Sample records for targets isotropically irradiated

  1. Ceramography of Irradiated tristructural isotropic (TRISO) Fuel from the AGR-2 Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rice, Francine Joyce; Stempien, John Dennis

    2016-09-01

    Ceramography was performed on cross sections from four tristructural isotropic (TRISO) coated particle fuel compacts taken from the AGR-2 experiment, which was irradiated between June 2010 and October 2013 in the Advanced Test Reactor (ATR). The fuel compacts examined in this study contained TRISO-coated particles with either uranium oxide (UO2) kernels or uranium oxide/uranium carbide (UCO) kernels that were irradiated to final burnup values between 9.0 and 11.1% FIMA. These examinations are intended to explore kernel and coating morphology evolution during irradiation. This includes kernel porosity, swelling, and migration, and irradiation-induced coating fracture and separation. Variations in behavior within amore » specific cross section, which could be related to temperature or burnup gradients within the fuel compact, are also explored. The criteria for categorizing post-irradiation particle morphologies developed for AGR-1 ceramographic exams, was applied to the particles in the AGR-2 compacts particles examined. Results are compared with similar investigations performed as part of the earlier AGR-1 irradiation experiment. This paper presents the results of the AGR-2 examinations and discusses the key implications for fuel irradiation performance.« less

  2. Upconverting core-shell nanocrystals with high quantum yield under low irradiance: On the role of isotropic and thick shells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischer, Stefan; Goldschmidt, Jan Christoph; Johnson, Noah J. J.

    2015-11-21

    Colloidal upconverter nanocrystals (UCNCs) that convert near-infrared photons to higher energies are promising for applications ranging from life sciences to solar energy harvesting. However, practical applications of UCNCs are hindered by their low upconversion quantum yield (UCQY) and the high irradiances necessary to produce relevant upconversion luminescence. Achieving high UCQY under practically relevant irradiance remains a major challenge. The UCQY is severely limited due to non-radiative surface quenching processes. We present a rate equation model for migration of the excitation energy to show that surface quenching does not only affect the lanthanide ions directly at the surface but also manymore » other lanthanide ions quite far away from the surface. The average migration path length is on the order of several nanometers and depends on the doping as well as the irradiance of the excitation. Using Er{sup 3+}-doped β-NaYF{sub 4} UCNCs, we show that very isotropic and thick (∼10 nm) β-NaLuF{sub 4} inert shells dramatically reduce the surface-related quenching processes, resulting in much brighter upconversion luminescence at simultaneously considerably lower irradiances. For these UCNCs embedded in poly(methyl methacrylate), we determined an internal UCQY of 2.0% ± 0.2% using an irradiance of only 0.43 ± 0.03 W/cm{sup 2} at 1523 nm. Normalized to the irradiance, this UCQY is 120× higher than the highest values of comparable nanomaterials in the literature. Our findings demonstrate the important role of isotropic and thick shells in achieving high UCQY at low irradiances from UCNCs. Additionally, we measured the additional short-circuit current due to upconversion in silicon solar cell devices as a proof of concept and to support our findings determined using optical measurements.« less

  3. Recovery of uranium from an irradiated solid target after removal of molybdenum-99 produced from the irradiated target

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reilly, Sean Douglas; May, Iain; Copping, Roy

    A process for minimizing waste and maximizing utilization of uranium involves recovering uranium from an irradiated solid target after separating the medical isotope product, molybdenum-99, produced from the irradiated target. The process includes irradiating a solid target comprising uranium to produce fission products comprising molybdenum-99, and thereafter dissolving the target and conditioning the solution to prepare an aqueous nitric acid solution containing irradiated uranium. The acidic solution is then contacted with a solid sorbent whereby molybdenum-99 remains adsorbed to the sorbent for subsequent recovery. The uranium passes through the sorbent. The concentrations of acid and uranium are then adjusted tomore » concentrations suitable for crystallization of uranyl nitrate hydrates. After inducing the crystallization, the uranyl nitrate hydrates are separated from a supernatant. The process results in the purification of uranyl nitrate hydrates from fission products and other contaminants. The uranium is therefore available for reuse, storage, or disposal.« less

  4. Final Report on MEGAPIE Target Irradiation and Post-Irradiation Examination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yong, Dai

    2015-06-30

    Megawatt pilot experiment (MEGAPIE) was successfully performed in 2006. One of the important goals of MEGAPIE is to understand the behaviour of structural materials of the target components exposed to high fluxes of high-energy protons and spallation neutrons in flowing LBE (liquid lead-bismuth eutectic) environment by conducting post-irradiation examination (PIE). The PIE includes four major parts: non-destructive test, radiochemical analysis of production and distribution of radionuclides produced by spallation reaction in LBE, analysis of LBE corrosion effects on structural materials, T91 and SS 316L steels, and mechanical testing of the T91 and SS 316L steels irradiated in the lower partmore » of the target. The non-destructive test (NDT) including visual inspection and ultrasonic measurement was performed in the proton beam window area of the T91 calotte of the LBE container, the most intensively irradiated part of the MEGAPIE target. The visual inspection showed no visible failure and the ultrasonic measurement demonstrated no detectable change in thickness in the beam window area. Gamma mapping was also performed in the proton beam window area of the AlMg 3 safety-container. The gamma mapping results were used to evaluate the accumulated proton fluence distribution profile, the input data for determining irradiation parameters. Radiochemical analysis of radionuclides produced by spallation reaction in LBE is to improve the understanding of the production and distribution of radionuclides in the target. The results demonstrate that the radionuclides of noble metals, 207Bi, 194Hg/Au are rather homogeneously distributed within the target, while radionuclides of electropositive elements are found to be deposited on the steel-LBE interface. The corrosion effect of LBE on the structural components under intensive irradiation was investigated by metallography. The results show that no evident corrosion damages. However, unexpected deep cracks were found in the

  5. Swift heavy ion-induced radiation damage in isotropic graphite studied by micro-indentation and in-situ electrical resistivity

    NASA Astrophysics Data System (ADS)

    Hubert, Christian; Voss, Kay Obbe; Bender, Markus; Kupka, Katharina; Romanenko, Anton; Severin, Daniel; Trautmann, Christina; Tomut, Marilena

    2015-12-01

    Due to its excellent thermo-physical properties and radiation hardness, isotropic graphite is presently the most promising material candidate for new high-power ion accelerators which will provide highest beam intensities and energies. Under these extreme conditions, specific accelerator components including production targets and beam protection modules are facing the risk of degradation due to radiation damage. Ion-beam induced damage effects were tested by irradiating polycrystalline, isotropic graphite samples at the UNILAC (GSI, Darmstadt) with 4.8 MeV per nucleon 132Xe, 150Sm, 197Au, and 238U ions applying fluences between 1 × 1011 and 1 × 1014 ions/cm2. The overall damage accumulation and its dependence on energy loss of the ions were studied by in situ 4-point resistivity measurements. With increasing fluence, the electric resistivity increases due to disordering of the graphitic structure. Irradiated samples were also analyzed off-line by means of micro-indentation in order to characterize mesoscale effects such as beam-induced hardening and stress fields within the specimen. With increasing fluence and energy loss, hardening becomes more pronounced.

  6. Computational Modeling of Ablation on an Irradiated Target

    NASA Astrophysics Data System (ADS)

    Mehmedagic, Igbal; Thangam, Siva

    2017-11-01

    Computational modeling of pulsed nanosecond laser interaction with an irradiated metallic target is presented. The model formulation involves ablation of the metallic target irradiated by pulsed high intensity laser at normal atmospheric conditions. Computational findings based on effective representation and prediction of the heat transfer, melting and vaporization of the targeting material as well as plume formation and expansion are presented along with its relevance for the development of protective shields. In this context, the available results for a representative irradiation from 1064 nm laser pulse is used to analyze various ablation mechanisms, variable thermo-physical and optical properties, plume expansion and surface geometry. Funded in part by U. S. Army ARDEC, Picatinny Arsenal, NJ.

  7. Separation of sodium-22 from irradiated targets

    DOEpatents

    Taylor, Wayne A.; Jamriska, David

    1996-01-01

    A process for selective separation of sodium-22 from an irradiated target including dissolving an irradiated target to form a first solution, contacting the first solution with hydrated antimony pentoxide to selectively separate sodium-22 from the first solution, separating the hydrated antimony pentoxide including the separated sodium-22 from the first solution, dissolving the hydrated antimony pentoxide including the separated sodium-22 in a mineral acid to form a second solution, and, separating the antimony from the sodium-22 in the second solution.

  8. Investigation on laser-plasma coupling in intense, ultrashort irradiation of a nanostructured silicon target

    NASA Astrophysics Data System (ADS)

    Cristoforetti, G.; Anzalone, A.; Baffigi, F.; Bussolino, G.; D'Arrigo, G.; Fulgentini, L.; Giulietti, A.; Koester, P.; Labate, L.; Tudisco, S.; Gizzi, L. A.

    2014-09-01

    One of the most interesting research fields in laser-matter interaction studies is the investigation of effects and mechanisms produced by nano- or micro-structured targets, mainly devoted to the enhancing of laser-target or laser-plasma coupling. In intense and ultra-intense laser interaction regimes, the observed enhancement of x-ray plasma emission and/or hot electron conversion efficiency is explained by a variety of mechanisms depending on the dimensions and shape of the structures irradiated. In the present work, the attention is mainly focused on the lowering of the plasma formation threshold which is induced by the larger absorptivity. Flat and nanostructured silicon targets were here irradiated with an ultrashort laser pulse, in the range 1 × 1017-2 × 1018 W µm2 cm-2. The effects of structures on laser-plasma coupling were investigated at different laser pulse polarizations, by utilizing x-ray yield and 3/2ω harmonics emission. While the measured enhancement of x-ray emission is negligible at intensities larger than 1018 W µm2 cm-2, due to the destruction of the structures by the amplified spontaneous emission (ASE) pre-pulse, a dramatic enhancement, strongly dependent on pulse polarization, was observed at intensities lower than ˜3.5 × 1017 W µm2 cm-2. Relying on the three-halves harmonic emission and on the non-isotropic character of the x-ray yield, induced by the two-plasmon decay instability, the results are explained by the significant lowering of the plasma threshold produced by the nanostructures. In this view, the strong x-ray enhancement obtained by s-polarized pulses is produced by the interaction of the laser pulse with the preplasma, resulting from the interaction of the ASE pedestal with the nanostructures.

  9. Equivalent isotropic scattering formulation for transient short-pulse radiative transfer in anisotropic scattering planar media.

    PubMed

    Guo, Z; Kumar, S

    2000-08-20

    An isotropic scaling formulation is evaluated for transient radiative transfer in a one-dimensional planar slab subject to collimated and/or diffuse irradiation. The Monte Carlo method is used to implement the equivalent scattering and exact simulations of the transient short-pulse radiation transport through forward and backward anisotropic scattering planar media. The scaled equivalent isotropic scattering results are compared with predictions of anisotropic scattering in various problems. It is found that the equivalent isotropic scaling law is not appropriate for backward-scattering media in transient radiative transfer. Even for an optically diffuse medium, the differences in temporal transmittance and reflectance profiles between predictions of backward anisotropic scattering and equivalent isotropic scattering are large. Additionally, for both forward and backward anisotropic scattering media, the transient equivalent isotropic results are strongly affected by the change of photon flight time, owing to the change of flight direction associated with the isotropic scaling technique.

  10. Production of radionuclides in artificial meteorites irradiated isotropically with 600 MeV protons

    NASA Technical Reports Server (NTRS)

    Michel, R.; Dragovitsch, P.; Englert, P.; Herpers, U.

    1986-01-01

    The understanding of the production of cosmogenic nuclides in small meteorites (R is less than 40 cm) still is not satisfactory. The existing models for the calculation of depth dependent production rates do not distinguish between the different types of nucleons reacting in a meteorite. They rather use general depth dependent particle fluxes to which cross sections have to be adjusted to fit the measured radionuclide concentrations. Some of these models can not even be extended to zero meteorite sizes without logical contradictions. Therefore, a series of three thick target irradiations was started at the 600 MeV proton beam of the CERN isochronuous cyclotron in order to study the interactions of small stony meteorites with galactic protons. The homogeneous 4 pi irradiation technique used provides a realistic meteorite model which allows a direct comparison of the measured depth profiles with those in real meteorites. Moreover, by the simultaneous measurement of thin target production cross sections one can differentiate between the contributions of primary and secondary nucleons over the entire volume of the artificial meteorite.

  11. Method for mounting laser fusion targets for irradiation

    DOEpatents

    Fries, R. Jay; Farnum, Eugene H.; McCall, Gene H.

    1977-07-26

    Methods for preparing laser fusion targets of the ball-and-disk type are disclosed. Such targets are suitable for irradiation with one or two laser beams to produce the requisite uniform compression of the fuel material.

  12. Determination of the accuracy for targeted irradiations of cellular substructures at SNAKE

    NASA Astrophysics Data System (ADS)

    Siebenwirth, C.; Greubel, C.; Drexler, S. E.; Girst, S.; Reindl, J.; Walsh, D. W. M.; Dollinger, G.; Friedl, A. A.; Schmid, T. E.; Drexler, G. A.

    2015-04-01

    In the last 10 years the ion microbeam SNAKE, installed at the Munich 14 MV tandem accelerator, has been successfully used for radiobiological experiments by utilizing pattern irradiation without targeting single cells. Now for targeted irradiation of cellular substructures a precise irradiation device was added to the live cell irradiation setup at SNAKE. It combines a sub-micrometer single ion irradiation facility with a high resolution optical fluorescence microscope. Most systematic errors can be reduced or avoided by using the same light path in the microscope for beam spot verification as well as for and target recognition. In addition online observation of the induced cellular responses is possible. The optical microscope and the beam delivering system are controlled by an in-house developed software which integrates the open-source image analysis software, CellProfiler, for semi-automatic target recognition. In this work the targeting accuracy was determined by irradiation of a cross pattern with 55 MeV carbon ions on nucleoli in U2OS and HeLa cells stably expressing a GFP-tagged repair protein MDC1. For target recognition, nuclei were stained with Draq5 and nucleoli were stained with Syto80 or Syto83. The damage response was determined by live-cell imaging of MDC1-GFP accumulation directly after irradiation. No systematic displacement and a random distribution of about 0.7 μm (SD) in x-direction and 0.8 μm (SD) in y-direction were observed. An independent analysis after immunofluorescence staining of the DNA damage marker yH2AX yielded similar results. With this performance a target with a size similar to that of nucleoli (i.e. a diameter of about 3 μm) is hit with a probability of more than 80%, which enables the investigation of the radiation response of cellular subcompartments after targeted ion irradiation in the future.

  13. A target design for irradiation of NaI at high beam current.

    NASA Technical Reports Server (NTRS)

    Blue, J. W.; Sodd, V. J.

    1972-01-01

    A solution to the targetry problems encountered when the iodine nucleus is a target for cyclotron irradiation is given as a new target design. A target based on this design has been used in 30 microampere irradiations of 46 MeV alpha particles for one-half hour without significant damage. Such an irradiation produces 6 to 7 mCi of Cs-129, an isotope useful in nuclear medicine. This target should also be considered for cyclotron production of the radioisotopes Cs-127, I-123, and Xe-127.

  14. Recognition of isotropic plane target from RCS diagram

    NASA Astrophysics Data System (ADS)

    Saillard, J.; Chassay, G.

    1981-06-01

    The use of electromagnetic waves for the recognition of a structure represented by point scatterers is seen as posing a fundamental problem. It is noted that much research has been done on this subject and that the study of aircraft observed in the yaw plane gives interesting results. To apply these methods, however, it is necessary to use many sophisticated acquisition systems. A method is proposed which can be applied to plane structures composed of isotropic scatterers. The method is considered to be of interest because it uses only power measurements and requires only a classical tracking radar.

  15. Analytical dose modeling for preclinical proton irradiation of millimetric targets.

    PubMed

    Vanstalle, Marie; Constanzo, Julie; Karakaya, Yusuf; Finck, Christian; Rousseau, Marc; Brasse, David

    2018-01-01

    Due to the considerable development of proton radiotherapy, several proton platforms have emerged to irradiate small animals in order to study the biological effectiveness of proton radiation. A dedicated analytical treatment planning tool was developed in this study to accurately calculate the delivered dose given the specific constraints imposed by the small dimensions of the irradiated areas. The treatment planning system (TPS) developed in this study is based on an analytical formulation of the Bragg peak and uses experimental range values of protons. The method was validated after comparison with experimental data from the literature and then compared to Monte Carlo simulations conducted using Geant4. Three examples of treatment planning, performed with phantoms made of water targets and bone-slab insert, were generated with the analytical formulation and Geant4. Each treatment planning was evaluated using dose-volume histograms and gamma index maps. We demonstrate the value of the analytical function for mouse irradiation, which requires a targeting accuracy of 0.1 mm. Using the appropriate database, the analytical modeling limits the errors caused by misestimating the stopping power. For example, 99% of a 1-mm tumor irradiated with a 24-MeV beam receives the prescribed dose. The analytical dose deviations from the prescribed dose remain within the dose tolerances stated by report 62 of the International Commission on Radiation Units and Measurements for all tested configurations. In addition, the gamma index maps show that the highly constrained targeting accuracy of 0.1 mm for mouse irradiation leads to a significant disagreement between Geant4 and the reference. This simulated treatment planning is nevertheless compatible with a targeting accuracy exceeding 0.2 mm, corresponding to rat and rabbit irradiations. Good dose accuracy for millimetric tumors is achieved with the analytical calculation used in this work. These volume sizes are typical in mouse

  16. Vacuum aperture isolator for retroreflection from laser-irradiated target

    DOEpatents

    Benjamin, Robert F.; Mitchell, Kenneth B.

    1980-01-01

    The disclosure is directed to a vacuum aperture isolator for retroreflection of a laser-irradiated target. Within a vacuum chamber are disposed a beam focusing element, a disc having an aperture and a recollimating element. The edge of the focused beam impinges on the edge of the aperture to produce a plasma which refracts any retroreflected light from the laser's target.

  17. Target depth dependence of damage rate in metals by 150 MeV proton irradiation

    NASA Astrophysics Data System (ADS)

    Yoshiie, T.; Ishi, Y.; Kuriyama, Y.; Mori, Y.; Sato, K.; Uesugi, T.; Xu, Q.

    2015-01-01

    A series of irradiation experiments with 150 MeV protons was performed. The relationship between target depth (or shield thickness) and displacement damage during proton irradiation was obtained by in situ electrical resistance measurements at 20 K. Positron annihilation lifetime measurements were also performed at room temperature after irradiation, as a function of the target thickness. The displacement damage was found to be high close to the beam incident surface area, and decreased with increasing target depth. The experimental results were compared with damage production calculated with an advanced Monte Carlo particle transport code system (PHITS).

  18. Systems and methods for processing irradiation targets through a nuclear reactor

    DOEpatents

    Dayal, Yogeshwar; Saito, Earl F.; Berger, John F.; Brittingham, Martin W.; Morales, Stephen K.; Hare, Jeffrey M.

    2016-05-03

    Apparatuses and methods produce radioisotopes in instrumentation tubes of operating commercial nuclear reactors. Irradiation targets may be inserted and removed from instrumentation tubes during operation and converted to radioisotopes otherwise unavailable during operation of commercial nuclear reactors. Example apparatuses may continuously insert, remove, and store irradiation targets to be converted to useable radioisotopes or other desired materials at several different origin and termination points accessible outside an access barrier such as a containment building, drywell wall, or other access restriction preventing access to instrumentation tubes during operation of the nuclear plant.

  19. Design study of a raster scanning system for moving target irradiation in heavy-ion radiotherapy.

    PubMed

    Furukawa, Takuji; Inaniwa, Taku; Sato, Shinji; Tomitani, Takehiro; Minohara, Shinichi; Noda, Koji; Kanai, Tatsuaki

    2007-03-01

    A project to construct a new treatment facility as an extension of the existing heavy-ion medical accelerator in chiba (HIMAC) facility has been initiated for further development of carbon-ion therapy. The greatest challenge of this project is to realize treatment of a moving target by scanning irradiation. For this purpose, we decided to combine the rescanning technique and the gated irradiation method. To determine how to avoid hot and/or cold spots by the relatively large number of rescannings within an acceptable irradiation time, we have studied the scanning strategy, scanning magnets and their control, and beam intensity dynamic control. We have designed a raster scanning system and carried out a simulation of irradiating moving targets. The result shows the possibility of practical realization of moving target irradiation with pencil beam scanning. We describe the present status of our design study of the raster scanning system for the HIMAC new treatment facility.

  20. Post Irradiation Examination Results of the NT-02 Graphite Fins NUMI Target

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ammigan, K.; Hurh, P.; Sidorov, V.

    2017-02-10

    The NT-02 neutrino target in the NuMI beamline at Fermilab is a 95 cm long target made up of segmented graphite fins. It is the longest running NuMI target, which operated with a 120 GeV proton beam with maximum power of 340 kW, and saw an integrated total proton on target of 6.1 1020. Over the last half of its life, gradual degradation of neutrino yield was observed until the target was replaced. The probable causes for the target performance degradation are attributed to radiation damage, possibly including cracking caused by reduction in thermal shock resistance, as well as potentialmore » localized oxidation in the heated region of the target. Understanding the long-termstructural response of target materials exposed to proton irradiation is critical as future proton accelerator sources are becoming increasingly more powerful. As a result, an autopsy of the target was carried out to facilitate post-irradiation examination of selected graphite fins. Advanced microstructural imaging and surface elemental analysis techniques were used to characterize the condition of the fins in an effort to identify degradation mechanisms, and the relevant findings are presented in this paper.« less

  1. The isotropic radio background revisited

    NASA Astrophysics Data System (ADS)

    Fornengo, Nicolao; Lineros, Roberto A.; Regis, Marco; Taoso, Marco

    2014-04-01

    We present an extensive analysis on the determination of the isotropic radio background. We consider six different radio maps, ranging from 22 MHz to 2.3 GHz and covering a large fraction of the sky. The large scale emission is modeled as a linear combination of an isotropic component plus the Galactic synchrotron radiation and thermal bremsstrahlung. Point-like and extended sources are either masked or accounted for by means of a template. We find a robust estimate of the isotropic radio background, with limited scatter among different Galactic models. The level of the isotropic background lies significantly above the contribution obtained by integrating the number counts of observed extragalactic sources. Since the isotropic component dominates at high latitudes, thus making the profile of the total emission flat, a Galactic origin for such excess appears unlikely. We conclude that, unless a systematic offset is present in the maps, and provided that our current understanding of the Galactic synchrotron emission is reasonable, extragalactic sources well below the current experimental threshold seem to account for the majority of the brightness of the extragalactic radio sky.

  2. Recovery of niobium from irradiated targets

    DOEpatents

    Phillips, Dennis R.; Jamriska, Sr., David J.; Hamilton, Virginia T.

    1994-01-01

    A process for selective separation of niobium from proton irradiated molybdenum targets is provided and includes dissolving the molybdenum target in a hydrogen peroxide solution to form a first ion-containing solution, contacting the first ion-containing solution with a cationic resin whereby ions selected form the group consisting of molybdenum, biobium, technetium, selenium, vanadium, arsenic, germanium, zirconium and rubidium remain in a second ion-containing solution while ions selected from the group consisting of rubidium, zinc, beryllium, cobalt, iron, manganese, chromium, strontium, yttrium and zirconium are selectively adsorbed by the cationic resin; adjusting the pH of the second ion-containing solution to within a range of from about 5.0 to about 6.0; contacting the pH adjusting second ion-containing solution with a dextran-based material for a time to selectively separate niobium from the solution and recovering the niobium from the dextran-based material.

  3. Perspective of Muon Production Target at J-PARC MLF MUSE

    NASA Astrophysics Data System (ADS)

    Makimura, Shunsuke; Matoba, Shiro; Kawamura, Naritoshi; Matsuzawa, Yukihiro; Tabe, Masato; Aoyagi, Hiroyuki; Kondo, Hiroto; Kobayashi, Yasuo; Fujimori, Hiroshi; Ikedo, Yutaka; Kadono, Ryosuke; Koda, Akihiro; Kojima, Kenji M.; Miyake, Yasuhiro; Nakamura, Jumpei G.; Oishi, Yu; Okabe, Hirotaka; Shimomura, Koichiro; Strasser, Patrick

    A pulsed muon beam with unprecedented intensity will be generated by a 3-GeV 333-microA proton beam on a muon target made of 20-mm thick isotropic graphite at J-PARC MLF MUSE (Muon Science Establishment). The first muon beam was successfully generated on September 26th, 2008. Gradually upgrading the beam intensity, continuous 300-kW proton beam has been operated by a fixed target method without replacements till June of 2014. However, the lifetime of the fixed target was anticipated to be less than 1 year by the proton-irradiation damage of the graphite through 1-MW beam operation. To extend the lifetime, a muon rotating target, in which the radiation damage is distributed to a wider area, was installed in September of 2014, and continuous and stable operation has been successfully performed. Because the muon target becomes highly radioactive by the proton irradiation, the maintenance is conducted by remote handling in the Hot cell. In September of 2015, a scraper No. 1 to collimate the proton beam scattered by the target was replaced for further high-power beam operation. Recently, new developments on monitoring and maintenance of the muon target for higher power operation are in progress. In this article, perspective of muon production target at J-PARC MLF MUSE will be described.

  4. Mechanism for microwave heating of 1-(4'-cyanophenyl)-4-propylcyclohexane characterized by in situ microwave irradiation NMR spectroscopy.

    PubMed

    Tasei, Yugo; Yamakami, Takuya; Kawamura, Izuru; Fujito, Teruaki; Ushida, Kiminori; Sato, Motoyasu; Naito, Akira

    2015-05-01

    Microwave heating is widely used to accelerate organic reactions and enhance the activity of enzymes. However, the detailed molecular mechanism for the effect of microwave on chemical reactions is not yet fully understood. To investigate the effects of microwave heating on organic compounds, we have developed an in situ microwave irradiation NMR spectroscopy. (1)H NMR spectra of 1-(4'-cyanophenyl)-4-propylcyclohexane (PCH3) in the liquid crystalline and isotropic phases were observed under microwave irradiation. When the temperature was regulated at slightly higher than the phase transition temperature (Tc=45 °C) under a gas flow temperature control system, liquid crystalline phase mostly changed to the isotropic phase. Under microwave irradiation and with the gas flow temperature maintained at 20 °C, which is 25 °C below the Tc, the isotropic phase appeared stationary as an approximately 2% fraction in the liquid crystalline phase. The temperature of the liquid crystalline state was estimated to be 38 °C according to the line width, which is at least 7 °C lower than the Tc. The temperature of this isotropic phase should be higher than 45 °C, which is considered to be a non-equilibrium local heating state induced by microwave irradiation. Microwaves at a power of 195 W were irradiated to the isotropic phase of PCH3 at 50 °C and after 2 min, the temperature reached 220 °C. The temperature of PCH3 under microwave irradiation was estimated by measurement of the chemical shift changes of individual protons in the molecule. These results demonstrate that microwave heating generates very high temperature within a short time using an in situ microwave irradiation NMR spectrometer. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Electron emission produced by photointeractions in a slab target

    NASA Technical Reports Server (NTRS)

    Thinger, B. E.; Dayton, J. A., Jr.

    1973-01-01

    The current density and energy spectrum of escaping electrons generated in a uniform plane slab target which is being irradiated by the gamma flux field of a nuclear reactor are calculated by using experimental gamma energy transfer coefficients, electron range and energy relations, and escape probability computations. The probability of escape and the average path length of escaping electrons are derived for an isotropic distribution of monoenergetic photons. The method of estimating the flux and energy distribution of electrons emerging from the surface is outlined, and a sample calculation is made for a 0.33-cm-thick tungsten target located next to the core of a nuclear reactor. The results are to be used as a guide in electron beam synthesis of reactor experiments.

  6. Ductility recovery in structural materials for spallation targets by post-irradiation annealing

    NASA Astrophysics Data System (ADS)

    Chen, J.; Jung, P.; Rödig, M.; Ullmaier, H.; Bauer, G. S.

    2005-08-01

    Low temperature irradiation embrittlement is one of the major criteria to determine the lifetime of spallation targets. Embrittlement is especially high at low service temperatures, e.g. 250 °C in liquid-mercury sources. It was the aim of the present study to investigate the effect of post-irradiation annealing on the mechanical properties of irradiated structural materials. The specimens used were obtained from spent target components of operating spallation facilities (Los Alamos Neutron Science Center, LANSCE, and the Spallation Neutron Source at Rutherford-Appleton Laboratory, ISIS). The investigated materials include a nickel-based alloy (IN718), an austenitic stainless steel (AISI 304L), a martensitic stainless steel (DIN 1.4926) and a refractory metal (Ta) which experienced 800 MeV proton irradiation to fluences of several 10 25 p/m 2. The specimens were annealed from 300 °C to 700 °C for 1 to 10 h, respectively, and their mechanical property changes were subsequently investigated at room temperature and 250 °C by tensile testing and fracture surface analysis conducted by scanning electron microscopy (SEM). The results showed that the ductility recovered to a large degree in 304L and DIN 1.4926 materials while their strength remained almost unchanged. Especially for DIN 1.4926, the ductility recovery is remarkable already at 400 °C. Together with its favorable thermo-mechanical properties, this makes martensitic steel a candidate for structural materials of spallation targets.

  7. Salivary gland sparing and improved target irradiation by conformal and intensity modulated irradiation of head and neck cancer.

    PubMed

    Eisbruch, Avraham; Ship, Jonathan A; Dawson, Laura A; Kim, Hyungjin M; Bradford, Carol R; Terrell, Jeffrey E; Chepeha, Douglas B; Teknos, Theodore N; Hogikyan, Norman D; Anzai, Yoshimi; Marsh, Lon H; Ten Haken, Randall K; Wolf, Gregory T

    2003-07-01

    The goals of this study were to facilitate sparing of the major salivary glands while adequately treating tumor targets in patients requiring comprehensive bilateral neck irradiation (RT), and to assess the potential for improved xerostomia. Since 1994 techniques of target irradiation and locoregional tumor control with conformal and intensity modulated radiation therapy (IMRT) have been developed. In patients treated with these modalities, the salivary flow rates before and periodically after RT have been measured selectively from each major salivary gland and the residual flows correlated with glands' dose volume histograms (DVHs). In addition, subjective xerostomia questionnaires have been developed and validated. The pattern of locoregional recurrence has been examined from computed tomography (CT) scans at the time of recurrence, transferring the recurrence volumes to the planning CT scans, and regenerating the dose distributions at the recurrence sites. Treatment plans for target coverage and dose homogeneity using static, multisegmental IMRT were found to be significantly better than standard RT plans. In addition, significant parotid gland sparing was achieved in the conformal plans. The relationships among dose, irradiated volume, and the residual saliva flow rates from the parotid glands were characterized by dose and volume thresholds. A mean radiation dose of 26 Gy was found to be the threshold for preserved stimulated saliva flow. Xerostomia questionnaire scores suggested that xerostomia was significantly reduced in patients irradiated with bilateral neck, parotid-sparing RT, compared to patients with similar tumors treated with standard RT. Examination of locoregional tumor recurrence patterns revealed that the large majority of recurrences occurred inside targets, in areas that had been judged to be at high risk and that had received RT doses according to the perceived risk. Tangible gains in salivary gland sparing and target coverage are being

  8. Sensing device and method for measuring emission time delay during irradiation of targeted samples

    NASA Technical Reports Server (NTRS)

    Danielson, J. D. Sheldon (Inventor)

    2000-01-01

    An apparatus for measuring emission time delay during irradiation of targeted samples by utilizing digital signal processing to determine the emission phase shift caused by the sample is disclosed. The apparatus includes a source of electromagnetic radiation adapted to irradiate a target sample. A mechanism generates first and second digital input signals of known frequencies with a known phase relationship, and a device then converts the first and second digital input signals to analog sinusoidal signals. An element is provided to direct the first input signal to the electromagnetic radiation source to modulate the source by the frequency thereof to irradiate the target sample and generate a target sample emission. A device detects the target sample emission and produces a corresponding first output signal having a phase shift relative to the phase of the first input signal, the phase shift being caused by the irradiation time delay in the sample. A member produces a known phase shift in the second input signal to create a second output signal. A mechanism is then provided for converting each of the first and second analog output signals to digital signals. A mixer receives the first and second digital output signals and compares the signal phase relationship therebetween to produce a signal indicative of the change in phase relationship between the first and second output signals caused by the target sample emission. Finally, a feedback arrangement alters the phase of the second input signal based on the mixer signal to ultimately place the first and second output signals in quadrature. Mechanisms for enhancing this phase comparison and adjustment technique are also disclosed.

  9. Thermal Convection on an Irradiated Target

    NASA Astrophysics Data System (ADS)

    Mehmedagic, Igbal; Thangam, Siva

    2016-11-01

    The present work involves the computational modeling of metallic targets subject to steady and high intensity heat flux. The ablation and associated fluid dynamics when metallic surfaces are exposed to high intensity laser fluence at normal atmospheric conditions is modelled. The incident energy from the laser is partly absorbed and partly reflected by the surface during ablation and subsequent vaporization of the melt. Computational findings based on effective representation and prediction of the heat transfer, melting and vaporization of the targeting material as well as plume formation and expansion are presented and discussed in the context of various ablation mechanisms, variable thermo-physical and optical properties, plume expansion and surface geometry. The energy distribution during the process between the bulk and vapor phase strongly depends on optical and thermodynamic properties of the irradiated material, radiation wavelength, and laser intensity. The relevance of the findings to various manufacturing processes as well as for the development of protective shields is discussed. Funded in part by U. S. Army ARDEC, Picatinny Arsenal, NJ.

  10. Target development for diversified irradiations at a medical cyclotron.

    PubMed

    Spellerberg, S; Scholten, B; Spahn, I; Bolten, W; Holzgreve, M; Coenen, H H; Qaim, S M

    2015-10-01

    The irradiation facility at an old medical cyclotron (Ep=17 MeV; Ed=10 MeV) was upgraded by extending the beam line and incorporation of solid state targetry. Tests performed to check the quality of the available beam are outlined. Results on nuclear data measurements and improvement of radiochemical separations are described. Using solid targets, with the proton beam falling at a slanting angle of 20°, a few radionuclides, e.g. (75)Se, (120)I, (124)I, etc. were produced with medium currents (up to 20 µA) in no-carrier-added form in quantities sufficient for local use. The extended irradiation facility has considerably enhanced the utility of the medical cyclotron. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Experimental study on ablative stabilization of Rayleigh-Taylor instability of laser-irradiated targets

    NASA Astrophysics Data System (ADS)

    Shigemori, Keisuke; Sakaiya, Tatsuhiko; Otani, Kazuto; Fujioka, Shinsuke; Nakai, Mitsuo; Azechi, Hiroshi; Shiraga, Hiroyuki; Tamari, Yohei; Okuno, Kazuki; Sunahara, Atsushi; Nagatomo, Hideo; Murakami, Masakatsu; Nishihara, Katsunobu; Izawa, Yasukazu

    2004-09-01

    Hydrodynamic instabilities are key issues of the physics of inertial confinement fusion (ICF) targets. Among the instabilities, Rayleigh-Taylor (RT) instability is the most important because it gives the largest growth factor in the ICF targets. Perturbations on the laser irradiated surface grow exponentially, but the growth rate is reduced by ablation flow. The growth rate γ is written as Takabe-Betti formula: γ = [kg/(1+kL)]1/2-βkm/pa, where k is wave number of the perturbation, g is acceleration, L is density scale-length, β is a coefficient, m is mass ablation rate per unit surface, and ρa is density at the ablation front. We experimentally measured all the parameters in the formula for polystyrene (CH) targets. Experiments were done on the HIPER laser facility at Institute of Laser Engineering, Osaka University. We found that the β value in the formula is ~ 1.7, which is in good agreements with the theoretical prediction, whereas the β for certain perturbation wavelengths are larger than the prediction. This disagreement between the experiment and the theory is mainly due to the deformation of the cutoff surface, which is created by non-uniform ablation flow from the ablation surface. We also found that high-Z doped plastic targets have multiablation structure, which can reduce the RT growth rate. When a low-Z target with high-Z dopant is irradiated by laser, radiation due to the high-Z dopant creates secondary ablation front deep inside the target. Since, the secondary ablation front is ablated by x-rays, the mass ablation rate is larger than the laser-irradiated ablation surface, that is, further reduction of the RT growth is expected. We measured the RT growth rate of Br-doped polystyrene targets. The experimental results indicate that of the CHBr targets show significantly small growth rate, which is very good news for the design of the ICF targets.

  12. Pressure control of a proton beam-irradiated water target through an internal flow channel-induced thermosyphon.

    PubMed

    Hong, Bong Hwan; Jung, In Su

    2017-07-01

    A water target was designed to enhance cooling efficiency using a thermosyphon, which is a system that uses natural convection to induce heat exchange. Two water targets were fabricated: a square target without any flow channel and a target with a flow channel design to induce a thermosyphon mechanism. These two targets had the same internal volume of 8 ml. First, visualization experiments were performed to observe the internal flow by natural convection. Subsequently, an experiment was conducted to compare the cooling performance of both water targets by measuring the temperature and pressure. A 30-MeV proton beam with a beam current of 20 μA was used to irradiate both targets. Consequently, the target with an internal flow channel had a lower mean temperature and a 50% pressure drop compared to the target without a flow channel during proton beam irradiation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Light-Steered Isotropic Semiconductor Micromotors.

    PubMed

    Chen, Chuanrui; Mou, Fangzhi; Xu, Leilei; Wang, Shaofei; Guan, Jianguo; Feng, Zunpeng; Wang, Quanwei; Kong, Lei; Li, Wei; Wang, Joseph; Zhang, Qingjie

    2017-01-01

    Intelligent photoresponsive isotropic semiconductor micromotors are developed by taking advantage of the limited penetration depth of light to induce asymmetrical surface chemical reactions. Independent of the Brownian motion of themselves, the as-proposed isotropic micromotors are able to continuously move with both motion direction and speed just controlled by light, as well as precisely manipulate particles for nanoengineering. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Deuteron irradiation of W and WO 3 for production of high specific activity 186Re: Challenges associated with thick target preparation

    DOE PAGES

    Balkin, Ethan R.; Gagnon, Katherine; Strong, Kevin T.; ...

    2016-06-28

    This investigation evaluated target fabrication and beam parameters for scale-up production of high specific activity 186Re using deuteron irradiation of enriched 186W via the 186W(d,2n) 186Re reaction. Thick W and WO 3 targets were prepared, characterized and evaluated in deuteron irradiations. Full-thickness targets, as determined using SRIM, were prepared by uniaxi-ally pressing powdered natural abundance W and WO 3, or 96.86% enriched 186W, into Al target supports. Alternatively, thick targets were prepared by pressing 186W between two layers of graphite powder or by placing pre-sintered (1105°C, 12 hours) natural abundance WO 3 pellets into an Al target support. Assessments ofmore » structural integrity were made on each target pre-pared. Prior to irradiation, material composition analyses were conducted using SEM, XRD, and Raman spectroscopy. With-in a minimum of 24 hours post irradiation, gamma-ray spectroscopy was performed on all targets to assess production yields and radionuclidic byproducts. Problems were encountered with the structural integrity of some pressed W and WO 3 pellets before and during irradiation, and target material characterization results could be correlated with the structural integrity of the pressed target pellets. Under the conditions studied, the findings suggest that all WO 3 targets prepared and studied were unacceptable. By contrast, 186W metal was found to be a viable target material for 186Re production. Lastly, thick targets prepared with powdered 186W pressed between layers of graphite provided a particularly robust target configuration.« less

  15. Deuteron irradiation of W and WO3 for production of high specific activity (186)Re: Challenges associated with thick target preparation.

    PubMed

    Balkin, Ethan R; Gagnon, Katherine; Strong, Kevin T; Smith, Bennett E; Dorman, Eric F; Emery, Robert C; Pauzauskie, Peter J; Fassbender, Michael E; Cutler, Cathy S; Ketring, Alan R; Jurisson, Silvia S; Wilbur, D Scott

    2016-09-01

    This investigation evaluated target fabrication and beam parameters for scale-up production of high specific activity (186)Re using deuteron irradiation of enriched (186)W via the (186)W(d,2n)(186)Re reaction. Thick W and WO3 targets were prepared, characterized and evaluated in deuteron irradiations. Full-thickness targets, as determined using SRIM, were prepared by uniaxially pressing powdered natural abundance W and WO3, or 96.86% enriched (186)W, into Al target supports. Alternatively, thick targets were prepared by pressing (186)W between two layers of graphite powder or by placing pre-sintered (1105°C, 12h) natural abundance WO3 pellets into an Al target support. Assessments of structural integrity were made on each target prepared. Prior to irradiation, material composition analyses were conducted using SEM, XRD, and Raman spectroscopy. Within a minimum of 24h post irradiation, gamma-ray spectroscopy was performed on all targets to assess production yields and radionuclidic byproducts. Problems were encountered with the structural integrity of some pressed W and WO3 pellets before and during irradiation, and target material characterization results could be correlated with the structural integrity of the pressed target pellets. Under the conditions studied, the findings suggest that all WO3 targets prepared and studied were unacceptable. By contrast, (186)W metal was found to be a viable target material for (186)Re production. Thick targets prepared with powdered (186)W pressed between layers of graphite provided a particularly robust target configuration. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Simulation of cosmic irradiation conditions in thick target arrangements

    NASA Technical Reports Server (NTRS)

    Theis, S.; Englert, P.; Reedy, R. C.; Arnold, J. R.

    1986-01-01

    One approach to simulate 2-pi irradiation conditions of planetary surfaces which has been widely applied in the past are bombardments of so called thick targets. A very large thick target was exposed recently to 2.1 GeV protons at the Bevatron-Bevalac in Berkeley. In a 100x100x180 cm steel-surrounded granodiorite target radioactive medium and high energy spallation products of the incident primary and of secondary particles were analyzed along the beam axis down to depths of 140 g/cm(2) in targets such as Cu, Ni, Co, Fe, T, Si, SiO2 and Al. Activities of these nuclides were exclusively determined via instrumental gamma-ray spectroscopy. Relative yields of neutron capture and spallation products induced in Co and Cu targets during the thick target bombardment are shown as a function of depth. The majority of the medium energy products such as Co-58 from Co targets exhibit a maximum at shallow depths of 40-60 g/cm(2) and then decrease exponentially. In a comparable 600 MeV proton bombarded thick target such a slight maximum for medium energy products was not observed. Rather, Co-58 activities in Co decreased steadily with the highest activity at the surface. The activities of the n-capture product Co-60 increase steadily starting at the surface. This indicates the rapidly growing flux of low energy neutrons within the target.

  17. Recovery of germanium-68 from irradiated targets

    DOEpatents

    Phillips, Dennis R.; Jamriska, Sr., David J.; Hamilton, Virginia T.

    1993-01-01

    A process for selective separation of germanium-68 from proton irradiated molybdenum targets is provided and includes dissolving the molybdenum target in a hydrogen peroxide solution to form a first ion-containing solution, contacting the first ion-containing solution with a cationic resin whereby ions selected from the group consisting of molybdenum, niobium, technetium, selenium, vanadium, arsenic, germanium, zirconium and rubidium remain in a second ion-containing solution while ions selected from the group consisting of rubidium, zinc, beryllium, cobalt, iron, manganese, chromium, strontium, yttrium and zirconium are selectively adsorbed by the first resin, adjusting the pH of the second ion-containing solution to within a range of from about 0.7 to about 3.0, adjusting the soluble metal halide concentration in the second ion-containing solution to a level adapted for subsequent separation of germanium, contacting the pH-adjusted, soluble metal halide-containing second ion-containing solution with a dextran-based material whereby germanium ions are separated by the dextran-based material, and recovering the germanium from the dextran-based material, preferably by distillation.

  18. Approximate isotropic cloak for the Maxwell equations

    NASA Astrophysics Data System (ADS)

    Ghosh, Tuhin; Tarikere, Ashwin

    2018-05-01

    We construct a regular isotropic approximate cloak for the Maxwell system of equations. The method of transformation optics has enabled the design of electromagnetic parameters that cloak a region from external observation. However, these constructions are singular and anisotropic, making practical implementation difficult. Thus, regular approximations to these cloaks have been constructed that cloak a given region to any desired degree of accuracy. In this paper, we show how to construct isotropic approximations to these regularized cloaks using homogenization techniques so that one obtains cloaking of arbitrary accuracy with regular and isotropic parameters.

  19. Cosmological models with homogeneous and isotropic spatial sections

    NASA Astrophysics Data System (ADS)

    Katanaev, M. O.

    2017-05-01

    The assumption that the universe is homogeneous and isotropic is the basis for the majority of modern cosmological models. We give an example of a metric all of whose spatial sections are spaces of constant curvature but the space-time is nevertheless not homogeneous and isotropic as a whole. We give an equivalent definition of a homogeneous and isotropic universe in terms of embedded manifolds.

  20. Lithium target for accelerator based BNCT neutron source: Influence by the proton irradiation on lithium

    NASA Astrophysics Data System (ADS)

    Fujii, R.; Imahori, Y.; Nakakmura, M.; Takada, M.; Kamada, S.; Hamano, T.; Hoshi, M.; Sato, H.; Itami, J.; Abe, Y.; Fuse, M.

    2012-12-01

    The neutron source for Boron Neutron Capture Therapy (BNCT) is in the transition stage from nuclear reactor to accelerator based neutron source. Generation of low energy neutron can be achieved by 7Li (p, n) 7Be reaction using accelerator based neutron source. Development of small-scale and safe neutron source is within reach. The melting point of lithium that is used for the target is low, and durability is questioned for an extended use at a high current proton beam. In order to test its durability, we have irradiated lithium with proton beam at the same level as the actual current density, and found no deterioration after 3 hours of continuous irradiation. As a result, it is suggested that lithium target can withstand proton irradiation at high current, confirming suitability as accelerator based neutron source for BNCT.

  1. Thin-film preparation by back-surface irradiation pulsed laser deposition using metal powder targets

    NASA Astrophysics Data System (ADS)

    Kawasaki, Hiroharu; Ohshima, Tamiko; Yagyu, Yoshihito; Ihara, Takeshi; Yamauchi, Makiko; Suda, Yoshiaki

    2017-01-01

    Several kinds of functional thin films were deposited using a new thin-film preparation method named the back-surface irradiation pulsed laser deposition (BIPLD) method. In this BIPLD method, powder targets were used as the film source placed on a transparent target holder, and then a visible-wavelength pulsed laser was irradiated from the holder side to the substrate. Using this new method, titanium oxide and boron nitride thin films were deposited on the silicon substrate. Surface scanning electron microscopy (SEM) images suggest that all of the thin films were deposited on the substrate with some large droplets irrespective of the kind of target used. The deposition rate of the films prepared by using this method was calculated from film thickness and deposition time to be much lower than that of the films prepared by conventional PLD. X-ray diffraction (XRD) measurement results suggest that rutile and anatase TiO2 crystal peaks were formed for the films prepared using the TiO2 rutile powder target. Crystal peaks of hexagonal boron nitride were observed for the films prepared using the boron nitride powder target. The crystallinity of the prepared films was changed by annealing after deposition.

  2. Particle therapy of moving targets—the strategies for tumour motion monitoring and moving targets irradiation

    PubMed Central

    2016-01-01

    Particle therapy of moving targets is still a great challenge. The motion of organs situated in the thorax and abdomen strongly affects the precision of proton and carbon ion radiotherapy. The motion is responsible for not only the dislocation of the tumour but also the alterations in the internal density along the beam path, which influence the range of particle beams. Furthermore, in case of pencil beam scanning, there is an interference between the target movement and dynamic beam delivery. This review presents the strategies for tumour motion monitoring and moving target irradiation in the context of hadron therapy. Methods enabling the direct determination of tumour position (fluoroscopic imaging of implanted radio-opaque fiducial markers, electromagnetic detection of inserted transponders and ultrasonic tumour localization systems) are presented. Attention is also drawn to the techniques which use external surrogate motion for an indirect estimation of target displacement during irradiation. The role of respiratory-correlated CT [four-dimensional CT (4DCT)] in the determination of motion pattern prior to the particle treatment is also considered. An essential part of the article is the review of the main approaches to moving target irradiation in hadron therapy: gating, rescanning (repainting), gated rescanning and tumour tracking. The advantages, drawbacks and development trends of these methods are discussed. The new accelerators, called “cyclinacs”, are presented, because their application to particle therapy will allow making a breakthrough in the 4D spot scanning treatment of moving organs. PMID:27376637

  3. Irradiation direction from texture

    NASA Astrophysics Data System (ADS)

    Koenderink, Jan J.; Pont, Sylvia C.

    2003-10-01

    We present a theory of image texture resulting from the shading of corrugated (three-dimensional textured) surfaces, Lambertian on the micro scale, in the domain of geometrical optics. The derivation applies to isotropic Gaussian random surfaces, under collimated illumination, in normal view. The theory predicts the structure tensors from either the gradient or the Hessian of the image intensity and allows inferences of the direction of irradiation of the surface. Although the assumptions appear prima facie rather restrictive, even for surfaces that are not at all Gaussian, with the bidirectional reflectance distribution function far from Lambertian and vignetting and multiple scattering present, we empirically recover the direction of irradiation with an accuracy of a few degrees.

  4. High energy irradiations simulating cosmic-ray-induced planetary gamma ray production. I - Fe target

    NASA Technical Reports Server (NTRS)

    Metzger, A. E.; Parker, R. H.; Yellin, J.

    1986-01-01

    Two thick Fe targets were bombarded by a series of 6 GeV proton irradiations for the purpose of simulating the cosmic ray bombardment of planetary objects in space. Gamma ray energy spectra were obtained with a germanium solid state detector during the bombardment, and 46 of the gamma ray lines were ascribed to the Fe targets. A comparison between observed and predicted values showed good agreement for Fe lines from neutron inelastic scattering and spallation reactions, and less satisfactory agreement for neutron capture reactions, the latter attributed to the difference in composition between the Fe target and the mean lunar abundance used in the modeling. Through an analysis of the irradiation results together with continuum data obtained in lunar orbit, it was found that 100 hours of measurement with a current instrument should generate a spectrum containing approximately 20 lines due to Fe alone, with a 2-sigma sensitivity for detection of about 0.2 percent.

  5. Evaluation of various procedures transposing global tilted irradiance to horizontal surface irradiance

    NASA Astrophysics Data System (ADS)

    Housmans, Caroline; Bertrand, Cédric

    2017-02-01

    Many transposition models have been proposed in the literature to convert solar irradiance on the horizontal plane to that on a tilted plane. The inverse process, i.e. the conversion from tilted to horizontal is investigated here based upon seven months of in-plane global solar irradiance measurements recorded on the roof of the Royal Meteorological Institute of Belgium's radiation tower in Uccle (Longitude 4.35° E, Latitude 50.79° N). Up to three pyranometers mounted on inclined planes of different tilts and orientations were involved in the inverse transposition process. Our results indicate that (1) the tilt to horizontal irradiance conversion is improved when measurements from more than one tilted pyranometer are considered (i.e. by using a multi-pyranometer approach) and (2) the improvement from using an isotropic model to anisotropic models in the inverse transposition problem is not significant.

  6. Negative pressure and spallation in graphite targets under nano- and picosecond laser irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belikov, R S; Khishchenko, K V; Krasyuk, I K

    We present the results of experiments on the spallation phenomena in graphite targets under shock-wave nano- and picosecond irradiation, which have been performed on Kamerton-T (GPI, Moscow, Russia) and PHELIX (GSI, Darmstadt, Germany) laser facilities. In the range of the strain rates of 10{sup 6} – 10{sup 7} s{sup -1}, the data on the dynamic mechanical strength of the material at rapure (spallation) have been for the first time obtained. With a maximal strain rate of 1.4 × 10{sup 7} s{sup -1}, the spall strength of 2.1 GPa is obtained, which constitutes 64% of the theoretical ultimate tensile strength ofmore » graphite. The effect of spallation is observed not only on the rear side of the target, but also on its irradiated (front) surface. With the use of optical and scanning electron microscopes, the morphology of the front and rear surfaces of the targets is studied. By means of Raman scattering of light, the graphite structure both on the target front surface under laser exposure and on its rear side in the spall zone is investigated. A comparison of the dynamic strength of graphite and synthetic diamond is performed. (extreme light fields and their applications)« less

  7. Conformal and intensity modulated irradiation of head and neck cancer: the potential for improved target irradiation, salivary gland function, and quality of life.

    PubMed

    Eisbruch, A; Dawson, L A; Kim, H M; Bradford, C R; Terrell, J E; Chepeha, D B; Teknos, T N; Anzai, Y; Marsh, L H; Martel, M K; Ten Haken, R K; Wolf, G T; Ship, J A

    1999-01-01

    To develop techniques which facilitate sparing of the major salivary glands while adequately treating the targets in patients requiring comprehensive bilateral neck irradiation (RT). Conformal and static, multisegmental intensity modulated (IMRT) techniques have been developed. The salivary flow rates before and periodically after RT have been measured selectively from each major salivary gland and the residual flows correlated with glands' dose volume histograms. Subjective xerostomia questionnaires have been developed and validated. The pattern of local-regional recurrences has been examined using CT scans at the time of recurrence, transferring the recurrence volumes to the planning CT scans and regenerating the dose distributions at the recurrence sites. Target coverage and dose homogeneity in IMRT treatment plans were found to be significantly better than standard RT plans. Significant parotid gland sparing was achieved. The relationships among dose, irradiated volume and saliva flow rates from the parotid glands were characterized by dose and volume thresholds. A mean dose of 26 Gy was found to be the threshold for stimulated saliva. Subjective xerostomia was significantly reduced in patients irradiated with parotid sparing techniques, compared to patients with similar tumors treated with standard RT. The large majority of recurrences occurred inside high-risk targets. Tangible gains in salivary gland sparing and target coverage are being achieved and an improvement in some measures of quality of life is suggested by our findings. A mean parotid gland dose of < or = 26 Gy should be a planning objective if significant parotid function preservation is desired. The pattern of recurrence suggests that careful escalation of the dose to targets judged to be at highest risk may improve tumor control.

  8. Sudden Relaminarization and Lifetimes in Forced Isotropic Turbulence.

    PubMed

    Linkmann, Moritz F; Morozov, Alexander

    2015-09-25

    We demonstrate an unexpected connection between isotropic turbulence and wall-bounded shear flows. We perform direct numerical simulations of isotropic turbulence forced at large scales at moderate Reynolds numbers and observe sudden transitions from a chaotic dynamics to a spatially simple flow, analogous to the laminar state in wall bounded shear flows. We find that the survival probabilities of turbulence are exponential and the typical lifetimes increase superexponentially with the Reynolds number. Our results suggest that both isotropic turbulence and wall-bounded shear flows qualitatively share the same phase-space dynamics.

  9. Spherical 3D isotropic wavelets

    NASA Astrophysics Data System (ADS)

    Lanusse, F.; Rassat, A.; Starck, J.-L.

    2012-04-01

    Context. Future cosmological surveys will provide 3D large scale structure maps with large sky coverage, for which a 3D spherical Fourier-Bessel (SFB) analysis in spherical coordinates is natural. Wavelets are particularly well-suited to the analysis and denoising of cosmological data, but a spherical 3D isotropic wavelet transform does not currently exist to analyse spherical 3D data. Aims: The aim of this paper is to present a new formalism for a spherical 3D isotropic wavelet, i.e. one based on the SFB decomposition of a 3D field and accompany the formalism with a public code to perform wavelet transforms. Methods: We describe a new 3D isotropic spherical wavelet decomposition based on the undecimated wavelet transform (UWT) described in Starck et al. (2006). We also present a new fast discrete spherical Fourier-Bessel transform (DSFBT) based on both a discrete Bessel transform and the HEALPIX angular pixelisation scheme. We test the 3D wavelet transform and as a toy-application, apply a denoising algorithm in wavelet space to the Virgo large box cosmological simulations and find we can successfully remove noise without much loss to the large scale structure. Results: We have described a new spherical 3D isotropic wavelet transform, ideally suited to analyse and denoise future 3D spherical cosmological surveys, which uses a novel DSFBT. We illustrate its potential use for denoising using a toy model. All the algorithms presented in this paper are available for download as a public code called MRS3D at http://jstarck.free.fr/mrs3d.html

  10. Development of a Ne gas target for {sup 22}Na production by proton irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mandal, Bidhan Ch., E-mail: mechbidhan@gmail.com; Pal, Gautam; Barua, Luna

    2016-03-15

    The article presents the design and development of a neon gas target for the production of {sup 22}Na using a proton beam from the room temperature cyclotron in Variable Energy Cyclotron Centre, Kolkata. The target design is made to handle a beam power of 85 W (17 MeV, 5 μA). The design is based on simulation using the computer code FLUKA for the beam dump and CFD-CFX for target cooling. The target has been successfully used for the production of {sup 22}Na in a 6 day long 17 MeV, 5 μA proton irradiation run.

  11. Multi-MW accelerator target material properties under proton irradiation at Brookhaven National Laboratory linear isotope producer

    DOE PAGES

    Simos, N.; Ludewig, H.; Kirk, H.; ...

    2018-05-29

    The effects of proton beams irradiating materials considered for targets in high-power accelerator experiments have been studied using the Brookhaven National Laboratory’s (BNL) 200 MeV proton linac. A wide array of materials and alloys covering a wide range of the atomic number (Z) are being scoped by the high-power accelerator community prompting the BNL studies to focus on materials representing each distinct range, i.e. low-Z, mid-Z and high-Z. The low range includes materials such as beryllium and graphite, the midrange alloys such as Ti-6Al-4V, gum metal and super-Invar and finally the high-Z range pure tungsten and tantalum. Of interest inmore » assessing proton irradiation effects are (a) changes in physiomechanical properties which are important in maintaining high-power target functionality, (b) identification of possible limits of proton flux or fluence above which certain materials cease to maintain integrity, (c) the role of material operating temperature in inducing or maintaining radiation damage reversal, and (d) phase stability and microstructural changes. The paper presents excerpt results deduced from macroscopic and microscopic post-irradiation evaluation (PIE) following several irradiation campaigns conducted at the BNL 200 MeV linac and specifically at the isotope producer beam-line/target station. The microscopic PIE relied on high energy x-ray diffraction at the BNL NSLS X17B1 and NSLS II XPD beam lines. The studies reveal the dramatic effects of irradiation on phase stability in several of the materials, changes in physical properties and ductility loss as well as thermally induced radiation damage reversal in graphite and alloys such as super-Invar.« less

  12. Multi-MW accelerator target material properties under proton irradiation at Brookhaven National Laboratory linear isotope producer

    NASA Astrophysics Data System (ADS)

    Simos, N.; Ludewig, H.; Kirk, H.; Dooryhee, E.; Ghose, S.; Zhong, Z.; Zhong, H.; Makimura, S.; Yoshimura, K.; Bennett, J. R. J.; Kotsinas, G.; Kotsina, Z.; McDonald, K. T.

    2018-05-01

    The effects of proton beams irradiating materials considered for targets in high-power accelerator experiments have been studied using the Brookhaven National Laboratory's (BNL) 200 MeV proton linac. A wide array of materials and alloys covering a wide range of the atomic number (Z) are being scoped by the high-power accelerator community prompting the BNL studies to focus on materials representing each distinct range, i.e. low-Z, mid-Z and high-Z. The low range includes materials such as beryllium and graphite, the midrange alloys such as Ti-6Al-4V, gum metal and super-Invar and finally the high-Z range pure tungsten and tantalum. Of interest in assessing proton irradiation effects are (a) changes in physiomechanical properties which are important in maintaining high-power target functionality, (b) identification of possible limits of proton flux or fluence above which certain materials cease to maintain integrity, (c) the role of material operating temperature in inducing or maintaining radiation damage reversal, and (d) phase stability and microstructural changes. The paper presents excerpt results deduced from macroscopic and microscopic post-irradiation evaluation (PIE) following several irradiation campaigns conducted at the BNL 200 MeV linac and specifically at the isotope producer beam-line/target station. The microscopic PIE relied on high energy x-ray diffraction at the BNL NSLS X17B1 and NSLS II XPD beam lines. The studies reveal the dramatic effects of irradiation on phase stability in several of the materials, changes in physical properties and ductility loss as well as thermally induced radiation damage reversal in graphite and alloys such as super-Invar.

  13. Multi-MW accelerator target material properties under proton irradiation at Brookhaven National Laboratory linear isotope producer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simos, N.; Ludewig, H.; Kirk, H.

    The effects of proton beams irradiating materials considered for targets in high-power accelerator experiments have been studied using the Brookhaven National Laboratory’s (BNL) 200 MeV proton linac. A wide array of materials and alloys covering a wide range of the atomic number (Z) are being scoped by the high-power accelerator community prompting the BNL studies to focus on materials representing each distinct range, i.e. low-Z, mid-Z and high-Z. The low range includes materials such as beryllium and graphite, the midrange alloys such as Ti-6Al-4V, gum metal and super-Invar and finally the high-Z range pure tungsten and tantalum. Of interest inmore » assessing proton irradiation effects are (a) changes in physiomechanical properties which are important in maintaining high-power target functionality, (b) identification of possible limits of proton flux or fluence above which certain materials cease to maintain integrity, (c) the role of material operating temperature in inducing or maintaining radiation damage reversal, and (d) phase stability and microstructural changes. The paper presents excerpt results deduced from macroscopic and microscopic post-irradiation evaluation (PIE) following several irradiation campaigns conducted at the BNL 200 MeV linac and specifically at the isotope producer beam-line/target station. The microscopic PIE relied on high energy x-ray diffraction at the BNL NSLS X17B1 and NSLS II XPD beam lines. The studies reveal the dramatic effects of irradiation on phase stability in several of the materials, changes in physical properties and ductility loss as well as thermally induced radiation damage reversal in graphite and alloys such as super-Invar.« less

  14. Sensing device and method for measuring emission time delay during irradiation of targeted samples utilizing variable phase tracking

    NASA Technical Reports Server (NTRS)

    Danielson, J. D. Sheldon (Inventor)

    2006-01-01

    An apparatus for measuring emission time delay during irradiation of targeted samples by utilizing digital signal processing to determine the emission phase shift caused by the sample is disclosed. The apparatus includes a source of electromagnetic radiation adapted to irradiate a target sample. A mechanism generates first and second digital input signals of known frequencies with a known phase relationship, and a device then converts the first and second digital input signals to analog sinusoidal signals. An element is provided to direct the first input signal to the electromagnetic radiation source to modulate the source by the frequency thereof to irradiate the target sample and generate a target sample emission. A device detects the target sample emission and produces a corresponding first output signal having a phase shift relative to the phase of the first input signal, the phase shift being caused by the irradiation time delay in the sample. A member produces a known phase shift in the second input signal to create a second output signal. A mechanism is then provided for converting each of the first and second analog output signals to digital signals. A mixer receives the first and second digital output signals and compares the signal phase relationship therebetween to produce a signal indicative of the change in phase relationship between the first and second output signals caused by the target sample emission. Finally, a feedback arrangement alters the phase of the second input signal based on the mixer signal to ultimately place the first and second output signals in quadrature. Mechanisms for enhancing this phase comparison and adjustment technique are also disclosed.

