Sample records for targeting signal type

  1. Targeting dysfunctional beta-cell signaling for the potential treatment of type 1 diabetes mellitus.

    PubMed

    Fenske, Rachel J; Kimple, Michelle E

    2018-03-01

    Since its discovery and purification by Frederick Banting in 1921, exogenous insulin has remained almost the sole therapy for type 1 diabetes mellitus. While insulin alleviates the primary dysfunction of the disease, many other aspects of the pathophysiology of type 1 diabetes mellitus are unaffected. Research aimed towards the discovery of novel type 1 diabetes mellitus therapeutics targeting different cell signaling pathways is gaining momentum. The focus of these efforts has been almost entirely on the impact of immunomodulatory drugs, particularly those that have already received FDA-approval for other autoimmune diseases. However, these drugs can often have severe side effects, while also putting already immunocompromised individuals at an increased risk for other infections. Potential therapeutic targets in the insulin-producing beta-cell have been largely ignored by the type 1 diabetes mellitus field, save the glucagon-like peptide 1 receptor. While there is preliminary evidence to support the clinical exploration of glucagon-like peptide 1 receptor-based drugs as type 1 diabetes mellitus adjuvant therapeutics, there is a vast space for other putative therapeutic targets to be explored. The alpha subunit of the heterotrimeric G z protein (Gα z ) has been shown to promote beta-cell inflammation, dysfunction, death, and failure to replicate in the context of diabetes in a number of mouse models. Genetic loss of Gα z or inhibition of the Gα z signaling pathway through dietary interventions is protective against the development of insulitis and hyperglycemia. The multifaceted effects of Gα z in regards to beta-cell health in the context of diabetes make it an ideal therapeutic target for further study. It is our belief that a low-risk, effective therapy for type 1 diabetes mellitus will involve a multidimensional approach targeting a number of regulatory systems, not the least of which is the insulin-producing beta-cell. Impact statement The expanding

  2. Presynaptic Type III Neuregulin1-ErbB signaling targets α7 nicotinic acetylcholine receptors to axons

    PubMed Central

    Hancock, Melissa L.; Canetta, Sarah E.; Role, Lorna W.; Talmage, David A.

    2008-01-01

    Type III Neuregulin1 (Nrg1) isoforms are membrane-tethered proteins capable of participating in bidirectional juxtacrine signaling. Neuronal nicotinic acetylcholine receptors (nAChRs), which can modulate the release of a rich array of neurotransmitters, are differentially targeted to presynaptic sites. We demonstrate that Type III Nrg1 back signaling regulates the surface expression of α7 nAChRs along axons of sensory neurons. Stimulation of Type III Nrg1 back signaling induces an increase in axonal surface α7 nAChRs, which results from a redistribution of preexisting intracellular pools of α7 rather than from increased protein synthesis. We also demonstrate that Type III Nrg1 back signaling activates a phosphatidylinositol 3-kinase signaling pathway and that activation of this pathway is required for the insertion of preexisting α7 nAChRs into the axonal plasma membrane. These findings, in conjunction with prior results establishing that Type III Nrg1 back signaling controls gene transcription, demonstrate that Type III Nrg1 back signaling can regulate both short-and long-term changes in neuronal function. PMID:18458158

  3. Presynaptic type III neuregulin1-ErbB signaling targets {alpha}7 nicotinic acetylcholine receptors to axons.

    PubMed

    Hancock, Melissa L; Canetta, Sarah E; Role, Lorna W; Talmage, David A

    2008-05-05

    Type III Neuregulin1 (Nrg1) isoforms are membrane-tethered proteins capable of participating in bidirectional juxtacrine signaling. Neuronal nicotinic acetylcholine receptors (nAChRs), which can modulate the release of a rich array of neurotransmitters, are differentially targeted to presynaptic sites. We demonstrate that Type III Nrg1 back signaling regulates the surface expression of alpha7 nAChRs along axons of sensory neurons. Stimulation of Type III Nrg1 back signaling induces an increase in axonal surface alpha7 nAChRs, which results from a redistribution of preexisting intracellular pools of alpha7 rather than from increased protein synthesis. We also demonstrate that Type III Nrg1 back signaling activates a phosphatidylinositol 3-kinase signaling pathway and that activation of this pathway is required for the insertion of preexisting alpha7 nAChRs into the axonal plasma membrane. These findings, in conjunction with prior results establishing that Type III Nrg1 back signaling controls gene transcription, demonstrate that Type III Nrg1 back signaling can regulate both short-and long-term changes in neuronal function.

  4. Presynaptic type III neuregulin1-ErbB signaling targets alpha7 nicotinic acetylcholine receptors to axons.

    PubMed

    Hancock, Melissa L; Canetta, Sarah E; Role, Lorna W; Talmage, David A

    2008-06-01

    Type III Neuregulin1 (Nrg1) isoforms are membrane-tethered proteins capable of participating in bidirectional juxtacrine signaling. Neuronal nicotinic acetylcholine receptors (nAChRs), which can modulate the release of a rich array of neurotransmitters, are differentially targeted to presynaptic sites. We demonstrate that Type III Nrg1 back signaling regulates the surface expression of alpha7 nAChRs along axons of sensory neurons. Stimulation of Type III Nrg1 back signaling induces an increase in axonal surface alpha7 nAChRs, which results from a redistribution of preexisting intracellular pools of alpha7 rather than from increased protein synthesis. We also demonstrate that Type III Nrg1 back signaling activates a phosphatidylinositol 3-kinase signaling pathway and that activation of this pathway is required for the insertion of preexisting alpha7 nAChRs into the axonal plasma membrane. These findings, in conjunction with prior results establishing that Type III Nrg1 back signaling controls gene transcription, demonstrate that Type III Nrg1 back signaling can regulate both short-and long-term changes in neuronal function.

  5. Tetherin Suppresses Type I Interferon Signaling by Targeting MAVS for NDP52-Mediated Selective Autophagic Degradation in Human Cells.

    PubMed

    Jin, Shouheng; Tian, Shuo; Luo, Man; Xie, Weihong; Liu, Tao; Duan, Tianhao; Wu, Yaoxing; Cui, Jun

    2017-10-19

    Tetherin (BST2/CD317) is an interferon-inducible antiviral factor known for its ability to block the release of enveloped viruses from infected cells. Yet its role in type I interferon (IFN) signaling remains poorly defined. Here, we demonstrate that Tetherin is a negative regulator of RIG-I like receptor (RLR)-mediated type I IFN signaling by targeting MAVS. The induction of Tetherin by type I IFN accelerates MAVS degradation via ubiquitin-dependent selective autophagy in human cells. Moreover, Tetherin recruits E3 ubiquitin ligase MARCH8 to catalyze K27-linked ubiquitin chains on MAVS at lysine 7, which serves as a recognition signal for NDP52-dependent autophagic degradation. Taken together, our findings reveal a negative feedback loop of RLR signaling generated by Tetherin-MARCH8-MAVS-NDP52 axis and provide insights into a better understanding of the crosstalk between selective autophagy and optimal deactivation of type I IFN signaling. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Plant targets for Pseudomonas syringae type III effectors: virulence targets or guarded decoys?

    PubMed

    Block, Anna; Alfano, James R

    2011-02-01

    The phytopathogenic bacterium Pseudomonas syringae can suppress both pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and effector-triggered immunity (ETI) by the injection of type III effector (T3E) proteins into host cells. T3Es achieve immune suppression using a variety of strategies including interference with immune receptor signaling, blocking RNA pathways and vesicle trafficking, and altering organelle function. T3Es can be recognized indirectly by resistance proteins monitoring specific T3E targets resulting in ETI. It is presently unclear whether the monitored targets represent bona fide virulence targets or guarded decoys. Extensive overlap between PTI and ETI signaling suggests that T3Es may suppress both pathways through common targets and by possessing multiple activities. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. Metformin targets multiple signaling pathways in cancer.

    PubMed

    Lei, Yong; Yi, Yanhua; Liu, Yang; Liu, Xia; Keller, Evan T; Qian, Chao-Nan; Zhang, Jian; Lu, Yi

    2017-01-26

    Metformin, an inexpensive and well-tolerated oral agent commonly used in the first-line treatment of type 2 diabetes, has become the focus of intense research as a candidate anticancer agent. Here, we discuss the potential of metformin in cancer therapeutics, particularly its functions in multiple signaling pathways, including AMP-activated protein kinase, mammalian target of rapamycin, insulin-like growth factor, c-Jun N-terminal kinase/mitogen-activated protein kinase (p38 MAPK), human epidermal growth factor receptor-2, and nuclear factor kappaB pathways. In addition, cutting-edge targeting of cancer stem cells by metformin is summarized.

  8. Targeting glucagon receptor signalling in treating metabolic syndrome and renal injury in Type 2 diabetes: theory versus promise.

    PubMed

    Li, Xiao C; Zhuo, Jia L

    2007-08-01

    Pancreatic bi-hormones insulin and glucagon are the Yin and Yang in the regulation of glucose metabolism and homoeostasis. Insulin is synthesized primarily by pancreatic beta-cells and is released in response to an increase in blood glucose levels (hyperglycaemia). By contrast, glucagon is synthesized by pancreatic alpha-cells and is released in response to a decrease in blood glucose (hypoglycaemia). The principal role of glucagon is to counter the actions of insulin on blood glucose homoeostasis, but it also has diverse non-hyperglycaemic actions. Although Type 1 diabetes is caused by insulin deficiency (insulin-dependent) and can be corrected by insulin replacement, Type 2 diabetes is a multifactorial disease and its treatment is not dependent on insulin therapy alone. Type 2 diabetes in humans is characterized by increased insulin resistance, increased fasting blood glucose, impaired glucose tolerance and the development of glomerular hyperfiltration and microalbuminuria, ultimately leading to diabetic nephropathy and end-stage renal disease. Clinical studies have suggested that an inappropriate increase in hyperglycaemic glucagon (hyperglucagonaemia) over hypoglycaemic insulin (not insulin deficiency until advanced stages) plays an important role in the pathogenesis of Type 2 diabetes. However, for decades, research efforts and resources have been devoted overwhelmingly to studying the role of insulin and insulin-replacement therapy. By contrast, the implication of glucagon and its receptor signalling in the development of Type 2 diabetic metabolic syndromes and end-organ injury has received little attention. The aim of this review is to examine the evidence as to whether glucagon and its receptor signalling play any role(s) in the pathogenesis of Type 2 diabetic renal injury, and to explore whether targeting glucagon receptor signalling remains only a theoretical antidiabetic strategy in Type 2 diabetes or may realize its promise in the future.

  9. The similarity between N-terminal targeting signals for protein import into different organelles and its evolutionary relevance

    PubMed Central

    Kunze, Markus; Berger, Johannes

    2015-01-01

    The proper distribution of proteins between the cytosol and various membrane-bound compartments is crucial for the functionality of eukaryotic cells. This requires the cooperation between protein transport machineries that translocate diverse proteins from the cytosol into these compartments and targeting signal(s) encoded within the primary sequence of these proteins that define their cellular destination. The mechanisms exerting protein translocation differ remarkably between the compartments, but the predominant targeting signals for mitochondria, chloroplasts and the ER share the N-terminal position, an α-helical structural element and the removal from the core protein by intraorganellar cleavage. Interestingly, similar properties have been described for the peroxisomal targeting signal type 2 mediating the import of a fraction of soluble peroxisomal proteins, whereas other peroxisomal matrix proteins encode the type 1 targeting signal residing at the extreme C-terminus. The structural similarity of N-terminal targeting signals poses a challenge to the specificity of protein transport, but allows the generation of ambiguous targeting signals that mediate dual targeting of proteins into different compartments. Dual targeting might represent an advantage for adaptation processes that involve a redistribution of proteins, because it circumvents the hierarchy of targeting signals. Thus, the co-existence of two equally functional import pathways into peroxisomes might reflect a balance between evolutionary constant and flexible transport routes. PMID:26441678

  10. Fibroblast growth factor receptor signaling as therapeutic targets in gastric cancer

    PubMed Central

    Yashiro, Masakazu; Matsuoka, Tasuku

    2016-01-01

    Fibroblast growth factor receptors (FGFRs) regulate a variety of cellular functions, from embryogenesis to adult tissue homeostasis. FGFR signaling also plays significant roles in the proliferation, invasion, and survival of several types of tumor cells. FGFR-induced alterations, including gene amplification, chromosomal translocation, and mutations, have been shown to be associated with the tumor initiation and progression of gastric cancer, especially in diffuse-type cancers. Therefore, the FGFR signaling pathway might be one of the therapeutic targets in gastric cancer. This review aims to provide an overview of the role of FGFR signaling in tumorigenesis, tumor progression, proliferation, and chemoresistance. We also discuss the accumulating evidence that demonstrates the effectiveness of using clinical therapeutic agents to inhibit FGFR signaling for the treatment of gastric cancer. PMID:26937130

  11. Fibroblast growth factor receptor signaling as therapeutic targets in gastric cancer.

    PubMed

    Yashiro, Masakazu; Matsuoka, Tasuku

    2016-02-28

    Fibroblast growth factor receptors (FGFRs) regulate a variety of cellular functions, from embryogenesis to adult tissue homeostasis. FGFR signaling also plays significant roles in the proliferation, invasion, and survival of several types of tumor cells. FGFR-induced alterations, including gene amplification, chromosomal translocation, and mutations, have been shown to be associated with the tumor initiation and progression of gastric cancer, especially in diffuse-type cancers. Therefore, the FGFR signaling pathway might be one of the therapeutic targets in gastric cancer. This review aims to provide an overview of the role of FGFR signaling in tumorigenesis, tumor progression, proliferation, and chemoresistance. We also discuss the accumulating evidence that demonstrates the effectiveness of using clinical therapeutic agents to inhibit FGFR signaling for the treatment of gastric cancer.

  12. Insulin Signaling in Type 2 Diabetes

    PubMed Central

    Brännmark, Cecilia; Nyman, Elin; Fagerholm, Siri; Bergenholm, Linnéa; Ekstrand, Eva-Maria; Cedersund, Gunnar; Strålfors, Peter

    2013-01-01

    Type 2 diabetes originates in an expanding adipose tissue that for unknown reasons becomes insulin resistant. Insulin resistance reflects impairments in insulin signaling, but mechanisms involved are unclear because current research is fragmented. We report a systems level mechanistic understanding of insulin resistance, using systems wide and internally consistent data from human adipocytes. Based on quantitative steady-state and dynamic time course data on signaling intermediaries, normally and in diabetes, we developed a dynamic mathematical model of insulin signaling. The model structure and parameters are identical in the normal and diabetic states of the model, except for three parameters that change in diabetes: (i) reduced concentration of insulin receptor, (ii) reduced concentration of insulin-regulated glucose transporter GLUT4, and (iii) changed feedback from mammalian target of rapamycin in complex with raptor (mTORC1). Modeling reveals that at the core of insulin resistance in human adipocytes is attenuation of a positive feedback from mTORC1 to the insulin receptor substrate-1, which explains reduced sensitivity and signal strength throughout the signaling network. Model simulations with inhibition of mTORC1 are comparable with experimental data on inhibition of mTORC1 using rapamycin in human adipocytes. We demonstrate the potential of the model for identification of drug targets, e.g. increasing the feedback restores insulin signaling, both at the cellular level and, using a multilevel model, at the whole body level. Our findings suggest that insulin resistance in an expanded adipose tissue results from cell growth restriction to prevent cell necrosis. PMID:23400783

  13. Therapeutic Potential of Targeting PAK Signaling.

    PubMed

    Senapedis, William; Crochiere, Marsha; Baloglu, Erkan; Landesman, Yosef

    2016-01-01

    The therapeutic potential of targeting p21-Activated Kinases (PAK1 - 6) for the treatment of cancer has recently gained traction in the biotech industry. Many pharmaceutically-viable ATP competitive inhibitors have been through different stages of pre-clinical development with only a single compound evaluated in human trails (PF-3758309). The best studied functional roles of PAK proteins are control of cell adhesion and migration. PAK proteins are known downstream effectors of Ras signaling with PAK expression elevated in cancer (pancreatic, colon, breast, lung and other solid tumors). In addition altered PAK expression is a confirmed driver of this disease, especially in tumors harboring oncogenic Ras. However, there are very few examples of gain-of-function PAK mutations, as a majority of the cancer types have elevated PAK expression due to gene amplification or transcriptional modifications. There is a substantial number of known substrates affected by this aberrant PAK activity. One particular substrate, β-catenin, has garnered interest given its importance in both normal and cancer cell development. These data place PAK proteins between two major signaling pathways in cancer (Ras and β -catenin), making therapeutic targeting of PAKs an intriguing approach for the treatment of a broad array of oncological malignancies.

  14. Dual signal amplification for highly sensitive electrochemical detection of uropathogens via enzyme-based catalytic target recycling.

    PubMed

    Su, Jiao; Zhang, Haijie; Jiang, Bingying; Zheng, Huzhi; Chai, Yaqin; Yuan, Ruo; Xiang, Yun

    2011-11-15

    We report an ultrasensitive electrochemical approach for the detection of uropathogen sequence-specific DNA target. The sensing strategy involves a dual signal amplification process, which combines the signal enhancement by the enzymatic target recycling technique with the sensitivity improvement by the quantum dot (QD) layer-by-layer (LBL) assembled labels. The enzyme-based catalytic target DNA recycling process results in the use of each target DNA sequence for multiple times and leads to direct amplification of the analytical signal. Moreover, the LBL assembled QD labels can further enhance the sensitivity of the sensing system. The coupling of these two effective signal amplification strategies thus leads to low femtomolar (5fM) detection of the target DNA sequences. The proposed strategy also shows excellent discrimination between the target DNA and the single-base mismatch sequences. The advantageous intrinsic sequence-independent property of exonuclease III over other sequence-dependent enzymes makes our new dual signal amplification system a general sensing platform for monitoring ultralow level of various types of target DNA sequences. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. TRAIL, Wnt, Sonic Hedgehog, TGFβ, and miRNA Signalings Are Potential Targets for Oral Cancer Therapy

    PubMed Central

    Farooqi, Ammad Ahmad; Shu, Chih-Wen; Huang, Hurng-Wern; Wang, Hui-Ru; Chang, Yung-Ting; Fayyaz, Sundas; Yuan, Shyng-Shiou F.; Tang, Jen-Yang

    2017-01-01

    Clinical studies and cancer cell models emphasize the importance of targeting therapies for oral cancer. The tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is highly expressed in cancer, and is a selective killing ligand for oral cancer. Signaling proteins in the wingless-type mouse mammary tumor virus (MMTV) integration site family (Wnt), Sonic hedgehog (SHH), and transforming growth factor β (TGFβ) pathways may regulate cell proliferation, migration, and apoptosis. Accordingly, the genes encoding these signaling proteins are potential targets for oral cancer therapy. In this review, we focus on recent advances in targeting therapies for oral cancer and discuss the gene targets within TRAIL, Wnt, SHH, and TGFβ signaling for oral cancer therapies. Oncogenic microRNAs (miRNAs) and tumor suppressor miRNAs targeting the genes encoding these signaling proteins are summarized, and the interactions between Wnt, SHH, TGFβ, and miRNAs are interpreted. With suitable combination treatments, synergistic effects are expected to improve targeting therapies for oral cancer. PMID:28708091

  16. TRAIL, Wnt, Sonic Hedgehog, TGFβ, and miRNA Signalings Are Potential Targets for Oral Cancer Therapy.

    PubMed

    Farooqi, Ammad Ahmad; Shu, Chih-Wen; Huang, Hurng-Wern; Wang, Hui-Ru; Chang, Yung-Ting; Fayyaz, Sundas; Yuan, Shyng-Shiou F; Tang, Jen-Yang; Chang, Hsueh-Wei

    2017-07-14

    Clinical studies and cancer cell models emphasize the importance of targeting therapies for oral cancer. The tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is highly expressed in cancer, and is a selective killing ligand for oral cancer. Signaling proteins in the wingless-type mouse mammary tumor virus (MMTV) integration site family (Wnt), Sonic hedgehog (SHH), and transforming growth factor β (TGFβ) pathways may regulate cell proliferation, migration, and apoptosis. Accordingly, the genes encoding these signaling proteins are potential targets for oral cancer therapy. In this review, we focus on recent advances in targeting therapies for oral cancer and discuss the gene targets within TRAIL, Wnt, SHH, and TGFβ signaling for oral cancer therapies. Oncogenic microRNAs (miRNAs) and tumor suppressor miRNAs targeting the genes encoding these signaling proteins are summarized, and the interactions between Wnt, SHH, TGFβ, and miRNAs are interpreted. With suitable combination treatments, synergistic effects are expected to improve targeting therapies for oral cancer.

  17. Type I insulin-like growth factor receptor signaling in hematological malignancies

    PubMed Central

    Vishwamitra, Deeksha; George, Suraj Konnath; Shi, Ping; Kaseb, Ahmed O.; Amin, Hesham M.

    2017-01-01

    The insulin-like growth factor (IGF) signaling system plays key roles in the establishment and progression of different types of cancer. In agreement with this idea, substantial evidence has shown that the type I IGF receptor (IGF-IR) and its primary ligand IGF-I are important for maintaining the survival of malignant cells of hematopoietic origin. In this review, we discuss current understanding of the role of IGF-IR signaling in cancer with a focus on the hematological neoplasms. We also address the emergence of IGF-IR as a potential therapeutic target for the treatment of different types of cancer including plasma cell myeloma, leukemia, and lymphoma. PMID:27661006

  18. Therapeutic Targeting of the IL-6 Trans-Signaling/Mechanistic Target of Rapamycin Complex 1 Axis in Pulmonary Emphysema.

    PubMed

    Ruwanpura, Saleela M; McLeod, Louise; Dousha, Lovisa F; Seow, Huei J; Alhayyani, Sultan; Tate, Michelle D; Deswaerte, Virginie; Brooks, Gavin D; Bozinovski, Steven; MacDonald, Martin; Garbers, Christoph; King, Paul T; Bardin, Philip G; Vlahos, Ross; Rose-John, Stefan; Anderson, Gary P; Jenkins, Brendan J

    2016-12-15

    The potent immunomodulatory cytokine IL-6 is consistently up-regulated in human lungs with emphysema and in mouse emphysema models; however, the mechanisms by which IL-6 promotes emphysema remain obscure. IL-6 signals using two distinct modes: classical signaling via its membrane-bound IL-6 receptor (IL-6R), and trans-signaling via a naturally occurring soluble IL-6R. To identify whether IL-6 trans-signaling and/or classical signaling contribute to the pathogenesis of emphysema. We used the gp130 F/F genetic mouse model for spontaneous emphysema and cigarette smoke-induced emphysema models. Emphysema in mice was quantified by various methods including in vivo lung function and stereology, and terminal deoxynucleotidyl transferase dUTP nick end labeling assay was used to assess alveolar cell apoptosis. In mouse and human lung tissues, the expression level and location of IL-6 signaling-related genes and proteins were measured, and the levels of IL-6 and related proteins in sera from emphysematous mice and patients were also assessed. Lung tissues from patients with emphysema, and from spontaneous and cigarette smoke-induced emphysema mouse models, were characterized by excessive production of soluble IL-6R. Genetic blockade of IL-6 trans-signaling in emphysema mouse models and therapy with the IL-6 trans-signaling antagonist sgp130Fc ameliorated emphysema by suppressing augmented alveolar type II cell apoptosis. Furthermore, IL-6 trans-signaling-driven emphysematous changes in the lung correlated with mechanistic target of rapamycin complex 1 hyperactivation, and treatment of emphysema mouse models with the mechanistic target of rapamycin complex 1 inhibitor rapamycin attenuated emphysematous changes. Collectively, our data reveal that specific targeting of IL-6 trans-signaling may represent a novel treatment strategy for emphysema.

  19. Hedgehog inhibition promotes a switch from Type II to Type I cell death receptor signaling in cancer cells.

    PubMed

    Kurita, Satoshi; Mott, Justin L; Cazanave, Sophie C; Fingas, Christian D; Guicciardi, Maria E; Bronk, Steve F; Roberts, Lewis R; Fernandez-Zapico, Martin E; Gores, Gregory J

    2011-03-31

    TRAIL is a promising therapeutic agent for human malignancies. TRAIL often requires mitochondrial dysfunction, referred to as the Type II death receptor pathway, to promote cytotoxicity. However, numerous malignant cells are TRAIL resistant due to inhibition of this mitochondrial pathway. Using cholangiocarcinoma cells as a model of TRAIL resistance, we found that Hedgehog signaling blockade sensitized these cancer cells to TRAIL cytotoxicity independent of mitochondrial dysfunction, referred to as Type I death receptor signaling. This switch in TRAIL requirement from Type II to Type I death receptor signaling was demonstrated by the lack of functional dependence on Bid/Bim and Bax/Bak, proapoptotic components of the mitochondrial pathway. Hedgehog signaling modulated expression of X-linked inhibitor of apoptosis (XIAP), which serves to repress the Type I death receptor pathway. siRNA targeted knockdown of XIAP mimics sensitization to mitochondria-independent TRAIL killing achieved by Hedgehog inhibition. Regulation of XIAP expression by Hedgehog signaling is mediated by the glioma-associated oncogene 2 (GLI2), a downstream transcription factor of Hedgehog. In conclusion, these data provide additional mechanisms modulating cell death by TRAIL and suggest Hedgehog inhibition as a therapeutic approach for TRAIL-resistant neoplasms.

  20. STAT3 signaling mediates tumour resistance to EGFR targeted therapeutics.

    PubMed

    Zulkifli, Ahmad A; Tan, Fiona H; Putoczki, Tracy L; Stylli, Stanley S; Luwor, Rodney B

    2017-08-15

    Several EGFR inhibitors are currently undergoing clinical assessment or are approved for the clinical management of patients with varying tumour types. However, treatment often results in a lack of response in many patients. The majority of patients that initially respond eventually present with tumours that display acquired resistance to the original therapy. A large number of receptor tyrosine and intracellular kinases have been implicated in driving signaling that mediates this tumour resistance to anti-EGFR targeted therapy, and in a few cases these discoveries have led to overall changes in prospective tumour screening and clinical practice (K-RAS in mCRC and EGFR T790M in NSCLC). In this mini-review, we specifically focus on the role of the STAT3 signaling axis in providing both intrinsic and acquired resistance to inhibitors of the EGFR. We also focus on STAT3 pathway targeting in an attempt to overcome resistance to anti-EGFR therapeutics. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Signaling, Regulation, and Specificity of the Type II p21-activated Kinases.

    PubMed

    Ha, Byung Hak; Morse, Elizabeth M; Turk, Benjamin E; Boggon, Titus J

    2015-05-22

    The p21-activated kinases (PAKs) are a family of six serine/threonine kinases that act as key effectors of RHO family GTPases in mammalian cells. PAKs are subdivided into two groups: type I PAKs (PAK1, PAK2, and PAK3) and type II PAKs (PAK4, PAK5, and PAK6). Although these groups are involved in common signaling pathways, recent work indicates that the two groups have distinct modes of regulation and have both unique and common substrates. Here, we review recent insights into the molecular level details that govern regulation of type II PAK signaling. We also consider mechanisms by which signal transduction is regulated at the level of substrate specificity. Finally, we discuss the implications of these studies for clinical targeting of these kinases. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Antidepressive effects of targeting ELK-1 signal transduction.

    PubMed

    Apazoglou, Kallia; Farley, Séverine; Gorgievski, Victor; Belzeaux, Raoul; Lopez, Juan Pablo; Grenier, Julien; Ibrahim, El Chérif; El Khoury, Marie-Anne; Tse, Yiu C; Mongredien, Raphaele; Barbé, Alexandre; de Macedo, Carlos E A; Jaworski, Wojciech; Bochereau, Ariane; Orrico, Alejandro; Isingrini, Elsa; Guinaudie, Chloé; Mikasova, Lenka; Louis, Franck; Gautron, Sophie; Groc, Laurent; Massaad, Charbel; Yildirim, Ferah; Vialou, Vincent; Dumas, Sylvie; Marti, Fabio; Mechawar, Naguib; Morice, Elise; Wong, Tak P; Caboche, Jocelyne; Turecki, Gustavo; Giros, Bruno; Tzavara, Eleni T

    2018-05-07

    Depression, a devastating psychiatric disorder, is a leading cause of disability worldwide. Current antidepressants address specific symptoms of the disease, but there is vast room for improvement 1 . In this respect, new compounds that act beyond classical antidepressants to target signal transduction pathways governing synaptic plasticity and cellular resilience are highly warranted 2-4 . The extracellular signal-regulated kinase (ERK) pathway is implicated in mood regulation 5-7 , but its pleiotropic functions and lack of target specificity prohibit optimal drug development. Here, we identified the transcription factor ELK-1, an ERK downstream partner 8 , as a specific signaling module in the pathophysiology and treatment of depression that can be targeted independently of ERK. ELK1 mRNA was upregulated in postmortem hippocampal tissues from depressed suicides; in blood samples from depressed individuals, failure to reduce ELK1 expression was associated with resistance to treatment. In mice, hippocampal ELK-1 overexpression per se produced depressive behaviors; conversely, the selective inhibition of ELK-1 activation prevented depression-like molecular, plasticity and behavioral states induced by stress. Our work stresses the importance of target selectivity for a successful approach for signal-transduction-based antidepressants, singles out ELK-1 as a depression-relevant transducer downstream of ERK and brings proof-of-concept evidence for the druggability of ELK-1.

  3. Monte Carlo Study Elucidates the Type 1/Type 2 Choice in Apoptotic Death Signaling in Healthy and Cancer Cells

    PubMed Central

    Raychaudhuri, Subhadip; Raychaudhuri, Somkanya C

    2013-01-01

    Apoptotic cell death is coordinated through two distinct (type 1 and type 2) intracellular signaling pathways. How the type 1/type 2 choice is made remains a central problem in the biology of apoptosis and has implications for apoptosis related diseases and therapy. We study the problem of type 1/type 2 choice in silico utilizing a kinetic Monte Carlo model of cell death signaling. Our results show that the type 1/type 2 choice is linked to deterministic versus stochastic cell death activation, elucidating a unique regulatory control of the apoptotic pathways. Consistent with previous findings, our results indicate that caspase 8 activation level is a key regulator of the choice between deterministic type 1 and stochastic type 2 pathways, irrespective of cell types. Expression levels of signaling molecules downstream also regulate the type 1/type 2 choice. A simplified model of DISC clustering elucidates the mechanism of increased active caspase 8 generation and type 1 activation in cancer cells having increased sensitivity to death receptor activation. We demonstrate that rapid deterministic activation of the type 1 pathway can selectively target such cancer cells, especially if XIAP is also inhibited; while inherent cell-to-cell variability would allow normal cells stay protected. PMID:24709706

  4. Signal integration: a framework for understanding the efficacy of therapeutics targeting the human EGFR family

    PubMed Central

    Shepard, H. Michael; Brdlik, Cathleen M.; Schreiber, Hans

    2008-01-01

    The human EGFR (HER) family is essential for communication between many epithelial cancer cell types and the tumor microenvironment. Therapeutics targeting the HER family have demonstrated clinical success in the treatment of diverse epithelial cancers. Here we propose that the success of HER family–targeted monoclonal antibodies in cancer results from their ability to interfere with HER family consolidation of signals initiated by a multitude of other receptor systems. Ligand/receptor systems that initiate these signals include cytokine receptors, chemokine receptors, TLRs, GPCRs, and integrins. We further extrapolate that improvements in cancer therapeutics targeting the HER family are likely to incorporate mechanisms that block or reverse stromal support of malignant progression by isolating the HER family from autocrine and stromal influences. PMID:18982164

  5. '2A-Like' Signal Sequences Mediating Translational Recoding: A Novel Form of Dual Protein Targeting.

    PubMed

    Roulston, Claire; Luke, Garry A; de Felipe, Pablo; Ruan, Lin; Cope, Jonathan; Nicholson, John; Sukhodub, Andriy; Tilsner, Jens; Ryan, Martin D

    2016-08-01

    We report the initial characterization of an N-terminal oligopeptide '2A-like' sequence that is able to function both as a signal sequence and as a translational recoding element. Owing to this translational recoding activity, two forms of nascent polypeptide are synthesized: (i) when 2A-mediated translational recoding has not occurred: the nascent polypeptide is fused to the 2A-like N-terminal signal sequence and the fusion translation product is targeted to the exocytic pathway, and, (ii) a translation product where 2A-mediated translational recoding has occurred: the 2A-like signal sequence is synthesized as a separate translation product and, therefore, the nascent (downstream) polypeptide lacks the 2A-like signal sequence and is localized to the cytoplasm. This type of dual-functional signal sequence results, therefore, in the partitioning of the translation products between the two sub-cellular sites and represents a newly described form of dual protein targeting. © 2016 The Authors. Traffic published by John Wiley & Sons Ltd.

  6. High cell surface death receptor expression determines type I versus type II signaling.

    PubMed

    Meng, Xue Wei; Peterson, Kevin L; Dai, Haiming; Schneider, Paula; Lee, Sun-Hee; Zhang, Jin-San; Koenig, Alexander; Bronk, Steve; Billadeau, Daniel D; Gores, Gregory J; Kaufmann, Scott H

    2011-10-14

    Previous studies have suggested that there are two signaling pathways leading from ligation of the Fas receptor to induction of apoptosis. Type I signaling involves Fas ligand-induced recruitment of large amounts of FADD (FAS-associated death domain protein) and procaspase 8, leading to direct activation of caspase 3, whereas type II signaling involves Bid-mediated mitochondrial perturbation to amplify a more modest death receptor-initiated signal. The biochemical basis for this dichotomy has previously been unclear. Here we show that type I cells have a longer half-life for Fas message and express higher amounts of cell surface Fas, explaining the increased recruitment of FADD and subsequent signaling. Moreover, we demonstrate that cells with type II Fas signaling (Jurkat or HCT-15) can signal through a type I pathway upon forced receptor overexpression and that shRNA-mediated Fas down-regulation converts cells with type I signaling (A498) to type II signaling. Importantly, the same cells can exhibit type I signaling for Fas and type II signaling for TRAIL (TNF-α-related apoptosis-inducing ligand), indicating that the choice of signaling pathway is related to the specific receptor, not some other cellular feature. Additional experiments revealed that up-regulation of cell surface death receptor 5 levels by treatment with 7-ethyl-10-hydroxy-camptothecin converted TRAIL signaling in HCT116 cells from type II to type I. Collectively, these results suggest that the type I/type II dichotomy reflects differences in cell surface death receptor expression.

  7. Prediction of type III secretion signals in genomes of gram-negative bacteria.

    PubMed

    Löwer, Martin; Schneider, Gisbert

    2009-06-15

    Pathogenic bacteria infecting both animals as well as plants use various mechanisms to transport virulence factors across their cell membranes and channel these proteins into the infected host cell. The type III secretion system represents such a mechanism. Proteins transported via this pathway ("effector proteins") have to be distinguished from all other proteins that are not exported from the bacterial cell. Although a special targeting signal at the N-terminal end of effector proteins has been proposed in literature its exact characteristics remain unknown. In this study, we demonstrate that the signals encoded in the sequences of type III secretion system effectors can be consistently recognized and predicted by machine learning techniques. Known protein effectors were compiled from the literature and sequence databases, and served as training data for artificial neural networks and support vector machine classifiers. Common sequence features were most pronounced in the first 30 amino acids of the effector sequences. Classification accuracy yielded a cross-validated Matthews correlation of 0.63 and allowed for genome-wide prediction of potential type III secretion system effectors in 705 proteobacterial genomes (12% predicted candidates protein), their chromosomes (11%) and plasmids (13%), as well as 213 Firmicute genomes (7%). We present a signal prediction method together with comprehensive survey of potential type III secretion system effectors extracted from 918 published bacterial genomes. Our study demonstrates that the analyzed signal features are common across a wide range of species, and provides a substantial basis for the identification of exported pathogenic proteins as targets for future therapeutic intervention. The prediction software is publicly accessible from our web server (www.modlab.org).

  8. HAUS8 regulates RLR‑VISA antiviral signaling positively by targeting VISA.

    PubMed

    He, Tian-Sheng; Chen, Tian; Wang, Dan-Dan; Xu, Liang-Guo

    2018-06-15

    Mitochondrial anti‑viral signaling protein (VISA), additionally termed MAVS, IPS‑1 and Cardif, is located at the outer membrane of mitochondria and is an essential adaptor in the Rig‑like receptor (RLRs) signaling pathway. Upon viral infection, activated RLRs interact with VISA on mitochondria, forming a RLR‑VISA platform, leading to the recruitment of different TRAF family members, including TRAF3, TRAF2 and TRAF6. This results in the phosphorylation and nuclear translocation of interferon regulatory factors 3 and 7 (IRF3/IRF7) by TANK binding kinase 1 (TBK1) and/or IKKε, as well as activation of NF‑κB, to induce type I interferons (IFNs) and pro‑inflammatory cytokines. It remains to be elucidated how VISA functions as a scaffold for protein complex assembly in mitochondria to regulate RLR‑VISA antiviral signaling. In the present study, it was demonstrated that HAUS augmin like complex subunit 8 (HAUS8) augments the RLR‑VISA‑dependent antiviral signaling pathway by targeting the VISA complex. Co‑immunoprecipitation verified that HAUS8 was associated with VISA and the VISA signaling complex components retinoic acid‑inducible gene I (RIG‑I) and TBK1 when the RLR‑VISA signaling pathway was activated. The data demonstrated that overexpression of HAUS8 significantly promoted the activity of the transcription factors NF‑κB, IRF3 and the IFN‑β promoter induced by Sendai virus‑mediated RLR‑VISA signaling. HAUS8 increased the polyubiquitination of VISA, RIG‑I and TBK1. Knockdown of HAUS8 inhibited the activation of the transcription factors IRF‑3, NF‑κB and the IFN‑β promoter triggered by Sendai virus. Collectively, these results demonstrated that HAUS8 may function as a positive regulator of RLR‑VISA dependent antiviral signaling by targeting the VISA complex, providing a novel regulatory mechanism of antiviral responses.

  9. Experimental and statistical post-validation of positive example EST sequences carrying peroxisome targeting signals type 1 (PTS1).

    PubMed

    Lingner, Thomas; Kataya, Amr R A; Reumann, Sigrun

    2012-02-01

    We recently developed the first algorithms specifically for plants to predict proteins carrying peroxisome targeting signals type 1 (PTS1) from genome sequences. As validated experimentally, the prediction methods are able to correctly predict unknown peroxisomal Arabidopsis proteins and to infer novel PTS1 tripeptides. The high prediction performance is primarily determined by the large number and sequence diversity of the underlying positive example sequences, which mainly derived from EST databases. However, a few constructs remained cytosolic in experimental validation studies, indicating sequencing errors in some ESTs. To identify erroneous sequences, we validated subcellular targeting of additional positive example sequences in the present study. Moreover, we analyzed the distribution of prediction scores separately for each orthologous group of PTS1 proteins, which generally resembled normal distributions with group-specific mean values. The cytosolic sequences commonly represented outliers of low prediction scores and were located at the very tail of a fitted normal distribution. Three statistical methods for identifying outliers were compared in terms of sensitivity and specificity." Their combined application allows elimination of erroneous ESTs from positive example data sets. This new post-validation method will further improve the prediction accuracy of both PTS1 and PTS2 protein prediction models for plants, fungi, and mammals.

  10. Experimental and statistical post-validation of positive example EST sequences carrying peroxisome targeting signals type 1 (PTS1)

    PubMed Central

    Lingner, Thomas; Kataya, Amr R. A.; Reumann, Sigrun

    2012-01-01

    We recently developed the first algorithms specifically for plants to predict proteins carrying peroxisome targeting signals type 1 (PTS1) from genome sequences.1 As validated experimentally, the prediction methods are able to correctly predict unknown peroxisomal Arabidopsis proteins and to infer novel PTS1 tripeptides. The high prediction performance is primarily determined by the large number and sequence diversity of the underlying positive example sequences, which mainly derived from EST databases. However, a few constructs remained cytosolic in experimental validation studies, indicating sequencing errors in some ESTs. To identify erroneous sequences, we validated subcellular targeting of additional positive example sequences in the present study. Moreover, we analyzed the distribution of prediction scores separately for each orthologous group of PTS1 proteins, which generally resembled normal distributions with group-specific mean values. The cytosolic sequences commonly represented outliers of low prediction scores and were located at the very tail of a fitted normal distribution. Three statistical methods for identifying outliers were compared in terms of sensitivity and specificity.” Their combined application allows elimination of erroneous ESTs from positive example data sets. This new post-validation method will further improve the prediction accuracy of both PTS1 and PTS2 protein prediction models for plants, fungi, and mammals. PMID:22415050

  11. Incorporating signal-dependent noise for hyperspectral target detection

    NASA Astrophysics Data System (ADS)

    Morman, Christopher J.; Meola, Joseph

    2015-05-01

    The majority of hyperspectral target detection algorithms are developed from statistical data models employing stationary background statistics or white Gaussian noise models. Stationary background models are inaccurate as a result of two separate physical processes. First, varying background classes often exist in the imagery that possess different clutter statistics. Many algorithms can account for this variability through the use of subspaces or clustering techniques. The second physical process, which is often ignored, is a signal-dependent sensor noise term. For photon counting sensors that are often used in hyperspectral imaging systems, sensor noise increases as the measured signal level increases as a result of Poisson random processes. This work investigates the impact of this sensor noise on target detection performance. A linear noise model is developed describing sensor noise variance as a linear function of signal level. The linear noise model is then incorporated for detection of targets using data collected at Wright Patterson Air Force Base.

  12. A generalizable platform for interrogating target- and signal-specific consequences of electrophilic modifications in redox-dependent cell signaling.

    PubMed

    Lin, Hong-Yu; Haegele, Joseph A; Disare, Michael T; Lin, Qishan; Aye, Yimon

    2015-05-20

    Despite the known propensity of small-molecule electrophiles to react with numerous cysteine-active proteins, biological actions of individual signal inducers have emerged to be chemotype-specific. To pinpoint and quantify the impacts of modifying one target out of the whole proteome, we develop a target-protein-personalized "electrophile toolbox" with which specific intracellular targets can be selectively modified at a precise time by specific reactive signals. This general methodology, T-REX (targetable reactive electrophiles and oxidants), is established by (1) constructing a platform that can deliver a range of electronic and sterically different bioactive lipid-derived signaling electrophiles to specific proteins in cells; (2) probing the kinetics of targeted delivery concept, which revealed that targeting efficiency in cells is largely driven by initial on-rate of alkylation; and (3) evaluating the consequences of protein-target- and small-molecule-signal-specific modifications on the strength of downstream signaling. These data show that T-REX allows quantitative interrogations into the extent to which the Nrf2 transcription factor-dependent antioxidant response element (ARE) signaling is activated by selective electrophilic modifications on Keap1 protein, one of several redox-sensitive regulators of the Nrf2-ARE axis. The results document Keap1 as a promiscuous electrophile-responsive sensor able to respond with similar efficiencies to discrete electrophilic signals, promoting comparable strength of Nrf2-ARE induction. T-REX is also able to elicit cell activation in cases in which whole-cell electrophile flooding fails to stimulate ARE induction prior to causing cytotoxicity. The platform presents a previously unavailable opportunity to elucidate the functional consequences of small-molecule-signal- and protein-target-specific electrophilic modifications in an otherwise unaffected cellular background.

  13. The eukaryotic signal sequence, YGRL, targets the chlamydial inclusion

    PubMed Central

    Kabeiseman, Emily J.; Cichos, Kyle H.; Moore, Elizabeth R.

    2014-01-01

    Understanding how host proteins are targeted to pathogen-specified organelles, like the chlamydial inclusion, is fundamentally important to understanding the biogenesis of these unique subcellular compartments and how they maintain autonomy within the cell. Syntaxin 6, which localizes to the chlamydial inclusion, contains an YGRL signal sequence. The YGRL functions to return syntaxin 6 to the trans-Golgi from the plasma membrane, and deletion of the YGRL signal sequence from syntaxin 6 also prevents the protein from localizing to the chlamydial inclusion. YGRL is one of three YXXL (YGRL, YQRL, and YKGL) signal sequences which target proteins to the trans-Golgi. We designed various constructs of eukaryotic proteins to test the specificity and propensity of YXXL sequences to target the inclusion. The YGRL signal sequence redirects proteins (e.g., Tgn38, furin, syntaxin 4) that normally do not localize to the chlamydial inclusion. Further, the requirement of the YGRL signal sequence for syntaxin 6 localization to inclusions formed by different species of Chlamydia is conserved. These data indicate that there is an inherent property of the chlamydial inclusion, which allows it to recognize the YGRL signal sequence. To examine whether this “inherent property” was protein or lipid in nature, we asked if deletion of the YGRL signal sequence from syntaxin 6 altered the ability of the protein to interact with proteins or lipids. Deletion or alteration of the YGRL from syntaxin 6 does not appreciably impact syntaxin 6-protein interactions, but does decrease syntaxin 6-lipid interactions. Intriguingly, data also demonstrate that YKGL or YQRL can successfully substitute for YGRL in localization of syntaxin 6 to the chlamydial inclusion. Importantly and for the first time, we are establishing that a eukaryotic signal sequence targets the chlamydial inclusion. PMID:25309881

  14. Molecular Pathways for Immune Recognition of Preproinsulin Signal Peptide in Type 1 Diabetes.

    PubMed

    Kronenberg-Versteeg, Deborah; Eichmann, Martin; Russell, Mark A; de Ru, Arnoud; Hehn, Beate; Yusuf, Norkhairin; van Veelen, Peter A; Richardson, Sarah J; Morgan, Noel G; Lemberg, Marius K; Peakman, Mark

    2018-04-01

    The signal peptide region of preproinsulin (PPI) contains epitopes targeted by HLA-A-restricted (HLA-A0201, A2402) cytotoxic T cells as part of the pathogenesis of β-cell destruction in type 1 diabetes. We extended the discovery of the PPI epitope to disease-associated HLA-B*1801 and HLA-B*3906 (risk) and HLA-A*1101 and HLA-B*3801 (protective) alleles, revealing that four of six alleles present epitopes derived from the signal peptide region. During cotranslational translocation of PPI, its signal peptide is cleaved and retained within the endoplasmic reticulum (ER) membrane, implying it is processed for immune recognition outside of the canonical proteasome-directed pathway. Using in vitro translocation assays with specific inhibitors and gene knockout in PPI-expressing target cells, we show that PPI signal peptide antigen processing requires signal peptide peptidase (SPP). The intramembrane protease SPP generates cytoplasm-proximal epitopes, which are transporter associated with antigen processing (TAP), ER-luminal epitopes, which are TAP independent, each presented by different HLA class I molecules and N-terminal trimmed by ER aminopeptidase 1 for optimal presentation. In vivo, TAP expression is significantly upregulated and correlated with HLA class I hyperexpression in insulin-containing islets of patients with type 1 diabetes. Thus, PPI signal peptide epitopes are processed by SPP and loaded for HLA-guided immune recognition via pathways that are enhanced during disease pathogenesis. © 2018 by the American Diabetes Association.

  15. Updating signal typing in voice: addition of type 4 signals.

    PubMed

    Sprecher, Alicia; Olszewski, Aleksandra; Jiang, Jack J; Zhang, Yu

    2010-06-01

    The addition of a fourth type of voice to Titze's voice classification scheme is proposed. This fourth voice type is characterized by primarily stochastic noise behavior and is therefore unsuitable for both perturbation and correlation dimension analysis. Forty voice samples were classified into the proposed four types using narrowband spectrograms. Acoustic, perceptual, and correlation dimension analyses were completed for all voice samples. Perturbation measures tended to increase with voice type. Based on reliability cutoffs, the type 1 and type 2 voices were considered suitable for perturbation analysis. Measures of unreliability were higher for type 3 and 4 voices. Correlation dimension analyses increased significantly with signal type as indicated by a one-way analysis of variance. Notably, correlation dimension analysis could not quantify the type 4 voices. The proposed fourth voice type represents a subset of voices dominated by noise behavior. Current measures capable of evaluating type 4 voices provide only qualitative data (spectrograms, perceptual analysis, and an infinite correlation dimension). Type 4 voices are highly complex and the development of objective measures capable of analyzing these voices remains a topic of future investigation.

  16. Therapeutics Targeting FGF Signaling Network in Human Diseases.

    PubMed

    Katoh, Masaru

    2016-12-01

    Fibroblast growth factor (FGF) signaling through its receptors, FGFR1, FGFR2, FGFR3, or FGFR4, regulates cell fate, angiogenesis, immunity, and metabolism. Dysregulated FGF signaling causes human diseases, such as breast cancer, chondrodysplasia, gastric cancer, lung cancer, and X-linked hypophosphatemic rickets. Recombinant FGFs are pro-FGF signaling therapeutics for tissue and/or wound repair, whereas FGF analogs and gene therapy are under development for the treatment of cardiovascular disease, diabetes, and osteoarthritis. FGF traps, anti-FGF/FGFR monoclonal antibodies (mAbs), and small-molecule FGFR inhibitors are anti-FGF signaling therapeutics under development for the treatment of cancer, chondrodysplasia, and rickets. Here, I discuss the benefit-risk and cost-effectiveness issues of precision medicine targeting FGFRs, ALK, EGFR, and FLT3. FGFR-targeted therapy should be optimized for cancer treatment, focusing on genomic tests and recurrence. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. A Generalizable Platform for Interrogating Target- and Signal-Specific Consequences of Electrophilic Modifications in Redox-Dependent Cell Signaling

    PubMed Central

    Lin, Hong-Yu; Haegele, Joseph A.; Disare, Michael T.; Lin, Qishan; Aye, Yimon

    2015-01-01

    Despite the known propensity of small-molecule electrophiles to react with numerous cysteine-active proteins, biological actions of individual signal inducers have emerged to be chemotype-specific. To pinpoint and quantify the impacts of modifying one target out of the whole proteome, we develop a target-protein-personalized “electrophile toolbox” with which specific intracellular targets can be selectively modified at a precise time by specific reactive signals. This general methodology—T-REX (targetable reactive electrophiles & oxidants)—is established by: (1) constructing a platform that can deliver a range of electronic and sterically different bioactive lipid-derived signaling electrophiles to specific proteins in cells; (2) probing the kinetics of targeted delivery concept which revealed that targeting efficiency in cells is largely driven by initial on-rate of alkylation; and (3) evaluating the consequences of protein-target- and small-molecule-signal-specific modifications on the strength of downstream signaling. These data show that T-REX allows quantitative interrogations into the extent to which the Nrf2 transcription factor-dependent antioxidant response element (ARE) signaling is activated by selective electrophilic modifications on Keap1 protein—one of several redox-sensitive regulators of the Nrf2–ARE axis. The results document Keap1 as a promiscuous electrophile-responsive sensor able to respond with similar efficiencies to discrete electrophilic signals, promoting comparable strength of Nrf2–ARE induction. T-REX is also able to elicit cell activation in cases in which whole-cell electrophile flooding fails to stimulate ARE induction prior to causing cytotoxicity. The platform presents a previously unavailable opportunity to elucidate the functional consequences of small-molecule-signal- and protein-target-specific electrophilic modifications in an otherwise unaffected cellular background. PMID:25909755

  18. Preprotein mature domains contain translocase targeting signals that are essential for secretion.

    PubMed

    Chatzi, Katerina E; Sardis, Marios Frantzeskos; Tsirigotaki, Alexandra; Koukaki, Marina; Šoštarić, Nikolina; Konijnenberg, Albert; Sobott, Frank; Kalodimos, Charalampos G; Karamanou, Spyridoula; Economou, Anastassios

    2017-05-01

    Secretory proteins are only temporary cytoplasmic residents. They are typically synthesized as pre proteins, carrying signal peptides N-terminally fused to their mature domains. In bacteria secretion largely occurs posttranslationally through the membrane-embedded SecA-SecYEG translocase. Upon crossing the plasma membrane, signal peptides are cleaved off and mature domains reach their destinations and fold. Targeting to the translocase is mediated by signal peptides. The role of mature domains in targeting and secretion is unclear. We now reveal that mature domains harbor their own independent targeting signals (mature domain targeting signals [MTSs]). These are multiple, degenerate, interchangeable, linear or 3D hydrophobic stretches that become available because of the unstructured states of targeting-competent preproteins. Their receptor site on the cytoplasmic face of the SecYEG-bound SecA is also of hydrophobic nature and is located adjacent to the signal peptide cleft. Both the preprotein MTSs and their receptor site on SecA are essential for protein secretion. Evidently, mature domains have their own previously unsuspected distinct roles in preprotein targeting and secretion. © 2017 Chatzi et al.

  19. Preprotein mature domains contain translocase targeting signals that are essential for secretion

    PubMed Central

    Tsirigotaki, Alexandra; Koukaki, Marina; Šoštarić, Nikolina; Konijnenberg, Albert; Sobott, Frank; Kalodimos, Charalampos G.; Karamanou, Spyridoula

    2017-01-01

    Secretory proteins are only temporary cytoplasmic residents. They are typically synthesized as preproteins, carrying signal peptides N-terminally fused to their mature domains. In bacteria secretion largely occurs posttranslationally through the membrane-embedded SecA-SecYEG translocase. Upon crossing the plasma membrane, signal peptides are cleaved off and mature domains reach their destinations and fold. Targeting to the translocase is mediated by signal peptides. The role of mature domains in targeting and secretion is unclear. We now reveal that mature domains harbor their own independent targeting signals (mature domain targeting signals [MTSs]). These are multiple, degenerate, interchangeable, linear or 3D hydrophobic stretches that become available because of the unstructured states of targeting-competent preproteins. Their receptor site on the cytoplasmic face of the SecYEG-bound SecA is also of hydrophobic nature and is located adjacent to the signal peptide cleft. Both the preprotein MTSs and their receptor site on SecA are essential for protein secretion. Evidently, mature domains have their own previously unsuspected distinct roles in preprotein targeting and secretion. PMID:28404644

  20. Targeting the Notch signaling pathway in autoimmune diseases.

    PubMed

    Ma, Daoxin; Zhu, Yuanchao; Ji, Chunyan; Hou, Ming

    2010-05-01

    The Notch signaling pathway regulates a variety of processes and has been linked to diverse effects. Aberrant Notch function is important in several disorders. Pre-clinical studies have suggested that inhibition of Notch is an attractive approach to treat hematologic and solid malignancies. Many patients with refractory autoimmune diseases respond poorly to therapy and have significant morbidity and the treatment is highly toxic, so more effective therapies for autoimmune diseases are being examined. The role of the Notch pathway and therapeutic strategies targeting it in many illnesses, especially autoimmune diseases. The Notch pathway has unique and attractive advantages for targeting. Targeting it has already been trialed in many experiments, which may show better efficacy and fewer side effects compared with classical drugs for the treatment. Targeting Notch might provide etiological rather than symptomatic treatment. Various methods targeting the Notch pathway have been under investigation. Rational targeting of the Notch signaling pathway in cancer and some autoimmune diseases has proven to be successful. Classical drugs for the treatment of autoimmune diseases are inefficient and toxic to some extent, and targeting the Notch pathway is a promising therapeutic concept. However, there are still many questions about targeting Notch in autoimmune diseases, and further investigation will be needed.

  1. Targeting kinase signaling pathways with constrained peptide scaffolds

    PubMed Central

    Hanold, Laura E.; Fulton, Melody D.; Kennedy, Eileen J.

    2017-01-01

    Kinases are amongst the largest families in the human proteome and serve as critical mediators of a myriad of cell signaling pathways. Since altered kinase activity is implicated in a variety of pathological diseases, kinases have become a prominent class of proteins for targeted inhibition. Although numerous small molecule and antibody-based inhibitors have already received clinical approval, several challenges may still exist with these strategies including resistance, target selection, inhibitor potency and in vivo activity profiles. Constrained peptide inhibitors have emerged as an alternative strategy for kinase inhibition. Distinct from small molecule inhibitors, peptides can provide a large binding surface area that allows them to bind shallow protein surfaces rather than defined pockets within the target protein structure. By including chemical constraints within the peptide sequence, additional benefits can be bestowed onto the peptide scaffold such as improved target affinity and target selectivity, cell permeability and proteolytic resistance. In this review, we highlight examples of diverse chemistries that are being employed to constrain kinase-targeting peptide scaffolds and highlight their application to modulate kinase signaling as well as their potential clinical implications. PMID:28185915

  2. Targeting cancer by binding iron: Dissecting cellular signaling pathways

    PubMed Central

    Lui, Goldie Y.L.; Kovacevic, Zaklina; Richardson, Vera; Merlot, Angelica M.; Kalinowski, Danuta S.; Richardson, Des R.

    2015-01-01

    Newer and more potent therapies are urgently needed to effectively treat advanced cancers that have developed resistance and metastasized. One such strategy is to target cancer cell iron metabolism, which is altered compared to normal cells and may facilitate their rapid proliferation. This is supported by studies reporting the anti-neoplastic activities of the clinically available iron chelators, desferrioxamine and deferasirox. More recently, ligands of the di-2-pyridylketone thiosemicarbazone (DpT) class have demonstrated potent and selective anti-proliferative activity across multiple cancer-types in vivo, fueling studies aimed at dissecting their molecular mechanisms of action. In the past five years alone, significant advances have been made in understanding how chelators not only modulate cellular iron metabolism, but also multiple signaling pathways implicated in tumor progression and metastasis. Herein, we discuss recent research on the targeting of iron in cancer cells, with a focus on the novel and potent DpT ligands. Several key studies have revealed that iron chelation can target the AKT, ERK, JNK, p38, STAT3, TGF-β, Wnt and autophagic pathways to subsequently inhibit cellular proliferation, the epithelial-mesenchymal transition (EMT) and metastasis. These developments emphasize that these novel therapies could be utilized clinically to effectively target cancer. PMID:26125440

  3. Cannabinoid Receptor 2 Signaling in Neurodegenerative Disorders: From Pathogenesis to a Promising Therapeutic Target

    PubMed Central

    Cassano, Tommaso; Calcagnini, Silvio; Pace, Lorenzo; De Marco, Federico; Romano, Adele; Gaetani, Silvana

    2017-01-01

    As a consequence of an increasingly aging population, the number of people affected by neurodegenerative disorders, such as Alzheimer's disease, Parkinson's disease and Huntington's disease, is rapidly increasing. Although the etiology of these diseases has not been completely defined, common molecular mechanisms including neuroinflammation, excitotoxicity and mitochondrial dysfunction have been confirmed and can be targeted therapeutically. Moreover, recent studies have shown that endogenous cannabinoid signaling plays a number of modulatory roles throughout the central nervous system (CNS), including the neuroinflammation and neurogenesis. In particular, the up-regulation of type-2 cannabinoid (CB2) receptors has been found in a number of neurodegenerative disorders. Thus, the modulation of CB2 receptor signaling may represent a promising therapeutic target with minimal psychotropic effects that can be used to modulate endocannabinoid-based therapeutic approaches and to reduce neuronal degeneration. For these reasons this review will focus on the CB2 receptor as a promising pharmacological target in a number of neurodegenerative diseases. PMID:28210207

  4. Targeting VEGF-B as a novel treatment for insulin resistance and type 2 diabetes.

    PubMed

    Hagberg, Carolina E; Mehlem, Annika; Falkevall, Annelie; Muhl, Lars; Fam, Barbara C; Ortsäter, Henrik; Scotney, Pierre; Nyqvist, Daniel; Samén, Erik; Lu, Li; Stone-Elander, Sharon; Proietto, Joseph; Andrikopoulos, Sofianos; Sjöholm, Ake; Nash, Andrew; Eriksson, Ulf

    2012-10-18

    The prevalence of type 2 diabetes is rapidly increasing, with severe socioeconomic impacts. Excess lipid deposition in peripheral tissues impairs insulin sensitivity and glucose uptake, and has been proposed to contribute to the pathology of type 2 diabetes. However, few treatment options exist that directly target ectopic lipid accumulation. Recently it was found that vascular endothelial growth factor B (VEGF-B) controls endothelial uptake and transport of fatty acids in heart and skeletal muscle. Here we show that decreased VEGF-B signalling in rodent models of type 2 diabetes restores insulin sensitivity and improves glucose tolerance. Genetic deletion of Vegfb in diabetic db/db mice prevented ectopic lipid deposition, increased muscle glucose uptake and maintained normoglycaemia. Pharmacological inhibition of VEGF-B signalling by antibody administration to db/db mice enhanced glucose tolerance, preserved pancreatic islet architecture, improved β-cell function and ameliorated dyslipidaemia, key elements of type 2 diabetes and the metabolic syndrome. The potential use of VEGF-B neutralization in type 2 diabetes was further elucidated in rats fed a high-fat diet, in which it normalized insulin sensitivity and increased glucose uptake in skeletal muscle and heart. Our results demonstrate that the vascular endothelium can function as an efficient barrier to excess muscle lipid uptake even under conditions of severe obesity and type 2 diabetes, and that this barrier can be maintained by inhibition of VEGF-B signalling. We propose VEGF-B antagonism as a novel pharmacological approach for type 2 diabetes, targeting the lipid-transport properties of the endothelium to improve muscle insulin sensitivity and glucose disposal.

  5. Design of nuclease-based target recycling signal amplification in aptasensors.

    PubMed

    Yan, Mengmeng; Bai, Wenhui; Zhu, Chao; Huang, Yafei; Yan, Jiao; Chen, Ailiang

    2016-03-15

    Compared with conventional antibody-based immunoassay methods, aptasensors based on nucleic acid aptamer have made at least two significant breakthroughs. One is that aptamers are more easily used for developing various simple and rapid homogeneous detection methods by "sample in signal out" without multi-step washing. The other is that aptamers are more easily employed for developing highly sensitive detection methods by using various nucleic acid-based signal amplification approaches. As many substances playing regulatory roles in physiology or pathology exist at an extremely low concentration and many chemical contaminants occur in trace amounts in food or environment, aptasensors for signal amplification contribute greatly to detection of such targets. Among the signal amplification approaches in highly sensitive aptasensors, the nuclease-based target recycling signal amplification has recently become a research focus because it shows easy design, simple operation, and rapid reaction and can be easily developed for homogenous assay. In this review, we summarized recent advances in the development of various nuclease-based target recycling signal amplification with the aim to provide a general guide for the design of aptamer-based ultrasensitive biosensing assays. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. HNF4α is a therapeutic target that links AMPK to WNT signalling in early-stage gastric cancer

    PubMed Central

    Chang, Hae Ryung; Nam, Seungyoon; Kook, Myeong-Cherl; Kim, Kyung-Tae; Liu, Xiuping; Yao, Hui; Jung, Hae Rim; Lemos, Robert; Seo, Hye Hyun; Park, Hee Seo; Gim, Youme; Hong, Dongwan; Huh, Iksoo; Kim, Young-Woo; Tan, Dongfeng; Liu, Chang-Gong; Powis, Garth; Park, Taesung; Liang, Han; Kim, Yon Hui

    2016-01-01

    Background Worldwide, gastric cancer (GC) is the fourth most common malignancy and the most common cancer in East Asia. Development of targeted therapies for this disease has focused on a few known oncogenes but has had limited effects. Objective To determine oncogenic mechanisms and novel therapeutic targets specific for GC by identifying commonly dysregulated genes from the tumours of both Asian-Pacific and Caucasian patients. Methods We generated transcriptomic profiles of 22 Caucasian GC tumours and their matched non-cancerous samples and performed an integrative analysis across different GC gene expression datasets. We examined the inhibition of commonly overexpressed oncogenes and their constituent signalling pathways by RNAi and/or pharmacological inhibition. Results Hepatocyte nuclear factor-4α (HNF4α) upregulation was a key signalling event in gastric tumours from both Caucasian and Asian patients, and HNF4α antagonism was antineoplastic. Perturbation experiments in GC tumour cell lines and xenograft models further demonstrated that HNF4α is downregulated by AMPKα signalling and the AMPK agonist metformin; blockade of HNF4α activity resulted in cyclin downregulation, cell cycle arrest and tumour growth inhibition. HNF4α also regulated WNT signalling through its target gene WNT5A, a potential prognostic marker of diffuse type gastric tumours. Conclusions Our results indicate that HNF4α is a targetable oncoprotein in GC, is regulated by AMPK signalling through AMPKα and resides upstream of WNT signalling. HNF4α may regulate ‘metabolic switch’ characteristic of a general malignant phenotype and its target WNT5A has potential prognostic values. The AMPKα-HNF4α-WNT5A signalling cascade represents a potentially targetable pathway for drug development. PMID:25410163

  7. Cutting edge: rescue of pre-TCR but not mature TCR signaling in mice expressing membrane-targeted SLP-76.

    PubMed

    Bezman, Natalie A; Baker, Rebecca G; Lenox, Laurie E; Jordan, Martha S; Koretzky, Gary A

    2009-05-01

    SLP-76 (Src homology 2 domain-containing leukocyte phosphoprotein of 76 kDa) organizes signaling from immunoreceptors, including the platelet collagen receptor, the pre-TCR, and the TCR, and is required for T cell development. In this study we examine a mouse in which wild-type SLP-76 is replaced with a mutant constitutively targeted to the cell membrane. Membrane-targeted SLP-76 (MTS) supports ITAM signaling in platelets and from the pre-TCR. Signaling from the mature TCR, however, is defective in MTS thymocytes, resulting in failed T cell differentiation. Defective thymic selection by MTS is not rescued by a SLP-76 mutant whose localization is restricted to the cytosol. Thus, fixed localization of SLP-76 reveals differential requirements for the subcellular localization of signaling complexes downstream of the pre-TCR vs mature TCR.

  8. Caveolins: targeting pro-survival signaling in the heart and brain

    PubMed Central

    Stary, Creed M.; Tsutsumi, Yasuo M.; Patel, Piyush M.; Head, Brian P.; Patel, Hemal H.; Roth, David M.

    2012-01-01

    The present review discusses intracellular signaling moieties specific to membrane lipid rafts (MLRs) and the scaffolding proteins caveolin and introduces current data promoting their potential role in the treatment of pathologies of the heart and brain. MLRs are discreet microdomains of the plasma membrane enriched in gylcosphingolipids and cholesterol that concentrate and localize signaling molecules. Caveolin proteins are necessary for the formation of MLRs, and are responsible for coordinating signaling events by scaffolding and enriching numerous signaling moieties in close proximity. Specifically in the heart and brain, caveolins are necessary for the cytoprotective phenomenon termed ischemic and anesthetic preconditioning. Targeted overexpression of caveolin in the heart and brain leads to induction of multiple pro-survival and pro-growth signaling pathways; thus, caveolins represent a potential novel therapeutic target for cardiac and neurological pathologies. PMID:23060817

  9. Signal-Noise Identification of Magnetotelluric Signals Using Fractal-Entropy and Clustering Algorithm for Targeted De-Noising

    NASA Astrophysics Data System (ADS)

    Li, Jin; Zhang, Xian; Gong, Jinzhe; Tang, Jingtian; Ren, Zhengyong; Li, Guang; Deng, Yanli; Cai, Jin

    A new technique is proposed for signal-noise identification and targeted de-noising of Magnetotelluric (MT) signals. This method is based on fractal-entropy and clustering algorithm, which automatically identifies signal sections corrupted by common interference (square, triangle and pulse waves), enabling targeted de-noising and preventing the loss of useful information in filtering. To implement the technique, four characteristic parameters — fractal box dimension (FBD), higuchi fractal dimension (HFD), fuzzy entropy (FuEn) and approximate entropy (ApEn) — are extracted from MT time-series. The fuzzy c-means (FCM) clustering technique is used to analyze the characteristic parameters and automatically distinguish signals with strong interference from the rest. The wavelet threshold (WT) de-noising method is used only to suppress the identified strong interference in selected signal sections. The technique is validated through signal samples with known interference, before being applied to a set of field measured MT/Audio Magnetotelluric (AMT) data. Compared with the conventional de-noising strategy that blindly applies the filter to the overall dataset, the proposed method can automatically identify and purposefully suppress the intermittent interference in the MT/AMT signal. The resulted apparent resistivity-phase curve is more continuous and smooth, and the slow-change trend in the low-frequency range is more precisely reserved. Moreover, the characteristic of the target-filtered MT/AMT signal is close to the essential characteristic of the natural field, and the result more accurately reflects the inherent electrical structure information of the measured site.

  10. Controversies in cancer stem cells: targeting embryonic signaling pathways.

    PubMed

    Takebe, Naoko; Ivy, S Percy

    2010-06-15

    Selectively targeting cancer stem cells (CSC) or tumor-initiating cells (TIC; from this point onward referred to as CSCs) with novel agents is a rapidly emerging field of oncology. Our knowledge of CSCs and their niche microenvironments remains a nascent field. CSC's critical dependence upon self-renewal makes these regulatory signaling pathways ripe for the development of experimental therapeutic agents. Investigational agents targeting the Notch, Hedgehog, and Wnt pathways are currently in late preclinical development stages, with some early phase 1-2 testing in human subjects. This series of articles will provide an overview and summary of the current state of knowledge of CSCs, their interactive microenvironment, and how they may serve as important targets for antitumor therapies. We also examine the scope and stage of development of early experimental agents that specifically target these highly conserved embryonic signaling pathways. (c) 2010 AACR.

  11. Regulating the effects of GPR21, a novel target for type 2 diabetes

    NASA Astrophysics Data System (ADS)

    Leonard, Siobhán; Kinsella, Gemma K.; Benetti, Elisa; Findlay, John B. C.

    2016-05-01

    Type 2 diabetes is a chronic metabolic disorder primarily caused by insulin resistance to which obesity is a major contributor. Expression levels of an orphan G protein-coupled receptor (GPCR), GPR21, demonstrated a trend towards a significant increase in the epididymal fat pads of wild type high fat high sugar (HFHS)-fed mice. To gain further insight into the potential role this novel target may play in the development of obesity-associated type 2 diabetes, the signalling capabilities of the receptor were investigated. Overexpression studies in HEK293T cells revealed GPR21 to be a constitutively active receptor, which couples to Gαq type G proteins leading to the activation of mitogen activated protein kinases (MAPKs). Overexpression of GPR21 in vitro also markedly attenuated insulin signalling. Interestingly, the effect of GPR21 on the MAPKs and insulin signalling was reduced in the presence of serum, inferring the possibility of a native inhibitory ligand. Homology modelling and ligand docking studies led to the identification of a novel compound that inhibited GPR21 activity. Its effects offer potential as an anti-diabetic pharmacological strategy as it was found to counteract the influence of GPR21 on the insulin signalling pathway.

  12. Identification of Cell Type-Specific Differences in Erythropoietin Receptor Signaling in Primary Erythroid and Lung Cancer Cells

    PubMed Central

    Salopiata, Florian; Depner, Sofia; Wäsch, Marvin; Böhm, Martin E.; Mücke, Oliver; Plass, Christoph; Lehmann, Wolf D.; Kreutz, Clemens; Timmer, Jens; Klingmüller, Ursula

    2016-01-01

    Lung cancer, with its most prevalent form non-small-cell lung carcinoma (NSCLC), is one of the leading causes of cancer-related deaths worldwide, and is commonly treated with chemotherapeutic drugs such as cisplatin. Lung cancer patients frequently suffer from chemotherapy-induced anemia, which can be treated with erythropoietin (EPO). However, studies have indicated that EPO not only promotes erythropoiesis in hematopoietic cells, but may also enhance survival of NSCLC cells. Here, we verified that the NSCLC cell line H838 expresses functional erythropoietin receptors (EPOR) and that treatment with EPO reduces cisplatin-induced apoptosis. To pinpoint differences in EPO-induced survival signaling in erythroid progenitor cells (CFU-E, colony forming unit-erythroid) and H838 cells, we combined mathematical modeling with a method for feature selection, the L1 regularization. Utilizing an example model and simulated data, we demonstrated that this approach enables the accurate identification and quantification of cell type-specific parameters. We applied our strategy to quantitative time-resolved data of EPO-induced JAK/STAT signaling generated by quantitative immunoblotting, mass spectrometry and quantitative real-time PCR (qRT-PCR) in CFU-E and H838 cells as well as H838 cells overexpressing human EPOR (H838-HA-hEPOR). The established parsimonious mathematical model was able to simultaneously describe the data sets of CFU-E, H838 and H838-HA-hEPOR cells. Seven cell type-specific parameters were identified that included for example parameters for nuclear translocation of STAT5 and target gene induction. Cell type-specific differences in target gene induction were experimentally validated by qRT-PCR experiments. The systematic identification of pathway differences and sensitivities of EPOR signaling in CFU-E and H838 cells revealed potential targets for intervention to selectively inhibit EPO-induced signaling in the tumor cells but leave the responses in erythroid

  13. Protein targeting and integration signal for the chloroplastic outer envelope membrane.

    PubMed Central

    Li, H M; Chen, L J

    1996-01-01

    Most proteins in chloroplasts are encoded by the nuclear genome and synthesized in the cytosol. With the exception of most quter envelope membrane proteins, nuclear-encoded chloroplastic proteins are synthesized with N-terminal extensions that contain the chloroplast targeting information of these proteins. Most outer membrane proteins, however, are synthesized without extensions in the cytosol. Therefore, it is not clear where the chloroplastic outer membrane targeting information resides within these polypeptides. We have analyzed a chloroplastic outer membrane protein, OEP14 (outer envelope membrane protein of 14 kD, previously named OM14), and localized its outer membrane targeting and integration signal to the first 30 amino acids of the protein. This signal consists of a positively charged N-terminal portion followed by a hydrophobic core, bearing resemblance to the signal peptides of proteins targeted to the endoplasmic reticulum. However, a chimeric protein containing this signal fused to a passenger protein did not integrate into the endoplasmic reticulum membrane. Furthermore, membrane topology analysis indicated that the signal inserts into the chloroplastic outer membrane in an orientation opposite to that predicted by the "positive inside" rule. PMID:8953775

  14. EzyAmp signal amplification cascade enables isothermal detection of nucleic acid and protein targets.

    PubMed

    Linardy, Evelyn M; Erskine, Simon M; Lima, Nicole E; Lonergan, Tina; Mokany, Elisa; Todd, Alison V

    2016-01-15

    Advancements in molecular biology have improved the ability to characterize disease-related nucleic acids and proteins. Recently, there has been an increasing desire for tests that can be performed outside of centralised laboratories. This study describes a novel isothermal signal amplification cascade called EzyAmp (enzymatic signal amplification) that is being developed for detection of targets at the point of care. EzyAmp exploits the ability of some restriction endonucleases to cleave substrates containing nicks within their recognition sites. EzyAmp uses two oligonucleotide duplexes (partial complexes 1 and 2) which are initially cleavage-resistant as they lack a complete recognition site. The recognition site of partial complex 1 can be completed by hybridization of a triggering oligonucleotide (Driver Fragment 1) that is generated by a target-specific initiation event. Binding of Driver Fragment 1 generates a completed complex 1, which upon cleavage, releases Driver Fragment 2. In turn, binding of Driver Fragment 2 to partial complex 2 creates completed complex 2 which when cleaved releases additional Driver Fragment 1. Each cleavage event separates fluorophore quencher pairs resulting in an increase in fluorescence. At this stage a cascade of signal production becomes independent of further target-specific initiation events. This study demonstrated that the EzyAmp cascade can facilitate detection and quantification of nucleic acid targets with sensitivity down to aM concentration. Further, the same cascade detected VEGF protein with a sensitivity of 20nM showing that this universal method for amplifying signal may be linked to the detection of different types of analytes in an isothermal format. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Targeting Notch signalling pathway of cancer stem cells.

    PubMed

    Venkatesh, Vandana; Nataraj, Raghu; Thangaraj, Gopenath S; Karthikeyan, Murugesan; Gnanasekaran, Ashok; Kaginelli, Shanmukhappa B; Kuppanna, Gobianand; Kallappa, Chandrashekrappa Gowdru; Basalingappa, Kanthesh M

    2018-01-01

    Cancer stem cells (CSCs) have been defined as cells within tumor that possess the capacity to self-renew and to cause the heterogeneous lineages of cancer cells that comprise the tumor. CSCs have been increasingly identified in blood cancer, prostate, ovarian, lung, melanoma, pancreatic, colon, brain and many more malignancies. CSCs have slow growth rate and are resistant to chemotherapy and radiotherapy that lead to the failure of traditional current therapy. Eradicating the CSCs and recurrence, is promising aspect for the cure of cancer. The CSCs like any other stem cells activate the signal transduction pathways that involve the development and tissue homeostasis, which include Notch signaling pathway. The new treatment targets these pathway that control stem-cell replication, survival and differentiation that are under development. Notch inhibitors either single or in combination with chemotherapy drugs have been developed to treat cancer and its recurrence. This approach of targeting signaling pathway of CSCs represents a promising future direction for the therapeutic strategy to cure cancer.

  16. Targeting the Hippo signalling pathway for cancer treatment.

    PubMed

    Nakatani, Keisuke; Maehama, Tomohiko; Nishio, Miki; Goto, Hiroki; Kato, Wakako; Omori, Hirofumi; Miyachi, Yosuke; Togashi, Hideru; Shimono, Yohei; Suzuki, Akira

    2017-03-01

    The Hippo signalling pathway monitors cell-cell contact and external factors that shape tissue structure. In mice, tumourigenesis and developmental abnormalities are common consequences of dysregulated Hippo signalling. Expression of Hippo pathway components is also frequently altered in human tumours and correlates with poor prognosis and reduced patient survival. Thus, the Hippo pathway is an attractive anti-cancer target. Here, we provide an overview of the function and regulation of Hippo signalling components and summarize progress to date on the development of agents able to regulate Hippo signalling for cancer therapy. © The Authors 2016. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  17. Therapeutic Targeting of Tumor-Derived R-Spondin Attenuates β-Catenin Signaling and Tumorigenesis in Multiple Cancer Types.

    PubMed

    Chartier, Cecile; Raval, Janak; Axelrod, Fumiko; Bond, Chris; Cain, Jennifer; Dee-Hoskins, Cristina; Ma, Shirley; Fischer, Marcus M; Shah, Jalpa; Wei, Jie; Ji, May; Lam, Andrew; Stroud, Michelle; Yen, Wan-Ching; Yeung, Pete; Cancilla, Belinda; O'Young, Gilbert; Wang, Min; Kapoun, Ann M; Lewicki, John; Hoey, Timothy; Gurney, Austin

    2016-02-01

    Deregulation of the β-catenin signaling has long been associated with cancer. Intracellular components of this pathway, including axin, APC, and β-catenin, are frequently mutated in a range of human tumors, but the contribution of specific extracellular ligands that promote cancer development through this signaling axis remains unclear. We conducted a reporter-based screen in a panel of human tumors to identify secreted factors that stimulate β-catenin signaling. Through this screen and further molecular characterization, we found that R-spondin (RSPO) proteins collaborate with Wnt proteins to activate β-catenin. RSPO family members were expressed in several human tumors representing multiple malignancies, including ovarian, pancreatic, colon, breast, and lung cancer. We generated specific monoclonal antibody antagonists of RSPO family members and found that anti-RSPO treatment markedly inhibited tumor growth in human patient-derived tumor xenograft models, either as single agents or in combination with chemotherapy. Furthermore, blocking RSPO signaling reduced the tumorigenicity of cancer cells based on serial transplantation studies. Moreover, gene-expression analyses revealed that anti-RSPO treatment in responsive tumors strongly inhibited β-catenin target genes known to be associated with cancer and normal stem cells. Collectively, our results suggest that the RSPO family is an important stimulator of β-catenin activity in many human tumors and highlight a new effective approach for therapeutically modulating this fundamental signaling axis. ©2015 American Association for Cancer Research.

  18. [Cell signaling pathways interaction in cellular proliferation: Potential target for therapeutic interventionism].

    PubMed

    Valdespino-Gómez, Víctor Manuel; Valdespino-Castillo, Patricia Margarita; Valdespino-Castillo, Víctor Edmundo

    2015-01-01

    Nowadays, cellular physiology is best understood by analysing their interacting molecular components. Proteins are the major components of the cells. Different proteins are organised in the form of functional clusters, pathways or networks. These molecules are ordered in clusters of receptor molecules of extracellular signals, transducers, sensors and biological response effectors. The identification of these intracellular signaling pathways in different cellular types has required a long journey of experimental work. More than 300 intracellular signaling pathways have been identified in human cells. They participate in cell homeostasis processes for structural and functional maintenance. Some of them participate simultaneously or in a nearly-consecutive progression to generate a cellular phenotypic change. In this review, an analysis is performed on the main intracellular signaling pathways that take part in the cellular proliferation process, and the potential use of some components of these pathways as target for therapeutic interventionism are also underlined. Copyright © 2015 Academia Mexicana de Cirugía A.C. Published by Masson Doyma México S.A. All rights reserved.

  19. Characterization of the targeting signal in mitochondrial β-barrel proteins

    PubMed Central

    Jores, Tobias; Klinger, Anna; Groß, Lucia E.; Kawano, Shin; Flinner, Nadine; Duchardt-Ferner, Elke; Wöhnert, Jens; Kalbacher, Hubert; Endo, Toshiya; Schleiff, Enrico; Rapaport, Doron

    2016-01-01

    Mitochondrial β-barrel proteins are synthesized on cytosolic ribosomes and must be specifically targeted to the organelle before their integration into the mitochondrial outer membrane. The signal that assures such precise targeting and its recognition by the organelle remained obscure. In the present study we show that a specialized β-hairpin motif is this long searched for signal. We demonstrate that a synthetic β-hairpin peptide competes with the import of mitochondrial β-barrel proteins and that proteins harbouring a β-hairpin peptide fused to passenger domains are targeted to mitochondria. Furthermore, a β-hairpin motif from mitochondrial proteins targets chloroplast β-barrel proteins to mitochondria. The mitochondrial targeting depends on the hydrophobicity of the β-hairpin motif. Finally, this motif interacts with the mitochondrial import receptor Tom20. Collectively, we reveal that β-barrel proteins are targeted to mitochondria by a dedicated β-hairpin element, and this motif is recognized at the organelle surface by the outer membrane translocase. PMID:27345737

  20. HER2-family signalling mechanisms, clinical implications and targeting in breast cancer.

    PubMed

    Elster, N; Collins, D M; Toomey, S; Crown, J; Eustace, A J; Hennessy, B T

    2015-01-01

    Approximately 20 % of human breast cancers (BC) overexpress HER2 protein, and HER2-positivity is associated with a worse prognosis. Although HER2-targeted therapies have significantly improved outcomes for HER2-positive BC patients, resistance to trastuzumab-based therapy remains a clinical problem. In order to better understand resistance to HER2-targeted therapies in HER2-positive BC, it is necessary to examine HER family signalling as a whole. An extensive literature search was carried out to critically assess the current knowledge of HER family signalling in HER2-positive BC and response to HER2-targeted therapy. Known mechanisms of trastuzumab resistance include reduced receptor-antibody binding (MUC4, p95HER2), increased signalling through alternative HER family receptor tyrosine kinases (RTK), altered intracellular signalling involving loss of PTEN, reduced p27kip1, or increased PI3K/AKT activity and altered signalling via non-HER family RTKs such as IGF1R. Emerging strategies to circumvent resistance to HER2-targeted therapies in HER2-positive BC include co-targeting HER2/PI3K, pan-HER family inhibition, and novel therapies such as T-DM1. There is evidence that immunity plays a key role in the efficacy of HER-targeted therapy, and efforts are being made to exploit the immune system in order to improve the efficacy of current anti-HER therapies. With our rapidly expanding understanding of HER2 signalling mechanisms along with the repertoire of HER family and other targeted therapies, it is likely that the near future holds further dramatic improvements to the prognosis of women with HER2-positive BC.

  1. A Single Peroxisomal Targeting Signal Mediates Matrix Protein Import in Diatoms

    PubMed Central

    Gonzalez, Nicola H.; Felsner, Gregor; Schramm, Frederic D.; Klingl, Andreas; Maier, Uwe-G.; Bolte, Kathrin

    2011-01-01

    Peroxisomes are single membrane bound compartments. They are thought to be present in almost all eukaryotic cells, although the bulk of our knowledge about peroxisomes has been generated from only a handful of model organisms. Peroxisomal matrix proteins are synthesized cytosolically and posttranslationally imported into the peroxisomal matrix. The import is generally thought to be mediated by two different targeting signals. These are respectively recognized by the two import receptor proteins Pex5 and Pex7, which facilitate transport across the peroxisomal membrane. Here, we show the first in vivo localization studies of peroxisomes in a representative organism of the ecologically relevant group of diatoms using fluorescence and transmission electron microscopy. By expression of various homologous and heterologous fusion proteins we demonstrate that targeting of Phaeodactylum tricornutum peroxisomal matrix proteins is mediated only by PTS1 targeting signals, also for proteins that are in other systems imported via a PTS2 mode of action. Additional in silico analyses suggest this surprising finding may also apply to further diatoms. Our data suggest that loss of the PTS2 peroxisomal import signal is not reserved to Caenorhabditis elegans as a single exception, but has also occurred in evolutionary divergent organisms. Obviously, targeting switching from PTS2 to PTS1 across different major eukaryotic groups might have occurred for different reasons. Thus, our findings question the widespread assumption that import of peroxisomal matrix proteins is generally mediated by two different targeting signals. Our results implicate that there apparently must have been an event causing the loss of one targeting signal even in the group of diatoms. Different possibilities are discussed that indicate multiple reasons for the detected targeting switching from PTS2 to PTS1. PMID:21966495

  2. A Review: Phytochemicals Targeting JAK/STAT Signaling and IDO Expression in Cancer.

    PubMed

    Arumuggam, Niroshaathevi; Bhowmick, Neil A; Rupasinghe, H P Vasantha

    2015-06-01

    Cancer remains a major health problem worldwide. Among many other factors, two regulatory defects that are present in most cancer cells are constitutive activation of Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling pathway and the induction of indoleamine 2, 3-dioxygenase (IDO), an enzyme that catalyzes tryptophan degradation, through JAK/STAT signaling. Cytokine signaling activates STAT proteins in regulating cell proliferation, differentiation, and survival through modulation of target genes. Many phytochemicals can inhibit both JAK/STAT signaling and IDO expression in antigen-presenting cells by targeting different pathways. Some of the promising phytochemicals that are discussed in this review include resveratrol, cucurbitacin, curcumin, (-)-epigallocatechin gallate, and others. It is now evident that phytochemicals play key roles in inhibition of tumor proliferation and development and provide novel means for therapeutic targeting of cancer. Copyright © 2015 John Wiley & Sons, Ltd.

  3. Targeting Insulin Signaling for the Treatment of Alzheimer's Disease.

    PubMed

    Chen, Yanxing; Zhang, Jianfang; Zhang, Baorong; Gong, Cheng-Xin

    2016-01-01

    Sporadic Alzheimer's disease (AD) is caused by multiple etiological factors, among which impaired brain insulin signaling and decreased brain glucose metabolism are important metabolic factors. Contrary to previous belief that insulin would not act in the brain, studies in the last three decades have proven important roles of insulin and insulin signaling in various biological functions in the brain. Impaired brain insulin signaling or brain insulin resistance and its role in the molecular pathogenesis of sporadic AD have been demonstrated. Thus, targeting brain insulin signaling for the treatment of cognitive impairment and AD has now attracted much attention in the field of AD drug discovery. This article reviews recent studies that target brain insulin signaling, especially those investigations on intranasal insulin administration and drugs that improve insulin sensitivity, including incretins, dipeptidyl peptidase IV inhibitors, thiazolidinediones, and metformin. These drugs have been previously approved for the treatment of diabetes mellitus, which could expedite their development for the treatment of AD. Although larger clinical trials are needed for validating their efficacy for the treatment of cognitive impairment and AD, results of animal studies and clinical trials available to date are encouraging.

  4. N-terminal domain of the dual-targeted pea glutathione reductase signal peptide controls organellar targeting efficiency.

    PubMed

    Rudhe, Charlotta; Clifton, Rachel; Whelan, James; Glaser, Elzbieta

    2002-12-06

    Import of nuclear-encoded proteins into mitochondria and chloroplasts is generally organelle specific and its specificity depends on the N-terminal signal peptide. Yet, a group of proteins known as dual-targeted proteins have a targeting peptide capable of leading the mature protein to both organelles. We have investigated the domain structure of the dual-targeted pea glutathione reductase (GR) signal peptide by using N-terminal truncations. A mutant of the GR precursor (pGR) starting with the second methionine residue of the targeting peptide, pGRdelta2-4, directed import into both organelles, negating the possibility that dual import was controlled by the nature of the N terminus. The deletion of the 30 N-terminal residues (pGRdelta2-30) inhibited import efficiency into chloroplasts substantially and almost completely into mitochondria, whereas the removal of only 16 N-terminal amino acid residues (pGRdelta2-16) resulted in the strongly stimulated mitochondrial import without significantly affecting chloroplast import. Furthermore, N-terminal truncations of the signal peptide (pGRdelta2-16 and pGRdelta2-30) greatly stimulated the mitochondrial processing activity measured with the isolated processing peptidase. These results suggest a domain structure for the dual-targeting peptide of pGR and the existence of domains controlling organellar import efficiency therein.

  5. Molecular pathways: targeting RAC-p21-activated serine-threonine kinase signaling in RAS-driven cancers.

    PubMed

    Baker, Nicole M; Yee Chow, Hoi; Chernoff, Jonathan; Der, Channing J

    2014-09-15

    Cancers driven by oncogenic Ras proteins encompass some of the most deadly human cancer types, and there is a pressing need to develop therapies for these diseases. Although recent studies suggest that mutant Ras proteins may yet be druggable, the most promising and advanced efforts involve inhibitors of Ras effector signaling. Most efforts to target Ras signaling have been aimed at the ERK mitogen-activated protein kinase and the phosphoinositide 3-kinase signaling networks. However, to date, no inhibitors of these Ras effector pathways have been effective against RAS-mutant cancers. This ineffectiveness is due, in part, to the involvement of additional effectors in Ras-dependent cancer growth, such as the Rac small GTPase and the p21-activated serine-threonine kinases (PAK). PAK proteins are involved in many survival, cell motility, and proliferative pathways in the cell and may present a viable new target in Ras-driven cancers. In this review, we address the role and therapeutic potential of Rac and group I PAK proteins in driving mutant Ras cancers. ©2014 American Association for Cancer Research.

  6. Targeting MET and EGFR crosstalk signaling in triple-negative breast cancers

    PubMed Central

    Essenburg, Curt J.; Turner, Lisa; Madaj, Zachary; Winn, Mary E.; Melnik, Marianne K.; Korkaya, Hasan; Maroun, Christiane R.; Christensen, James G.; Steensma, Matthew R.; Boerner, Julie L.; Graveel, Carrie R.

