properties and demonstrated dose-dependent tumor growth suppression in the H1975 (EGFR L858R/T790M) and PC-9 (EGFR del19) inoculated xenograft mouse models. Currently CHMFL-EGFR-26 is undergoing extensive pre-clinical evaluation for the clinical trial purpose. PMID:28407693

  20. Emerging platforms using liquid biopsy to detect EGFR mutations in lung cancer.

    PubMed

    Lin, Chien-Chung; Huang, Wei-Lun; Wei, Fang; Su, Wu-Chou; Wong, David T

    2015-01-01

    Advances in target therapies for lung cancer have enabled detection of gene mutations, specifically those of EGFR. Assays largely depend on the acquisition of tumor tissue biopsy, which is invasive and may not reflect the genomic profile of the tumor at treatment due to tumor heterogeneity or changes that occur during treatment through acquired resistance. Liquid biopsy, a blood test that detects evidence of cancer cells or tumor DNA, has generated considerable interest for its ability to detect EGFR mutations. However, its clinical application is limited by complicated collection methods and the need for technique-dependent platforms. Recently, simpler techniques for EGFR mutant detection in urine or saliva samples have been developed. This review focuses on advances in liquid biopsy and discusses its potential for clinical implementation in lung cancer.

  1. Emerging platforms using liquid biopsy to detect EGFR mutations in lung cancer

    PubMed Central

    Wong; Lin, David T; Huang, Chien-Chung; Wei, Wei-Lun; Su, Fang; Wu-Chou

    2016-01-01

    Summary Advances in target therapies for lung cancer have enabled detection of gene mutations, specifically those of EGFR. Assays largely depend on the acquisition of tumor tissue biopsy, which is invasive and may not reflect the genomic profile of the tumor at treatment due to tumor heterogeneity or changes that occur during treatment through acquired resistance. Liquid biopsy, a blood test that detects evidence of cancer cells or tumor DNA, has generated considerable interest for its ability to detect EGFR mutations, however, its clinical application is limited by complicated collection methods and the need for technique-dependent platforms. Recently, simpler techniques for EGFR mutant detection in in urine or saliva samples have been developed. This review focuses on advances in liquid biopsy and discusses its potential for clinical implementation in lung cancer. PMID:26420338

  2. Highly sensitive and quantitative evaluation of the EGFR T790M mutation by nanofluidic digital PCR.

    PubMed

    Iwama, Eiji; Takayama, Koichi; Harada, Taishi; Okamoto, Isamu; Ookubo, Fumihiko; Kishimoto, Junji; Baba, Eishi; Oda, Yoshinao; Nakanishi, Yoichi

    2015-08-21

    The mutation of T790M in EGFR is a major mechanism of resistance to treatment with EGFR-TKIs. Only qualitative detection (presence or absence) of T790M has been described to date, however. Digital PCR (dPCR) analysis has recently been applied to the quantitative detection of target molecules in cancer with high sensitivity. In the present study, 25 tumor samples (13 obtained before and 12 after EGFR-TKI treatment) from 18 NSCLC patients with activating EGFR mutations were evaluated for T790M with dPCR. The ratio of the number of T790M alleles to that of activating mutation alleles (T/A) was determined. dPCR detected T790M in all 25 samples. Although T790M was present in all pre-TKI samples from 13 patients, 10 of these patients had a low T/A ratio and manifested substantial tumor shrinkage during treatment with EGFR-TKIs. In six of seven patients for whom both pre- and post-TKI samples were available, the T/A ratio increased markedly during EGFR-TKI treatment. Highly sensitive dPCR thus detected T790M in all NSCLC patients harboring activating EGFR mutations whether or not they had received EGFR-TKI treatment. Not only highly sensitive but also quantitative detection of T790M is important for evaluation of the contribution of T790M to EGFR-TKI resistance.

  3. Clinical outcomes of EGFR-TKI treatment and genetic heterogeneity in lung adenocarcinoma patients with EGFR mutations on exons 19 and 21.

    PubMed

    Yu, Jiang-Yong; Yu, Si-Fan; Wang, Shu-Hang; Bai, Hua; Zhao, Jun; An, Tong-Tong; Duan, Jian-Chun; Wang, Jie

    2016-03-21

    Epidermal growth factor receptor (EGFR) mutations, including a known exon 19 deletion (19 del) and exon 21 L858R point mutation (L858R mutation), are strong predictors of the response to EGFR tyrosine kinase inhibitor (EGFR-TKI) treatment in lung adenocarcinoma. However, whether patients carrying EGFR 19 del and L858R mutations exhibit different responsiveness to EGFR-TKIs and what are the potential mechanism for this difference remain controversial. This study aimed to investigate the clinical outcomes of EGFR-TKI treatment in patients with EGFR 19 del and L858R mutations and explore the genetic heterogeneity of tumors with the two mutation subtypes. Of 1127 patients with advanced lung adenocarcinoma harboring EGFR 19 del or L858R mutations, 532 received EGFR-TKI treatment and were included in this study. EGFR 19 del and L858R mutations were detected by using denaturing high-performance liquid chromatography (DHPLC). T790M mutation, which is a common resistant mutation on exon 20 of EGFR, was detected by amplification refractory mutation system (ARMS). Next-generation sequencing (NGS) was used to explore the genetic heterogeneity of tumors with EGFR 19 del and L858R mutations. Of the 532 patients, 319 (60.0%) had EGFR 19 del, and 213 (40.0%) had L858R mutations. The patients with EGFR 19 del presented a significantly higher overall response rate (ORR) for EGFR-TKI treatment (55.2% vs. 43.7%, P = 0.017) and had a longer progression-free survival (PFS) after first-line EGFR-TKI treatment (14.4 vs. 11.4 months, P = 0.034) compared with those with L858R mutations. However, no statistically significant difference in overall survival (OS) was observed between the two groups of patients. T790M mutation status was analyzed in 88 patients before EGFR-TKI treatment and 134 after EGFR-TKI treatment, and there was no significant difference in the co-existence of T790M mutation with EGFR 19 del and L858R mutations before EGFR-TKI treatment (5.6% vs. 8.8%, P = 0.554) or after

  4. Brief report: EGFR L858M/L861Q cis mutations confer selective sensitivity to afatinib

    PubMed Central

    Saxon, Jamie A.; Sholl, Lynette M.; Jänne, Pasi A.

    2017-01-01

    Introduction Tyrosine kinase inhibitors (TKIs) have been developed to treat patients with epidermal growth factor receptor (EGFR)-mutant lung cancers. However, the therapeutic efficacy of TKIs in patients with uncommon EGFR mutations remains unclear. Methods Next-generation sequencing was performed on a patient’s lung adenocarcinoma tumor sample, revealing rare combined in cis (on the same allele) EGFR mutations. Stable Ba/F3 and NIH-3T3 cell lines harboring the mutations were established to investigate the effect of first, second, and third generation EGFR TKIs on cell proliferation by MTS assay and EGFR phosphorylation by Western blotting. Results EGFR L858M/L861Q mutations in cis were detected in a non-small cell lung cancer patient’s tumor. The patient demonstrated primary resistance to erlotinib and was subsequently treated with afatinib, which caused tumor regression. In in vitro studies, first and third generation TKIs exhibited a decreased capacity to prevent EGFR phosphorylation and inhibit cell proliferation in EGFR L858M/L861Q cells compared to cells harboring the common EGFR L858R point mutation. In contrast, afatinib treatment reduced proliferation and inhibited EGFR phosphorylation in L858M/L861Q and L858R mutant cells at similar concentrations. Conclusions Afatinib may be a beneficial therapeutic option for a subset of lung cancer patients with rare EGFR mutations in their tumors. Understanding how uncommon mutations affect protein structure and TKI binding will be important for identifying effective targeted therapies for these patients. PMID:28088511

  5. Toxoplasma gondii induces FAK-Src-STAT3 signaling during infection of host cells that prevents parasite targeting by autophagy.

    PubMed

    Portillo, Jose-Andres C; Muniz-Feliciano, Luis; Lopez Corcino, Yalitza; Lee, So Jung; Van Grol, Jennifer; Parsons, Sarah J; Schiemman, William P; Subauste, Carlos S

    2017-10-01

    Targeting of Toxoplasma gondii by autophagy is an effective mechanism by which host cells kill the protozoan. Thus, the parasite must avoid autophagic targeting to survive. Here we show that the mammalian cytoplasmic molecule Focal Adhesion Kinase (FAK) becomes activated during invasion of host cells. Activated FAK appears to accompany the formation of the moving junction (as assessed by expression the parasite protein RON4). FAK activation was inhibited by approaches that impaired β1 and β3 integrin signaling. FAK caused activation of Src that in turn mediated Epidermal Growth Factor Receptor (EGFR) phosphorylation at the unique Y845 residue. Expression of Src-resistant Y845F EGFR mutant markedly inhibited ROP16-independent activation of STAT3 in host cells. Activation of FAK, Y845 EGFR or STAT3 prevented activation of PKR and eIF2α, key stimulators of autophagy. Genetic or pharmacologic inhibition of FAK, Src, EGFR phosphorylation at Y845, or STAT3 caused accumulation of the autophagy protein LC3 and LAMP-1 around the parasite and parasite killing dependent on autophagy proteins (ULK1 and Beclin 1) and lysosomal enzymes. Parasite killing was inhibited by expression of dominant negative PKR. Thus, T. gondii activates a FAK→Src→Y845-EGFR→STAT3 signaling axis within mammalian cells, thereby enabling the parasite to survive by avoiding autophagic targeting through a mechanism likely dependent on preventing activation of PKR and eIF2α.

  6. Near Infrared Photoimmunotherapy Targeting EGFR Positive Triple Negative Breast Cancer: Optimizing the Conjugate-Light Regimen

    PubMed Central

    Nagaya, Tadanobu; Sato, Kazuhide; Harada, Toshiko; Nakamura, Yuko; Choyke, Peter L.; Kobayashi, Hisataka

    2015-01-01

    Aim Triple-negative breast cancer (TNBC) is considered one of the most aggressive subtypes of breast cancer. Near infrared photoimmunotherapy (NIR-PIT) is a cancer treatment that employs an antibody-photosensitizer conjugate (APC) followed by exposure of NIR light for activating selective cytotoxicity on targeted cancer cells and may have application to TNBC. In order to minimize the dose of APC while maximizing the therapeutic effects, dosing of the APC and NIR light need to be optimized. In this study, we investigate in vitro and in vivo efficacy of cetuximab (cet)-IR700 NIR-PIT on two breast cancer models MDAMB231 (TNBC, EGFR moderate) and MDAMB468 (TNBC, EGFR high) cell lines, and demonstrate a method to optimize the dosing APC and NIR light. Method After validating in vitro cell-specific cytotoxicity, NIR-PIT therapeutic effects were investigated in mouse models using cell lines derived from TNBC tumors. Tumor-bearing mice were separated into 4 groups for the following treatments: (1) no treatment (control); (2) 300 μg of cet-IR700 i.v., (APC i.v. only); (3) NIR light exposure only, NIR light was administered at 50 J/cm2 on day 1 and 100 J/cm2 on day 2 (NIR light only); (4) 300 μg of cet-IR700 i.v., NIR light was administered at 50 J/cm2 on day 1 after injection and 100 J/cm2 of light on day 2 after injection (one shot NIR-PIT). To compare different treatment regimens with a fixed dose of APC, we added the following treatments (5) 100 μg of cet-IR700 i.v., NIR light administered at 50 J/cm2 on day 1 and 50 μg of cet-IR700 i.v. immediately after NIR-PIT, then NIR light was administered at 100 J/cm2 on day 2, which were performed two times every week (“two split” NIR-PIT) and (6) 100 μg of cet-IR700 i.v., NIR light was administered at 50 J/cm2 on day 1 and 100 J/cm2 on day 2, which were performed three times per week (“three split” NIR-PIT). Result Both specific binding and NIR-PIT effects were greater with MDAMB468 than MDAMB231 cells in vitro

  7. Near Infrared Photoimmunotherapy Targeting EGFR Positive Triple Negative Breast Cancer: Optimizing the Conjugate-Light Regimen.

    PubMed

    Nagaya, Tadanobu; Sato, Kazuhide; Harada, Toshiko; Nakamura, Yuko; Choyke, Peter L; Kobayashi, Hisataka

    2015-01-01

    Triple-negative breast cancer (TNBC) is considered one of the most aggressive subtypes of breast cancer. Near infrared photoimmunotherapy (NIR-PIT) is a cancer treatment that employs an antibody-photosensitizer conjugate (APC) followed by exposure of NIR light for activating selective cytotoxicity on targeted cancer cells and may have application to TNBC. In order to minimize the dose of APC while maximizing the therapeutic effects, dosing of the APC and NIR light need to be optimized. In this study, we investigate in vitro and in vivo efficacy of cetuximab (cet)-IR700 NIR-PIT on two breast cancer models MDAMB231 (TNBC, EGFR moderate) and MDAMB468 (TNBC, EGFR high) cell lines, and demonstrate a method to optimize the dosing APC and NIR light. After validating in vitro cell-specific cytotoxicity, NIR-PIT therapeutic effects were investigated in mouse models using cell lines derived from TNBC tumors. Tumor-bearing mice were separated into 4 groups for the following treatments: (1) no treatment (control); (2) 300 μg of cet-IR700 i.v., (APC i.v. only); (3) NIR light exposure only, NIR light was administered at 50 J/cm2 on day 1 and 100 J/cm2 on day 2 (NIR light only); (4) 300 μg of cet-IR700 i.v., NIR light was administered at 50 J/cm2 on day 1 after injection and 100 J/cm2 of light on day 2 after injection (one shot NIR-PIT). To compare different treatment regimens with a fixed dose of APC, we added the following treatments (5) 100 μg of cet-IR700 i.v., NIR light administered at 50 J/cm2 on day 1 and 50 μg of cet-IR700 i.v. immediately after NIR-PIT, then NIR light was administered at 100 J/cm2 on day 2, which were performed two times every week ("two split" NIR-PIT) and (6) 100 μg of cet-IR700 i.v., NIR light was administered at 50 J/cm2 on day 1 and 100 J/cm2 on day 2, which were performed three times per week ("three split" NIR-PIT). Both specific binding and NIR-PIT effects were greater with MDAMB468 than MDAMB231 cells in vitro. Tumor accumulation of cet

  8. Clinical outcomes of advanced non-small-cell lung cancer patients with EGFR mutation, ALK rearrangement and EGFR/ALK co-alterations.