  15. Low-Dose Irradiation Enhances Gene Targeting in Human Pluripotent Stem Cells.

    PubMed

    Hatada, Seigo; Subramanian, Aparna; Mandefro, Berhan; Ren, Songyang; Kim, Ho Won; Tang, Jie; Funari, Vincent; Baloh, Robert H; Sareen, Dhruv; Arumugaswami, Vaithilingaraja; Svendsen, Clive N

    2015-09-01

    Human pluripotent stem cells (hPSCs) are now being used for both disease modeling and cell therapy; however, efficient homologous recombination (HR) is often crucial to develop isogenic control or reporter lines. We showed that limited low-dose irradiation (LDI) using either γ-ray or x-ray exposure (0.4 Gy) significantly enhanced HR frequency, possibly through induction of DNA repair/recombination machinery including ataxia-telangiectasia mutated, histone H2A.X and RAD51 proteins. LDI could also increase HR efficiency by more than 30-fold when combined with the targeting tools zinc finger nucleases, transcription activator-like effector nucleases, and clustered regularly interspaced short palindromic repeats. Whole-exome sequencing confirmed that the LDI administered to hPSCs did not induce gross genomic alterations or affect cellular viability. Irradiated and targeted lines were karyotypically normal and made all differentiated lineages that continued to express green fluorescent protein targeted at the AAVS1 locus. This simple method allows higher throughput of new, targeted hPSC lines that are crucial to expand the use of disease modeling and to develop novel avenues of cell therapy. The simple and relevant technique described in this report uses a low level of radiation to increase desired gene modifications in human pluripotent stem cells by an order of magnitude. This higher efficiency permits greater throughput with reduced time and cost. The low level of radiation also greatly increased the recombination frequency when combined with developed engineered nucleases. Critically, the radiation did not lead to increases in DNA mutations or to reductions in overall cellular viability. This novel technique enables not only the rapid production of disease models using human stem cells but also the possibility of treating genetically based diseases by correcting patient-derived cells. ©AlphaMed Press.

  16. Study of Super- and Subsonic Ionization Fronts in Low-Density, Soft X-Ray-Irradiated Foam Targets

    NASA Astrophysics Data System (ADS)

    Willi, O.; Barringer, L.; Vickers, C.; Hoarty, D.

    2000-04-01

    The transition from super- to subsonic propagation of an ionization front has been studied in X-ray irradiated, low-density foam targets using soft X-ray imaging and point projection absorption spectroscopy. The foams were doped with chlorine and irradiated with an intense pulse of soft X-ray radiation with a temperature up to 120 eV produced by laser heating a burnthrough converter foil. The cylindrical foam targets were radiographed side-on allowing the change in the chlorine ionization and hence the front to be observed. From the absolute target transmission the density profile was obtained. Comparison of experimental absorption spectra with simulated ones allowed the temperature of the heated material to be inferred for the first time without reliance on detailed hydrodynamic simulations to interpret the data. The experimental observations were compared to radiation hydrodynamic simulations.

  17. Gamma Knife irradiation method based on dosimetric controls to target small areas in rat brains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Constanzo, Julie; Paquette, Benoit; Charest, Gabriel

    2015-05-15

    Purpose: Targeted and whole-brain irradiation in humans can result in significant side effects causing decreased patient quality of life. To adequately investigate structural and functional alterations after stereotactic radiosurgery, preclinical studies are needed. The purpose of this work is to establish a robust standardized method of targeted irradiation on small regions of the rat brain. Methods: Euthanized male Fischer rats were imaged in a stereotactic bed, by computed tomography (CT), to estimate positioning variations relative to the bregma skull reference point. Using a rat brain atlas and the stereotactic bregma coordinates obtained from CT images, different regions of the brainmore » were delimited and a treatment plan was generated. A single isocenter treatment plan delivering ≥100 Gy in 100% of the target volume was produced by Leksell GammaPlan using the 4 mm diameter collimator of sectors 4, 5, 7, and 8 of the Gamma Knife unit. Impact of positioning deviations of the rat brain on dose deposition was simulated by GammaPlan and validated with dosimetric measurements. Results: The authors’ results showed that 90% of the target volume received 100 ± 8 Gy and the maximum of deposited dose was 125 ± 0.7 Gy, which corresponds to an excellent relative standard deviation of 0.6%. This dose deposition calculated with GammaPlan was validated with dosimetric films resulting in a dose-profile agreement within 5%, both in X- and Z-axes. Conclusions: The authors’ results demonstrate the feasibility of standardizing the irradiation procedure of a small volume in the rat brain using a Gamma Knife.« less

  18. Blood vessel damage correlated with irradiance for in vivo vascular targeted photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Zhang, Jinde; Tan, Zou; Niu, Xiangyu; Lin, Linsheng; Lin, Huiyun; Li, Buhong

    2016-10-01

    Vascular targeted photodynamic therapy (V-PDT) has been widely utilized for the prevention or treatment of vascular-related diseases, including age-related macular degeneration, port-wine stains and prostate cancer. In order to quantitative assessment the blood vessel damage during V-PDT, nude mice were implanted with Titanium dorsal skin window chambers for in vivo V-PDT studies. For treatments, various irradiances including 50, 75, 100 and 200 mW/cm2 provided by a 532 nm semiconductor laser were performed with the same total light dose of 30 J/cm2 after the mice were intravenously injection of Rose Bengal for 25 mg/Kg body weight. Laser speckle imaging and microscope were used to monitor blood flow dynamics and vessel constriction during and after V-PDT, respectively. The V-PDT induced vessel damages between different groups were compared. The results show that significant difference in blood vessel damage was found between the lower irradiances (50, 75 and 100 mW/cm2) and higher irradiance (200 mW/cm2), and the blood vessel damage induced by V-PDT is positively correlated with irradiance. This study implies that the optimization of irradiance is required for enhancing V-PDT therapeutic efficiency.

  19. Mono-energetic ions emission by nanosecond laser solid target irradiation

    NASA Astrophysics Data System (ADS)

    Muoio, A.; Tudisco, S.; Altana, C.; Lanzalone, G.; Mascali, D.; Cirrone, G. A. P.; Schillaci, F.; Trifirò, A.

    2016-09-01

    An experimental campaign aiming to investigate the acceleration mechanisms through laser-matter interaction in nanosecond domain has been carried out at the LENS (Laser Energy for Nuclear Science) laboratory of INFN-LNS, Catania. Pure Al targets were irradiated by 6 ns laser pulses at different pumping energies, up to 2 J. Advanced diagnostics tools were used to characterize the plasma plume and ion production. We show the preliminary results of this experimental campaign, and especially the ones showing the production of multicharged ions having very narrow energy spreads.

  20. Demonstration of a neonlike argon soft-x-ray laser with a picosecond-laser-irradiated gas puff target.

    PubMed

    Fiedorowicz, H; Bartnik, A; Dunn, J; Smith, R F; Hunter, J; Nilsen, J; Osterheld, A L; Shlyaptsev, V N

    2001-09-15

    We demonstrate a neonlike argon-ion x-ray laser, using a short-pulse laser-irradiated gas puff target. The gas puff target was formed by pulsed injection of gas from a high-pressure solenoid valve through a nozzle in the form of a narrow slit and irradiated with a combination of long, 600-ps and short, 6-ps high-power laser pulses with a total of 10 J of energy in a traveling-wave excitation scheme. Lasing was observed on the 3p (1)S(0)?3s (1)P(1) transition at 46.9 nm and the 3d (1)P(1)?3p (1)P(1) transition at 45.1 nm. A gain of 11 cm(-1) was measured on these transitions for targets up to 0.9 cm long.

  1. A theoretical insight into H accumulation and bubble formation by applying isotropic strain on the W-H system under a fusion environment

    NASA Astrophysics Data System (ADS)

    Han, Quan-Fu; Liu, Yue-Lin; Zhang, Ying; Ding, Fang; Lu, Guang-Hong

    2018-04-01

    The solubility and bubble formation of hydrogen (H) in tungsten (W) are crucial factors for the application of W as a plasma-facing component under a fusion environment, but the data and mechanism are presently scattered, indicating some important factors might be neglected. High-energy neutron-irradiated W inevitably causes a local strain, which may change the solubility of H in W. Here, we performed first-principles calculations to predict the H solution behaviors under isotropic strain combined with temperature effect in W and found that the H solubility in interstitial lattice can be promoted/impeded by isotropic tensile/compressive strain over the temperature range 300-1800 K. The calculated H solubility presents good agreement with the experiment. Together, our previous results of anisotropic strain, except for isotropic compression, both isotropic tension and anisotropic tension/compression enhance H solution so as to reveal an important physical implication for H accumulation and bubble formation in W: strain can enhance H solubility, resulting in the preliminary nucleation of H bubble that further causes the local strain of W lattice around H bubble, which in turn improves the H solubility at the strained region that promotes continuous growth of the H bubble via a chain-reaction effect in W. This result can also interpret the H bubble formation even if no radiation damage is produced in W exposed to low-energy H plasma.

  2. Permeability hysterisis of limestone during isotropic compression.

    PubMed

    Selvadurai, A P S; Głowacki, A

    2008-01-01

    The evolution of permeability hysterisis in Indiana Limestone during application of isotropic confining pressures up to 60 MPa was measured by conducting one-dimensional constant flow rate tests. These tests were carried out either during monotonic application of the confining pressure or during loading-partial unloading cycles. Irreversible permeability changes occurred during both monotonic and repeated incremental compression of the limestone. Mathematical relationships are developed for describing the evolution of path-dependent permeability during isotropic compression.

  3. EPR and photoluminescence study of irradiated anion-defective alumina single crystals

    NASA Astrophysics Data System (ADS)

    Kortov, V. S.; Ananchenko, D. V.; Konev, S. F.; Pustovarov, V. A.

    2017-09-01

    Electron paramagnetic resonance (EPR) and photoluminescence (PL) spectra of anion-defective alumina single crystals were measured. Exposure to a dose 10 Gy-1 kGy causes isotropic EPR signal of a complex form, this signal contains narrow and broad components. At the same time, in the PL spectrum alongside with a band of F+-centers (3.8 eV) an additional emission band with the maximum of 2.25 eV is registered. This band corresponds to aggregate F22+-centers which were create under irradiation. By comparing measurements in EPR and PL spectra with further stepped annealing in the temperature range of 773-1473 K of the samples exposed to the same doses, we were able to conclude that a narrow component of isotropic EPR signal is associated with the formation of paramagnetic F22+-centers under irradiation. A wide component can be caused by deep hole traps which are created by a complex defect (VAl2- - F+) with a localized hole.

  4. Optical phase conjugation (OPC)-assisted isotropic focusing.

    PubMed

    Jang, Mooseok; Sentenac, Anne; Yang, Changhuei

    2013-04-08

    Isotropic optical focusing - the focusing of light with axial confinement that matches its lateral confinement, is important for a broad range of applications. Conventionally, such focusing is achieved by overlapping the focused beams from a pair of opposite-facing microscope objective lenses. However the exacting requirements for the alignment of the objective lenses and the method's relative intolerance to sample turbidity have significantly limited its utility. In this paper, we present an optical phase conjugation (OPC)-assisted isotropic focusing method that can address both challenges. We exploit the time-reversal nature of OPC playback to naturally guarantee the overlap of the two focused beams even when the objective lenses are significantly misaligned (up to 140 microns transversely and 80 microns axially demonstrated). The scattering correction capability of OPC also enabled us to accomplish isotropic focusing through thick scattering samples (demonstrated with samples of ~7 scattering mean free paths). This method can potentially improve 4Pi microscopy and 3D microstructure patterning.

  5. Intravesical markers for delineation of target volume during external focal irradiation of bladder carcinomas.

    PubMed

    Hulshof, Maarten C C M; van Andel, George; Bel, Arjen; Gangel, Pieter; van de Kamer, Jeroen B

    2007-07-01

    A clip forceps was developed which can insert markers at the border of a bladder tumour through a rigid cystoscope. This technique proved to be simple and safe and is of help for delineation of the target volume during CT simulation for focal boost irradiation of bladder cancer.

  6. Isotropic matrix elements of the collision integral for the Boltzmann equation

    NASA Astrophysics Data System (ADS)

    Ender, I. A.; Bakaleinikov, L. A.; Flegontova, E. Yu.; Gerasimenko, A. B.

    2017-09-01

    We have proposed an algorithm for constructing matrix elements of the collision integral for the nonlinear Boltzmann equation isotropic in velocities. These matrix elements have been used to start the recurrent procedure for calculating matrix elements of the velocity-nonisotropic collision integral described in our previous publication. In addition, isotropic matrix elements are of independent interest for calculating isotropic relaxation in a number of physical kinetics problems. It has been shown that the coefficients of expansion of isotropic matrix elements in Ω integrals are connected by the recurrent relations that make it possible to construct the procedure of their sequential determination.

  7. Scale Properties of Anisotropic and Isotropic Turbulence in the Urban Surface Layer

    NASA Astrophysics Data System (ADS)

    Liu, Hao; Yuan, Renmin; Mei, Jie; Sun, Jianning; Liu, Qi; Wang, Yu

    2017-11-01

    The scale properties of anisotropic and isotropic turbulence in the urban surface layer are investigated. A dimensionless anisotropic tensor is introduced and the turbulent tensor anisotropic coefficient, defined as C, where C = 3d3 + 1 (d3 is the minimum eigenvalue of the tensor) is used to characterize the turbulence anisotropy or isotropy. Turbulence is isotropic when C ≈ 1, and anisotropic when C ≪ 1. Three-dimensional velocity data collected using a sonic anemometer are analyzed to obtain the anisotropic characteristics of atmospheric turbulence in the urban surface layer, and the tensor anisotropic coefficient of turbulent eddies at different spatial scales calculated. The analysis shows that C is strongly dependent on atmospheric stability ξ = (z-zd)/L_{{it{MO}}}, where z is the measurement height, zd is the displacement height, and L_{{it{MO}}} is the Obukhov length. The turbulence at a specific scale in unstable conditions (i.e., ξ < 0) is closer to isotropic than that at the same scale under stable conditions. The maximum isotropic scale of turbulence is determined based on the characteristics of the power spectrum in three directions. Turbulence does not behave isotropically when the eddy scale is greater than the maximum isotropic scale, whereas it is horizontally isotropic at relatively large scales. The maximum isotropic scale of turbulence is compared to the outer scale of temperature, which is obtained by fitting the temperature fluctuation spectrum using the von Karman turbulent model. The results show that the outer scale of temperature is greater than the maximum isotropic scale of turbulence.

  8. Enhanced proton acceleration from an ultrathin target irradiated by laser pulses with plateau ASE.

    PubMed

    Wang, Dahui; Shou, Yinren; Wang, Pengjie; Liu, Jianbo; Li, Chengcai; Gong, Zheng; Hu, Ronghao; Ma, Wenjun; Yan, Xueqing

    2018-02-07

    We report a simulation study on proton acceleration driven by ultraintense laser pulses with normal contrast (10 7 -10 9 ) containing nanosecond plateau amplified spontaneous emission (ASE). It's found in hydrodynamic simulations that if the thickness of the targets lies in the range of hundreds nanometer matching the intensity and duration of ASE, the ablation pressure would push the whole target in the forward direction with speed exceeding the expansion velocity of plasma, resulting in a plasma density profile with a long extension at the target front and a sharp gradient at the target rear. When the main pulse irradiates the plasma, self-focusing happens at the target front, producing highly energetic electrons through direct laser acceleration(DLA) building the sheath field. The sharp plasma gradient at target rear ensures a strong sheath field. 2D particle-in-cell(PIC) simulations reveal that the proton energy can be enhanced by a factor of 2 compared to the case of using micrometer-thick targets.

  9. Isolation of tungsten and tantalum isotopes without supports from. cap alpha. -particle-irradiated hafnium targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gasita, S.M.; Iota, B.Z.; Malachkov, A.G.

    1985-11-01

    An extraction procedure has been developed for successive isolation of tungsten (/sup 178/W and /sup 181/W) and tantalum (/sup 179/Ta and /sup 182/Ta) isotopes without supports from ..cap alpha..particle-irradiated hafnium targets. The target, irradiated on a cyclotron, is dissolved in hydrofluoric acid. Tantalum isotopes are extracted with tributyl phosphate (TBP) from 1-5 M HF and are then reextracted with a 1:1 ammonia solution, and hydrofluoric acid is removed by heating. Tungsten isotopes are extracted with a chloroform solution or N-benzoyl-N-phenylhydroxylamine (BPHA) from 11-12 M H/sub 2/SO/sub 4/ or ..cap alpha..-benzoin oxime from 4.5-5.5 M H/sub 2/SO/sub 4/ and are thenmore » reextracted with a l:l ammonia solution. The yield of tungsten isotopes is not less than 95%, and the content of radioactive impurities of other isotopes is not more than 0.1%.« less

  10. A Mitochondria-Targeted Nitroxide/Hemigramicidin S Conjugate Protects Mouse Embryonic Cells Against Gamma Irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang Jianfei; Belikova, Natalia A.; Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA

    2008-03-01

    Purpose: To evaluate the in vitro radioprotective effect of the mitochondria-targeted hemigramicidin S-conjugated 4-amino-2,2,6,6-tetramethyl-piperidine-N-oxyl (hemi-GS-TEMPO) 5-125 in {gamma}-irradiated mouse embryonic cells and adenovirus-12 SV40 hybrid virus transformed human bronchial epithelial cells BEAS-2B and explore the mechanisms involved in its radioprotective effect. Methods and Materials: Cells were incubated with 5-125 before (10 minutes) or after (1 hour) {gamma}-irradiation. Superoxide generation was determined by using dihydroethidium assay, and lipid oxidation was quantitated by using a fluorescence high-performance liquid chromatography-based Amplex Red assay. Apoptosis was characterized by evaluating the accumulation of cytochrome c in the cytosol and externalization of phosphatidylserine on the cellmore » surface. Cell survival was measured by means of a clonogenic assay. Results: Treatment (before and after irradiation) of cells with 5-125 at low concentrations (5, 10, and 20 {mu}M) effectively suppressed {gamma}-irradiation-induced superoxide generation, cardiolipin oxidation, and delayed irradiation-induced apoptosis, evaluated by using cytochrome c release and phosphatidylserine externalization. Importantly, treatment with 5-125 increased the clonogenic survival rate of {gamma}-irradiated cells. In addition, 5-125 enhanced and prolonged {gamma}-irradiation-induced G{sub 2}/M phase arrest. Conclusions: Radioprotection/mitigation by hemi-GS-TEMPO likely is caused by its ability to act as an electron scavenger and prevent superoxide generation, attenuate cardiolipin oxidation in mitochondria, and hence prevent the release of proapoptotic factors from mitochondria. Other mechanisms, including cell-cycle arrest at the G{sub 2}/M phase, may contribute to the protection.« less

  11. Mechanisms of DNA Damage Response to Targeted Irradiation in Organotypic 3D Skin Cultures

    PubMed Central

    Acheva, Anna; Ghita, Mihaela; Patel, Gaurang; Prise, Kevin M.; Schettino, Giuseppe

    2014-01-01

    DNA damage (caused by direct cellular exposure and bystander signaling) and the complex pathways involved in its repair are critical events underpinning cellular and tissue response following radiation exposures. There are limited data addressing the dynamics of DNA damage induction and repair in the skin particularly in areas not directly exposed. Here we investigate the mechanisms regulating DNA damage, repair, intracellular signalling and their impact on premature differentiation and development of inflammatory-like response in the irradiated and surrounding areas of a 3D organotypic skin model. Following localized low-LET irradiation (225 kVp X-rays), low levels of 53BP1 foci were observed in the 3D model (3.8±0.28 foci/Gy/cell) with foci persisting and increasing in size up to 48 h post irradiation. In contrast, in cell monolayers 14.2±0.6 foci/Gy/cell and biphasic repair kinetics with repair completed before 24 h was observed. These differences are linked to differences in cellular status with variable level of p21 driving apoptotic signalling in 2D and accelerated differentiation in both the directly irradiated and bystander areas of the 3D model. The signalling pathways utilized by irradiated keratinocytes to induce DNA damage in non-exposed areas of the skin involved the NF-κB transcription factor and its downstream target COX-2. PMID:24505255

  12. Separation of protactinum, actinium, and other radionuclides from proton irradiated thorium target

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fassbender, Michael E.; Radchenko, Valery

    Protactinium, actinium, radium, radiolanthanides and other radionuclide fission products were separated and recovered from a proton-irradiated thorium target. The target was dissolved in concentrated HCl, which formed anionic complexes of protactinium but not with thorium, actinium, radium, or radiolanthanides. Protactinium was separated from soluble thorium by loading a concentrated HCl solution of the target onto a column of strongly basic anion exchanger resin and eluting with concentrated HCl. Actinium, radium and radiolanthanides elute with thorium. The protactinium that is retained on the column, along with other radionuclides, is eluted may subsequently treated to remove radionuclide impurities to afford a fractionmore » of substantially pure protactinium. The eluate with the soluble thorium, actinium, radium and radiolanthanides may be subjected to treatment with citric acid to form anionic thorium, loaded onto a cationic exchanger resin, and eluted. Actinium, radium and radiolanthanides that are retained can be subjected to extraction chromatography to separate the actinium from the radium and from the radio lanthanides.« less

  13. Stress waves in transversely isotropic media: The homogeneous problem

    NASA Technical Reports Server (NTRS)

    Marques, E. R. C.; Williams, J. H., Jr.

    1986-01-01

    The homogeneous problem of stress wave propagation in unbounded transversely isotropic media is analyzed. By adopting plane wave solutions, the conditions for the existence of the solution are established in terms of phase velocities and directions of particle displacements. Dispersion relations and group velocities are derived from the phase velocity expressions. The deviation angles (e.g., angles between the normals to the adopted plane waves and the actual directions of their propagation) are numerically determined for a specific fiber-glass epoxy composite. A graphical method is introduced for the construction of the wave surfaces using magnitudes of phase velocities and deviation angles. The results for the case of isotropic media are shown to be contained in the solutions for the transversely isotropic media.

  14. Margin estimation and disturbances of irradiation field in layer-stacking carbon-ion beams for respiratory moving targets.

    PubMed

    Tajiri, Shinya; Tashiro, Mutsumi; Mizukami, Tomohiro; Tsukishima, Chihiro; Torikoshi, Masami; Kanai, Tatsuaki

    2017-11-01

    Carbon-ion therapy by layer-stacking irradiation for static targets has been practised in clinical treatments. In order to apply this technique to a moving target, disturbances of carbon-ion dose distributions due to respiratory motion have been studied based on the measurement using a respiratory motion phantom, and the margin estimation given by the square root of the summation Internal margin2+Setup margin2 has been assessed. We assessed the volume in which the variation in the ratio of the dose for a target moving due to respiration relative to the dose for a static target was within 5%. The margins were insufficient for use with layer-stacking irradiation of a moving target, and an additional margin was required. The lateral movement of a target converts to the range variation, as the thickness of the range compensator changes with the movement of the target. Although the additional margin changes according to the shape of the ridge filter, dose uniformity of 5% can be achieved for a spherical target 93 mm in diameter when the upward range variation is limited to 5 mm and the additional margin of 2.5 mm is applied in case of our ridge filter. Dose uniformity in a clinical target largely depends on the shape of the mini-peak as well as on the bolus shape. We have shown the relationship between range variation and dose uniformity. In actual therapy, the upper limit of target movement should be considered by assessing the bolus shape. © The Author 2017. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  15. KEY RESULTS FROM IRRADIATION AND POST-IRRADIATION EXAMINATION OF AGR-1 UCO TRISO FUEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demkowicz, Paul A.; Hunn, John D.; Petti, David A.

    The AGR-1 irradiation experiment was performed as the first test of tristructural isotropic (TRISO) fuel in the US Advanced Gas Reactor Fuel Development and Qualification Program. The experiment consisted of 72 right cylinder fuel compacts containing approximately 3×105 coated fuel particles with uranium oxide/uranium carbide (UCO) fuel kernels. The fuel was irradiated in the Advanced Test Reactor for a total of 620 effective full power days. Fuel burnup ranged from 11.3 to 19.6% fissions per initial metal atom and time average, volume average irradiation temperatures of the individual compacts ranged from 955 to 1136°C. This paper focuses on key resultsmore » from the irradiation and post-irradiation examination, which revealed a robust fuel with excellent performance characteristics under the conditions tested and have significantly improved the understanding of UCO coated particle fuel irradiation behavior within the US program. The fuel exhibited a very low incidence of TRISO coating failure during irradiation and post-irradiation safety testing at temperatures up to 1800°C. Advanced PIE methods have allowed particles with SiC coating failure to be isolated and meticulously examined, which has elucidated the specific causes of SiC failure in these specimens. The level of fission product release from the fuel during irradiation and post-irradiation safety testing has been studied in detail. Results indicated very low release of krypton and cesium through intact SiC and modest release of europium and strontium, while also confirming the potential for significant silver release through the coatings depending on irradiation conditions. Focused study of fission products within the coating layers of irradiated particles down to nanometer length scales has provided new insights into fission product transport through the coating layers and the role various fission products may have on coating integrity. The broader implications of these results and the application

  16. Blast-Wave Generation and Propagation in Rapidly Heated Laser-Irradiated Targets

    NASA Astrophysics Data System (ADS)

    Ivancic, S. T.; Stillman, C. R.; Nilson, P. M.; Solodov, A. A.; Froula, D. H.

    2017-10-01

    Time-resolved extreme ultraviolet (XUV) spectroscopy was used to study the creation and propagation of a >100-Mbar blast wave in a target irradiated by an intense (>1018WWcm2 cm2) laser pulse. Blast waves provide a platform to generate immense pressures in the laboratory. A temporal double flash of XUV radiation was observed when viewing the rear side of the target, which is attributed to the emergence of a blast wave following rapid heating by a fast-electron beam generated from the laser pulse. The time-history of XUV emission in the photon energy range of 50 to 200 eV was recorded with an x-ray streak camera with 7-ps temporal resolution. The heating and expansion of the target was simulated with an electron transport code coupled to 1-D radiation-hydrodynamics simulations. The temporal delay between the two flashes measured in a systematic study of target thickness and composition was found to evolve in good agreement with a Sedov-Taylor blast-wave solution. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944 and Department of Energy Office of Science Award Number DE-SC-0012317.

  17. SU-F-T-669: Commissioning of An Electronic Brachytherapy System for Targeted Mouse Irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Culberson, W; Micka, J; Carchman, E

    Purpose: The aim of this study was to commission the Xoft Axxent™ electronic brachytherapy (eBT) source and 10 mm diameter surface applicator with NIST traceability for targeted irradiations of mouse anal carcinomas. Methods: The Xoft Axxent™ electronic brachytherapy (eBT) and 10 mm diameter surface applicator was chosen by the collaborating physician as a radiation delivery mechanism for mouse anal carcinomas. The target dose was 2 Gy at a depth of 3 mm in tissue to be delivered in a single fraction. To implement an accurate and reliable irradiation plan, the system was commissioned by first determining the eBT source outputmore » and corresponding dose rate at a depth of 3 mm in tissue. This was determined through parallel-plate ion chamber measurements and published conversion factors. Well-type ionization chamber measurements were used to determine a transfer coefficient, which correlates the measured dose rate at 3 mm to the NIST-traceable quantity, air-kerma rate at 50 cm in air, for eBT sources. By correlating these two quantities, daily monitoring in the well chamber becomes an accurate and efficient quality assurance technique. Once the dose-rate was determined, a treatment recipe was developed and confirmed with chamber measurements to deliver the requested dose. Radiochromic film was used to verify the dose distribution across the field. Results: Dose rates at 3 mm depth in tissue were determined for two different Xoft Axxent™ sources and correlated with NIST-traceable well-type ionization chamber measurements. Unique transfer coefficients were determined for each source and the treatment recipe was validated by measurements. Film profiles showed a uniform dose distribution across the field. Conclusion: A Xoft Axxent™ eBT system was successfully commissioned for use in the irradiation of mouse rectal tumors. Dose rates in tissue were determined as well as other pertinent parameters to ensure accurate delivery of dose to the target region.« less

  18. New criteria for isotropic and textured metals

    NASA Astrophysics Data System (ADS)

    Cazacu, Oana

    2018-05-01

    In this paper a isotropic criterion expressed in terms of both invariants of the stress deviator, J2 and J3 is proposed. This criterion involves a unique parameter, α, which depends only on the ratio between the yield stresses in uniaxial tension and pure shear. If this parameter is zero, the von Mises yield criterion is recovered; if a is positive the yield surface is interior to the von Mises yield surface whereas when a is negative, the new yield surface is exterior to it. Comparison with polycrystalline calculations using Taylor-Bishop-Hill model [1] for randomly oriented face-centered (FCC) polycrystalline metallic materials show that this new criterion captures well the numerical yield points. Furthermore, the criterion reproduces well yielding under combined tension-shear loadings for a variety of isotropic materials. An extension of this isotropic yield criterion such as to account for orthotropy in yielding is developed using the generalized invariants approach of Cazacu and Barlat [2]. This new orthotropic criterion is general and applicable to three-dimensional stress states. The procedure for the identification of the material parameters is outlined. Illustration of the predictive capabilities of the new orthotropic is demonstrated through comparison between the model predictions and data on aluminum sheet samples.

  19. Directional statistics-based reflectance model for isotropic bidirectional reflectance distribution functions.

    PubMed

    Nishino, Ko; Lombardi, Stephen

    2011-01-01

    We introduce a novel parametric bidirectional reflectance distribution function (BRDF) model that can accurately encode a wide variety of real-world isotropic BRDFs with a small number of parameters. The key observation we make is that a BRDF may be viewed as a statistical distribution on a unit hemisphere. We derive a novel directional statistics distribution, which we refer to as the hemispherical exponential power distribution, and model real-world isotropic BRDFs as mixtures of it. We derive a canonical probabilistic method for estimating the parameters, including the number of components, of this novel directional statistics BRDF model. We show that the model captures the full spectrum of real-world isotropic BRDFs with high accuracy, but a small footprint. We also demonstrate the advantages of the novel BRDF model by showing its use for reflection component separation and for exploring the space of isotropic BRDFs.

  20. Gene co-expression analysis identifies gene clusters associated with isotropic and polarized growth in Aspergillus fumigatus conidia.

    PubMed

    Baltussen, Tim J H; Coolen, Jordy P M; Zoll, Jan; Verweij, Paul E; Melchers, Willem J G

    2018-04-26

    Aspergillus fumigatus is a saprophytic fungus that extensively produces conidia. These microscopic asexually reproductive structures are small enough to reach the lungs. Germination of conidia followed by hyphal growth inside human lungs is a key step in the establishment of infection in immunocompromised patients. RNA-Seq was used to analyze the transcriptome of dormant and germinating A. fumigatus conidia. Construction of a gene co-expression network revealed four gene clusters (modules) correlated with a growth phase (dormant, isotropic growth, polarized growth). Transcripts levels of genes encoding for secondary metabolites were high in dormant conidia. During isotropic growth, transcript levels of genes involved in cell wall modifications increased. Two modules encoding for growth and cell cycle/DNA processing were associated with polarized growth. In addition, the co-expression network was used to identify highly connected intermodular hub genes. These genes may have a pivotal role in the respective module and could therefore be compelling therapeutic targets. Generally, cell wall remodeling is an important process during isotropic and polarized growth, characterized by an increase of transcripts coding for hyphal growth and cell cycle/DNA processing when polarized growth is initiated. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Comparison between isotropic linear-elastic law and isotropic hyperelastic law in the finite element modeling of the brachial plexus.

    PubMed

    Perruisseau-Carrier, A; Bahlouli, N; Bierry, G; Vernet, P; Facca, S; Liverneaux, P

    2017-12-01

    Augmented reality could help the identification of nerve structures in brachial plexus surgery. The goal of this study was to determine which law of mechanical behavior was more adapted by comparing the results of Hooke's isotropic linear elastic law to those of Ogden's isotropic hyperelastic law, applied to a biomechanical model of the brachial plexus. A model of finite elements was created using the ABAQUS ® from a 3D model of the brachial plexus acquired by segmentation and meshing of MRI images at 0°, 45° and 135° of shoulder abduction of a healthy subject. The offset between the reconstructed model and the deformed model was evaluated quantitatively by the Hausdorff distance and qualitatively by the identification of 3 anatomical landmarks. In every case the Hausdorff distance was shorter with Ogden's law compared to Hooke's law. On a qualitative aspect, the model deformed by Ogden's law followed the concavity of the reconstructed model whereas the model deformed by Hooke's law remained convex. In conclusion, the results of this study demonstrate that the behavior of Ogden's isotropic hyperelastic mechanical model was more adapted to the modeling of the deformations of the brachial plexus. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  2. Recovery of 131I from alkaline solution of n-irradiated tellurium target using a tiny Dowex-1 column.

    PubMed

    Chattopadhyay, Sankha; Saha Das, Sujata

    2010-10-01

    A simple and inexpensive ion-exchange chromatography method for the separation of medically useful no-carrier-added (nca) iodine radionuclides from bulk amounts of irradiated tellurium dioxide (TeO(2)) target was developed and tested using (131)I. The radiochemical separation was performed using a very small Dowex-1x8 ion-exchange column. The overall radiochemical yield for the complete separation of (131)I was 92+/-1.8 (standard deviation) % (n=8). The separated nca (131)I was of high, approximately 99%, radionuclidic and radiochemical purity and did not contain detectable amounts of the target material. This method may be adopted for the radiochemical separation of other different iodine radionuclides produced from tellurium matrices through cyclotron as well as reactor irradiation. Copyright 2010 Elsevier Ltd. All rights reserved.

  3. 80 A/cm2 electron beams from metal targets irradiated by KrCl and XeCl excimer lasers

    NASA Astrophysics Data System (ADS)

    Beloglazov, A.; Martino, M.; Nassisi, V.

    1996-05-01

    Due to the growing demand for high-current and long-duration electron-beam devices, laser electron sources were investigated in our laboratory. Experiments on electron-beam generation and propagation from aluminium and copper targets illuminated by XeCl (308 nm) and KrCl (222 nm) excimer lasers, were carried out under plasma ignition due to laser irradiation. This plasma supplied a spontaneous accelerating electric field of about 370 kV/m without an external accelerating voltage. By applying the modified one-dimensional Poisson equation, we computed the expected current and we also estimated the plasma concentration during the accelerating process. At 40 kV of accelerating voltage, an output current pulse of about 80 A/cm2 was detected from an Al target irradiated by the shorter wavelength laser.

  4. Targeted microbubbles with ultrasound irradiation and PD-1 inhibitor to increase antitumor activity in B-cell lymphoma.

    PubMed

    Zheng, Shiya; Song, Dan; Jin, Xiaoxiao; Zhang, Haijun; Aldarouish, Mohanad; Chen, Yan; Wang, Cailian

    2018-02-01

    Severe cardiac toxicity of doxorubicin and an immunosuppressive tumor micro-environment become main obstacles for the effective treatment of B-cell lymphoma. In this research, rituximab-conjugated and doxorubicin-loaded microbubbles (RDMs) were designed for exploring a combination approach of targeted microbubbles with ultrasound (US) irradiation and PD-1 inhibitor to overcome obstacles mentioned above. In vivo studies were performed on SU-DHL-4 cell-grafted mice and ex vivo studies were performed on CD20 + human SU-DHL-4 cells and human T cells. A greater therapeutic effect and higher expression of PD-L1 protein expression were obtained with RDMs with US irradiation in vivo. A significant inhibitory effect on SU-DHL-4 B-cell lymphoma cells was observed after treated by RDMs with US irradiation and PD-1 inhibitor ex vivo. Combination of RDMs with US irradiation and PD-1 inhibitor could be a promising therapeutic strategy for B-cell lymphoma.

  5. Isotropic neutrino flux from supernova explosions in the universe

    NASA Astrophysics Data System (ADS)

    Petkov, V. B.

    2018-01-01

    Neutrinos of all types are emitted from the gravitational collapse of massive star cores, and have been amassed in the Universe throughout the history of evolution of galaxies. The isotropic and stable flux of these neutrinos is a source of information on the spectra of neutrinos from individual supernovae and on their redshift distribution. The prospects for detecting the isotropic neutrino flux with the existing and upcoming experimental facilities and the current upper limits are discussed in this paper.

  6. Nonequilibrium phase transitions in isotropic Ashkin-Teller model

    NASA Astrophysics Data System (ADS)

    Akıncı, Ümit

    2017-03-01

    Dynamic behavior of an isotropic Ashkin-Teller model in the presence of a periodically oscillating magnetic field has been analyzed by means of the mean field approximation. The dynamic equation of motion has been constructed with the help of a Glauber type stochastic process and solved for a square lattice. After defining the possible dynamical phases of the system, phase diagrams have been given and the behavior of the hysteresis loops has been investigated in detail. The hysteresis loop for specific order parameter of isotropic Ashkin-Teller model has been defined and characteristics of this loop in different dynamical phases have been given.

  7. Ag Transport Through Non-Irradiated and Irradiated SiC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szlufarska, Izabela; Morgan, Dane; Blanchard, James

    Silicon carbide is the main barrier to diffusion of fission products in the current design of TRistuctural ISOtropic (TRISO) coated fuel particles, and Ag is one of the few fission products that have been shown to escape through this barrier. Because the SiC coating in TRISO is exposed to radiation throughout the lifetime of the fuel, understanding of how radiation changes the transport of the fission products is essential for the safety of the reactor. The goals of this project are: (i) to determine whether observed variation in integral release measurements of Ag through SiC can be explained by differencesmore » in grain size and grain boundary (GB) types among the samples; (2) to identify the effects of irradiation on diffusion of Ag through SiC; (3) to discover phenomena responsible for significant solubility of Ag in polycrystalline SiC. To address these goals, we combined experimental analysis of SiC diffusion couples with modeling studies of diffusion mechanisms through bulk and GBs of this material. Comparison between results obtained for pristine and irradiated samples brings in insights into the effects of radiation on Ag transport.« less

  8. Intensity-Modulated Radiotherapy for Craniospinal Irradiation: Target Volume Considerations, Dose Constraints, and Competing Risks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, William; Filion, Edith; Roberge, David

    2007-09-01

    Purpose: To report the results of an analysis of dose received to tissues and organs outside the target volume, in the setting of spinal axis irradiation for the treatment of medulloblastoma, using three treatment techniques. Methods and Materials: Treatment plans (total dose, 23.4 Gy) for a standard two-dimensional (2D) technique, a three-dimensional (3D) technique using a 3D imaging-based target volume, and an intensity-modulated radiotherapy (IMRT) technique, were compared for 3 patients in terms of dose-volume statistics for target coverage, as well as organ at risk (OAR) and overall tissue sparing. Results: Planning target volume coverage and dose homogeneity was superiormore » for the IMRT plans for V{sub 95%} (IMRT, 100%; 3D, 96%; 2D, 98%) and V{sub 107%} (IMRT, 3%; 3D, 38%; 2D, 37%). In terms of OAR sparing, the IMRT plan was better for all organs and whole-body contour when comparing V{sub 10Gy}, V{sub 15Gy}, and V{sub 20Gy}. The 3D plan was superior for V{sub 5Gy} and below. For the heart and liver in particular, the IMRT plans provided considerable sparing in terms of V{sub 10Gy} and above. In terms of the integral dose, the IMRT plans were superior for liver (IMRT, 21.9 J; 3D, 28.6 J; 2D, 38.6 J) and heart (IMRT, 9 J; 3D, 14.1J; 2D, 19.4 J), the 3D plan for the body contour (IMRT, 349 J; 3D, 337 J; 2D, 555 J). Conclusions: Intensity-modulated radiotherapy is a valid treatment option for spinal axis irradiation. We have shown that IMRT results in sparing of organs at risk without a significant increase in integral dose.« less

  9. Near monochromatic 20 Me V proton acceleration using fs laser irradiating Au foils in target normal sheath acceleration regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torrisi, L., E-mail: Lorenzo.Torrisi@unime.it; Ceccio, G.; Cannavò, A.

    2016-04-15

    A 200 mJ laser pulse energy, 39 fs-pulse duration, 10 μm focal spot, p-polarized radiation has been employed to irradiate thin Au foils to produce proton acceleration in the forward direction. Gold foils were employed to produce high density relativistic electrons emission in the forward direction to generate a high electric field driving the ion acceleration. Measurements were performed by changing the focal position in respect of the target surface. Proton acceleration was monitored using fast SiC detectors in time-of-flight configuration. A high proton energy, up to about 20 Me V, with a narrow energy distribution, was obtained in particular conditions dependingmore » on the laser parameters, the irradiation conditions, and a target optimization.« less

  10. Annealing results on low-energy proton-irradiated GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Kachare, R.; Anspaugh, B. E.; O'Meara, L.

    1988-01-01

    AlGaAs/GaAs solar cells with an approximately 0.5-micron-thick Al(0.85)Ga(0.15)As window layer were irradiated using normal and isotropic incident protons having energies between 50 and 500 keV with fluence up to 1 x 10 to the 12th protons/sq cm. The irradiated cells were annealed at temperatures between 150 and 300 C in nitrogen ambient. The annealing results reveal that significant recovery in spectral response at longer wavelengths occurred. However, the short-wavelength spectral response showed negligible annealing, irrespective of the irradiation energy and annealing conditions. This indicates that the damage produced near the AlGaAs/GaAs interface and the space-charge region anneals differently than damage produced in the bulk. This is explained by using a model in which the as-grown dislocations interact with irradiation-induced point defects to produce thermally stable defects.

  11. Key results from irradiation and post-irradiation examination of AGR-1 UCO TRISO fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demkowicz, Paul A.; Hunn, John D.; Petti, David A.

    The AGR-1 irradiation experiment was performed as the first test of tristructural isotropic (TRISO) fuel in the US Advanced Gas Reactor Fuel Development and Qualification Program. The experiment consisted of 72 right cylinder fuel compacts containing approximately 3 × 105 coated fuel particles with uranium oxide/uranium carbide (UCO) fuel kernels. The fuel was irradiated in the Advanced Test Reactor for a total of 620 effective full power days. Fuel burnup ranged from 11.3 to 19.6% fissions per initial metal atom and time-average, volume-average irradiation temperatures of the individual compacts ranged from 955 to 1136 °C. This paper focuses on keymore » results from the irradiation and post-irradiation examination, which revealed a robust fuel with excellent performance characteristics under the conditions tested and have significantly improved the understanding of UCO coated particle fuel irradiation behavior. The fuel exhibited zero TRISO coating failures (failure of all three dense coating layers) during irradiation and post-irradiation safety testing at temperatures up to 1700 °C. Advanced PIE methods have allowed particles with SiC coating failure that were discovered to be present in a very-low population to be isolated and meticulously examined, which has elucidated the specific causes of SiC failure in these specimens. The level of fission product release from the fuel during irradiation and post-irradiation safety testing has been studied in detail. Results indicated very low release of krypton and cesium through intact SiC and modest release of europium and strontium, while also confirming the potential for significant silver release through the coatings depending on irradiation conditions. Focused study of fission products within the coating layers of irradiated particles down to nanometer length scales has provided new insights into fission product transport through the coating layers and the role various fission products may have on coating

  12. Key results from irradiation and post-irradiation examination of AGR-1 UCO TRISO fuel

    DOE PAGES

    Demkowicz, Paul A.; Hunn, John D.; Petti, David A.; ...

    2017-09-10

    The AGR-1 irradiation experiment was performed as the first test of tristructural isotropic (TRISO) fuel in the US Advanced Gas Reactor Fuel Development and Qualification Program. The experiment consisted of 72 right cylinder fuel compacts containing approximately 3 × 105 coated fuel particles with uranium oxide/uranium carbide (UCO) fuel kernels. The fuel was irradiated in the Advanced Test Reactor for a total of 620 effective full power days. Fuel burnup ranged from 11.3 to 19.6% fissions per initial metal atom and time-average, volume-average irradiation temperatures of the individual compacts ranged from 955 to 1136 °C. This paper focuses on keymore » results from the irradiation and post-irradiation examination, which revealed a robust fuel with excellent performance characteristics under the conditions tested and have significantly improved the understanding of UCO coated particle fuel irradiation behavior. The fuel exhibited zero TRISO coating failures (failure of all three dense coating layers) during irradiation and post-irradiation safety testing at temperatures up to 1700 °C. Advanced PIE methods have allowed particles with SiC coating failure that were discovered to be present in a very-low population to be isolated and meticulously examined, which has elucidated the specific causes of SiC failure in these specimens. The level of fission product release from the fuel during irradiation and post-irradiation safety testing has been studied in detail. Results indicated very low release of krypton and cesium through intact SiC and modest release of europium and strontium, while also confirming the potential for significant silver release through the coatings depending on irradiation conditions. Focused study of fission products within the coating layers of irradiated particles down to nanometer length scales has provided new insights into fission product transport through the coating layers and the role various fission products may have on coating

  13. From Intensity Profile to Surface Normal: Photometric Stereo for Unknown Light Sources and Isotropic Reflectances.

    PubMed

    Lu, Feng; Matsushita, Yasuyuki; Sato, Imari; Okabe, Takahiro; Sato, Yoichi

    2015-10-01

    We propose an uncalibrated photometric stereo method that works with general and unknown isotropic reflectances. Our method uses a pixel intensity profile, which is a sequence of radiance intensities recorded at a pixel under unknown varying directional illumination. We show that for general isotropic materials and uniformly distributed light directions, the geodesic distance between intensity profiles is linearly related to the angular difference of their corresponding surface normals, and that the intensity distribution of the intensity profile reveals reflectance properties. Based on these observations, we develop two methods for surface normal estimation; one for a general setting that uses only the recorded intensity profiles, the other for the case where a BRDF database is available while the exact BRDF of the target scene is still unknown. Quantitative and qualitative evaluations are conducted using both synthetic and real-world scenes, which show the state-of-the-art accuracy of smaller than 10 degree without using reference data and 5 degree with reference data for all 100 materials in MERL database.

  14. Zero group velocity longitudinal modes in an isotropic cylinder

    NASA Astrophysics Data System (ADS)

    Hussain, Takasar; Ahmad, Faiz; Ozair, Muhammad

    2018-06-01

    Zero group velocity (ZGV) modes are studied in an isotropic cylinder. The L(0, 2) mode behaves anomalously for the materials with a value of the bulk velocity ratio, κ , in the range √{2}<κ <2.64 and normally otherwise. All higher modes, except the first few, have no ZGV point for all isotropic materials. This is explained analytically by finding the slope of phase velocity dispersion curves of modes first when the phase velocity equals κ and then at their initial state.

  15. Mitochondria-Targeted Vitamin E Protects Skin from UVB-Irradiation.

    PubMed

    Kim, Won-Serk; Kim, Ikyon; Kim, Wang-Kyun; Choi, Ju-Yeon; Kim, Doo Yeong; Moon, Sung-Guk; Min, Hyung-Keun; Song, Min-Kyu; Sung, Jong-Hyuk

    2016-05-01

    Mitochondria-targeted vitamin E (MVE) is designed to accumulate within mitochondria and is applied to decrease mitochondrial oxidative damage. However, the protective effects of MVE in skin cells have not been identified. We investigated the protective effect of MVE against UVB in dermal fibroblasts and immortalized human keratinocyte cell line (HaCaT). In addition, we studied the wound-healing effect of MVE in animal models. We found that MVE increased the proliferation and survival of fibroblasts at low concentration (i.e., nM ranges). In addition, MVE increased collagen production and downregulated matrix metalloproteinase1. MVE also increased the proliferation and survival of HaCaT cells. UVB increased reactive oxygen species (ROS) production in fibroblasts and HaCaT cells, while MVE decreased ROS production at low concentration. In an animal experiment, MVE accelerated wound healing from laser-induced skin damage. These results collectively suggest that low dose MVE protects skin from UVB irradiation. Therefore, MVE can be developed as a cosmetic raw material.

  16. FGF1-gold nanoparticle conjugates targeting FGFR efficiently decrease cell viability upon NIR irradiation

    PubMed Central

    Szlachcic, Anna; Pala, Katarzyna; Zakrzewska, Malgorzata; Jakimowicz, Piotr; Wiedlocha, Antoni; Otlewski, Jacek

    2012-01-01

    Fibroblast growth factor receptors (FGFRs) are overexpressed in a wide variety of tumors, such as breast, bladder, and prostate cancer, and therefore they are attractive targets for different types of anticancer therapies. In this study, we designed, constructed, and characterized FGFR-targeted gold nanoconjugates suitable for infrared-induced thermal ablation (localized heating leading to cancer cell death) based on gold nanoparticles (AuNPs). We showed that a recombinant ligand of all FGFRs, human fibroblast growth factor 1 (FGF1), can be used as an agent targeting covalently bound AuNPs to cancer cells overexpressing FGFRs. To assure thermal stability, protease resistance, and prolonged half-life of the targeting protein, we employed highly stable FGF1 variant that retains the biological activities of the wild type FGF1. Novel FGF1 variant, AuNP conjugates are specifically internalized only by the cells expressing FGFRs, and they significantly reduce their viability after irradiation with near-infrared light (down to 40% of control cell viability), whereas the proliferation potential of cells lacking FGFRs is not affected. These results demonstrate the feasibility of FGF1-coated AuNPs for targeted cancer therapy. PMID:23226697

  17. Isotropic blackbody cosmic microwave background radiation as evidence for a homogeneous universe.

    PubMed

    Clifton, Timothy; Clarkson, Chris; Bull, Philip

    2012-08-03

    The question of whether the Universe is spatially homogeneous and isotropic on the largest scales is of fundamental importance to cosmology but has not yet been answered decisively. Surprisingly, neither an isotropic primary cosmic microwave background (CMB) nor combined observations of luminosity distances and galaxy number counts are sufficient to establish such a result. The inclusion of the Sunyaev-Zel'dovich effect in CMB observations, however, dramatically improves this situation. We show that even a solitary observer who sees an isotropic blackbody CMB can conclude that the Universe is homogeneous and isotropic in their causal past when the Sunyaev-Zel'dovich effect is present. Critically, however, the CMB must either be viewed for an extended period of time, or CMB photons that have scattered more than once must be detected. This result provides a theoretical underpinning for testing the cosmological principle with observations of the CMB alone.

  18. Targets and methods for target preparation for radionuclide production

    DOEpatents

    Zhuikov, Boris L; Konyakhin, Nicolai A; Kokhanyuk, Vladimir M; Srivastava, Suresh C

    2012-10-16

    The invention relates to nuclear technology, and to irradiation targets and their preparation. One embodiment of the present invention includes a method for preparation of a target containing intermetallic composition of antimony Ti--Sb, Al--Sb, Cu--Sb, or Ni--Sb in order to produce radionuclides (e.g., tin-117 m) with a beam of accelerated particles. The intermetallic compounds of antimony can be welded by means of diffusion welding to a copper backing cooled during irradiation on the beam of accelerated particles. Another target can be encapsulated into a shell made of metallic niobium, stainless steel, nickel or titanium cooled outside by water during irradiation. Titanium shell can be plated outside by nickel to avoid interaction with the cooling water.

  19. Soft network materials with isotropic negative Poisson's ratios over large strains.

    PubMed

    Liu, Jianxing; Zhang, Yihui

    2018-01-31

    Auxetic materials with negative Poisson's ratios have important applications across a broad range of engineering areas, such as biomedical devices, aerospace engineering and automotive engineering. A variety of design strategies have been developed to achieve artificial auxetic materials with controllable responses in the Poisson's ratio. The development of designs that can offer isotropic negative Poisson's ratios over large strains can open up new opportunities in emerging biomedical applications, which, however, remains a challenge. Here, we introduce deterministic routes to soft architected materials that can be tailored precisely to yield the values of Poisson's ratio in the range from -1 to 1, in an isotropic manner, with a tunable strain range from 0% to ∼90%. The designs rely on a network construction in a periodic lattice topology, which incorporates zigzag microstructures as building blocks to connect lattice nodes. Combined experimental and theoretical studies on broad classes of network topologies illustrate the wide-ranging utility of these concepts. Quantitative mechanics modeling under both infinitesimal and finite deformations allows the development of a rigorous design algorithm that determines the necessary network geometries to yield target Poisson ratios over desired strain ranges. Demonstrative examples in artificial skin with both the negative Poisson's ratio and the nonlinear stress-strain curve precisely matching those of the cat's skin and in unusual cylindrical structures with engineered Poisson effect and shape memory effect suggest potential applications of these network materials.

  20. An endochronic theory for transversely isotropic fibrous composites

    NASA Technical Reports Server (NTRS)

    Pindera, M. J.; Herakovich, C. T.

    1981-01-01

    A rational methodology of modelling both nonlinear and elastic dissipative response of transversely isotropic fibrous composites is developed and illustrated with the aid of the observed response of graphite-polyimide off-axis coupons. The methodology is based on the internal variable formalism employed within the text of classical irreversible thermodynamics and entails extension of Valanis' endochronic theory to transversely isotropic media. Applicability of the theory to prediction of various response characteristics of fibrous composites is illustrated by accurately modelling such often observed phenomena as: stiffening reversible behavior along fiber direction; dissipative response in shear and transverse tension characterized by power-laws with different hardening exponents; permanent strain accumulation; nonlinear unloading and reloading; and stress-interaction effects.

  1. Proton acceleration measurements using fs laser irradiation of foils in the target normal sheath acceleration regime

    NASA Astrophysics Data System (ADS)

    Batani, D.; Boutoux, G.; Burgy, F.; Jakubowska, K.; Ducret, J. E.

    2018-05-01

    We present experimental results obtained at the CELIA laboratory using the laser ECLIPSE to study proton acceleration from ultra-intense laser pulses. Several types of targets were irradiated with different laser conditions (focusing and prepulse level). Proton emission was characterized using time-of-flight detectors (SiC and diamond) and a Thomson parabola spectrometer. In all cases, the maximum energy of observed protons was of the order of 260 keV with a large energy spectrum. Such characteristics are typical of protons emitted following the target normal sheath acceleration mechanism for low-energy short-pulse lasers like ECLIPSE.

  2. Carbon--silicon coating alloys for improved irradiation stability

    DOEpatents

    Bokros, J.C.

    1973-10-01

    For ceramic nuclear fuel particles, a fission product-retaining carbon-- silicon alloy coating is described that exhibits low shrinkage after exposure to fast neutron fluences of 1.4 to 4.8 x 10/sup 21/ n/cm/sup 2/ (E = 0.18 MeV) at irradiation temperatures from 950 to 1250 deg C. Isotropic pyrolytic carbon containing from 18 to 34 wt% silicon is co-deposited from a gaseous mixiure of propane, helium, and silane at a temperature of 1350 to 1450 deg C. (Official Gazette)

  3. Isotropic quantum walks on lattices and the Weyl equation

    NASA Astrophysics Data System (ADS)

    D'Ariano, Giacomo Mauro; Erba, Marco; Perinotti, Paolo

    2017-12-01

    We present a thorough classification of the isotropic quantum walks on lattices of dimension d =1 ,2 ,3 with a coin system of dimension s =2 . For d =3 there exist two isotropic walks, namely, the Weyl quantum walks presented in the work of D'Ariano and Perinotti [G. M. D'Ariano and P. Perinotti, Phys. Rev. A 90, 062106 (2014), 10.1103/PhysRevA.90.062106], resulting in the derivation of the Weyl equation from informational principles. The present analysis, via a crucial use of isotropy, is significantly shorter and avoids a superfluous technical assumption, making the result completely general.

  4. Design and Demonstration of a Material-Plasma Exposure Target Station for Neutron Irradiated Samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rapp, Juergen; Aaron, A. M.; Bell, Gary L.

    2015-10-20

    Fusion energy is the most promising energy source for the future, and one of the most important problems to be solved progressing to a commercial fusion reactor is the identification of plasma-facing materials compatible with the extreme conditions in the fusion reactor environment. The development of plasma–material interaction (PMI) science and the technology of plasma-facing components are key elements in the development of the next step fusion device in the United States, the so-called Fusion Nuclear Science Facility (FNSF). All of these PMI issues and the uncertain impact of the 14-MeV neutron irradiation have been identified in numerous expert panelmore » reports to the fusion community. The 2007 Greenwald report classifies reactor plasma-facing materials (PFCs) and materials as the only Tier 1 issues, requiring a “. . . major extrapolation from the current state of knowledge, need for qualitative improvements and substantial development for both the short and long term.” The Greenwald report goes on to list 19 gaps in understanding and performance related to the plasma–material interface for the technology facilities needed for DEMO-oriented R&D and DEMO itself. Of the 15 major gaps, six (G7, G9, G10, G12, G13) can possibly be addressed with ORNL’s proposal of an advanced Material Plasma Exposure eXperiment. Establishing this mid-scale plasma materials test facility at ORNL is a key element in ORNL’s strategy to secure a leadership role for decades of fusion R&D. That is to say, our end goal is to bring the “signature facility” FNSF home to ORNL. This project is related to the pre-conceptual design of an innovative target station for a future Material–Plasma Exposure eXperiment (MPEX). The target station will be designed to expose candidate fusion reactor plasma-facing materials and components (PFMs and PFCs) to conditions anticipated in fusion reactors, where PFCs will be exposed to dense high-temperature hydrogen plasmas providing

  5. Parallel computation safety analysis irradiation targets fission product molybdenum in neutronic aspect using the successive over-relaxation algorithm

    NASA Astrophysics Data System (ADS)

    Susmikanti, Mike; Dewayatna, Winter; Sulistyo, Yos

    2014-09-01

    One of the research activities in support of commercial radioisotope production program is a safety research on target FPM (Fission Product Molybdenum) irradiation. FPM targets form a tube made of stainless steel which contains nuclear-grade high-enrichment uranium. The FPM irradiation tube is intended to obtain fission products. Fission materials such as Mo99 used widely the form of kits in the medical world. The neutronics problem is solved using first-order perturbation theory derived from the diffusion equation for four groups. In contrast, Mo isotopes have longer half-lives, about 3 days (66 hours), so the delivery of radioisotopes to consumer centers and storage is possible though still limited. The production of this isotope potentially gives significant economic value. The criticality and flux in multigroup diffusion model was calculated for various irradiation positions and uranium contents. This model involves complex computation, with large and sparse matrix system. Several parallel algorithms have been developed for the sparse and large matrix solution. In this paper, a successive over-relaxation (SOR) algorithm was implemented for the calculation of reactivity coefficients which can be done in parallel. Previous works performed reactivity calculations serially with Gauss-Seidel iteratives. The parallel method can be used to solve multigroup diffusion equation system and calculate the criticality and reactivity coefficients. In this research a computer code was developed to exploit parallel processing to perform reactivity calculations which were to be used in safety analysis. The parallel processing in the multicore computer system allows the calculation to be performed more quickly. This code was applied for the safety limits calculation of irradiated FPM targets containing highly enriched uranium. The results of calculations neutron show that for uranium contents of 1.7676 g and 6.1866 g (× 106 cm-1) in a tube, their delta reactivities are the still

  6. PIE on Safety-Tested Loose Particles from Irradiated Compact 4-4-2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunn, John D.; Gerczak, Tyler J.; Morris, Robert Noel

    2016-04-01

    Post-irradiation examination (PIE) is being performed in support of tristructural isotropic (TRISO) coated particle fuel development and qualification for High Temperature Gas-cooled Reactors (HTGRs). This work is sponsored by the Department of Energy Office of Nuclear Energy (DOE-NE) through the Advanced Reactor Technologies (ART) Office under the Advanced Gas Reactor Fuel Development and Qualification (AGR) Program. The AGR-1 experiment was the first in a series of TRISO fuel irradiation tests initiated in 2006. The AGR-1 TRISO particles and fuel compacts were fabricated at Oak Ridge National Laboratory (ORNL) in 2006 using laboratory-scale equipment and irradiated for 3 years in themore » Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) to demonstrate and evaluate fuel performance under HTGR irradiation conditions. Post-irradiation examination was performed at INL and ORNL to study how the fuel behaved during irradiation, and to test fuel performance during exposure to elevated temperatures at or above temperatures that could occur during a depressurized conduction cooldown event. This report summarizes safety testing and post-safety testing PIE conducted at ORNL on loose particles extracted from irradiated AGR-1 Compact 4-4-2.« less

  7. Torsional vibration of a pipe pile in transversely isotropic saturated soil

    NASA Astrophysics Data System (ADS)

    Zheng, Changjie; Hua, Jianmin; Ding, Xuanming

    2016-09-01

    This study considers the torsional vibration of a pipe pile in a transversely isotropic saturated soil layer. Based on Biot's poroelastic theory and the constitutive relations of the transversely isotropic medium, the dynamic governing equations of the outer and inner transversely isotropic saturated soil layers are derived. The Laplace transform is used to solve the governing equations of the outer and inner soil layers. The dynamic torsional response of the pipe pile in the frequency domain is derived utilizing 1D elastic theory and the continuous conditions at the interfaces between the pipe pile and the soils. The time domain solution is obtained by Fourier inverse transform. A parametric study is conducted to demonstrate the influence of the anisotropies of the outer and inner soil on the torsional dynamic response of the pipe pile.