    2016-01-01

    There is a vital need for improved therapeutic strategies that are effective in both primary and metastatic triple-negative breast cancer (TNBC). Current treatment options for TNBC patients are restricted to chemotherapy; however tyrosine kinases are promising druggable targets due to their high expression in multiple TNBC subtypes. Since coexpression of receptor tyrosine kinases (RTKs) can promote signaling crosstalk and cell survival in the presence of kinase inhibitors, it is likely that multiple RTKs will need to be inhibited to enhance therapeutic benefit and prevent resistance. The MET and EGFR receptors are actionable targets due to their high expression in TNBC; however crosstalk between MET and EGFR has been implicated in therapeutic resistance to single agent use of MET or EGFR inhibitors in several cancer types. Therefore it is likely that dual inhibition of MET and EGFR is required to prevent crosstalk signaling and acquired resistance. In this study, we evaluated the heterogeneity of MET and EGFR expression and activation in primary and metastatic TNBC tumorgrafts and determined the efficacy of MET (MGCD265 or crizotinib) and/or EGFR (erlotinib) inhibition against TNBC progression. Here we demonstrate that combined MET and EGFR inhibition with either MGCD265 and erlotinib treatment or crizotinib and erlotinib treatment were highly effective at abrogating tumor growth and significantly decreased the variability in treatment response compared to monotherapy. These results advance our understanding of the RTK signaling architecture in TNBC and demonstrate that combined MET and EGFR inhibition may be a promising therapeutic strategy for TNBC patients. PMID:27655711

  7. The Human Adenovirus Type 5 E4orf4 Protein Targets Two Phosphatase Regulators of the Hippo Signaling Pathway

    PubMed Central

    Mui, Melissa Z.; Zhou, Yiwang; Blanchette, Paola; Chughtai, Naila; Knight, Jennifer F.; Gruosso, Tina; Papadakis, Andreas I.; Huang, Sidong; Park, Morag; Gingras, Anne-Claude

    2015-01-01

    ABSTRACT When expressed alone at high levels, the human adenovirus E4orf4 protein exhibits tumor cell-specific p53-independent toxicity. A major E4orf4 target is the B55 class of PP2A regulatory subunits, and we have shown recently that binding of E4orf4 inhibits PP2AB55 phosphatase activity in a dose-dependent fashion by preventing access of substrates (M. Z. Mui et al., PLoS Pathog 9:e1003742, 2013, http://dx.doi.org/10.1371/journal.ppat.1003742). While interaction with B55 subunits is essential for toxicity, E4orf4 mutants exist that, despite binding B55 at high levels, are defective in cell killing, suggesting that other essential targets exist. In an attempt to identify additional targets, we undertook a proteomics approach to characterize E4orf4-interacting proteins. Our findings indicated that, in addition to PP2AB55 subunits, ASPP-PP1 complex subunits were found among the major E4orf4-binding species. Both the PP2A and ASPP-PP1 phosphatases are known to positively regulate effectors of the Hippo signaling pathway, which controls the expression of cell growth/survival genes by dephosphorylating the YAP transcriptional coactivator. We find here that expression of E4orf4 results in hyperphosphorylation of YAP, suggesting that Hippo signaling is affected by E4orf4 interactions with PP2AB55 and/or ASPP-PP1 phosphatases. Furthermore, knockdown of YAP1 expression was seen to enhance E4orf4 killing, again consistent with a link between E4orf4 toxicity and inhibition of the Hippo pathway. This effect may in fact contribute to the cancer cell specificity of E4orf4 toxicity, as many human cancer cells rely heavily on the Hippo pathway for their enhanced proliferation. IMPORTANCE The human adenovirus E4orf4 protein has been known for some time to induce tumor cell-specific death when expressed at high levels; thus, knowledge of its mode of action could be of importance for development of new cancer therapies. Although the B55 form of the phosphatase PP2A has long been

  8. Cell signaling molecules as drug targets in lung cancer: an overview.

    PubMed

    Mukherjee, Tapan K; Paul, Karan; Mukhopadhyay, Srirupa

    2011-07-01

    Lung being one of the vital and essential organs in the body, lung cancer is a major cause of mortality in the modern human society. Lung cancer can be broadly subdivided into nonsmall cell lung cancer (NSCLC) and small cell lung cancer (SCLC). Although NSCLC is sometimes treated with surgery, the advanced and metastatic NSCLC and SCLC usually respond better to chemotherapy and radiation. The most important targets of these chemotherapeutic agents are various intracellular signaling molecules. The primary focus of this review article is to summarize the description of various cell signaling molecules involved in lung cancer development and their regulation by chemotherapeutic agents. Extensive research work in recent years has identified several cellular signaling molecules that may be intricately involved in the complexity of lung cancer. Some of these cell signaling molecules are epidermal growth factor receptors, vascular endothelial growth factor receptors, mammalian target of rapamycin, mitogen-activated protein kinase phosphatase-1, peroxisome proliferator-activated receptor-gamma, matrix metalloproteinases and receptor for advanced glycation end-products. The present review will strengthen our current knowledge regarding the efficacy of the above-mentioned cell signaling molecules as potential beneficial drug targets against lung cancer.

  9. Differential targeting of Gbetagamma-subunit signaling with small molecules.

    PubMed

    Bonacci, Tabetha M; Mathews, Jennifer L; Yuan, Chujun; Lehmann, David M; Malik, Sundeep; Wu, Dianqing; Font, Jose L; Bidlack, Jean M; Smrcka, Alan V

    2006-04-21

    G protein betagamma subunits have potential as a target for therapeutic treatment of a number of diseases. We performed virtual docking of a small-molecule library to a site on Gbetagamma subunits that mediates protein interactions. We hypothesized that differential targeting of this surface could allow for selective modulation of Gbetagamma subunit functions. Several compounds bound to Gbetagamma subunits with affinities from 0.1 to 60 muM and selectively modulated functional Gbetagamma-protein-protein interactions in vitro, chemotactic peptide signaling pathways in HL-60 leukocytes, and opioid receptor-dependent analgesia in vivo. These data demonstrate an approach for modulation of G protein-coupled receptor signaling that may represent an important therapeutic strategy.

  10. Potential signaling pathways as therapeutic targets for overcoming chemoresistance in mucinous ovarian cancer

    PubMed Central

    Niiro, Emiko; Morioka, Sachiko; Iwai, Kana; Yamada, Yuki; Ogawa, Kenji; Kawahara, Naoki; Kobayashi, Hiroshi

    2018-01-01

    Cases of mucinous ovarian cancer are predominantly resistant to chemotherapies. The present review summarizes current knowledge of the therapeutic potential of targeting the Wingless (WNT) pathway, with particular emphasis on preclinical and clinical studies, for improving the chemoresistance and treatment of mucinous ovarian cancer. A review was conducted of English language literature published between January 2000 and October 2017 that concerned potential signaling pathways associated with the chemoresistance of mucinous ovarian cancer. The literature indicated that aberrant activation of growth factor and WNT signaling pathways is specifically observed in mucinous ovarian cancer. An evolutionarily conserved signaling cascade system including epidermal growth factor/RAS/RAF/mitogen-activated protein kinase kinase/extracellular signal-regulated protein kinase, phosphoinositide 3-kinase/Akt and WNT signaling regulates a variety of cellular functions; their crosstalk mutually enhances signaling activity and induces chemoresistance. Novel antagonists, modulators and inhibitors have been developed for targeting the components of the WNT signaling pathway, namely Frizzled, low-density lipoprotein receptor-related protein 5/6, Dishevelled, casein kinase 1, AXIN, glycogen synthase kinase 3β and β-catenin. Targeted inhibition of WNT signaling represents a rational and promising novel approach to overcome chemoresistance, and several WNT inhibitors are being evaluated in preclinical studies. In conclusion, the WNT receptors and their downstream components may serve as novel therapeutic targets for overcoming chemoresistance in mucinous ovarian cancer. PMID:29564122

  11. Myxobacterium-Produced Antibiotic TA (Myxovirescin) Inhibits Type II Signal Peptidase

    PubMed Central

    Xiao, Yao; Gerth, Klaus; Müller, Rolf

    2012-01-01

    Antibiotic TA is a macrocyclic secondary metabolite produced by myxobacteria that has broad-spectrum bactericidal activity. The structure of TA is unique, and its molecular target is unknown. Here, we sought to elucidate TA's mode of action (MOA) through two parallel genetic approaches. First, chromosomal Escherichia coli TA-resistant mutants were isolated. One mutant that showed specific resistance toward TA was mapped and resulted from an IS4 insertion in the lpp gene, which encodes an abundant outer membrane (Braun's) lipoprotein. In a second approach, the comprehensive E. coli ASKA plasmid library was screened for overexpressing clones that conferred TAr. This effort resulted in the isolation of the lspA gene, which encodes the type II signal peptidase that cleaves signal sequences from prolipoproteins. In whole cells, TA was shown to inhibit Lpp prolipoprotein processing, similar to the known LspA inhibitor globomycin. Based on genetic evidence and prior globomycin studies, a block in Lpp expression or prevention of Lpp covalent cell wall attachment confers TAr by alleviating a toxic buildup of mislocalized pro-Lpp. Taken together, these data argue that LspA is the molecular target of TA. Strikingly, the giant ta biosynthetic gene cluster encodes two lspA paralogs that we hypothesize play a role in producer strain resistance. PMID:22232277

  12. Time-frequency analysis of backscattered signals from diffuse radar targets

    NASA Astrophysics Data System (ADS)

    Kenny, O. P.; Boashash, B.

    1993-06-01

    The need for analysis of time-varying signals has led to the formulation of a class of joint time-frequency distributions (TFDs). One of these TFDs, the Wigner-Ville distribution (WVD), has useful properties which can be applied to radar imaging. The authors discuss time-frequency representation of the backscattered signal from a diffuse radar target. It is then shown that for point scatterers which are statistically dependent or for which the reflectivity coefficient has a nonzero mean value, reconstruction using time of flight positron emission tomography on time-frequency images is effective for estimating the scattering function of the target.

  13. Sequential Axon-derived Signals Couple Target Survival and Layer Specificity in the Drosophila Visual System

    PubMed Central

    Pecot, Matthew Y.; Chen, Yi; Akin, Orkun; Chen, Zhenqing; Tsui, C.Y. Kimberly; Zipursky, S. Lawrence

    2015-01-01

    SUMMARY Neural circuit formation relies on interactions between axons and cells within the target field. While it is well established that target-derived signals act on axons to regulate circuit assembly, the extent to which axon-derived signals control circuit formation is not known. In the Drosophila visual system, anterograde signals numerically match R1–R6 photoreceptors with their targets by controlling target proliferation and neuronal differentiation. Here we demonstrate that additional axon-derived signals selectively couple target survival with layer-specificity. We show that Jelly belly (Jeb) produced by R1–R6 axons interacts with its receptor, anaplastic lymphoma kinase (Alk), on budding dendrites to control survival of L3 neurons, one of three postsynaptic targets. L3 axons then produce Netrin, which regulates the layer-specific targeting of another neuron within the same circuit. We propose that a cascade of axon-derived signals, regulating diverse cellular processes, provides a strategy for coordinating circuit assembly across different regions of the nervous system. PMID:24742459

  14. Signaling pathways relevant to cognition-enhancing drug targets.

    PubMed

    Ménard, Caroline; Gaudreau, Pierrette; Quirion, Rémi

    2015-01-01

    Aging is generally associated with a certain cognitive decline. However, individual differences exist. While age-related memory deficits can be observed in humans and rodents in the absence of pathological conditions, some individuals maintain intact cognitive functions up to an advanced age. The mechanisms underlying learning and memory processes involve the recruitment of multiple signaling pathways and gene expression, leading to adaptative neuronal plasticity and long-lasting changes in brain circuitry. This chapter summarizes the current understanding of how these signaling cascades could be modulated by cognition-enhancing agents favoring memory formation and successful aging. It focuses on data obtained in rodents, particularly in the rat as it is the most common animal model studied in this field. First, we will discuss the role of the excitatory neurotransmitter glutamate and its receptors, downstream signaling effectors [e.g., calcium/calmodulin-dependent protein kinase II (CaMKII), protein kinase C (PKC), extracellular signal-regulated kinases (ERK), mammalian target of rapamycin (mTOR), cAMP response element-binding protein (CREB)], associated immediate early gene (e.g., Homer 1a, Arc and Zif268), and growth factors [insulin-like growth factors (IGFs) and brain-derived neurotrophic factor (BDNF)] in synaptic plasticity and memory formation. Second, the impact of the cholinergic system and related modulators on memory will be briefly reviewed. Finally, since dynorphin neuropeptides have recently been associated with memory impairments in aging, it is proposed as an attractive target to develop novel cognition-enhancing agents.

  15. Past and current perspective on new therapeutic targets for Type-II diabetes.

    PubMed

    Patil, Pradip D; Mahajan, Umesh B; Patil, Kalpesh R; Chaudhari, Sandip; Patil, Chandragouda R; Agrawal, Yogeeta O; Ojha, Shreesh; Goyal, Sameer N

    2017-01-01

    Loss of pancreatic β-cell function is a hallmark of Type-II diabetes mellitus (DM). It is a chronic metabolic disorder that results from defects in both insulin secretion and insulin action. Recently, United Kingdom Prospective Diabetes Study reported that Type-II DM is a progressive disorder. Although, DM can be treated initially by monotherapy with oral agent; eventually, it may require multiple drugs. Additionally, insulin therapy is needed in many patients to achieve glycemic control. Pharmacological approaches are unsatisfactory in improving the consequences of insulin resistance. Single therapeutic approach in the treatment of Type-II DM is unsuccessful and usually a combination therapy is adopted. Increased understanding of biochemical, cellular and pathological alterations in Type-II DM has provided new insight in the management of Type-II DM. Knowledge of underlying mechanisms of Type-II DM development is essential for the exploration of novel therapeutic targets. Present review provides an insight into therapeutic targets of Type-II DM and their role in the development of insulin resistance. An overview of important signaling pathways and mechanisms in Type-II DM is provided for the better understanding of disease pathology. This review includes case studies of drugs that are withdrawn from the market. The experience gathered from previous studies and knowledge of Type-II DM pathways can guide the anti-diabetic drug development toward the discovery of clinically viable drugs that are useful in Type-II DM.

  16. Targeted Lymphoma Cell Death by Novel Signal Transduction Modifications

    DTIC Science & Technology

    2010-07-14

    CD22 -binding peptides that initiate signal transduction and apoptosis in non-Hodgkin’s lymphoma (NHL), 2) optimize CD22 -mediated signal transduction...and lymphomacidal properties of ligand blocking anti- CD22 monoclonal antibodies (mAbs) and peptides with CD22 -specific phosphatase inhibition and 3...correlate mAb-mediated and anti- CD22 peptide-mediated in vivo physiologic changes, efficacy, and tumor targeting using advanced immuno-positron

  17. Visualization of Endoplasmic Reticulum and Mitochondria in Aurantiochytrium limacinum by the Expression of EGFP with Cell Organelle-Specific Targeting/Retaining Signals.

    PubMed

    Okino, Nozomu; Wakisaka, Hiroyoshi; Ishibashi, Yohei; Ito, Makoto

    2018-04-01

    Thraustochytrids are single cell marine eukaryotes that produce large amounts of polyunsaturated fatty acids such as docosahexaenoic acid. In the present study, we report the visualization of endoplasmic reticulum (ER) and mitochondria in a type strain of the thraustochytrid, Aurantiochytrium limacinum ATCC MYA-1381, using the enhanced green fluorescent protein (EGFP) with specific targeting/retaining signals. We expressed the egfp gene with ER targeting/retaining signals from A. limacinum calreticulin or BiP/GRP78 in the thraustochytrid, resulting in the distribution of EGFP signals at the perinuclear region and near lipid droplets. ER-Tracker™ Red, an authentic fluorescent probe for the visualization of ER in mammalian cells, also stained the same region. We observed small lipid droplets generated from the visualized ER in the early growth phase of cell culture. Expression of the egfp gene with the mitochondria targeting signal from A. limacinum cytochrome c oxidase resulted in the localization of EGFP near the plasma membrane. The distribution of EGFP signals coincided with that of MitoTracker® Red CMXRos, which is used to visualize mitochondria in eukaryotes. The ER and mitochondria of A. limacinum were visualized for the first time by EGFP with thraustochytrid cell organelle-specific targeting/retaining signals. These results will contribute to classification of the intracellular localization of proteins expressed in ER and mitochondria as well as analyses of these cell organelles in thraustochytrids.

  18. Therapeutic microRNAs targeting the NF-kappa B Signaling Circuits of Cancers

    PubMed Central

    Tong, Lingying; Yuan, Ye; Wu, Shiyong

    2014-01-01

    MicroRNAs (miRNAs) not only directly regulate NF-κB expression, but also up- or down-regulate NF-κB activity via upstream and downstream signaling pathways of NF-κB. In many cancer cells, miRNA expressions are altered accompanied with an elevation of NF-κB, which often plays a role in promoting cancer development and progression as well as hindering the effectiveness of chemo and radiation therapies. Thus NF-κB-targeting miRNAs have been identified and characterized as potential therapeutics for cancer treatment and sensitizers of chemo and radiotherapies. However, due to cross-targeting and instability of miRNAs, some limitations of using miRNA as cancer therapeutics still exist. In this review, the mechanisms for miRNA-mediated alteration of NF-κB expression and activation in different types of cancers will be discussed. The results of therapeutic use of NF-κB-targeting miRNA for cancer treatment will be examined. Some limitations, challenges and potential strategies in future development of miRNA as cancer therapeutics are also assessed. PMID:25220353

  19. Differential Targeting of Gβγ-Subunit Signaling with Small Molecules

    NASA Astrophysics Data System (ADS)

    Bonacci, Tabetha M.; Mathews, Jennifer L.; Yuan, Chujun; Lehmann, David M.; Malik, Sundeep; Wu, Dianqing; Font, Jose L.; Bidlack, Jean M.; Smrcka, Alan V.

    2006-04-01

    G protein βγ subunits have potential as a target for therapeutic treatment of a number of diseases. We performed virtual docking of a small-molecule library to a site on Gβγ subunits that mediates protein interactions. We hypothesized that differential targeting of this surface could allow for selective modulation of Gβγ subunit functions. Several compounds bound to Gβγ subunits with affinities from 0.1 to 60 μM and selectively modulated functional Gβγ-protein-protein interactions in vitro, chemotactic peptide signaling pathways in HL-60 leukocytes, and opioid receptor-dependent analgesia in vivo. These data demonstrate an approach for modulation of G protein-coupled receptor signaling that may represent an important therapeutic strategy.

  20. Intracellular signaling by phospholipase D as a therapeutic target.

    PubMed

    Steed, P M; Chow, A H

    2001-09-01

    The pharmaceutical industry has recently focused on intracellular signaling as a means to integrate the multiple facets of complex disease states, such as inflammation, because these pathways respond to numerous extracellular signals and coordinate a collection of cell responses contributing to pathology. One critical aspect of intracellular signaling is regulation of key cell functions by lipid mediators, in particular the generation of a key mediator, phosphatidic acid (PA) via the hydrolysis of phosphatidylcholine by phospholipase D (PLD). Research in this field has intensified, due in part to the recent cloning and partial characterization of the two PLD isoforms in mammalian cells, and this work has contributed significantly to our understanding of events downstream of PA generation. It is these effector functions of PLD activity that make this pathway attractive as a therapeutic target while the biochemical properties of the PLD isozymes make them amenable to small molecule intervention. Recent studies indicate that PA, and its immediate metabolites diacylglycerol and lyso-PA, affect numerous cellular pathways including ligand-mediated secretion, cytoskeletal reorganisations, respiratory burst, prostaglandin release, cell migration, cytokine release, and mitogenesis. This review summarises the data implicating signaling via PLD in these cell functions, obtained from: (i) molecular analyses of PLD/effector interactions, (ii) correlation between PA production and cell responses, (iii) experimental manipulation of PA levels, (iv) inhibition of PLD regulators, and (v) direct inhibition of PA production. The utility of targeting PLD signaling for the treatment of acute/chronic inflammation and other indications is discussed in light of these data.

  1. SPSB1, a Novel Negative Regulator of the Transforming Growth Factor-β Signaling Pathway Targeting the Type II Receptor.

    PubMed

    Liu, Sheng; Nheu, Thao; Luwor, Rodney; Nicholson, Sandra E; Zhu, Hong-Jian

    2015-07-17

    Appropriate cellular signaling is essential to control cell proliferation, differentiation, and cell death. Aberrant signaling can have devastating consequences and lead to disease states, including cancer. The transforming growth factor-β (TGF-β) signaling pathway is a prominent signaling pathway that has been tightly regulated in normal cells, whereas its deregulation strongly correlates with the progression of human cancers. The regulation of the TGF-β signaling pathway involves a variety of physiological regulators. Many of these molecules act to alter the activity of Smad proteins. In contrast, the number of molecules known to affect the TGF-β signaling pathway at the receptor level is relatively low, and there are no known direct modulators for the TGF-β type II receptor (TβRII). Here we identify SPSB1 (a Spry domain-containing Socs box protein) as a novel regulator of the TGF-β signaling pathway. SPSB1 negatively regulates the TGF-β signaling pathway through its interaction with both endogenous and overexpressed TβRII (and not TβRI) via its Spry domain. As such, TβRII and SPSB1 co-localize on the cell membrane. SPSB1 maintains TβRII at a low level by enhancing the ubiquitination levels and degradation rates of TβRII through its Socs box. More importantly, silencing SPSB1 by siRNA results in enhanced TGF-β signaling and migration and invasion of tumor cells. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Ganoderma lucidum targeting lung cancer signaling: A review.

    PubMed

    Gill, Balraj Singh; Navgeet; Kumar, Sanjeev

    2017-06-01

    Lung cancer causes huge mortality to population, and pharmaceutical companies require new drugs as an alternative either synthetic or natural targeting lung cancer. The conventional therapies cause side effects, and therefore, natural products are used as a therapeutic candidate in lung cancer. Chemical diversity among natural products highlights the impact of evolution and survival of fittest. One such neglected natural product is Ganoderma lucidum used for promoting health and longevity for a longer time. The major bioconstituents of G. lucidum are mainly terpenes, polysaccharides, and proteins, which were explored for various activities ranging from apoptosis to autophagy. The bioconstituents of G. lucidum activate plasma membrane receptors and initiate various downstream signaling leading to nuclear factor-κB, phosphoinositide 3-kinase, Akt, and mammalian target of rapamycin in cancer. The bioconstituents regulate the expression of various genes involved in cell cycle, immune response, apoptosis, and autophagy in lung cancer. This review highlights the inextricable role of G. lucidum and its bioconstituents in lung cancer signaling for the first time.

  3. Fractal properties of background noise and target signal enhancement using CSEM data

    NASA Astrophysics Data System (ADS)

    Benavides, Alfonso; Everett, Mark E.; Pierce, Carl; Nguyen, Cam

    2003-09-01

    Controlled-source electromagnetic (CSEM) spatial profiles and 2-D conductivity maps were obtained on the Brazos Valley, TX floodplain to study the fractal statistics of geological signals and effects of man-made conductive targets using Geonics EM34, EM31 and EM63. Using target-free areas, a consistent power-law power spectrum (|A(k)| ~ k ^-β) for the profiles was found with β values typical of fractional Brownian motion (fBm). This means that the spatial variation of conductivity does not correspond to Gaussian statistics, where there are spatial correlations at different scales. The presence of targets tends to flatten the power-law power spectrum (PS) at small wavenumbers. Detection and localization of targets can be achieved using short-time Fourier transform (STFT). The presence of targets is enhanced because the signal energy is spread to higher wavenumbers (small scale numbers) in the positions occupied by the targets. In the case of poor spatial sampling or small amount of data, the information available from the power spectrum is not enough to separate spatial correlations from target signatures. Advantages are gained by using the spatial correlations of the fBm in order to reject the background response, and to enhance the signals from highly conductive targets. This approach was tested for the EM31 using a pre-processing step that combines apparent conductivity readings from two perpendicular transmitter-receiver orientations at each station. The response obtained using time-domain CSEM is influence to a lesser degree by geological noise and the target response can be processed to recover target features. The homotopy method is proposed to solve the inverse problem using a set of possible target models and a dynamic library of responses used to optimize the starting model.

  4. Effect of structure on sensing performance of a target induced signaling probe shifting DNA-based (TISPS-DNA) sensor.

    PubMed

    Yu, Xiang; Yu, Zhigang; Li, Fengqin; Xu, Yanmei; He, Xunjun; Xu, Lan; Shi, Wenbing; Zhang, Guiling; Yan, Hong

    2017-05-15

    A type of "signal on" displacement-based sensors named target induced signaling probe shifting DNA-based (TISPS-DNA) sensor were developed for a designated DNA detection. The signaling mechanism of the signaling probe (SP) shifting different from the classical conformation/flexibility change mode endows the sensor with high sensitivity. Through using thiolated or no thiolated capturing probe (CP), two 3-probe sensing structures, sensor-1 and sensor-2, were designed and constructed. The systematical comparing research results show that both sensors exhibit some similarities or big differences in sensing performance. On the one hand, the similarity in structures determines the similarity in some aspects of signaling mechanism, background signal, signal changing form, anti-fouling ability and versatility; on the other hand, the slight difference in structures also results in two opposite hybridization modes of gradual increasing resistance and gradual decreasing resistance which can affect the hybridization efficiency between the assistant probe (AP) and the SP, further producing some big differences in sensing performance, for example, apparently different signal enhancement (SE) change, point mutation discrimination ability and response speed. Under the optimized fabrication and detection conditions, both sensors feature high sensitivity for target DNAs with the detection limits of ∼10 fM for sensor-1 and ∼7 fM for sensor-2, respectively. Among many acquired sensing virtues, the sensor-1 shows a peculiar specificity adjustability which is also a highlight in this work. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Rapamycin and Glucose-Target of Rapamycin (TOR) Protein Signaling in Plants*

    PubMed Central

    Xiong, Yan; Sheen, Jen

    2012-01-01

    Target of rapamycin (TOR) kinase is an evolutionarily conserved master regulator that integrates energy, nutrients, growth factors, and stress signals to promote survival and growth in all eukaryotes. The reported land plant resistance to rapamycin and the embryo lethality of the Arabidopsis tor mutants have hindered functional dissection of TOR signaling in plants. We developed sensitive cellular and seedling assays to monitor endogenous Arabidopsis TOR activity based on its conserved S6 kinase (S6K) phosphorylation. Surprisingly, rapamycin effectively inhibits Arabidopsis TOR-S6K1 signaling and retards glucose-mediated root and leaf growth, mimicking estradiol-inducible tor mutants. Rapamycin inhibition is relieved in transgenic plants deficient in Arabidopsis FK506-binding protein 12 (FKP12), whereas FKP12 overexpression dramatically enhances rapamycin sensitivity. The role of Arabidopsis FKP12 is highly specific as overexpression of seven closely related FKP proteins fails to increase rapamycin sensitivity. Rapamycin exerts TOR inhibition by inducing direct interaction between the TOR-FRB (FKP-rapamycin binding) domain and FKP12 in plant cells. We suggest that variable endogenous FKP12 protein levels may underlie the molecular explanation for longstanding enigmatic observations on inconsistent rapamycin resistance in plants and in various mammalian cell lines or diverse animal cell types. Integrative analyses with rapamycin and conditional tor and fkp12 mutants also reveal a central role of glucose-TOR signaling in root hair formation. Our studies demonstrate the power of chemical genetic approaches in the discovery of previously unknown and pivotal functions of glucose-TOR signaling in governing the growth of cotyledons, true leaves, petioles, and primary and secondary roots and root hairs. PMID:22134914

  6. Target-type probability combining algorithms for multisensor tracking

    NASA Astrophysics Data System (ADS)

    Wigren, Torbjorn

    2001-08-01

    Algorithms for the handing of target type information in an operational multi-sensor tracking system are presented. The paper discusses recursive target type estimation, computation of crosses from passive data (strobe track triangulation), as well as the computation of the quality of the crosses for deghosting purposes. The focus is on Bayesian algorithms that operate in the discrete target type probability space, and on the approximations introduced for computational complexity reduction. The centralized algorithms are able to fuse discrete data from a variety of sensors and information sources, including IFF equipment, ESM's, IRST's as well as flight envelopes estimated from track data. All algorithms are asynchronous and can be tuned to handle clutter, erroneous associations as well as missed and erroneous detections. A key to obtain this ability is the inclusion of data forgetting by a procedure for propagation of target type probability states between measurement time instances. Other important properties of the algorithms are their abilities to handle ambiguous data and scenarios. The above aspects are illustrated in a simulations study. The simulation setup includes 46 air targets of 6 different types that are tracked by 5 airborne sensor platforms using ESM's and IRST's as data sources.

  7. Signal conditioner for potentiometer type transducers

    NASA Technical Reports Server (NTRS)

    Armentrout, E. C.; Gross, E.

    1973-01-01

    Low cost method is described for signal conditioning of pot-type transducers utilizing printed circuitry. Conditioner fits into standard rack, accommodates 56 channels, and can be operated by one attendant.

  8. Eliminating Cancer Stem Cells by Targeting Embryonic Signaling Pathways.

    PubMed

    Oren, Ohad; Smith, B Douglas

    2017-02-01

    Dramatic advances have been made in the understanding of cancer over the past decade. Prime among those are better appreciation of the biology of cancer and the development of targeted therapies. Despite these improvements, however, most tumors remain refractory to anti-cancer medications and frequently recur. Cancer Stem Cells (CSCs), which in some cases express markers of pluripotency (e.g., Oct-4), share many of the molecular features of normal stem cells. These cells have been hypothesised to play a role in tumor resistance and relapse. They exhibit dependence on many primitive regulatory pathways and may be best viewed in the context of embryonic signaling pathways. In this article, we review important embryonic signaling cascades and their differential expression in CSCs. We also discuss these pathways as actionable targets for novel therapies in hopes that eliminating cancer stem cells will lead to an improvement in overall survival for patients.

  9. Spectral analysis of ground penetrating radar signals in concrete, metallic and plastic targets

    NASA Astrophysics Data System (ADS)

    Santos, Vinicius Rafael N. dos; Al-Nuaimy, Waleed; Porsani, Jorge Luís; Hirata, Nina S. Tomita; Alzubi, Hamzah S.

    2014-01-01

    The accuracy of detecting buried targets using ground penetrating radar (GPR) depends mainly on features that are extracted from the data. The objective of this study is to test three spectral features and evaluate the quality to provide a good discrimination among three types of materials (concrete, metallic and plastic) using the 200 MHz GPR system. The spectral features which were selected to check the interaction of the electromagnetic wave with the type of material are: the power spectral density (PSD), short-time Fourier transform (STFT) and the Wigner-Ville distribution (WVD). The analyses were performed with simulated data varying the sizes of the targets and the electrical properties (relative dielectric permittivity and electrical conductivity) of the soil. To check if the simulated data are in accordance with the real data, the same approach was applied on the data obtained in the IAG/USP test site. A noticeable difference was found in the amplitude of the studies' features in the frequency domain and these results show the strength of the signal processing to try to differentiate buried materials using GPR, and so can be used in urban planning and geotechnical studies.

  10. ROS-dependent signal transduction

    PubMed Central

    Reczek, Colleen R; Chandel, Navdeep S

    2014-01-01

    Reactive oxygen species (ROS) are no longer viewed as just a toxic by-product of mitochondrial respiration, but are now appreciated for their role in regulating a myriad of cellular signaling pathways. H2O2, a type of ROS, is a signaling molecule that confers target specificity through thiol oxidation. Although redox-dependent signaling has been implicated in numerous cellular processes, the mechanism by which the ROS signal is transmitted to its target protein in the face of highly reactive and abundant antioxidants is not fully understood. In this review of redox-signaling biology, we discuss the possible mechanisms for H2O2-dependent signal transduction. PMID:25305438

  11. Targeting p53 via JNK pathway: a novel role of RITA for apoptotic signaling in multiple myeloma.

    PubMed

    Saha, Manujendra N; Jiang, Hua; Yang, Yijun; Zhu, Xiaoyun; Wang, Xiaoming; Schimmer, Aaron D; Qiu, Lugui; Chang, Hong

    2012-01-01

    The low frequency of p53 alterations e.g., mutations/deletions (∼10%) in multiple myeloma (MM) makes this tumor type an ideal candidate for p53-targeted therapies. RITA is a small molecule which can induce apoptosis in tumor cells by activating the p53 pathway. We previously showed that RITA strongly activates p53 while selectively inhibiting growth of MM cells without inducing genotoxicity, indicating its potential as a drug lead for p53-targeted therapy in MM. However, the molecular mechanisms underlying the pro-apoptotic effect of RITA are largely undefined. Gene expression analysis by microarray identified a significant number of differentially expressed genes associated with stress response including c-Jun N-terminal kinase (JNK) signaling pathway. By Western blot analysis we further confirmed that RITA induced activation of p53 in conjunction with up-regulation of phosphorylated ASK-1, MKK-4 and c-Jun. These results suggest that RITA induced the activation of JNK signaling. Chromatin immunoprecipitation (ChIP) analysis showed that activated c-Jun binds to the activator protein-1 (AP-1) binding site of the p53 promoter region. Disruption of the JNK signal pathway by small interfering RNA (siRNA) against JNK or JNK specific inhibitor, SP-600125 inhibited the activation of p53 and attenuated apoptosis induced by RITA in myeloma cells carrying wild type p53. On the other hand, p53 transcriptional inhibitor, PFT-α or p53 siRNA not only inhibited the activation of p53 transcriptional targets but also blocked the activation of c-Jun suggesting the presence of a positive feedback loop between p53 and JNK. In addition, RITA in combination with dexamethasone, known as a JNK activator, displays synergistic cytotoxic responses in MM cell lines and patient samples. Our study unveils a previously undescribed mechanism of RITA-induced p53-mediated apoptosis through JNK signaling pathway and provides the rationale for combination of p53 activating drugs with JNK

  12. Targeting p53 via JNK Pathway: A Novel Role of RITA for Apoptotic Signaling in Multiple Myeloma

    PubMed Central

    Saha, Manujendra N.; Jiang, Hua; Yang, Yijun; Zhu, Xiaoyun; Wang, Xiaoming; Schimmer, Aaron D.; Qiu, Lugui; Chang, Hong

    2012-01-01

    The low frequency of p53 alterations e.g., mutations/deletions (∼10%) in multiple myeloma (MM) makes this tumor type an ideal candidate for p53-targeted therapies. RITA is a small molecule which can induce apoptosis in tumor cells by activating the p53 pathway. We previously showed that RITA strongly activates p53 while selectively inhibiting growth of MM cells without inducing genotoxicity, indicating its potential as a drug lead for p53-targeted therapy in MM. However, the molecular mechanisms underlying the pro-apoptotic effect of RITA are largely undefined. Gene expression analysis by microarray identified a significant number of differentially expressed genes associated with stress response including c-Jun N-terminal kinase (JNK) signaling pathway. By Western blot analysis we further confirmed that RITA induced activation of p53 in conjunction with up-regulation of phosphorylated ASK-1, MKK-4 and c-Jun. These results suggest that RITA induced the activation of JNK signaling. Chromatin immunoprecipitation (ChIP) analysis showed that activated c-Jun binds to the activator protein-1 (AP-1) binding site of the p53 promoter region. Disruption of the JNK signal pathway by small interfering RNA (siRNA) against JNK or JNK specific inhibitor, SP-600125 inhibited the activation of p53 and attenuated apoptosis induced by RITA in myeloma cells carrying wild type p53. On the other hand, p53 transcriptional inhibitor, PFT-α or p53 siRNA not only inhibited the activation of p53 transcriptional targets but also blocked the activation of c-Jun suggesting the presence of a positive feedback loop between p53 and JNK. In addition, RITA in combination with dexamethasone, known as a JNK activator, displays synergistic cytotoxic responses in MM cell lines and patient samples. Our study unveils a previously undescribed mechanism of RITA-induced p53-mediated apoptosis through JNK signaling pathway and provides the rationale for combination of p53 activating drugs with JNK

  13. naked cuticle targets dishevelled to antagonize Wnt signal transduction

    PubMed Central

    Rousset, Raphaël; Mack, Judith A.; Wharton, Keith A.; Axelrod, Jeffrey D.; Cadigan, Ken M.; Fish, Matthew P.; Nusse, Roel; Scott, Matthew P.

    2001-01-01

    In Drosophila embryos the protein Naked cuticle (Nkd) limits the effects of the Wnt signal Wingless (Wg) during early segmentation. nkd loss of function results in segment polarity defects and embryonic death, but how nkd affects Wnt signaling is unknown. Using ectopic expression, we find that Nkd affects, in a cell-autonomous manner, a transduction step between the Wnt signaling components Dishevelled (Dsh) and Zeste-white 3 kinase (Zw3). Zw3 is essential for repressing Wg target-gene transcription in the absence of a Wg signal, and the role of Wg is to relieve this inhibition. Our double-mutant analysis shows that, in contrast to Zw3, Nkd acts when the Wg pathway is active to restrain signal transduction. Yeast two hybrid and in vitro experiments indicate that Nkd directly binds to the basic-PDZ region of Dsh. Specially timed Nkd overexpression is capable of abolishing Dsh function in a distinct signaling pathway that controls planar-cell polarity. Our results suggest that Nkd acts directly through Dsh to limit Wg activity and thus determines how efficiently Wnt signals stabilize Armadillo (Arm)/β-catenin and activate downstream genes. PMID:11274052

  14. Delineating neurotrophin-3 dependent signaling pathways underlying sympathetic axon growth along intermediate targets.

    PubMed

    Keeler, Austin B; Suo, Dong; Park, Juyeon; Deppmann, Christopher D

    2017-07-01

    Postganglionic sympathetic neurons detect vascular derived neurotrophin 3 (NT3) via the axonally expressed receptor tyrosine kinase, TrkA, to promote chemo-attraction along intermediate targets. Once axons arrive to their final target, a structurally related neurotrophic factor, nerve growth factor (NGF), also acts through TrkA to promote final target innervation. Does TrkA signal differently at these different locales? We previously found that Coronin-1 is upregulated in sympathetic neurons upon exposure to NGF, thereby endowing the NGF-TrkA complex with new signaling capabilities (i.e. calcium signaling), which dampens axon growth and branching. Based on the notion that axons do not express functional levels of Coronin-1 prior to final target innervation, we developed an in vitro model for axon growth and branching along intermediate targets using Coro1a -/- neurons grown in NT3. We found that, similar to NGF-TrkA, NT3-TrkA is capable of inducing MAPK and PI3K in the presence or absence of Coronin-1. However, unlike NGF, NT3 does not induce calcium release from intracellular stores. Using a combination of pharmacology, knockout neurons and in vitro functional assays, we suggest that the NT3-TrkA complex uses Ras/MAPK and/or PI3K-AKT signaling to induce axon growth and inhibit axon branching along intermediate targets. However, in the presence of Coronin-1, these signaling pathways lose their ability to impact NT3 dependent axon growth or branching. This is consistent with a role for Coronin-1 as a molecular switch for axon behavior and suggests that Coronin-1 suppresses NT3 dependent axon behavior. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Ras Signaling Inhibitors Attenuate Disease in Adjuvant-Induced Arthritis via Targeting Pathogenic Antigen-Specific Th17-Type Cells.

    PubMed

    Zayoud, Morad; Marcu-Malina, Victoria; Vax, Einav; Jacob-Hirsch, Jasmine; Elad-Sfadia, Galit; Barshack, Iris; Kloog, Yoel; Goldstein, Itamar

    2017-01-01

    The Ras family of GTPases plays an important role in signaling nodes downstream to T cell receptor and CD28 activation, potentially lowering the threshold for T-cell receptor activation by autoantigens. Somatic mutation in NRAS or KRAS may cause a rare autoimmune disorder coupled with abnormal expansion of lymphocytes. T cells from rheumatoid arthritis (RA) patients show excessive activation of Ras/MEK/ERK pathway. The small molecule farnesylthiosalicylic acid (FTS) interferes with the interaction between Ras GTPases and their prenyl-binding chaperones to inhibit proper plasma membrane localization. In the present study, we tested the therapeutic and immunomodulatory effects of FTS and its derivative 5-fluoro-FTS (F-FTS) in the rat adjuvant-induced arthritis model (AIA). We show that AIA severity was significantly reduced by oral FTS and F-FTS treatment compared to vehicle control treatment. FTS was as effective as the mainstay anti-rheumatic drug methotrexate, and combining the two drugs significantly increased efficacy compared to each drug alone. We also discovered that FTS therapy inhibited both the CFA-driven in vivo induction of Th17 and IL-17/IFN-γ producing "double positive" as well as the upregulation of serum levels of the Th17-associated cytokines IL-17A and IL-22. By gene microarray analysis of effector CD4 + T cells from CFA-immunized rats, re-stimulated in vitro with the mycobacterium tuberculosis heat-shock protein 65 (Bhsp65), we determined that FTS abrogated the Bhsp65-induced transcription of a large list of genes (e.g., Il17a/f, Il22, Ifng, Csf2, Lta, and Il1a). The functional enrichment bioinformatics analysis showed significant overlap with predefined gene sets related to inflammation, immune system processes and autoimmunity. In conclusion, FTS and F-FTS display broad immunomodulatory effects in AIA with inhibition of the Th17-type response to a dominant arthritogenic antigen. Hence, targeting Ras signal-transduction cascade is a potential

  16. "Signal-on" photoelectrochemical biosensor for sensitive detection of human T-Cell lymphotropic virus type II DNA: dual signal amplification strategy integrating enzymatic amplification with terminal deoxynucleotidyl transferase-mediated extension.

    PubMed

    Shen, Qingming; Han, Li; Fan, Gaochao; Zhang, Jian-Rong; Jiang, Liping; Zhu, Jun-Jie

    2015-01-01

    A novel "signal-on" photoelectrochemical (PEC) biosensor for sensitive detection of human T-cell lymphotropic virus type II (HTLV-II) DNA was developed on the basis of enzymatic amplification coupled with terminal deoxynucleotidyl transferase (TdT)-mediated extension strategy. The intensity of the photocurrent signal was proportional to the concentration of the HTLV-II DNA-target DNA (tDNA) by dual signal amplification. In this protocol, GR-CdS:Mn/ZnS nanocomposites were used as photoelectric conversion material, while pDNA was used as the tDNA recognizing unit. Moreover, the TdT-mediated extension and the enzymatic signal amplification technique were used to enhance the sensitivity of detection. Using this novel dual signal amplification strategy, the prototype of PEC DNA sensor can detect as low as ∼0.033 fM of HTLV-II DNA with a linear range of 0.1-5000 fM, with excellent differentiation ability even for single-base mismatches. This PEC DNA assay opens a promising platform to detect various DNA targets at ultralow levels for early diagnoses of different diseases.

  17. Targeting fibroblast growth factor receptor signaling inhibits prostate cancer progression.

    PubMed

    Feng, Shu; Shao, Longjiang; Yu, Wendong; Gavine, Paul; Ittmann, Michael

    2012-07-15

    Extensive correlative studies in human prostate cancer as well as studies in vitro and in mouse models indicate that fibroblast growth factor receptor (FGFR) signaling plays an important role in prostate cancer progression. In this study, we used a probe compound for an FGFR inhibitor, which potently inhibits FGFR-1-3 and significantly inhibits FGFR-4. The purpose of this study is to determine whether targeting FGFR signaling from all four FGFRs will have in vitro activities consistent with inhibition of tumor progression and will inhibit tumor progression in vivo. Effects of AZ8010 on FGFR signaling and invasion were analyzed using immortalized normal prostate epithelial (PNT1a) cells and PNT1a overexpressing FGFR-1 or FGFR-4. The effect of AZ8010 on invasion and proliferation in vitro was also evaluated in prostate cancer cell lines. Finally, the impact of AZ8010 on tumor progression in vivo was evaluated using a VCaP xenograft model. AZ8010 completely inhibits FGFR-1 and significantly inhibits FGFR-4 signaling at 100 nmol/L, which is an achievable in vivo concentration. This results in marked inhibition of extracellular signal-regulated kinase (ERK) phosphorylation and invasion in PNT1a cells expressing FGFR-1 and FGFR-4 and all prostate cancer cell lines tested. Treatment in vivo completely inhibited VCaP tumor growth and significantly inhibited angiogenesis and proliferation and increased cell death in treated tumors. This was associated with marked inhibition of ERK phosphorylation in treated tumors. Targeting FGFR signaling is a promising new approach to treating aggressive prostate cancer.

  18. Dynamic Target Match Signals in Perirhinal Cortex Can Be Explained by Instantaneous Computations That Act on Dynamic Input from Inferotemporal Cortex

    PubMed Central

    Pagan, Marino

    2014-01-01

    Finding sought objects requires the brain to combine visual and target signals to determine when a target is in view. To investigate how the brain implements these computations, we recorded neural responses in inferotemporal cortex (IT) and perirhinal cortex (PRH) as macaque monkeys performed a delayed-match-to-sample target search task. Our data suggest that visual and target signals were combined within or before IT in the ventral visual pathway and then passed onto PRH, where they were reformatted into a more explicit target match signal over ∼10–15 ms. Accounting for these dynamics in PRH did not require proposing dynamic computations within PRH itself but, rather, could be attributed to instantaneous PRH computations performed upon an input representation from IT that changed with time. We found that the dynamics of the IT representation arose from two commonly observed features: individual IT neurons whose response preferences were not simply rescaled with time and variable response latencies across the population. Our results demonstrate that these types of time-varying responses have important consequences for downstream computation and suggest that dynamic representations can arise within a feedforward framework as a consequence of instantaneous computations performed upon time-varying inputs. PMID:25122904

  19. Functional signaling pathway analysis of lung adenocarcinomas identifies novel therapeutic targets for KRAS mutant tumors

    PubMed Central

    Baldelli, Elisa; Bellezza, Guido; Haura, Eric B.; Crinó, Lucio; Cress, W. Douglas; Deng, Jianghong; Ludovini, Vienna; Sidoni, Angelo; Schabath, Matthew B.; Puma, Francesco; Vannucci, Jacopo; Siggillino, Annamaria; Liotta, Lance A.; Petricoin, Emanuel F.; Pierobon, Mariaelena

    2015-01-01

    Little is known about the complex signaling architecture of KRAS and the interconnected RAS-driven protein-protein interactions, especially as it occurs in human clinical specimens. This study explored the activated and interconnected signaling network of KRAS mutant lung adenocarcinomas (AD) to identify novel therapeutic targets. Thirty-four KRAS mutant (MT) and twenty-four KRAS wild-type (WT) frozen biospecimens were obtained from surgically treated lung ADs. Samples were subjected to laser capture microdissection and reverse phase protein microarray analysis to explore the expression/activation levels of 150 signaling proteins along with co-activation concordance mapping. An independent set of 90 non-small cell lung cancers (NSCLC) was used to validate selected findings by immunohistochemistry (IHC). Compared to KRAS WT tumors, the signaling architecture of KRAS MT ADs revealed significant interactions between KRAS downstream substrates, the AKT/mTOR pathway, and a number of Receptor Tyrosine Kinases (RTK). Approximately one-third of the KRAS MT tumors had ERK activation greater than the WT counterpart (p<0.01). Notably 18% of the KRAS MT tumors had elevated activation of the Estrogen Receptor alpha (ER-α) (p=0.02). This finding was verified in an independent population by IHC (p=0.03). KRAS MT lung ADs appear to have a more intricate RAS linked signaling network than WT tumors with linkage to many RTKs and to the AKT-mTOR pathway. Combination therapy targeting different nodes of this network may be necessary to treat this group of patients. In addition, for patients with KRAS MT tumors and activation of the ER-α, anti-estrogen therapy may have important clinical implications. PMID:26468985

  20. Identification of novel plant peroxisomal targeting signals by a combination of machine learning methods and in vivo subcellular targeting analyses.

    PubMed

    Lingner, Thomas; Kataya, Amr R; Antonicelli, Gerardo E; Benichou, Aline; Nilssen, Kjersti; Chen, Xiong-Yan; Siemsen, Tanja; Morgenstern, Burkhard; Meinicke, Peter; Reumann, Sigrun

    2011-04-01

    In the postgenomic era, accurate prediction tools are essential for identification of the proteomes of cell organelles. Prediction methods have been developed for peroxisome-targeted proteins in animals and fungi but are missing specifically for plants. For development of a predictor for plant proteins carrying peroxisome targeting signals type 1 (PTS1), we assembled more than 2500 homologous plant sequences, mainly from EST databases. We applied a discriminative machine learning approach to derive two different prediction methods, both of which showed high prediction accuracy and recognized specific targeting-enhancing patterns in the regions upstream of the PTS1 tripeptides. Upon application of these methods to the Arabidopsis thaliana genome, 392 gene models were predicted to be peroxisome targeted. These predictions were extensively tested in vivo, resulting in a high experimental verification rate of Arabidopsis proteins previously not known to be peroxisomal. The prediction methods were able to correctly infer novel PTS1 tripeptides, which even included novel residues. Twenty-three newly predicted PTS1 tripeptides were experimentally confirmed, and a high variability of the plant PTS1 motif was discovered. These prediction methods will be instrumental in identifying low-abundance and stress-inducible peroxisomal proteins and defining the entire peroxisomal proteome of Arabidopsis and agronomically important crop plants.

  1. Type III Nrg1 back signaling enhances functional TRPV1 along sensory axons contributing to basal and inflammatory thermal pain sensation.

    PubMed

    Canetta, Sarah E; Luca, Edlira; Pertot, Elyse; Role, Lorna W; Talmage, David A

    2011-01-01

    Type III Nrg1, a member of the Nrg1 family of signaling proteins, is expressed in sensory neurons, where it can signal in a bi-directional manner via interactions with the ErbB family of receptor tyrosine kinases (ErbB RTKs). Type III Nrg1 signaling as a receptor (Type III Nrg1 back signaling) can acutely activate phosphatidylinositol-3-kinase (PtdIns3K) signaling, as well as regulate levels of α7* nicotinic acetylcholine receptors, along sensory axons. Transient receptor potential vanilloid 1 (TRPV1) is a cation-permeable ion channel found in primary sensory neurons that is necessary for the detection of thermal pain and for the development of thermal hypersensitivity to pain under inflammatory conditions. Cell surface expression of TRPV1 can be enhanced by activation of PtdIns3K, making it a potential target for regulation by Type III Nrg1. We now show that Type III Nrg1 signaling in sensory neurons affects functional axonal TRPV1 in a PtdIns3K-dependent manner. Furthermore, mice heterozygous for Type III Nrg1 have specific deficits in their ability to respond to noxious thermal stimuli and to develop capsaicin-induced thermal hypersensitivity to pain. Cumulatively, these results implicate Type III Nrg1 as a novel regulator of TRPV1 and a molecular mediator of nociceptive function.

  2. Signal Transduction in the Chronic Leukemias: Implications for Targeted Therapies

    PubMed Central

    Ahmed, Wesam; Van Etten, Richard A.

    2013-01-01

    The chronic leukemias, including chronic myeloid leukemia (CML), the Philadelphia-negative myeloproliferative neoplasms (MPNs), and chronic lymphocytic leukemia (CLL), have been characterized extensively for abnormalities of cellular signaling pathways. This effort has led to the elucidation of the central role of dysregulated tyrosine kinase signaling in the chronic myeloid neoplasms and of constitutive B-cell receptor signaling in CLL. This, in turn, has stimulated the development of small molecule inhibitors of these signaling pathways for therapy of chronic leukemia. Although the field is still in its infancy, the clinical results with these agents have ranged from encouraging (CLL) to spectacular (CML). In this review, we summarize recent studies that have helped to define the signaling pathways critical to the pathogenesis of the chronic leukemias. We also discuss correlative studies emerging from clinical trials of drugs targeting these pathways. PMID:23307472

  3. ROS-dependent signal transduction.

    PubMed

    Reczek, Colleen R; Chandel, Navdeep S

    2015-04-01

    Reactive oxygen species (ROS) are no longer viewed as just a toxic by-product of mitochondrial respiration, but are now appreciated for their role in regulating a myriad of cellular signaling pathways. H2O2, a type of ROS, is a signaling molecule that confers target specificity through thiol oxidation. Although redox-dependent signaling has been implicated in numerous cellular processes, the mechanism by which the ROS signal is transmitted to its target protein in the face of highly reactive and abundant antioxidants is not fully understood. In this review of redox-signaling biology, we discuss the possible mechanisms for H2O2-dependent signal transduction. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Leucine signaling in the pathogenesis of type 2 diabetes and obesity.

    PubMed

    Melnik, Bodo C

    2012-03-15

    Epidemiological evidence points to increased dairy and meat consumption, staples of the Western diet, as major risk factors for the development of type 2 diabetes (T2D). This paper presents a new concept and comprehensive review of leucine-mediated cell signaling explaining the pathogenesis of T2D and obesity by leucine-induced over-stimulation of mammalian target of rapamycin complex 1 (mTORC1). mTORC1, a pivotal nutrient-sensitive kinase, promotes growth and cell proliferation in response to glucose, energy, growth factors and amino acids. Dairy proteins and meat stimulate insulin/insulin-like growth factor 1 signaling and provide high amounts of leucine, a primary and independent stimulator for mTORC1 activation. The downstream target of mTORC1, the kinase S6K1, induces insulin resistance by phosphorylation of insulin receptor substrate-1, thereby increasing the metabolic burden of β-cells. Moreover, leucine-mediated mTORC1-S6K1-signaling plays an important role in adipogenesis, thus increasing the risk of obesity-mediated insulin resistance. High consumption of leucine-rich proteins explains exaggerated mTORC1-dependent insulin secretion, increased β-cell growth and β-cell proliferation promoting an early onset of replicative β-cell senescence with subsequent β-cell apoptosis. Disturbances of β-cell mass regulation with increased β-cell proliferation and apoptosis as well as insulin resistance are hallmarks of T2D, which are all associated with hyperactivation of mTORC1. In contrast, the anti-diabetic drug metformin antagonizes leucine-mediated mTORC1 signaling. Plant-derived polyphenols and flavonoids are identified as natural inhibitors of mTORC1 and exert anti-diabetic and anti-obesity effects. Furthermore, bariatric surgery in obesity reduces increased plasma levels of leucine and other branched-chain amino acids. Attenuation of leucine-mediated mTORC1 signaling by defining appropriate upper limits of the daily intake of leucine-rich animal and dairy

  5. Multiplex detection of quality indicator molecule targets in urine using programmable hairpin probes based on a simple double-T type microchip electrophoresis platform and isothermal polymerase-catalyzed target recycling.

    PubMed

    Zhou, Lingying; Gan, Ning; Wu, Yongxiang; Hu, Futao; Lin, Jianyuan; Cao, Yuting; Wu, Dazhen

    2018-05-29

    Recently, it has been crucial to be able to detect and quantify small molecular targets simultaneously in biological samples. Herein, a simple and conventional double-T type microchip electrophoresis (MCE) based platform for the multiplex detection of quality indicator molecule targets in urine, using ampicillin (AMPI), adenosine triphosphate (ATP) and estradiol (E2) as models, was developed. Several programmable hairpin probes (PHPs) were designed for detecting different targets and triggering isothermal polymerase-catalyzed target recycling (IPCTR) for signal amplification. Based on the target-responsive aptamer structure of PHP (Domain I), target recognition can induce PHP conformational transition and produce extension duplex DNA (dsDNA), assisted by primers & Bst polymerase. Afterwards, the target can be displaced to react with another PHP and initiate the next cycle. After several rounds of reaction, the dsDNA can be produced in large amounts by IPCTR. Three targets can be simultaneously converted to dsDNA fragments with different lengths, which can be separated and detected using MCE. Thus, a simple double-T type MCE based platform was successfully built for the homogeneous detection of multiplex targets in one channel. Under optimal conditions, the assay exhibited high throughput (48 samples per hour at most, not including reaction time) and sensitivity to three targets in urine with a detection limit of 1 nM (ATP), 0.05 nM (AMPI) and 0.1 nM (E2) respectively. The multiplex assay was successfully employed for the above three targets in several urine samples and combined the advantages of the high specificity of programmable hairpin probes, the excellent signal amplification of IPCTR, and the high through-put of MCE which can be employed for screening in biochemical analysis.

  6. Hepatic signaling by the mechanistic target of rapamycin complex 2 (mTORC2)

    PubMed Central

    Lamming, Dudley W.; Demirkan, Gokhan; Boylan, Joan M.; Mihaylova, Maria M.; Peng, Tao; Ferreira, Jonathan; Neretti, Nicola; Salomon, Arthur; Sabatini, David M.; Gruppuso, Philip A.

    2014-01-01

    The mechanistic target of rapamycin (mTOR) exists in two complexes that regulate diverse cellular processes. mTOR complex 1 (mTORC1), the canonical target of rapamycin, has been well studied, whereas the physiological role of mTORC2 remains relatively uncharacterized. In mice in which the mTORC2 component Rictor is deleted in liver [Rictor-knockout (RKO) mice], we used genomic and phosphoproteomic analyses to characterize the role of hepatic mTORC2 in vivo. Overnight food withdrawal followed by refeeding was used to activate mTOR signaling. Rapamycin was administered before refeeding to specify mTORC2-mediated events. Hepatic mTORC2 regulated a complex gene expression and post-translational network that affects intermediary metabolism, ribosomal biogenesis, and proteasomal biogenesis. Nearly all changes in genes related to intermediary metabolic regulation were replicated in cultured fetal hepatocytes, indicating a cell-autonomous effect of mTORC2 signaling. Phosphoproteomic profiling identified mTORC2-related signaling to 144 proteins, among which were metabolic enzymes and regulators. A reduction of p38 MAPK signaling in the RKO mice represents a link between our phosphoproteomic and gene expression results. We conclude that hepatic mTORC2 exerts a broad spectrum of biological effects under physiological conditions. Our findings provide a context for the development of targeted therapies to modulate mTORC2 signaling.—Lamming, D. W., Demirkan, G., Boylan, J. M., Mihaylova, M. M., Peng, T., Ferreira, J., Neretti, N., Salomon, A., Sabatini, D. M., Gruppuso, P. A. Hepatic signaling by the mechanistic target of rapamycin complex 2 (mTORC2). PMID:24072782

  7. Identification of the feedforward component in manual control with predictable target signals.

    PubMed

    Drop, Frank M; Pool, Daan M; Damveld, Herman J; van Paassen, Marinus M; Mulder, Max

    2013-12-01

    In the manual control of a dynamic system, the human controller (HC) often follows a visible and predictable reference path. Compared with a purely feedback control strategy, performance can be improved by making use of this knowledge of the reference. The operator could effectively introduce feedforward control in conjunction with a feedback path to compensate for errors, as hypothesized in literature. However, feedforward behavior has never been identified from experimental data, nor have the hypothesized models been validated. This paper investigates human control behavior in pursuit tracking of a predictable reference signal while being perturbed by a quasi-random multisine disturbance signal. An experiment was done in which the relative strength of the target and disturbance signals were systematically varied. The anticipated changes in control behavior were studied by means of an ARX model analysis and by fitting three parametric HC models: two different feedback models and a combined feedforward and feedback model. The ARX analysis shows that the experiment participants employed control action on both the error and the target signal. The control action on the target was similar to the inverse of the system dynamics. Model fits show that this behavior can be modeled best by the combined feedforward and feedback model.

  8. An Improved Compressive Sensing and Received Signal Strength-Based Target Localization Algorithm with Unknown Target Population for Wireless Local Area Networks.

    PubMed

    Yan, Jun; Yu, Kegen; Chen, Ruizhi; Chen, Liang

    2017-05-30

    In this paper a two-phase compressive sensing (CS) and received signal strength (RSS)-based target localization approach is proposed to improve position accuracy by dealing with the unknown target population and the effect of grid dimensions on position error. In the coarse localization phase, by formulating target localization as a sparse signal recovery problem, grids with recovery vector components greater than a threshold are chosen as the candidate target grids. In the fine localization phase, by partitioning each candidate grid, the target position in a grid is iteratively refined by using the minimum residual error rule and the least-squares technique. When all the candidate target grids are iteratively partitioned and the measurement matrix is updated, the recovery vector is re-estimated. Threshold-based detection is employed again to determine the target grids and hence the target population. As a consequence, both the target population and the position estimation accuracy can be significantly improved. Simulation results demonstrate that the proposed approach achieves the best accuracy among all the algorithms compared.

  9. mTOR Signaling Confers Resistance to Targeted Cancer Drugs.

    PubMed

    Guri, Yakir; Hall, Michael N

    2016-11-01

    Cancer is a complex disease and a leading cause of death worldwide. Extensive research over decades has led to the development of therapies that target cancer-specific signaling pathways. However, the clinical benefits of such drugs are at best transient due to tumors displaying intrinsic or adaptive resistance. The underlying compensatory pathways that allow cancer cells to circumvent a drug blockade are poorly understood. We review here recent studies suggesting that mammalian TOR (mTOR) signaling is a major compensatory pathway conferring resistance to many cancer drugs. mTOR-mediated resistance can be cell-autonomous or non-cell-autonomous. These findings suggest that mTOR signaling should be monitored routinely in tumors and that an mTOR inhibitor should be considered as a co-therapy. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Manual method of visually identifying candidate signals for a targeted peptide.

    PubMed

    Filimonov, Aleksey; Kopylov, Arthur; Lisitsa, Andrey; Archakov, Alexander

    2018-04-15

    The purpose of this study is to improve peptide signal identification in groups of extracted ion chromatograms (XICs) obtained with the liquid chromatography-selected reaction monitoring (LC-SRM) technique and a triple quadrupole mass spectrometer (QqQ) operating in one of the supported multiple reaction monitoring (MRM) modes. The imperfection of quadrupole mass analyzers causes ion interference, which impedes the identification of peptide signals as chromatographic peak groups in relevant retention time intervals. To investigate this problem in depth, the QqQ conversion of the eluate into XIC groups was considered as the consecutive transformations of the particles' abundances as the corresponding functions of retention time. In this study, the hypothesis that, during this conversion, the same chromatographic profile should be preserved as an implicit sign in each chromatographic peak of the signal was confirmed for peptides. To examine chromatographic profiles, continuous transformations of XIC groups were derived and implemented in srm2prot Express software (s2pe, http://msr.ibmc.msk.ru/s2pe). Because of ion interference, several peptide-like signals may appear in one XIC group. Therefore, these signals must be considered candidates for a targeted peptide's signal and should be resolved after identification. The theoretical investigation of intensity functions as XICs that are not distorted by noise produced three rules for Identifying Candidate Signals for a targeted Peptide (ICSP, http://msr.ibmc.msk.ru/ICSP) that constitute the proposed manual visual method. We theoretically and experimentally compared this method with the conventional semiempirical intuitive technique and found that the former significantly streamlines peptide signal identification and avoids typical errors. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Mutual antagonism of target of rapamycin and calcineurin signaling.

    PubMed

    Mulet, Jose M; Martin, Dietmar E; Loewith, Robbie; Hall, Michael N

    2006-11-03

    Growth and stress are generally incompatible states. Stressed cells adapt to an insult by restraining growth, and conversely, growing cells keep stress responses at bay. This is evident in many physiological settings, including for example, the effect of stress on the immune or nervous system, but the underlying signaling mechanisms mediating such mutual antagonism are poorly understood. In eukaryotes, a central activator of cell growth is the protein kinase target of rapamycin (TOR) and its namesake signaling network. Calcineurin is a conserved, Ca(2+)/calmodulin-dependent protein phosphatase and target of the immunosuppressant FK506 (tacrolimus) that is activated in yeast during stress to promote cell survival. Here we show yeast mutants defective for TOR complex 2 (TORC2) or the essential homologous TORC2 effectors, SLM1 and SLM2, exhibited constitutive activation of calcineurin-dependent transcription and actin depolarization. Conversely, cells defective in calcineurin exhibited SLM1 hyperphosphorylation and enhanced interaction between TORC2 and SLM1. Furthermore, a mutant SLM1 protein (SLM1(DeltaC14)) lacking a sequence related to the consensus calcineurin docking site (PxIxIT) was insensitive to calcineurin, and SLM1(Delta)(C14) slm2 mutant cells were hypersensitive to oxidative stress. Thus, TORC2-SLM signaling negatively regulates calcineurin, and calcineurin negatively regulates TORC2-SLM. These findings provide a molecular basis for the mutual antagonism of growth and stress.

  12. Inflammatory Signaling by NOD-RIPK2 Is Inhibited by Clinically Relevant Type II Kinase Inhibitors

    PubMed Central

    Canning, Peter; Ruan, Qui; Schwerd, Tobias; Hrdinka, Matous; Maki, Jenny L.; Saleh, Danish; Suebsuwong, Chalada; Ray, Soumya; Brennan, Paul E.; Cuny, Gregory D.; Uhlig, Holm H.; Gyrd-Hansen, Mads; Degterev, Alexei; Bullock, Alex N.

    2015-01-01

    Summary RIPK2 mediates pro-inflammatory signaling from the bacterial sensors NOD1 and NOD2, and is an emerging therapeutic target in autoimmune and inflammatory diseases. We observed that cellular RIPK2 can be potently inhibited by type II inhibitors that displace the kinase activation segment, whereas ATP-competitive type I inhibition was only poorly effective. The most potent RIPK2 inhibitors were the US Food and Drug Administration-approved drugs ponatinib and regorafenib. Their mechanism of action was independent of NOD2 interaction and involved loss of downstream kinase activation as evidenced by lack of RIPK2 autophosphorylation. Notably, these molecules also blocked RIPK2 ubiquitination and, consequently, inflammatory nuclear factor κB signaling. In monocytes, the inhibitors selectively blocked NOD-dependent tumor necrosis factor production without affecting lipopolysaccharide-dependent pathways. We also determined the first crystal structure of RIPK2 bound to ponatinib, and identified an allosteric site for inhibitor development. These results highlight the potential for type II inhibitors to treat indications of RIPK2 activation as well as inflammation-associated cancers. PMID:26320862

  13. Type III Nrg1 Back Signaling Enhances Functional TRPV1 along Sensory Axons Contributing to Basal and Inflammatory Thermal Pain Sensation

    PubMed Central

    Canetta, Sarah E.; Luca, Edlira; Pertot, Elyse; Role, Lorna W.; Talmage, David A.

    2011-01-01

    Type III Nrg1, a member of the Nrg1 family of signaling proteins, is expressed in sensory neurons, where it can signal in a bi-directional manner via interactions with the ErbB family of receptor tyrosine kinases (ErbB RTKs) [1]. Type III Nrg1 signaling as a receptor (Type III Nrg1 back signaling) can acutely activate phosphatidylinositol-3-kinase (PtdIns3K) signaling, as well as regulate levels of α7* nicotinic acetylcholine receptors, along sensory axons [2]. Transient receptor potential vanilloid 1 (TRPV1) is a cation-permeable ion channel found in primary sensory neurons that is necessary for the detection of thermal pain and for the development of thermal hypersensitivity to pain under inflammatory conditions [3]. Cell surface expression of TRPV1 can be enhanced by activation of PtdIns3K [4], [5], [6], making it a potential target for regulation by Type III Nrg1. We now show that Type III Nrg1 signaling in sensory neurons affects functional axonal TRPV1 in a PtdIns3K-dependent manner. Furthermore, mice heterozygous for Type III Nrg1 have specific deficits in their ability to respond to noxious thermal stimuli and to develop capsaicin-induced thermal hypersensitivity to pain. Cumulatively, these results implicate Type III Nrg1 as a novel regulator of TRPV1 and a molecular mediator of nociceptive function. PMID:21949864

  14. Distinct requirements for TrkB and TrkC signaling in target innervation by sensory neurons

    NASA Technical Reports Server (NTRS)

    Postigo, Antonio; Calella, Anna Maria; Fritzsch, Bernd; Knipper, Marlies; Katz, David; Eilers, Andreas; Schimmang, Thomas; Lewin, Gary R.; Klein, Rudiger; Minichiello, Liliana

    2002-01-01

    Signaling by brain-derived neurotrophic factor (BDNF) via the TrkB receptor, or by neurotrophin-3 (NT3) through the TrkC receptor support distinct populations of sensory neurons. The intracellular signaling pathways activated by Trk (tyrosine kinase) receptors, which in vivo promote neuronal survival and target innervation, are not well understood. Using mice with TrkB or TrkC receptors lacking the docking site for Shc adaptors (trkB(shc/shc) and trkC(shc/shc) mice), we show that TrkB and TrkC promote survival of sensory neurons mainly through Shc site-independent pathways, suggesting that these receptors use similar pathways to prevent apoptosis. In contrast, the regulation of target innervation appears different: in trkB(shc/shc) mice neurons lose target innervation, whereas in trkC(shc/shc) mice the surviving TrkC-dependent neurons maintain target innervation and function. Biochemical analysis indicates that phosphorylation at the Shc site positively regulates autophosphorylation of TrkB, but not of TrkC. Our findings show that although TrkB and TrkC signals mediating survival are largely similar, TrkB and TrkC signals required for maintenance of target innervation in vivo are regulated by distinct mechanisms.

  15. Mechanosensitivity of Jagged–Notch signaling can induce a switch-type behavior in vascular homeostasis

    PubMed Central

    Stassen, Oscar M. J. A.; ter Huurne, Fleur M.; Boareto, Marcelo; Sahlgren, Cecilia M.

    2018-01-01

    Hemodynamic forces and Notch signaling are both known as key regulators of arterial remodeling and homeostasis. However, how these two factors integrate in vascular morphogenesis and homeostasis is unclear. Here, we combined experiments and modeling to evaluate the impact of the integration of mechanics and Notch signaling on vascular homeostasis. Vascular smooth muscle cells (VSMCs) were cyclically stretched on flexible membranes, as quantified via video tracking, demonstrating that the expression of Jagged1, Notch3, and target genes was down-regulated with strain. The data were incorporated in a computational framework of Notch signaling in the vascular wall, where the mechanical load was defined by the vascular geometry and blood pressure. Upon increasing wall thickness, the model predicted a switch-type behavior of the Notch signaling state with a steep transition of synthetic toward contractile VSMCs at a certain transition thickness. These thicknesses varied per investigated arterial location and were in good agreement with human anatomical data, thereby suggesting that the Notch response to hemodynamics plays an important role in the establishment of vascular homeostasis. PMID:29610298

  16. The effects of variations in the number and sequence of targeting signals on nuclear uptake

    PubMed Central

    1988-01-01

    To determine if the number of targeting signals affects the transport of proteins into the nucleus, Xenopus oocytes were injected with colloidal gold particles, ranging in diameter from 20 to 280 A, that were coated with BSA cross-linked with synthetic peptides containing the SV-40 large T-antigen nuclear transport signal. Three BSA conjugate preparations were used; they had an average of 5, 8, and 11 signals per molecule of carrier protein. In addition, large T-antigen, which contains one signal per monomer, was used as a coating agent. The cells were fixed at various times after injection and subsequently analyzed by electron microscopy. Gold particles coated with proteins containing the SV-40 signal entered the nucleus through central channels located within the nuclear pores. Analysis of the intracellular distribution and size of the tracers that entered the nucleus indicated that the number of signals per molecule affect both the relative uptake of particles and the functional size of the channels available for translocation. In control experiments, gold particles coated with BSA or BSA conjugated with inactive peptides similar to the SV-40 transport signal were virtually excluded from the nucleus. Gold particles coated with nucleoplasmin, an endogenous karyophilic protein that contains five targeting signals per molecule, was transported through the nuclear pores more effectively than any of the BSA-peptide conjugates. Based on a correlation between the peri-envelope density of gold particles and their relative uptake, it is suggested that the differences in the activity of the two targeting signals is related to their binding affinity for envelope receptors. It was also determined, by performing coinjection experiments, that individual pores are capable of recognizing and transporting proteins that contain different nuclear targeting signals. PMID:3170630

  17. Synergistic target combination prediction from curated signaling networks: Machine learning meets systems biology and pharmacology.

    PubMed

    Chua, Huey Eng; Bhowmick, Sourav S; Tucker-Kellogg, Lisa

    2017-10-01

    Given a signaling network, the target combination prediction problem aims to predict efficacious and safe target combinations for combination therapy. State-of-the-art in silico methods use Monte Carlo simulated annealing (mcsa) to modify a candidate solution stochastically, and use the Metropolis criterion to accept or reject the proposed modifications. However, such stochastic modifications ignore the impact of the choice of targets and their activities on the combination's therapeutic effect and off-target effects, which directly affect the solution quality. In this paper, we present mascot, a method that addresses this limitation by leveraging two additional heuristic criteria to minimize off-target effects and achieve synergy for candidate modification. Specifically, off-target effects measure the unintended response of a signaling network to the target combination and is often associated with toxicity. Synergy occurs when a pair of targets exerts effects that are greater than the sum of their individual effects, and is generally a beneficial strategy for maximizing effect while minimizing toxicity. mascot leverages on a machine learning-based target prioritization method which prioritizes potential targets in a given disease-associated network to select more effective targets (better therapeutic effect and/or lower off-target effects); and on Loewe additivity theory from pharmacology which assesses the non-additive effects in a combination drug treatment to select synergistic target activities. Our experimental study on two disease-related signaling networks demonstrates the superiority of mascot in comparison to existing approaches. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Coated Pit-mediated Endocytosis of the Type I Transforming Growth Factor-β (TGF-β) Receptor Depends on a Di-leucine Family Signal and Is Not Required for Signaling*

    PubMed Central

    Shapira, Keren E.; Gross, Avner; Ehrlich, Marcelo; Henis, Yoav I.

    2012-01-01

    The roles of transforming growth factor-β (TGF-β) receptor endocytosis in signaling have been investigated in numerous studies, mainly through the use of endocytosis inhibitory treatments, yielding conflicting results. Two potential sources for these discrepancies were the pleiotropic effects of a general blockade of specific internalization pathways and the scarce information on the regulation of the endocytosis of the signal-transducing type I TGF-β receptor (TβRI). Here, we employed extracellularly tagged myc-TβRI (wild type, truncation mutants, and a series of endocytosis-defective and endocytosis-enhanced mutants) to directly investigate the relationship between TβRI endocytosis and signaling. Our findings indicate that TβRI is targeted for constitutive clathrin-mediated endocytosis via a di-leucine (Leu180-Ile181) signal and an acidic cluster motif. Using Smad-dependent transcriptional activation assays and following Smad2/3 nuclear translocation in response to TGF-β stimulation, we show that TβRI endocytosis is dispensable for TGF-β signaling and may play a role in signal termination. Alanine replacement of Leu180-Ile181 led to partial constitutive activation of TβRI, resulting in part from its retention at the plasma membrane and in part from potential alterations of TβRI regulatory interactions in the vicinity of the mutated residues. PMID:22707720

  19. Wnt Signaling in Cardiac Disease.

    PubMed

    Hermans, Kevin C M; Blankesteijn, W Matthijs

    2015-07-01

    Wnt signaling encompasses multiple and complex signaling cascades and is involved in many developmental processes such as tissue patterning, cell fate specification, and control of cell division. Consequently, accurate regulation of signaling activities is essential for proper embryonic development. Wnt signaling is mostly silent in the healthy adult organs but a reactivation of Wnt signaling is generally observed under pathological conditions. This has generated increasing interest in this pathway from a therapeutic point of view. In this review article, the involvement of Wnt signaling in cardiovascular development will be outlined, followed by its implication in myocardial infarct healing, cardiac hypertrophy, heart failure, arrhythmias, and atherosclerosis. The initial experiments not always offer consensus on the effects of activation or inactivation of the pathway, which may be attributed to (i) the type of cardiac disease, (ii) timing of the intervention, and (iii) type of cells that are targeted. Therefore, more research is needed to determine the exact implication of Wnt signaling in the conditions mentioned above to exploit it as a powerful therapeutic target. © 2015 American Physiological Society.

  20. CONNECTIVE TISSUE GROWTH FACTOR IS A TARGET OF NOTCH SIGNALING IN CELLS OF THE OSTEOBLASTIC LINEAGE

    PubMed Central

    Canalis, Ernesto; Zanotti, Stefano; Smerdel-Ramoya, Anna

    2014-01-01

    Connective tissue growth factor (Ctgf) or CCN2 is a protein synthesized by osteoblasts necessary for skeletal homeostasis, although its overexpression inhibits osteogenic signals and bone formation. Ctgf is induced by bone morphogenetic proteins, transforming growth factor β and Wnt; and in the present studies, we explored whether Notch regulated Ctgf expression in osteoblasts. We employed RosaNotch mice, where the Notch intracellular domain (NICD) is expressed following the excision of a STOP cassette, placed between the Rosa26 promoter and NICD. Notch was activated by transduction of adenoviral vectors expressing Cre recombinase (Ad-CMV-Cre). Notch induced Ctgf mRNA levels in a time dependent manner and increased Ctgf heterogeneous nuclear RNA. Notch also destabilized Ctgf mRNA shortening its half-life from 13 h to 3 h. The effect of Notch on Ctgf expression was lost following Rbpjκ downregulation, demonstrating that it was mediated by Notch canonical signaling. However, downregulation of the classic Notch target genes Hes1, Hey1 and Hey2 did not modify the effect of Notch on Ctgf expression. Wild type osteoblasts exposed to immobilized Delta-like 1 displayed enhanced Notch signaling and increased Ctgf expression. In addition to the effects of Notch in vitro, Notch induced Ctgf in vivo, and calvariae and femurs from RosaNotch mice mated with transgenics expressing the Cre recombinase in cells of the osteoblastic lineage exhibited increased expression of Ctgf. In conclusion, Ctgf is a target of Notch canonical signaling in osteoblasts, and may act in concert with Notch to regulate skeletal homeostasis. PMID:24792956

  1. SCF(KMD) controls cytokinin signaling by regulating the degradation of type-B response regulators.

    PubMed

    Kim, Hyo Jung; Chiang, Yi-Hsuan; Kieber, Joseph J; Schaller, G Eric

    2013-06-11

    Cytokinins are plant hormones that play critical roles in growth and development. In Arabidopsis, the transcriptional response to cytokinin is regulated by action of type-B Arabidopsis response regulators (ARRs). Although central elements in the cytokinin signal transduction pathway have been identified, mechanisms controlling output remain to be elucidated. Here we demonstrate that a family of F-box proteins, called the kiss me deadly (KMD) family, targets type-B ARR proteins for degradation. KMD proteins form an S-phase kinase-associated PROTEIN1 (SKP1)/Cullin/F-box protein (SCF) E3 ubiquitin ligase complex and directly interact with type-B ARR proteins. Loss-of-function KMD mutants stabilize type-B ARRs and exhibit an enhanced cytokinin response. In contrast, plants with elevated KMD expression destabilize type-B ARR proteins leading to cytokinin insensitivity. Our results support a model in which an SCF(KMD) complex negatively regulates cytokinin responses by controlling levels of a key family of transcription factors.

  2. Chemokine Signaling in Allergic Contact Dermatitis: Toward Targeted Therapies.

    PubMed

    Smith, Jeffrey S; Rajagopal, Sudarshan; Atwater, Amber Reck

    2018-06-22

    Allergic contact dermatitis (ACD) is a common skin disease that results in significant cost and morbidity. Despite its high prevalence, therapeutic options are limited. Allergic contact dermatitis is regulated primarily by T cells within the adaptive immune system, but also by natural killer and innate lymphoid cells within the innate immune system. The chemokine receptor system, consisting of chemokine peptides and chemokine G protein-coupled receptors, is a critical regulator of inflammatory processes such as ACD. Specific chemokine signaling pathways are selectively up-regulated in ACD, most prominently CXCR3 and its endogenous chemokines CXCL9, CXCL10, and CXCL11. Recent research demonstrates that these 3 chemokines are not redundant and indeed activate distinct intracellular signaling profiles such as those activated by heterotrimeric G proteins and β-arrestin adapter proteins. Such differential signaling provides an attractive therapeutic target for novel ACD therapies and other inflammatory diseases.

  3. β-Arrestin-2-Dependent Signaling Promotes CCR4-mediated Chemotaxis of Murine T-Helper Type 2 Cells.

    PubMed

    Lin, Rui; Choi, Yeon Ho; Zidar, David A; Walker, Julia K L

    2018-06-01

    Allergic asthma is a complex inflammatory disease that leads to significant healthcare costs and reduction in quality of life. Although many cell types are implicated in the pathogenesis of asthma, CD4 + T-helper cell type 2 (Th2) cells are centrally involved. We previously reported that the asthma phenotype is virtually absent in ovalbumin-sensitized and -challenged mice that lack global expression of β-arrestin (β-arr)-2 and that CD4 + T cells from these mice displayed significantly reduced CCL22-mediated chemotaxis. Because CCL22-mediated activation of CCR4 plays a role in Th2 cell regulation in asthmatic inflammation, we hypothesized that CCR4-mediated migration of CD4 + Th2 cells to the lung in asthma may use β-arr-dependent signaling. To test this hypothesis, we assessed the effect of various signaling inhibitors on CCL22-induced chemotaxis using in vitro-polarized primary CD4 + Th2 cells from β-arr2-knockout and wild-type mice. Our results show, for the first time, that CCL22-induced, CCR4-mediated Th2 cell chemotaxis is dependent, in part, on a β-arr2-dependent signaling pathway. In addition, we show that this chemotactic signaling mechanism involves activation of P-p38 and Rho-associated protein kinase. These findings point to a proinflammatory role for β-arr2-dependent signaling and support β-arr2 as a novel therapeutic target in asthma.

  4. Cyclic Nucleotide Phosphodiesterases: important signaling modulators and therapeutic targets

    PubMed Central

    Ahmad, Faiyaz; Murata, Taku; Simizu, Kasumi; Degerman, Eva; Maurice, Donald; Manganiello, Vincent

    2014-01-01

    By catalyzing hydrolysis of cAMP and cGMP, cyclic nucleotide phosphodiesterases are critical regulators of their intracellular concentrations and their biological effects. Since these intracellular second messengers control many cellular homeostatic processes, dysregulation of their signals and signaling pathways initiate or modulate pathophysiological pathways related to various disease states, including erectile dysfunction, pulmonary hypertension, acute refractory cardiac failure, intermittent claudication, chronic obstructive pulmonary disease, and psoriasis. Alterations in expression of PDEs and PDE-gene mutations (especially mutations in PDE6, PDE8B, PDE11A and PDE4) have been implicated in various diseases and cancer pathologies. PDEs also play important role in formation and function of multi-molecular signaling/regulatory complexes called signalosomes. At specific intracellular locations, individual PDEs, together with pathway-specific signaling molecules, regulators, and effectors, are incorporated into specific signalosomes, where they facilitate and regulate compartmentalization of cyclic nucleotide signaling pathways and specific cellular functions. Currently, only a limited number of PDE inhibitors (PDE3, PDE4, PDE5 inhibitors) are used in clinical practice. Future paths to novel drug discovery include the crystal structure-based design approach, which has resulted in generation of more effective family-selective inhibitors, as well as burgeoning development of strategies to alter compartmentalized cyclic nucleotide signaling pathways by selectively targeting individual PDEs and their signalosome partners. PMID:25056711

  5. Brain signaling systems in the Type 2 diabetes and metabolic syndrome: promising target to treat and prevent these diseases

    PubMed Central

    Shpakov, Alexander O; Derkach, Kira V; Berstein, Lev M

    2015-01-01

    The changes in the brain signaling systems play an important role in etiology and pathogenesis of Type 2 diabetes mellitus (T2DM) and metabolic syndrome (MS), being a possible cause of these diseases. Therefore, their restoration at the early stages of T2DM and MS can be regarded as a promising way to treat and prevent these diseases and their complications. The data on the functional state of the brain signaling systems regulated by insulin, IGF-1, leptin, dopamine, serotonin, melanocortins and glucagon-like peptide-1, in T2DM and MS, are analyzed. The pharmacological approaches to restoration of these systems and improvement of insulin sensitivity, energy expenditure, lipid metabolism, and to prevent diabetic complications are discussed. PMID:28031898

  6. Targeting deregulated AMPK/mTORC1 pathways improves muscle function in myotonic dystrophy type I.

    PubMed

    Brockhoff, Marielle; Rion, Nathalie; Chojnowska, Kathrin; Wiktorowicz, Tatiana; Eickhorst, Christopher; Erne, Beat; Frank, Stephan; Angelini, Corrado; Furling, Denis; Rüegg, Markus A; Sinnreich, Michael; Castets, Perrine

    2017-02-01

    Myotonic dystrophy type I (DM1) is a disabling multisystemic disease that predominantly affects skeletal muscle. It is caused by expanded CTG repeats in the 3'-UTR of the dystrophia myotonica protein kinase (DMPK) gene. RNA hairpins formed by elongated DMPK transcripts sequester RNA-binding proteins, leading to mis-splicing of numerous pre-mRNAs. Here, we have investigated whether DM1-associated muscle pathology is related to deregulation of central metabolic pathways, which may identify potential therapeutic targets for the disease. In a well-characterized mouse model for DM1 (HSALR mice), activation of AMPK signaling in muscle was impaired under starved conditions, while mTORC1 signaling remained active. In parallel, autophagic flux was perturbed in HSALR muscle and in cultured human DM1 myotubes. Pharmacological approaches targeting AMPK/mTORC1 signaling greatly ameliorated muscle function in HSALR mice. AICAR, an AMPK activator, led to a strong reduction of myotonia, which was accompanied by partial correction of misregulated alternative splicing. Rapamycin, an mTORC1 inhibitor, improved muscle relaxation and increased muscle force in HSALR mice without affecting splicing. These findings highlight the involvement of AMPK/mTORC1 deregulation in DM1 muscle pathophysiology and may open potential avenues for the treatment of this disease.

  7. Targeting deregulated AMPK/mTORC1 pathways improves muscle function in myotonic dystrophy type I

    PubMed Central

    Brockhoff, Marielle; Rion, Nathalie; Chojnowska, Kathrin; Wiktorowicz, Tatiana; Eickhorst, Christopher; Erne, Beat; Frank, Stephan; Angelini, Corrado; Rüegg, Markus A.; Sinnreich, Michael

    2017-01-01

    Myotonic dystrophy type I (DM1) is a disabling multisystemic disease that predominantly affects skeletal muscle. It is caused by expanded CTG repeats in the 3′-UTR of the dystrophia myotonica protein kinase (DMPK) gene. RNA hairpins formed by elongated DMPK transcripts sequester RNA-binding proteins, leading to mis-splicing of numerous pre-mRNAs. Here, we have investigated whether DM1-associated muscle pathology is related to deregulation of central metabolic pathways, which may identify potential therapeutic targets for the disease. In a well-characterized mouse model for DM1 (HSALR mice), activation of AMPK signaling in muscle was impaired under starved conditions, while mTORC1 signaling remained active. In parallel, autophagic flux was perturbed in HSALR muscle and in cultured human DM1 myotubes. Pharmacological approaches targeting AMPK/mTORC1 signaling greatly ameliorated muscle function in HSALR mice. AICAR, an AMPK activator, led to a strong reduction of myotonia, which was accompanied by partial correction of misregulated alternative splicing. Rapamycin, an mTORC1 inhibitor, improved muscle relaxation and increased muscle force in HSALR mice without affecting splicing. These findings highlight the involvement of AMPK/mTORC1 deregulation in DM1 muscle pathophysiology and may open potential avenues for the treatment of this disease. PMID:28067669

  8. Uterine progesterone signaling is a target for metformin therapy in PCOS-like rats.

    PubMed

    Hu, Min; Zhang, Yuehui; Feng, Jiaxing; Xu, Xue; Zhang, Jiao; Zhao, Wei; Guo, Xiaozhu; Li, Juan; Vestin, Edvin; Cui, Peng; Li, Xin; Wu, Xiao-Ke; Brännström, Mats; Shao, Linus R; Billig, Håkan

    2018-05-01

    Impaired progesterone (P4) signaling is linked to endometrial dysfunction and infertility in women with polycystic ovary syndrome (PCOS). Here, we report for the first time that elevated expression of progesterone receptor (PGR) isoforms A and B parallels increased estrogen receptor (ER) expression in PCOS-like rat uteri. The aberrant PGR-targeted gene expression in PCOS-like rats before and after implantation overlaps with dysregulated expression of Fkbp52 and Ncoa2 , two genes that contribute to the development of uterine P4 resistance. In vivo and in vitro studies of the effects of metformin on the regulation of the uterine P4 signaling pathway under PCOS conditions showed that metformin directly inhibits the expression of PGR and ER along with the regulation of several genes that are targeted dependently or independently of PGR-mediated uterine implantation. Functionally, metformin treatment corrected the abnormal expression of cell-specific PGR and ER and some PGR-target genes in PCOS-like rats with implantation. Additionally, we documented how metformin contributes to the regulation of the PGR-associated MAPK/ERK/p38 signaling pathway in the PCOS-like rat uterus. Our data provide novel insights into how metformin therapy regulates uterine P4 signaling molecules under PCOS conditions. © 2018 Society for Endocrinology.

  9. Transsynaptic Teneurin Signaling in Neuromuscular Synapse Organization and Target Choice

    PubMed Central

    Mosca, Timothy J.; Hong, Weizhe; Dani, Vardhan S.; Favaloro, Vincenzo; Luo, Liqun

    2012-01-01

    Synapse assembly requires transsynaptic signals between the pre- and postsynapse1, but the understanding of essential organizational molecules remains incomplete2. Teneurins are conserved, EGF-repeat containing transmembrane proteins with large extracellular domains3. Here we show that two Drosophila Teneurins, Ten-m and Ten-a, are required for neuromuscular synapse organization and target selection. Ten-a is presynaptic while Ten-m is mostly postsynaptic; neuronal Ten-a and muscle Ten-m form a complex in vivo. Pre- or postsynaptic Teneurin perturbations cause severe synapse loss and impair many facets of organization transsynaptically and cell-autonomously. These include defects in active zone apposition, release sites, membrane and vesicle organization, and synaptic transmission. Moreover, the presynaptic microtubule and postsynaptic spectrin cytoskeletons are severely disrupted, suggesting a mechanism whereby Teneurins organize the cytoskeleton, which in turn affects other aspects of synapse development. Supporting this, Ten-m physically interacts with α-spectrin. Genetic analyses of teneurin and neuroligin reveal their differential roles that synergize to promote synapse assembly. Finally, at elevated endogenous levels, Ten-m regulates specific motoneuron-muscle target selection. Our study identifies the Teneurins as a key bi-directional transsynaptic signal in general synapse organization, and demonstrates that such a molecule can also regulate target selection. PMID:22426000

  10. The antidepressant sertraline inhibits translation initiation by curtailing mammalian target of rapamycin signaling.

    PubMed

    Lin, Chen-Ju; Robert, Francis; Sukarieh, Rami; Michnick, Stephen; Pelletier, Jerry

    2010-04-15

    Sertraline, a selective serotonin reuptake inhibitor, is a widely used antidepressant agent. Here, we show that sertraline also exhibits antiproliferative activity. Exposure to sertraline leads to a concentration-dependent decrease in protein synthesis. Moreover, polysome profile analysis of sertraline-treated cells shows a reduction in polysome content and a concomitant increase in 80S ribosomes. The inhibition in translation caused by sertraline is associated with decreased levels of the eukaryotic initiation factor (eIF) 4F complex, altered localization of eIF4E, and increased eIF2alpha phosphorylation. The latter event leads to increased REDD1 expression, which in turn impinges on the mammalian target of rapamycin (mTOR) pathway by affecting TSC1/2 signaling. Sertraline also independently targets the mTOR signaling pathway downstream of Rheb. In the Emu-myc murine lymphoma model where carcinogenesis is driven by phosphatase and tensin homologue (PTEN) inactivation, sertraline is able to enhance chemosensitivity to doxorubicin. Our results indicate that sertraline exerts antiproliferative activity by targeting the mTOR signaling pathway in a REDD1-dependent manner. (c) 2010 AACR.

  11. Target of Rapamycin (TOR) in Nutrient Signaling and Growth Control

    PubMed Central

    Loewith, Robbie; Hall, Michael N.

    2011-01-01

    TOR (Target Of Rapamycin) is a highly conserved protein kinase that is important in both fundamental and clinical biology. In fundamental biology, TOR is a nutrient-sensitive, central controller of cell growth and aging. In clinical biology, TOR is implicated in many diseases and is the target of the drug rapamycin used in three different therapeutic areas. The yeast Saccharomyces cerevisiae has played a prominent role in both the discovery of TOR and the elucidation of its function. Here we review the TOR signaling network in S. cerevisiae. PMID:22174183

  12. Insulin-sparing and fungible effects of E4orf1 combined with an adipocyte-targeting sequence in mouse models of type 1 and type 2 diabetes.

    PubMed

    Yoon, I-S; Park, S; Kim, R-H; Ko, H L; Nam, J-H

    2017-10-01

    Obesity impairs glycemic control and causes insulin resistance and type 2 diabetes. Adenovirus 36 (Ad36) infection can increase the uptake of excess glucose from blood into adipocytes by increasing GLUT4 translocation through the Ras-Akt signaling pathway, which bypasses PI3K-Akt-mediated insulin receptor signaling. E4orf1, a viral gene expressed early during Ad36 infection, is responsible for this insulin-sparing effect and may be an alternative target for improving insulin resistance. To deliver the gene to adipocytes only, we connected the adipocyte-targeting sequence (ATS) to the 5' end of E4orf1 (ATS-E4orf1). In vitro transfection of ATS-E4orf1 into preadipocytes activated factors for GLUT4 translocation and adipogenesis to the same extent as did Hemagglutinin (HA)-E4orf1 transfection as positive reference. Moreover, the Transwell migration assay also showed that ATS-E4orf1 secreted by liver cells activated Akt in preadipocytes. We used a hydrodynamic gene delivery technique to deliver ATS-E4orf1 into high-fat diet-fed and streptozotocin-injected mice (disease models of type 2 and type 1 diabetes, respectively). ATS-E4orf1 improved the ability to eliminate excess glucose from the blood and ameliorated liver function in both disease models. These findings suggest that ATS-E4orf1 has insulin-sparing and fungible effects in type 2 and 1 diabetes independent of the presence of insulin.