    PubMed

    Lou, Na-Na; Zhang, Xu-Chao; Chen, Hua-Jun; Zhou, Qing; Yan, Li-Xu; Xie, Zhi; Su, Jian; Chen, Zhi-Hong; Tu, Hai-Yan; Yan, Hong-Hong; Wang, Zhen; Xu, Chong-Rui; Jiang, Ben-Yuan; Wang, Bin-Chao; Bai, Xiao-Yan; Zhong, Wen-Zhao; Wu, Yi-Long; Yang, Jin-Ji

    2016-10-04

    The co-occurrence of epidermal growth factor receptor (EGFR) mutations and anaplastic lymphoma kinase (ALK) rearrangements constitutes a rare molecular subtype of non-small-cell lung cancer (NSCLC). Herein, we assessed the clinical outcomes and incidence of acquired resistance to tyrosine kinase inhibitors (TKIs) in this subtype. So we enrolled 118 advanced NSCLC treated with TKIs. EGFR mutations and ALK rearrangements were detected by DNA sequencing or Scorpion amplification refractory mutation system and fluorescence in situ hybridization respectively. Immunohistochemistry was used to evaluate the activation of associated proteins. We found that nine in ten patients with EGFR/ALK co-alterations had good response with first-line EGFR TKI, and the objective response rate (ORR) of EGFR TKIs was 80% (8/10) for EGFR/ALK co-altered and 65.5% (55/84) for EGFR-mutant (P = 0.57), with a median progression-free survival (PFS) of 11.2 and 13.2 months, (hazard ratio [HR]=0.95, 95% [CI], 0.49-1.84, P= 0.87). ORR of crizotinib was 40% (2/5) for EGFR/ALK co-altered and 73.9% (17/23) for ALK-rearranged (P= 0.29), with a median PFS of 1.9 and 6.9 months (hazard ratio [HR], 0.40; 95% [CI] 0.15-1.10, P = 0.08). The median overall survival (OS) was 21.3, 23.7, and 18.5 months in EGFR-mutant, ALK-rearranged, and EGFR/ALK co-altered (P= 0.06), and there existed a statistically significant difference in OS between ALK-rearranged and EGFR/ALK co-altered (P=0.03). Taken together, the first-line EGFR-TKI might be the reasonable care for advanced NSCLC harbouring EGFR/ALK co-alterations, whether or nor to use sequential crizotinib should be guided by the status of ALK rearrangement and the relative level of phospho-EGFR and phospho-ALK.

  9. EGFR Gene Amplification and KRAS Mutation Predict Response to Combination Targeted Therapy in Metastatic Colorectal Cancer.

    PubMed

    Khan, Sajid A; Zeng, Zhaoshi; Shia, Jinru; Paty, Philip B

    2017-07-01

    Genetic variability in KRAS and EGFR predicts response to cetuximab in irinotecan refractory colorectal cancer. Whether these markers or others remain predictive in combination biologic therapies including bevacizumab is unknown. We identified predictive biomarkers from patients with irinotecan refractory metastatic colorectal cancer treated with cetuximab plus bevacizumab. Patients who received cetuximab plus bevacizumab for irinotecan refractory colorectal cancer in either of two Phase II trials conducted were identified. Tumor tissue was available for 33 patients. Genomic DNA was extracted and used for mutational analysis of KRAS, BRAF, and p53 genes. Fluorescence in situ hybridization was performed to assess EGFR copy number. The status of single genes and various combinations were tested for association with response. Seven of 33 patients responded to treatment. KRAS mutations were found in 14/33 cases, and 0 responded to treatment (p = 0.01). EGFR gene amplification was seen in 3/33 of tumors and in every case was associated with response to treatment (p < 0.001). TP53 and BRAF mutations were found in 18/33 and 0/33 tumors, respectively, and there were no associations with response to either gene. EGFR gene amplification and KRAS mutations are predictive markers for patients receiving combination biologic therapy of cetuximab plus bevacizumab for metastatic colorectal cancer. One marker or the other is present in the tumor of half of all patients allowing treatment response to be predicted with a high degree of certainty. The role for molecular markers in combination biologic therapy seems promising.

  10. E5 can be expressed in anal cancer and leads to epidermal growth factor receptor-induced invasion in a human papillomavirus 16-transformed anal epithelial cell line.

    PubMed

    Wechsler, Erin Isaacson; Tugizov, Sharof; Herrera, Rossana; Da Costa, Maria; Palefsky, Joel M

    2018-05-01

    We detected the first human papillomavirus (HPV)-16-immortalized anal epithelial cell line, known as AKC2 cells to establish an in vitro model of HPV-16-induced anal carcinogenesis. Consistent with detection of E6, E7 and E5 expression in anal cancer biopsies, AKC2 cells expressed high levels of all three HPV oncogenes. Also, similar to findings in anal cancer biopsies, epidermal growth factor receptor (EGFR) was overexpressed in AKC2 cells. AKC2 cells exhibited a poorly differentiated and invasive phenotype in three-dimensional raft culture and inhibition of EGFR function abrogated AKC2 invasion. Reducing E5 expression using E5-targeted siRNAs in AKC2 cells led to knockdown of E5 expression, but also HPV-16 E2, E6 and E7 expression. AKC2 cells treated with E5-targeted siRNA had reduced levels of total and phosphorylated EGFR, and reduced invasion. Rescue of E6/E7 expression with simultaneous E5 knockdown confirmed that E5 plays a key role in EGFR overexpression and EGFR-induced invasion.

  11. Requirement of ERα and basal activities of EGFR and Src kinase in Cd-induced activation of MAPK/ERK pathway in human breast cancer MCF-7 cells.

    PubMed

    Song, Xiulong; Wei, Zhengxi; Shaikh, Zahir A

    2015-08-15

    Cadmium (Cd) is a common environmental toxicant and an established carcinogen. Epidemiological studies implicate Cd with human breast cancer. Low micromolar concentrations of Cd promote proliferation of human breast cancer cells in vitro. The growth promotion of breast cancer cells is associated with the activation of MAPK/ERK pathway. This study explores the mechanism of Cd-induced activation of MAPK/ERK pathway. Specifically, the role of cell surface receptors ERα, EGFR, and Src kinase was evaluated in human breast cancer MCF-7 cells treated with 1-3μM Cd. The activation of ERK was studied using a serum response element (SRE) luciferase reporter assay. Receptor phosphorylation was detected by Western blot analyses. Cd treatment increased both the SRE reporter activity and ERK1/2 phosphorylation in a concentration-dependent manner. Cd treatment had no effect on reactive oxygen species (ROS) generation. Also, blocking the entry of Cd into the cells with manganese did not diminish Cd-induced activation of MAPK/ERK. These results suggest that the effect of Cd was likely not caused by intracellular ROS generation, but through interaction with the membrane receptors. While Cd did not appear to activate either EGFR or Src kinase, their inhibition completely blocked the Cd-induced activation of ERK as well as cell proliferation. Similarly, silencing ERα with siRNA or use of ERα antagonist blocked the effects of Cd. Based on these results, it is concluded that not only ERα, but also basal activities of EGFR and Src kinase are essential for Cd-induced signal transduction and activation of MAPK/ERK pathway for breast cancer cell proliferation. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. KRAS, EGFR, PDGFR-α, KIT and COX-2 status in carcinoma showing thymus-like elements (CASTLE)

    PubMed Central

    2014-01-01

    Background CASTLE (Carcinoma showing thymus-like elements) is a rare malignant neoplasm of the thyroid resembling lymphoepithelioma-like and squamous cell carcinoma of the thymus with different biological behaviour and a better prognosis than anaplastic carcinoma of the thyroid. Methods We retrospectively investigated 6 cases of this very rare neoplasm in order to investigate the mutational status of KRAS, EGFR, PDGFR-α and KIT, as well as the immunohistochemical expression pattern of CD117, EGFR and COX-2, and possibly find new therapeutic targets. Results Diagnosis was confirmed by a moderate to strong expression of CD5, CD117 and CK5/6, whereas thyroglobulin, calcitonin and TTF-1 were negative in all cases. Tumors were also positive for COX-2 and in nearly all cases for EGFR. In four cases single nucleotide polymorphisms (SNPs) could be detected in exon 12 of the PDGFR-α gene (rs1873778), in three cases SNPs were found in exon 20 of the EGFR gene (rs1050171). No mutations were found in the KIT and KRAS gene. Conclusions All tumors showed a COX-2 expression as well as an EGFR expression except for one case and a wild-type KRAS status. No activating mutations in the EGFR, KIT and PDGFR-α gene could be detected. Our data may indicate a potential for targeted therapies, but if these therapeutic strategies are of benefit in CASTLE remains to be determined. Virtual Slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1658499296115016 PMID:24934485

  13. Mucinous Colorectal Adenocarcinoma: Influence of EGFR and E-Cadherin Expression on Clinicopathologic Features and Prognosis.

    PubMed

    Foda, Abd AlRahman M; AbdelAziz, Azza; El-Hawary, Amira K; Hosni, Ali; Zalata, Khalid R; Gado, Asmaa I

    2015-08-01

    Previous studies have shown conflicting results on epidermal growth factor receptor (EGFR) and E-cadherin expression in colorectal carcinoma and their prognostic significance. To the best of our knowledge, this study is the first to investigate EGFR and E-cadherin expression, interrelation and relation to clinicopathologic, histologic parameters, and survival in rare colorectal mucinous adenocarcinoma (MA). In this study, we studied tumor tissue specimens from 150 patients with colorectal MA and nonmucinous adenocarcinoma (NMA). High-density manual tissue microarrays were constructed using modified mechanical pencil tips technique, and immunohistochemistry for EGFR and E-cadherin was performed. All relations were analyzed using established statistical methodologies. NMA expressed EGFR and E-cadherin in significantly higher rates with significant heterogenous pattern than MA. EGFR and E-cadherin positivity rates were significantly interrelated in both NMA and MA groups. In the NMA group, high EGFR expression was associated with old age, male sex, multiplicity of tumors, lack of mucinous component, and association with schistosomiasis. However, in the MA group, high EGFR expression was associated only with old age and MA subtype rather than signet ring carcinoma subtype. Conversely, high E-cadherin expression in MA cases was associated with old age, fungating tumor configuration, MA subtype, and negative intratumoral lymphocytic response. However, in the NMA cases, none of these factors was statistically significant. In a univariate analysis, neither EGFR nor E-cadherin expression showed a significant impact on disease-free or overall survival. Targeted therapy against EGFR and E-cadherin may not be useful in patients with MA. Neither EGFR nor E-cadherin is an independent prognostic factor in NMA or MA.

  14. Ultrasound-Targeted Microbubble Destruction to Deliver siRNA Cancer Therapy

    PubMed Central

    Carson, Andrew R; McTiernan, Charles F; Lavery, Linda; Grata, Michelle; Leng, Xiaoping; Wang, Jianjun; Chen, Xucai; Villanueva, Flordeliza S

    2012-01-01

    Microbubble contrast agents can specifically deliver nucleic acids to target tissues when exposed to ultrasound treatment parameters that mediate microbubble destruction. In this study, we evaluated whether microbubbles and ultrasound targeted microbubble destruction (UTMD) could be used to enhance delivery of EGFR-directed small inhibitory RNA (siRNA) to murine squamous cell carcinomas. Custom designed microbubbles efficiently bound siRNA and mediated RNAse protection. UTMD-mediated delivery of microbubbles loaded with EGFR-directed siRNA to murine squamous carcinoma cells in vitro reduced EGFR expression and EGF-dependent growth, relative to delivery of control siRNA. Similarly, serial UTMD-mediated delivery of EGFR siRNA to squamous cell carcinoma in vivo decreased EGFR expression and increased tumor doubling times, relative to controls receiving EGFR siRNA loaded microbubbles but not ultrasound or control siRNA loaded microbubbles and UTMD. Taken together, our results offer a preclinical proof of concept for customized microbubbles and UTMD to deliver gene-targeted siRNA for cancer therapy. PMID:23010078

  15. Mechanisms and Clinical Activity of an EGFR and HER2 Exon 20-selective Kinase Inhibitor in Non-small Cell Lung Cancer

    PubMed Central

    Robichaux, Jacqulyne P.; Elamin, Yasir Y.; Tan, Zhi; Carter, Brett W.; Zhang, Shuxing; Liu, Shengwu; Li, Shuai; Chen, Ting; Poteete, Alissa; Estrada-Bernal, Adriana; Le, Anh T.; Truini, Anna; Nilsson, Monique B.; Sun, Huiying; Roarty, Emily; Goldberg, Sarah B.; Brahmer, Julie R.; Altan, Mehmet; Lu, Charles; Papadimitrakopoulou, Vassiliki; Politi6, Katerina; Doebele, Robert C.; Wong, Kwok-Kin; Heymach, John V.