  8. Superfluid H3e in globally isotropic random media

    NASA Astrophysics Data System (ADS)

    Ikeda, Ryusuke; Aoyama, Kazushi

    2009-02-01

    Recent theoretical and experimental studies of superfluid H3e in aerogels with a global anisotropy created, e.g., by an external stress have definitely shown that the A -like phase with an equal-spin pairing in such aerogel samples is in the Anderson-Brinkman-Morel (ABM) (or axial) pairing state. In this paper, the A -like phase of superfluid H3e in globally isotropic aerogel is studied in detail by assuming a weakly disordered system in which singular topological defects are absent. Through calculation of the free energy, a disordered ABM state is found to be the best candidate of the pairing state of the globally isotropic A -like phase. Further, it is found through a one-loop renormalization-group calculation that the coreless continuous vortices (or vortex-Skyrmions) are irrelevant to the long-distance behavior of disorder-induced textures, and that the superfluidity is maintained in spite of lack of the conventional superfluid long-range order. Therefore, the globally isotropic A -like phase at weak disorder is, like in the case with a globally stretched anisotropy, a glass phase with the ABM pairing and shows superfluidity.

  9. Assessment of uncertainty in the numerical simulation of solar irradiance over inclined PV panels: New algorithms using measurements and modeling tools

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Yu; Sengupta, Manajit; Dooraghi, Mike

    Development of accurate transposition models to simulate plane-of-array (POA) irradiance from horizontal measurements or simulations is a complex process mainly because of the anisotropic distribution of diffuse solar radiation in the atmosphere. The limited availability of reliable POA measurements at large temporal and spatial scales leads to difficulties in the comprehensive evaluation of transposition models. This paper proposes new algorithms to assess the uncertainty of transposition models using both surface-based observations and modeling tools. We reviewed the analytical derivation of POA irradiance and the approximation of isotropic diffuse radiation that simplifies the computation. Two transposition models are evaluated against themore » computation by the rigorous analytical solution. We proposed a new algorithm to evaluate transposition models using the clear-sky measurements at the National Renewable Energy Laboratory's (NREL's) Solar Radiation Research Laboratory (SRRL) and a radiative transfer model that integrates diffuse radiances of various sky-viewing angles. We found that the radiative transfer model and a transposition model based on empirical regressions are superior to the isotropic models when compared to measurements. We further compared the radiative transfer model to the transposition models under an extensive range of idealized conditions. Our results suggest that the empirical transposition model has slightly higher cloudy-sky POA irradiance than the radiative transfer model, but performs better than the isotropic models under clear-sky conditions. Significantly smaller POA irradiances computed by the transposition models are observed when the photovoltaics (PV) panel deviates from the azimuthal direction of the sun. The new algorithms developed in the current study have opened the door to a more comprehensive evaluation of transposition models for various atmospheric conditions and solar and PV orientations.« less

  10. Assessment of uncertainty in the numerical simulation of solar irradiance over inclined PV panels: New algorithms using measurements and modeling tools

    DOE PAGES

    Xie, Yu; Sengupta, Manajit; Dooraghi, Mike

    2018-03-20

    Development of accurate transposition models to simulate plane-of-array (POA) irradiance from horizontal measurements or simulations is a complex process mainly because of the anisotropic distribution of diffuse solar radiation in the atmosphere. The limited availability of reliable POA measurements at large temporal and spatial scales leads to difficulties in the comprehensive evaluation of transposition models. This paper proposes new algorithms to assess the uncertainty of transposition models using both surface-based observations and modeling tools. We reviewed the analytical derivation of POA irradiance and the approximation of isotropic diffuse radiation that simplifies the computation. Two transposition models are evaluated against themore » computation by the rigorous analytical solution. We proposed a new algorithm to evaluate transposition models using the clear-sky measurements at the National Renewable Energy Laboratory's (NREL's) Solar Radiation Research Laboratory (SRRL) and a radiative transfer model that integrates diffuse radiances of various sky-viewing angles. We found that the radiative transfer model and a transposition model based on empirical regressions are superior to the isotropic models when compared to measurements. We further compared the radiative transfer model to the transposition models under an extensive range of idealized conditions. Our results suggest that the empirical transposition model has slightly higher cloudy-sky POA irradiance than the radiative transfer model, but performs better than the isotropic models under clear-sky conditions. Significantly smaller POA irradiances computed by the transposition models are observed when the photovoltaics (PV) panel deviates from the azimuthal direction of the sun. The new algorithms developed in the current study have opened the door to a more comprehensive evaluation of transposition models for various atmospheric conditions and solar and PV orientations.« less

  11. Acoustic reflection log in transversely isotropic formations

    NASA Astrophysics Data System (ADS)

    Ronquillo Jarillo, G.; Markova, I.; Markov, M.

    2018-01-01

    We have calculated the waveforms of sonic reflection logging for a fluid-filled borehole located in a transversely isotropic rock. Calculations have been performed for an acoustic impulse source with the characteristic frequency of tens of kilohertz that is considerably less than the frequencies of acoustic borehole imaging tools. It is assumed that the borehole axis coincides with the axis of symmetry of the transversely isotropic rock. It was shown that the reflected wave was excited most efficiently at resonant frequencies. These frequencies are close to the frequencies of oscillations of a fluid column located in an absolutely rigid hollow cylinder. We have shown that the acoustic reverberation is controlled by the acoustic impedance of the rock Z = Vphρs for fixed parameters of the borehole fluid, where Vph is the velocity of horizontally propagating P-wave; ρs is the rock density. The methods of waveform processing to determine the parameters characterizing the reflected wave have been discussed.

  12. Analysis of the 148Gd and 154Dy Content in Proton-Irradiated Lead Targets.

    PubMed

    Talip, Z; Pfister, S; Dressler, R; David, J C; Vögele, A; Vontobel, P; Michel, R; Schumann, D

    2017-06-20

    This work presents the determination of the 148 Gd and 154 Dy content in Pb targets irradiated by 220-2600 MeV protons. It includes the chemical separation of lanthanides, followed by the preparation of proper samples, by molecular plating technique, for α-spectrometry measurements. The experimental cross section results were compared with theoretical predictions, calculated with the INCL++-ABLA07 code. The comparisons showed a satisfactory agreement for 148 Gd (less than within a factor two), while measured 154 Dy cross sections are higher than the theoretical values.

  13. LIQUID TARGET

    DOEpatents

    Martin, M.D.; Salsig, W.W. Jr.

    1959-01-13

    A liquid handling apparatus is presented for a liquid material which is to be irradiated. The apparatus consists essentially of a reservoir for the liquid, a target element, a drain tank and a drain lock chamber. The target is in the form of a looped tube, the upper end of which is adapted to be disposed in a beam of atomic particles. The lower end of the target tube is in communication with the liquid in the reservoir and a means is provided to continuously circulate the liquid material to be irradiated through the target tube. Means to heat the reservoir tank is provided in the event that a metal is to be used as the target material. The apparatus is provided with suitable valves and shielding to provide maximum safety in operation.

  14. Avirulent Bacillus anthracis Strain with Molecular Assay Targets as Surrogate for Irradiation-Inactivated Virulent Spores.

    PubMed

    Plaut, Roger D; Staab, Andrea B; Munson, Mark A; Gebhardt, Joan S; Klimko, Christopher P; Quirk, Avery V; Cote, Christopher K; Buhr, Tony L; Rossmaier, Rebecca D; Bernhards, Robert C; Love, Courtney E; Berk, Kimberly L; Abshire, Teresa G; Rozak, David A; Beck, Linda C; Stibitz, Scott; Goodwin, Bruce G; Smith, Michael A; Sozhamannan, Shanmuga

    2018-04-01

    The revelation in May 2015 of the shipment of γ irradiation-inactivated wild-type Bacillus anthracis spore preparations containing a small number of live spores raised concern about the safety and security of these materials. The finding also raised doubts about the validity of the protocols and procedures used to prepare them. Such inactivated reference materials were used as positive controls in assays to detect suspected B. anthracis in samples because live agent cannot be shipped for use in field settings, in improvement of currently deployed detection methods or development of new methods, or for quality assurance and training activities. Hence, risk-mitigated B. anthracis strains are needed to fulfill these requirements. We constructed a genetically inactivated or attenuated strain containing relevant molecular assay targets and tested to compare assay performance using this strain to the historical data obtained using irradiation-inactivated virulent spores.

  15. Electron beam irradiation induced changes in liquid-crystal compound 5CB

    NASA Astrophysics Data System (ADS)

    Rath, M. C.; Sarkar, S. K.; Wadhawan, V. K.; Verma, R.; Das, I. M. L.; Dąbrowski, R.; Tykarska, M.; Dhar, R.

    2008-12-01

    Electron beam irradiation studies on liquid crystal material 5CB have been carried out at a temperature where the compound exists in the isotropic liquid phase. In situ time-resolved spectroscopic characterization was carried out during the irradiation. Three different transients were observed during the 2-μs electron pulse. After about 50 μs, only one transient species was found to be present, which has an absorption peak at 360 nm. Radiolysed sample exhibits a broad absorption at ˜400 nm. The dielectric measurements show that even a low level of irradiation results in a dramatic increase in the component of dielectric permittivity normal to the long axes of the molecules ɛ⊥', and a corresponding decrease in the dielectric anisotropy (Δɛ'=ɛ∥'-ɛ⊥' ). These studies show that 5CB is prone to substantial radiation damage on exposure to the beam of high-energy electrons.

  16. Property changes of G347A graphite due to neutron irradiation

    DOE PAGES

    Campbell, Anne A.; Katoh, Yutai; Snead, Mary A.; ...

    2016-08-18

    A new, fine-grain nuclear graphite, grade G347A from Tokai Carbon Co., Ltd., has been irradiated in the High Flux Isotope Reactor at Oak Ridge National Laboratory to study the materials property changes that occur when exposed to neutron irradiation at temperatures of interest for Generation-IV nuclear reactor applications. Specimen temperatures ranged from 290°C to 800 °C with a maximum neutron fluence of 40 × 10 25 n/m 2 [E > 0.1 MeV] (~30dpa). Lastly, observed behaviors include: anisotropic behavior of dimensional change in an isotropic graphite, Young's modulus showing parabolic fluence dependence, electrical resistivity increasing at low fluence and additionalmore » increase at high fluence, thermal conductivity rapidly decreasing at low fluence followed by continued degradation, and a similar plateau value of the mean coefficient of thermal expansion for all irradiation temperatures.« less

  17. Proton irradiation of beryllium deposits on different candidate materials to be used as a neutron production target for accelerator-based BNCT

    NASA Astrophysics Data System (ADS)

    Gagetti, Leonardo; Anzorena, Manuel Suarez; Bertolo, Alma; del Grosso, Mariela; Kreiner, Andrés J.

    2017-12-01

    Thin Be targets for neutron production through Be(d,n) are produced and characterized. We improved and characterized the substrate surface, specifically the roughness, in order to achieve homogeneous and stable deposits. Once well bonded deposits were obtained, some of them were irradiated with a 150 keV proton beam and with a 1.45 MeV deuteron beam. Both deposits, pristine and irradiated, were characterized by profilometry, X-ray diffraction, scanning electron microscopy and electron probe microanalyzer.

  18. Isotropic transmission of magnon spin information without a magnetic field.

    PubMed

    Haldar, Arabinda; Tian, Chang; Adeyeye, Adekunle Olusola

    2017-07-01

    Spin-wave devices (SWD), which use collective excitations of electronic spins as a carrier of information, are rapidly emerging as potential candidates for post-semiconductor non-charge-based technology. Isotropic in-plane propagating coherent spin waves (magnons), which require magnetization to be out of plane, is desirable in an SWD. However, because of lack of availability of low-damping perpendicular magnetic material, a usually well-known in-plane ferrimagnet yttrium iron garnet (YIG) is used with a large out-of-plane bias magnetic field, which tends to hinder the benefits of isotropic spin waves. We experimentally demonstrate an SWD that eliminates the requirement of external magnetic field to obtain perpendicular magnetization in an otherwise in-plane ferromagnet, Ni 80 Fe 20 or permalloy (Py), a typical choice for spin-wave microconduits. Perpendicular anisotropy in Py, as established by magnetic hysteresis measurements, was induced by the exchange-coupled Co/Pd multilayer. Isotropic propagation of magnon spin information has been experimentally shown in microconduits with three channels patterned at arbitrary angles.

  19. Isotropic transmission of magnon spin information without a magnetic field

    PubMed Central

    Haldar, Arabinda; Tian, Chang; Adeyeye, Adekunle Olusola

    2017-01-01

    Spin-wave devices (SWD), which use collective excitations of electronic spins as a carrier of information, are rapidly emerging as potential candidates for post-semiconductor non-charge-based technology. Isotropic in-plane propagating coherent spin waves (magnons), which require magnetization to be out of plane, is desirable in an SWD. However, because of lack of availability of low-damping perpendicular magnetic material, a usually well-known in-plane ferrimagnet yttrium iron garnet (YIG) is used with a large out-of-plane bias magnetic field, which tends to hinder the benefits of isotropic spin waves. We experimentally demonstrate an SWD that eliminates the requirement of external magnetic field to obtain perpendicular magnetization in an otherwise in-plane ferromagnet, Ni80Fe20 or permalloy (Py), a typical choice for spin-wave microconduits. Perpendicular anisotropy in Py, as established by magnetic hysteresis measurements, was induced by the exchange-coupled Co/Pd multilayer. Isotropic propagation of magnon spin information has been experimentally shown in microconduits with three channels patterned at arbitrary angles. PMID:28776033

  20. Dynamic Target Definition: a novel approach for PTV definition in ion beam therapy.

    PubMed

    Cabal, Gonzalo A; Jäkel, Oliver

    2013-05-01

    To present a beam arrangement specific approach for PTV definition in ion beam therapy. By means of a Monte Carlo error propagation analysis a criteria is formulated to assess whether a voxel is safely treated. Based on this a non-isotropical expansion rule is proposed aiming to minimize the impact of uncertainties on the dose delivered. The method is exemplified in two cases: a Head and Neck case and a Prostate case. In both cases the modality used is proton beam irradiation and the sources of uncertainties taken into account are positioning (set up) errors and range uncertainties. It is shown how different beam arrangements have an impact on plan robustness which leads to different target expansions necessary to assure a predefined level of plan robustness. The relevance of appropriate beam angle arrangements as a way to minimize uncertainties is demonstrated. A novel method for PTV definition in on beam therapy is presented. The method show promising results by improving the probability of correct dose CTV coverage while reducing the size of the PTV volume. In a clinical scenario this translates into an enhanced tumor control probability while reducing the volume of healthy tissue being irradiated. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  1. Reynolds number scaling of velocity increments in isotropic turbulence.

    PubMed

    Iyer, Kartik P; Sreenivasan, Katepalli R; Yeung, P K

    2017-02-01

    Using the largest database of isotropic turbulence available to date, generated by the direct numerical simulation (DNS) of the Navier-Stokes equations on an 8192^{3} periodic box, we show that the longitudinal and transverse velocity increments scale identically in the inertial range. By examining the DNS data at several Reynolds numbers, we infer that the contradictory results of the past on the inertial-range universality are artifacts of low Reynolds number and residual anisotropy. We further show that both longitudinal and transverse velocity increments scale on locally averaged dissipation rate, just as postulated by Kolmogorov's refined similarity hypothesis, and that, in isotropic turbulence, a single independent scaling adequately describes fluid turbulence in the inertial range.

  2. Reconstruction From Multiple Particles for 3D Isotropic Resolution in Fluorescence Microscopy.

    PubMed

    Fortun, Denis; Guichard, Paul; Hamel, Virginie; Sorzano, Carlos Oscar S; Banterle, Niccolo; Gonczy, Pierre; Unser, Michael

    2018-05-01

    The imaging of proteins within macromolecular complexes has been limited by the low axial resolution of optical microscopes. To overcome this problem, we propose a novel computational reconstruction method that yields isotropic resolution in fluorescence imaging. The guiding principle is to reconstruct a single volume from the observations of multiple rotated particles. Our new operational framework detects particles, estimates their orientation, and reconstructs the final volume. The main challenge comes from the absence of initial template and a priori knowledge about the orientations. We formulate the estimation as a blind inverse problem, and propose a block-coordinate stochastic approach to solve the associated non-convex optimization problem. The reconstruction is performed jointly in multiple channels. We demonstrate that our method is able to reconstruct volumes with 3D isotropic resolution on simulated data. We also perform isotropic reconstructions from real experimental data of doubly labeled purified human centrioles. Our approach revealed the precise localization of the centriolar protein Cep63 around the centriole microtubule barrel. Overall, our method offers new perspectives for applications in biology that require the isotropic mapping of proteins within macromolecular assemblies.

  3. TUNABLE IRRADIATION TESTBED

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wootan, David W.; Casella, Andrew M.; Asner, David M.

    PNNL has developed and continues to develop innovative methods for characterizing irradiated materials from nuclear reactors and particle accelerators for various clients and collaborators around the world. The continued development of these methods, in addition to the ability to perform unique scientific investigations of the effects of radiation on materials could be greatly enhanced with easy access to irradiation facilities. A Tunable Irradiation Testbed with customized targets (a 30 MeV, 1mA cyclotron or similar coupled to a unique target system) is shown to provide a much more flexible and cost-effective source of irradiating particles than a test reactor or isotopicmore » source. The configuration investigated was a single shielded building with multiple beam lines from a small, flexible, high flux irradiation source. Potential applications investigated were the characterization of radiation damage to materials applicable to advanced reactors, fusion reactor, legacy waste, (via neutron spectra tailored to HTGR, molten salt, LWR, LMR, fusion environments); 252Cf replacement; characterization of radiation damage to materials of interest to High Energy Physics to enable the neutrino program; and research into production of short lived isotopes for potential medical and other applications.« less

  4. Monoenergetic ion acceleration and Rayleigh-Taylor instability of the composite target irradiated by the laser pulse

    NASA Astrophysics Data System (ADS)

    Khudik, Vladimir; Yi, S. Austin; Shvets, Gennady

    2012-10-01

    Acceleration of ions in the two-specie composite target irradiated by a circularly polarized laser pulse is studied analytically and via particle-in-cell (PIC) simulations. A self-consistent analytical model of the composite target is developed. In this model, target parameters are stationary in the center of mass of the system: heavy and light ions are completely separated from each other and form two layers, while electrons are bouncing in the potential well formed by the laser ponderomotive and electrostatic potentials. They are distributed in the direction of acceleration by the Boltzmann law and over velocities by the Maxwell-Juttner law. The laser pulse interacts directly only with electrons in a thin sheath layer, and these electrons transfer the laser pressure to the target ions. In the fluid approximation it is shown, the composite target is still susceptible to the Rayleigh-Taylor instability [1]. Using PIC simulations we found the growth rate of initially seeded perturbations as a function of their wavenumber for different composite target parameters and compare it with analytical results. Useful scaling laws between this rate and laser pulse pressure and target parameters are discussed.[4pt] [1] T.P. Yu, A. Pukhov, G. Shvets, M. Chen, T. H. Ratliff, S. A. Yi, and V. Khudik, Phys. Plasmas, 18, 043110 (2011).

  5. EFFECTS OF LASER RADIATION ON MATTER: Simulation of photon acceleration upon irradiation of a mylar target by femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Andreev, Stepan N.; Rukhadze, Anri A.; Tarakanov, V. P.; Yakutov, B. P.

    2010-01-01

    Acceleration of protons is simulated by the particle-in-cell (PIC) method upon irradiation of mylar targets of different thicknesses by femtosecond plane-polarised pulsed laser radiation and at different angles of radiation incidence on the target. The comparison of the results of calculations with the experimental data obtained in recent experiments shows their good agreement. The optimal angle of incidence (458) at which the proton energy achieves its absolute maximum is obtained.

  6. Representations for implicit constitutive relations describing non-dissipative response of isotropic materials

    NASA Astrophysics Data System (ADS)

    Gokulnath, C.; Saravanan, U.; Rajagopal, K. R.

    2017-12-01

    A methodology for obtaining implicit constitutive representations involving the Cauchy stress and the Hencky strain for isotropic materials undergoing a non-dissipative process is developed. Using this methodology, a general constitutive representation for a subclass of implicit models relating the Cauchy stress and the Hencky strain is obtained for an isotropic material with no internal constraints. It is shown that even for this subclass, unlike classical Green elasticity, one has to specify three potentials to relate the Cauchy stress and the Hencky strain. Then, a procedure to obtain implicit constitutive representations for isotropic materials with internal constraints is presented. As an illustration, it is shown that for incompressible materials the Cauchy stress and the Hencky strain could be related through a single potential. Finally, constitutive approximations are obtained when the displacement gradient is small.

  7. Topography-specific isotropic tunneling in nanoparticle monolayer with sub-nm scale crevices.

    PubMed

    Wang, Guisheng; Jiao, Weihong; Yi, Lizhi; Zhang, Yuejiao; Wu, Ke; Zhang, Chao; Lv, Xianglong; Qian, Lihua; Li, Jianfeng; Yuan, Songliu; Chen, Liang

    2016-10-07

    Material used in flexible devices may experience anisotropic strain with identical magnitude, outputting coherent signals that tend to have a serious impact on device reliability. In this work, the surface topography of the nanoparticles (NPs) is proposed to be a parameter to control the performance of strain gauge based on tunneling behavior. In contrast to anisotropic tunneling in a monolayer of spherical NPs, electron tunneling in a monolayer of urchin-like NPs actually exhibits a nearly isotropic response to strain with different loading orientations. Isotropic tunneling of the urchin-like NPs is caused by the interlocked pikes of these urchin-like NPs in a random manner during external mechanical stimulus. Topography-dependent isotropic tunneling in two dimensions reported here opens a new opportunity to create highly reliable electronics with superior performance.

  8. An Investigation into the Transportation of Irradiated Uranium/Aluminum Targets from a Foreign Nuclear Reactor to the Chalk River Laboratories Site in Ontario, Canada - 12249

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clough, Malcolm; Jackson, Austin

    2012-07-01

    This investigation required the selection of a suitable cask and development of a device to hold and transport irradiated targets from a foreign nuclear reactor to the Chalk River Laboratories in Ontario, Canada. The main challenge was to design and validate a target holder to protect the irradiated HEU-Al target pencils during transit. Each of the targets was estimated to have an initial decay heat of 118 W prior to transit. As the targets have little thermal mass the potential for high temperature damage and possibly melting was high. Thus, the primary design objective was to conceive a target holdermore » to dissipate heat from the targets. Other design requirements included securing the targets during transportation and providing a simple means to load and unload the targets while submerged five metres under water. A unique target holder (patent pending) was designed and manufactured together with special purpose experimental apparatus including a representative cask. Aluminum dummy targets were fabricated to accept cartridge heaters, to simulate decay heat. Thermocouples were used to measure the temperature of the test targets and selected areas within the target holder and test cask. After obtaining test results, calculations were performed to compensate for differences between experimental and real life conditions. Taking compensation into consideration the maximum target temperature reached was 231 deg. C which was below the designated maximum of 250 deg. C. The design of the aluminum target holder also allowed generous clearance to insert and unload the targets. This clearance was designed to close up as the target holder is placed into the cavity of the transport cask. Springs served to retain and restrain the targets from movement during transportation as well as to facilitate conductive heat transfer. The target holder met the design requirements and as such provided data supporting the feasibility of transporting targets over a relatively long period

  9. Technical Note: Immunohistochemical evaluation of mouse brain irradiation targeting accuracy with 3D-printed immobilization device.

    PubMed

    Zarghami, Niloufar; Jensen, Michael D; Talluri, Srikanth; Foster, Paula J; Chambers, Ann F; Dick, Frederick A; Wong, Eugene

    2015-11-01

    Small animal immobilization devices facilitate positioning of animals for reproducible imaging and accurate focal radiation therapy. In this study, the authors demonstrate the use of three-dimensional (3D) printing technology to fabricate a custom-designed mouse head restraint. The authors evaluate the accuracy of this device for the purpose of mouse brain irradiation. A mouse head holder was designed for a microCT couch using cad software and printed in an acrylic based material. Ten mice received half-brain radiation while positioned in the 3D-printed head holder. Animal placement was achieved using on-board image guidance and computerized asymmetric collimators. To evaluate the precision of beam localization for half-brain irradiation, mice were sacrificed approximately 30 min after treatment and brain sections were stained for γ-H2AX, a marker for DNA breaks. The distance and angle of the γ-H2AX radiation beam border to longitudinal fissure were measured on histological samples. Animals were monitored for any possible trauma from the device. Visualization of the radiation beam on ex vivo brain sections with γ-H2AX immunohistochemical staining showed a sharp radiation field within the tissue. Measurements showed a mean irradiation targeting error of 0.14±0.09 mm (standard deviation). Rotation between the beam axis and mouse head was 1.2°±1.0° (standard deviation). The immobilization device was easily adjusted to accommodate different sizes of mice. No signs of trauma to the mice were observed from the use of tooth block and ear bars. The authors designed and built a novel 3D-printed mouse head holder with many desired features for accurate and reproducible radiation targeting. The 3D printing technology was found to be practical and economical for producing a small animal imaging and radiation restraint device and allows for customization for study specific needs.

  10. GALACTIC WINDS DRIVEN BY ISOTROPIC AND ANISOTROPIC COSMIC-RAY DIFFUSION IN DISK GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pakmor, R.; Pfrommer, C.; Simpson, C. M.

    2016-06-20

    The physics of cosmic rays (CRs) is a promising candidate for explaining the driving of galactic winds and outflows. Recent galaxy formation simulations have demonstrated the need for active CR transport either in the form of diffusion or streaming to successfully launch winds in galaxies. However, due to computational limitations, most previous simulations have modeled CR transport isotropically. Here, we discuss high-resolution simulations of isolated disk galaxies in a 10{sup 11} M {sub ⊙} halo with the moving-mesh code Arepo that include injection of CRs from supernovae, advective transport, CR cooling, and CR transport through isotropic or anisotropic diffusion. Wemore » show that either mode of diffusion leads to the formation of strong bipolar outflows. However, they develop significantly later in the simulation with anisotropic diffusion compared to the simulation with isotropic diffusion. Moreover, we find that isotropic diffusion allows most of the CRs to quickly diffuse out of the disk, while in the simulation with anisotropic diffusion, most CRs remain in the disk once the magnetic field becomes dominated by its azimuthal component, which occurs after ∼300 Myr. This has important consequences for the gas dynamics in the disk. In particular, we show that isotropic diffusion strongly suppresses the amplification of the magnetic field in the disk compared to anisotropic or no diffusion models. We therefore conclude that reliable simulations which include CR transport inevitably need to account for anisotropic diffusion.« less

  11. A note on antenna models in a warm isotropic plasma

    NASA Technical Reports Server (NTRS)

    Singh, N.

    1980-01-01

    The electron-transparent and electron-reflecting models of antennas in a warm isotropic plasma are reexamined. It is shown that a purely electrical treatment of both the models without an explicit use of the boundary condition on electron velocity yields the same results as those previously obtained through an electromechanical treatment. The essential difference between the two models is that for the electron-reflecting model, fields are nonzero only in the exterior region, while for the electron-transparent model, they are nonzero both in the exterior and interior regions of the antenna. This distinction helps in clarifying some misconceptions about these models of antennas in warm isotropic plasma.

  12. Determining organ dose conversion coefficients for external neutron irradiation by using a voxel mouse model

    PubMed Central

    Zhang, Xiaomin; Xie, Xiangdong; Qu, Decheng; Ning, Jing; Zhou, Hongmei; Pan, Jie; Yang, Guoshan

    2016-01-01

    A set of fluence-to-dose conversion coefficients has been calculated for neutrons with energies <20 MeV using a developed voxel mouse model and Monte Carlo N-particle code (MCNP), for the purpose of neutron radiation effect evaluation. The calculation used 37 monodirectional monoenergetic neutron beams in the energy range 10−9 MeV to 20 MeV, under five different source irradiation configurations: left lateral, right lateral, dorsal–ventral, ventral–dorsal, and isotropic. Neutron fluence-to-dose conversion coefficients for selected organs of the body were presented in the paper, and the effect of irradiation geometry conditions, neutron energy and the organ location on the organ dose was discussed. The results indicated that neutron dose conversion coefficients clearly show sensitivity to irradiation geometry at neutron energy below 1 MeV. PMID:26661852

  13. Generalized thermoelastic interaction in an isotropic solid cylinder without energy dissipation

    NASA Astrophysics Data System (ADS)

    Alshaikh, Fatimah

    2018-04-01

    In this paper, we constructed the generalized thermoelastic equations of an isotropic solid cylinder. The formulation is applied in the context of Green and Naghdi theory of types II (without energy dissipation). The material of the cylinder is supposed to be homogeneous isotropic both mechanically and thermally. The governing equations have been written in the form of a vector-matrix differential equation in the Laplace transform domain, which is then solved by an eigenvalue approach. Numerical results for the temperature distribution, displacement and radial stress are represented graphically.

  14. Measurement and modeling of solar irradiance components on horizontal and tilted planes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Padovan, Andrea; Col, Davide del

    2010-12-15

    In this work new measurements of global and diffuse solar irradiance on the horizontal plane and global irradiance on planes tilted at 20 and 30 oriented due South and at 45 and 65 oriented due East are used to discuss the modeling of solar radiation. Irradiance data are collected in Padova (45.4 N, 11.9 E, 12 m above sea level), Italy. Some diffuse fraction correlations have been selected to model the hourly diffuse radiation on the horizontal plane. The comparison with the present experimental data shows that their prediction accuracy strongly depends on the sky characteristics. The hourly irradiance measurementsmore » taken on the tilted planes are compared with the estimations given by one isotropic and three anisotropic transposition models. The use of an anisotropic model, based on a physical description of the diffuse radiation, provides a much better accuracy, especially when measurements of the diffuse irradiance on the horizontal plane are not available and thus transposition models have to be applied in combination with a diffuse fraction correlation. This is particularly significant for the planes oriented away from South. (author)« less

  15. Estimation of transversely isotropic material properties from magnetic resonance elastography using the optimised virtual fields method.

    PubMed

    Miller, Renee; Kolipaka, Arunark; Nash, Martyn P; Young, Alistair A

    2018-03-12

    Magnetic resonance elastography (MRE) has been used to estimate isotropic myocardial stiffness. However, anisotropic stiffness estimates may give insight into structural changes that occur in the myocardium as a result of pathologies such as diastolic heart failure. The virtual fields method (VFM) has been proposed for estimating material stiffness from image data. This study applied the optimised VFM to identify transversely isotropic material properties from both simulated harmonic displacements in a left ventricular (LV) model with a fibre field measured from histology as well as isotropic phantom MRE data. Two material model formulations were implemented, estimating either 3 or 5 material properties. The 3-parameter formulation writes the transversely isotropic constitutive relation in a way that dissociates the bulk modulus from other parameters. Accurate identification of transversely isotropic material properties in the LV model was shown to be dependent on the loading condition applied, amount of Gaussian noise in the signal, and frequency of excitation. Parameter sensitivity values showed that shear moduli are less sensitive to noise than the other parameters. This preliminary investigation showed the feasibility and limitations of using the VFM to identify transversely isotropic material properties from MRE images of a phantom as well as simulated harmonic displacements in an LV geometry. Copyright © 2018 John Wiley & Sons, Ltd.

  16. Micellar-shape anisometry near isotropic-liquid-crystal phase transitions

    NASA Astrophysics Data System (ADS)

    Itri, R.; Amaral, L. Q.

    1993-04-01

    Micellar phases of the sodium dodecyl (lauryl) sulfate (SLS)-water-decanol system have been studied by x-ray scattering in the isotropic (I) phase, with emphasis on the I-->hexagonal (Hα) and I-->nematic-cylindrical (Nc) lyotropic liquid-crystal phase transitions. Analysis of the scattering curves is made through modeling of the product P(q)S(q), where P(q) is the micellar form factor and S(q) is the intermicellar interference function, calculated from screened Coulombic repulsion in a mean spherical approximation. Results show that micelles grow more by decanol addition near the I-->Nc transition (anisometry ν~=3) than by increased amphiphile concentration in the binary system near the I-->Hα phase transition (ν~=2.4). These results compare well with recent theories for isotropic-liquid-crystal phase transitions.

  17. Computation of the sound generated by isotropic turbulence

    NASA Technical Reports Server (NTRS)

    Sarkar, S.; Hussaini, M. Y.

    1993-01-01

    The acoustic radiation from isotropic turbulence is computed numerically. A hybrid direct numerical simulation approach which combines direct numerical simulation (DNS) of the turbulent flow with the Lighthill acoustic analogy is utilized. It is demonstrated that the hybrid DNS method is a feasible approach to the computation of sound generated by turbulent flows. The acoustic efficiency in the simulation of isotropic turbulence appears to be substantially less than that in subsonic jet experiments. The dominant frequency of the computed acoustic pressure is found to be somewhat larger than the dominant frequency of the energy-containing scales of motion. The acoustic power in the simulations is proportional to epsilon (M(sub t))(exp 5) where epsilon is the turbulent dissipation rate and M(sub t) is the turbulent Mach number. This is in agreement with the analytical result of Proudman (1952), but the constant of proportionality is smaller than the analytical result. Two different methods of computing the acoustic power from the DNS data bases yielded consistent results.

  18. A program to calculate pulse transmission responses through transversely isotropic media

    NASA Astrophysics Data System (ADS)

    Li, Wei; Schmitt, Douglas R.; Zou, Changchun; Chen, Xiwei

    2018-05-01

    We provide a program (AOTI2D) to model responses of ultrasonic pulse transmission measurements through arbitrarily oriented transversely isotropic rocks. The program is built with the distributed point source method that treats the transducers as a series of point sources. The response of each point source is calculated according to the ray-tracing theory of elastic plane waves. The program could offer basic wave parameters including phase and group velocities, polarization, anisotropic reflection coefficients and directivity patterns, and model the wave fields, static wave beam, and the observed signals for pulse transmission measurements considering the material's elastic stiffnesses and orientations, sample dimensions, and the size and positions of the transmitters and the receivers. The program could be applied to exhibit the ultrasonic beam behaviors in anisotropic media, such as the skew and diffraction of ultrasonic beams, and analyze its effect on pulse transmission measurements. The program would be a useful tool to help design the experimental configuration and interpret the results of ultrasonic pulse transmission measurements through either isotropic or transversely isotropic rock samples.

  19. Analytical close-to-source investigation for an isotropic point source in an unbounded, anisotropically scattering medium

    NASA Astrophysics Data System (ADS)

    Rinzema, Kees; ten Bosch, Jaap J.; Ferwerda, Hedzer A.; Hoenders, Bernhard J.

    1995-01-01

    The diffusion approximation, which is often used to describe the propagation of light in biological tissues, is only good at a sufficient distance from sources and boundaries. Light- tissue interaction is however most intense in the region close to the source. It would therefore be interesting to study this region more closely. Although scattering in biological tissues is predominantly forward peaked, explicit solutions to the transport equation have only been obtained in the case of isotropic scattering. Particularly, for the case of an isotropic point source in an unbounded, isotropically scattering medium the solution is well known. We show that this problem can also be solved analytically if the scattering is no longer isotropic, while everything else remains the same.

  20. Isotropic probability measures in infinite-dimensional spaces

    NASA Technical Reports Server (NTRS)

    Backus, George

    1987-01-01

    Let R be the real numbers, R(n) the linear space of all real n-tuples, and R(infinity) the linear space of all infinite real sequences x = (x sub 1, x sub 2,...). Let P sub in :R(infinity) approaches R(n) be the projection operator with P sub n (x) = (x sub 1,...,x sub n). Let p(infinity) be a probability measure on the smallest sigma-ring of subsets of R(infinity) which includes all of the cylinder sets P sub n(-1) (B sub n), where B sub n is an arbitrary Borel subset of R(n). Let p sub n be the marginal distribution of p(infinity) on R(n), so p sub n(B sub n) = p(infinity) (P sub n to the -1 (B sub n)) for each B sub n. A measure on R(n) is isotropic if it is invariant under all orthogonal transformations of R(n). All members of the set of all isotropic probability distributions on R(n) are described. The result calls into question both stochastic inversion and Bayesian inference, as currently used in many geophysical inverse problems.

  1. Phase-field-crystal model for magnetocrystalline interactions in isotropic ferromagnetic solids

    NASA Astrophysics Data System (ADS)

    Faghihi, Niloufar; Provatas, Nikolas; Elder, K. R.; Grant, Martin; Karttunen, Mikko

    2013-09-01

    An isotropic magnetoelastic phase-field-crystal model to study the relation between morphological structure and magnetic properties of pure ferromagnetic solids is introduced. Analytic calculations in two dimensions were used to determine the phase diagram and obtain the relationship between elastic strains and magnetization. Time-dependent numerical simulations in two dimensions were used to demonstrate the effect of grain boundaries on the formation of magnetic domains. It was shown that the grain boundaries act as nucleating sites for domains of reverse magnetization. Finally, we derive a relation for coercivity versus grain misorientation in the isotropic limit.

  2. Transversely Isotropic Hyperelastic Constitutive Model of Short Fiber Reinforced EPDM Based on Tensor Function

    NASA Astrophysics Data System (ADS)

    Feng, Q. L.; Li, C.; Liao, Y. F.

    2017-12-01

    Short fiber reinforced EPDM is a new kind of composite material used in solid rocket motor winding and coating. It has relatively large deformation under the small stress condition, and the physical non-linear characteristic is obvious. Due to the addition of fiber in the specific direction of the rubber, the macroscopic mechanical properties are expressed as transversely isotropic properties. In order to describe the mechanical behavior under the impact and vibration, the transversely isotropic hyperelastic constitutive model based on tensor function is proposed. The symmetry of the transversely isotropic incompressible material limits the stress tensor ‘ K ’ to be characterized as a function of 5 tensor invariants and 4 scalar invariants. The third power constitutive equations of the model give 12 independent elastic constants of the transversely isotropic nonlinear elastic material. The experimental results show that the non-zero elastic constants are different in the fiber direction and at the different strain rate. Number and value of adiabatic layer and related products R & D has a reference value.

  3. Anomalous postcritical refraction behavior for certain transversely isotropic media

    USGS Publications Warehouse

    Fa, L.; Brown, R.L.; Castagna, J.P.

    2006-01-01

    Snell's law at the boundary between two transversely isotropic media with a vertical axis of symmetry (VTI media) can be solved by setting up a fourth order polynomial for the sine of the reflection/transmission angles. This approach reveals the possible presence of an anomalous postcritical angle for certain transversely isotropic media. There are thus possibly three incident angle regimes for the reflection/refraction of longitudinal or transverse waves incident upon a VTI medium: precritical, postcritical/preanomalous, and postanomalous. The anomalous angle occurs for certain strongly anisotropic media where the required root to the phase velocity equation must be switched in order to obey Snell's law. The reflection/transmission coefficients, polarization directions, and the phase velocity are all affected by both the anisotropy and the incident angle. The incident critical angles are also effected by the anisotropy. ?? 2006 Acoustical Society of America.

  4. Geometrical considerations in analyzing isotropic or anisotropic surface reflections.

    PubMed

    Simonot, Lionel; Obein, Gael

    2007-05-10

    The bidirectional reflectance distribution function (BRDF) represents the evolution of the reflectance with the directions of incidence and observation. Today BRDF measurements are increasingly applied and have become important to the study of the appearance of surfaces. The representation and the analysis of BRDF data are discussed, and the distortions caused by the traditional representation of the BRDF in a Fourier plane are pointed out and illustrated for two theoretical cases: an isotropic surface and a brushed surface. These considerations will help characterize either the specular peak width of an isotropic rough surface or the main directions of the light scattered by an anisotropic rough surface without misinterpretations. Finally, what is believed to be a new space is suggested for the representation of the BRDF, which avoids the geometrical deformations and in numerous cases is more convenient for BRDF analysis.

  5. Theoretical and experimental study of DOA estimation using AML algorithm for an isotropic and non-isotropic 3D array

    NASA Astrophysics Data System (ADS)

    Asgari, Shadnaz; Ali, Andreas M.; Collier, Travis C.; Yao, Yuan; Hudson, Ralph E.; Yao, Kung; Taylor, Charles E.

    2007-09-01

    The focus of most direction-of-arrival (DOA) estimation problems has been based mainly on a two-dimensional (2D) scenario where we only need to estimate the azimuth angle. But in various practical situations we have to deal with a three-dimensional scenario. The importance of being able to estimate both azimuth and elevation angles with high accuracy and low complexity is of interest. We present the theoretical and the practical issues of DOA estimation using the Approximate-Maximum-Likelihood (AML) algorithm in a 3D scenario. We show that the performance of the proposed 3D AML algorithm converges to the Cramer-Rao Bound. We use the concept of an isotropic array to reduce the complexity of the proposed algorithm by advocating a decoupled 3D version. We also explore a modified version of the decoupled 3D AML algorithm which can be used for DOA estimation with non-isotropic arrays. Various numerical results are presented. We use two acoustic arrays each consisting of 8 microphones to do some field measurements. The processing of the measured data from the acoustic arrays for different azimuth and elevation angles confirms the effectiveness of the proposed methods.

  6. Status of Post Irradiation Examination of FCAB and FCAT Irradiation Capsules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Field, Kevin G.; Yamamoto, Yukinori; Howard, Richard H.

    A series of irradiation programs are ongoing to address the need for determining the radiation tolerance of FeCrAl alloys. These irradiation programs, deemed the FCAT and FCAB irradiation programs, use the High Flux Isotope Reactor (HFIR) to irradiate second generation wrought FeCrAl alloys and early-generation powder-metallurgy (PM) oxide dispersion-strengthened (ODS) FeCrAl alloys. Irradiations have been or are being performed at temperatures of 200°C, 330°C, and 550°C from doses of 1.8 dpa up to 16 dpa. Preliminary post-irradiation examination (PIE) on low dose (<2 dpa) irradiation capsules of tensile specimens has been performed. Analysis of co-irradiated SiC thermometry have shown reasonablemore » matching between the nominal irradiation temperatures and the target irradiation temperatures. Room temperature tensile tests have shown typical radiation-induced hardening and embrittlement at irradiations of 200°C and 330°C, but a propensity for softening when irradiated to 550°C for the wrought alloys. The PM-ODS FeCrAl specimens showed less hardening compared to the wrought alloys. Future PIE includes high temperature tensile tests on the low dose irradiation capsules as well as the determination of reference fracture toughness transition temperature, T o, in alloys irradiated to 7 dpa and higher.« less

  7. Proton irradiation of simple gas mixtures: Influence of irradiation parameters

    NASA Technical Reports Server (NTRS)

    Sack, Norbert J.; Schuster, R.; Hofmann, A.

    1990-01-01

    In order to get information about the influence of irradiation parameters on radiolysis processes of astrophysical interest, methane gas targets were irradiated with 6.5 MeV protons at a pressure of 1 bar and room temperature. Yields of higher hydrocarbons like ethane or propane were found by analysis of irradiated gas samples using gas chromatography. The handling of the proton beam was of great experimental importance for determining the irradiation parameters. In a series of experiments current density of the proton beam and total absorbed energy were shown to have a large influence on the yields of produced hydrocarbons. Mechanistic interpretations of the results are given and conclusions are drawn with regard to the chemistry and the simulation of various astrophysical systems.

  8. Development of a 10 m quasi-isotropic strand assembled from 2G wires

    NASA Astrophysics Data System (ADS)

    Kan, Changtao; Wang, Yinshun; Hou, Yanbing; Li, Yan; Zhang, Han; Fu, Yu; Jiang, Zhe

    2018-03-01

    Quasi-isotropic strands made of second generation (2G) high temperature superconducting (HTS) wires are attractive to applications of high-field magnets at low temperatures and power transmission cables at liquid nitrogen temperature in virtue of their high current carrying capability and well mechanical property. In this contribution, a 10 m length quasi-isotropic strand is manufactured and successfully tested in liquid nitrogen to verify the feasibility of an industrial scale production of the strand by the existing cabling technologies. The strand with copper sheath consists of 72 symmetrically assembled 2G wires. The uniformity of critical properties of long quasi-isotropic strands, including critical current and n-value, is very important for their using. Critical currents as well as n-values of the strand are measured every 1 m respectively and compared with the simulation results. Critical current and n-value of the strand are calculated basing on the self-consistent model solved by the finite element method (FEM). Effects of self-field on the critical current and n-value distributions in wires of the strand are analyzed in detail. The simulation results show good agreement with the experimental data and the 10 m quasi-isotropic strand has good critical properties uniformity.

  9. AGR-1 Post Irradiation Examination Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demkowicz, Paul Andrew

    The post-irradiation examination (PIE) of the Advanced Gas Reactor (AGR)-1 experiment was a multi-year, collaborative effort between Idaho National Laboratory (INL) and Oak Ridge National Laboratory (ORNL) to study the performance of UCO (uranium carbide, uranium oxide) tristructural isotropic (TRISO) coated particle fuel fabricated in the U.S. and irradiated at the Advanced Test Reactor at INL to a peak burnup of 19.6% fissions per initial metal atom. This work involved a broad array of experiments and analyses to evaluate the level of fission product retention by the fuel particles and compacts (both during irradiation and during post-irradiation heating tests tomore » simulate reactor accident conditions), investigate the kernel and coating layer morphology evolution and the causes of coating failure, and explore the migration of fission products through the coating layers. The results have generally confirmed the excellent performance of the AGR-1 fuel, first indicated during the irradiation by the observation of zero TRISO coated particle failures out of 298,000 particles in the experiment. Overall release of fission products was determined by PIE to have been relatively low during the irradiation. A significant finding was the extremely low levels of cesium released through intact coatings. This was true both during the irradiation and during post-irradiation heating tests to temperatures as high as 1800°C. Post-irradiation safety test fuel performance was generally excellent. Silver release from the particles and compacts during irradiation was often very high. Extensive microanalysis of fuel particles was performed after irradiation and after high-temperature safety testing. The results of particle microanalysis indicate that the UCO fuel is effective at controlling the oxygen partial pressure within the particle and limiting kernel migration. Post-irradiation examination has provided the final body of data that speaks to the quality of the AGR-1 fuel

  10. Bell inequalities stronger than the Clauser-Horne-Shimony-Holt inequality for three-level isotropic states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ito, Tsuyoshi; Imai, Hiroshi; ERATO-SORST Quantum Computation and Information Project, Japan Science and Technology Agency, 5-28-3 Hongo, Bunkyo-ku, Tokyo, 113-0033

    2006-04-15

    We show that some two-party Bell inequalities with two-valued observables are stronger than the CHSH inequality for 3x3 isotropic states in the sense that they are violated by some isotropic states in the 3x3 system that do not violate the CHSH inequality. These Bell inequalities are obtained by applying triangular elimination to the list of known facet inequalities of the cut polytope on nine points. This gives a partial solution to an open problem posed by Collins and Gisin. The results of numerical optimization suggest that they are candidates for being stronger than the I{sub 3322} Bell inequality for 3x3more » isotropic states. On the other hand, we found no Bell inequalities stronger than the CHSH inequality for 2x2 isotropic states. In addition, we illustrate an inclusion relation among some Bell inequalities derived by triangular elimination.« less

  11. AGR-1 Compact 1-3-1 Post-Irradiation Examination Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demkowicz, Paul Andrew

    The Advanced Gas Reactor (AGR) Fuel Development and Qualification Program was established to perform the requisite research and development on tristructural isotropic (TRISO) coated particle fuel to support deployment of a high-temperature gas-cooled reactor (HTGR). The work continues as part of the Advanced Reactor Technologies (ART) TRISO Fuel program. The overarching program goal is to provide a baseline fuel qualification data set to support licensing and operation of an HTGR. To achieve these goals, the program includes the elements of fuel fabrication, irradiation, post-irradiation examination (PIE) and safety testing, fuel performance modeling, and fission product transport (INL 2015). A seriesmore » of fuel irradiation experiments is being planned and conducted in the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL). These experiments will provide data on fuel performance under irradiation, support fuel process development, qualify the fuel for normal operating conditions, provide irradiated fuel for safety testing, and support the development of fuel performance and fission product transport models. The first of these irradiation tests, designated AGR-1, began in the ATR in December 2006 and ended in November 2009. This experiment was conducted primarily to act as a shakedown test of the multicapsule test train design and provide early data on fuel performance for use in fuel fabrication process development. It also provided samples for post-irradiation safety testing, where fission product retention of the fuel at high temperatures will be experimentally measured. The capsule design and details of the AGR-1 experiment have been presented previously (Grover, Petti, and Maki 2010, Maki 2009).« less

  12. AGR-1 Compact 5-3-1 Post-Irradiation Examination Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demkowicz, Paul; Harp, Jason; Winston, Phil

    The Advanced Gas Reactor (AGR) Fuel Development and Qualification Program was established to perform the requisite research and development on tristructural isotropic (TRISO) coated particle fuel to support deployment of a high-temperature gas-cooled reactor (HTGR). The work continues as part of the Advanced Reactor Technologies (ART) TRISO Fuel program. The overarching program goal is to provide a baseline fuel qualification data set to support licensing and operation of an HTGR. To achieve these goals, the program includes the elements of fuel fabrication, irradiation, post-irradiation examination (PIE) and safety testing, fuel performance, and fission product transport (INL 2015). A series ofmore » fuel irradiation experiments is being planned and conducted in the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL). These experiments will provide data on fuel performance under irradiation, support fuel process development, qualify the fuel for normal operating conditions, provide irradiated fuel for safety testing, and support the development of fuel performance and fission product transport models. The first of these irradiation tests, designated AGR-1, began in the ATR in December 2006 and ended in November 2009. This experiment was conducted primarily to act as a shakedown test of the multicapsule test train design and provide early data on fuel performance for use in fuel fabrication process development. It also provided samples for post-irradiation safety testing, where fission product retention of the fuel at high temperatures will be experimentally measured. The capsule design and details of the AGR-1 experiment have been presented previously.« less

  13. A Transversely Isotropic Thermoelastic Theory

    NASA Technical Reports Server (NTRS)

    Arnold, S. M.

    1989-01-01

    A continuum theory is presented for representing the thermoelastic behavior of composites that can be idealized as transversely isotropic. This theory is consistent with anisotropic viscoplastic theories being developed presently at NASA Lewis Research Center. A multiaxial statement of the theory is presented, as well as plane stress and plane strain reductions. Experimental determination of the required material parameters and their theoretical constraints are discussed. Simple homogeneously stressed elements are examined to illustrate the effect of fiber orientation on the resulting strain distribution. Finally, the multiaxial stress-strain relations are expressed in matrix form to simplify and accelerate implementation of the theory into structural analysis codes.

  14. Earthquake location in transversely isotropic media with a tilted symmetry axis

    NASA Astrophysics Data System (ADS)

    Zhao, Aihua; Ding, Zhifeng

    2009-04-01

    The conventional intersection method for earthquake location in isotropic media is developed in the case of transversely isotropic media with a tilted symmetry axis (TTI media). The hypocenter is determined using its loci, which are calculated through a minimum travel time tree algorithm for ray tracing in TTI media. There are no restrictions on the structural complexity of the model or on the anisotropy strength of the medium. The location method is validated by its application to determine the hypocenter and origin time of an event in a complex TTI structure, in accordance with four hypotheses or study cases: (a) accurate model and arrival times, (b) perturbed model with randomly variable elastic parameter, (c) noisy arrival time data, and (d) incomplete set of observations from the seismic stations. Furthermore, several numerical tests demonstrate that the orientation of the symmetry axis has a significant effect on the hypocenter location when the seismic anisotropy is not very weak. Moreover, if the hypocentral determination is based on an isotropic reference model while the real medium is anisotropic, the resultant location errors can be considerable even though the anisotropy strength does not exceed 6.10%.

  15. Isotropic source terms of San Jacinto fault zone earthquakes based on waveform inversions with a generalized CAP method

    NASA Astrophysics Data System (ADS)

    Ross, Z. E.; Ben-Zion, Y.; Zhu, L.

    2015-02-01

    We analyse source tensor properties of seven Mw > 4.2 earthquakes in the complex trifurcation area of the San Jacinto Fault Zone, CA, with a focus on isotropic radiation that may be produced by rock damage in the source volumes. The earthquake mechanisms are derived with generalized `Cut and Paste' (gCAP) inversions of three-component waveforms typically recorded by >70 stations at regional distances. The gCAP method includes parameters ζ and χ representing, respectively, the relative strength of the isotropic and CLVD source terms. The possible errors in the isotropic and CLVD components due to station variability is quantified with bootstrap resampling for each event. The results indicate statistically significant explosive isotropic components for at least six of the events, corresponding to ˜0.4-8 per cent of the total potency/moment of the sources. In contrast, the CLVD components for most events are not found to be statistically significant. Trade-off and correlation between the isotropic and CLVD components are studied using synthetic tests with realistic station configurations. The associated uncertainties are found to be generally smaller than the observed isotropic components. Two different tests with velocity model perturbation are conducted to quantify the uncertainty due to inaccuracies in the Green's functions. Applications of the Mann-Whitney U test indicate statistically significant explosive isotropic terms for most events consistent with brittle damage production at the source.

  16. Technical Note: Immunohistochemical evaluation of mouse brain irradiation targeting accuracy with 3D-printed immobilization device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zarghami, Niloufar, E-mail: nzargham@uwo.ca; Jensen, Michael D.; Talluri, Srikanth

    Purpose: Small animal immobilization devices facilitate positioning of animals for reproducible imaging and accurate focal radiation therapy. In this study, the authors demonstrate the use of three-dimensional (3D) printing technology to fabricate a custom-designed mouse head restraint. The authors evaluate the accuracy of this device for the purpose of mouse brain irradiation. Methods: A mouse head holder was designed for a microCT couch using CAD software and printed in an acrylic based material. Ten mice received half-brain radiation while positioned in the 3D-printed head holder. Animal placement was achieved using on-board image guidance and computerized asymmetric collimators. To evaluate themore » precision of beam localization for half-brain irradiation, mice were sacrificed approximately 30 min after treatment and brain sections were stained for γ-H2AX, a marker for DNA breaks. The distance and angle of the γ-H2AX radiation beam border to longitudinal fissure were measured on histological samples. Animals were monitored for any possible trauma from the device. Results: Visualization of the radiation beam on ex vivo brain sections with γ-H2AX immunohistochemical staining showed a sharp radiation field within the tissue. Measurements showed a mean irradiation targeting error of 0.14 ± 0.09 mm (standard deviation). Rotation between the beam axis and mouse head was 1.2° ± 1.0° (standard deviation). The immobilization device was easily adjusted to accommodate different sizes of mice. No signs of trauma to the mice were observed from the use of tooth block and ear bars. Conclusions: The authors designed and built a novel 3D-printed mouse head holder with many desired features for accurate and reproducible radiation targeting. The 3D printing technology was found to be practical and economical for producing a small animal imaging and radiation restraint device and allows for customization for study specific needs.« less

  17. Unrestrained swelling of uranium-nitride fuel irradiated at temperatures ranging from 1100 to 1400 K (1980 to 2520 R)

    NASA Technical Reports Server (NTRS)

    Rohal, R. G.; Tambling, T. N.

    1973-01-01

    Six fuel pins were assembled, encapsulated, and irradiated in the Plum Brook Reactor. The fuel pins employed uranium mononitride (UN) in a stainless steel (type 304L) clad. The pins were irradiated for approximately 4000 hours to burnups of about 2.0 atom percent uranium. The average clad surface temperature during irradiation was about 1100 K (1980 deg R). Since stainless steel has a very low creep strength relative to that of UN at this temperature, these tests simulated unrestrained swelling of UN. The tests indicated that at 1 percent uranium atom burnup the unrestrained diametrical swelling of UN is about 0.5, 0.8, and 1.0 percent at 1223, 1264, and 1306 K (2200, deg 2273 deg, and 2350 deg R), respectively. The tests also indicated that the irradiation induced swelling of unrestrained UN fuel pellets appears to be isotropic.

  18. Self-confinement of finite dust clusters in isotropic plasmas.

    PubMed

    Miloshevsky, G V; Hassanein, A

    2012-05-01

    Finite two-dimensional dust clusters are systems of a small number of charged grains. The self-confinement of dust clusters in isotropic plasmas is studied using the particle-in-cell method. The energetically favorable configurations of grains in plasma are found that are due to the kinetic effects of plasma ions and electrons. The self-confinement phenomenon is attributed to the change in the plasma composition within a dust cluster resulting in grain attraction mediated by plasma ions. This is a self-consistent state of a dust cluster in which grain's repulsion is compensated by the reduced charge and floating potential on grains, overlapped ion clouds, and depleted electrons within a cluster. The common potential well is formed trapping dust clusters in the confined state. These results provide both valuable insights and a different perspective to the classical view on the formation of boundary-free dust clusters in isotropic plasmas.

  19. Stress-induced birefringence in the isotropic phases of lyotropic mixtures

    NASA Astrophysics Data System (ADS)

    Fernandes, P. R. G.; Maki, J. N.; Gonçalves, L. B.; de Oliveira, B. F.; Mukai, H.

    2018-02-01

    In this work, the frequency dependence of the known mechano-optical effect which occurs in the micellar isotropic phases (I ) of mixtures of potassium laurate (KL), decanol (DeOH), and water is investigated in the range from 200 mHz to 200 Hz . In order to fit the experimental data, a model of superimposed damped harmonic oscillators is proposed. In this phenomenological approach, the micelles (microscopic oscillators) interact very weakly with their neighbors. Due to shape anisotropy of the basic structures, each oscillator i (i =1 ,2 ,3 ,...,N ) remains in its natural oscillatory rotational movement around its axes of symmetry with a frequency ω0 i. The system will be in the resonance state when the frequency of the driving force ω reaches a value near ω0 i. This phenomenological approach shows excellent agreement with the experimental data. One can find f ˜2.5 , 9.0, and 4.0 Hz as fundamental frequencies of the micellar isotropic phases I , I1, and I2, respectively. The different micellar isotropic phases I , I1, and I2 that we find in the phase diagram of the KL-DeOH-water mixture are a consequence of possible differences in the intermicellar correlation lengths. This work reinforces the possibilities of technological applications of these phases in devices such as mechanical vibration sensors.

  20. Viscous propulsion in active transversely isotropic media

    NASA Astrophysics Data System (ADS)

    Cupples, Gemma; Dyson, Rosemary; Smith, David

    2017-11-01

    Taylor's swimming sheet is a classical model of microscale propulsion and pumping. Many biological fluids and substances are fibrous, having a preferred direction in their microstructure; for example cervical mucus. To understand how these effects modify viscous propulsion, we extend Taylor's classical model of small-amplitude viscous propulsion of a `swimming sheet' via the transversely-isotropic fluid model of Ericksen, which is linear in strain rate and possesses a distinguished direction. The energetic costs of swimming are significantly altered by all rheological parameters and the initial fibre angle. Propulsion in a passive transversely-isotropic fluid enhances mean rate of working, independent of the initial fibre orientation. In this regime the mean swimming velocity is unchanged from the Newtonian case. The effect of fibre tension, or alternatively a stresslet characterising an active fluid, is also considered. This stress introduces an angular dependence and dramatically changes the streamlines and flow field; fibres aligned with the swimming direction increase the energetic demands of the sheet. The constant fibre stress may result in a reversal of the mean swimming velocity and a negative mean rate of working if sufficiently large relative to the other parameters. Funding is provided by a Biotechnology and Biological Sciences Research Council (BBSRC) Industrial CASE Studentship (BB/L015587/1).

  1. Electron Cooling and Isotropization during Magnetotail Current Sheet Thinning: Implications for Parallel Electric Fields

    NASA Astrophysics Data System (ADS)

    Lu, San; Artemyev, A. V.; Angelopoulos, V.

    2017-11-01

    Magnetotail current sheet thinning is a distinctive feature of substorm growth phase, during which magnetic energy is stored in the magnetospheric lobes. Investigation of charged particle dynamics in such thinning current sheets is believed to be important for understanding the substorm energy storage and the current sheet destabilization responsible for substorm expansion phase onset. We use Time History of Events and Macroscale Interactions during Substorms (THEMIS) B and C observations in 2008 and 2009 at 18 - 25 RE to show that during magnetotail current sheet thinning, the electron temperature decreases (cooling), and the parallel temperature decreases faster than the perpendicular temperature, leading to a decrease of the initially strong electron temperature anisotropy (isotropization). This isotropization cannot be explained by pure adiabatic cooling or by pitch angle scattering. We use test particle simulations to explore the mechanism responsible for the cooling and isotropization. We find that during the thinning, a fast decrease of a parallel electric field (directed toward the Earth) can speed up the electron parallel cooling, causing it to exceed the rate of perpendicular cooling, and thus lead to isotropization, consistent with observation. If the parallel electric field is too small or does not change fast enough, the electron parallel cooling is slower than the perpendicular cooling, so the parallel electron anisotropy grows, contrary to observation. The same isotropization can also be accomplished by an increasing parallel electric field directed toward the equatorial plane. Our study reveals the existence of a large-scale parallel electric field, which plays an important role in magnetotail particle dynamics during the current sheet thinning process.

  2. Effects of molecular elongation on liquid crystalline phase behaviour: isotropic-nematic transition

    NASA Astrophysics Data System (ADS)

    Singh, Ram Chandra; Ram, Jokhan

    2003-08-01

    We present the density-functional approach to study the isotropic-nematic transitions and calculate the values of freezing parameters of the Gay-Berne liquid crystal model, concentrating on the effects of varying the molecular elongation, x0. For this, we have solved the Percus-Yevick integral equation theory to calculate the pair-correlation functions of a fluid the molecules of which interact via a Gay-Berne pair potential. These results have been used in the density-functional theory as an input to locate the isotropic-nematic transition and calculate freezing parameters for a range of length-to-width parameters 3.0⩽ x0⩽4.0 at reduced temperatures 0.95 and 1.25. We observed that as x0 is increased, the isotropic-nematic transition is seen to move to lower density at a given temperature. We find that the density-functional theory is good to study the freezing transitions in such fluids. We have also compared our results with computer simulation results wherever they are available.

  3. Homogenization of periodic bi-isotropic composite materials

    NASA Astrophysics Data System (ADS)

    Ouchetto, Ouail; Essakhi, Brahim

    2018-07-01

    In this paper, we present a new method for homogenizing the bi-periodic materials with bi-isotropic components phases. The presented method is a numerical method based on the finite element method to compute the local electromagnetic properties. The homogenized constitutive parameters are expressed as a function of the macroscopic electromagnetic properties which are obtained from the local properties. The obtained results are compared to Unfolding Finite Element Method and Maxwell-Garnett formulas.