  13. Inflammatory Signaling by NOD-RIPK2 Is Inhibited by Clinically Relevant Type II Kinase Inhibitors.

    PubMed

    Canning, Peter; Ruan, Qui; Schwerd, Tobias; Hrdinka, Matous; Maki, Jenny L; Saleh, Danish; Suebsuwong, Chalada; Ray, Soumya; Brennan, Paul E; Cuny, Gregory D; Uhlig, Holm H; Gyrd-Hansen, Mads; Degterev, Alexei; Bullock, Alex N

    2015-09-17

    RIPK2 mediates pro-inflammatory signaling from the bacterial sensors NOD1 and NOD2, and is an emerging therapeutic target in autoimmune and inflammatory diseases. We observed that cellular RIPK2 can be potently inhibited by type II inhibitors that displace the kinase activation segment, whereas ATP-competitive type I inhibition was only poorly effective. The most potent RIPK2 inhibitors were the US Food and Drug Administration-approved drugs ponatinib and regorafenib. Their mechanism of action was independent of NOD2 interaction and involved loss of downstream kinase activation as evidenced by lack of RIPK2 autophosphorylation. Notably, these molecules also blocked RIPK2 ubiquitination and, consequently, inflammatory nuclear factor κB signaling. In monocytes, the inhibitors selectively blocked NOD-dependent tumor necrosis factor production without affecting lipopolysaccharide-dependent pathways. We also determined the first crystal structure of RIPK2 bound to ponatinib, and identified an allosteric site for inhibitor development. These results highlight the potential for type II inhibitors to treat indications of RIPK2 activation as well as inflammation-associated cancers. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Microphone and electroglottographic data from dysphonic patients: type 1, 2 and 3 signals.

    PubMed

    Behrman, A; Agresti, C J; Blumstein, E; Lee, N

    1998-06-01

    Recently, it has been suggested that statistics which are dependent upon the reliable extraction of a single fundamental period, such as jitter and shimmer, are valid only for nearly periodic signals. This study explored the incidence of nearly periodic and nonperiodic microphone and electroglottographic signals obtained from 202 dysphonic patients. It was found that approximately 42% were type 1 (nearly periodic); approximately 35% were type 2 (containing bifurcations, modulations or subharmonic structure); and approximately 22% were type 3 (chaotic). Discriminating between type 2 and 3 signals was very difficult for 40% of the signals which were ultimately rated type 3. This was due to the brevity of the apparently chaotic segment, and/or the persistence of some harmonic structure within the chaos. Irrespective of that difficulty, the results suggest that there may be a substantial incidence of nontype 1 signals in a given clinical population. It was concluded, therefore, that signal typing is a necessary step in the analyses of microphone and electoglottographic data.

  15. Phospholipase D Signaling Pathways and Phosphatidic Acid as Therapeutic Targets in Cancer

    PubMed Central

    Bruntz, Ronald C.; Lindsley, Craig W.

    2014-01-01

    Phospholipase D is a ubiquitous class of enzymes that generates phosphatidic acid as an intracellular signaling species. The phospholipase D superfamily plays a central role in a variety of functions in prokaryotes, viruses, yeast, fungi, plants, and eukaryotic species. In mammalian cells, the pathways modulating catalytic activity involve a variety of cellular signaling components, including G protein–coupled receptors, receptor tyrosine kinases, polyphosphatidylinositol lipids, Ras/Rho/ADP-ribosylation factor GTPases, and conventional isoforms of protein kinase C, among others. Recent findings have shown that phosphatidic acid generated by phospholipase D plays roles in numerous essential cellular functions, such as vesicular trafficking, exocytosis, autophagy, regulation of cellular metabolism, and tumorigenesis. Many of these cellular events are modulated by the actions of phosphatidic acid, and identification of two targets (mammalian target of rapamycin and Akt kinase) has especially highlighted a role for phospholipase D in the regulation of cellular metabolism. Phospholipase D is a regulator of intercellular signaling and metabolic pathways, particularly in cells that are under stress conditions. This review provides a comprehensive overview of the regulation of phospholipase D activity and its modulation of cellular signaling pathways and functions. PMID:25244928

  16. Estradiol targets T cell signaling pathways in human systemic lupus.

    PubMed

    Walters, Emily; Rider, Virginia; Abdou, Nabih I; Greenwell, Cindy; Svojanovsky, Stan; Smith, Peter; Kimler, Bruce F

    2009-12-01

    The major risk factor for developing systemic lupus erythematosus (SLE) is being female. The present study utilized gene profiles of activated T cells from females with SLE and healthy controls to identify signaling pathways uniquely regulated by estradiol that could contribute to SLE pathogenesis. Selected downstream pathway genes (+/- estradiol) were measured by real time polymerase chain amplification. Estradiol uniquely upregulated six pathways in SLE T cells that control T cell function including interferon-alpha signaling. Measurement of interferon-alpha pathway target gene expression revealed significant differences (p= 0.043) in DRIP150 (+/- estradiol) in SLE T cell samples while IFIT1 expression was bimodal and correlated moderately (r= 0.55) with disease activity. The results indicate that estradiol alters signaling pathways in activated SLE T cells that control T cell function. Differential expression of transcriptional coactivators could influence estrogen-dependent gene regulation in T cell signaling and contribute to SLE onset and disease pathogenesis.

  17. Impact of targeting insulin-like growth factor signaling in head and neck cancers.

    PubMed

    Limesand, Kirsten H; Chibly, Alejandro Martinez; Fribley, Andrew

    2013-10-01

    The IGF system has been shown to have either negative or negligible impact on clinical outcomes of tumor development depending on specific tumor sites or stages. This review focuses on the clinical impact of IGF signaling in head and neck cancer, the effects of IGF targeted therapies, and the multi-dimensional role of IRS 1/2 signaling as a potential mechanism in resistance to targeted therapies. Similar to other tumor sites, both negative and positive correlations between levels of IGF-1/IGF-1-R and clinical outcomes in head and neck cancer have been reported. In addition, utilization of IGF targeted therapies has not demonstrated significant clinical benefit; therefore the prognostic impact of the IGF system on head and neck cancer remains uncertain. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Cell-type-specific modelling of intracellular calcium signalling: a urothelial cell model.

    PubMed

    Appleby, Peter A; Shabir, Saqib; Southgate, Jennifer; Walker, Dawn

    2013-09-06

    Calcium signalling plays a central role in regulating a wide variety of cell processes. A number of calcium signalling models exist in the literature that are capable of reproducing a variety of experimentally observed calcium transients. These models have been used to examine in more detail the mechanisms underlying calcium transients, but very rarely has a model been directly linked to a particular cell type and experimentally verified. It is important to show that this can be achieved within the general theoretical framework adopted by these models. Here, we develop a framework designed specifically for modelling cytosolic calcium transients in urothelial cells. Where possible, we draw upon existing calcium signalling models, integrating descriptions of components known to be important in this cell type from a number of studies in the literature. We then add descriptions of several additional pathways that play a specific role in urothelial cell signalling, including an explicit ionic influx term and an active pumping mechanism that drives the cytosolic calcium concentration to a target equilibrium. The resulting one-pool model of endoplasmic reticulum (ER)-dependent calcium signalling relates the cytosolic, extracellular and ER calcium concentrations and can generate a wide range of calcium transients, including spikes, bursts, oscillations and sustained elevations in the cytosolic calcium concentration. Using single-variate robustness and multivariate sensitivity analyses, we quantify how varying each of the parameters of the model leads to changes in key features of the calcium transient, such as initial peak amplitude and the frequency of bursting or spiking, and in the transitions between bursting- and plateau-dominated modes. We also show that, novel to our urothelial cell model, the ionic and purinergic P2Y pathways make distinct contributions to the calcium transient. We then validate the model using human bladder epithelial cells grown in monolayer cell

  19. Targeting GPCR-Gβγ-GRK2 signaling as a novel strategy for treating cardiorenal pathologies.

    PubMed

    Rudomanova, Valeria; Blaxall, Burns C

    2017-08-01

    The pathologic crosstalk between the heart and kidney is known as cardiorenal syndrome (CRS). While the specific mechanisms underlying this crosstalk remain poorly understood, CRS is associated with exacerbated dysfunction of either or both organs and reduced survival. Maladaptive fibrotic remodeling is a key component of both heart and kidney failure pathogenesis and progression. G-protein coupled receptor (GPCR) signaling is a crucial regulator of cardiovascular and renal function. Chronic/pathologic GPCR signaling elicits the interaction of the G-protein Gβγ subunit with GPCR kinase 2 (GRK2), targeting the receptor for internalization, scaffolding to pathologic signals, and receptor degradation. Targeting this pathologic Gβγ-GRK2 interaction has been suggested as a possible strategy for the treatment of HF. In the current review, we discuss recent updates in understanding the role of GPCR-Gβγ-GRK2 signaling as a crucial mediator of maladaptive organ remodeling detected in HF and kidney dysfunction, with specific attention to small molecule-mediated inhibition of pathologic Gβγ-GRK2 interactions. Further, we explore the potential of GPCR-Gβγ-GRK2 signaling as a possible therapeutic target for cardiorenal pathologies. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. MicroRNA and receptor mediated signaling pathways as potential therapeutic targets in heart failure.

    PubMed

    Tuttolomondo, Antonino; Simonetta, Irene; Pinto, Antonio

    2016-11-01

    Cardiac remodelling is a complex pathogenetic pathway involving genome expression, molecular, cellular, and interstitial changes that cause changes in size, shape and function of the heart after cardiac injury. Areas covered: We will review recent advances in understanding the role of several receptor-mediated signaling pathways and micro-RNAs, in addition to their potential as candidate target pathways in the pathogenesis of heart failure. The myocyte is the main target cell involved in the remodelling process via ischemia, cell necrosis and apoptosis (by means of various receptor pathways), and other mechanisms mediated by micro-RNAs. We will analyze the role of some receptor mediated signaling pathways such as natriuretic peptides, mediators of glycogen synthase kinase 3 and ERK1/2 pathways, beta-adrenergic receptor subtypes and relaxin receptor signaling mechanisms, TNF/TNF receptor family and TWEAK/Fn14 axis, and some micro-RNAs as candidate target pathways in pathogenesis of heart failure. These mediators of receptor-mediated pathways and micro-RNA are the most addressed targets of emerging therapies in modern heart failure treatment strategies. Expert opinion: Future treatment strategies should address mediators involved in multiple steps within heart failure pathogenetic pathways.

  1. Paracrine signaling in a bacterium.

    PubMed

    López, Daniel; Vlamakis, Hera; Losick, Richard; Kolter, Roberto

    2009-07-15

    Cellular differentiation is triggered by extracellular signals that cause target cells to adopt a particular fate. Differentiation in bacteria typically involves autocrine signaling in which all cells in the population produce and respond to the same signal. Here we present evidence for paracrine signaling in bacterial populations-some cells produce a signal to which only certain target cells respond. Biofilm formation in Bacillus involves two centrally important signaling molecules, ComX and surfactin. ComX triggers the production of surfactin. In turn, surfactin causes a subpopulation of cells to produce an extracellular matrix. Cells that produced surfactin were themselves unable to respond to it. Likewise, once surfactin-responsive cells commenced matrix production, they no longer responded to ComX and could not become surfactin producers. Insensitivity to ComX was the consequence of the extracellular matrix as mutant cells unable to make matrix responded to both ComX and surfactin. Our results demonstrate that extracellular signaling was unidirectional, with one subpopulation producing a signal and a different subpopulation responding to it. Paracrine signaling in a bacterial population ensures the maintenance, over generations, of particular cell types even in the presence of molecules that would otherwise cause those cells to differentiate into other cell types.

  2. Targeting Chronic and Neuropathic Pain: The N-type Calcium Channel Comes of Age

    PubMed Central

    Snutch, Terrance P.

    2005-01-01

    Summary: The rapid entry of calcium into cells through activation of voltage-gated calcium channels directly affects membrane potential and contributes to electrical excitability, repetitive firing patterns, excitation-contraction coupling, and gene expression. At presynaptic nerve terminals, calcium entry is the initial trigger mediating the release of neurotransmitters via the calcium-dependent fusion of synaptic vesicles and involves interactions with the soluble N-ethylmaleimide-sensitive factor attachment protein receptor complex of synaptic release proteins. Physiological factors or drugs that affect either presynaptic calcium channel activity or the efficacy of calcium-dependent vesicle fusion have dramatic consequences on synaptic transmission, including that mediating pain signaling. The N-type calcium channel exhibits a number of characteristics that make it an attractive target for therapeutic intervention concerning chronic and neuropathic pain conditions. Within the past year, both U.S. and European regulatory agencies have approved the use of the cationic peptide Prialt for the treatment of intractable pain. Prialt is the first N-type calcium channel blocker approved for clinical use and represents the first new proven mechanism of action for chronic pain intervention in many years. The present review discusses the rationale behind targeting the N-type calcium channel, some of the limitations confronting the widespread clinical application of Prialt, and outlines possible strategies to improve upon Prialt's relatively narrow therapeutic window. PMID:16489373

  3. Differential Type I Interferon Signaling Is a Master Regulator of Susceptibility to Postinfluenza Bacterial Superinfection.

    PubMed

    Shepardson, Kelly M; Larson, Kyle; Morton, Rachelle V; Prigge, Justin R; Schmidt, Edward E; Huber, Victor C; Rynda-Apple, Agnieszka

    2016-05-03

    Bacterial superinfections are a primary cause of death during influenza pandemics and epidemics. Type I interferon (IFN) signaling contributes to increased susceptibility of mice to bacterial superinfection around day 7 post-influenza A virus (IAV) infection. Here we demonstrate that the reduced susceptibility to methicillin-resistant Staphylococcus aureus (MRSA) at day 3 post-IAV infection, which we previously reported was due to interleukin-13 (IL-13)/IFN-γ responses, is also dependent on type I IFN signaling and its subsequent requirement for protective IL-13 production. We found, through utilization of blocking antibodies, that reduced susceptibility to MRSA at day 3 post-IAV infection was IFN-β dependent, whereas the increased susceptibility at day 7 was IFN-α dependent. IFN-β signaling early in IAV infection was required for MRSA clearance, whereas IFN-α signaling late in infection was not, though it did mediate increased susceptibility to MRSA at that time. Type I IFN receptor (IFNAR) signaling in CD11c(+) and Ly6G(+) cells was required for the observed reduced susceptibility at day 3 post-IAV infection. Depletion of Ly6G(+) cells in mice in which IFNAR signaling was either blocked or deleted indicated that Ly6G(+) cells were responsible for the IFNAR signaling-dependent susceptibility to MRSA superinfection at day 7 post-IAV infection. Thus, during IAV infection, the temporal differences in type I IFN signaling increased bactericidal activity of both CD11c(+) and Ly6G(+) cells at day 3 and reduced effector function of Ly6G(+) cells at day 7. The temporal differential outcomes induced by IFN-β (day 3) and IFN-α (day 7) signaling through the same IFNAR resulted in differential susceptibility to MRSA at 3 and 7 days post-IAV infection. Approximately 114,000 hospitalizations and 40,000 annual deaths in the United States are associated with influenza A virus (IAV) infections. Frequently, these deaths are due to community-acquired Gram-positive bacterial

  4. The Hippo signaling pathway provides novel anti-cancer drug targets

    PubMed Central

    Bae, June Sung; Kim, Sun Mi; Lee, Ho

    2017-01-01

    The Hippo signaling pathway plays a crucial role in cell proliferation, apoptosis, differentiation, and development. Major effectors of the Hippo signaling pathway include the transcriptional co-activators Yes-associated protein 1 (YAP) and WW domain-containing transcription regulator protein 1 (TAZ). The transcriptional activities of YAP and TAZ are affected by interactions with proteins from many diverse signaling pathways as well as responses to the external environment. High YAP and TAZ activity has been observed in many cancer types, and functional dysregulation of Hippo signaling enhances the oncogenic properties of YAP and TAZ and promotes cancer development. Many biological elements, including mechanical strain on the cell, cell polarity/adhesion molecules, other signaling pathways (e.g., G-protein-coupled receptor, epidermal growth factor receptor, Wnt, Notch, and transforming growth factor β/bone morphogenic protein), and cellular metabolic status, can promote oncogenesis through synergistic association with components of the Hippo signaling pathway. Here, we review the signaling networks that interact with the Hippo signaling pathway and discuss the potential of using drugs that inhibit YAP and TAZ activity for cancer therapy. PMID:28035075

  5. The Hippo signaling pathway provides novel anti-cancer drug targets.

    PubMed

    Bae, June Sung; Kim, Sun Mi; Lee, Ho

    2017-02-28

    The Hippo signaling pathway plays a crucial role in cell proliferation, apoptosis, differentiation, and development. Major effectors of the Hippo signaling pathway include the transcriptional co-activators Yes-associated protein 1 (YAP) and WW domain-containing transcription regulator protein 1 (TAZ). The transcriptional activities of YAP and TAZ are affected by interactions with proteins from many diverse signaling pathways as well as responses to the external environment. High YAP and TAZ activity has been observed in many cancer types, and functional dysregulation of Hippo signaling enhances the oncogenic properties of YAP and TAZ and promotes cancer development. Many biological elements, including mechanical strain on the cell, cell polarity/adhesion molecules, other signaling pathways (e.g., G-protein-coupled receptor, epidermal growth factor receptor, Wnt, Notch, and transforming growth factor β/bone morphogenic protein), and cellular metabolic status, can promote oncogenesis through synergistic association with components of the Hippo signaling pathway. Here, we review the signaling networks that interact with the Hippo signaling pathway and discuss the potential of using drugs that inhibit YAP and TAZ activity for cancer therapy.

  6. A Recombinant Secondary Antibody Mimic as a Target-specific Signal Amplifier and an Antibody Immobilizer in Immunoassays.

    PubMed

    Min, Junseon; Song, Eun Kyung; Kim, Hansol; Kim, Kyoung Taek; Park, Tae Joo; Kang, Sebyung

    2016-04-11

    We construct a novel recombinant secondary antibody mimic, GST-ABD, which can bind to the Fc regions of target-bound primary antibodies and acquire multiple HRPs simultaneously. We produce it in tenth of mg quantities with a bacterial overexpression system and simple purification procedures, significantly reducing the manufacturing cost and time without the use of animals. GST-ABD is effectively conjugated with 3 HRPs per molecule on an average and selectively bind to the Fc region of primary antibodies derived from three different species (mouse, rabbit, and rat). HRP-conjugated GST-ABD (HRP-GST-ABD) is successfully used as an alternative to secondary antibodies to amplify target-specific signals in both ELISA and immunohistochemistry regardless of the target molecules and origin of primary antibodies used. GST-ABD also successfully serves as an anchoring adaptor on the surface of GSH-coated plates for immobilizing antigen-capturing antibodies in an orientation-controlled manner for sandwich-type indirect ELISA through simple molecular recognition without any complicated chemical modification.

  7. Phospholipase D signaling pathways and phosphatidic acid as therapeutic targets in cancer.

    PubMed

    Bruntz, Ronald C; Lindsley, Craig W; Brown, H Alex

    2014-10-01

    Phospholipase D is a ubiquitous class of enzymes that generates phosphatidic acid as an intracellular signaling species. The phospholipase D superfamily plays a central role in a variety of functions in prokaryotes, viruses, yeast, fungi, plants, and eukaryotic species. In mammalian cells, the pathways modulating catalytic activity involve a variety of cellular signaling components, including G protein-coupled receptors, receptor tyrosine kinases, polyphosphatidylinositol lipids, Ras/Rho/ADP-ribosylation factor GTPases, and conventional isoforms of protein kinase C, among others. Recent findings have shown that phosphatidic acid generated by phospholipase D plays roles in numerous essential cellular functions, such as vesicular trafficking, exocytosis, autophagy, regulation of cellular metabolism, and tumorigenesis. Many of these cellular events are modulated by the actions of phosphatidic acid, and identification of two targets (mammalian target of rapamycin and Akt kinase) has especially highlighted a role for phospholipase D in the regulation of cellular metabolism. Phospholipase D is a regulator of intercellular signaling and metabolic pathways, particularly in cells that are under stress conditions. This review provides a comprehensive overview of the regulation of phospholipase D activity and its modulation of cellular signaling pathways and functions. Copyright © 2014 by The American Society for Pharmacology and Experimental Therapeutics.

  8. Detection and recognition of targets by using signal polarization properties

    NASA Astrophysics Data System (ADS)

    Ponomaryov, Volodymyr I.; Peralta-Fabi, Ricardo; Popov, Anatoly V.; Babakov, Mikhail F.

    1999-08-01

    The quality of radar target recognition can be enhanced by exploiting its polarization signatures. A specialized X-band polarimetric radar was used for target recognition in experimental investigations. The following polarization characteristics connected to the object geometrical properties were investigated: the amplitudes of the polarization matrix elements; an anisotropy coefficient; depolarization coefficient; asymmetry coefficient; the energy of a backscattering signal; object shape factor. A large quantity of polarimetric radar data was measured and processed to form a database of different object and different weather conditions. The histograms of polarization signatures were approximated by a Nakagami distribution, then used for real- time target recognition. The Neyman-Pearson criterion was used for the target detection, and the criterion of the maximum of a posterior probability was used for recognition problem. Some results of experimental verification of pattern recognition and detection of objects with different electrophysical and geometrical characteristics urban in clutter are presented in this paper.

  9. Therapeutic targeting of NOTCH1 signaling in T-ALL

    PubMed Central

    Palomero, Teresa; Ferrando, Adolfo

    2010-01-01

    The recent identification of activating mutations in NOTCH1 in the majority of T-cell acute lymphoblastic leukemias (T-ALL) has brought major interest towards targeting the NOTCH signaling pathway in this disease. Small molecule γ-secretase inhibitors (GSIs) which block a critical proteolytic step required for NOTCH1 activation can effectively block the activity of NOTCH1 mutant alleles. However, the clinical development of GSIs has been hampered by their low cytotoxicity against human T-ALL and the development of significant gastrointestinal toxicity derived from inhibition of NOTCH signaling in the gut. Improved understanding of the oncogenic mechanisms of NOTCH1 and the effects of NOTCH inhibition in leukemic cells and the intestinal epithelium are required for the design of effective anti-NOTCH1 therapies in T-ALL. PMID:19778842

  10. Targeting the NFκB signaling pathways for breast cancer prevention and therapy.

    PubMed

    Wang, Wei; Nag, Subhasree A; Zhang, Ruiwen

    2015-01-01

    The activation of nuclear factor-kappaB (NFκB), a proinflammatory transcription factor, is a commonly observed phenomenon in breast cancer. It facilitates the development of a hormone-independent, invasive, high-grade, and late-stage tumor phenotype. Moreover, the commonly used cancer chemotherapy and radiotherapy approaches activate NFκB, leading to the development of invasive breast cancers that show resistance to chemotherapy, radiotherapy, and endocrine therapy. Inhibition of NFκB results in an increase in the sensitivity of cancer cells to the apoptotic effects of chemotherapeutic agents and radiation and restoring hormone sensitivity, which is correlated with increased disease-free survival in patients with breast cancer. In this review article, we focus on the role of the NFκB signaling pathways in the development and progression of breast cancer and the validity of NFκB as a potential target for breast cancer prevention and therapy. We also discuss the recent findings that NFκB may have tumor suppressing activity in certain cancer types. Finally, this review also covers the state-of-the-art development of NFκB inhibitors for cancer therapy and prevention, the challenges in targeting validation, and pharmacology and toxicology evaluations of these agents from the bench to the bedside.

  11. c-MPL provides tumor-targeted T-cell receptor-transgenic T cells with costimulation and cytokine signals.

    PubMed

    Nishimura, Christopher D; Brenner, Daniel A; Mukherjee, Malini; Hirsch, Rachel A; Ott, Leah; Wu, Meng-Fen; Liu, Hao; Dakhova, Olga; Orange, Jordan S; Brenner, Malcolm K; Lin, Charles Y; Arber, Caroline

    2017-12-21

    Adoptively transferred T-cell receptor (TCR)-engineered T cells depend on host-derived costimulation and cytokine signals for their full and sustained activation. However, in patients with cancer, both signals are frequently impaired. Hence, we developed a novel strategy that combines both essential signals in 1 transgene by expressing the nonlymphoid hematopoietic growth factor receptor c-MPL (myeloproliferative leukemia), the receptor for thrombopoietin (TPO), in T cells. c-MPL signaling activates pathways shared with conventional costimulatory and cytokine receptor signaling. Thus, we hypothesized that host-derived TPO, present in the tumor microenvironment, or pharmacological c-MPL agonists approved by the US Food and Drug Administration could deliver both signals to c-MPL-engineered TCR-transgenic T cells. We found that c-MPL + polyclonal T cells expand and proliferate in response to TPO, and persist longer after adoptive transfer in immunodeficient human TPO-transgenic mice. In TCR-transgenic T cells, c-MPL activation enhances antitumor function, T-cell expansion, and cytokine production and preserves a central memory phenotype. c-MPL signaling also enables sequential tumor cell killing, enhances the formation of effective immune synapses, and improves antileukemic activity in vivo in a leukemia xenograft model. We identify the type 1 interferon pathway as a molecular mechanism by which c-MPL mediates immune stimulation in T cells. In conclusion, we present a novel immunotherapeutic strategy using c-MPL-enhanced transgenic T cells responding to either endogenously produced TPO (a microenvironment factor in hematologic malignancies) or c-MPL-targeted pharmacological agents. © 2017 by The American Society of Hematology.

  12. The cornerstone K-RAS mutation in pancreatic adenocarcinoma: From cell signaling network, target genes, biological processes to therapeutic targeting.

    PubMed

    Jonckheere, Nicolas; Vasseur, Romain; Van Seuningen, Isabelle

    2017-03-01

    RAS belongs to the super family of small G proteins and plays crucial roles in signal transduction from membrane receptors in the cell. Mutations of K-RAS oncogene lead to an accumulation of GTP-bound proteins that maintains an active conformation. In the pancreatic ductal adenocarcinoma (PDAC), one of the most deadly cancers in occidental countries, mutations of the K-RAS oncogene are nearly systematic (>90%). Moreover, K-RAS mutation is the earliest genetic alteration occurring during pancreatic carcinogenetic sequence. In this review, we discuss the central role of K-RAS mutations and their tremendous diversity of biological properties by the interconnected regulation of signaling pathways (MAPKs, NF-κB, PI3K, Ral…). In pancreatic ductal adenocarcinoma, transcriptome analysis and preclinical animal models showed that K-RAS mutation alters biological behavior of PDAC cells (promoting proliferation, migration and invasion, evading growth suppressors, regulating mucin pattern, and miRNA expression). K-RAS also impacts tumor microenvironment and PDAC metabolism reprogramming. Finally we discuss therapeutic targeting strategies of K-RAS that have been developed without significant clinical success so far. As K-RAS is considered as the undruggable target, targeting its multiple effectors and target genes should be considered as potential alternatives. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Rationale and Means to Target Pro-Inflammatory Interleukin-8 (CXCL8) Signaling in Cancer

    PubMed Central

    Campbell, Laura M.; Maxwell, Pamela J.; Waugh, David J.J.

    2013-01-01

    It is well established that chronic inflammation underpins the development of a number of human cancers, with pro-inflammatory signaling within the tumor microenvironment contributing to tumor progression and metastasis. CXCL8 is an ELR+ pro-inflammatory CXC-chemokine which mediates its effects via signaling through two G protein-coupled receptors, CXCR1 and CXCR2. Elevated CXCL8-CXCR1/2 signaling within the tumor microenvironment of numerous cancers is known to enhance tumor progression via activation of signaling pathways promoting proliferation, angiogenesis, migration, invasion and cell survival. This review provides an overview of established roles of CXCL8-CXCR1/2 signaling in cancer and subsequently, discusses the possible strategies of targeting CXCL8-CXCR1/2 signaling in cancer, covering indirect strategies (e.g., anti-inflammatories, NFκB inhibitors) and direct CXCL8 or CXCR1/2 inhibition (e.g., neutralizing antibodies, small molecule receptor antagonists, pepducin inhibitors and siRNA strategies). Reports of pre-clinical cancer studies and clinical trials using CXCL8-CXCR1/2-targeting strategies for the treatment of inflammatory diseases will be discussed. The future translational opportunities for use of such agents in oncology will be discussed, with emphasis on exploitation in stratified populations. PMID:24276377

  14. DOA Estimation for Underwater Wideband Weak Targets Based on Coherent Signal Subspace and Compressed Sensing

    PubMed Central

    2018-01-01

    Direction of arrival (DOA) estimation is the basis for underwater target localization and tracking using towed line array sonar devices. A method of DOA estimation for underwater wideband weak targets based on coherent signal subspace (CSS) processing and compressed sensing (CS) theory is proposed. Under the CSS processing framework, wideband frequency focusing is accompanied by a two-sided correlation transformation, allowing the DOA of underwater wideband targets to be estimated based on the spatial sparsity of the targets and the compressed sensing reconstruction algorithm. Through analysis and processing of simulation data and marine trial data, it is shown that this method can accomplish the DOA estimation of underwater wideband weak targets. Results also show that this method can considerably improve the spatial spectrum of weak target signals, enhancing the ability to detect them. It can solve the problems of low directional resolution and unreliable weak-target detection in traditional beamforming technology. Compared with the conventional minimum variance distortionless response beamformers (MVDR), this method has many advantages, such as higher directional resolution, wider detection range, fewer required snapshots and more accurate detection for weak targets. PMID:29562642

  15. DOA Estimation for Underwater Wideband Weak Targets Based on Coherent Signal Subspace and Compressed Sensing.

    PubMed

    Li, Jun; Lin, Qiu-Hua; Kang, Chun-Yu; Wang, Kai; Yang, Xiu-Ting

    2018-03-18

    Direction of arrival (DOA) estimation is the basis for underwater target localization and tracking using towed line array sonar devices. A method of DOA estimation for underwater wideband weak targets based on coherent signal subspace (CSS) processing and compressed sensing (CS) theory is proposed. Under the CSS processing framework, wideband frequency focusing is accompanied by a two-sided correlation transformation, allowing the DOA of underwater wideband targets to be estimated based on the spatial sparsity of the targets and the compressed sensing reconstruction algorithm. Through analysis and processing of simulation data and marine trial data, it is shown that this method can accomplish the DOA estimation of underwater wideband weak targets. Results also show that this method can considerably improve the spatial spectrum of weak target signals, enhancing the ability to detect them. It can solve the problems of low directional resolution and unreliable weak-target detection in traditional beamforming technology. Compared with the conventional minimum variance distortionless response beamformers (MVDR), this method has many advantages, such as higher directional resolution, wider detection range, fewer required snapshots and more accurate detection for weak targets.

  16. The Relationship Between Acoustic Signal Typing and Perceptual Evaluation of Tracheoesophageal Voice Quality for Sustained Vowels.

    PubMed

    Clapham, Renee P; van As-Brooks, Corina J; van Son, Rob J J H; Hilgers, Frans J M; van den Brekel, Michiel W M

    2015-07-01

    To investigate the relationship between acoustic signal typing and perceptual evaluation of sustained vowels produced by tracheoesophageal (TE) speakers and the use of signal typing in the clinical setting. Two evaluators independently categorized 1.75-second segments of narrow-band spectrograms according to acoustic signal typing and independently evaluated the recording of the same segments on a visual analog scale according to overall perceptual acoustic voice quality. The relationship between acoustic signal typing and overall voice quality (as a continuous scale and as a four-point ordinal scale) was investigated and the proportion of inter-rater agreement as well as the reliability between the two measures is reported. The agreement between signal type (I-IV) and ordinal voice quality (four-point scale) was low but significant, and there was a significant linear relationship between the variables. Signal type correctly predicted less than half of the voice quality data. There was a significant main effect of signal type on continuous voice quality scores with significant differences in median quality scores between signal types I-IV, I-III, and I-II. Signal typing can be used as an adjunct to perceptual and acoustic evaluation of the same stimuli for TE speech as part of a multidimensional evaluation protocol. Signal typing in its current form provides limited predictive information on voice quality, and there is significant overlap between signal types II and III and perceptual categories. Future work should consider whether the current four signal types could be refined. Copyright © 2015 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  17. Overlapping activities of TGF-β and Hedgehog signaling in cancer: therapeutic targets for cancer treatment.

    PubMed

    Perrot, Carole Y; Javelaud, Delphine; Mauviel, Alain

    2013-02-01

    Recent advances in the field of cancer therapeutics come from the development of drugs that specifically recognize validated oncogenic or pro-metastatic targets. The latter may be mutated proteins with altered function, such as kinases that become constitutively active, or critical components of growth factor signaling pathways, whose deregulation leads to aberrant malignant cell proliferation and dissemination to metastatic sites. We herein focus on the description of the overlapping activities of two important developmental pathways often exacerbated in cancer, namely Transforming Growth Factor-β (TGF-β) and Hedgehog (HH) signaling, with a special emphasis on the unifying oncogenic role played by GLI1/2 transcription factors. The latter are the main effectors of the canonical HH pathway, yet are direct target genes of TGF-β/SMAD signal transduction. While tumor-suppressor in healthy and pre-malignant tissues, TGF-β is often expressed at high levels in tumors and contributes to tumor growth, escape from immune surveillance, invasion and metastasis. HH signaling regulates cell proliferation, differentiation and apoptosis, and aberrant HH signaling is found in a variety of cancers. We discuss the current knowledge on HH and TGF-β implication in cancer including cancer stem cell biology, as well as the current state, both successes and failures, of targeted therapeutics aimed at blocking either of these pathways in the pre-clinical and clinical settings. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Refining the accuracy of validated target identification through coding variant fine-mapping in type 2 diabetes.

    PubMed

    Mahajan, Anubha; Wessel, Jennifer; Willems, Sara M; Zhao, Wei; Robertson, Neil R; Chu, Audrey Y; Gan, Wei; Kitajima, Hidetoshi; Taliun, Daniel; Rayner, N William; Guo, Xiuqing; Lu, Yingchang; Li, Man; Jensen, Richard A; Hu, Yao; Huo, Shaofeng; Lohman, Kurt K; Zhang, Weihua; Cook, James P; Prins, Bram Peter; Flannick, Jason; Grarup, Niels; Trubetskoy, Vassily Vladimirovich; Kravic, Jasmina; Kim, Young Jin; Rybin, Denis V; Yaghootkar, Hanieh; Müller-Nurasyid, Martina; Meidtner, Karina; Li-Gao, Ruifang; Varga, Tibor V; Marten, Jonathan; Li, Jin; Smith, Albert Vernon; An, Ping; Ligthart, Symen; Gustafsson, Stefan; Malerba, Giovanni; Demirkan, Ayse; Tajes, Juan Fernandez; Steinthorsdottir, Valgerdur; Wuttke, Matthias; Lecoeur, Cécile; Preuss, Michael; Bielak, Lawrence F; Graff, Marielisa; Highland, Heather M; Justice, Anne E; Liu, Dajiang J; Marouli, Eirini; Peloso, Gina Marie; Warren, Helen R; Afaq, Saima; Afzal, Shoaib; Ahlqvist, Emma; Almgren, Peter; Amin, Najaf; Bang, Lia B; Bertoni, Alain G; Bombieri, Cristina; Bork-Jensen, Jette; Brandslund, Ivan; Brody, Jennifer A; Burtt, Noël P; Canouil, Mickaël; Chen, Yii-Der Ida; Cho, Yoon Shin; Christensen, Cramer; Eastwood, Sophie V; Eckardt, Kai-Uwe; Fischer, Krista; Gambaro, Giovanni; Giedraitis, Vilmantas; Grove, Megan L; de Haan, Hugoline G; Hackinger, Sophie; Hai, Yang; Han, Sohee; Tybjærg-Hansen, Anne; Hivert, Marie-France; Isomaa, Bo; Jäger, Susanne; Jørgensen, Marit E; Jørgensen, Torben; Käräjämäki, Annemari; Kim, Bong-Jo; Kim, Sung Soo; Koistinen, Heikki A; Kovacs, Peter; Kriebel, Jennifer; Kronenberg, Florian; Läll, Kristi; Lange, Leslie A; Lee, Jung-Jin; Lehne, Benjamin; Li, Huaixing; Lin, Keng-Hung; Linneberg, Allan; Liu, Ching-Ti; Liu, Jun; Loh, Marie; Mägi, Reedik; Mamakou, Vasiliki; McKean-Cowdin, Roberta; Nadkarni, Girish; Neville, Matt; Nielsen, Sune F; Ntalla, Ioanna; Peyser, Patricia A; Rathmann, Wolfgang; Rice, Kenneth; Rich, Stephen S; Rode, Line; Rolandsson, Olov; Schönherr, Sebastian; Selvin, Elizabeth; Small, Kerrin S; Stančáková, Alena; Surendran, Praveen; Taylor, Kent D; Teslovich, Tanya M; Thorand, Barbara; Thorleifsson, Gudmar; Tin, Adrienne; Tönjes, Anke; Varbo, Anette; Witte, Daniel R; Wood, Andrew R; Yajnik, Pranav; Yao, Jie; Yengo, Loïc; Young, Robin; Amouyel, Philippe; Boeing, Heiner; Boerwinkle, Eric; Bottinger, Erwin P; Chowdhury, Rajiv; Collins, Francis S; Dedoussis, George; Dehghan, Abbas; Deloukas, Panos; Ferrario, Marco M; Ferrières, Jean; Florez, Jose C; Frossard, Philippe; Gudnason, Vilmundur; Harris, Tamara B; Heckbert, Susan R; Howson, Joanna M M; Ingelsson, Martin; Kathiresan, Sekar; Kee, Frank; Kuusisto, Johanna; Langenberg, Claudia; Launer, Lenore J; Lindgren, Cecilia M; Männistö, Satu; Meitinger, Thomas; Melander, Olle; Mohlke, Karen L; Moitry, Marie; Morris, Andrew D; Murray, Alison D; de Mutsert, Renée; Orho-Melander, Marju; Owen, Katharine R; Perola, Markus; Peters, Annette; Province, Michael A; Rasheed, Asif; Ridker, Paul M; Rivadineira, Fernando; Rosendaal, Frits R; Rosengren, Anders H; Salomaa, Veikko; Sheu, Wayne H-H; Sladek, Rob; Smith, Blair H; Strauch, Konstantin; Uitterlinden, André G; Varma, Rohit; Willer, Cristen J; Blüher, Matthias; Butterworth, Adam S; Chambers, John Campbell; Chasman, Daniel I; Danesh, John; van Duijn, Cornelia; Dupuis, Josée; Franco, Oscar H; Franks, Paul W; Froguel, Philippe; Grallert, Harald; Groop, Leif; Han, Bok-Ghee; Hansen, Torben; Hattersley, Andrew T; Hayward, Caroline; Ingelsson, Erik; Kardia, Sharon L R; Karpe, Fredrik; Kooner, Jaspal Singh; Köttgen, Anna; Kuulasmaa, Kari; Laakso, Markku; Lin, Xu; Lind, Lars; Liu, Yongmei; Loos, Ruth J F; Marchini, Jonathan; Metspalu, Andres; Mook-Kanamori, Dennis; Nordestgaard, Børge G; Palmer, Colin N A; Pankow, James S; Pedersen, Oluf; Psaty, Bruce M; Rauramaa, Rainer; Sattar, Naveed; Schulze, Matthias B; Soranzo, Nicole; Spector, Timothy D; Stefansson, Kari; Stumvoll, Michael; Thorsteinsdottir, Unnur; Tuomi, Tiinamaija; Tuomilehto, Jaakko; Wareham, Nicholas J; Wilson, James G; Zeggini, Eleftheria; Scott, Robert A; Barroso, Inês; Frayling, Timothy M; Goodarzi, Mark O; Meigs, James B; Boehnke, Michael; Saleheen, Danish; Morris, Andrew P; Rotter, Jerome I; McCarthy, Mark I

    2018-04-01

    We aggregated coding variant data for 81,412 type 2 diabetes cases and 370,832 controls of diverse ancestry, identifying 40 coding variant association signals (P < 2.2 × 10 -7 ); of these, 16 map outside known risk-associated loci. We make two important observations. First, only five of these signals are driven by low-frequency variants: even for these, effect sizes are modest (odds ratio ≤1.29). Second, when we used large-scale genome-wide association data to fine-map the associated variants in their regional context, accounting for the global enrichment of complex trait associations in coding sequence, compelling evidence for coding variant causality was obtained for only 16 signals. At 13 others, the associated coding variants clearly represent 'false leads' with potential to generate erroneous mechanistic inference. Coding variant associations offer a direct route to biological insight for complex diseases and identification of validated therapeutic targets; however, appropriate mechanistic inference requires careful specification of their causal contribution to disease predisposition.

  19. Labor Inhibits Placental Mechanistic Target of Rapamycin Complex 1 Signaling

    PubMed Central

    LAGER, Susanne; AYE, Irving L.M.H.; GACCIOLI, Francesca; RAMIREZ, Vanessa I.; JANSSON, Thomas; POWELL, Theresa L.

    2014-01-01

    Introduction Labor induces a myriad of changes in placental gene expression. These changes may represent a physiological adaptation inhibiting placental cellular processes associated with a high demand for oxygen and energy (e.g., protein synthesis and active transport) thereby promoting oxygen and glucose transfer to the fetus. We hypothesized that mechanistic target of rapamycin complex 1 (mTORC1) signaling, a positive regulator of trophoblast protein synthesis and amino acid transport, is inhibited by labor. Methods Placental tissue was collected from healthy, term pregnancies (n=15 no-labor; n=12 labor). Activation of Caspase-1, IRS1/Akt, STAT, mTOR, and inflammatory signaling pathways was determined by Western blot. NFκB p65 and PPARγ DNA binding activity was measured in isolated nuclei. Results Labor increased Caspase-1 activation and mTOR complex 2 signaling, as measured by phosphorylation of Akt (S473). However, mTORC1 signaling was inhibited in response to labor as evidenced by decreased phosphorylation of mTOR (S2448) and 4EBP1 (T37/46 and T70). Labor also decreased NFκB and PPARγ DNA binding activity, while having no effect on IRS1 or STAT signaling pathway. Discussion and conclusion Several placental signaling pathways are affected by labor, which has implications for experimental design in studies of placental signaling. Inhibition of placental mTORC1 signaling in response to labor may serve to down-regulate protein synthesis and amino acid transport, processes that account for a large share of placental oxygen and glucose consumption. We speculate that this response preserves glucose and oxygen for transfer to the fetus during the stressful events of labor. PMID:25454472

  20. Discriminating quantum-optical beam-splitter channels with number-diagonal signal states: Applications to quantum reading and target detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nair, Ranjith

    2011-09-15

    We consider the problem of distinguishing, with minimum probability of error, two optical beam-splitter channels with unequal complex-valued reflectivities using general quantum probe states entangled over M signal and M' idler mode pairs of which the signal modes are bounced off the beam splitter while the idler modes are retained losslessly. We obtain a lower bound on the output state fidelity valid for any pure input state. We define number-diagonal signal (NDS) states to be input states whose density operator in the signal modes is diagonal in the multimode number basis. For such input states, we derive series formulas formore » the optimal error probability, the output state fidelity, and the Chernoff-type upper bounds on the error probability. For the special cases of quantum reading of a classical digital memory and target detection (for which the reflectivities are real valued), we show that for a given input signal photon probability distribution, the fidelity is minimized by the NDS states with that distribution and that for a given average total signal energy N{sub s}, the fidelity is minimized by any multimode Fock state with N{sub s} total signal photons. For reading of an ideal memory, it is shown that Fock state inputs minimize the Chernoff bound. For target detection under high-loss conditions, a no-go result showing the lack of appreciable quantum advantage over coherent state transmitters is derived. A comparison of the error probability performance for quantum reading of number state and two-mode squeezed vacuum state (or EPR state) transmitters relative to coherent state transmitters is presented for various values of the reflectances. While the nonclassical states in general perform better than the coherent state, the quantitative performance gains differ depending on the values of the reflectances. The experimental outlook for realizing nonclassical gains from number state transmitters with current technology at moderate to high values of

  1. Bacterial effectors target the common signaling partner BAK1 to disrupt multiple MAMP receptor-signaling complexes and impede plant immunity.

    PubMed

    Shan, Libo; He, Ping; Li, Jianming; Heese, Antje; Peck, Scott C; Nürnberger, Thorsten; Martin, Gregory B; Sheen, Jen

    2008-07-17

    Successful pathogens have evolved strategies to interfere with host immune systems. For example, the ubiquitous plant pathogen Pseudomonas syringae injects two sequence-distinct effectors, AvrPto and AvrPtoB, to intercept convergent innate immune responses stimulated by multiple microbe-associated molecular patterns (MAMPs). However, the direct host targets and precise molecular mechanisms of bacterial effectors remain largely obscure. We show that AvrPto and AvrPtoB bind the Arabidopsis receptor-like kinase BAK1, a shared signaling partner of both the flagellin receptor FLS2 and the brassinosteroid receptor BRI1. This targeting interferes with ligand-dependent association of FLS2 with BAK1 during infection. It also impedes BAK1-dependent host immune responses to diverse other MAMPs and brassinosteroid signaling. Significantly, the structural basis of AvrPto-BAK1 interaction appears to be distinct from AvrPto-Pto association required for effector-triggered immunity. These findings uncover a unique strategy of bacterial pathogenesis where virulence effectors block signal transmission through a key common component of multiple MAMP-receptor complexes.

  2. BMP type II receptor as a therapeutic target in pulmonary arterial hypertension.

    PubMed

    Orriols, Mar; Gomez-Puerto, Maria Catalina; Ten Dijke, Peter

    2017-08-01

    Pulmonary arterial hypertension (PAH) is a chronic disease characterized by a progressive elevation in mean pulmonary arterial pressure. This occurs due to abnormal remodeling of small peripheral lung vasculature resulting in progressive occlusion of the artery lumen that eventually causes right heart failure and death. The most common cause of PAH is inactivating mutations in the gene encoding a bone morphogenetic protein type II receptor (BMPRII). Current therapeutic options for PAH are limited and focused mainly on reversal of pulmonary vasoconstriction and proliferation of vascular cells. Although these treatments can relieve disease symptoms, PAH remains a progressive lethal disease. Emerging data suggest that restoration of BMPRII signaling in PAH is a promising alternative that could prevent and reverse pulmonary vascular remodeling. Here we will focus on recent advances in rescuing BMPRII expression, function or signaling to prevent and reverse pulmonary vascular remodeling in PAH and its feasibility for clinical translation. Furthermore, we summarize the role of described miRNAs that directly target the BMPR2 gene in blood vessels. We discuss the therapeutic potential and the limitations of promising new approaches to restore BMPRII signaling in PAH patients. Different mutations in BMPR2 and environmental/genetic factors make PAH a heterogeneous disease and it is thus likely that the best approach will be patient-tailored therapies.

  3. Inversin, the gene product mutated in nephronophthisis type II, functions as a molecular switch between Wnt signaling pathways

    PubMed Central

    Simons, Matias; Gloy, Joachim; Ganner, Athina; Bullerkotte, Axel; Bashkurov, Mikhail; Krönig, Corinna; Schermer, Bernhard; Benzing, Thomas; Cabello, Olga A; Jenny, Andreas; Mlodzik, Marek; Polok, Bozena; Driever, Wolfgang; Obara, Tomoko; Walz, Gerd

    2013-01-01

    Cystic renal diseases are caused by mutations of proteins that share a unique subcellular localization: the primary cilium of tubular epithelial cells1. Mutations of the ciliary protein inversin cause nephronophthisis type II, an autosomal recessive cystic kidney disease characterized by extensive renal cysts, situs inversus and renal failure2. Here we report that inversin acts as a molecular switch between different Wnt signaling cascades. Inversin inhibits the canonical Wnt pathway by targeting cytoplasmic dishevelled (Dsh or Dvl1) for degradation; concomitantly, it is required for convergent extension movements in gastrulating Xenopus laevis embryos and elongation of animal cap explants, both regulated by noncanonical Wnt signaling. In zebrafish, the structurally related switch molecule diversin ameliorates renal cysts caused by the depletion of inversin, implying that an inhibition of canonical Wnt signaling is required for normal renal development. Fluid flow increases inversin levels in ciliated tubular epithelial cells and seems to regulate this crucial switch between Wnt signaling pathways during renal development. PMID:15852005

  4. Something old, something new and something borrowed: emerging paradigm of insulin-like growth factor type 1 receptor (IGF-1R) signaling regulation.

    PubMed

    Girnita, Leonard; Worrall, Claire; Takahashi, Shin-Ichiro; Seregard, Stefan; Girnita, Ada

    2014-07-01

    The insulin-like growth factor type 1 receptor (IGF-1R) plays a key role in the development and progression of cancer; however, therapeutics targeting it have had disappointing results in the clinic. As a receptor tyrosine kinase (RTK), IGF-1R is traditionally described as an ON/OFF system, with ligand stabilizing the ON state and exclusive kinase-dependent signaling activation. Newly added to the traditional model, ubiquitin-mediated receptor downregulation and degradation was originally described as a response to ligand/receptor interaction and thus inseparable from kinase signaling activation. Yet, the classical model has proven over-simplified and insufficient to explain experimental evidence accumulated over the last decade, including kinase-independent signaling, unbalanced signaling, or dissociation between signaling and receptor downregulation. Based on the recent findings that IGF-1R "borrows" components of G-protein coupled receptor (GPCR) signaling, including β-arrestins and G-protein-related kinases, we discuss the emerging paradigm for the IGF-1R as a functional RTK/GPCR hybrid, which integrates the kinase signaling with the IGF-1R canonical GPCR characteristics. The contradictions to the classical IGF-1R signaling concept as well as the design of anti-IGF-1R therapeutics treatment are considered in the light of this paradigm shift and we advocate recognition of IGF-1R as a valid target for cancer treatment.

  5. MicroRNA-99 Family Targets AKT/mTOR Signaling Pathway in Dermal Wound Healing

    PubMed Central

    Chen, Dan; Fang, Zong Juan; Zhao, Yan; Dragas, Dragan; Dai, Yang; Marucha, Phillip T.; Zhou, Xiaofeng

    2013-01-01

    Recent studies suggest that microRNAs play important roles in dermal wound healing and microRNA deregulation has been linked with impaired wound repair. Here, using a mouse experimental wound healing model, we identified a panel of 63 differentially expressed microRNAs during dermal wound healing, including members of miR-99 family (miR-99a, miR-99b, miR-100). We further demonstrated that miR-99 family members regulate cell proliferation, cell migration, and AKT/mTOR signaling. Combined experimental and bioinformatics analyses revealed that miR-99 family members regulate AKT/mTOR signaling by targeting multiple genes, including known target genes (e.g., IGF1R, mTOR) and a new target (AKT1). The effects of miR-99 family members on the expression of IGF1R, mTOR and AKT1 were validated at both the mRNA and protein levels. Two adjacent miR-99 family targeting sites were identified in the 3′-UTR of the AKT1 mRNA. The direct interaction of miR-100 with these targeting sites was confirmed using luciferase reporter assays. The microRNA-100-directed recruitment of AKT1 mRNA to the RNAi-induced silencing complex (RISC) was confirmed by a ribonucleoprotein-IP assay. In summary, we identified a panel of differentially expressed microRNAs which may play important roles in wound healing. We provide evidence that miR-99 family members contribute to wound healing by regulating the AKT/mTOR signaling. PMID:23724047

  6. MicroRNA-99 family targets AKT/mTOR signaling pathway in dermal wound healing.

    PubMed

    Jin, Yi; Tymen, Stéphanie D; Chen, Dan; Fang, Zong Juan; Zhao, Yan; Dragas, Dragan; Dai, Yang; Marucha, Phillip T; Zhou, Xiaofeng

    2013-01-01

    Recent studies suggest that microRNAs play important roles in dermal wound healing and microRNA deregulation has been linked with impaired wound repair. Here, using a mouse experimental wound healing model, we identified a panel of 63 differentially expressed microRNAs during dermal wound healing, including members of miR-99 family (miR-99a, miR-99b, miR-100). We further demonstrated that miR-99 family members regulate cell proliferation, cell migration, and AKT/mTOR signaling. Combined experimental and bioinformatics analyses revealed that miR-99 family members regulate AKT/mTOR signaling by targeting multiple genes, including known target genes (e.g., IGF1R, mTOR) and a new target (AKT1). The effects of miR-99 family members on the expression of IGF1R, mTOR and AKT1 were validated at both the mRNA and protein levels. Two adjacent miR-99 family targeting sites were identified in the 3'-UTR of the AKT1 mRNA. The direct interaction of miR-100 with these targeting sites was confirmed using luciferase reporter assays. The microRNA-100-directed recruitment of AKT1 mRNA to the RNAi-induced silencing complex (RISC) was confirmed by a ribonucleoprotein-IP assay. In summary, we identified a panel of differentially expressed microRNAs which may play important roles in wound healing. We provide evidence that miR-99 family members contribute to wound healing by regulating the AKT/mTOR signaling.

  7. Signal transduction networks in rheumatoid arthritis

    PubMed Central

    Hammaker, D; Sweeney, S; Firestein, G

    2003-01-01

    Signal transduction pathways regulate cellular responses to stress and play a critical role in inflammation. The complexity and specificity of signalling mechanisms represent major hurdles for developing effective, safe therapeutic interventions that target specific molecules. One approach is to dissect the pathways methodically to determine their hierarchy in various cell types and diseases. This approach contributed to the identification and prioritisation of specific kinases that regulate NF-κB and the mitogen activated protein (MAP) kinase cascade as especially attractive targets. Although significant issues remain with regard to the discovery of truly selective kinase inhibitors, the risks that accompany inhibition of fundamental signal transduction mechanisms can potentially be decreased by careful dissection of the pathways and rational target selection. PMID:14532158

  8. New Insights into Protein Kinase B/Akt Signaling: Role of Localized Akt Activation and Compartment-Specific Target Proteins for the Cellular Radiation Response.

    PubMed

    Szymonowicz, Klaudia; Oeck, Sebastian; Malewicz, Nathalie M; Jendrossek, Verena

    2018-03-18

    Genetic alterations driving aberrant activation of the survival kinase Protein Kinase B (Akt) are observed with high frequency during malignant transformation and cancer progression. Oncogenic gene mutations coding for the upstream regulators or Akt, e.g., growth factor receptors, RAS and phosphatidylinositol-3-kinase (PI3K), or for one of the three Akt isoforms as well as loss of the tumor suppressor Phosphatase and Tensin Homolog on Chromosome Ten (PTEN) lead to constitutive activation of Akt. By activating Akt, these genetic alterations not only promote growth, proliferation and malignant behavior of cancer cells by phosphorylation of various downstream signaling molecules and signaling nodes but can also contribute to chemo- and radioresistance in many types of tumors. Here we review current knowledge on the mechanisms dictating Akt's activation and target selection including the involvement of miRNAs and with focus on compartmentalization of the signaling network. Moreover, we discuss recent advances in the cross-talk with DNA damage response highlighting nuclear Akt target proteins with potential involvement in the regulation of DNA double strand break repair.

  9. Mechanisms of epigenetic and cell-type specific regulation of Hey target genes in ES cells and cardiomyocytes.

    PubMed

    Weber, David; Heisig, Julia; Kneitz, Susanne; Wolf, Elmar; Eilers, Martin; Gessler, Manfred

    2015-02-01

    Hey bHLH transcription factors are critical effectors of Notch signaling. During mammalian heart development they are expressed in atrial and ventricular cardiomyocytes and in the developing endocardium. Hey knockout mice suffer from lethal cardiac defects, such as ventricular septum defects, valve defects and cardiomyopathy. Despite this functional relevance, little is known about the regulation of downstream targets in relevant cell types. The objective of this study was to elucidate the regulatory mechanisms by which Hey proteins affect gene expression in a cell type specific manner. We used an in vitro cardiomyocyte differentiation system with inducible Hey1 or Hey2 expression to study target gene regulation in cardiomyocytes (CM) generated from murine embryonic stem cells (ESC). The effects of Hey1 and Hey2 are largely redundant, but cell type specific. The number of regulated genes is comparable between ESC and CM, but the total number of binding sites is much higher, especially in ESC, targeting mainly genes involved in transcriptional regulation and developmental processes. Repression by Hey proteins generally correlates with the extent of Hey-binding to target promoters, Hdac recruitment and lower histone acetylation. Functionally, treatment with the Hdac inhibitor TSA abolished Hey target gene regulation. However, in CM the repressive effect of Hey-binding is lost for a subset of genes. These also lack Hey-dependent histone deacetylation in CM and are enriched for binding sites of cardiac specific activators like Srf, Nkx2-5, and Gata4. Ectopic Nkx2-5 overexpression in ESC blocks Hey-mediated repression of these genes. Thus, Hey proteins mechanistically repress target genes via Hdac recruitment and histone deacetylation. In CM Hey-repression is counteracted by cardiac activators, which recruit histone acetylases and prevent Hey mediated deacetylation and subsequent repression for a subset of genes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. MEK5-ERK5 Signaling in Cancer: Implications for Targeted Therapy

    PubMed Central

    Hoang, Van T.; Yan, Thomas J.; Cavanaugh, Jane E.; Flaherty, Patrick T.; Beckman, Barbara S.; Burow, Matthew E.

    2017-01-01

    Mitogen-activated protein kinases (MAPKs) regulate diverse cellular processes including proliferation, cell survival, differentiation, and apoptosis. While conventional MAPK constituents have well-defined roles in oncogenesis, the MAPK kinase 5-extracellular signal-regulated kinase 5 (MEK5-ERK5) pathway has only recently emerged in cancer research. In this review, we consider the MEK5 signaling cascade, focusing specifically on its involvement in drug resistance and regulation of aggressive cancer phenotypes. Moreover, we explore the role of MEK5 in tumorigenesis and metastatic progression, discussing the discrepancies in preclinical studies and assessing its viability as a therapeutic target for anti-cancer agents. PMID:28153789

  11. The single-subunit RING-type E3 ubiquitin ligase RSL1 targets PYL4 and PYR1 ABA receptors in plasma membrane to modulate abscisic acid signaling.

    PubMed

    Bueso, Eduardo; Rodriguez, Lesia; Lorenzo-Orts, Laura; Gonzalez-Guzman, Miguel; Sayas, Enric; Muñoz-Bertomeu, Jesús; Ibañez, Carla; Serrano, Ramón; Rodriguez, Pedro L

    2014-12-01

    Membrane-delimited events play a crucial role for ABA signaling and PYR/PYL/RCAR ABA receptors, clade A PP2Cs and SnRK2/CPK kinases modulate the activity of different plasma membrane components involved in ABA action. Therefore, the turnover of PYR/PYL/RCARs in the proximity of plasma membrane might be a step that affects receptor function and downstream signaling. In this study we describe a single-subunit RING-type E3 ubiquitin ligase RSL1 that interacts with the PYL4 and PYR1 ABA receptors at the plasma membrane. Overexpression of RSL1 reduces ABA sensitivity and rsl1 RNAi lines that impair expression of several members of the RSL1/RFA gene family show enhanced sensitivity to ABA. RSL1 bears a C-terminal transmembrane domain that targets the E3 ligase to plasma membrane. Accordingly, bimolecular fluorescent complementation (BiFC) studies showed the RSL1-PYL4 and RSL1-PYR1 interaction is localized to plasma membrane. RSL1 promoted PYL4 and PYR1 degradation in vivo and mediated in vitro ubiquitylation of the receptors. Taken together, these results suggest ubiquitylation of ABA receptors at plasma membrane is a process that might affect their function via effect on their half-life, protein interactions or trafficking. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  12. Bench-to-bedside review: Angiopoietin signalling in critical illness – a future target?

    PubMed Central

    van Meurs, Matijs; Kümpers, Philipp; Ligtenberg, Jack JM; Meertens, John HJM; Molema, Grietje; Zijlstra, Jan G

    2009-01-01

    Multiple organ dysfunction syndrome (MODS) occurs in response to major insults such as sepsis, severe haemorrhage, trauma, major surgery and pancreatitis. The mortality rate is high despite intensive supportive care. The pathophysiological mechanism underlying MODS are not entirely clear, although several have been proposed. Overwhelming inflammation, immunoparesis, occult oxygen debt and other mechanisms have been investigated, and – despite many unanswered questions – therapies targeting these mechanisms have been developed. Unfortunately, only a few interventions, usually those targeting multiple mechanisms at the same time, have appeared to be beneficial. We clearly need to understand better the mechanisms that underlie MODS. The endothelium certainly plays an active role in MODS. It functions at the intersection of several systems, including inflammation, coagulation, haemodynamics, fluid and electrolyte balance, and cell migration. An important regulator of these systems is the angiopoietin/Tie2 signalling system. In this review we describe this signalling system, giving special attention to what is known about it in critically ill patients and its potential as a target for therapy. PMID:19435476

  13. Cell type specificity of GABA(A) receptor mediated signaling in the hippocampus.

    PubMed

    Semyanov, A

    2003-08-01

    Inhibitory signaling mediated by ionotropic GABA(1) receptors generally acts as a major brake against excessive excitability in the brain. This is especially relevant in epilepsy-prone structures such as the hippocampus, in which GABA(A) receptor mediated inhibition is critical in suppressing epileptiform activity. Indeed, potentiating GABA(A) receptor mediated signaling is an important target for antiepileptic drug therapy. GABA(A) receptor mediated inhibition has different roles in the network dependent on the target neuron. Inhibiting principal cells will thus reduce network excitability, whilst inhibiting interneurons will increase network excitability; GABAergic therapeutic agents do not distinguish between these two alternatives, which may explain why, on occasion, GABAergic antiepileptic drugs can be proconvulsant. The importance of the target-cell for the effect of neuroactive drugs has emerged from a number of recent studies. Immunocytochemical data have suggested non-uniform distribution of GABA(A) receptor subunits among hippocampal interneurons and pyramidal cells. This has been confirmed by subsequent electropharmacological data. These have demonstrated that compounds which act on GABA(A) receptors or the extracellular GABA concentration can have distinct effects in different neuronal populations. Recently, it has also been discovered that presynaptic glutamate heteroreceptors can modulate GABA release in the hippocampus in a postsynaptic cell-specific manner. Since systemically administrated drugs may act on different neuronal subtypes, they can exhibit paradoxical effects. Distinguishing compounds that have target specific effects on GABAergic signaling may lead to novel and more effective treatments against epilepsy.

  14. The Pseudomonas syringae type III effector HopG1 targets mitochondria, alters plant development, and suppresses plant innate immunity

    PubMed Central

    Block, Anna; Guo, Ming; Li, Guangyong; Elowsky, Christian; Clemente, Thomas E.; Alfano, James R.

    2009-01-01

    Summary The bacterial plant pathogen Pseudomonas syringae uses a type III protein secretion system to inject type III effectors into plant cells. Primary targets of these effectors appear to be effector-triggered immunity (ETI) and pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI). The type III effector HopG1 is a suppressor of ETI that is broadly conserved in bacterial plant pathogens. Here we show that HopG1 from P. syringae pv. tomato DC3000 also suppresses PTI. Interestingly, HopG1 localizes to plant mitochondria, suggesting that its suppression of innate immunity may be linked to a perturbation of mitochondrial function. While HopG1 possesses no obvious mitochondrial signal peptide, its N-terminal two-thirds was sufficient for mitochondrial localization. A HopG1-GFP fusion lacking HopG1’s N-terminal 13 amino acids was not localized to the mitochondria reflecting the importance of the N-terminus for targeting. Constitutive expression of HopG1 in Arabidopsis thaliana, Nicotiana tabacum (tobacco) and Lycopersicon esculentum (tomato) dramatically alters plant development resulting in dwarfism, increased branching and infertility. Constitutive expression of HopG1 in planta leads to reduced respiration rates and an increased basal level of reactive oxygen species. These findings suggest that HopG1’s target is mitochondrial and that effector/target interaction promotes disease by disrupting mitochondrial functions. PMID:19863557

  15. Effect of microbubble ligation to cells on ultrasound signal enhancement: implications for targeted imaging.

    PubMed

    Lankford, Miles; Behm, Carolyn Z; Yeh, James; Klibanov, Alexander L; Robinson, Peter; Lindner, Jonathan R

    2006-10-01

    Molecular imaging with contrast-enhanced ultrasound (CEU) relies on the detection of microbubbles retained in regions of disease. The aim of this study was to determine whether microbubble attachment to cells influences their acoustic signal generation and stability. Biotinylated microbubbles were attached to streptavidin-coated plates to derive density versus intensity relations during low- and high-power imaging. To assess damping from microbubble attachment to solid or cell surfaces, in vitro imaging was performed for microbubbles charge-coupled to methacrylate spheres and for vascular cell adhesion molecule-1-targeted microbubbles attached to endothelial cells. Signal enhancement on plates increased according to acoustic power and microbubble site density up to 300 mm. Microbubble signal was reduced by attachment to solid spheres during high- and low-power imaging but was minimally reduced by attachment to endothelial cells and only at low power. Attachment of targeted microbubbles to rigid surfaces results in damping and a reduction of their acoustic signal, which is not seen when microbubbles are attached to cells. A reliable concentration versus intensity relationship can be expected from microbubble attachment to 2-dimensional surfaces until a very high site density is reached.

  16. Hybrid foraging search: Searching for multiple instances of multiple types of target.

    PubMed

    Wolfe, Jeremy M; Aizenman, Avigael M; Boettcher, Sage E P; Cain, Matthew S

    2016-02-01

    This paper introduces the "hybrid foraging" paradigm. In typical visual search tasks, observers search for one instance of one target among distractors. In hybrid search, observers search through visual displays for one instance of any of several types of target held in memory. In foraging search, observers collect multiple instances of a single target type from visual displays. Combining these paradigms, in hybrid foraging tasks observers search visual displays for multiple instances of any of several types of target (as might be the case in searching the kitchen for dinner ingredients or an X-ray for different pathologies). In the present experiment, observers held 8-64 target objects in memory. They viewed displays of 60-105 randomly moving photographs of objects and used the computer mouse to collect multiple targets before choosing to move to the next display. Rather than selecting at random among available targets, observers tended to collect items in runs of one target type. Reaction time (RT) data indicate searching again for the same item is more efficient than searching for any other targets, held in memory. Observers were trying to maximize collection rate. As a result, and consistent with optimal foraging theory, they tended to leave 25-33% of targets uncollected when moving to the next screen/patch. The pattern of RTs shows that while observers were collecting a target item, they had already begun searching memory and the visual display for additional targets, making the hybrid foraging task a useful way to investigate the interaction of visual and memory search. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Hybrid foraging search: Searching for multiple instances of multiple types of target

    PubMed Central

    Wolfe, Jeremy M.; Aizenman, Avigael M.; Boettcher, Sage E.P.; Cain, Matthew S.

    2016-01-01

    This paper introduces the “hybrid foraging” paradigm. In typical visual search tasks, observers search for one instance of one target among distractors. In hybrid search, observers search through visual displays for one instance of any of several types of target held in memory. In foraging search, observers collect multiple instances of a single target type from visual displays. Combining these paradigms, in hybrid foraging tasks observers search visual displays for multiple instances of any of several types of target (as might be the case in searching the kitchen for dinner ingredients or an X-ray for different pathologies). In the present experiment, observers held 8–64 targets objects in memory. They viewed displays of 60–105 randomly moving photographs of objects and used the computer mouse to collect multiple targets before choosing to move to the next display. Rather than selecting at random among available targets, observers tended to collect items in runs of one target type. Reaction time (RT) data indicate searching again for the same item is more efficient than searching for any other targets, held in memory. Observers were trying to maximize collection rate. As a result, and consistent with optimal foraging theory, they tended to leave 25–33% of targets uncollected when moving to the next screen/patch. The pattern of RTs shows that while observers were collecting a target item, they had already begun searching memory and the visual display for additional targets, making the hybrid foraging task a useful way to investigate the interaction of visual and memory search. PMID:26731644

  18. Targeted Blockage of Signal Transducer and Activator of Transcription 5 Signaling Pathway with Decoy Oligodeoxynucleotides Suppresses Leukemic K562 Cell Growth

    PubMed Central

    Wang, Xiaozhong; Zeng, Jianming; Shi, Mei; Zhao, Shiqiao; Bai, Weijun; Cao, Weixi; Tu, Zhiguang; Huang, Zonggan

    2011-01-01

    The protein signal transducer and activator of transcription 5 (STAT5) of the JAK/STAT pathway is constitutively activated because of its phosphorylation by tyrosine kinase activity of fusion protein BCR-ABL in chronic myelogenous leukemia (CML) cells. This study investigated the potential therapeutic effect of STAT5 decoy oligodeoxynucleotides (ODN) using leukemia K562 cells as a model. Our results showed that transfection of 21-mer-long STAT5 decoy ODN into K562 cells effectively inhibited cell proliferation and induced cell apoptosis. Further, STAT5 decoy ODN downregulated STAT5 targets bcl-xL, cyclinD1, and c-myc at both mRNA and protein levels in a sequence-specific manner. Collectively, these data demonstrate the therapeutic effect of blocking the STAT5 signal pathway by cis-element decoy for cancer characterized by constitutive STAT5 activation. Thus, our study provides support for STAT5 as a potential target downstream of BCR-ABL for CML treatment and helps establish the concept of targeting STAT5 by decoy ODN as a novel therapy approach for imatinib-resistant CML. PMID:21091189

  19. Targeting CB2-GPR55 Receptor Heteromers Modulates Cancer Cell Signaling*

    PubMed Central

    Moreno, Estefanía; Andradas, Clara; Medrano, Mireia; Caffarel, María M.; Pérez-Gómez, Eduardo; Blasco-Benito, Sandra; Gómez-Cañas, María; Pazos, M. Ruth; Irving, Andrew J.; Lluís, Carme; Canela, Enric I.; Fernández-Ruiz, Javier; Guzmán, Manuel; McCormick, Peter J.; Sánchez, Cristina

    2014-01-01

    The G protein-coupled receptors CB2 (CB2R) and GPR55 are overexpressed in cancer cells and human tumors. Because a modulation of GPR55 activity by cannabinoids has been suggested, we analyzed whether this receptor participates in cannabinoid effects on cancer cells. Here we show that CB2R and GPR55 form heteromers in cancer cells, that these structures possess unique signaling properties, and that modulation of these heteromers can modify the antitumoral activity of cannabinoids in vivo. These findings unveil the existence of previously unknown signaling platforms that help explain the complex behavior of cannabinoids and may constitute new targets for therapeutic intervention in oncology. PMID:24942731

  20. Targeting key proximal drivers of type 2 inflammation in disease.

    PubMed

    Gandhi, Namita A; Bennett, Brandy L; Graham, Neil M H; Pirozzi, Gianluca; Stahl, Neil; Yancopoulos, George D

    2016-01-01

    Systemic type 2 inflammation encompassing T helper 2 (TH2)-type responses is emerging as a unifying feature of both classically defined allergic diseases, such as asthma, and a range of other inflammatory diseases. Rather than reducing inflammation with broad-acting immunosuppressants or narrowly targeting downstream products of the TH2 pathway, such as immunoglobulin E (IgE), efforts to target the key proximal type 2 cytokines - interleukin-4 (IL-4), IL-5 and IL-13 - represent a promising strategy to achieve therapeutic benefit across multiple diseases. After several initial disappointing clinical results with therapies targeting IL-4, IL-5 or IL-13 in asthma, applying a personalized approach achieved therapeutic benefit in an asthma subtype exhibiting an 'allergic' phenotype. More recently, efficacy was extended into a broad population of people with asthma. This argues that the Type 2 inflammation is broadly relevant across the severe asthma population if the key upstream drivers are properly blocked. Moreover, the simultaneous inhibition of IL-4 and IL-13 has shown significant clinical activity in diseases that are often co-morbid with asthma - atopic dermatitis and chronic sinusitis with nasal polyps - supporting the hypothesis that targeting a central 'driver pathway' could benefit multiple allergic diseases.

  1. Zinc Signals and Immunity.

    PubMed

    Maywald, Martina; Wessels, Inga; Rink, Lothar

    2017-10-24

    Zinc homeostasis is crucial for an adequate function of the immune system. Zinc deficiency as well as zinc excess result in severe disturbances in immune cell numbers and activities, which can result in increased susceptibility to infections and development of especially inflammatory diseases. This review focuses on the role of zinc in regulating intracellular signaling pathways in innate as well as adaptive immune cells. Main underlying molecular mechanisms and targets affected by altered zinc homeostasis, including kinases, caspases, phosphatases, and phosphodiesterases, will be highlighted in this article. In addition, the interplay of zinc homeostasis and the redox metabolism in affecting intracellular signaling will be emphasized. Key signaling pathways will be described in detail for the different cell types of the immune system. In this, effects of fast zinc flux, taking place within a few seconds to minutes will be distinguish from slower types of zinc signals, also designated as "zinc waves", and late homeostatic zinc signals regarding prolonged changes in intracellular zinc.

  2. Zinc Signals and Immunity

    PubMed Central

    Maywald, Martina; Wessels, Inga; Rink, Lothar

    2017-01-01

    Zinc homeostasis is crucial for an adequate function of the immune system. Zinc deficiency as well as zinc excess result in severe disturbances in immune cell numbers and activities, which can result in increased susceptibility to infections and development of especially inflammatory diseases. This review focuses on the role of zinc in regulating intracellular signaling pathways in innate as well as adaptive immune cells. Main underlying molecular mechanisms and targets affected by altered zinc homeostasis, including kinases, caspases, phosphatases, and phosphodiesterases, will be highlighted in this article. In addition, the interplay of zinc homeostasis and the redox metabolism in affecting intracellular signaling will be emphasized. Key signaling pathways will be described in detail for the different cell types of the immune system. In this, effects of fast zinc flux, taking place within a few seconds to minutes will be distinguish from slower types of zinc signals, also designated as “zinc waves”, and late homeostatic zinc signals regarding prolonged changes in intracellular zinc. PMID:29064429

  3. From Fly Wings to Targeted Cancer Therapies: A Centennial for Notch Signaling

    PubMed Central

    Ntziachristos, Panagiotis; Lim, Jing Shan; Sage, Julien; Aifantis, Iannis

    2014-01-01

    Since Notch phenotypes in Drosophila melanogaster were identified 100 years, Notch signaling has been extensively characterized as a regulator of cell fate decisions in a variety of organisms and tissues. However, in the past 20 years, accumulating evidence has linked alterations in the Notch pathway to tumorigenesis. In this Perspective, we discuss the pro-tumorigenic and tumor suppressive functions of Notch signaling and dissect the molecular mechanisms that underlie these functions in hematopoietic cancers and solid tumors. Finally, we link these mechanisms and observations to possible therapeutic strategies targeting the Notch pathway in human cancers. PMID:24651013

  4. Target-catalyzed hairpin assembly and metal-organic frameworks mediated nonenzymatic co-reaction for multiple signal amplification detection of miR-122 in human serum.

    PubMed

    Li, Yuliang; Yu, Chao; Yang, Bo; Liu, Zhirui; Xia, Peiyuan; Wang, Qian

    2018-04-15

    Herein, a new type of multifunctional iron based metal-organic frameworks (PdNPs@Fe-MOFs) has been synthesized by assembly palladium nanoparticles on the surface of Fe-MIL-88NH 2 MOFs microcrystals, and first applied in electrochemical biosensor for ultrasensitive detection of microRNA-122 (miR-122, a biomarker of drug-induced liver injury). The nanohybrids have not only been utilized as ideal nanocarriers for immobilization of signal probes, but also used as redox probes and electrocatalysts. In this biosensor, two hairpin probes were designed as capture probes and signal probes, respectively. The nanohybrids conjugated with streptavidin and biotinylated signal probes were used as the tracer labels, target miR-122 was sandwiched between the tracer labels and thiol-terminated capture probes inserted in MCH monolayer on the gold nanoparticles-functionalized nitrogen-doped graphene sheets (AuNPs@N-G) modified electrode. Based on target-catalyzed hairpin assembly, target miR-122 could trigger the hybridization of capture probes and signal probes to further be released to initiate the next reaction process resulted in numerous tracer indicators anchored onto the sensing interfaces. Thus, the detection signal could be dramatically enhanced towards the electrocatalytic oxidation of 3,3',5,5'-tetramethylbenzidine in the presence of H 2 O 2 owing to the intrinsic and intriguing peroxidase-like activity of the nanohybrids. With the assist of target-catalyzed hairpin assembly and PdNPs@Fe-MOFs mimetic co-reaction for signal amplification, a wide detection range from 0.01fM to 10pM was achieved with a low detection limit of 0.003fM (S/N =3). Furthermore, the proposed biosensor exhibited excellent specificity and recovery in spiked serum samples, and was successfully used for detecting miR-122 in real biological samples, which provided a rapid and efficient method for detecting drug-induced liver injury at an early stage. Copyright © 2017. Published by Elsevier B.V.

  5. Discovery and functional characterisation of a luqin-type neuropeptide signalling system in a deuterostome.

    PubMed

    Yañez-Guerra, Luis Alfonso; Delroisse, Jérôme; Barreiro-Iglesias, Antón; Slade, Susan E; Scrivens, James H; Elphick, Maurice R

    2018-05-08

    Neuropeptides are diverse and evolutionarily ancient regulators of physiological/behavioural processes in animals. Here we have investigated the evolution and comparative physiology of luqin-type neuropeptide signalling, which has been characterised previously in protostomian invertebrates. Phylogenetic analysis indicates that luqin-type receptors and tachykinin-type receptors are paralogous and probably originated in a common ancestor of the Bilateria. In the deuterostomian lineage, luqin-type signalling has been lost in chordates but interestingly it has been retained in ambulacrarians. Therefore, here we characterised luqin-type signalling for the first time in an ambulacrarian - the starfish Asterias rubens (phylum Echinodermata). A luqin-like neuropeptide with a C-terminal RWamide motif (ArLQ; EEKTRFPKFMRW-NH 2 ) was identified as the ligand for two luqin-type receptors in A. rubens, ArLQR1 and ArLQR2. Furthermore, analysis of the expression of the ArLQ precursor using mRNA in situ hybridisation revealed expression in the nervous system, digestive system and locomotory organs (tube feet) and in vitro pharmacology revealed that ArLQ causes dose-dependent relaxation of tube feet. Accordingly, previous studies have revealed that luqin-type signalling regulates feeding and locomotor activity in protostomes. In conclusion, our phylogenetic analysis combined with characterisation of luqin-type signalling in a deuterostome has provided new insights into neuropeptide evolution and function in the animal kingdom.

  6. MGAT1 is a novel transcriptional target of Wnt/β-catenin signaling pathway.

    PubMed

    Akiva, Izzet; Birgül Iyison, Necla

    2018-01-08

    The Wnt/β-catenin signaling pathway is an evolutionary conserved pathway, which has important functions in vertebrate early development, axis formation, cellular proliferation and morphogenesis. Additionally, Wnt/β-catenin signaling pathway is one of the most important intracellular pathways that controls cancer progression. To date most of the identified targets of this pathway are shown to harbor tumorigenic properties. We previously showed that Mannosyl glycoprotein acetylglucosaminyl-transferase (MGAT1) enzyme is among the Wnt/β-catenin signaling putative target genes in hepatocellular carcinoma cell lines (Huh7). MGAT1 protein levels were determined by Western Blotting from Huh7 cell lines in which Wnt/β-catenin pathway was activated by means of different approaches such as LiCl treatment and mutant β-catenin overexpression. Luciferase reporter assay was used to analyze the promoter activity of MGAT1. The mRNA levels of MGAT1 were determined by quantitative real-time PCR from Huh7 cells that were treated with either Wnt agonist or GSK-3β inhibitor. Wound healing and XTT cell proliferation assays were performed in order to determine the proliferation and migration capacities of MGAT1 overexpressing stable Huh7 cells. Finally, xenograft experiments were carried out to measure the tumor formation capacities in vivo. In this study we showed that the activation of Wnt/β-catenin pathway culminates in the upregulation of MGAT1 enzyme both at transcriptional and post-transcriptional levels. We also showed that overexpression of the β-catenin gene (CTNNB1) increased the promoter activity of MGAT1. We applied a set of complementary approaches to elucidate the functional importance of MGAT1 as a vital target of Wnt/β-catenin signaling in Huh7 cells. Our analyses related to cell proliferation and migration assays showed that in comparison to the control cells, MGAT1 expressing Huh7 cells have greater proliferative and invasive capabilities. Furthermore, the

  7. Frequency specificity in intercellular communication. Influence of patterns of periodic signaling on target cell responsiveness.

    PubMed Central

    Li, Y; Goldbeter, A

    1989-01-01

    Cells often communicate by means of periodic signals, as exemplified by a large number of hormones and by the aggregation of Dictyostelium discoideum amebas in response to periodic pulses of cyclic AMP. Periodic signaling allows bypassing the phenomenon of desensitization brought about by constant stimuli. To gain further insight into the efficiency of pulsatile signaling, we analyze the effect of periodic stimulation on the dynamic behavior of a receptor system capable of desensitization toward its ligand. We first show that the receptor system adapts to square-wave stimuli, i.e., the response eventually reaches a steady, periodic pattern after a transient phase. By analyzing the dependence of the response on the characteristics of the square-wave stimulation, we show that there exist a waveform and a period of that signal that result in maximum responsiveness of the target system. Similar results are obtained when the signal takes the more realistic form of a periodically repeated stimulation followed by exponential decay of the ligand. The results are discussed with respect to the role of pulsatile secretion of gonadotropin-releasing hormone (GnRH) by the hypothalamus and of periodic signaling by cyclic AMP pulses in Dictyostelium. The analysis accounts for the existence, in both cases, of an optimal frequency and waveform of the periodic stimulus that correspond to maximum target cell responsiveness. PMID:2930817

  8. Signaling intermediates (MAPK and PI3K) as therapeutic targets in NSCLC.

    PubMed

    Ciuffreda, Ludovica; Incani, Ursula Cesta; Steelman, Linda S; Abrams, Stephen L; Falcone, Italia; Curatolo, Anais Del; Chappell, William H; Franklin, Richard A; Vari, Sabrina; Cognetti, Francesco; McCubrey, James A; Milella, Michele

    2014-01-01

    The RAS/RAF/MEK/ ERK and the PI3K/AKT/mTOR pathways govern fundamental physiological processes, such as cell proliferation, differentiation, metabolism, cytoskeleton reorganization and cell death and survival. Constitutive activation of these signal transduction pathways is a required hallmark of cancer and dysregulation, on either genetic or epigenetic grounds, of these pathways has been implicated in the initiation, progression and metastastic spread of lung cances. Targeting components of the MAPK and PI3K cascades is thus an attractive strategy in the development of novel therapeutic approaches to treat lung cancer, although the use of single pathway inhibitors has met with limited clinical success so far. Indeed, the presence of intra- and inter-pathway compensatory loops that re-activate the very same cascade, either upstream or downstream the point of pharmacological blockade, or activate the alternate pathway following the blockade of one signaling cascade has been demonstrated, potentially driving preclinical (and possibly clinical) resistance. Therefore, the blockade of both pathways with combinations of signaling inhibitors might result in a more efficient anti-tumor effect, and thus potentially overcome and/or delay clinical resistance, as compared with single agent. The current review aims at summarizing the current status of preclinical and clinical research with regard to pathway crosstalks between the MAPK and PI3K cascades in NSCLC and the rationale for combined therapeutic pathway targeting.

  9. MET signalling in primary colon epithelial cells leads to increased transformation irrespective of aberrant Wnt signalling

    PubMed Central

    Boon, E M J; Kovarikova, M; Derksen, P W B; van der Neut, R

    2005-01-01

    It has been shown that in hereditary and most sporadic colon tumours, components of the Wnt pathway are mutated. The Wnt target MET has been implicated in the development of colon cancer. Here, we show that overexpression of wild-type or a constitutively activated form of MET in colon epithelial cells leads to increased transformation irrespective of Wnt signalling. Fetal human colon epithelial cells without aberrant Wnt signalling were transfected with wild-type or mutated MET constructs. Expression of these constructs leads to increased phosphorylation of MET and its downstream targets PKB and MAPK. Upon stimulation with HGF, the expression of E-cadherin is downregulated in wild-type MET-transfected cells, whereas cells expressing mutated MET show low E-cadherin levels independent of stimulation with ligand. This implies a higher migratory propensity of these cells. Furthermore, fetal human colon epithelial cells expressing the mutated form of MET have colony-forming capacity in soft agar, while cells expressing wild-type MET show an intermediate phenotype. Subcutaneous injection of mutated MET-transfected cells in nude mice leads to the formation of tumours within 12 days in all mice injected. At this time point, mock-transfected cells do not form tumours, while wild-type MET-transfected cells form subcutaneous tumours in one out of five mice. We thus show that MET signalling can lead to increased transformation of colon epithelial cells independent of Wnt signalling and in this way could play an essential role in the onset and progression of colorectal cancer. PMID:15785735

  10. A waveform detector that targets template–decorrelated signals and achieves its predicted performance, Part I: Demonstration with IMS data

    DOE PAGES

    Carmichael, Joshua Daniel

    2016-01-01

    Here, waveform correlation detectors used in seismic monitoring scan multichannel data to test two competing hypotheses: that data contain (1) a noisy, amplitude-scaled version of a template waveform, or, (2) only noise. In reality, seismic wavefields include signals triggered by non-target sources (background seismicity) and targets signals that are only partially correlated with the waveform template.

  11. Evidence for speckle effects on pulsed CO2 lidar signal returns from remote targets

    NASA Technical Reports Server (NTRS)

    Menzies, R. T.; Kavaya, M. J.; Flamant, P. H.

    1984-01-01

    A pulsed CO2 lidar was used to study statistical properties of signal returns from various rough surfaces at distances near 2 km. These included natural in situ topographic materials as well as man-made hard targets. Three lidar configurations were used: heterodyne detection with single temporal mode transmitter pulses, and direct detection with single and multiple temporal mode pulses. The significant differences in signal return statistics, due largely to speckle effects, are discussed.

  12. Signal transducers and activators of transcription (STATs): Novel targets of chemopreventive and chemotherapeutic drugs.

    PubMed

    Klampfer, Lidija

    2006-03-01

    A family of latent cytoplasmic transcription factors, signal transducers and activators of transcription (STATs), mediates the responsiveness of cells to several cytokines and growth factors. Although mutations of STATs have not been described in human tumors, the activity of several members of the family, such as STAT1, STAT3 and STAT5, is deregulated in a variety of human tumors. STAT3 and STAT5 acquire oncogenic potential through constitutive phosphorylation on tyrosine, and their activity has been shown to be required to sustain a transformed phenotype. Disruption of STAT3 and STAT5 signaling in transformed cells therefore represents an excellent opportunity for targeted cancer therapy. In contrast to STAT3 and STAT5, STAT1 negatively regulates cell proliferation and angiogenesis and thereby inhibits tumor formation. Consistent with its tumor suppressive properties, STAT1 and its downstream targets have been shown to be reduced in a variety of human tumors and STAT1 deficient mice are highly susceptible to tumor formation. In recent years we have gained mechanistic understanding of the pathways whereby STATs convey signals from the cytoplasm to the nucleus. In addition, several endogenous regulators of the JAK/STAT pathway have been described - and their mechanism of action revealed - that profoundly affect signaling by STATs. Both should greatly facilitate the design of drugs with potential to modulate STAT signaling and to restore the homeostasis in tissues where STATs have gone awry.

  13. Signal-Switchable Electrochemiluminescence System Coupled with Target Recycling Amplification Strategy for Sensitive Mercury Ion and Mucin 1 Assay.

    PubMed

    Jiang, Xinya; Wang, Huijun; Wang, Haijun; Yuan, Ruo; Chai, Yaqin

    2016-09-20

    In the present work, we first found that mercury ion (Hg(2+)) has an efficient quenching effect on the electrochemiluminescence (ECL) of N-(aminobutyl)-N-(ethylisoluminol) (ABEI). Since we were inspired by this discovery, an aptamer-based ECL sensor was fabricated based on a Hg(2+) triggered signal switch coupled with an exonuclease I (Exo I)-stimulated target recycling amplification strategy for ultrasensitive determination of Hg(2+) and mucin 1 (MUC1). Concretely, the ECL intensity of ABEI-functionalized silver nanoparticles decorated graphene oxide nanocomposite (GO-AgNPs-ABEI) was initially enhanced by ferrocene labeled ssDNA (Fc-S1) (first signal switch "on" state) in the existence of H2O2. With the aid of aptamer, assistant ssDNA (S2) and full thymine (T) bases ssDNA (S3) modified Au nanoparticles (AuNPs-S2-S3) were immobilized on the sensing surface through the hybridization reaction. Then, via the strong and stable T-Hg(2+)-T interaction, an abundance of Hg(2+) was successfully captured on the AuNPs-S2-S3 and effectively inhibited the ECL reaction of ABEI (signal switch "off" state). Finally, the signal switch "on" state was executed by utilizing MUC1 as an aptamer-specific target to bind aptamer, leading to the large decrease of the captured Hg(2+). To further improve the sensitivity of the aptasensor, Exo I was implemented to digest the binded aptamer, which resulted in the release of MUC1 for achieving target recycling with strong detectable ECL signal even in a low level of MUC1. By integrating the quenching effect of Hg(2+) to reduce the background signal and target recycling for signal amplification, this proposed ECL aptasensor was successfully used to detect Hg(2+) and MUC1 sensitively with a wide linear response.

  14. Engineering self-contained DNA circuit for proximity recognition and localized signal amplification of target biomolecules

    PubMed Central

    Ang, Yan Shan; Yung, Lin-Yue Lanry

    2014-01-01

    Biomolecular interactions have important cellular implications, however, a simple method for the sensing of such proximal events is lacking in the current molecular toolbox. We designed a dynamic DNA circuit capable of recognizing targets in close proximity to initiate a pre-programmed signal transduction process resulting in localized signal amplification. The entire circuit was engineered to be self-contained, i.e. it can self-assemble onto individual target molecules autonomously and form localized signal with minimal cross-talk. α-thrombin was used as a model protein to evaluate the performance of the individual modules and the overall circuit for proximity interaction under physiologically relevant buffer condition. The circuit achieved good selectivity in presence of non-specific protein and interfering serum matrix and successfully detected for physiologically relevant α-thrombin concentration (50 nM–5 μM) in a single mixing step without any further washing. The formation of localized signal at the interaction site can be enhanced kinetically through the control of temperature and probe concentration. This work provides a basic general framework from which other circuit modules can be adapted for the sensing of other biomolecular or cellular interaction of interest. PMID:25056307

  15. A Target-Based Whole Cell Screen Approach To Identify Potential Inhibitors of Mycobacterium tuberculosis Signal Peptidase

    PubMed Central

    2016-01-01

    The general secretion (Sec) pathway is a conserved essential pathway in bacteria and is the primary route of protein export across the cytoplasmic membrane. During protein export, the signal peptidase LepB catalyzes the cleavage of the signal peptide and subsequent release of mature proteins into the extracellular space. We developed a target-based whole cell assay to screen for potential inhibitors of LepB, the sole signal peptidase in Mycobacterium tuberculosis, using a strain engineered to underexpress LepB (LepB-UE). We screened 72,000 compounds against both the Lep-UE and wild-type (wt) strains. We identified the phenylhydrazone (PHY) series as having higher activity against the LepB-UE strain. We conducted a limited structure–activity relationship determination around a representative PHY compound with differential activity (MICs of 3.0 μM against the LepB-UE strain and 18 μM against the wt); several analogues were less potent against the LepB overexpressing strain. A number of chemical modifications around the hydrazone moiety resulted in improved potency. Inhibition of LepB activity was observed for a number of compounds in a biochemical assay using cell membrane fraction derived from M. tuberculosis. Compounds did not increase cell permeability, dissipate membrane potential, or inhibit an unrelated mycobacterial enzyme, suggesting a specific mode of action related to the LepB secretory mechanism. PMID:27642770

  16. The Human Papillomavirus E6 Oncoprotein Targets USP15 and TRIM25 To Suppress RIG-I-Mediated Innate Immune Signaling.

    PubMed

    Chiang, Cindy; Pauli, Eva-Katharina; Biryukov, Jennifer; Feister, Katharina F; Meng, Melissa; White, Elizabeth A; Münger, Karl; Howley, Peter M; Meyers, Craig; Gack, Michaela U

    2018-03-15

    Retinoic acid-inducible gene I (RIG-I) is a key pattern recognition receptor that senses viral RNA and interacts with the mitochondrial adaptor MAVS, triggering a signaling cascade that results in the production of type I interferons (IFNs). This signaling axis is initiated by K63-linked ubiquitination of RIG-I mediated by the E3 ubiquitin ligase TRIM25, which promotes the interaction of RIG-I with MAVS. USP15 was recently identified as an upstream regulator of TRIM25, stabilizing the enzyme through removal of degradative K48-linked polyubiquitin, ultimately promoting RIG-I-dependent cytokine responses. Here, we show that the E6 oncoprotein of human papillomavirus type 16 (HPV16) as well as of other HPV types form a complex with TRIM25 and USP15 in human cells. In the presence of E6, the K48-linked ubiquitination of TRIM25 was markedly increased, and in line with this, TRIM25 degradation was enhanced. Our results further showed that E6 inhibited the TRIM25-mediated K63-linked ubiquitination of RIG-I and its CARD-dependent interaction with MAVS. HPV16 E6, but not E7, suppressed the RIG-I-mediated induction of IFN-β, chemokines, and IFN-stimulated genes (ISGs). Finally, CRISPR-Cas9 gene targeting in human keratinocytes showed that the TRIM25-RIG-I-MAVS triad is important for eliciting an antiviral immune response to HPV16 infection. Our study thus identifies a novel immune escape mechanism that is conserved among different HPV strains and further indicates that the RIG-I signaling pathway plays an important role in the innate immune response to HPV infection. IMPORTANCE Persistent infection and tumorigenesis by HPVs are known to require viral manipulation of a variety of cellular processes, including those involved in innate immune responses. Here, we show that the HPV E6 oncoprotein antagonizes the activation of the cytoplasmic innate immune sensor RIG-I by targeting its upstream regulatory enzymes TRIM25 and USP15. We further show that the RIG-I signaling cascade

  17. Functions of the APC tumor suppressor protein dependent and independent of canonical WNT signaling: implications for therapeutic targeting.