    2018-01-01

    Although most activating mutations of epidermal growth factor receptor (EGFR)-mutant non–small cell lung cancers (NSCLCs) are sensitive to available EGFR tyrosine kinase inhibitors (TKIs), a subset with alterations in exon 20 of EGFR and HER2 are intrinsically resistant and lack an effective therapy. We used in silico, in vitro, and in vivo testing to model structural alterations induced by exon 20 mutations and to identify effective inhibitors. 3D modeling indicated alterations restricted the size of the drug-binding pocket, limiting the binding of large, rigid inhibitors. We found that poziotinib, owing to its small size and flexibility, can circumvent these steric changes and is a potent inhibitor of the most common EGFR and HER2 exon 20 mutants. Poziotinib demonstrated greater activity than approved EGFR TKIs in vitro and in patient-derived xenograft models of EGFR or HER2 exon 20 mutant NSCLC and in genetically engineered mouse models of NSCLC. In a phase 2 trial, the first 11 patients with NSCLC with EGFR exon 20 mutations receiving poziotinib had a confirmed objective response rate of 64%. These data identify poziotinib as a potent, clinically active inhibitor of EGFR and HER2 exon 20 mutations and illuminate the molecular features of TKIs that may circumvent steric changes induced by these mutations. PMID:29686424

  16. Highly sensitive and quantitative evaluation of the EGFR T790M mutation by nanofluidic digital PCR

    PubMed Central

    Iwama, Eiji; Takayama, Koichi; Harada, Taishi; Okamoto, Isamu; Ookubo, Fumihiko; Kishimoto, Junji; Baba, Eishi; Oda, Yoshinao; Nakanishi, Yoichi

    2015-01-01

    The mutation of T790M in EGFR is a major mechanism of resistance to treatment with EGFR-TKIs. Only qualitative detection (presence or absence) of T790M has been described to date, however. Digital PCR (dPCR) analysis has recently been applied to the quantitative detection of target molecules in cancer with high sensitivity. In the present study, 25 tumor samples (13 obtained before and 12 after EGFR-TKI treatment) from 18 NSCLC patients with activating EGFR mutations were evaluated for T790M with dPCR. The ratio of the number of T790M alleles to that of activating mutation alleles (T/A) was determined. dPCR detected T790M in all 25 samples. Although T790M was present in all pre-TKI samples from 13 patients, 10 of these patients had a low T/A ratio and manifested substantial tumor shrinkage during treatment with EGFR-TKIs. In six of seven patients for whom both pre- and post-TKI samples were available, the T/A ratio increased markedly during EGFR-TKI treatment. Highly sensitive dPCR thus detected T790M in all NSCLC patients harboring activating EGFR mutations whether or not they had received EGFR-TKI treatment. Not only highly sensitive but also quantitative detection of T790M is important for evaluation of the contribution of T790M to EGFR-TKI resistance. PMID:26015401

  17. Genetic deletion of the EGFR ligand epigen does not affect mouse embryonic development and tissue homeostasis.

    PubMed

    Dahlhoff, Maik; Schäfer, Matthias; Wolf, Eckhard; Schneider, Marlon R

    2013-02-15

    The epidermal growth factor receptor (EGFR) is a tyrosine kinase receptor with manifold functions during development, tissue homeostasis and disease. EGFR activation, the formation of homodimers or heterodimers (with the related ERBB2-4 receptors) and downstream signaling is initiated by the binding of a family of structurally related growth factors, the EGFR ligands. Genetic deletion experiments clarified the biological function of all family members except for the last characterized ligand, epigen. We employed gene targeting in mouse embryonic stem cells to generate mice lacking epigen expression. Loss of epigen did not affect mouse development, fertility, or organ physiology. Quantitative RT-PCR analysis revealed increased expression of betacellulin and EGF in a few organs of epigen-deficient mice, suggesting a functional compensation by these ligands. In conclusion, we completed the genetic analysis of EGFR ligands and show that epigen has non-essential functions or functions that can be compensated by other EGFR ligands during growth and tissue homeostasis. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Temporal Resolution of Autophosphorylation for Normal and Oncogenic Forms of EGFR and Differential Effects of Gefitinib†

    PubMed Central

    Kim, Youngjoo; Li, Zhimin; Apetri, Mihaela; Luo, BeiBei; Settleman, Jeffrey E.; Anderson, Karen S.

    2012-01-01

    Epidermal growth factor receptor (EGFR) is a member of the ErbB family of receptor tyrosine kinases (RTK). EGFR overexpression or mutation in many different forms of cancers has highlighted its role as an important therapeutic target. Gefitinib, the first small molecule inhibitor of EGFR kinase function to be approved for the treatment of non-small cell lung cancer (NSCLC) by the FDA, demonstrates clinical activity primarily in patients with tumors that harbor somatic kinase domain mutations in EGFR. Here, we compare wild-type EGFR autophosphorylation kinetics to the L834R (also called L858R) EGFR form, one of the most common mutations in lung cancer patients. Using rapid chemical quench, time resolved electrospray mass spectrometry (ESI-MS) and western blot analyses, we examined the order of autophosphorylation in wild-type (WT) and L834R EGFR and the effect of gefitinib (Iressa ™) on the phosphorylation of individual tyrosines. These studies establish that there is a temporal order of autophosphorylation of key tyrosines involved in downstream signaling for WT EGFR and a loss of order for the oncogenic L834R mutant. These studies also reveal unique signature patterns of drug sensitivity for inhibition of tyrosine autophosphorylation by gefitinib; distinct for WT and oncogenic L834R mutant forms of EGFR. Fluorescence studies show that for WT EGFR, the binding affinity for gefitinib is weaker for the phosphorylated protein while for the oncogenic mutant, L834R EGFR, the binding affinity of gefitinib is substantially enhanced and likely contributes to the efficacy observed clinically. This mechanistic information is important in understanding the molecular details underpinning clinical observations as well as to aid in the design of more potent and selective EGFR inhibitors. PMID:22657099

  19. The Hippo/YAP pathway interacts with EGFR signaling and HPV oncoproteins to regulate cervical cancer progression

    PubMed Central

    He, Chunbo; Mao, Dagan; Hua, Guohua; Lv, Xiangmin; Chen, Xingcheng; Angeletti, Peter C; Dong, Jixin; Remmenga, Steven W; Rodabaugh, Kerry J; Zhou, Jin; Lambert, Paul F; Yang, Peixin; Davis, John S; Wang, Cheng

    2015-01-01

    The Hippo signaling pathway controls organ size and tumorigenesis through a kinase cascade that inactivates Yes-associated protein (YAP). Here, we show that YAP plays a central role in controlling the progression of cervical cancer. Our results suggest that YAP expression is associated with a poor prognosis for cervical cancer. TGF-α and amphiregulin (AREG), via EGFR, inhibit the Hippo signaling pathway and activate YAP to induce cervical cancer cell proliferation and migration. Activated YAP allows for up-regulation of TGF-α, AREG, and EGFR, forming a positive signaling loop to drive cervical cancer cell proliferation. HPV E6 protein, a major etiological molecule of cervical cancer, maintains high YAP protein levels in cervical cancer cells by preventing proteasome-dependent YAP degradation to drive cervical cancer cell proliferation. Results from human cervical cancer genomic databases and an accepted transgenic mouse model strongly support the clinical relevance of the discovered feed-forward signaling loop. Our study indicates that combined targeting of the Hippo and the ERBB signaling pathways represents a novel therapeutic strategy for prevention and treatment of cervical cancer. PMID:26417066

  20. The EGFR family of receptors sensitizes cancer cells towards UV light

    NASA Astrophysics Data System (ADS)

    Petersen, Steffen; Neves-Petersen, Maria Teresa; Olsen, Birgitte

    2008-02-01

    A combination of bioinformatics, biophysical, advanced laser studies and cell biology lead to the realization that laser-pulsed UV light stops cancer growth and induces apoptosis. We have previously shown that laser-pulsed UV (LP-UV) illumination of two different skin-derived cancer cell lines both over expressing the EGF receptor, lead to arrest of the EGFR signaling pathway. We have investigated the available sequence and experimental 3D structures available in the Protein Data Bank. The EGF receptor contains a Furin like cystein rich extracellular domain. The cystein content is highly unusual, 25 disulphide bridges supports the 621 amino acid extracellular protein domain scaffold (1mb6.pdb). In two cases a tryptophan is neighboring a cystein in the primary sequence, which in itself is a rare observation. Aromatic residues is observed to be spatially close to all observed 25 disulphide bridges. The EGF receptor is often overexpressed in cancers and other proliferative skin disorders, it might be possible to significantly reduce the proliferative potential of these cells making them good targets for laser-pulsed UV-light treatment. The discovery that UV light can be used to open disulphide bridges in proteins upon illumination of nearby aromatic amino acids was the first step that lead to the hypothesis that UV light could modulate the structure and therefore the function of these key receptor proteins. The observation that membrane receptors (EGFR) contained exactly the motifs that are sensitive to UV light lead to the prediction that UV light could modify these receptors permanently and stop cancer proliferation. We hereby show that the EGFR family of receptors has the necessary structural motifs that make this family of proteins highly sensitive to UV light.

  1. Sequential treatment of icotinib after first-line pemetrexed in advanced lung adenocarcinoma with unknown EGFR gene status.

    PubMed

    Zheng, Yulong; Fang, Weijia; Deng, Jing; Zhao, Peng; Xu, Nong; Zhou, Jianying

    2014-07-01

    In non-small cell lung cancer (NSCLC), the well-developed epidermal growth factor receptor (EGFR) is an important therapeutic target. EGFR activating gene mutations have been proved strongly predictive of response to EGFR-tyrosine kinase inhibitors (TKI) in NSCLC. However, both in daily clinical practice and clinical trials, patients with unknown EGFR gene status (UN-EGFR-GS) are very common. In this study, we assessed efficacy and tolerability of sequential treatment of first-line pemetrexed followed by icotinib in Chinese advanced lung adenocarcinoma with UN-EGFR-GS. We analyzed 38 patients with advanced lung adenocarcinoma with UN-EGFR-GS treated with first-line pemetrexed-based chemotherapy followed by icotinib as maintenance or second-line therapy. The response rates to pemetrexed and icotinib were 21.1% and 42.1%, respectively. The median overall survival was 27.0 months (95% CI, 19.7-34.2 months). The 12-month overall survival probability was 68.4%. The most common toxicities observed in icotinib phase were rashes, diarrheas, and elevated aminotransferase. Subgroup analysis indicated that the overall survival is correlated with response to icotinib. The sequence of first-line pemetrexed-based chemotherapy followed by icotinib treatment is a promising option for advanced lung adenocarcinoma with UN-EGFR-GS in China.

  2. Aspirin-Induced Gastric Lesions Alters EGFR and PECAM-1 Immunoreactivity in Wistar Rats: Modulatory Action of Flavonoid Fraction of Musa Paradisiaca

    PubMed Central

    Alese, Margaret Olutayo; Adewole, Stephen Olarinde; Akinwunmi, Kemi Feyisayo; Omonisi, Abidemi Emmanuel; Alese, Oluwole Ojo

    2017-01-01

    AIM: In this study, Epithelial Growth Factor Receptor and Platelet Endothelial Cell Adhesion Molecule-1 were localised to investigate the healing effects of a flavonoid-rich fraction of M. paradisiaca fruit in the gastric corpus of Wistar rats following aspirin-induced gastric lesion. MATERIALS AND METHODS: Mature, unripe fruits of M. paradisiaca were peeled; air dried, pulverised, extracted with 70% methanol, concentrated and partitioned. Ninety male Wistar rats were randomly assigned into 6 groups of 15 rats each. The gastric lesion was induced in groups B, C, D, E and F rats by administration of 400 mg/kg aspirin in distilled water. Group A received distilled water. After 24 hours, flavonoid fraction of M. paradisiaca was administered to groups C, D and E at 100, 200 and 400 mg/kg respectively for 21 days. Group F rats received omeprazole at 1.8 mg/kg for 21 days. Five rats from each group were anaesthetized with ketamine on days 14, 21 and 28. Gastric tissues were excised and fixed in Neutral buffered formalin. This was followed by paraffin wax embedding method and sections stained with haematoxylin and eosin and for immunolocalisation of EGFR and PECAM-1. Data were analysed using descriptive and inferential statistics. RESULTS: There was a significant difference in the ulcer index in the corpus of control and treated rats throughout the experimental period (p = 0.0001). H&E stained sections showed a gradual restoration of the epithelial lining in the treated groups. Immunohistochemical examination showed that M. paradisiaca significantly increased (p < 0.05) reactivity for both EGFR and CD31 across the treatment groups. CONCLUSION: The efficacy of Musa paradisiaca in attenuating the damaging effects of aspirin on the gastric mucosa was observed as there was a significantly increased reactivity for EGFR and PECAM-1 in the gastric corpus in a dose-dependent manner. PMID:28932294

  3. Aspirin-Induced Gastric Lesions Alters EGFR and PECAM-1 Immunoreactivity in Wistar Rats: Modulatory Action of Flavonoid Fraction of Musa Paradisiaca.