  4. Weak convergence to isotropic complex [Formula: see text] random measure.

    PubMed

    Wang, Jun; Li, Yunmeng; Sang, Liheng

    2017-01-01

    In this paper, we prove that an isotropic complex symmetric α -stable random measure ([Formula: see text]) can be approximated by a complex process constructed by integrals based on the Poisson process with random intensity.

  5. Hydrophobic matrix-free graphene-oxide composites with isotropic and nematic states

    NASA Astrophysics Data System (ADS)

    Wåhlander, Martin; Nilsson, Fritjof; Carlmark, Anna; Gedde, Ulf W.; Edmondson, Steve; Malmström, Eva

    2016-08-01

    We demonstrate a novel route to synthesise hydrophobic matrix-free composites of polymer-grafted graphene oxide (GO) showing isotropic or nematic alignment and shape-memory effects. For the first time, a cationic macroinitiator (MI) has been immobilised on anionic GO and subsequently grafted with hydrophobic polymer grafts. Dense grafts of PBA, PBMA and PMMA with a wide range of average graft lengths (MW: 1-440 kDa) were polymerised by surface-initiated controlled radical precipitation polymerisation from the statistical MI. The surface modification is designed similarly to bimodal graft systems, where the cationic MI generates nanoparticle repulsion, similar to dense short grafts, while the long grafts offer miscibility in non-polar environments and cohesion. The state-of-the-art dispersions of grafted GO were in the isotropic state. Transparent and translucent matrix-free GO-composites could be melt-processed directly using only grafted GO. After processing, birefringence due to nematic alignment of grafted GO was observed as a single giant Maltese cross, 3.4 cm across. Permeability models for composites containing aligned 2D-fillers were developed, which were compared with the experimental oxygen permeability data and found to be consistent with isotropic or nematic states. The storage modulus of the matrix-free GO-composites increased with GO content (50% increase at 0.67 wt%), while the significant increases in the thermal stability (up to 130 °C) and the glass transition temperature (up to 17 °C) were dependent on graft length. The tuneable matrix-free GO-composites with rapid thermo-responsive shape-memory effects are promising candidates for a vast range of applications, especially selective membranes and sensors.We demonstrate a novel route to synthesise hydrophobic matrix-free composites of polymer-grafted graphene oxide (GO) showing isotropic or nematic alignment and shape-memory effects. For the first time, a cationic macroinitiator (MI) has been

  6. Study of open systems with molecules in isotropic liquids

    NASA Astrophysics Data System (ADS)

    Kondo, Yasushi; Matsuzaki, Masayuki

    2018-05-01

    We are interested in dynamics of a system in an environment, or an open system. Such phenomena as crossover from Markovian to non-Markovian relaxation and thermal equilibration are of our interest. Open systems have experimentally been studied with ultra cold atoms, ions in traps, optics, and cold electric circuits because well-isolated systems can be prepared here and thus the effects of environments can be controlled. We point out that some molecules solved in isotropic liquid are well isolated and thus they can also be employed for studying open systems in Nuclear Magnetic Resonance (NMR) experiments. First, we provide a short review on related phenomena of open systems that helps readers to understand our motivation. We, then, present two experiments as examples of our approach with molecules in isotropic liquids. Crossover from Markovian to non-Markovian relaxation was realized in one NMR experiment, while relaxation-like phenomena were observed in approximately isolated systems in the other.

  7. Effects of online cone-beam computed tomography with active breath control in determining planning target volume during accelerated partial breast irradiation.

    PubMed

    Li, Y; Zhong, R; Wang, X; Ai, P; Henderson, F; Chen, N; Luo, F

    2017-04-01

    To test if active breath control during cone-beam computed tomography (CBCT) could improve planning target volume during accelerated partial breast radiotherapy for breast cancer. Patients who were more than 40 years old, underwent breast-conserving dissection and planned for accelerated partial breast irradiation, and with postoperative staging limited to T1-2 N0 M0, or postoperative staging T2 lesion no larger than 3cm with a negative surgical margin greater than 2mm were enrolled. Patients with lobular carcinoma or extensive ductal carcinoma in situ were excluded. CBCT images were obtained pre-correction, post-correction and post-treatment. Set-up errors were recorded at left-right, anterior-posterior and superior-inferior directions. The differences between these CBCT images, as well as calculated radiation doses, were compared between patients with active breath control or free breathing. Forty patients were enrolled, among them 25 had active breath control. A total of 836 CBCT images were obtained for analysis. CBCT significantly reduced planning target volume. However, active breath control did not show significant benefit in decreasing planning target volume margin and the doses of organ-at-risk when compared to free breathing. CBCT, but not active breath control, could reduce planning target volume during accelerated partial breast irradiation. Copyright © 2017 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.

  8. Manifestations of drag reduction by polymer additives in decaying, homogeneous, isotropic turbulence.

    PubMed

    Perlekar, Prasad; Mitra, Dhrubaditya; Pandit, Rahul

    2006-12-31

    The existence of drag reduction by polymer additives, well established for wall-bounded turbulent flows, is controversial in homogeneous, isotropic turbulence. To settle this controversy, we carry out a high-resolution direct numerical simulation of decaying, homogeneous, isotropic turbulence with polymer additives. Our study reveals clear manifestations of drag-reduction-type phenomena: On the addition of polymers to the turbulent fluid, we obtain a reduction in the energy-dissipation rate, a significant modification of the fluid energy spectrum especially in the deep-dissipation range, a suppression of small-scale intermittency, and a decrease in small-scale vorticity filaments.

  9. Full three-dimensional isotropic carpet cloak designed by quasi-conformal transformation optics.

    PubMed

    Silva, Daniely G; Teixeira, Poliane A; Gabrielli, Lucas H; Junqueira, Mateus A F C; Spadoti, Danilo H

    2017-09-18

    A fully three-dimensional carpet cloak presenting invisibility in all viewing angles is theoretically demonstrated. The design is developed using transformation optics and three-dimensional quasi-conformal mapping. Parametrization strategy and numerical optimization of the coordinate transformation deploying a quasi-Newton method is applied. A discussion about the minimum achievable anisotropy in the 3D transformation optics is presented. The method allows to reduce the anisotropy in the cloak and an isotropic medium could be considered. Numerical simulations confirm the strategy employed enabling the design of an isotropic reflectionless broadband carpet cloak independently of the incident light direction and polarization.

  10. Progress on the chemical separation of fission fragments from 236Np produced by proton irradiation of natural uranium target

    NASA Astrophysics Data System (ADS)

    Larijani, C.; Jerome, S. M.; Lorusso, G.; Ivanov, P.; Russell, B.; Pearce, A. K.; Regan, P. H.

    2017-11-01

    The aim of the current work is to develop and validate a radiochemical separation scheme capable of separating both 236gNp and 236Pu from a uranium target of natural isotopic composition ( 1 g uranium) and 200 MBq of fission decay products. A target containing 1.2 g of UO2 was irradiated with a beam of 25 MeV protons with a typical beam current of 30 μA for 19 h in December 2013 at the University of Birmingham Cyclotron facility. Using literature values for the production cross-section for fusion of protons with uranium targets, we estimate that an upper limit of approximately 250 Bq of activity from the 236Np ground state was produced in this experiment. Using a radiochemical separation scheme, Np and Pu fractions were separated from the produced fission decay products, with analyses of the target-based final reaction products made using Inductively Couple Plasma Mass Spectrometry (ICP-MS) and high-resolution α particle and γ-ray spectrometry.

  11. A Simple Mechanical Model for the Isotropic Harmonic Oscillator

    ERIC Educational Resources Information Center

    Nita, Gelu M.

    2010-01-01

    A constrained elastic pendulum is proposed as a simple mechanical model for the isotropic harmonic oscillator. The conceptual and mathematical simplicity of this model recommends it as an effective pedagogical tool in teaching basic physics concepts at advanced high school and introductory undergraduate course levels. (Contains 2 figures.)

  12. A seal test facility for the measurement of isotropic and anisotropic linear rotordynamic characteristics

    NASA Technical Reports Server (NTRS)

    Adams, M. L.; Yang, T.; Pace, S. E.

    1989-01-01

    A new seal test facility for measuring high-pressure seal rotor-dynamic characteristics has recently been made operational at Case Western Reserve University (CWRU). This work is being sponsored by the Electric Power Research Institute (EPRI). The fundamental concept embodied in this test apparatus is a double-spool-shaft spindle which permits independent control over the spin speed and the frequency of an adjustable circular vibration orbit for both forward and backward whirl. Also, the static eccentricity between the rotating and non-rotating test seal parts is easily adjustable to desired values. By accurately measuring both dynamic radial displacement and dynamic radial force signals, over a wide range of circular orbit frequency, one is able to solve for the full linear-anisotropic model's 12 coefficients rather than the 6 coefficients of the more restrictive isotropic linear model. Of course, one may also impose the isotropic assumption in reducing test data, thereby providing a valid qualification of which seal configurations are well represented by the isotropic model and which are not. In fact, as argued in reference (1), the requirement for maintaining a symmetric total system mass matrix means that the resulting isotropic model needs 5 coefficients and the anisotropic model needs 11 coefficients.

  13. Experimental verification of isotropic radiation from a coherent dipole source via electric-field-driven LC resonator metamaterials.

    PubMed

    Tichit, Paul-Henri; Burokur, Shah Nawaz; Qiu, Cheng-Wei; de Lustrac, André

    2013-09-27

    It has long been conjectured that isotropic radiation by a simple coherent source is impossible due to changes in polarization. Though hypothetical, the isotropic source is usually taken as the reference for determining a radiator's gain and directivity. Here, we demonstrate both theoretically and experimentally that an isotropic radiator can be made of a simple and finite source surrounded by electric-field-driven LC resonator metamaterials designed by space manipulation. As a proof-of-concept demonstration, we show the first isotropic source with omnidirectional radiation from a dipole source (applicable to all distributed sources), which can open up several possibilities in axion electrodynamics, optical illusion, novel transformation-optic devices, wireless communication, and antenna engineering. Owing to the electric- field-driven LC resonator realization scheme, this principle can be readily applied to higher frequency regimes where magnetism is usually not present.

  14. Intermittency of acceleration in isotropic turbulence.

    PubMed

    Lee, Sang; Lee, Changhoon

    2005-05-01

    The intermittency of acceleration is investigated for isotropic turbulence using direct numerical simulation. Intermittently found acceleration of large magnitude always points towards the rotational axis of a vortex filament, indicating that the intermittency of acceleration is associated with the rotational motion of the vortices that causes centripetal acceleration, which is consistent with the reported result for the near-wall turbulence. Furthermore, investigation on movements of such vortex filaments provides some insights into the dynamics of local dissipation, enstrophy and acceleration. Strong dissipation partially covering the edge of a vortex filament shows weak correlation with enstrophy, while it is strongly correlated with acceleration.

  15. New procedure to design low radar cross section near perfect isotropic and homogeneous triangular carpet cloaks.

    PubMed

    Sharifi, Zohreh; Atlasbaf, Zahra

    2016-10-01

    A new design procedure for near perfect triangular carpet cloaks, fabricated based on only isotropic homogeneous materials, is proposed. This procedure enables us to fabricate a cloak with simple metamaterials or even without employing metamaterials. The proposed procedure together with an invasive weed optimization algorithm is used to design carpet cloaks based on quasi-isotropic metamaterial structures, Teflon and AN-73. According to the simulation results, the proposed cloaks have good invisibility properties against radar, especially monostatic radar. The procedure is a new method to derive isotropic and homogeneous parameters from transformation optics formulas so we do not need to use complicated structures to fabricate the carpet cloaks.

  16. Investigations of ultrafast charge dynamics in laser-irradiated targets by a self probing technique employing laser driven protons

    NASA Astrophysics Data System (ADS)

    Ahmed, H.; Kar, S.; Cantono, G.; Nersisyan, G.; Brauckmann, S.; Doria, D.; Gwynne, D.; Macchi, A.; Naughton, K.; Willi, O.; Lewis, C. L. S.; Borghesi, M.

    2016-09-01

    The divergent and broadband proton beams produced by the target normal sheath acceleration mechanism provide the unique opportunity to probe, in a point-projection imaging scheme, the dynamics of the transient electric and magnetic fields produced during laser-plasma interactions. Commonly such experimental setup entails two intense laser beams, where the interaction produced by one beam is probed with the protons produced by the second. We present here experimental studies of the ultra-fast charge dynamics along a wire connected to laser irradiated target carried out by employing a 'self' proton probing arrangement - i.e. by connecting the wire to the target generating the probe protons. The experimental data shows that an electromagnetic pulse carrying a significant amount of charge is launched along the wire, which travels as a unified pulse of 10s of ps duration with a velocity close to speed of light. The experimental capabilities and the analysis procedure of this specific type of proton probing technique are discussed.

  17. Direct manipulation of wave amplitude and phase through inverse design of isotropic media

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Vial, B.; Horsley, S. A. R.; Philbin, T. G.; Hao, Y.

    2017-07-01

    In this article we propose a new design methodology allowing us to control both amplitude and phase of electromagnetic waves from a cylindrical incident wave. This results in isotropic materials and does not resort to transformation optics or its quasi-conformal approximations. Our method leads to two-dimensional isotropic, inhomogeneous material profiles of permittivity and permeability, to which a general class of scattering-free wave solutions arise. Our design is based on the separation of the complex wave solution into amplitude and phase. We give two types of examples to validate our methodology.

  18. Probing storm-time near-Earth magnetotail dynamics using 30 keV proton isotropic boundaries as tracers of precipitating and trapped populations

    NASA Astrophysics Data System (ADS)

    Ganushkina, N. Y.; Dubyagin, S.; Liemohn, M. W.

    2017-12-01

    The isotropic boundaries of the energetic protons, which can be routinely observed by low-altitude satellites, have been used as a tool to probe remotely the nightside magnetic configuration in the near-Earth region. The validity of this method is based on the assumption that the isotropic boundary is formed by the particle scattering on the curved field lines in the magnetotail current sheet. However recent results revealed that the wave-particle interaction process often can be responsible for the isotropic boundary formation especially during active times. Using numerous observations of the 30 keV proton isotropic boundaries and conjugated measurements of the magnetic field in the equatorial magnetosphere we demonstrate that isotropic boundary location can be used as a proxy of the magnetotail stretching even during magnetic storms. The results imply that the scattering on the curved field lines still plays major role as a mechanism of the isotropic boundary formation during storm-time. We found that the wave-particle interaction could lead to isotropic boundary formation in 15% of events. In addition, we discuss the morphology of the storm-time energetic proton precipitations.

  19. Determining organ dose conversion coefficients for external neutron irradiation by using a voxel mouse model.

    PubMed

    Zhang, Xiaomin; Xie, Xiangdong; Qu, Decheng; Ning, Jing; Zhou, Hongmei; Pan, Jie; Yang, Guoshan

    2016-03-01

    A set of fluence-to-dose conversion coefficients has been calculated for neutrons with energies <20 MeV using a developed voxel mouse model and Monte Carlo N-particle code (MCNP), for the purpose of neutron radiation effect evaluation. The calculation used 37 monodirectional monoenergetic neutron beams in the energy range 10(-9) MeV to 20 MeV, under five different source irradiation configurations: left lateral, right lateral, dorsal-ventral, ventral-dorsal, and isotropic. Neutron fluence-to-dose conversion coefficients for selected organs of the body were presented in the paper, and the effect of irradiation geometry conditions, neutron energy and the organ location on the organ dose was discussed. The results indicated that neutron dose conversion coefficients clearly show sensitivity to irradiation geometry at neutron energy below 1 MeV. © The Author 2015. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  20. Distinguishing spin-aligned and isotropic black hole populations with gravitational waves.

    PubMed

    Farr, Will M; Stevenson, Simon; Miller, M Coleman; Mandel, Ilya; Farr, Ben; Vecchio, Alberto

    2017-08-23

    The direct detection of gravitational waves from merging binary black holes opens up a window into the environments in which binary black holes form. One signature of such environments is the angular distribution of the black hole spins. Binary systems that formed through dynamical interactions between already-compact objects are expected to have isotropic spin orientations (that is, the spins of the black holes are randomly oriented with respect to the orbit of the binary system), whereas those that formed from pairs of stars born together are more likely to have spins that are preferentially aligned with the orbit. The best-measured combination of spin parameters for each of the four likely binary black hole detections GW150914, LVT151012, GW151226 and GW170104 is the 'effective' spin. Here we report that, if the magnitudes of the black hole spins are allowed to extend to high values, the effective spins for these systems indicate a 0.015 odds ratio against an aligned angular distribution compared to an isotropic one. When considering the effect of ten additional detections, this odds ratio decreases to 2.9 × 10 -7 against alignment. The existing preference for either an isotropic spin distribution or low spin magnitudes for the observed systems will be confirmed (or overturned) confidently in the near future.

  1. Isotropic and anisotropic strain-induced self-assembled oxide nanostructures

    NASA Astrophysics Data System (ADS)

    Gibert, Marta; Abellan, Patricia; Benedetti, Alessandro; Sandiumenge, Felip; Puig, Teresa; Obradors, Xavier

    2009-03-01

    The apparition of new functionalities based on size- and shape-dependent properties requires strategies for the formation of well-defined structures at nanometric scale. We present a bottom-up low-cost chemically-derived methodology based on the control of strain and surface energies anisotropies in CeO2/LAO system to tune the lateral aspect ratio, orientation and kinetics of interfacial oxide nanostructures. Self-organized uniform square-based nanopyramids form under isotropic strain [1]. In contrast, highly elongated nanostructures (long/short axis ˜20) grow induced by biaxial anisotropic strain and anisotropic surface energies. Island's distinct crystallographic orientation is the clue of their differentiated shape, and also influences their distinct evolution. The kinetically-limited coarsening of isotropic nanodots contrasts with the ultrafast kinetics of anisotropic islands. Experimental analyses are based on AFM, TEM, XRD and RHEED, and simulations based on a thermodynamic model enables us to confirm the equilibrium shape of each sort of island's shape in relation to its misfit strain and surface characteristics. [1] Gibert, M. et al., Adv.Materials 19 (22), 3937 (2007).

  2. Studies of Shock Wave Interactions with Homogeneous and Isotropic Turbulence

    NASA Technical Reports Server (NTRS)

    Briassulis, G.; Agui, J.; Watkins, C. B.; Andreopoulos, Y.

    1998-01-01

    A nearly homogeneous nearly isotropic compressible turbulent flow interacting with a normal shock wave has been studied experimentally in a large shock tube facility. Spatial resolution of the order of 8 Kolmogorov viscous length scales was achieved in the measurements of turbulence. A variety of turbulence generating grids provide a wide range of turbulence scales. Integral length scales were found to substantially decrease through the interaction with the shock wave in all investigated cases with flow Mach numbers ranging from 0.3 to 0.7 and shock Mach numbers from 1.2 to 1.6. The outcome of the interaction depends strongly on the state of compressibility of the incoming turbulence. The length scales in the lateral direction are amplified at small Mach numbers and attenuated at large Mach numbers. Even at large Mach numbers amplification of lateral length scales has been observed in the case of fine grids. In addition to the interaction with the shock the present work has documented substantial compressibility effects in the incoming homogeneous and isotropic turbulent flow. The decay of Mach number fluctuations was found to follow a power law similar to that describing the decay of incompressible isotropic turbulence. It was found that the decay coefficient and the decay exponent decrease with increasing Mach number while the virtual origin increases with increasing Mach number. A mechanism possibly responsible for these effects appears to be the inherently low growth rate of compressible shear layers emanating from the cylindrical rods of the grid.

  3. Isotropic stochastic rotation dynamics

    NASA Astrophysics Data System (ADS)

    Mühlbauer, Sebastian; Strobl, Severin; Pöschel, Thorsten

    2017-12-01

    Stochastic rotation dynamics (SRD) is a widely used method for the mesoscopic modeling of complex fluids, such as colloidal suspensions or multiphase flows. In this method, however, the underlying Cartesian grid defining the coarse-grained interaction volumes induces anisotropy. We propose an isotropic, lattice-free variant of stochastic rotation dynamics, termed iSRD. Instead of Cartesian grid cells, we employ randomly distributed spherical interaction volumes. This eliminates the requirement of a grid shift, which is essential in standard SRD to maintain Galilean invariance. We derive analytical expressions for the viscosity and the diffusion coefficient in relation to the model parameters, which show excellent agreement with the results obtained in iSRD simulations. The proposed algorithm is particularly suitable to model systems bound by walls of complex shape, where the domain cannot be meshed uniformly. The presented approach is not limited to SRD but is applicable to any other mesoscopic method, where particles interact within certain coarse-grained volumes.

  4. A non-isotropic multiple-scale turbulence model

    NASA Technical Reports Server (NTRS)

    Chen, C. P.

    1990-01-01

    A newly developed non-isotropic multiple scale turbulence model (MS/ASM) is described for complex flow calculations. This model focuses on the direct modeling of Reynolds stresses and utilizes split-spectrum concepts for modeling multiple scale effects in turbulence. Validation studies on free shear flows, rotating flows and recirculating flows show that the current model perform significantly better than the single scale k-epsilon model. The present model is relatively inexpensive in terms of CPU time which makes it suitable for broad engineering flow applications.

  5. Computational simulation of natUO2, 232ThO2 and U3O8-Al pills to estimate (p,fission) 99Mo yield in the modeled targets irradiated by CYCLONE30 accelerator.

    PubMed

    Jozvaziri, Atieh; Gholamzadeh, Zohreh; Yousefi, Kamran; Mirvakili, Seyed Mohammad; Alizadeh, Masoomeh; Aboudzadeh, Mohammadreza

    2017-03-01

    99 Mo is important for both therapy and imaging purposes. Accelerator and reactor-based procedures are applied to produce it. Newly proton-fission method has been taken in attention by some research centers. In the present work, computationally investigation of the 99 Mo yield in different fissionable targets irradiated by proton was aimed. The results showed UO 2 pill target could be efficiently used to produce 11.12Ci/g-U saturation yield of 99 Mo using 25MeV proton irradiation of the optimized-dimension target with 70µA current. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Application of X-ray microcomputed tomography in the characterization of irradiated nuclear fuel and material specimens

    DOE PAGES

    Silva, Chinthaka M.; Snead, Lance Lewis; Hunn, John D.; ...

    2015-08-03

    X-ray microcomputed tomography (µCT) was applied in characterizing the internal structures of a number of irradiated materials, including carbon-carbon fibre composites, nuclear-grade graphite and tristructural isotropic-coated fuel particles. Local cracks in carbon-carbon fibre composites associated with their synthesis process were observed with µCT without any destructive sample preparation. Pore analysis of graphite samples was performed quantitatively, and qualitative analysis of pore distribution was accomplished. It was also shown that high-resolution µCT can be used to probe internal layer defects of tristructural isotropic-coated fuel particles to elucidate the resulting high release of radioisotopes. Layer defects of sizes ranging from 1 tomore » 5 µm and up could be isolated by to-mography. As an added advantage, µCT could also be used to identify regions with high densities of radioisotopes to deter-mine the proper plane and orientation of particle mounting for further analytical characterization, such as materialographic sectioning followed by optical and electron microscopy. Lastly, in fully ceramic matrix fuel forms, despite the highly absorbing matrix, characterization of tristructural isotropic-coated particles embedded in a silicon carbide matrix was accomplished usingµCT and related advanced image analysis techniques.« less

  7. Observational constraints on relativistic electron dynamics: temporal evolution of electron spectra and flux isotropization

    NASA Astrophysics Data System (ADS)

    Kanekal, S. G.; Selesnick, R. S.; Baker, D. N.; Blake, J. B.

    2007-05-01

    Models of energization of electrons in the Earth's outer radiation belts invoke two classes of processes, radial transport and in-situ wave-particle interactions. Temporal evolution of electron spectra and flux isotropization during energization events provide useful observational constraints on models of electron energization. Events dominated by radial diffusion result in pancake type pitch angle distributions whereas some in-situ wave-particle energization mechanisms include pitch angle scattering leading to rapid flux isotropization. We present a survey of flux isotrpization time scales and electron spectra during relativstic electron enhancement events. We will use data collected by detectors onboard SAMPEX in low earth orbit and Polar which measures electron fluxes at higher altitude to measure flux isotropization. Electron spectra are obtained by pulse height analyzed data from the PET detector onboard SAMPEX.SAMPEX measurements cover the entire outer zone for more than a decade from mid 1992 to mid 2004 and Polar covers the time period from mid 1996 to the present.

  8. Dictating photoreactivity through restricted bond rotations: cross-photoaddition of atropisomeric acrylimide derivatives under UV/visible-light irradiation.

    PubMed

    Iyer, Akila; Jockusch, Steffen; Sivaguru, J

    2014-11-13

    Nonbiaryl atropisomeric acrylimides underwent facile [2 + 2] photocycloaddition leading to cross-cyclobutane adducts with very high stereospecificity (enantiomeric excess (ee): 99% and diastereomeric excess (de): 99%). The photoreactions proceeded smoothly in isotropic media for both direct and triplet sensitized irradiations. The reactions were also found to be very efficient in the solid state where the same cross-cyclobutane adduct was observed. Photophysical studies enabled us to understand the excited-state photochemistry of acrylimides. The triplet energy was found to be ∼63 kcal/mol. The reactions proceeded predominantly via a singlet excited state upon direct irradiation with very poor intersystem crossing that was ascertained by quantification of the generated singlet oxygen. The reactions progressed smoothly with triplet sensitization with UV or visible-light irradiations. Laser flash photolysis experiments established the triplet transient of atropisomeric acrylimides with a triplet lifetime at room temperature of ∼40 ns.

  9. Organ and effective dose coefficients for cranial and caudal irradiation geometries: Neutrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veinot, K. G.; Eckerman, K. F.; Hertel, N. E.

    Dose coefficients based on the recommendations of International Commission on Radiological Protection (ICRP) Publication 103 were reported in ICRP Publication 116, the revision of ICRP Publication 74 and ICRU Publication 57 for the six reference irradiation geometries: anterior–posterior, posterior–anterior, right and left lateral, rotational and isotropic. In this work, dose coefficients for neutron irradiation of the body with parallel beams directed upward from below the feet (caudal) and downward from above the head (cranial) using the ICRP 103 methodology were computed using the MCNP 6.1 radiation transport code. The dose coefficients were determined for neutrons ranging in energy from 10more » –9 MeV to 10 GeV. Here, at energies below about 500 MeV, the cranial and caudal dose coefficients are less than those for the six reference geometries reported in ICRP Publication 116.« less

  10. Organ and effective dose coefficients for cranial and caudal irradiation geometries: Neutrons

    DOE PAGES

    Veinot, K. G.; Eckerman, K. F.; Hertel, N. E.; ...

    2016-08-29

    Dose coefficients based on the recommendations of International Commission on Radiological Protection (ICRP) Publication 103 were reported in ICRP Publication 116, the revision of ICRP Publication 74 and ICRU Publication 57 for the six reference irradiation geometries: anterior–posterior, posterior–anterior, right and left lateral, rotational and isotropic. In this work, dose coefficients for neutron irradiation of the body with parallel beams directed upward from below the feet (caudal) and downward from above the head (cranial) using the ICRP 103 methodology were computed using the MCNP 6.1 radiation transport code. The dose coefficients were determined for neutrons ranging in energy from 10more » –9 MeV to 10 GeV. Here, at energies below about 500 MeV, the cranial and caudal dose coefficients are less than those for the six reference geometries reported in ICRP Publication 116.« less

  11. Efficient anisotropic quasi-P wavefield extrapolation using an isotropic low-rank approximation

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen-dong; Liu, Yike; Alkhalifah, Tariq; Wu, Zedong

    2018-04-01

    The computational cost of quasi-P wave extrapolation depends on the complexity of the medium, and specifically the anisotropy. Our effective-model method splits the anisotropic dispersion relation into an isotropic background and a correction factor to handle this dependency. The correction term depends on the slope (measured using the gradient) of current wavefields and the anisotropy. As a result, the computational cost is independent of the nature of anisotropy, which makes the extrapolation efficient. A dynamic implementation of this approach decomposes the original pseudo-differential operator into a Laplacian, handled using the low-rank approximation of the spectral operator, plus an angular dependent correction factor applied in the space domain to correct for anisotropy. We analyse the role played by the correction factor and propose a new spherical decomposition of the dispersion relation. The proposed method provides accurate wavefields in phase and more balanced amplitudes than a previous spherical decomposition. Also, it is free of SV-wave artefacts. Applications to a simple homogeneous transverse isotropic medium with a vertical symmetry axis (VTI) and a modified Hess VTI model demonstrate the effectiveness of the approach. The Reverse Time Migration applied to a modified BP VTI model reveals that the anisotropic migration using the proposed modelling engine performs better than an isotropic migration.

  12. Born scattering and inversion sensitivities in viscoelastic transversely isotropic media

    NASA Astrophysics Data System (ADS)

    Moradi, Shahpoor; Innanen, Kristopher A.

    2017-11-01

    We analyse the scattering of seismic waves from anisotropic-viscoelastic inclusions using the Born approximation. We consider the specific case of Vertical Transverse Isotropic (VTI) media with low-loss attenuation and weak anisotropy such that second- and higher-order contributions from quality factors and Thomsen parameters are negligible. To accommodate the volume scattering approach, the viscoelastic VTI media is broken into a homogeneous viscoelastic reference medium with distributed inclusions in both viscoelastic and anisotropic properties. In viscoelastic reference media in which all propagations take place, wave modes are of P-wave type, SI-wave type and SII-wave type, all with complex slowness and polarization vectors. We generate expressions for P-to-P, P-to-SI, SI-to-SI and SII-to-SII scattering potentials, and demonstrate that they reduce to previously derived isotropic results. These scattering potential expressions are sensitivity kernels related to the Fréchet derivatives which provide the weights for multiparameter full waveform inversion updates.

  13. High-stability compact atomic clock based on isotropic laser cooling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Esnault, Francois-Xavier; Holleville, David; Rossetto, Nicolas

    2010-09-15

    We present a compact cold-atom clock configuration where isotropic laser cooling, microwave interrogation, and clock signal detection are successively performed inside a spherical microwave cavity. For ground operation, a typical Ramsey fringe width of 20 Hz has been demonstrated, limited by the atom cloud's free fall in the cavity. The isotropic cooling light's disordered properties provide a large and stable number of cold atoms, leading to a high signal-to-noise ratio limited by atomic shot noise. A relative frequency stability of 2.2x10{sup -13{tau}-1/2} has been achieved, averaged down to 4x10{sup -15} after 5x10{sup 3} s of integration. Development of such amore » high-performance compact clock is of major relevance for on-board applications, such as satellite-positioning systems. As a cesium clock, it opens the door to a new generation of compact primary standards and timekeeping devices.« less

  14. X-ray Emission Characteristics of Ultra-High Energy Density Relativistic Plasmas Created by Ultrafast Laser Irradiation of Nanowire Arrays

    NASA Astrophysics Data System (ADS)

    Hollinger, R. C.; Bargsten, C.; Shlyaptsev, V. N.; Pukhov, A.; Purvis, M. A.; Townsend, A.; Keiss, D.; Wang, Y.; Wang, S.; Prieto, A.; Rocca, J. J.

    2014-10-01

    Irradiation of ordered nanowire arrays with high contrast femtosecond laser pulses of relativistic intensity creates volumetrically heated near solid density plasmas characterized by multi-KeV temperatures and extreme degrees of ionization. The large hydrodynamic-to-radiative lifetime ratio of these plasmas results in very efficient X-ray generation. Au nanowire array plasmas irradiated at I 5×1018 Wcm-2 are measured to convert ~ 5 percent of the laser energy into h ν > 0.9 KeV X-rays, and >1 × 10-4 into h ν > 9 KeV photons, creating bright picosecond X-ray sources. The angular distribution of the higher energy photons is measured to change from isotropic into annular as the intensity increases, while softer X-ray emission (h ν >1 KeV) remains isotropic and nearly unchanged. Model simulations suggest the unexpected annular distribution of the hard X-rays might result from bremsstrahlung of fast electrons confined in a high aspect ratio near solid density plasma in which the electron-ion collision mean free-path is of the order of the plasma thickness. Work supported by the U.S Department of Energy, Fusion Energy Sciences and the Defense Threat Reduction Agency Grant HDTRA-1-10-1-0079. A.P was supported by of DFG-funded project TR18.

  15. Process and targets for production of no-carrier-added radiotin

    DOEpatents

    Srivastava, Suresh C; Zhuikov, Boris Leonidovich; Ermolaev, Stanislav Victorovich; Konyakhin, Nikolay Alexandrovich; Kokhanyuk, Vladimir Mikhailovich; Khamyanov, Stepan Vladimirovich; Togaeva, Natalya Roaldovna

    2014-04-22

    One embodiment of the present invention includes a process for production and recovery of no-carrier-added radioactive tin (NCA radiotin). An antimony target can be irradiated with a beam of accelerated particles forming NCA radiotin, followed by separation of the NCA radiotin from the irradiated target. The target is metallic Sb in a hermetically sealed shell. The shell can be graphite, molybdenum, or stainless steel. The irradiated target can be removed from the shell by chemical or mechanical means, and dissolved in an acidic solution. Sb can be removed from the dissolved irradiated target by extraction. NCA radiotin can be separated from the remaining Sb and other impurities using chromatography on silica gel sorbent. NCA tin-117m can be obtained from this process. NCA tin-117m can be used for labeling organic compounds and biological objects to be applied in medicine for imaging and therapy of various diseases.

  16. Production of LEU Fully Ceramic Microencapsulated Fuel for Irradiation Testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terrani, Kurt A; Kiggans Jr, James O; McMurray, Jake W

    2016-01-01

    Fully Ceramic Microencapsulated (FCM) fuel consists of tristructural isotropic (TRISO) fuel particles embedded inside a SiC matrix. This fuel inherently possesses multiple barriers to fission product release, namely the various coating layers in the TRISO fuel particle as well as the dense SiC matrix that hosts these particles. This coupled with the excellent oxidation resistance of the SiC matrix and the SiC coating layer in the TRISO particle designate this concept as an accident tolerant fuel (ATF). The FCM fuel takes advantage of uranium nitride kernels instead of oxide or oxide-carbide kernels used in high temperature gas reactors to enhancemore » heavy metal loading in the highly moderated LWRs. Production of these kernels with appropriate density, coating layer development to produce UN TRISO particles, and consolidation of these particles inside a SiC matrix have been codified thanks to significant R&D supported by US DOE Fuel Cycle R&D program. Also, surrogate FCM pellets (pellets with zirconia instead of uranium-bearing kernels) have been neutron irradiated and the stability of the matrix and coating layer under LWR irradiation conditions have been established. Currently the focus is on production of LEU (7.3% U-235 enrichment) FCM pellets to be utilized for irradiation testing. The irradiation is planned at INL s Advanced Test Reactor (ATR). This is a critical step in development of this fuel concept to establish the ability of this fuel to retain fission products under prototypical irradiation conditions.« less

  17. Targeted Nanomaterials for Phototherapy

    PubMed Central

    Chitgupi, Upendra; Qin, Yiru; Lovell, Jonathan F.

    2017-01-01

    Phototherapies involve the irradiation of target tissues with light. To further enhance selectivity and potency, numerous molecularly targeted photosensitizers and photoactive nanoparticles have been developed. Active targeting typically involves harnessing the affinity between a ligand and a cell surface receptor for improved accumulation in the targeted tissue. Targeting ligands including peptides, proteins, aptamers and small molecules have been explored for phototherapy. In this review, recent examples of targeted nanomaterials used in phototherapy are summarized. PMID:29071178

  18. Portal imaging based definition of the planning target volume during pelvic irradiation for gynecological malignancies.

    PubMed

    Mock, U; Dieckmann, K; Wolff, U; Knocke, T H; Pötter, R

    1999-08-01

    Geometrical accuracy in patient positioning can vary substantially during external radiotherapy. This study estimated the set-up accuracy during pelvic irradiation for gynecological malignancies for determination of safety margins (planning target volume, PTV). Based on electronic portal imaging devices (EPID), 25 patients undergoing 4-field pelvic irradiation for gynecological malignancies were analyzed with regard to set-up accuracy during the treatment course. Regularly performed EPID images were used in order to systematically assess the systematic and random component of set-up displacements. Anatomical matching of verification and simulation images was followed by measuring corresponding distances between the central axis and anatomical features. Data analysis of set-up errors referred to the x-, y-,and z-axes. Additionally, cumulative frequencies were evaluated. A total of 50 simulation films and 313 verification images were analyzed. For the anterior-posterior (AP) beam direction mean deviations along the x- and z-axes were 1.5 mm and -1.9 mm, respectively. Moreover, random errors of 4.8 mm (x-axis) and 3.0 mm (z-axis) were determined. Concerning the latero-lateral treatment fields, the systematic errors along the two axes were calculated to 2.9 mm (y-axis) and -2.0 mm (z-axis) and random errors of 3.8 mm and 3.5 mm were found, respectively. The cumulative frequency of misalignments < or =5 mm showed values of 75% (AP fields) and 72% (latero-lateral fields). With regard to cumulative frequencies < or =10 mm quantification revealed values of 97% for both beam directions. During external pelvic irradiation therapy for gynecological malignancies, EPID images on a regular basis revealed acceptable set-up inaccuracies. Safety margins (PTV) of 1 cm appear to be sufficient, accounting for more than 95% of all deviations.

  19. Systems and methods for managing shared-path instrumentation and irradiation targets in a nuclear reactor

    DOEpatents

    Heinold, Mark R.; Berger, John F.; Loper, Milton H.; Runkle, Gary A.

    2015-12-29

    Systems and methods permit discriminate access to nuclear reactors. Systems provide penetration pathways to irradiation target loading and offloading systems, instrumentation systems, and other external systems at desired times, while limiting such access during undesired times. Systems use selection mechanisms that can be strategically positioned for space sharing to connect only desired systems to a reactor. Selection mechanisms include distinct paths, forks, diverters, turntables, and other types of selectors. Management methods with such systems permits use of the nuclear reactor and penetration pathways between different systems and functions, simultaneously and at only distinct desired times. Existing TIP drives and other known instrumentation and plant systems are useable with access management systems and methods, which can be used in any nuclear plant with access restrictions.

  20. An automated flow system incorporating in-line acid dissolution of bismuth metal from a cyclotron irradiated target assembly for use in the isolation of astatine-211

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O’Hara, Matthew J.; Krzysko, Anthony J.; Niver, Cynthia M.

    Astatine-211 (211At) is a promising cyclotron-produced radionuclide being investigated for use in targeted alpha therapy of blood borne and metastatic cancers, as well as treatment of tumor remnants after surgical resections. The isolation of trace quantities of 211At, produced within several grams of a Bi metal cyclotron target, involves a complex, multi-step procedure: (1) Bi metal dissolution in strong HNO3, (2) distillation of the HNO3 to yield Bi salts containing 211At, (3) dissolution of the salts in strong HCl, (4) solvent extraction of 211At from bismuth salts with diisopropyl ether (DIPE), and (5) back-extraction of 211At from DIPE into NaOH,more » leading to a purified 211At product. Step (1) has been addressed first to begin the process of automating the onerous 211At isolation process. A computer-controlled Bi target dissolution system has been designed. The system performs in-line dissolution of Bi metal from the target assembly using an enclosed target dissolution block, routing the resulting solubilized 211At/Bi mixture to the subsequent process step. The primary parameters involved in Bi metal solubilization (HNO3 concentration and influent flow rate) were optimized prior to evaluation of the system performance on replicate cyclotron irradiated targets. The results indicate that the system performs reproducibly, having nearly quantitative release of 211At from irradiated targets, with cumulative 211At recoveries that follow a sigmoidal function. The predictable nature of the 211At release profile allows the user to tune the system to meet target processing requirements.« less

  1. Investigation of Damage with Cluster Ion Beam Irradiation Using HR-RBS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seki, Toshio; Aoki, Takaaki; Matsuo, Jiro

    2008-11-03

    Cluster ion beam can process targets with shallow damage because of the very low irradiation energy per atom. However, it is needed to investigate the damage with cluster ion beam irradiation, because recent applications demand process targets with ultra low damage. The shallow damage can be investigated from depth profiles of specific species before and after ion irradiation. They can be measured with secondary ion mass spectrometry (SIMS) and Rutherford backscattering spectroscopy (RBS). High resolution Rutherford backscattering spectroscopy (HR-RBS) is a non destructive measurement method and depth profiles can be measured with nano-resolution. The cluster ion beam mixing of thinmore » Ni layer in carbon targets can be investigated with HR-RBS. The mixing depth with cluster ion irradiation at 10 keV was about 10 nm. The mixing depth with cluster ion irradiation at 1 keV and 5 keV were less than 1 nm and 5 nm, respectively. The number of displaced Ni atoms with cluster ion irradiation was very larger than that with monomer ion irradiation of same energy. This result shows that violent mixing occurs with single cluster impact.« less

  2. Systems and methods for retaining and removing irradiation targets in a nuclear reactor

    DOEpatents

    Runkle, Gary A.; Matsumoto, Jack T.; Dayal, Yogeshwar; Heinold, Mark R.

    2015-12-08

    A retainer is placed on a conduit to control movement of objects within the conduit in access-restricted areas. Retainers can prevent or allow movement in the conduit in a discriminatory fashion. A fork with variable-spacing between prongs can be a retainer and be extended or collapsed with respect to the conduit to change the size of the conduit. Different objects of different sizes may thus react to the fork differently, some passing and some being blocked. Retainers can be installed in inaccessible areas and allow selective movement in remote portions of conduit where users cannot directly interface, including below nuclear reactors. Position detectors can monitor the movement of objects through the conduit remotely as well, permitting engagement of a desired level of restriction and object movement. Retainers are useable in a variety of nuclear power plants and with irradiation target delivery, harvesting, driving, and other remote handling or robotic systems.

  3. S3 targets monitoring with an electron gun

    NASA Astrophysics Data System (ADS)

    Kallunkathariyil, J.; Stodel, Ch.; Marry, C.; Frémont, G.; Bastin, B.; Piot, J.; Clément, E.; Le Moal, S.; Morel, V.; Thomas, J.-C.; Kamalou, O.; Spitaëls, C.; Savajols, H.; Vostinar, M.; Pellemoine, F.; Mittig, W.

    2018-05-01

    The monitoring of targets under irradiation was investigated using a 20 keV electron beam. An integrated and automated electron beam deflection was developed allowing a monitoring over the whole surface of target materials. Thus, local defects could be identified on-line during an experiment performed at GANIL involving different materials irradiated with a focused krypton beam at 10.5 MeV/u. Performances of this target monitoring system are presented in this paper.

  4. Irwin's conjecture: Crack shape adaptability in transversely isotropic solids

    NASA Astrophysics Data System (ADS)

    Laubie, Hadrien; Ulm, Franz-Josef

    2014-08-01

    The planar crack propagation problem of a flat elliptical crack embedded in a brittle elastic anisotropic solid is investigated. We introduce the concept of crack shape adaptability: the ability of three-dimensional planar cracks to shape with the mechanical properties of a cracked body. A criterion based on the principle of maximum dissipation is suggested in order to determine the most stable elliptical shape. This criterion is applied to the specific case of vertical cracks in transversely isotropic solids. It is shown that contrary to the isotropic case, the circular shape (i.e. penny-shaped cracks) is not the most stable one. Upon propagation, the crack first grows non-self-similarly before it reaches a stable shape. This stable shape can be approximated by an ellipse of an aspect ratio that varies with the degree of elastic anisotropy. By way of example, we apply the so-derived crack shape adaptability criterion to shale materials. For this class of materials it is shown that once the stable shape is reached, the crack propagates at a higher rate in the horizontal direction than in the vertical direction. We also comment on the possible implications of these findings for hydraulic fracturing operations.

  5. Revisiting polarimetry near the isotropic point of an optically active, non-enantiomorphous, molecular crystal.

    PubMed

    Martin, Alexander T; Tan, Melissa; Nichols, Shane M; Timothy, Emily; Kahr, Bart

    2018-07-01

    Accurate polarimetric measurements of the optical activity of crystals along low symmetry directions are facilitated by isotropic points, frequencies where dispersion curves of eigenrays cross and the linear birefringence disappears. We report here the optical properties and structure of achiral, uniaxial (point group D 2d ) potassium trihydrogen di-(cis-4-cyclohexene-1,2-dicarboxylate) dihydrate, whose isotropic point was previously detected (S. A. Kim, C. Grieswatch, H. Küppers, Zeit. Krist. 1993; 208:219-222) and exploited for a singular measurement of optical activity normal to the optic axis. The crystal structure associated with the aforementioned study was never published. We report it here, confirming the space group assignment I 4¯c2, along with the frequency dependence of the fundamental optical properties and the constitutive tensors by fitting optical dispersion relations to measured Mueller matrix spectra. k-Space maps of circular birefringence and of the Mueller matrix near the isotropic wavelength are measured and simulated. The signs of optical rotation are correlated with the absolute crystallographic directions. © 2018 Wiley Periodicals, Inc.

  6. A Modified Monte Carlo Method for Carrier Transport in Germanium, Free of Isotropic Rates

    NASA Astrophysics Data System (ADS)

    Sundqvist, Kyle

    2010-03-01

    We present a new method for carrier transport simulation, relevant for high-purity germanium < 100 > at a temperature of 40 mK. In this system, the scattering of electrons and holes is dominated by spontaneous phonon emission. Free carriers are always out of equilibrium with the lattice. We must also properly account for directional effects due to band structure, but there are many cautions in the literature about treating germanium in particular. These objections arise because the germanium electron system is anisotropic to an extreme degree, while standard Monte Carlo algorithms maintain a reliance on isotropic, integrated rates. We re-examine Fermi's Golden Rule to produce a Monte Carlo method free of isotropic rates. Traditional Monte Carlo codes implement particle scattering based on an isotropically averaged rate, followed by a separate selection of the particle's final state via a momentum-dependent probability. In our method, the kernel of Fermi's Golden Rule produces analytical, bivariate rates which allow for the simultaneous choice of scatter and final state selection. Energy and momentum are automatically conserved. We compare our results to experimental data.

  7. Inter- and Intrafraction Target Motion in Highly Focused Single Vocal Cord Irradiation of T1a Larynx Cancer Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwa, Stefan L.S., E-mail: s.kwa@erasmusmc.nl; Al-Mamgani, Abrahim; Osman, Sarah O.S.

    2015-09-01

    Purpose: The purpose of this study was to verify clinical target volume–planning target volume (CTV-PTV) margins in single vocal cord irradiation (SVCI) of T1a larynx tumors and characterize inter- and intrafraction target motion. Methods and Materials: For 42 patients, a single vocal cord was irradiated using intensity modulated radiation therapy at a total dose of 58.1 Gy (16 fractions × 3.63 Gy). A daily cone beam computed tomography (CBCT) scan was performed to online correct the setup of the thyroid cartilage after patient positioning with in-room lasers (interfraction motion correction). To monitor intrafraction motion, CBCT scans were also acquired just after patient repositioning and aftermore » dose delivery. A mixed online-offline setup correction protocol (“O2 protocol”) was designed to compensate for both inter- and intrafraction motion. Results: Observed interfraction, systematic (Σ), and random (σ) setup errors in left-right (LR), craniocaudal (CC), and anteroposterior (AP) directions were 0.9, 2.0, and 1.1 mm and 1.0, 1.6, and 1.0 mm, respectively. After correction of these errors, the following intrafraction movements derived from the CBCT acquired after dose delivery were: Σ = 0.4, 1.3, and 0.7 mm, and σ = 0.8, 1.4, and 0.8 mm. More than half of the patients showed a systematic non-zero intrafraction shift in target position, (ie, the mean intrafraction displacement over the treatment fractions was statistically significantly different from zero; P<.05). With the applied CTV-PTV margins (for most patients 3, 5, and 3 mm in LR, CC, and AP directions, respectively), the minimum CTV dose, estimated from the target displacements observed in the last CBCT, was at least 94% of the prescribed dose for all patients and more than 98% for most patients (37 of 42). The proposed O2 protocol could effectively reduce the systematic intrafraction errors observed after dose delivery to almost zero (Σ = 0.1, 0.2, 0.2 mm). Conclusions

  8. Identifying isotropic events using a regional moment tensor inversion

    DOE PAGES

    Ford, Sean R.; Dreger, Douglas S.; Walter, William R.

    2009-01-17

    We calculate the deviatoric and isotropic source components for 17 explosions at the Nevada Test Site, as well as 12 earthquakes and 3 collapses in the surrounding region of the western United States, using a regional time domain full waveform inversion for the complete moment tensor. The events separate into specific populations according to their deviation from a pure double-couple and ratio of isotropic to deviatoric energy. The separation allows for anomalous event identification and discrimination between explosions, earthquakes, and collapses. Confidence regions of the model parameters are estimated from the data misfit by assuming normally distributed parameter values. Wemore » investigate the sensitivity of the resolved parameters of an explosion to imperfect Earth models, inaccurate event depths, and data with low signal-to-noise ratio (SNR) assuming a reasonable azimuthal distribution of stations. In the band of interest (0.02–0.10 Hz) the source-type calculated from complete moment tensor inversion is insensitive to velocity model perturbations that cause less than a half-cycle shift (<5 s) in arrival time error if shifting of the waveforms is allowed. The explosion source-type is insensitive to an incorrect depth assumption (for a true depth of 1 km), and the goodness of fit of the inversion result cannot be used to resolve the true depth of the explosion. Noise degrades the explosive character of the result, and a good fit and accurate result are obtained when the signal-to-noise ratio is greater than 5. We assess the depth and frequency dependence upon the resolved explosive moment. As the depth decreases from 1 km to 200 m, the isotropic moment is no longer accurately resolved and is in error between 50 and 200%. Furthermore, even at the most shallow depth the resultant moment tensor is dominated by the explosive component when the data have a good SNR.« less

  9. Active isotropic slabs: conditions for amplified reflection

    NASA Astrophysics Data System (ADS)

    Perez, Liliana I.; Matteo, Claudia L.; Etcheverry, Javier; Duplaá, María Celeste

    2012-12-01

    We analyse in detail the necessary conditions to obtain amplified reflection (AR) in isotropic interfaces when a plane wave propagates from a transparent medium towards an active one. First, we demonstrate analytically that AR is not possible if a single interface is involved. Then, we study the conditions for AR in a very simple configuration: normal incidence on an active slab immersed in transparent media. Finally, we develop an analysis in the complex plane in order to establish a geometrical method that not only describes the behaviour of active slabs but also helps to simplify the calculus.

  10. Development of Water Target for Radioisotope Production

    NASA Astrophysics Data System (ADS)

    Tripp, Nathan

    2011-10-01

    Ongoing studies of plant physiology at TUNL require a supply of nitrogen-13 for use as a radiotracer. Production of nitrogen-13 using a water target and a proton beam follows the nuclear reaction 16-O(p,a)13-N. Unfortunately the irradiation of trace amounts of oxygen-18 within a natural water target produces fluorine-18 by the reaction 18-O(p, n)18-F. The presence of this second radioisotope reduces the efficacy of nitrogen-13 as a radiotracer. Designing a natural water target for nitrogen-13 production at TUNL required the design of several new systems to address the problems inherent in nitrogen-13 production. A heat exchanger cools the target water after irradiation within the target cell. The resulting improved thermal regulation of the target water prevents the system from overheating and minimizes the effect of the cavitations occurring within the target. Alumina pellets within a scrubbing unit remove the fluorine-18 contamination from the irradiated water. The modular design of the water target apparatus makes the system highly adaptable, allowing for easy reuse and adaptation of the different components into future projects. The newly designed and constructed water target should meet the current and future needs of TUNL researchers in the production of nitrogen-13. This TUNL REU project was funded in part by a grant from the National Science Foundation (NSF) NSF-PHY-08-51813.

  11. Phytosanitary irradiation - Development and application

    NASA Astrophysics Data System (ADS)

    Hallman, Guy J.; Loaharanu, Paisan

    2016-12-01

    Phytosanitary irradiation, the use of ionizing radiation to disinfest traded agricultural commodities of regulated pests, is a growing use of food irradiation that has great continued potential for increase in commercial application. In 2015 approximately 25,000 t of fresh fruits and vegetables were irradiated globally for phytosanitary purposes. Phytosanitary irradiation has resulted in a paradigm shift in phytosanitation in that the final burden of proof of efficacy of the treatment has shifted from no live pests upon inspection at a port of entry (as for all previous phytosanitary treatments) to total dependence on certification that the treatment for target pests is based on adequate science and is commercially conducted and protected from post-treatment infestation. In this regard phytosanitary irradiation is managed more like a hazard analysis and critical control point (HACCP) approach more consistent with food safety than phytosanitation. Thus, phytosanitary irradiation offers a more complete and rigorous methodology for safeguarding than other phytosanitary measures. The role of different organizations in achieving commercial application of phytosanitary irradiation is discussed as well as future issues and applications, including new generic doses.

  12. Waterlike glass polyamorphism in a monoatomic isotropic Jagla model.

    PubMed

    Xu, Limei; Giovambattista, Nicolas; Buldyrev, Sergey V; Debenedetti, Pablo G; Stanley, H Eugene

    2011-02-14

    We perform discrete-event molecular dynamics simulations of a system of particles interacting with a spherically-symmetric (isotropic) two-scale Jagla pair potential characterized by a hard inner core, a linear repulsion at intermediate separations, and a weak attractive interaction at larger separations. This model system has been extensively studied due to its ability to reproduce many thermodynamic, dynamic, and structural anomalies of liquid water. The model is also interesting because: (i) it is very simple, being composed of isotropically interacting particles, (ii) it exhibits polyamorphism in the liquid phase, and (iii) its slow crystallization kinetics facilitate the study of glassy states. There is interest in the degree to which the known polyamorphism in glassy water may have parallels in liquid water. Motivated by parallels between the properties of the Jagla potential and those of water in the liquid state, we study the metastable phase diagram in the glass state. Specifically, we perform the computational analog of the protocols followed in the experimental studies of glassy water. We find that the Jagla potential calculations reproduce three key experimental features of glassy water: (i) the crystal-to-high-density amorphous solid (HDA) transformation upon isothermal compression, (ii) the low-density amorphous solid (LDA)-to-HDA transformation upon isothermal compression, and (iii) the HDA-to-very-high-density amorphous solid (VHDA) transformation upon isobaric annealing at high pressure. In addition, the HDA-to-LDA transformation upon isobaric heating, observed in water experiments, can only be reproduced in the Jagla model if a free surface is introduced in the simulation box. The HDA configurations obtained in cases (i) and (ii) are structurally indistinguishable, suggesting that both processes result in the same glass. With the present parametrization, the evolution of density with pressure or temperature is remarkably similar to the

  13. PIE preparation of the MEGAPIE target

    NASA Astrophysics Data System (ADS)

    Wohlmuther, Michael; Wagner, Werner

    2012-12-01

    The MEGAPIE target, after successfully operating for 4 months at a beam power of 0.77 MW, is now being prepared for post irradiation examination PIE. The lead-bismuth eutectic (LBE) target was irradiated from August until December 2006, and in this period received a beam charge of 2.8 A h of 575 MeV protons. After that, the target was stored in the target storage facility of PSI, waiting for its post irradiation examination. In the meantime several campaigns of tests have been conducted by PSI and ZWILAG, the interim storage facility of Swiss nuclear power plants. In these tests the feasibility of the conditioning of the target and the extraction of sample material for the PIE has been proven. After transport to the hot cell facility at ZWILAG in June 2009, the dismantling of the MEGAPIE target started. It finally was cut into 21 pieces. Ten of these pieces will be shipped to the Hot Laboratory of PSI ('PSI hotlab') to extract samples from the structural materials as well as from the LBE. Currently it is foreseen that the sample extraction will start in the first half of 2011. The remaining parts of the MEGAPIE target were conditioned as radioactive waste. The present paper will mainly focus on the dismantling and first visual inspection of the MEGAPIE target. In addition an outlook on the PIE phase of MEGAPIE is given.

  14. Magnetic Field Line Random Walk in Arbitrarily Stretched Isotropic Turbulence

    NASA Astrophysics Data System (ADS)

    Wongpan, P.; Ruffolo, D.; Matthaeus, W. H.; Rowlands, G.

    2006-12-01

    Many types of space and laboratory plasmas involve turbulent fluctuations with an approximately uniform mean magnetic field B_0, and the field line random walk plays an important role in guiding particle motions. Much of the relevant literature concerns isotropic turbulence, and has mostly been perturbative, i.e., for small fluctuations, or based on numerical simulations for specific conditions. On the other hand, solar wind turbulence is apparently anisotropic, and has been modeled as a sum of idealized two-dimensional and one dimensional (slab) components, but with the deficiency of containing no oblique wave vectors. In the present work, we address the above issues with non-perturbative analytic calculations of diffusive field line random walks for unpolarized, arbitrarily stretched isotropic turbulence, including the limits of nearly one-dimensional (highly stretched) and nearly two-dimensional (highly squashed) turbulence. We develop implicit analytic formulae for the diffusion coefficients D_x and D_z, two coupled integral equations in which D_x and D_z appear inside 3-dimensional integrals over all k-space, are solved numerically with the aid of Mathematica routines for specific cases. We can vary the parameters B0 and β, the stretching along z for constant turbulent energy. Furthermore, we obtain analytic closed-form solutions in all extreme cases. We obtain 0.54 < D_z/D_x < 2, indicating an approximately isotropic random walk even for very anisotropic (unpolarized) turbulence, a surprising result. For a given β, the diffusion coefficient vs. B0 can be described by a Padé approximant. We find quasilinear behavior at high B0 and percolative behavior at low B_0. Partially supported by a Sritrangthong Scholarship from the Faculty of Science, Mahidol University; the Thailand Research Fund; NASA Grant NNG05GG83G; and Thailand's Commission for Higher Education.

  15. Dynamic analysis of slab track on multi-layered transversely isotropic saturated soils subjected to train loads

    NASA Astrophysics Data System (ADS)

    Zhan, Yongxiang; Yao, Hailin; Lu, Zheng; Yu, Dongming

    2014-12-01

    The dynamic responses of a slab track on transversely isotropic saturated soils subjected to moving train loads are investigated by a semi-analytical approach. The track model is described as an upper Euler beam to simulate the rails and a lower Euler beam to model the slab. Rail pads between the rails and slab are represented by a continuous layer of springs and dashpots. A series of point loads are formulated to describe the moving train loads. The governing equations of track-ground systems are solved using the double Fourier transform, and the dynamic responses in the time domain are obtained by the inverse Fourier transform. The results show that a train load with high velocity will generate a larger response in transversely isotropic saturated soil than the lower velocity load, and special attention should be paid on the pore pressure in the vicinity of the ground surface. The anisotropic parameters of a surface soil layer will have greater influence on the displacement and excess pore water pressure than those of the subsoil layer. The traditional design method taking ground soil as homogeneous isotropic soil is unsafe for the case of RE < 1 and RG < 1, so a transversely isotropic foundation model is of great significance to the design for high train velocities.

  16. Magnetic field sensor for isotropically sensing an incident magnetic field in a sensor plane

    NASA Technical Reports Server (NTRS)

    Pant, Bharat B. (Inventor); Wan, Hong (Inventor)

    2001-01-01

    A magnetic field sensor that isotropically senses an incident magnetic field. This is preferably accomplished by providing a magnetic field sensor device that has one or more circular shaped magnetoresistive sensor elements for sensing the incident magnetic field. The magnetoresistive material used is preferably isotropic, and may be a CMR material or some form of a GMR material. Because the sensor elements are circular in shape, shape anisotropy is eliminated. Thus, the resulting magnetic field sensor device provides an output that is relatively independent of the direction of the incident magnetic field in the sensor plane.

  17. Dyakonov surface waves at the interface between hexagonal-boron-nitride and isotropic material

    NASA Astrophysics Data System (ADS)

    Zhu, B.; Ren, G.; Gao, Y.; Wang, Q.; Wan, C.; Wang, J.; Jian, S.

    2016-12-01

    In this paper we analyze the propagation of Dyakonov surface waves (DSWs) at the interface between hexagonal-boron-nitride (h-BN) and isotropic dielectric material. Various properties of DSWs supported at the dielectric-elliptic and dielectric-hyperbolic types of interfaces have been theoretically investigated, including the real effective index, propagation length, the angular existence domain (AED) and the composition ratio of evanescent field components in an h-BN crystal and isotropic dielectric material, respectively. The analysis in this paper reveals that h-BN could be a promising anisotropic material to observe the propagation of DSWs and may have potential diverse applications, such as high sensitivity stress sensing or optical sensing of analytes infiltrating dielectric materials.

  18. Behavior of a Quasi-Isotropic Ply Metal Matrix Composite under Thermo-Mechanical and Isothermal Fatigue Loading

    DTIC Science & Technology

    1992-12-01

    tensile strength of the composite (20:14). After the heat treatment was accomplished, polishing was performed. Using an automated MAXIMET polishing machine ...AD-A258 902 AFIT/GAE/.ENY/92D-05 Behavior of a Quasi-Isotropic Ply Metal Matrix Composite Under Thermo- Mechanical and Isothermal Fatigue Loading...115 AFIT/GAE/ENY/92D-05 Behavior of a Quasi-Isotropic Ply Metal Matrix Composite Under Thermo- Mechanical and Isothermal Fatigue Loading THESIS

  19. Isotropic Backward Waves Supported by a Spiral Array Metasurface.

    PubMed

    Tremain, Ben; Hooper, Ian R; Sambles, J Roy; Hibbins, Alastair P

    2018-05-08

    A planar metallic metasurface formed of spiral elements is shown to support an isotropic backward wave over a narrow band of microwave frequencies. The magnetic field of this left-handed mode is mapped experimentally using a near-field scanning technique, allowing the anti-parallel group and phase velocities to be directly visualised. The corresponding dispersion relation and isofrequency contours are obtained through Fourier transformation of the field images.