    PubMed

    Hankey, William; Frankel, Wendy L; Groden, Joanna

    2018-03-01

    The acquisition of biallelic mutations in the APC gene is a rate-limiting step in the development of most colorectal cancers and occurs in the earliest lesions. APC encodes a 312-kDa protein that localizes to multiple subcellular compartments and performs diverse functions. APC participates in a cytoplasmic complex that promotes the destruction of the transcriptional licensing factor β-catenin; APC mutations that abolish this function trigger constitutive activation of the canonical WNT signaling pathway, a characteristic found in almost all colorectal cancers. By negatively regulating canonical WNT signaling, APC counteracts proliferation, promotes differentiation, facilitates apoptosis, and suppresses invasion and tumor progression. APC further antagonizes canonical WNT signaling by interacting with and counteracting β-catenin in the nucleus. APC also suppresses tumor initiation and progression in the colorectal epithelium through functions that are independent of canonical WNT signaling. APC regulates the mitotic spindle to facilitate proper chromosome segregation, localizes to the cell periphery and cell protrusions to establish cell polarity and appropriate directional migration, and inhibits DNA replication by interacting directly with DNA. Mutations in APC are often frameshifts, insertions, or deletions that introduce premature stop codons and lead to the production of truncated APC proteins that lack its normal functions and possess tumorigenic properties. Therapeutic approaches in development for the treatment of APC-deficient tumors are focused on the inhibition of canonical WNT signaling, especially through targets downstream of APC in the pathway, or on the restoration of wild-type APC expression.

  18. Functions of the APC tumor suppressor protein dependent and independent of canonical WNT signaling: Implications for therapeutic targeting

    PubMed Central

    Hankey, William; Frankel, Wendy L.

    2018-01-01

    The acquisition of biallelic mutations in the APC gene is a rate-limiting step in the development of most colorectal cancers and occurs in the earliest lesions. APC encodes a 312-kDa protein that localizes to multiple subcellular compartments and performs diverse functions. APC participates in a cytoplasmic complex that promotes the destruction of the transcriptional licensing factor β-catenin; APC mutations that abolish this function trigger constitutive activation of the canonical WNT signaling pathway, a characteristic found in almost all colorectal cancers. By negatively regulating canonical WNT signaling, APC counteracts proliferation, promotes differentiation, facilitates apoptosis and suppresses invasion and tumor progression. APC further antagonizes canonical WNT signaling by interacting with and counteracting β-catenin in the nucleus. APC also suppresses tumor initiation and progression in the colorectal epithelium through functions that are independent of canonical WNT signaling. APC regulates the mitotic spindle to facilitate proper chromosome segregation, localizes to the cell periphery and cell protrusions to establish cell polarity and appropriate directional migration, and inhibits DNA replication by interacting directly with DNA. Mutations in APC are often frameshifts, insertions or deletions that introduce premature stop codons and lead to the production of truncated APC proteins that lack its normal functions and possess tumorigenic properties. Therapeutic approaches in development for the treatment of APC-deficient tumors are focused on the inhibition of canonical WNT signaling, especially through targets downstream of APC in the pathway, or on the restoration of wild-type APC expression. PMID:29318445

  19. Inhibition of Nod2 Signaling and Target Gene Expression by Curcumin

    PubMed Central

    Huang, Shurong; Zhao, Ling; Kim, Kihoon; Lee, Dong Seok; Hwang, Daniel H.

    2008-01-01

    Nod2 is an intracellular pattern recognition receptor that detects a conserved moiety of bacterial peptidoglycan and subsequently activates proinflammatory signaling pathways. Mutations in Nod2 have been implicated to be linked to inflammatory granulomatous disorders, such as Crohn's disease and Blau syndrome. Many phytochemicals possess anti-inflammatory properties. However, it is not known whether any of these phytochemicals might modulate Nod2-mediated immune responses and thus might be of therapeutic value for the intervention of these inflammatory diseases. In this report, we demonstrate that curcumin, a polyphenol found in the plant Curcuma longa, and parthenolide, a sesquiterpene lactone, suppress both ligand-induced and lauric acid-induced Nod2 signaling, leading to the suppression of nuclear factor-κB activation and target gene interleukin-8 expression. We provide molecular and biochemical evidence that the suppression is mediated through the inhibition of Nod2 oligomerization and subsequent inhibition of downstream signaling. These results demonstrate for the first time that curcumin and parthenolide can directly inhibit Nod2-mediated signaling pathways at the receptor level and suggest that Nod2-mediated inflammatory responses can be modulated by these phytochemicals. It remains to be determined whether these phytochemicals possess protective or therapeutic efficacy against Nod2-mediated inflammatory disorders. PMID:18413660

  20. The Human Respiratory Syncytial Virus Nonstructural Protein 1 Regulates Type I and Type II Interferon Pathways*

    PubMed Central

    Hastie, Marcus L.; Headlam, Madeleine J.; Patel, Nirav B.; Bukreyev, Alexander A.; Buchholz, Ursula J.; Dave, Keyur A.; Norris, Emma L.; Wright, Cassandra L.; Spann, Kirsten M.; Collins, Peter L.; Gorman, Jeffrey J.

    2012-01-01

    Respiratory syncytial viruses encode a nonstructural protein (NS1) that interferes with type I and III interferon and other antiviral responses. Proteomic studies were conducted on human A549 type II alveolar epithelial cells and type I interferon-deficient Vero cells (African green monkey kidney cells) infected with wild-type and NS1-deficient clones of human respiratory syncytial virus to identify other potential pathway and molecular targets of NS1 interference. These analyses included two-dimensional differential gel electrophoresis and quantitative Western blotting. Surprisingly, NS1 was found to suppress the induction of manganese superoxide dismutase (SOD2) expression in A549 cells and to a much lesser degree Vero cells in response to infection. Because SOD2 is not directly inducible by type I interferons, it served as a marker to probe the impact of NS1 on signaling of other cytokines known to induce SOD2 expression and/or indirect effects of type I interferon signaling. Deductive analysis of results obtained from cell infection and cytokine stimulation studies indicated that interferon-γ signaling was a potential target of NS1, possibly as a result of modulation of STAT1 levels. However, this was not sufficient to explain the magnitude of the impact of NS1 on SOD2 induction in A549 cells. Vero cell infection experiments indicated that NS1 targeted a component of the type I interferon response that does not directly induce SOD2 expression but is required to induce another initiator of SOD2 expression. STAT2 was ruled out as a target of NS1 interference using quantitative Western blot analysis of infected A549 cells, but data were obtained to indicate that STAT1 was one of a number of potential targets of NS1. A label-free mass spectrometry-based quantitative approach is proposed as a means of more definitive identification of NS1 targets. PMID:22322095

  1. Hsp90: a novel target for the disruption of multiple signaling cascades.

    PubMed

    Bishop, Stephanie C; Burlison, Joseph A; Blagg, Brian S J

    2007-06-01

    The 90 kDa heat shock proteins (Hsp90) are proving to be an excellent target for the development of novel anti-cancer agents designed to selectively block the growth and proliferation of tumor cells. Since Hsp90 is a molecular chaperone and is responsible for folding numerous oncogenic proteins, its inhibition represents a novel approach toward the simultaneous disruption of multiple signaling cascades. This review summarizes recent literature implicating Hsp90 as a key facilitator for the maturation of proteins represented in all six hallmarks of cancer: 1) growth signal self-sufficiency, 2) anti-growth signal insensitivity, 3) evasion of apoptosis, 4) unlimited replicative potential, 5) metastasis and tissue invasion, and 6) sustained angiogenesis. Also described are recent advances towards the development of novel Hsp90 inhibitors via structure-based drug design that have contributed to the number of compounds undergoing clinical development.

  2. Silymarin Targets β-Catenin Signaling in Blocking Migration/Invasion of Human Melanoma Cells

    PubMed Central

    Vaid, Mudit; Prasad, Ram; Sun, Qian; Katiyar, Santosh K.

    2011-01-01

    Metastatic melanoma is a leading cause of death from skin diseases, and is often associated with activation of Wnt/β-catenin signaling pathway. We have examined the inhibitory effect of silymarin, a plant flavanoid from Silybum marianum, on cell migration of metastasis-specific human melanoma cell lines (A375 and Hs294t) and assessed whether Wnt/β-catenin signaling is the target of silymarin. Using an in vitro invasion assay, we found that treatment of human melanoma cell lines with silymarin resulted in concentration-dependent inhibition of cell migration, which was associated with accumulation of cytosolic β-catenin, while reducing the nuclear accumulation of β-catenin (i.e., β-catenin inactivation) and reducing the levels of matrix metalloproteinase (MMP) -2 and MMP-9 which are the down-stream targets of β-catenin. Silymarin enhanced: (i) the levels of casein kinase 1α, glycogen synthase kinase-3β and phosphorylated-β-catenin on critical residues Ser45, Ser33/37 and Thr41, and (ii) the binding of β-transducin repeat-containing proteins (β-TrCP) with phospho forms of β-catenin in melanoma cells. These events play important roles in degradation or inactivation of β-catenin. To verify whether β-catenin is a potent molecular target of silymarin, the effect of silymarin was determined on β-catenin-activated (Mel 1241) and β-catenin-inactivated (Mel 1011) melanoma cells. Treatment of Mel 1241 cells with silymarin or FH535, an inhibitor of Wnt/β-catenin pathway, significantly inhibited cell migration of Mel 1241 cells, which was associated with the elevated levels of casein kinase 1α and glycogen synthase kinase-3β, and decreased accumulation of nuclear β-catenin and inhibition of MMP-2 and MMP-9 levels. However, this effect of silymarin and FH535 was not found in Mel 1011 melanoma cells. These results indicate for the first time that silymarin inhibits melanoma cell migration by targeting β-catenin signaling pathway. PMID:21829575

  3. Targeted prostaglandin E2 inhibition enhances antiviral immunity through induction of type I interferon and apoptosis in macrophages.

    PubMed

    Coulombe, François; Jaworska, Joanna; Verway, Mark; Tzelepis, Fanny; Massoud, Amir; Gillard, Joshua; Wong, Gary; Kobinger, Gary; Xing, Zhou; Couture, Christian; Joubert, Philippe; Fritz, Jörg H; Powell, William S; Divangahi, Maziar

    2014-04-17

    Aspirin gained tremendous popularity during the 1918 Spanish Influenza virus pandemic, 50 years prior to the demonstration of their inhibitory action on prostaglandins. Here, we show that during influenza A virus (IAV) infection, prostaglandin E2 (PGE2) was upregulated, which led to the inhibition of type I interferon (IFN) production and apoptosis in macrophages, thereby causing an increase in virus replication. This inhibitory role of PGE2 was not limited to innate immunity, because both antigen presentation and T cell mediated immunity were also suppressed. Targeted PGE2 suppression via genetic ablation of microsomal prostaglandin E-synthase 1 (mPGES-1) or by the pharmacological inhibition of PGE2 receptors EP2 and EP4 substantially improved survival against lethal IAV infection whereas PGE2 administration reversed this phenotype. These data demonstrate that the mPGES-1-PGE2 pathway is targeted by IAV to evade host type I IFN-dependent antiviral immunity. We propose that specific inhibition of PGE2 signaling might serve as a treatment for IAV. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Cell-type-specific, Aptamer-functionalized Agents for Targeted Disease Therapy

    PubMed Central

    Zhou, Jiehua; Rossi, John J.

    2014-01-01

    One hundred years ago, Dr. Paul Ehrlich popularized the “magic bullet” concept for cancer therapy in which an ideal therapeutic agent would only kill the specific tumor cells it targeted. Since then, “targeted therapy” that specifically targets the molecular defects responsible for a patient's condition has become a long-standing goal for treating human disease. However, safe and efficient drug delivery during the treatment of cancer and infectious disease remains a major challenge for clinical translation and the development of new therapies. The advent of SELEX technology has inspired many groundbreaking studies that successfully adapted cell-specific aptamers for targeted delivery of active drug substances in both in vitro and in vivo models. By covalently linking or physically functionalizing the cell-specific aptamers with therapeutic agents, such as siRNA, microRNA, chemotherapeutics or toxins, or delivery vehicles, such as organic or inorganic nanocarriers, the targeted cells and tissues can be specifically recognized and the therapeutic compounds internalized, thereby improving the local concentration of the drug and its therapeutic efficacy. Currently, many cell-type-specific aptamers have been developed that can target distinct diseases or tissues in a cell-type-specific manner. In this review, we discuss recent advances in the use of cell-specific aptamers for targeted disease therapy, as well as conjugation strategies and challenges. PMID:24936916

  5. Angiotensin II type 1 and type 2 receptor-induced cell signaling.

    PubMed

    Akazawa, Hiroshi; Yano, Masamichi; Yabumoto, Chizuru; Kudo-Sakamoto, Yoko; Komuro, Issei

    2013-01-01

    The octapeptide angiotensin II (Ang II) plays a homeostatic role in the regulation of blood pressure and water and electrolyte balance, and also contributes to the progression of cardiovascular remodeling. Ang II activates Ang II type 1 (AT1) receptor and type 2 (AT2) receptor, both of which belong to the seven-transmembrane, G protein-coupled receptor family. Most of the actions of Ang II such as promotion of cellular prolifaration, hypertrophy, and fibrosis are mediated by AT1 receptor. However, in some pathological situations, AT2 receptor shows an increase in tissue expression and functions to antagonize the actions induced by AT1 receptor. Recent studies have advanced our understanding of the molecular mechanisms underlying receptor activation and signal transduction of AT1 and AT2 receptor in the cardiovascular system.

  6. E3 ubiquitin ligase Mule targets β-catenin under conditions of hyperactive Wnt signaling

    PubMed Central

    Dominguez-Brauer, Carmen; Khatun, Rahima; Elia, Andrew J.; Thu, Kelsie L.; Ramachandran, Parameswaran; Baniasadi, Shakiba P.; Hao, Zhenyue; Jones, Lisa D.; Haight, Jillian; Sheng, Yi; Mak, Tak W.

    2017-01-01

    Wnt signaling, named after the secreted proteins that bind to cell surface receptors to activate the pathway, plays critical roles both in embryonic development and the maintenance of homeostasis in many adult tissues. Two particularly important cellular programs orchestrated by Wnt signaling are proliferation and stem cell self-renewal. Constitutive activation of the Wnt pathway resulting from mutation or improper modulation of pathway components contributes to cancer development in various tissues. Colon cancers frequently bear inactivating mutations of the adenomatous polyposis coli (APC) gene, whose product is an important component of the destruction complex that regulates β-catenin levels. Stabilization and nuclear localization of β-catenin result in the expression of a panel of Wnt target genes. We previously showed that Mule/Huwe1/Arf-BP1 (Mule) controls murine intestinal stem and progenitor cell proliferation by modulating the Wnt pathway via c-Myc. Here we extend our investigation of Mule’s influence on oncogenesis by showing that Mule interacts directly with β-catenin and targets it for degradation under conditions of hyperactive Wnt signaling. Our findings suggest that Mule uses various mechanisms to fine-tune the Wnt pathway and provides multiple safeguards against tumorigenesis. PMID:28137882

  7. E3 ubiquitin ligase Mule targets β-catenin under conditions of hyperactive Wnt signaling.

    PubMed

    Dominguez-Brauer, Carmen; Khatun, Rahima; Elia, Andrew J; Thu, Kelsie L; Ramachandran, Parameswaran; Baniasadi, Shakiba P; Hao, Zhenyue; Jones, Lisa D; Haight, Jillian; Sheng, Yi; Mak, Tak W

    2017-02-14

    Wnt signaling, named after the secreted proteins that bind to cell surface receptors to activate the pathway, plays critical roles both in embryonic development and the maintenance of homeostasis in many adult tissues. Two particularly important cellular programs orchestrated by Wnt signaling are proliferation and stem cell self-renewal. Constitutive activation of the Wnt pathway resulting from mutation or improper modulation of pathway components contributes to cancer development in various tissues. Colon cancers frequently bear inactivating mutations of the adenomatous polyposis coli ( APC ) gene, whose product is an important component of the destruction complex that regulates β-catenin levels. Stabilization and nuclear localization of β-catenin result in the expression of a panel of Wnt target genes. We previously showed that Mule/Huwe1/Arf-BP1 (Mule) controls murine intestinal stem and progenitor cell proliferation by modulating the Wnt pathway via c-Myc. Here we extend our investigation of Mule's influence on oncogenesis by showing that Mule interacts directly with β-catenin and targets it for degradation under conditions of hyperactive Wnt signaling. Our findings suggest that Mule uses various mechanisms to fine-tune the Wnt pathway and provides multiple safeguards against tumorigenesis.

  8. Cortical signal-in-noise coding varies by noise type, signal-to-noise ratio, age, and hearing status

    PubMed Central

    Maamor, Nashrah; Billings, Curtis J.

    2017-01-01

    The purpose of this study was to determine the effects of noise type, signal-to-noise ratio (SNR), age, and hearing status on cortical auditory evoked potentials (CAEPs) to speech sounds. This helps to explain the hearing-in-noise difficulties often seen in the aging and hearing impaired population. Continuous, modulated, and babble noise types were presented at varying SNRs to 30 individuals divided into three groups according to age and hearing status. Significant main effects of noise type, SNR, and group were found. Interaction effects revealed that the SNR effect varies as a function of noise type and is most systematic for continuous noise. Effects of age and hearing loss were limited to CAEP latency and were differentially modulated by energetic and informational-like masking. It is clear that the spectrotemporal characteristics of signals and noises play an important role in determining the morphology of neural responses. Participant factors such as age and hearing status, also play an important role in determining the brain’s response to complex auditory stimuli and contribute to the ability to listen in noise. PMID:27838448

  9. Target detection, shape discrimination, and signal characteristics of an echolocating false killer whale (Pseudorca crassidens).

    PubMed

    Brill, R L; Pawloski, J L; Helweg, D A; Au, W W; Moore, P W

    1992-09-01

    This study demonstrated the ability of a false killer whale (Pseudorca crassidens) to discriminate between two targets and investigated the parameters of the whale's emitted signals for changes related to test conditions. Target detection performance comparable to the bottlenose dolphin's (Tursiops truncatus) has previously been reported for echolocating false killer whales. No other echolocation capabilities have been reported. A false killer whale, naive to conditioned echolocation tasks, was initially trained to detect a cylinder in a "go/no-go" procedure over ranges of 3 to 8 m. The transition from a detection task to a discrimination task was readily achieved by introducing a spherical comparison target. Finally, the cylinder was successfully compared to spheres of two different sizes and target strengths. Multivariate analyses were used to evaluate the parameters of emitted signals. Duncan's multiple range tests showed significant decreases (df = 185, p less than 0.05) in both source level and bandwidth in the transition from detection to discrimination. Analysis of variance revealed a significant decrease in the number of clicks over test conditions [F(5.26) = 5.23, p less than 0.0001]. These data suggest that the whale relied on cues relevant to target shape as well as target strength, that changes in source level and bandwidth were task-related, that the decrease in clicks was associated with learning experience, and that Pseudorca's ability to discriminate shapes using echolocation may be comparable to that of Tursiops truncatus.

  10. Targeting multiple types of tumors using NKG2D-coated iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Wu, Ming-Ru; Cook, W. James; Zhang, Tong; Sentman, Charles L.

    2014-11-01

    Iron oxide nanoparticles (IONPs) hold great potential for cancer therapy. Actively targeting IONPs to tumor cells can further increase therapeutic efficacy and decrease off-target side effects. To target tumor cells, a natural killer (NK) cell activating receptor, NKG2D, was utilized to develop pan-tumor targeting IONPs. NKG2D ligands are expressed on many tumor types and its ligands are not found on most normal tissues under steady state conditions. The data showed that mouse and human fragment crystallizable (Fc)-fusion NKG2D (Fc-NKG2D) coated IONPs (NKG2D/NPs) can target multiple NKG2D ligand positive tumor types in vitro in a dose dependent manner by magnetic cell sorting. Tumor targeting effect was robust even under a very low tumor cell to normal cell ratio and targeting efficiency correlated with NKG2D ligand expression level on tumor cells. Furthermore, the magnetic separation platform utilized to test NKG2D/NP specificity has the potential to be developed into high throughput screening strategies to identify ideal fusion proteins or antibodies for targeting IONPs. In conclusion, NKG2D/NPs can be used to target multiple tumor types and magnetic separation platform can facilitate the proof-of-concept phase of tumor targeting IONP development.

  11. cGMP signaling as a target for the prevention and treatment of breast cancer.

    PubMed

    Windham, Perrin F; Tinsley, Heather N

    2015-04-01

    One in eight women in the United States will be diagnosed with invasive breast cancer in her lifetime. Advances in therapeutic strategies, diagnosis, and improved awareness have resulted in a significant reduction in breast cancer related mortality. However, there is a continued need for more effective and less toxic drugs for both the prevention and the treatment of breast cancer in order to see a continued decline in the morbidity and mortality associated with this disease. Recent studies suggest that the cGMP signaling pathway may be aberrantly regulated in breast cancer. As such, this pathway may serve as a source of novel targets for future breast cancer drug discovery efforts. This review provides an overview of cGMP signaling in normal physiology and in breast cancer as well as current strategies being investigated for targeting this pathway in breast cancer. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. New Wnt/β-catenin target genes promote experimental metastasis and migration of colorectal cancer cells through different signals.

    PubMed

    Qi, Jingjing; Yu, Yong; Akilli Öztürk, Özlem; Holland, Jane D; Besser, Daniel; Fritzmann, Johannes; Wulf-Goldenberg, Annika; Eckert, Klaus; Fichtner, Iduna; Birchmeier, Walter

    2016-10-01

    We have previously identified a 115-gene signature that characterises the metastatic potential of human primary colon cancers. The signature included the canonical Wnt target gene BAMBI, which promoted experimental metastasis in mice. Here, we identified three new direct Wnt target genes from the signature, and studied their functions in epithelial-mesenchymal transition (EMT), cell migration and experimental metastasis. We examined experimental liver metastases following injection of selected tumour cells into spleens of NOD/SCID mice. Molecular and cellular techniques were used to identify direct transcription target genes of Wnt/β-catenin signals. Microarray analyses and experiments that interfered with cell migration through inhibitors were performed to characterise downstream signalling systems. Three new genes from the colorectal cancer (CRC) metastasis signature, BOP1, CKS2 and NFIL3, were identified as direct transcription targets of β-catenin/TCF4. Overexpression and knocking down of these genes in CRC cells promoted and inhibited, respectively, experimental metastasis in mice, EMT and cell motility in culture. Cell migration was repressed by interfering with distinct signalling systems through inhibitors of PI3K, JNK, p38 mitogen-activated protein kinase and/or mTOR. Gene expression profiling identified a series of migration-promoting genes, which were induced by BOP1, CKS2 and NFIL3, and could be repressed by inhibitors that are specific to these pathways. We identified new direct Wnt/β-catenin target genes, BOP1, CKS2 and NFIL3, which induced EMT, cell migration and experimental metastasis of CRC cells. These genes crosstalk with different downstream signalling systems, and activate migration-promoting genes. These pathways and downstream genes may serve as therapeutic targets in the treatment of CRC metastasis. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  13. Target-regulated proximity hybridization with three-way DNA junction for in situ enhanced electronic detection of marine biotoxin based on isothermal cycling signal amplification strategy.

    PubMed

    Liu, Bingqian; Chen, Jinfeng; Wei, Qiaohua; Zhang, Bing; Zhang, Lan; Tang, Dianping

    2015-07-15

    A new signal amplification strategy based on target-regulated DNA proximity hybridization (TRPH) reaction accompanying formation of three-way DNA junction was designed for electronic detection of Microcystin-LR (MC-LR used in this case), coupling with junction-induced isothermal cycling signal amplification. Initially, a sandwiched-type immunoreaction was carried out in a low-cost PCR tube between anti-MC-LR mAb1 antibody-labeled DNA1 (mAb1-DNA1) and anti-MC-LR mAb2-labeled DNA2 (mAb2-DNA2) in the presence of target to form a three-way DNA junction. Then, the junction could undergo an unbiased strand displacement reaction on an h-like DNA nanostructure-modified electrode (labeled with methylene blue redox tag on the short DNA strand), thereby resulting in the dissociation of methylene blue-labeled signal DNA from the electrode. The newly formed double-stranded DNA could be cleaved again by exonuclease III, and the released three-way DNA junction retriggered the strand-displacement reaction with h-like DNA nanostructures for junction recycling. During the strand-displacement reaction, numerous methylene blue-labeled DNA strands were far away from the electrode, thus decreasing the detectable electrochemical signal within the applied potentials. Under optimal conditions, the TRPH-based immunosensing system exhibited good electrochemical responses for detecting target MC-LR at a concentration as low as 1.0ngkg(-1) (1.0ppt). Additionally, the precision, reproducibility, specificity and method accuracy were also investigated with acceptable results. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Target-triggering multiple-cycle signal amplification strategy for ultrasensitive detection of DNA based on QCM and SPR.

    PubMed

    Song, Weiling; Yin, Wenshuo; Sun, Wenbo; Guo, Xiaoyan; He, Peng; Yang, Xiaoyan; Zhang, Xiaoru

    2018-04-24

    Detection of ultralow concentrations of nucleic acid sequences is a central challenge in the early diagnosis of genetic diseases. Herein, we developed a target-triggering cascade multiple cycle amplification for ultrasensitive DNA detection using quartz crystal microbalance (QCM) and surface plasmon resonance (SPR). It was based on the exonuclease Ⅲ (Exo Ⅲ)-assisted signal amplification and the hybridization chain reaction (HCR). The streptavidin-coated Au-NPs (Au-NPs-SA) were assembled on the HCR products as recognition element. Upon sensing of target DNA, the duplex DNA probe triggered the Exo Ⅲ cleavage process, accompanied by generating a new secondary target DNA and releasing target DNA. The released target DNA and the secondary target DNA were recycled. Simultaneously, numerous single strands were liberated and acted as the trigger of HCR to generate further signal amplification, resulting in the immobilization of abundant Au-NPs-SA on the gold substrate. The QCM sensor results were found to be comparable to that achieved using a SPR sensor platform. This method exhibited a high sensitivity toward target DNA with a detection limit of 0.70 fM. The high sensitivity and specificity make this method a great potential for detecting DNA with trace amounts in bioanalysis and clinical biomedicine. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Signal-on electrochemical detection of antibiotics at zeptomole level based on target-aptamer binding triggered multiple recycling amplification.

    PubMed

    Wang, Hongzhi; Wang, Yu; Liu, Su; Yu, Jinghua; Guo, Yuna; Xu, Ying; Huang, Jiadong

    2016-06-15

    In the work, a signal-on electrochemical DNA sensor based on multiple amplification for ultrasensitive detection of antibiotics has been reported. In the presence of target, the ingeniously designed hairpin probe (HP1) is opened and the polymerase-assisted target recycling amplification is triggered, resulting in autonomous generation of secondary target. It is worth noting that the produced secondary target could not only hybridize with other HP1, but also displace the Helper from the electrode. Consequently, methylene blue labeled HP2 forms a "close" probe structure, and the increase of signal is monitored. The increasing current provides an ultrasensitive electrochemical detection for antibiotics down to 1.3 fM. To our best knowledge, such work is the first report about multiple recycling amplification combing with signal-on sensing strategy, which has been utilized for quantitative determination of antibiotics. It would be further used as a general strategy associated with more analytical techniques toward the detection of a wide spectrum of analytes. Thus, it holds great potential for the development of ultrasensitive biosensing platform for the applications in bioanalysis, disease diagnostics, and clinical biomedicine. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Oncogenic role and therapeutic target of leptin signaling in breast cancer and cancer stem cells

    PubMed Central

    Guo, Shanchun; Liu, Mingli; Wang, Guangdi; Torroella-Kouri, Marta; Gonzalez-Perez, Ruben R.

    2012-01-01

    Significant correlations between obesity and incidence of various cancers have been reported. Obesity, considered a mild inflammatory process, is characterized by a high level of secretion of several cytokines from adipose tissue. These molecules have disparate effects, which could be relevant to cancer development. Among the inflammatory molecules, leptin, mainly produced by adipose tissue and overexpressed with its receptor (Ob-R) in cancer cells is the most studied adipokine. Mutations of leptin or Ob-R genes associated with obesity or cancer are rarely found. However, leptin is an anti-apoptotic molecule in many cell types, and its central roles in obesity-related cancers are based on its pro-angiogenic, pro-inflammatory and mitogenic actions. Notably, these leptin actions are commonly reinforced through entangled crosstalk with multiple oncogenes, cytokines and growth factors. Leptin-induced signals comprise several pathways commonly triggered by many cytokines (i.e, canonical: JAK2/STAT; MAPK/ERK1/2 and PI-3K/AKT1 and, non-canonical signaling pathways: PKC, JNK and p38 MAP kinase). Each of these leptin-induced signals is essential to its biological effects on food intake, energy balance, adiposity, immune and endocrine systems, as well as oncogenesis. This review is mainly focused on the current knowledge of the oncogenic role of leptin in breast cancer. Additionally, leptin pro-angiogenic molecular mechanisms and its potential role in breast cancer stem cells will be reviewed. Strict biunivocal binding-affinity and activation of leptin/Ob-R complex makes it a unique molecular target for prevention and treatment of breast cancer, particularly in obesity contexts. PMID:22289780

  17. Modulation of skeletal muscle fiber type by mitogen-activated protein kinase signaling.

    PubMed

    Shi, Hao; Scheffler, Jason M; Pleitner, Jonathan M; Zeng, Caiyun; Park, Sungkwon; Hannon, Kevin M; Grant, Alan L; Gerrard, David E

    2008-08-01

    Skeletal muscle is composed of diverse fiber types, yet the underlying molecular mechanisms responsible for this diversification remain unclear. Herein, we report that the extracellular signal-regulated kinase (ERK) 1/2 pathway, but not p38 or c-Jun NH(2)-terminal kinase (JNK), is preferentially activated in fast-twitch muscles. Pharmacological blocking of ERK1/2 pathway increased slow-twitch fiber type-specific reporter activity and repressed those associated with the fast-twitch fiber phenotype in vitro. Overexpression of a constitutively active ERK2 had an opposite effect. Inhibition of ERK signaling in cultured myotubes increased slow-twitch fiber-specific protein accumulation while repressing those characteristic of fast-twitch fibers. Overexpression of MAP kinase phosphatase-1 (MKP1) in mouse and rat muscle fibers containing almost exclusively type IIb or IIx fast myosin heavy chain (MyHC) isoforms induced de novo synthesis of the slower, more oxidative type IIa and I MyHCs in a time-dependent manner. Conversion to the slower phenotype was confirmed by up-regulation of slow reporter gene activity and down-regulation of fast reporter activities in response to forced MKP1 expression in vivo. In addition, activation of ERK2 signaling induced up-regulation of fast-twitch fiber program in soleus. These data suggest that the MAPK signaling, most likely the ERK1/2 pathway, is necessary to preserve the fast-twitch fiber phenotype with a concomitant repression of slow-twitch fiber program.

  18. IL-6-Type Cytokine Signaling in Adipocytes Induces Intestinal GLP-1 Secretion.

    PubMed

    Wueest, Stephan; Laesser, Céline I; Böni-Schnetzler, Marianne; Item, Flurin; Lucchini, Fabrizio C; Borsigova, Marcela; Müller, Werner; Donath, Marc Y; Konrad, Daniel

    2018-01-01

    We recently showed that interleukin (IL)-6-type cytokine signaling in adipocytes induces free fatty acid release from visceral adipocytes, thereby promoting obesity-induced hepatic insulin resistance and steatosis. In addition, IL-6-type cytokines may increase the release of leptin from adipocytes and by those means induce glucagon-like peptide 1 (GLP-1) secretion. We thus hypothesized that IL-6-type cytokine signaling in adipocytes may regulate insulin secretion. To this end, mice with adipocyte-specific knockout of gp130, the signal transducer protein of IL-6, were fed a high-fat diet for 12 weeks. Compared with control littermates, knockout mice showed impaired glucose tolerance and circulating leptin, GLP-1, and insulin levels were reduced. In line, leptin release from isolated adipocytes was reduced, and intestinal proprotein convertase subtilisin/kexin type 1 ( Pcsk1 ) expression, the gene encoding PC1/3, which controls GLP-1 production, was decreased in knockout mice. Importantly, treatment with the GLP-1 receptor antagonist exendin 9-39 abolished the observed difference in glucose tolerance between control and knockout mice. Ex vivo, supernatant collected from isolated adipocytes of gp130 knockout mice blunted Pcsk1 expression and GLP-1 release from GLUTag cells. In contrast, glucose- and GLP-1-stimulated insulin secretion was not affected in islets of knockout mice. In conclusion, adipocyte-specific IL-6 signaling induces intestinal GLP-1 release to enhance insulin secretion, thereby counteracting insulin resistance in obesity. © 2017 by the American Diabetes Association.

  19. Targeting protein kinase-b3 (akt3) signaling in melanoma.

    PubMed

    Madhunapantula, SubbaRao V; Robertson, Gavin P

    2017-03-01

    Deregulated Akt activity leading to apoptosis inhibition, enhanced proliferation and drug resistance has been shown to be responsible for 35-70% of advanced metastatic melanomas. Of the three isoforms, the majority of melanomas have elevated Akt3 expression and activity. Hence, potent inhibitors targeting Akt are urgently required, which is possible only if (a) the factors responsible for the failure of Akt inhibitors in clinical trials is known; and (b) the information pertaining to synergistically acting targeted therapeutics is available. Areas covered: This review provides a brief introduction of the PI3K-Akt signaling pathway and its role in melanoma development. In addition, the functional role of key Akt pathway members such as PRAS40, GSK3 kinases, WEE1 kinase in melanoma development are discussed together with strategies to modulate these targets. Efficacy and safety of Akt inhibitors is also discussed. Finally, the mechanism(s) through which Akt leads to drug resistance is discussed in this expert opinion review. Expert opinion: Even though Akt play key roles in melanoma tumor progression, cell survival and drug resistance, many gaps still exist that require further understanding of Akt functions, especially in the (a) metastatic spread; (b) circulating melanoma cells survival; and (c) melanoma stem cells growth.

  20. Therapeutically targeting mitochondrial redox signalling alleviates endothelial dysfunction in preeclampsia.

    PubMed

    McCarthy, Cathal; Kenny, Louise C

    2016-09-08

    Aberrant placentation generating placental oxidative stress is proposed to play a critical role in the pathophysiology of preeclampsia. Unfortunately, therapeutic trials of antioxidants have been uniformly disappointing. There is provisional evidence implicating mitochondrial dysfunction as a source of oxidative stress in preeclampsia. Here we provide evidence that mitochondrial reactive oxygen species mediates endothelial dysfunction and establish that directly targeting mitochondrial scavenging may provide a protective role. Human umbilical vein endothelial cells exposed to 3% plasma from women with pregnancies complicated by preeclampsia resulted in a significant decrease in mitochondrial function with a subsequent significant increase in mitochondrial superoxide generation compared to cells exposed to plasma from women with uncomplicated pregnancies. Real-time PCR analysis showed increased expression of inflammatory markers TNF-α, TLR-9 and ICAM-1 respectively in endothelial cells treated with preeclampsia plasma. MitoTempo is a mitochondrial-targeted antioxidant, pre-treatment of cells with MitoTempo protected against hydrogen peroxide-induced cell death. Furthermore MitoTempo significantly reduced mitochondrial superoxide production in cells exposed to preeclampsia plasma by normalising mitochondrial metabolism. MitoTempo significantly altered the inflammatory profile of plasma treated cells. These novel data support a functional role for mitochondrial redox signaling in modulating the pathogenesis of preeclampsia and identifies mitochondrial-targeted antioxidants as potential therapeutic candidates.

  1. Sensitive SERS detection of DNA methyltransferase by target triggering primer generation-based multiple signal amplification strategy.

    PubMed

    Li, Ying; Yu, Chuanfeng; Han, Huixia; Zhao, Caisheng; Zhang, Xiaoru

    2016-07-15

    A novel and sensitive surface-enhanced Raman scattering (SERS) method is proposed for the assay of DNA methyltransferase (MTase) activity and evaluation of inhibitors by developing a target triggering primer generation-based multiple signal amplification strategy. By using of a duplex substrate for Dam MTase, two hairpin templates and a Raman probe, multiple signal amplification mode is achieved. Once recognized by Dam MTase, the duplex substrate can be cleaved by Dpn I endonuclease and two primers are released for triggering the multiple signal amplification reaction. Consequently, a wide dynamic range and remarkably high sensitivity are obtained under isothermal conditions. The detection limit is 2.57×10(-4)UmL(-1). This assay exhibits an excellent selectivity and is successfully applied in the screening of inhibitors for Dam MTase. In addition, this novel sensing system is potentially universal as the recognition element can be conveniently designed for other target analytes by changing the substrate of DNA MTase. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. TGF-β1/Smad3 Pathway Targets PP2A-AMPK-FoxO1 Signaling to Regulate Hepatic Gluconeogenesis*

    PubMed Central

    Yadav, Hariom; Devalaraja, Samir; Chung, Stephanie T.; Rane, Sushil G.

    2017-01-01

    Maintenance of glucose homeostasis is essential for normal physiology. Deviation from normal glucose levels, in either direction, increases susceptibility to serious medical complications such as hypoglycemia and diabetes. Maintenance of glucose homeostasis is achieved via functional interactions among various organs: liver, skeletal muscle, adipose tissue, brain, and the endocrine pancreas. The liver is the primary site of endogenous glucose production, especially during states of prolonged fasting. However, enhanced gluconeogenesis is also a signature feature of type 2 diabetes (T2D). Thus, elucidating the signaling pathways that regulate hepatic gluconeogenesis would allow better insight into the process of normal endogenous glucose production as well as how this process is impaired in T2D. Here we demonstrate that the TGF-β1/Smad3 signaling pathway promotes hepatic gluconeogenesis, both upon prolonged fasting and during T2D. In contrast, genetic and pharmacological inhibition of TGF-β1/Smad3 signals suppressed endogenous glucose production. TGF-β1 and Smad3 signals achieved this effect via the targeting of key regulators of hepatic gluconeogenesis, protein phosphatase 2A (PP2A), AMP-activated protein kinase (AMPK), and FoxO1 proteins. Specifically, TGF-β1 signaling suppressed the LKB1-AMPK axis, thereby facilitating the nuclear translocation of FoxO1 and activation of key gluconeogenic genes, glucose-6-phosphatase and phosphoenolpyruvate carboxykinase. These findings underscore an important role of TGF-β1/Smad3 signaling in hepatic gluconeogenesis, both in normal physiology and in the pathophysiology of metabolic diseases such as diabetes, and are thus of significant medical relevance. PMID:28069811

  3. Targeting the Hippo Signaling Pathway for Tissue Regeneration and Cancer Therapy.

    PubMed

    Juan, Wen Chun; Hong, Wanjin

    2016-08-30

    The Hippo signaling pathway is a highly-conserved developmental pathway that plays an essential role in organ size control, tumor suppression, tissue regeneration and stem cell self-renewal. The YES-associated protein (YAP) and the transcriptional co-activator with PDZ-binding motif (TAZ) are two important transcriptional co-activators that are negatively regulated by the Hippo signaling pathway. By binding to transcription factors, especially the TEA domain transcription factors (TEADs), YAP and TAZ induce the expression of growth-promoting genes, which can promote organ regeneration after injury. Therefore, controlled activation of YAP and TAZ can be useful for regenerative medicine. However, aberrant activation of YAP and TAZ due to deregulation of the Hippo pathway or overexpression of YAP/TAZ and TEADs can promote cancer development. Hence, pharmacological inhibition of YAP and TAZ may be a useful approach to treat tumors with high YAP and/or TAZ activity. In this review, we present the mechanisms regulating the Hippo pathway, the role of the Hippo pathway in tissue repair and cancer, as well as a detailed analysis of the different strategies to target the Hippo signaling pathway and the genes regulated by YAP and TAZ for regenerative medicine and cancer therapy.

  4. SETI target selection.

    PubMed

    Latham, D W; Soderblom, D R

    1995-01-01

    The NASA High Resolution Microwave Survey consists of two complementary elements: a Sky Survey of the entire sky to a moderate level of sensitivity; and a Targeted Search of nearby stars, one at a time, to a much deeper level of sensitivity. In this paper we propose strategies for target selection. We have two goals: to improve the chances of successful detection of signals from technical civilizations that inhabit planets around solar-type stars, and to minimize the chances of missing signals from unexpected sites. For the main Targeted Search survey of approximately 1000 nearby solar-type stars, we argue that the selection criteria should be heavily biased by what we know about the origin and evolution of life here on Earth. We propose that observations of stars with stellar companions orbiting near the habitable zone should be de-emphasized, because such companions would prevent the formation of habitable planets. We also propose that observations of stars younger than about three billion years should be de-emphasized in favor of older stars, because our own technical civilization took longer than three billion years to evolve here on Earth. To provide the information needed for the preparation of specific target lists, we have undertaken an inventory of a large sample of solar-type stars out to a distance of 60 pc, with the goal of characterizing the relevant astrophysical properties of these stars, especially their ages and companionship. To complement the main survey, we propose that a modest sample of the nearest stars should be observed without any selection biases whatsoever. Finally, we argue that efforts to identify stars with planetary systems should be expanded. If found, such systems should receive intensive scrutiny.

  5. Beta Adrenergic Signaling: A Targetable Regulator of Angiosarcoma and Hemangiosarcoma

    PubMed Central

    Dickerson, Erin B.; Bryan, Brad A.

    2015-01-01

    Human angiosarcomas and canine hemangiosarcomas are highly aggressive cancers thought to arise from cells of vascular origin. The pathological features, morphological organization, and clinical behavior of canine hemangiosarcomas are virtually indistinct from those of human angiosarcomas. Overall survival with current standard-of-care approaches remains dismal for both humans and dogs, and each is likely to succumb to their disease within a short duration. While angiosarcomas in humans are extremely rare, limiting their study and treatment options, canine hemangiosarcomas occur frequently. Therefore, studies of these sarcomas in dogs can be used to advance treatment approaches for both patient groups. Emerging data suggest that angiosarcomas and hemangiosarcomas utilize beta adrenergic signaling to drive their progression by regulating the tumor cell niche and fine-tuning cellular responses within the tumor microenvironment. These discoveries indicate that inhibition of beta adrenergic signaling could serve as an Achilles heel for these tumors and emphasize the need to design therapeutic strategies that target tumor cell and stromal cell constituents. In this review, we summarize recent discoveries and present new hypotheses regarding the roles of beta adrenergic signaling in angiosarcomas and hemangiosarcomas. Because the use of beta adrenergic receptor antagonists is well established in human and veterinary medicine, beta blockade could provide an immediate adjunct therapy for treatment along with a tangible opportunity to improve upon the outcomes of both humans and dogs with these diseases. PMID:29061946

  6. Cortical signal-in-noise coding varies by noise type, signal-to-noise ratio, age, and hearing status.

    PubMed

    Maamor, Nashrah; Billings, Curtis J

    2017-01-01

    The purpose of this study was to determine the effects of noise type, signal-to-noise ratio (SNR), age, and hearing status on cortical auditory evoked potentials (CAEPs) to speech sounds. This helps to explain the hearing-in-noise difficulties often seen in the aging and hearing impaired population. Continuous, modulated, and babble noise types were presented at varying SNRs to 30 individuals divided into three groups according to age and hearing status. Significant main effects of noise type, SNR, and group were found. Interaction effects revealed that the SNR effect varies as a function of noise type and is most systematic for continuous noise. Effects of age and hearing loss were limited to CAEP latency and were differentially modulated by energetic and informational-like masking. It is clear that the spectrotemporal characteristics of signals and noises play an important role in determining the morphology of neural responses. Participant factors such as age and hearing status, also play an important role in determining the brain's response to complex auditory stimuli and contribute to the ability to listen in noise. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. 3D-segmentation of the 18F-choline PET signal for target volume definition in radiation therapy of the prostate.

    PubMed

    Ciernik, I Frank; Brown, Derek W; Schmid, Daniel; Hany, Thomas; Egli, Peter; Davis, J Bernard

    2007-02-01

    Volumetric assessment of PET signals becomes increasingly relevant for radiotherapy (RT) planning. Here, we investigate the utility of 18F-choline PET signals to serve as a structure for semi-automatic segmentation for forward treatment planning of prostate cancer. 18F-choline PET and CT scans of ten patients with histologically proven prostate cancer without extracapsular growth were acquired using a combined PET/CT scanner. Target volumes were manually delineated on CT images using standard software. Volumes were also obtained from 18F-choline PET images using an asymmetrical segmentation algorithm. PTVs were derived from CT 18F-choline PET based clinical target volumes (CTVs) by automatic expansion and comparative planning was performed. As a read-out for dose given to non-target structures, dose to the rectal wall was assessed. Planning target volumes (PTVs) derived from CT and 18F-choline PET yielded comparable results. Optimal matching of CT and 18F-choline PET derived volumes in the lateral and cranial-caudal directions was obtained using a background-subtracted signal thresholds of 23.0+/-2.6%. In antero-posterior direction, where adaptation compensating for rectal signal overflow was required, optimal matching was achieved with a threshold of 49.5+/-4.6%. 3D-conformal planning with CT or 18F-choline PET resulted in comparable doses to the rectal wall. Choline PET signals of the prostate provide adequate spatial information amendable to standardized asymmetrical region growing algorithms for PET-based target volume definition for external beam RT.

  8. Future Perspectives: Therapeutic Targeting of Notch Signalling May Become a Strategy in Patients Receiving Stem Cell Transplantation for Hematologic Malignancies

    PubMed Central

    Ersvaer, Elisabeth; Hatfield, Kimberley J.; Reikvam, Håkon; Bruserud, Øystein

    2011-01-01

    The human Notch system consists of 5 ligands and 4 membrane receptors with promiscuous ligand binding, and Notch-initiated signalling interacts with a wide range of other intracellular pathways. The receptor signalling seems important for regulation of normal and malignant hematopoiesis, development of the cellular immune system, and regulation of immune responses. Several Notch-targeting agents are now being developed, including natural receptor ligands, agonistic and antagonistic antibodies, and inhibitors of intracellular Notch-initiated signalling. Some of these agents are in clinical trials, and several therapeutic strategies seem possible in stem cell recipients: (i) agonists may be used for stem cell expansion and possibly to enhance posttransplant lymphoid reconstitution; (ii) receptor-specific agonists or antagonists can be used for immunomodulation; (iii) Notch targeting may have direct anticancer effects. Although the effects of therapeutic targeting are difficult to predict due to promiscuous ligand binding, targeting of this system may represent an opportunity to achieve combined effects with earlier posttransplant reconstitution, immunomodulation, or direct anticancer effects. PMID:22046566

  9. Estimating the delay-Doppler of target echo in a high clutter underwater environment using wideband linear chirp signals: Evaluation of performance with experimental data.

    PubMed

    Yu, Ge; Yang, T C; Piao, Shengchun

    2017-10-01

    A chirp signal is a signal with linearly varying instantaneous frequency over the signal bandwidth, also known as a linear frequency modulated (LFM) signal. It is widely used in communication, radar, active sonar, and other applications due to its Doppler tolerance property in signal detection using the matched filter (MF) processing. Modern sonar uses high-gain, wideband signals to improve the signal to reverberation ratio. High gain implies a high product of the signal bandwidth and duration. However, wideband and/or long duration LFM signals are no longer Doppler tolerant. The shortcoming of the standard MF processing is loss of performance, and bias in range estimation. This paper uses the wideband ambiguity function and the fractional Fourier transform method to estimate the target velocity and restore the performance. Target velocity or Doppler provides a clue for differentiating the target from the background reverberation and clutter. The methods are applied to simulated and experimental data.

  10. Targeting the p53 signaling pathway in cancer therapy - The promises, challenges, and perils

    PubMed Central

    Stegh, Alexander H.

    2012-01-01

    Introduction Research over the past three decades has identified p53 as a multifunctional transcription factor, which regulates the expression of >2,500 target genes. p53 impacts myriad, highly diverse cellular processes, including the maintenance of genomic stability and fidelity, metabolism, longevity, and represents one of the most important and extensively studied tumor suppressors. Activated by various stresses, foremost genotoxic damage, hypoxia, heat shock and oncogenic assault, p53 blocks cancer progression by provoking transient or permanent growth arrest, by enabling DNA repair or by advancing cellular death programs. This potent and versatile anti-cancer activity profile, together with genomic and mutational analyses documenting inactivation of p53 in more than 50% of human cancers, motivated drug development efforts to (re-) activate p53 in established tumors. Areas covered In this review the complexities of p53 signaling in cancer are summarized. Current strategies and challenges to restore p53’s tumor suppressive function in established tumors, i.e. adenoviral gene transfer and small molecules to activate p53, to inactivate p53 inhibitors and to restore wild type function of p53 mutant proteins are discussed. Expert opinion It is indubitable that p53 represents an attractive target for the development of anti-cancer therapies. Whether p53 is ‘druggable’, however, remains an area of active research and discussion, as p53 has pro-survival functions and chronic p53 activation accelerates aging, which may compromise the long-term homeostasis of an organism. Thus, the complex biology and dual functions of p53 in cancer prevention and age-related cellular responses pose significant challenges on the development of p53-targeting cancer therapies. PMID:22239435

  11. Targeting the phosphatidylinositol 3-kinase/Akt/mechanistic target of rapamycin signaling pathway in B-lineage acute lymphoblastic leukemia: An update.

    PubMed

    Simioni, Carolina; Martelli, Alberto M; Zauli, Giorgio; Vitale, Marco; McCubrey, James A; Capitani, Silvano; Neri, Luca M

    2018-04-18

    Despite considerable progress in treatment protocols, B-lineage acute lymphoblastic leukemia (B-ALL) displays a poor prognosis in about 15-20% of pediatric cases and about 60% of adult patients. In addition, life-long irreversible late effects from chemo- and radiation therapy, including secondary malignancies, are a growing problem for leukemia survivors. Targeted therapy holds promising perspectives for cancer treatment as it may be more effective and have fewer side effects than conventional therapies. The phosphatidylinositol 3-phosphate kinase (PI3K)/Akt/mechanistic target of rapamycin (mTOR) signaling pathway is a key regulatory cascade which controls proliferation, survival and drug-resistance of cancer cells, and it is frequently upregulated in the different subtypes of B-ALL, where it plays important roles in the pathophysiology, maintenance and progression of the disease. Moreover, activation of this signaling cascade portends a poorer prognosis in both pediatric and adult B-ALL patients. Promising preclinical data on PI3K/Akt/mTOR inhibitors have documented their anticancer activity in B-ALL and some of these novel drugs have entered clinical trials as they could lead to a longer event-free survival and reduce therapy-associated toxicity for patients with B-ALL. This review highlights the current status of PI3K/Akt/mTOR inhibitors in B-ALL, with an emphasis on emerging evidence of the superior efficacy of synergistic combinations involving the use of traditional chemotherapeutics or other novel, targeted agents. © 2018 Wiley Periodicals, Inc.

  12. Series-nonuniform rational B-spline signal feedback: From chaos to any embedded periodic orbit or target point.

    PubMed

    Shao, Chenxi; Xue, Yong; Fang, Fang; Bai, Fangzhou; Yin, Peifeng; Wang, Binghong

    2015-07-01

    The self-controlling feedback control method requires an external periodic oscillator with special design, which is technically challenging. This paper proposes a chaos control method based on time series non-uniform rational B-splines (SNURBS for short) signal feedback. It first builds the chaos phase diagram or chaotic attractor with the sampled chaotic time series and any target orbit can then be explicitly chosen according to the actual demand. Second, we use the discrete timing sequence selected from the specific target orbit to build the corresponding external SNURBS chaos periodic signal, whose difference from the system current output is used as the feedback control signal. Finally, by properly adjusting the feedback weight, we can quickly lead the system to an expected status. We demonstrate both the effectiveness and efficiency of our method by applying it to two classic chaotic systems, i.e., the Van der Pol oscillator and the Lorenz chaotic system. Further, our experimental results show that compared with delayed feedback control, our method takes less time to obtain the target point or periodic orbit (from the starting point) and that its parameters can be fine-tuned more easily.

  13. Series-nonuniform rational B-spline signal feedback: From chaos to any embedded periodic orbit or target point

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shao, Chenxi, E-mail: cxshao@ustc.edu.cn; Xue, Yong; Fang, Fang

    2015-07-15

    The self-controlling feedback control method requires an external periodic oscillator with special design, which is technically challenging. This paper proposes a chaos control method based on time series non-uniform rational B-splines (SNURBS for short) signal feedback. It first builds the chaos phase diagram or chaotic attractor with the sampled chaotic time series and any target orbit can then be explicitly chosen according to the actual demand. Second, we use the discrete timing sequence selected from the specific target orbit to build the corresponding external SNURBS chaos periodic signal, whose difference from the system current output is used as the feedbackmore » control signal. Finally, by properly adjusting the feedback weight, we can quickly lead the system to an expected status. We demonstrate both the effectiveness and efficiency of our method by applying it to two classic chaotic systems, i.e., the Van der Pol oscillator and the Lorenz chaotic system. Further, our experimental results show that compared with delayed feedback control, our method takes less time to obtain the target point or periodic orbit (from the starting point) and that its parameters can be fine-tuned more easily.« less

  14. miR-130b targets NKD2 and regulates the Wnt signaling to promote proliferation and inhibit apoptosis in osteosarcoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zhi; Li, Youjun, E-mail: liyoujunn@126.com; Wang, Nan

    miR-130b was significantly up-regulated in osteosarcoma (OS) cells. Naked cuticle homolog 2 (NKD2) inhibited tumor growth and metastasis in OS by suppressing Wnt signaling. We used three miRNA target analysis tools to identify potential targets of miR-130b, and found that NKD2 is a potential target of miR-130b. Based on these findings, we hypothesize that miR-130b might target NKD2 and regulate the Wnt signaling to promote OS growth. We detected the expression of miR-130b and NKD2 mRNA and protein by quantitative Real-Time PCR (qRT-PCR) and western blot assays, respectively, and found up-regulation of miR-130b and down-regulation of NKD2 mRNA and proteinmore » exist in OS cell lines. MTT and flow cytometry assays showed that miR-130b inhibitors inhibit proliferation and promote apoptosis in OS cells. Furthermore, we showed that NKD2 is a direct target of miR-130b, and miR-130b regulated proliferation and apoptosis of OS cells by targeting NKD2. We further investigated whether miR-130b and NKD2 regulate OS cell proliferation and apoptosis by inhibiting Wnt signaling, and the results confirmed our speculation that miR-130b targets NKD2 and regulates the Wnt signaling to promote proliferation and inhibit apoptosis of OS cells. These findings will offer new clues for OS development and progression, and novel potential therapeutic targets for OS. - Highlights: • miR-130b is up-regulated and NKD2 is down-regulated in osteosarcoma cell lines. • Down-regulation of miR-130b inhibits proliferation of osteosarcoma cells. • Down-regulation of miR-130b promotes apoptosis of osteosarcoma cells. • miR-130b directly targets NKD2. • NKD2 regulates OS cell proliferation and apoptosis by inhibiting the Wnt signaling.« less

  15. TFII-I regulates target genes in the PI-3K and TGF-β signaling pathways through a novel DNA binding motif.

    PubMed

    Segura-Puimedon, Maria; Borralleras, Cristina; Pérez-Jurado, Luis A; Campuzano, Victoria

    2013-09-25

    General transcription factor (TFII-I) is a multi-functional protein involved in the transcriptional regulation of critical developmental genes, encoded by the GTF2I gene located on chromosome 7q11.23. Haploinsufficiency at GTF2I has been shown to play a major role in the neurodevelopmental features of Williams-Beuren syndrome (WBS). Identification of genes regulated by TFII-I is thus critical to detect molecular determinants of WBS as well as to identify potential new targets for specific pharmacological interventions, which are currently absent. We performed a microarray screening for transcriptional targets of TFII-I in cortex and embryonic cells from Gtf2i mutant and wild-type mice. Candidate genes with altered expression were verified using real-time PCR. A novel motif shared by deregulated genes was found and chromatin immunoprecipitation assays in embryonic fibroblasts were used to document in vitro TFII-I binding to this motif in the promoter regions of deregulated genes. Interestingly, the PI3K and TGFβ signaling pathways were over-represented among TFII-I-modulated genes. In this study we have found a highly conserved DNA element, common to a set of genes regulated by TFII-I, and identified and validated novel in vivo neuronal targets of this protein affecting the PI3K and TGFβ signaling pathways. Overall, our data further contribute to unravel the complexity and variability of the different genetic programs orchestrated by TFII-I. © 2013 Elsevier B.V. All rights reserved.

  16. Targeting RNS/caveolin-1/MMP signaling cascades to protect against cerebral ischemia-reperfusion injuries: potential application for drug discovery

    PubMed Central

    Chen, Han-sen; Chen, Xi; Li, Wen-ting; Shen, Jian-gang

    2018-01-01

    Reactive nitrogen species (RNS) play important roles in mediating cerebral ischemia-reperfusion injury. RNS activate multiple signaling pathways and participate in different cellular events in cerebral ischemia-reperfusion injury. Recent studies have indicated that caveolin-1 and matrix metalloproteinase (MMP) are important signaling molecules in the pathological process of ischemic brain injury. During cerebral ischemia-reperfusion, the production of nitric oxide (NO) and peroxynitrite (ONOO−), two representative RNS, down-regulates the expression of caveolin-1 (Cav-1) and, in turn, further activates nitric oxide synthase (NOS) to promote RNS generation. The increased RNS further induce MMP activation and mediate disruption of the blood-brain barrier (BBB), aggravating the brain damage in cerebral ischemia-reperfusion injury. Therefore, the feedback interaction among RNS/Cav-1/MMPs provides an amplified mechanism for aggravating ischemic brain damage during cerebral ischemia-reperfusion injury. Targeting the RNS/Cav-1/MMP pathway could be a promising therapeutic strategy for protecting against cerebral ischemia-reperfusion injury. In this mini-review article, we highlight the important role of the RNS/Cav-1/MMP signaling cascades in ischemic stroke injury and review the current progress of studies seeking therapeutic compounds targeting the RNS/Cav-1/MMP signaling cascades to attenuate cerebral ischemia-reperfusion injury. Several representative natural compounds, including calycosin-7-O-β-D-glucoside, baicalin, Momordica charantia polysaccharide (MCP), chlorogenic acid, lutein and lycopene, have shown potential for targeting the RNS/Cav-1/MMP signaling pathway to protect the brain in ischemic stroke. Therefore, the RNS/Cav-1/MMP pathway is an important therapeutic target in ischemic stroke treatment. PMID:29595191

  17. Targeting RNS/caveolin-1/MMP signaling cascades to protect against cerebral ischemia-reperfusion injuries: potential application for drug discovery.

    PubMed

    Chen, Han-Sen; Chen, Xi; Li, Wen-Ting; Shen, Jian-Gang

    2018-05-01

    Reactive nitrogen species (RNS) play important roles in mediating cerebral ischemia-reperfusion injury. RNS activate multiple signaling pathways and participate in different cellular events in cerebral ischemia-reperfusion injury. Recent studies have indicated that caveolin-1 and matrix metalloproteinase (MMP) are important signaling molecules in the pathological process of ischemic brain injury. During cerebral ischemia-reperfusion, the production of nitric oxide (NO) and peroxynitrite (ONOO - ), two representative RNS, down-regulates the expression of caveolin-1 (Cav-1) and, in turn, further activates nitric oxide synthase (NOS) to promote RNS generation. The increased RNS further induce MMP activation and mediate disruption of the blood-brain barrier (BBB), aggravating the brain damage in cerebral ischemia-reperfusion injury. Therefore, the feedback interaction among RNS/Cav-1/MMPs provides an amplified mechanism for aggravating ischemic brain damage during cerebral ischemia-reperfusion injury. Targeting the RNS/Cav-1/MMP pathway could be a promising therapeutic strategy for protecting against cerebral ischemia-reperfusion injury. In this mini-review article, we highlight the important role of the RNS/Cav-1/MMP signaling cascades in ischemic stroke injury and review the current progress of studies seeking therapeutic compounds targeting the RNS/Cav-1/MMP signaling cascades to attenuate cerebral ischemia-reperfusion injury. Several representative natural compounds, including calycosin-7-O-β-D-glucoside, baicalin, Momordica charantia polysaccharide (MCP), chlorogenic acid, lutein and lycopene, have shown potential for targeting the RNS/Cav-1/MMP signaling pathway to protect the brain in ischemic stroke. Therefore, the RNS/Cav-1/MMP pathway is an important therapeutic target in ischemic stroke treatment.

  18. Stem cell signaling as a target for novel drug discovery: recent progress in the WNT and Hedgehog pathways.

    PubMed

    An, Songzhu Michael; Ding, Qiang Peter; Li, Ling-song

    2013-06-01

    One of the most exciting fields in biomedical research over the past few years is stem cell biology, and therapeutic application of stem cells to replace the diseased or damaged tissues is also an active area in development. Although stem cell therapy has a number of technical challenges and regulatory hurdles to overcome, the use of stem cells as tools in drug discovery supported by mature technologies and established regulatory paths is expected to generate more immediate returns. In particular, the targeting of stem cell signaling pathways is opening up a new avenue for drug discovery. Aberrations in these pathways result in various diseases, including cancer, fibrosis and degenerative diseases. A number of drug targets in stem cell signaling pathways have been identified. Among them, WNT and Hedgehog are two most important signaling pathways, which are the focus of this review. A hedgehog pathway inhibitor, vismodegib (Erivedge), has recently been approved by the US FDA for the treatment of skin cancer, while several drug candidates for the WNT pathway are entering clinical trials. We have discovered that the stem cell signaling pathways respond to traditional Chinese medicines. Substances isolated from herbal medicine may act specifically on components of stem cell signaling pathways with high affinities. As many of these events can be explained through molecular interactions, these phenomena suggest that discovery of stem cell-targeting drugs from natural products may prove to be highly successful.

  19. Targeting Cytosolic Nucleic Acid-Sensing Pathways for Cancer Immunotherapies.

    PubMed

    Iurescia, Sandra; Fioretti, Daniela; Rinaldi, Monica

    2018-01-01

    The innate immune system provides the first line of defense against pathogen infection though also influences pathways involved in cancer immunosurveillance. The innate immune system relies on a limited set of germ line-encoded sensors termed pattern recognition receptors (PRRs), signaling proteins and immune response factors. Cytosolic receptors mediate recognition of danger damage-associated molecular patterns (DAMPs) signals. Once activated, these sensors trigger multiple signaling cascades, converging on the production of type I interferons and proinflammatory cytokines. Recent studies revealed that PRRs respond to nucleic acids (NA) released by dying, damaged, cancer cells, as danger DAMPs signals, and presence of signaling proteins across cancer types suggests that these signaling mechanisms may be involved in cancer biology. DAMPs play important roles in shaping adaptive immune responses through the activation of innate immune cells and immunological response to danger DAMPs signals is crucial for the host response to cancer and tumor rejection. Furthermore, PRRs mediate the response to NA in several vaccination strategies, including DNA immunization. As route of double-strand DNA intracellular entry, DNA immunization leads to expression of key components of cytosolic NA-sensing pathways. The involvement of NA-sensing mechanisms in the antitumor response makes these pathways attractive drug targets. Natural and synthetic agonists of NA-sensing pathways can trigger cell death in malignant cells, recruit immune cells, such as DCs, CD8 + T cells, and NK cells, into the tumor microenvironment and are being explored as promising adjuvants in cancer immunotherapies. In this minireview, we discuss how cGAS-STING and RIG-I-MAVS pathways have been targeted for cancer treatment in preclinical translational researches. In addition, we present a targeted selection of recent clinical trials employing agonists of cytosolic NA-sensing pathways showing how these pathways

  20. A small molecule inhibitor of Rheb selectively targets mTORC1 signaling.

    PubMed

    Mahoney, Sarah J; Narayan, Sridhar; Molz, Lisa; Berstler, Lauren A; Kang, Seong A; Vlasuk, George P; Saiah, Eddine

    2018-02-07

    The small G-protein Rheb activates the mechanistic target of rapamycin complex 1 (mTORC1) in response to growth factor signals. mTORC1 is a master regulator of cellular growth and metabolism; aberrant mTORC1 signaling is associated with fibrotic, metabolic, and neurodegenerative diseases, cancers, and rare disorders. Point mutations in the Rheb switch II domain impair its ability to activate mTORC1. Here, we report the discovery of a small molecule (NR1) that binds Rheb in the switch II domain and selectively blocks mTORC1 signaling. NR1 potently inhibits mTORC1 driven phosphorylation of ribosomal protein S6 kinase beta-1 (S6K1) but does not inhibit phosphorylation of AKT or ERK. In contrast to rapamycin, NR1 does not cause inhibition of mTORC2 upon prolonged treatment. Furthermore, NR1 potently and selectively inhibits mTORC1 in mouse kidney and muscle in vivo. The data presented herein suggest that pharmacological inhibition of Rheb is an effective approach for selective inhibition of mTORC1 with therapeutic potential.

  1. In vivo type 2 cannabinoid receptor-targeted tumor optical imaging using a near infrared fluorescent probe.

    PubMed

    Zhang, Shaojuan; Shao, Pin; Bai, Mingfeng

    2013-11-20

    The type 2 cannabinoid receptor (CB2R) plays a vital role in carcinogenesis and progression and is emerging as a therapeutic target for cancers. However, the exact role of CB2R in cancer progression and therapy remains unclear. This has driven the increasing efforts to study CB2R and cancers using molecular imaging tools. In addition, many types of cancers overexpress CB2R, and the expression levels of CB2R appear to be associated with tumor aggressiveness. Such upregulation of the receptor in cancer cells provides opportunities for CB2R-targeted imaging with high contrast and for therapy with low side effects. In the present study, we report the first in vivo tumor-targeted optical imaging using a novel CB2R-targeted near-infrared probe. In vitro cell fluorescent imaging and a competitive binding assay indicated specific binding of NIR760-mbc94 to CB2R in CB2-mid delayed brain tumor (DBT) cells. NIR760-mbc94 also preferentially labeled CB2-mid DBT tumors in vivo, with a 3.7-fold tumor-to-normal contrast enhancement at 72 h postinjection, whereas the fluorescence signal from the tumors of the mice treated with NIR760 free dye was nearly at the background level at the same time point. SR144528, a CB2R competitor, significantly inhibited tumor uptake of NIR760-mbc94, indicating that NIR760-mbc94 binds to CB2R specifically. In summary, NIR760-mbc94 specifically binds to CB2R in vitro and in vivo and appears to be a promising molecular tool that may have great potential for use in diagnostic imaging of CB2R-positive cancers and therapeutic monitoring as well as in elucidating the role of CB2R in cancer progression and therapy.

  2. Peptide Immunoaffinity Enrichment and Targeted Mass Spectrometry Enables Multiplex, Quantitative Pharmacodynamic Studies of Phospho-Signaling*

    PubMed Central

    Whiteaker, Jeffrey R.; Zhao, Lei; Yan, Ping; Ivey, Richard G.; Voytovich, Uliana J.; Moore, Heather D.; Lin, Chenwei; Paulovich, Amanda G.

    2015-01-01

    In most cell signaling experiments, analytes are measured one Western blot lane at a time in a semiquantitative and often poorly specific manner, limiting our understanding of network biology and hindering the translation of novel therapeutics and diagnostics. We show the feasibility of using multiplex immuno-MRM for phospho-pharmacodynamic measurements, establishing the potential for rapid and precise quantification of cell signaling networks. A 69-plex immuno-MRM assay targeting the DNA damage response network was developed and characterized by response curves and determinations of intra- and inter-assay repeatability. The linear range was ≥3 orders of magnitude, the median limit of quantification was 2.0 fmol/mg, the median intra-assay variability was 10% CV, and the median interassay variability was 16% CV. The assay was applied in proof-of-concept studies to immortalized and primary human cells and surgically excised cancer tissues to quantify exposure–response relationships and the effects of a genomic variant (ATM kinase mutation) or pharmacologic (kinase) inhibitor. The study shows the utility of multiplex immuno-MRM for simultaneous quantification of phosphorylated and nonmodified peptides, showing feasibility for development of targeted assay panels to cell signaling networks. PMID:25987412

  3. Endosomal Redox Signaling in the Antiphospholipid Syndrome.

    PubMed

    Lackner, Karl J; Manukyan, Davit; Müller-Calleja, Nadine

    2017-04-01

    It is well established that the antiphospholipid syndrome (APS) is caused by antiphospholipid antibodies (aPL). While several underlying mechanisms have been described in the past, many open questions remain. Here, we will review data on endosomal signaling and, in particular, redox signaling in APS. Endosomal redox signaling has been implicated in several cellular processes including signaling of proinflammatory cytokines. We have shown that certain aPL can activate endosomal NADPH-oxidase (NOX) in several cell types followed by induction of proinflammatory and procoagulant cellular responses in vitro. Involvement of endosomes in aPL signaling has also been reported by others. In wild-type mice but not in NOX-deficient mice, aPL accelerate venous thrombus formation underscoring the relevance of endosomal NOX. Furthermore, hydroxychloroquine (HCQ) inhibits activation of endosomal NOX and prevents thrombus formation in aPL-treated mice. Endosomal redox signaling is an important novel mechanism involved in APS pathogenesis. This makes endosomes a potential target for future treatment approaches of APS.

  4. Genome-wide Analysis of RARβ Transcriptional Targets in Mouse Striatum Links Retinoic Acid Signaling with Huntington's Disease and Other Neurodegenerative Disorders.

    PubMed

    Niewiadomska-Cimicka, Anna; Krzyżosiak, Agnieszka; Ye, Tao; Podleśny-Drabiniok, Anna; Dembélé, Doulaye; Dollé, Pascal; Krężel, Wojciech

    2017-07-01

    Retinoic acid (RA) signaling through retinoic acid receptors (RARs), known for its multiple developmental functions, emerged more recently as an important regulator of adult brain physiology. How RAR-mediated regulation is achieved is poorly known, partly due to the paucity of information on critical target genes in the brain. Also, it is not clear how reduced RA signaling may contribute to pathophysiology of diverse neuropsychiatric disorders. We report the first genome-wide analysis of RAR transcriptional targets in the brain. Using chromatin immunoprecipitation followed by high-throughput sequencing and transcriptomic analysis of RARβ-null mutant mice, we identified genomic targets of RARβ in the striatum. Characterization of RARβ transcriptional targets in the mouse striatum points to mechanisms through which RAR may control brain functions and display neuroprotective activity. Namely, our data indicate with statistical significance (FDR 0.1) a strong contribution of RARβ in controlling neurotransmission, energy metabolism, and transcription, with a particular involvement of G-protein coupled receptor (p = 5.0e -5 ), cAMP (p = 4.5e -4 ), and calcium signaling (p = 3.4e -3 ). Many identified RARβ target genes related to these pathways have been implicated in Alzheimer's, Parkinson's, and Huntington's disease (HD), raising the possibility that compromised RA signaling in the striatum may be a mechanistic link explaining the similar affective and cognitive symptoms in these diseases. The RARβ transcriptional targets were particularly enriched for transcripts affected in HD. Using the R6/2 transgenic mouse model of HD, we show that partial sequestration of RARβ in huntingtin protein aggregates may account for reduced RA signaling reported in HD.

  5. Rewiring monocyte glucose metabolism via C-type lectin signaling protects against disseminated candidiasis.

    PubMed

    Domínguez-Andrés, Jorge; Arts, Rob J W; Ter Horst, Rob; Gresnigt, Mark S; Smeekens, Sanne P; Ratter, Jacqueline M; Lachmandas, Ekta; Boutens, Lily; van de Veerdonk, Frank L; Joosten, Leo A B; Notebaart, Richard A; Ardavín, Carlos; Netea, Mihai G

    2017-09-01

    Monocytes are innate immune cells that play a pivotal role in antifungal immunity, but little is known regarding the cellular metabolic events that regulate their function during infection. Using complementary transcriptomic and immunological studies in human primary monocytes, we show that activation of monocytes by Candida albicans yeast and hyphae was accompanied by metabolic rewiring induced through C-type lectin-signaling pathways. We describe that the innate immune responses against Candida yeast are energy-demanding processes that lead to the mobilization of intracellular metabolite pools and require induction of glucose metabolism, oxidative phosphorylation and glutaminolysis, while responses to hyphae primarily rely on glycolysis. Experimental models of systemic candidiasis models validated a central role for glucose metabolism in anti-Candida immunity, as the impairment of glycolysis led to increased susceptibility in mice. Collectively, these data highlight the importance of understanding the complex network of metabolic responses triggered during infections, and unveil new potential targets for therapeutic approaches against fungal diseases.

  6. Rewiring monocyte glucose metabolism via C-type lectin signaling protects against disseminated candidiasis

    PubMed Central

    Smeekens, Sanne P.; Lachmandas, Ekta; Boutens, Lily; van de Veerdonk, Frank L.; Joosten, Leo A. B.; Ardavín, Carlos; Netea, Mihai G.

    2017-01-01

    Monocytes are innate immune cells that play a pivotal role in antifungal immunity, but little is known regarding the cellular metabolic events that regulate their function during infection. Using complementary transcriptomic and immunological studies in human primary monocytes, we show that activation of monocytes by Candida albicans yeast and hyphae was accompanied by metabolic rewiring induced through C-type lectin-signaling pathways. We describe that the innate immune responses against Candida yeast are energy-demanding processes that lead to the mobilization of intracellular metabolite pools and require induction of glucose metabolism, oxidative phosphorylation and glutaminolysis, while responses to hyphae primarily rely on glycolysis. Experimental models of systemic candidiasis models validated a central role for glucose metabolism in anti-Candida immunity, as the impairment of glycolysis led to increased susceptibility in mice. Collectively, these data highlight the importance of understanding the complex network of metabolic responses triggered during infections, and unveil new potential targets for therapeutic approaches against fungal diseases. PMID:28922415

  7. Ultrasound Targeted Microbubble Destruction-Mediated Delivery of a Transcription Factor Decoy Inhibits STAT3 Signaling and Tumor Growth

    PubMed Central

    Kopechek, Jonathan A.; Carson, Andrew R.; McTiernan, Charles F.; Chen, Xucai; Hasjim, Bima; Lavery, Linda; Sen, Malabika; Grandis, Jennifer R.; Villanueva, Flordeliza S.

    2015-01-01

    Signal transducer and activator of transcription 3 (STAT3) is constitutively activated in many cancers where it acts to promote tumor progression. A STAT3-specific transcription factor decoy has been developed to suppress STAT3 downstream signaling, but a delivery strategy is needed to improve clinical translation. Ultrasound-targeted microbubble destruction (UTMD) has been shown to enhance image-guided local delivery of molecular therapeutics to a target site. The objective of this study was to deliver STAT3 decoy to squamous cell carcinoma (SCC) tumors using UTMD to disrupt STAT3 signaling and inhibit tumor growth. Studies performed demonstrated that UTMD treatment with STAT3 decoy-loaded microbubbles inhibited STAT3 signaling in SCC cells in vitro. Studies performed in vivo demonstrated that UTMD treatment with STAT3 decoy-loaded microbubbles induced significant tumor growth inhibition (31-51% reduced tumor volume vs. controls, p < 0.05) in mice bearing SCC tumors. Furthermore, expression of STAT3 downstream target genes (Bcl-xL and cyclin D1) was significantly reduced (34-39%, p < 0.05) in tumors receiving UTMD treatment with STAT3 decoy-loaded microbubbles compared to controls. In addition, the quantity of radiolabeled STAT3 decoy detected in tumors eight hours after treatment was significantly higher with UTMD treatment compared to controls (70-150%, p < 0.05). This study demonstrates that UTMD can increase delivery of a transcription factor decoy to tumors in vivo and that the decoy can inhibit STAT3 signaling and tumor growth. These results suggest that UTMD treatment holds potential for clinical use to increase the concentration of a transcription factor signaling inhibitor in the tumor. PMID:26681983

  8. Transcriptional targets of DAF-16 insulin signaling pathway protect C. elegans from extreme hypertonic stress.

    PubMed

    Lamitina, S Todd; Strange, Kevin

    2005-02-01

    All cells adapt to hypertonic stress by regulating their volume after shrinkage, by accumulating organic osmolytes, and by activating mechanisms that protect against and repair hypertonicity-induced damage. In mammals and nematodes, inhibition of signaling from the DAF-2/IGF-1 insulin receptor activates the DAF-16/FOXO transcription factor, resulting in increased life span and resistance to some types of stress. We tested the hypothesis that inhibition of insulin signaling in Caenorhabditis elegans also increases hypertonic stress resistance. Genetic inhibition of DAF-2 or its downstream target, the AGE-1 phosphatidylinositol 3-kinase, confers striking resistance to a normally lethal hypertonic shock in a DAF-16-dependent manner. However, insulin signaling is not inhibited by or required for adaptation to hypertonic conditions. Microarray studies have identified 263 genes that are transcriptionally upregulated by DAF-16 activation. We identified 14 DAF-16-upregulated genes by RNA interference screening that are required for age-1 hypertonic stress resistance. These genes encode heat shock proteins, proteins of unknown function, and trehalose synthesis enzymes. Trehalose levels were elevated approximately twofold in age-1 mutants, but this increase was insufficient to prevent rapid hypertonic shrinkage. However, age-1 animals unable to synthesize trehalose survive poorly under hypertonic conditions. We conclude that increased expression of proteins that protect eukaryotic cells against environmental stress and/or repair stress-induced molecular damage confers hypertonic stress resistance in C. elegans daf-2/age-1 mutants. Elevated levels of solutes such as trehalose may also function in a cytoprotective manner. Our studies provide novel insights into stress resistance in animal cells and a foundation for new studies aimed at defining molecular mechanisms underlying these essential processes.

  9. Molecular pathways: targeting p21-activated kinase 1 signaling in cancer--opportunities, challenges, and limitations.

    PubMed

    Eswaran, Jeyanthy; Li, Da-Qiang; Shah, Anil; Kumar, Rakesh

    2012-07-15

    The evolution of cancer cells involves deregulation of highly regulated fundamental pathways that are central to normal cellular architecture and functions. p21-activated kinase 1 (PAK1) was initially identified as a downstream effector of the GTPases Rac and Cdc42. Subsequent studies uncovered a variety of new functions for this kinase in growth factor and steroid receptor signaling, cytoskeleton remodeling, cell survival, oncogenic transformation, and gene transcription, largely through systematic discovery of its direct, physiologically relevant substrates. PAK1 is widely upregulated in several human cancers, such as hormone-dependent cancer, and is intimately linked to tumor progression and therapeutic resistance. These exciting developments combined with the kinase-independent role of PAK1-centered phenotypic signaling in cancer cells elevated PAK1 as an attractive drug target. Structural and biochemical studies revealed the precise mechanism of PAK1 activation, offering the possibility to develop PAK1-targeted cancer therapeutic approaches. In addition, emerging reports suggest the potential of PAK1 and its specific phosphorylated substrates as cancer prognostic markers. Here, we summarize recent findings about the PAK1 molecular pathways in human cancer and discuss the current status of PAK1-targeted anticancer therapies.

  10. Targeting the Hippo Signaling Pathway for Tissue Regeneration and Cancer Therapy

    PubMed Central

    Juan, Wen Chun; Hong, Wanjin

    2016-01-01

    The Hippo signaling pathway is a highly-conserved developmental pathway that plays an essential role in organ size control, tumor suppression, tissue regeneration and stem cell self-renewal. The YES-associated protein (YAP) and the transcriptional co-activator with PDZ-binding motif (TAZ) are two important transcriptional co-activators that are negatively regulated by the Hippo signaling pathway. By binding to transcription factors, especially the TEA domain transcription factors (TEADs), YAP and TAZ induce the expression of growth-promoting genes, which can promote organ regeneration after injury. Therefore, controlled activation of YAP and TAZ can be useful for regenerative medicine. However, aberrant activation of YAP and TAZ due to deregulation of the Hippo pathway or overexpression of YAP/TAZ and TEADs can promote cancer development. Hence, pharmacological inhibition of YAP and TAZ may be a useful approach to treat tumors with high YAP and/or TAZ activity. In this review, we present the mechanisms regulating the Hippo pathway, the role of the Hippo pathway in tissue repair and cancer, as well as a detailed analysis of the different strategies to target the Hippo signaling pathway and the genes regulated by YAP and TAZ for regenerative medicine and cancer therapy. PMID:27589805

  11. TGF-β1/Smad3 Pathway Targets PP2A-AMPK-FoxO1 Signaling to Regulate Hepatic Gluconeogenesis.

    PubMed

    Yadav, Hariom; Devalaraja, Samir; Chung, Stephanie T; Rane, Sushil G

    2017-02-24

    Maintenance of glucose homeostasis is essential for normal physiology. Deviation from normal glucose levels, in either direction, increases susceptibility to serious medical complications such as hypoglycemia and diabetes. Maintenance of glucose homeostasis is achieved via functional interactions among various organs: liver, skeletal muscle, adipose tissue, brain, and the endocrine pancreas. The liver is the primary site of endogenous glucose production, especially during states of prolonged fasting. However, enhanced gluconeogenesis is also a signature feature of type 2 diabetes (T2D). Thus, elucidating the signaling pathways that regulate hepatic gluconeogenesis would allow better insight into the process of normal endogenous glucose production as well as how this process is impaired in T2D. Here we demonstrate that the TGF-β1/Smad3 signaling pathway promotes hepatic gluconeogenesis, both upon prolonged fasting and during T2D. In contrast, genetic and pharmacological inhibition of TGF-β1/Smad3 signals suppressed endogenous glucose production. TGF-β1 and Smad3 signals achieved this effect via the targeting of key regulators of hepatic gluconeogenesis, protein phosphatase 2A (PP2A), AMP-activated protein kinase (AMPK), and FoxO1 proteins. Specifically, TGF-β1 signaling suppressed the LKB1-AMPK axis, thereby facilitating the nuclear translocation of FoxO1 and activation of key gluconeogenic genes, glucose-6-phosphatase and phosphoenolpyruvate carboxykinase. These findings underscore an important role of TGF-β1/Smad3 signaling in hepatic gluconeogenesis, both in normal physiology and in the pathophysiology of metabolic diseases such as diabetes, and are thus of significant medical relevance. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. AXL promotes Zika virus infection in astrocytes by antagonizing type I interferon signalling.

    PubMed

    Chen, Jian; Yang, Yi-Feng; Yang, Yu; Zou, Peng; Chen, Jun; He, Yongquan; Shui, Sai-Lan; Cui, Yan-Ru; Bai, Ru; Liang, Ya-Jun; Hu, Yunwen; Jiang, Biao; Lu, Lu; Zhang, Xiaoyan; Liu, Jia; Xu, Jianqing

    2018-03-01

    Zika virus (ZIKV) is associated with neonatal microcephaly and Guillain-Barré syndrome 1,2 . While progress has been made in understanding the causal link between ZIKV infection and microcephaly 3-9 , the life cycle and pathogenesis of ZIKV are less well understood. In particular, there are conflicting reports on the role of AXL, a TAM family kinase receptor that was initially described as the entry receptor for ZIKV 10-22 . Here, we show that while genetic ablation of AXL protected primary human astrocytes and astrocytoma cell lines from ZIKV infection, AXL knockout did not block the entry of ZIKV. We found, instead, that the presence of AXL attenuated the ZIKV-induced activation of type I interferon (IFN) signalling genes, including several type I IFNs and IFN-stimulating genes. Knocking out type I IFN receptor α chain (IFNAR1) restored the vulnerability of AXL knockout astrocytes to ZIKV infection. Further experiments suggested that AXL regulates the expression of SOCS1, a known type I IFN signalling suppressor, in a STAT1/STAT2-dependent manner. Collectively, our results demonstrate that AXL is unlikely to function as an entry receptor for ZIKV and may instead promote ZIKV infection in human astrocytes by antagonizing type I IFN signalling.

  13. Differential Type I Interferon Signaling Is a Master Regulator of Susceptibility to Postinfluenza Bacterial Superinfection

    PubMed Central

    Larson, Kyle; Morton, Rachelle V.; Prigge, Justin R.; Schmidt, Edward E.; Huber, Victor C.

    2016-01-01

    ABSTRACT Bacterial superinfections are a primary cause of death during influenza pandemics and epidemics. Type I interferon (IFN) signaling contributes to increased susceptibility of mice to bacterial superinfection around day 7 post-influenza A virus (IAV) infection. Here we demonstrate that the reduced susceptibility to methicillin-resistant Staphylococcus aureus (MRSA) at day 3 post-IAV infection, which we previously reported was due to interleukin-13 (IL-13)/IFN-γ responses, is also dependent on type I IFN signaling and its subsequent requirement for protective IL-13 production. We found, through utilization of blocking antibodies, that reduced susceptibility to MRSA at day 3 post-IAV infection was IFN-β dependent, whereas the increased susceptibility at day 7 was IFN-α dependent. IFN-β signaling early in IAV infection was required for MRSA clearance, whereas IFN-α signaling late in infection was not, though it did mediate increased susceptibility to MRSA at that time. Type I IFN receptor (IFNAR) signaling in CD11c+ and Ly6G+ cells was required for the observed reduced susceptibility at day 3 post-IAV infection. Depletion of Ly6G+ cells in mice in which IFNAR signaling was either blocked or deleted indicated that Ly6G+ cells were responsible for the IFNAR signaling-dependent susceptibility to MRSA superinfection at day 7 post-IAV infection. Thus, during IAV infection, the temporal differences in type I IFN signaling increased bactericidal activity of both CD11c+ and Ly6G+ cells at day 3 and reduced effector function of Ly6G+ cells at day 7. The temporal differential outcomes induced by IFN-β (day 3) and IFN-α (day 7) signaling through the same IFNAR resulted in differential susceptibility to MRSA at 3 and 7 days post-IAV infection. PMID:27143388

  14. Targeting NRF2 signaling for cancer chemoprevention

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwak, Mi-Kyoung, E-mail: mkwak@ynu.ac.k; Kensler, Thomas W.

    2010-04-01

    Modulation of the metabolism and disposition of carcinogens through induction of cytoprotective enzymes is one of several promising strategies to prevent cancer. Chemopreventive efficacies of inducers such as dithiolethiones and sulforaphane have been extensively studied in animals as well as in humans. The KEAP1-NRF2 system is a key, but not unilateral, molecular target for these chemopreventive agents. The transcription factor NRF2 (NF-E2-related factor 2) is a master regulator of the expression of a subset of genes, which produce proteins responsible for the detoxication of electrophiles and reactive oxygen species as well as the removal or repair of some of theirmore » damage products. It is believed that chemopreventive enzyme inducers affect the interaction between KEAP1 and NRF2 through either mediating conformational changes of the KEAP1 protein or activating phosphorylation cascades targeting the KEAP1-NRF2 complex. These events in turn affect NRF2 stability and trafficking. Recent advances elucidating the underlying structural biology of KEAP1-NRF2 signaling and identification of the gene clusters under the transcriptional control of NRF2 are facilitating understanding of the potential pleiotropic effects of NRF2 activators and discovery of novel classes of potent chemopreventive agents such as the triterpenoids. Although there is appropriately a concern regarding a deleterious role of the KEAP1-NRF2 system in cancer cell biology, especially as the pathway affects cell survival and drug resistance, the development and the use of NRF2 activators as chemopreventive agents still holds a great promise for protection of normal cells from a diversity of environmental stresses that contribute to the burden of cancer and other chronic, degenerative diseases.« less

  15. Molecular and Cell Signaling Targets for PTSD Pathophysiology and Pharmacotherapy

    PubMed Central

    Hauger, Richard L.; Olivares-Reyes, J. Alberto; Dautzenberg, Frank M.; Lohr, James B.; Braun, Sandra; Oakley, Robert H.

    2012-01-01

    The reasons for differences in vulnerability or resilience to the development of posttraumatic stress disorder (PTSD) are unclear. Here we review key genetic diatheses and molecular targets especially signaling pathways that mediate responses to trauma and severe stress and their potential contribution to the etiology of PTSD. Sensitization of glucocorticoid receptor (GR) signaling and dysregulation of GR modulators FKBP5, STAT5B, Bcl-2, and Bax have been implicated in PTSD pathophysiology. Furthermore, Akt, NFκB, MKP-1, and p11, which are G protein-coupled receptor (GPCR) pathway molecules, can promote or prevent sustained high anxiety and depressive-like behavior following severe stress. Agonist-induced activation of the corticotropin-releasing factor CRF1 receptor is crucial for survival in the context of serious danger or trauma, but persistent CRF1 receptor hypersignaling when a threatening or traumatic situation is no longer present is maladaptive. CRF1 receptor single nucleotide polymorphisms (SNPs) can confer susceptibility or resilience to childhood trauma while a SNP for the PAC1 receptor, another class B1 GPCR, has been linked genetically to PTSD. GRK3 phosphorylation of the CRF1 receptor protein and subsequent binding of βarrestin2 rapidly terminate Gs-coupled CRF1 receptor signaling by homologous desensitization. A deficient GRK-βarrestin2 mechanism would result in excessive CRF1 receptor signaling thereby contributing to PTSD and co-morbid posttraumatic depression. Clinical trials are needed to assess if small molecule CRF1 receptor antagonists are effective prophylactic agents when administered immediately after trauma. βarrestin2-biased agonists for CRF receptors and possibly other GPCRs implicated in PTSD, however, may prove to be novel pharmacotherapy with greater selectivity and therapeutic efficacy. PMID:22122881

  16. Regulator of G protein signaling 4 is a novel target of GATA-6 transcription factor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yonggang; Li, Fang; Xiao, Xiao

    GATA transcription factors regulate an array of genes important in cell proliferation and differentiation. Here we report the identification of regulator of G protein signaling 4 (RGS4) as a novel target for GATA-6 transcription factor. Although three sites (a, b, c) within the proximal region of rabbit RGS4 promoter for GATA transcription factors were predicted by bioinformatics analysis, only GATA-a site (16 bp from the core TATA box) is essential for RGS4 transcriptional regulation. RT-PCR analysis demonstrated that only GATA-6 was highly expressed in rabbit colonic smooth muscle cells but GATA-4/6 were expressed in cardiac myocytes and GATA-1/2/3 expressed inmore » blood cells. Adenovirus-mediated expression of GATA-6 but not GATA-1 significantly increased the constitutive and IL-1β-induced mRNA expression of the endogenous RGS4 in colonic smooth muscle cells. IL-1β stimulation induced GATA-6 nuclear translocation and increased GATA-6 binding to RGS4 promoter. These data suggest that GATA factor could affect G protein signaling through regulating RGS4 expression, and GATA signaling may develop as a future therapeutic target for RGS4-related diseases. - Highlights: • GATA-6 is highly expressed in colonic smooth muscle cells. • RGS4 is a novel target for GATA-6 transcription factor. • GATA-a response element is essential to regulate the core promoter of RGS4. • GATA-6 regulates IL-1β-induced RGS4 upregulation.« less

  17. In-reactor performance of LWR-type tritium target rods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lanning, D.D.; Paxton, M.M.; Crumbaugh, L.