    PubMed

    Alese, Margaret Olutayo; Adewole, Stephen Olarinde; Akinwunmi, Kemi Feyisayo; Omonisi, Abidemi Emmanuel; Alese, Oluwole Ojo

    2017-08-15

    In this study, Epithelial Growth Factor Receptor and Platelet Endothelial Cell Adhesion Molecule-1 were localised to investigate the healing effects of a flavonoid-rich fraction of M. paradisiaca fruit in the gastric corpus of Wistar rats following aspirin-induced gastric lesion. Mature, unripe fruits of M. paradisiaca were peeled; air dried, pulverised, extracted with 70% methanol, concentrated and partitioned. Ninety male Wistar rats were randomly assigned into 6 groups of 15 rats each. The gastric lesion was induced in groups B, C, D, E and F rats by administration of 400 mg/kg aspirin in distilled water. Group A received distilled water. After 24 hours, flavonoid fraction of M. paradisiaca was administered to groups C, D and E at 100, 200 and 400 mg/kg respectively for 21 days. Group F rats received omeprazole at 1.8 mg/kg for 21 days. Five rats from each group were anaesthetized with ketamine on days 14, 21 and 28. Gastric tissues were excised and fixed in Neutral buffered formalin. This was followed by paraffin wax embedding method and sections stained with haematoxylin and eosin and for immunolocalisation of EGFR and PECAM-1. Data were analysed using descriptive and inferential statistics. There was a significant difference in the ulcer index in the corpus of control and treated rats throughout the experimental period (p = 0.0001). H&E stained sections showed a gradual restoration of the epithelial lining in the treated groups. Immunohistochemical examination showed that M. paradisiaca significantly increased (p < 0.05) reactivity for both EGFR and CD31 across the treatment groups. The efficacy of Musa paradisiaca in attenuating the damaging effects of aspirin on the gastric mucosa was observed as there was a significantly increased reactivity for EGFR and PECAM-1 in the gastric corpus in a dose-dependent manner.

  4. Angiogenin/Ribonuclease 5 Is an EGFR Ligand and a Serum Biomarker for Erlotinib Sensitivity in Pancreatic Cancer.

    PubMed

    Wang, Ying-Nai; Lee, Heng-Huan; Chou, Chao-Kai; Yang, Wen-Hao; Wei, Yongkun; Chen, Chun-Te; Yao, Jun; Hsu, Jennifer L; Zhu, Cihui; Ying, Haoqiang; Ye, Yuanqing; Wang, Wei-Jan; Lim, Seung-Oe; Xia, Weiya; Ko, How-Wen; Liu, Xiuping; Liu, Chang-Gong; Wu, Xifeng; Wang, Huamin; Li, Donghui; Prakash, Laura R; Katz, Matthew H; Kang, Yaan; Kim, Michael; Fleming, Jason B; Fogelman, David; Javle, Milind; Maitra, Anirban; Hung, Mien-Chie

    2018-04-09

    Pancreatic ribonuclease (RNase) is a secreted enzyme critical for host defense. We discover an intrinsic RNase function, serving as a ligand for epidermal growth factor receptor (EGFR), a member of receptor tyrosine kinase (RTK), in pancreatic ductal adenocarcinoma (PDAC). The closely related bovine RNase A and human RNase 5 (angiogenin [ANG]) can trigger oncogenic transformation independently of their catalytic activities via direct association with EGFR. Notably, high plasma ANG level in PDAC patients is positively associated with response to EGFR inhibitor erlotinib treatment. These results identify a role of ANG as a serum biomarker that may be used to stratify patients for EGFR-targeted therapies, and offer insights into the ligand-receptor relationship between RNase and RTK families. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Cross-talk between AMPK and EGFR dependent Signaling in Non-Small Cell Lung Cancer

    NASA Astrophysics Data System (ADS)

    Praveen, Paurush; Hülsmann, Helen; Sültmann, Holger; Kuner, Ruprecht; Fröhlich, Holger

    2016-06-01

    Lung cancers globally account for 12% of new cancer cases, 85% of these being Non Small Cell Lung Cancer (NSCLC). Therapies like erlotinib target the key player EGFR, which is mutated in about 10% of lung adenocarcinoma. However, drug insensitivity and resistance caused by second mutations in the EGFR or aberrant bypass signaling have evolved as a major challenge in controlling these tumors. Recently, AMPK activation was proposed to sensitize NSCLC cells against erlotinib treatment. However, the underlying mechanism is largely unknown. In this work we aim to unravel the interplay between 20 proteins that were previously associated with EGFR signaling and erlotinib drug sensitivity. The inferred network shows a high level of agreement with protein-protein interactions reported in STRING and HIPPIE databases. It is further experimentally validated with protein measurements. Moreover, predictions derived from our network model fairly agree with somatic mutations and gene expression data from primary lung adenocarcinoma. Altogether our results support the role of AMPK in EGFR signaling and drug sensitivity.

  6. Cross-talk between AMPK and EGFR dependent Signaling in Non-Small Cell Lung Cancer.

    PubMed

    Praveen, Paurush; Hülsmann, Helen; Sültmann, Holger; Kuner, Ruprecht; Fröhlich, Holger

    2016-06-09

    Lung cancers globally account for 12% of new cancer cases, 85% of these being Non Small Cell Lung Cancer (NSCLC). Therapies like erlotinib target the key player EGFR, which is mutated in about 10% of lung adenocarcinoma. However, drug insensitivity and resistance caused by second mutations in the EGFR or aberrant bypass signaling have evolved as a major challenge in controlling these tumors. Recently, AMPK activation was proposed to sensitize NSCLC cells against erlotinib treatment. However, the underlying mechanism is largely unknown. In this work we aim to unravel the interplay between 20 proteins that were previously associated with EGFR signaling and erlotinib drug sensitivity. The inferred network shows a high level of agreement with protein-protein interactions reported in STRING and HIPPIE databases. It is further experimentally validated with protein measurements. Moreover, predictions derived from our network model fairly agree with somatic mutations and gene expression data from primary lung adenocarcinoma. Altogether our results support the role of AMPK in EGFR signaling and drug sensitivity.

  7. The E3 ubiquitin ligase NEDD4 mediates cell migration signaling of EGFR in lung cancer cells.

    PubMed

    Shao, Genbao; Wang, Ranran; Sun, Aiqin; Wei, Jing; Peng, Ke; Dai, Qian; Yang, Wannian; Lin, Qiong

    2018-02-19

    EGFR-dependent cell migration plays an important role in lung cancer progression. Our previous study observed that the HECT E3 ubiquitin ligase NEDD4 is significantly correlated with tumor metastasis and required for migration and invasion signaling of EGFR in gastric cancer cells. However, how NEDD4 promotes the EGFR-dependent lung cancer cell migration is unknown. This study is to elucidate the mechanism by which NEDD4 mediates the EGFR lung cancer migration signaling. Lentiviral vector-loaded NEDD4 shRNA was used to deplete endogenous NEDD4 in lung cancer cell lines. Effects of the NEDD4 knockdown on the EGFR-dependent or independent lung cancer cell migration were determined using the wound-healing and transwell assays. Association of NEDD4 with activated EGFR was assayed by co-immunoprecipitation. Co-expression of NEDD4 with EGFR or PTEN was determined by immunohistochemical (IHC) staining in 63 lung adenocarcinoma tissue samples. Effects of NEDD4 ectopic expression or knockdown on PTEN ubiquitination and down-regulation, AKT activation and lysosomal secretion were examined using the GST-Uba pulldown assay, immunoblotting, immunofluorescent staining and a human cathepsin B ELISA assay respectively. The specific cathepsin B inhibitor CA-074Me was used for assessing the role of cathepsin B in lung cancer cell migration. Knockdown of NEDD4 significantly reduced EGF-stimulated cell migration in non-small cell lung carcinoma (NSCLC) cells. Co-immunoprecipitation assay found that NEDD4 is associated with EGFR complex upon EGF stimulation, and IHC staining indicates that NEDD4 is co-expressed with EGFR in lung adenocarcinoma tumor tissues, suggesting that NEDD4 might mediate lung cancer cell migration by interaction with the EGFR signaling complex. Interestingly, NEDD4 promotes the EGF-induced cathepsin B secretion, possibly through lysosomal exocytosis, as overexpression of the ligase-dead mutant of NEDD4 impedes lysosomal secretion, and knockdown of NEDD4

  8. The dual PI3K/mTOR inhibitor PKI-587 enhances sensitivity to cetuximab in EGFR-resistant human head and neck cancer models

    PubMed Central

    D'Amato, V; Rosa, R; D'Amato, C; Formisano, L; Marciano, R; Nappi, L; Raimondo, L; Di Mauro, C; Servetto, A; Fusciello, C; Veneziani, B M; De Placido, S; Bianco, R

    2014-01-01

    Background: Cetuximab is the only targeted agent approved for the treatment of head and neck squamous cell carcinomas (HNSCC), but low response rates and disease progression are frequently reported. As the phosphoinositide 3-kinase (PI3K) and the mammalian target of rapamycin (mTOR) pathways have an important role in the pathogenesis of HNSCC, we investigated their involvement in cetuximab resistance. Methods: Different human squamous cancer cell lines sensitive or resistant to cetuximab were tested for the dual PI3K/mTOR inhibitor PF-05212384 (PKI-587), alone and in combination, both in vitro and in vivo. Results: Treatment with PKI-587 enhances sensitivity to cetuximab in vitro, even in the condition of epidermal growth factor receptor (EGFR) resistance. The combination of the two drugs inhibits cells survival, impairs the activation of signalling pathways and induces apoptosis. Interestingly, although significant inhibition of proliferation is observed in all cell lines treated with PKI-587 in combination with cetuximab, activation of apoptosis is evident in sensitive but not in resistant cell lines, in which autophagy is pre-eminent. In nude mice xenografted with resistant Kyse30 cells, the combined treatment significantly reduces tumour growth and prolongs mice survival. Conclusions: Phosphoinositide 3-kinase/mammalian target of rapamycin inhibition has an important role in the rescue of cetuximab resistance. Different mechanisms of cell death are induced by combined treatment depending on basal anti-EGFR responsiveness. PMID:24823695

  9. δ-Catenin Increases the Stability of EGFR by Decreasing c-Cbl Interaction and Enhances EGFR/Erk1/2 Signaling in Prostate Cancer.

    PubMed

    Shrestha, Nensi; Shrestha, Hridaya; Ryu, Taeyong; Kim, Hangun; Simkhada, Shishli; Cho, Young-Chang; Park, So-Yeon; Cho, Sayeon; Lee, Kwang-Youl; Lee, Jae-Hyuk; Kim, Kwonseop

    2018-04-30

    δ-Catenin, a member of the p120-catenin subfamily of armadillo proteins, reportedly increases during the late stage of prostate cancer. Our previous study demonstrates that δ-catenin increases the stability of EGFR in prostate cancer cell lines. However, the molecular mechanism behind δ-catenin-mediated enhanced stability of EGFR was not explored. In this study, we hypothesized that δ-catenin enhances the protein stability of EGFR by inhibiting its lysosomal degradation that is mediated by c-casitas b-lineage lymphoma (c-Cbl), a RING domain E3 ligase. c-Cbl monoubiquitinates EGFR and thus facilitates its internalization, followed by lysosomal degradation. We observed that δ-catenin plays a key role in EGFR stability and downstream signaling. δ-Catenin competes with c-Cbl for EGFR binding, which results in a reduction of binding between c-Cbl and EGFR and thus decreases the ubiquitination of EGFR. This in turn increases the expression of membrane bound EGFR and enhances EGFR/Erk1/2 signaling. Our findings add a new perspective on the role of δ-catenin in enhancing EGFR/Erk1/2 signaling-mediated prostate cancer.