  20. Behavior of characteristic X-rays from a partial-transmission-type X-ray target.

    PubMed

    Raza, Hamid Saeed; Kim, Hyun Jin; Ha, Jun Mok; Cho, Sung Oh

    2013-10-01

    The angular distribution of characteristic X-rays using a partial-transmission tungsten target was analyzed. Twenty four tallies were modeled to cover a 360° envelope around the target. The Monte Carlo N-Particle (MCNP5) simulation results revealed that the characteristic X-ray flux is not always isotropic around the target. Rather, the flux mainly depends on the target thickness and the energy of the incident electron beam. A multi-energy photon generator is proposed to emit high-energy characteristic X-rays, where the target acts as a filter for the low-energy characteristic X-rays. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Treatment Optimization Using Computed Tomography-Delineated Targets Should be Used for Supraclavicular Irradiation for Breast Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liengsawangwong, Raweewan; Yu, T.-K.; Sun, T.-L.

    2007-11-01

    Background: The purpose of this study was to determine whether the use of optimized CT treatment planning offered better coverage of axillary level III (LIII)/supraclavicular (SC) targets than the empirically derived dose prescription that are commonly used. Materials/Methods: Thirty-two consecutive breast cancer patients who underwent CT treatment planning of a SC field were evaluated. Each patient was categorized according to body mass index (BMI) classes: normal, overweight, or obese. The SC and LIII nodal beds were contoured, and four treatment plans for each patient were generated. Three of the plans used empiric dose prescriptions, and these were compared with amore » CT-optimized plan. Each plan was evaluated by two criteria: whether 98% of target volume receive >90% of prescribed dose and whether < 5% of the irradiated volume received 105% of prescribed dose. Results: The mean depth of SC and LIII were 3.2 cm (range, 1.4-6.7 cm) and 3.1 (range, 1.7-5.8 cm). The depth of these targets varied according across BMI classes (p = 0.01). Among the four sets of plans, the CT-optimized plans were the most successful at achieving both of the dosimetry objectives for every BMI class (normal BMI, p = .003; overweight BMI, p < .0001; obese BMI, p < .001). Conclusions: Across all BMI classes, routine radiation prescriptions did not optimally cover intended targets for every patient. Optimized CT-based treatment planning generated the most successful plans; therefore, we recommend the use of routine CT simulation and treatment planning of SC fields in breast cancer.« less

  2. Laser Irradiated Foam Targets: Absorption and Radiative Properties

    NASA Astrophysics Data System (ADS)

    Salvadori, Martina; Luigi Andreoli, Pier; Cipriani, Mattia; Consoli, Fabrizio; Cristofari, Giuseppe; De Angelis, Riccardo; di Giorgio, Giorgio; Giulietti, Danilo; Ingenito, Francesco; Gus'kov, Sergey Yu.; Rupasov, Alexander A.

    2018-01-01

    An experimental campaign to characterize the laser radiation absorption of foam targets and the subsequent emission of radiation from the produced plasma was carried out in the ABC facility of the ENEA Research Center in Frascati (Rome). Different targets have been used: plastic in solid or foam state and aluminum targets. The activated different diagnostics allowed to evaluate the plasma temperature, the density distribution, the fast particle spectrum and the yield of the X-Ray radiation emitted by the plasma for the different targets. These results confirm the foam homogenization action on laser-plasma interaction, mainly attributable to the volume absorption of the laser radiation propagating in such structured materials. These results were compared with simulation absorption models of the laser propagating into a foam target.

  3. Modeling and validation of spectral BRDF on material surface of space target

    NASA Astrophysics Data System (ADS)

    Hou, Qingyu; Zhi, Xiyang; Zhang, Huili; Zhang, Wei

    2014-11-01

    The modeling and the validation methods of the spectral BRDF on the material surface of space target were presented. First, the microscopic characteristics of the space targets' material surface were analyzed based on fiber-optic spectrometer using to measure the direction reflectivity of the typical materials surface. To determine the material surface of space target is isotropic, atomic force microscopy was used to measure the material surface structure of space target and obtain Gaussian distribution model of microscopic surface element height. Then, the spectral BRDF model based on that the characteristics of the material surface were isotropic and the surface micro-facet with the Gaussian distribution which we obtained was constructed. The model characterizes smooth and rough surface well for describing the material surface of the space target appropriately. Finally, a spectral BRDF measurement platform in a laboratory was set up, which contains tungsten halogen lamp lighting system, fiber optic spectrometer detection system and measuring mechanical systems with controlling the entire experimental measurement and collecting measurement data by computers automatically. Yellow thermal control material and solar cell were measured with the spectral BRDF, which showed the relationship between the reflection angle and BRDF values at three wavelengths in 380nm, 550nm, 780nm, and the difference between theoretical model values and the measured data was evaluated by relative RMS error. Data analysis shows that the relative RMS error is less than 6%, which verified the correctness of the spectral BRDF model.

  4. Intracranial arterial wall imaging using three-dimensional high isotropic resolution black blood MRI at 3.0 Tesla.

    PubMed

    Qiao, Ye; Steinman, David A; Qin, Qin; Etesami, Maryam; Schär, Michael; Astor, Brad C; Wasserman, Bruce A

    2011-07-01

    To develop a high isotropic-resolution sequence to evaluate intracranial vessels at 3.0 Tesla (T). Thirteen healthy volunteers and 4 patients with intracranial stenosis were imaged at 3.0T using 0.5-mm isotropic-resolution three-dimensional (3D) Volumetric ISotropic TSE Acquisition (VISTA; TSE, turbo spin echo), with conventional 2D-TSE for comparison. VISTA was repeated for 6 volunteers and 4 patients at 0.4-mm isotropic-resolution to explore the trade-off between SNR and voxel volume. Wall signal-to-noise-ratio (SNR(wall) ), wall-lumen contrast-to-noise-ratio (CNR(wall-lumen) ), lumen area (LA), wall area (WA), mean wall thickness (MWT), and maximum wall thickness (maxWT) were compared between 3D-VISTA and 2D-TSE sequences, as well as 3D images acquired at both resolutions. Reliability was assessed by intraclass correlations (ICC). Compared with 2D-TSE measurements, 3D-VISTA provided 58% and 74% improvement in SNR(wall) and CNR(wall-lumen) , respectively. LA, WA, MWT and maxWT from 3D and 2D techniques highly correlated (ICCs of 0.96, 0.95, 0.96, and 0.91, respectively). CNR(wall-lumen) using 0.4-mm resolution VISTA decreased by 27%, compared with 0.5-mm VISTA but with reduced partial-volume-based overestimation of wall thickness. Reliability for 3D measurements was good to excellent. The 3D-VISTA provides SNR-efficient, highly reliable measurements of intracranial vessels at high isotropic-resolution, enabling broad coverage in a clinically acceptable time. Copyright © 2011 Wiley-Liss, Inc.

  5. Stationary Temperature Distribution in a Rotating Ring-Shaped Target

    NASA Astrophysics Data System (ADS)

    Kazarinov, N. Yu.; Gulbekyan, G. G.; Kazacha, V. I.

    2018-05-01

    For a rotating ring-shaped target irradiated by a heavy-ion beam, a differential equation for computing the stationary distribution of the temperature averaged over the cross section is derived. The ion-beam diameter is assumed to be equal to the ring width. Solving this equation allows one to obtain the stationary temperature distribution along the ring-shaped target depending on the ion-beam, target, and cooling-gas parameters. Predictions are obtained for the rotating target to be installed at the DC-280 cyclotron. For an existing rotating target irradiated by an ion beam, our predictions are compared with the measured temperature distribution.

  6. Online compensation for target motion with scanned particle beams: simulation environment.

    PubMed

    Li, Qiang; Groezinger, Sven Oliver; Haberer, Thomas; Rietzel, Eike; Kraft, Gerhard

    2004-07-21

    Target motion is one of the major limitations of each high precision radiation therapy. Using advanced active beam delivery techniques, such as the magnetic raster scanning system for particle irradiation, the interplay between time-dependent beam and target position heavily distorts the applied dose distribution. This paper presents a simulation environment in which the time-dependent effect of target motion on heavy-ion irradiation can be calculated with dynamically scanned ion beams. In an extension of the existing treatment planning software for ion irradiation of static targets (TRiP) at GSI, the expected dose distribution is calculated as the sum of several sub-distributions for single target motion states. To investigate active compensation for target motion by adapting the position of the therapeutic beam during irradiation, the planned beam positions can be altered during the calculation. Applying realistic parameters to the planned motion-compensation methods at GSI, the effect of target motion on the expected dose uniformity can be simulated for different target configurations and motion conditions. For the dynamic dose calculation, experimentally measured profiles of the beam extraction in time were used. Initial simulations show the feasibility and consistency of an active motion compensation with the magnetic scanning system and reveal some strategies to improve the dose homogeneity inside the moving target. The simulation environment presented here provides an effective means for evaluating the dose distribution for a moving target volume with and without motion compensation. It contributes a substantial basis for the experimental research on the irradiation of moving target volumes with scanned ion beams at GSI which will be presented in upcoming papers.

  7. Implementation of Canny and Isotropic Operator with Power Law Transformation to Identify Cervical Cancer

    NASA Astrophysics Data System (ADS)

    Amalia, A.; Rachmawati, D.; Lestari, I. A.; Mourisa, C.

    2018-03-01

    Colposcopy has been used primarily to diagnose pre-cancer and cancerous lesions because this procedure gives an exaggerated view of the tissues of the vagina and the cervix. But, the poor quality of colposcopy image sometimes makes physician challenging to recognize and analyze it. Generally, Implementation of image processing to identify cervical cancer have to implement a complex classification or clustering method. In this study, we wanted to prove that by only applying the identification of edge detection in the colposcopy image, identification of cervical cancer can be determined. In this study, we implement and comparing two edge detection operator which are isotropic and canny operator. Research methodology in this paper composed by image processing, training, and testing stages. In the image processing step, colposcopy image transformed by nth root power transformation to get better detection result and continued with edge detection process. Training is a process of labelling all dataset image with cervical cancer stage. This process involved pathology doctor as an expert in diagnosing the colposcopy image as a reference. Testing is a process of deciding cancer stage classification by comparing the similarity image of colposcopy results in the testing stage with the image of the results of the training process. We used 30 images as a dataset. The result gets same accuracy which is 80% for both Canny or Isotropic operator. Average running time for Canny operator implementation is 0.3619206 ms while Isotropic get 1.49136262 ms. The result showed that Canny operator is better than isotropic operator because Canny operator generates a more precise edge with a fast time instead.

  8. Radiation effects in silicon and gallium arsenide solar cells using isotropic and normally incident radiation

    NASA Technical Reports Server (NTRS)

    Anspaugh, B. E.; Downing, R. G.

    1984-01-01

    Several types of silicon and gallium arsenide solar cells were irradiated with protons with energies between 50 keV and 10 MeV at both normal and isotropic incidence. Damage coefficients for maximum power relative to 10 MeV were derived for these cells for both cases of omni-directional and normal incidence. The damage coefficients for the silicon cells were found to be somewhat lower than those quoted in the Solar Cell Radiation Handbook. These values were used to compute omni-directional damage coefficients suitable for solar cells protected by coverglasses of practical thickness, which in turn were used to compute solar cell degradation in two proton-dominated orbits. In spite of the difference in the low energy proton damage coefficients, the difference between the handbook prediction and the prediction using the newly derived values was negligible. Damage coefficients for GaAs solar cells for short circuit current, open circuit voltage, and maximum power were also computed relative to 10 MeV protons. They were used to predict cell degradation in the same two orbits and in a 5600 nmi orbit. Results show the performance of the GaAs solar cells in these orbits to be superior to that of the Si cells.

  9. Diffraction of SH-waves by topographic features in a layered transversely isotropic half-space

    NASA Astrophysics Data System (ADS)

    Ba, Zhenning; Liang, Jianwen; Zhang, Yanju

    2017-01-01

    The scattering of plane SH-waves by topographic features in a layered transversely isotropic (TI) half-space is investigated by using an indirect boundary element method (IBEM). Firstly, the anti-plane dynamic stiffness matrix of the layered TI half-space is established and the free fields are solved by using the direct stiffness method. Then, Green's functions are derived for uniformly distributed loads acting on an inclined line in a layered TI half-space and the scattered fields are constructed with the deduced Green's functions. Finally, the free fields are added to the scattered ones to obtain the global dynamic responses. The method is verified by comparing results with the published isotropic ones. Both the steady-state and transient dynamic responses are evaluated and discussed. Numerical results in the frequency domain show that surface motions for the TI media can be significantly different from those for the isotropic case, which are strongly dependent on the anisotropy property, incident angle and incident frequency. Results in the time domain show that the material anisotropy has important effects on the maximum duration and maximum amplitudes of the time histories.

  10. Isotropic Elastic Stress Induced Large Temperature Range Liquid Crystal Blue Phase at Room Temperature.

    PubMed

    Manna, Suman K; Dupont, Laurent; Li, Guoqiang

    2016-08-11

    A thermodynamically stable blue phase (BP) based on the conventional rod like nematogen is demonstrated for the first time at room temperature by only diluting a chiral-nematic mixture with the help of some nonmesogenic isotropic liquid. It is observed that addition of this isotropic liquid does not only stabilize the BPs at room temperature, but also significantly improves the temperature range (reversible during heating and cooling) of the BPs to the level of more than 28 °C. Apart from that, we have observed its microsecond electro-optic response time and, external electric field induced wavelength tuning, which are the two indispensable requirements for next generation optical devices, photonic displays, lasers, and many more. Here we propose that the isotropic liquid plays two crucial roles simultaneously. On one hand, it reduces the effective elastic moduli (EEM) of the BP mixtures and stabilizes the BPs at room temperature, and on the other hand, it increases the symmetry of the mutual orientation ordering among the neighboring unit cells of the BP. Hence, the resultant mixture becomes better resistive to some microscopic change due to the change in temperature, even over a large range.

  11. On differential photometric reconstruction for unknown, isotropic BRDFs.

    PubMed

    Chandraker, Manmohan; Bai, Jiamin; Ramamoorthi, Ravi

    2013-12-01

    This paper presents a comprehensive theory of photometric surface reconstruction from image derivatives in the presence of a general, unknown isotropic BRDF. We derive precise topological classes up to which the surface may be determined and specify exact priors for a full geometric reconstruction. These results are the culmination of a series of fundamental observations. First, we exploit the linearity of chain rule differentiation to discover photometric invariants that relate image derivatives to the surface geometry, regardless of the form of isotropic BRDF. For the problem of shape-from-shading, we show that a reconstruction may be performed up to isocontours of constant magnitude of the gradient. For the problem of photometric stereo, we show that just two measurements of spatial and temporal image derivatives, from unknown light directions on a circle, suffice to recover surface information from the photometric invariant. Surprisingly, the form of the invariant bears a striking resemblance to optical flow; however, it does not suffer from the aperture problem. This photometric flow is shown to determine the surface up to isocontours of constant magnitude of the surface gradient, as well as isocontours of constant depth. Further, we prove that specification of the surface normal at a single point completely determines the surface depth from these isocontours. In addition, we propose practical algorithms that require additional initial or boundary information, but recover depth from lower order derivatives. Our theoretical results are illustrated with several examples on synthetic and real data.

  12. Gravitational instability in isotropic MHD plasma waves

    NASA Astrophysics Data System (ADS)

    Cherkos, Alemayehu Mengesha

    2018-04-01

    The effect of compressive viscosity, thermal conductivity and radiative heat-loss functions on the gravitational instability of infinitely extended homogeneous MHD plasma has been investigated. By taking in account these parameters we developed the six-order dispersion relation for magnetohydrodynamic (MHD) waves propagating in a homogeneous and isotropic plasma. The general dispersion relation has been developed from set of linearized basic equations and solved analytically to analyse the conditions of instability and instability of self-gravitating plasma embedded in a constant magnetic field. Our result shows that the presence of viscosity and thermal conductivity in a strong magnetic field substantially modifies the fundamental Jeans criterion of gravitational instability.

  13. Domain walls of linear polarization in isotropic Kerr media

    NASA Astrophysics Data System (ADS)

    Louis, Y.; Sheppard, A. P.; Haelterman, M.

    1997-09-01

    We present a new type of domain-wall vector solitary waves in isotropic self-defocusing Kerr media. These domain walls consist of localized structures separating uniform field domains of orthogonal linear polarizations. They result from the interplay between diffraction, self-phase modulation and cross-phase modulation in cases where the nonlinear birefringence coefficient B = {χxyyx(3)}/{χxxxx(3)} is negative. Numerical simulations show that these new vector solitary waves are stable.

  14. Hydrophobic matrix-free graphene-oxide composites with isotropic and nematic states.

    PubMed

    Wåhlander, Martin; Nilsson, Fritjof; Carlmark, Anna; Gedde, Ulf W; Edmondson, Steve; Malmström, Eva

    2016-08-21

    We demonstrate a novel route to synthesise hydrophobic matrix-free composites of polymer-grafted graphene oxide (GO) showing isotropic or nematic alignment and shape-memory effects. For the first time, a cationic macroinitiator (MI) has been immobilised on anionic GO and subsequently grafted with hydrophobic polymer grafts. Dense grafts of PBA, PBMA and PMMA with a wide range of average graft lengths (MW: 1-440 kDa) were polymerised by surface-initiated controlled radical precipitation polymerisation from the statistical MI. The surface modification is designed similarly to bimodal graft systems, where the cationic MI generates nanoparticle repulsion, similar to dense short grafts, while the long grafts offer miscibility in non-polar environments and cohesion. The state-of-the-art dispersions of grafted GO were in the isotropic state. Transparent and translucent matrix-free GO-composites could be melt-processed directly using only grafted GO. After processing, birefringence due to nematic alignment of grafted GO was observed as a single giant Maltese cross, 3.4 cm across. Permeability models for composites containing aligned 2D-fillers were developed, which were compared with the experimental oxygen permeability data and found to be consistent with isotropic or nematic states. The storage modulus of the matrix-free GO-composites increased with GO content (50% increase at 0.67 wt%), while the significant increases in the thermal stability (up to 130 °C) and the glass transition temperature (up to 17 °C) were dependent on graft length. The tuneable matrix-free GO-composites with rapid thermo-responsive shape-memory effects are promising candidates for a vast range of applications, especially selective membranes and sensors.

  15. High e+/e– ratio dense pair creation with 10 21W.cm –2 laser irradiating solid targets

    DOE PAGES

    Liang, E.; Clarke, T.; Henderson, A.; ...

    2015-09-14

    In this study, we report results of new pair creation experiments using ~100 Joule pulses of the Texas Petawatt Laser to irradiate solid gold and platinum targets, with intensities up to ~1.9 × 10 21 W.cm –2 and pulse durations as short as ~130 fs. Positron to electron (e+/e–) ratios >15% were observed for many thick disk and rod targets, with the highest e+/e– ratio reaching ~50% for a Pt rod. The inferred pair yield was ~ few ×10 10 with emerging pair density reaching ~10 15/cm 3 so that the pair skin depth becomes < pair jet transverse size.more » These results represent major milestones towards the goal of creating a significant quantity of dense pair-dominated plasmas with e+/e– approaching 100% and pair skin depth << pair plasma size, which will have wide-ranging applications to astrophysics and fundamental physics.« less

  16. Silicone elastomers capable of large isotropic dimensional change

    DOEpatents

    Lewicki, James; Worsley, Marcus A.

    2017-07-18

    Described herein is a highly effective route towards the controlled and isotropic reduction in size-scale, of complex 3D structures using silicone network polymer chemistry. In particular, a class of silicone structures were developed that once patterned and cured can `shrink` micron scale additive manufactured and lithographically patterned structures by as much as 1 order of magnitude while preserving the dimensions and integrity of these parts. This class of silicone materials is compatible with existing additive manufacture and soft lithographic fabrication processes and will allow access to a hitherto unobtainable dimensionality of fabrication.

  17. Research and development on materials for the SPES target

    NASA Astrophysics Data System (ADS)

    Corradetti, Stefano; Andrighetto, Alberto; Manzolaro, Mattia; Scarpa, Daniele; Vasquez, Jesus; Rossignoli, Massimo; Monetti, Alberto; Calderolla, Michele; Prete, Gianfranco

    2014-03-01

    The SPES project at INFN-LNL (Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali di Legnaro) is focused on the production of radioactive ion beams. The core of the SPES facility is constituted by the target, which will be irradiated with a 40 MeV, 200 µA proton beam in order to produce radioactive species. In order to efficiently produce and release isotopes, the material constituting the target should be able to work under extreme conditions (high vacuum and temperatures up to 2000 °C). Both neutron-rich and proton-rich isotopes will be produced; in the first case, carbon dispersed uranium carbide (UCx) will be used as a target, whereas to produce p-rich isotopes, several types of targets will have to be irradiated. The synthesis and characterization of different types of material will be reported. Moreover, the results of irradiation and isotopes release tests on different uranium carbide target prototypes will be discussed.

  18. High-flux low-divergence positron beam generation from ultra-intense laser irradiated a tapered hollow target

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Jian-Xun; College of Electronic Engineering, Wuhan 430019; Ma, Yan-Yun, E-mail: yanyunma@126.com

    By using two-dimensional particle-in-cell simulations, we demonstrate high-flux dense positrons generation by irradiating an ultra-intense laser pulse onto a tapered hollow target. By using a laser with an intensity of 4 × 10{sup 23 }W/cm{sup 2}, it is shown that the Breit-Wheeler process dominates the positron production during the laser-target interaction and a positron beam with a total number >10{sup 15} is obtained, which is increased by five orders of magnitude than in the previous work at the same laser intensity. Due to the focusing effect of the transverse electric fields formed in the hollow cone wall, the divergence angle of the positronmore » beam effectively decreases to ∼15° with an effective temperature of ∼674 MeV. When the laser intensity is doubled, both the positron flux (>10{sup 16}) and temperature (963 MeV) increase, while the divergence angle gets smaller (∼13°). The obtained high-flux low-divergence positron beam may have diverse applications in science, medicine, and engineering.« less

  19. EPR and transient capacitance studies on electron-irradiated silicon solar cells

    NASA Technical Reports Server (NTRS)

    Lee, Y. H.; Cheng, L. J.; Mooney, P. M.; Corbett, J. W.

    1977-01-01

    One and two ohm-cm solar cells irradiated with 1 MeV electrons at 30 C were studied using both EPR and transient capacitance techniques. In 2 ohm-cm cells, Si-G6 and Si-G15 EPR spectra and majority carrier trapping levels at (E sub V + 0.23) eV and (E sub V + 0.38) eV were observed, each of which corresponded to the divacancy and the carbon-oxygen-vacancy complex, respectively. In addition, a boron-associated defect with a minority carrier trapping level at (E sub C -0.27) eV was observed. In 1 ohm-cm cells, the G15 spectrum and majority carrier trap at (E sub V + 0.38) eV were absent and an isotropic EPR line appeared at g = 1.9988 (+ or - 0.0003); additionally, a majority carrier trapping center at (E sub V + 0.32) eV, was found which could be associated with impurity lithium. The formation mechanisms of these defects are discussed according to isochronal annealing data in electron-irradiated p-type silicon.

  20. Is isotropic turbulent diffusion symmetry restoring?

    NASA Astrophysics Data System (ADS)

    Effinger, H.; Grossmann, S.

    1984-07-01

    The broadening of a cloud of marked particle pairs in longitudinal and transverse directions relative to the initial separation in fully developed isotropic turbulent flow is evaluated on the basis of the unified theory of turbulent relative diffusion of Grossmann and Procaccia (1984). The closure assumption of the theory is refined; its validity is confirmed by comparing experimental data; approximate analytical expressions for the traces of variance and asymmetry in the inertial subrange are obtained; and intermittency is treated using a log-normal model. The difference between the longitudinal and transverse components of the variance tensor is shown to tend to a finite nonzero limit dependent on the radial distribution of the cloud. The need for further measurements and the implications for studies of particle waste in air or water are indicated.

  1. Isotropic LQC and LQC-inspired models with a massless scalar field as generalised Brans-Dicke theories

    NASA Astrophysics Data System (ADS)

    Rama, S. Kalyana

    2018-06-01

    We explore whether generalised Brans-Dicke theories, which have a scalar field Φ and a function ω (Φ ), can be the effective actions leading to the effective equations of motion of the LQC and the LQC-inspired models, which have a massless scalar field σ and a function f( m). We find that this is possible for isotropic cosmology. We relate the pairs (σ , f) and (Φ , ω ) and, using examples, illustrate these relations. We find that near the bounce of the LQC evolutions for which f(m) = sin m, the corresponding field Φ → 0 and the function ω (Φ ) ∝ Φ ^2. We also find that the class of generalised Brans-Dicke theories, which we had found earlier to lead to non singular isotropic evolutions, may be written as an LQC-inspired model. The relations found here in the isotropic cases do not apply to the anisotropic cases, which perhaps require more general effective actions.

  2. Collapse Pressure Analysis of Transversely Isotropic Thick-Walled Cylinder Using Lebesgue Strain Measure and Transition Theory

    PubMed Central

    Aggarwal, A. K.; Sharma, Richa; Sharma, Sanjeev

    2014-01-01

    The objective of this paper is to provide guidance for the design of the thick-walled cylinder made up of transversely isotropic material so that collapse of cylinder due to influence of internal and external pressure can be avoided. The concept of transition theory based on Lebesgue strain measure has been used to simplify the constitutive equations. Results have been analyzed theoretically and discussed numerically. From this analysis, it has been concluded that, under the influence of internal and external pressure, circular cylinder made up of transversely isotropic material (beryl) is on the safer side of the design as compared to the cylinders made up of isotropic material (steel). This is because of the reason that percentage increase in effective pressure required for initial yielding to become fully plastic is high for beryl as compared to steel which leads to the idea of “stress saving” that reduces the possibility of collapse of thick-walled cylinder due to internal and external pressure. PMID:24523632

  3. Computerized optimization of multiple isocentres in stereotactic convergent beam irradiation

    NASA Astrophysics Data System (ADS)

    Treuer, U.; Treuer, H.; Hoevels, M.; Müller, R. P.; Sturm, V.

    1998-01-01

    A method for the fully computerized determination and optimization of positions of target points and collimator sizes in convergent beam irradiation is presented. In conventional interactive trial and error methods, which are very time consuming, the treatment parameters are chosen according to the operator's experience and improved successively. This time is reduced significantly by the use of a computerized procedure. After the definition of target volume and organs at risk in the CT or MR scans, an initial configuration is created automatically. In the next step the target point positions and collimator diameters are optimized by the program. The aim of the optimization is to find a configuration for which a prescribed dose at the target surface is approximated as close as possible. At the same time dose peaks inside the target volume are minimized and organs at risk and tissue surrounding the target are spared. To enhance the speed of the optimization a fast method for approximate dose calculation in convergent beam irradiation is used. A possible application of the method for calculating the leaf positions when irradiating with a micromultileaf collimator is briefly discussed. The success of the procedure has been demonstrated for several clinical cases with up to six target points.

  4. On the dynamics of small-scale vorticity in isotropic turbulence

    NASA Technical Reports Server (NTRS)

    Jimenez, Javier; Wray, A. A.

    1994-01-01

    It was previously shown that the strong vorticity in isotropic turbulence is organized into tubular vortices ('worms') whose properties were characterized through the use of full numerical simulations at several Reynolds numbers. At the time most of the observations were kinematic, and several scaling laws were discovered for which there was no theoretical explanation. In the meantime, further analysis of the same fields yielded new information on the generation of the vortices, and it was realized that even if they had to be formed by stretching, they were at any given moment actually compressed at many points of their axes. This apparent contradiction was partially explained by postulating axial inertial waves induced by the nonuniformity of the vortex cores, which helped to 'spread' the axial strain and allowed the vortices to remain compact even if not uniformly stretched. The existence of such solutions was recently proved numerically. The present report discusses a set of new numerical simulations of isotropic turbulence, and a reanalysis of the old ones, in an effort to prove or disprove the presence of these waves in actual turbulent flows and to understand the dynamics, as opposed to the kinematics, of the vortices.

  5. Generic first-order phase transitions between isotropic and orientational phases with polyhedral symmetries

    NASA Astrophysics Data System (ADS)

    Liu, Ke; Greitemann, Jonas; Pollet, Lode

    2018-01-01

    Polyhedral nematics are examples of exotic orientational phases that possess a complex internal symmetry, representing highly nontrivial ways of rotational symmetry breaking, and are subject to current experimental pursuits in colloidal and molecular systems. The classification of these phases has been known for a long time; however, their transitions to the disordered isotropic liquid phase remain largely unexplored, except for a few symmetries. In this work, we utilize a recently introduced non-Abelian gauge theory to explore the nature of the underlying nematic-isotropic transition for all three-dimensional polyhedral nematics. The gauge theory can readily be applied to nematic phases with an arbitrary point-group symmetry, including those where traditional Landau methods and the associated lattice models may become too involved to implement owing to a prohibitive order-parameter tensor of high rank or (the absence of) mirror symmetries. By means of exhaustive Monte Carlo simulations, we find that the nematic-isotropic transition is generically first-order for all polyhedral symmetries. Moreover, we show that this universal result is fully consistent with our expectation from a renormalization group approach, as well as with other lattice models for symmetries already studied in the literature. We argue that extreme fine tuning is required to promote those transitions to second-order ones. We also comment on the nature of phase transitions breaking the O(3 ) symmetry in general cases.

  6. Continuous Isotropic-Nematic Transition in Amyloid Fibril Suspensions Driven by Thermophoresis.

    PubMed

    Vigolo, Daniele; Zhao, Jianguo; Handschin, Stephan; Cao, Xiaobao; deMello, Andrew J; Mezzenga, Raffaele

    2017-04-27

    The isotropic and nematic (I + N) coexistence for rod-like colloids is a signature of the first-order thermodynamics nature of this phase transition. However, in the case of amyloid fibrils, the biphasic region is too small to be experimentally detected, due to their extremely high aspect ratio. Herein, we study the thermophoretic behaviour of fluorescently labelled β-lactoglobulin amyloid fibrils by inducing a temperature gradient across a microfluidic channel. We discover that fibrils accumulate towards the hot side of the channel at the temperature range studied, thus presenting a negative Soret coefficient. By exploiting this thermophoretic behaviour, we show that it becomes possible to induce a continuous I-N transition with the I and N phases at the extremities of the channel, starting from an initially single N phase, by generating an appropriate concentration gradient along the width of the microchannel. Accordingly, we introduce a new methodology to control liquid crystal phase transitions in anisotropic colloidal suspensions. Because the induced order-order transitions are achieved under stationary conditions, this may have important implications in both applied colloidal science, such as in separation and fractionation of colloids, as well as in fundamental soft condensed matter, by widening the accessibility of target regions in the phase diagrams.

  7. Lower bound on the compactness of isotropic ultracompact objects

    NASA Astrophysics Data System (ADS)

    Hod, Shahar

    2018-04-01

    Horizonless spacetimes describing spatially regular ultracompact objects which, like black-hole spacetimes, possess closed null circular geodesics (light rings) have recently attracted much attention from physicists and mathematicians. In the present paper we raise the following physically intriguing question: how compact is an ultracompact object? Using analytical techniques, we prove that ultracompact isotropic matter configurations with light rings are characterized by the dimensionless lower bound maxr{2 m (r )/r }>7 /12 on their global compactness parameter.

  8. Accelerator target

    DOEpatents

    Schlyer, D.J.; Ferrieri, R.A.; Koehler, C.

    1999-06-29

    A target includes a body having a depression in a front side for holding a sample for irradiation by a particle beam to produce a radioisotope. Cooling fins are disposed on a backside of the body opposite the depression. A foil is joined to the body front side to cover the depression and sample therein. A perforate grid is joined to the body atop the foil for supporting the foil and for transmitting the particle beam therethrough. A coolant is circulated over the fins to cool the body during the particle beam irradiation of the sample in the depression. 5 figs.

  9. Accelerator target

    DOEpatents

    Schlyer, David J.; Ferrieri, Richard A.; Koehler, Conrad

    1999-01-01

    A target includes a body having a depression in a front side for holding a sample for irradiation by a particle beam to produce a radioisotope. Cooling fins are disposed on a backside of the body opposite the depression. A foil is joined to the body front side to cover the depression and sample therein. A perforate grid is joined to the body atop the foil for supporting the foil and for transmitting the particle beam therethrough. A coolant is circulated over the fins to cool the body during the particle beam irradiation of the sample in the depression.

  10. Production of medical isotopes from a thorium target irradiated by light charged particles up to 70 MeV

    NASA Astrophysics Data System (ADS)

    Duchemin, C.; Guertin, A.; Haddad, F.; Michel, N.; Métivier, V.

    2015-02-01

    The irradiation of a thorium target by light charged particles (protons and deuterons) leads to the production of several isotopes of medical interest. Direct nuclear reaction allows the production of Protactinium-230 which decays to Uranium-230 the mother nucleus of Thorium-226, a promising isotope for alpha radionuclide therapy. The fission of Thorium-232 produces fragments of interest like Molybdenum-99, Iodine-131 and Cadmium-115g. We focus our study on the production of these isotopes, performing new cross section measurements and calculating production yields. Our new sets of data are compared with the literature and the last version of the TALYS code.

  11. Production of medical isotopes from a thorium target irradiated by light charged particles up to 70 MeV.

    PubMed

    Duchemin, C; Guertin, A; Haddad, F; Michel, N; Métivier, V

    2015-02-07

    The irradiation of a thorium target by light charged particles (protons and deuterons) leads to the production of several isotopes of medical interest. Direct nuclear reaction allows the production of Protactinium-230 which decays to Uranium-230 the mother nucleus of Thorium-226, a promising isotope for alpha radionuclide therapy. The fission of Thorium-232 produces fragments of interest like Molybdenum-99, Iodine-131 and Cadmium-115g. We focus our study on the production of these isotopes, performing new cross section measurements and calculating production yields. Our new sets of data are compared with the literature and the last version of the TALYS code.

  12. Pulsed-Laser Irradiation Space Weathering Of A Carbonaceous Chondrite

    NASA Technical Reports Server (NTRS)

    Thompson, M. S.; Keller, L. P.; Christoffersen, R.; Loeffler, M. J.; Morris, R. V.; Graff, T. G.; Rahman, Z.

    2017-01-01

    Grains on the surfaces of airless bodies experience irradiation from solar energetic particles and melting, vaporization and recondensation processes associated with micrometeorite impacts. Collectively, these processes are known as space weathering and they affect the spectral properties, composition, and microstructure of material on the surfaces of airless bodies, e.g. Recent efforts have focused on space weathering of carbonaceous materials which will be critical for interpreting results from the OSIRIS-REx and Hayabusa2 missions targeting primitive, organic-rich asteroids. In addition to returned sample analyses, space weathering processes are quantified through laboratory experiments. For example, the short-duration thermal pulse from hypervelocity micrometeorite impacts have been simulated using pulsed-laser irradiation of target material e.g. Recent work however, has shown that pulsed-laser irradiation has variable effects on the spectral properties and microstructure of carbonaceous chondrite samples. Here we investigate the spectral characteristics of pulsed-laser irradiated CM2 carbonaceous chondrite, Murchison, including the vaporized component. We also report the chemical and structural characteristics of specific mineral phases within the meteorite as a result of pulsed-laser irradiation.

  13. On the dual variable of the Cauchy stress tensor in isotropic finite hyperelasticity

    NASA Astrophysics Data System (ADS)

    Vallée, Claude; Fortuné, Danielle; Lerintiu, Camelia

    2008-11-01

    Elastic materials are governed by a constitutive law relating the second Piola-Kirchhoff stress tensor Σ and the right Cauchy-Green strain tensor C=FF. Isotropic elastic materials are the special cases for which the Cauchy stress tensor σ depends solely on the left Cauchy-Green strain tensor B=FF. In this Note we revisit the following property of isotropic hyperelastic materials: if the constitutive law relating Σ and C is derivable from a potential ϕ, then σ and lnB are related by a constitutive law derived from the compound potential ϕ○exp. We give a new and concise proof which is based on an explicit integral formula expressing the derivative of the exponential of a tensor. To cite this article: C. Vallée et al., C. R. Mecanique 336 (2008).

  14. Co-targeting deoxyribonucleic acid-dependent protein kinase and poly(adenosine diphosphate-ribose) polymerase-1 promotes accelerated senescence of irradiated cancer cells.

    PubMed

    Azad, Arun; Bukczynska, Patricia; Jackson, Susan; Haupt, Ygal; Haput, Ygal; Cullinane, Carleen; McArthur, Grant A; Solomon, Benjamin

    2014-02-01

    To examine the effects of combined blockade of DNA-dependent protein kinase (DNA-PK) and poly(adenosine diphosphate-ribose) polymerase-1 (PARP-1) on accelerated senescence in irradiated H460 and A549 non-small cell lung cancer cells. The effects of KU5788 and AG014699 (inhibitors of DNA-PK and PARP-1, respectively) on clonogenic survival, DNA double-strand breaks (DSBs), apoptosis, mitotic catastrophe, and accelerated senescence in irradiated cells were examined in vitro. For in vivo experiments, H460 xenografts established in athymic nude mice were treated with BEZ235 (a DNA-PK, ATM, and phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor) and AG014699 to determine effects on proliferation, DNA DSBs, and accelerated senescence after radiation. Compared with either inhibitor alone, combination treatment with KU57788 and AG014699 reduced postradiation clonogenic survival and significantly increased persistence of Gamma-H2AX (γH2AX) foci in irradiated H460 and A549 cells. Notably, these effects coincided with the induction of accelerated senescence in irradiated cells as reflected by positive β-galactosidase staining, G2-M cell-cycle arrest, enlarged and flattened cellular morphology, increased p21 expression, and senescence-associated cytokine secretion. In irradiated H460 xenografts, concurrent therapy with BEZ235 and AG014699 resulted in sustained Gamma-H2AX (γH2AX) staining and prominent β-galactosidase activity. Combined DNA-PK and PARP-1 blockade increased tumor cell radiosensitivity and enhanced the prosenescent properties of ionizing radiation in vitro and in vivo. These data provide a rationale for further preclinical and clinical testing of this therapeutic combination. Copyright © 2014. Published by Elsevier Inc.

  15. Lagrangian Statistics of Slightly Buoyant Droplets in Isotropic Turbulence

    NASA Astrophysics Data System (ADS)

    Gopalan, Balaji; Malkiel, Edwin; Katz, Joseph

    2006-11-01

    This project examines the dynamics of slightly buoyant diesel droplets in isotropic turbulence using high speed in-line digital Holographic PIV. A cloud of droplets with specific gravity of 0.85 is injected into the central portion of an isotropic turbulence facility. The droplet trajectories are measured in a 50x50x50 mm̂3 sample volume using high speed in-line digital holography. An automated program has been developed to obtain accurate time history of droplet velocities. Data analysis determines the PDF of velocity and acceleration in three dimensions. The time histories enable us to calculate the three dimensional Lagrangian velocity autocorrelation function, and from them the diffusion coefficients. Due to buoyancy the vertical diffusion time scale exceeds the horizontal one by about 65% .The diffusion coefficients vary between 2.8 cm̂2/sec in the horizontal direction to 5.5 cm̂2/sec in the vertical direction. For droplets with size varying from 2 to 11 Kolmogorov scales there are no clear trends with size. The variations of diffusion rates for different turbulent intensities and the effect of finite window size are presently examined. For shorter time scales, when the diffusion need not be Fickian the three dimensional trajectories can be used to calculate the generalized dispersion tensor and measure the time elapsed for diffusion to become Fickian.

  16. The Galactic Isotropic γ-ray Background and Implications for Dark Matter

    NASA Astrophysics Data System (ADS)

    Campbell, Sheldon S.; Kwa, Anna; Kaplinghat, Manoj

    2018-06-01

    We present an analysis of the radial angular profile of the galacto-isotropic (GI) γ-ray flux-the statistically uniform flux in angular annuli centred on the Galactic centre. Two different approaches are used to measure the GI flux profile in 85 months of Fermi-LAT data: the BDS statistical method which identifies spatial correlations, and a new Poisson ordered-pixel method which identifies non-Poisson contributions. Both methods produce similar GI flux profiles. The GI flux profile is well-described by an existing model of bremsstrahlung, π0 production, inverse Compton scattering, and the isotropic background. Discrepancies with data in our full-sky model are not present in the GI component, and are therefore due to mis-modelling of the non-GI emission. Dark matter annihilation constraints based solely on the observed GI profile are close to the thermal WIMP cross section below 100 GeV, for fixed models of the dark matter density profile and astrophysical γ-ray foregrounds. Refined measurements of the GI profile are expected to improve these constraints by a factor of a few.

  17. Laboratory Study of Homogeneous and Isotropic Turbulence at High Reynolds Number

    NASA Astrophysics Data System (ADS)

    Pecenak, Zachary; Dou, Zhongwang; Yang, Fan; Cao, Lujie; Liang, Zach; Meng, Hui

    2013-11-01

    To study particle dynamics modified by isotropic turbulence at high Reynolds numbers and provide experimental data for DNS validation, we have developed a soccer-ball-shaped truncated icosahedron turbulence chamber with 20 adjoining hexagon surfaces, 12 pentagon surfaces and twenty symettrically displaced fans, which form an enclosed chamber of 1m diameter. We use Particle Image Velocimetry (PIV) technique to characterize the base turbulent flow, using different PIV set ups to capture various characteristic scales of turbulence. Results show that the stationary isotropic turbulence field is a spherical domain with diameter of 40 mm with quasi-zero mean velocities. The maximum rms velocity is ~1.5 m/s, corresponding to a Taylor microscale Re of 450. We extract from the PIV velocity field the whole set of turbulent flow parameters including: turbulent kinetic energy, turbulent intensity, kinetic energy dissipation rate, large eddy length and time scales, the Kolmogorov length, time and velocity scales, Taylor microscale and Re, which are critical to the study of inter-particle statistics modified by turbulence. This research is funded by an NSF grant CBET-0967407.

  18. Homogenous isotropic invisible cloak based on geometrical optics.

    PubMed

    Sun, Jingbo; Zhou, Ji; Kang, Lei

    2008-10-27

    Invisible cloak derived from the coordinate transformation requires its constitutive material to be anisotropic. In this work, we present a cloak of graded-index isotropic material based on the geometrical optics theory. The cloak is realized by concentric multilayered structure with designed refractive index to achieve the low-scattering and smooth power-flow. Full-wave simulations on such a design of a cylindrical cloak are performed to demonstrate the cloaking ability to incident wave of any polarization. Using normal nature material with isotropy and low absorption, the cloak shows light on a practical path to stealth technology, especially that in the optical range.

  19. Irradiated KHYG-1 retains cytotoxicity: potential for adoptive immunotherapy with a natural killer cell line.

    PubMed

    Suck, G; Branch, D R; Keating, A

    2006-05-01

    To evaluate gamma-irradiation on KHYG-1, a highly cytotoxic natural killer (NK) cell line and potential candidate for cancer immunotherapy. The NK cell line KHYG-1 was irradiated at 1 gray (Gy) to 50 Gy with gamma-irradiation, and evaluated for cell proliferation, cell survival, and cytotoxicity against tumor targets. We showed that a dose of at least 10 Gy was sufficient to inhibit proliferation of KHYG-1 within the first day but not its cytolytic activity. While 50 Gy had an apoptotic effect in the first hours after irradiation, the killing of K562 and HL60 targets was not different from non-irradiated cells but was reduced for the Ph + myeloid leukemia lines, EM-2 and EM-3. gamma-irradiation (at least 10 Gy) of KHYG-1 inhibits cell proliferation but does not diminish its enhanced cytolytic activity against several tumor targets. This study suggests that KHYG-1 may be a feasible immunotherapeutic agent in the treatment of cancers.

  20. Laminated beams of isotropic or orthotropic materials subjected to temperature change

    Treesearch

    Shun Cheng; T. Gerhardt

    1980-01-01

    This paper considers laminated beams with layers of different isotropic or orthotropic materials fastened together by thin adhesives. The stresses that result from subjecting each component layer of the beam to different temperature or moisture stimuli which may also vary along the length of the beam, are calculated. Two-dimensional elasticity theory is used so that a...

  1. Integrated dual-tomography for refractive index analysis of free-floating single living cell with isotropic superresolution.

    PubMed

    B, Vinoth; Lai, Xin-Ji; Lin, Yu-Chih; Tu, Han-Yen; Cheng, Chau-Jern

    2018-04-13

    Digital holographic microtomography is a promising technique for three-dimensional (3D) measurement of the refractive index (RI) profiles of biological specimens. Measurement of the RI distribution of a free-floating single living cell with an isotropic superresolution had not previously been accomplished. To the best of our knowledge, this is the first study focusing on the development of an integrated dual-tomographic (IDT) imaging system for RI measurement of an unlabelled free-floating single living cell with an isotropic superresolution by combining the spatial frequencies of full-angle specimen rotation with those of beam rotation. A novel 'UFO' (unidentified flying object) like shaped coherent transfer function is obtained. The IDT imaging system does not require any complex image-processing algorithm for 3D reconstruction. The working principle was successfully demonstrated and a 3D RI profile of a single living cell, Candida rugosa, was obtained with an isotropic superresolution. This technology is expected to set a benchmark for free-floating single live sample measurements without labeling or any special sample preparations for the experiments.

  2. Observation of ionization shifts in K-shell emission from short-pulse laser irradiated micro-dot targets

    NASA Astrophysics Data System (ADS)

    Neumayer, Paul; Kritcher, Andrea; Landen, Otto; Lee, Haeja; Offerman, Dustin; Shipton, Eric; Glenzer, Siegfried

    2006-10-01

    X-ray Thomson scattering using short pulse laser generated intense line radiation has a great potential as a time-resolved temperature and density diagnostic for high-energy density states of matter. We present recent results characterizing Chlorine K-alpha and K-beta line emission obtained by irradiating Saran foil with 50 Terawatt laser pulses from the Callisto laser (Jupiter Laser Facility, Lawrence Livermore National Laboratory). Spectra from front and rear side emission are recorded simultaneously with high resolution HOPG spectrometers employing imaging plate detectors. Conversion efficiencies of laser pulse energy into x-ray line emission of several 10-5 are achieved and are maintained throughout up to 7 J of laser energy, thus constituting a short pulsed narrow band x-ray source of more than 10^11 photons. When the target size is reduced to 50 micrometer (``micro-dot'') a significant blue-shift of up to 5 eV is clearly observed. This can be attributed to higher ionization states of the target atoms indicating achievement of a high-temperature solid density state. This work was performed under the auspices of the U.S. Department of Energy by the Lawrence Livermore National Laboratory under Contract No. W-7405-ENG-48 and LDRD 05-ERI-003.

  3. 14 MeV Neutron Irradiation Effect on Superconducting Magnet Materials for Fusion Device

    NASA Astrophysics Data System (ADS)

    Nishimura, A.; Hishinuma, Y.; Seo, K.; Tanaka, T.; Muroga, T.; Nishijima, S.; Katagiri, K.; Takeuchi, T.; Shindo, Y.; Ochiai, K.; Nishitani, T.; Okuno, K.

    2006-03-01

    As a large-scale plasma experimental device is planned and designed, the importance of investigations on irradiation effect of 14 MeV neutron increases and an experimental database is desired to be piled up. Recently, intense streaming of fast neutron from ports are reported and degradation of superconducting magnet performance is anticipated. To investigate the pure neutron effect on superconducting magnet materials, a cryogenic target system was newly developed and installed at Fusion Neutronics Source in Japan Atomic Energy Research Institute. Although production rate of 14 MeV neutron is not large, only 14 MeV neutron can be supplied to irradiation test without gamma ray. Copper wires, superconducting wires, glass fiber reinforced composites are irradiated and the irradiation effects are characterized. At the same time, sensors for measuring temperature and magnetic field are irradiated and their performance was investigated after irradiation. This paper presents outline of the cryogenic target system and some irradiation test results.

  4. Imaging tilted transversely isotropic media with a generalised screen propagator

    NASA Astrophysics Data System (ADS)

    Shin, Sung-Il; Byun, Joongmoo; Seol, Soon Jee

    2015-01-01

    One-way wave equation migration is computationally efficient compared with reverse time migration, and it provides a better subsurface image than ray-based migration algorithms when imaging complex structures. Among many one-way wave-based migration algorithms, we adopted the generalised screen propagator (GSP) to build the migration algorithm. When the wavefield propagates through the large velocity variation in lateral or steeply dipping structures, GSP increases the accuracy of the wavefield in wide angle by adopting higher-order terms induced from expansion of the vertical slowness in Taylor series with each perturbation term. To apply the migration algorithm to a more realistic geological structure, we considered tilted transversely isotropic (TTI) media. The new GSP, which contains the tilting angle as a symmetric axis of the anisotropic media, was derived by modifying the GSP designed for vertical transversely isotropic (VTI) media. To verify the developed TTI-GSP, we analysed the accuracy of wave propagation, especially for the new perturbation parameters and the tilting angle; the results clearly showed that the perturbation term of the tilting angle in TTI media has considerable effects on proper propagation. In addition, through numerical tests, we demonstrated that the developed TTI-GS migration algorithm could successfully image a steeply dipping salt flank with high velocity variation around anisotropic layers.

  5. FY-15 Progress Report on Cleanup of irradiated SHINE Target Solutions Containing 140g-U/L Uranyl Sulfate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennett, Megan E.; Bowers, Delbert L.; Vandegrift, George F.

    2015-09-01

    During FY 2012 and 2013, a process was developed to convert the SHINE Target Solution (STS) of irradiated uranyl sulfate (140 g U/L) to uranyl nitrate. This process is necessary so that the uranium solution can be processed by the UREX (Uranium Extraction) separation process, which will remove impurities from the uranium so that it can be recycled. The uranyl sulfate solution must contain <0.02 M SO 4 2- so that the uranium will be extractable into the UREXsolvent. In addition, it is desired that the barium content be below 0.0007 M, as this is the limit in the Resourcemore » Conservation and Recovery Act (RCRA).« less

  6. Scale-up of high specific activity 186gRe production using graphite-encased thick 186W targets and demonstration of an efficient target recycling process

    DOE PAGES

    Balkin, Ethan R.; Gagnon, Katherine; Dorman, Eric; ...

    2017-08-18

    Production of high specific activity 186gRe is of interest for development of theranostic radiopharmaceuticals. Previous studies have shown that high specific activity 186gRe can be obtained by cyclotron irradiation of enriched 186W via the 186W(d,2n) 186gRe reaction, but most irradiations were conducted at low beam currents and for short durations. In this paper, enriched 186W metal targets were irradiated at high incident deuteron beam currents to demonstrate production rates and contaminants produced when using thick targets. Full-stopping thick targets, as determined using SRIM, were prepared by uniaxial pressing of powdered natural abundance W metal or 96.86% enriched 186W metal encasedmore » between two layers of graphite flakes for target material stabilization. An assessment of structural integrity was made on each target preparation. To assess the performance of graphite-encased thick 186W metal targets, along with the impact of encasing on the separation chemistry, targets were first irradiated using a 22 MeV deuteron beam for 10 min at 10, 20, and 27 μA, with an estimated nominal deuteron energy of 18.7 MeV on the 186W target material (after energy degradation correction from top graphite layer). Gamma-ray spectrometry was performed post EOB on all targets to assess production yields and radionuclidic byproducts. The investigation also evaluated a method to recover and recycle enriched target material from a column isolation procedure. Material composition analyses of target materials, pass-through/wash solutions and recycling process isolates were conducted with SEM, FTIR, XRD, EDS and ICP-MS spectrometry. Finally, to demonstrate scaled-up production, a graphite-encased 186W target made from recycled 186W was irradiated for ~2 h with 18.7 MeV deuterons at a beam current of 27 μA to provide 0.90 GBq (24.3 mCi) of 186gRe, decay-corrected to the end of bombardment. ICP-MS analysis of the isolated 186gRe solution provided data that indicated the

  7. Scale-up of high specific activity 186gRe production using graphite-encased thick 186W targets and demonstration of an efficient target recycling process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balkin, Ethan R.; Gagnon, Katherine; Dorman, Eric

    Production of high specific activity 186gRe is of interest for development of theranostic radiopharmaceuticals. Previous studies have shown that high specific activity 186gRe can be obtained by cyclotron irradiation of enriched 186W via the 186W(d,2n) 186gRe reaction, but most irradiations were conducted at low beam currents and for short durations. In this paper, enriched 186W metal targets were irradiated at high incident deuteron beam currents to demonstrate production rates and contaminants produced when using thick targets. Full-stopping thick targets, as determined using SRIM, were prepared by uniaxial pressing of powdered natural abundance W metal or 96.86% enriched 186W metal encasedmore » between two layers of graphite flakes for target material stabilization. An assessment of structural integrity was made on each target preparation. To assess the performance of graphite-encased thick 186W metal targets, along with the impact of encasing on the separation chemistry, targets were first irradiated using a 22 MeV deuteron beam for 10 min at 10, 20, and 27 μA, with an estimated nominal deuteron energy of 18.7 MeV on the 186W target material (after energy degradation correction from top graphite layer). Gamma-ray spectrometry was performed post EOB on all targets to assess production yields and radionuclidic byproducts. The investigation also evaluated a method to recover and recycle enriched target material from a column isolation procedure. Material composition analyses of target materials, pass-through/wash solutions and recycling process isolates were conducted with SEM, FTIR, XRD, EDS and ICP-MS spectrometry. Finally, to demonstrate scaled-up production, a graphite-encased 186W target made from recycled 186W was irradiated for ~2 h with 18.7 MeV deuterons at a beam current of 27 μA to provide 0.90 GBq (24.3 mCi) of 186gRe, decay-corrected to the end of bombardment. ICP-MS analysis of the isolated 186gRe solution provided data that indicated the

  8. [Target volume margins for lung cancer: internal target volume/clinical target volume].

    PubMed

    Jouin, A; Pourel, N

    2013-10-01

    The aim of this study was to carry out a review of margins that should be used for the delineation of target volumes in lung cancer, with a focus on margins from gross tumour volume (GTV) to clinical target volume (CTV) and internal target volume (ITV) delineation. Our review was based on a PubMed literature search with, as a cornerstone, the 2010 European Organisation for Research and Treatment of Cancer (EORTC) recommandations by De Ruysscher et al. The keywords used for the search were: radiotherapy, lung cancer, clinical target volume, internal target volume. The relevant information was categorized under the following headings: gross tumour volume definition (GTV), CTV-GTV margin (first tumoural CTV then nodal CTV definition), in field versus elective nodal irradiation, metabolic imaging role through the input of the PET scanner for tumour target volume and limitations of PET-CT imaging for nodal target volume definition, postoperative radiotherapy target volume definition, delineation of target volumes after induction chemotherapy; then the internal target volume is specified as well as tumoural mobility for lung cancer and respiratory gating techniques. Finally, a chapter is dedicated to planning target volume definition and another to small cell lung cancer. For each heading, the most relevant and recent clinical trials and publications are mentioned. Copyright © 2013. Published by Elsevier SAS.

  9. Gamma-irradiated β-glucan modulates signaling molecular targets of hepatocellular carcinoma in rats.

    PubMed

    Elsonbaty, Sawsan M; Zahran, Walid E; Moawed, Fatma Sm

    2017-08-01

    β-glucans are one of the most abundant forms of polysaccharides known as biological response modifiers which influence host's biological response and stimulate immune system. Accordingly, this study was initiated to evaluate irradiated β-glucan as a modulator for cellular signaling growth factors involved in the pathogenesis of hepatocellular carcinoma in rats. Hepatocellular carcinoma was induced with 20 mg diethylnitrosamine/kg BW. Rats received daily by gastric gavage 65 mg irradiated β-glucan/kg BW. It was found that treatment of rats with diethylnitrosamine induced hepatic injury and caused significant increase in liver injury markers with a concomitant significant increase in both hepatic oxidative and inflammatory indices: alpha-fetoprotein, interferon gamma, and interleukin 6 in comparison with normal and irradiated β-glucan-treated groups. Western immunoblotting showed a significant increase in the signaling growth factors: extracellular signal-regulated kinase 1 and phosphoinositide 3-kinase proteins in a diethylnitrosamine-treated group while both preventive and therapeutic irradiated β-glucan treatments recorded significant improvement versus diethylnitrosamine group via the modulation of growth factors that encounters hepatic toxicity. The transcript levels of vascular endothelial growth factor A and inducible nitric oxide synthase genes were significantly higher in the diethylnitrosamine-treated group in comparison with controls. Preventive and therapeutic treatments with irradiated β-glucan demonstrated that the transcript level of these genes was significantly decreased which demonstrates the protective effect of β-glucan. Histological investigations revealed that diethylnitrosamine treatment affects the hepatic architecture throughout the significant severe appearance of inflammatory cell infiltration in the portal area and congestion in the portal vein in association with severe degeneration and dysplasia in hepatocytes all over hepatic

  10. MEASUREMENTS OF NEUTRON SPECTRA IN 0.8-GEV AND 1.6-GEV PROTON-IRRADIATED<2 OF 2>NA THICK TARGETS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Titarenko, Y. E.; Batyaev, V. F.; Zhivun, V. M.

    2001-01-01

    Measurements of neutron spectra in W, and Na targets irradiated by 0.8 GeV and 1.6 GeV protons are presented. Measurements were made by the TOF techniques using the proton beam from ITEP U-10 synchrotron. Neutrons were detected with BICRON-511 liquid scintillator-based detectors. The neutron detection efficiency was calculated via the SCINFUL and CECIL codes. The W results are compared with the similar data obtained elsewhere. The measured neutron spectra are compared with the LAHET and CEM2k code simulations results. Attempt is made to explain some observed disagreements between experiments and simulations. The presented results are of interest both in termsmore » of nuclear data buildup and as a benchmark of the up-to-date predictive power of the simulation codes used in designing the hybrid accelerator-driven system (ADS) facilities with sodium-cooled tungsten targets.« less

  11. Nonimaging solar concentrator with uniform irradiance

    NASA Astrophysics Data System (ADS)

    Winston, Roland; O'Gallagher, Joseph J.; Gee, Randy C.

    2004-09-01

    We report results of a study our group has undertaken under NREL/DOE auspices to design a solar concentrator with uniform irradiance on a planar target. This attribute is especially important for photovoltaic concentrators.

  12. Isotropic cosmological models in F(T,TG) theory

    NASA Astrophysics Data System (ADS)

    Sharif, M.; Nazir, Kanwal

    2016-09-01

    This paper is devoted to study evolution of the isotropic universe models in the framework of F(T,TG) gravity (T represents torsion scalar and TG is the teleparallel equivalent of the Gauss-Bonnet (GB) term). We construct F(T,TG) models by taking different eras of the universe like non-relativistic and relativistic matter eras, dark energy (DE) dominated era and their combinations. It is found that the reconstructed models indicate decreasing behavior for DE dominated era and its combination with other eras. We also discuss stability of each reconstructed model. Finally, we evaluate equation of state (EoS) parameter by considering two models and study its behavior graphically.

  13. Two-dimensional homogeneous isotropic fluid turbulence with polymer additives

    NASA Astrophysics Data System (ADS)

    Gupta, Anupam; Perlekar, Prasad; Pandit, Rahul

    2015-03-01

    We carry out an extensive and high-resolution direct numerical simulation of homogeneous, isotropic turbulence in two-dimensional fluid films with air-drag-induced friction and with polymer additives. Our study reveals that the polymers (a) reduce the total fluid energy, enstrophy, and palinstrophy; (b) modify the fluid energy spectrum in both inverse- and forward-cascade régimes; (c) reduce small-scale intermittency; (d) suppress regions of high vorticity and strain rate; and (e) stretch in strain-dominated regions. We compare our results with earlier experimental studies and propose new experiments.

  14. Simulating faults and plate boundaries with a transversely isotropic plasticity model

    NASA Astrophysics Data System (ADS)

    Sharples, W.; Moresi, L. N.; Velic, M.; Jadamec, M. A.; May, D. A.

    2016-03-01

    In mantle convection simulations, dynamically evolving plate boundaries have, for the most part, been represented using an visco-plastic flow law. These systems develop fine-scale, localized, weak shear band structures which are reminiscent of faults but it is a significant challenge to resolve the large- and the emergent, small-scale-behavior. We address this issue of resolution by taking into account the observation that a rock element with embedded, planar, failure surfaces responds as a non-linear, transversely isotropic material with a weak orientation defined by the plane of the failure surface. This approach partly accounts for the large-scale behavior of fine-scale systems of shear bands which we are not in a position to resolve explicitly. We evaluate the capacity of this continuum approach to model plate boundaries, specifically in the context of subduction models where the plate boundary interface has often been represented as a planar discontinuity. We show that the inclusion of the transversely isotropic plasticity model for the plate boundary promotes asymmetric subduction from initiation. A realistic evolution of the plate boundary interface and associated stresses is crucial to understanding inter-plate coupling, convergent margin driven topography, and earthquakes.

  15. Nonlinear Boltzmann equation for the homogeneous isotropic case: Some improvements to deterministic methods and applications to relaxation towards local equilibrium

    NASA Astrophysics Data System (ADS)

    Asinari, P.

    2011-03-01

    Boltzmann equation is one the most powerful paradigms for explaining transport phenomena in fluids. Since early fifties, it received a lot of attention due to aerodynamic requirements for high altitude vehicles, vacuum technology requirements and nowadays, micro-electro-mechanical systems (MEMs). Because of the intrinsic mathematical complexity of the problem, Boltzmann himself started his work by considering first the case when the distribution function does not depend on space (homogeneous case), but only on time and the magnitude of the molecular velocity (isotropic collisional integral). The interest with regards to the homogeneous isotropic Boltzmann equation goes beyond simple dilute gases. In the so-called econophysics, a Boltzmann type model is sometimes introduced for studying the distribution of wealth in a simple market. Another recent application of the homogeneous isotropic Boltzmann equation is given by opinion formation modeling in quantitative sociology, also called socio-dynamics or sociophysics. The present work [1] aims to improve the deterministic method for solving homogenous isotropic Boltzmann equation proposed by Aristov [2] by two ideas: (a) the homogeneous isotropic problem is reformulated first in terms of particle kinetic energy (this allows one to ensure exact particle number and energy conservation during microscopic collisions) and (b) a DVM-like correction (where DVM stands for Discrete Velocity Model) is adopted for improving the relaxation rates (this allows one to satisfy exactly the conservation laws at macroscopic level, which is particularly important for describing the late dynamics in the relaxation towards the equilibrium).

  16. Gap Size Uncertainty Quantification in Advanced Gas Reactor TRISO Fuel Irradiation Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pham, Binh T.; Einerson, Jeffrey J.; Hawkes, Grant L.