    Pacific Northwest Laboratory has conducted several 1-yr irradiation tests of light water reactor-type tritium target rods. These tests have been sponsored by the U.S. Department of Energy's Office of New Production Reactors. The first test, designated water capsule-1 (WC-1), was conducted in the Advanced Test Reactor (ATR) at the Idaho National Engineering Laboratory from November 1989 to December 1990. The test vehicle contained a single 4-ft target rod within a pressurized water capsule. The capsule maintained the rod at pressurized water reactor (PWR)-type water temperature and pressure conditions. Posttest nondestructive examinations of the WC-1 rod involved visual examinations, dimensional checks,more » gamma scanning, and neutron radiography. The results indicate that the rod maintained the integrity of its pressure seal and was otherwise unaltered both mechanically and dimensionally by its irradiation and posttest handling.« less

  18. Lysine 63-linked polyubiquitin chain may serve as a targeting signal for the 26S proteasome

    PubMed Central

    Saeki, Yasushi; Kudo, Tai; Sone, Takayuki; Kikuchi, Yoshiko; Yokosawa, Hideyoshi; Toh-e, Akio; Tanaka, Keiji

    2009-01-01

    Recruitment of substrates to the 26S proteasome usually requires covalent attachment of the Lys48-linked polyubiquitin chain. In contrast, modifications with the Lys63-linked polyubiquitin chain and/or monomeric ubiquitin are generally thought to function in proteasome-independent cellular processes. Nevertheless, the ubiquitin chain-type specificity for the proteasomal targeting is still poorly understood, especially in vivo. Using mass spectrometry, we found that Rsp5, a ubiquitin-ligase in budding yeast, catalyzes the formation of Lys63-linked ubiquitin chains in vitro. Interestingly, the 26S proteasome degraded well the Lys63-linked ubiquitinated substrate in vitro. To examine whether Lys63-linked ubiquitination serves in degradation in vivo, we investigated the ubiquitination of Mga2-p120, a substrate of Rsp5. The polyubiquitinated p120 contained relatively high levels of Lys63-linkages, and the Lys63-linked chains were sufficient for the proteasome-binding and subsequent p120-processing. In addition, Lys63-linked chains as well as Lys48-linked chains were detected in the 26S proteasome-bound polyubiquitinated proteins. These results raise the possibility that Lys63-linked ubiquitin chain also serves as a targeting signal for the 26S proteaseome in vivo. PMID:19153599

  19. Regulators of G-protein signaling and their Gα substrates: promises and challenges in their use as drug discovery targets.

    PubMed

    Kimple, Adam J; Bosch, Dustin E; Giguère, Patrick M; Siderovski, David P

    2011-09-01

    Because G-protein coupled receptors (GPCRs) continue to represent excellent targets for the discovery and development of small-molecule therapeutics, it is posited that additional protein components of the signal transduction pathways emanating from activated GPCRs themselves are attractive as drug discovery targets. This review considers the drug discovery potential of two such components: members of the "regulators of G-protein signaling" (RGS protein) superfamily, as well as their substrates, the heterotrimeric G-protein α subunits. Highlighted are recent advances, stemming from mouse knockout studies and the use of "RGS-insensitivity" and fast-hydrolysis mutations to Gα, in our understanding of how RGS proteins selectively act in (patho)physiologic conditions controlled by GPCR signaling and how they act on the nucleotide cycling of heterotrimeric G-proteins in shaping the kinetics and sensitivity of GPCR signaling. Progress is documented regarding recent activities along the path to devising screening assays and chemical probes for the RGS protein target, not only in pursuits of inhibitors of RGS domain-mediated acceleration of Gα GTP hydrolysis but also to embrace the potential of finding allosteric activators of this RGS protein action. The review concludes in considering the Gα subunit itself as a drug target, as brought to focus by recent reports of activating mutations to GNAQ and GNA11 in ocular (uveal) melanoma. We consider the likelihood of several strategies for antagonizing the function of these oncogene alleles and their gene products, including the use of RGS proteins with Gα(q) selectivity.

  20. Understanding the Key to Targeting the IGF Axis in Cancer: A Biomarker Assessment

    PubMed Central

    Lodhia, Kunal Amratlal; Tienchaiananda, Piyawan; Haluska, Paul

    2015-01-01

    Type 1 insulin like growth factor receptor (IGF-1R) targeted therapies showed compelling pre-clinical evidence; however, to date, this has failed to translate into patient benefit in Phase 2/3 trials in unselected patients. This was further complicated by the toxicity, including hyperglycemia, which largely results from the overlap between IGF and insulin signaling systems and associated feedback mechanisms. This has halted the clinical development of inhibitors targeting IGF signaling, which has limited the availability of biopsy samples for correlative studies to understand biomarkers of response. Indeed, a major factor contributing to lack of clinical benefit of IGF targeting agents has been difficulty in identifying patients with tumors driven by IGF signaling due to the lack of predictive biomarkers. In this review, we will describe the IGF system, rationale for targeting IGF signaling, the potential liabilities of targeting strategies, and potential biomarkers that may improve success. PMID:26217584

  1. BRAF gene alterations and enhanced mammalian target of rapamycin signaling in gangliogliomas.

    PubMed

    Kakkar, Aanchal; Majumdar, Atreye; Pathak, Pankaj; Kumar, Anupam; Kumari, Kalpana; Tripathi, Manjari; Sharma, Mehar C; Suri, Vaishali; Tandon, Vivek; Chandra, Sarat P; Sarkar, Chitra

    2017-01-01

    Gangliogliomas (GGs) are slow-growing glioneuronal tumors seen in children and young adults. They are associated with intractable epilepsy, and have recently been found to harbor BRAF (B- rapidly accelerated fibrosarcoma) gene mutations. However, the mammalian target of rapamycin (mTOR) signaling pathway, downstream of BRAF, has not been evaluated extensively in GGs. GG cases were retrieved, clinical data obtained, and histopathological features reviewed. Sequencing for BRAF V600E mutation, analysis of BRAF copy number by quantitative real-time polymerase chain reaction, and immunohistochemistry for mTOR pathway markers p-S6 and p-4EBP1 were performed. Sixty-four cases of GG were identified (0.9% of central nervous system tumors). Of these, 28 had sufficient tumor tissue for further evaluation. Mixed glial and neuronal morphology was the commonest (64%) type. Focal cortical dysplasia was identified in the adjacent cortex (6 cases). BRAF V600E mutation was identified in 30% of GGs; BRAF copy number gain was observed in 50% of them. p-S6 and p-4EBP1 immunopositivity was seen in 57% cases each. Thus, mTOR pathway activation was seen in 81% cases, and was independent of BRAF alterations. 87% patients had Engel grade I outcome, while 13% had Engel grade II outcome. Both the Engel grade II cases analyzed showed BRAF V600E mutation. BRAF V600E mutation is frequent in GGs, as is BRAF gain; the former may serve as a target for personalized therapy in patients with residual tumors, necessitating its assessment in routine pathology reporting of these tumors. Evidence of mTOR pathway activation highlights similarities in the pathogenetic mechanisms underlying GG and focal cortical dysplasia, and suggests that mTOR inhibitors may be of utility in GG patients with persistent seizures after surgery.

  2. E6 and E7 from Human Papillomavirus Type 16 Cooperate To Target the PDZ Protein Na/H Exchange Regulatory Factor 1 ▿

    PubMed Central

    Accardi, Rosita; Rubino, Rosa; Scalise, Mariafrancesca; Gheit, Tarik; Shahzad, Naveed; Thomas, Miranda; Banks, Lawrence; Indiveri, Cesare; Sylla, Bakary S.; Cardone, Rosa A.; Reshkin, Stephan J.; Tommasino, Massimo

    2011-01-01

    Previous studies have shown that the PDZ-binding motif of the E6 oncoprotein from the mucosal high-risk (HR) human papillomavirus (HPV) types plays a key role in HPV-mediated cellular transformation in in vitro and in vivo experimental models. HR HPV E6 oncoproteins have the ability to efficiently degrade members of the PDZ motif-containing membrane-associated guanylate kinase (MAGUK) family; however, it is possible that other PDZ proteins are also targeted by E6. Here, we describe a novel interaction of HPV type 16 (HPV16) E6 with a PDZ protein, Na+/H+ exchange regulatory factor 1 (NHERF-1), which is involved in a number of cellular processes, including signaling and transformation. HPV16 E6 associates with and promotes the degradation of NHERF-1, and this property is dependent on the C-terminal PDZ-binding motif of E6. Interestingly, HPV16 E7, via the activation of the cyclin-dependent kinase complexes, promoted the accumulation of a phosphorylated form of NHERF-1, which is preferentially targeted by E6. Thus, both oncoproteins appear to cooperate in targeting NHERF-1. Notably, HPV18 E6 is not able to induce NHERF-1 degradation, indicating that this property is not shared with E6 from all HR HPV types. Downregulation of NHERF-1 protein levels was also observed in HPV16-positive cervical cancer-derived cell lines, such as SiHa and CaSki, as well as HPV16-positive cervical intraepithelial neoplasia (CIN). Finally, our data show that HPV16-mediated NHERF-1 degradation correlates with the activation of the phosphatidylinositol-3′-OH kinase (PI3K)/AKT signaling pathway, which is known to play a key role in carcinogenesis. PMID:21680517

  3. Overnutrition, mTOR signaling, and cardiovascular diseases

    PubMed Central

    Jia, Guanghong; Aroor, Annayya R.; Martinez-Lemus, Luis A.

    2014-01-01

    The prevalence of obesity and associated medical disorders has increased dramatically in the United States and throughout much of the world in the past decade. Obesity, induced by excess intake of carbohydrates and fats, is a major cause of Type 2 diabetes, hypertension, and the cardiorenal metabolic syndrome. There is emerging evidence that excessive nutrient intake promotes signaling through the mammalian target of rapamycin (mTOR), which, in turn, may lead to alterations of cellular metabolic signaling leading to insulin resistance and obesity-related diseases, such as diabetes, cardiovascular and kidney disease, as well as cancer. While the pivotal role of mTOR signaling in regulating metabolic stress, autophagy, and adaptive immune responses has received increasing attention, there remain many gaps in our knowledge regarding this important nutrient sensor. For example, the precise cellular signaling mechanisms linking excessive nutrient intake and enhanced mTOR signaling with increased cardiovascular and kidney disease, as well as cancer, are not well understood. In this review, we focus on the effects that the interaction between excess intake of nutrients and enhanced mTOR signaling have on the promotion of obesity-associated diseases and potential therapeutic strategies involving targeting mTOR signaling. PMID:25253086

  4. A Targeted RNAi Screen Identifies Endocytic Trafficking Factors That Control GLP-1 Receptor Signaling in Pancreatic β-Cells.

    PubMed

    Buenaventura, Teresa; Kanda, Nisha; Douzenis, Phoebe C; Jones, Ben; Bloom, Stephen R; Chabosseau, Pauline; Corrêa, Ivan R; Bosco, Domenico; Piemonti, Lorenzo; Marchetti, Piero; Johnson, Paul R; Shapiro, A M James; Rutter, Guy A; Tomas, Alejandra

    2018-03-01

    The glucagon-like peptide 1 (GLP-1) receptor (GLP-1R) is a key target for type 2 diabetes (T2D) treatment. Because endocytic trafficking of agonist-bound receptors is one of the most important routes for regulation of receptor signaling, a better understanding of this process may facilitate the development of new T2D therapeutic strategies. Here, we screened 29 proteins with known functions in G protein-coupled receptor trafficking for their role in GLP-1R potentiation of insulin secretion in pancreatic β-cells. We identify five (clathrin, dynamin1, AP2, sorting nexins [SNX] SNX27, and SNX1) that increase and four (huntingtin-interacting protein 1 [HIP1], HIP14, GASP-1, and Nedd4) that decrease insulin secretion from murine insulinoma MIN6B1 cells in response to the GLP-1 analog exendin-4. The roles of HIP1 and the endosomal SNX1 and SNX27 were further characterized in mouse and human β-cell lines and human islets. While HIP1 was required for the coupling of cell surface GLP-1R activation with clathrin-dependent endocytosis, the SNXs were found to control the balance between GLP-1R plasma membrane recycling and lysosomal degradation and, in doing so, determine the overall β-cell incretin responses. We thus identify key modulators of GLP-1R trafficking and signaling that might provide novel targets to enhance insulin secretion in T2D. © 2017 by the American Diabetes Association.

  5. Type I collagen-targeted PET probe for pulmonary fibrosis detection and staging in preclinical models

    PubMed Central

    Désogère, Pauline; Tapias, Luis F.; Hariri, Lida P.; Rotile, Nicholas J.; Rietz, Tyson A.; Probst, Clemens K.; Blasi, Francesco; Day, Helen; Mino-Kenudson, Mari; Weinreb, Paul; Violette, Shelia M.; Fuchs, Bryan C.; Tager, Andrew M.; Lanuti, Michael; Caravan, Peter

    2017-01-01

    Pulmonary fibrosis is a scarring of the lungs that can arise from radiation injury, drug toxicity, environmental or genetic causes, and for unknown reasons [idiopathic pulmonary fibrosis (IPF)]. Overexpression of collagen is a hallmark of organ fibrosis. Here, we describe a peptide-based PET probe (68Ga-CBP8) that targets collagen type I. We evaluated 68Ga-CBP8 in vivo in the bleomycin-induced mouse model of pulmonary fibrosis. 68Ga-CBP8 showed high specificity for pulmonary fibrosis and high target:background ratios in diseased animals. The lung PET signal and lung 68Ga-CBP8 uptake (quantified ex vivo) correlated linearly (r2=0.80) with the amount of lung collagen in mice with fibrosis. We further demonstrated that the 68Ga-CBP8 probe could be used to monitor response to treatment in a second mouse model of pulmonary fibrosis associated with vascular leak. Ex vivo analysis of lung tissue from patients with IPF supported the animal findings. These studies indicate that 68Ga-CBP8 is a promising candidate for non-invasive imaging of human pulmonary fibrosis. PMID:28381537

  6. Green tea polyphenol, (-)-epigallocatechin-3-gallate, induces toxicity in human skin cancer cells by targeting β-catenin signaling.

    PubMed

    Singh, Tripti; Katiyar, Santosh K

    2013-12-01

    The green tea polyphenol, (-)-epigallocatechin-3-gallate (EGCG), has been shown to have anti-carcinogenic effects in several skin tumor models, and efforts are continued to investigate the molecular targets responsible for its cytotoxic effects to cancer cells. Our recent observation that β-catenin is upregulated in skin tumors suggested the possibility that the anti-skin carcinogenic effects of EGCG are mediated, at least in part, through its effects on β-catenin signaling. We have found that treatment of the A431 and SCC13 human skin cancer cell lines with EGCG resulted in reduced cell viability and increased cell death and that these cytotoxic effects were associated with inactivation of β-catenin signaling. Evidence of EGCG-induced inactivation of β-catenin included: (i) reduced accumulation of nuclear β-catenin; (ii) enhanced levels of casein kinase1α, reduced phosphorylation of glycogen synthase kinase-3β, and increased phosphorylation of β-catenin on critical serine(45,33/37) residues; and (iii) reduced levels of matrix metalloproteinase (MMP)-2 and MMP-9, which are down-stream targets of β-catenin. Treatment of cells with prostaglandin E2 (PGE2) enhanced the accumulation of β-catenin and enhanced β-catenin signaling. Treatment with either EGCG or an EP2 antagonist (AH6809) reduced the PGE2-enhanced levels of cAMP, an upstream regulator of β-catenin. Inactivation of β-catenin by EGCG resulted in suppression of cell survival signaling proteins. siRNA knockdown of β-catenin in A431 and SCC13 cells reduced cell viability. Collectively, these data suggest that induction of cytotoxicity in skin cancer cells by EGCG is mediated by targeting of β-catenin signaling and that the β-catenin signaling is upregulated by inflammatory mediators. © 2013.

  7. The Challenge of Targeting Notch in Hematologic Malignancies

    PubMed Central

    Hernandez Tejada, Fiorela N.; Galvez Silva, Jorge R.; Zweidler-McKay, Patrick A.

    2014-01-01

    Notch signaling can play oncogenic and tumor suppressor roles depending on cell type. Hematologic malignancies encompass a wide range of transformed cells, and consequently the roles of Notch are diverse in these diseases. For example Notch is a potent T-cell oncogene, with >50% of T-cell acute lymphoblastic leukemia (T-ALL) cases carry activating mutations in the Notch1 receptor. Targeting Notch signaling in T-ALL with gamma-secretase inhibitors, which prevent Notch receptor activation, has shown pre-clinical activity, and is under evaluation clinically. In contrast, Notch signaling inhibits acute myeloblastic leukemia growth and survival, and although targeting Notch signaling in AML with Notch activators appears to have pre-clinical activity, no Notch agonists are clinically available at this time. As such, despite accumulating evidence about the biology of Notch signaling in different hematologic cancers, which provide compelling clinical promise, we are only beginning to target this pathway clinically, either on or off. In this review, we will summarize the evidence for oncogenic and tumor suppressor roles of Notch in a wide range of leukemias and lymphomas, and describe therapeutic opportunities for now and the future. PMID:24959528

  8. Specificity, cross-talk and adaptation in Interferon signaling

    NASA Astrophysics Data System (ADS)

    Zilman, Anton

    Innate immune system is the first line of defense of higher organisms against pathogens. It coordinates the behavior of millions of cells of multiple types, achieved through numerous signaling molecules. This talk focuses on the signaling specificity of a major class of signaling molecules - Type I Interferons - which are also used therapeutically in the treatment of a number of diseases, such as Hepatitis C, multiple sclerosis and some cancers. Puzzlingly, different Interferons act through the same cell surface receptor but have different effects on the target cells. They also exhibit a strange pattern of temporal cross-talk resulting in a serious clinical problem - loss of response to Interferon therapy. We combined mathematical modeling with quantitative experiments to develop a quantitative model of specificity and adaptation in the Interferon signaling pathway. The model resolves several outstanding experimental puzzles and directly affects the clinical use of Type I Interferons in treatment of viral hepatitis and other diseases.

  9. Obstacle Avoidance and Target Acquisition for Robot Navigation Using a Mixed Signal Analog/Digital Neuromorphic Processing System

    PubMed Central

    Milde, Moritz B.; Blum, Hermann; Dietmüller, Alexander; Sumislawska, Dora; Conradt, Jörg; Indiveri, Giacomo; Sandamirskaya, Yulia

    2017-01-01

    Neuromorphic hardware emulates dynamics of biological neural networks in electronic circuits offering an alternative to the von Neumann computing architecture that is low-power, inherently parallel, and event-driven. This hardware allows to implement neural-network based robotic controllers in an energy-efficient way with low latency, but requires solving the problem of device variability, characteristic for analog electronic circuits. In this work, we interfaced a mixed-signal analog-digital neuromorphic processor ROLLS to a neuromorphic dynamic vision sensor (DVS) mounted on a robotic vehicle and developed an autonomous neuromorphic agent that is able to perform neurally inspired obstacle-avoidance and target acquisition. We developed a neural network architecture that can cope with device variability and verified its robustness in different environmental situations, e.g., moving obstacles, moving target, clutter, and poor light conditions. We demonstrate how this network, combined with the properties of the DVS, allows the robot to avoid obstacles using a simple biologically-inspired dynamics. We also show how a Dynamic Neural Field for target acquisition can be implemented in spiking neuromorphic hardware. This work demonstrates an implementation of working obstacle avoidance and target acquisition using mixed signal analog/digital neuromorphic hardware. PMID:28747883

  10. Obstacle Avoidance and Target Acquisition for Robot Navigation Using a Mixed Signal Analog/Digital Neuromorphic Processing System.

    PubMed

    Milde, Moritz B; Blum, Hermann; Dietmüller, Alexander; Sumislawska, Dora; Conradt, Jörg; Indiveri, Giacomo; Sandamirskaya, Yulia

    2017-01-01

    Neuromorphic hardware emulates dynamics of biological neural networks in electronic circuits offering an alternative to the von Neumann computing architecture that is low-power, inherently parallel, and event-driven. This hardware allows to implement neural-network based robotic controllers in an energy-efficient way with low latency, but requires solving the problem of device variability, characteristic for analog electronic circuits. In this work, we interfaced a mixed-signal analog-digital neuromorphic processor ROLLS to a neuromorphic dynamic vision sensor (DVS) mounted on a robotic vehicle and developed an autonomous neuromorphic agent that is able to perform neurally inspired obstacle-avoidance and target acquisition. We developed a neural network architecture that can cope with device variability and verified its robustness in different environmental situations, e.g., moving obstacles, moving target, clutter, and poor light conditions. We demonstrate how this network, combined with the properties of the DVS, allows the robot to avoid obstacles using a simple biologically-inspired dynamics. We also show how a Dynamic Neural Field for target acquisition can be implemented in spiking neuromorphic hardware. This work demonstrates an implementation of working obstacle avoidance and target acquisition using mixed signal analog/digital neuromorphic hardware.

  11. Cell signaling heterogeneity is modulated by both cell-intrinsic and -extrinsic mechanisms: An integrated approach to understanding targeted therapy.

    PubMed

    Kim, Eunjung; Kim, Jae-Young; Smith, Matthew A; Haura, Eric B; Anderson, Alexander R A

    2018-03-01

    During the last decade, our understanding of cancer cell signaling networks has significantly improved, leading to the development of various targeted therapies that have elicited profound but, unfortunately, short-lived responses. This is, in part, due to the fact that these targeted therapies ignore context and average out heterogeneity. Here, we present a mathematical framework that addresses the impact of signaling heterogeneity on targeted therapy outcomes. We employ a simplified oncogenic rat sarcoma (RAS)-driven mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase-protein kinase B (PI3K-AKT) signaling pathway in lung cancer as an experimental model system and develop a network model of the pathway. We measure how inhibition of the pathway modulates protein phosphorylation as well as cell viability under different microenvironmental conditions. Training the model on this data using Monte Carlo simulation results in a suite of in silico cells whose relative protein activities and cell viability match experimental observation. The calibrated model predicts distributional responses to kinase inhibitors and suggests drug resistance mechanisms that can be exploited in drug combination strategies. The suggested combination strategies are validated using in vitro experimental data. The validated in silico cells are further interrogated through an unsupervised clustering analysis and then integrated into a mathematical model of tumor growth in a homogeneous and resource-limited microenvironment. We assess posttreatment heterogeneity and predict vast differences across treatments with similar efficacy, further emphasizing that heterogeneity should modulate treatment strategies. The signaling model is also integrated into a hybrid cellular automata (HCA) model of tumor growth in a spatially heterogeneous microenvironment. As a proof of concept, we simulate tumor responses to targeted therapies in a spatially segregated tissue structure containing tumor

  12. The murine cytomegalovirus M35 protein antagonizes type I IFN induction downstream of pattern recognition receptors by targeting NF-κB mediated transcription.

    PubMed

    Chan, Baca; Gonçalves Magalhães, Vladimir; Lemmermann, Niels A W; Juranić Lisnić, Vanda; Stempel, Markus; Bussey, Kendra A; Reimer, Elisa; Podlech, Jürgen; Lienenklaus, Stefan; Reddehase, Matthias J; Jonjić, Stipan; Brinkmann, Melanie M

    2017-05-01

    The type I interferon (IFN) response is imperative for the establishment of the early antiviral immune response. Here we report the identification of the first type I IFN antagonist encoded by murine cytomegalovirus (MCMV) that shuts down signaling following pattern recognition receptor (PRR) sensing. Screening of an MCMV open reading frame (ORF) library identified M35 as a novel and strong negative modulator of IFNβ promoter induction following activation of both RNA and DNA cytoplasmic PRR. Additionally, M35 inhibits the proinflammatory cytokine response downstream of Toll-like receptors (TLR). Using a series of luciferase-based reporters with specific transcription factor binding sites, we determined that M35 targets NF-κB-, but not IRF-mediated, transcription. Expression of M35 upon retroviral transduction of immortalized bone marrow-derived macrophages (iBMDM) led to reduced IFNβ transcription and secretion upon activation of stimulator of IFN genes (STING)-dependent signaling. On the other hand, M35 does not antagonize interferon-stimulated gene (ISG) 56 promoter induction or ISG transcription upon exogenous stimulation of the type I IFN receptor (IFNAR). M35 is present in the viral particle and, upon MCMV infection of fibroblasts, is immediately shuttled to the nucleus where it exerts its immunomodulatory effects. Deletion of M35 from the MCMV genome and hence from the viral particle resulted in elevated type I IFN transcription and secretion in vitro and in vivo. In the absence of M35, lower viral titers are observed during acute infection of the host, and productive infection in the salivary glands was not detected. In conclusion, the M35 protein is released by MCMV immediately upon infection in order to deftly inhibit the antiviral type I IFN response by targeting NF-κB-mediated transcription. The identification of this novel viral protein reinforces the importance of timely countermeasures in the complex relationship between virus and host.

  13. c-Ski, Smurf2, and Arkadia as regulators of TGF-beta signaling: new targets for managing myofibroblast function and cardiac fibrosis.

    PubMed

    Cunnington, Ryan H; Nazari, Mansoreh; Dixon, Ian M C

    2009-10-01

    Recent studies demonstrate the critical role of the extracellular matrix in the organization of parenchymal cells in the heart. Thus, an understanding of the modes of regulation of matrix production by cardiac myofibroblasts is essential. Transforming growth factor beta (TGF-beta) signaling is transduced through the canonical Smad pathway, and the involvement of this pathway in matrix synthesis and other processes requires precise control. Inhibition of Smad signaling may be achieved at the receptor level through the targeting of the TGF-beta type I receptors with an inhibitory Smad7/Smurf2 complex, or at the transcriptional level through c-Ski/receptor-Smad/co-mediator Smad4 interactions. Conversely, Arkadia protein intensifies TGF-beta-induced effects by marking c-Ski and inhibitory Smad7 for destruction. The study of these TGF-beta mediators is essential for future treatment of fibrotic disease, and this review highlights recent relevant findings that may impact our understanding of cardiac fibrosis.

  14. Molecular neuro-oncology and development of targeted therapeutic strategies for brain tumors. Part 1: Growth factor and Ras signaling pathways.

    PubMed

    Newton, Herbert B

    2003-10-01

    Brain tumors are a diverse group of malignancies that remain refractory to conventional treatment approaches, including radiotherapy and cytotoxic chemotherapy. Molecular neuro-oncology has now begun to clarify the transformed phenotype of brain tumors and identify oncogenic pathways that may be amenable to targeted therapy. Growth factor signaling pathways are often upregulated in brain tumors and may contribute to oncogenesis through autocrine and paracrine mechanisms. Excessive growth factor receptor stimulation can also lead to overactivity of the Ras signaling pathway, which is frequently aberrant in brain tumors. Receptor tyrosine kinase inhibitors, antireceptor monoclonal antibodies and antisense oligonucleotides are targeted approaches under investigation as methods to regulate aberrant growth factor signaling pathways in brain tumors. Several receptor tyrosine kinase inhibitors, including imatinib mesylate (Gleevec), gefitinib (Iressa) and erlotinib (Tarceva), have entered clinical trials for high-grade glioma patients. Farnesyl transferase inhibitors, such as tipifarnib (Zarnestra), which impair processing of proRas and inhibit the Ras signaling pathway, have also entered clinical trials for patients with malignant gliomas. Further development of targeted therapies and evaluation of these new agents in clinical trials will be needed to improve survival and quality of life of patients with brain tumors.

  15. Wnt and Notch signaling pathway involved in wound healing by targeting c-Myc and Hes1 separately.

    PubMed

    Shi, Yan; Shu, Bin; Yang, Ronghua; Xu, Yingbin; Xing, Bangrong; Liu, Jian; Chen, Lei; Qi, Shaohai; Liu, Xusheng; Wang, Peng; Tang, Jinming; Xie, Julin

    2015-06-16

    Wnt and Notch signaling pathways are critically involved in relative cell fate decisions within the development of cutaneous tissues. Moreover, several studies identified the above two pathways as having a significant role during wound healing. However, their biological effects during cutaneous tissues repair are unclear. We employed a self-controlled model (Sprague-Dawley rats with full-thickness skin wounds) to observe the action and effect of Wnt/β-catenin and Notch signalings in vivo. The quality of wound repair relevant to the gain/loss-of-function Wnt/β-catenin and Notch activation was estimated by hematoxylin-and-eosin and Masson staining. Immunofluorescence analysis and Western blot analysis were used to elucidate the underlying mechanism of the regulation of Wnt and Notch signaling pathways in wound healing. Meanwhile, epidermal stem cells (ESCs) were cultured in keratinocyte serum-free medium with Jaggedl or in DAPT (N-[(3,5-difluorophenyl)acetyl]-L-alanyl-2-phenyl]glycine-1,1-dimethylethyl) to investigate whether the interruption of Notch signaling contributes to the expression of Wnt/β-catenin signaling. The results showed that in vivo the gain-of-function Wnt/β-catenin and Notch activation extended the ability to promote wound closure. We further determined that activation or inhibition of Wnt signaling and Notch signaling can affect the proliferation of ESCs, the differentiation and migration of keratinocytes, and follicle regeneration by targeting c-Myc and Hes1, which ultimately lead to enhanced or delayed wound healing. Furthermore, Western blot analysis suggested that the two pathways might interact in vivo and in vitro. These results suggest that Wnt and Notch signalings play important roles in cutaneous repair by targeting c-Myc and Hes1 separately. What's more, interaction between the above two pathways might act as a vital role in regulation of wound healing.

  16. plasticity of TGF-β signaling

    PubMed Central

    2011-01-01

    Background The family of TGF-β ligands is large and its members are involved in many different signaling processes. These signaling processes strongly differ in type with TGF-β ligands eliciting both sustained or transient responses. Members of the TGF-β family can also act as morphogen and cellular responses would then be expected to provide a direct read-out of the extracellular ligand concentration. A number of different models have been proposed to reconcile these different behaviours. We were interested to define the set of minimal modifications that are required to change the type of signal processing in the TGF-β signaling network. Results To define the key aspects for signaling plasticity we focused on the core of the TGF-β signaling network. With the help of a parameter screen we identified ranges of kinetic parameters and protein concentrations that give rise to transient, sustained, or oscillatory responses to constant stimuli, as well as those parameter ranges that enable a proportional response to time-varying ligand concentrations (as expected in the read-out of morphogens). A combination of a strong negative feedback and fast shuttling to the nucleus biases signaling to a transient rather than a sustained response, while oscillations were obtained if ligand binding to the receptor is weak and the turn-over of the I-Smad is fast. A proportional read-out required inefficient receptor activation in addition to a low affinity of receptor-ligand binding. We find that targeted modification of single parameters suffices to alter the response type. The intensity of a constant signal (i.e. the ligand concentration), on the other hand, affected only the strength but not the type of the response. Conclusions The architecture of the TGF-β pathway enables the observed signaling plasticity. The observed range of signaling outputs to TGF-β ligand in different cell types and under different conditions can be explained with differences in cellular protein

  17. Targeting hepatic glucose output in the treatment of type 2 diabetes

    PubMed Central

    Rines, Amy K.; Sharabi, Kfir; Tavares, Clint D. J.; Puigserver, Pere

    2017-01-01

    Type 2 diabetes mellitus is characterized by the dysregulation of glucose homeostasis resulting in hyperglycemia. Although current diabetes treatments have exhibited some success in lowering blood glucose, their effect is not always sustained and their use may be associated with undesirable side effects, such as hypoglycemia. Novel diabetic drugs, which may be used in combination with existing therapies, are therefore needed. The potential of specifically targeting the liver in order to normalize blood glucose levels has not been fully exploited. Here, we review the molecular mechanisms controlling hepatic gluconeogenesis and glycogen storage, and assess the prospect of therapeutically targeting associated pathways to treat type 2 diabetes. PMID:27516169

  18. The Role of Mammalian Target of Rapamycin (mTOR) in Insulin Signaling.

    PubMed

    Yoon, Mee-Sup

    2017-10-27

    The mammalian target of rapamycin (mTOR) is a serine/threonine kinase that controls a wide spectrum of cellular processes, including cell growth, differentiation, and metabolism. mTOR forms two distinct multiprotein complexes known as mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2), which are characterized by the presence of raptor and rictor, respectively. mTOR controls insulin signaling by regulating several downstream components such as growth factor receptor-bound protein 10 (Grb10), insulin receptor substrate (IRS-1), F-box/WD repeat-containing protein 8 (Fbw8), and insulin like growth factor 1 receptor/insulin receptor (IGF-IR/IR). In addition, mTORC1 and mTORC2 regulate each other through a feedback loop to control cell growth. This review outlines the current understanding of mTOR regulation in insulin signaling in the context of whole body metabolism.

  19. Long Non-Coding RNA in Glioma: Target miRNA and Signaling Pathways.

    PubMed

    Dang, Yuan; Wei, Xudong; Xue, Laien; Wen, Fuli; Gu, Jianjun; Zheng, Heping

    2018-06-01

    Glioma is one of the most common and aggressive malignant tumors of the central nervous system. Here, we review and explore the use of long noncoding RNA (lncRNA) as a therapeutic strategy for the targeting of gliomas. LncRNA is a functional RNA molecule with no protein coding function and is involved in the occurrence and progression of glioma. It is reported that the activation of several signaling pathways, including the MAPK, p53, Wnt/β-catenin, PI3K/AKT/mTOR, and epithelial mesenchymal transformation (EMT) pathways, are involved in the regulation of gliomas. In addition, microRNAs in glioma may also interact with lncRNAs and affect tumor growth and progression. Therefore, the exploration of lncRNA participation in signaling pathway regulatory mechanisms and the determination of the interaction between lncRNA and miRNA may help to develop new effective therapies for the treatment of glioma.

  20. IR/IGF1R signaling as potential target for treatment of high-grade osteosarcoma

    PubMed Central

    2013-01-01

    Background High-grade osteosarcoma is an aggressive tumor most often developing in the long bones of adolescents, with a second peak in the 5th decade of life. Better knowledge on cellular signaling in this tumor may identify new possibilities for targeted treatment. Methods We performed gene set analysis on previously published genome-wide gene expression data of osteosarcoma cell lines (n=19) and pretreatment biopsies (n=84). We characterized overexpression of the insulin-like growth factor receptor (IGF1R) signaling pathways in human osteosarcoma as compared with osteoblasts and with the hypothesized progenitor cells of osteosarcoma – mesenchymal stem cells. This pathway plays a key role in the growth and development of bone. Since most profound differences in mRNA expression were found at and upstream of the receptor of this pathway, we set out to inhibit IR/IGF1R using OSI-906, a dual inhibitor for IR/IGF1R, on four osteosarcoma cell lines. Inhibitory effects of this drug were measured by Western blotting and cell proliferation assays. Results OSI-906 had a strong inhibitory effect on proliferation of 3 of 4 osteosarcoma cell lines, with IC50s below 100 nM at 72 hrs of treatment. Phosphorylation of IRS-1, a direct downstream target of IGF1R signaling, was inhibited in the responsive osteosarcoma cell lines. Conclusions This study provides an in vitro rationale for using IR/IGF1R inhibitors in preclinical studies of osteosarcoma. PMID:23688189

  1. Atypical regulators of Wnt/β-catenin signaling as potential therapeutic targets in Hepatocellular Carcinoma.

    PubMed

    Chen, Jianxiang; Rajasekaran, Muthukumar; Hui, Kam M

    2017-06-01

    Hepatocellular carcinoma is one of the most common causes of cancer-related death worldwide. Hepatocellular carcinoma development depends on the inhibition and activation of multiple vital pathways, including the Wnt signaling pathway. The Wnt/β-catenin pathway lies at the center of various signaling pathways that regulate embryonic development, tissue homeostasis and cancers. Activation of the Wnt/β-catenin pathway has been observed frequently in hepatocellular carcinoma. However, activating mutations in β-catenin, Axin and Adenomatous Polyposis Coli only contribute to a portion of the Wnt signaling hyper-activation observed in hepatocellular carcinoma. Therefore, besides mutations in the canonical Wnt components, there must be additional atypical regulation or regulators during Wnt signaling activation that promote liver carcinogenesis. In this mini-review, we have tried to summarize some of these well-established factors and to highlight some recently identified novel factors in the Wnt/β-catenin signaling pathway in hepatocellular carcinoma. Impact statement Early recurrence of human hepatocellular carcinoma (HCC) is a frequent cause of poor survival after potentially curative liver resection. Among the deregulated signaling cascades in HCC, evidence indicates that alterations in the Wnt/β-catenin signaling pathway play key roles in hepatocarcinogenesis. In this review, we summarize the potential molecular mechanisms how the microtubule-associated Protein regulator of cytokinesis 1 (PRC1), a direct Wnt signaling target previously identified in our laboratory to be up-regulated in HCC, in promoting cancer proliferation, stemness, metastasis and tumorigenesis through a complex regulatory circuitry of Wnt3a activities.

  2. Engineered bifunctional proteins and stem cells: next generation of targeted cancer therapeutics.

    PubMed

    Choi, Sung Hugh; Shah, Khalid

    2016-09-01

    Redundant survival signaling pathways and their crosstalk within tumor and/or between tumor and their microenvironment are key impediments to developing effective targeted therapies for cancer. Therefore developing therapeutics that target multiple receptor signaling pathways in tumors and utilizing efficient platforms to deliver such therapeutics are critical to the success of future targeted therapies. During the past two decades, a number of bifunctional multi-targeting antibodies, fusion proteins, and oncolytic viruses have been developed and various stem cell types have been engineered to efficiently deliver them to tumors. In this review, we discuss the design and efficacy of therapeutics targeting multiple pathways in tumors and the therapeutic potential of therapeutic stem cells engineered with bifunctional agents.

  3. Knowledge-based identification of the ERK2/STAT3 signal pathway as a therapeutic target for type 2 diabetes and drug discovery.

    PubMed

    Kinoshita, Takayoshi; Doi, Kentaro; Sugiyama, Hajime; Kinoshita, Shuhei; Wada, Mutsuyo; Naruto, Shuji; Tomonaga, Atsushi

    2011-09-01

    Many existing agents for diabetes therapy are unable to restore or maintain normal glucose homeostasis or prevent the eventual emergence of hyperglycemia-related complication. Therefore, agents based on novel mechanisms are sought to complement and extend the current therapeutic approaches. Based on the initial paper research, we focused on active STAT3 as an attractive pharmacological target for type 2 diabetes. The subsequent text mining with a unique query to identify suppressors but not activators of STAT3 revealed the ERK2/STAT3 pathway as a novel diabetes target. The description of ERK2 inhibitors as diabetes target had not been found in our text mining research at present. The mechanism-based peptide inhibitor for ERK2 was identified using the knowledge of the KIM sequence, which has an important role in the recognition of cognate kinases, phosphatases, scaffold proteins, and substrates. The peptide inhibitor was confirmed to exert effects in vitro and in vivo. The peptide inhibitor conferred a significant decrease in HOMA-IR levels on Day 28 compared with that in the vehicle group. Besides lowering the fasting blood glucose level, the peptide inhibitor also attenuated the blood glucose increment in the fed state, as compared with the vehicle group. © 2011 John Wiley & Sons A/S.

  4. Ras Dimer Formation as a New Signaling Mechanism and Potential Cancer Therapeutic Target

    PubMed Central

    Chen, Mo; Peters, Alec; Huang, Tao; Nan, Xiaolin

    2016-01-01

    The K-, N-, and HRas small GTPases are key regulators of cell physiology and are frequently mutated in human cancers. Despite intensive research, previous efforts to target hyperactive Ras based on known mechanisms of Ras signaling have been met with little success. Several studies have provided compelling evidence for the existence and biological relevance of Ras dimers, establishing a new mechanism for regulating Ras activity in cells additionally to GTP-loading and membrane localization. Existing data also start to reveal how Ras proteins dimerize on the membrane. We propose a dimer model to describe Ras-mediated effector activation, which contrasts existing models of Ras signaling as a monomer or as a 5-8 membered multimer. We also discuss potential implications of this model in both basic and translational Ras biology. PMID:26423697

  5. Target intersection probabilities for parallel-line and continuous-grid types of search

    USGS Publications Warehouse

    McCammon, R.B.

    1977-01-01

    The expressions for calculating the probability of intersection of hidden targets of different sizes and shapes for parallel-line and continuous-grid types of search can be formulated by vsing the concept of conditional probability. When the prior probability of the orientation of a widden target is represented by a uniform distribution, the calculated posterior probabilities are identical with the results obtained by the classic methods of probability. For hidden targets of different sizes and shapes, the following generalizations about the probability of intersection can be made: (1) to a first approximation, the probability of intersection of a hidden target is proportional to the ratio of the greatest dimension of the target (viewed in plane projection) to the minimum line spacing of the search pattern; (2) the shape of the hidden target does not greatly affect the probability of the intersection when the largest dimension of the target is small relative to the minimum spacing of the search pattern, (3) the probability of intersecting a target twice for a particular type of search can be used as a lower bound if there is an element of uncertainty of detection for a particular type of tool; (4) the geometry of the search pattern becomes more critical when the largest dimension of the target equals or exceeds the minimum spacing of the search pattern; (5) for elongate targets, the probability of intersection is greater for parallel-line search than for an equivalent continuous square-grid search when the largest dimension of the target is less than the minimum spacing of the search pattern, whereas the opposite is true when the largest dimension exceeds the minimum spacing; (6) the probability of intersection for nonorthogonal continuous-grid search patterns is not greatly different from the probability of intersection for the equivalent orthogonal continuous-grid pattern when the orientation of the target is unknown. The probability of intersection for an

  6. Using Rate of Divergence as an Objective Measure to Differentiate between Voice Signal Types Based on the Amount of Disorder in the Signal.

    PubMed

    Calawerts, William M; Lin, Liyu; Sprott, J C; Jiang, Jack J

    2017-01-01

    The purpose of this paper is to introduce the rate of divergence as an objective measure to differentiate between the four voice types based on the amount of disorder present in a signal. We hypothesized that rate of divergence would provide an objective measure that can quantify all four voice types. A total of 150 acoustic voice recordings were randomly selected and analyzed using traditional perturbation, nonlinear, and rate of divergence analysis methods. We developed a new parameter, rate of divergence, which uses a modified version of Wolf's algorithm for calculating Lyapunov exponents of a system. The outcome of this calculation is not a Lyapunov exponent, but rather a description of the divergence of two nearby data points for the next three points in the time series, followed in three time-delayed embedding dimensions. This measure was compared to currently existing perturbation and nonlinear dynamic methods of distinguishing between voice signals. There was a direct relationship between voice type and rate of divergence. This calculation is especially effective at differentiating between type 3 and type 4 voices (P < 0.001) and is equally effective at differentiating type 1, type 2, and type 3 signals as currently existing methods. The rate of divergence calculation introduced is an objective measure that can be used to distinguish between all four voice types based on the amount of disorder present, leading to quicker and more accurate voice typing as well as an improved understanding of the nonlinear dynamics involved in phonation. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  7. Using rate of divergence as an objective measure to differentiate between voice signal types based on the amount of disorder in the signal

    PubMed Central

    Calawerts, William M; Lin, Liyu; Sprott, JC; Jiang, Jack J

    2016-01-01

    Objective/Hypothesis The purpose of this paper is to introduce rate of divergence as an objective measure to differentiate between the four voice types based on the amount of disorder present in a signal. We hypothesized that rate of divergence would provide an objective measure that can quantify all four voice types. Study Design 150 acoustic voice recordings were randomly selected and analyzed using traditional perturbation, nonlinear, and rate of divergence analysis methods. ty Methods We developed a new parameter, rate of divergence, which uses a modified version of Wolf’s algorithm for calculating Lyapunov exponents of a system. The outcome of this calculation is not a Lyapunov exponent, but rather a description of the divergence of two nearby data points for the next three points in the time series, followed in three time delayed embedding dimensions. This measure was compared to currently existing perturbation and nonlinear dynamic methods of distinguishing between voice signals. Results There was a direct relationship between voice type and rate of divergence. This calculation is especially effective at differentiating between type 3 and type 4 voices (p<0.001), and is equally effective at differentiating type 1, type 2, and type 3 signals as currently existing methods. Conclusion The rate of divergence calculation introduced is an objective measure that can be used to distinguish between all four voice types based on amount of disorder present, leading to quicker and more accurate voice typing as well as an improved understanding of the nonlinear dynamics involved in phonation. PMID:26920858

  8. Biogenesis of a Mitochondrial Outer Membrane Protein in Trypanosoma brucei: TARGETING SIGNAL AND DEPENDENCE ON A UNIQUE BIOGENESIS FACTOR.

    PubMed

    Bruggisser, Julia; Käser, Sandro; Mani, Jan; Schneider, André

    2017-02-24

    The mitochondrial outer membrane (OM) contains single and multiple membrane-spanning proteins that need to contain signals that ensure correct targeting and insertion into the OM. The biogenesis of such proteins has so far essentially only been studied in yeast and related organisms. Here we show that POMP10, an OM protein of the early diverging protozoan Trypanosoma brucei , is signal-anchored. Transgenic cells expressing variants of POMP10 fused to GFP demonstrate that the N-terminal membrane-spanning domain flanked by a few positively charged or neutral residues is both necessary and sufficient for mitochondrial targeting. Carbonate extraction experiments indicate that although the presence of neutral instead of positively charged residues did not interfere with POMP10 localization, it weakened its interaction with the OM. Expression of GFP-tagged POMP10 in inducible RNAi cell lines shows that its mitochondrial localization depends on pATOM36 but does not require Sam50 or ATOM40, the trypanosomal analogue of the Tom40 import pore. pATOM36 is a kinetoplastid-specific OM protein that has previously been implicated in the assembly of OM proteins and in mitochondrial DNA inheritance. In summary, our results show that although the features of the targeting signal in signal-anchored proteins are widely conserved, the protein machinery that mediates their biogenesis is not. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. A new type industrial total station based on target automatic collimation

    NASA Astrophysics Data System (ADS)

    Lao, Dabao; Zhou, Weihu; Ji, Rongyi; Dong, Dengfeng; Xiong, Zhi; Wei, Jiang

    2018-01-01

    In the case of industrial field measurement, the present measuring instruments work with manual operation and collimation, which give rise to low efficiency for field measurement. In order to solve the problem, a new type industrial total station is presented in this paper. The new instrument can identify and trace cooperative target automatically, in the mean time, coordinate of the target is measured in real time. For realizing the system, key technology including high precision absolutely distance measurement, small high accuracy angle measurement, target automatic collimation with vision, and quick precise controlling should be worked out. After customized system assemblage and adjustment, the new type industrial total station will be established. As the experiments demonstrated, the coordinate accuracy of the instrument is under 15ppm in the distance of 60m, which proved that the measuring system is feasible. The result showed that the total station can satisfy most industrial field measurement requirements.

  10. Two-component signal transduction in Corynebacterium glutamicum and other corynebacteria: on the way towards stimuli and targets.

    PubMed

    Bott, Michael; Brocker, Melanie

    2012-06-01

    In bacteria, adaptation to changing environmental conditions is often mediated by two-component signal transduction systems. In the prototypical case, a specific stimulus is sensed by a membrane-bound histidine kinase and triggers autophosphorylation of a histidine residue. Subsequently, the phosphoryl group is transferred to an aspartate residue of the cognate response regulator, which then becomes active and mediates a specific response, usually by activating and/or repressing a set of target genes. In this review, we summarize the current knowledge on two-component signal transduction in Corynebacterium glutamicum. This Gram-positive soil bacterium is used for the large-scale biotechnological production of amino acids and can also be applied for the synthesis of a wide variety of other products, such as organic acids, biofuels, or proteins. Therefore, C. glutamicum has become an important model organism in industrial biotechnology and in systems biology. The type strain ATCC 13032 possesses 13 two-component systems and the role of five has been elucidated in recent years. They are involved in citrate utilization (CitAB), osmoregulation and cell wall homeostasis (MtrAB), adaptation to phosphate starvation (PhoSR), adaptation to copper stress (CopSR), and heme homeostasis (HrrSA). As C. glutamicum does not only face changing conditions in its natural environment, but also during cultivation in industrial bioreactors of up to 500 m(3) volume, adaptability can also be crucial for good performance in biotechnological production processes. Detailed knowledge on two-component signal transduction and regulatory networks therefore will contribute to both the application and the systemic understanding of C. glutamicum and related species.

  11. Protein kinase C α is a central signaling node and therapeutic target for breast cancer stem cells

    PubMed Central

    Tam, Wai Leong; Lu, Haihui; Buikhuisen, Joyce; Soh, Boon Seng; Lim, Elgene; Reinhardt, Ferenc; Wu, Zhenhua Jeremy; Krall, Jordan A.; Bierie, Brian; Guo, Wenjun; Chen, Xi; Liu, Xiaole Shirley; Brown, Myles; Lim, Bing; Weinberg, Robert A.

    2014-01-01

    SUMMARY The epithelial-mesenchymal transition program becomes activated during malignant progression and can enrich for cancer stem cells (CSCs). We report that inhibition of protein kinase C α (PKCα) specifically targets CSCs, but has little effect on non-CSCs. The formation of CSCs from non-stem cells involves a shift from EGFR to PDGFR signaling, and results in the PKCα-dependent activation of FRA1. We identified an AP-1 molecular switch in which c-FOS and FRA1 are preferentially utilized in non-CSCs and CSCs, respectively. PKCα and FRA1 expression is associated with the aggressive triple-negative breast cancers and the depletion of FRA1 results in a mesenchymal-epithelial transition. Hence, identifying molecular features that shift between cell states can be exploited to target signaling components critical to CSCs. PMID:24029232

  12. Effect of Acute Exercise on AMPK Signaling in Skeletal Muscle of Subjects With Type 2 Diabetes

    PubMed Central

    Sriwijitkamol, Apiradee; Coletta, Dawn K.; Wajcberg, Estela; Balbontin, Gabriela B.; Reyna, Sara M.; Barrientes, John; Eagan, Phyllis A.; Jenkinson, Christopher P.; Cersosimo, Eugenio; DeFronzo, Ralph A.; Sakamoto, Kei; Musi, Nicolas

    2010-01-01

    Activation of AMP-activated protein kinase (AMPK) by exercise induces several cellular processes in muscle. Exercise activation of AMPK is unaffected in lean (BMI ~25 kg/m2) subjects with type 2 diabetes. However, most type 2 diabetic subjects are obese (BMI >30 kg/m2), and exercise stimulation of AMPK is blunted in obese rodents. We examined whether obese type 2 diabetic subjects have impaired exercise stimulation of AMPK, at different signaling levels, spanning from the upstream kinase, LKB1, to the putative AMPK targets, AS160 and peroxisome proliferator–activated receptor coactivator (PGC)-1α, involved in glucose transport regulation and mitochondrial biogenesis, respectively. Twelve type 2 diabetic, eight obese, and eight lean subjects exercised on a cycle ergometer for 40 min. Muscle biopsies were done before, during, and after exercise. Subjects underwent this protocol on two occasions, at low (50% VO2max) and moderate (70% VO2max) intensities, with a 4–6 week interval. Exercise had no effect on LKB1 activity. Exercise had a time- and intensity-dependent effect to increase AMPK activity and AS160 phosphorylation. Obese and type 2 diabetic subjects had attenuated exercise-stimulated AMPK activity and AS160 phosphorylation. Type 2 diabetic subjects had reduced basal PGC-1 gene expression but normal exercise-induced increases in PGC-1 expression. Our findings suggest that obese type 2 diabetic subjects may need to exercise at higher intensity to stimulate the AMPK-AS160 axis to the same level as lean subjects. PMID:17327455

  13. The feature extraction of "cat-eye" targets based on bi-spectrum

    NASA Astrophysics Data System (ADS)

    Zhang, Tinghua; Fan, Guihua; Sun, Huayan

    2016-10-01

    In order to resolve the difficult problem of detection and identification of optical targets in complex background or in long-distance transmission, this paper mainly study the range profiles of "cat-eye" targets using bi-spectrum. For the problems of laser echo signal attenuation serious and low Signal-Noise Ratio (SNR), the multi-pulse laser signal echo signal detection algorithm which is based on high-order cumulant, filter processing and the accumulation of multi-pulse is proposed. This could improve the detection range effectively. In order to extract the stable characteristics of the one-dimensional range profile coming from the cat-eye targets, a method is proposed which extracts the bi-spectrum feature, and uses the singular value decomposition to simplify the calculation. Then, by extracting data samples of different distance, type and incidence angle, verify the stability of the eigenvector and effectiveness extracted by bi-spectrum.

  14. Targeting RNA–Protein Interactions within the Human Immunodeficiency Virus Type 1 Lifecycle

    PubMed Central

    2013-01-01

    RNA–protein interactions are vital throughout the HIV-1 life cycle for the successful production of infectious virus particles. One such essential RNA–protein interaction occurs between the full-length genomic viral RNA and the major structural protein of the virus. The initial interaction is between the Gag polyprotein and the viral RNA packaging signal (psi or Ψ), a highly conserved RNA structural element within the 5′-UTR of the HIV-1 genome, which has gained attention as a potential therapeutic target. Here, we report the application of a target-based assay to identify small molecules, which modulate the interaction between Gag and Ψ. We then demonstrate that one such molecule exhibits potent inhibitory activity in a viral replication assay. The mode of binding of the lead molecules to the RNA target was characterized by 1H NMR spectroscopy. PMID:24358934

  15. Radar Imaging of Non-Uniformly Rotating Targets via a Novel Approach for Multi-Component AM-FM Signal Parameter Estimation

    PubMed Central

    Wang, Yong

    2015-01-01

    A novel radar imaging approach for non-uniformly rotating targets is proposed in this study. It is assumed that the maneuverability of the non-cooperative target is severe, and the received signal in a range cell can be modeled as multi-component amplitude-modulated and frequency-modulated (AM-FM) signals after motion compensation. Then, the modified version of Chirplet decomposition (MCD) based on the integrated high order ambiguity function (IHAF) is presented for the parameter estimation of AM-FM signals, and the corresponding high quality instantaneous ISAR images can be obtained from the estimated parameters. Compared with the MCD algorithm based on the generalized cubic phase function (GCPF) in the authors’ previous paper, the novel algorithm presented in this paper is more accurate and efficient, and the results with simulated and real data demonstrate the superiority of the proposed method. PMID:25806870

  16. Targeting signal transduction pathways of cancer stem cells for therapeutic opportunities of metastasis.

    PubMed

    Iqbal, Waqas; Alkarim, Saleh; AlHejin, Ahmed; Mukhtar, Hasan; Saini, Kulvinder S

    2016-11-15

    Tumor comprises of heterogeneous population of cells where not all the disseminated cancer cells have the prerogative and "in-build genetic cues" to form secondary tumors. Cells with stem like properties complemented by key signaling molecules clearly have shown to exhibit selective growth advantage to form tumors at distant metastatic sites. Thus, defining the role of cancer stem cells (CSC) in tumorigenesis and metastasis is emerging as a major thrust area for therapeutic intervention. Precise relationship and regulatory mechanisms operating in various signal transduction pathways during cancer dissemination, extravasation and angiogenesis still remain largely enigmatic. How the crosstalk amongst circulating tumor cells (CTC), epithelial mesenchymal transition (EMT) process and CSC is coordinated for initiating the metastasis at secondary tissues, and during cancer relapse could be of great therapeutic interest. The signal transduction mechanisms facilitating the dissemination, infiltration of CSC into blood stream, extravasations, progression of metastasis phenotype and angiogenesis, at distant organs, are the key pathologically important vulnerabilities being elucidated. Therefore, current new drug discovery focus has shifted towards finding "key driver genes" operating in parallel signaling pathways, during quiescence, survival and maintenance of stemness in CSC. Understanding these mechanisms could open new horizons for tackling the issue of cancer recurrence and metastasis-the cause of ~90% cancer associated mortality. To design futuristic & targeted therapies, we propose a multi-pronged strategy involving small molecules, RNA interference, vaccines, antibodies and other biotechnological modalities against CSC and the metastatic signal transduction cascade.

  17. Feedback Regulation of ABA Signaling and Biosynthesis by a bZIP Transcription Factor Targets Drought-Resistance-Related Genes1[OPEN

    PubMed Central

    Tang, Ning; Yang, Jun; Peng, Lei; Ma, Siqi; Xu, Yan; Li, Guoliang

    2016-01-01

    The OsbZIP23 transcription factor has been characterized for its essential role in drought resistance in rice (Oryza sativa), but the mechanism is unknown. In this study, we first investigated the transcriptional activation of OsbZIP23. A homolog of SnRK2 protein kinase (SAPK2) was found to interact with and phosphorylate OsbZIP23 for its transcriptional activation. SAPK2 also interacted with OsPP2C49, an ABI1 homolog, which deactivated the SAPK2 to inhibit the transcriptional activation activity of OsbZIP23. Next, we performed genome-wide identification of OsbZIP23 targets by immunoprecipitation sequencing and RNA sequencing analyses in the OsbZIP23-overexpression, osbzip23 mutant, and wild-type rice under normal and drought stress conditions. OsbZIP23 directly regulates a large number of reported genes that function in stress response, hormone signaling, and developmental processes. Among these targets, we found that OsbZIP23 could positively regulate OsPP2C49, and overexpression of OsPP2C49 in rice resulted in significantly decreased sensitivity of the abscisic acid (ABA) response and rapid dehydration. Moreover, OsNCED4 (9-cis-epoxycarotenoid dioxygenase4), a key gene in ABA biosynthesis, was also positively regulated by OsbZIP23. Together, our results suggest that OsbZIP23 acts as a central regulator in ABA signaling and biosynthesis, and drought resistance in rice. PMID:27325665

  18. High-frequency ultrasound-guided disruption of glycoprotein VI-targeted microbubbles targets atheroprogressison in mice.

    PubMed

    Metzger, Katja; Vogel, Sebastian; Chatterjee, Madhumita; Borst, Oliver; Seizer, Peter; Schönberger, Tanja; Geisler, Tobias; Lang, Florian; Langer, Harald; Rheinlaender, Johannes; Schäffer, Tilman E; Gawaz, Meinrad

    2015-01-01

    Targeted contrast-enhanced ultrasound (CEU) using microbubble agents is a promising non-invasive imaging technique to evaluate atherosclerotic lesions. In this study, we decipher the diagnostic and therapeutic potential of targeted-CEU with soluble glycoprotein (GP)-VI in vivo. Microbubbles were conjugated with the recombinant fusion protein GPVI-Fc (MBGPVI) that binds with high affinity to atherosclerotic lesions. MBGPVI or control microbubbles (MBC) were intravenously administered into ApoE(-/-) or wild type mice and binding of the microbubbles to the vessel wall was visualized by high-resolution CEU. CEU molecular imaging signals of MBGPVI were substantially enhanced in the aortic arch and in the truncus brachiocephalicus in ApoE(-/-) as compared to wild type mice. High-frequency ultrasound (HFU)-guided disruption of MBGPVI enhanced accumulation of GPVI in the atherosclerotic lesions, which may interfere with atheroprogression. Thus, we establish targeted-CEU with soluble GPVI as a novel non-invasive molecular imaging method for atherosclerosis. Further, HFU-guided disruption of GPVI-targeted microbubbles is an innovate therapeutic approach that potentially prevents progression of atherosclerotic disease. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Role of Akt signaling in resistance to DNA-targeted therapy

    PubMed Central

    Avan, Abolfazl; Narayan, Ravi; Giovannetti, Elisa; Peters, Godefridus J

    2016-01-01

    The Akt signal transduction pathway controls most hallmarks of cancer. Activation of the Akt cascade promotes a malignant phenotype and is also widely implicated in drug resistance. Therefore, the modulation of Akt activity is regarded as an attractive strategy to enhance the efficacy of cancer therapy and irradiation. This pathway consists of phosphatidylinositol 3 kinase (PI3K), mammalian target of rapamycin, and the transforming serine-threonine kinase Akt protein isoforms, also known as protein kinase B. DNA-targeted agents, such as platinum agents, taxanes, and antimetabolites, as well as radiation have had a significant impact on cancer treatment by affecting DNA replication, which is aberrantly activated in malignancies. However, the caveat is that they may also trigger the activation of repairing mechanisms, such as upstream and downstream cascade of Akt survival pathway. Thus, each target can theoretically be inhibited in view of improving the potency of conventional treatment. Akt inhibitors, e.g., MK-2206 and perifosine, or PI3K modulators, e.g., LY294002 and Wortmannin, have shown some promising results in favor of sensitizing the cancer cells to the therapy in vitro and in vivo, which have provided the rationale for incorporation of these novel agents into multimodality treatment of different malignancies. Nevertheless, despite the acceptable safety profile of some of these agents in the clinical studies, with regard to the efficacy, the results are still too preliminary. Hence, we need to wait for the upcoming data from the ongoing trials before utilizing them into the standard care of cancer patients. PMID:27777878

  20. Signalling and chemosensitivity assays in melanoma: is mutated status a prerequisite for targeted therapy?

    PubMed

    Passeron, Thierry; Lacour, Jean-Philippe; Allegra, Maryline; Ségalen, Coralie; Deville, Anne; Thyss, Antoine; Giacchero, Damien; Ortonne, Jean-Paul; Bertolotto, Corine; Ballotti, Robert; Bahadoran, Philippe

    2011-12-01

    Selection for targeted therapies in melanoma is currently based on the search for mutations in selected genes. We aimed at evaluating the interest of signalling and chemosensitivity studies in addition to genotyping for assessing the best suitable treatment in an individual patient. We extracted genomic DNA and melanoma cells from tumor tissue of a skin metastasis of a 17-year-old woman with stage IV melanoma progressing despite three successive lines of treatment. Despite the absence of mutation in BRAF, NRAS cKIT, the MAPK pathway was activated and a significant response to sorafenib, a mitogen-activated protein kinase (MAPK)/RAF inhibitor, was found in signalling and chemosensitivity assays. A treatment combining sorafenib and dacarbazine produced a partial response for 9 months, with marked necrosis in some lesions. Chemosensitivity assays and signalling pathway studies could be of great value in addition to genotyping for assessing the most appropriate treatment in melanoma. © 2011 John Wiley & Sons A/S.

  1. Compounds from the marine sponge Cribrochalina vasculum offer a way to target IGF-1R mediated signaling in tumor cells.

    PubMed

    Zovko, Ana; Novak, Metka; Hååg, Petra; Kovalerchick, Dimitry; Holmlund, Teresa; Färnegårdh, Katarina; Ilan, Micha; Carmeli, Shmuel; Lewensohn, Rolf; Viktorsson, Kristina

    2016-08-02

    In this work two acetylene alcohols, compound 1 and compound 2, which were isolated and identified from the sponge Cribrochalina vasculum, and which showed anti-tumor effects were further studied with respect to targets and action mechanisms. Gene expression analyses suggested insulin like growth factor receptor (IGF-1R) signaling to be instrumental in controlling anti-tumor efficacy of these compounds in non-small cell lung cancer (NSCLC). Indeed compounds 1 and 2 inhibited phosphorylation of IGF-1Rβ as well as reduced its target signaling molecules IRS-1 and PDK1 allowing inhibition of pro-survival signaling. In silico docking indicated that compound 1 binds to the kinase domain of IGF-1R at the same binding site as the well known tyrosine kinase inhibitor AG1024. Indeed, cellular thermal shift assay (CETSA) confirmed that C. vasculum compound 1 binds to IGF-1R but not to the membrane localized tyrosine kinase receptor EGFR. Importantly, we demonstrate that compound 1 causes IGF-1Rβ but not Insulin Receptor degradation specifically in tumor cells with no effects seen in normal diploid fibroblasts. Thus, these compounds hold potential as novel therapeutic agents targeting IGF-1R signaling for anti-tumor treatment.

  2. Compounds from the marine sponge Cribrochalina vasculum offer a way to target IGF-1R mediated signaling in tumor cells

    PubMed Central

    Zovko, Ana; Novak, Metka; Hååg, Petra; Kovalerchick, Dimitry; Holmlund, Teresa; Färnegårdh, Katarina; Ilan, Micha; Carmeli, Shmuel; Lewensohn, Rolf; Viktorsson, Kristina

    2016-01-01

    In this work two acetylene alcohols, compound 1 and compound 2, which were isolated and identified from the sponge Cribrochalina vasculum, and which showed anti-tumor effects were further studied with respect to targets and action mechanisms. Gene expression analyses suggested insulin like growth factor receptor (IGF-1R) signaling to be instrumental in controlling anti-tumor efficacy of these compounds in non-small cell lung cancer (NSCLC). Indeed compounds 1 and 2 inhibited phosphorylation of IGF-1Rβ as well as reduced its target signaling molecules IRS-1 and PDK1 allowing inhibition of pro-survival signaling. In silico docking indicated that compound 1 binds to the kinase domain of IGF-1R at the same binding site as the well known tyrosine kinase inhibitor AG1024. Indeed, cellular thermal shift assay (CETSA) confirmed that C. vasculum compound 1 binds to IGF-1R but not to the membrane localized tyrosine kinase receptor EGFR. Importantly, we demonstrate that compound 1 causes IGF-1Rβ but not Insulin Receptor degradation specifically in tumor cells with no effects seen in normal diploid fibroblasts. Thus, these compounds hold potential as novel therapeutic agents targeting IGF-1R signaling for anti-tumor treatment. PMID:27384680

  3. The type III inositol 1,4,5-trisphosphate receptor preferentially transmits apoptotic Ca2+ signals into mitochondria.

    PubMed

    Mendes, Carolina C P; Gomes, Dawidson A; Thompson, Mayerson; Souto, Natalia C; Goes, Tercio S; Goes, Alfredo M; Rodrigues, Michele A; Gomez, Marcus V; Nathanson, Michael H; Leite, M Fatima

    2005-12-09

    There are three isoforms of the inositol 1,4,5- trisphosphate receptor (InsP(3)R), each of which has a distinct effect on Ca(2+) signaling. However, it is not known whether each isoform similarly plays a distinct role in the activation of Ca(2+)-mediated events. To investigate this question, we examined the effects of each InsP(3)R isoform on transmission of Ca(2+) signals to mitochondria and induction of apoptosis. Each isoform was selectively silenced using isoform-specific small interfering RNA in Chinese hamster ovary cells, which express all three InsP(3)R isoforms. ATP-induced cytosolic Ca(2+) signaling patterns were altered, regardless of which isoform was silenced, but in a different fashion depending on the isoform. ATP also induced Ca(2+) signals in mitochondria, which were inhibited more effectively by silencing the type III InsP(3)R than by silencing either the type I or type II isoform. The type III isoform also co-localized most strongly with mitochondria. When apoptosis was induced by activation of either the extrinsic or intrinsic apoptotic pathway, induction was reduced most effectively by silencing the type III InsP(3)R. These findings provide evidence that the type III isoform of the InsP(3)R plays a special role in induction of apoptosis by preferentially transmitting Ca(2+) signals into mitochondria.

  4. Type III Interferon-Mediated Signaling Is Critical for Controlling Live Attenuated Yellow Fever Virus Infection In Vivo

    PubMed Central

    Douam, Florian; Soto Albrecht, Yentli E.; Hrebikova, Gabriela; Sadimin, Evita; Davidson, Christian; Kotenko, Sergei V.

    2017-01-01

    ABSTRACT Yellow fever virus (YFV) is an arthropod-borne flavivirus, infecting ~200,000 people worldwide annually and causing about 30,000 deaths. The live attenuated vaccine strain, YFV-17D, has significantly contributed in controlling the global burden of yellow fever worldwide. However, the viral and host contributions to YFV-17D attenuation remain elusive. Type I interferon (IFN-α/β) signaling and type II interferon (IFN-γ) signaling have been shown to be mutually supportive in controlling YFV-17D infection despite distinct mechanisms of action in viral infection. However, it remains unclear how type III IFN (IFN-λ) integrates into this antiviral system. Here, we report that while wild-type (WT) and IFN-λ receptor knockout (λR−/−) mice were largely resistant to YFV-17D, deficiency in type I IFN signaling resulted in robust infection. Although IFN-α/β receptor knockout (α/βR−/−) mice survived the infection, mice with combined deficiencies in both type I signaling and type III IFN signaling were hypersusceptible to YFV-17D and succumbed to the infection. Mortality was associated with viral neuroinvasion and increased permeability of the blood-brain barrier (BBB). α/βR−/− λR−/− mice also exhibited distinct changes in the frequencies of multiple immune cell lineages, impaired T-cell activation, and severe perturbation of the proinflammatory cytokine balance. Taken together, our data highlight that type III IFN has critical immunomodulatory and neuroprotective functions that prevent viral neuroinvasion during active YFV-17D replication. Type III IFN thus likely represents a safeguard mechanism crucial for controlling YFV-17D infection and contributing to shaping vaccine immunogenicity. PMID:28811340

  5. Targeting autocrine HB-EGF signaling with specific ADAM12 inhibition using recombinant ADAM12 prodomain

    NASA Astrophysics Data System (ADS)

    Miller, Miles A.; Moss, Marcia L.; Powell, Gary; Petrovich, Robert; Edwards, Lori; Meyer, Aaron S.; Griffith, Linda G.; Lauffenburger, Douglas A.

    2015-10-01

    Dysregulation of ErbB-family signaling underlies numerous pathologies and has been therapeutically targeted through inhibiting ErbB-receptors themselves or their cognate ligands. For the latter, “decoy” antibodies have been developed to sequester ligands including heparin-binding epidermal growth factor (HB-EGF); however, demonstrating sufficient efficacy has been difficult. Here, we hypothesized that this strategy depends on properties such as ligand-receptor binding affinity, which varies widely across the known ErbB-family ligands. Guided by computational modeling, we found that high-affinity ligands such as HB-EGF are more difficult to target with decoy antibodies compared to low-affinity ligands such as amphiregulin (AREG). To address this issue, we developed an alternative method for inhibiting HB-EGF activity by targeting its cleavage from the cell surface. In a model of the invasive disease endometriosis, we identified A Disintegrin and Metalloproteinase 12 (ADAM12) as a protease implicated in HB-EGF shedding. We designed a specific inhibitor of ADAM12 based on its recombinant prodomain (PA12), which selectively inhibits ADAM12 but not ADAM10 or ADAM17. In endometriotic cells, PA12 significantly reduced HB-EGF shedding and resultant cellular migration. Overall, specific inhibition of ligand shedding represents a possible alternative to decoy antibodies, especially for ligands such as HB-EGF that exhibit high binding affinity and localized signaling.

  6. Myeloproliferative neoplasms: JAK2 signaling pathway as a central target for therapy.

    PubMed

    Pasquier, Florence; Cabagnols, Xenia; Secardin, Lise; Plo, Isabelle; Vainchenker, William

    2014-09-01

    The discovery of the JAK2V617F mutation followed by the discovery of other genetic abnormalities allowed important progress in the understanding of the pathogenesis and management of myeloproliferative neoplasms (MPN)s. Classical Breakpoint cluster region-Abelson (BCR-ABL)-negative neoplasms include 3 main disorders: essential thrombocythemia (ET), polycythemia vera (PV), and primary myelofibrosis (PMF). Genomic studies have shown that these disorders are more heterogeneous than previously thought with 3 main entities corresponding to different gene mutations: the JAK2 disorder, essentially due to JAK2V617F mutation, which includes nearly all PVs and a majority of ETs and PMFs with a continuum between these diseases and the myeloproliferative leukemia (MPL) and calreticulin (CALR) disorders, which include a fraction of ET and PMF. All of these mutations lead to a JAK2 constitutive activation. Murine models either with JAK2V617F or MPLW515L, but also with JAK2 or MPL germ line mutations found in hereditary thrombocytosis, have demonstrated that they are drivers of myeloproliferation. However, the myeloproliferative driver mutation is still unknown in approximately 15% of ET and PMF, but appears to also target the JAK/Signal Transducer and Activator of Transcription (STAT) pathway. However, other mutations in genes involved in epigenetics or splicing also can be present and can predate or follow mutations in signaling. They are involved either in clonal dominance or in phenotypic changes, more particularly in PMF. They can be associated with leukemic progression and might have an important prognostic value such as additional sex comb-like 1 mutations. Despite this heterogeneity, it is tempting to target JAK2 and its signaling for therapy. However in PMF, Adenosine Tri-Phosphate (ATP)-competitive JAK2 inhibitors have shown their interest, but also their important limitations. Thus, other approaches are required, which are discussed in this review. Copyright © 2014

  7. ASM-3 Acid Sphingomyelinase Functions as a Positive Regulator of the DAF-2/AGE-1 Signaling Pathway and Serves as a Novel Anti-Aging Target

    PubMed Central

    Kim, Yongsoon; Sun, Hong

    2012-01-01

    In C. elegans, the highly conserved DAF-2/insulin/insulin-like growth factor 1 receptor signaling (IIS) pathway regulates longevity, metabolism, reproduction and development. In mammals, acid sphingomyelinase (ASM) is an enzyme that hydrolyzes sphingomyelin to produce ceramide. ASM has been implicated in CD95 death receptor signaling under certain stress conditions. However, the involvement of ASM in growth factor receptor signaling under physiological conditions is not known. Here, we report that in vivo ASM functions as a positive regulator of the DAF-2/IIS pathway in C. elegans. We have shown that inactivation of asm-3 extends animal lifespan and promotes dauer arrest, an alternative developmental process. A significant cooperative effect on lifespan is observed between asm-3 deficiency and loss-of-function alleles of the age-1/PI 3-kinase, with the asm-3; age-1 double mutant animals having a mean lifespan 259% greater than that of the wild-type animals. The lifespan extension phenotypes caused by the loss of asm-3 are dependent on the functions of daf-16/FOXO and daf-18/PTEN. We have demonstrated that inactivation of asm-3 causes nuclear translocation of DAF-16::GFP protein, up-regulates endogenous DAF-16 protein levels and activates the downstream targeting genes of DAF-16. Together, our findings reveal a novel role of asm-3 in regulation of lifespan and diapause by modulating IIS pathway. Importantly, we have found that two drugs known to inhibit mammalian ASM activities, desipramine and clomipramine, markedly extend the lifespan of wild-type animals, in a manner similar to that achieved by genetic inactivation of the asm genes. Our studies illustrate a novel strategy of anti-aging by targeting ASM, which may potentially be extended to mammals. PMID:23049887

  8. ASM-3 acid sphingomyelinase functions as a positive regulator of the DAF-2/AGE-1 signaling pathway and serves as a novel anti-aging target.

    PubMed

    Kim, Yongsoon; Sun, Hong

    2012-01-01

    In C. elegans, the highly conserved DAF-2/insulin/insulin-like growth factor 1 receptor signaling (IIS) pathway regulates longevity, metabolism, reproduction and development. In mammals, acid sphingomyelinase (ASM) is an enzyme that hydrolyzes sphingomyelin to produce ceramide. ASM has been implicated in CD95 death receptor signaling under certain stress conditions. However, the involvement of ASM in growth factor receptor signaling under physiological conditions is not known. Here, we report that in vivo ASM functions as a positive regulator of the DAF-2/IIS pathway in C. elegans. We have shown that inactivation of asm-3 extends animal lifespan and promotes dauer arrest, an alternative developmental process. A significant cooperative effect on lifespan is observed between asm-3 deficiency and loss-of-function alleles of the age-1/PI 3-kinase, with the asm-3; age-1 double mutant animals having a mean lifespan 259% greater than that of the wild-type animals. The lifespan extension phenotypes caused by the loss of asm-3 are dependent on the functions of daf-16/FOXO and daf-18/PTEN. We have demonstrated that inactivation of asm-3 causes nuclear translocation of DAF-16::GFP protein, up-regulates endogenous DAF-16 protein levels and activates the downstream targeting genes of DAF-16. Together, our findings reveal a novel role of asm-3 in regulation of lifespan and diapause by modulating IIS pathway. Importantly, we have found that two drugs known to inhibit mammalian ASM activities, desipramine and clomipramine, markedly extend the lifespan of wild-type animals, in a manner similar to that achieved by genetic inactivation of the asm genes. Our studies illustrate a novel strategy of anti-aging by targeting ASM, which may potentially be extended to mammals.

  9. Sophoraflavanone G induces apoptosis of human cancer cells by targeting upstream signals of STATs.

    PubMed

    Kim, Byung-Hak; Won, Cheolhee; Lee, Yun-Han; Choi, Jung Sook; Noh, Kum Hee; Han, Songhee; Lee, Haeri; Lee, Chang Seok; Lee, Dong-Sup; Ye, Sang-Kyu; Kim, Myoung-Hwan

    2013-10-01

    Aberrantly activated signal transducer and activator of transcription (STAT) proteins are implicated with human cancers and represent essential roles for cancer cell survival and proliferation. Therefore, the development of small-molecule inhibitors of STAT signaling bearing pharmacological activity has therapeutic potential for the treatment of human cancers. In this study, we identified sophoraflavanone G as a novel small-molecule inhibitor of STAT signaling in human cancer cells. Sophoraflavanone G inhibited tyrosine phosphorylation of STAT proteins in Hodgkin's lymphoma and tyrosine phosphorylation of STAT3 in solid cancer cells by inhibiting phosphorylation of the Janus kinase (JAK) proteins, Src family tyrosine kinases, such as Lyn and Src, Akt, and ERK1/2. In addition, sophoraflavanone G inhibited STAT5 phosphorylation in murine-bone-marrow-derived pro-B cells transfected with translocated Ets Leukemia (TEL)-JAKs and cytokine-induced rat pre-T lymphoma cells, as well as STAT5b reporter activity in TEL-JAKs and STAT5b reporter systems. Sophoraflavanone G also inhibited nuclear factor-κB (NF-κB) signaling in multiple myeloma cells. Furthermore, sophoraflavanone G inhibited cancer cell proliferation and induced apoptosis by regulating the expression of apoptotic and anti-apoptotic proteins. Our data suggest that sophoraflavanone G is a novel small-molecule inhibitor of STAT signaling by targeting upstream signals of STATs that may have therapeutic potential for cancers caused by persistently activated STAT proteins. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Identification of striated muscle activator of Rho signaling (STARS) as a novel calmodulin target by a newly developed genome-wide screen.

    PubMed

    Furuya, Yusui; Denda, Miwako; Sakane, Kyohei; Ogusu, Tomoko; Takahashi, Sumio; Magari, Masaki; Kanayama, Naoki; Morishita, Ryo; Tokumitsu, Hiroshi

    2016-07-01

    To search for novel target(s) of the Ca(2+)-signaling transducer, calmodulin (CaM), we performed a newly developed genome-wide CaM interaction screening of 19,676 GST-fused proteins expressed in human. We identified striated muscle activator of Rho signaling (STARS) as a novel CaM target and characterized its CaM binding ability and found that the Ca(2+)/CaM complex interacted stoichiometrically with the N-terminal region (Ala13-Gln35) of STARS in vitro as well as in living cells. Mutagenesis studies identified Ile20 and Trp33 as the essential hydrophobic residues in CaM anchoring. Furthermore, the CaM binding deficient mutant (Ile20Ala, Trp33Ala) of STARS further enhanced its stimulatory effect on SRF-dependent transcriptional activation. These results suggest a connection between Ca(2+)-signaling via excitation-contraction coupling and the regulation of STARS-mediated gene expression in muscles. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Highly sensitive electrochemical nuclear factor kappa B aptasensor based on target-induced dual-signal ratiometric and polymerase-assisted protein recycling amplification strategy.

    PubMed

    Peng, Kanfu; Xie, Pan; Yang, Zhe-Han; Yuan, Ruo; Zhang, Keqin

    2018-04-15

    In this work, an amplified electrochemical ratiometric aptasensor for nuclear factor kappa B (NF-κB) assay based on target binding-triggered ratiometric signal readout and polymerase-assisted protein recycling amplification strategy is described. To demonstrate the effect of "signal-off" and "signal-on" change for the dual-signal electrochemical ratiometric readout, the thiol-hairpin DNA (SH-HD) hybridizes with methylene blue (MB)-modified protection DNA (MB-PD) to form capture probes, which is rationally introduced for the construction of the assay platform. On the interface, the probes can specifically bind to target NF-κB and expose a toehold region which subsequently hybridizes with the ferrocene (Fc)-modified DNA strand to take the Fc group to the electrode surface, accompanied by displacing MB-PD to release the MB group from the electrode surface, leading to the both "signal-on" of Fc (I Fc ) and "signal-off" of MB (I MB ). In order to improve the sensitivity of the electrochemical aptasensor, phi29-assisted target protein recycling amplification strategy was designed to achieve an amplified ratiometric signal. With the above advantages, the prepared aptasensor exhibits a wide linear range of 0.1pgmL -1 to 15ngmL -1 with a low detection limit of 0.03pgmL -1 . This strategy provides a simple and ingenious approach to construct ratiometric electrochemical aptasensor and shows promising potential applications in multiple disease marker detection by changing the recognition probe. Copyright © 2017. Published by Elsevier B.V.

  12. Targeted Type 1 phototherapeutic agents using azido-peptide bioconjugates

    NASA Astrophysics Data System (ADS)

    Rajagopalan, Raghavan; Achilefu, Samuel I.; Jimenez, Hermo N.; Webb, Elizabeth G.; Schmidt, Michelle A.; Bugaj, Joseph E.; Dorshow, Richard B.

    2001-07-01

    Five peptides binding to somatostatin and bombesin receptors were conjugated to 4-azido-2,3,4,6-tetrafluorophenylbenzoic acid, a Type 1 photosensitizer, at the N-terminal position. The receptor affinities were determined by competition binding assay using two different pancreatic tumor cell lines, CA20948 and AR42-J, that expresses somatostatin-2 (SST-2) and bombesin receptors receptively. All compounds exhibited high receptor specificity, i.e., the IC50 values ranged between 1.0 to 64.0 nM. These conjugates may be useful for targeted Type 1 phototherapy via the generation of nitrenes at the cell surfaces expressing these receptors.

  13. Chapter 2. Calcineurin signaling and the slow oxidative skeletal muscle fiber type.

    PubMed

    Mallinson, Joanne; Meissner, Joachim; Chang, Kin-Chow

    2009-01-01

    Calcineurin, also known as protein phosphatase 2B (PP2B), is a calcium-calmodulin-dependent phosphatase. It couples intracellular calcium to dephosphorylate selected substrates resulting in diverse biological consequences depending on cell type. In mammals, calcineurin's functions include neuronal growth, development of cardiac valves and hypertrophy, activation of lymphocytes, and the regulation of ion channels and enzymes. This chapter focuses on the key roles of calcineurin in skeletal muscle differentiation, regeneration, and fiber type conversion to an oxidative state, all of which are crucial to muscle development, metabolism, and functional adaptations. It seeks to integrate the current knowledge of calcineurin signaling in skeletal muscle and its interactions with other prominent regulatory pathways and their signaling intermediates to form a molecular overview that could provide directions for possible future exploitations in human metabolic health.

  14. Protein kinase C α is a central signaling node and therapeutic target for breast cancer stem cells.

    PubMed

    Tam, Wai Leong; Lu, Haihui; Buikhuisen, Joyce; Soh, Boon Seng; Lim, Elgene; Reinhardt, Ferenc; Wu, Zhenhua Jeremy; Krall, Jordan A; Bierie, Brian; Guo, Wenjun; Chen, Xi; Liu, Xiaole Shirley; Brown, Myles; Lim, Bing; Weinberg, Robert A

    2013-09-09

    The epithelial-mesenchymal transition program becomes activated during malignant progression and can enrich for cancer stem cells (CSCs). We report that inhibition of protein kinase C α (PKCα) specifically targets CSCs but has little effect on non-CSCs. The formation of CSCs from non-stem cells involves a shift from EGFR to PDGFR signaling and results in the PKCα-dependent activation of FRA1. We identified an AP-1 molecular switch in which c-FOS and FRA1 are preferentially utilized in non-CSCs and CSCs, respectively. PKCα and FRA1 expression is associated with the aggressive triple-negative breast cancers, and the depletion of FRA1 results in a mesenchymal-epithelial transition. Hence, identifying molecular features that shift between cell states can be exploited to target signaling components critical to CSCs. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Targeting tachykinin receptors in neuroblastoma.

    PubMed

    Henssen, Anton G; Odersky, Andrea; Szymansky, Annabell; Seiler, Marleen; Althoff, Kristina; Beckers, Anneleen; Speleman, Frank; Schäfers, Simon; De Preter, Katleen; Astrahanseff, Kathy; Struck, Joachim; Schramm, Alexander; Eggert, Angelika; Bergmann, Andreas; Schulte, Johannes H

    2017-01-03

    Neuroblastoma is the most common extracranial tumor in children. Despite aggressive multimodal treatment, high-risk neuroblastoma remains a clinical challenge with survival rates below 50%. Adding targeted drugs to first-line therapy regimens is a promising approach to improve survival in these patients. TACR1 activation by substance P has been reported to be mitogenic in cancer cell lines. Tachykinin receptor (TACR1) antagonists are approved for clinical use as an antiemetic remedy since 2003. Tachykinin receptor inhibition has recently been shown to effectively reduce growth of several tumor types. Here, we report that neuroblastoma cell lines express TACR1, and that targeting TACR1 activity significantly reduced cell viability and induced apoptosis in neuroblastoma cell lines. Gene expression profiling revealed that TACR1 inhibition repressed E2F2 and induced TP53 signaling. Treating mice harboring established neuroblastoma xenograft tumors with Aprepitant also significantly reduced tumor burden. Thus, we provide evidence that the targeted inhibition of tachykinin receptor signaling shows therapeutic efficacy in preclinical models for high-risk neuroblastoma.

  16. β2-Microglobulin-mediated signaling as a target for cancer therapy.

    PubMed

    Nomura, Takeo; Huang, Wen-Chin; Zhau, Haiyen E; Josson, Sajni; Mimata, Hiromitsu; Chung, Leland W K

    2014-03-01

    β2-microglobulin (β2-m) has become the focus of intense scrutiny since the discovery of its undesirable roles promoting osteomimicry and cancer progression. β2-m is a well-known housekeeping protein that forms complexes with the heavy chain of major histocompatibility complex class I molecules, which are heterodimeric cell surface proteins that present antigenic peptides to cytotoxic T cells. On recognition of foreign peptide antigens on cell surfaces, T cells actively bind and lyse antigen-presenting cancer cells. In addition to its roles in tumor immunity, β2-m has two different functions in cancer cells, either tumor promoting or tumor suppressing, in cancer cell context-dependent manner. Our studies have demonstrated that β2-m is involved extensively in the functional regulation of growth, survival, apoptosis, and even metastasis of cancer cells. We found that β2-m is a soluble growth factor and a pleiotropic signaling molecule which interacts with its receptor, hemochromatosis protein, to modulate epithelial-to-mesenchymal transition (EMT) through iron-responsive pathways. Specific antibodies against β2-m have remarkable tumoricidal activity in cancer, through β2-m action on iron flux, alterations of intracellular reactive oxygen species, DNA damage and repair enzyme activities, β-catenin activation and cadherin switching, and tumor responsiveness to hypoxia. These novel functions of β2-m and β2-m signaling may be common to several solid tumors including human lung, breast, renal, and prostate cancers. Our experimental results could lead to the development of a novel class of antibody-based pharmaceutical agents for cancer growth control. In this review, we briefly summarize the recent data regarding β2-m as a promising new cancer therapeutic target and discuss antagonizing this therapeutic target with antibody therapy for the treatment of localized and disseminated cancers.

  17. β2-Microglobulin-mediated Signaling as a Target for Cancer Therapy

    PubMed Central

    Nomura, Takeo; Huang, Wen-Chin; Zhau, Haiyen E.; Josson, Sajni; Mimata, Hiromitsu; Kaur, Mandeep

    2014-01-01

    β2-microglobulin (β2-m) has become the focus of intense scrutiny since the discovery of its undesirable roles promoting osteomimicry and cancer progression. β2-m is a well-known housekeeping protein that forms complexes with the heavy chain of major histocompatibility complex class I molecules, which are heterodimeric cell surface proteins that present antigenic peptides to cytotoxic T cells. On recognition of foreign peptide antigens on cell surfaces, T cells actively bind and lyse antigen-presenting cancer cells. In addition to its roles in tumor immunity, β2-m has two different functions in cancer cells, either tumor promoting or tumor suppressing, in cancer cell context-dependent manner. Our studies have demonstrated that β2-m is involved extensively in the functional regulation of growth, survival, apoptosis, and even metastasis of cancer cells. We found that β2-m is a soluble growth factor and a pleiotropic signaling molecule which interacts with its receptor, hemochromatosis protein, to modulate epithelial-to-mesenchymal transition (EMT) through iron-responsive pathways. Specific antibodies against β2-m have remarkable tumoricidal activity in cancer, through β2-m action on iron flux, alterations of intracellular reactive oxygen species, DNA damage and repair enzyme activities, β-catenin activation and cadherin switching, and tumor responsiveness to hypoxia. These novel functions of β2-m and β2-m signaling may be common to several solid tumors including human lung, breast, renal, and prostate cancers. Our experimental results could lead to the development of a novel class of antibody-based pharmaceutical agents for cancer growth control. In this review, we briefly summarize the recent data regarding β2-m as a promising new cancer therapeutic target and discuss antagonizing this therapeutic target with antibody therapy for the treatment of localized and disseminated cancers. PMID:23848204

  18. P-type ATPases as drug targets: tools for medicine and science.

    PubMed

    Yatime, Laure; Buch-Pedersen, Morten J; Musgaard, Maria; Morth, J Preben; Lund Winther, Anne-Marie; Pedersen, Bjørn P; Olesen, Claus; Andersen, Jens Peter; Vilsen, Bente; Schiøtt, Birgit; Palmgren, Michael G; Møller, Jesper V; Nissen, Poul; Fedosova, Natalya

    2009-04-01

    P-type ATPases catalyze the selective active transport of ions like H+, Na+, K+, Ca2+, Zn2+, and Cu2+ across diverse biological membrane systems. Many members of the P-type ATPase protein family, such as the Na+,K+-, H+,K+-, Ca2+-, and H+-ATPases, are involved in the development of pathophysiological conditions or provide critical function to pathogens. Therefore, they seem to be promising targets for future drugs and novel antifungal agents and herbicides. Here, we review the current knowledge about P-type ATPase inhibitors and their present use as tools in science, medicine, and biotechnology. Recent structural information on a variety of P-type ATPase family members signifies that all P-type ATPases can be expected to share a similar basic structure and a similar basic machinery of ion transport. The ion transport pathway crossing the membrane lipid bilayer is constructed of two access channels leading from either side of the membrane to the ion binding sites at a central cavity. The selective opening and closure of the access channels allows vectorial access/release of ions from the binding sites. Recent structural information along with new homology modeling of diverse P-type ATPases in complex with known ligands demonstrate that the most proficient way for the development of efficient and selective drugs is to target their ion transport pathway.

  19. Epidermal growth factor receptor and EGFRvIII in glioblastoma: signaling pathways and targeted therapies. | Office of Cancer Genomics

    Cancer.gov

    Amplification of epidermal growth factor receptor (EGFR) and its active mutant EGFRvIII occurs frequently in glioblastoma (GBM). While EGFR and EGFRvIII play critical roles in pathogenesis, targeted therapy with EGFR-tyrosine kinase inhibitors (TKIs) or antibodies has only shown limited efficacy in patients. Here we discuss signaling pathways mediated by EGFR/EGFRvIII, current therapeutics, and novel strategies to target EGFR/EGFRvIII-amplified GBM.

  20. A model system for targeted drug release triggered by biomolecular signals logically processed through enzyme logic networks.

    PubMed

    Mailloux, Shay; Halámek, Jan; Katz, Evgeny

    2014-03-07

    A new Sense-and-Act system was realized by the integration of a biocomputing system, performing analytical processes, with a signal-responsive electrode. A drug-mimicking release process was triggered by biomolecular signals processed by different logic networks, including three concatenated AND logic gates or a 3-input OR logic gate. Biocatalytically produced NADH, controlled by various combinations of input signals, was used to activate the electrochemical system. A biocatalytic electrode associated with signal-processing "biocomputing" systems was electrically connected to another electrode coated with a polymer film, which was dissolved upon the formation of negative potential releasing entrapped drug-mimicking species, an enzyme-antibody conjugate, operating as a model for targeted immune-delivery and consequent "prodrug" activation. The system offers great versatility for future applications in controlled drug release and personalized medicine.

  1. Promiscuous, Multi-Target Lupane-Type Triterpenoids Inhibits Wild Type and Drug Resistant HIV-1 Replication Through the Interference With Several Targets.