  10. MicroRNA-137 inhibits growth of glioblastoma through EGFR suppression

    PubMed Central

    Zhang, Zhenxing; Song, Xiaofeng; Tian, He; Miao, Ye; Feng, Xu; Li, Yang; Wang, Honglei

    2017-01-01

    Aberrant expression of certain microRNAs (miRNAs) has been shown to contribute to the development of Glioblastoma multiforme (GBM). However, the involvement of miR-137 in the carcinogenesis of GBM has not been reported. Here, we showed that miR-137 levels in GBM tissues were significantly lower than the paired normal brain tissue in patients’ specimens. Moreover, low miR-137 levels in GBM tissue were associated with poor prognosis. In vitro, overexpression of miR-137 decreased GBM cell growth and increased cell apoptosis, while depletion of miR-137 enhanced cell growth and decreased cell apoptosis. Combined bioinformatics analysis and dual luciferase reporter assay showed that miR-137 may target the 3’-UTR of the epidermal growth factor receptor (EGFR) to reduce its protein translation, resulting in suppression of EGFR signaling in GBM cells. Together, our data suggest that reduction in miR-137 levels in GBM tissues may increase cell growth and decrease cell apoptosis, possibly through suppression of EGFR. PMID:28386374

  11. The phosphatase inhibitor menadione (vitamin K3) protects cells from EGFR inhibition by erlotinib and cetuximab.

    PubMed

    Perez-Soler, Roman; Zou, Yiyu; Li, Tianhong; Ling, Yi He

    2011-11-01

    Skin toxicity is the main side effect of epidermal growth factor receptor (EGFR) inhibitors, often leading to dose reduction or discontinuation. We hypothesized that phosphatase inhibition in the skin keratinocytes may prevent receptor dephosphorylation caused by EGFR inhibitors and be used as a new potential strategy for the prevention or treatment of this side effect. Menadione (Vitamin K3) was used as the prototype compound to test our hypothesis. HaCat human skin keratinocyte cells and A431 human squamous carcinoma cells were used. EGFR inhibition was measured by Western blotting and immunofluorescence. Phosphatase inhibition and reactive oxygen species (ROS) generation were measured by standard ELISA and fluorescence assays. Menadione caused significant and reversible EGFR activation in a dose-dependent manner starting at nontoxic concentrations. EGFR activation by menadione was associated with reversible protein tyrosine phosphatase inhibition, which seemed to be mediated by ROS generation as exposure to antioxidants prevented both menadione-induced ROS generation and phosphatase inhibition. Short-term coincubation of cells with nontoxic concentrations of menadione and the EGFR inhibitors erlotinib or cetuximab prevented EGFR dephosphorylation. Seventy-two-hour coincubation of cells with the highest nontoxic concentration of menadione and erlotinib provided for a fourfold cell growth inhibitory protection in HaCat human keratinocyte cells. Menadione at nontoxic concentrations causes EGFR activation and prevents EGFR dephosphorylation by erlotinib and cetuximab. This effect seems to be mediated by ROS generation and secondary phosphatase inhibition. Mild oxidative stress in skin keratinocytes by topical menadione may protect the skin from the toxicity secondary to EGFR inhibitors without causing cytotoxicity. ©2011 AACR

  12. The Emergent Landscape of Detecting EGFR Mutations Using Circulating Tumor DNA in Lung Cancer

    PubMed Central

    Wei, Fang; Wong, David T.; Su, Wu-Chou

    2015-01-01

    The advances in targeted therapies for lung cancer are based on the evaluation of specific gene mutations especially the epidermal growth factor receptor (EGFR). The assays largely depend on the acquisition of tumor tissue via biopsy before the initiation of therapy or after the onset of acquired resistance. However, the limitations of tissue biopsy including tumor heterogeneity and insufficient tissues for molecular testing are impotent clinical obstacles for mutation analysis and lung cancer treatment. Due to the invasive procedure of tissue biopsy and the progressive development of drug-resistant EGFR mutations, the effective initial detection and continuous monitoring of EGFR mutations are still unmet requirements. Circulating tumor DNA (ctDNA) detection is a promising biomarker for noninvasive assessment of cancer burden. Recent advancement of sensitive techniques in detecting EGFR mutations using ctDNA enables a broad range of clinical applications, including early detection of disease, prediction of treatment responses, and disease progression. This review not only introduces the biology and clinical implementations of ctDNA but also includes the updating information of recent advancement of techniques for detecting EGFR mutation using ctDNA in lung cancer. PMID:26448936

  13. Maintenance of Glia in the Optic Lamina Is Mediated by EGFR Signaling by Photoreceptors in Adult Drosophila

    PubMed Central

    Lee, Yuan-Ming; Sun, Y. Henry

    2015-01-01

    The late onset of neurodegeneration in humans indicates that the survival and function of cells in the nervous system must be maintained throughout adulthood. In the optic lamina of the adult Drosophila, the photoreceptor axons are surrounded by multiple types of glia. We demonstrated that the adult photoreceptors actively contribute to glia maintenance in their target field within the optic lamina. This effect is dependent on the epidermal growth factor receptor (EGFR) ligands produced by the R1-6 photoreceptors and transported to the optic lamina to act on EGFR in the lamina glia. EGFR signaling is necessary and sufficient to act in a cell-autonomous manner in the lamina glia. Our results suggest that EGFR signaling is required for the trafficking of the autophagosome/endosome to the lysosome. The loss of EGFR signaling results in cell degeneration most likely because of the accumulation of autophagosomes. Our findings provide in vivo evidence for the role of adult neurons in the maintenance of glia and a novel role for EGFR signaling in the autophagic flux. PMID:25909451

  14. Blocking of the EGFR-STAT3 signaling pathway through afatinib treatment inhibited the intrahepatic cholangiocarcinoma

    PubMed Central

    Zhang, Changhe; Xu, Hong; Zhou, Zhenping; Tian, Ye; Cao, Xiaofei; Cheng, Guochang; Liu, Qinghong

    2018-01-01

    Epidermal growth factor receptor (EGFR) and downstream signal transducer and activator of transcription 3 (STAT3) signaling have been extensively implicated in various human neoplasms. Recently, a novel EGFR inhibitor, known as afatinib, has exhibited broad antitumor activities in a variety of tumors. Therefore, the present study attempted to investigate the impact of this agent on intrahepatic cholangiocarcinoma (ICC). Initially, immunohistochemical assays were performed on 15 human ICC specimens and their adjacent tissues in order to assess the protein levels of phosphorylated EGFR (pEGFR) and pSTAT3. Subsequently, the human ICC cell lines JCK and OZ were exposed to different doses of afatinib, and then cell viability and apoptosis were determined by MTT assay and flow cytometry, respectively. Furthermore, immunoblotting was applied to detect any variations in the phosphorylated protein levels of EGFR and STAT3 in afatinib-treated ICC cells. The results of the current study demonstrated that ICC specimens had evidently increased pEGFR and pSTAT3 protein levels as compared with the adjacent noncancerous tissues. Further in vitro experiments indicated that afatinib evidently blocked ICC cell growth and induced cell apoptosis. At the protein level, pEGFR and pSTAT3 were evidently attenuated by afatinib-administration. In conclusion, the present study clearly determined that afatinib exerts an antitumor effect on ICC cells by silencing the EGFR-STAT3 signaling pathway. This novel agent deserves further investigation as a potential therapeutic strategy for ICC. PMID:29805522

  15. Epithelial-to-Mesenchymal Transition Antagonizes Response to Targeted Therapies in Lung Cancer by Suppressing BIM.

    PubMed

    Song, Kyung-A; Niederst, Matthew J; Lochmann, Timothy L; Hata, Aaron N; Kitai, Hidenori; Ham, Jungoh; Floros, Konstantinos V; Hicks, Mark A; Hu, Haichuan; Mulvey, Hillary E; Drier, Yotam; Heisey, Daniel A R; Hughes, Mark T; Patel, Neha U; Lockerman, Elizabeth L; Garcia, Angel; Gillepsie, Shawn; Archibald, Hannah L; Gomez-Caraballo, Maria; Nulton, Tara J; Windle, Brad E; Piotrowska, Zofia; Sahingur, Sinem E; Taylor, Shirley M; Dozmorov, Mikhail; Sequist, Lecia V; Bernstein, Bradley; Ebi, Hiromichi; Engelman, Jeffrey A; Faber, Anthony C

    2018-01-01

    Purpose: Epithelial-to-mesenchymal transition (EMT) confers resistance to a number of targeted therapies and chemotherapies. However, it has been unclear why EMT promotes resistance, thereby impairing progress to overcome it. Experimental Design: We have developed several models of EMT-mediated resistance to EGFR inhibitors (EGFRi) in EGFR -mutant lung cancers to evaluate a novel mechanism of EMT-mediated resistance. Results: We observed that mesenchymal EGFR -mutant lung cancers are resistant to EGFRi-induced apoptosis via insufficient expression of BIM, preventing cell death despite potent suppression of oncogenic signaling following EGFRi treatment. Mechanistically, we observed that the EMT transcription factor ZEB1 inhibits BIM expression by binding directly to the BIM promoter and repressing transcription. Derepression of BIM expression by depletion of ZEB1 or treatment with the BH3 mimetic ABT-263 to enhance "free" cellular BIM levels both led to resensitization of mesenchymal EGFR -mutant cancers to EGFRi. This relationship between EMT and loss of BIM is not restricted to EGFR -mutant lung cancers, as it was also observed in KRAS -mutant lung cancers and large datasets, including different cancer subtypes. Conclusions: Altogether, these data reveal a novel mechanistic link between EMT and resistance to lung cancer targeted therapies. Clin Cancer Res; 24(1); 197-208. ©2017 AACR . ©2017 American Association for Cancer Research.

  16. Targeting of EGFR, VEGFR2, and Akt by Engineered Dual Drug Encapsulated Mesoporous Silica-Gold Nanoclusters Sensitizes Tamoxifen-Resistant Breast Cancer.

    PubMed

    Kumar, B N Prashanth; Puvvada, Nagaprasad; Rajput, Shashi; Sarkar, Siddik; Mahto, Madhusudan Kr; Yallapu, Murali M; Pathak, Amita; Emdad, Luni; Das, Swadesh K; Reis, Rui L; Kundu, S C; Fisher, Paul B; Mandal, Mahitosh

    2018-05-30

    Tamoxifen administration enhanced overall disease-free survival and diminished mortality rates in cancer patients. However, patients with breast cancer often fail to respond for tamoxifen therapy due to the development of a drug-resistant phenotype. Functional analysis and molecular studies suggest that protein mutation and dysregulation of survival signaling molecules such as epidermal growth factor receptor, vascular endothelial growth factor receptor 2, and Akt contribute to tamoxifen resistance. Various strategies, including combinatorial therapies, show chemosensitize tamoxifen-resistant cancers. Based on chemotoxicity issues, researchers are actively investigating alternative therapeutic strategies. In the current study, we fabricate a mesoporous silica gold cluster nanodrug delivery system that displays exceptional tumor-targeting capability, thus promoting accretion of drug indices at the tumor site. We employ dual drugs, ZD6474, and epigallocatechin gallate (EGCG) that inhibit EGFR2, VEGFR2, and Akt signaling pathways since changes in these signaling pathways confer tamoxifen resistance in MCF 7 and T-47D cells. Mesoporous silica gold cluster nanodrug delivery of ZD6474 and EGCG sensitize tamoxifen-resistant cells to apoptosis. Western and immune-histochemical analyses confirmed the apoptotic inducing properties of the nanoformulation. Overall, results with these silica gold nanoclusters suggest that they may be a potent nanoformulation against chemoresistant cancers.

  17. Something Old, Something New, Something Borrowed, Something Fused: Novel EGFR Rearrangements in Lung Adenocarcinomas.

    PubMed

    Paik, Paul K

    2016-06-01

    Mutations in EGFR stand as the archetype for somatic alterations that lead to oncogene addiction and that predict for response to targeted therapies. In this issue of Cancer Discovery, Konduri and colleagues report on a pair of novel oncogenic and actionable EGFR fusion events in a series of patients with lung adenocarcinomas, casting new light on this model gene. Cancer Discov; 6(6); 574-5. ©2016 AACRSee related article by Konduri et al., p. 601. ©2016 American Association for Cancer Research.

  18. Src mediates cigarette smoke-induced resistance to tyrosine kinase inhibitors in NSCLC cells.

    PubMed

    Filosto, Simone; Baston, David S; Chung, Samuel; Becker, Cathleen R; Goldkorn, Tzipora

    2013-08-01

    The EGF receptor (EGFR) is a proto-oncogene commonly dysregulated in several cancers including non-small cell lung carcinoma (NSCLC) and, thus, is targeted for treatment using tyrosine kinase inhibitors (TKI) such as erlotinib. However, despite the efficacy observed in patients with NSCLC harboring oncogenic variants of the EGFR, general ineffectiveness of TKIs in patients with NSCLC who are current and former smokers necessitates identification of novel mechanisms to overcome this phenomenon. Previously, we showed that NSCLC cells harboring either wild-type (WT) EGFR or oncogenic mutant (MT) L858R EGFR become resistant to the effects of TKIs when exposed to cigarette smoke, evidenced by their autophosphorylation and prolonged downstream signaling. Here, we present Src as a target mediating cigarette smoke-induced resistance to TKIs in both WT EGFR- and L858R MT EGFR-expressing NSCLC cells. First, we show that cigarette smoke exposure of A549 cells leads to time-dependent activation of Src, which then abnormally binds to the WT EGFR causing TKI resistance, contrasting previous observations of constitutive binding between inactive Src and TKI-sensitive L858R MT EGFR. Next, we show that Src inhibition restores TKI sensitivity in cigarette smoke-exposed NSCLC cells, preventing EGFR autophosphorylation in the presence of erlotinib. Furthermore, we show that overexpression of a dominant-negative Src (Y527F/K295R) restores TKI sensitivity to A549 exposed to cigarette smoke. Importantly, the TKI resistance that emerges even in cigarette smoke-exposed L858R EGFR-expressing NSCLC cells could be eliminated with Src inhibition. Together, these findings offer new rationale for using Src inhibitors for treating TKI-resistant NSCLC commonly observed in smokers.