    The Advanced Gas Reactor (AGR)-3/4 experiment is the combination of the third and fourth tests conducted within the tristructural isotropic fuel development and qualification research program. The AGR-3/4 test consists of twelve independent capsules containing a fuel stack in the center surrounded by three graphite cylinders and shrouded by a stainless steel shell. This capsule design enables temperature control of both the fuel and the graphite rings by varying the neon/helium gas mixture flowing through the four resulting gaps. Knowledge of fuel and graphite temperatures is crucial for establishing the functional relationship between fission product release and irradiation thermal conditions.more » These temperatures are predicted for each capsule using the commercial finite-element heat transfer code ABAQUS. Uncertainty quantification reveals that the gap size uncertainties are among the dominant factors contributing to predicted temperature uncertainty due to high input sensitivity and uncertainty. Gap size uncertainty originates from the fact that all gap sizes vary with time due to dimensional changes of the fuel compacts and three graphite rings caused by extended exposure to high temperatures and fast neutron irradiation. Gap sizes are estimated using as-fabricated dimensional measurements at the start of irradiation and post irradiation examination dimensional measurements at the end of irradiation. Uncertainties in these measurements provide a basis for quantifying gap size uncertainty. However, lack of gap size measurements during irradiation and lack of knowledge about the dimension change rates lead to gap size modeling assumptions, which could increase gap size uncertainty. In addition, the dimensional measurements are performed at room temperature, and must be corrected to account for thermal expansion of the materials at high irradiation temperatures. Uncertainty in the thermal expansion coefficients for the graphite materials used in the AGR-3

  17. Positron annihilation lifetime measurements of austenitic stainless and ferritic/martensitic steels irradiated in the SINQ target irradiation program

    NASA Astrophysics Data System (ADS)

    Sato, K.; Xu, Q.; Yoshiie, T.; Dai, Y.; Kikuchi, K.

    2012-12-01

    Titanium-doped austenitic stainless steel (JPCA) and reduced activated ferritic/martensitic steel (F82H) irradiated with high-energy protons and spallation neutrons were investigated by positron annihilation lifetime measurements. Subnanometer-sized (<˜0.8 nm) helium bubbles, which cannot be observed by transmission electron microscopy, were detected by positron annihilation lifetime measurements for the first time. For the F82H steel, the positron annihilation lifetime of the bubbles decreased with increasing irradiation dose and annealing temperature because the bubbles absorb additional He atoms. In the case of JPCA steel, the positron annihilation lifetime increased with increasing annealing temperature above 773 K, in which case the dissociation of complexes of vacancy clusters with He atoms and the growth of He bubbles was detected. He bubble size and density were also discussed.

  18. Human brain diffusion tensor imaging at submillimeter isotropic resolution on a 3 Tesla clinical MRI scanner

    PubMed Central

    Chang, Hing-Chiu; Sundman, Mark; Petit, Laurent; Guhaniyogi, Shayan; Chu, Mei-Lan; Petty, Christopher; Song, Allen W.; Chen, Nan-kuei

    2015-01-01

    The advantages of high-resolution diffusion tensor imaging (DTI) have been demonstrated in a recent post-mortem human brain study (Miller et al., NeuroImage 2011;57(1):167–181), showing that white matter fiber tracts can be much more accurately detected in data at submillimeter isotropic resolution. To our knowledge, in vivo human brain DTI at submillimeter isotropic resolution has not been routinely achieved yet because of the difficulty in simultaneously achieving high resolution and high signal-to-noise ratio (SNR) in DTI scans. Here we report a 3D multi-slab interleaved EPI acquisition integrated with multiplexed sensitivity encoded (MUSE) reconstruction, to achieve high-quality, high-SNR and submillimeter isotropic resolution (0.85 × 0.85 × 0.85 mm3) in vivo human brain DTI on a 3 Tesla clinical MRI scanner. In agreement with the previously reported post-mortem human brain DTI study, our in vivo data show that the structural connectivity networks of human brains can be mapped more accurately and completely with high-resolution DTI as compared with conventional DTI (e.g., 2 × 2 × 2 mm3). PMID:26072250

  19. Clustering and propulsion of isotropic catalytic swimmers

    NASA Astrophysics Data System (ADS)

    Varma, Akhil; Montenegro-Johnson, Thomas D.; Michelin, Sebastien

    2017-11-01

    Catalytic micro-swimmers such as phoretic particles use local gradients in solute concentration for propulsion. An isolated isotropic phoretic particle generates a uniform concentration field on its surface and hence cannot propel on its own. Symmetry of this field is broken by the presence of at least another similar particle in the system, which leads to phoretic attraction or repulsion. Phoretic attraction drives the clustering of identical homogeneous particles into stable clusters of various configurations which may self-propel or rotate due to their geometric asymmetry. Using full numerical simulations and analytic approximations based on pairwise interactions of the particles, we study the cluster formation and its impact on the statistics of the propulsion properties. We finally analyze the effect of background noise on the results. European Research Council (Grant Agreement 714027).

  20. Angular dependence of coercivity in isotropically aligned Nd-Fe-B sintered magnets

    NASA Astrophysics Data System (ADS)

    Matsuura, Yutaka; Nakamura, Tetsuya; Sumitani, Kazushi; Kajiwara, Kentaro; Tamura, Ryuji; Osamura, Kozo

    2018-05-01

    In order to understand the coercivity mechanism in Nd-Fe-B sintered magnets, the angular dependence of the coercivity of an isotropically aligned Nd15Co1.0B6Febal. sintered magnet was investigated through magnetization measurements using a vibrating sample magnetometer. These results are compared with the angular dependence calculated under the assumption that the magnetization reversal of each grain follows the Kondorskii law or, in other words, the 1/cos θ law for isotropic alignment distributions. The calculated angular dependence of the coercivity agrees very well with the experiment for magnetic fields applied between angles of 0 and 60°, and it is expected that the magnetization reversal occurs in each grain individually followed the 1/cos θ law. In contrast, this agreement between calculation and experiment is not found for anisotropic Nd-Fe-B samples. This implies that the coercivity of the aligned magnets depends upon the de-pinning of the domain walls from pinning sites. When the de-pinning occurs, it is expected that the domain walls are displaced through several grains at once.

  1. Active Colloids in Isotropic and Anisotropic Electrolytes

    NASA Astrophysics Data System (ADS)

    Peng, Chenhui

    Electrically driven flows of fluids with respect to solid surfaces (electro-osmosis) and transport of particles in fluids (electrophoresis), collectively called electrokinetics, is a technologically important area of modern science. In this thesis, we study the electrokinetic phenomena in both isotropic and anisotropic fluids. A necessary condition of electrokinetics is separation of electric charges in space. In classic linear electrokinetics, with an isotropic electrolyte such as water, the charges are separated through dissociation of ionic groups at the solid-fluid interface; presence of the electric field is not required. In the nonlinear electrokinetics, the charges are separated with the assistance of the electric field. In the so-called induced-charge electro-osmosis (ICEO) the electric field separates charges near strongly polarizable surfaces such as metals. We establish the patterns of electro-osmotic velocities caused by nonlinear ICEO around an immobilized metallic and Janus (metallic-dielectric) spheres placed in water. In the case of the Janus particles, the flows are asymmetric, which results in pumping of water around the particle if it is immobilized, or in electrophoresis is the particle is free. When the isotropic electrolyte such as water is replaced with a LC electrolyte, the mechanism of the field-assisted charge separation becomes very different. Namely, the charges are separated at the director gradients, thanks to the anisotropy of electric conductivity and dielectric permittivity of the LC. These distortions can be created by the colloidal particles placed in the LC. We demonstrate the occurrence of nonlinear LC-enabled electro-osmosis (LCEO) by studying the flow patterns around colloidal spheres with different surface anchoring. LCEO velocities grow with the square of the electric field, which allows one to use an AC field to drive steady flows and to avoid electrode damage. Director distortions needed to trigger the LCEO can also be

  2. SPICE-NIRS Microbeam: a focused vertical system for proton irradiation of a single cell for radiobiological research

    PubMed Central

    Konishi, Teruaki; Oikawa, Masakazu; Suya, Noriyoshi; Ishikawa, Takahiro; Maeda, Takeshi; Kobayashi, Alisa; Shiomi, Naoko; Kodama, Kumiko; Hamano, Tsuyoshi; Homma-Takeda, Shino; Isono, Mayu; Hieda, Kotaro; Uchihori, Yukio; Shirakawa, Yoshiyuki

    2013-01-01

    The Single Particle Irradiation system to Cell (SPICE) facility at the National Institute of Radiological Sciences (NIRS) is a focused vertical microbeam system designed to irradiate the nuclei of adhesive mammalian cells with a defined number of 3.4 MeV protons. The approximately 2-μm diameter proton beam is focused with a magnetic quadrupole triplet lens and traverses the cells contained in dishes from bottom to top. All procedures for irradiation, such as cell image capturing, cell recognition and position calculation, are automated. The most distinctive characteristic of the system is its stability and high throughput; i.e. 3000 cells in a 5 mm × 5 mm area in a single dish can be routinely irradiated by the 2-μm beam within 15 min (the maximum irradiation speed is 400 cells/min). The number of protons can be set as low as one, at a precision measured by CR-39 detectors to be 99.0%. A variety of targeting modes such as fractional population targeting mode, multi-position targeting mode for nucleus irradiation and cytoplasm targeting mode are available. As an example of multi-position targeting irradiation of mammalian cells, five fluorescent spots in a cell nucleus were demonstrated using the γ-H2AX immune-staining technique. The SPICE performance modes described in this paper are in routine use. SPICE is a joint-use research facility of NIRS and its beam times are distributed for collaborative research. PMID:23287773

  3. Highly tunable magnetism in silicene doped with Cr and Fe atoms under isotropic and uniaxial tensile strain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Rui; Ni, Jun, E-mail: junni@mail.tsinghua.edu.cn; Collaborative Innovative Center of Quantum Matter, Beijing 100084

    2015-12-28

    We have investigated the magnetic properties of silicene doped with Cr and Fe atoms under isotropic and uniaxial tensile strain by the first-principles calculations. We find that Cr and Fe doped silicenes show strain-tunable magnetism. (1) The magnetism of Cr and Fe doped silicenes exhibits sharp transitions from low spin states to high spin states by a small isotropic tensile strain. Specially for Fe doped silicene, a nearly nonmagnetic state changes to a high magnetic state by a small isotropic tensile strain. (2) The magnetic moments of Fe doped silicene also show a sharp jump to ∼2 μ{sub B} at amore » small threshold of the uniaxial strain, and the magnetic moments of Cr doped silicene increase gradually to ∼4 μ{sub B} with the increase of uniaxial strain. (3) The electronic and magnetic properties of Cr and Fe doped silicenes are sensitive to the magnitude and direction of the external strain. The highly tunable magnetism may be applied in the spintronic devices.« less

  4. Direction of unsaturated flow in a homogeneous and isotropic hillslope

    USGS Publications Warehouse

    Lu, Ning; Kaya, Basak Sener; Godt, Jonathan W.

    2011-01-01

    The distribution of soil moisture in a homogeneous and isotropic hillslope is a transient, variably saturated physical process controlled by rainfall characteristics, hillslope geometry, and the hydrological properties of the hillslope materials. The major driving mechanisms for moisture movement are gravity and gradients in matric potential. The latter is solely controlled by gradients of moisture content. In a homogeneous and isotropic saturated hillslope, absent a gradient in moisture content and under the driving force of gravity with a constant pressure boundary at the slope surface, flow is always in the lateral downslope direction, under either transient or steady state conditions. However, under variably saturated conditions, both gravity and moisture content gradients drive fluid motion, leading to complex flow patterns. In general, the flow field near the ground surface is variably saturated and transient, and the direction of flow could be laterally downslope, laterally upslope, or vertically downward. Previous work has suggested that prevailing rainfall conditions are sufficient to completely control these flow regimes. This work, however, shows that under time-varying rainfall conditions, vertical, downslope, and upslope lateral flow can concurrently occur at different depths and locations within the hillslope. More importantly, we show that the state of wetting or drying in a hillslope defines the temporal and spatial regimes of flow and when and where laterally downslope and/or laterally upslope flow occurs.

  5. Direction of unsaturated flow in a homogeneous and isotropic hillslope

    USGS Publications Warehouse

    Lu, N.; Kaya, B.S.; Godt, J.W.

    2011-01-01

    The distribution of soil moisture in a homogeneous and isotropic hillslope is a transient, variably saturated physical process controlled by rainfall characteristics, hillslope geometry, and the hydrological properties of the hillslope materials. The major driving mechanisms for moisture movement are gravity and gradients in matric potential. The latter is solely controlled by gradients of moisture content. In a homogeneous and isotropic saturated hillslope, absent a gradient in moisture content and under the driving force of gravity with a constant pressure boundary at the slope surface, flow is always in the lateral downslope direction, under either transient or steady state conditions. However, under variably saturated conditions, both gravity and moisture content gradients drive fluid motion, leading to complex flow patterns. In general, the flow field near the ground surface is variably saturated and transient, and the direction of flow could be laterally downslope, laterally upslope, or vertically downward. Previous work has suggested that prevailing rainfall conditions are sufficient to completely control these flow regimes. This work, however, shows that under time-varying rainfall conditions, vertical, downslope, and upslope lateral flow can concurrently occur at different depths and locations within the hillslope. More importantly, we show that the state of wetting or drying in a hillslope defines the temporal and spatial regimes of flow and when and where laterally downslope and/or laterally upslope flow occurs. Copyright 2011 by the American Geophysical Union.

  6. Measurement of the photoneutron flux density distribution from cylindrical targets

    NASA Astrophysics Data System (ADS)

    Golovkov, V. M.; Basina, T. N.; Yakovlev, M. R.

    1989-09-01

    Measurements are performed of the density of photoneutron fluxes from cylindrical targets of2H2O (diameter 64 and height 86 mm), Be (outer diameter 70, inner diameter 40, height 100mm), and238U (diameter 44.5 mm, height 50 mm) under the action of braking radiation from electrons with energies of 4 to 8 MeV in order to determine the effect of target form and orientation relative to the detector upon the recorded photoneutron level. The fluxes were measured by an “all-wave” neutron detector based on an SNM-11 counter in a paraffin retarder at an angle of 90‡ to the axis of the braking radiation beam for various target orientations relative to the detector. Measurement results are compared to calculations. Photoneutron fluxes from heavy water and beryllium targets of the indicated dimensions were also measured for angles of 90, 135, and 167‡. An isotropic nature was noted in the photoneutron fluxes from both targets.

  7. A Weighted Difference of Anisotropic and Isotropic Total Variation Model for Image Processing

    DTIC Science & Technology

    2014-09-01

    A WEIGHTED DIFFERENCE OF ANISOTROPIC AND ISOTROPIC TOTAL VARIATION MODEL FOR IMAGE PROCESSING YIFEI LOU∗, TIEYONG ZENG† , STANLEY OSHER‡ , AND JACK...grants DMS-0928427 and DMS-1222507. † Department of Mathematics, Hong Kong Baptist University, Kowloon Tong , Hong Kong. Email: zeng@hkbu.edu.hk. TZ is

  8. How Isotropic is the Universe?

    PubMed

    Saadeh, Daniela; Feeney, Stephen M; Pontzen, Andrew; Peiris, Hiranya V; McEwen, Jason D

    2016-09-23

    A fundamental assumption in the standard model of cosmology is that the Universe is isotropic on large scales. Breaking this assumption leads to a set of solutions to Einstein's field equations, known as Bianchi cosmologies, only a subset of which have ever been tested against data. For the first time, we consider all degrees of freedom in these solutions to conduct a general test of isotropy using cosmic microwave background temperature and polarization data from Planck. For the vector mode (associated with vorticity), we obtain a limit on the anisotropic expansion of (σ_{V}/H)_{0}<4.7×10^{-11} (95% C.L.), which is an order of magnitude tighter than previous Planck results that used cosmic microwave background temperature only. We also place upper limits on other modes of anisotropic expansion, with the weakest limit arising from the regular tensor mode, (σ_{T,reg}/H)_{0}<1.0×10^{-6} (95% C.L.). Including all degrees of freedom simultaneously for the first time, anisotropic expansion of the Universe is strongly disfavored, with odds of 121 000:1 against.

  9. Barycentric parameterizations for isotropic BRDFs.

    PubMed

    Stark, Michael M; Arvo, James; Smits, Brian

    2005-01-01

    A bidirectional reflectance distribution function (BRDF) is often expressed as a function of four real variables: two spherical coordinates in each of the the "incoming" and "outgoing" directions. However, many BRDFs reduce to functions of fewer variables. For example, isotropic reflection can be represented by a function of three variables. Some BRDF models can be reduced further. In this paper, we introduce new sets of coordinates which we use to reduce the dimensionality of several well-known analytic BRDFs as well as empirically measured BRDF data. The proposed coordinate systems are barycentric with respect to a triangular support with a direct physical interpretation. One coordinate set is based on the BRDF model proposed by Lafortune. Another set, based on a model of Ward, is associated with the "halfway" vector common in analytical BRDF formulas. Through these coordinate sets we establish lower bounds on the approximation error inherent in the models on which they are based. We present a third set of coordinates, not based on any analytical model, that performs well in approximating measured data. Finally, our proposed variables suggest novel ways of constructing and visualizing BRDFs.

  10. Development of a PET cyclotron based irradiation setup for proton radiobiology

    NASA Astrophysics Data System (ADS)

    Ghithan, Sharif; Crespo, Paulo; do Carmo, S. J. C.; Ferreira Marques, Rui; Fraga, F. A. F.; Simões, Hugo; Alves, Francisco; Rachinhas, P. J. B. M.

    2015-02-01

    An out-of-yoke irradiation setup using the proton beam from a cyclotron that ordinary produces radioisotopes for positron emission tomography (PET) has been developed, characterized, calibrated and validated. The current from a 20 μm thick aluminum transmission foil is readout by home-made transimpedance electronics, providing online dose information. The main monitoring variables, delivered in real-time, include beam current, integrated charge and dose rate. Hence the dose and integrated current delivered at a given instant to an experimental setup can be computer-controlled with a shutter. In this work, we report on experimental results and Geant4 simulations of a setup which exploits for the first time the 18 MeV proton beam from a PET cyclotron to irradiate a selected region of a target using the developed irradiation system. By using this system, we are able to deliver a homogeneous beam on targets with 18 mm diameter, allowing to achieve the controlled irradiation of cell cultures located in biological multi-well dishes of 16 mm diameter. We found that the magnetic field applied inside the cyclotron plays a major role for achieving the referred to homogeneity. The quasi-Gaussian curve obtained by scanning the magnet current and measuring the corresponding dose rate must be measured before any irradiation procedure, with the shutter closed. At the optimum magnet current, which corresponds to the center of the Gaussian, a homogenous dose is observed over the whole target area. Making use of a rotating disk with a slit of 0.5 mm at a radius of 150 mm, we could measure dose rates on target ranging from 500 mGy/s down to 5 mGy/s. For validating the developed irradiation setup, several Gafchromic® EBT2 films were exposed to different values of dose. The absolute dose in the irradiated films were assessed in the 2D film dosimetry system of the Department of Radiotherapy of Coimbra University Hospital Center with a precision better than 2%. In the future, we plan

  11. Smart Optical Composite Materials: Dispersions of Metal-Organic Framework@Superparamagnetic Microrods for Switchable Isotropic-Anisotropic Optical Properties.

    PubMed

    Mandel, Karl; Granath, Tim; Wehner, Tobias; Rey, Marcel; Stracke, Werner; Vogel, Nicolas; Sextl, Gerhard; Müller-Buschbaum, Klaus

    2017-01-24

    A smart optical composite material with dynamic isotropic and anisotropic optical properties by combination of luminescence and high reflectivity was developed. This combination enables switching between luminescence and angle-dependent reflectivity by changing the applied wavelength of light. The composite is formed as anisotropic core/shell particles by coating superparamagnetic iron oxide-silica microrods with a layer of the luminescent metal-organic framework (MOF) 3 ∞ [Eu 2 (BDC) 3 ]·2DMF·2H 2 O (BDC 2- = 1,4-benzenedicarboxylate). The composite particles can be rotated by an external magnet. Their anisotropic shape causes changes in the reflectivity and diffraction of light depending on the orientation of the composite particle. These rotation-dependent optical properties are complemented by an isotropic luminescence resulting from the MOF shell. If illuminated by UV light, the particles exhibit isotropic luminescence while the same sample shows anisotropic optical properties when illuminated with visible light. In addition to direct switching, the optical properties can be tailored continuously between isotropic red emission and anisotropic reflection of light if the illuminating light is tuned through fractions of both UV and visible light. The integration and control of light emission modes within a homogeneous particle dispersion marks a smart optical material, addressing fundamental directions for research on switchable multifunctional materials. The material can function as an optic compass or could be used as an optic shutter that can be switched by a magnetic field, e.g., for an intensity control for waveguides in the visible range.

  12. On the empirical determination of positron trapping coefficient at nano-scale helium bubbles in steels irradiated in spallation target

    NASA Astrophysics Data System (ADS)

    Krsjak, Vladimir; Kuriplach, Jan; Vieh, Christiane; Peng, Lei; Dai, Yong

    2018-06-01

    In the present work, the specific positron trapping rate of small helium bubbles was empirically derived from positron annihilation lifetime spectroscopy (PALS) and transmission electron microscopy (TEM) studies of Fe9Cr martensitic steels. Both techniques are well known to be sensitive to nanometer-sized helium-filled cavities induced during irradiation in a mixed proton-neutron spectrum of spallation target. Complementary TEM and PALS studies show that positrons are being trapped to these defects at a rate of 1.2 ± 0.8 × 10-14 m3s-1. This suggests that helium bubbles in ferritic/martensitic steels are attractive traps for positrons comparable to mono-vacancies and quantitative analysis of the bubbles by PALS technique is plausible.

  13. A spatially homogeneous and isotropic Einstein-Dirac cosmology

    NASA Astrophysics Data System (ADS)

    Finster, Felix; Hainzl, Christian

    2011-04-01

    We consider a spatially homogeneous and isotropic cosmological model where Dirac spinors are coupled to classical gravity. For the Dirac spinors we choose a Hartree-Fock ansatz where all one-particle wave functions are coherent and have the same momentum. If the scale function is large, the universe behaves like the classical Friedmann dust solution. If however the scale function is small, quantum effects lead to oscillations of the energy-momentum tensor. It is shown numerically and proven analytically that these quantum oscillations can prevent the formation of a big bang or big crunch singularity. The energy conditions are analyzed. We prove the existence of time-periodic solutions which go through an infinite number of expansion and contraction cycles.

  14. Reverse time migration in tilted transversely isotropic media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Linbing; Rector III, James W.; Hoversten, G. Michael

    2004-07-01

    This paper presents a reverse time migration (RTM) method for the migration of shot records in tilted transversely isotropic (TTI) media. It is based on the tilted TI acoustic wave equation that was derived from the dispersion relation. The RTM is a full depth migration allowing for velocity to vary laterally as well as vertically and has no dip limitations. The wave equation is solved by a tenth-order finite difference scheme. Using 2D numerical models, we demonstrate that ignoring the tilt angle will introduce both lateral and vertical shifts in imaging. The shifts can be larger than 0.5 wavelength inmore » the vertical direction and 1.5 wavelength in the lateral direction.« less

  15. Computation of large-scale statistics in decaying isotropic turbulence

    NASA Technical Reports Server (NTRS)

    Chasnov, Jeffrey R.

    1993-01-01

    We have performed large-eddy simulations of decaying isotropic turbulence to test the prediction of self-similar decay of the energy spectrum and to compute the decay exponents of the kinetic energy. In general, good agreement between the simulation results and the assumption of self-similarity were obtained. However, the statistics of the simulations were insufficient to compute the value of gamma which corrects the decay exponent when the spectrum follows a k(exp 4) wave number behavior near k = 0. To obtain good statistics, it was found necessary to average over a large ensemble of turbulent flows.

  16. Elastic Characterization of Transversely Isotropic Soft Materials by Dynamic Shear and Asymmetric Indentation

    PubMed Central

    Namani, R.; Feng, Y.; Okamoto, R. J.; Jesuraj, N.; Sakiyama-Elbert, S. E.; Genin, G. M.; Bayly, P. V.

    2012-01-01

    The mechanical characterization of soft anisotropic materials is a fundamental challenge because of difficulties in applying mechanical loads to soft matter and the need to combine information from multiple tests. A method to characterize the linear elastic properties of transversely isotropic soft materials is proposed, based on the combination of dynamic shear testing (DST) and asymmetric indentation. The procedure was demonstrated by characterizing a nearly incompressible transversely isotropic soft material. A soft gel with controlled anisotropy was obtained by polymerizing a mixture of fibrinogen and thrombin solutions in a high field magnet (B = 11.7 T); fibrils in the resulting gel were predominantly aligned parallel to the magnetic field. Aligned fibrin gels were subject to dynamic (20–40 Hz) shear deformation in two orthogonal directions. The shear storage modulus was 1.08 ± 0. 42 kPa (mean ± std. dev.) for shear in a plane parallel to the dominant fiber direction, and 0.58 ± 0.21 kPa for shear in the plane of isotropy. Gels were indented by a rectangular tip of a large aspect ratio, aligned either parallel or perpendicular to the normal to the plane of transverse isotropy. Aligned fibrin gels appeared stiffer when indented with the long axis of a rectangular tip perpendicular to the dominant fiber direction. Three-dimensional numerical simulations of asymmetric indentation were used to determine the relationship between direction-dependent differences in indentation stiffness and material parameters. This approach enables the estimation of a complete set of parameters for an incompressible, transversely isotropic, linear elastic material. PMID:22757501

  17. INTERACTION OF LASER RADIATION WITH MATTER AND OTHER LASER APPLICATIONS: Changes in the emission properties of metal targets during pulse-periodic laser irradiation

    NASA Astrophysics Data System (ADS)

    Konov, Vitalii I.; Pimenov, S. M.; Prokhorov, A. M.; Chapliev, N. I.

    1988-02-01

    A scanning electron microscope was used with a pulse-periodic CO2 laser to discover the laws governing the correlation of the modified microrelief of metal surfaces, subjected to the action of multiple laser pulses, with the emission of charged particles and the luminescence of the irradiated zone. It was established that the influence of sorption and laser-induced desorption on the emission signals may be manifested differently depending on the regime of current generation in the "target-vacuum chamber" circuit.

  18. Comparison of silver release predictions using PARFUME with results from the AGR-2 irradiation experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collin, Blaise P.; Demkowicz, Paul A.; Baldwin, Charles A.

    2016-11-01

    The PARFUME (PARticle FUel ModEl) code was used to predict silver release from tristructural isotropic (TRISO) coated fuel particles and compacts during the second irradiation experiment (AGR-2) of the Advanced Gas Reactor Fuel Development and Qualification program. The PARFUME model for the AGR-2 experiment used the fuel compact volume average temperature for each of the 559 days of irradiation to calculate the release of fission product silver from a representative particle for a select number of AGR-2 compacts and individual fuel particles containing either mixed uranium carbide/oxide (UCO) or 100% uranium dioxide (UO2) kernels. Post-irradiation examination (PIE) measurements were performedmore » to provide data on release of silver from these compacts and individual fuel particles. The available experimental fractional releases of silver were compared to their corresponding PARFUME predictions. Preliminary comparisons show that PARFUME under-predicts the PIE results in UCO compacts and is in reasonable agreement with experimental data for UO2 compacts. The accuracy of PARFUME predictions is impacted by the code limitations in the modeling of the temporal and spatial distributions of the temperature across the compacts. Nevertheless, the comparisons on silver release lie within the same order of magnitude.« less

  19. Development of a liquid tin microjet target for an efficient laser-produced plasma extreme ultraviolet source.

    PubMed

    Higashiguchi, Takeshi; Hamada, Masaya; Kubodera, Shoichi

    2007-03-01

    A regenerative tin liquid microjet target was developed for a high average power extreme ultraviolet (EUV) source. The diameter of the target was smaller than 160 microm and good vacuum lower than 0.5 Pa was maintained during the operation. A maximum EUV conversion efficiency of 1.8% at the Nd:yttrium-aluminum-garnet laser intensity of around 2 x 10(11) Wcm(2) with a spot diameter of 175 microm (full width at half maximum) was observed. The angular distribution of the EUV emission remained almost isotropic, whereas suprathermal ions mainly emerged toward the target normal.

  20. Development of a liquid tin microjet target for an efficient laser-produced plasma extreme ultraviolet source

    NASA Astrophysics Data System (ADS)

    Higashiguchi, Takeshi; Hamada, Masaya; Kubodera, Shoichi

    2007-03-01

    A regenerative tin liquid microjet target was developed for a high average power extreme ultraviolet (EUV) source. The diameter of the target was smaller than 160 μm and good vacuum lower than 0.5 Pa was maintained during the operation. A maximum EUV conversion efficiency of 1.8% at the Nd:yttrium-aluminum-garnet laser intensity of around 2×1011 W/cm2 with a spot diameter of 175 μm (full width at half maximum) was observed. The angular distribution of the EUV emission remained almost isotropic, whereas suprathermal ions mainly emerged toward the target normal.

  1. Investigating source processes of isotropic events

    NASA Astrophysics Data System (ADS)

    Chiang, Andrea

    explosion. In contrast, recovering the announced explosive yield using seismic moment estimates from moment tensor inversion remains challenging but we can begin to put error bounds on our moment estimates using the NSS technique. The estimation of seismic source parameters is dependent upon having a well-calibrated velocity model to compute the Green's functions for the inverse problem. Ideally, seismic velocity models are calibrated through broadband waveform modeling, however in regions of low seismicity velocity models derived from body or surface wave tomography may be employed. Whether a velocity model is 1D or 3D, or based on broadband seismic waveform modeling or the various tomographic techniques, the uncertainty in the velocity model can be the greatest source of error in moment tensor inversion. These errors have not been fully investigated for the nuclear discrimination problem. To study the effects of unmodeled structures on the moment tensor inversion, we set up a synthetic experiment where we produce synthetic seismograms for a 3D model (Moschetti et al., 2010) and invert these data using Green's functions computed with a 1D velocity mode (Song et al., 1996) to evaluate the recoverability of input solutions, paying particular attention to biases in the isotropic component. The synthetic experiment results indicate that the 1D model assumption is valid for moment tensor inversions at periods as short as 10 seconds for the 1D western U.S. model (Song et al., 1996). The correct earthquake mechanisms and source depth are recovered with statistically insignificant isotropic components as determined by the F-test. Shallow explosions are biased by the theoretical ISO-CLVD tradeoff but the tectonic release component remains low, and the tradeoff can be eliminated with constraints from P wave first motion. Path-calibration to the 1D model can reduce non-double-couple components in earthquakes, non-isotropic components in explosions and composite sources and improve

  2. Development of activity pencil beam algorithm using measured distribution data of positron emitter nuclei generated by proton irradiation of targets containing (12)C, (16)O, and (40)Ca nuclei in preparation of clinical application.

    PubMed

    Miyatake, Aya; Nishio, Teiji; Ogino, Takashi

    2011-10-01

    The purpose of this study is to develop a new calculation algorithm that is satisfactory in terms of the requirements for both accuracy and calculation time for a simulation of imaging of the proton-irradiated volume in a patient body in clinical proton therapy. The activity pencil beam algorithm (APB algorithm), which is a new technique to apply the pencil beam algorithm generally used for proton dose calculations in proton therapy to the calculation of activity distributions, was developed as a calculation algorithm of the activity distributions formed by positron emitter nuclei generated from target nuclear fragment reactions. In the APB algorithm, activity distributions are calculated using an activity pencil beam kernel. In addition, the activity pencil beam kernel is constructed using measured activity distributions in the depth direction and calculations in the lateral direction. (12)C, (16)O, and (40)Ca nuclei were determined as the major target nuclei that constitute a human body that are of relevance for calculation of activity distributions. In this study, "virtual positron emitter nuclei" was defined as the integral yield of various positron emitter nuclei generated from each target nucleus by target nuclear fragment reactions with irradiated proton beam. Compounds, namely, polyethylene, water (including some gelatin) and calcium oxide, which contain plenty of the target nuclei, were irradiated using a proton beam. In addition, depth activity distributions of virtual positron emitter nuclei generated in each compound from target nuclear fragment reactions were measured using a beam ON-LINE PET system mounted a rotating gantry port (BOLPs-RGp). The measured activity distributions depend on depth or, in other words, energy. The irradiated proton beam energies were 138, 179, and 223 MeV, and measurement time was about 5 h until the measured activity reached the background level. Furthermore, the activity pencil beam data were made using the activity pencil

  3. Present status of the liquid lithium target facility in the international fusion materials irradiation facility (IFMIF)

    NASA Astrophysics Data System (ADS)

    Nakamura, Hiroo; Riccardi, B.; Loginov, N.; Ara, K.; Burgazzi, L.; Cevolani, S.; Dell'Orco, G.; Fazio, C.; Giusti, D.; Horiike, H.; Ida, M.; Ise, H.; Kakui, H.; Matsui, H.; Micciche, G.; Muroga, T.; Nakamura, Hideo; Shimizu, K.; Sugimoto, M.; Suzuki, A.; Takeuchi, H.; Tanaka, S.; Yoneoka, T.

    2004-08-01

    During the three year key element technology phase of the International Fusion Materials Irradiation Facility (IFMIF) project, completed at the end of 2002, key technologies have been validated. In this paper, these results are summarized. A water jet experiment simulating Li flow validated stable flow up to 20 m/s with a double reducer nozzle. In addition, a small Li loop experiment validated stable Li flow up to 14 m/s. To control the nitrogen content in Li below 10 wppm will require surface area of a V-Ti alloy getter of 135 m 2. Conceptual designs of diagnostics have been carried out. Moreover, the concept of a remote handling system to replace the back wall based on `cut and reweld' and `bayonet' options has been established. Analysis by FMEA showed safe operation of the target system. Recent activities in the transition phase, started in 2003, and plan for the next phase are also described.

  4. Development of a MeV proton beam irradiation system.

    PubMed

    Park, Bum-Sik; Cho, Yong-Sub; Hong, In-Seok

    2008-02-01

    A proton beam irradiation system for the application of the MeV class proton beam, such as an implantation for a power semiconductor device and a smart-cut technology for a semiconductor production process, has been developed. This system consists of a negative ion source, an Einzel lens for a low energy beam transport, accelerating tubes, a gas stripper, a Cockroft-Walton high voltage power supply with 1 MV, a vacuum pumping system, and a high pressure insulating gas system. The negative hydrogen ion source is based on TRIUMF's design. Following the tandem accelerator, a pair of magnets is installed for raster scanning of the MeV proton beam to obtain a uniform irradiation pattern on the target. The system is 7 m long from the ion source to the target and is optimized for the proton beam irradiation. The details of the system development will be described.

  5. Approximate solution to the Hopf Phi equation for isotropic homogeneous fluid turbulence

    NASA Technical Reports Server (NTRS)

    Rosen, G.

    1982-01-01

    Consistent with the observed t to the -n decay laws for isotropic homogeneous turbulence and the form of the longitudinal correlation function f(r, t) for small r, the Hopf Phi equation is shown to be satisfied approximately by an asymptotic power series in t to the -n. This solution features a self-similar universal equilibrium functional which manifests Kolmogoroff-type scaling.

  6. Development and dosimetry of a small animal lung irradiation platform

    PubMed Central

    McGurk, Ross; Hadley, Caroline; Jackson, Isabel L.; Vujaskovic, Zeljko

    2015-01-01

    Advances in large scale screening of medical counter measures for radiation-induced normal tissue toxicity are currently hampered by animal irradiation paradigms that are both inefficient and highly variable among institutions. Here, we introduce a novel high-throughput small animal irradiation platform for use in orthovoltage small animal irradiators. We used radiochromic film and metal oxide semiconductor field effect transistor detectors to examine several parameters, including 2D field uniformity, dose rate consistency, and shielding transmission. We posit that this setup will improve efficiency of drug screens by allowing for simultaneous, targeted irradiation of multiple animals, improving efficiency within a single institution. Additionally, we suggest that measurement of the described parameters in all centers conducting counter measure studies will improve the translatability of findings among institutions. We also investigated the use of tissue equivalent phantoms in performing dosimetry measurements for small animal irradiation experiments. Though these phantoms are commonly used in dosimetry, we recorded a significant difference in both the entrance and target tissue dose rates between euthanized rats and mice with implanted detectors and the corresponding phantom measurement. This suggests that measurements using these phantoms may not provide accurate dosimetry for in vivo experiments. Based on these measurements, we propose that this small animal irradiation platform can increase the capacity of animal studies by allowing for more efficient animal irradiation. We also suggest that researchers fully characterize the parameters of whatever radiation setup is in use in order to facilitate better comparison among institutions. PMID:23091878

  7. Modification of surface oxide layers of titanium targets for increasing lifetime of neutron tubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zakharov, A. M., E-mail: zam@plasma.mephi.ru; Dvoichenkova, O. A.; Evsin, A. E.

    The peculiarities of interaction of hydrogen ions with a titanium target and its surface oxide layer were studied. Two ways of modification of the surface oxide layers of titanium targets for increasing the lifetime of neutron tubes were proposed: (1) deposition of an yttrium oxide barrier layer on the target surface; (2) implementation of neutron tube work regime in which the target is irradiated with ions with energies lower than 1000 eV between high-energy ion irradiation pulses.

  8. IRRADIATION-CAPSULE STUDY OF URANIUM MONOCARBIDE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Price, R.B.; Stahl, D.; Stang, J.H.

    1960-03-01

    Small cylindrical specimens of enriched UC were irradiated to evaluate usefulness as a high-temperature fuel for stationary power reactors. Detailed thermal and nuclear analyses were made to arrive at an appropriate capsule design on the basis of target specimen center-line temperature ( approximately 1500 deg F), specimen surface temperature (1100 deg F), specimen composition (U--5 wt.% C), and acapsule o.d. of 1.125 in. Temperature data from thermocouples inside the capsule indicated that five of the six capsules irradiated operated at close to the design conditions. Irradiation periods for individual capsules were varied to give burnups ranging from 1,000 to 20,000more » Mwd/t of U. Preliminary evidence indicates that this range of burnups was achieved. By using temperature and heat-flux data from the actual irradiations to estimate effective in-pile specimen thermal conductivities, it was found that the conductivity did not appear to vary during the exposures. (auth)« less

  9. X-ray irradiation of yeast cells

    NASA Astrophysics Data System (ADS)

    Masini, Alessandra; Batani, Dimitri; Previdi, Fabio; Conti, Aldo; Pisani, Francesca; Botto, Cesare; Bortolotto, Fulvia; Torsiello, Flavia; Turcu, I. C. Edmond; Allott, Ric M.; Lisi, Nicola; Milani, Marziale; Costato, Michele; Pozzi, Achille; Koenig, Michel

    1997-10-01

    Saccharomyces Cerevisiae yeast cells were irradiated using the soft X-ray laser-plasma source at Rutherford Laboratory. The aim was to produce a selective damage of enzyme metabolic activity at the wall and membrane level (responsible for fermentation) without interfering with respiration (taking place in mitochondria) and with nuclear and DNA activity. The source was calibrated by PIN diodes and X-ray spectrometers. Teflon stripes were chosen as targets for the UV laser, emitting X-rays at about 0.9 keV, characterized by a very large decay exponent in biological matter. X-ray doses to the different cell compartments were calculated following a Lambert-Bouguet-Beer law. After irradiation, the selective damage to metabolic activity at the membrane level was measured by monitoring CO2 production with pressure silicon detectors. Preliminary results gave evidence of pressure reduction for irradiated samples and non-linear response to doses. Also metabolic oscillations were evidenced in cell suspensions and it was shown that X-ray irradiation changed the oscillation frequency.

  10. Initial experience with 3D isotropic high-resolution 3 T MR arthrography of the wrist.

    PubMed

    Sutherland, John K; Nozaki, Taiki; Kaneko, Yasuhito; J Yu, Hon; Rafijah, Gregory; Hitt, David; Yoshioka, Hiroshi

    2016-01-16

    Our study was performed to evaluate the image quality of 3 T MR wrist arthrograms with attention to ulnar wrist structures, comparing image quality of isotropic 3D proton density fat suppressed turbo spin echo (PDFS TSE) sequence versus standard 2D 3 T sequences as well as comparison with 1.5 T MR arthrograms. Eleven consecutive 3 T MR wrist arthrograms were performed and the following sequences evaluated: 3D isotropic PDFS, repetition time/echo time (TR/TE) 1400/28.3 ms, voxel size 0.35x0.35x0.35 mm, acquisition time 5 min; 2D coronal sequences with slice thickness 2 mm: T1 fat suppressed turbo spin echo (T1FS TSE) (TR/TE 600/20 ms); proton density (PD) TSE (TR/TE 3499/27 ms). A 1.5 T group of 18 studies with standard sequences were evaluated for comparison. All MR imaging followed fluoroscopically guided intra-articular injection of dilute gadolinium contrast. Qualitative assessment related to delineation of anatomic structures between 1.5 T and 3 T MR arthrograms was carried out using Mann-Whitney test and the differences in delineation of anatomic structures among each sequence in 3 T group were analyzed with Wilcoxon signed-rank test. Quantitative assessment of mean relative signal intensity (SI) and relative contrast measurements was performed using Wilcoxon signed-rank test. Mean qualitative scores for 3 T sequences were significantly higher than 1.5 T (p < 0.01), with isotropic 3D PDFS sequence having highest mean qualitative scores (p < 0.05). Quantitative analysis demonstrated no significant difference in relative signal intensity among the 3 T sequences. Significant differences were found in relative contrast between fluid-bone and fluid-fat comparing 3D and 2D PDFS (p < 0.01). 3D isotropic PDFS sequence showed promise in both qualitative and quantitative assessment, suggesting this may be useful for MR wrist arthrograms at 3 T. Primary reasons for diagnostic potential include the ability to make reformations in any

  11. Nonimaging solar concentrator with near-uniform irradiance for photovoltaic arrays

    NASA Astrophysics Data System (ADS)

    O'Gallagher, Joseph J.; Winston, Roland; Gee, Randy

    2001-11-01

    We report results of a study our group has undertaken to design a solar concentrator with uniform irradiance on a planar target. This attribute is especially important for photovoltaic concentrators. We find that a variety of optical mixers, some incorporating a moderate level of concentration, can be quite effective in achieving near uniform irradiance.

  12. Dose controlled low energy electron irradiator for biomolecular films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, S. V. K., E-mail: svkk@tifr.res.in; Tare, Satej T.; Upalekar, Yogesh V.

    2016-03-15

    We have developed a multi target, Low Energy Electron (LEE), precise dose controlled irradiator for biomolecular films. Up to seven samples can be irradiated one after another at any preset electron energy and dose under UHV conditions without venting the chamber. In addition, one more sample goes through all the steps except irradiation, which can be used as control for comparison with the irradiated samples. All the samples are protected against stray electron irradiation by biasing them at −20 V during the entire period, except during irradiation. Ethernet based communication electronics hardware, LEE beam control electronics and computer interface weremore » developed in house. The user Graphical User Interface to control the irradiation and dose measurement was developed using National Instruments Lab Windows CVI. The working and reliability of the dose controlled irradiator has been fully tested over the electron energy range of 0.5 to 500 eV by studying LEE induced single strand breaks to ΦX174 RF1 dsDNA.« less

  13. Theories and applications of second-order correlation of longitudinal velocity increments at three points in isotropic turbulence

    NASA Astrophysics Data System (ADS)

    Wu, J. Z.; Fang, L.; Shao, L.; Lu, L. P.

    2018-06-01

    In order to introduce new physics to traditional two-point correlations, we define the second-order correlation of longitudinal velocity increments at three points and obtain the analytical expressions in isotropic turbulence. By introducing the Kolmogorov 4/5 law, this three-point correlation explicitly contains velocity second- and third-order moments, which correspond to energy and energy transfer respectively. The combination of them then shows additional information of non-equilibrium turbulence by comparing to two-point correlations. Moreover, this three-point correlation shows the underlying inconsistency between numerical interpolation and three-point scaling law in numerical calculations, and inspires a preliminary model to correct this problem in isotropic turbulence.

  14. Isotropic-nematic phase transition in aqueous sepiolite suspensions.

    PubMed

    Woolston, Phillip; van Duijneveldt, Jeroen S

    2015-01-01

    Aqueous suspensions of sepiolite clay rods in water tend to form gels on increase of concentration. Here it is shown how addition of a small amount (0.1% of the clay mass) of a common stabiliser for clay suspensions, sodium polyacrylate, can allow the observation of an isotropic-nematic liquid crystal phase transition. This transition was found to move to higher clay concentrations upon adding NaCl, with samples containing 10(-3) M salt or above only displaying a gel phase. Even samples that initially formed liquid crystals had a tendency to form gels after several weeks, possibly due to Mg(2+) ions leaching from the clay mineral. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Temperature Dependence of the Viscosity of Isotropic Liquids

    NASA Astrophysics Data System (ADS)

    Jadzyn, J.; Czechowski, G.; Lech, T.

    1999-04-01

    Temperature dependence of the shear viscosity measured for isotropic liquids belonging to the three homologous series: 4-(trans-4'-n-alkylcyclohexyl) isothiocyanatobenzenes (Cn H2n+1 CyHx Ph NCS; nCHBT, n=0-12), n-alkylcyanobiphenyls (CnH2n+1 Ph Ph CN; nCB, n=2-12) and 1,n-alkanediols (HO(CH2)nOH; 1,nAD, n=2-10) were analysed with the use of Arrhenius equation and its two modifications: Vogel--Fulcher and proposed in this paper. The extrapolation of the isothermal viscosity of 1,n-alkanediols (n=2-10) to n=1 leads to an interesting conclusion concerning the expected viscosity of methanediol, HOCH2OH, the compound strongly unstable in a pure state.

  16. Laboratory simulation of irradiation-induced dielectric breakdown in spacecraft charging

    NASA Technical Reports Server (NTRS)

    Yadlowsky, E. J.; Churchill, R. J.; Hazelton, R. C.

    1980-01-01

    The discharging of dielectric samples irradiated by a beam of monoenergetic electrons is investigated. The development of a model, or models, which describe the discharge phenomena occuring on the irradiated dielectric targets is discussed. The electrical discharge characteristics of irradiated dielectric samples are discussed and the electrical discharge paths along dielectric surfaces and within the dielectric material are determined. The origin and destination of the surface emitted particles is examined and the charge and energy balance in the system is evaluated.

  17. Integration of optical imaging with a small animal irradiator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weersink, Robert A., E-mail: robert.weersink@rmp.uhn.on.ca; Ansell, Steve; Wang, An

    Purpose: The authors describe the integration of optical imaging with a targeted small animal irradiator device, focusing on design, instrumentation, 2D to 3D image registration, 2D targeting, and the accuracy of recovering and mapping the optical signal to a 3D surface generated from the cone-beam computed tomography (CBCT) imaging. The integration of optical imaging will improve targeting of the radiation treatment and offer longitudinal tracking of tumor response of small animal models treated using the system. Methods: The existing image-guided small animal irradiator consists of a variable kilovolt (peak) x-ray tube mounted opposite an aSi flat panel detector, both mountedmore » on a c-arm gantry. The tube is used for both CBCT imaging and targeted irradiation. The optical component employs a CCD camera perpendicular to the x-ray treatment/imaging axis with a computer controlled filter for spectral decomposition. Multiple optical images can be acquired at any angle as the gantry rotates. The optical to CBCT registration, which uses a standard pinhole camera model, was modeled and tested using phantoms with markers visible in both optical and CBCT images. Optically guided 2D targeting in the anterior/posterior direction was tested on an anthropomorphic mouse phantom with embedded light sources. The accuracy of the mapping of optical signal to the CBCT surface was tested using the same mouse phantom. A surface mesh of the phantom was generated based on the CBCT image and optical intensities projected onto the surface. The measured surface intensity was compared to calculated surface for a point source at the actual source position. The point-source position was also optimized to provide the closest match between measured and calculated intensities, and the distance between the optimized and actual source positions was then calculated. This process was repeated for multiple wavelengths and sources. Results: The optical to CBCT registration error was 0.8 mm. Two

  18. TU-H-CAMPUS-TeP2-02: FLASH Irradiation Improves the Therapeutic Index Following GI Tract Irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schueler, E; Trovati, S; King, G

    Purpose: To investigate and characterize the radiobiological effectiveness of very high dose rate radiotherapy (FLASH) compared to conventional irradiation in an in vivo model. Methods: The gastrointestinal (GI) tract of C57BL/6 mice were irradiated with doses ranging between 10 and 18 Gy using a custom stereotactic jig. A Varian Clinac 21EX was modified to allow dose rates ranging from 0.05 to 240 Gy/s at the position of the mirror. With the gantry at 180 degrees, the jig holding the individual animals was placed above the mirror to take advantage of the reduced source to target distance. Mice were irradiated withmore » 20MeV electrons. Following irradiation, the mice were monitored twice daily for morbidity and daily for weight changes. Results: Mice irradiated with FLASH irradiation had lower weight loss compared to the mice receiving conventional irradiation. Following FLASH irradiation, a maximum weight loss of ∼20% was observed at day 6 with subsequent recovery, while following conventional irradiation, higher weight losses was observed with fewer instances of recovery. Concerning survival, all mice in the conventionally irradiated groups had a 100% mortality in the range of 15.5–18 Gy, while the mice irradiated with FLASH irradiation had a 100% survival in the same range. Conclusion: These results have demonstrated proof of principle that FLASH irradiations have a dramatic impact on the overall survival of mice following GI tract irradiations. If the increase in the therapeutic window can be validated and understood, this would revolutionize the field of radiation oncology and lead to increased cure rates with reduced side effects following treatment, resulting in increased quality of life for cancer survivors. Funding: DoD, Award#:W81XWH-14-1-0014, Weston Havens Foundation, Bio-X (Stanford University), the Office of the Dean of the Medical School, the Office of the Provost (Stanford University), and the Swedish Childhood Cancer Foundation; BL and PM

  19. Nonlinear elastic inclusions in isotropic solids.

    PubMed

    Yavari, Arash; Goriely, Alain

    2013-12-08

    We introduce a geometric framework to calculate the residual stress fields and deformations of nonlinear solids with inclusions and eigenstrains. Inclusions are regions in a body with different reference configurations from the body itself and can be described by distributed eigenstrains. Geometrically, the eigenstrains define a Riemannian 3-manifold in which the body is stress-free by construction. The problem of residual stress calculation is then reduced to finding a mapping from the Riemannian material manifold to the ambient Euclidean space. Using this construction, we find the residual stress fields of three model systems with spherical and cylindrical symmetries in both incompressible and compressible isotropic elastic solids. In particular, we consider a finite spherical ball with a spherical inclusion with uniform pure dilatational eigenstrain and we show that the stress in the inclusion is uniform and hydrostatic. We also show how singularities in the stress distribution emerge as a consequence of a mismatch between radial and circumferential eigenstrains at the centre of a sphere or the axis of a cylinder.

  20. Nonlinear elastic inclusions in isotropic solids

    PubMed Central

    Yavari, Arash; Goriely, Alain

    2013-01-01

    We introduce a geometric framework to calculate the residual stress fields and deformations of nonlinear solids with inclusions and eigenstrains. Inclusions are regions in a body with different reference configurations from the body itself and can be described by distributed eigenstrains. Geometrically, the eigenstrains define a Riemannian 3-manifold in which the body is stress-free by construction. The problem of residual stress calculation is then reduced to finding a mapping from the Riemannian material manifold to the ambient Euclidean space. Using this construction, we find the residual stress fields of three model systems with spherical and cylindrical symmetries in both incompressible and compressible isotropic elastic solids. In particular, we consider a finite spherical ball with a spherical inclusion with uniform pure dilatational eigenstrain and we show that the stress in the inclusion is uniform and hydrostatic. We also show how singularities in the stress distribution emerge as a consequence of a mismatch between radial and circumferential eigenstrains at the centre of a sphere or the axis of a cylinder. PMID:24353470

  1. Random isotropic one-dimensional XY-model

    NASA Astrophysics Data System (ADS)

    Gonçalves, L. L.; Vieira, A. P.

    1998-01-01

    The 1D isotropic s = ½XY-model ( N sites), with random exchange interaction in a transverse random field is considered. The random variables satisfy bimodal quenched distributions. The solution is obtained by using the Jordan-Wigner fermionization and a canonical transformation, reducing the problem to diagonalizing an N × N matrix, corresponding to a system of N noninteracting fermions. The calculations are performed numerically for N = 1000, and the field-induced magnetization at T = 0 is obtained by averaging the results for the different samples. For the dilute case, in the uniform field limit, the magnetization exhibits various discontinuities, which are the consequence of the existence of disconnected finite clusters distributed along the chain. Also in this limit, for finite exchange constants J A and J B, as the probability of J A varies from one to zero, the saturation field is seen to vary from Γ A to Γ B, where Γ A(Γ B) is the value of the saturation field for the pure case with exchange constant equal to J A(J B) .

  2. Irradiation for quarantine control of the invasive light brown apple moth, Epiphyas

    USDA-ARS?s Scientific Manuscript database

    The effects of irradiation on egg, larval, and pupal development, and adult reproduction in light brown apple moth, Epiphyas postvittana (Walker) (Lepidoptera: Tortricidae), were examined. Eggs, neonates, early instars, late instars, early pupae and late pupae were irradiated at target doses of 60, ...

  3. Effects of isotropic and anisotropic slip on droplet impingement on a superhydrophobic surface

    NASA Astrophysics Data System (ADS)

    Clavijo, Cristian E.; Crockett, Julie; Maynes, Daniel

    2015-12-01

    The dynamics of single droplet impingement on micro-textured superhydrophobic surfaces with isotropic and anisotropic slip are investigated. While several analytical models exist to predict droplet impact on superhydrophobic surfaces, no previous model has rigorously considered the effect of the shear-free region above the gas cavities resulting in an apparent slip that is inherent for many of these surfaces. This paper presents a model that accounts for slip during spreading and recoiling. A broad range of Weber numbers and slip length values were investigated at low Ohnesorge numbers. The results show that surface slip exerts negligible influence throughout the impingement process for low Weber numbers but can exert significant influence for high Weber numbers (on the order of 102). When anisotropic slip prevails, the droplet exhibits an elliptical shape at the point of maximum spread, with greater eccentricity for increasing slip and increasing Weber number. Experiments were performed on isotropic and anisotropic micro-structured superhydrophobic surfaces and the agreement between the experimental results and the model is very good.

  4. Modeling the subfilter scalar variance for large eddy simulation in forced isotropic turbulence

    NASA Astrophysics Data System (ADS)

    Cheminet, Adam; Blanquart, Guillaume

    2011-11-01

    Static and dynamic model for the subfilter scalar variance in homogeneous isotropic turbulence are investigated using direct numerical simulations (DNS) of a lineary forced passive scalar field. First, we introduce a new scalar forcing technique conditioned only on the scalar field which allows the fluctuating scalar field to reach a statistically stationary state. Statistical properties, including 2nd and 3rd statistical moments, spectra, and probability density functions of the scalar field have been analyzed. Using this technique, we performed constant density and variable density DNS of scalar mixing in isotropic turbulence. The results are used in an a-priori study of scalar variance models. Emphasis is placed on further studying the dynamic model introduced by G. Balarac, H. Pitsch and V. Raman [Phys. Fluids 20, (2008)]. Scalar variance models based on Bedford and Yeo's expansion are accurate for small filter width but errors arise in the inertial subrange. Results suggest that a constant coefficient computed from an assumed Kolmogorov spectrum is often sufficient to predict the subfilter scalar variance.

  5. Isotropic three-dimensional T2 mapping of knee cartilage: Development and validation.

    PubMed

    Colotti, Roberto; Omoumi, Patrick; Bonanno, Gabriele; Ledoux, Jean-Baptiste; van Heeswijk, Ruud B

    2018-02-01

    1) To implement a higher-resolution isotropic 3D T 2 mapping technique that uses sequential T 2 -prepared segmented gradient-recalled echo (Iso3DGRE) images for knee cartilage evaluation, and 2) to validate it both in vitro and in vivo in healthy volunteers and patients with knee osteoarthritis. The Iso3DGRE sequence with an isotropic 0.6 mm spatial resolution was developed on a clinical 3T MR scanner. Numerical simulations were performed to optimize the pulse sequence parameters. A phantom study was performed to validate the T 2 estimation accuracy. The repeatability of the sequence was assessed in healthy volunteers (n = 7). T 2 values were compared with those from a clinical standard 2D multislice multiecho (MSME) T 2 mapping sequence in knees of healthy volunteers (n = 13) and in patients with knee osteoarthritis (OA, n = 5). The numerical simulations resulted in 100 excitations per segment and an optimal radiofrequency (RF) excitation angle of 15°. The phantom study demonstrated a good correlation of the technique with the reference standard (slope 0.9 ± 0.05, intercept 0.2 ± 1.7 msec, R 2 ≥ 0.99). Repeated measurements of cartilage T 2 values in healthy volunteers showed a coefficient of variation of 5.6%. Both Iso3DGRE and MSME techniques found significantly higher cartilage T 2 values (P < 0.03) in OA patients. Iso3DGRE precision was equal to that of the MSME T 2 mapping in healthy volunteers, and significantly higher in OA (P = 0.01). This study successfully demonstrated that high-resolution isotropic 3D T 2 mapping for knee cartilage characterization is feasible, accurate, repeatable, and precise. The technique allows for multiplanar reformatting and thus T 2 quantification in any plane of interest. 1 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018;47:362-371. © 2017 International Society for Magnetic Resonance in Medicine.

  6. Sound transmission through lined, composite panel structures: Transversely isotropic poro-elastic model

    NASA Astrophysics Data System (ADS)

    Kim, Jeong-Woo

    A joint experimental and analytical investigation of the sound transmission loss (STL) and two-dimensional free wave propagation in composite sandwich panels is presented here. An existing panel, a Nomex honeycomb sandwich panel, was studied in detail. For the purpose of understanding the typical behavior of sandwich panels, a composite structure comprising two aluminum sheets with a relatively soft, poro-elastic foam core was also constructed and studied. The cores of both panels were modeled using an anisotropic (transversely isotropic) poro-elastic material theory. Several estimation methods were used to obtain the material properties of the honeycomb core and the skin plates to be used in the numerical calculations. Appropriate values selected from among the estimates were used in the STL and free wave propagation models. The prediction model was then verified in two ways: first, the calculated wave speeds and STL of a single poro-elastic layer were numerically verified by comparison with the predictions of a previously developed isotropic model. Secondly, to physically validate the transversely isotropic model, the measured STL and the phase speeds of the sandwich panels were compared with their predicted values. To analyze the actual treatment of a fuselage structure, multi-layered configurations, including a honeycomb panel and several layers such as air gaps, acoustic blankets and membrane partitions, were formulated. Then, to find the optimal solution for improving the sound barrier performance of an actual fuselage system, air layer depth and glass fiber lining effects were investigated by using these multi-layer models. By using the free wave propagation model, the first anti-symmetric and symmetric modes of the sandwich panels were characterized to allow the identification of the coincidence frequencies of the sandwich panel. The behavior of the STL could then be clearly explained by comparison with the free wave propagation solutions. By performing a

  7. On the role of the transformation eigenstrain in the growth or shrinkage of spheroidal isotropic precipitations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischer, F.D.; Boehm, H.J.

    The jumps of the strain and stress tensors on the surface of elastic homogeneous or inhomogeneous ellipsoidal inclusions embedded in an elastic matrix are obtained from results reported in the literature. They are used to derive closed-form expressions for the thermodynamic force in such matrix-inclusion systems that are subjected to a generally defined homogeneous transformation eigenstrain. A detailed study is presented for an isotropic spheroidal inclusion in an isotropic matrix in which the most important parameters are the inclusion's aspect ratio {alpha} and an eigenstrain triaxiality parameter d-bar. The fluctuations of the thermodynamic force are investigated for a set ofmore » specific transformation eigenstrain tensors and are presented for inclusion shapes ranging from disk-like to fiber-like spheroids.« less

  8. CRADA/NFE-15-05761 Report: Additive Manufacturing of Isotropic NdFeB Bonded Permanent Magnets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paranthaman, M. Parans

    2016-07-18

    The technical objective of this technical collaboration phase I proposal is to fabricate net shape isotropic NdFeB bonded magnets utilizing additive manufacturing technologies at the ORNL MDF. The goal is to form complex shapes of thermoplastic and/or thermoset bonded magnets without expensive tooling and with minimal wasted material. Two additive manufacturing methods; the binder jet process; and big area additive manufacturing (BAAM) were used. Binder jetting produced magnets with the measured density of the magnet of 3.47 g/cm 3, close to 46% relative to the NdFeB single crystal density of 7.6 g/cm 3 were demonstrated. Magnetic measurements indicate that theremore » is no degradation in the magnetic properties. In addition, BAAM was used to fabricate isotropic near-net-shape NdFeB bonded magnets with magnetic and mechanical properties comparable or better than those of traditional injection molded magnets. The starting polymer magnet composite pellets consist of 65 vol% isotropic NdFeB powder and 35 vol% polyamide (Nylon-12). The density of the final BAAM magnet product reached 4.8 g/cm 3, and the room temperature magnetic properties are: Intrinsic coercivity Hci = 8.65 kOe, Remanence Br = 5.07 kG, and energy product (BH) max = 5.47 MGOe (43.50 kJ/m 3). This study provides a new pathway for preparing near-net shape bonded magnets for various magnetic applications.« less

  9. AGR-5/6/7 Irradiation Test Predictions using PARFUME

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skerjanc, William F.