    PubMed

    Bedoya, Luis M; Beltrán, Manuela; García-Pérez, Javier; Obregón-Calderón, Patricia; Callies, Oliver; Jímenez, Ignacio A; Bazzocchi, Isabel L; Alcamí, José

    2018-01-01

    Current research on antiretroviral therapy is mainly focused in the development of new formulations or combinations of drugs belonging to already known targets. However, HIV-1 infection is not cured by current therapy and thus, new approaches are needed. Bevirimat was developed by chemical modification of betulinic acid, a lupane-type pentacyclic triterpenoid (LPT), as a first-in-class HIV-1 maturation inhibitor. However, in clinical trials, bevirimat showed less activity than expected because of the presence of a natural mutation in Gag protein that conferred resistance to a high proportion of HIV-1 strains. In this work, three HIV-1 inhibitors selected from a set of previously screened LPTs were investigated for their targets in the HIV-1 replication cycle, including their maturation inhibitor effect. LPTs were found to inhibit HIV-1 infection acting as promiscuous compounds with several targets in the HIV-1 replication cycle. LPT12 inhibited HIV-1 infection mainly through reverse transcription, integration, viral transcription, viral proteins (Gag) production and maturation inhibition. LPT38 did it through integration, viral transcription or Gag production inhibition and finally, LPT42 inhibited reverse transcription, viral transcription or Gag production. The three LPTs inhibited HIV-1 infection of human primary lymphocytes and infections with protease inhibitors and bevirimat resistant HIV-1 variants with similar values of IC 50 . Therefore, we show that the LPTs tested inhibited HIV-1 infection through acting on different targets depending on their chemical structure and the activities of the different LPTs vary with slight structural alterations. For example, of the three LPTs under study, we found that only LPT12 inhibited infectivity of newly-formed viral particles, suggesting a direct action on the maturation process. Thus, the multi-target behavior gives a potential advantage to these compounds since HIV-1 resistance can be overcome by modulating more

  2. The evolution and comparative neurobiology of endocannabinoid signalling

    PubMed Central

    Elphick, Maurice R.

    2012-01-01

    CB1- and CB2-type cannabinoid receptors mediate effects of the endocannabinoids 2-arachidonoylglycerol (2-AG) and anandamide in mammals. In canonical endocannabinoid-mediated synaptic plasticity, 2-AG is generated postsynaptically by diacylglycerol lipase alpha and acts via presynaptic CB1-type cannabinoid receptors to inhibit neurotransmitter release. Electrophysiological studies on lampreys indicate that this retrograde signalling mechanism occurs throughout the vertebrates, whereas system-level studies point to conserved roles for endocannabinoid signalling in neural mechanisms of learning and control of locomotor activity and feeding. CB1/CB2-type receptors originated in a common ancestor of extant chordates, and in the sea squirt Ciona intestinalis a CB1/CB2-type receptor is targeted to axons, indicative of an ancient role for cannabinoid receptors as axonal regulators of neuronal signalling. Although CB1/CB2-type receptors are unique to chordates, enzymes involved in biosynthesis/inactivation of endocannabinoids occur throughout the animal kingdom. Accordingly, non-CB1/CB2-mediated mechanisms of endocannabinoid signalling have been postulated. For example, there is evidence that 2-AG mediates retrograde signalling at synapses in the nervous system of the leech Hirudo medicinalis by activating presynaptic transient receptor potential vanilloid-type ion channels. Thus, postsynaptic synthesis of 2-AG or anandamide may be a phylogenetically widespread phenomenon, and a variety of proteins may have evolved as presynaptic (or postsynaptic) receptors for endocannabinoids. PMID:23108540

  3. Molecular Mechanisms of RNA-Targeting by Cas13-containing Type VI CRISPR-Cas Systems.

    PubMed

    O'Connell, Mitchell

    2018-06-22

    Prokaryotic adaptive immune systems use CRISPRs (Clustered Regularly Interspaced Short Palindromic Repeats) and CRISPR associated (Cas) proteins for RNA-guided cleavage of foreign genetic elements. The focus of this review, Type VI CRISPR-Cas systems, include a single protein known as Cas13 (formerly C2c2), that when assembled with a crRNA forms a crRNA-guided RNA-targeting effector complex. Type VI CRISPR-Cas systems can be divided into four subtypes (A-D) based on Cas13 phylogeny. All Cas13 proteins studied to date possess two enzymatically distinct ribonuclease activities that are required for optimal interference. One RNase is responsible for pre-crRNA processing to form mature Type VI interference complexes, while the other RNase activity provided by the two HEPN (Higher Eukaryotes and Prokaryotes Nucleotide-binding) domains, is required for degradation of target RNA during viral interference. In this review, I will compare and contrast what is known about the molecular architecture and behavior of Type VI (A-D) CRISPR-Cas13 interference complexes, how this allows them to carry out their RNA-targeting function, how Type VI accessory proteins are able to modulate Cas13 activity, and how together all of these features have led to the rapid development of a range of RNA-targeting applications. Throughout I will also discuss some of the outstanding questions regarding Cas13's molecular behavior, and its role in bacterial adaptive immunity and RNA-targeting applications. Copyright © 2018. Published by Elsevier Ltd.

  4. Dual PDF signaling pathways reset clocks via TIMELESS and acutely excite target neurons to control circadian behavior.

    PubMed

    Seluzicki, Adam; Flourakis, Matthieu; Kula-Eversole, Elzbieta; Zhang, Luoying; Kilman, Valerie; Allada, Ravi

    2014-03-01

    Molecular circadian clocks are interconnected via neural networks. In Drosophila, PIGMENT-DISPERSING FACTOR (PDF) acts as a master network regulator with dual functions in synchronizing molecular oscillations between disparate PDF(+) and PDF(-) circadian pacemaker neurons and controlling pacemaker neuron output. Yet the mechanisms by which PDF functions are not clear. We demonstrate that genetic inhibition of protein kinase A (PKA) in PDF(-) clock neurons can phenocopy PDF mutants while activated PKA can partially rescue PDF receptor mutants. PKA subunit transcripts are also under clock control in non-PDF DN1p neurons. To address the core clock target of PDF, we rescued per in PDF neurons of arrhythmic per⁰¹ mutants. PDF neuron rescue induced high amplitude rhythms in the clock component TIMELESS (TIM) in per-less DN1p neurons. Complete loss of PDF or PKA inhibition also results in reduced TIM levels in non-PDF neurons of per⁰¹ flies. To address how PDF impacts pacemaker neuron output, we focally applied PDF to DN1p neurons and found that it acutely depolarizes and increases firing rates of DN1p neurons. Surprisingly, these effects are reduced in the presence of an adenylate cyclase inhibitor, yet persist in the presence of PKA inhibition. We have provided evidence for a signaling mechanism (PKA) and a molecular target (TIM) by which PDF resets and synchronizes clocks and demonstrates an acute direct excitatory effect of PDF on target neurons to control neuronal output. The identification of TIM as a target of PDF signaling suggests it is a multimodal integrator of cell autonomous clock, environmental light, and neural network signaling. Moreover, these data reveal a bifurcation of PKA-dependent clock effects and PKA-independent output effects. Taken together, our results provide a molecular and cellular basis for the dual functions of PDF in clock resetting and pacemaker output.

  5. Dual PDF Signaling Pathways Reset Clocks Via TIMELESS and Acutely Excite Target Neurons to Control Circadian Behavior

    PubMed Central

    Seluzicki, Adam; Flourakis, Matthieu; Kula-Eversole, Elzbieta; Zhang, Luoying; Kilman, Valerie; Allada, Ravi

    2014-01-01

    Molecular circadian clocks are interconnected via neural networks. In Drosophila, PIGMENT-DISPERSING FACTOR (PDF) acts as a master network regulator with dual functions in synchronizing molecular oscillations between disparate PDF(+) and PDF(−) circadian pacemaker neurons and controlling pacemaker neuron output. Yet the mechanisms by which PDF functions are not clear. We demonstrate that genetic inhibition of protein kinase A (PKA) in PDF(−) clock neurons can phenocopy PDF mutants while activated PKA can partially rescue PDF receptor mutants. PKA subunit transcripts are also under clock control in non-PDF DN1p neurons. To address the core clock target of PDF, we rescued per in PDF neurons of arrhythmic per01 mutants. PDF neuron rescue induced high amplitude rhythms in the clock component TIMELESS (TIM) in per-less DN1p neurons. Complete loss of PDF or PKA inhibition also results in reduced TIM levels in non-PDF neurons of per01 flies. To address how PDF impacts pacemaker neuron output, we focally applied PDF to DN1p neurons and found that it acutely depolarizes and increases firing rates of DN1p neurons. Surprisingly, these effects are reduced in the presence of an adenylate cyclase inhibitor, yet persist in the presence of PKA inhibition. We have provided evidence for a signaling mechanism (PKA) and a molecular target (TIM) by which PDF resets and synchronizes clocks and demonstrates an acute direct excitatory effect of PDF on target neurons to control neuronal output. The identification of TIM as a target of PDF signaling suggests it is a multimodal integrator of cell autonomous clock, environmental light, and neural network signaling. Moreover, these data reveal a bifurcation of PKA-dependent clock effects and PKA-independent output effects. Taken together, our results provide a molecular and cellular basis for the dual functions of PDF in clock resetting and pacemaker output. PMID:24643294

  6. Drosophila photoreceptor axon guidance and targeting requires the dreadlocks SH2/SH3 adapter protein.

    PubMed

    Garrity, P A; Rao, Y; Salecker, I; McGlade, J; Pawson, T; Zipursky, S L

    1996-05-31

    Mutations in the Drosophila gene dreadlocks (dock) disrupt photoreceptor cell (R cell) axon guidance and targeting. Genetic mosaic analysis and cell-type-specific expression of dock transgenes demonstrate dock is required in R cells for proper innervation. Dock protein contains one SH2 and three SH3 domains, implicating it in tyrosine kinase signaling, and is highly related to the human proto-oncogene Nck. Dock expression is detected in R cell growth cones in the target region. We propose Dock transmits signals in the growth cone in response to guidance and targeting cues. These findings provide an important step for dissection of signaling pathways regulating growth cone motility.

  7. Regulation of the Hippo signaling pathway by ubiquitin modification.

    PubMed

    Kim, Youngeun; Jho, Eek-Hoon

    2018-03-01

    The Hippo signaling pathway plays an essential role in adult tissue homeostasis and organ size control. Abnormal regulation of Hippo signaling can be a cause for multiple types of human cancers. Since the awareness of the importance of the Hippo signaling in a wide range of biological fields has been continually grown, it is also understood that a thorough and well-rounded comprehension of the precise dynamics could provide fundamental insights for therapeutic applications. Several components in the Hippo signaling pathway are known to be targeted for proteasomal degradation via ubiquitination by E3 ligases. β-TrCP is a well-known E3 ligase of YAP/TAZ, which leads to the reduction of YAP/TAZ levels. The Hippo signaling pathway can also be inhibited by the E3 ligases (such as ITCH) which target LATS1/2 for degradation. Regulation via ubiquitination involves not only complex network of E3 ligases but also deubiquitinating enzymes (DUBs), which remove ubiquitin from its targets. Interestingly, non-degradative ubiquitin modifications are also known to play important roles in the regulation of Hippo signaling. Although there has been much advanced progress in the investigation of ubiquitin modifications acting as regulators of the Hippo signaling pathway, research done to date still remains inadequate due to the sheer complexity and diversity of the subject. Herein, we review and discuss recent developments that implicate ubiquitin-mediated regulatory mechanisms at multiple steps of the Hippo signaling pathway. [BMB Reports 2018; 51(3): 143-150].

  8. Targeting RhoA/Rho kinase and p21-activated kinase signaling to prevent cancer development and progression.

    PubMed

    Chang, Yu-Wen E; Bean, Ronald R; Jakobi, Rolf

    2009-06-01

    Elevated RhoA/Rho kinase and p21-activated kinase signaling have been shown to promote cancer development and metastasis and have drawn much attention as potential targets of anti-cancer therapy. Elevated RhoA and Rho kinase activity promote cancer cell invasion and eventually lead to metastasis by disrupting E-cadherin-mediated adherens junctions and degradation of the extracellular matrix. Elevated p21-activated kinase activity promotes invasion by stimulating cell motility but also promotes cancer cell survival and growth. In this review we describe normal functions of RhoA/Rho kinase and p21-activated kinase signaling, mechanisms that lead to constitutive activation of RhoA/Rho kinase and p21-activated kinase pathways, and processes by which constitutive RhoA/Rho kinase and p21-activated kinase activity promote cancer development and progression to more aggressive and metastatic phenotypes. In addition, we summarize relevant patents on RhoA/Rho kinase and p21-activated kinase as targets of anti-cancer therapy and discuss the clinical potential of different approaches to modulate RhoA/Rho kinase and p21-activated kinase signaling.

  9. MicroRNA-21 accelerates hepatocyte proliferation in vitro via PI3K/Akt signaling by targeting PTEN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan-nan, Bai; Department of Hepatobiliary Surgery, Fujian Provincial Hospital, Provincial Clinical College of Fujian Medical University, Fuzhou 350001, Fujian Province; Zhao-yan, Yu

    2014-01-17

    Highlights: •miRNAs-expression patterns of primary hepatocytes under proliferative status. •miR-21 expression level peaked at 12 h after stimulated by EGF. •miR-21 drive rapid S phase entry of primary hepatocytes. •PI3K/Akt signaling was modulated via targeting PTEN by miR-21. -- Abstract: MicroRNAs (miRNAs) are involved in controlling hepatocyte proliferation during liver regeneration. In this study, we established the miRNAs-expression patterns of primary hepatocytes in vitro under stimulation of epidermal growth factor (EGF), and found that microRNA-21 (miR-21) was appreciably up-regulated and peaked at 12 h. In addition, we further presented evidences indicating that miR-21 promotes primary hepatocyte proliferation through in vitromore » transfecting with miR-21 mimics or inhibitor. We further demonstrated that phosphatidylinositol 3′-OH kinase (PI3K)/Akt signaling was altered accordingly, it is, by targeting phosphatase and tensin homologue deleted on chromosome 10, PI3K/Akt signaling is activated by miR-21 to accelerate hepatocyte rapid S-phase entry and proliferation in vitro.« less

  10. Rho-associated Kinase Connects a Cell Cycle-controlling Anchorage Signal to the Mammalian Target of Rapamycin Pathway*

    PubMed Central

    Park, Jung-ha; Arakawa-Takeuchi, Shiho; Jinno, Shigeki; Okayama, Hiroto

    2011-01-01

    When deprived of anchorage to the extracellular matrix, fibroblasts arrest in G1 phase at least in part due to inactivation of G1 cyclin-dependent kinases. Despite great effort, how anchorage signals control the G1-S transition of fibroblasts remains highly elusive. We recently found that the mammalian target of rapamycin (mTOR) cascade might convey an anchorage signal that regulates S phase entry. Here, we show that Rho-associated kinase connects this signal to the TSC1/TSC2-RHEB-mTOR pathway. Expression of a constitutively active form of ROCK1 suppressed all of the anchorage deprivation effects suppressible by tsc2 mutation in rat embryonic fibroblasts. TSC2 contains one evolutionarily conserved ROCK target-like sequence, and an alanine substitution for Thr1203 in this sequence severely impaired the ability of ROCK1 to counteract the anchorage loss-imposed down-regulation of both G1 cell cycle factors and mTORC1 activity. Moreover, TSC2 Thr1203 underwent ROCK-dependent phosphorylation in vivo and could be phosphorylated by bacterially expressed active ROCK1 in vitro, providing biochemical evidence for a direct physical interaction between ROCK and TSC2. PMID:21561859

  11. Type III Interferon-Mediated Signaling Is Critical for Controlling Live Attenuated Yellow Fever Virus Infection In Vivo.

    PubMed

    Douam, Florian; Soto Albrecht, Yentli E; Hrebikova, Gabriela; Sadimin, Evita; Davidson, Christian; Kotenko, Sergei V; Ploss, Alexander

    2017-08-15

    Yellow fever virus (YFV) is an arthropod-borne flavivirus, infecting ~200,000 people worldwide annually and causing about 30,000 deaths. The live attenuated vaccine strain, YFV-17D, has significantly contributed in controlling the global burden of yellow fever worldwide. However, the viral and host contributions to YFV-17D attenuation remain elusive. Type I interferon (IFN-α/β) signaling and type II interferon (IFN-γ) signaling have been shown to be mutually supportive in controlling YFV-17D infection despite distinct mechanisms of action in viral infection. However, it remains unclear how type III IFN (IFN-λ) integrates into this antiviral system. Here, we report that while wild-type (WT) and IFN-λ receptor knockout (λR -/- ) mice were largely resistant to YFV-17D, deficiency in type I IFN signaling resulted in robust infection. Although IFN-α/β receptor knockout (α/βR -/- ) mice survived the infection, mice with combined deficiencies in both type I signaling and type III IFN signaling were hypersusceptible to YFV-17D and succumbed to the infection. Mortality was associated with viral neuroinvasion and increased permeability of the blood-brain barrier (BBB). α/βR -/- λR -/- mice also exhibited distinct changes in the frequencies of multiple immune cell lineages, impaired T-cell activation, and severe perturbation of the proinflammatory cytokine balance. Taken together, our data highlight that type III IFN has critical immunomodulatory and neuroprotective functions that prevent viral neuroinvasion during active YFV-17D replication. Type III IFN thus likely represents a safeguard mechanism crucial for controlling YFV-17D infection and contributing to shaping vaccine immunogenicity. IMPORTANCE YFV-17D is a live attenuated flavivirus vaccine strain recognized as one of the most effective vaccines ever developed. However, the host and viral determinants governing YFV-17D attenuation and its potent immunogenicity are still unknown. Here, we analyzed the

  12. Regression of Pathological Cardiac Hypertrophy: Signaling Pathways and Therapeutic Targets

    PubMed Central

    Hou, Jianglong; Kang, Y. James

    2012-01-01

    Pathological cardiac hypertrophy is a key risk factor for heart failure. It is associated with increased interstitial fibrosis, cell death and cardiac dysfunction. The progression of pathological cardiac hypertrophy has long been considered as irreversible. However, recent clinical observations and experimental studies have produced evidence showing the reversal of pathological cardiac hypertrophy. Left ventricle assist devices used in heart failure patients for bridging to transplantation not only improve peripheral circulation but also often cause reverse remodeling of the geometry and recovery of the function of the heart. Dietary supplementation with physiologically relevant levels of copper can reverse pathological cardiac hypertrophy in mice. Angiogenesis is essential and vascular endothelial growth factor (VEGF) is a constitutive factor for the regression. The action of VEGF is mediated by VEGF receptor-1, whose activation is linked to cyclic GMP-dependent protein kinase-1 (PKG-1) signaling pathways, and inhibition of cyclic GMP degradation leads to regression of pathological cardiac hypertrophy. Most of these pathways are regulated by hypoxia-inducible factor. Potential therapeutic targets for promoting the regression include: promotion of angiogenesis, selective enhancement of VEGF receptor-1 signaling pathways, stimulation of PKG-1 pathways, and sustention of hypoxia-inducible factor transcriptional activity. More exciting insights into the regression of pathological cardiac hypertrophy are emerging. The time of translating the concept of regression of pathological cardiac hypertrophy to clinical practice is coming. PMID:22750195

  13. Suppression of hedgehog signaling regulates hepatic stellate cell activation and collagen secretion.

    PubMed

    Li, Tao; Leng, Xi-Sheng; Zhu, Ji-Ye; Wang, Gang

    2015-01-01

    Hepatic stellate cells (HSCs) play an important role in liver fibrosis. This study investigates the expression of hedgehog in HSC and the role of hedgehog signaling on activation and collagen secretion of HSC. Liver ex vivo perfusion with collagenase IV and density gradient centrifugation were used to isolate HSC. Expression of hedgehog signaling components Ihh, Smo, Ptc, Gli2 and Gli3 in HSC were detected by RT-PCR. Hedgehog siRNA vectors targeting Ihh, Smo and Gli2 were constructed and transfected into HSC respectively. Suppression of hedgehog signaling were detected by SYBR Green fluorescence quantitative RT-PCR. Effects of hedgehog signaling inhibition on HSC activation and collagen I secretion were analyzed. Hedgehog signaling components Ihh, Smo, Ptc, Gli2 and Gli3 were expressed in HSC. siRNA vectors targeting Ihh, Smo and Gli2 were successfully constructed and decreased target gene expression. Suppression of hedgehog signaling significantly decreased the expression of α-SMA in HSC (P<0.01). Collagen type I secretion of HSC were also significantly decreased (P<0.01). In summary, HSC activation and collagen secretion can be regulated by hedgehog signaling. Hedgehog may play a role in the pathogenesis of liver fibrosis.

  14. T-REX on-demand redox targeting in live cells.

    PubMed

    Parvez, Saba; Long, Marcus J C; Lin, Hong-Yu; Zhao, Yi; Haegele, Joseph A; Pham, Vanha N; Lee, Dustin K; Aye, Yimon

    2016-12-01

    This protocol describes targetable reactive electrophiles and oxidants (T-REX)-a live-cell-based tool designed to (i) interrogate the consequences of specific and time-resolved redox events, and (ii) screen for bona fide redox-sensor targets. A small-molecule toolset comprising photocaged precursors to specific reactive redox signals is constructed such that these inert precursors specifically and irreversibly tag any HaloTag-fused protein of interest (POI) in mammalian and Escherichia coli cells. Syntheses of the alkyne-functionalized endogenous reactive signal 4-hydroxynonenal (HNE(alkyne)) and the HaloTag-targetable photocaged precursor to HNE(alkyne) (also known as Ht-PreHNE or HtPHA) are described. Low-energy light prompts photo-uncaging (t 1/2 <1-2 min) and target-specific modification. The targeted modification of the POI enables precisely timed and spatially controlled redox events with no off-target modification. Two independent pathways are described, along with a simple setup to functionally validate known targets or discover novel sensors. T-REX sidesteps mixed responses caused by uncontrolled whole-cell swamping with reactive signals. Modification and downstream response can be analyzed by in-gel fluorescence, proteomics, qRT-PCR, immunofluorescence, fluorescence resonance energy transfer (FRET)-based and dual-luciferase reporters, or flow cytometry assays. T-REX targeting takes 4 h from initial probe treatment. Analysis of targeted redox responses takes an additional 4-24 h, depending on the nature of the pathway and the type of readouts used.

  15. T-REX on-demand redox targeting in live cells

    PubMed Central

    Parvez, Saba; Long, Marcus J C; Lin, Hong-Yu; Zhao, Yi; Haegele, Joseph A; Pham, Vanha N; Lee, Dustin K; Aye, Yimon

    2017-01-01

    This protocol describes targetable reactive electrophiles and oxidants (T-REX)—a live-cell-based tool designed to (i) interrogate the consequences of specific and time-resolved redox events, and (ii) screen for bona fide redox-sensor targets. A small-molecule toolset comprising photocaged precursors to specific reactive redox signals is constructed such that these inert precursors specifically and irreversibly tag any HaloTag-fused protein of interest (POI) in mammalian and Escherichia coli cells. Syntheses of the alkyne-functionalized endogenous reactive signal 4-hydroxynonenal (HNE (alkyne)) and the HaloTag-targetable photocaged precursor to HNE (alkyne) (also known as Ht-PreHNE or HtPHA) are described. Low-energy light prompts photo-uncaging (t1/2 <1–2 min) and target-specific modification. The targeted modification of the POI enables precisely timed and spatially controlled redox events with no off-target modification. Two independent pathways are described, along with a simple setup to functionally validate known targets or discover novel sensors. T-REX sidesteps mixed responses caused by uncontrolled whole-cell swamping with reactive signals. Modification and downstream response can be analyzed by in-gel fluorescence, proteomics, qRT-PCR, immunofluorescence, fluorescence resonance energy transfer (FRET)-based and dual-luciferase reporters, or flow cytometry assays. T-REX targeting takes 4 h from initial probe treatment. Analysis of targeted redox responses takes an additional 4–24 h, depending on the nature of the pathway and the type of readouts used. PMID:27809314

  16. Co-targeting the PI3K/mTOR and JAK2 signalling pathways produces synergistic activity against myeloproliferative neoplasms

    PubMed Central

    Bartalucci, Niccolò; Tozzi, Lorenzo; Bogani, Costanza; Martinelli, Serena; Rotunno, Giada; Villeval, Jean-Luc; Vannucchi, Alessandro M

    2013-01-01

    Aberrant JAK2 signalling plays a central role in myeloproliferative neoplasms (MPN). JAK2 inhibitors have proven to be clinically efficacious, however, they are not mutation-specific and competent enough to suppress neoplastic clonal haematopoiesis. We hypothesized that, by simultaneously targeting multiple activated signalling pathways, MPN could be more effectively treated. To this end we investigated the efficacy of BEZ235, a dual PI3K/mTOR inhibitor, alone and in combination with the JAK1/JAK2 inhibitor ruxolitinib, in different preclinical models of MPN. Single-agent BEZ235 inhibited the proliferation and induced cell cycle arrest and apoptosis of mouse and human JAK2V617F mutated cell lines at concentrations significantly lower than those required to inhibit the wild-type counterpart, and preferentially prevented colony formation from JAK2V617F knock-in mice and patients' progenitor cells compared with normal ones. Co-treatment of BEZ235 and ruxolitinib produced significant synergism in all these in-vitro models. Co-treatment was also more effective than single drugs in reducing the extent of disease and prolonging survival of immunodeficient mice injected with JAK2V617F-mutated Ba/F3-EPOR cells and in reducing spleen size, decreasing reticulocyte count and improving spleen histopathology in conditional JAK2V617F knock-in mice. In conclusion, combined inhibition of PI3K/mTOR and JAK2 signalling may represent a novel therapeutic strategy in MPN. PMID:24237791

  17. Current trends in small molecule discovery targeting key cellular signaling events towards the combined management of diabetes and obesity

    PubMed Central

    Sangeetha, Kadapakkam Nandabalan; Sujatha, Sundaresan; Muthusamy, Velusamy Shanmuganathan; Anand, Singaravel; Shilpa, Kusampudi; kumari, Posa Jyothi; Sarathkumar, Baskaran; Thiyagarajan, Gopal; Lakshmi, Baddireddi Subhadra

    2017-01-01

    Non-insulin dependent diabetes mellitus, also known as Type 2 diabetes is a polygenic disorder leading to abnormalities in the carbohydrate and lipid metabolism. The major contributors in the pathophysiology of type 2 diabetes (T2D) include resistance to insulin action, β cell dysfunction, an abnormality in glucose metabolism and storage, visceral obesity and to some extent inflammation and oxidative stress. Insulin resistance, along with a defect in insulin secretion by the pancreatic β cells is instrumental towards progression to hyperglycemia. Increased incidence of obesity is also a major contributing factor in the escalating rates of type 2 diabetes. Drug discovery efforts are therefore crucially dependent on identifying individual molecular targets and validating their relevance to human disease. The current review discusses bioactive compounds from medicinal plants offering enhanced therapeutic potential for the combined patho-physiology of diabetes and obesity. We have demonstrated that 3β-taraxerol a pentacyclic triterpenoid (14-taraxeren-3-ol) isolated from the ethyl acetate extract of Mangifera indica, chlorogenic acid isolated from the methanol extract of Cichorium intybus, methyl tetracosanoate from the methanol extract of Costus pictus and vitalboside A derived from methanolic extract of Syzygium cumini exhibited significant effects on insulin stimulated glucose uptake causing insulin sensitizing effects on 3T3L1 adipocytes (an in vitro model mimicking adipocytes). Whereas, (3β)-stigmast-5-en-3-ol isolated from Adathoda vasica and Aloe emodin isolated from Cassia fistula showed significant insulin mimetic effects favoring glucose uptake in L6 myotubes (an in vitro model mimicking skeletal muscle cells). These extracts and molecules showed glucose uptake through activation of PI3K, an important insulin signaling intermediate. Interestingly, cinnamic acid isolated from the hydro-alcohol extract of Cinnamomum cassia was found to activate glucose

  18. Current trends in small molecule discovery targeting key cellular signaling events towards the combined management of diabetes and obesity.

    PubMed

    Sangeetha, Kadapakkam Nandabalan; Sujatha, Sundaresan; Muthusamy, Velusamy Shanmuganathan; Anand, Singaravel; Shilpa, Kusampudi; Kumari, Posa Jyothi; Sarathkumar, Baskaran; Thiyagarajan, Gopal; Lakshmi, Baddireddi Subhadra

    2017-01-01

    Non-insulin dependent diabetes mellitus, also known as Type 2 diabetes is a polygenic disorder leading to abnormalities in the carbohydrate and lipid metabolism. The major contributors in the pathophysiology of type 2 diabetes (T2D) include resistance to insulin action, β cell dysfunction, an abnormality in glucose metabolism and storage, visceral obesity and to some extent inflammation and oxidative stress. Insulin resistance, along with a defect in insulin secretion by the pancreatic β cells is instrumental towards progression to hyperglycemia. Increased incidence of obesity is also a major contributing factor in the escalating rates of type 2 diabetes. Drug discovery efforts are therefore crucially dependent on identifying individual molecular targets and validating their relevance to human disease. The current review discusses bioactive compounds from medicinal plants offering enhanced therapeutic potential for the combined patho-physiology of diabetes and obesity. We have demonstrated that 3β-taraxerol a pentacyclic triterpenoid (14-taraxeren-3-ol) isolated from the ethyl acetate extract of Mangifera indica, chlorogenic acid isolated from the methanol extract of Cichorium intybus, methyl tetracosanoate from the methanol extract of Costus pictus and vitalboside A derived from methanolic extract of Syzygium cumini exhibited significant effects on insulin stimulated glucose uptake causing insulin sensitizing effects on 3T3L1 adipocytes (an in vitro model mimicking adipocytes). Whereas, (3β)-stigmast-5-en-3-ol isolated from Adathoda vasica and Aloe emodin isolated from Cassia fistula showed significant insulin mimetic effects favoring glucose uptake in L6 myotubes (an in vitro model mimicking skeletal muscle cells). These extracts and molecules showed glucose uptake through activation of PI3K, an important insulin signaling intermediate. Interestingly, cinnamic acid isolated from the hydro-alcohol extract of Cinnamomum cassia was found to activate glucose

  19. Electrical signaling and photosynthesis: can they co-exist together?

    PubMed

    Pavlovič, Andrej; Mancuso, Stefano

    2011-06-01

    Mechanical irritation of trigger hairs and subsequent generation of action potentials have significant impact on photosynthesis and respiration in carnivorous Venus flytrap (Dionaea muscipula). Action potential-mediated inhibition of photosynthesis and stimulation of respiration is confined only to the trap and was not recorded in adjacent photosynthetic lamina. We showed that the main primary target of electrical signals on assimilation is in the dark enzymatic reaction of photosynthesis. Without doubt, the electrical signaling is costly, and the possible co-existence of such type of signals and photosynthesis in plant cell is discussed.

  20. Regulation of L-type CaV1.3 channel activity and insulin secretion by the cGMP-PKG signaling pathway

    PubMed Central

    Sandoval, Alejandro; Duran, Paz; Gandini, María A.; Andrade, Arturo; Almanza, Angélica; Kaja, Simon; Felix, Ricardo

    2018-01-01

    cGMP is a second messenger widely used in the nervous system and other tissues. One of the major effectors for cGMP is the serine/threonine protein kinase, cGMP-dependent protein kinase (PKG), which catalyzes the phosphorylation of a variety of proteins including ion channels. Previously, it has been shown that the cGMP-PKG signaling pathway inhibits Ca2+ currents in rat vestibular hair cells and chromaffin cells. This current allegedly flow through voltage-gated CaV1.3L-type Ca2+ channels, and is important for controlling vestibular hair cell sensory function and catecholamine secretion, respectively. Here, we show that native L-type channels in the insulin-secreting RIN-m5F cell line, and recombinant CaV1.3 channels heterologously expressed in HEK-293 cells, are regulatory targets of the cGMP-PKG signaling cascade. Our results indicate that the CaVα1 ion-conducting subunit of the CaV1.3 channels is highly expressed in RIN-m5F cells and that the application of 8-Br-cGMP, a membrane-permeable analogue of cGMP, significantly inhibits Ca2+ macroscopic currents and impair insulin release stimulated with high K+. In addition, KT-5823, a specific inhibitor of PKG, prevents the current inhibition generated by 8-Br-cGMP in the heterologous expression system. Interestingly, mutating the putative phosphorylation sites to residues resistant to phosphorylation showed that the relevant PKG sites for CaV1.3 L-type channel regulation centers on two amino acid residues, Ser793 and Ser860, located in the intracellular loop connecting the II and III repeats of the CaVα1 pore-forming subunit of the channel. These findings unveil a novel mechanism for how the cGMP-PKG signaling pathway may regulate CaV1.3 channels and contribute to regulate insulin secretion. PMID:28807144

  1. Signaling Molecules Governing Pluripotency and Early Lineage Commitments in Human Pluripotent Stem Cells

    PubMed Central

    Fathi, Ali; Eisa-Beygi, Shahram; Baharvand, Hossein

    2017-01-01

    Signaling in pluripotent stem cells is a complex and dynamic process involving multiple mediators, finely tuned to balancing pluripotency and differentiation states. Characterizing and modifying the necessary signaling pathways to attain desired cell types is required for stem-cell applications in various fields of regenerative medicine. These signals may help enhance the differentiation potential of pluripotent cells towards each of the embryonic lineages and enable us to achieve pure in vitro cultures of various cell types. This review provides a timely synthesis of recent advances into how maintenance of pluripotency in hPSCs is regulated by extrinsic cues, such as the fibroblast growth factor (FGF) and ACTIVIN signaling pathways, their interplay with other signaling pathways, namely, wingless- type MMTV integration site family (WNT) and mammalian target of rapamycin (mTOR), and the pathways governing the determination of multiple lineages. PMID:28670512

  2. Discovery of small molecule inhibitors of the Wnt/β-catenin signaling pathway by targeting β-catenin/Tcf4 interactions.

    PubMed

    Yan, Maocai; Li, Guanqun; An, Jing

    2017-06-01

    The Wnt/β-catenin signaling pathway typically shows aberrant activation in various cancer cells, especially colorectal cancer cells. This signaling pathway regulates the expression of a variety of tumor-related proteins, including c-myc and cyclin D1, and plays essential roles in tumorigenesis and in the development of many cancers. Small molecules that block the interactions between β-catenin and Tcf4, a downstream stage of activation of the Wnt/β-catenin signaling pathway, could efficiently cut off this signal transduction and thereby act as a novel class of anticancer drugs. This paper reviews the currently reported inhibitors that target β-catenin/Tcf4 interactions, focusing on the discovery approaches taken in the design of these inhibitors and their bioactivities. A brief perspective is then shared on the future discovery and development of this class of inhibitors. Impact statement This mini-review summarized the current knowledge of inhibitors of interactions of beta-catenin/Tcf4 published to date according to their discovery approaches, and discussed their in vitro and in vivo activities, selectivities, and pharmacokinetic properties. Several reviews presently available now in this field describe modulators of the Wnt/beta-catenin pathway, but are generally focused on the bioactivities of these inhibitors. By contrast, this review focused on the drug discovery approaches taken in identifying these types of inhibitors and provided our perspective on further strategies for future drug discoveries. This review also integrated many recently published and important works on highly selective inhibitors as well as rational drug design. We believe that the findings and strategies summarized in this review have broad implications and will be of interest throughout the biochemical and pharmaceutical research community.

  3. Molecular Pathways: Cachexia Signaling-A Targeted Approach to Cancer Treatment.

    PubMed

    Miyamoto, Yuji; Hanna, Diana L; Zhang, Wu; Baba, Hideo; Lenz, Heinz-Josef

    2016-08-15

    Cancer cachexia is a multifactorial syndrome characterized by an ongoing loss of skeletal muscle mass, which negatively affects quality of life and portends a poor prognosis. Numerous molecular substrates and mechanisms underlie the dysregulation of skeletal muscle synthesis and degradation observed in cancer cachexia, including proinflammatory cytokines (TNFα, IL1, and IL6), and the NF-κB, IGF1/AKT/mTOR, and myostatin/activin-SMAD pathways. Recent preclinical and clinical studies have demonstrated that anti-cachexia drugs (such as MABp1 and soluble receptor antagonist of myostatin/activin) not only prevent muscle wasting but also may prolong overall survival. In this review, we focus on the significance of cachexia signaling in patients with cancer and highlight promising drugs targeting tumor cachexia in clinical development. Clin Cancer Res; 22(16); 3999-4004. ©2016 AACR. ©2016 American Association for Cancer Research.

  4. Targeting cancer stem cells and signaling pathways by phytochemicals: Novel approach for breast cancer therapy

    PubMed Central

    Dandawate, Prasad R.; Subramaniam, Dharmalingam; Jensen, Roy A.; Anant, Shrikant

    2017-01-01

    Breast cancer is the most common form of cancer diagnosed in women worldwide and the second leading cause of cancer-related deaths in the USA. Despite the development of newer diagnostic methods, selective as well as targeted chemotherapies and their combinations, surgery, hormonal therapy, radiotherapy, breast cancer recurrence, metastasis and drug resistance are still the major problems for breast cancer. Emerging evidence suggest the existence of cancer stem cells (CSCs), a population of cells with the capacity to self-renew, differentiate and be capable of initiating and sustaining tumor growth. In addition, CSCs are believed to be responsible for cancer recurrence, anticancer drug resistance, and metastasis. Hence, compounds targeting breast CSCs may be better therapeutic agents for treating breast cancer and control recurrence and metastasis. Naturally occurring compounds, mainly phytochemicals have gained immense attention in recent times because of their wide safety profile, ability to target heterogeneous populations of cancer cells as well as CSCs, and their key signaling pathways. Therefore, in the present review article, we summarize our current understanding of breast CSCs and their signaling pathways, and the phytochemicals that affect these cells including curcumin, resveratrol, tea polyphenols (epigallocatechin-3-gallate, epigallocatechin), sulforaphane, genistein, indole-3-carbinol, 3, 3′-di-indolylmethane, vitamin E, retinoic acid, quercetin, parthenolide, triptolide, 6-shogaol, pterostilbene, isoliquiritigenin, celastrol, and koenimbin. These phytochemicals may serve as novel therapeutic agents for breast cancer treatment and future leads for drug development. PMID:27609747

  5. Targeting cancer stem cells and signaling pathways by phytochemicals: Novel approach for breast cancer therapy.

    PubMed

    Dandawate, Prasad R; Subramaniam, Dharmalingam; Jensen, Roy A; Anant, Shrikant

    2016-10-01

    Breast cancer is the most common form of cancer diagnosed in women worldwide and the second leading cause of cancer-related deaths in the USA. Despite the development of newer diagnostic methods, selective as well as targeted chemotherapies and their combinations, surgery, hormonal therapy, radiotherapy, breast cancer recurrence, metastasis and drug resistance are still the major problems for breast cancer. Emerging evidence suggest the existence of cancer stem cells (CSCs), a population of cells with the capacity to self-renew, differentiate and be capable of initiating and sustaining tumor growth. In addition, CSCs are believed to be responsible for cancer recurrence, anticancer drug resistance, and metastasis. Hence, compounds targeting breast CSCs may be better therapeutic agents for treating breast cancer and control recurrence and metastasis. Naturally occurring compounds, mainly phytochemicals have gained immense attention in recent times because of their wide safety profile, ability to target heterogeneous populations of cancer cells as well as CSCs, and their key signaling pathways. Therefore, in the present review article, we summarize our current understanding of breast CSCs and their signaling pathways, and the phytochemicals that affect these cells including curcumin, resveratrol, tea polyphenols (epigallocatechin-3-gallate, epigallocatechin), sulforaphane, genistein, indole-3-carbinol, 3, 3'-di-indolylmethane, vitamin E, retinoic acid, quercetin, parthenolide, triptolide, 6-shogaol, pterostilbene, isoliquiritigenin, celastrol, and koenimbin. These phytochemicals may serve as novel therapeutic agents for breast cancer treatment and future leads for drug development. Copyright © 2016. Published by Elsevier Ltd.

  6. TBK1-targeted suppression of TRIF-dependent signaling pathway of Toll-like receptors by 6-shogaol, an active component of ginger.

    PubMed

    Park, Se-Jeong; Lee, Mi-Young; Son, Bu-Soon; Youn, Hyung-Sun

    2009-07-01

    Toll-like receptors (TLRs) are primary sensors that detect a wide variety of microbial components involving induction of innate immune responses. After recognition of microbial components, TLRs trigger the activation of myeloid differential factor 88 (MyD88) and Toll-interleukin-1 (IL-1) receptor domain-containing adapter inducing interferon-beta (TRIF)-dependent downstream signaling pathways. 6-Shoagol, an active ingredient of ginger, inhibits the MyD88-dependent signaling pathway by inhibiting inhibitor-kappaB kinase activity. Inhibitor-kappaB kinase is a key kinase in nuclear factor kappaB (NF-kappaB) activation. However, it is not known whether 6-shogaol inhibits the TRIF-dependent signaling pathway. Our goal was to identify the molecular target of 6-shogaol in the TRIF-dependent pathway of TLRs. 6-Shogaol inhibited the activation of interferon-regulatory factor 3 (IRF3) induced by lipopolysaccharide (LPS) and by polyriboinosinic polyribocytidylic acid (poly[I:C]), overexpression of TRIF, TANK-binding kinase1 (TBK1), and IRF3. Furthermore, 6-shogaol inhibited TBK1 activity in vitro. Together, these results suggest that 6-shogaol inhibits the TRIF-dependent signaling pathway of TLRs by targeting TBK1, and, they imply that 6-shogaol can modulate TLR-derived immune/inflammatory target gene expression induced by microbial infection.

  7. Hippo signaling pathway in liver and pancreas: the potential drug target for tumor therapy.

    PubMed

    Kong, Delin; Zhao, Yicheng; Men, Tong; Teng, Chun-Bo

    2015-02-01

    Cell behaviors, including proliferation, differentiation and apoptosis, are intricately controlled during organ development and tissue regeneration. In the past 9 years, the Hippo signaling pathway has been delineated to play critical roles in organ size control, tissue regeneration and tumorigenesis through regulating cell behaviors. In mammals, the core modules of the Hippo signaling pathway include the MST1/2-LATS1/2 kinase cascade and the transcriptional co-activators YAP/TAZ. The activity of YAP/TAZ is suppressed by cytoplasmic retention due to phosphorylation in the canonical MST1/2-LATS1/2 kinase cascade-dependent manner or the non-canonical MST1/2- and/or LATS1/2-independent manner. Hippo signaling pathway, which can be activated or inactivated by cell polarity, contact inhibition, mechanical stretch and extracellular factors, has been demonstrated to be involved in development and tumorigenesis of liver and pancreas. In addition, we have summarized several small molecules currently available that can target Hippo-YAP pathway for potential treatment of hepatic and pancreatic cancers, providing clues for other YAP initiated cancers therapy as well.

  8. Palmitoylation targets AKAP79 protein to lipid rafts and promotes its regulation of calcium-sensitive adenylyl cyclase type 8.

    PubMed

    Delint-Ramirez, Ilse; Willoughby, Debbie; Hammond, Gerald R V; Hammond, Gerald V R; Ayling, Laura J; Cooper, Dermot M F

    2011-09-23

    PKA anchoring proteins (AKAPs) optimize the efficiency of cAMP signaling by clustering interacting partners. Recently, AKAP79 has been reported to directly bind to adenylyl cyclase type 8 (AC8) and to regulate its responsiveness to store-operated Ca(2+) entry (SOCE). Although AKAP79 is well targeted to the plasma membrane via phospholipid associations with three N-terminal polybasic regions, recent studies suggest that AKAP79 also has the potential to be palmitoylated, which may specifically allow it to target the lipid rafts where AC8 resides and is regulated by SOCE. In this study, we have addressed the role of palmitoylation of AKAP79 using a combination of pharmacological, mutagenesis, and cell biological approaches. We reveal that AKAP79 is palmitoylated via two cysteines in its N-terminal region. This palmitoylation plays a key role in targeting the AKAP to lipid rafts in HEK-293 cells. Mutation of the two critical cysteines results in exclusion of AKAP79 from lipid rafts and alterations in its membrane diffusion behavior. This is accompanied by a loss of the ability of AKAP79 to regulate SOCE-dependent AC8 activity in intact cells and decreased PKA-dependent phosphorylation of raft proteins, including AC8. We conclude that palmitoylation plays a key role in the targeting and action of AKAP79. This novel property of AKAP79 adds an unexpected regulatory and targeting option for AKAPs, which may be exploited in the cellular context.

  9. Binding of human immunodeficiency virus type 1 gp120 to CXCR4 induces mitochondrial transmembrane depolarization and cytochrome c-mediated apoptosis independently of Fas signaling.

    PubMed

    Roggero, R; Robert-Hebmann, V; Harrington, S; Roland, J; Vergne, L; Jaleco, S; Devaux, C; Biard-Piechaczyk, M

    2001-08-01

    Apoptosis of CD4(+) T lymphocytes, induced by contact between human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (gp120) and its receptors, could contribute to the cell depletion observed in HIV-infected individuals. CXCR4 appears to play an important role in gp120-induced cell death, but the mechanisms involved in this apoptotic process remain poorly understood. To get insight into the signal transduction pathways connecting CXCR4 to apoptosis following gp120 binding, we used different cell lines expressing wild-type CXCR4 and a truncated form of CD4 that binds gp120 but lacks the ability to transduce signals. The present study demonstrates that (i) the interaction of cell-associated gp120 with CXCR4-expressing target cells triggers a rapid dissipation of the mitochondrial transmembrane potential resulting in the cytosolic release of cytochrome c from the mitochondria to cytosol, concurrent with activation of caspase-9 and -3; (ii) this apoptotic process is independent of Fas signaling; and (iii) cooperation with a CD4 signal is not required. In addition, following coculture with cells expressing gp120, a Fas-independent apoptosis involving mitochondria and caspase activation is also observed in primary umbilical cord blood CD4(+) T lymphocytes expressing high levels of CXCR4. Thus, this gp120-mediated apoptotic pathway may contribute to CD4(+) T-cell depletion in AIDS.

  10. Binding of Human Immunodeficiency Virus Type 1 gp120 to CXCR4 Induces Mitochondrial Transmembrane Depolarization and Cytochrome c-Mediated Apoptosis Independently of Fas Signaling

    PubMed Central

    Roggero, Rodolphe; Robert-Hebmann, Véronique; Harrington, Steve; Roland, Joachim; Vergne, Laurence; Jaleco, Sara; Devaux, Christian; Biard-Piechaczyk, Martine

    2001-01-01

    Apoptosis of CD4+ T lymphocytes, induced by contact between human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (gp120) and its receptors, could contribute to the cell depletion observed in HIV-infected individuals. CXCR4 appears to play an important role in gp120-induced cell death, but the mechanisms involved in this apoptotic process remain poorly understood. To get insight into the signal transduction pathways connecting CXCR4 to apoptosis following gp120 binding, we used different cell lines expressing wild-type CXCR4 and a truncated form of CD4 that binds gp120 but lacks the ability to transduce signals. The present study demonstrates that (i) the interaction of cell-associated gp120 with CXCR4-expressing target cells triggers a rapid dissipation of the mitochondrial transmembrane potential resulting in the cytosolic release of cytochrome c from the mitochondria to cytosol, concurrent with activation of caspase-9 and -3; (ii) this apoptotic process is independent of Fas signaling; and (iii) cooperation with a CD4 signal is not required. In addition, following coculture with cells expressing gp120, a Fas-independent apoptosis involving mitochondria and caspase activation is also observed in primary umbilical cord blood CD4+ T lymphocytes expressing high levels of CXCR4. Thus, this gp120-mediated apoptotic pathway may contribute to CD4+ T-cell depletion in AIDS. PMID:11462036

  11. Caveolae-localized L-type Ca2+ channels do not contribute to function or hypertrophic signalling in the mouse heart.

    PubMed

    Correll, Robert N; Makarewich, Catherine A; Zhang, Hongyu; Zhang, Chen; Sargent, Michelle A; York, Allen J; Berretta, Remus M; Chen, Xiongwen; Houser, Steven R; Molkentin, Jeffery D

    2017-06-01

    L-type Ca2+ channels (LTCCs) in adult cardiomyocytes are localized to t-tubules where they initiate excitation-contraction coupling. Our recent work has shown that a subpopulation of LTCCs found at the surface sarcolemma in caveolae of adult feline cardiomyocytes can also generate a Ca2+ microdomain that activates nuclear factor of activated T-cells signaling and cardiac hypertrophy, although the relevance of this paradigm to hypertrophy regulation in vivo has not been examined. Here we generated heart-specific transgenic mice with a putative caveolae-targeted LTCC activator protein that was ineffective in initiating or enhancing cardiac hypertrophy in vivo. We also generated transgenic mice with cardiac-specific overexpression of a putative caveolae-targeted inhibitor of LTCCs, and while this protein inhibited caveolae-localized LTCCs without effects on global Ca2+ handling, it similarly had no effect on cardiac hypertrophy in vivo. Cardiac hypertrophy was elicited by pressure overload for 2 or 12 weeks or with neurohumoral agonist infusion. Caveolae-specific LTCC activator or inhibitor transgenic mice showed no greater change in nuclear factor of activated T-cells activity after 2 weeks of pressure overload stimulation compared with control mice. Our results indicate that LTCCs in the caveolae microdomain do not affect cardiac function and are not necessary for the regulation of hypertrophic signaling in the adult mouse heart. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2017. For permissions, please email: journals.permissions@oup.com.

  12. Is the canonical RAF-MEK-ERK signaling pathway a therapeutic target in SCLC?

    PubMed Central

    Cristea, Sandra; Sage, Julien

    2017-01-01

    The activity of the RAF-MEK-ERK signaling pathway is critical for the proliferation of normal and cancerous cells. Oncogenic mutations driving the development of lung adenocarcinoma often activate this signaling pathway. In contrast, pathway activity levels and their biological roles are not well established in small cell lung cancer (SCLC), a fast-growing neuroendocrine lung cancer subtype. Here we discuss the function of the RAF-MEK-ERK kinase pathway and the mechanisms leading to its activation in SCLC cells. In particular, we argue that activation of this pathway may be beneficial to the survival, proliferation and spread of SCLC cells in response to multiple stimuli. We also consider evidence that high levels of RAF-MEK-ERK pathway activity may be detrimental to SCLC tumors, including in part by interfering with their neuroendocrine fate. Based on these observations, we examine when small molecules targeting kinases in the RAF-MEK-ERK pathway may be useful therapeutically in SCLC patients, including in combination with other therapeutic agents. PMID:27133774

  13. “mTOR Signaling Pathway”: A Potential Target of Curcumin in the Treatment of Spinal Cord Injury

    PubMed Central

    Lin, Jingquan; Huo, Xue

    2017-01-01

    The purpose of this review is to discuss the possibility of the treatment of spinal cord injury (SCI) with curcumin via regulating the mTOR signaling pathway, which may provide another strong support for curcumin to be a promising medicine applied to the treatment of SCI. Curcumin is termed as a multifunctional targeting therapy drug that regulates the mTOR signaling pathway in the treatment of numerous diseases. Previous research has already revealed that mTOR signaling pathway plays a vital role in prognosis, which involves the axon regeneration and autophagy. This review discusses a potential mechanism that curcumin suppresses the activation of this pathway and ameliorates the microenvironment of axons regeneration which would provide a new way that induces autophagy appropriately. PMID:28691015

  14. Smurf2 negatively modulates RIG-I-dependent antiviral response by targeting VISA/MAVS for ubiquitination and degradation.

    PubMed

    Pan, Yu; Li, Rui; Meng, Jun-Ling; Mao, He-Ting; Zhang, Yu; Zhang, Jun

    2014-05-15

    VISA (also known as MAVS, Cardif, IPS-1) is the essential adaptor protein for virus-induced activation of IFN regulatory factors 3 and 7 and production of type I IFNs. Understanding the regulatory mechanisms for VISA will provide detailed insights into the positive or negative regulation of innate immune responses. In this study, we identified Smad ubiquitin regulatory factor (Smurf) 2, one of the Smad ubiquitin regulator factor proteins, as an important negative regulator of virus-triggered type I IFN signaling, which targets at the VISA level. Overexpression of Smurf2 inhibits virus-induced IFN-β and IFN-stimulated response element activation. The E3 ligase defective mutant Smurf2/C716A loses the ability to suppress virus-induced type I IFN signaling, suggesting that the negative regulation is dependent on the ubiquitin E3 ligase activity of Smurf2. Further studies demonstrated that Smurf2 interacted with VISA and targeted VISA for K48-linked ubiquitination, which promoted the degradation of VISA. Consistently, knockout or knockdown of Smurf2 expression therefore promoted antiviral signaling, which was correlated with the increase in protein stability of VISA. Our findings suggest that Smurf2 is an important nonredundant negative regulator of virus-triggered type I IFN signaling by targeting VISA for K48-linked ubiquitination and degradation.

  15. Targeting signal transduction in pancreatic cancer treatment.

    PubMed

    Yeh, Jen Jen; Der, Channing J

    2007-05-01

    Pancreatic cancer is a lethal disease with a 5-year survival rate of 4%. The only opportunity for improved survival continues to be complete surgical resection for those with localized disease. Although chemotherapeutic options are limited for the few patients with resectable disease, this problem is even more magnified in the majority (85%) of patients with unresectable or metastastic disease. Therefore, there is an urgent need for improved therapeutic options. The recent success of inhibitors of signal transduction for the treatment of other cancers supports the need to identify and validate aberrant signaling pathways important for pancreatic tumor growth. This review focuses on the validation of specific signaling networks and the present status of inhibitors of these pathways as therapeutic approaches for pancreatic cancer treatment.

  16. Frequent Deregulations in the Hedgehog Signaling Network and Cross-Talks with the Epidermal Growth Factor Receptor Pathway Involved in Cancer Progression and Targeted Therapies

    PubMed Central

    Mimeault, Murielle

    2010-01-01

    The hedgehog (Hh)/glioma-associated oncogene (GLI) signaling network is among the most important and fascinating signal transduction systems that provide critical functions in the regulation of many developmental and physiological processes. The coordinated spatiotemporal interplay of the Hh ligands and other growth factors is necessary for the stringent control of the behavior of diverse types of tissue-resident stem/progenitor cells and their progenies. The activation of the Hh cascade might promote the tissue regeneration and repair after severe injury in numerous organs, insulin production in pancreatic β-cells, and neovascularization. Consequently, the stimulation of the Hh pathway constitutes a potential therapeutic strategy to treat diverse human disorders, including severe tissue injuries; diabetes mellitus; and brain, skin, and cardiovascular disorders. In counterbalance, a deregulation of the Hh signaling network might lead to major tissular disorders and the development of a wide variety of aggressive and metastatic cancers. The target gene products induced through the persistent Hh activation can contribute to the self-renewal, survival, migration, and metastasis of cancer stem/progenitor cells and their progenies. Moreover, the pivotal role mediated through the Hh/GLI cascade during cancer progression also implicates the cooperation with other oncogenic products, such as mutated K-RAS and complex cross-talk with different growth factor pathways, including tyrosine kinase receptors, such as epidermal growth factor receptor (EGFR), Wnt/β-catenin, and transforming growth factor-β (TGF-β)/TGF-β receptors. Therefore, the molecular targeting of distinct deregulated gene products, including Hh and EGFR signaling components and other signaling elements that are frequently deregulated in highly tumorigenic cancer-initiating cells and their progenies, might constitute a potential therapeutic strategy to eradicate the total cancer cell mass. Of clinical

  17. Functional profiling of receptor tyrosine kinases and downstream signaling in human chondrosarcomas identifies pathways for rational targeted therapy.

    PubMed

    Zhang, Yi-Xiang; van Oosterwijk, Jolieke G; Sicinska, Ewa; Moss, Samuel; Remillard, Stephen P; van Wezel, Tom; Bühnemann, Claudia; Hassan, Andrew B; Demetri, George D; Bovée, Judith V M G; Wagner, Andrew J

    2013-07-15

    Chondrosarcomas are notoriously resistant to cytotoxic chemotherapeutic agents. We sought to identify critical signaling pathways that contribute to their survival and proliferation, and which may provide potential targets for rational therapeutic interventions. Activation of receptor tyrosine kinases (RTK) was surveyed using phospho-RTK arrays. S6 phosphorylation and NRAS mutational status were examined in chondrosarcoma primary tumor tissues. siRNA or small-molecule inhibitors against RTKs or downstream signaling proteins were applied to chondrosarcoma cells and changes in biochemical signaling, cell cycle, and cell viability were determined. In vivo antitumor activity of BEZ235, a phosphoinositide 3-kinase (PI3K)/mTOR inhibitor, was evaluated in a chondrosarcoma xenograft model. Several RTKs were identified as critical mediators of cell growth, but the RTK dependencies varied among cell lines. In exploration of downstream signaling pathways, strong S6 phosphorylation was found in 69% of conventional chondrosarcomas and 44% of dedifferentiated chondrosarcomas. Treatment with BEZ235 resulted in dramatic reduction in the growth of all chondrosarcoma cell lines. Tumor growth was similarly inhibited in a xenograft model of chondrosarcoma. In addition, chondrosarcoma cells with an NRAS mutation were sensitive to treatment with a mitogen-activated protein kinase/extracellular signal-regulated kinase kinase (MEK) inhibitor. Functional NRAS mutations were found in 12% of conventional central chondrosarcomas. RTKs are commonly activated in chondrosarcoma, but because of their considerable heterogeneity, targeted inhibition of the PI3K/mTOR pathway represents a rational therapeutic strategy. Chondrosarcomas with NRAS mutations may benefit from treatment with MEK inhibitors.

  18. Target of Rapamycin Is a Key Player for Auxin Signaling Transduction in Arabidopsis

    PubMed Central

    Deng, Kexuan; Yu, Lihua; Zheng, Xianzhe; Zhang, Kang; Wang, Wanjing; Dong, Pan; Zhang, Jiankui; Ren, Maozhi

    2016-01-01

    Target of rapamycin (TOR), a master sensor for growth factors and nutrition availability in eukaryotic species, is a specific target protein of rapamycin. Rapamycin inhibits TOR kinase activity viaFK506 binding protein 12 kDa (FKBP12) in all examined heterotrophic eukaryotic organisms. In Arabidopsis, several independent studies have shown that AtFKBP12 is non-functional under aerobic condition, but one study suggests that AtFKBP12 is functional during anaerobic growth. However, the functions of AtFKBP12 have never been examined in parallel under aerobic and anaerobic growth conditions so far. To this end, we cloned the FKBP12 gene of humans, yeast, and Arabidopsis, respectively. Transgenic plants were generated, and pharmacological examinations were performed in parallel with Arabidopsis under aerobic and anaerobic conditions. ScFKBP12 conferred plants with the strongest sensitivity to rapamycin, followed by HsFKBP12, whereas AtFKBP12 failed to generate rapamycin sensitivity under aerobic condition. Upon submergence, yeast and human FKBP12 can significantly block cotyledon greening while Arabidopsis FKBP12 only retards plant growth in the presence of rapamycin, suggesting that hypoxia stress could partially restore the functions of AtFKBP12 to bridge the interaction between rapamycin and TOR. To further determine if communication between TOR and auxin signaling exists in plants, yeast FKBP12 was introduced into DR5::GUS homozygous plants. The transgenic plants DR5/BP12 were then treated with rapamycin or KU63794 (a new inhibitor of TOR). GUS staining showed that the auxin content of root tips decreased compared to the control. DR5/BP12 plants lost sensitivity to auxin after treatment with rapamycin. Auxin-defective phenotypes, including short primary roots, fewer lateral roots, and loss of gravitropism, occurred in DR5/BP12 plants when seedlings were treated with rapamycin+KU63794. This indicated that the combination of rapamycin and KU63794 can significantly

  19. Targeting loss of the Hippo signaling pathway in NF2-deficient papillary kidney cancers

    PubMed Central

    Ricketts, Christopher J.; Wei, Darmood; Yang, Youfeng; Baranes, Sarah M.; Gibbs, Benjamin K.; Ohanjanian, Lernik; Spencer Krane, L.; Scroggins, Bradley T.; Keith Killian, J.; Wei, Ming-Hui; Kijima, Toshiki; Meltzer, Paul S.; Citrin, Deborah E.; Neckers, Len; Vocke, Cathy D.; Marston Linehan, W.

    2018-01-01

    Papillary renal cell carcinomas (PRCC) are a histologically and genetically heterogeneous group of tumors that represent 15–20% of all kidney neoplasms and may require diverse therapeutic approaches. Alteration of the NF2 tumor suppressor gene, encoding a key regulator of the Hippo signaling pathway, is observed in 22.5% of PRCC. The Hippo signaling pathway controls cell proliferation by regulating the transcriptional activity of Yes-Associated Protein, YAP1. Loss of NF2 results in aberrant YAP1 activation. The Src family kinase member Yes also regulates YAP1 transcriptional activity. This study investigated the importance of YAP and Yes activity in three NF2-deficient PRCC cell lines. NF2-deficency correlated with increased expression of YAP1 transcriptional targets and siRNA-based knockdown of YAP1 and Yes1 downregulated this pathway and dramatically reduced cell viability. Dasatinib and saracatinib have potent inhibitory effects on Yes and treatment with either resulted in downregulation of YAP1 transcription targets, reduced cell viability, and G0-G1 cell cycle arrest. Xenograft models for NF2-deficient PRCC also demonstrated reduced tumor growth in response to dasatinib. Thus, inhibiting Yes and the subsequent transcriptional activity of YAP1 had a substantial anti-tumor cell effect both in vitro and in vivo and may provide a viable therapeutic approach for patients with NF2-deficient PRCC. PMID:29535838

  20. Engineering multivalent antibodies to target heregulin-induced HER3 signaling in breast cancer cells

    PubMed Central

    Kang, Jeffrey C; Poovassery, Jayakumar S; Bansal, Pankaj; You, Sungyong; Manjarres, Isabel M; Ober, Raimund J; Ward, E Sally

    2014-01-01

    The use of antibodies in therapy and diagnosis has undergone an unprecedented expansion during the past two decades. This is due in part to innovations in antibody engineering that now offer opportunities for the production of “second generation” antibodies with multiple specificities or altered valencies. The targeting of individual components of the human epidermal growth factor receptor (HER)3-PI3K signaling axis, including the preferred heterodimerization partner HER2, is known to have limited anti-tumor effects. The efficacy of antibodies or small molecule tyrosine kinase inhibitors (TKIs) in targeting this axis is further reduced by the presence of the HER3 ligand, heregulin. To address these shortcomings, we performed a comparative analysis of two distinct approaches toward reducing the proliferation and signaling in HER2 overexpressing tumor cells in the presence of heregulin. These strategies both involve the use of engineered antibodies in combination with the epidermal growth factor receptor (EGFR)/HER2 specific TKI, lapatinib. In the first approach, we generated a bispecific anti-HER2/HER3 antibody that, in the presence of lapatinib, is designed to sequester HER3 into inactive HER2-HER3 dimers that restrain HER3 interactions with other possible dimerization partners. The second approach involves the use of a tetravalent anti-HER3 antibody with the goal of inducing efficient HER3 internalization and degradation. In combination with lapatinib, we demonstrate that although the multivalent HER3 antibody is more effective than its bivalent counterpart in reducing heregulin-mediated signaling and growth, the bispecific HER2/HER3 antibody has increased inhibitory activity. Collectively, these observations provide support for the therapeutic use of bispecifics in combination with TKIs to recruit HER3 into complexes that are functionally inert. PMID:24492289

  1. Individualized glycaemic targets and pharmacotherapy in type 2 diabetes.

    PubMed

    Bailey, Clifford J; Aschner, Pablo; Del Prato, Stefano; LaSalle, James; Ji, Linong; Matthaei, Stephan

    2013-09-01

    The Global Partnership for Effective Diabetes Management, established to provide practical guidance to improve patient outcomes in diabetes, has developed and modified recommendations to improve glycaemic control in type 2 diabetes. The Global Partnership advocates an individualized therapeutic approach and, as part of the process to customize therapy, has previously identified specific type 2 diabetes patient subgroups that require special consideration. This article builds on earlier publications, expanding the scope of practical guidance to include newly diagnosed individuals with complications and women with diabetes in pregnancy. Good glycaemic control remains the cornerstone of managing type 2 diabetes, and plays a vital role in preventing or delaying the onset and progression of diabetic complications. Individualizing therapeutic goals and treatments to meet glycaemic targets safely and without delay remains paramount, in addition to a wider programme of care to reduce cardiovascular risk factors and improve patient outcomes.

  2. Biased Type 1 Cannabinoid Receptor Signaling Influences Neuronal Viability in a Cell Culture Model of Huntington Disease.

    PubMed

    Laprairie, Robert B; Bagher, Amina M; Kelly, Melanie E M; Denovan-Wright, Eileen M

    2016-03-01

    Huntington disease (HD) is an inherited, autosomal dominant, neurodegenerative disorder with limited treatment options. Prior to motor symptom onset or neuronal cell loss in HD, levels of the type 1 cannabinoid receptor (CB1) decrease in the basal ganglia. Decreasing CB1 levels are strongly correlated with chorea and cognitive deficit. CB1 agonists are functionally selective (biased) for divergent signaling pathways. In this study, six cannabinoids were tested for signaling bias in in vitro models of medium spiny projection neurons expressing wild-type (STHdh(Q7/Q7)) or mutant huntingtin protein (STHdh(Q111/Q111)). Signaling bias was assessed using the Black and Leff operational model. Relative activity [ΔlogR (τ/KA)] and system bias (ΔΔlogR) were calculated relative to the reference compound WIN55,212-2 for Gαi/o, Gαs, Gαq, Gβγ, and β-arrestin1 signaling following treatment with 2-arachidonoylglycerol (2-AG), anandamide (AEA), CP55,940, Δ(9)-tetrahydrocannabinol (THC), cannabidiol (CBD), and THC+CBD (1:1), and compared between wild-type and HD cells. The Emax of Gαi/o-dependent extracellular signal-regulated kinase (ERK) signaling was 50% lower in HD cells compared with wild-type cells. 2-AG and AEA displayed Gαi/o/Gβγ bias and normalized CB1 protein levels and improved cell viability, whereas CP55,940 and THC displayed β-arrestin1 bias and reduced CB1 protein levels and cell viability in HD cells. CBD was not a CB1 agonist but inhibited THC-dependent signaling (THC+CBD). Therefore, enhancing Gαi/o-biased endocannabinoid signaling may be therapeutically beneficial in HD. In contrast, cannabinoids that are β-arrestin-biased--such as THC found at high levels in modern varieties of marijuana--may be detrimental to CB1 signaling, particularly in HD where CB1 levels are already reduced. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  3. Type I/II cytokines, JAKs, and new strategies for treating autoimmune diseases

    PubMed Central

    Schwartz, Daniella M.; Bonelli, Michael; Gadina, Massimo; O’Shea, John J.

    2015-01-01

    Cytokines are major drivers of autoimmunity, and biologic agents targeting cytokines have revolutionized the treatment of immune-mediated diseases. Despite the effectiveness of these drugs, they do not induce complete remission in all patients, prompting the development of alternative strategies—including targeting of intracellular signal transduction pathways downstream of cytokines. Many cytokines that bind type I and type II cytokine receptors are critical regulators of immune-mediated diseases and employ the Janus kinase (JAK) and signal transducer and activator of transcription (STAT) pathway to exert their effect. Pharmacological inhibition of JAKs block the actions of type I/II cytokines, and within the past 3 years therapeutic JAK inhibitors, or Jakinibs, have become available to rheumatologists. Jakinibs have proven effective for the treatment of rheumatoid arthritis and other inflammatory diseases. Adverse effects of these agents are largely related to their mode of action and include infections and hyperlipidemia. Jakinibs are currently being investigated for a number of new indications, and second-generation selective Jakinibs are being developed and tested. Targeting STATs could be a future avenue for the treatment of rheumatic diseases, although substantial challenges remain. Nonetheless, the ability to therapeutically target intracellular signalling pathways has already created a new paradigm for the treatment of rheumatologic disease. PMID:26633291

  4. Photoelectrochemical DNA Biosensor Based on Dual-Signal Amplification Strategy Integrating Inorganic-Organic Nanocomposites Sensitization with λ-Exonuclease-Assisted Target Recycling.

    PubMed

    Shi, Xiao-Mei; Fan, Gao-Chao; Shen, Qingming; Zhu, Jun-Jie

    2016-12-28

    Sensitive and accurate analysis of DNA is crucial to better understanding of DNA functions and early diagnosis of fatal disease. Herein, an enhanced photoelectrochemical (PEC) DNA biosensor was proposed based on dual-signal amplification via coupling inorganic-organic nanocomposites sensitization with λ-exonuclease (λ-Exo)-assisted target recycling. The short DNA sequence about chronic myelogenous leukemia (CML, type b3a2) was selected as target DNA (tDNA). ZnO nanoplates were deposited with CdS nanocrystals to form ZnO/CdS hetero-nanostructure, and it was used as PEC substrate for immobilizing hairpin DNA (hDNA). CdTe quantum dots (QDs) covalently linked with meso-tetra(4-carboxyphenyl)porphine (TCPP) to form CdTe/TCPP inorganic-organic nanocomposites, which were utilized as sensitization agents labeling at the terminal of probe DNA (pDNA). When the hDNA-modified sensing electrode was incubated with tDNA and λ-Exo, hDNA hybridized with tDNA, and meanwhile it could be recognized and cleaved by λ-Exo, resulting in the release of tDNA. The rest of nonhybridized hDNA would continuously hybridize with the released tDNA, cleave by λ-Exo, and set free the tDNA again. After λ-Exo-assisted tDNA recycling, more amounts of short DNA (sDNA) fragments coming from digestion of hDNA produced on the electrode and hybridized with CdTe/TCPP-labeled pDNA (pDNA-CdTe/TCPP conjugates). In this case, the sensitization of CdTe/TCPP inorganic-organic nanocomposites occurred, which evidently extend the absorption range and strengthened the absorption intensity of light energy, and accordingly the photocurrent signal significantly promoted. Through introducing the dual-signal amplification tactics, the developed PEC assay allowed a low calculated detection limit of 25.6 aM with a wide detection scope from 0.1 fM to 5 pM for sensitive and selective determination of tDNA.

  5. Novel multi-targeted ErbB family inhibitor afatinib blocks EGF-induced signaling and induces apoptosis in neuroblastoma.

    PubMed

    Mao, Xinfang; Chen, Zhenghu; Zhao, Yanling; Yu, Yang; Guan, Shan; Woodfield, Sarah E; Vasudevan, Sanjeev A; Tao, Ling; Pang, Jonathan C; Lu, Jiaxiong; Zhang, Huiyuan; Zhang, Fuchun; Yang, Jianhua

    2017-01-03

    Neuroblastoma is the most common extracranial solid tumor in children. The ErbB family of proteins is a group of receptor tyrosine kinases that promote the progression of various malignant cancers including neuroblastoma. Thus, targeting them with small molecule inhibitors is a promising strategy for neuroblastoma therapy. In this study, we investigated the anti-tumor effect of afatinib, an irreversible inhibitor of members of the ErbB family, on neuroblastoma. We found that afatinib suppressed the proliferation and colony formation ability of neuroblastoma cell lines in a dose-dependent manner. Afatinib also induced apoptosis and blocked EGF-induced activation of PI3K/AKT/mTOR signaling in all neuroblastoma cell lines tested. In addition, afatinib enhanced doxorubicin-induced cytotoxicity in neuroblastoma cells, including the chemoresistant LA-N-6 cell line. Finally, afatinib exhibited antitumor efficacy in vivo by inducing apoptosis in an orthotopic xenograft neuroblastoma mouse model. Taken together, these results show that afatinib inhibits neuroblastoma growth both in vitro and in vivo by suppressing EGFR-mediated PI3K/AKT/mTOR signaling. Our study supports the idea that EGFR is a potential therapeutic target in neuroblastoma. And targeting ErbB family protein kinases with small molecule inhibitors like afatinib alone or in combination with doxorubicin is a viable option for treating neuroblastoma.

  6. Canonical and non-canonical WNT signaling in cancer stem cells and their niches: Cellular heterogeneity, omics reprogramming, targeted therapy and tumor plasticity (Review).

    PubMed

    Katoh, Masaru

    2017-11-01

    Cancer stem cells (CSCs), which have the potential for self-renewal, differentiation and de-differentiation, undergo epigenetic, epithelial-mesenchymal, immunological and metabolic reprogramming to adapt to the tumor microenvironment and survive host defense or therapeutic insults. Intra-tumor heterogeneity and cancer-cell plasticity give rise to therapeutic resistance and recurrence through clonal replacement and reactivation of dormant CSCs, respectively. WNT signaling cascades cross-talk with the FGF, Notch, Hedgehog and TGFβ/BMP signaling cascades and regulate expression of functional CSC markers, such as CD44, CD133 (PROM1), EPCAM and LGR5 (GPR49). Aberrant canonical and non-canonical WNT signaling in human malignancies, including breast, colorectal, gastric, lung, ovary, pancreatic, prostate and uterine cancers, leukemia and melanoma, are involved in CSC survival, bulk-tumor expansion and invasion/metastasis. WNT signaling-targeted therapeutics, such as anti-FZD1/2/5/7/8 monoclonal antibody (mAb) (vantictumab), anti-LGR5 antibody-drug conjugate (ADC) (mAb-mc-vc-PAB-MMAE), anti-PTK7 ADC (PF-06647020), anti-ROR1 mAb (cirmtuzumab), anti-RSPO3 mAb (rosmantuzumab), small-molecule porcupine inhibitors (ETC-159, WNT-C59 and WNT974), tankyrase inhibitors (AZ1366, G007-LK, NVP-TNKS656 and XAV939) and β-catenin inhibitors (BC2059, CWP232228, ICG-001 and PRI-724), are in clinical trials or preclinical studies for the treatment of patients with WNT-driven cancers. WNT signaling-targeted therapeutics are applicable for combination therapy with BCR-ABL, EGFR, FLT3, KIT or RET inhibitors to treat a subset of tyrosine kinase-driven cancers because WNT and tyrosine kinase signaling cascades converge to β-catenin for the maintenance and expansion of CSCs. WNT signaling-targeted therapeutics might also be applicable for combination therapy with immune checkpoint blockers, such as atezolizumab, avelumab, durvalumab, ipilimumab, nivolumab and pembrolizumab, to treat cancers

  7. Canonical and non-canonical WNT signaling in cancer stem cells and their niches: Cellular heterogeneity, omics reprogramming, targeted therapy and tumor plasticity (Review)

    PubMed Central

    Katoh, Masaru

    2017-01-01

    Cancer stem cells (CSCs), which have the potential for self-renewal, differentiation and de-differentiation, undergo epigenetic, epithelial-mesenchymal, immunological and metabolic reprogramming to adapt to the tumor microenvironment and survive host defense or therapeutic insults. Intra-tumor heterogeneity and cancer-cell plasticity give rise to therapeutic resistance and recurrence through clonal replacement and reactivation of dormant CSCs, respectively. WNT signaling cascades cross-talk with the FGF, Notch, Hedgehog and TGFβ/BMP signaling cascades and regulate expression of functional CSC markers, such as CD44, CD133 (PROM1), EPCAM and LGR5 (GPR49). Aberrant canonical and non-canonical WNT signaling in human malignancies, including breast, colorectal, gastric, lung, ovary, pancreatic, prostate and uterine cancers, leukemia and melanoma, are involved in CSC survival, bulk-tumor expansion and invasion/metastasis. WNT signaling-targeted therapeutics, such as anti-FZD1/2/5/7/8 monoclonal antibody (mAb) (vantictumab), anti-LGR5 antibody-drug conjugate (ADC) (mAb-mc-vc-PAB-MMAE), anti-PTK7 ADC (PF-06647020), anti-ROR1 mAb (cirmtuzumab), anti-RSPO3 mAb (rosmantuzumab), small-molecule porcupine inhibitors (ETC-159, WNT-C59 and WNT974), tankyrase inhibitors (AZ1366, G007-LK, NVP-TNKS656 and XAV939) and β-catenin inhibitors (BC2059, CWP232228, ICG-001 and PRI-724), are in clinical trials or preclinical studies for the treatment of patients with WNT-driven cancers. WNT signaling-targeted therapeutics are applicable for combination therapy with BCR-ABL, EGFR, FLT3, KIT or RET inhibitors to treat a subset of tyrosine kinase-driven cancers because WNT and tyrosine kinase signaling cascades converge to β-catenin for the maintenance and expansion of CSCs. WNT signaling-targeted therapeutics might also be applicable for combination therapy with immune checkpoint blockers, such as atezolizumab, avelumab, durvalumab, ipilimumab, nivolumab and pembrolizumab, to treat cancers

  8. Detection of Non-Nucleic Acid Targets with an Unmodified Aptamer and a Fluorogenic Competitor

    PubMed Central

    Li, Na

    2010-01-01

    Aptamers are oligonucleotides that can bind to various non-nucleic acid targets, ranging from proteins to small molecules, with a specificity and affinity comparable to that of antibodies. Most aptamer-based detection strategies require modification on the aptamer, which could lead to a significant loss in its affinity and specificity to the target. Here we reported a generic strategy to design aptamer-based optical probes. An unmodified aptamer specific to the target and a fluorogenic competitor complementary to the aptamer are utilized for target recognition and signal generation, respectively. The competitor is a hairpin oligonucleotide with a fluorophore attached on one end and a quencher attached on the other. When no target is present, the competitor binds to the aptamer. However, when the target is introduced, the competitor will be displaced from the aptamer by the target, thus resulting in a target-specific decrease in fluorescence signal. Successful application of this strategy to different types of targets (small molecules and proteins) as well as different types of aptamers (DNA and RNA) has been demonstrated. Furthermore, a thermodynamics-based prediction model was established to further rationalize the optimization process. Due to its rapidness and simplicity, this aptamer-based detection strategy holds great promise in high throughput applications. PMID:20563298

  9. Dysregulation of the endocannabinoid signaling system in the cerebellum and brainstem in a transgenic mouse model of spinocerebellar ataxia type-3.

    PubMed

    Rodríguez-Cueto, Carmen; Hernández-Gálvez, Mariluz; Hillard, Cecilia J; Maciel, Patricia; García-García, Luis; Valdeolivas, Sara; Pozo, Miguel A; Ramos, José A; Gómez-Ruiz, María; Fernández-Ruiz, Javier

    2016-12-17

    Spinocerebellar ataxia type-3 (SCA-3) is a rare disease but it is the most frequent type within the autosomal dominant inherited ataxias. The disease lacks an effective treatment to alleviate major symptoms and to modify disease progression. Our recent findings that endocannabinoid receptors and enzymes are significantly altered in the post-mortem cerebellum of patients affected by autosomal-dominant hereditary ataxias suggest that targeting the endocannabinoid signaling system may be a promising therapeutic option. Our goal was to investigate the status of the endocannabinoid signaling system in a transgenic mouse model of SCA-3, in the two CNS structures most affected in this disease - cerebellum and brainstem. These animals exhibited progressive motor incoordination, imbalance, abnormal gait, muscle weakness, and dystonia, in parallel to reduced in vivo brain glucose metabolism, deterioration of specific neuron subsets located in the dentate nucleus and pontine nuclei, small changes in microglial morphology, and reduction in glial glutamate transporters. Concerning the endocannabinoid signaling, our data indicated no changes in CB 2 receptors. By contrast, CB 1 receptors increased in the Purkinje cell layer, in particular in terminals of basket cells, but they were reduced in the dentate nucleus. We also measured the levels of endocannabinoid lipids and found reductions in anandamide and oleoylethanolamide in the brainstem. These changes correlated with an increase in the FAAH enzyme in the brainstem, which also occurred in some cerebellar areas, whereas other endocannabinoid-related enzymes were not altered. Collectively, our results in SCA-3 mutant mice confirm a possible dysregulation in the endocannabinoid system in the most important brain structures affected in this type of ataxia, suggesting that a pharmacological manipulation addressed to correct these changes could be a promising option in SCA-3. Copyright © 2016 IBRO. Published by Elsevier Ltd. All

  10. Circuits of cancer drivers revealed by convergent misregulation of transcription factor targets across tumor types.

    PubMed

    Gonzalez-Perez, Abel

    2016-01-20

    Large tumor genome sequencing projects have now uncovered a few hundred genes involved in the onset of tumorigenesis, or drivers, in some two dozen malignancies. One of the main challenges emerging from this catalog of drivers is how to make sense of their heterogeneity in most cancer types. This is key not only to understand how carcinogenesis appears and develops in these malignancies to be able to early diagnose them, but also to open up the possibility to employ therapeutic strategies targeting a driver protein to counteract the alteration of another connected driver. Here, I focus on driver transcription factors and their connection to tumorigensis in several tumor types through the alteration of the expression of their targets. First, I explore their involvement in tumorigenesis as mutational drivers in 28 different tumor types. Then, I collect a list of downstream targets of the all driver transcription factors (TFs), and identify which of them exhibit a differential expression upon alterations of driver transcription factors. I identify the subset of targets of each TF most likely mediating the tumorigenic effect of their driver alterations in each tumor type, and explore their overlap. Furthermore, I am able to identify other driver genes that cause tumorigenesis through the alteration of very similar sets of targets. I thus uncover these circuits of connected drivers which cause tumorigenesis through the perturbation of overlapping cellular pathways in a pan-cancer manner across 15 malignancies. The systematic detection of these circuits may be key to propose novel therapeutic strategies indirectly targeting driver alterations in tumors.

  11. False alarm reduction in BSN-based cardiac monitoring using signal quality and activity type information.

    PubMed

    Tanantong, Tanatorn; Nantajeewarawat, Ekawit; Thiemjarus, Surapa

    2015-02-09

    False alarms in cardiac monitoring affect the quality of medical care, impacting on both patients and healthcare providers. In continuous cardiac monitoring using wireless Body Sensor Networks (BSNs), the quality of ECG signals can be deteriorated owing to several factors, e.g., noises, low battery power, and network transmission problems, often resulting in high false alarm rates. In addition, body movements occurring from activities of daily living (ADLs) can also create false alarms. This paper presents a two-phase framework for false arrhythmia alarm reduction in continuous cardiac monitoring, using signals from an ECG sensor and a 3D accelerometer. In the first phase, classification models constructed using machine learning algorithms are used for labeling input signals. ECG signals are labeled with heartbeat types and signal quality levels, while 3D acceleration signals are labeled with ADL types. In the second phase, a rule-based expert system is used for combining classification results in order to determine whether arrhythmia alarms should be accepted or suppressed. The proposed framework was validated on datasets acquired using BSNs and the MIT-BIH arrhythmia database. For the BSN dataset, acceleration and ECG signals were collected from 10 young and 10 elderly subjects while they were performing ADLs. The framework reduced the false alarm rate from 9.58% to 1.43% in our experimental study, showing that it can potentially assist physicians in diagnosing a vast amount of data acquired from wireless sensors and enhance the performance of continuous cardiac monitoring.

  12. Cooperative multi-targeting of signaling networks by angiomiR-204 inhibits vasculogenic mimicry in breast cancer cells.

    PubMed

    Salinas-Vera, Yarely M; Marchat, Laurence A; García-Vázquez, Raúl; González de la Rosa, Claudia Haydée; Castañeda-Saucedo, Eduardo; Tito, Napoleón Navarro; Flores, Carlos Palma; Pérez-Plasencia, Carlos; Cruz-Colin, José L; Carlos-Reyes, Ángeles; López-González, José Sullivan; Álvarez-Sánchez, María Elizbeth; López-Camarillo, César

    2018-06-06

    RNA-based multi-target therapies focused in the blocking of signaling pathways represent an attractive approach in cancer. Here, we uncovered a miR-204 cooperative targeting of multiple signaling transducers involved in vasculogenic mimicry (VM). Our data showed that invasive triple negative MDA-MB-231 and Hs-578T breast cancer cells, but not poorly invasive MCF-7 cells, efficiently undergoes matrix-associated VM under hypoxia. Ectopic restoration of miR-204 in MDA-MB-231 cells leads to a potent inhibition of VM and reduction of number of branch points and patterned 3D channels. Further analysis of activation state of multiple signaling pathways using Phosphorylation Antibody Arrays revealed that miR-204 reduced the expression and phosphorylation levels of 13 proteins involved in PI3K/AKT, RAF1/MAPK, VEGF, and FAK/SRC signaling. In agreement with phospho-proteomic profiling, VM was impaired following pharmacological administration of PI3K and SRC inhibitors. Mechanistic studies confirmed that miR-204 exerts a negative post-transcriptional regulation of PI3K-α and c-SRC proto-oncogenes. Moreover, overall survival analysis of a large cohort of breast cancer patients indicates that low miR-204 and high FAK/SRC levels were associated with worst outcomes. In conclusion, our study provides novel lines of evidence indicating that miR-204 may exerts a fine-tuning regulation of the synergistic transduction of PI3K/AKT/FAK mediators critical in VM formation. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Dysregulated miR-127-5p contributes to type II collagen degradation by targeting matrix metalloproteinase-13 in human intervertebral disc degeneration.

    PubMed

    Hua, Wen-Bin; Wu, Xing-Huo; Zhang, Yu-Kun; Song, Yu; Tu, Ji; Kang, Liang; Zhao, Kang-Cheng; Li, Shuai; Wang, Kun; Liu, Wei; Shao, Zeng-Wu; Yang, Shu-Hua; Yang, Cao

    2017-08-01

    Intervertebral disc degeneration (IDD) is a chronic disease associated with the degradation of extracellular matrix (ECM). Matrix metalloproteinase (MMP)-13 is a major enzyme that mediates the degradation of ECM components. MMP-13 has been predicted to be a potential target of miR-127-5p. However, the exact function of miR-127-5p in IDD is still unclear. We designed this study to evaluate the correlation between miR-127-5p level and the degeneration of human intervertebral discs and explore the potential mechanisms. miR-127-5p levels and MMP-13 mRNA levels were detected by quantitative real-time polymerase chain reaction (qPCR). To determine whether MMP-13 is a target of miR-127-5p, dual luciferase reporter assays were performed. miR-127-5p mimic and miR-127-5p inhibitor were used to overexpress or downregulate miR-127-5p expression in human NP cells, respectively. Small interfering RNA (siRNA) was used to knock down MMP-13 expression in human NP cells. Type II collagen expression in human NP cells was detected by qPCR, western blotting, and immunofluorescence staining. We confirmed that miR-127-5p was significantly downregulated in nucleus pulposus (NP) tissue of degenerative discs and its expression was inversely correlated with MMP-13 mRNA levels. We reveal that MMP-13 may act as a target of miR-127-5p. Expression of miR-127-5p was inversely correlated with type II collagen expression in human NP cells. Moreover, suppression of MMP-13 expression by siRNA blocked downstream signaling and increased type II collagen expression. Dysregulated miR-127-5p contributed to the degradation of type II collagen by targeting MMP-13 in human IDD. Our findings highlight that miR-127-5p may serve as a new therapeutic target in IDD. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  14. A sequential multi-target Mps1 phosphorylation cascade promotes spindle checkpoint signaling.

    PubMed

    Ji, Zhejian; Gao, Haishan; Jia, Luying; Li, Bing; Yu, Hongtao

    2017-01-10

    The master spindle checkpoint kinase Mps1 senses kinetochore-microtubule attachment and promotes checkpoint signaling to ensure accurate chromosome segregation. The kinetochore scaffold Knl1, when phosphorylated by Mps1, recruits checkpoint complexes Bub1-Bub3 and BubR1-Bub3 to unattached kinetochores. Active checkpoint signaling ultimately enhances the assembly of the mitotic checkpoint complex (MCC) consisting of BubR1-Bub3, Mad2, and Cdc20, which inhibits the anaphase-promoting complex or cyclosome bound to Cdc20 (APC/C Cdc20 ) to delay anaphase onset. Using in vitro reconstitution, we show that Mps1 promotes APC/C inhibition by MCC components through phosphorylating Bub1 and Mad1. Phosphorylated Bub1 binds to Mad1-Mad2. Phosphorylated Mad1 directly interacts with Cdc20. Mutations of Mps1 phosphorylation sites in Bub1 or Mad1 abrogate the spindle checkpoint in human cells. Therefore, Mps1 promotes checkpoint activation through sequentially phosphorylating Knl1, Bub1, and Mad1. This sequential multi-target phosphorylation cascade makes the checkpoint highly responsive to Mps1 and to kinetochore-microtubule attachment.

  15. MIR-27a regulates the TGF-β signaling pathway by targeting SMAD2 and SMAD4 in lung cancer.

    PubMed

    Chae, Dong-Kyu; Ban, Eunmi; Yoo, Young Sook; Kim, Eunice EunKyeong; Baik, Ja-Hyun; Song, Eun Joo

    2017-08-01

    The transforming growth factor-β (TGF-β) signaling pathway is associated with carcinogenesis and various biological processes. SMAD2 and SMAD4, which are putative tumor suppressors, have an important role in TGF-β signaling. The aberrant expression of these genes is implicated in some cancers. However, the mechanisms of SMAD2 and SMAD4 dysregulation are poorly understood. In this study, we observed that miR-27a was upregulated in lung cancer cell lines and patients. In addition, SMAD2 and SMAD4 genes were identified as targets of miR-27a by several target prediction databases and experimental validation. Functional studies revealed that miR-27a overexpression decreased SMAD2 and SMAD4 mRNA and protein levels. Furthermore, miR-27a contributed to cell proliferation and invasion by inhibiting TGF-β-induced cell cycle arrest. These results suggest that miR-27a may function as an oncogene by regulating SMAD2 and SMAD4 in lung cancer. Thus, miR-27a may be a potential target for cancer therapy. © 2017 Wiley Periodicals, Inc.

  16. Oncogenic Signaling Pathways in The Cancer Genome Atlas.

    PubMed

    Sanchez-Vega, Francisco; Mina, Marco; Armenia, Joshua; Chatila, Walid K; Luna, Augustin; La, Konnor C; Dimitriadoy, Sofia; Liu, David L; Kantheti, Havish S; Saghafinia, Sadegh; Chakravarty, Debyani; Daian, Foysal; Gao, Qingsong; Bailey, Matthew H; Liang, Wen-Wei; Foltz, Steven M; Shmulevich, Ilya; Ding, Li; Heins, Zachary; Ochoa, Angelica; Gross, Benjamin; Gao, Jianjiong; Zhang, Hongxin; Kundra, Ritika; Kandoth, Cyriac; Bahceci, Istemi; Dervishi, Leonard; Dogrusoz, Ugur; Zhou, Wanding; Shen, Hui; Laird, Peter W; Way, Gregory P; Greene, Casey S; Liang, Han; Xiao, Yonghong; Wang, Chen; Iavarone, Antonio; Berger, Alice H; Bivona, Trever G; Lazar, Alexander J; Hammer, Gary D; Giordano, Thomas; Kwong, Lawrence N; McArthur, Grant; Huang, Chenfei; Tward, Aaron D; Frederick, Mitchell J; McCormick, Frank; Meyerson, Matthew; Van Allen, Eliezer M; Cherniack, Andrew D; Ciriello, Giovanni; Sander, Chris; Schultz, Nikolaus

    2018-04-05

    Genetic alterations in signaling pathways that control cell-cycle progression, apoptosis, and cell growth are common hallmarks of cancer, but the extent, mechanisms, and co-occurrence of alterations in these pathways differ between individual tumors and tumor types. Using mutations, copy-number changes, mRNA expression, gene fusions and DNA methylation in 9,125 tumors profiled by The Cancer Genome Atlas (TCGA), we analyzed the mechanisms and patterns of somatic alterations in ten canonical pathways: cell cycle, Hippo, Myc, Notch, Nrf2, PI-3-Kinase/Akt, RTK-RAS, TGFβ signaling, p53 and β-catenin/Wnt. We charted the detailed landscape of pathway alterations in 33 cancer types, stratified into 64 subtypes, and identified patterns of co-occurrence and mutual exclusivity. Eighty-nine percent of tumors had at least one driver alteration in these pathways, and 57% percent of tumors had at least one alteration potentially targetable by currently available drugs. Thirty percent of tumors had multiple targetable alterations, indicating opportunities for combination therapy. Copyright © 2018. Published by Elsevier Inc.

  17. Predicting the Types of Ion Channel-Targeted Conotoxins Based on AVC-SVM Model.

    PubMed

    Xianfang, Wang; Junmei, Wang; Xiaolei, Wang; Yue, Zhang

    2017-01-01

    The conotoxin proteins are disulfide-rich small peptides. Predicting the types of ion channel-targeted conotoxins has great value in the treatment of chronic diseases, epilepsy, and cardiovascular diseases. To solve the problem of information redundancy existing when using current methods, a new model is presented to predict the types of ion channel-targeted conotoxins based on AVC (Analysis of Variance and Correlation) and SVM (Support Vector Machine). First, the F value is used to measure the significance level of the feature for the result, and the attribute with smaller F value is filtered by rough selection. Secondly, redundancy degree is calculated by Pearson Correlation Coefficient. And the threshold is set to filter attributes with weak independence to get the result of the refinement. Finally, SVM is used to predict the types of ion channel-targeted conotoxins. The experimental results show the proposed AVC-SVM model reaches an overall accuracy of 91.98%, an average accuracy of 92.17%, and the total number of parameters of 68. The proposed model provides highly useful information for further experimental research. The prediction model will be accessed free of charge at our web server.