  19. Src mediates cigarette smoke-induced resistance to tyrosine kinase inhibitors in NSCLC cells

    PubMed Central

    Filosto, Simone; Baston, David S.; Chung, Samuel; Becker, Cathleen R.; Goldkorn, Tzipora

    2015-01-01

    The EGF Receptor (EGFR) is a proto-oncogene commonly dysregulated in several cancers including non-small cell lung cancer (NSCLC) and, thus, is targeted for treatment using tyrosine kinase inhibitors (TKIs) such as Erlotinib. However, despite the efficacy observed in NSCLC patients harboring oncogenic variants of the EGFR, general ineffectiveness of TKIs in NSCLC patients who are current and former smokers necessitates identification of novel mechanisms to overcome this phenomenon. Previously, we showed that NSCLC cells harboring either wild-type (WT) EGFR or oncogenic mutant (MT) L858R EGFR become resistant to the effects of TKIs when exposed to cigarette smoke (CS), evidenced by their auto-phosphorylation and prolonged downstream signaling. Here, we present Src as a target mediating CS-induced resistance to TKIs in both WT EGFR and L858R MT EGFR expressing NSCLC cells. First, we show that CS exposure of A549 cells leads to time-dependent activation of Src which then abnormally binds to the WT EGFR causing TKI resistance, contrasting previous observations of constitutive binding between inactive Src and TKI-sensitive L858R MT EGFR. Next, we demonstrate that Src inhibition restores TKI sensitivity in CS-exposed NSCLC cells, preventing EGFR auto-phosphorylation in the presence of Erlotinib. Furthermore, we show that over-expression of a dominant-negative Src (Y527F/K295R) restores TKI sensitivity to A549 exposed to CS. Importantly, the TKI resistance that emerges even in CS-exposed L858R EGFR expressing NSCLC cells could be eliminated with Src inhibition. Together, these findings offer new rationale for using Src inhibitors for treating TKI-resistant NSCLC commonly observed in smokers. PMID:23686837

  20. Genetic link between Cabeza, a Drosophila homologue of Fused in Sarcoma (FUS), and the EGFR signaling pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shimamura, Mai; Kyotani, Akane; Insect Biomedical Research Center, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585

    2014-08-01

    Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease that causes progressive muscular weakness. Fused in Sarcoma (FUS) that has been identified in familial ALS is an RNA binding protein that is normally localized in the nucleus. However, its function in vivo is not fully understood. Drosophila has Cabeza (Caz) as a FUS homologue and specific knockdown of Caz in the eye imaginal disc and pupal retina using a GMR-GAL4 driver was here found to induce an abnormal morphology of the adult compound eyes, a rough eye phenotype. This was partially suppressed by expression of the apoptosis inhibitor P35. Knockdownmore » of Caz exerted no apparent effect on differentiation of photoreceptor cells. However, immunostaining with an antibody to Cut that marks cone cells revealed fusion of these and ommatidia of pupal retinae. These results indicate that Caz knockdown induces apoptosis and also inhibits differentiation of cone cells, resulting in abnormal eye morphology in adults. Mutation in EGFR pathway-related genes, such as rhomboid-1, rhomboid-3 and mirror suppressed the rough eye phenotype induced by Caz knockdown. Moreover, the rhomboid-1 mutation rescued the fusion of cone cells and ommatidia observed in Caz knockdown flies. The results suggest that Caz negatively regulates the EGFR signaling pathway required for determination of cone cell fate in Drosophila. - Highlights: • Knockdown of Cabeza induced rough eye phenotype. • Knockdown of Cabeza induced fusion of cone cells in pupal retinae. • Knockdown of Cabeza induced apoptosis in pupal retinae. • Mutation in EGFR pathway-related genes suppressed the rough eye phenotype. • Cabeza may negatively regulate the EGFR pathway.« less

  1. Phosphorylation of TNF-alpha converting enzyme by gastrin-releasing peptide induces amphiregulin release and EGF receptor activation.

    PubMed

    Zhang, Qing; Thomas, Sufi M; Lui, Vivian Wai Yan; Xi, Sichuan; Siegfried, Jill M; Fan, Huizhou; Smithgall, Thomas E; Mills, Gordon B; Grandis, Jennifer Rubin

    2006-05-02

    G protein-coupled receptors induce EGF receptor (EGFR) signaling, leading to the proliferation and invasion of cancer cells. Elucidation of the mechanism of EGFR activation by G protein-coupled receptors may identify new signaling paradigms. A gastrin-releasing peptide (GRP)/GRP receptor-mediated autocrine pathway was previously described in squamous cell carcinoma of head and neck. In the present study, we demonstrate that TNF-alpha converting enzyme (TACE), a disintegrin and metalloproteinse-17, undergoes a Src-dependent phosphorylation that regulates release of the EGFR ligand amphiregulin upon GRP treatment. Further investigation reveals the phosphatidylinositol 3-kinase (PI3-K) as the intermediate of c-Src and TACE, contributing to their association and TACE phosphorylation. Phosphoinositide-dependent kinase 1 (PDK1), a downstream target of PI3-K, has been identified as the previously undescribed kinase to directly phosphorylate TACE upon GRP treatment. These findings suggest a signaling cascade of GRP-Src-PI3-K-PDK1-TACE-amphiregulin-EGFR with multiple points of interaction, translocation, and phosphorylation. Furthermore, knockdown of PDK1 augmented the antitumor effects of the EGFR inhibitor erlotinib, indicating PDK1 as a therapeutic target to improve the clinical response to EGFR inhibitors.

  2. EGFR and AKT1 overexpression are mutually exclusive and associated with a poor survival in resected gastric adenocarcinomas.

    PubMed

    Petrini, Iacopo; Lencioni, Monica; Vasile, Enrico; Fornaro, Lorenzo; Belluomini, Lorenzo; Pasquini, Giulia; Ginocchi, Laura; Caparello, Chiara; Musettini, Gianna; Vivaldi, Caterina; Caponi, Sara; Ricci, Sergio; Proietti, Agenese; Fontanini, Gabriella; Naccarato, Antonio Giuseppe; Nardini, Vincenzo; Santi, Stefano; Falcone, Alfredo

    2018-02-14

    The evaluation of molecular targets in gastric cancer has demonstrated the predictive role of HER2 amplification for trastuzumab treatment in metastatic gastric cancer. Besides HER2, other molecular targets are under evaluation in metastatic gastric tumors. However, very little is known about their role in resected tumors. We evaluated the expression of HER2, EGFR, MET, AKT1 and phospho-mTOR in resected stage II-III adenocarcinomas. Ninety-two patients with resected stomach (63%) or gastro-esophageal adenocarcinomas (27%) were evaluated. Antibodies anti-HER2, EGFR, MET, AKT1 and phospho-mTOR were used for immunostaining of formalin-fixed paraffin-embedded slides. Using FISH, HER2 amplification was evaluated in cases with an intermediate (+2) staining. EGFR overexpression (11%) was a poor prognostic factor for overall survival (3-year OS: 47% vs 77%; Log-Rank p= 0.033). MET overexpression (36%) was associated with a trend for a worse survival (3-year OS: 65% vs 77%; Log-Rank p= 0.084). HER2 amplification/overexpression and mTOR hyper-phosphorylation were observed in 13% and 48% of tumors, respectively. AKT1 overexpression (8%) was not a prognostic factor by itself (p= 0.234). AKT1 and EGFR overexpression was mutually exclusive and patients with EGFR or AKT1 overexpression experienced a poor prognosis (3-year OS: 52% vs. 79%, Log-Rank p= 0.005). EGFR is confirmed a poor prognostic factor in resected gastric cancers. We firstly describe a mutually exclusive overexpression of EGFR and AKT1 with potential prognostic implications, suggesting the relevance of this pathway for the growth of gastric cancers.

  3. Proteomic investigating the cooperative lethal effect of EGFR and MDM2 inhibitors on ovarian carcinoma.

    PubMed

    Chang, Shing-Jyh; Liao, En-Chi; Yeo, Hsin-Yueh; Kuo, Wen-Hung; Chen, Hsin-Yi; Tsai, Yi-Ting; Wei, Yu-Shan; Chen, Ying-Jen; Wang, Yi-Shiuan; Li, Ji-Min; Shih, Chuan-Chi; Chan, Chia-Hao; Lai, Zih-Yin; Chou, Hsiu-Chuan; Chuang, Yung-Jen; Chan, Hong-Lin

    2018-06-01

    With the concept of precision medicine, combining multiple molecular-targeting therapies has brought new approaches to current cancer treatments. Malfunction of the tumor suppressor protein, p53 is a universal hallmark in human cancers. Under normal conditions, p53 is degraded through an ubiquitin-proteosome pathway regulated by its negative regulator, MDM2. In contrast, cellular stress such as DNA damage will activate p53 to carry out DNA repair, cell cycle arrest, and apoptosis. In this study, we focused on ovarian carcinoma with high EGFR and MDM2 overexpression rate. We assessed the effects of combined inhibition by MDM2 (JNJ-26854165) and EGFR (gefitinib) inhibitors on various ovarian cell lines to determine the importance of these two molecular targets on cell proliferation. We then used a proteomic strategy to investigate the relationship between MDM2 and EGFR inhibition to explore the underlying mechanisms of how their combined signaling blockades work together to exert cooperative inhibition. Our results demonstrated that all four cell lines were sensitive to both individual and combined, MDM2 and EGFR inhibition. The proteomic analysis also showed that gefitinib/JNJ-treated CAOV3 cells exhibited downregulation of proteins involved in nucleotide biosynthesis such as nucleoside diphosphate kinase B (NME2). In conclusion, our study showed that the combined treatment with JNJ and gefitinib exerted synergistic inhibition on cell proliferation, thereby suggesting the potential application of combining MDM2 inhibitors with EGFR inhibitors for enhancing efficacy in ovarian cancer treatment. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Signaling through the Phosphatidylinositol 3-Kinase (PI3K)/Mammalian Target of Rapamycin (mTOR) Axis Is Responsible for Aerobic Glycolysis mediated by Glucose Transporter in Epidermal Growth Factor Receptor (EGFR)-mutated Lung Adenocarcinoma*

    PubMed Central

    Makinoshima, Hideki; Takita, Masahiro; Saruwatari, Koichi; Umemura, Shigeki; Obata, Yuuki; Ishii, Genichiro; Matsumoto, Shingo; Sugiyama, Eri; Ochiai, Atsushi; Abe, Ryo; Goto, Koichi; Esumi, Hiroyasu; Tsuchihara, Katsuya

    2015-01-01

    Oncogenic epidermal growth factor receptor (EGFR) signaling plays an important role in regulating global metabolic pathways, including aerobic glycolysis, the pentose phosphate pathway (PPP), and pyrimidine biosynthesis. However, the molecular mechanism by which EGFR signaling regulates cancer cell metabolism is still unclear. To elucidate how EGFR signaling is linked to metabolic activity, we investigated the involvement of the RAS/MEK/ERK and PI3K/AKT/mammalian target of rapamycin (mTOR) pathways on metabolic alteration in lung adenocarcinoma (LAD) cell lines with activating EGFR mutations. Although MEK inhibition did not alter lactate production and the extracellular acidification rate, PI3K/mTOR inhibitors significantly suppressed glycolysis in EGFR-mutant LAD cells. Moreover, a comprehensive metabolomics analysis revealed that the levels of glucose 6-phosphate and 6-phosphogluconate as early metabolites in glycolysis and PPP were decreased after inhibition of the PI3K/AKT/mTOR pathway, suggesting a link between PI3K signaling and the proper function of glucose transporters or hexokinases in glycolysis. Indeed, PI3K/mTOR inhibition effectively suppressed membrane localization of facilitative glucose transporter 1 (GLUT1), which, instead, accumulated in the cytoplasm. Finally, aerobic glycolysis and cell proliferation were down-regulated when GLUT1 gene expression was suppressed by RNAi. Taken together, these results suggest that PI3K/AKT/mTOR signaling is indispensable for the regulation of aerobic glycolysis in EGFR-mutated LAD cells. PMID:26023239

  5. Administration of Menadione, Vitamin K3, Ameliorates Off-Target Effects on Corneal Epithelial Wound Healing Due to Receptor Tyrosine Kinase Inhibition.

    PubMed

    Rush, Jamie S; Bingaman, David P; Chaney, Paul G; Wax, Martin B; Ceresa, Brian P

    2016-11-01

    The antiangiogenic receptor tyrosine kinase inhibitor (RTKi), 3-[(4-bromo-2,6-difluorophenyl)methoxy]-5-[[[[4-(1-pyrrolidinyl) butyl] amino] carbonyl]amino]-4-isothiazolecarboxamide hydrochloride, targets VEGFR2 (half maximal inhibitory concentration [IC50] = 11 nM); however, off-target inhibition of epidermal growth factor receptor (EGFR) occurs at higher concentrations. (IC50 = 5.8 μM). This study was designed to determine the effect of topical RTKi treatment on EGF-mediated corneal epithelial wound healing and to develop new strategies to minimize off-target EGFR inhibition. In vitro corneal epithelial wound healing was measured in response to EGF using a transformed human cell line (hTCEpi cells). In vivo corneal wound healing was assessed using a murine model. In these complementary assays, wound healing was measured in the presence of varying RTKi concentrations. Immunoblot analysis was used to examine EGFR and VEGFR2 phosphorylation and the kinetics of EGFR degradation. An Alamar Blue assay measured VEGFR2-mediated cell biology. Receptor tyrosine kinase inhibitor exposure caused dose-dependent inhibition of EGFR-mediated corneal epithelial wound healing in vitro and in vivo. Nanomolar concentrations of menadione, a vitamin K3 analog, when coadministered with the RTKi, slowed EGFR degradation and ameliorated the inhibitory effects on epithelial wound healing both in vitro and in vivo. Menadione did not alter the RTKi's IC50 against VEGFR2 phosphorylation or its inhibition of VEGF-induced retinal endothelial cell proliferation. An antiangiogenic RTKi exhibited off-target effects on the corneal epithelium that can be minimized by menadione without deleteriously affecting its on-target VEGFR2 blockade. These data indicate that menadione has potential as a topical supplement for individuals suffering from perturbations in corneal epithelial homeostasis, especially as an untoward side effect of kinase inhibitors.

  6. Proteomic Analysis of the Epidermal Growth Factor Receptor (EGFR) Interactome and Post-translational Modifications Associated with Receptor Endocytosis in Response to EGF and Stress*

    PubMed Central

    Tong, Jiefei; Taylor, Paul; Moran, Michael F.