    PARFUME, (PARticle FUel ModEl) a fuel performance modeling code used for high temperature gas-cooled reactors (HTGRs), was used to model the Advanced Gas Reactor (AGR)-5/6/7 irradiation test using predicted physics and thermal hydraulics data. The AGR-5/6/7 test consists of the combined fifth, sixth, and seventh planned irradiations of the AGR Fuel Development and Qualification Program. The AGR-5/6/7 test train is a multi-capsule, instrumented experiment that is designed for irradiation in the 133.4-mm diameter north east flux trap (NEFT) position of Advanced Test Reactor (ATR). Each capsule contains compacts filled with uranium oxycarbide (UCO) unaltered fuel particles. This report documents themore » calculations performed to predict the failure probability of tristructural isotropic (TRISO)-coated fuel particles during the AGR-5/6/7 experiment. In addition, this report documents the calculated source term from the driver fuel. The calculations include modeling of the AGR-5/6/7 irradiation that is scheduled to occur from October 2017 to April 2021 over a total of 13 ATR cycles, including nine normal cycles and four Power Axial Locator Mechanism (PALM) cycle for a total between 500 – 550 effective full power days (EFPD). The irradiation conditions and material properties of the AGR-5/6/7 test predicted zero fuel particle failures in Capsules 1, 2, and 4. Fuel particle failures were predicted in Capsule 3 due to internal particle pressure. These failures were predicted in the highest temperature compacts. Capsule 5 fuel particle failures were due to inner pyrolytic carbon (IPyC) cracking causing localized stresses concentrations in the SiC layer. This capsule predicted the highest particle failures due to the lower irradiation temperature. In addition, shrinkage of the buffer and IPyC layer during irradiation resulted in formation of a buffer-IPyC gap. The two capsules at the two ends of the test train, Capsules 1 and 5 experienced the smallest buffer-IPyC gap

  10. Projected Improvements in Accelerated Partial Breast Irradiation Using a Novel Breast Stereotactic Radiotherapy Device: A Dosimetric Analysis.

    PubMed

    Snider, James W; Mutaf, Yildirim; Nichols, Elizabeth; Hall, Andrea; Vadnais, Patrick; Regine, William F; Feigenberg, Steven J

    2017-01-01

    Accelerated partial breast irradiation has caused higher than expected rates of poor cosmesis. At our institution, a novel breast stereotactic radiotherapy device has demonstrated dosimetric distributions similar to those in brachytherapy. This study analyzed comparative dose distributions achieved with the device and intensity-modulated radiation therapy accelerated partial breast irradiation. Nine patients underwent computed tomography simulation in the prone position using device-specific immobilization on an institutional review board-approved protocol. Accelerated partial breast irradiation target volumes (planning target volume_10mm) were created per the National Surgical Adjuvant Breast and Bowel Project B-39 protocol. Additional breast stereotactic radiotherapy volumes using smaller margins (planning target volume_3mm) were created based on improved immobilization. Intensity-modulated radiation therapy and breast stereotactic radiotherapy accelerated partial breast irradiation plans were separately generated for appropriate volumes. Plans were evaluated based on established dosimetric surrogates of poor cosmetic outcomes. Wilcoxon rank sum tests were utilized to contrast volumes of critical structures receiving a percentage of total dose ( Vx). The breast stereotactic radiotherapy device consistently reduced dose to all normal structures with equivalent target coverage. The ipsilateral breast V20-100 was significantly reduced ( P < .05) using planning target volume_10mm, with substantial further reductions when targeting planning target volume_3mm. Doses to the chest wall, ipsilateral lung, and breast skin were also significantly lessened. The breast stereotactic radiotherapy device's uniform dosimetric improvements over intensity-modulated accelerated partial breast irradiation in this series indicate a potential to improve outcomes. Clinical trials investigating this benefit have begun accrual.

  11. Phase-field modeling of void anisotropic growth behavior in irradiated zirconium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, G. M.; Wang, H.; Lin, De-Ye

    2017-06-01

    A three-dimensional (3D) phase field model was developed to study the effects of surface energy and diffusivity anisotropy on void growth behavior in irradiated Zr. The gamma surface energy function, which is used in the phase field model, was developed with the surface energy anisotropy calculated from the molecular dynamics (MD) simulations. It is assumed that vacancies have much larger mobility in c-axis than a- and b- axes while interstitials have much larger mobility in basal plane then that in c-axis. With the model, the equilibrium void morphology and the effect of defect concentrations and defect mobility anisotropy on voidmore » growth behavior were simulated. The simulations demonstrated that 1) The developed phase-field model can correctly reproduce the faceted void morphology predicted by the Wullf construction. 2) With isotropic diffusivity the void prefers to grow on the basal plane. 3) When the vacancy has large mobility along c-axis and interstitial has a large mobility on the basal plane of hexagonal closed packed (hcp) Zr alloys a platelet void grows in c-direction and shrinks on the basal plane, which is in agreement with the experimental observation of void growth behavior in irradiated Zr.« less

  12. A target for production of radioxenons

    NASA Technical Reports Server (NTRS)

    Blue, J. W.; Leonard, R.; Jha, S.; Sodd, V. J.; Vincent, J. S.

    1976-01-01

    A liquid cesium target has been developed which allows the production and separate identification of the neutron deficient isotopes of xenon. The present report describes irradiations utilizing 34 to 41 MeV protons to produce millicurie quantities of Xe-127 and Xe-129m. At higher energies, however, the target could be used without modification to produce xenon isotopes as light as 119.

  13. Comparison of Irradiation and Wolbachia Based Approaches for Sterile-Male Strategies Targeting Aedes albopictus

    PubMed Central

    Atyame, Célestine M.; Labbé, Pierrick; Lebon, Cyrille; Weill, Mylène; Moretti, Riccardo; Marini, Francesca; Gouagna, Louis Clément; Calvitti, Maurizio; Tortosa, Pablo

    2016-01-01

    The global expansion of Aedes albopictus together with the absence of vaccines for most of the arboviruses transmitted by this mosquito has stimulated the development of sterile-male strategies aiming at controlling disease transmission through the suppression of natural vector populations. In this context, two environmentally friendly control strategies, namely the Sterile Insect Technique (SIT) and the Wolbachia-based Incompatible Insect Technique (IIT) are currently being developed in several laboratories worldwide. So far however, there is a lack of comparative assessment of these strategies under the same controlled conditions. Here, we compared the mating capacities, i.e. insemination capacity, sterilization capacity and mating competitiveness of irradiated (35 Gy) and incompatible Ae. albopictus males at different ages and ratios under laboratory controlled conditions. Our data show that there was no significant difference in insemination capacity of irradiated and incompatible males, both male types showing lower capacities than untreated males at 1 day but recovering full capacity within 5 days following emergence. Regarding mating competitiveness trials, a global observed trend is that incompatible males tend to induce a lower hatching rate than irradiated males in cage controlled confrontations. More specifically, incompatible males were found more competitive than irradiated males in 5:1 ratio regardless of age, while irradiated males were only found more competitive than incompatible males in the 1:1 ratio at 10 days old. Overall, under the tested conditions, IIT seemed to be slightly more effective than SIT. However, considering that a single strategy will likely not be adapted to all environments, our data stimulates the need for comparative assessments of distinct strategies in up-scaled conditions in order to identify the most suitable and safe sterilizing technology to be implemented in a specific environmental setting and to identify the

  14. Proton irradiated graphite grades for a long baseline neutrino facility experiment

    NASA Astrophysics Data System (ADS)

    Simos, N.; Nocera, P.; Zhong, Z.; Zwaska, R.; Mokhov, N.; Misek, J.; Ammigan, K.; Hurh, P.; Kotsina, Z.

    2017-07-01

    In search of a low-Z pion production target for the Long Baseline Neutrino Facility (LBNF) of the Deep Underground Neutrino Experiment (DUNE) four graphite grades were irradiated with protons in the energy range of 140-180 MeV, to peak fluence of ˜6.1 ×1020 p /cm2 and irradiation temperatures between 120 - 200 °C . The test array included POCO ZXF-5Q, Toyo-Tanso IG 430, Carbone-Lorraine 2020 and SGL R7650 grades of graphite. Irradiation was performed at the Brookhaven Linear Isotope Producer. Postirradiation analyses were performed with the objective of (a) comparing their response under the postulated irradiation conditions to guide a graphite grade selection for use as a pion target and (b) understanding changes in physical and mechanical properties as well as microstructure that occurred as a result of the achieved fluence and in particular at this low-temperature regime where pion graphite targets are expected to operate. A further goal of the postirradiation evaluation was to establish a proton-neutron correlation damage on graphite that will allow for the use of a wealth of available neutron-based damage data in proton-based studies and applications. Macroscopic postirradiation analyses as well as energy dispersive x-ray diffraction of 200 KeV x rays at the NSLS synchrotron of Brookhaven National Laboratory were employed. The macroscopic analyses revealed differences in the physical and strength properties of the four grades with behavior however under proton irradiation that qualitatively agrees with that reported for graphite under neutrons for the same low temperature regime and in particular the increase of thermal expansion, strength and Young's modulus. The proton fluence level of ˜1020 cm-2 where strength reaches a maximum before it begins to decrease at higher fluences has been identified and it agrees with neutron-induced changes. X-ray diffraction analyses of the proton irradiated graphite revealed for the first time the similarity in

  15. Proton irradiated graphite grades for a long baseline neutrino facility experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simos, N.; Nocera, P.; Zhong, Z.

    In search of a low-Z pion production target for the Long Baseline Neutrino Facility (LBNF) of the Deep Underground Neutrino Experiment (DUNE) four graphite grades were irradiated with protons in the energy range of 140–180 MeV, to peak fluence of ~6.1×10 20 p/cm 2 and irradiation temperatures between 120–200 °C. The test array included POCO ZXF-5Q, Toyo-Tanso IG 430, Carbone-Lorraine 2020 and SGL R7650 grades of graphite. Irradiation was performed at the Brookhaven Linear Isotope Producer. Postirradiation analyses were performed with the objective of (a) comparing their response under the postulated irradiation conditions to guide a graphite grade selection for use asmore » a pion target and (b) understanding changes in physical and mechanical properties as well as microstructure that occurred as a result of the achieved fluence and in particular at this low-temperature regime where pion graphite targets are expected to operate. A further goal of the postirradiation evaluation was to establish a proton-neutron correlation damage on graphite that will allow for the use of a wealth of available neutron-based damage data in proton-based studies and applications. Macroscopic postirradiation analyses as well as energy dispersive x-ray diffraction of 200 KeV x rays at the NSLS synchrotron of Brookhaven National Laboratory were employed. The macroscopic analyses revealed differences in the physical and strength properties of the four grades with behavior however under proton irradiation that qualitatively agrees with that reported for graphite under neutrons for the same low temperature regime and in particular the increase of thermal expansion, strength and Young’s modulus. The proton fluence level of ~10 20 cm -2 where strength reaches a maximum before it begins to decrease at higher fluences has been identified and it agrees with neutron-induced changes. X-ray diffraction analyses of the proton irradiated graphite revealed for the first time the

  16. Proton irradiated graphite grades for a long baseline neutrino facility experiment

    DOE PAGES

    Simos, N.; Nocera, P.; Zhong, Z.; ...

    2017-07-24

    In search of a low-Z pion production target for the Long Baseline Neutrino Facility (LBNF) of the Deep Underground Neutrino Experiment (DUNE) four graphite grades were irradiated with protons in the energy range of 140–180 MeV, to peak fluence of ~6.1×10 20 p/cm 2 and irradiation temperatures between 120–200 °C. The test array included POCO ZXF-5Q, Toyo-Tanso IG 430, Carbone-Lorraine 2020 and SGL R7650 grades of graphite. Irradiation was performed at the Brookhaven Linear Isotope Producer. Postirradiation analyses were performed with the objective of (a) comparing their response under the postulated irradiation conditions to guide a graphite grade selection for use asmore » a pion target and (b) understanding changes in physical and mechanical properties as well as microstructure that occurred as a result of the achieved fluence and in particular at this low-temperature regime where pion graphite targets are expected to operate. A further goal of the postirradiation evaluation was to establish a proton-neutron correlation damage on graphite that will allow for the use of a wealth of available neutron-based damage data in proton-based studies and applications. Macroscopic postirradiation analyses as well as energy dispersive x-ray diffraction of 200 KeV x rays at the NSLS synchrotron of Brookhaven National Laboratory were employed. The macroscopic analyses revealed differences in the physical and strength properties of the four grades with behavior however under proton irradiation that qualitatively agrees with that reported for graphite under neutrons for the same low temperature regime and in particular the increase of thermal expansion, strength and Young’s modulus. The proton fluence level of ~10 20 cm -2 where strength reaches a maximum before it begins to decrease at higher fluences has been identified and it agrees with neutron-induced changes. X-ray diffraction analyses of the proton irradiated graphite revealed for the first time the

  17. Stochastic Theory for the Clustering of Rapidly Settling, Low-Inertia Particle Pairs in Isotropic Turbulence - II

    NASA Astrophysics Data System (ADS)

    Rani, Sarma; Gupta, Vijay; Koch, Donald

    2017-11-01

    A stochastic theory is developed to predict the Radial Distribution Function (RDF) of monodisperse, rapidly settling, low-inertia particle pairs in isotropic turbulence. In the second version of the theory (T2), the dimensionless strain-rate and rotation-rate tensors ``seen'' by the primary particle are assumed to be Gaussian distributed, where the strain-rate and rotation-rate tensors are non-dimensionlized using the instantaneous dissipation rate and enstrophy, respectively. Accordingly, closure is again derived for the drift flux driving particle clustering, in the asympotic limits of Stokes number St =τp /τη << 1 , and settling paramater Sv = gτp /uη >> 1 . Only the drift flux differs for T1 and T2, while the diffusive flux remains the same. The RDFs for rapidly settling pairs again show an inverse power dependency on pair separation r with an exponent, c1, that is proportional to St2 . However, in contrast to T1, the c1 values predicted by T2 show good qualitative and resonable quantitative agreement with the c1 values obtained from DNS of settling particles in isotropic turbulence. Further, the T2-predicted c1 values are smaller than those obtained from DNS of non-settling particles in isotropic turbulence. Funding from the CBET Division of the National Science Foundation is gratefully acknowledged.

  18. Magnetic Resonance Lymphography-Guided Selective High-Dose Lymph Node Irradiation in Prostate Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meijer, Hanneke J.M., E-mail: H.Meijer@rther.umcn.nl; Debats, Oscar A.; Kunze-Busch, Martina

    2012-01-01

    Purpose: To demonstrate the feasibility of magnetic resonance lymphography (MRL) -guided delineation of a boost volume and an elective target volume for pelvic lymph node irradiation in patients with prostate cancer. The feasibility of irradiating these volumes with a high-dose boost to the MRL-positive lymph nodes in conjunction with irradiation of the prostate using intensity-modulated radiotherapy (IMRT) was also investigated. Methods and Materials: In 4 prostate cancer patients with a high risk of lymph node involvement but no enlarged lymph nodes on CT and/or MRI, MRL detected pathological lymph nodes in the pelvis. These lymph nodes were identified and delineatedmore » on a radiotherapy planning CT to create a boost volume. Based on the location of the MRL-positive lymph nodes, the standard elective pelvic target volume was individualized. An IMRT plan with a simultaneous integrated boost (SIB) was created with dose prescriptions of 42 Gy to the pelvic target volume, a boost to 60 Gy to the MRL-positive lymph nodes, and 72 Gy to the prostate. Results: All MRL-positive lymph nodes could be identified on the planning CT. This information could be used to delineate a boost volume and to individualize the pelvic target volume for elective irradiation. IMRT planning delivered highly acceptable radiotherapy plans with regard to the prescribed dose levels and the dose to the organs at risk (OARs). Conclusion: MRL can be used to select patients with limited lymph node involvement for pelvic radiotherapy. MRL-guided delineation of a boost volume and an elective pelvic target volume for selective high-dose lymph node irradiation with IMRT is feasible. Whether this approach will result in improved outcome for these patients needs to be investigated in further clinical studies.« less

  19. Influence of lateral target size on hot electron production and electromagnetic pulse emission from laser-irradiated metallic targets

    NASA Astrophysics Data System (ADS)

    Chen, Zi-Yu; Li, Jian-Feng; Yu, Yong; Wang, Jia-Xiang; Li, Xiao-Ya; Peng, Qi-Xian; Zhu, Wen-Jun

    2012-11-01

    The influences of lateral target size on hot electron production and electromagnetic pulse emission from laser interaction with metallic targets have been investigated. Particle-in-cell simulations at high laser intensities show that the yield of hot electrons tends to increase with lateral target size, because the larger surface area reduces the electrostatic field on the target, owing to its expansion along the target surface. At lower laser intensities and longer time scales, experimental data characterizing electromagnetic pulse emission as a function of lateral target size also show target-size effects. Charge separation and a larger target tending to have a lower target potential have both been observed. The increase in radiation strength and downshift in radiation frequency with increasing lateral target size can be interpreted using a simple model of the electrical capacity of the target.

  20. Laser treatment of cutaneous lesions with image-guided fine spot-scanning irradiation

    NASA Astrophysics Data System (ADS)

    Nitta, Isami; Zhao, Xuefeng; Kanno, Akihiro; Kan, Yasushi; Yoshimasa, Takezawa; Maruyama, Tomohiro; Maeda, Yoshitaka

    2007-11-01

    We propose a new laser irradiation method for the treatment of cutaneous lesions in plastic surgery. In general, lasers with a spot size of 1 to 10 mm are used in irradiation on diseased skin. Although the target absorbs more light energy according to the theory of selective photothermolysis, the surrounding tissue, however, is still somewhat damaged. In proposed method, an f-theta lens, which is assembled by a shrink fitter, focuses the irradiation laser beam to a very fine spot with the size of 125 μm. Guided by the captured object-image, such laser beam is conducted by a pair of galvanometer-driven mirrors to irradiate only the desired tissue target without thermal damage to surrounding tissue. Moreover, an optical coherence tomography, whose probe is capable of wide field of view, can be used to provide the guidance information for the best treatment. The usefulness of the developed laser therapy apparatus was demonstrated by performing an experiment on the removal of tattoo pigment.

  1. Improved High Resolution Models of Subduction Dynamics: Use of transversely isotropic viscosity with a free-surface

    NASA Astrophysics Data System (ADS)

    Liu, X.; Gurnis, M.; Stadler, G.; Rudi, J.; Ratnaswamy, V.; Ghattas, O.

    2017-12-01

    Dynamic topography, or uncompensated topography, is controlled by internal dynamics, and provide constraints on the buoyancy structure and rheological parameters in the mantle. Compared with other surface manifestations such as the geoid, dynamic topography is very sensitive to shallower and more regional mantle structure. For example, the significant dynamic topography above the subduction zone potentially provides a rich mine for inferring the rheological and mechanical properties such as plate coupling, flow, and lateral viscosity variations, all critical in plate tectonics. However, employing subduction zone topography in the inversion study requires that we have a better understanding of the topography from forward models, especially the influence of the viscosity formulation, numerical resolution, and other factors. One common approach to formulating a fault between the subducted slab and the overriding plates in viscous flow models assumes a thin weak zone. However, due to the large lateral variation in viscosity, topography from free-slip numerical models typically has artificially large magnitude as well as high-frequency undulations over subduction zone, which adds to the difficulty in making comparisons between model results and observations. In this study, we formulate a weak zone with the transversely isotropic viscosity (TI) where the tangential viscosity is much smaller than the viscosity in the normal direction. Similar with isotropic weak zone models, TI models effectively decouple subducted slabs from the overriding plates. However, we find that the topography in TI models is largely reduced compared with that in weak zone models assuming an isotropic viscosity. Moreover, the artificial `tooth paste' squeezing effect observed in isotropic weak zone models vanishes in TI models, although the difference becomes less significant when the dip angle is small. We also implement a free-surface condition in our numerical models, which has a smoothing

  2. Important factors for cell-membrane permeabilization by gold nanoparticles activated by nanosecond-laser irradiation

    PubMed Central

    Yao, Cuiping; Rudnitzki, Florian; Hüttmann, Gereon; Zhang, Zhenxi; Rahmanzadeh, Ramtin

    2017-01-01

    Purpose Pulsed-laser irradiation of light-absorbing gold nanoparticles (AuNPs) attached to cells transiently increases cell membrane permeability for targeted molecule delivery. Here, we targeted EGFR on the ovarian carcinoma cell line OVCAR-3 with AuNPs. In order to optimize membrane permeability and to demonstrate molecule delivery into adherent OVCAR-3 cells, we systematically investigated different experimental conditions. Materials and methods AuNPs (30 nm) were functionalized by conjugation of the antibody cetuximab against EGFR. Selective binding of the particles was demonstrated by silver staining, multiphoton imaging, and fluorescence-lifetime imaging. After laser irradiation, membrane permeability of OVCAR-3 cells was studied under different conditions of AuNP concentration, cell-incubation medium, and cell–AuNP incubation time. Membrane permeability and cell viability were evaluated by flow cytometry, measuring propidium iodide and fluorescein isothiocyanate–dextran uptake. Results Adherently growing OVCAR-3 cells can be effectively targeted with EGFR-AuNP. Laser irradiation led to successful permeabilization, and 150 kDa dextran was successfully delivered into cells with about 70% efficiency. Conclusion Antibody-targeted and laser-irradiated AuNPs can be used to deliver molecules into adherent cells. Efficacy depends not only on laser parameters but also on AuNP:cell ratio, cell-incubation medium, and cell–AuNP incubation time. PMID:28848345

  3. Effect of spatial nonuniformity of heating on compression and burning of a thermonuclear target under direct multibeam irradiation by a megajoule laser pulse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bel’kov, S. A.; Bondarenko, S. V.; Vergunova, G. A.

    Direct-drive fusion targets are considered at present as an alternative to targets of indirect compression at a laser energy level of about 2 MJ. In this approach, the symmetry of compression and ignition of thermonuclear fuel play the major role. We report on the results of theoretical investigation of compression and burning of spherical direct-drive targets in the conditions of spatial nonuniformity of heating associated with a shift of the target from the beam center of focusing and possible laser radiation energy disbalance in the beams. The investigation involves numerous calculations based on a complex of 1D and 2D codesmore » RAPID, SEND (for determining the target illumination and the dynamics of absorption), DIANA, and NUT (1D and multidimensional hydrodynamics of compression and burning of targets). The target under investigation had the form of a two-layer shell (ablator made of inertial material CH and DT ice) filled with DT gas. We have determined the range of admissible variation of compression and combustion parameters of the target depending on the variation of the spatial nonuniformity of its heating by a multibeam laser system. It has been shown that low-mode (long-wavelength) perturbations deteriorate the characteristics of the central region due to less effective conversion of the kinetic energy of the target shell into the internal energy of the center. Local initiation of burning is also observed in off-center regions of the target in the case of substantial asymmetry of irradiation. In this case, burning is not spread over the entire volume of the DT fuel as a rule, which considerably reduces the thermonuclear yield as compared to that in the case of spherical symmetry and central ignition.« less

  4. On the Lighthill relationship and sound generation from isotropic turbulence

    NASA Technical Reports Server (NTRS)

    Zhou, YE; Praskovsky, Alexander; Oncley, Steven

    1994-01-01

    In 1952, Lighthill developed a theory for determining the sound generated by a turbulent motion of a fluid. With some statistical assumptions, Proudman applied this theory to estimate the acoustic power of isotropic turbulence. Recently, Lighthill established a simple relationship that relates the fourth-order retarded time and space covariance of his stress tensor to the corresponding second-order covariance and the turbulent flatness factor, without making statistical assumptions for a homogeneous turbulence. Lilley revisited Proudman's work and applied the Lighthill relationship to evaluate directly the radiated acoustic power from isotropic turbulence. After choosing the time separation dependence in the two-point velocity time and space covariance based on the insights gained from direct numerical simulations, Lilley concluded that the Proudman constant is determined by the turbulent flatness factor and the second-order spatial velocity covariance. In order to estimate the Proudman constant at high Reynolds numbers, we analyzed a unique data set of measurements in a large wind tunnel and atmospheric surface layer that covers a range of the Taylor microscale based on Reynolds numbers 2.0 x 10(exp 3) less than or equal to R(sub lambda) less than or equal to 12.7 x 10(exp 3). Our measurements demonstrate that the Lighthill relationship is a good approximation, providing additional support to Lilley's approach. The flatness factor is found between 2.7 - 3.3 and the second order spatial velocity covariance is obtained. Based on these experimental data, the Proudman constant is estimated to be 0.68 - 3.68.

  5. An attempt to estimate isotropic and anisotropic lateral structure of the Earth by spectral inversion incorporating mixed coupling

    NASA Astrophysics Data System (ADS)

    Oda, Hitoshi

    2005-02-01

    We present a way to calculate free oscillation spectra for an aspherical earth model, which is constructed by adding isotropic and anisotropic velocity perturbations to the seismic velocity parameters of a reference earth model, and examine the effect of the velocity perturbations on the free oscillation spectrum. Lateral variations of the velocity perturbations are parametrized as an expansion in generalized spherical harmonics. We assume weak hexagonal anisotropy for the seismic wave anisotropy in the upper mantle, where the hexagonal symmetry axes are horizontally distributed. The synthetic spectra show that the velocity perturbations cause not only strong self-coupling among singlets of a multiplet but also mixed coupling between toroidal and spheroidal multiplets. Both the couplings give rise to an amplitude anomaly on the vertical component spectrum. In this study, we identify the amplitude anomaly resulting from the mixed coupling as quasi-toroidal mode. Excitation of the quasi-toroidal mode by a vertical strike-slip fault is largest on nodal lines of the Rayleigh wave, decreases with increasing azimuth angle and becomes smallest on loop lines. This azimuthal dependence of the spectral amplitude is quite similar to the Love wave radiation pattern. In addition, the amplitude spectrum of the quasi-toroidal mode is more sensitive to the anisotropic velocity perturbation than to the isotropic velocity perturbation. This means that the mode spectrum allowing for the mixed-coupling effect may provide constraints on the anisotropic lateral structure as well as the isotropic lateral structure. An inversion method, called mixed-coupling spectral inversion, is devised to retrieve the isotropic and anisotropic velocity perturbations from the free oscillation spectra incorporating the quasi-toroidal mode. We confirm that the spectral inversion method correctly recovers the isotropic and anisotropic lateral structure. Moreover introducing the mixed-coupling effect in the

  6. Cryodeformation of metals under isotropic compression (Review)

    NASA Astrophysics Data System (ADS)

    Khaimovich, P. A.

    2018-05-01

    When low-temperature quasihydroextrusion of metals was originated in the 1970s, it was not initially recognized that this is not simply an addition to the list of processes for deformation of metals at cryogenic temperatures (rolling, drawing, extrusion). The resulting structures and properties, as well as the distinctive implementation of this type of deformation, indicated that this was a new domain of plastic deformation which differed from the existing method in requiring two simultaneous conditions: cryogenic temperatures and isotropic compression. Each of these conditions makes its own "contribution" to forming the structure under this deformation and, therefore, to resulting properties. Until recently, the barocryodeformation process (as it is now called) was carried out only where it was invented, at the Kharkov Institute of Physics and Technology, but these products have been studied in many laboratories in Ukraine and abroad. This review of those studies is intended to draw attention to a new and promising area of materials science.

  7. Innovative real-time and non-destructive method of beam profile measurement under large beam current irradiation for BNCT

    NASA Astrophysics Data System (ADS)

    Takada, M.; Kamada, S.; Suda, M.; Fujii, R.; Nakamura, M.; Hoshi, M.; Sato, H.; Endo, S.; Hamano, T.; Arai, S.; Higashimata, A.

    2012-10-01

    We developed a real-time and non-destructive method of beam profile measurement on a target under large beam current irradiation, and without any complex radiation detectors or electrical circuits. We measured the beam profiles on a target by observing the target temperature using an infrared-radiation thermometer camera. The target temperatures were increased and decreased quickly by starting and stopping the beam irradiation within 1 s in response speed. Our method could trace beam movements rapidly. The beam size and position were calibrated by measuring O-ring heat on the target. Our method has the potential to measure beam profiles at beam current over 1 mA for proton and deuteron with the energy around 3 MeV and allows accelerator operators to adjust the beam location during beam irradiation experiments without decreasing the beam current.

  8. New method to calculate back-reflected radiance for isotropic scattering

    NASA Astrophysics Data System (ADS)

    Rinzema, Kees; ten Bosch, Jaap J.; Ferwerda, Hedzer A.; Hoenders, Bernhard J.

    1996-04-01

    We present a method to determine the back reflected radiance from an isotropically scattering halfspace with matched boundary. The bonus of this method lies in the fact that it is capable, in principle, to handle the case of narrow beams, something which, to our knowledge, no other analytic method can do. Essentially, the method derives from a mathematical criterion that effectively forbids the existence of solutions to the transport equation which grown exponentially as one moves away from the surface and deeper into the medium. Preliminary calculations for infinitely wide beams yield results which agree well with what is found in literature.

  9. Statistical models for predicting pair dispersion and particle clustering in isotropic turbulence and their applications

    NASA Astrophysics Data System (ADS)

    Zaichik, Leonid I.; Alipchenkov, Vladimir M.

    2009-10-01

    The purpose of this paper is twofold: (i) to advance and extend the statistical two-point models of pair dispersion and particle clustering in isotropic turbulence that were previously proposed by Zaichik and Alipchenkov (2003 Phys. Fluids15 1776-87 2007 Phys. Fluids 19, 113308) and (ii) to present some applications of these models. The models developed are based on a kinetic equation for the two-point probability density function of the relative velocity distribution of two particles. These models predict the pair relative velocity statistics and the preferential accumulation of heavy particles in stationary and decaying homogeneous isotropic turbulent flows. Moreover, the models are applied to predict the effect of particle clustering on turbulent collisions, sedimentation and intensity of microwave radiation as well as to calculate the mean filtered subgrid stress of the particulate phase. Model predictions are compared with direct numerical simulations and experimental measurements.

  10. Quasi-isotropic VHF antenna array design study for the International Ultraviolet Explorer satellite

    NASA Technical Reports Server (NTRS)

    Raines, J. K.

    1975-01-01

    Results of a study to design a quasi-isotropic VHF antenna array for the IUE satellite are presented. A free space configuration was obtained that has no nulls deeper than -6.4 dbi in each of two orthogonal polarizations. A computer program named SOAP that analyzes the electromagnetic interaction between antennas and complicated conducting bodies, such as satellites was developed.

  11. Address substrates as promising targets for laser histochemical surgery as a nontraditional line in medicine

    NASA Astrophysics Data System (ADS)

    Piruzyan, L. A.; Mikhailovskiy, Ye. M.; Piruzyan, A. L.

    1999-12-01

    The priority concept of the laser histochemical surgery as a potentially novel line in medicine is presented. The histochemical stains, selectively coloring some targets (address substrates), that are cells or their biochemical ingredients, sensitize them to the laser irradiation. Such sensitization to laser irradiation by staining turns the colored targets into targets for the laser beam. The action of the irradiation onto its specific targets beats out of the cell its ingredients which participate in a pathology process. In particular, the beating of a stained ferment out of the general stage of biochemical processes characteristic for the pathology interrupts their currence. The laser beam, when beating out its stained targets without any damage of the unstained tissues, acts like a scalpel that cuts off affected tissues not brushing healthy ones. A scheme for testing stains as sensitizers of the `address substrates' to the laser irradiation is presented. As the criterion of the stain sensitization the fact was chosen of absence or weakness of pathomorphologic and biochemical signs of the disease in an experimental model of the pathology irradiated with laser after a stain use, while the pathology signs are present in a control sample. The basis is done for study of the histochemical stains as potential means for the laser histochemical surgery of disseminated sclerosis, mucopolysaccharidosis, hypercholesterolemia, myocardial infarction, cardiosclerosis, caries and parodontosis.

  12. Dimensional isotropy of 6H and 3C SiC under neutron irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snead, Lance L.; Katoh, Yutai; Koyanagi, Takaaki

    2016-01-16

    This investigation experimentally determines the as-irradiated crystal axes dimensional change of the common polytypes of SiC considered for nuclear application. Single crystal α-SiC (6H), β-SiC (3C), CVD β-SiC, and single crystal Si have been neutron irradiated near 60 °C from 2 × 10 23 to 2 × 10 26 n/m 2 (E > 0.1 MeV), or about 0.02–20 dpa, in order to study the effect of irradiation on bulk swelling and strain along independent crystalline axes. Single crystal, powder diffractometry and density measurement have been carried out. For all neutron doses where the samples remained crystalline all SiC materials demonstratedmore » equivalent swelling behavior. Moreover the 6H–SiC expanded isotropically. The magnitude of the swelling followed a ~0.77 power law against dose consistent with a microstructure evolution driven by single interstitial (carbon) mobility. Extraordinarily large ~7.8% volume expansion in SiC was observed prior to amorphization. Above ~0.9 × 10 25 n/m 2 (E > 0.1 MeV) all SiC materials became amorphous with an identical swelling: a 11.7% volume expansion, lowering the density to 2.84 g/cm 3. As a result, the as-amorphized density was the same at the 2 × 10 25 and 2 × 10 26 n/m 2 (E > 0.1 MeV) dose levels.« less

  13. Atomic Linkage Flexibility Tuned Isotropic Negative, Zero, and Positive Thermal Expansion in MZrF 6 (M = Ca, Mn, Fe, Co, Ni, and Zn)

    DOE PAGES

    Hu, Lei; Chen, Jun; Xu, Jiale; ...

    2016-10-26

    The controllable isotropic thermal expansion with a broad coefficient of thermal expansion (CTE) window is intriguing but remains challenge. Herein we report a cubic MZrF 6 series (M = Ca, Mn, Fe, Co, Ni and Zn), which exhibit controllable thermal expansion over a wide temperature range and with a broader CTE window (–6.69 to +18.23 × 10 –6/K). In particular, an isotropic zero thermal expansion (ZTE) is achieved in ZnZrF 6, which is one of the rarely documented hightemperature isotropic ZTE compounds. By utilizing temperature dependent high-energy synchrotron X-ray total scattering diffraction, it is found that the flexibility of metal···Fmore » atomic linkages in MZrF 6 plays a critical role in distinct thermal expansions. The flexible metal···F atomic linkages induce negative thermal expansion (NTE) for CaZrF 6, whereas the stiff ones bring positive thermal expansion (PTE) for 6. Thermal expansion could be transformed from striking negative, to zero, and finally to considerable positive though tuning the flexibility of metal···F atomic linkages by substitution with a series of cations on M sites of MZrF 6. In conclusion, the present study not only extends the scope of NTE families and rare high-temperature isotropic ZTE compounds but also proposes a new method to design systematically controllable isotropic thermal expansion frameworks from the perspective of atomic linkage flexibility.« less

  14. Atomic Linkage Flexibility Tuned Isotropic Negative, Zero, and Positive Thermal Expansion in MZrF 6 (M = Ca, Mn, Fe, Co, Ni, and Zn)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Lei; Chen, Jun; Xu, Jiale

    The controllable isotropic thermal expansion with a broad coefficient of thermal expansion (CTE) window is intriguing but remains challenge. Herein we report a cubic MZrF 6 series (M = Ca, Mn, Fe, Co, Ni and Zn), which exhibit controllable thermal expansion over a wide temperature range and with a broader CTE window (–6.69 to +18.23 × 10 –6/K). In particular, an isotropic zero thermal expansion (ZTE) is achieved in ZnZrF 6, which is one of the rarely documented hightemperature isotropic ZTE compounds. By utilizing temperature dependent high-energy synchrotron X-ray total scattering diffraction, it is found that the flexibility of metal···Fmore » atomic linkages in MZrF 6 plays a critical role in distinct thermal expansions. The flexible metal···F atomic linkages induce negative thermal expansion (NTE) for CaZrF 6, whereas the stiff ones bring positive thermal expansion (PTE) for 6. Thermal expansion could be transformed from striking negative, to zero, and finally to considerable positive though tuning the flexibility of metal···F atomic linkages by substitution with a series of cations on M sites of MZrF 6. In conclusion, the present study not only extends the scope of NTE families and rare high-temperature isotropic ZTE compounds but also proposes a new method to design systematically controllable isotropic thermal expansion frameworks from the perspective of atomic linkage flexibility.« less

  15. Proton irradiation of [18O]O2: production of [18F]F2 and [18F]F2 + [18F] OF2.

    PubMed

    Bishop, A; Satyamurthy, N; Bida, G; Hendry, G; Phelps, M; Barrio, J R

    1996-04-01

    The production of 18F electrophilic reagents via the 18O(p,n)18F reaction has been investigated in small-volume target bodies made of aluminum, copper, gold-plated copper and nickel, having straight or conical bore shapes. Three irradiation protocols-single-step, two-step and modified two-step-were used for the recovery of the 18F activity. The single-step irradiation protocol was tested in all the target bodies. Based on the single-step performance, aluminum targets were utilized extensively in the investigation of the two-step and modified two-step irradiation protocols. With an 11-MeV cyclotron and using the two-step irradiation protocol, > 1Ci [18F]F2 was recovered reproducibly from an aluminum target body. Probable radical mechanisms for the formation of OF2 and FONO2 (fluorine nitrate) in the single-step and modified two-step targets are proposed based on the amount of ozone generated and the nitrogen impurity present in the target gases, respectively.

  16. The Acousto-Optic Interaction in an Infinite Slab of Isotropic Material,

    DTIC Science & Technology

    1980-04-01

    AD-A097 202 HARRY DIAMOND LABS ADELPHI MD F/S 17/1 THE ACOUSTO - OPTIC INTERACTION IN AN INFINITE SLAB OF ISOTROPIC -- ETC(U) APR 80 S D SCHARF...611101.91A0011 .A1.A1 HOL Project: A10935 1S. KEY WONS (Cf ft "W reweee eld. It neceseeM md Io.t.Itl by block nm er) Acousto - optics Diffraction Mathieu... Acousto - Optic Interaction for Bragg Angles ...................... 13 FIGURES 1. Incident wave is split by acoustic wave into discrete diffracted orders

  17. String limit of the isotropic Heisenberg chain in the four-particle sector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antipov, A. G., E-mail: aga2@csa.ru; Komarov, I. V., E-mail: ivkoma@rambler.r

    2008-05-15

    The quantum method of variable separation is applied to the spectral problem of the isotropic Heisenberg model. The Baxter difference equation is resolved by means of a special quasiclassical asymptotic expansion. States are identified by multiplicities of limiting values of the Bethe parameters. The string limit of the four-particle sector is investigated. String solutions are singled out and classified. It is shown that only a minor fraction of solutions demonstrate string behavior.

  18. Low-enriched uranium high-density target project. Compendium report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vandegrift, George; Brown, M. Alex; Jerden, James L.

    2016-09-01

    At present, most 99Mo is produced in research, test, or isotope production reactors by irradiation of highly enriched uranium targets. To achieve the denser form of uranium needed for switching from high to low enriched uranium (LEU), targets in the form of a metal foil (~125-150 µm thick) are being developed. The LEU High Density Target Project successfully demonstrated several iterations of an LEU-fission-based Mo-99 technology that has the potential to provide the world’s supply of Mo-99, should major producers choose to utilize the technology. Over 50 annular high density targets have been successfully tested, and the assembly and disassemblymore » of targets have been improved and optimized. Two target front-end processes (acidic and electrochemical) have been scaled up and demonstrated to allow for the high-density target technology to mate up to the existing producer technology for target processing. In the event that a new target processing line is started, the chemical processing of the targets is greatly simplified. Extensive modeling and safety analysis has been conducted, and the target has been qualified to be inserted into the High Flux Isotope Reactor, which is considered above and beyond the requirements for the typical use of this target due to high fluence and irradiation duration.« less

  19. Sensitivity of postplanning target and OAR coverage estimates to dosimetric margin distribution sampling parameters.

    PubMed

    Xu, Huijun; Gordon, J James; Siebers, Jeffrey V

    2011-02-01

    A dosimetric margin (DM) is the margin in a specified direction between a structure and a specified isodose surface, corresponding to a prescription or tolerance dose. The dosimetric margin distribution (DMD) is the distribution of DMs over all directions. Given a geometric uncertainty model, representing inter- or intrafraction setup uncertainties or internal organ motion, the DMD can be used to calculate coverage Q, which is the probability that a realized target or organ-at-risk (OAR) dose metric D, exceeds the corresponding prescription or tolerance dose. Postplanning coverage evaluation quantifies the percentage of uncertainties for which target and OAR structures meet their intended dose constraints. The goal of the present work is to evaluate coverage probabilities for 28 prostate treatment plans to determine DMD sampling parameters that ensure adequate accuracy for postplanning coverage estimates. Normally distributed interfraction setup uncertainties were applied to 28 plans for localized prostate cancer, with prescribed dose of 79.2 Gy and 10 mm clinical target volume to planning target volume (CTV-to-PTV) margins. Using angular or isotropic sampling techniques, dosimetric margins were determined for the CTV, bladder and rectum, assuming shift invariance of the dose distribution. For angular sampling, DMDs were sampled at fixed angular intervals w (e.g., w = 1 degree, 2 degrees, 5 degrees, 10 degrees, 20 degrees). Isotropic samples were uniformly distributed on the unit sphere resulting in variable angular increments, but were calculated for the same number of sampling directions as angular DMDs, and accordingly characterized by the effective angular increment omega eff. In each direction, the DM was calculated by moving the structure in radial steps of size delta (=0.1, 0.2, 0.5, 1 mm) until the specified isodose was crossed. Coverage estimation accuracy deltaQ was quantified as a function of the sampling parameters omega or omega eff and delta. The

  20. Experimental benchmark for an improved simulation of absolute soft-x-ray emission from polystyrene targets irradiated with the Nike laser.

    PubMed

    Weaver, J L; Busquet, M; Colombant, D G; Mostovych, A N; Feldman, U; Klapisch, M; Seely, J F; Brown, C; Holland, G

    2005-02-04

    Absolutely calibrated, time-resolved spectral intensity measurements of soft-x-ray emission (hnu approximately 0.1-1.0 keV) from laser-irradiated polystyrene targets are compared to radiation-hydrodynamic simulations that include our new postprocessor, Virtual Spectro. This new capability allows a unified, detailed treatment of atomic physics and radiative transfer in nonlocal thermodynamic equilibrium conditions for simple spectra from low-Z materials as well as complex spectra from high-Z materials. The excellent agreement (within a factor of approximately 1.5) demonstrates the powerful predictive capability of the codes for the complex conditions in the ablating plasma. A comparison to data with high spectral resolution (E/deltaE approximately 1000) emphasizes the importance of including radiation coupling in the quantitative simulation of emission spectra.

  1. Initial results from safety testing of US AGR-2 irradiation test fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morris, Robert Noel; Hunn, John D.; Baldwin, Charles A.

    Two cylindrical compacts containing tristructural isotropic (TRISO)-coated particles with kernels that contained a mixture of uranium carbide and uranium oxide (UCO) and two compacts with UO 2-kernel TRISO particles have undergone 1600°C safety testing. These compacts were irradiated in the US Advanced Gas Reactor Fuel Development and Qualification Program's second irradiation test (AGR-2). The time-dependent releases of several radioisotopes ( 110mAg, 134Cs, 137Cs, 154Eu, 155Eu, 90Sr, and 85Kr) were monitored while heating the fuel specimens to 1600°C in flowing helium for 300 h. The UCO compacts behaved similarly to previously reported 1600°C-safety-tested UCO compacts from the AGR-1 irradiation. No failedmore » TRISO or failed SiC were detected (based on krypton and cesium release), and cesium release through intact SiC was very low. Release behavior of silver, europium, and strontium appeared to be dominated by inventory originally released through intact coating layers during irradiation but retained in the compact matrix until it was released during safety testing. Both UO 2 compacts exhibited cesium release from multiple particles whose SiC failed during the safety test. Europium and strontium release from these two UO 2 compacts appeared to be dominated by release from the particles with failed SiC. Silver release was characteristically like the release from the UCO compacts in that an initial release of the majority of silver trapped in the matrix occurred during ramping to 1600°C. However, additional silver release was observed later in the safety testing due to the UO 2 TRISO with failed SiC. Failure of the SiC layer in the UO 2 fuel appears to have been dominated by CO corrosion, as opposed to the palladium degradation observed in AGR-1 UCO fuel.« less

  2. Initial results from safety testing of US AGR-2 irradiation test fuel

    DOE PAGES

    Morris, Robert Noel; Hunn, John D.; Baldwin, Charles A.; ...

    2017-08-18

    Two cylindrical compacts containing tristructural isotropic (TRISO)-coated particles with kernels that contained a mixture of uranium carbide and uranium oxide (UCO) and two compacts with UO 2-kernel TRISO particles have undergone 1600°C safety testing. These compacts were irradiated in the US Advanced Gas Reactor Fuel Development and Qualification Program's second irradiation test (AGR-2). The time-dependent releases of several radioisotopes ( 110mAg, 134Cs, 137Cs, 154Eu, 155Eu, 90Sr, and 85Kr) were monitored while heating the fuel specimens to 1600°C in flowing helium for 300 h. The UCO compacts behaved similarly to previously reported 1600°C-safety-tested UCO compacts from the AGR-1 irradiation. No failedmore » TRISO or failed SiC were detected (based on krypton and cesium release), and cesium release through intact SiC was very low. Release behavior of silver, europium, and strontium appeared to be dominated by inventory originally released through intact coating layers during irradiation but retained in the compact matrix until it was released during safety testing. Both UO 2 compacts exhibited cesium release from multiple particles whose SiC failed during the safety test. Europium and strontium release from these two UO 2 compacts appeared to be dominated by release from the particles with failed SiC. Silver release was characteristically like the release from the UCO compacts in that an initial release of the majority of silver trapped in the matrix occurred during ramping to 1600°C. However, additional silver release was observed later in the safety testing due to the UO 2 TRISO with failed SiC. Failure of the SiC layer in the UO 2 fuel appears to have been dominated by CO corrosion, as opposed to the palladium degradation observed in AGR-1 UCO fuel.« less

  3. Spin-isotropic continuum of spin excitations in antiferromagnetically ordered Fe1.07Te

    NASA Astrophysics Data System (ADS)

    Song, Yu; Lu, Xingye; Regnault, L.-P.; Su, Yixi; Lai, Hsin-Hua; Hu, Wen-Jun; Si, Qimiao; Dai, Pengcheng

    2018-02-01

    Unconventional superconductivity typically emerges in the presence of quasidegenerate ground states, and the associated intense fluctuations are likely responsible for generating the superconducting state. Here we use polarized neutron scattering to study the spin space anisotropy of spin excitations in Fe1.07Te exhibiting bicollinear antiferromagnetic (AF) order, the parent compound of FeTe1 -xSex superconductors. We confirm that the low-energy spin excitations are transverse spin waves, consistent with a local-moment origin of the bicollinear AF order. While the ordered moments lie in the a b plane in Fe1.07Te , it takes less energy for them to fluctuate out of plane, similar to BaFe2As2 and NaFeAs. At energies above E ≳20 meV, we find magnetic scattering to be dominated by an isotropic continuum that persists up to at least 50 meV. Although the isotropic spin excitations cannot be ascribed to spin waves from a long-range-ordered local-moment antiferromagnet, the continuum can result from the bicollinear magnetic order ground state of Fe1.07Te being quasidegenerate with plaquette magnetic order.

  4. Isotropic probability measures in infinite dimensional spaces: Inverse problems/prior information/stochastic inversion

    NASA Technical Reports Server (NTRS)

    Backus, George

    1987-01-01

    Let R be the real numbers, R(n) the linear space of all real n-tuples, and R(infinity) the linear space of all infinite real sequences x = (x sub 1, x sub 2,...). Let P sub n :R(infinity) approaches R(n) be the projection operator with P sub n (x) = (x sub 1,...,x sub n). Let p(infinity) be a probability measure on the smallest sigma-ring of subsets of R(infinity) which includes all of the cylinder sets P sub n(-1) (B sub n), where B sub n is an arbitrary Borel subset of R(n). Let p sub n be the marginal distribution of p(infinity) on R(n), so p sub n(B sub n) = p(infinity)(P sub n to the -1(B sub n)) for each B sub n. A measure on R(n) is isotropic if it is invariant under all orthogonal transformations of R(n). All members of the set of all isotropic probability distributions on R(n) are described. The result calls into question both stochastic inversion and Bayesian inference, as currently used in many geophysical inverse problems.

  5. Halo-independent determination of the unmodulated WIMP signal in DAMA: the isotropic case

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gondolo, Paolo; Scopel, Stefano, E-mail: paolo.gondolo@utah.edu, E-mail: scopel@sogang.ac.kr

    2017-09-01

    We present a halo-independent determination of the unmodulated signal corresponding to the DAMA modulation if interpreted as due to dark matter weakly interacting massive particles (WIMPs). First we show how a modulated signal gives information on the WIMP velocity distribution function in the Galactic rest frame from which the unmodulated signal descends. Then we describe a mathematically-sound profile likelihood analysis in which the likelihood is profiled over a continuum of nuisance parameters (namely, the WIMP velocity distribution). As a first application of the method, which is very general and valid for any class of velocity distributions, we restrict the analysismore » to velocity distributions that are isotropic in the Galactic frame. In this way we obtain halo-independent maximum-likelihood estimates and confidence intervals for the DAMA unmodulated signal. We find that the estimated unmodulated signal is in line with expectations for a WIMP-induced modulation and is compatible with the DAMA background+signal rate. Specifically, for the isotropic case we find that the modulated amplitude ranges between a few percent and about 25% of the unmodulated amplitude, depending on the WIMP mass.« less

  6. The Information Available to a Moving Observer on Shape with Unknown, Isotropic BRDFs.

    PubMed

    Chandraker, Manmohan

    2016-07-01

    Psychophysical studies show motion cues inform about shape even with unknown reflectance. Recent works in computer vision have considered shape recovery for an object of unknown BRDF using light source or object motions. This paper proposes a theory that addresses the remaining problem of determining shape from the (small or differential) motion of the camera, for unknown isotropic BRDFs. Our theory derives a differential stereo relation that relates camera motion to surface depth, which generalizes traditional Lambertian assumptions. Under orthographic projection, we show differential stereo may not determine shape for general BRDFs, but suffices to yield an invariant for several restricted (still unknown) BRDFs exhibited by common materials. For the perspective case, we show that differential stereo yields the surface depth for unknown isotropic BRDF and unknown directional lighting, while additional constraints are obtained with restrictions on the BRDF or lighting. The limits imposed by our theory are intrinsic to the shape recovery problem and independent of choice of reconstruction method. We also illustrate trends shared by theories on shape from differential motion of light source, object or camera, to relate the hardness of surface reconstruction to the complexity of imaging setup.

  7. Ultrasonic input-output for transmitting and receiving longitudinal transducers coupled to same face of isotropic elastic plate

    NASA Technical Reports Server (NTRS)

    Williams, J. H., Jr.; Karagulle, H.; Lee, S. S.

    1982-01-01

    The quantitative understanding of ultrasonic nondestructive evaluation parameters such as the stress wave factor were studied. Ultrasonic input/output characteristics for an isotropic elastic plate with transmitting and receiving longitudinal transducers coupled to the same face were analyzed. The asymptotic normal stress is calculated for an isotropic elastic half space subjected to a uniform harmonic normal stress applied to a circular region at the surface. The radiated stress waves are traced within the plate by considering wave reflections at the top and bottom faces. The output voltage amplitude of the receiving transducer is estimated by considering only longitudinal waves. Agreement is found between the output voltage wave packet amplitudes and times of arrival due to multiple reflections of the longitudinal waves.

  8. Production of isotopes and isomers with irradiation of Z = 47–50 targets by 23-MeV bremsstrahlung

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karamian, S. A., E-mail: karamian@nrmail.jinr.ru; Carroll, J. J.; Aksenov, N. V.

    2015-09-15

    The irradiations of Ag to Sn targets by bremsstrahlung generated with 23-MeV electron beams are performed at the MT-25 microtron. Gamma spectra of the induced activities have been measured and the yields of all detected radionuclides and isomers are carefully measured and analyzed. A regular dependence of yields versus changed reaction threshold is confirmed. Many isomers are detected and the suppression of the production probability is observed with growing product spin. Special peculiarities for the isomer-to-ground state ratios were deduced for the {sup 106m}Ag, {sup 108m}Ag, {sup 113m}In, {sup 115m}In, and {sup 123m}Sn isomers. The production of such nuclides asmore » {sup 108m}Ag, {sup 115m}In, {sup 117g}In, and {sup 113m}Cd is of interest for applications, especially when economic methods are available.« less

  9. Experimental study of fusion neutron and proton yields produced by petawatt-laser-irradiated D₂-³He or CD₄-³He clustering gases.

    PubMed

    Bang, W; Barbui, M; Bonasera, A; Quevedo, H J; Dyer, G; Bernstein, A C; Hagel, K; Schmidt, K; Gaul, E; Donovan, M E; Consoli, F; De Angelis, R; Andreoli, P; Barbarino, M; Kimura, S; Mazzocco, M; Natowitz, J B; Ditmire, T

    2013-09-01

    We report on experiments in which the Texas Petawatt laser irradiated a mixture of deuterium or deuterated methane clusters and helium-3 gas, generating three types of nuclear fusion reactions: D(d,^{3}He)n, D(d,t)p, and ^{3}He(d,p)^{4}He. We measured the yields of fusion neutrons and protons from these reactions and found them to agree with yields based on a simple cylindrical plasma model using known cross sections and measured plasma parameters. Within our measurement errors, the fusion products were isotropically distributed. Plasma temperatures, important for the cross sections, were determined by two independent methods: (1) deuterium ion time of flight and (2) utilizing the ratio of neutron yield to proton yield from D(d,^{3}He)n and ^{3}He(d,p)^{4}He reactions, respectively. This experiment produced the highest ion temperature ever achieved with laser-irradiated deuterium clusters.

  10. Levels of 2-dodecylcyclobutanone in ground beef patties irradiated by low-energy X-ray and gamma rays.

    PubMed

    Hijaz, Faraj M; Smith, J Scott

    2010-01-01

    Food irradiation improves food safety and maintains food quality by controlling microorganisms and extending shelf life. However, acceptance and commercial adoption of food irradiation is still low. Consumer groups such as Public Citizen and the Food and Water Watch have opposed irradiation because of the formation of 2-alkylcyclobutanones (2-ACBs) in irradiated, lipid-containing foods. The objectives of this study were to measure and to compare the level of 2-dodecylcyclobutanone (2-DCB) in ground beef irradiated by low-energy X-rays and gamma rays. Beef patties were irradiated by low-energy X-rays and gamma rays (Cs-137) at 3 targeted absorbed doses of 1.5, 3.0, and 5.0 kGy. The samples were extracted with n-hexane using a Soxhlet apparatus, and the 2-DCB concentration was determined with gas chromatography-mass spectrometry. The 2-DCB concentration increased linearly (P < 0.05) with irradiation dose for gamma-ray and low-energy X-ray irradiated patties. There was no significant difference in 2-DCB concentration between gamma-ray and low-energy X-ray irradiated patties (P > 0.05) at all targeted doses. © 2010 Institute of Food Technologists®

  11. Study on the radial vibration and acoustic field of an isotropic circular ring radiator.

    PubMed

    Lin, Shuyu; Xu, Long

    2012-01-01

    Based on the exact analytical theory, the radial vibration of an isotropic circular ring is studied and its electro-mechanical equivalent circuit is obtained. By means of the equivalent circuit model, the resonance frequency equation is derived; the relationship between the radial resonance frequency, the radial displacement amplitude magnification and the geometrical dimensions, the material property is analyzed. For comparison, numerical method is used to simulate the radial vibration of isotropic circular rings. The resonance frequency and the radial vibrational displacement distribution are obtained, and the radial radiation acoustic field of the circular ring in radial vibration is simulated. It is illustrated that the radial resonance frequencies from the analytical method and the numerical method are in good agreement when the height is much less than the radius. When the height becomes large relative to the radius, the frequency deviation from the two methods becomes large. The reason is that the exact analytical theory is limited to thin circular ring whose height must be much less than its radius. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Damage Processes in a Quasi-Isotropic Composite Short Beam Under Three- Point Loading

    DTIC Science & Technology

    1992-01-01

    American Society for Testing and Materials, 1916 Race Street, Philadelphia, PA 19103 12a. DISTRIBUTION /AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE...three- point bend test Is investigated for a composite with a quasi-isotropic layup. Failue is found to Initiate iri a region near the point of...Composites Technology & Research, Winter 1991 Copyright American Society for Testing and Materials, 1916 Race Street, Philadelphia, PA 19103 REFERENCE

  13. Leptin induction following irradiation is a conserved feature in mammalian epithelial cells and tissues.

    PubMed

    Licursi, Valerio; Cestelli Guidi, Mariangela; Del Vecchio, Giorgia; Mannironi, Cecilia; Presutti, Carlo; Amendola, Roberto; Negri, Rodolfo

    2017-09-01

    Leptin (LEP) is a peptide hormone with multiple physiological functions. Besides its systemic actions, it has important peripheral roles such as a mitogen action on keratinocytes following skin lesions. We previously showed that LEP mRNA is significantly induced in response to neutron irradiation in mouse skin and that the protein increases in the irradiated epidermis and in the related subcutaneous adipose tissue. In this work, we investigated the post-transcriptional regulation of LEP by miRNAs and the conservation of LEP's role in radiation response in human cells. We used microarray analysis and real-time polymerase chain reaction (RT-PCR) to analyze modulation of miRNAs potentially targeting LEP in mouse skin following irradiation and bioinformatic analysis of transcriptome of irradiated human cell lines and cancer tissues from radiotherapy-treated patients to evaluate LEP expression. We show that a network of miRNAs potentially targeting LEP mRNA is modulated in irradiated mouse skin and that LEP itself is significantly modulated by irradiation in human epithelial cell lines and in breast cancer tissues from radiotherapy-treated patients. These results confirm and extend the previous evidence that LEP has a general and important role in the response of mammalian cells to irradiation.

  14. Can involved-field irradiation replace elective nodal irradiation in chemoradiotherapy for esophageal cancer? A systematic review and meta-analysis.

    PubMed

    Wang, Xiaoyue; Miao, Chuanwang; Chen, Zhen; Li, Wanhu; Yuan, Shuanghu; Yu, Jinming; Hu, Xudong

    2017-01-01

    Chemoradiotherapy is the most common treatment for inoperable esophageal cancer. However, there is no consensus on the delineation of the clinical target volume. Elective nodal irradiation (ENI) is recommended for inoperable esophageal cancer. A few studies have reported a decrease in the incidence of radiation-related toxicity of involved-field irradiation (IFI) for esophageal cancer. A systematic review and pooled analysis were performed to determine whether IFI in definitive chemoradiotherapy was more beneficial than ENI for esophageal cancer. The results showed no significant differences in the overall survival and local control rates between the IFI and ENI arms. Meanwhile, the incidences of esophageal and lung toxicities were significantly decreased in the IFI arm. These results suggest that IFI is a feasible treatment option for locally advanced esophageal cancer, especially to minimize irradiation-related toxicity.

  15. Postharvest irradiation treatment for quarantine control of the invasive Lobesia botrana (Lepidoptera: Tortricidae)

    USDA-ARS?s Scientific Manuscript database

    The effects of irradiation on egg, larval, and pupal development in European grapevine moth, Lobesia botrana (Lepidoptera: Tortricidae), were examined. Eggs, neonates, third instars, fifth instars, and early and late stage pupae were irradiated at target doses of 50, 100, 150, or 200 Gy or left untr...

  16. Scattering of a longitudinal Bessel beam by a sphere embedded in an isotropic elastic solid.

    PubMed

    Leão-Neto, J P; Lopes, J H; Silva, G T

    2017-11-01

    The scattering of a longitudinal Bessel beam of arbitrary order by a sphere embedded in an isotropic solid matrix is theoretically analyzed. The spherical inclusion can be made of a viscoelastic, elastic, or fluid-filled isotropic material. In the analysis, the absorbing, scattering, and extinction efficiency factors are obtained, e.g., the corresponding power per characteristic beam intensity per sphere's cross-section area. Furthermore, the extended optical theorem, which expresses the extinction efficiency in terms of an integral of the longitudinal scattering function is derived. Several features of zeroth- and first-order Bessel beams scattering in solids are illustrated considering a polymer adhesive (cured) sphere embedded in a stainless steel matrix. For instance, omnidirectional scattering can be achieved by choosing specific values of the half-cone angle of the Bessel beam, which is the beam's geometrical parameter. Additionally, it is demonstrated that mode suppression leads to lower absorption inside the inclusion when compared to plane wave scattering results.

  17. Electronic and atomic kinetics in solids irradiated with free-electron lasers or swift-heavy ions

    NASA Astrophysics Data System (ADS)

    Medvedev, N.; Volkov, A. E.; Ziaja, B.

    2015-12-01

    In this brief review we discuss the transient processes in solids under irradiation with femtosecond X-ray free-electron-laser (FEL) pulses and swift-heavy ions (SHI). Both kinds of irradiation produce highly excited electrons in a target on extremely short timescales. Transfer of the excess electronic energy into the lattice may lead to observable target modifications such as phase transitions and damage formation. Transient kinetics of material excitation and relaxation under FEL or SHI irradiation are comparatively discussed. The same origin for the electronic and atomic relaxation in both cases is demonstrated. Differences in these kinetics introduced by the geometrical effects (μm-size of a laser spot vs nm-size of an ion track) and initial irradiation (photoabsorption vs an ion impact) are analyzed. The basic mechanisms of electron transport and electron-lattice coupling are addressed. Appropriate models and their limitations are presented. Possibilities of thermal and nonthermal melting of materials under FEL and SHI irradiation are discussed.

  18. A new three-dimensional conformal radiotherapy (3DCRT) technique for large breast and/or high body mass index patients: evaluation of a novel fields assessment aimed to reduce extra-target-tissue irradiation.