  18. Predicting the Types of Ion Channel-Targeted Conotoxins Based on AVC-SVM Model

    PubMed Central

    Xiaolei, Wang

    2017-01-01

    The conotoxin proteins are disulfide-rich small peptides. Predicting the types of ion channel-targeted conotoxins has great value in the treatment of chronic diseases, epilepsy, and cardiovascular diseases. To solve the problem of information redundancy existing when using current methods, a new model is presented to predict the types of ion channel-targeted conotoxins based on AVC (Analysis of Variance and Correlation) and SVM (Support Vector Machine). First, the F value is used to measure the significance level of the feature for the result, and the attribute with smaller F value is filtered by rough selection. Secondly, redundancy degree is calculated by Pearson Correlation Coefficient. And the threshold is set to filter attributes with weak independence to get the result of the refinement. Finally, SVM is used to predict the types of ion channel-targeted conotoxins. The experimental results show the proposed AVC-SVM model reaches an overall accuracy of 91.98%, an average accuracy of 92.17%, and the total number of parameters of 68. The proposed model provides highly useful information for further experimental research. The prediction model will be accessed free of charge at our web server. PMID:28497044

  19. Signaling completion of a message transfer from an origin compute node to a target compute node

    DOEpatents

    Blocksome, Michael A [Rochester, MN; Parker, Jeffrey J [Rochester, MN

    2011-05-24

    Signaling completion of a message transfer from an origin node to a target node includes: sending, by an origin DMA engine, an RTS message, the RTS message specifying an application message for transfer to the target node from the origin node; receiving, by the origin DMA engine, a remote get message containing a data descriptor for the message and a completion notification descriptor, the completion notification descriptor specifying a local direct put transfer operation for transferring data locally on the origin node; inserting, by the origin DMA engine in an injection FIFO buffer, the data descriptor followed by the completion notification descriptor; transferring, by the origin DMA engine to the target node, the message in dependence upon the data descriptor; and notifying, by the origin DMA engine, the application that transfer of the message is complete in dependence upon the completion notification descriptor.

  20. Mechanism of Dual Targeting of the Phytochrome Signaling Component HEMERA/pTAC12 to Plastids and the Nucleus.

    PubMed

    Nevarez, P Andrew; Qiu, Yongjian; Inoue, Hitoshi; Yoo, Chan Yul; Benfey, Philip N; Schnell, Danny J; Chen, Meng

    2017-04-01

    HEMERA (HMR) is a nuclear and plastidial dual-targeted protein. While it functions in the nucleus as a transcriptional coactivator in phytochrome signaling to regulate a distinct set of light-responsive, growth-relevant genes, in plastids it is known as pTAC12, which associates with the plastid-encoded RNA polymerase, and is essential for inducing the plastomic photosynthetic genes and initiating chloroplast biogenesis. However, the mechanism of targeting HMR to the nucleus and plastids is still poorly understood. Here, we show that HMR can be directly imported into chloroplasts through a transit peptide residing in the N-terminal 50 amino acids. Upon cleavage of the transit peptide and additional proteolytic processing, mature HMR, which begins from Lys-58, retains its biochemical properties in phytochrome signaling. Unexpectedly, expression of mature HMR failed to rescue not only the plastidial but also the nuclear defects of the hmr mutant. This is because the predicted nuclear localization signals of HMR are nonfunctional, and therefore mature HMR is unable to accumulate in either plastids or the nucleus. Surprisingly, fusing the transit peptide of the small subunit of Rubisco with mature HMR rescues both its plastidial and nuclear localization and functions. These results, combined with the observation that the nuclear form of HMR has the same reduced molecular mass as plastidial HMR, support a retrograde protein translocation mechanism in which HMR is targeted first to plastids, processed to the mature form, and then relocated to the nucleus. © 2017 American Society of Plant Biologists. All Rights Reserved.

  1. A Novel Chemical Inhibitor of ABA Signaling Targets All ABA Receptors.

    PubMed

    Ye, Yajin; Zhou, Lijuan; Liu, Xue; Liu, Hao; Li, Deqiang; Cao, Minjie; Chen, Haifeng; Xu, Lin; Zhu, Jian-Kang; Zhao, Yang

    2017-04-01

    Abscisic acid (ABA), the most important stress-induced phytohormone, regulates seed dormancy, germination, plant senescence, and the abiotic stress response. ABA signaling is repressed by group A type 2C protein phosphatases (PP2Cs), and then ABA binds to its receptor of the ACTIN RESISTANCE1 (PYR1), PYR1-LIKE (PYL), and REGULATORY COMPONENTS OF ABA RECEPTORS (RCAR) family, which, in turn, inhibits PP2Cs and activates downstream ABA signaling. The agonist/antagonist of ABA receptors have the potential to reveal the ABA signaling machinery and to become lead compounds for agrochemicals; however, until now, no broad-spectrum antagonists of ABA receptors blocking all PYR/PYL-PP2C interactions have been identified. Here, using chemical genetics screenings, we identified ABA ANTAGONIST1 (AA1), the first broad-spectrum antagonist of ABA receptors in Arabidopsis ( Arabidopsis thaliana ). Physiological analyses revealed that AA1 is sufficiently active to block ABA signaling. AA1 interfered with all the PYR/PYL-HAB1 interactions, and the diminished PYR/PYL-HAB1 interactions, in turn, restored the activity of HAB1. AA1 binds to all 13 members. Molecular dockings, the non-AA1-bound PYL2 variant, and competitive binding assays demonstrated that AA1 enters into the ligand-binding pocket of PYL2. Using AA1, we tested the genetic relationships of ABA receptors with other core components of ABA signaling, demonstrating that AA1 is a powerful tool with which to sidestep this genetic redundancy of PYR/PYLs. In addition, the application of AA1 delays leaf senescence. Thus, our study developed an efficient broad-spectrum antagonist of ABA receptors and demonstrated that plant senescence can be chemically controlled through AA1, with a simple and easy-to-synthesize structure, allowing its availability and utility as a chemical probe synthesized in large quantities, indicating its potential application in agriculture. © 2017 American Society of Plant Biologists. All Rights Reserved.

  2. Induction of Suppressor of Cytokine Signaling-3 by Herpes Simplex Virus Type 1 Contributes to Inhibition of the Interferon Signaling Pathway

    PubMed Central

    Yokota, Shin-ichi; Yokosawa, Noriko; Okabayashi, Tamaki; Suzutani, Tatsuo; Miura, Shunsuke; Jimbow, Kowichi; Fujii, Nobuhiro

    2004-01-01

    We showed previously that herpes simplex virus type 1 (HSV-1) suppresses the interferon (IFN) signaling pathway during the early infection stage in the human amnion cell line FL. HSV-1 inhibits the IFN-induced phosphorylation of Janus kinases (JAK) in infected FL cells. In the present study, we showed that the suppressor of cytokine signaling-3 (SOCS3), a host negative regulator of the JAK/STAT pathway, is rapidly induced in FL cells after HSV-1 infection. Maximal levels of SOCS3 protein were detected at around 1 to 2 h after infection. This is consistent with the occurrence of HSV-1-mediated inhibition of IFN-induced JAK phosphorylation. The HSV-1 wild-type strain VR3 induced SOCS3 more efficiently than did mutants that are defective in UL41 or UL13 and that are hyperresponsive to IFN. Induction of the IRF-7 protein and transcriptional activation of IFN-α4, which occur in a JAK/STAT pathway-dependent manner, were poorly induced by VR3 but efficiently induced by the mutant viruses. In contrast, phosphorylation of IRF-3 and transcriptional activation of IFN-β, which are JAK/STAT pathway-independent process, were equally well induced by the wild-type strain and the mutants. In conclusion, the SOCS3 protein appears to be mainly responsible for the suppression of IFN signaling and IFN production that occurs during HSV-1 infection. PMID:15163721

  3. Secretion of Pseudomonas aeruginosa type III cytotoxins is dependent on pseudomonas quinolone signal concentration.

    PubMed

    Singh, G; Wu, B; Baek, M S; Camargo, A; Nguyen, A; Slusher, N A; Srinivasan, R; Wiener-Kronish, J P; Lynch, S V

    2010-10-01

    Pseudomonas aeruginosa is an opportunistic pathogen that can, like other bacterial species, exist in antimicrobial resistant sessile biofilms and as free-swimming, planktonic cells. Specific virulence factors are typically associated with each lifestyle and several two component response regulators have been shown to reciprocally regulate transition between biofilm-associated chronic, and free-swimming acute infections. Quorum sensing (QS) signal molecules belonging to the las and rhl systems are known to regulate virulence gene expression by P. aeruginosa. However the impact of a recently described family of novel quorum sensing signals produced by the Pseudomonas Quinolone Signal (PQS) biosynthetic pathway, on the transition between these modes of infection is less clear. Using clonal isolates from a patient developing ventilator-associated pneumonia, we demonstrated that clinical observations were mirrored by an in vitro temporal shift in isolate phenotype from a non-secreting, to a Type III cytotoxin secreting (TTSS) phenotype and further, that this phenotypic change was PQS-dependent. While intracellular type III cytotoxin levels were unaffected by PQS concentration, cytotoxin secretion was dependent on this signal molecule. Elevated PQS concentrations were associated with inhibition of cytotoxin secretion coincident with expression of virulence factors such as elastase and pyoverdin. In contrast, low concentrations or the inability to biosynthesize PQS resulted in a reversal of this phenotype. These data suggest that expression of specific P. aeruginosa virulence factors appears to be reciprocally regulated and that an additional level of PQS-dependent post-translational control, specifically governing type III cytotoxin secretion, exists in this species. Copyright 2010 Elsevier Ltd. All rights reserved.

  4. Targeting AMPK Signaling as a Neuroprotective Strategy in Parkinson's Disease.

    PubMed

    Curry, Daniel W; Stutz, Bernardo; Andrews, Zane B; Elsworth, John D

    2018-03-26

    Parkinson's disease (PD) is the second most common neurodegenerative disorder. It is characterized by the accumulation of intracellular α-synuclein aggregates and the degeneration of nigrostriatal dopaminergic neurons. While no treatment strategy has been proven to slow or halt the progression of the disease, there is mounting evidence from preclinical PD models that activation of 5'-AMP-activated protein kinase (AMPK) may have broad neuroprotective effects. Numerous dietary supplements and pharmaceuticals (e.g., metformin) that increase AMPK activity are available for use in humans, but clinical studies of their effects in PD patients are limited. AMPK is an evolutionarily conserved serine/threonine kinase that is activated by falling energy levels and functions to restore cellular energy balance. However, in response to certain cellular stressors, AMPK activation may exacerbate neuronal atrophy and cell death. This review describes the regulation and functions of AMPK, evaluates the controversies in the field, and assesses the potential of targeting AMPK signaling as a neuroprotective treatment for PD.

  5. The Role of Target of Rapamycin Signaling Networks in Plant Growth and Metabolism1

    PubMed Central

    Sheen, Jen

    2014-01-01

    The target of rapamycin (TOR) kinase, a master regulator that is evolutionarily conserved among yeasts (Saccharomyces cerevisiae), plants, animals, and humans, integrates nutrient and energy signaling to promote cell proliferation and growth. Recent breakthroughs made possible by integrating chemical, genetic, and genomic analyses have greatly increased our understanding of the molecular functions and dynamic regulation of the TOR kinase in photosynthetic plants. TOR signaling plays fundamental roles in embryogenesis, meristem activation, root and leaf growth, flowering, senescence, and life span determination. The molecular mechanisms underlying TOR-mediated ribosomal biogenesis, translation promotion, readjustment of metabolism, and autophagy inhibition are now being uncovered. Moreover, monitoring photosynthesis-derived Glc and bioenergetics relays has revealed that TOR orchestrates unprecedented transcriptional networks that wire central metabolism and biosynthesis for energy and biomass production. In addition, these networks integrate localized stem/progenitor cell proliferation through interorgan nutrient coordination to control developmental transitions and growth. PMID:24385567

  6. Ecsit is required for Bmp signaling and mesoderm formation during mouse embryogenesis

    PubMed Central

    Xiao, Changchun; Shim, Jae-hyuck; Klüppel, Michael; Zhang, Samuel Shao-Min; Dong, Chen; Flavell, Richard A.; Fu, Xin-Yuan; Wrana, Jeffrey L.; Hogan, Brigid L.M.; Ghosh, Sankar

    2003-01-01

    Bone morphogenetic proteins (Bmps) are members of the transforming growth factor β (TGFβ) superfamily that play critical roles during mouse embryogenesis. Signaling by Bmp receptors is mediated mainly by Smad proteins. In this study, we show that a targeted null mutation of Ecsit, encoding a signaling intermediate of the Toll pathway, leads to reduced cell proliferation, altered epiblast patterning, impairment of mesoderm formation, and embryonic lethality at embryonic day 7.5 (E7.5), phenotypes that mimic the Bmp receptor type1a (Bmpr1a) null mutant. In addition, specific Bmp target gene expression is abolished in the absence of Ecsit. Biochemical analysis demonstrates that Ecsit associates constitutively with Smad4 and associates with Smad1 in a Bmp-inducible manner. Together with Smad1 and Smad4, Ecsit binds to the promoter of specific Bmp target genes. Finally, knock-down of Ecsit with Ecsit-specific short hairpin RNA inhibits both Bmp and Toll signaling. Therefore, these results show that Ecsit functions as an essential component in two important signal transduction pathways and establishes a novel role for Ecsit as a cofactor for Smad proteins in the Bmp signaling pathway. PMID:14633973

  7. Attainment of Canadian Diabetes Association recommended targets in patients with type 2 diabetes

    PubMed Central

    McCrate, Farah; Godwin, Marshall; Murphy, Laura

    2010-01-01

    OBJECTIVE To examine the degree to which targets for diabetes (blood pressure [BP], glycated hemoglobin [HbA1c], and low-density lipoprotein cholesterol [LDL-C]) are achieved in family practices and how these results compare with family physicians’ perceptions of how well targets are being achieved. DESIGN Chart audit and physician survey. SETTING Newfoundland and Labrador. PARTICIPANTS Patients with type 2 diabetes and their family physicians. INTERVENTIONS The charts of 20 patients with type 2 diabetes were randomly chosen from each of 8 family physician practices in St John’s, Nfld, and data were abstracted. All family physicians in the province were surveyed using a modified Dillman method. MAIN OUTCOME MEASURES The most recent HbA1c, LDL-C, and BP measurements listed in each audited chart; surveyed family physicians’ knowledge of the recommended targets for HbA1c, LDL-C, and BP and their estimates of what percentage of their patients were at those recommended targets. RESULTS The chart audit revealed that 20.6% of patients were at the recommended target for BP, 48.1% were at the recommended target for HbA1c, and 17.5% were at the recommended target for LDL-C. When targets were examined collectively, only 2.5% of patients were achieving targets in all 3 areas. The survey found that most family physicians were aware of the recommended targets for BP, LDL-C, and HbA1c. However, their estimates of the percentages of patients in their practices achieving these targets appeared high (59.3% for BP, 58.2% for HbA1c, and 48.4% for LDL-C) compared with the results of the chart audit. CONCLUSION The findings of the chart audit are consistent with other published reports, which have illustrated that a large majority of patients with diabetes fall short of reaching recommended targets for BP, blood glucose, and lipid levels. Although family physicians are knowledgeable about recommended targets, there is a gap between knowledge and clinical outcomes. The reasons for

  8. Cannabinoid Receptor Type 1 Agonist ACEA Protects Neurons from Death and Attenuates Endoplasmic Reticulum Stress-Related Apoptotic Pathway Signaling.

    PubMed

    Vrechi, Talita A; Crunfli, Fernanda; Costa, Andressa P; Torrão, Andréa S

    2018-05-01

    Neurodegeneration is the result of progressive destruction of neurons in the central nervous system, with unknown causes and pathological mechanisms not yet fully elucidated. Several factors contribute to neurodegenerative processes, including neuroinflammation, accumulation of neurotoxic factors, and misfolded proteins in the lumen of the endoplasmic reticulum (ER). Endocannabinoid signaling has been pointed out as an important modulatory system in several neurodegeneration-related processes, inhibiting the inflammatory response and increasing neuronal survival. Thus, we investigated the presumptive protective effect of the selective cannabinoid type 1 (CB1) receptor agonist arachidonyl-2'-chloroethylamide (ACEA) against inflammatory (lipopolysaccharide, LPS) and ER stress (tunicamycin) stimuli in an in vitro neuronal model (Neuro-2a neuroblastoma cells). Cell viability analysis revealed that ACEA was able to protect against cell death induced by LPS and tunicamycin. This neuroprotective effect occurs via the CB1 receptor in the inflammation process and via the transient receptor potential of vanilloid type-1 (TRPV1) channel in ER stress. Furthermore, the immunoblotting analyses indicated that the neuroprotective effect of ACEA seems to involve the modulation of eukaryotic initiation factor 2 (eIF2α), transcription factor C/EBP homologous protein (CHOP), and caspase 12, as well as the survival/death p44/42 MAPK, ERK1/2-related signaling pathways. Together, these data suggest that the endocannabinoid system is a potential therapeutic target in neurodegenerative processes, especially in ER-related neurodegenerative diseases.

  9. Targeting of hyperactivated mTOR signaling in high-risk acute lymphoblastic leukemia in a pre-clinical model.

    PubMed

    Hasan, Md Nabiul; Queudeville, Manon; Trentin, Luca; Eckhoff, Sarah Mirjam; Bronzini, Ilaria; Palmi, Chiara; Barth, Thomas; Cazzaniga, Giovanni; te Kronnie, Geertruy; Debatin, Klaus-Michael; Meyer, Lüder Hinrich

    2015-01-30

    Despite increasingly successful treatment of pediatric ALL, up to 20% of patients encounter relapse. By current biomarkers, the majority of relapse patients is initially not identified indicating the need for prognostic and therapeutic targets reflecting leukemia biology. We previously described that rapid engraftment of patient ALL cells transplanted onto NOD/SCID mice (short time to leukemia, TTLshort) is indicative of early patient relapse. Gene expression profiling identified genes coding for molecules involved in mTOR signaling to be associated with TTLshort/early relapse leukemia. Here, we now functionally address mTOR signaling activity in primograft ALL samples and evaluate mTOR pathway inhibition as novel treatment strategy for high-risk ALL ex vivo and in vivo. By analysis of S6-phosphorylation downstream of mTOR, increased mTOR activation was found in TTLshort/high-risk ALL, which was effectively abrogated by mTOR inhibitors resulting in decreased leukemia proliferation and growth. In a preclinical setting treating individual patient-derived ALL in vivo, mTOR inhibition alone, and even more pronounced together with conventional remission induction therapy, significantly delayed post-treatment leukemia reoccurrence in TTLshort/high-risk ALL. Thus, the TTLshort phenotype is functionally characterized by hyperactivated mTOR signaling and can effectively be targeted ex vivo and in vivo providing a novel therapeutic strategy for high-risk ALL.

  10. Switch from type II to I Fas/CD95 death signaling upon in vitro culturing of primary hepatocytes

    PubMed Central

    Walter, Dorothée; Schmich, Kathrin; Vogel, Sandra; Pick, Robert; Kaufmann, Thomas; Hochmuth, Florian Christoph; Haber, Angelika; Neubert, Karin; McNelly, Sabine; von Weizsäcker, Fritz; Merfort, Irmgard; Maurer, Ulrich; Strasser, Andreas; Borner, Christoph

    2010-01-01

    Fas/CD95-induced apoptosis of hepatocytes in vivo proceeds through the so-called type II pathway, requiring the pro-apoptotic BH3-only Bcl-2 family member Bid for mitochondrial death signaling. Consequently, Bid-deficient mice are protected from anti-Fas antibody injection induced fatal hepatitis. Here we report the unexpected finding that freshly isolated mouse hepatocytes, cultured on collagen or Matrigel™, become independent of Bid for Fas-induced apoptosis, thereby switching death signaling from type II to type I. In such in vitro cultures, FasL activates caspase-3 without Bid cleavage, Bax/Bak activation or cytochrome c release, and neither Bid ablation nor Bcl-2 overexpression is protective. The type II to type I switch depends on extracellular matrix adhesion, as primary hepatocytes in suspension die in a Bid-dependent manner. Moreover, the switch is specific for FasL-induced apoptosis as collagen-plated Bid-deficient hepatocytes are protected from TNFα/ActD-induced apoptosis. Conclusion Our data suggest a selective crosstalk between extracellular matrix and Fas-mediated signaling which favours mitochondria-independent type I apoptosis induction. PMID:19003879

  11. Ultrasensitive photoelectrochemical biosensor for the detection of HTLV-I DNA: A cascade signal amplification strategy integrating λ-exonuclease aided target recycling with hybridization chain reaction and enzyme catalysis.

    PubMed

    Shi, Xiao-Mei; Fan, Gao-Chao; Tang, Xueying; Shen, Qingming; Zhu, Jun-Jie

    2018-06-30

    Sensitive and specific detection of DNA is of great significance for clinical diagnosis. In this paper, an effective cascade signal amplification strategy was introduced into photoelectrochemical (PEC) biosensor for ultrasensitive detection of human T-cell lymphotropic virus type I (HTLV-I) DNA. This proposed signal amplification strategy integrates λ-exonuclease (λ-Exo) aided target recycling with hybridization chain reaction (HCR) and enzyme catalysis. In the presence of target DNA (tDNA) of HTLV-I, the designed hairpin DNA (h 1 DNA) hybridized with tDNA, subsequently recognized and cleaved by λ-Exo to set free tDNA. With the λ-Exo aided tDNA recycling, an increasing number of DNA fragments (output DNA, oDNA) were released from the digestion of h 1 DNA. Then, triggered by the hybridization of oDNA with capture DNA (cDNA), numerous biotin-labeled hairpin DNAs (h 2 DNA and h 3 DNA) could be loaded onto the photoelectrode via the HCR. Finally, avidin-labeled alkaline phosphatase (avidin-ALP) could be introduced onto the electrode by specific interaction between biotin and avidin. The ALP could catalyze dephosphorylation of phospho-L-ascorbic acid trisodium salt (AAP) to generate an efficient electron donor of ascorbic acid (AA), and thereby greatly increasing the photocurrent signal. By utilizing the proposed cascade signal amplification strategy, the fabricated PEC biosensor exhibited an ultrasensitive and specific detection of HTLV-I DNA down to 11.3 aM, and it also offered an effective strategy to detect other DNAs at ultralow levels. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Synthetic aperture radar target simulator

    NASA Technical Reports Server (NTRS)

    Zebker, H. A.; Held, D. N.; Goldstein, R. M.; Bickler, T. C.

    1984-01-01

    A simulator for simulating the radar return, or echo, from a target seen by a SAR antenna mounted on a platform moving with respect to the target is described. It includes a first-in first-out memory which has digital information clocked in at a rate related to the frequency of a transmitted radar signal and digital information clocked out with a fixed delay defining range between the SAR and the simulated target, and at a rate related to the frequency of the return signal. An RF input signal having a frequency similar to that utilized by a synthetic aperture array radar is mixed with a local oscillator signal to provide a first baseband signal having a frequency considerably lower than that of the RF input signal.

  13. Design and prototyping of a wristband-type wireless photoplethysmographic device for heart rate variability signal analysis.

    PubMed

    Ghamari, M; Soltanpur, C; Cabrera, S; Romero, R; Martinek, R; Nazeran, H

    2016-08-01

    Heart Rate Variability (HRV) signal analysis provides a quantitative marker of the Autonomic Nervous System (ANS) function. A wristband-type wireless photoplethysmographic (PPG) device was custom-designed to collect and analyze the arterial pulse in the wrist. The proposed device is comprised of an optical sensor to monitor arterial pulse, a signal conditioning unit to filter and amplify the analog PPG signal, a microcontroller to digitize the analog PPG signal, and a Bluetooth module to transfer the data to a smart device. This paper proposes a novel model to represent the PPG signal as the summation of two Gaussian functions. The paper concludes with a verification procedure for HRV signal analysis during sedentary activities.

  14. Notch signaling: its roles and therapeutic potential in hematological malignancies

    PubMed Central

    Gu, Yisu

    2016-01-01

    Notch is a highly conserved signaling system that allows neighboring cells to communicate, thereby controlling their differentiation, proliferation and apoptosis, with the outcome of its activation being highly dependent on signal strength and cell type. As such, there is growing evidence that disturbances in physiological Notch signaling contribute to cancer development and growth through various mechanisms. Notch was first reported to contribute to tumorigenesis in the early 90s, through identification of the involvement of the Notch1 gene in the chromosomal translocation t(7;9)(q34;q34.3), found in a small subset of T-cell acute lymphoblastic leukemia. Since then, Notch mutations and aberrant Notch signaling have been reported in numerous other precursor and mature hematological malignancies, of both myeloid and lymphoid origin, as well as many epithelial tumor types. Of note, Notch has been reported to have both oncogenic and tumor suppressor roles, dependent on the cancer cell type. In this review, we will first give a general description of the Notch signaling pathway, and its physiologic role in hematopoiesis. Next, we will review the role of aberrant Notch signaling in several hematological malignancies. Finally, we will discuss current and potential future therapeutic approaches targeting this pathway. PMID:26934331

  15. Target of Rapamycin Signaling Regulates Metabolism, Growth, and Life Span in Arabidopsis[W][OA

    PubMed Central

    Ren, Maozhi; Venglat, Prakash; Qiu, Shuqing; Feng, Li; Cao, Yongguo; Wang, Edwin; Xiang, Daoquan; Wang, Jinghe; Alexander, Danny; Chalivendra, Subbaiah; Logan, David; Mattoo, Autar; Selvaraj, Gopalan; Datla, Raju

    2012-01-01

    Target of Rapamycin (TOR) is a major nutrition and energy sensor that regulates growth and life span in yeast and animals. In plants, growth and life span are intertwined not only with nutrient acquisition from the soil and nutrition generation via photosynthesis but also with their unique modes of development and differentiation. How TOR functions in these processes has not yet been determined. To gain further insights, rapamycin-sensitive transgenic Arabidopsis thaliana lines (BP12) expressing yeast FK506 Binding Protein12 were developed. Inhibition of TOR in BP12 plants by rapamycin resulted in slower overall root, leaf, and shoot growth and development leading to poor nutrient uptake and light energy utilization. Experimental limitation of nutrient availability and light energy supply in wild-type Arabidopsis produced phenotypes observed with TOR knockdown plants, indicating a link between TOR signaling and nutrition/light energy status. Genetic and physiological studies together with RNA sequencing and metabolite analysis of TOR-suppressed lines revealed that TOR regulates development and life span in Arabidopsis by restructuring cell growth, carbon and nitrogen metabolism, gene expression, and rRNA and protein synthesis. Gain- and loss-of-function Ribosomal Protein S6 (RPS6) mutants additionally show that TOR function involves RPS6-mediated nutrition and light-dependent growth and life span in Arabidopsis. PMID:23275579

  16. Dihydroartemisinin inhibits the mammalian target of rapamycin-mediated signaling pathways in tumor cells

    PubMed Central

    Huang, Shile

    2014-01-01

    Dihydroartemisinin (DHA), an antimalarial drug, has previously unrecognized anticancer activity, and is in clinical trials as a new anticancer agent for skin, lung, colon and breast cancer treatment. However, the anticancer mechanism is not well understood. Here, we show that DHA inhibited proliferation and induced apoptosis in rhabdomyosarcoma (Rh30 and RD) cells, and concurrently inhibited the signaling pathways mediated by the mammalian target of rapamycin (mTOR), a central controller for cell proliferation and survival, at concentrations (<3 μM) that are pharmacologically achievable. Of interest, in contrast to the effects of conventional mTOR inhibitors (rapalogs), DHA potently inhibited mTORC1-mediated phosphorylation of p70 S6 kinase 1 and eukaryotic initiation factor 4E binding protein 1 but did not obviously affect mTORC2-mediated phosphorylation of Akt. The results suggest that DHA may represent a novel class of mTORC1 inhibitor and may execute its anticancer activity primarily by blocking mTORC1-mediated signaling pathways in the tumor cells. PMID:23929438

  17. High-level expression of nattokinase in Bacillus licheniformis by manipulating signal peptide and signal peptidase.

    PubMed

    Cai, D; Wei, X; Qiu, Y; Chen, Y; Chen, J; Wen, Z; Chen, S

    2016-09-01

    Nattokinase is an enzyme produced by Bacillus licheniformis and has potential to be used as a drug for treating cardiovascular disease due to its beneficial effects of preventing fibrin clots etc. However, the low activity and titre of this protein produced by B. licheniformis often hinders its application of commercial production. The aim of this work is to improve the nattokinase production by manipulating signal peptides and signal peptidases in B. licheniformis. The P43 promoter, amyL terminator and AprN target gene were used to form the nattokinase expression vector, pHY-SP-NK, which was transformed into B. licheniformis and nattokinase was expressed successfully. A library containing 81 predicted signal peptides was constructed for nattokinase expression in B. licheniformis, with the maximum activity being obtained under the signal peptide of AprE. Among four type I signal peptidases genes (sipS, sipT, sipV, sipW) in B. licheniformis, the deletion of sipV resulted in a highest decrease in nattokinase activity. Overexpression of sipV in B. licheniformis led to a nattokinase activity of 35·60 FU ml(-1) , a 4·68-fold improvement over activity produced by the initial strain. This work demonstrates the potential of B. licheniformis for industrial production of nattokinase through manipulation of signal peptides and signal peptidases expression. This study has screened the signal peptides of extracellular proteins of B. licheniformis for nattokinase production. Four kinds of Type I signal peptidases genes have been detected respectively in B. licheniformis to identify which one played the vital role for nattokinase production. This study provided a promising strain for industry production of nattokinase. © 2016 The Society for Applied Microbiology.

  18. Discovery and characterization of olokizumab: a humanized antibody targeting interleukin-6 and neutralizing gp130-signaling.

    PubMed

    Shaw, Stevan; Bourne, Tim; Meier, Chris; Carrington, Bruce; Gelinas, Rich; Henry, Alistair; Popplewell, Andrew; Adams, Ralph; Baker, Terry; Rapecki, Steve; Marshall, Diane; Moore, Adrian; Neale, Helen; Lawson, Alastair

    2014-01-01

    Interleukin-6 (IL-6) is a critical regulator of the immune system and has been widely implicated in autoimmune disease. Here, we describe the discovery and characterization of olokizumab, a humanized antibody to IL-6. Data from structural biology, cell biology and primate pharmacology demonstrate the therapeutic potential of targeting IL-6 at "Site 3", blocking the interaction with the signaling co-receptor gp130.

  19. Potential Mechanisms of Action of Dietary Phytochemicals for Cancer Prevention by Targeting Cellular Signaling Transduction Pathways.

    PubMed

    Chen, Hongyu; Liu, Rui Hai

    2018-04-04

    Cancer is a severe health problem that significantly undermines life span and quality. Dietary approach helps provide preventive, nontoxic, and economical strategies against cancer. Increased intake of fruits, vegetables, and whole grains are linked to reduced risk of cancer and other chronic diseases. The anticancer activities of plant-based foods are related to the actions of phytochemicals. One potential mechanism of action of anticancer phytochemicals is that they regulate cellular signal transduction pathways and hence affects cancer cell behaviors such as proliferation, apoptosis, and invasion. Recent publications have reported phytochemicals to have anticancer activities through targeting a wide variety of cell signaling pathways at different levels, such as transcriptional or post-transcriptional regulation, protein activation and intercellular messaging. In this review, we discuss major groups of phytochemicals and their regulation on cell signaling transduction against carcinogenesis via key participators, such as Nrf2, CYP450, MAPK, Akt, JAK/STAT, Wnt/β-catenin, p53, NF-κB, and cancer-related miRNAs.

  20. Signaling from soybean roots to rhizobium: An ATP-binding cassette-type transporter mediates genistein secretion.

    PubMed

    Sugiyama, Akifumi; Shitan, Nobukazu; Yazaki, Kazufumi

    2008-01-01

    Legume plants have a unique ability to fix atmospheric nitrogen via symbiosis with rhizobia. For the establishment of symbiosis, legume plants secrete signaling molecules such as flavonoids from root tissues, leading to the attraction of rhizobia and the induction of rhizobial nod genes. Genistein and daidzein are found in soybean root exudates and function as signal molecules in soybean-Bradyrhizobium japonicum chemical communication. Although it is more than 20 years since these signal flavonoids were identified, almost nothing has been characterized concerning the membrane transport process of these molecules from soybean roots. To elucidate the transport mechanism we performed membrane transport assays with plasma membrane-enriched vesicles and various inhibitors. As a result, we concluded that an ATP-binding cassette-type transporter is involved in the secretion of genistein from soybean roots. The possible involvement of a pleiotropic drug resistance-type ABC transporter in this secretion is also discussed.

  1. WNT signaling in stem cell biology and regenerative medicine.

    PubMed

    Katoh, Masaru

    2008-07-01

    WNT family members are secreted-type glycoproteins to orchestrate embryogenesis, to maintain homeostasis, and to induce pathological conditions. FZD1, FZD2, FZD3, FZD4, FZD5, FZD6, FZD7, FZD8, FZD9, FZD10, LRP5, LRP6, and ROR2 are transmembrane receptors transducing WNT signals based on ligand-dependent preferentiality for caveolin- or clathrin-mediated endocytosis. WNT signals are transduced to canonical pathway for cell fate determination, and to non-canonical pathways for regulation of planar cell polarity, cell adhesion, and motility. MYC, CCND1, AXIN2, FGF20, WISP1, JAG1, DKK1 and Glucagon are target genes of canonical WNT signaling cascade, while CD44, Vimentin and STX5 are target genes of non-canonical WNT signaling cascades. However, target genes of WNT signaling cascades are determined in a context-dependent manner due to expression profile of transcription factors and epigenetic status. WNT signaling cascades network with Notch, FGF, BMP and Hedgehog signaling cascades to regulate the balance of stem cells and progenitor cells. Here WNT signaling in embryonic stem cells, neural stem cells, mesenchymal stem cells, hematopoietic stem cells, and intestinal stem cells will be reviewed. WNT3, WNT5A and WNT10B are expressed in undifferentiated human embryonic stem cells, while WNT6, WNT8B and WNT10B in endoderm precursor cells. Wnt6 is expressed in intestinal crypt region for stem or progenitor cells. TNF/alpha-WNT10B signaling is a negative feedback loop to maintain homeostasis of adipose tissue and gastrointestinal mucosa with chronic inflammation. Recombinant WNT protein or WNT mimetic (circular peptide, small molecule compound, or RNA aptamer) in combination with Notch mimetic, FGF protein, and BMP protein opens a new window to tissue engineering for regenerative medicine.

  2. Protein phosphorylation and its role in archaeal signal transduction

    PubMed Central

    Esser, Dominik; Hoffmann, Lena; Pham, Trong Khoa; Bräsen, Christopher; Qiu, Wen; Wright, Phillip C.; Albers, Sonja-Verena; Siebers, Bettina

    2016-01-01

    Reversible protein phosphorylation is the main mechanism of signal transduction that enables cells to rapidly respond to environmental changes by controlling the functional properties of proteins in response to external stimuli. However, whereas signal transduction is well studied in Eukaryotes and Bacteria, the knowledge in Archaea is still rather scarce. Archaea are special with regard to protein phosphorylation, due to the fact that the two best studied phyla, the Euryarchaeota and Crenarchaeaota, seem to exhibit fundamental differences in regulatory systems. Euryarchaeota (e.g. halophiles, methanogens, thermophiles), like Bacteria and Eukaryotes, rely on bacterial-type two-component signal transduction systems (phosphorylation on His and Asp), as well as on the protein phosphorylation on Ser, Thr and Tyr by Hanks-type protein kinases. Instead, Crenarchaeota (e.g. acidophiles and (hyper)thermophiles) only depend on Hanks-type protein phosphorylation. In this review, the current knowledge of reversible protein phosphorylation in Archaea is presented. It combines results from identified phosphoproteins, biochemical characterization of protein kinases and protein phosphatases as well as target enzymes and first insights into archaeal signal transduction by biochemical, genetic and polyomic studies. PMID:27476079

  3. A screen for transcription factor targets of Glycogen Synthase Kinase-3 highlights an inverse correlation of NFκB and Androgen Receptor Signaling in Prostate Cancer

    PubMed Central

    Campa, Victor M.; Baltziskueta, Eder; Bengoa-Vergniory, Nora; Gorroño-Etxebarria, Irantzu; Wesołowski, Radosław; Waxman, Jonathan; Kypta, Robert M.

    2014-01-01

    Expression of Glycogen Synthase Kinase-3 (GSK-3) is elevated in prostate cancer and its inhibition reduces prostate cancer cell proliferation, in part by reducing androgen receptor (AR) signaling. However, GSK-3 inhibition can also activate signals that promote cell proliferation and survival, which may preclude the use of GSK-3 inhibitors in the clinic. To identify such signals in prostate cancer, we screened for changes in transcription factor target DNA binding activity in GSK-3-silenced cells. Among the alterations was a reduction in AR DNA target binding, as predicted from previous studies, and an increase in NFκB DNA target binding. Consistent with the latter, gene silencing of GSK-3 or inhibition using the GSK-3 inhibitor CHIR99021 increased basal NFκB transcriptional activity. Activation of NFκB was accompanied by an increase in the level of the NFκB family member RelB. Conversely, silencing RelB reduced activation of NFκB by CHIR99021. Furthermore, the reduction of prostate cancer cell proliferation by CHIR99021 was potentiated by inhibition of NFκB signaling using the IKK inhibitor PS1145. Finally, stratification of human prostate tumor gene expression data for GSK3 revealed an inverse correlation between NFκB-dependent and androgen-dependent gene expression, consistent with the results from the transcription factor target DNA binding screen. In addition, there was a correlation between expression of androgen-repressed NFκB target genes and reduced survival of patients with metastatic prostate cancer. These findings highlight an association between GSK-3/AR and NFκB signaling and its potential clinical importance in metastatic prostate cancer. PMID:25327559

  4. A screen for transcription factor targets of glycogen synthase kinase-3 highlights an inverse correlation of NFκB and androgen receptor signaling in prostate cancer.

    PubMed

    Campa, Victor M; Baltziskueta, Eder; Bengoa-Vergniory, Nora; Gorroño-Etxebarria, Irantzu; Wesołowski, Radosław; Waxman, Jonathan; Kypta, Robert M

    2014-09-30

    Expression of Glycogen Synthase Kinase-3 (GSK-3) is elevated in prostate cancer and its inhibition reduces prostate cancer cell proliferation, in part by reducing androgen receptor (AR) signaling. However, GSK-3 inhibition can also activate signals that promote cell proliferation and survival, which may preclude the use of GSK-3 inhibitors in the clinic. To identify such signals in prostate cancer, we screened for changes in transcription factor target DNA binding activity in GSK-3-silenced cells. Among the alterations was a reduction in AR DNA target binding, as predicted from previous studies, and an increase in NFκB DNA target binding. Consistent with the latter, gene silencing of GSK-3 or inhibition using the GSK-3 inhibitor CHIR99021 increased basal NFκB transcriptional activity. Activation of NFκB was accompanied by an increase in the level of the NFκB family member RelB. Conversely, silencing RelB reduced activation of NFκB by CHIR99021. Furthermore, the reduction of prostate cancer cell proliferation by CHIR99021 was potentiated by inhibition of NFκB signaling using the IKK inhibitor PS1145. Finally, stratification of human prostate tumor gene expression data for GSK3 revealed an inverse correlation between NFκB-dependent and androgen-dependent gene expression, consistent with the results from the transcription factor target DNA binding screen. In addition, there was a correlation between expression of androgen-repressed NFκB target genes and reduced survival of patients with metastatic prostate cancer. These findings highlight an association between GSK-3/AR and NFκB signaling and its potential clinical importance in metastatic prostate cancer.

  5. Radar target classification method with high accuracy and decision speed performance using MUSIC spectrum vectors and PCA projection

    NASA Astrophysics Data System (ADS)

    Secmen, Mustafa

    2011-10-01

    This paper introduces the performance of an electromagnetic target recognition method in resonance scattering region, which includes pseudo spectrum Multiple Signal Classification (MUSIC) algorithm and principal component analysis (PCA) technique. The aim of this method is to classify an "unknown" target as one of the "known" targets in an aspect-independent manner. The suggested method initially collects the late-time portion of noise-free time-scattered signals obtained from different reference aspect angles of known targets. Afterward, these signals are used to obtain MUSIC spectrums in real frequency domain having super-resolution ability and noise resistant feature. In the final step, PCA technique is applied to these spectrums in order to reduce dimensionality and obtain only one feature vector per known target. In the decision stage, noise-free or noisy scattered signal of an unknown (test) target from an unknown aspect angle is initially obtained. Subsequently, MUSIC algorithm is processed for this test signal and resulting test vector is compared with feature vectors of known targets one by one. Finally, the highest correlation gives the type of test target. The method is applied to wire models of airplane targets, and it is shown that it can tolerate considerable noise levels although it has a few different reference aspect angles. Besides, the runtime of the method for a test target is sufficiently low, which makes the method suitable for real-time applications.

  6. MicroRNA expression, target genes, and signaling pathways in infants with a ventricular septal defect.

    PubMed

    Chai, Hui; Yan, Zhaoyuan; Huang, Ke; Jiang, Yuanqing; Zhang, Lin

    2018-02-01

    This study aimed to systematically investigate the relationship between miRNA expression and the occurrence of ventricular septal defect (VSD), and characterize the miRNA target genes and pathways that can lead to VSD. The miRNAs that were differentially expressed in blood samples from VSD and normal infants were screened and validated by implementing miRNA microarrays and qRT-PCR. The target genes regulated by differentially expressed miRNAs were predicted using three target gene databases. The functions and signaling pathways of the target genes were enriched using the GO database and KEGG database, respectively. The transcription and protein expression of specific target genes in critical pathways were compared in the VSD and normal control groups using qRT-PCR and western blotting, respectively. Compared with the normal control group, the VSD group had 22 differentially expressed miRNAs; 19 were downregulated and three were upregulated. The 10,677 predicted target genes participated in many biological functions related to cardiac development and morphogenesis. Four target genes (mGLUR, Gq, PLC, and PKC) were involved in the PKC pathway and four (ECM, FAK, PI3 K, and PDK1) were involved in the PI3 K-Akt pathway. The transcription and protein expression of these eight target genes were significantly upregulated in the VSD group. The 22 miRNAs that were dysregulated in the VSD group were mainly downregulated, which may result in the dysregulation of several key genes and biological functions related to cardiac development. These effects could also be exerted via the upregulation of eight specific target genes, the subsequent over-activation of the PKC and PI3 K-Akt pathways, and the eventual abnormal cardiac development and VSD.

  7. Reliable motion detection of small targets in video with low signal-to-clutter ratios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nichols, S.A.; Naylor, R.B.

    1995-07-01

    Studies show that vigilance decreases rapidly after several minutes when human operators are required to search live video for infrequent intrusion detections. Therefore, there is a need for systems which can automatically detect targets in live video and reserve the operator`s attention for assessment only. Thus far, automated systems have not simultaneously provided adequate detection sensitivity, false alarm suppression, and ease of setup when used in external, unconstrained environments. This unsatisfactory performance can be exacerbated by poor video imagery with low contrast, high noise, dynamic clutter, image misregistration, and/or the presence of small, slow, or erratically moving targets. This papermore » describes a highly adaptive video motion detection and tracking algorithm which has been developed as part of Sandia`s Advanced Exterior Sensor (AES) program. The AES is a wide-area detection and assessment system for use in unconstrained exterior security applications. The AES detection and tracking algorithm provides good performance under stressing data and environmental conditions. Features of the algorithm include: reliable detection with negligible false alarm rate of variable velocity targets having low signal-to-clutter ratios; reliable tracking of targets that exhibit motion that is non-inertial, i.e., varies in direction and velocity; automatic adaptation to both infrared and visible imagery with variable quality; and suppression of false alarms caused by sensor flaws and/or cutouts.« less

  8. Signaling completion of a message transfer from an origin compute node to a target compute node

    DOEpatents

    Blocksome, Michael A [Rochester, MN

    2011-02-15

    Signaling completion of a message transfer from an origin node to a target node includes: sending, by an origin DMA engine, an RTS message, the RTS message specifying an application message for transfer to the target node from the origin node; receiving, by the origin DMA engine, a remote get message containing a data descriptor for the message and a completion notification descriptor, the completion notification descriptor specifying a local memory FIFO data transfer operation for transferring data locally on the origin node; inserting, by the origin DMA engine in an injection FIFO buffer, the data descriptor followed by the completion notification descriptor; transferring, by the origin DMA engine to the target node, the message in dependence upon the data descriptor; and notifying, by the origin DMA engine, the application that transfer of the message is complete in dependence upon the completion notification descriptor.

  9. Targeting cancer stem cell-specific markers and/or associated signaling pathways for overcoming cancer drug resistance.

    PubMed

    Ranji, Peyman; Salmani Kesejini, Tayyebali; Saeedikhoo, Sara; Alizadeh, Ali Mohammad

    2016-10-01

    Cancer stem cells (CSCs) are a small subpopulation of tumor cells with capabilities of self-renewal, dedifferentiation, tumorigenicity, and inherent chemo-and-radio therapy resistance. Tumor resistance is believed to be caused by CSCs that are intrinsically challenging to common treatments. A number of CSC markers including CD44, CD133, receptor tyrosine kinase, aldehyde dehydrogenases, epithelial cell adhesion molecule/epithelial specific antigen, and ATP-binding cassette subfamily G member 2 have been proved as the useful targets for defining CSC population in solid tumors. Furthermore, targeting CSC markers through new therapeutic strategies will ultimately improve treatments and overcome cancer drug resistance. Therefore, the identification of novel strategies to increase sensitivity of CSC markers has major clinical implications. This review will focus on the innovative treatment methods such as nano-, immuno-, gene-, and chemotherapy approaches for targeting CSC-specific markers and/or their associated signaling pathways.

  10. [Piperine regulates glucose metabolism disorder in HepG2 cells of insulin resistance models via targeting upstream target of AMPK signaling pathway].

    PubMed

    Wan, Chun-Ping; Wei, Ya-Gai; Li, Xiao-Xue; Zhang, Li-Jun; Yang, Rui; Bao, Zhao-Ri-Ge-Tu

    2017-02-01

    To investigate the effect of piperine on the disorder of glucose metabolism in the cell model with insulin resistance (IR) and explore the molecules mechanism on intervening the upstream target of AMPK signaling pathway. The insulin resistance models in HepG2 cells were established by fat emulsion stimulation. Then glucose consumption in culture supernatant was detected by GOD-POD method. Enzyme-linked immunosorbent assay(ELISA) was used to measure the levels of leptin(LEP) and adiponectin(APN) in culture supernatant; Real-time quantitative PCR was used to assess the mRNA expression of APN and LEP; and the protein expression levels of LepR, AdipoR1, AdipoR2 and the activation of AMPK signaling pathway were detected by Western blot analysis. The results showed that piperine, rosiglitazone and AMPK agonist AICAR could significantly elevate the glucose consumption in insulin resistance cell models, enhance the level of APN, promote APN mRNA transcripts and increase the protein expression of Adipo receptor. Meanwhile,AMPKα mRNA and р-AMPKα protein expressions were also increased in piperine treated cells, but both LEP mRNA expression and LepR protein expressions were decreased in piperine treated group. The results indicated that piperine could significantly ameliorate the glucose metabolism disorder in insulin resistance cell models through regulating upstream molecules (APN and LEP) of AMPK signaling pathway, and thus activate the AMPK signaling pathway. Copyright© by the Chinese Pharmaceutical Association.

  11. Regulation of L-type CaV1.3 channel activity and insulin secretion by the cGMP-PKG signaling pathway.

    PubMed

    Sandoval, Alejandro; Duran, Paz; Gandini, María A; Andrade, Arturo; Almanza, Angélica; Kaja, Simon; Felix, Ricardo

    2017-09-01

    cGMP is a second messenger widely used in the nervous system and other tissues. One of the major effectors for cGMP is the serine/threonine protein kinase, cGMP-dependent protein kinase (PKG), which catalyzes the phosphorylation of a variety of proteins including ion channels. Previously, it has been shown that the cGMP-PKG signaling pathway inhibits Ca 2+ currents in rat vestibular hair cells and chromaffin cells. This current allegedly flow through voltage-gated Ca V 1.3L-type Ca 2+ channels, and is important for controlling vestibular hair cell sensory function and catecholamine secretion, respectively. Here, we show that native L-type channels in the insulin-secreting RIN-m5F cell line, and recombinant Ca V 1.3 channels heterologously expressed in HEK-293 cells, are regulatory targets of the cGMP-PKG signaling cascade. Our results indicate that the Ca V α 1 ion-conducting subunit of the Ca V 1.3 channels is highly expressed in RIN-m5F cells and that the application of 8-Br-cGMP, a membrane-permeable analogue of cGMP, significantly inhibits Ca 2+ macroscopic currents and impair insulin release stimulated with high K + . In addition, KT-5823, a specific inhibitor of PKG, prevents the current inhibition generated by 8-Br-cGMP in the heterologous expression system. Interestingly, mutating the putative phosphorylation sites to residues resistant to phosphorylation showed that the relevant PKG sites for Ca V 1.3 L-type channel regulation centers on two amino acid residues, Ser793 and Ser860, located in the intracellular loop connecting the II and III repeats of the Ca V α 1 pore-forming subunit of the channel. These findings unveil a novel mechanism for how the cGMP-PKG signaling pathway may regulate Ca V 1.3 channels and contribute to regulate insulin secretion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Extracellular Vesicles from Neural Stem Cells Transfer IFN-γ via Ifngr1 to Activate Stat1 Signaling in Target Cells

    PubMed Central

    Cossetti, Chiara; Iraci, Nunzio; Mercer, Tim R.; Leonardi, Tommaso; Alpi, Emanuele; Drago, Denise; Alfaro-Cervello, Clara; Saini, Harpreet K.; Davis, Matthew P.; Schaeffer, Julia; Vega, Beatriz; Stefanini, Matilde; Zhao, CongJian; Muller, Werner; Garcia-Verdugo, Jose Manuel; Mathivanan, Suresh; Bachi, Angela; Enright, Anton J.; Mattick, John S.; Pluchino, Stefano

    2015-01-01

    SUMMARY The idea that stem cell therapies work only via cell replacement is challenged by the observation of consistent intercellular molecule exchange between the graft and the host. Here we defined a mechanism of cellular signaling by which neural stem/precursor cells (NPCs) communicate with the microenvironment via extracellular vesicles (EVs), and we elucidated its molecular signature and function. We observed cytokine-regulated pathways that sort proteins and mRNAs into EVs. We described induction of interferon gamma (IFN-γ) pathway in NPCs exposed to proinflammatory cytokines that is mirrored in EVs. We showed that IFN-γ bound to EVs through Ifngr1 activates Stat1 in target cells. Finally, we demonstrated that endogenous Stat1 and Ifngr1 in target cells are indispensable to sustain the activation of Stat1 signaling by EV-associated IFN-γ/Ifngr1 complexes. Our study identifies a mechanism of cellular signaling regulated by EV-associated IFN-γ/Ifngr1 complexes, which grafted stem cells may use to communicate with the host immune system. PMID:25242146

  13. Compartment-specific control of signaling from a DNA-sensing immune receptor.

    PubMed

    Engel, Alex; Barton, Gregory M

    2010-11-30

    Many cell signaling events are spatially organized, enabling control of specificity, amplitude, and duration. Toll-like receptor 9 (TLR9) binds to nucleic acid sequences present in bacteria or DNA viruses and initiates a signaling pathway that culminates in the transcriptional induction of genes important for host defense, such as those encoding proinflammatory cytokines and type I interferon. A specialized membrane trafficking pathway has been described that is required for a specific branch of TLR9 signaling: the production of type I interferon. Cells deficient for the clathrin adaptor complex AP-3 failed to traffic TLR9 to a specific endosomal compartment and were unable to produce type I interferon despite normal increases in the abundance of interleukin-12p40, a proinflammatory cytokine. These findings support a model in which the targets of TLR9 engagement are controlled by the compartment in which TLR9 is activated.

  14. Molecular mechanisms and signaling pathways of angiotensin II-induced muscle wasting: potential therapeutic targets for cardiac cachexia

    PubMed Central

    Yoshida, Tadashi; Tabony, A. Michael; Galvez, Sarah; Mitch, William E.; Higashi, Yusuke; Sukhanov, Sergiy; Delafontaine, Patrice

    2013-01-01

    Cachexia is a serious complication of many chronic diseases, such as congestive heart failure (CHF) and chronic kidney disease (CKD). Many factors are involved in the development of cachexia, and there is increasing evidence that angiotensin II (Ang II), the main effector molecule of the renin-angiotensin system (RAS), plays an important role in this process. Patients with advanced CHF or CKD often have increased Ang II levels and cachexia, and angiotensin-converting enzyme (ACE) inhibitor treatment improves weight loss. In rodent models, an increase in systemic Ang II leads to weight loss through increased protein breakdown, reduced protein synthesis in skeletal muscle and decreased appetite. Ang II activates the ubiquitin-proteasome system via generation of reactive oxygen species and via inhibition of the insulin-like growth factor-1 signaling pathway. Furthermore, Ang II inhibits 5′ AMP-activated protein kinase (AMPK) activity and disrupts normal energy balance. Ang II also increases cytokines and circulating hormones such as tumor necrosis factor-α, interleukin-6, serum amyloid-A, glucocorticoids and myostatin, which regulate muscle protein synthesis and degradation. Ang II acts on hypothalamic neurons to regulate orexigenic/anorexigenic neuropeptides, such as neuropeptide-Y, orexin and corticotropin-releasing hormone, leading to reduced appetite. Also, Ang II may regulate skeletal muscle regenerative processes. Several clinical studies have indicated that blockade of Ang II signaling via ACE inhibitors or Ang II type 1 receptor blockers prevents weight loss and improves muscle strength. Thus the RAS is a promising target for the treatment of muscle atrophy in patients with CHF and CKD. PMID:23769949

  15. A sequential multi-target Mps1 phosphorylation cascade promotes spindle checkpoint signaling

    PubMed Central

    Ji, Zhejian; Gao, Haishan; Jia, Luying; Li, Bing; Yu, Hongtao

    2017-01-01

    The master spindle checkpoint kinase Mps1 senses kinetochore-microtubule attachment and promotes checkpoint signaling to ensure accurate chromosome segregation. The kinetochore scaffold Knl1, when phosphorylated by Mps1, recruits checkpoint complexes Bub1–Bub3 and BubR1–Bub3 to unattached kinetochores. Active checkpoint signaling ultimately enhances the assembly of the mitotic checkpoint complex (MCC) consisting of BubR1–Bub3, Mad2, and Cdc20, which inhibits the anaphase-promoting complex or cyclosome bound to Cdc20 (APC/CCdc20) to delay anaphase onset. Using in vitro reconstitution, we show that Mps1 promotes APC/C inhibition by MCC components through phosphorylating Bub1 and Mad1. Phosphorylated Bub1 binds to Mad1–Mad2. Phosphorylated Mad1 directly interacts with Cdc20. Mutations of Mps1 phosphorylation sites in Bub1 or Mad1 abrogate the spindle checkpoint in human cells. Therefore, Mps1 promotes checkpoint activation through sequentially phosphorylating Knl1, Bub1, and Mad1. This sequential multi-target phosphorylation cascade makes the checkpoint highly responsive to Mps1 and to kinetochore-microtubule attachment. DOI: http://dx.doi.org/10.7554/eLife.22513.001 PMID:28072388

  16. Oleanolic Acid Alters Multiple Cell Signaling Pathways: Implication in Cancer Prevention and Therapy.

    PubMed

    Žiberna, Lovro; Šamec, Dunja; Mocan, Andrei; Nabavi, Seyed Fazel; Bishayee, Anupam; Farooqi, Ammad Ahmad; Sureda, Antoni; Nabavi, Seyed Mohammad

    2017-03-16

    Nowadays, much attention has been paid to diet and dietary supplements as a cost-effective therapeutic strategy for prevention and treatment of a myriad of chronic and degenerative diseases. Rapidly accumulating scientific evidence achieved through high-throughput technologies has greatly expanded the understanding about the multifaceted nature of cancer. Increasingly, it is being realized that deregulation of spatio-temporally controlled intracellular signaling cascades plays a contributory role in the onset and progression of cancer. Therefore, targeting regulators of oncogenic signaling cascades is essential to prevent and treat cancer. A plethora of preclinical and epidemiological evidences showed promising role of phytochemicals against several types of cancer. Oleanolic acid, a common pentacyclic triterpenoid, is mainly found in olive oil, as well as several plant species. It is a potent inhibitor of cellular inflammatory process and a well-known inducer of phase 2 xenobiotic biotransformation enzymes. Main molecular mechanisms underlying anticancer effects of oleanolic acid are mediated by caspases, 5' adenosine monophosphate-activated protein kinase, extracellular signal-regulated kinase 1/2, matrix metalloproteinases, pro-apoptotic Bax and bid, phosphatidylinositide 3-kinase/Akt1/mechanistic target of rapamycin, reactive oxygen species/apoptosis signal-regulating kinase 1/p38 mitogen-activated protein kinase, nuclear factor-κB, cluster of differentiation 1, CKD4, s6k, signal transducer and activator of transcription 3, as well as aforementioned signaling pathways . In this work, we critically review the scientific literature on the molecular targets of oleanolic acid implicated in the prevention and treatment of several types of cancer. We also discuss chemical aspects, natural sources, bioavailability, and safety of this bioactive phytochemical.

  17. Neuronal Target Identification Requires AHA-1-Mediated Fine-Tuning of Wnt Signaling in C. elegans

    PubMed Central

    Zhang, Jingyan; Li, Xia; Jevince, Angela R.; Guan, Liying; Wang, Jiaming; Hall, David H.; Huang, Xun; Ding, Mei

    2013-01-01

    Electrical synaptic transmission through gap junctions is a vital mode of intercellular communication in the nervous system. The mechanism by which reciprocal target cells find each other during the formation of gap junctions, however, is poorly understood. Here we show that gap junctions are formed between BDU interneurons and PLM mechanoreceptors in C. elegans and the connectivity of BDU with PLM is influenced by Wnt signaling. We further identified two PAS-bHLH family transcription factors, AHA-1 and AHR-1, which function cell-autonomously within BDU and PLM to facilitate the target identification process. aha-1 and ahr-1 act genetically upstream of cam-1. CAM-1, a membrane-bound receptor tyrosine kinase, is present on both BDU and PLM cells and likely serves as a Wnt antagonist. By binding to a cis-regulatory element in the cam-1 promoter, AHA-1 enhances cam-1 transcription. Our study reveals a Wnt-dependent fine-tuning mechanism that is crucial for mutual target cell identification during the formation of gap junction connections. PMID:23825972

  18. Xenon Protects Against Septic Acute Kidney Injury via miR-21 Target Signaling Pathway.

    PubMed

    Jia, Ping; Teng, Jie; Zou, Jianzhou; Fang, Yi; Wu, Xie; Liang, Mingyu; Ding, Xiaoqiang

    2015-07-01

    Septic acute kidney injury is one of the most common and life-threatening complications in critically ill patients, and there is no approved effective treatment. We have shown xenon provides renoprotection against ischemia-reperfusion injury and nephrotoxicity in rodents via inhibiting apoptosis. Here, we studied the effects of xenon preconditioning on septic acute kidney injury and its mechanism. Experimental animal investigation. University research laboratory. Experiments were performed with male C57BL/6 mice, 10 weeks of age, weighing 20-25 g. We induced septic acute kidney injury by a single intraperitoneal injection of Escherichia coli lipopolysaccharide at a dose of 20 mg/kg. Mice were exposed for 2 hours to either 70% xenon or 70% nitrogen, 24 hours before the onset of septic acute kidney injury. In vivo knockdown of miR-21 was performed using locked nucleic acid-modified anti-miR, the role of miR-21 in renal protection conferred by the xenon preconditioning was examined, and miR-21 signaling pathways were analyzed. Xenon preconditioning provided morphologic and functional renoprotection, characterized by attenuation of renal tubular damage, apoptosis, and a reduction in inflammation. Furthermore, xenon treatment significantly upregulated the expression of miR-21 in kidney, suppressed proinflammatory factor programmed cell death protein 4 expression and nuclear factor-κB activity, and increased interleukin-10 production. Meanwhile, xenon preconditioning also suppressed the expression of proapoptotic protein phosphatase and tensin homolog deleted on chromosome 10, activating protein kinase B signaling pathway, subsequently increasing the expression of antiapoptotic B-cell lymphoma-2, and inhibiting caspase-3 activity. Knockdown of miR-21 upregulated its target effectors programmed cell death protein 4 and phosphatase and tensin homolog deleted on chromosome 10 expression, resulted in an increase in apoptosis, and exacerbated lipopolysaccharide

  19. Xenon Protects Against Septic Acute Kidney Injury via miR-21 Target Signaling Pathway*

    PubMed Central

    Jia, Ping; Teng, Jie; Zou, Jianzhou; Fang, Yi; Wu, Xie; Liang, Mingyu

    2015-01-01

    Objectives: Septic acute kidney injury is one of the most common and life-threatening complications in critically ill patients, and there is no approved effective treatment. We have shown xenon provides renoprotection against ischemia-reperfusion injury and nephrotoxicity in rodents via inhibiting apoptosis. Here, we studied the effects of xenon preconditioning on septic acute kidney injury and its mechanism. Design: Experimental animal investigation. Setting: University research laboratory. Subjects: Experiments were performed with male C57BL/6 mice, 10 weeks of age, weighing 20–25 g. Interventions: We induced septic acute kidney injury by a single intraperitoneal injection of Escherichia coli lipopolysaccharide at a dose of 20 mg/kg. Mice were exposed for 2 hours to either 70% xenon or 70% nitrogen, 24 hours before the onset of septic acute kidney injury. In vivo knockdown of miR-21 was performed using locked nucleic acid-modified anti-miR, the role of miR-21 in renal protection conferred by the xenon preconditioning was examined, and miR-21 signaling pathways were analyzed. Measurements and Main Results: Xenon preconditioning provided morphologic and functional renoprotection, characterized by attenuation of renal tubular damage, apoptosis, and a reduction in inflammation. Furthermore, xenon treatment significantly upregulated the expression of miR-21 in kidney, suppressed proinflammatory factor programmed cell death protein 4 expression and nuclear factor-κB activity, and increased interleukin-10 production. Meanwhile, xenon preconditioning also suppressed the expression of proapoptotic protein phosphatase and tensin homolog deleted on chromosome 10, activating protein kinase B signaling pathway, subsequently increasing the expression of antiapoptotic B-cell lymphoma-2, and inhibiting caspase-3 activity. Knockdown of miR-21 upregulated its target effectors programmed cell death protein 4 and phosphatase and tensin homolog deleted on chromosome 10

  20. Switch from type II to I Fas/CD95 death signaling on in vitro culturing of primary hepatocytes.

    PubMed

    Walter, Dorothée; Schmich, Kathrin; Vogel, Sandra; Pick, Robert; Kaufmann, Thomas; Hochmuth, Florian Christoph; Haber, Angelika; Neubert, Karin; McNelly, Sabine; von Weizsäcker, Fritz; Merfort, Irmgard; Maurer, Ulrich; Strasser, Andreas; Borner, Christoph

    2008-12-01

    Fas/CD95-induced apoptosis of hepatocytes in vivo proceeds through the so-called type II pathway, requiring the proapoptotic BH3-only Bcl-2 family member Bid for mitochondrial death signaling. Consequently, Bid-deficient mice are protected from anti-Fas antibody injection induced fatal hepatitis. We report the unexpected finding that freshly isolated mouse hepatocytes, cultured on collagen or Matrigel, become independent of Bid for Fas-induced apoptosis, thereby switching death signaling from type II to type I. In such in vitro cultures, Fas ligand (FasL) activates caspase-3 without Bid cleavage, Bax/Bak activation or cytochrome c release, and neither Bid ablation nor Bcl-2 overexpression is protective. The type II to type I switch depends on extracellular matrix adhesion, as primary hepatocytes in suspension die in a Bid-dependent manner. Moreover, the switch is specific for FasL-induced apoptosis as collagen-plated Bid-deficient hepatocytes are protected from tumor necrosis factor alpha/actinomycin D (TNFalpha/ActD)-induced apoptosis. Our data suggest a selective crosstalk between extracellular matrix and Fas-mediated signaling that favors mitochondria-independent type I apoptosis induction.

  1. Antibody targeting of HER2/HER3 signaling overcomes heregulin-induced resistance to PI3K inhibition in prostate cancer.

    PubMed

    Poovassery, Jayakumar S; Kang, Jeffrey C; Kim, Dongyoung; Ober, Raimund J; Ward, E Sally

    2015-07-15

    Dysregulated expression and/or mutations of the various components of the phosphoinositide 3-kinase (PI3K)/Akt pathway occur with high frequency in prostate cancer and are associated with the development and progression of castration resistant tumors. However, small molecule kinase inhibitors that target this signaling pathway have limited efficacy in inhibiting tumor growth, primarily due to compensatory survival signals through receptor tyrosine kinases (RTKs). Although members of the epidermal growth factor receptor (EGFR), or HER, family of RTKs are strongly implicated in the development and progression of prostate cancer, targeting individual members of this family such as EGFR or HER2 has resulted in limited success in clinical trials. Multiple studies indicate a critical role for HER3 in the development of resistance against both HER-targeted therapies and PI3K/Akt pathway inhibitors. In this study, we found that the growth inhibitory effect of GDC-0941, a class I PI3K inhibitor, is markedly reduced in the presence of heregulin. Interestingly, this effect is more pronounced in cells lacking phosphatase and tensin homolog function. Heregulin-mediated resistance to GDC-0941 is associated with reactivation of Akt downstream of HER3 phosphorylation. Importantly, combined blockade of HER2 and HER3 signaling by an anti-HER2/HER3 bispecific antibody or a mixture of anti-HER2 and anti-HER3 antibodies restores sensitivity to GDC-0941 in heregulin-treated androgen-dependent and -independent prostate cancer cells. These studies indicate that the combination of PI3K inhibitors with HER2/HER3 targeting antibodies may constitute a promising therapeutic strategy for prostate cancer. © 2014 UICC.

  2. Transcriptome Engineering with RNA-Targeting Type VI-D CRISPR Effectors.

    PubMed

    Konermann, Silvana; Lotfy, Peter; Brideau, Nicholas J; Oki, Jennifer; Shokhirev, Maxim N; Hsu, Patrick D

    2018-04-19

    Class 2 CRISPR-Cas systems endow microbes with diverse mechanisms for adaptive immunity. Here, we analyzed prokaryotic genome and metagenome sequences to identify an uncharacterized family of RNA-guided, RNA-targeting CRISPR systems that we classify as type VI-D. Biochemical characterization and protein engineering of seven distinct orthologs generated a ribonuclease effector derived from Ruminococcus flavefaciens XPD3002 (CasRx) with robust activity in human cells. CasRx-mediated knockdown exhibits high efficiency and specificity relative to RNA interference across diverse endogenous transcripts. As one of the most compact single-effector Cas enzymes, CasRx can also be flexibly packaged into adeno-associated virus. We target virally encoded, catalytically inactive CasRx to cis elements of pre-mRNA to manipulate alternative splicing, alleviating dysregulated tau isoform ratios in a neuronal model of frontotemporal dementia. Our results present CasRx as a programmable RNA-binding module for efficient targeting of cellular RNA, enabling a general platform for transcriptome engineering and future therapeutic development. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Dual role of the carboxyl-terminal region of pig liver L-kynurenine 3-monooxygenase: mitochondrial-targeting signal and enzymatic activity.

    PubMed

    Hirai, Kumiko; Kuroyanagi, Hidehito; Tatebayashi, Yoshitaka; Hayashi, Yoshitaka; Hirabayashi-Takahashi, Kanako; Saito, Kuniaki; Haga, Seiich; Uemura, Tomihiko; Izumi, Susumu

    2010-12-01

    l-kynurenine 3-monooxygenase (KMO) is an NAD(P)H-dependent flavin monooxygenase that catalyses the hydroxylation of l-kynurenine to 3-hydroxykynurenine, and is localized as an oligomer in the mitochondrial outer membrane. In the human brain, KMO may play an important role in the formation of two neurotoxins, 3-hydroxykynurenine and quinolinic acid, both of which provoke severe neurodegenerative diseases. In mosquitos, it plays a role in the formation both of eye pigment and of an exflagellation-inducing factor (xanthurenic acid). Here, we present evidence that the C-terminal region of pig liver KMO plays a dual role. First, it is required for the enzymatic activity. Second, it functions as a mitochondrial targeting signal as seen in monoamine oxidase B (MAO B) or outer membrane cytochrome b(5). The first role was shown by the comparison of the enzymatic activity of two mutants (C-terminally FLAG-tagged KMO and carboxyl-terminal truncation form, KMOΔC50) with that of the wild-type enzyme expressed in COS-7 cells. The second role was demonstrated with fluorescence microscopy by the comparison of the intracellular localization of the wild-type, three carboxyl-terminal truncated forms (ΔC20, ΔC30 and ΔC50), C-terminally FLAG-tagged wild-type and a mutant KMO, where two arginine residues, Arg461-Arg462, were replaced with Ser residues.

  4. microRNA-145 regulates the RLR signaling pathway in miiuy croaker after poly(I:C) stimulation via targeting MDA5.

    PubMed

    Han, Jingjing; Sun, Yuena; Song, Weihua; Xu, Tianjun

    2017-03-01

    MicroRNAs (miRNAs) are endogenous small non-coding RNAs that participate in diverse biological processes via degrading the target mRNAs or repressing translation. In this study, the regulation of miRNA to the RLR (RIG-I-like receptor) signaling pathway by degrading the target mRNAs was researched in miiuy croaker. MDA5, a microRNA-145-5p (miR-145-5p) putative target gene, was predicted by bioinformatics, and the target sites from the 3'untranslated region of MDA5 transcripts were confirmed using luciferase reporter assays. Pre-miR-145 was more effective in inhibiting MDA5 than miR-145-5p mimic, and the effect was dose- and time-dependent. The expression patterns of miR-145-5p and MDA5 were analyzed in liver and kidney from miiuy croaker. Results implied that miR-145-5p may function via degrading the MDA5 mRNAs, thereby regulating the RLR signaling pathway. Studies on miR-145-5p will enrich knowledge of its functions in immune response regulation in fish, as well as offer a basis for regulatory networks that are composed of numerous miRNAs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. An electrochemical aptasensor for multiplex antibiotics detection based on metal ions doped nanoscale MOFs as signal tracers and RecJf exonuclease-assisted targets recycling amplification.

    PubMed

    Chen, Meng; Gan, Ning; Zhou, You; Li, Tianhua; Xu, Qing; Cao, Yuting; Chen, Yinji

    2016-12-01

    An ultrasensitive electrochemical aptasensor for simultaneous detection of oxytetracycline (OTC) and kanamycin (KAN) has been developed based on metal ions doped metal organic frame materials (MOFs) as signal tracers and RecJ f exonuclease-catalyzed targets recycling amplification. The aptasensor consists of capture beads (the anti-single-stranded DNA Antibody, as anti-ssDNA Ab, labeled on Dynabeads) and nanoscale MOF (NMOF) based signal tracers (simplified as Apts-MNM, the NMOF labeled with metal ions and the aptamers). Particularly, the MOF (UiO-66-NH 2 ), with large internal surface areas, ultrahigh porosity and abundant amine groups in the pores, was employed as substrates to carry plenty of metal ions (Pb 2+ or Cd 2+ ) and label aptamers of OTC or KAN. Thus, the aptasensor is formed by the specific recognition between anti-ssDNA Ab and aptamers. In the presence of targets (OTC and KAN), aptamers prefer to form targets-Apts-MNM complexes in lieu of anti-ssDNA Ab-aptamer complexes, which results in the dissociation of Apts-MNM from capture beads. With the employment of RecJ f exonuclease, targets-Apts-MNM in supernatant was digested into mononucleotides and liberated the target, which can further participate in the next reaction cycling to produce more signal tracers. After magnetic separation, the enhanced square wave voltammetry (SWV) signals were produced from signal tracers. The aptasensor exhibited a linear correlation in the range from 0.5pM to 50nM, with detection limits of 0.18pM and 0.15pM (S/N=3) toward OTC and KAN respectively. This strategy provides specificity and sensitive approach for multiplex antibiotics detection and has promising applications in food analysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Tumor cell membrane-targeting pH-dependent electron donor-acceptor fluorescence systems with low background signals.

    PubMed

    Han, Liang; Liu, Mingming; Ye, Deyong; Zhang, Ning; Lim, Ed; Lu, Jing; Jiang, Chen

    2014-03-01

    Minimizing the background signal is crucial for developing tumor-imaging techniques with sufficient specificity and sensitivity. Here we use pH difference between healthy tissues and tumor and tumor targeting delivery to achieve this goal. We synthesize fluorophore-dopamine conjugate as pH-dependent electron donor-acceptor fluorescence system. Fluorophores are highly sensitive to electron-transfer processes, which can alter their optical properties. The intrinsic redox properties of dopamine are oxidation of hydroquinone to quinone at basic pH and reduction of quinone to hydroquinone at acidic pH. Quinone can accept electron then quench fluorescence. We design tumor cell membrane-targeting carrier for delivery. We demonstrate quenched fluorophore-quinone can be specially transferred to tumor extracellular environment and tumor-accumulated fluorophore can be activated by acidic pH. These tumor-targeting pH-dependent electron donor-acceptor fluorescence systems may offer new opportunity for developing tumor-imaging techniques. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. KSHV LANA inhibits TGF-β signaling through epigenetic silencing of the TGF-β type II receptor

    PubMed Central

    Di Bartolo, Daniel L.; Cannon, Mark; Liu, Yi-Fang; Renne, Rolf; Chadburn, Amy; Boshoff, Chris

    2008-01-01

    Signaling through the transforming growth factor–β (TGF-β) pathway results in growth inhibition and induction of apoptosis in various cell types. We show that this pathway is blocked in Kaposi sarcoma herpesvirus (KSHV)–infected primary effusion lymphoma through down-regulation of the TGF-β type II receptor (TβRII) by epigenetic mechanisms. Our data also suggest that KSHV infection may result in lower expression of TβRII in Kaposi sarcoma and multicentric Castleman disease. KSHV-encoded LANA associates with the promoter of TβRII and leads to its methylation and to the deacetylation of proximal histones. Reestablishment of signaling through this pathway reduces viability of these cells, inferring that KSHV-mediated blockage of TGF-β signaling plays a role in the establishment and progression of KSHV-associated neoplasia. These data suggest a mechanism whereby KSHV evades both the antiproliferative effects of TGF-β signaling by silencing TβRII gene expression and immune recognition by suppressing TGF-β–responsive immune cells through the elevated secretion of TGF-β1. PMID:18199825

  8. Neuroendocrine integration of nutritional signals on reproduction.

    PubMed

    Evans, Maggie C; Anderson, Greg M

    2017-02-01

    Reproductive function in mammals is energetically costly and therefore tightly regulated by nutritional status. To enable this integration of metabolic and reproductive function, information regarding peripheral nutritional status must be relayed centrally to the gonadotropin-releasing hormone (GNRH) neurons that drive reproductive function. The metabolically relevant hormones leptin, insulin and ghrelin have been identified as key mediators of this 'metabolic control of fertility'. However, the neural circuitry through which they act to exert their control over GNRH drive remains incompletely understood. With the advent of Cre-LoxP technology, it has become possible to perform targeted gene-deletion and gene-rescue experiments and thus test the functional requirement and sufficiency, respectively, of discrete hormone-neuron signaling pathways in the metabolic control of reproductive function. This review discusses the findings from these investigations, and attempts to put them in context with what is known from clinical situations and wild-type animal models. What emerges from this discussion is clear evidence that the integration of nutritional signals on reproduction is complex and highly redundant, and therefore, surprisingly difficult to perturb. Consequently, the deletion of individual hormone-neuron signaling pathways often fails to cause reproductive phenotypes, despite strong evidence that the targeted pathway plays a role under normal physiological conditions. Although transgenic studies rarely reveal a critical role for discrete signaling pathways, they nevertheless prove to be a good strategy for identifying whether a targeted pathway is absolutely required, critically involved, sufficient or dispensable in the metabolic control of fertility. © 2017 Society for Endocrinology.

  9. Analysis of focusing error signals by differential astigmatic method under off-center tracking in the land-groove-type optical disk

    NASA Astrophysics Data System (ADS)

    Shinoda, Masahisa; Nakatani, Hidehiko

    2015-04-01

    We theoretically calculate the behavior of the focusing error signal in the land-groove-type optical disk when the objective lens traverses on out of the radius of the optical disk. The differential astigmatic method is employed instead of the conventional astigmatic method for generating the focusing error signals. The signal behaviors are compared and analyzed in terms of the gain difference of the slope sensitivity of the focusing error signals from the land and the groove. In our calculation, the format of digital versatile disc-random access memory (DVD-RAM) is adopted as the land-groove-type optical disk model, and advantageous conditions for suppressing the gain difference are investigated. The calculation method and results described in this paper will be reflected in the next generation land-groove-type optical disks.

  10. gga-miR-155 Enhances Type I Interferon Expression and Suppresses Infectious Burse Disease Virus Replication via Targeting SOCS1 and TANK

    PubMed Central

    Wang, Bin; Fu, Mengjiao; Liu, Yanan; Wang, Yongqiang; Li, Xiaoqi; Cao, Hong; Zheng, Shijun J.

    2018-01-01

    Infectious bursal disease (IBD) is an acute, highly contagious, and immunosuppressive avian disease caused by IBD virus (IBDV). MicroRNAs (miRNAs) are involved in host-pathogen interactions and innate immune response to viral infection. However, the role of miRNAs in host response to IBDV infection is not clear. We report here that gga-miR-155 acts as an anti-virus host factor inhibiting IBDV replication. We found that transfection of DF-1 cells with gga-miR-155 suppressed IBDV replication, while blockage of the endogenous gga-miR-155 by inhibitors enhanced IBDV replication. Furthermore, our data showed that gga-miR-155 enhanced the expression of type I interferon in DF-1 cells post IBDV infection. Importantly, we found that gga-miR-155 enhanced type I interferon expression via targeting SOCS1 and TANK, two negative regulators of type I IFN signaling. These results indicate that gga-miR-155 plays a critical role in cell response to IBDV infection. PMID:29564226

  11. Bmi-1-targeting suppresses osteosarcoma aggressiveness through the NF-κB signaling pathway

    PubMed Central

    Liu, Jiaguo; Luo, Bin; Zhao, Meng

    2017-01-01

    Bone cancer is one of the most lethal malignancies and the specific causes of tumor initiation are not well understood. B-cell-specific Moloney murine leukemia virus integration site 1 protein (Bmi-1) has been reported to be associated with the initiation and progression of osteosarcoma, and as a prognostic indicator in the clinic. In the current study, a full-length antibody targeting Bmi-1 (AbBmi-1) was produced and the preclinical value of Bmi-1-targeted therapy was evaluated in bone carcinoma cells and tumor xenograft mice. The results indicated that the Bmi-1 expression level was markedly upregulated in bone cancer cell lines, and inhibition of Bmi-1 by AbBmi-1 reduced the invasiveness and migration of osteosarcoma cells. Overexpression of Bmi-1 promoted proliferation and angiogenesis, and increased apoptosis resistance induced by cisplatin via the nuclear factor-κB (NF-κB) signal pathway. In addition, AbBmi-1 treatment inhibited the tumorigenicity of osteosarcoma cells in vivo. Furthermore, AbBmi-1 blocked NF-κB signaling and reduced MMP-9 expression. Furthermore, Bmi-1 promoted osteosarcoma tumor growth, whereas AbBmi-1 significantly inhibited osteosarcoma tumor growth in vitro and in vivo. Notably, AbBmi-1 decreased the percentages of Ki67-positive cells and terminal deoxynucleotidyl transferase dUTP nick end labeling-positive cells in tumors compared with Bmi-1-treated and PBS controls. Notably, MMP-9 and NF-κB expression were downregulated by treatment with AbBmi-1 in MG-63 osteosarcoma cells. In conclusion, the data provides evidence that AbBmi-1 inhibited the progression of osteosarcoma, suggesting that AbBmi-1 may be a novel anti-cancer agent through the inhibition of Bmi-1 via activating the NF-κB pathway in osteosarcoma. PMID:28983587

  12. Staphylococcus aureus activates type I IFN signaling in mice and humans through the Xr repeated sequences of protein A

    PubMed Central

    Martin, Francis J.; Gomez, Marisa I.; Wetzel, Dawn M.; Memmi, Guido; O’Seaghdha, Maghnus; Soong, Grace; Schindler, Christian; Prince, Alice

    2009-01-01

    The activation of type I IFN signaling is a major component of host defense against viral infection, but it is not typically associated with immune responses to extracellular bacterial pathogens. Using mouse and human airway epithelial cells, we have demonstrated that Staphylococcus aureus activates type I IFN signaling, which contributes to its virulence as a respiratory pathogen. This response was dependent on the expression of protein A and, more specifically, the Xr domain, a short sequence–repeat region encoded by DNA that consists of repeated 24-bp sequences that are the basis of an internationally used epidemiological typing scheme. Protein A was endocytosed by airway epithelial cells and subsequently induced IFN-β expression, JAK-STAT signaling, and IL-6 production. Mice lacking IFN-α/β receptor 1 (IFNAR-deficient mice), which are incapable of responding to type I IFNs, were substantially protected against lethal S. aureus pneumonia compared with wild-type control mice. The profound immunological consequences of IFN-β signaling, particularly in the lung, may help to explain the conservation of multiple copies of the Xr domain of protein A in S. aureus strains and the importance of protein A as a virulence factor in the pathogenesis of staphylococcal pneumonia. PMID:19603548

  13. Calcium Signaling Regulates Trafficking of Familial Hypocalciuric Hypercalcemia (FHH) Mutants of the Calcium Sensing Receptor

    PubMed Central

    Grant, Michael P.; Stepanchick, Ann

    2012-01-01

    Calcium-sensing receptors (CaSRs) regulate systemic Ca2+ homeostasis. Loss-of-function mutations cause familial benign hypocalciuric hypercalcemia (FHH) or neonatal severe hyperparathyroidism (NSHPT). FHH/NSHPT mutations can reduce trafficking of CaSRs to the plasma membrane. CaSR signaling is potentiated by agonist-driven anterograde CaSR trafficking, leading to a new steady state level of plasma membrane CaSR, which is maintained, with minimal functional desensitization, as long as extracellular Ca2+ is elevated. This requirement for CaSR signaling to drive CaSR trafficking to the plasma membrane led us to reconsider the mechanism(s) contributing to dysregulated trafficking of FHH/NSHPT mutants. We simultaneously monitored dynamic changes in plasma membrane levels of CaSR and intracellular Ca2+, using a chimeric CaSR construct, which allowed explicit tracking of plasma membrane levels of mutant or wild-type CaSRs in the presence of nonchimeric partners. Expression of mutants alone revealed severe defects in plasma membrane targeting and Ca2+ signaling, which were substantially rescued by coexpression with wild-type CaSR. Biasing toward heterodimerization of wild-type and FHH/NSHPT mutants revealed that intracellular Ca2+ oscillations were insufficient to rescue plasma membrane targeting. Coexpression of the nonfunctional mutant E297K with the truncation CaSRΔ868 robustly rescued trafficking and Ca2+ signaling, whereas coexpression of distinct FHH/NSHPT mutants rescued neither trafficking nor signaling. Our study suggests that rescue of FHH/NSHPT mutants requires a steady state intracellular Ca2+ response when extracellular Ca2+ is elevated and argues that Ca2+ signaling by wild-type CaSRs rescues FHH mutant trafficking to the plasma membrane. PMID:23077345

  14. Tocotrienols target PI3K/Akt signaling in anti-breast cancer therapy.

    PubMed

    Sylvester, Paul W; Ayoub, Nehad M

    2013-09-01

    The PI3K/Akt signaling pathway mediates mitogen-dependent growth and survival in various types of cancer cells, and inhibition of this pathway results in tumor cell growth arrest and apoptosis. Tocotrienols are natural forms of vitamin E that displays potent anticancer activity at treatment doses that had little or no effect on normal cell viability. Mechanistic studies revealed that the anticancer effects of γ-tocotrienol were associated with a suppression in PI3K/Akt signaling. Additional studies showed that cytotoxic LD50 doses of γ-tocotrienol were 3-5-fold higher than growth inhibitory IC50 treatment doses, suggesting that cytotoxic and antiproliferative effects of γ-tocotrienol might be mediated through different mechanisms. However, γ-tocotrienol-induced caspase activation and apoptosis in mammary tumor cells was also found to be associated with suppression in intracellular PI3K/Akt signaling and subsequent down-regulation of FLIP, an endogenous inhibitor of caspase processing and activation. Since breast cancer cells are significantly more sensitive to the inhibitory effects of γ-tocotrienol on PI3K/Akt signaling than normal cells, these findings suggest that γ-tocotrienol may provide significant health benefits in reducing the risk of breast cancer in women. Studies have also shown that combined treatment of γ-tocotrienol with other chemotherapeutic agents can result in a synergistic anticancer response. Combination therapy was most effective when the anticancer mechanism of action of γ-tocotrienol is complimentary to that of the other drug and can provide significant health benefits in the prevention and/or treatment of breast cancer, while at the same time avoiding tumor resistance or toxic effects that is commonly associated with high dose monotherapy.

  15. Mitogen-Activated Protein Kinase-Interacting Kinase Regulates mTOR/AKT Signaling and Controls the Serine/Arginine-Rich Protein Kinase-Responsive Type 1 Internal Ribosome Entry Site-Mediated Translation and Viral Oncolysis

    PubMed Central

    Brown, Michael C.; Dobrikov, Mikhail I.

    2014-01-01

    ABSTRACT Translation machinery is a major recipient of the principal mitogenic signaling networks involving Raf-ERK1/2 and phosphoinositol 3-kinase (PI3K)-mechanistic target of rapamycin (mTOR). Picornavirus internal ribosomal entry site (IRES)-mediated translation and cytopathogenic effects are susceptible to the status of such signaling cascades in host cells. We determined that tumor-specific cytotoxicity of the poliovirus/rhinovirus chimera PVSRIPO is facilitated by Raf-ERK1/2 signals to the mitogen-activated protein kinase (MAPK)-interacting kinase (MNK) and its effects on the partitioning/activity of the Ser/Arg (SR)-rich protein kinase (SRPK) (M. C. Brown, J. D. Bryant, E. Y. Dobrikova, M. Shveygert, S. S. Bradrick, V. Chandramohan, D. D. Bigner, and M, Gromeier, J. Virol. 22:13135–13148, 2014, doi:http://dx.doi.org/10.1128/JVI.01883-14). Here, we show that MNK regulates SRPK via mTOR and AKT. Our investigations revealed a MNK-controlled mechanism acting on mTORC2-AKT. The resulting suppression of AKT signaling attenuates SRPK activity to enhance picornavirus type 1 IRES translation and favor PVSRIPO tumor cell toxicity and killing. IMPORTANCE Oncolytic immunotherapy with PVSRIPO, the type 1 live-attenuated poliovirus (PV) (Sabin) vaccine containing a human rhinovirus type 2 (HRV2) IRES, is demonstrating early promise in clinical trials with intratumoral infusion in recurrent glioblastoma (GBM). Our investigations demonstrate that the core mechanistic principle of PVSRIPO, tumor-selective translation and cytotoxicity, relies on constitutive ERK1/2-MNK signals that counteract the deleterious effects of runaway AKT-SRPK activity in malignancy. PMID:25187540

  16. Small molecule stabilization of the KSR inactive state antagonizes oncogenic Ras signalling

    PubMed Central

    Dhawan, Neil S.; scopton, Alex P.; Dar, Arvin C.

    2016-01-01

    Deregulation of the Ras–mitogen activated protein kinase (MAPK) pathway is an early event in many different cancers and a key driver of resistance to targeted therapies1. Sustained signalling through this pathway is caused most often by mutations in K-Ras, which biochemically favours the stabilization of active RAF signalling complexes2. Kinase suppressor of Ras (KSR) is a MAPK scaffold3–5 that is subject to allosteric regulation through dimerization with RAF6,7. Direct targeting of KSR could have important therapeutic implications for cancer; however, testing this hypothesis has been difficult owing to a lack of small-molecule antagonists of KSR function. Guided by KSR mutations that selectively suppress oncogenic, but not wild-type, Ras signalling, we developed a class of compounds that stabilize a previously unrecognized inactive state of KSR. These compounds, exemplified by APS-2-79, modulate KSR-dependent MAPK signalling by antagonizing RAF heterodimerization as well as the conformational changes required for phosphorylation and activation of KSR-bound MEK (mitogen-activated protein kinase kinase). Furthermore, APS-2-79 increased the potency of several MEK inhibitors specifically within Ras-mutant cell lines by antagonizing release of negative feedback signalling, demonstrating the potential of targeting KSR to improve the efficacy of current MAPK inhibitors. These results reveal conformational switching in KSR as a druggable regulator of oncogenic Ras, and further suggest co-targeting of enzymatic and scaffolding activities within Ras–MAPK signalling complexes as a therapeutic strategy for overcoming Ras-driven cancers. PMID:27556948

  17. Core signaling pathways in ovarian cancer stem cell revealed by integrative analysis of multi-marker genomics data.

    PubMed

    Zhang, Tianyu; Xu, Jielin; Deng, Siyuan; Zhou, Fengqi; Li, Jin; Zhang, Liwei; Li, Lang; Wang, Qi-En; Li, Fuhai

    2018-01-01

    Tumor recurrence occurs in more than 70% of ovarian cancer patients, and the majority eventually becomes refractory to treatments. Ovarian Cancer Stem Cells (OCSCs) are believed to be responsible for the tumor relapse and drug resistance. Therefore, eliminating ovarian CSCs is important to improve the prognosis of ovarian cancer patients. However, there is a lack of effective drugs to eliminate OCSCs because the core signaling pathways regulating OCSCs remain unclear. Also it is often hard for biologists to identify a few testable targets and infer driver signaling pathways regulating CSCs from a large number of differentially expression genes in an unbiased manner. In this study, we propose a straightforward and integrative analysis to identify potential core signaling pathways of OCSCs by integrating transcriptome data of OCSCs isolated based on two distinctive markers, ALDH and side population, with regulatory network (Transcription Factor (TF) and Target Interactome) and signaling pathways. We first identify the common activated TFs in two OCSC populations integrating the gene expression and TF-target Interactome; and then uncover up-stream signaling cascades regulating the activated TFs. In specific, 22 activated TFs are identified. Through literature search validation, 15 of them have been reported in association with cancer stem cells. Additionally, 10 TFs are found in the KEGG signaling pathways, and their up-stream signaling cascades are extracted, which also provide potential treatment targets. Moreover, 40 FDA approved drugs are identified to target on the up-stream signaling cascades, and 15 of them have been reported in literatures in cancer stem cell treatment. In conclusion, the proposed approach can uncover the activated up-stream signaling, activated TFs and up-regulated target genes that constitute the potential core signaling pathways of ovarian CSC. Also drugs and drug combinations targeting on the core signaling pathways might be able to

  18. ONC201 Targets AR and AR-V7 Signaling, Reduces PSA, and Synergizes with Everolimus in Prostate Cancer.

    PubMed

    Lev, Avital; Lulla, Amriti R; Ross, Brian C; Ralff, Marie D; Makhov, Petr B; Dicker, David T; El-Deiry, Wafik S

    2018-05-01

    Androgen receptor (AR) signaling plays a key role in prostate cancer progression, and androgen deprivation therapy (ADT) is a mainstay clinical treatment regimen for patients with advanced disease. Unfortunately, most prostate cancers eventually become androgen-independent and resistant to ADT with patients progressing to metastatic castration-resistant prostate cancer (mCRPC). Constitutively activated AR variants (AR-V) have emerged as mediators of resistance to AR-targeted therapy and the progression of mCRPC, and they represent an important therapeutic target. Out of at least 15 AR-Vs described thus far, AR-V7 is the most abundant, and its expression correlates with ADT resistance. ONC201/TIC10 is the founding member of the imipridone class of small molecules and has shown anticancer activity in a broad range of tumor types. ONC201 is currently being tested in phase I/II clinical trials for advanced solid tumors, including mCRPC, and hematologic malignancies. There has been promising activity observed in patients in early clinical testing. This study demonstrates preclinical single-agent efficacy of ONC201 using in vitro and in vivo models of prostate cancer. ONC201 has potent antiproliferative and proapoptotic effects in both castration-resistant and -sensitive prostate cancer cells. Furthermore, the data demonstrate that ONC201 downregulates the expression of key drivers of prostate cancer such as AR-V7 and downstream target genes including the clinically used biomarker PSA (KLK3). Finally, the data also provide a preclinical rationale for combination of ONC201 with approved therapeutics for prostate cancer such as enzalutamide, everolimus (mTOR inhibitor), or docetaxel. Implications: The preclinical efficacy of ONC201 as a single agent or in combination, in hormone-sensitive or castration-resistant prostate cancer, suggests the potential for immediate clinical translation. Mol Cancer Res; 16(5); 754-66. ©2018 AACR . ©2018 American Association for Cancer

  19. Biomarkers and Targeted Therapy in Pancreatic Cancer

    PubMed Central

    Karandish, Fataneh; Mallik, Sanku

    2016-01-01

    Pancreatic ductal adenocarcinoma (PDAC) constitutes 90% of pancreatic cancers. PDAC is a complex and devastating disease with only 1%–3% survival rate in five years after the second stage. Treatment of PDAC is complicated due to the tumor microenvironment, changing cell behaviors to the mesenchymal type, altered drug delivery, and drug resistance. Considering that pancreatic cancer shows early invasion and metastasis, critical research is needed to explore different aspects of the disease, such as elaboration of biomarkers, specific signaling pathways, and gene aberration. In this review, we highlight the biomarkers, the fundamental signaling pathways, and their importance in targeted drug delivery for pancreatic cancers. PMID:27147897

  20. Biomarkers and Targeted Therapy in Pancreatic Cancer.

    PubMed

    Karandish, Fataneh; Mallik, Sanku

    2016-01-01

    Pancreatic ductal adenocarcinoma (PDAC) constitutes 90% of pancreatic cancers. PDAC is a complex and devastating disease with only 1%-3% survival rate in five years after the second stage. Treatment of PDAC is complicated due to the tumor microenvironment, changing cell behaviors to the mesenchymal type, altered drug delivery, and drug resistance. Considering that pancreatic cancer shows early invasion and metastasis, critical research is needed to explore different aspects of the disease, such as elaboration of biomarkers, specific signaling pathways, and gene aberration. In this review, we highlight the biomarkers, the fundamental signaling pathways, and their importance in targeted drug delivery for pancreatic cancers.