    2014-01-01

    Aberrant expression, activation, and stabilization of epidermal growth factor receptor (EGFR) are causally associated with several human cancers. Post-translational modifications and protein-protein interactions directly modulate the signaling and trafficking of the EGFR. Activated EGFR is internalized by endocytosis and then either recycled back to the cell surface or degraded in the lysosome. EGFR internalization and recycling also occur in response to stresses that activate p38 MAP kinase. Mass spectrometry was applied to comprehensively analyze the phosphorylation, ubiquitination, and protein-protein interactions of wild type and endocytosis-defective EGFR variants before and after internalization in response to EGF ligand and stress. Prior to internalization, EGF-stimulated EGFR accumulated ubiquitin at 7 K residues and phosphorylation at 7 Y sites and at S1104. Following internalization, these modifications diminished and there was an accumulation of S/T phosphorylations. EGFR internalization and many but not all of the EGF-induced S/T phosphorylations were also stimulated by anisomycin-induced cell stress, which was not associated with receptor ubiquitination or elevated Y phosphorylation. EGFR protein interactions were dramatically modulated by ligand, internalization, and stress. In response to EGF, different E3 ubiquitin ligases became maximally associated with EGFR before (CBL, HUWE1, and UBR4) or after (ITCH) internalization, whereas CBLB was distinctively most highly EGFR associated following anisomycin treatment. Adaptin subunits of AP-1 and AP-2 clathrin adaptor complexes also became EGFR associated in response to EGF and anisomycin stress. Mutations preventing EGFR phosphorylation at Y998 or in the S1039 region abolished or greatly reduced EGFR interactions with AP-2 and AP-1, and impaired receptor trafficking. These results provide new insight into spatial, temporal, and mechanistic aspects of EGFR regulation. PMID:24797263

  7. Inhalable Magnetic Nanoparticles for Targeted Hyperthermia in Lung Cancer Therapy

    PubMed Central

    Sadhukha, Tanmoy; Wiedmann, Timothy Scott; Panyam, Jayanth

    2015-01-01

    Lung cancer (specifically, non-small cell lung cancer; NSCLC) is the leading cause of cancer-related deaths in the United States. Poor response rates and survival with current treatments clearly indicate the urgent need for developing an effective means to treat NSCLC. Magnetic hyperthermia is a non-invasive approach for tumor ablation, and is based on heat generation by magnetic materials, such as superparamagnetic iron oxide (SPIO) nanoparticles, when subjected to an alternating magnetic field. However, inadequate delivery of magnetic nanoparticles to tumor cells can result in sub-lethal temperature change and induce resistance while non-targeted delivery of these particles to the healthy tissues can result in toxicity. In our studies, we evaluated the effectiveness of tumor-targeted SPIO nanoparticles for magnetic hyperthermia of lung cancer. EGFR-targeted, inhalable SPIO nanoparticles were synthesized and characterized for targeting lung tumor cells as well as for magnetic hyperthermia-mediated antitumor efficacy in a mouse orthotopic model of NSCLC. Our results show that EGFR targeting enhances tumor retention of SPIO nanoparticles. Further, magnetic hyperthermia treatment using targeted SPIO nanoparticles resulted in significant inhibition of in vivo lung tumor growth. Overall, this work demonstrates the potential for developing an effective anticancer treatment modality for the treatment of NSCLC based on targeted magnetic hyperthermia. PMID:23591395

  8. Distinct effects of EGFR inhibitors on epithelial- and mesenchymal-like esophageal squamous cell carcinoma cells.

    PubMed

    Yoshioka, Masahiro; Ohashi, Shinya; Ida, Tomomi; Nakai, Yukie; Kikuchi, Osamu; Amanuma, Yusuke; Matsubara, Junichi; Yamada, Atsushi; Miyamoto, Shin'ichi; Natsuizaka, Mitsuteru; Nakagawa, Hiroshi; Chiba, Tsutomu; Seno, Hiroshi; Muto, Manabu

    2017-08-01

    Epidermal growth factor receptor (EGFR) plays a pivotal role in the pathophysiology of esophageal squamous cell carcinoma (ESCC). However, the clinical effects of EGFR inhibitors on ESCC are controversial. This study sought to identify the factors determining the therapeutic efficacy of EGFR inhibitors in ESCC cells. Immortalized-human esophageal epithelial cells (EPC2-hTERT), transformed-human esophageal epithelial cells (T-Epi and T-Mes), and ESCC cells (TE-1, TE-5, TE-8, TE-11, TE-11R, and HCE4) were treated with the EGFR inhibitors erlotinib or cetuximab. Inhibitory effects on cell growth were assessed by cell counting or cell-cycle analysis. The expression levels of genes and proteins such as involucrin and cytokeratin13 (a squamous differentiation marker), E-cadherin, and vimentin were evaluated by real-time polymerase chain reaction or western blotting. To examine whether mesenchymal phenotype influenced the effects of EGFR inhibitors, we treated T-Epi cells with TGF-β1 to establish a mesenchymal phenotype (mesenchymal T-Epi cells). We then compared the effects of EGFR inhibitors on parental T-Epi cells and mesenchymal T-Epi cells. TE-8 (mesenchymal-like ESCC cells)- or TE-11R (epithelial-like ESCC cells)-derived xenograft tumors in mice were treated with cetuximab, and the antitumor effects of EGFR inhibitors were evaluated. Cells were classified as epithelial-like or mesenchymal-like phenotypes, determined by the expression levels of E-cadherin and vimentin. Both erlotinib and cetuximab reduced cell growth and the ratio of cells in cell-cycle S phase in epithelial-like but not mesenchymal-like cells. Additionally, EGFR inhibitors induced squamous cell differentiation (defined as increased expression of involucrin and cytokeratin13) in epithelial-like but not mesenchymal-like cells. We found that EGFR inhibitors did not suppress the phosphorylation of EGFR in mesenchymal-like cells, while EGFR dephosphorylation was observed after treatment with EGFR

  9. Protein Phosphorylation Profiling Using an In Situ Proximity Ligation Assay: Phosphorylation of AURKA-Elicited EGFR-Thr654 and EGFR-Ser1046 in Lung Cancer Cells

    PubMed Central

    Chen, Tzu-Chi; Liu, Yu-Wen; Huang, Yei-Hsuan; Yeh, Yi-Chen; Chou, Teh-Ying; Wu, Yu-Chung; Wu, Chun-Chi; Chen, Yi-Rong; Cheng, Hui-Chuan; Lu, Pei-Jung; Lai, Jin-Mei; Huang, Chi-Ying F.

    2013-01-01

    The epidermal growth factor receptor (EGFR), which is up-regulated in lung cancer, involves the activation of mitogenic signals and triggers multiple signaling cascades. To dissect these EGFR cascades, we used 14 different phospho-EGFR antibodies to quantify protein phosphorylation using an in situ proximity ligation assay (in situ PLA). Phosphorylation at EGFR-Thr654 and -Ser1046 was EGF-dependent in the wild-type (WT) receptor but EGF-independent in a cell line carrying the EGFR-L858R mutation. Using a ProtoAarray™ containing ∼5000 recombinant proteins on the protein chip, we found that AURKA interacted with the EGFR-L861Q mutant. Moreover, overexpression of EGFR could form a complex with AURKA, and the inhibitors of AURKA and EGFR decreased EGFR-Thr654 and -Ser1046 phosphorylation. Immunohistochemical staining of stage I lung adenocarcinoma tissues demonstrated a positive correlation between AURKA expression and phosphorylation of EGFR at Thr654 and Ser1046 in EGFR-mutant specimens, but not in EGFR-WT specimens. The interplay between EGFR and AURKA provides an explanation for the difference in EGF dependency between EGFR-WT and EGFR-mutant cells and may provide a new therapeutic strategy for lung cancer patients carrying EGFR mutations. PMID:23520446

  10. Randomized phase II--study evaluating EGFR targeting therapy with cetuximab in combination with radiotherapy and chemotherapy for patients with locally advanced pancreatic cancer--PARC: study protocol [ISRCTN56652283].

    PubMed

    Krempien, R; Muenter, M W; Huber, P E; Nill, S; Friess, H; Timke, C; Didinger, B; Buechler, P; Heeger, S; Herfarth, K K; Abdollahi, A; Buchler, M W; Debus, J

    2005-10-11

    Pancreatic cancer is the fourth commonest cause of death from cancer in men and women. Advantages in surgical techniques, radiation therapy techniques, chemotherapeutic regimes, and different combined-modality approaches have yielded only a modest impact on the prognosis of patients with pancreatic cancer. Thus there is clearly a need for additional strategies. One approach involves using the identification of a number of molecular targets that may be responsible for the resistance of cancer cells to radiation or to other cytotoxic agents. As such, these molecular determinants may serve as targets for augmentation of the radiotherapy or chemotherapy response. Of these, the epidermal growth factor receptor (EGFR) has been a molecular target of considerable interest and investigation, and there has been a tremendous surge of interest in pursuing targeted therapy of cancers via inhibition of the EGFR. The PARC study is designed as an open, controlled, prospective, randomized phase II trial. Patients in study arm A will be treated with chemoradiation using intensity modulated radiation therapy (IMRT) combined with gemcitabine and simultaneous cetuximab infusions. After chemoradiation the patients receive gemcitabine infusions weekly over 4 weeks. Patients in study arm B will be treated with chemoradiation using intensity modulated radiation therapy (IMRT) combined with gemcitabine and simultaneous cetuximab infusions. After chemoradiation the patients receive gemcitabine weekly over 4 weeks and cetuximab infusions over 12 weeks. A total of 66 patients with locally advanced adenocarcinoma of the pancreas will be enrolled. An interim analysis for patient safety reasons will be done one year after start of recruitment. Evaluation of the primary endpoint will be performed two years after the last patient's enrollment. The primary objective of this study is to evaluate the feasibility and the toxicity profile of trimodal therapy in pancreatic adenocarcinoma with

  11. Quantum-Dot-Based Theranostic Micelles Conjugated with an Anti-EGFR Nanobody for Triple-Negative Breast Cancer Therapy.

    PubMed

    Wang, Yuyuan; Wang, Yidan; Chen, Guojun; Li, Yitong; Xu, Wei; Gong, Shaoqin

    2017-09-13

    A quantum-dot (QD)-based micelle conjugated with an anti-epidermal growth factor receptor (EGFR) nanobody (Nb) and loaded with an anticancer drug, aminoflavone (AF), has been engineered for EGFR-overexpressing cancer theranostics. The near-infrared (NIR) fluorescence of the indium phosphate core/zinc sulfide shell QDs (InP/ZnS QDs) allowed for in vivo nanoparticle biodistribution studies. The anti-EGFR nanobody 7D12 conjugation improved the cellular uptake and cytotoxicity of the QD-based micelles in EGFR-overexpressing MDA-MB-468 triple-negative breast cancer (TNBC) cells. In comparison with the AF-encapsulated nontargeted (i.e., without Nb conjugation) micelles, the AF-encapsulated Nb-conjugated (i.e., targeted) micelles accumulated in tumors at higher concentrations, leading to more effective tumor regression in an orthotopic triple-negative breast cancer xenograft mouse model. Furthermore, there was no systemic toxicity observed with the treatments. Thus, this QD-based Nb-conjugated micelle may serve as an effective theranostic nanoplatform for EGFR-overexpressing cancers such as TNBCs.

  12. Ligand-activated epidermal growth factor receptor (EGFR) signaling governs endocytic trafficking of unliganded receptor monomers by non-canonical phosphorylation.

    PubMed

    Tanaka, Tomohiro; Zhou, Yue; Ozawa, Tatsuhiko; Okizono, Ryuya; Banba, Ayako; Yamamura, Tomohiro; Oga, Eiji; Muraguchi, Atsushi; Sakurai, Hiroaki

    2018-02-16

    The canonical description of transmembrane receptor function is initial binding of ligand, followed by initiation of intracellular signaling and then internalization en route to degradation or recycling to the cell surface. It is known that low concentrations of extracellular ligand lead to a higher proportion of receptor that is recycled and that non-canonical mechanisms of receptor activation, including phosphorylation by the kinase p38, can induce internalization and recycling. However, no connections have been made between these pathways; i.e. it has yet to be established what happens to unbound receptors following stimulation with ligand. Here we demonstrate that a minimal level of activation of epidermal growth factor receptor (EGFR) tyrosine kinase by low levels of ligand is sufficient to fully activate downstream mitogen-activated protein kinase (MAPK) pathways, with most of the remaining unbound EGFR molecules being efficiently phosphorylated at intracellular serine/threonine residues by activated mitogen-activated protein kinase. This non-canonical, p38-mediated phosphorylation of the C-tail of EGFR, near Ser-1015, induces the clathrin-mediated endocytosis of the unliganded EGFR monomers, which occurs slightly later than the canonical endocytosis of ligand-bound EGFR dimers via tyrosine autophosphorylation. EGFR endocytosed via the non-canonical pathway is largely recycled back to the plasma membrane as functional receptors, whereas p38-independent populations are mainly sorted for lysosomal degradation. Moreover, ligand concentrations balance these endocytic trafficking pathways. These results demonstrate that ligand-activated EGFR signaling controls unliganded receptors through feedback phosphorylation, identifying a dual-mode regulation of the endocytic trafficking dynamics of EGFR. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Structural and energetic basis for the molecular recognition of dual synthetic vs. natural inhibitors of EGFR/HER2.