  1. Identification of type IV collagen exposure as a molecular imaging target for early detection of thoracic aortic dissection

    PubMed Central

    Xu, Ke; Xu, Chen; Zhang, Yanzhenzi; Qi, Feiran; Yu, Bingran; Li, Ping; Jia, Lixin; Li, Yulin; Xu, Fu-jian; Du, Jie

    2018-01-01

    Thoracic aortic dissection (TAD) is an aggressive and life-threatening vascular disease and there is no effective means of early diagnosis of dissection. Type IV collagen (Col-IV) is a major component of the sub-endothelial basement membrane, which is initially exposed followed by endothelial injury as early-stage event of TAD. So, we want to build a noninvasive diagnostic method to detect early dissection by identifying the exposed Col-IV via MRI. Methods: Col-IV-targeted magnetic resonance/ fluorescence dual probe (Col-IV-DOTA-Gd-rhodamine B; CDR) was synthesized by amide reaction and coordination reaction. Flow cytometry analysis was used to evaluate the cell viability of SMC treated with CDR and fluorescence assays were used to assess the Col-IV targeting ability of CDR in vitro. We then examined the sensitivity and specificity of CDR at different stages of TAD via MRI and bioluminescence imaging in vivo. Results: The localization of Col-IV (under the intima) was observed by histology images. CDR bound specifically to Col-IV-expressing vascular smooth muscle cells and BAPN-induced dissected aorta. The CDR signal was co-detected by magnetic resonance imaging (MRI) and bioluminescence imaging as early as 2 weeks after BAPN administration (pre-dissection stage). The ability to detect rupture of dissected aorta was indicated by a strong normalized signal enhancement (NSE) in vivo. Moreover, NSE was negatively correlated with the time of dissection rupture after BAPN administration (r2 = 0.8482). Conclusion: As confirmed by in vivo studies, the CDR can identify the exposed Col-IV in degenerated aorta to monitor the progress of aortic dissection from the early stage to the rupture via MRI. Thus, CDR-enhanced MRI proposes a potential method for dissection screening, and for monitoring disease progression and therapeutic response. PMID:29290819

  2. Subcellular Localization of a Plant Catalase-Phenol Oxidase, AcCATPO, from Amaranthus and Identification of a Non-canonical Peroxisome Targeting Signal

    PubMed Central

    Chen, Ning; Teng, Xiao-Lu; Xiao, Xing-Guo

    2017-01-01

    AcCATPO is a plant catalase-phenol oxidase recently identified from red amaranth. Its physiological function remains unexplored. As the starting step of functional analysis, here we report its subcellular localization and a non-canonical targeting signal. Commonly used bioinformatics programs predicted a peroxisomal localization for AcCATPO, but failed in identification of canonical peroxisomal targeting signals (PTS). The C-terminal GFP tagging led the fusion protein AcCATPO-GFP to the cytosol and the nucleus, but N-terminal tagging directed the GFP-AcCATPO to peroxisomes and nuclei, in transgenic tobacco. Deleting the tripeptide (PTM) at the extreme C-terminus almost ruled out the peroxisomal localization of GFP-AcCATPOΔ3, and removing the C-terminal decapeptide completely excluded peroxisomes as the residence of GFP-AcCATPOΔ10. Furthermore, this decapeptide as a targeting signal could import GFP-10aa to the peroxisome exclusively. Taken together, these results demonstrate that AcCATPO is localized to the peroxisome and the nucleus, and its peroxisomal localization is attributed to a non-canonical PTS1, the C-terminal decapeptide which contains an internal SRL motif and a conserved tripeptide P-S/T-I/M at the extreme of C-terminus. This work may further the study as to the physiological function of AcCATPO, especially clarify its involvement in betalain biosynthesis, and provide a clue to elucidate more non-canonic PTS. PMID:28824680

  3. Subcellular Localization of a Plant Catalase-Phenol Oxidase, AcCATPO, from Amaranthus and Identification of a Non-canonical Peroxisome Targeting Signal.

    PubMed

    Chen, Ning; Teng, Xiao-Lu; Xiao, Xing-Guo

    2017-01-01

    AcCATPO is a plant catalase-phenol oxidase recently identified from red amaranth. Its physiological function remains unexplored. As the starting step of functional analysis, here we report its subcellular localization and a non-canonical targeting signal. Commonly used bioinformatics programs predicted a peroxisomal localization for AcCATPO, but failed in identification of canonical peroxisomal targeting signals (PTS). The C-terminal GFP tagging led the fusion protein AcCATPO-GFP to the cytosol and the nucleus, but N-terminal tagging directed the GFP-AcCATPO to peroxisomes and nuclei, in transgenic tobacco. Deleting the tripeptide (PTM) at the extreme C-terminus almost ruled out the peroxisomal localization of GFP-AcCATPOΔ3, and removing the C-terminal decapeptide completely excluded peroxisomes as the residence of GFP-AcCATPOΔ10. Furthermore, this decapeptide as a targeting signal could import GFP-10aa to the peroxisome exclusively. Taken together, these results demonstrate that AcCATPO is localized to the peroxisome and the nucleus, and its peroxisomal localization is attributed to a non-canonical PTS1, the C-terminal decapeptide which contains an internal SRL motif and a conserved tripeptide P-S/T-I/M at the extreme of C-terminus. This work may further the study as to the physiological function of AcCATPO, especially clarify its involvement in betalain biosynthesis, and provide a clue to elucidate more non-canonic PTS.

  4. Cancer stem cell-targeted therapeutics and delivery strategies.

    PubMed

    Ahmad, Gulzar; Amiji, Mansoor M

    2017-08-01

    Cancer initiating or stem cells (CSCs) are a small population of cells in the tumor mass, which have been reported to be present in different types of cancers. CSCs usually reside within the tumor and are responsible for reoccurrence of cancer. The imprecise, inaccessible nature and increased efflux of conventional therapeutic drugs make these cells resistant to drugs. We discuss the specific markers for identification of these cells, role of CSCs in chemotherapy resistance and use of different therapeutic means to target them, including elucidation of specific cell markers, exploitation of different signaling pathways and use of nanotechnology. Area covered: This review covers cancer stem cell signaling which are used by these cells to maintain their quiescence, stemness and resistant phenotype, distinct cell surface markers, contribution of these cells in drug resistance, inevitability to cure cancer and use of nanotechnology to overcome this hurdle. Expert opinion: Cancer stem cells are the main culprit of our failure to cure cancer. In order to cure cancer along with other cells types in cancer, cancer stem cells need to be targeted in the tumor bed. Nanotechnology solutions can facilitate clinical translation of the therapeutics along with other emerging technologies to cure cancer.

  5. A Novel Chemical Inhibitor of ABA Signaling Targets All ABA Receptors1

    PubMed Central

    Ye, Yajin; Liu, Xue; Liu, Hao; Li, Deqiang; Cao, Minjie; Chen, Haifeng; Zhu, Jian-kang

    2017-01-01

    Abscisic acid (ABA), the most important stress-induced phytohormone, regulates seed dormancy, germination, plant senescence, and the abiotic stress response. ABA signaling is repressed by group A type 2C protein phosphatases (PP2Cs), and then ABA binds to its receptor of the ACTIN RESISTANCE1 (PYR1), PYR1-LIKE (PYL), and REGULATORY COMPONENTS OF ABA RECEPTORS (RCAR) family, which, in turn, inhibits PP2Cs and activates downstream ABA signaling. The agonist/antagonist of ABA receptors have the potential to reveal the ABA signaling machinery and to become lead compounds for agrochemicals; however, until now, no broad-spectrum antagonists of ABA receptors blocking all PYR/PYL-PP2C interactions have been identified. Here, using chemical genetics screenings, we identified ABA ANTAGONIST1 (AA1), the first broad-spectrum antagonist of ABA receptors in Arabidopsis (Arabidopsis thaliana). Physiological analyses revealed that AA1 is sufficiently active to block ABA signaling. AA1 interfered with all the PYR/PYL-HAB1 interactions, and the diminished PYR/PYL-HAB1 interactions, in turn, restored the activity of HAB1. AA1 binds to all 13 members. Molecular dockings, the non-AA1-bound PYL2 variant, and competitive binding assays demonstrated that AA1 enters into the ligand-binding pocket of PYL2. Using AA1, we tested the genetic relationships of ABA receptors with other core components of ABA signaling, demonstrating that AA1 is a powerful tool with which to sidestep this genetic redundancy of PYR/PYLs. In addition, the application of AA1 delays leaf senescence. Thus, our study developed an efficient broad-spectrum antagonist of ABA receptors and demonstrated that plant senescence can be chemically controlled through AA1, with a simple and easy-to-synthesize structure, allowing its availability and utility as a chemical probe synthesized in large quantities, indicating its potential application in agriculture. PMID:28193765

  6. Chromosomal Targeting by the Type III-A CRISPR-Cas System Can Reshape Genomes in Staphylococcus aureus

    PubMed Central

    Guan, Jing; Wang, Wanying

    2017-01-01

    ABSTRACT CRISPR-Cas (clustered regularly interspaced short palindromic repeat [CRISPR]-CRISPR-associated protein [Cas]) systems can provide protection against invading genetic elements by using CRISPR RNAs (crRNAs) as a guide to locate and degrade the target DNA. CRISPR-Cas systems have been classified into two classes and five types according to the content of cas genes. Previous studies have indicated that CRISPR-Cas systems can avoid viral infection and block plasmid transfer. Here we show that chromosomal targeting by the Staphylococcus aureus type III-A CRISPR-Cas system can drive large-scale genome deletion and alteration within integrated staphylococcal cassette chromosome mec (SCCmec). The targeting activity of the CRISPR-Cas system is associated with the complementarity between crRNAs and protospacers, and 10- to 13-nucleotide truncations of spacers partially block CRISPR attack and more than 13-nucleotide truncation can fully abolish targeting, suggesting that a minimal length is required to license cleavage. Avoiding base pairings in the upstream region of protospacers is also necessary for CRISPR targeting. Successive trinucleotide complementarity between the 5′ tag of crRNAs and protospacers can disrupt targeting. Our findings reveal that type III-A CRISPR-Cas systems can modulate bacterial genome stability and may serve as a high-efficiency tool for deleting resistance or virulence genes in bacteria. IMPORTANCE Staphylococcus aureus is a pathogen that can cause a wide range of infections in humans. Studies have suggested that CRISPR-Cas systems can drive the loss of integrated mobile genetic elements (MGEs) by chromosomal targeting. Here we demonstrate that CRISPR-mediated cleavage contributes to the partial deletion of integrated SCCmec in methicillin-resistant S. aureus (MRSA), which provides a strategy for the treatment of MRSA infections. The spacer within artificial CRISPR arrays should contain more than 25 nucleotides for immunity, and

  7. Chromosomal Targeting by the Type III-A CRISPR-Cas System Can Reshape Genomes in Staphylococcus aureus.

    PubMed

    Guan, Jing; Wang, Wanying; Sun, Baolin

    2017-01-01

    CRISPR-Cas (clustered regularly interspaced short palindromic repeat [CRISPR]-CRISPR-associated protein [Cas]) systems can provide protection against invading genetic elements by using CRISPR RNAs (crRNAs) as a guide to locate and degrade the target DNA. CRISPR-Cas systems have been classified into two classes and five types according to the content of cas genes. Previous studies have indicated that CRISPR-Cas systems can avoid viral infection and block plasmid transfer. Here we show that chromosomal targeting by the Staphylococcus aureus type III-A CRISPR-Cas system can drive large-scale genome deletion and alteration within integrated staphylococcal cassette chromosome mec (SCC mec ). The targeting activity of the CRISPR-Cas system is associated with the complementarity between crRNAs and protospacers, and 10- to 13-nucleotide truncations of spacers partially block CRISPR attack and more than 13-nucleotide truncation can fully abolish targeting, suggesting that a minimal length is required to license cleavage. Avoiding base pairings in the upstream region of protospacers is also necessary for CRISPR targeting. Successive trinucleotide complementarity between the 5' tag of crRNAs and protospacers can disrupt targeting. Our findings reveal that type III-A CRISPR-Cas systems can modulate bacterial genome stability and may serve as a high-efficiency tool for deleting resistance or virulence genes in bacteria. IMPORTANCE Staphylococcus aureus is a pathogen that can cause a wide range of infections in humans. Studies have suggested that CRISPR-Cas systems can drive the loss of integrated mobile genetic elements (MGEs) by chromosomal targeting. Here we demonstrate that CRISPR-mediated cleavage contributes to the partial deletion of integrated SCC mec in methicillin-resistant S. aureus (MRSA), which provides a strategy for the treatment of MRSA infections. The spacer within artificial CRISPR arrays should contain more than 25 nucleotides for immunity, and consecutive

  8. [Relationship among weblog authors' target audience, contents, and types of interpersonal communication].

    PubMed

    Miura, Asako; Matsumura, Naohiro; Kitayama, Satoshi

    2008-12-01

    Weblogs are one of the most popular personal websites in Japan, where entries are made in journal style and displayed in reverse chronological order. This study examined the relationship between weblog authors' target audience (i.e., orientation) and the actual situations depicted in their weblogs by combining a questionnaire survey of the authors with an analysis of their weblog content data. Based on a questionnaire survey of 736 Japanese weblog authors, their target audience was divided into four clusters: (a) general public, (b) self, (c) self and offline friends, and (d) various others. To assess the actual situations depicted in their weblogs, the amount of happy and unhappy emotional expression in their writing and the frequency of interpersonal communication (comments, bookmarks, and trackbacks) were calculated from their log data. The results suggested that weblog authors wrote different types of content and used different types of communication depending on their audience, whereas the weblog content itself still showed the diary-like characteristic of personal daily-life records.

  9. An N-Terminal ER Export Signal Facilitates the Plasma Membrane Targeting of HCN1 Channels in Photoreceptors.

    PubMed

    Pan, Yuan; Laird, Joseph G; Yamaguchi, David M; Baker, Sheila A

    2015-06-01

    Hyperpolarization-activated cyclic nucleotide-gated 1 (HCN1) channels are widely expressed in the retina. In photoreceptors, the hyperpolarization-activated current (Ih) carried by HCN1 is important for shaping the light response. It has been shown in multiple systems that trafficking HCN1 channels to specific compartments is key to their function. The localization of HCN1 in photoreceptors is concentrated in the plasma membrane of the inner segment (IS). The mechanisms controlling this localization are not understood. We previously identified a di-arginine endoplasmic reticulum (ER) retention motif that negatively regulates the surface targeting of HCN1. In this study, we sought to identify a forward trafficking signal that could counter the function of the ER retention signal. We studied trafficking of HCN1 and several mutants by imaging their subcellular localization in transgenic X. laevis photoreceptors. Velocity sedimentation was used to assay the assembly state of HCN1 channels. We found the HCN1 N-terminus can redirect a membrane reporter from outer segments (OS) to the plasma membrane of the IS. The sequence necessary for this behavior was mapped to a 20 amino acid region containing a leucine-based ER export motif. The ER export signal is necessary for forward trafficking but not channel oligomerization. Moreover, this ER export signal alone counteracted the di-arginine ER retention signal. We identified an ER export signal in HCN1 that functions with the ER retention signal to maintain equilibrium of HCN1 between the endomembrane system and the plasma membrane.

  10. An N-Terminal ER Export Signal Facilitates the Plasma Membrane Targeting of HCN1 Channels in Photoreceptors

    PubMed Central

    Pan, Yuan; Laird, Joseph G.; Yamaguchi, David M.; Baker, Sheila A.

    2015-01-01

    Purpose. Hyperpolarization-activated cyclic nucleotide-gated 1 (HCN1) channels are widely expressed in the retina. In photoreceptors, the hyperpolarization-activated current (Ih) carried by HCN1 is important for shaping the light response. It has been shown in multiple systems that trafficking HCN1 channels to specific compartments is key to their function. The localization of HCN1 in photoreceptors is concentrated in the plasma membrane of the inner segment (IS). The mechanisms controlling this localization are not understood. We previously identified a di-arginine endoplasmic reticulum (ER) retention motif that negatively regulates the surface targeting of HCN1. In this study, we sought to identify a forward trafficking signal that could counter the function of the ER retention signal. Methods. We studied trafficking of HCN1 and several mutants by imaging their subcellular localization in transgenic X. laevis photoreceptors. Velocity sedimentation was used to assay the assembly state of HCN1 channels. Results. We found the HCN1 N-terminus can redirect a membrane reporter from outer segments (OS) to the plasma membrane of the IS. The sequence necessary for this behavior was mapped to a 20 amino acid region containing a leucine-based ER export motif. The ER export signal is necessary for forward trafficking but not channel oligomerization. Moreover, this ER export signal alone counteracted the di-arginine ER retention signal. Conclusions. We identified an ER export signal in HCN1 that functions with the ER retention signal to maintain equilibrium of HCN1 between the endomembrane system and the plasma membrane. PMID:26030105

  11. RhoA/Rho-kinase signaling: a therapeutic target in pulmonary hypertension.

    PubMed

    Barman, Scott A; Zhu, Shu; White, Richard E

    2009-01-01

    Pulmonary arterial hypertension (PAH) is a devastating disease characterized by progressive elevation of pulmonary arterial pressure and vascular resistance due to pulmonary vasoconstriction and vessel remodeling as well as inflammation. Rho-kinases (ROCKs) are one of the best-described effectors of the small G-protein RhoA, and ROCKs are involved in a variety of cellular functions including muscle cell contraction, proliferation and vascular inflammation through inhibition of myosin light chain phosphatase and activation of downstream mediators. A plethora of evidence in animal models suggests that heightened RhoA/ROCK signaling is important in the pathogenesis of pulmonary hypertension by causing enhanced constriction and remodeling of the pulmonary vasculature. Both animal and clinical studies suggest that ROCK inhibitors are effective for treatment of severe PAH with minimal risk, which supports the premise that ROCKs are important therapeutic targets in pulmonary hypertension and that ROCK inhibitors are a promising new class of drugs for this devastating disease.

  12. Retinoic acid signaling targets Hox genes during the amphioxus gastrula stage: insights into early anterior-posterior patterning of the chordate body plan.

    PubMed

    Koop, Demian; Holland, Nicholas D; Sémon, Marie; Alvarez, Susana; de Lera, Angel Rodriguez; Laudet, Vincent; Holland, Linda Z; Schubert, Michael

    2010-02-01

    Previous studies of vertebrate development have shown that retinoic acid (RA) signaling at the gastrula stage strongly influences anterior-posterior (A-P) patterning of the neurula and later stages. However, much less is known about the more immediate effects of RA signaling on gene transcription and developmental patterning at the gastrula stage. To investigate the targets of RA signaling during the gastrula stage, we used the basal chordate amphioxus, in which gastrulation involves very minimal tissue movements. First, we determined the effect of altered RA signaling on expression of 42 genes (encoding transcription factors and components of major signaling cascades) known to be expressed in restricted domains along the A-P axis during the gastrula and early neurula stage. Of these 42 genes, the expression domains during gastrulation of only four (Hox1, Hox3, HNF3-1 and Wnt3) were spatially altered by exposure of the embryos to excess RA or to the RA antagonist BMS009. Moreover, blocking protein synthesis with puromycin before adding RA or BMS009 showed that only three of these genes (Hox1, Hox3 and HNF3-1) are direct RA targets at the gastrula stage. From these results we conclude that in the amphioxus gastrula RA signaling primarily acts via regulation of Hox transcription to establish positional identities along the A-P axis and that Hox1, Hox3, HNF3-1 and Wnt3 constitute a basal module of RA action during chordate gastrulation.

  13. Agrin-LRP4-MuSK signaling as a therapeutic target for myasthenia gravis and other neuromuscular disorders.

    PubMed

    Ohno, Kinji; Ohkawara, Bisei; Ito, Mikako

    2017-10-01

    Signal transduction at the neuromuscular junction (NMJ) is compromised in a diverse array of diseases including myasthenia gravis, Lambert-Eaton myasthenic syndrome, Isaacs' syndrome, congenital myasthenic syndromes, Fukuyama-type congenital muscular dystrophy, amyotrophic lateral sclerosis, and sarcopenia. Except for sarcopenia, all are orphan diseases. In addition, the NMJ signal transduction is impaired by tetanus, botulinum, curare, α-bungarotoxin, conotoxins, organophosphate, sarin, VX, and soman to name a few. Areas covered: This review covers the agrin-LRP4-MuSK signaling pathway, which drives clustering of acetylcholine receptors (AChRs) and ensures efficient signal transduction at the NMJ. We also address diseases caused by autoantibodies against the NMJ molecules and by germline mutations in genes encoding the NMJ molecules. Expert opinion: Representative small compounds to treat the defective NMJ signal transduction are cholinesterase inhibitors, which exert their effects by increasing the amount of acetylcholine at the synaptic space. Another possible therapeutic strategy to enhance the NMJ signal transduction is to increase the number of AChRs, but no currently available drug has this functionality.

  14. Signal analysis by means of time-frequency (Wigner-type) distributions -- Applications to sonar and radar echoes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaunaurd, G.; Strifors, H.C.

    1996-09-01

    Time series data have been traditionally analyzed in either the time or the frequency domains. For signals with a time-varying frequency content, the combined time-frequency (TF) representations, based on the Cohen class of (generalized) Wigner distributions (WD`s) offer a powerful analysis tool. Using them, it is possible to: (1) trace the time-evolution of the resonance features usually present in a standard sonar cross section (SCS), or in a radar cross section (RCS) and (2) extract target information that may be difficult to even notice in an ordinary SCS or RCS. After a brief review of the fundamental properties of themore » WD, the authors discuss ways to reduce or suppress the cross term interference that appears in the WD of multicomponent systems. These points are illustrated with a variety of three-dimensional (3-D) plots of Wigner and pseudo-Wigner distributions (PWD), in which the strength of the distribution is depicted as the height of a Wigner surface with height scales measured by various color shades or pseudocolors. The authors also review studies they have made of the echoes returned by conducting or dielectric targets in the atmosphere, when they are illuminated by broadband radar pings. A TF domain analysis of these impulse radar returns demonstrates their superior informative content. These plots allow the identification of targets in an easier and clearer fashion than by the conventional RCS of narrowband systems. The authors show computed and measured plots of WD and PWD of various types of aircraft to illustrate the classification advantages of the approach at any aspect angle. They also show analogous results for metallic objects buried underground, in dielectric media, at various depths.« less

  15. Regulation of G-protein-coupled signaling pathways in allergic inflammation

    PubMed Central

    2009-01-01

    Abstract Allergic diseases such as asthma are elicited by maladaptive activation of immune cells such as mast cells and lymphocytes by otherwise innocuous allergens. The numerous mediators secreted by such cells promote both acute inflammation and, in many instances, chronic tissue remodeling. Most of these compounds exert their effects on end-organ targets such as epithelial and endothelial cells and airway smooth muscle by activating G-protein-coupled receptors (GPCRs), which are by far the most abundant type of cell surface receptor. Since GPCRs are also the most common target of allergy therapeutics, a better understanding of their intracellular signaling mechanisms is vital to improve the efficacy of such drugs or to develop new targets. In this review, we focus on some of the new regulatory elements that control the duration and amplitude of GPCR signal transduction pathways in immune effector cells and end-organ structural cells affected by allergic inflammation. PMID:18810336

  16. Differential 14-3-3 affinity capture reveals new downstream targets of phosphatidylinositol 3-kinase signaling.

    PubMed

    Dubois, Fanny; Vandermoere, Franck; Gernez, Aurélie; Murphy, Jane; Toth, Rachel; Chen, Shuai; Geraghty, Kathryn M; Morrice, Nick A; MacKintosh, Carol

    2009-11-01

    We devised a strategy of 14-3-3 affinity capture and release, isotope differential (d(0)/d(4)) dimethyl labeling of tryptic digests, and phosphopeptide characterization to identify novel targets of insulin/IGF1/phosphatidylinositol 3-kinase signaling. Notably four known insulin-regulated proteins (PFK-2, PRAS40, AS160, and MYO1C) had high d(0)/d(4) values meaning that they were more highly represented among 14-3-3-binding proteins from insulin-stimulated than unstimulated cells. Among novel candidates, insulin receptor substrate 2, the proapoptotic CCDC6, E3 ubiquitin ligase ZNRF2, and signaling adapter SASH1 were confirmed to bind to 14-3-3s in response to IGF1/phosphatidylinositol 3-kinase signaling. Insulin receptor substrate 2, ZNRF2, and SASH1 were also regulated by phorbol ester via p90RSK, whereas CCDC6 and PRAS40 were not. In contrast, the actin-associated protein vasodilator-stimulated phosphoprotein and lipolysis-stimulated lipoprotein receptor, which had low d(0)/d(4) scores, bound 14-3-3s irrespective of IGF1 and phorbol ester. Phosphorylated Ser(19) of ZNRF2 (RTRAYpS(19)GS), phospho-Ser(90) of SASH1 (RKRRVpS(90)QD), and phospho- Ser(493) of lipolysis-stimulated lipoprotein receptor (RPRARpS(493)LD) provide one of the 14-3-3-binding sites on each of these proteins. Differential 14-3-3 capture provides a powerful approach to defining downstream regulatory mechanisms for specific signaling pathways.

  17. A Type I Signal Peptidase Is Required for Pilus Assembly in the Gram-Positive, Biofilm-Forming Bacterium Actinomyces oris

    PubMed Central

    Siegel, Sara D.

    2016-01-01

    ABSTRACT The Gram-positive bacterium Actinomyces oris, a key colonizer in the development of oral biofilms, contains 18 LPXTG motif-containing proteins, including fimbrillins that constitute two fimbrial types critical for adherence, biofilm formation, and polymicrobial interactions. Export of these protein precursors, which harbor a signal peptide, is thought to be mediated by the Sec machine and require cleavage of the signal peptide by type I signal peptidases (SPases). Like many Gram-positive bacteria, A. oris expresses two SPases, named LepB1 and LepB2. The latter has been linked to suppression of lethal “glyco-stress,” caused by membrane accumulation of the LPXTG motif-containing glycoprotein GspA when the housekeeping sortase srtA is genetically disrupted. Consistent with this finding, we show here that a mutant lacking lepB2 and srtA was unable to produce high levels of glycosylated GspA and hence was viable. However, deletion of neither lepB1 nor lepB2 abrogated the signal peptide cleavage and glycosylation of GspA, indicating redundancy of SPases for GspA. In contrast, the lepB2 deletion mutant failed to assemble the wild-type levels of type 1 and 2 fimbriae, which are built by the shaft fimbrillins FimP and FimA, respectively; this phenotype was attributed to aberrant cleavage of the fimbrillin signal peptides. Furthermore, the lepB2 mutants, including the catalytically inactive S101A and K169A variants, exhibited significant defects in polymicrobial interactions and biofilm formation. Conversely, lepB1 was dispensable for the aforementioned processes. These results support the idea that LepB2 is specifically utilized for processing of fimbrial proteins, thus providing an experimental model with which to study the basis of type I SPase specificity. IMPORTANCE Sec-mediated translocation of bacterial protein precursors across the cytoplasmic membrane involves cleavage of their signal peptide by a signal peptidase (SPase). Like many Gram

  18. A Type I Signal Peptidase Is Required for Pilus Assembly in the Gram-Positive, Biofilm-Forming Bacterium Actinomyces oris.

    PubMed

    Siegel, Sara D; Wu, Chenggang; Ton-That, Hung

    2016-08-01

    The Gram-positive bacterium Actinomyces oris, a key colonizer in the development of oral biofilms, contains 18 LPXTG motif-containing proteins, including fimbrillins that constitute two fimbrial types critical for adherence, biofilm formation, and polymicrobial interactions. Export of these protein precursors, which harbor a signal peptide, is thought to be mediated by the Sec machine and require cleavage of the signal peptide by type I signal peptidases (SPases). Like many Gram-positive bacteria, A. oris expresses two SPases, named LepB1 and LepB2. The latter has been linked to suppression of lethal "glyco-stress," caused by membrane accumulation of the LPXTG motif-containing glycoprotein GspA when the housekeeping sortase srtA is genetically disrupted. Consistent with this finding, we show here that a mutant lacking lepB2 and srtA was unable to produce high levels of glycosylated GspA and hence was viable. However, deletion of neither lepB1 nor lepB2 abrogated the signal peptide cleavage and glycosylation of GspA, indicating redundancy of SPases for GspA. In contrast, the lepB2 deletion mutant failed to assemble the wild-type levels of type 1 and 2 fimbriae, which are built by the shaft fimbrillins FimP and FimA, respectively; this phenotype was attributed to aberrant cleavage of the fimbrillin signal peptides. Furthermore, the lepB2 mutants, including the catalytically inactive S101A and K169A variants, exhibited significant defects in polymicrobial interactions and biofilm formation. Conversely, lepB1 was dispensable for the aforementioned processes. These results support the idea that LepB2 is specifically utilized for processing of fimbrial proteins, thus providing an experimental model with which to study the basis of type I SPase specificity. Sec-mediated translocation of bacterial protein precursors across the cytoplasmic membrane involves cleavage of their signal peptide by a signal peptidase (SPase). Like many Gram-positive bacteria, A. oris expresses

  19. Strength of signal: a fundamental mechanism for cell fate specification.

    PubMed

    Hayes, Sandra M; Love, Paul E

    2006-02-01

    How equipotent cells develop into complex tissues containing many diverse cell types is still a mystery. However, evidence is accumulating from different tissue systems in multiple organisms that many of the specific receptor families known to regulate cell fate decisions target conserved signaling pathways. A mechanism for preserving specificity in the cellular response that has emerged from these studies is one in which quantitative differences in receptor signaling regulate the cell fate decision. A signal strength model has recently gained support as a means to explain alphabeta/gammadelta lineage commitment. In this review, we compare the alphabeta/gammadelta fate decision with other cell fate decisions that occur outside of the lymphoid system to attain a better picture of the quantitative signaling mechanism for cell fate specification.

  20. Molecular mechanisms and signaling pathways of angiotensin II-induced muscle wasting: potential therapeutic targets for cardiac cachexia.

    PubMed

    Yoshida, Tadashi; Tabony, A Michael; Galvez, Sarah; Mitch, William E; Higashi, Yusuke; Sukhanov, Sergiy; Delafontaine, Patrice

    2013-10-01

    Cachexia is a serious complication of many chronic diseases, such as congestive heart failure (CHF) and chronic kidney disease (CKD). Many factors are involved in the development of cachexia, and there is increasing evidence that angiotensin II (Ang II), the main effector molecule of the renin-angiotensin system (RAS), plays an important role in this process. Patients with advanced CHF or CKD often have increased Ang II levels and cachexia, and angiotensin-converting enzyme (ACE) inhibitor treatment improves weight loss. In rodent models, an increase in systemic Ang II leads to weight loss through increased protein breakdown, reduced protein synthesis in skeletal muscle and decreased appetite. Ang II activates the ubiquitin-proteasome system via generation of reactive oxygen species and via inhibition of the insulin-like growth factor-1 signaling pathway. Furthermore, Ang II inhibits 5' AMP-activated protein kinase (AMPK) activity and disrupts normal energy balance. Ang II also increases cytokines and circulating hormones such as tumor necrosis factor-α, interleukin-6, serum amyloid-A, glucocorticoids and myostatin, which regulate muscle protein synthesis and degradation. Ang II acts on hypothalamic neurons to regulate orexigenic/anorexigenic neuropeptides, such as neuropeptide-Y, orexin and corticotropin-releasing hormone, leading to reduced appetite. Also, Ang II may regulate skeletal muscle regenerative processes. Several clinical studies have indicated that blockade of Ang II signaling via ACE inhibitors or Ang II type 1 receptor blockers prevents weight loss and improves muscle strength. Thus the RAS is a promising target for the treatment of muscle atrophy in patients with CHF and CKD. This article is part of a Directed Issue entitled: Molecular basis of muscle wasting. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Yes-associated protein (YAP) in pancreatic cancer: at the epicenter of a targetable signaling network associated with patient survival.

    PubMed

    Rozengurt, Enrique; Sinnett-Smith, James; Eibl, Guido

    2018-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is generally a fatal disease with no efficacious treatment modalities. Elucidation of signaling mechanisms that will lead to the identification of novel targets for therapy and chemoprevention is urgently needed. Here, we review the role of Yes-associated protein (YAP) and WW-domain-containing Transcriptional co-Activator with a PDZ-binding motif (TAZ) in the development of PDAC. These oncogenic proteins are at the center of a signaling network that involves multiple upstream signals and downstream YAP-regulated genes. We also discuss the clinical significance of the YAP signaling network in PDAC using a recently published interactive open-access database (www.proteinatlas.org/pathology) that allows genome-wide exploration of the impact of individual proteins on survival outcomes. Multiple YAP/TEAD-regulated genes, including AJUBA , ANLN , AREG , ARHGAP29 , AURKA , BUB1 , CCND1 , CDK6, CXCL5 , EDN2 , DKK1 , FOSL1,FOXM1 , HBEGF , IGFBP2 , JAG1 , NOTCH2 , RHAMM , RRM2 , SERP1 , and ZWILCH , are associated with unfavorable survival of PDAC patients. Similarly, components of AP-1 that synergize with YAP ( FOSL1 ), growth factors (TGFα, EPEG, and HBEGF), a specific integrin ( ITGA2 ), heptahelical receptors ( P2Y 2 R , GPR87 ) and an inhibitor of the Hippo pathway ( MUC1 ), all of which stimulate YAP activity, are associated with unfavorable survival of PDAC patients. By contrast, YAP inhibitory pathways (STRAD/LKB-1/AMPK, PKA/LATS, and TSC/mTORC1) indicate a favorable prognosis. These associations emphasize that the YAP signaling network correlates with poor survival of pancreatic cancer patients. We conclude that the YAP pathway is a major determinant of clinical aggressiveness in PDAC patients and a target for therapeutic and preventive strategies in this disease.

  2. Sea-Based Infrared Scene Interpretation by Background Type Classification and Coastal Region Detection for Small Target Detection

    PubMed Central

    Kim, Sungho

    2015-01-01

    Sea-based infrared search and track (IRST) is important for homeland security by detecting missiles and asymmetric boats. This paper proposes a novel scheme to interpret various infrared scenes by classifying the infrared background types and detecting the coastal regions in omni-directional images. The background type or region-selective small infrared target detector should be deployed to maximize the detection rate and to minimize the number of false alarms. A spatial filter-based small target detector is suitable for identifying stationary incoming targets in remote sea areas with sky only. Many false detections can occur if there is an image sector containing a coastal region, due to ground clutter and the difficulty in finding true targets using the same spatial filter-based detector. A temporal filter-based detector was used to handle these problems. Therefore, the scene type and coastal region information is critical to the success of IRST in real-world applications. In this paper, the infrared scene type was determined using the relationships between the sensor line-of-sight (LOS) and a horizontal line in an image. The proposed coastal region detector can be activated if the background type of the probing sector is determined to be a coastal region. Coastal regions can be detected by fusing the region map and curve map. The experimental results on real infrared images highlight the feasibility of the proposed sea-based scene interpretation. In addition, the effects of the proposed scheme were analyzed further by applying region-adaptive small target detection. PMID:26404308

  3. Reduced IL-10 production in fetal type II epithelial cells exposed to mechanical stretch is mediated via activation of IL-6-SOCS3 signaling pathway.

    PubMed

    Hokenson, Michael A; Wang, Yulian; Hawwa, Renda L; Huang, Zheping; Sharma, Surendra; Sanchez-Esteban, Juan

    2013-01-01

    An imbalance between pro-inflammatory and anti-inflammatory cytokines is a key factor in the lung injury of premature infants exposed to mechanical ventilation. Previous studies have shown that lung cells exposed to stretch produces reduced amounts of the anti-inflammatory cytokine IL-10. The objective of these studies was to analyze the signaling mechanisms responsible for the decreased IL-10 production in fetal type II cells exposed to mechanical stretch. Fetal mouse type II epithelial cells isolated at embryonic day 18 were exposed to 20% stretch to simulate lung injury. We show that IL-10 receptor gene expression increased with gestational age. Mechanical stretch decreased not only IL-10 receptor gene expression but also IL-10 secretion. In contrast, mechanical stretch increased release of IL-6. We then investigated IL-10 signaling pathway-associated proteins and found that in wild-type cells, mechanical stretch decreased activation of JAK1 and TYK2 and increased STAT3 and SOCS3 activation. However, opposite effects were found in cells isolated from IL-10 knockout mice. Reduction in IL-6 secretion by stretch was observed in cells isolated from IL-10 null mice. To support the idea that stretch-induced SOCS3 expression via IL-6 leads to reduced IL-10 expression, siRNA-mediated inhibition of SOCS3 restored IL-10 secretion in cells exposed to stretch and decreased IL-6 secretion. Taken together, these studies suggest that the inhibitory effect of mechanical stretch on IL-10 secretion is mediated via activation of IL-6-STAT3-SOCS3 signaling pathway. SOCS3 could be a therapeutic target to increase IL-10 production in lung cells exposed to mechanical injury.

  4. Sirtuin signaling controls mitochondrial function in glycogen storage disease type Ia.

    PubMed

    Cho, Jun-Ho; Kim, Goo-Young; Mansfield, Brian C; Chou, Janice Y

    2018-05-08

    Glycogen storage disease type Ia (GSD-Ia) deficient in glucose-6-phosphatase-α (G6Pase-α) is a metabolic disorder characterized by impaired glucose homeostasis and a long-term complication of hepatocellular adenoma/carcinoma (HCA/HCC). Mitochondrial dysfunction has been implicated in GSD-Ia but the underlying mechanism and its contribution to HCA/HCC development remain unclear. We have shown that hepatic G6Pase-α deficiency leads to downregulation of sirtuin 1 (SIRT1) signaling that underlies defective hepatic autophagy in GSD-Ia. SIRT1 is a NAD + -dependent deacetylase that can deacetylate and activate peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α), a master regulator of mitochondrial integrity, biogenesis, and function. We hypothesized that downregulation of hepatic SIRT1 signaling in G6Pase-α-deficient livers impairs PGC-1α activity, leading to mitochondrial dysfunction. Here we show that the G6Pase-α-deficient livers display defective PGC-1α signaling, reduced numbers of functional mitochondria, and impaired oxidative phosphorylation. Overexpression of hepatic SIRT1 restores PGC-1α activity, normalizes the expression of electron transport chain components, and increases mitochondrial complex IV activity. We have previously shown that restoration of hepatic G6Pase-α expression normalized SIRT1 signaling. We now show that restoration of hepatic G6Pase-α expression also restores PGC-1α activity and mitochondrial function. Finally, we show that HCA/HCC lesions found in G6Pase-α-deficient livers contain marked mitochondrial and oxidative DNA damage. Taken together, our study shows that downregulation of hepatic SIRT1/PGC-1α signaling underlies mitochondrial dysfunction and that oxidative DNA damage incurred by damaged mitochondria may contribute to HCA/HCC development in GSD-Ia.

  5. Porcine circovirus type 2 replication is impaired by inhibition of the extracellular signal-regulated kinase (ERK) signaling pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei Li; Liu Jue

    Postweaning multisystemic wasting syndrome, which is primarily caused by porcine circovirus type 2 (PCV2), is an emerging and important swine disease. We have recently shown that PCV2 induces nuclear factor kappa B activation and its activation is required for active replication, but the other cellular factors involved in PCV2 replication are not well defined. The extracellular signal-regulated kinase (ERK) which served as an important component of cellular signal transduction pathways has been shown to regulate many viral infections. In this report, we show that PCV2 activates ERK1/2 in PCV2-infected PK15 cells dependent on viral replication. The PCV2-induced ERK1/2 leads tomore » phosphorylation of the ternary complex factor Elk-1, which kinetically paralleled ERK1/2 activation. Inhibition of ERK activation with U0126, a specific MEK1/2 inhibitor, significantly reduced viral progeny release. Investigations into the mechanism of ERK1/2 regulation revealed that inhibition of ERK activation leads to decreased viral transcription and lower virus protein expression. These data indicate that the ERK signaling pathway is involved in PCV2 infection and beneficial to PCV2 replication in the cultured cells.« less

  6. FGF23 Actions on Target Tissues—With and Without Klotho

    PubMed Central

    Richter, Beatrice; Faul, Christian

    2018-01-01

    Fibroblast growth factor (FGF) 23 is a phosphaturic hormone whose physiologic actions on target tissues are mediated by FGF receptors (FGFR) and klotho, which functions as a co-receptor that increases the binding affinity of FGF23 for FGFRs. By stimulating FGFR/klotho complexes in the kidney and parathyroid gland, FGF23 reduces renal phosphate uptake and secretion of parathyroid hormone, respectively, thereby acting as a key regulator of phosphate metabolism. Recently, it has been shown that FGF23 can also target cell types that lack klotho. This unconventional signaling event occurs in an FGFR-dependent manner, but involves other downstream signaling pathways than in “classic” klotho-expressing target organs. It appears that klotho-independent signaling mechanisms are only activated in the presence of high FGF23 concentrations and result in pathologic cellular changes. Therefore, it has been postulated that massive elevations in circulating levels of FGF23, as found in patients with chronic kidney disease, contribute to associated pathologies by targeting cells and tissues that lack klotho. This includes the induction of cardiac hypertrophy and fibrosis, the elevation of inflammatory cytokine expression in the liver, and the inhibition of neutrophil recruitment. Here, we describe the signaling and cellular events that are caused by FGF23 in tissues lacking klotho, and we discuss FGF23’s potential role as a hormone with widespread pathologic actions. Since the soluble form of klotho can function as a circulating co-receptor for FGF23, we also discuss the potential inhibitory effects of soluble klotho on FGF23-mediated signaling which might—at least partially—underlie the pleiotropic tissue-protective functions of klotho. PMID:29770125

  7. Targeting the Oncogenic Transcriptional Regulator MYB in Adenoid Cystic Carcinoma by Inhibition of IGF1R/AKT Signaling.

    PubMed

    Andersson, Mattias K; Afshari, Maryam K; Andrén, Ywonne; Wick, Michael J; Stenman, Göran

    2017-09-01

    Adenoid cystic carcinoma (ACC) is an aggressive cancer with no curative treatment for patients with recurrent/metastatic disease. The MYB-NFIB gene fusion is the main genomic hallmark and a potential therapeutic target. Oncogenic signaling pathways were studied in cultured cells and/or tumors from 15 ACC patients. Phospho-receptor tyrosine kinase (RTK) arrays were used to study the activity of RTKs. Effects of RTK inhibition on cell proliferation were analyzed with AlamarBlue, sphere assays, and two ACC xenograft models (n = 4-9 mice per group). The molecular effects of MYB-NFIB knockdown and IGF1R inhibition were studied with quantitative polymerase chain reaction, immunoblot, and gene expression microarrays. All statistical tests were two-sided. The MYB-NFIB fusion drives proliferation of ACC cells and is crucial for spherogenesis. Intriguingly, the fusion is regulated through AKT-dependent signaling induced by IGF1R overexpression and is downregulated upon IGF1R-inhibition (% expression of control ± SD = 27.2 ± 1.3, P < .001). MYB-NFIB regulates genes involved in cell cycle control, DNA replication/repair, and RNA processing. The transcriptional program induced by MYB-NFIB affects critical oncogenic mediators normally controlled by MYC and is reversed by pharmacological inhibition of IGF1R. Co-activation of epidermal growth factor receptor (EGFR) and MET promoted proliferation of ACC cells, and combined targeting of IGFR1/EGFR/MET induced differentiation and synergistically inhibited the growth of patient-derived xenografted ACCs (ACCX5M1, % growth of control ± SD = 34.9 ± 20.3, P = .006; ACCX6, % growth of control ± SD = 24.1 ± 17.5, P = .04). MYB-NFIB is an oncogenic driver and a key therapeutic target in ACC that is regulated by AKT-dependent IGF1R signaling. Our studies uncover a new strategy to target an oncogenic transcriptional master regulator and provide new important insights into the biology and treatment of ACC. © The Author

  8. Redox signaling in cardiovascular health and disease

    PubMed Central

    Madamanchi, Nageswara R.; Runge, Marschall S.

    2013-01-01

    Spatiotemporal regulation of the activity of a vast array of intracellular proteins and signaling pathways by reactive oxygen species (ROS) governs normal cardiovascular function. However, data from experimental and animal studies strongly support that dysregulated redox signaling, resulting from hyper-activation of various cellular oxidases or mitochondrial dysfunction, is integral to the pathogenesis and progression of cardiovascular disease (CVD). In this review, we address how redox signaling modulates the protein function, the various sources of increased oxidative stress in CVD, and the labyrinth of redox-sensitive molecular mechanisms involved in the development of atherosclerosis, hypertension, cardiac hypertrophy and heart failure, and ischemia–reperfusion injury. Advances in redox biology and pharmacology for inhibiting ROS production in specific cell types and subcellular organelles combined with the development of nanotechnology-based new in vivo imaging systems and targeted drug delivery mechanisms may enable fine-tuning of redox signaling for the treatment and prevention of CVD. PMID:23583330

  9. [Mathematical modeling: an essential tool for the study of therapeutic targeting in solid tumors].

    PubMed

    Saidak, Zuzana; Giacobbi, Anne-Sophie; Morisse, Mony Chenda; Mammeri, Youcef; Galmiche, Antoine

    2017-12-01

    Recent progress in biology has made the study of the medical treatment of cancer more effective, but it has also revealed the large complexity of carcinogenesis and cell signaling. For many types of cancer, several therapeutic targets are known and in some cases drugs against these targets exist. Unfortunately, the target proteins often work in networks, resulting in functional adaptation and the development of resilience/resistance to medical treatment. The use of mathematical modeling makes it possible to carry out system-level analyses for improved study of therapeutic targeting in solid tumours. We present the main types of mathematical models used in cancer research and we provide examples illustrating the relevance of these approaches in molecular oncobiology. © 2017 médecine/sciences – Inserm.

  10. Pattern drilling exploration: Optimum pattern types and hole spacings when searching for elliptical shaped targets

    USGS Publications Warehouse

    Drew, L.J.

    1979-01-01

    In this study the selection of the optimum type of drilling pattern to be used when exploring for elliptical shaped targets is examined. The rhombic pattern is optimal when the targets are known to have a preferred orientation. Situations can also be found where a rectangular pattern is as efficient as the rhombic pattern. A triangular or square drilling pattern should be used when the orientations of the targets are unknown. The way in which the optimum hole spacing varies as a function of (1) the cost of drilling, (2) the value of the targets, (3) the shape of the targets, (4) the target occurrence probabilities was determined for several examples. Bayes' rule was used to show how target occurrence probabilities can be revised within a multistage pattern drilling scheme. ?? 1979 Plenum Publishing Corporation.

  11. Protein tyrosine phosphatases as potential therapeutic targets

    PubMed Central

    He, Rong-jun; Yu, Zhi-hong; Zhang, Ruo-yu; Zhang, Zhong-yin

    2014-01-01

    Protein tyrosine phosphorylation is a key regulatory process in virtually all aspects of cellular functions. Dysregulation of protein tyrosine phosphorylation is a major cause of human diseases, such as cancers, diabetes, autoimmune disorders, and neurological diseases. Indeed, protein tyrosine phosphorylation-mediated signaling events offer ample therapeutic targets, and drug discovery efforts to date have brought over two dozen kinase inhibitors to the clinic. Accordingly, protein tyrosine phosphatases (PTPs) are considered next-generation drug targets. For instance, PTP1B is a well-known targets of type 2 diabetes and obesity, and recent studies indicate that it is also a promising target for breast cancer. SHP2 is a bona-fide oncoprotein, mutations of which cause juvenile myelomonocytic leukemia, acute myeloid leukemia, and solid tumors. In addition, LYP is strongly associated with type 1 diabetes and many other autoimmune diseases. This review summarizes recent findings on several highly recognized PTP family drug targets, including PTP1B, Src homology phosphotyrosyl phosphatase 2(SHP2), lymphoid-specific tyrosine phosphatase (LYP), CD45, Fas associated phosphatase-1 (FAP-1), striatal enriched tyrosine phosphatases (STEP), mitogen-activated protein kinase/dual-specificity phosphatase 1 (MKP-1), phosphatases of regenerating liver-1 (PRL), low molecular weight PTPs (LMWPTP), and CDC25. Given that there are over 100 family members, we hope this review will serve as a road map for innovative drug discovery targeting PTPs. PMID:25220640

  12. The miR-106b-25 cluster targets Smad7, activates TGF-β signaling, and induces EMT and tumor initiating cell characteristics downstream of Six1 in human breast cancer

    PubMed Central

    Smith, Anna L.; Iwanaga, Ritsuko; Drasin, David J.; Micalizzi, Douglas S.; Vartuli, Rebecca L; Tan, Aik-Choon; Ford, Heide L.

    2012-01-01

    The role of TGF-β signaling in tumorigenesis is paradoxical: it can be tumor suppressive or tumor promotional, depending on context. The metastatic regulator, Six1, was recently shown to mediate this switch, providing a novel means to explain this elusive “TGF-β paradox”. Herein, we identify a mechanism by which Six1 activates the tumor promotional arm of TGF-β signaling, via its ability to upregulate the miR-106b-25 microRNA cluster, and further identify a novel function for this cluster of microRNAs. While expression of the miR-106b-25 cluster is known to overcome TGF-β-mediated growth suppression via targeting p21 and BIM, we demonstrate for the first time that this same cluster can additionally target the inhibitory Smad7 protein, resulting in increased levels of the TGF-β type I receptor (TβRI) and downstream activation of TGF-β signaling. We further show that the miR-106b-25 cluster is sufficient to induce an epithelial to mesenchymal transition and a tumor initiating cell phenotype, and that it is required downstream of Six1 to induce these phenotypes. Finally, we demonstrate a significant correlation between miR-106b, Six1, and activated TGF-β signaling in human breast cancers, and further show that high levels of miR-106b and miR-93 in breast tumors significantly predicts shortened time to relapse. These findings expand the spectrum of oncogenic functions of miR-106b-25, and may provide a novel molecular explanation, through the Six1 regulated miR-106b-25 cluster, by which TGF-β signaling shifts from tumor suppressive to tumor promoting. PMID:22286770

  13. New Challenges in Targeting Signaling Pathways in Acute Lymphoblastic Leukemia by NGS Approaches: An Update.

    PubMed

    Montaño, Adrián; Forero-Castro, Maribel; Marchena-Mendoza, Darnel; Benito, Rocío; Hernández-Rivas, Jesús María

    2018-04-07

    The identification and study of genetic alterations involved in various signaling pathways associated with the pathogenesis of acute lymphoblastic leukemia (ALL) and the application of recent next-generation sequencing (NGS) in the identification of these lesions not only broaden our understanding of the involvement of various genetic alterations in the pathogenesis of the disease but also identify new therapeutic targets for future clinical trials. The present review describes the main deletions, amplifications, sequence mutations, epigenetic lesions, and new structural DNA rearrangements detected by NGS in B-ALL and T-ALL and their clinical importance for therapeutic procedures. We reviewed the molecular basis of pathways including transcriptional regulation, lymphoid differentiation and development, TP53 and the cell cycle, RAS signaling, JAK/STAT, NOTCH, PI3K/AKT/mTOR, Wnt/β-catenin signaling, chromatin structure modifiers, and epigenetic regulators. The implementation of NGS strategies has enabled important mutated genes in each pathway, their associations with the genetic subtypes of ALL, and their outcomes, which will be described further. We also discuss classic and new cryptic DNA rearrangements in ALL identified by mRNA-seq strategies. Novel cooperative abnormalities in ALL could be key prognostic and/or predictive biomarkers for selecting the best frontline treatment and for developing therapies after the first relapse or refractory disease.

  14. Modeling of signaling crosstalk-mediated drug resistance and its implications on drug combination.

    PubMed

    Sun, Xiaoqiang; Bao, Jiguang; You, Zhuhong; Chen, Xing; Cui, Jun

    2016-09-27

    The efficacy of pharmacological perturbation to the signaling transduction network depends on the network topology. However, whether and how signaling dynamics mediated by crosstalk contributes to the drug resistance are not fully understood and remain to be systematically explored. In this study, motivated by a realistic signaling network linked by crosstalk between EGF/EGFR/Ras/MEK/ERK pathway and HGF/HGFR/PI3K/AKT pathway, we develop kinetic models for several small networks with typical crosstalk modules to investigate the role of the architecture of crosstalk in inducing drug resistance. Our results demonstrate that crosstalk inhibition diminishes the response of signaling output to the external stimuli. Moreover, we show that signaling crosstalk affects the relative sensitivity of drugs, and some types of crosstalk modules that could yield resistance to the targeted drugs were identified. Furthermore, we quantitatively evaluate the relative efficacy and synergism of drug combinations. For the modules that are resistant to the targeted drug, we identify drug targets that can not only increase the relative drug efficacy but also act synergistically. In addition, we analyze the role of the strength of crosstalk in switching a module between drug-sensitive and drug-resistant. Our study provides mechanistic insights into the signaling crosstalk-mediated mechanisms of drug resistance and provides implications for the design of synergistic drug combinations to reduce drug resistance.

  15. A herpes simplex virus type 2-encoded microRNA promotes tumor cell metastasis by targeting suppressor of cytokine signaling 2 in lung cancer.

    PubMed

    Wang, Xudong; Liu, Shupeng; Zhou, Zhenhua; Yan, Hongli; Xiao, Jianru

    2017-05-01

    Certain viruses use microRNAs to regulate the expression of their own genes, host genes, or both. A number of microRNAs expressed by herpes simplex virus type 2 have been confirmed by previous studies. However, whether these microRNAs play a role in the metastasis of lung cancers and how these viral microRNAs precisely regulated the tumor biological process in lung cancer bone metastasis remain obscure. We recently identified the high expression of an acutely and latently expressed viral microRNA, Hsv2-miR-H9-5p, encoded by herpes simplex virus type 2 latency-associated transcript through microarray and quantitative polymerase chain reaction analyses which compared the expression of microRNAs in bone metastasis from lung cancer with primary lung cancers. We now reported that Hsv2-miR-H9-5p was highly expressed in bone metastasis and closely associated with pathological and metastatic processes of lung cancers. The functions of Hsv2-miR-H9-5p were determined by overexpression which results in an increase in survival, migration, and invasion of lung cancer cells in vitro. We determined that Hsv2-miR-H9-5p directly targeted SOCS2 mechanistically by dual-luciferase reporter assay. Then, we investigated the functions of SOCS2 in the progress of lung cancers. Reduction of SOCS2 dosage by hsv2-miR-H9-5p induced increased migration and invasion of lung cancer cells. Overexpression of SOCS2 inverted these phenotypes generated by hsv2-miR-H9-5p, indicating the potential roles of SOCS2 in Hsv2-miR-H9-5p-driven metastasis in lung cancers. The results highlighted that Hsv2-miR-H9-5p regulated and contributed to bone metastasis of lung cancers. We proposed that Hsv2-miR-H9-5p could be used as a potential target in lung cancer therapy.

  16. Targets of B-cell antigen receptor signaling: the phosphatidylinositol 3-kinase/Akt/glycogen synthase kinase-3 signaling pathway and the Rap1 GTPase.

    PubMed

    Gold, M R; Ingham, R J; McLeod, S J; Christian, S L; Scheid, M P; Duronio, V; Santos, L; Matsuuchi, L

    2000-08-01

    In this review, we discuss the role of phosphatidylinositol 3-kinase (PI3K) and Rap 1 in B-cell receptor (BCR) signaling. PI3K produces lipids that recruit pleckstrin homology domain-containing proteins to the plasma membrane. Akt is a kinase that the BCR activates in this manner. Akt phosphorylates several transcription factors as well as proteins that regulate apoptosis and protein synthesis. Akt also regulates glycogen synthase kinase-3, a kinase whose substrates include the nuclear factor of activated T cells (NF-AT)cl and beta-catenin transcriptional activators. In addition to Akt, PI3K-derived lipids also regulate the activity and localization of other targets of BCR signaling. Thus, a key event in BCR signaling is the recruitment of PI3K to the plasma membrane where its substrates are located. This is mediated by binding of the Src homology (SH) 2 domains in PI3K to phosphotyrosine-containing sequences on membrane-associated docking proteins. The docking proteins that the BCR uses to recruit PI3K include CD19, Cbl, Gab1, and perhaps Gab2. We have shown that Gab1 colocalizes PI3K with SH2 domain-containing inositol phosphatase (SHIP) and SHP2, two enzymes that regulate PI3K-dependent signaling. In contrast to PI3K, little is known about the Rap1 GTPase. We showed that the BCR activates Rap1 via phospholipase C-dependent production of diacylglycerol. Since Rap1 is thought to regulate cell adhesion and cell polarity, it may be involved in B-cell migration.

  17. Interplay between Janus Kinase/Signal Transducer and Activator of Transcription Signaling Activated by Type I Interferons and Viral Antagonism

    PubMed Central

    Nan, Yuchen; Wu, Chunyan; Zhang, Yan-Jin

    2017-01-01

    Interferons (IFNs), which were discovered a half century ago, are a group of secreted proteins that play key roles in innate immunity against viral infection. The major signaling pathway activated by IFNs is the Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway, which leads to the expression of IFN-stimulated genes (ISGs), including many antiviral effectors. Viruses have evolved various strategies with which to antagonize the JAK/STAT pathway to influence viral virulence and pathogenesis. In recent years, notable progress has been made to better understand the JAK/STAT pathway activated by IFNs and antagonized by viruses. In this review, recent progress in research of the JAK/STAT pathway activated by type I IFNs, non-canonical STAT activation, viral antagonism of the JAK/STAT pathway, removing of the JAK/STAT antagonist from viral genome for attenuation, and the potential pathogenesis roles of tyrosine phosphorylation-independent non-canonical STATs activation during virus infection are discussed in detail. We expect that this review will provide new insight into the understanding the complexity of the interplay between JAK/STAT signaling and viral antagonism. PMID:29312301

  18. A Designed Peptide Targets Two Types of Modifications of p53 with Anti-cancer Activity.

    PubMed

    Liang, Lunxi; Wang, Huanbin; Shi, Hubing; Li, Zhaoli; Yao, Han; Bu, Zhigao; Song, Ningning; Li, Chushu; Xiang, Dabin; Zhang, Yao; Wang, Jilin; Hu, Ye; Xu, Qi; Ma, Yanlei; Cheng, Zhongyi; Wang, Yingchao; Zhao, Shuliang; Qian, Jin; Chen, Yingxuan; Fang, Jing-Yuan; Xu, Jie

    2018-06-21

    Many cancer-related proteins are controlled by composite post-translational modifications (PTMs), but prevalent strategies only target one type of modification. Here we describe a designed peptide that controls two types of modifications of the p53 tumor suppressor, based on the discovery of a protein complex that suppresses p53 (suppresome). We found that Morn3, a cancer-testis antigen, recruits different PTM enzymes, such as sirtuin deacetylase and ubiquitin ligase, to confer composite modifications on p53. The molecular functions of Morn3 were validated through in vivo assays and chemico-biological intervention. A rationally designed Morn3-targeting peptide (Morncide) successfully activated p53 and suppressed tumor growth. These findings shed light on the regulation of protein PTMs and present a strategy for targeting two modifications with one molecule. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. A bipartite signal mediates the transfer of type IV secretion substrates of Bartonella henselae into human cells.

    PubMed

    Schulein, Ralf; Guye, Patrick; Rhomberg, Thomas A; Schmid, Michael C; Schröder, Gunnar; Vergunst, Annette C; Carena, Ilaria; Dehio, Christoph

    2005-01-18

    Bacterial type IV secretion (T4S) systems mediate the transfer of macromolecular substrates into various target cells, e.g., the conjugative transfer of DNA into bacteria or the transfer of virulence proteins into eukaryotic host cells. The T4S apparatus VirB of the vascular tumor-inducing pathogen Bartonella henselae causes subversion of human endothelial cell (HEC) function. Here we report the identification of multiple protein substrates of VirB, which, upon translocation into HEC, mediate all known VirB-dependent cellular changes. These Bartonella-translocated effector proteins (Beps) A-G are encoded together with the VirB system and the T4S coupling protein VirD4 on a Bartonella-specific pathogenicity island. The Beps display a modular architecture, suggesting an evolution by extensive domain duplication and reshuffling. The C terminus of each Bep harbors at least one copy of the Bep-intracellular delivery domain and a short positively charged tail sequence. This biparte C terminus constitutes a transfer signal that is sufficient to mediate VirB/VirD4-dependent intracellular delivery of reporter protein fusions. The Bep-intracellular delivery domain is also present in conjugative relaxases of bacterial conjugation systems. We exemplarily show that the C terminus of such a conjugative relaxase mediates protein transfer through the Bartonella henselae VirB/VirD4 system into HEC. Conjugative relaxases may thus represent the evolutionary origin of the here defined T4S signal for protein transfer into human cells.

  20. A bipartite signal mediates the transfer of type IV secretion substrates of Bartonella henselae into human cells

    PubMed Central

    Schulein, Ralf; Guye, Patrick; Rhomberg, Thomas A.; Schmid, Michael C.; Schröder, Gunnar; Vergunst, Annette C.; Carena, Ilaria; Dehio, Christoph

    2005-01-01

    Bacterial type IV secretion (T4S) systems mediate the transfer of macromolecular substrates into various target cells, e.g., the conjugative transfer of DNA into bacteria or the transfer of virulence proteins into eukaryotic host cells. The T4S apparatus VirB of the vascular tumor-inducing pathogen Bartonella henselae causes subversion of human endothelial cell (HEC) function. Here we report the identification of multiple protein substrates of VirB, which, upon translocation into HEC, mediate all known VirB-dependent cellular changes. These Bartonella-translocated effector proteins (Beps) A-G are encoded together with the VirB system and the T4S coupling protein VirD4 on a Bartonella-specific pathogenicity island. The Beps display a modular architecture, suggesting an evolution by extensive domain duplication and reshuffling. The C terminus of each Bep harbors at least one copy of the Bep-intracellular delivery domain and a short positively charged tail sequence. This biparte C terminus constitutes a transfer signal that is sufficient to mediate VirB/VirD4-dependent intracellular delivery of reporter protein fusions. The Bep-intracellular delivery domain is also present in conjugative relaxases of bacterial conjugation systems. We exemplarily show that the C terminus of such a conjugative relaxase mediates protein transfer through the Bartonella henselae VirB/VirD4 system into HEC. Conjugative relaxases may thus represent the evolutionary origin of the here defined T4S signal for protein transfer into human cells. PMID:15642951

  1. Structural Basis for Conserved Regulation and Adaptation of the Signal Recognition Particle Targeting Complex.

    PubMed

    Wild, Klemens; Bange, Gert; Motiejunas, Domantas; Kribelbauer, Judith; Hendricks, Astrid; Segnitz, Bernd; Wade, Rebecca C; Sinning, Irmgard

    2016-07-17

    The signal recognition particle (SRP) is a ribonucleoprotein complex with a key role in targeting and insertion of membrane proteins. The two SRP GTPases, SRP54 (Ffh in bacteria) and FtsY (SRα in eukaryotes), form the core of the targeting complex (TC) regulating the SRP cycle. The architecture of the TC and its stimulation by RNA has been described for the bacterial SRP system while this information is lacking for other domains of life. Here, we present the crystal structures of the GTPase heterodimers of archaeal (Sulfolobus solfataricus), eukaryotic (Homo sapiens), and chloroplast (Arabidopsis thaliana) SRP systems. The comprehensive structural comparison combined with Brownian dynamics simulations of TC formation allows for the description of the general blueprint and of specific adaptations of the quasi-symmetric heterodimer. Our work defines conserved external nucleotide-binding sites for SRP GTPase activation by RNA. Structural analyses of the GDP-bound, post-hydrolysis states reveal a conserved, magnesium-sensitive switch within the I-box. Overall, we provide a general model for SRP cycle regulation by RNA. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Activity-Dependent Gating of Calcium Spikes by A-type K+ Channels Controls Climbing Fiber Signaling in Purkinje Cell Dendrites

    PubMed Central

    Otsu, Yo; Marcaggi, Païkan; Feltz, Anne; Isope, Philippe; Kollo, Mihaly; Nusser, Zoltan; Mathieu, Benjamin; Kano, Masanobu; Tsujita, Mika; Sakimura, Kenji; Dieudonné, Stéphane

    2014-01-01

    Summary In cerebellar Purkinje cell dendrites, heterosynaptic calcium signaling induced by the proximal climbing fiber (CF) input controls plasticity at distal parallel fiber (PF) synapses. The substrate and regulation of this long-range dendritic calcium signaling are poorly understood. Using high-speed calcium imaging, we examine the role of active dendritic conductances. Under basal conditions, CF stimulation evokes T-type calcium signaling displaying sharp proximodistal decrement. Combined mGluR1 receptor activation and depolarization, two activity-dependent signals, unlock P/Q calcium spikes initiation and propagation, mediating efficient CF signaling at distal sites. These spikes are initiated in proximal smooth dendrites, independently from somatic sodium action potentials, and evoke high-frequency bursts of all-or-none fast-rising calcium transients in PF spines. Gradual calcium spike burst unlocking arises from increasing inactivation of mGluR1-modulated low-threshold A-type potassium channels located in distal dendrites. Evidence for graded activity-dependent CF calcium signaling at PF synapses refines current views on cerebellar supervised learning rules. PMID:25220810

  3. Activity-dependent gating of calcium spikes by A-type K+ channels controls climbing fiber signaling in Purkinje cell dendrites.

    PubMed

    Otsu, Yo; Marcaggi, Païkan; Feltz, Anne; Isope, Philippe; Kollo, Mihaly; Nusser, Zoltan; Mathieu, Benjamin; Kano, Masanobu; Tsujita, Mika; Sakimura, Kenji; Dieudonné, Stéphane

    2014-10-01

    In cerebellar Purkinje cell dendrites, heterosynaptic calcium signaling induced by the proximal climbing fiber (CF) input controls plasticity at distal parallel fiber (PF) synapses. The substrate and regulation of this long-range dendritic calcium signaling are poorly understood. Using high-speed calcium imaging, we examine the role of active dendritic conductances. Under basal conditions, CF stimulation evokes T-type calcium signaling displaying sharp proximodistal decrement. Combined mGluR1 receptor activation and depolarization, two activity-dependent signals, unlock P/Q calcium spikes initiation and propagation, mediating efficient CF signaling at distal sites. These spikes are initiated in proximal smooth dendrites, independently from somatic sodium action potentials, and evoke high-frequency bursts of all-or-none fast-rising calcium transients in PF spines. Gradual calcium spike burst unlocking arises from increasing inactivation of mGluR1-modulated low-threshold A-type potassium channels located in distal dendrites. Evidence for graded activity-dependent CF calcium signaling at PF synapses refines current views on cerebellar supervised learning rules. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Low cost ground receiving systems for television signals from high powered communications satellites, volume 1

    NASA Technical Reports Server (NTRS)

    Hesler, J. P.; Hwang, Y. C.; Zampini, J. J.

    1972-01-01

    The fabrication and evaluation of 10 engineering prototype ground signal processing systems of three converter types are reported for use with satellite television. Target cost converters and cost sensitivity analysis are discussed along with the converter configurations.

  5. Echolocation signals and transmission beam pattern of a false killer whale (Pseudorca crassidens).

    PubMed

    Au, W W; Pawloski, J L; Nachtigall, P E; Blonz, M; Gisner, R C

    1995-07-01

    The echolocation transmission beam pattern of a false killer whale (Pseudorca crassidens) was measured in the vertical and horizontal planes. A vertical array of seven broadband miniature hydrophones was used to measure the beam pattern in the vertical plane and a horizontal array of the same hydrophones was used in the horizontal plane. The measurements were performed in the open waters of Kaneohe Bay, Oahu, Hawaii, while the whale performed a target discrimination task. Four types of signals, characterized by their frequency spectra, were measured. Type-1 signals had a single low-frequency peak at 40 +/- 9 kHz and a low-amplitude shoulder at high frequencies. Type-2 signals had a bimodal frequency characteristic with a primary peak at 46 +/- 7 kHz and a secondary peak at 88 +/- 13 kHz. Type-3 signals were also bimodal but with a primary peak at 100 +/- 7 kHz and a secondary peak at 49 +/- 9 kHz. Type-4 signals had a single high-frequency peak at 104 +/- 7 kHz. The center frequency of the signals were found to be linearly correlated to the peak-to-peak source level, increasing with increasing source level. The major axis of the vertical beam was directed slightly downward between 0 and -5 degrees, in contrast to the +5 to 10 degrees for Tursiops and Delphinapterus. The beam in the horizontal plane was directed forward between 0 degrees and -5 degrees.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. Protein tyrosine phosphatase 1B as a target for the treatment of impaired glucose tolerance and type II diabetes.

    PubMed

    Liu, Gang; Trevillyan, James M

    2002-11-01

    Protein tyrosine phosphatase 1B (PTP1B) is a negative regulator of the insulin signal transduction cascade, initiated when insulin binds to the insulin receptor. PTP1B-deficient mice are more sensitive to insulin, and have improved glycemic control and resistance to diet-induced obesity than wild-type control mice. Diabetic mice treated with PTP1B antisense oligonucleotides intraperitoneally have lower PTP1B protein levels in liver and fat, reduced plasma insulin, blood glucose and hemoglobin A1c (HbA1c) levels. These studies validate PTP1B as a promising drug discovery target for the treatment of insulin resistance, diabetes and obesity. Herein we review the recent advances in the structure-based design of potent and selective small molecule inhibitors of PTP1B, and discuss th e challenge of developing compounds with improved cell permeability and bioavailability.

  7. Mitogen-activated protein kinase-interacting kinase regulates mTOR/AKT signaling and controls the serine/arginine-rich protein kinase-responsive type 1 internal ribosome entry site-mediated translation and viral oncolysis.

    PubMed

    Brown, Michael C; Dobrikov, Mikhail I; Gromeier, Matthias

    2014-11-01

    Translation machinery is a major recipient of the principal mitogenic signaling networks involving Raf-ERK1/2 and phosphoinositol 3-kinase (PI3K)-mechanistic target of rapamycin (mTOR). Picornavirus internal ribosomal entry site (IRES)-mediated translation and cytopathogenic effects are susceptible to the status of such signaling cascades in host cells. We determined that tumor-specific cytotoxicity of the poliovirus/rhinovirus chimera PVSRIPO is facilitated by Raf-ERK1/2 signals to the mitogen-activated protein kinase (MAPK)-interacting kinase (MNK) and its effects on the partitioning/activity of the Ser/Arg (SR)-rich protein kinase (SRPK) (M. C. Brown, J. D. Bryant, E. Y. Dobrikova, M. Shveygert, S. S. Bradrick, V. Chandramohan, D. D. Bigner, and M, Gromeier, J. Virol. 22:13135-13148, 2014, doi:http://dx.doi.org/10.1128/JVI.01883-14). Here, we show that MNK regulates SRPK via mTOR and AKT. Our investigations revealed a MNK-controlled mechanism acting on mTORC2-AKT. The resulting suppression of AKT signaling attenuates SRPK activity to enhance picornavirus type 1 IRES translation and favor PVSRIPO tumor cell toxicity and killing. Oncolytic immunotherapy with PVSRIPO, the type 1 live-attenuated poliovirus (PV) (Sabin) vaccine containing a human rhinovirus type 2 (HRV2) IRES, is demonstrating early promise in clinical trials with intratumoral infusion in recurrent glioblastoma (GBM). Our investigations demonstrate that the core mechanistic principle of PVSRIPO, tumor-selective translation and cytotoxicity, relies on constitutive ERK1/2-MNK signals that counteract the deleterious effects of runaway AKT-SRPK activity in malignancy. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  8. Investigating Strength and Frequency Effects in Recognition Memory Using Type-2 Signal Detection Theory

    ERIC Educational Resources Information Center

    Higham, Philip A.; Perfect, Timothy J.; Bruno, Davide

    2009-01-01

    Criterion- versus distribution-shift accounts of frequency and strength effects in recognition memory were investigated with Type-2 signal detection receiver operating characteristic (ROC) analysis, which provides a measure of metacognitive monitoring. Experiment 1 demonstrated a frequency-based mirror effect, with a higher hit rate and lower…

  9. Individualised treatment targets in patients with type-2 diabetes and hypertension.

    PubMed

    Schmieder, Roland E; Tschöpe, Diethelm; Koch, Cornelia; Ouarrak, Taoufik; Gitt, Anselm K

    2018-01-22

    Patients with type-2 diabetes mellitus (T2DM) are at high risk of cardiovascular events, accentuated in the presence of hypertension. At present, it is unclear to what extent the guidelines for the management of T2DM, advocating reduction in HbA1c levels to below target levels, are being adhered to in clinical practice. DIALOGUE was a prospective, observational, non-interventional registry performed across multiple centres in Germany. Patients aged 18 years or older who had T2DM and hypertension for whom the treating physician considered blood glucose lowering medication as inadequate and/or not safe/tolerable and chose to add a further oral drug or switch drug treatment were included. Patients were assigned a treatment target HbA1c value (≤ 6.5% [strict]; > 6.5 to ≤ 7.0% [intermediate]; > 7.0 to ≤ 7.5% [lenient]). 8568 patients with T2DM and hypertension were enrolled. 6691 (78.1%) had 12-month follow-up. Patients who were assigned a strict HbA1c treatment target (n = 2644) were younger, had shorter diabetes duration, and less comorbidity in comparison to those with intermediate (n = 2912) or lenient targets (n = 1135). Only 53.1% of patients achieved their HbA1c treatment target (46.2% [strict], 56.8% [intermediate], 59.4% [lenient]). There was little sign of treatment intensification for patients that had not achieved their HbA1c target. Achievement of treatment targets was poor, leaving many patients with sub-optimal blood glucose levels. The apparent reluctance of physicians to intensify antidiabetic drug therapy is alarming, especially considering the evidence pointing to an association of hyperglycaemia and microvascular complications in patients with T2DM.

  10. CNS-targets in control of energy and glucose homeostasis.

    PubMed

    Kleinridders, André; Könner, A Christine; Brüning, Jens C

    2009-12-01

    The exceeding efforts in understanding the signals initiated by nutrients and hormones in the central nervous system (CNS) to regulate glucose and energy homeostasis have largely revolutionized our understanding of the neurocircuitry in control of peripheral metabolism. The ability of neurons to sense nutrients and hormones and to adopt a coordinated response to these signals is of crucial importance in controlling food intake, energy expenditure, glucose and lipid metabolism. Anatomical lesion experiments, pharmacological inhibition of signaling pathways, and, more recently, the analysis of conditional mouse mutants with modifications of hormone and nutrient signaling in defined neuronal populations have broadened our understanding of these complex neurocircuits. This review summarizes recent findings regarding the role of the CNS in sensing and transmitting nutritional and hormonal signals to control energy and glucose homeostasis and aims to define them as potential novel drug targets for the treatment of obesity and type 2 diabetes mellitus.

  11. Distinct Pseudomonas type-III effectors use a cleavable transit peptide to target chloroplasts.

    PubMed

    Li, Guangyong; Froehlich, John E; Elowsky, Christian; Msanne, Joseph; Ostosh, Andrew C; Zhang, Chi; Awada, Tala; Alfano, James R

    2014-01-01

    The pathogen Pseudomonas syringae requires a type-III protein secretion system and the effector proteins it injects into plant cells for pathogenesis. The primary role for P. syringae type-III effectors is the suppression of plant immunity. The P. syringae pv. tomato DC3000 HopK1 type-III effector was known to suppress the hypersensitive response (HR), a programmed cell death response associated with effector-triggered immunity. Here we show that DC3000 hopK1 mutants are reduced in their ability to grow in Arabidopsis, and produce reduced disease symptoms. Arabidopsis transgenically expressing HopK1 are reduced in PAMP-triggered immune responses compared with wild-type plants. An N-terminal region of HopK1 shares similarity with the corresponding region in the well-studied type-III effector AvrRps4; however, their C-terminal regions are dissimilar, indicating that they have different effector activities. HopK1 is processed in planta at the same processing site found in AvrRps4. The processed forms of HopK1 and AvrRps4 are chloroplast localized, indicating that the shared N-terminal regions of these type-III effectors represent a chloroplast transit peptide. The HopK1 contribution to virulence and the ability of HopK1 and AvrRps4 to suppress immunity required their respective transit peptides, but the AvrRps4-induced HR did not. Our results suggest that a primary virulence target of these type-III effectors resides in chloroplasts, and that the recognition of AvrRps4 by the plant immune system occurs elsewhere. Moreover, our results reveal that distinct type-III effectors use a cleavable transit peptide to localize to chloroplasts, and that targets within this organelle are important for immunity. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.

  12. Toxicological disruption of signaling homeostasis: Tyrosine phosphatses as targets

    EPA Science Inventory

    The protein tyrosine phosphatases (PTP) comprised a diverse group of enzymes whose activity opposes that of the tyrosine kinases. As such, the PTP have critical roles in maintaining signaling quiescence in resting cells and in restoring homeostasis by effecting signal termination...

  13. A method for predicting target drug efficiency in cancer based on the analysis of signaling pathway activation.

    PubMed

    Artemov, Artem; Aliper, Alexander; Korzinkin, Michael; Lezhnina, Ksenia; Jellen, Leslie; Zhukov, Nikolay; Roumiantsev, Sergey; Gaifullin, Nurshat; Zhavoronkov, Alex; Borisov, Nicolas; Buzdin, Anton

    2015-10-06

    A new generation of anticancer therapeutics called target drugs has quickly developed in the 21st century. These drugs are tailored to inhibit cancer cell growth, proliferation, and viability by specific interactions with one or a few target proteins. However, despite formally known molecular targets for every "target" drug, patient response to treatment remains largely individual and unpredictable. Choosing the most effective personalized treatment remains a major challenge in oncology and is still largely trial and error. Here we present a novel approach for predicting target drug efficacy based on the gene expression signature of the individual tumor sample(s). The enclosed bioinformatic algorithm detects activation of intracellular regulatory pathways in the tumor in comparison to the corresponding normal tissues. According to the nature of the molecular targets of a drug, it predicts whether the drug can prevent cancer growth and survival in each individual case by blocking the abnormally activated tumor-promoting pathways or by reinforcing internal tumor suppressor cascades. To validate the method, we compared the distribution of predicted drug efficacy scores for five drugs (Sorafenib, Bevacizumab, Cetuximab, Sorafenib, Imatinib, Sunitinib) and seven cancer types (Clear Cell Renal Cell Carcinoma, Colon cancer, Lung adenocarcinoma, non-Hodgkin Lymphoma, Thyroid cancer and Sarcoma) with the available clinical trials data for the respective cancer types and drugs. The percent of responders to a drug treatment correlated significantly (Pearson's correlation 0.77 p = 0.023) with the percent of tumors showing high drug scores calculated with the current algorithm.

  14. Synchronized Radar-Target Simulator

    NASA Technical Reports Server (NTRS)

    Chin, B. C.

    1985-01-01

    Apparatus for testing radar system generates signals that simulate amplitude and phase characteristics of target returns and their variation with antenna-pointing direction. Antenna movement causes equipment to alter test signal in imitation of behavior of real signal received during tracking.

  15. A Protective Role for Interleukin-1 Signaling during Mouse Adenovirus Type 1-Induced Encephalitis.

    PubMed

    Castro-Jorge, Luiza A; Pretto, Carla D; Smith, Asa B; Foreman, Oded; Carnahan, Kelly E; Spindler, Katherine R

    2017-02-15

    Interleukin-1β (IL-1β), an inflammatory cytokine and IL-1 receptor ligand, has diverse activities in the brain. We examined whether IL-1 signaling contributes to the encephalitis observed in mouse adenovirus type 1 (MAV-1) infection, using mice lacking the IL-1 receptor (Il1r1 -/- mice). Il1r1 -/- mice demonstrated reduced survival, greater disruption of the blood-brain barrier (BBB), higher brain viral loads, and higher brain inflammatory cytokine and chemokine levels than control C57BL/6J mice. We also examined infections of mice defective in IL-1β production (Pycard -/- mice) and mice defective in trafficking of Toll-like receptors to the endosome (Unc93b1 -/- mice). Pycard -/- and Unc93b1 -/- mice showed lower survival (similar to Il1r1 -/- mice) than control mice but, unlike Il1r1 -/- mice, did not have increased brain viral loads or BBB disruption. Based on the brain cytokine levels, MAV-1-infected Unc93b1 -/- mice had a very different inflammatory profile from infected Il1r1 -/- and Pycard -/- mice. Histological examination demonstrated pathological findings consistent with encephalitis in control and knockout mice; however, intranuclear viral inclusions were seen only in Il1r1 -/- mice. A time course of infection of control and Il1r1 -/- mice evaluating the kinetics of viral replication and cytokine production revealed differences between the mouse strains primarily at 7 to 8 days after infection, when mice began succumbing to MAV-1 infection. In the absence of IL-1 signaling, we noted an increase in the transcription of type I interferon (IFN)-stimulated genes. Together, these results indicate that IL-1 signaling is important during MAV-1 infection and suggest that, in its absence, increased IFN-β signaling may result in increased neuroinflammation. The investigation of encephalitis pathogenesis produced by different viruses is needed to characterize virus and host-specific factors that contribute to disease. MAV-1 produces viral encephalitis in its

  16. MicroRNA-guided prioritization of genome-wide association signals reveals the importance of microRNA-target gene networks for complex traits in cattle.

    PubMed

    Fang, Lingzhao; Sørensen, Peter; Sahana, Goutam; Panitz, Frank; Su, Guosheng; Zhang, Shengli; Yu, Ying; Li, Bingjie; Ma, Li; Liu, George; Lund, Mogens Sandø; Thomsen, Bo

    2018-06-19

    MicroRNAs (miRNA) are key modulators of gene expression and so act as putative fine-tuners of complex phenotypes. Here, we hypothesized that causal variants of complex traits are enriched in miRNAs and miRNA-target networks. First, we conducted a genome-wide association study (GWAS) for seven functional and milk production traits using imputed sequence variants (13~15 million) and >10,000 animals from three dairy cattle breeds, i.e., Holstein (HOL), Nordic red cattle (RDC) and Jersey (JER). Second, we analyzed for enrichments of association signals in miRNAs and their miRNA-target networks. Our results demonstrated that genomic regions harboring miRNA genes were significantly (P < 0.05) enriched with GWAS signals for milk production traits and mastitis, and that enrichments within miRNA-target gene networks were significantly higher than in random gene-sets for the majority of traits. Furthermore, most between-trait and across-breed correlations of enrichments with miRNA-target networks were significantly greater than with random gene-sets, suggesting pleiotropic effects of miRNAs. Intriguingly, genes that were differentially expressed in response to mammary gland infections were significantly enriched in the miRNA-target networks associated with mastitis. All these findings were consistent across three breeds. Collectively, our observations demonstrate the importance of miRNAs and their targets for the expression of complex traits.

  17. PDK1 in NF-κB signaling is a target of Xanthium strumarium methanolic extract-mediated anti-inflammatory activities.

    PubMed

    Hossen, Muhammad Jahangir; Cho, Jae Youl; Kim, Daewon

    2016-08-22

    Xanthium strumarium L. (Asteraceae) has traditionally been used to treat bacterial infections, nasal sinusitis, urticaria, arthritis, chronic bronchitis and rhinitis, allergic rhinitis, edema, lumbago, and other ailments. However, the molecular mechanisms by which this plant exerts its anti-inflammatory effects are poorly characterized. Here we studied the immunopharmacological activities of the methanolic extract of the aerial parts of this plant (Xs-ME) and validated its pharmacological targets. To evaluate the anti-inflammatory activity of Xs-ME, we employed lipopolysaccharide (LPS)-treated macrophages and an HCl/EtOH-induced mouse model of gastritis. We also used HPLC to identify the potentially active anti-inflammatory components of this extract. The molecular mechanisms of its anti-inflammatory activity were studied by kinase assays, reporter gene assays, immunoprecipitation analysis, and overexpression of target enzymes. The production of nitric oxide (NO) and prostaglandin E2 (PGE2) were both suppressed by Xs-ME. Moreover, orally administered Xs-ME ameliorated HCl/EtOH-induced gastric lesions. Furthermore, this extract downregulated the expression of inducible NO synthase (iNOS) and cyclooxygenase (COX)-2 and reduced the nuclear levels of NF-κB. Signaling events upstream of NF-κB translocation, such as phosphorylation of AKT and the formation of PDK1-AKT signaling complexes, were also inhibited by Xs-ME. Moreover, Xs-ME suppressed the enzymatic activity of PDK1. Additionally, PDK1-induced luciferase activity and Akt phosphorylation were both inhibited by Xs-ME. We also identified the polyphenol resveratrol as a likely active anti-inflammatory component in Xs-ME that targets PDK1. Xs-ME exerts anti-inflammatory activity in vitro and in vivo by inhibiting PDK1 kinase activity and blocking signaling to its downstream transcription factor, NF-κB. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Differential 14-3-3 Affinity Capture Reveals New Downstream Targets of Phosphatidylinositol 3-Kinase Signaling*

    PubMed Central

    Dubois, Fanny; Vandermoere, Franck; Gernez, Aurélie; Murphy, Jane; Toth, Rachel; Chen, Shuai; Geraghty, Kathryn M.; Morrice, Nick A.; MacKintosh, Carol

    2009-01-01

    We devised a strategy of 14-3-3 affinity capture and release, isotope differential (d0/d4) dimethyl labeling of tryptic digests, and phosphopeptide characterization to identify novel targets of insulin/IGF1/phosphatidylinositol 3-kinase signaling. Notably four known insulin-regulated proteins (PFK-2, PRAS40, AS160, and MYO1C) had high d0/d4 values meaning that they were more highly represented among 14-3-3-binding proteins from insulin-stimulated than unstimulated cells. Among novel candidates, insulin receptor substrate 2, the proapoptotic CCDC6, E3 ubiquitin ligase ZNRF2, and signaling adapter SASH1 were confirmed to bind to 14-3-3s in response to IGF1/phosphatidylinositol 3-kinase signaling. Insulin receptor substrate 2, ZNRF2, and SASH1 were also regulated by phorbol ester via p90RSK, whereas CCDC6 and PRAS40 were not. In contrast, the actin-associated protein vasodilator-stimulated phosphoprotein and lipolysis-stimulated lipoprotein receptor, which had low d0/d4 scores, bound 14-3-3s irrespective of IGF1 and phorbol ester. Phosphorylated Ser19 of ZNRF2 (RTRAYpS19GS), phospho-Ser90 of SASH1 (RKRRVpS90QD), and phospho- Ser493 of lipolysis-stimulated lipoprotein receptor (RPRARpS493LD) provide one of the 14-3-3-binding sites on each of these proteins. Differential 14-3-3 capture provides a powerful approach to defining downstream regulatory mechanisms for specific signaling pathways. PMID:19648646

  19. CXCR6 induces prostate cancer progression by the AKT/mammalian target of rapamycin signaling pathway.

    PubMed

    Wang, Jianhua; Lu, Yi; Wang, Jingchen; Koch, Alisa E; Zhang, Jian; Taichman, Russell S

    2008-12-15

    Previous studies show that the chemokine CXCL16 and its receptor CXCR6 are likely to contribute to prostate cancer (PCa). In this investigation, the role of the CXCR6 receptor in PCa was further explored. CXCR6 protein expression was examined using high-density tissue microarrays and immunohistochemistry. Expression of CXCR6 showed strong epithelial staining that correlated with Gleason score. In vitro and in vivo studies in PCa cell lines suggested that alterations in CXCR6 expression were associated with invasive activities and tumor growth. In addition, CXCR6 expression was able to regulate expression of the proangiogenic factors interleukin (IL)-8 or vascular endothelial growth factor (VEGF), which are likely to participate in the regulation of tumor angiogenesis. Finally, we found that CXCL16 signaling induced the activation of Akt, p70S6K, and eukaryotic initiation factor 4E binding protein 1 included in mammalian target of rapamycin (mTOR) pathways, which are located downstream of Akt. Furthermore, rapamycin not only drastically inhibited CXCL16-induced PCa cell invasion and growth but reduced secretion of IL-8 or VEGF levels and inhibited expression of other CXCR6 targets including CD44 and matrix metalloproteinase 3 in PCa cells. Together, our data shows for the first time that the CXCR6/AKT/mTOR pathway plays a central role in the development of PCa. Blocking the CXCR6/AKT/mTOR signaling pathway may prove beneficial to prevent metastasis and provide a more effective therapeutic strategy for PCa.

  20. Targeting CDH17 Suppresses Tumor Progression in Gastric Cancer by Downregulating Wnt/β-Catenin Signaling

    PubMed Central

    Ren, Chao; Zeng, Zhao-lei; Wu, Wen-jing; Luo, Hui-yan; Zhou, Zhi-wei; Xu, Rui-hua

    2013-01-01

    Purpose Gastric cancer remains one of the leading causes of cancer death worldwide. Patients usually present late with local invasion or metastasis, for which there are no effective therapies available. Following previous studies that identified the adhesion molecule Cadherin-17(CDH17) as a potential marker for gastric carcinoma, we performed proof-of-principle studies to develop rational therapeutic approaches targeting CDH17 for treating this disease. Methods Immunohistochemistry was used to study the expression of CDH17 in 156 gastric carcinomas, and the relationship between survival and CDH17 expression was studied by multivariate analyses. The effect of RNA interference–mediated knockdown of CDH17 on proliferation of gastric carcinoma cell lines was examined in vitro and in vivo, as well as the effects on downstream signaling by immunoblotting. Results CDH17 was consistently up-regulated in human gastric cancers, and overall survival in patients with CDH17 upregulation was poorer than in those without expression of this gene (5 yrs overall survival rate 29.0% vs. 45.0%, P<0.01). Functional assays demonstrated that CDH17 knockdown inhibited cell proliferation, adhesion, migration, invasion, clonogenicity and induce G0/G1 arrest. In mice, shRNA-mediated CDH17 knockdown markedly inhibits tumor growth; intratumoral injection of CDH17 shRNAs results in significant antitumor effects on transplanted tumor models. The antitumor mechanisms underlying CDH17 inhibition involve inactivation of Wnt/β-catenin signaling. Conclusion Our results identify CDH17 as a biomarker of gastric carcinoma and attractive therapeutic target for this aggressive malignancy. PMID:23554857