    PubMed

    Bello, Martiniano; Saldaña-Rivero, Lucia; Correa-Basurto, José; García, Benjamín; Sánchez-Espinosa, Victor Armando

    2018-05-01

    Activation of EGFR starts by ligand binding at the extracellular domain which results in homo and heterodimerization, leading to phosphorylation, activation of downstream signaling pathways which upregulate expression of genes, proliferation and angiogenesis. Abnormalities in the expression of EGFR play a critical role in the development of different types of cancer. HER2 is the preferred heterodimerization partner for EGFR; this biological characteristic together with the high percentage of structural homology has been exploited in the design of dual synthetic inhibitors against EGFR/HER2. Herein we combined structural data and molecular dynamics (MD) simulations coupled to an MMGBSA approach to provide insight into the binding mechanism between two dual synthetics (lapatinib and TAK-285) and one dual natural inhibitor (EGCG) which target EGFR/HER2. In addition, we proposed some EGCG derivatives which were filtered through in silico screening. Structural analysis demonstrated that the coupling of synthetic, natural or newly designed compounds impacts the conformational space of EGFR and HER2 differently. Energetic analysis points out that lapatinib and TAK-285 have better affinity for inactive EGFR than the active EGFR state or HER2, whereas some EGCG derivatives seem to form binding affinities similar to those observed for lapatinib or TAK-285. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Robust detection of EGFR copy number changes and EGFR variant III: technical aspects and relevance for glioma diagnostics.

    PubMed

    Jeuken, Judith; Sijben, Angelique; Alenda, Cristina; Rijntjes, Jos; Dekkers, Marieke; Boots-Sprenger, Sandra; McLendon, Roger; Wesseling, Pieter

    2009-10-01

    Epidermal growth factor receptor (EGFR) is commonly affected in cancer, generally in the form of an increase in DNA copy number and/or as mutation variants [e.g., EGFR variant III (EGFRvIII), an in-frame deletion of exons 2-7]. While detection of EGFR aberrations can be expected to be relevant for glioma patients, such analysis has not yet been implemented in a routine setting, also because feasible and robust assays were lacking. We evaluated multiplex ligation-dependent probe amplification (MLPA) for detection of EGFR amplification and EGFRvIII in DNA of a spectrum of 216 diffuse gliomas. EGFRvIII detection was verified at the protein level by immunohistochemistry and at the RNA level using the conventionally used endpoint RT-PCR as well as a newly developed quantitative RT-PCR. Compared to these techniques, the DNA-based MLPA assay for EGFR/EGFRvIII analysis tested showed 100% sensitivity and specificity. We conclude that MLPA is a robust assay for detection of EGFR/EGFRvIII aberrations. While the exact diagnostic, prognostic and predictive value of such EGFR testing remains to be seen, MLPA has great potential as it can reliably and relatively easily be performed on routinely processed (formalin-fixed, paraffin-embedded) tumor tissue in combination with testing for other relevant glioma markers.

  15. Peptide-conjugated micelles as a targeting nanocarrier for gene delivery

    NASA Astrophysics Data System (ADS)

    Lin, Wen Jen; Chien, Wei Hsuan

    2015-09-01

    The aim of this study was to develop peptide-conjugated micelles possessing epidermal growth factor receptor (EGFR) targeting ability for gene delivery. A sequence-modified dodecylpeptide, GE11(2R), with enhancing EGF receptor binding affinity, was applied in this study as a targeting ligand. The active targeting micelles were composed of poly( d,l-lactide- co-glycolide)-poly(ethylene glycol) (PLGA-PEG) copolymer conjugated with GE11(2R)-peptide. The particle sizes of peptide-free and peptide-conjugated micelles were 277.0 ± 5.1 and 308.7 ± 14.5 nm, respectively. The peptide-conjugated micelles demonstrated the cellular uptake significantly higher than peptide-free micelles in EGFR high-expressed MDA-MB-231 and MDA-MB-468 cells due to GE11(2R)-peptide specificity. Furthermore, the peptide-conjugated micelles were able to encapsulate plasmid DNA and expressed cellular transfection higher than peptide-free micelles in EGFR high-expressed cells. The EGFR-targeting delivery micelles enhanced DNA internalized into cells and achieved higher cellular transfection in EGFR high-expressed cells.

  16. Targeted salinomycin delivery with EGFR and CD133 aptamers based dual-ligand lipid-polymer nanoparticles to both osteosarcoma cells and cancer stem cells.

    PubMed

    Chen, Fangyi; Zeng, Yibin; Qi, Xiaoxia; Chen, Yanchao; Ge, Zhe; Jiang, Zengxin; Zhang, Xinchao; Dong, Yinmei; Chen, Huaiwen; Yu, Zuochong

    2018-06-10

    We previously developed salinomycin (sali)-entrapped nanoparticles labeled with CD133 aptamers which could efficiently eliminate CD133 + osteosarcoma cancer stem cells (CSCs). However, sufficient evidences suggest that the simultaneous targeting both CSCs and cancer cells is pivotal in achieving preferable cancer therapeutic efficacy, due to the spontaneous conversion between cancer cells and CSCs. We hereby constructed sali-entrapped lipid-polymer nanoparticles labeled with CD133 and EGFR aptamers (CESP) to target both osteosarcoma cells and CSCs. The cytotoxicity of CESP in osteosarcoma cells and CSCs was superior to that of single targeting or nontargeted sali-loaded nanoparticles. Administration of CESP in vivo showed the best efficacy in inhibiting tumor growth than other controls in osteosarcoma-bearing mice. Thus, CESP was demonstrated to be capable of efficiently targeting both osteosarcoma CSCs and cancer cells, and it represents an effective potential approach to treat osteosarcoma. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Novel EGFR-specific immunotoxins based on panitumumab and cetuximab show in vitro and ex vivo activity against different tumor entities.

    PubMed

    Niesen, Judith; Stein, Christoph; Brehm, Hannes; Hehmann-Titt, Grit; Fendel, Rolf; Melmer, Georg; Fischer, Rainer; Barth, Stefan

    2015-12-01

    The epidermal growth factor receptor (EGFR) is overexpressed in many solid tumors. EGFR-specific monoclonal antibodies (mAbs), such as cetuximab and panitumumab, have been approved for the treatment of colorectal and head and neck cancer. To increase tissue penetration, we constructed single-chain fragment variable (scFv) antibodies derived from these mAbs and evaluated their potential for targeted cancer therapy. The resulting scFv-based EGFR-specific immunotoxins (ITs) combine target specificity of the full-size mAb with the cell-killing activity of a toxic effector domain, a truncated version of Pseudomonas exotoxin A (ETA'). The ITs and corresponding imaging probes were tested in vitro against four solid tumor entities (rhabdomyosarcoma, breast, prostate and pancreatic cancer). Specific binding and internalization of the ITs scFv2112-ETA' (from cetuximab) and scFv1711-ETA' (from panitumumab) were demonstrated by flow cytometry and for the scFv-SNAP-tag imaging probes by live cell imaging. Cytotoxic potential of the ITs was analyzed in cell viability and apoptosis assays. Binding of the ITs was proofed ex vivo on rhabdomyosarcoma, prostate and breast cancer formalin-fixed paraffin-embedded biopsies. Both novel ITs showed significant pro-apoptotic and anti-proliferative effects toward the target cells, achieving IC50 values of 4 pM (high EGFR expression) to 460 pM (moderate EGFR expression). Additionally, rapid internalization and specific in vitro and ex vivo binding on patient tissue were confirmed. These data demonstrate the potent therapeutic activity of two novel EGFR-specific ETA'-based ITs. Both molecules are promising candidates for further development toward clinical use in the treatment of various solid tumors to supplement the existing therapeutic regimes.

  18. Silica nanoparticles induce cytokine responses in lung epithelial cells through activation of a p38/TACE/TGF-α/EGFR-pathway and NF-κΒ signalling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skuland, Tonje, E-mail: tonje.skuland@fhi.no; Øvrevik, Johan; Låg, Marit

    2014-08-15

    Amorphous silica nanoparticles (SiNPs) have previously been shown to induce marked cytokine (interleukin-6; IL-6 and interleukin-8; CXCL8/IL-8) responses independently of particle uptake in human bronchial epithelial BEAS-2B cells. In this study the involvement of the mitogen-activated protein kinases (MAP-kinases), nuclear factor-kappa Β (NF-κΒ) and in particular tumour necrosis factor-α converting enzyme (TACE) and—epidermal growth factor receptor (EGFR) signalling pathways were examined in triggering of IL-6 and CXCL8 release after exposure to a 50 nm silica nanoparticle (Si50). Exposure to Si50 increased phosphorylation of NF-κΒ p65 and MAP-kinases p38 and JUN-N-terminal protein kinase pathways (JNK), but not extracellular signal regulated kinasesmore » (ERK). Inhibition of NF-κΒ and p38 reduced the cytokine responses to Si50, whereas neither JNK- nor ERK-inhibition exerted any significant effect on the responses to Si50. Increases in membrane-bound transforming growth factor-α (TGF-α) release and EGFR phosphorylation were also observed after Si50 exposure, and pre-treatment with inhibitors of these pathways reduced the release of IL-6 and CXCL8, but did not affect the Si50-induced phosphorylation of p38 and p65. In contrast, p38-inhibition partially reduced Si50-induced TGF-α release, while the p65-inhibition was without effect. Overall, our results indicate that Si50-induced IL-6 and CXCL8 responses in BEAS-2B cells were regulated through combined activation of several pathways, including NF-κΒ and p38/TACE/TGF-α/EGFR signalling. The study identifies critical, initial events in the triggering of pro-inflammatory responses by nanoparticles. - Highlights: • Silica nanoparticles induce IL-6 and CXCL8 via NFκB and MAPKinase p38 in BEAS-2B • Silica nanoparticles induce release of the EGF-receptor ligand TGF-α • TGF-α release contributes to the IL-6 and CXCL8 release • Phosphorylation of p38 is involved in release of TGF-α.« less

  19. Antitumor activity of EGFR-specific CAR T cells against non-small-cell lung cancer cells in vitro and in mice.

    PubMed

    Li, He; Huang, Yao; Jiang, Du-Qing; Cui, Lian-Zhen; He, Zhou; Wang, Chao; Zhang, Zhi-Wei; Zhu, Hai-Li; Ding, Yong-Mei; Li, Lin-Fang; Li, Qiang; Jin, Hua-Jun; Qian, Qi-Jun

    2018-02-07

    Effective control of non-small-cell lung cancer (NSCLC) remains clinically challenging, especially during advanced stages of the disease. This study developed an adoptive T-cell treatment through expression of a chimeric antigen receptor (CAR) to target human epidermal growth factor receptor (EGFR) in NSCLC. We optimized the non-viral piggyBac transposon system to engineer human T cells for the expression of EGFR-CAR, consisting of EGFR scFv, transmembrane domain, and intracellular 4-1BB-CD3ζ signaling domains. The modified CAR T cells exhibited expansion capability and anticancer efficacy in a time- and antigen-dependent manner in vitro as well as regression of EGFR-positive human lung cancer xenografts in vivo. EGFR-CAR T therapy is a promising strategy to improve the efficacy and potency of the adoptive immunotherapy in NSCLC. Moreover, EGFR-CAR T therapy could become a clinical application for NSCLC patients in the future.

  20. eGFRs from Asian-modified CKD-EPI and Chinese-modified CKD-EPI equations were associated better with hypertensive target organ damage in the community-dwelling elderly Chinese: the Northern Shanghai Study.

    PubMed

    Ji, Hongwei; Zhang, Han; Xiong, Jing; Yu, Shikai; Chi, Chen; Bai, Bin; Li, Jue; Blacher, Jacques; Zhang, Yi; Xu, Yawei

    2017-01-01

    With increasing age, estimated glomerular filtration rate (eGFR) decline is a frequent manifestation and is strongly associated with other preclinical target organ damage (TOD). In literature, many equations exist in assessing patients' eGFR. However, these equations were mainly derived and validated in the population from Western countries, which equation should be used for risk stratification in the Chinese population remains unclear, as well as their comparison. Considering that TOD is a good marker for risk stratification in the elderly, in this analysis, we aimed to investigate whether the recent eGFR equations derived from Asian and Chinese are better associated with preclinical TOD than the other equations in elderly Chinese. A total of 1,599 community-dwelling elderly participants (age >65 years) in northern Shanghai were prospectively recruited from June 2014 to August 2015. Conventional cardiovascular risk factors were assessed, and hypertensive TOD including left ventricular mass index (LVMI), carotid-femoral pulse wave velocity (cf-PWV), carotid intima-media thickness (IMT), ankle-brachial index (ABI) and urine albumin to creatinine ratio (UACR) was evaluated for each participant. Participant's eGFR was calculated from the Modification of Diet in Renal Disease (MDRD), Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI), Chinese-abbreviated MDRD (c-aMDRD), Asian-modified CKD-EPI (aCKD-EPI) equation and Chinese-modified CKD-EPI (cCKD-EPI) equation. In multivariate regression analysis, only eGFRs from aCKD-EPI were significantly and inversely associated with carotid IMT ( P =0.005). In multivariate logistic models, decreased eGFR from all the equations were significantly associated with lower ABI ( P <0.001), microalbuminuria ( P =0.02 to P <0.001) and increased cf-PWV ( P <0.001). Only decreased eGFRs from aCKD-EPI and cCKD-EPI equations were significantly associated with increased IMT (both crude P <0.05). In the receiver operator characteristic