    PubMed

    Gerardina, Stimato; Edy, Ippolito; Sonia, Silipigni; Cristina, Di Venanzio; Carla Germana, Rinaldi; Diego, Gaudino; Michele, Fiore; Lucio, Trodella; Maria, D'Angelillo Rolando; Sara, Ramella

    2016-09-01

    To develop an alternative three-dimensional treatment plan with standardized fields class solution for whole-breast radiotherapy in patients with large/pendulous breast and/or high body mass index (BMI). Two treatment plans [tangential fields and standardized five-fields technique (S5F)] for a total dose of 50 Gy/25 fractions were generated for patients with large breasts [planning target volume (PTV) >1000 cm(3) and/or BMI >25 kg m(-2)], supine positioned. S5F plans consist of two wedged tangential beams, anteroposterior: 20° for the right breast and 340° for the left breast, and posteroanterior: 181° for the right breast and 179° for the left breast. A field in field in medial-lateral beam and additional fields were added to reduce hot spot areas and extra-target-tissue irradiation and to improve dose distribution. The percentage of PTV receiving 95% of the prescribed dose (PTV V95%), percentage of PTV receiving 105% of the prescribed dose (PTV V105%), maximal dose to PTV (PTV Dmax), homogeneity index (HI) and conformity index were recorded. V10%, V20%, V105% and V107% of a "proper" normal tissue structure (body-PTV healthy tissue) were recorded. Statistical analyses were performed using SYSTAT v.12.0 (SPSS, Chicago, IL). In 38 patients included, S5F improved HI (8.4 vs 10.1; p ≤ 0.001) and significantly reduced PTV Dmax and PTV V105%. The extra-target-tissue irradiation was significantly reduced using S5F for V105% (cm(3)) and V107% (cm(3)) with a very high difference in tissue irradiation (46.6 vs 3.0 cm(3), p ≤ 0.001 for V105% and 12.2 vs 0.0 cm(3), p ≤ 0.001 for V107% for tangential field and S5F plans, respectively). Only a slight increase in low-dose extra-target-tissue irradiation (V10%) was observed (2.2719 vs 1.8261 cm(3), p = 0.002). The S5F technique in patients with large breast or high BMI increases HI and decreases hot spots in extra-target-tissues and can therefore be easily implemented in breast cancer

  19. Three-dimensional intrafractional internal target motions in accelerated partial breast irradiation using three-dimensional conformal external beam radiotherapy.

    PubMed

    Hirata, Kimiko; Yoshimura, Michio; Mukumoto, Nobutaka; Nakamura, Mitsuhiro; Inoue, Minoru; Sasaki, Makoto; Fujimoto, Takahiro; Yano, Shinsuke; Nakata, Manabu; Mizowaki, Takashi; Hiraoka, Masahiro

    2017-07-01

    We evaluated three-dimensional intrafractional target motion, divided into respiratory-induced motion and baseline drift, in accelerated partial breast irradiation (APBI). Paired fluoroscopic images were acquired simultaneously using orthogonal kV X-ray imaging systems at pre- and post-treatment for 23 patients who underwent APBI with external beam radiotherapy. The internal target motion was calculated from the surgical clips placed around the tumour cavity. The peak-to-peak respiratory-induced motions ranged from 0.6 to 1.5mm in all directions. A systematic baseline drift of 1.5mm towards the posterior direction and a random baseline drift of 0.3mm in the lateral-medial and cranial-caudal directions were observed. The baseline for an outer tumour cavity drifted towards the lateral and posterior directions, and that for an upper tumour cavity drifted towards the cranial direction. Moderate correlations were observed between the posterior baseline drift and the patients' physical characteristics. The posterior margin for intrafractional uncertainties was larger than 5mm in patients with greater fat thickness due to the baseline drift. The magnitude of the intrafractional motion was not uniform according to the direction, patients' physical characteristics, or tumour cavity location due to the baseline drift. Therefore, the intrafractional systematic movement should be properly managed. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Post-irradiation examinations of THERMHET composite fuels for transmutation

    NASA Astrophysics Data System (ADS)

    Noirot, J.; Desgranges, L.; Chauvin, N.; Georgenthum, V.

    2003-07-01

    The thermal behaviour of composite targets dedicated to minor actinide transmutation was studied using THERMHET (thermal behaviour of heterogeneous fuel) irradiation in the SILOE reactor. Three inert matrix fuel designs were tested (macro-mass, jingle and microdispersion) all with a MgAl 2O 4 spinel inert matrix and around 40% weight of UO 2 to simulate minor actinide inclusions. The post-irradiation examinations led to a new interpretation of the temperature measurement by thermocouples located in the central hole of the pellets. A major change in the micro-dispersed structure was detected. The examinations enabled us to understand the behaviour of the spinel during the different stages of irradiation. They revealed an amorphisation at low temperature and then a nano re-crystallisation at high temperature of the spinel in the micro-dispersed case. These results, together with those obtained in the MATINA irradiation of an equivalent structure, show the importance of the irradiation temperature on spinel behaviour.

  1. Identification of irradiated refrigerated poultry with the DNA comet assay

    NASA Astrophysics Data System (ADS)

    Villavicencio, A. L. C. H.; Araújo, M. M.; Marin-Huachaca, N. S.; Mancini-Filho, J.; Delincée, H.

    2004-09-01

    Food irradiation could make a significant contribution to the reduction of food-borne diseases caused by harmful bacteria such as Salmonella and parasites. In fact these organisms cause an increasing number of diseases and eventually deaths all over the world, also in industrialized countries. Radiation processing has the advantage that in addition to eliminating pathogens, thereby enhancing food safety, it also extends shelf life through destruction of spoilage organisms. The DNA molecule because of its big size is an easy target for ionizing radiation, therefore, changes in DNA offer potential to be used as a detection method for the irradiation treatment. In our study, poultry has been irradiated and changes in DNA analyzed by the Comet Assay. Samples were packed in plastic bags and irradiated. Doses were 0, 1.5, 3.0 and 4.5kGy. Immediately after irradiation the samples were returned to the refrigerator (4°C). Samples were analyzed 1 and 10 days after irradiation. This method proved to be an inexpensive and rapid screening technique for qualitative detection of irradiation treatment.

  2. Charged Particle Diffusion in Isotropic Random Static Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Subedi, P.; Sonsrettee, W.; Matthaeus, W. H.; Ruffolo, D. J.; Wan, M.; Montgomery, D.

    2013-12-01

    Study of the transport and diffusion of charged particles in a turbulent magnetic field remains a subject of considerable interest. Research has most frequently concentrated on determining the diffusion coefficient in the presence of a mean magnetic field. Here we consider Diffusion of charged particles in fully three dimensional statistically isotropic magnetic field turbulence with no mean field which is pertinent to many astrophysical situations. We classify different regions of particle energy depending upon the ratio of Larmor radius of the charged particle to the characteristic outer length scale of turbulence. We propose three different theoretical models to calculate the diffusion coefficient each applicable to a distinct range of particle energies. The theoretical results are compared with those from computer simulations, showing very good agreement.

  3. Non-isotropic noise correlation in PET data reconstructed by FBP but not by OSEM demonstrated using auto-correlation function.

    PubMed

    Razifar, Pasha; Lubberink, Mark; Schneider, Harald; Långström, Bengt; Bengtsson, Ewert; Bergström, Mats

    2005-05-13

    BACKGROUND: Positron emission tomography (PET) is a powerful imaging technique with the potential of obtaining functional or biochemical information by measuring distribution and kinetics of radiolabelled molecules in a biological system, both in vitro and in vivo. PET images can be used directly or after kinetic modelling to extract quantitative values of a desired physiological, biochemical or pharmacological entity. Because such images are generally noisy, it is essential to understand how noise affects the derived quantitative values. A pre-requisite for this understanding is that the properties of noise such as variance (magnitude) and texture (correlation) are known. METHODS: In this paper we explored the pattern of noise correlation in experimentally generated PET images, with emphasis on the angular dependence of correlation, using the autocorrelation function (ACF). Experimental PET data were acquired in 2D and 3D acquisition mode and reconstructed by analytical filtered back projection (FBP) and iterative ordered subsets expectation maximisation (OSEM) methods. The 3D data was rebinned to a 2D dataset using FOurier REbinning (FORE) followed by 2D reconstruction using either FBP or OSEM. In synthetic images we compared the ACF results with those from covariance matrix. The results were illustrated as 1D profiles and also visualized as 2D ACF images. RESULTS: We found that the autocorrelation images from PET data obtained after FBP were not fully rotationally symmetric or isotropic if the object deviated from a uniform cylindrical radioactivity distribution. In contrast, similar autocorrelation images obtained after OSEM reconstruction were isotropic even when the phantom was not circular. Simulations indicated that the noise autocorrelation is non-isotropic in images created by FBP when the level of noise in projections is angularly variable. Comparison between 1D cross profiles on autocorrelation images obtained by FBP reconstruction and covariance

  4. Isotropic-resolution linear-array-based photoacoustic computed tomography through inverse Radon transform

    NASA Astrophysics Data System (ADS)

    Li, Guo; Xia, Jun; Li, Lei; Wang, Lidai; Wang, Lihong V.

    2015-03-01

    Linear transducer arrays are readily available for ultrasonic detection in photoacoustic computed tomography. They offer low cost, hand-held convenience, and conventional ultrasonic imaging. However, the elevational resolution of linear transducer arrays, which is usually determined by the weak focus of the cylindrical acoustic lens, is about one order of magnitude worse than the in-plane axial and lateral spatial resolutions. Therefore, conventional linear scanning along the elevational direction cannot provide high-quality three-dimensional photoacoustic images due to the anisotropic spatial resolutions. Here we propose an innovative method to achieve isotropic resolutions for three-dimensional photoacoustic images through combined linear and rotational scanning. In each scan step, we first elevationally scan the linear transducer array, and then rotate the linear transducer array along its center in small steps, and scan again until 180 degrees have been covered. To reconstruct isotropic three-dimensional images from the multiple-directional scanning dataset, we use the standard inverse Radon transform originating from X-ray CT. We acquired a three-dimensional microsphere phantom image through the inverse Radon transform method and compared it with a single-elevational-scan three-dimensional image. The comparison shows that our method improves the elevational resolution by up to one order of magnitude, approaching the in-plane lateral-direction resolution. In vivo rat images were also acquired.

  5. The decay of isotropic magnetohydrodynamics turbulence and the effects of cross-helicity

    NASA Astrophysics Data System (ADS)

    Briard, Antoine; Gomez, Thomas

    2018-02-01

    Decaying homogeneous and isotropic magnetohydrodynamics (MHD) turbulence is investigated numerically at large Reynolds numbers thanks to the eddy-damped quasi-normal Markovian (EDQNM) approximation. Without any background mean magnetic field, the total energy spectrum scales as -3/2$ in the inertial range as a consequence of the modelling. Moreover, the total energy is shown, both analytically and numerically, to decay at the same rate as kinetic energy in hydrodynamic isotropic turbulence: this differs from a previous prediction, and thus physical arguments are proposed to reconcile both results. Afterwards, the MHD turbulence is made imbalanced by an initial non-zero cross-helicity. A spectral modelling is developed for the velocity-magnetic correlation in a general homogeneous framework, which reveals that cross-helicity can contain subtle anisotropic effects. In the inertial range, as the Reynolds number increases, the slope of the cross-helical spectrum becomes closer to -5/3$ than -2$ . Furthermore, the Elsässer spectra deviate from -3/2$ with cross-helicity at large Reynolds numbers. Regarding the pressure spectrum P$ , its kinetic and magnetic parts are found to scale with -2$ in the inertial range, whereas the part due to cross-helicity rather scales in -7/3$ . Finally, the two rd laws for the total energy and cross-helicity are assessed numerically at large Reynolds numbers.

  6. Calculation of trajectories and the rate of growth of curvilinear fatigue cracks in isotropic and composite plates

    NASA Astrophysics Data System (ADS)

    Pokhmurska, H.; Maksymovych, O.; Dzyubyk, A.; Dzyubyk, L.

    2018-06-01

    The methods of calculating the trajectories and the rate of growth of curvilinear fatigue cracks in isotropic and composite plate structure elements during cyclic loading along straight or curvilinear trajectories are developed. For isotropic and anisotropic materials, the methodes are developed on the basis of the force criterion of destruction with the additional application of the fatigue fracture diagrams. To find the change in the shape of the cracks in the loading process, the step-by-step method was used. At each stage, the direction of the growth of all vertices of cracks and the lengths of their arcs was found on the basis of determining the intensity coefficients of stresses by the method of singular integral equations. The results of calculations of the cracks system growth process are presented.

  7. Effect of gamma irradiation on the thermal, mechanical and structural properties of chlorinated polyvinyl chloride

    NASA Astrophysics Data System (ADS)

    Nouh, S. A.

    Non isothermal studies were carried out using thermogravimetry (TG) and differential thermogravimetry (DTG) to obtain the activation energy of decomposition for chlorinated polyvinyl chloride (CPVC) before and after exposure to gamma doses at levels between 5.0 and 50.0 KGy. Thermal gravitational analysis (TGA) indicated that the CPVC polymer decomposes in one main breakdown stage and a decrease in activation energies was observed followed by an increase on increasing the gamma dose. The variation of melting temperatures with the gamma dose has been determined using differential thermal analysis (DTA). Also, mechanical and structural property studies were performed on all irradiated and non-irradiated CPVC samples using stress-strain relations and X-ray diffraction. The results indicated that the exposure to gamma doses at levels between 27.5 and 50 KGy leads to further enhancement of the thermal stability, tensile strength and isotropic character of the polymer samples due to the crosslinking phenomenon. This suggests that gamma radiation could be a suitable technique for producing a plastic material with enhanced properties that can be suitable for high temperature applications and might be a suitable candidate for dosimetric applications.

  8. Isotropic Huygens dipoles and multipoles with colloidal particles

    NASA Astrophysics Data System (ADS)

    Dezert, Romain; Richetti, Philippe; Baron, Alexandre

    2017-11-01

    Huygens sources are elements that scatter light in the forward direction as used in the Huygens-Fresnel principle. They have remained fictitious until recently when experimental systems have been fabricated. In this Rapid Communication, we propose isotropic meta-atoms that act as Huygens sources. Using clusters of plasmonic or dielectric colloidal particles, Huygens dipoles that resonate at visible frequencies can be achieved with scattering cross sections as high as five times the geometric cross section of the particle surpassing anything achievable with a hypothetical simple spherical particle. Examples are given that predict extremely broadband scattering in the forward direction over a 1000 nm wavelength range at optical frequencies. These systems are important to the fields of nanoantennas, metamaterials, and wave physics in general as well as any application that requires local control over the radiation properties of a system as in solar cells or biosensing.

  9. Birefringent Stable Glass with Predominantly Isotropic Molecular Orientation

    NASA Astrophysics Data System (ADS)

    Liu, Tianyi; Exarhos, Annemarie L.; Alguire, Ethan C.; Gao, Feng; Salami-Ranjbaran, Elmira; Cheng, Kevin; Jia, Tiezheng; Subotnik, Joseph E.; Walsh, Patrick J.; Kikkawa, James M.; Fakhraai, Zahra

    2017-09-01

    Birefringence in stable glasses produced by physical vapor deposition often implies molecular alignment similar to liquid crystals. As such, it remains unclear whether these glasses share the same energy landscape as liquid-quenched glasses that have been aged for millions of years. Here, we produce stable glasses of 9-(3,5-di(naphthalen-1-yl)phenyl)anthracene molecules that retain three-dimensional shapes and do not preferentially align in a specific direction. Using a combination of angle- and polarization-dependent photoluminescence and ellipsometry experiments, we show that these stable glasses possess a predominantly isotropic molecular orientation while being optically birefringent. The intrinsic birefringence strongly correlates with increased density, showing that molecular ordering is not required to produce stable glasses or optical birefringence, and provides important insights into the process of stable glass formation via surface-mediated equilibration. To our knowledge, such novel amorphous packing has never been reported in the past.

  10. Dynamics of Aerosol Particles in Stationary, Isotropic Turbulence

    NASA Technical Reports Server (NTRS)

    Collins, Lance R.; Meng, Hui

    2004-01-01

    A detailed study of the dynamics of sub-Kolmogorov-size aerosol particles in stationary isotropic turbulence has been performed. The study combined direct numerical simulations (DNS; directed by Prof. Collins) and high-resolution experimental measurements (directed by Prof. Meng) under conditions of nearly perfect geometric and parametric overlap. The goal was to measure the accumulation of particles in low-vorticity regions of the flow that arises from the effect commonly referred to as preferential concentration. The grant technically was initiated on June 13, 2000; however, funding was not available until July 11, 2000. The grant was originally awarded to Penn State University (numerical simulations) and SUNY-Buffalo (experiments); however, Prof. Collins effort was moved to Cornell University on January 2002 when he joined that university. He completed the study there. A list of the specific tasks that were completed under this study is presented.

  11. Lagrangian statistics in compressible isotropic homogeneous turbulence

    NASA Astrophysics Data System (ADS)

    Yang, Yantao; Wang, Jianchun; Shi, Yipeng; Chen, Shiyi

    2011-11-01

    In this work we conducted the Direct Numerical Simulation (DNS) of a forced compressible isotropic homogeneous turbulence and investigated the flow statistics from the Lagrangian point of view, namely the statistics is computed following the passive tracers trajectories. The numerical method combined the Eulerian field solver which was developed by Wang et al. (2010, J. Comp. Phys., 229, 5257-5279), and a Lagrangian module for tracking the tracers and recording the data. The Lagrangian probability density functions (p.d.f.'s) have then been calculated for both kinetic and thermodynamic quantities. In order to isolate the shearing part from the compressing part of the flow, we employed the Helmholtz decomposition to decompose the flow field (mainly the velocity field) into the solenoidal and compressive parts. The solenoidal part was compared with the incompressible case, while the compressibility effect showed up in the compressive part. The Lagrangian structure functions and cross-correlation between various quantities will also be discussed. This work was supported in part by the China's Turbulence Program under Grant No.2009CB724101.

  12. The RaDIATE High-Energy Proton Materials Irradiation Experiment at the Brookhaven Linac Isotope Producer Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ammigan, Kavin; et al.

    The RaDIATE collaboration (Radiation Damage In Accelerator Target Environments) was founded in 2012 to bring together the high-energy accelerator target and nuclear materials communities to address the challenging issue of radiation damage effects in beam-intercepting materials. Success of current and future high intensity accelerator target facilities requires a fundamental understanding of these effects including measurement of materials property data. Toward this goal, the RaDIATE collaboration organized and carried out a materials irradiation run at the Brookhaven Linac Isotope Producer facility (BLIP). The experiment utilized a 181 MeV proton beam to irradiate several capsules, each containing many candidate material samples formore » various accelerator components. Materials included various grades/alloys of beryllium, graphite, silicon, iridium, titanium, TZM, CuCrZr, and aluminum. Attainable peak damage from an 8-week irradiation run ranges from 0.03 DPA (Be) to 7 DPA (Ir). Helium production is expected to range from 5 appm/DPA (Ir) to 3,000 appm/DPA (Be). The motivation, experimental parameters, as well as the post-irradiation examination plans of this experiment are described.« less

  13. Image-guided total marrow and total lymphatic irradiation using helical tomotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schultheiss, Timothy E.; Wong, Jeffrey; Liu, An

    2007-03-15

    Purpose: To develop a treatment technique to spare normal tissue and allow dose escalation in total body irradiation (TBI). We have developed intensity-modulated radiotherapy techniques for the total marrow irradiation (TMI), total lymphatic irradiation, or total bone marrow plus lymphatic irradiation using helical tomotherapy. Methods and Materials: For TBI, we typically use 12 Gy in 10 fractions delivered at an extended source-to-surface distance (SSD). Using helical tomotherapy, it is possible to deliver equally effective doses to the bone marrow and lymphatics while sparing normal organs to a significant degree. In the TMI patients, whole body skeletal bone, including the ribsmore » and sternum, comprise the treatment target. In the total lymphatic irradiation, the target is expanded to include the spleen and major lymph node areas. Sanctuary sites for disease (brain and testes) are included when clinically indicated. Spared organs include the lungs, esophagus, parotid glands, eyes, oral cavity, liver, kidneys, stomach, small and large intestine, bladder, and ovaries. Results: With TBI, all normal organs received the TBI dose; with TMI, total lymphatic irradiation, and total bone marrow plus lymphatic irradiation, the visceral organs are spared. For the first 6 patients treated with TMI, the median dose to organs at risk averaged 51% lower than would be achieved with TBI. By putting greater weight on the avoidance of specific organs, greater sparing was possible. Conclusion: Sparing of normal tissues and dose escalation is possible using helical tomotherapy. Late effects such as radiation pneumonitis, veno-occlusive disease, cataracts, neurocognitive effects, and the development of second tumors should be diminished in severity and frequency according to the dose reduction realized for the organs at risk.« less

  14. Eigenvalues of Random Matrices with Isotropic Gaussian Noise and the Design of Diffusion Tensor Imaging Experiments.

    PubMed

    Gasbarra, Dario; Pajevic, Sinisa; Basser, Peter J

    2017-01-01

    Tensor-valued and matrix-valued measurements of different physical properties are increasingly available in material sciences and medical imaging applications. The eigenvalues and eigenvectors of such multivariate data provide novel and unique information, but at the cost of requiring a more complex statistical analysis. In this work we derive the distributions of eigenvalues and eigenvectors in the special but important case of m×m symmetric random matrices, D , observed with isotropic matrix-variate Gaussian noise. The properties of these distributions depend strongly on the symmetries of the mean tensor/matrix, D̄ . When D̄ has repeated eigenvalues, the eigenvalues of D are not asymptotically Gaussian, and repulsion is observed between the eigenvalues corresponding to the same D̄ eigenspaces. We apply these results to diffusion tensor imaging (DTI), with m = 3, addressing an important problem of detecting the symmetries of the diffusion tensor, and seeking an experimental design that could potentially yield an isotropic Gaussian distribution. In the 3-dimensional case, when the mean tensor is spherically symmetric and the noise is Gaussian and isotropic, the asymptotic distribution of the first three eigenvalue central moment statistics is simple and can be used to test for isotropy. In order to apply such tests, we use quadrature rules of order t ≥ 4 with constant weights on the unit sphere to design a DTI-experiment with the property that isotropy of the underlying true tensor implies isotropy of the Fisher information. We also explain the potential implications of the methods using simulated DTI data with a Rician noise model.

  15. Eigenvalues of Random Matrices with Isotropic Gaussian Noise and the Design of Diffusion Tensor Imaging Experiments*

    PubMed Central

    Gasbarra, Dario; Pajevic, Sinisa; Basser, Peter J.

    2017-01-01

    Tensor-valued and matrix-valued measurements of different physical properties are increasingly available in material sciences and medical imaging applications. The eigenvalues and eigenvectors of such multivariate data provide novel and unique information, but at the cost of requiring a more complex statistical analysis. In this work we derive the distributions of eigenvalues and eigenvectors in the special but important case of m×m symmetric random matrices, D, observed with isotropic matrix-variate Gaussian noise. The properties of these distributions depend strongly on the symmetries of the mean tensor/matrix, D̄. When D̄ has repeated eigenvalues, the eigenvalues of D are not asymptotically Gaussian, and repulsion is observed between the eigenvalues corresponding to the same D̄ eigenspaces. We apply these results to diffusion tensor imaging (DTI), with m = 3, addressing an important problem of detecting the symmetries of the diffusion tensor, and seeking an experimental design that could potentially yield an isotropic Gaussian distribution. In the 3-dimensional case, when the mean tensor is spherically symmetric and the noise is Gaussian and isotropic, the asymptotic distribution of the first three eigenvalue central moment statistics is simple and can be used to test for isotropy. In order to apply such tests, we use quadrature rules of order t ≥ 4 with constant weights on the unit sphere to design a DTI-experiment with the property that isotropy of the underlying true tensor implies isotropy of the Fisher information. We also explain the potential implications of the methods using simulated DTI data with a Rician noise model. PMID:28989561

  16. Can involved-field irradiation replace elective nodal irradiation in chemoradiotherapy for esophageal cancer? A systematic review and meta-analysis

    PubMed Central

    Wang, Xiaoyue; Miao, Chuanwang; Chen, Zhen; Li, Wanhu; Yuan, Shuanghu; Yu, Jinming; Hu, Xudong

    2017-01-01

    Chemoradiotherapy is the most common treatment for inoperable esophageal cancer. However, there is no consensus on the delineation of the clinical target volume. Elective nodal irradiation (ENI) is recommended for inoperable esophageal cancer. A few studies have reported a decrease in the incidence of radiation-related toxicity of involved-field irradiation (IFI) for esophageal cancer. A systematic review and pooled analysis were performed to determine whether IFI in definitive chemoradiotherapy was more beneficial than ENI for esophageal cancer. The results showed no significant differences in the overall survival and local control rates between the IFI and ENI arms. Meanwhile, the incidences of esophageal and lung toxicities were significantly decreased in the IFI arm. These results suggest that IFI is a feasible treatment option for locally advanced esophageal cancer, especially to minimize irradiation-related toxicity. PMID:28442917

  17. AGR-2 Irradiation Test Final As-Run Report, Rev 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collin, Blaise P.

    2014-08-01

    This document presents the as-run analysis of the AGR-2 irradiation experiment. AGR-2 is the second of the planned irradiations for the Advanced Gas Reactor (AGR) Fuel Development and Qualification Program. Funding for this program is provided by the U.S. Department of Energy as part of the Very High Temperature Reactor (VHTR) Technical Development Office (TDO) program. The objectives of the AGR-2 experiment are to: (a) Irradiate UCO (uranium oxycarbide) and UO 2 (uranium dioxide) fuel produced in a large coater. Fuel attributes are based on results obtained from the AGR-1 test and other project activities. (b) Provide irradiated fuel samplesmore » for post-irradiation experiment (PIE) and safety testing. (c) Support the development of an understanding of the relationship between fuel fabrication processes, fuel product properties, and irradiation performance. The primary objective of the test was to irradiate both UCO and UO 2 TRISO (tri-structural isotropic) fuel produced from prototypic scale equipment to obtain normal operation and accident condition fuel performance data. The UCO compacts were subjected to a range of burnups and temperatures typical of anticipated prismatic reactor service conditions in three capsules. The test train also includes compacts containing UO 2 particles produced independently by the United States, South Africa, and France in three separate capsules. The range of burnups and temperatures in these capsules were typical of anticipated pebble bed reactor service conditions. The results discussed in this report pertain only to U.S. produced fuel. In order to achieve the test objectives, the AGR-2 experiment was irradiated in the B-12 position of the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) for a total irradiation duration of 559.2 effective full power days (EFPD). Irradiation began on June 22, 2010, and ended on October 16, 2013, spanning 12 ATR power cycles and approximately three and a half calendar years. The

  18. Optimisation of UV irradiation as a binding site conserving method for crosslinking collagen-based scaffolds.

    PubMed

    Davidenko, Natalia; Bax, Daniel V; Schuster, Carlos F; Farndale, Richard W; Hamaia, Samir W; Best, Serena M; Cameron, Ruth E

    2016-01-01

    Short wavelength (λ = 254 nm) UV irradiation was evaluated over a range of intensities (0.06 to 0.96 J/cm(2)) as a means of cross-linking collagen- and gelatin-based scaffolds, to tailor their material characteristics whilst retaining biological functionality. Zero-link carbodiimide treatments are commonly applied to collagen-based materials, forming cross-links from carboxylate anions (for example the acidic E of GFOGER) that are an essential part of integrin binding sites on collagen. Cross-linking these amino acids therefore disrupts the bioactivity of collagen. In contrast, UV irradiation forms bonds from less important aromatic tyrosine and phenylalanine residues. We therefore hypothesised that UV cross-linking would not compromise collagen cell reactivity. Here, highly porous (~99 %) isotropic, collagen-based scaffolds were produced via ice-templating. A series of scaffolds (pore diameters ranging from 130-260 μm) with ascending stability in water was made from gelatin, two different sources of collagen I, or blends of these materials. Glucose, known to aid UV crosslinking of collagen, was added to some lower-stability formulations. These scaffolds were exposed to different doses of UV irradiation, and the scaffold morphology, dissolution stability in water, resistance to compression and cell reactivity was assessed. Stabilisation in aqueous media varied with both the nature of the collagen-based material employed and the UV intensity. Scaffolds made from the most stable materials showed the greatest stability after irradiation, although the levels of cross-linking in all cases were relatively low. Scaffolds made from pure collagen from the two different sources showed different optimum levels of irradiation, suggesting altered balance between stabilisation from cross-linking and destabilisation from denaturation. The introduction of glucose into the scaffold enhanced the efficacy of UV cross-linking. Finally, as hypothesized, cell attachment, spreading and

  19. Constitutive modeling for isotropic materials (HOST)

    NASA Technical Reports Server (NTRS)

    Lindholm, U. S.; Chan, K. S.; Bodner, S. R.; Weber, R. M.; Walker, K. P.; Cassenti, B. N.

    1985-01-01

    This report presents the results of the second year of work on a problem which is part of the NASA HOST Program. Its goals are: (1) to develop and validate unified constitutive models for isotropic materials, and (2) to demonstrate their usefulness for structural analyses of hot section components of gas turbine engines. The unified models selected for development and evaluation are that of Bodner-Partom and Walker. For model evaluation purposes, a large constitutive data base is generated for a B1900 + Hf alloy by performing uniaxial tensile, creep, cyclic, stress relation, and thermomechanical fatigue (TMF) tests as well as biaxial (tension/torsion) tests under proportional and nonproportional loading over a wide range of strain rates and temperatures. Systematic approaches for evaluating material constants from a small subset of the data base are developed. Correlations of the uniaxial and biaxial tests data with the theories of Bodner-Partom and Walker are performed to establish the accuracy, range of applicability, and integability of the models. Both models are implemented in the MARC finite element computer code and used for TMF analyses. Benchmark notch round experiments are conducted and the results compared with finite-element analyses using the MARC code and the Walker model.

  20. Constitutive modeling for isotropic materials (HOST)

    NASA Technical Reports Server (NTRS)

    Lindholm, Ulric S.; Chan, Kwai S.; Bodner, S. R.; Weber, R. M.; Walker, K. P.; Cassenti, B. N.

    1984-01-01

    The results of the first year of work on a program to validate unified constitutive models for isotropic materials utilized in high temperature regions of gas turbine engines and to demonstrate their usefulness in computing stress-strain-time-temperature histories in complex three-dimensional structural components. The unified theories combine all inelastic strain-rate components in a single term avoiding, for example, treating plasticity and creep as separate response phenomena. An extensive review of existing unified theories is given and numerical methods for integrating these stiff time-temperature-dependent constitutive equations are discussed. Two particular models, those developed by Bodner and Partom and by Walker, were selected for more detailed development and evaluation against experimental tensile, creep and cyclic strain tests on specimens of a cast nickel base alloy, B19000+Hf. Initial results comparing computed and test results for tensile and cyclic straining for temperature from ambient to 982 C and strain rates from 10(exp-7) 10(exp-3) s(exp-1) are given. Some preliminary date correlations are presented also for highly non-proportional biaxial loading which demonstrate an increase in biaxial cyclic hardening rate over uniaxial or proportional loading conditions. Initial work has begun on the implementation of both constitutive models in the MARC finite element computer code.

  1. Crossover from isotropic to directed percolation

    NASA Astrophysics Data System (ADS)

    Zhou, Zongzheng; Yang, Ji; Ziff, Robert M.; Deng, Youjin

    2012-08-01

    We generalize the directed percolation (DP) model by relaxing the strict directionality of DP such that propagation can occur in either direction but with anisotropic probabilities. We denote the probabilities as p↓=ppd and p↑=p(1-pd), with p representing the average occupation probability and pd controlling the anisotropy. The Leath-Alexandrowicz method is used to grow a cluster from an active seed site. We call this model with two main growth directions biased directed percolation (BDP). Standard isotropic percolation (IP) and DP are the two limiting cases of the BDP model, corresponding to pd=1/2 and pd=0,1 respectively. In this work, besides IP and DP, we also consider the 1/2

  2. Prestack reverse time migration for tilted transversely isotropic media

    NASA Astrophysics Data System (ADS)

    Jang, Seonghyung; Hien, Doan Huy

    2013-04-01

    According to having interest in unconventional resource plays, anisotropy problem is naturally considered as an important step for improving the seismic image quality. Although it is well known prestack depth migration for the seismic reflection data is currently one of the powerful tools for imaging complex geological structures, it may lead to migration error without considering anisotropy. Asymptotic analysis of wave propagation in transversely isotropic (TI) media yields a dispersion relation of couple P- and SV wave modes that can be converted to a fourth order scalar partial differential equation (PDE). By setting the shear wave velocity equal zero, the fourth order PDE, called an acoustic wave equation for TI media, can be reduced to couple of second order PDE systems and we try to solve the second order PDE by the finite difference method (FDM). The result of this P wavefield simulation is kinematically similar to elastic and anisotropic wavefield simulation. We develop prestack depth migration algorithm for tilted transversely isotropic media using reverse time migration method (RTM). RTM is a method for imaging the subsurface using inner product of source wavefield extrapolation in forward and receiver wavefield extrapolation in backward. We show the subsurface image in TTI media using the inner product of partial derivative wavefield with respect to physical parameters and observation data. Since the partial derivative wavefields with respect to the physical parameters require extremely huge computing time, so we implemented the imaging condition by zero lag crosscorrelation of virtual source and back propagating wavefield instead of partial derivative wavefields. The virtual source is calculated directly by solving anisotropic acoustic wave equation, the back propagating wavefield on the other hand is calculated by the shot gather used as the source function in the anisotropic acoustic wave equation. According to the numerical model test for a simple

  3. [Alterations of glial fibrillary acidic protein in rat brain after gamma knife irradiation].

    PubMed

    Ma, Z M; Jiang, B; Ma, J R

    2001-08-28

    To study glial fibrillary acidic protein (GFAP) immunoreactivity in different time and water content of the rat brain treated with gamma knife radiotherapy and to understand the alteration course of the brain lesion after a single high dose radiosurgical treatment. In the brains of the normal rats were irradiated by gamma knife with 160 Gy-high dose. The irradiated rats were then killed on the 1st day, 7th day, 14th day, and 28th day after radiotherapy, respectively. The positive cells of GFAP in brain tissue were detected by immunostaining; the water content of the brain tissue was measured by microgravimetry. The histological study of the irradiated brain tissue was performed with H.E. and examined under light microscope. The numbers of GFAP-positive astrocytes began to increase on the 1st day after gamma knife irradiation. It was enlarged markedly in the number and size of GFAP-stained astrocytes over the irradiated areas. Up to the 28th day, circumscribed necrosis foci (4 mm in diameter) was seen in the central area of the target. In the brain tissue around the necrosis, GFAP-positive astrocytes significantly increased (P < 0.01, compared with the control group). The swelling of cells in irradiated region was observed on the 1st day; after irradiation endothelial cells degenerated and red blood cells escaped from blood vessel on the 7th day; leakage of Evans blue dye was observed in the target region on the 14th day. There was a significant decrease of specific gravity in the irradiated brain tissue the 14th and 28th day after irradiation. The results suggest that GFAP can be used as a marker for the radiation-induced brain injury. The brain edema and disruption of brain-blood barrier can be occurred during the acute stage after irradiation.

  4. Production of sodium-22 from proton irradiated aluminum

    DOEpatents

    Taylor, Wayne A.; Heaton, Richard C.; Jamriska, David J.

    1996-01-01

    A process for selective separation of sodium-22 from a proton irradiated minum target including dissolving a proton irradiated aluminum target in hydrochloric acid to form a first solution including aluminum ions and sodium ions, separating a portion of the aluminum ions from the first solution by crystallization of an aluminum salt, contacting the remaining first solution with an anion exchange resin whereby ions selected from the group consisting of iron and copper are selectively absorbed by the anion exchange resin while aluminum ions and sodium ions remain in solution, contacting the solution with an cation exchange resin whereby aluminum ions and sodium ions are adsorbed by the cation exchange resin, and, contacting the cation exchange resin with an acid solution capable of selectively separating the adsorbed sodium ions from the cation exchange resin while aluminum ions remain adsorbed on the cation exchange resin is disclosed.

  5. Laser irradiation effects on the surface, structural and mechanical properties of Al-Cu alloy 2024

    NASA Astrophysics Data System (ADS)

    Yousaf, Daniel; Bashir, Shazia; Akram, Mahreen; kalsoom, Umm-i.-; Ali, Nisar

    2014-02-01

    Laser irradiation effects on surface, structural and mechanical properties of Al-Cu-Mg alloy (Al-Cu alloy 2024) have been investigated. The specimens were irradiated for various fluences ranging from 3.8 to 5.5 J/cm2 using an Excimer (KrF) laser (248 nm, 18 ns, 30 Hz) under vacuum environment. The surface and structural modifications of the irradiated targets have been investigated by scanning electron microscope (SEM) and X-ray diffractometer (XRD), respectively. SEM analysis reveals the formation of micro-sized craters along the growth of periodic surface structures (ripples) at their peripheries. The size of the craters initially increases and then decreases by increasing the laser fluence. XRD analysis shows an anomalous trend in the peak intensity and crystallite size of the specimen irradiated for various fluences. A universal tensile testing machine and Vickers microhardness tester were employed in order to investigate the mechanical properties of the irradiated targets. The changes in yield strength, ultimate tensile strength and microhardness were found to be anomalous with increasing laser fluences. The changes in the surface and structural properties of Al-Cu alloy 2024 after laser irradiation have been associated with the changes in mechanical properties.

  6. A forced-convection gas target for the production of [11C]CH4.

    PubMed

    Uittenbosch, T; Buckley, K; Ruth, T; Martinez, D M; Hoehr, C

    2018-06-15

    A forced-convection gas target for the production of [ 11 C]CH 4 on a 13 MeV cyclotron was constructed and tested. A small fan was incorporated into the back of the target, which mixes the target gas during irradiation. The effect of the forced convection alone on the target operation and the [ 11 C]CH 4 yield was measured. Forced convection improved the target yield by up to 16 ± 4%. In addition, improvement in heat transfer of up to 70% was observed to be a function of fan speed. Operating with forced convection allowed delivery of 21% higher beam currents while still staying in the acceptable pressure rise during irradiation, providing a 25 ± 7% greater yield. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Liver irradiation causes distal bystander effects in the rat brain and affects animal behaviour.

    PubMed

    Kovalchuk, Anna; Mychasiuk, Richelle; Muhammad, Arif; Hossain, Shakhawat; Ilnytskyy, Slava; Ghose, Abhijit; Kirkby, Charles; Ghasroddashti, Esmaeel; Kovalchuk, Olga; Kolb, Bryan

    2016-01-26

    Radiation therapy can not only produce effects on targeted organs, but can also influence shielded bystander organs, such as the brain in targeted liver irradiation. The brain is sensitive to radiation exposure, and irradiation causes significant neuro-cognitive deficits, including deficits in attention, concentration, memory, and executive and visuospatial functions. The mechanisms of their occurrence are not understood, although they may be related to the bystander effects.We analyzed the induction, mechanisms, and behavioural repercussions of bystander effects in the brain upon liver irradiation in a well-established rat model.Here, we show for the first time that bystander effects occur in the prefrontal cortex and hippocampus regions upon liver irradiation, where they manifest as altered gene expression and somewhat increased levels of γH2AX. We also report that bystander effects in the brain are associated with neuroanatomical and behavioural changes, and are more pronounced in females than in males.

  8. Liver irradiation causes distal bystander effects in the rat brain and affects animal behaviour

    PubMed Central

    Kovalchuk, Anna; Mychasiuk, Richelle; Muhammad, Arif; Hossain, Shakhawat; Ilnytskyy, Slava; Ghose, Abhijit; Kirkby, Charles; Ghasroddashti, Esmaeel; Kovalchuk, Olga; Kolb, Bryan

    2016-01-01

    Radiation therapy can not only produce effects on targeted organs, but can also influence shielded bystander organs, such as the brain in targeted liver irradiation. The brain is sensitive to radiation exposure, and irradiation causes significant neuro-cognitive deficits, including deficits in attention, concentration, memory, and executive and visuospatial functions. The mechanisms of their occurrence are not understood, although they may be related to the bystander effects. We analyzed the induction, mechanisms, and behavioural repercussions of bystander effects in the brain upon liver irradiation in a well-established rat model. Here, we show for the first time that bystander effects occur in the prefrontal cortex and hippocampus regions upon liver irradiation, where they manifest as altered gene expression and somewhat increased levels of γH2AX. We also report that bystander effects in the brain are associated with neuroanatomical and behavioural changes, and are more pronounced in females than in males. PMID:26678032

  9. The role of repair in the survival of mammalian cells from heavy ion irradiation - Approximation to the ideal case of target theory

    NASA Technical Reports Server (NTRS)

    Lett, J. T.; Cox, A. B.; Story, M. D.

    1989-01-01

    Experiments are discussed in which the cell-cycle dependency of the repair deficiency of the S/S variant of the L5178Y murine leukemic lymphoblast was examined by treatment with the heavy ions, Ne-20, Si-28, Ar-40, Fe-56, and Nb-93. Evidence from those studies provide support for the notion that as the linear energy transfer of the incident radiation increases the ability of the S/S cell to repair radiation damage decreases until it is eliminated around 500 keV/micron. In the region of the latter linear energy transfer value, the behavior of the S/S cell approximates the ideal case of target theory where post-irradiation metabolism does not influence cell survival.

  10. Mechanical metamaterials at the theoretical limit of isotropic elastic stiffness

    NASA Astrophysics Data System (ADS)

    Berger, J. B.; Wadley, H. N. G.; McMeeking, R. M.

    2017-02-01

    A wide variety of high-performance applications require materials for which shape control is maintained under substantial stress, and that have minimal density. Bio-inspired hexagonal and square honeycomb structures and lattice materials based on repeating unit cells composed of webs or trusses, when made from materials of high elastic stiffness and low density, represent some of the lightest, stiffest and strongest materials available today. Recent advances in 3D printing and automated assembly have enabled such complicated material geometries to be fabricated at low (and declining) cost. These mechanical metamaterials have properties that are a function of their mesoscale geometry as well as their constituents, leading to combinations of properties that are unobtainable in solid materials; however, a material geometry that achieves the theoretical upper bounds for isotropic elasticity and strain energy storage (the Hashin-Shtrikman upper bounds) has yet to be identified. Here we evaluate the manner in which strain energy distributes under load in a representative selection of material geometries, to identify the morphological features associated with high elastic performance. Using finite-element models, supported by analytical methods, and a heuristic optimization scheme, we identify a material geometry that achieves the Hashin-Shtrikman upper bounds on isotropic elastic stiffness. Previous work has focused on truss networks and anisotropic honeycombs, neither of which can achieve this theoretical limit. We find that stiff but well distributed networks of plates are required to transfer loads efficiently between neighbouring members. The resulting low-density mechanical metamaterials have many advantageous properties: their mesoscale geometry can facilitate large crushing strains with high energy absorption, optical bandgaps and mechanically tunable acoustic bandgaps, high thermal insulation, buoyancy, and fluid storage and transport. Our relatively simple

  11. Mechanical metamaterials at the theoretical limit of isotropic elastic stiffness.

    PubMed

    Berger, J B; Wadley, H N G; McMeeking, R M

    2017-03-23

    A wide variety of high-performance applications require materials for which shape control is maintained under substantial stress, and that have minimal density. Bio-inspired hexagonal and square honeycomb structures and lattice materials based on repeating unit cells composed of webs or trusses, when made from materials of high elastic stiffness and low density, represent some of the lightest, stiffest and strongest materials available today. Recent advances in 3D printing and automated assembly have enabled such complicated material geometries to be fabricated at low (and declining) cost. These mechanical metamaterials have properties that are a function of their mesoscale geometry as well as their constituents, leading to combinations of properties that are unobtainable in solid materials; however, a material geometry that achieves the theoretical upper bounds for isotropic elasticity and strain energy storage (the Hashin-Shtrikman upper bounds) has yet to be identified. Here we evaluate the manner in which strain energy distributes under load in a representative selection of material geometries, to identify the morphological features associated with high elastic performance. Using finite-element models, supported by analytical methods, and a heuristic optimization scheme, we identify a material geometry that achieves the Hashin-Shtrikman upper bounds on isotropic elastic stiffness. Previous work has focused on truss networks and anisotropic honeycombs, neither of which can achieve this theoretical limit. We find that stiff but well distributed networks of plates are required to transfer loads efficiently between neighbouring members. The resulting low-density mechanical metamaterials have many advantageous properties: their mesoscale geometry can facilitate large crushing strains with high energy absorption, optical bandgaps and mechanically tunable acoustic bandgaps, high thermal insulation, buoyancy, and fluid storage and transport. Our relatively simple

  12. Isotropic plasma etching of Ge Si and SiN x films

    DOE PAGES

    Henry, Michael David; Douglas, Erica Ann

    2016-08-31

    This study reports on selective isotropic dry etching of chemically vapor deposited (CVD) Ge thin film, release layers using a Shibaura chemical downstream etcher (CDE) with NF 3 and Ar based plasma chemistry. Relative etch rates between Ge, Si and SiN x are described with etch rate reductions achieved by adjusting plasma chemistry with O 2. Formation of oxides reducing etch rates were measured for both Ge and Si, but nitrides or oxy-nitrides created using direct injection of NO into the process chamber were measured to increase Si and SiN x etch rates while retarding Ge etching.

  13. Calculations of key magnetospheric parameters using the isotropic and anisotropic SPSU global MHD code

    NASA Astrophysics Data System (ADS)

    Samsonov, Andrey; Gordeev, Evgeny; Sergeev, Victor

    2017-04-01

    As it was recently suggested (e.g., Gordeev et al., 2015), the global magnetospheric configuration can be characterized by a set of key parameters, such as the magnetopause distance at the subsolar point and on the terminator plane, the magnetic field in the magnetotail lobe and the plasma sheet thermal pressure, the cross polar cap electric potential drop and the total field-aligned current. For given solar wind conditions, the values of these parameters can be obtained from both empirical models and global MHD simulations. We validate the recently developed global MHD code SPSU-16 using the key magnetospheric parameters mentioned above. The code SPSU-16 can calculate both the isotropic and anisotropic MHD equations. In the anisotropic version, we use the modified double-adiabatic equations in which the T⊥/T∥ (the ratio of perpendicular to parallel thermal pressures) has been bounded from above by the mirror and ion-cyclotron thresholds and from below by the firehose threshold. The results of validation for the SPSU-16 code well agree with the previously published results of other global codes. Some key parameters coincide in the isotropic and anisotropic MHD simulations, but some are different.

  14. Spectrum of the isotropic diffuse gamma-ray emission derived from first-year Fermi Large Area Telescope data.

    PubMed

    Abdo, A A; Ackermann, M; Ajello, M; Atwood, W B; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Baughman, B M; Bechtol, K; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bregeon, J; Brez, A; Brigida, M; Bruel, P; Burnett, T H; Buson, S; Caliandro, G A; Cameron, R A; Caraveo, P A; Casandjian, J M; Cavazzuti, E; Cecchi, C; Celik, O; Charles, E; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Cominsky, L R; Conrad, J; Cutini, S; Dermer, C D; de Angelis, A; de Palma, F; Digel, S W; Di Bernardo, G; do Couto e Silva, E; Drell, P S; Drlica-Wagner, A; Dubois, R; Dumora, D; Farnier, C; Favuzzi, C; Fegan, S J; Focke, W B; Fortin, P; Frailis, M; Fukazawa, Y; Funk, S; Fusco, P; Gaggero, D; Gargano, F; Gasparrini, D; Gehrels, N; Germani, S; Giebels, B; Giglietto, N; Giommi, P; Giordano, F; Glanzman, T; Godfrey, G; Grenier, I A; Grondin, M-H; Grove, J E; Guillemot, L; Guiriec, S; Gustafsson, M; Hanabata, Y; Harding, A K; Hayashida, M; Hughes, R E; Itoh, R; Jackson, M S; Jóhannesson, G; Johnson, A S; Johnson, R P; Johnson, T J; Johnson, W N; Kamae, T; Katagiri, H; Kataoka, J; Kawai, N; Kerr, M; Knödlseder, J; Kocian, M L; Kuehn, F; Kuss, M; Lande, J; Latronico, L; Lemoine-Goumard, M; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Madejski, G M; Makeev, A; Mazziotta, M N; McConville, W; McEnery, J E; Meurer, C; Michelson, P F; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nolan, P L; Norris, J P; Nuss, E; Ohsugi, T; Omodei, N; Orlando, E; Ormes, J F; Paneque, D; Panetta, J H; Parent, D; Pelassa, V; Pepe, M; Pesce-Rollins, M; Piron, F; Porter, T A; Rainò, S; Rando, R; Razzano, M; Reimer, A; Reimer, O; Reposeur, T; Ritz, S; Rochester, L S; Rodriguez, A Y; Roth, M; Ryde, F; Sadrozinski, H F-W; Sanchez, D; Sander, A; Saz Parkinson, P M; Scargle, J D; Sellerholm, A; Sgrò, C; Shaw, M S; Siskind, E J; Smith, D A; Smith, P D; Spandre, G; Spinelli, P; Starck, J-L; Strickman, M S; Strong, A W; Suson, D J; Tajima, H; Takahashi, H; Takahashi, T; Tanaka, T; Thayer, J B; Thayer, J G; Thompson, D J; Tibaldo, L; Torres, D F; Tosti, G; Tramacere, A; Uchiyama, Y; Usher, T L; Vasileiou, V; Vilchez, N; Vitale, V; Waite, A P; Wang, P; Winer, B L; Wood, K S; Ylinen, T; Ziegler, M

    2010-03-12

    We report on the first Fermi Large Area Telescope (LAT) measurements of the so-called "extragalactic" diffuse gamma-ray emission (EGB). This component of the diffuse gamma-ray emission is generally considered to have an isotropic or nearly isotropic distribution on the sky with diverse contributions discussed in the literature. The derivation of the EGB is based on detailed modeling of the bright foreground diffuse Galactic gamma-ray emission, the detected LAT sources, and the solar gamma-ray emission. We find the spectrum of the EGB is consistent with a power law with a differential spectral index gamma = 2.41 +/- 0.05 and intensity I(>100 MeV) = (1.03 +/- 0.17) x 10(-5) cm(-2) s(-1) sr(-1), where the error is systematics dominated. Our EGB spectrum is featureless, less intense, and softer than that derived from EGRET data.

  15. Image irradiance distribution in the 3MI wide field of view polarimeter

    NASA Astrophysics Data System (ADS)

    Gabrieli, Riccardo; Bartoli, Alessandro; Maiorano, Michele; Bruno, Umberto; Olivieri, Monica; Calamai, Luciano; Manolis, Ilias; Labate, Demetrio

    2015-09-01

    The Multi-Viewing, Multi-Channel, Multi-Polarisation Imager (3MI) is an imaging radiometer for the ESA/Eumetsat MeteOp-SG programme. Based on the heritage of the POLDER/PARASOL instrument, 3MI is designed to collect global observations of the top-of-atmosphere polarised bi-directional reflectance distribution function in 12 spectral bands, by observing the same target from multiple views using a pushbroom scanning concept. The demanding challenge of the 3MI optical design is represented by the polarisation and image irradiance fall-off (throughput uniformity) requirements. In a generic optical system, the image irradiance fall-off is a function of: target radiance distribution and polarisation, entrance pupil size and optical transmittance variations across the field of view (FOV), distortion and vignetting. In most applications these aspects can be considered as independent; however, when high image irradiance uniformity is required, they have to be considered as linked together. This is particularly true in case of a wide FOV polarimeter as 3MI is. In order to properly account for these aspects, an irradiance fall-off analytical model has been developed in the frame of 3MI Optics Pre-Development (OPD), whose aim is to mitigate any technological risks associated with the 3MI instrument development. It is shown how it is possible to control the image irradiance distribution acting on optical design parameters (e.g. distortion and entrance pupil size variation with FOV). Moreover, the impact of polarisation performances on irradiance fall-off is discussed.

  16. Sonic horizon formation for oscillating Bose-Einstein condensates in isotropic harmonic potential

    PubMed Central

    Wang, Ying; Zhou, Yu; Zhou, Shuyu

    2016-01-01

    We study the sonic horizon phenomena of the oscillating Bose-Einstein condensates in isotropic harmonic potential. Based on the Gross-Pitaevskii equation model and variational method, we derive the original analytical formula for the criteria and lifetime of the formation of the sonic horizon, demonstrating pictorially the interaction parameter dependence for the occur- rence of the sonic horizon and damping effect of the system distribution width. Our analytical results corroborate quantitatively the particular features of the sonic horizon reported in previous numerical study. PMID:27922129

  17. Asymptotic behavior of curvature of surface elements in isotropic turbulence

    NASA Technical Reports Server (NTRS)

    Girimaji, S. S.

    1991-01-01

    The asymptotic behavior of the curvature of material elements in turbulence is investigated using Lagrangian velocity-gradient time series obtained from direct numerical simulations of isotropic turbulence. Several material-element ensembles of different initial curvatures and shapes are studied. It is found that, at long times, the (first five) moments of the logarithm of characteristic curvature and shape factor asymptote to values that are independent of the initial curvature or shape. This evidence strongly suggests that the asymptotic pdf's of the curvature and shape of material elements are stationary and independent of initial conditions. Irrespective of initial curvature or shape, the asymptotic shape of a material surface is cylindrical with a high probability.

  18. Sensitivity of postplanning target and OAR coverage estimates to dosimetric margin distribution sampling parameters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu Huijun; Gordon, J. James; Siebers, Jeffrey V.

    2011-02-15

    Purpose: A dosimetric margin (DM) is the margin in a specified direction between a structure and a specified isodose surface, corresponding to a prescription or tolerance dose. The dosimetric margin distribution (DMD) is the distribution of DMs over all directions. Given a geometric uncertainty model, representing inter- or intrafraction setup uncertainties or internal organ motion, the DMD can be used to calculate coverage Q, which is the probability that a realized target or organ-at-risk (OAR) dose metric D{sub v} exceeds the corresponding prescription or tolerance dose. Postplanning coverage evaluation quantifies the percentage of uncertainties for which target and OAR structuresmore » meet their intended dose constraints. The goal of the present work is to evaluate coverage probabilities for 28 prostate treatment plans to determine DMD sampling parameters that ensure adequate accuracy for postplanning coverage estimates. Methods: Normally distributed interfraction setup uncertainties were applied to 28 plans for localized prostate cancer, with prescribed dose of 79.2 Gy and 10 mm clinical target volume to planning target volume (CTV-to-PTV) margins. Using angular or isotropic sampling techniques, dosimetric margins were determined for the CTV, bladder and rectum, assuming shift invariance of the dose distribution. For angular sampling, DMDs were sampled at fixed angular intervals {omega} (e.g., {omega}=1 deg., 2 deg., 5 deg., 10 deg., 20 deg.). Isotropic samples were uniformly distributed on the unit sphere resulting in variable angular increments, but were calculated for the same number of sampling directions as angular DMDs, and accordingly characterized by the effective angular increment {omega}{sub eff}. In each direction, the DM was calculated by moving the structure in radial steps of size {delta}(=0.1,0.2,0.5,1 mm) until the specified isodose was crossed. Coverage estimation accuracy {Delta}Q was quantified as a function of the sampling parameters

  19. Enhanced critical current in superconducting FeSe0.5Te0.5 films at all magnetic field orientations by scalable gold ion irradiation

    NASA Astrophysics Data System (ADS)

    Ozaki, Toshinori; Wu, Lijun; Zhang, Cheng; Si, Weidong; Jie, Qing; Li, Qiang

    2018-07-01

    The loss-less electrical current-carrying capability of type II superconductors, measured by the critical current density J c, can be increased by engineering desirable defects in superconductors to pin the magnetic vortices. Here, we demonstrate that such desirable defects can be created in superconducting FeSe0.5Te0.5 films by 6 MeV Au-ions irradiations that produce cluster-like defects with sizes of 10-15 nm over the entire film. The pristine FeSe0.5Te0.5 film exhibits a low anisotropy in the angular dependence of J c. A clear improvement in the J c is observed upon Au-ion irradiation for all field orientations at 4.2 K. Furthermore, a nearly 70% increase in J c is observed at a magnetic field of 9 T applied parallel to the crystallographic c-axis at 10 K with little reduction of the superconducting transition temperature T c. Our studies show that a dose of 1 × 1012 Au cm-2 irradiation at a few MeV is sufficient in order to provide a strong isotropic pinning defect landscape in iron-based superconducting films.

  20. Enhanced critical current in superconducting FeSe 0.5 Te 0.5 films at all magnetic field orientations by scalable gold ion irradiation

    DOE PAGES

    Ozaki, Toshinori; Wu, Lijun; Zhang, Cheng; ...

    2018-01-17

    The loss-less electrical current-carrying capability of type II superconductors, measured by the critical current density J c, can be increased by engineering desirable defects in superconductors to pin the magnetic vortices. Here, we demonstrate that such desirable defects can be created in superconducting FeSe 0.5Te 0.5 films by 6 MeV Au-ions irradiations that produce cluster-like defects with sizes of 10–15 nm over the entire film. The pristine FeSe 0.5Te 0.5 film exhibits a low anisotropy in the angular dependence of J c. A clear improvement in the J c is observed upon Au-ion irradiation for all field orientations at 4.2more » K. Furthermore, a nearly 70% increase in J c is observed at a magnetic field of 9 T applied parallel to the crystallographic c-axis at 10 K with little reduction of the superconducting transition temperature T c. Our studies show that a dose of 1×10 12 Au cm –2 irradiation at a few MeV is sufficient in order to provide a strong isotropic pinning defect landscape in iron-based superconducting films.« less

  1. Enhanced critical current in superconducting FeSe 0.5 Te 0.5 films at all magnetic field orientations by scalable gold ion irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ozaki, Toshinori; Wu, Lijun; Zhang, Cheng

    The loss-less electrical current-carrying capability of type II superconductors, measured by the critical current density J c, can be increased by engineering desirable defects in superconductors to pin the magnetic vortices. Here, we demonstrate that such desirable defects can be created in superconducting FeSe 0.5Te 0.5 films by 6 MeV Au-ions irradiations that produce cluster-like defects with sizes of 10–15 nm over the entire film. The pristine FeSe 0.5Te 0.5 film exhibits a low anisotropy in the angular dependence of J c. A clear improvement in the J c is observed upon Au-ion irradiation for all field orientations at 4.2more » K. Furthermore, a nearly 70% increase in J c is observed at a magnetic field of 9 T applied parallel to the crystallographic c-axis at 10 K with little reduction of the superconducting transition temperature T c. Our studies show that a dose of 1×10 12 Au cm –2 irradiation at a few MeV is sufficient in order to provide a strong isotropic pinning defect landscape in iron-based superconducting films.« less

  2. Branch and bound algorithm for accurate estimation of analytical isotropic bidirectional reflectance distribution function models.

    PubMed

    Yu, Chanki; Lee, Sang Wook

    2016-05-20

    We present a reliable and accurate global optimization framework for estimating parameters of isotropic analytical bidirectional reflectance distribution function (BRDF) models. This approach is based on a branch and bound strategy with linear programming and interval analysis. Conventional local optimization is often very inefficient for BRDF estimation since its fitting quality is highly dependent on initial guesses due to the nonlinearity of analytical BRDF models. The algorithm presented in this paper employs L1-norm error minimization to estimate BRDF parameters in a globally optimal way and interval arithmetic to derive our feasibility problem and lower bounding function. Our method is developed for the Cook-Torrance model but with several normal distribution functions such as the Beckmann, Berry, and GGX functions. Experiments have been carried out to validate the presented method using 100 isotropic materials from the MERL BRDF database, and our experimental results demonstrate that the L1-norm minimization provides a more accurate and reliable solution than the L2-norm minimization.

  3. Efficient energy stable schemes for isotropic and strongly anisotropic Cahn-Hilliard systems with the Willmore regularization

    NASA Astrophysics Data System (ADS)

    Chen, Ying; Lowengrub, John; Shen, Jie; Wang, Cheng; Wise, Steven

    2018-07-01

    We develop efficient energy stable numerical methods for solving isotropic and strongly anisotropic Cahn-Hilliard systems with the Willmore regularization. The scheme, which involves adaptive mesh refinement and a nonlinear multigrid finite difference method, is constructed based on a convex splitting approach. We prove that, for the isotropic Cahn-Hilliard system with the Willmore regularization, the total free energy of the system is non-increasing for any time step and mesh sizes. A straightforward modification of the scheme is then used to solve the regularized strongly anisotropic Cahn-Hilliard system, and it is numerically verified that the discrete energy of the anisotropic system is also non-increasing, and can be efficiently solved by using the modified stable method. We present numerical results in both two and three dimensions that are in good agreement with those in earlier work on the topics. Numerical simulations are presented to demonstrate the accuracy and efficiency of the proposed methods.

  4. Damage evaluation of proton irradiated titanium deuteride thin films to be used as neutron production targets

    NASA Astrophysics Data System (ADS)

    Suarez Anzorena, Manuel; Bertolo, Alma A.; Gagetti, Leonardo; Gaviola, Pedro A.; del Grosso, Mariela F.; Kreiner, Andrés J.

    2018-06-01

    Titanium deuteride thin films have been manufactured under different conditions specified by deuterium gas pressure, substrate temperature and time. The films were characterized by different techniques to evaluate the deuterium content and the homogeneity of such films. Samples with different concentrations of deuterium, including non deuterated samples, were irradiated with a 150 keV proton beam. Both deposits, pristine and irradiated, were characterized by optical profilometry and scanning electron microscopy.

  5. A new three-dimensional conformal radiotherapy (3DCRT) technique for large breast and/or high body mass index patients: evaluation of a novel fields assessment aimed to reduce extra–target-tissue irradiation

    PubMed Central

    Stimato, Gerardina; Ippolito, Edy; Silipigni, Sonia; Venanzio, Cristina Di; Gaudino, Diego; Fiore, Michele; Trodella, Lucio; D'Angelillo, Rolando Maria; Ramella, Sara

    2016-01-01

    Objective: To develop an alternative three-dimensional treatment plan with standardized fields class solution for whole-breast radiotherapy in patients with large/pendulous breast and/or high body mass index (BMI). Methods: Two treatment plans [tangential fields and standardized five-fields technique (S5F)] for a total dose of 50 Gy/25 fractions were generated for patients with large breasts [planning target volume (PTV) >1000 cm3 and/or BMI >25 kg m−2], supine positioned. S5F plans consist of two wedged tangential beams, anteroposterior: 20° for the right breast and 340° for the left breast, and posteroanterior: 181° for the right breast and 179° for the left breast. A field in field in medial–lateral beam and additional fields were added to reduce hot spot areas and extra–target-tissue irradiation and to improve dose distribution. The percentage of PTV receiving 95% of the prescribed dose (PTV V95%), percentage of PTV receiving 105% of the prescribed dose (PTV V105%), maximal dose to PTV (PTV Dmax), homogeneity index (HI) and conformity index were recorded. V10%, V20%, V105% and V107% of a “proper” normal tissue structure (body-PTV healthy tissue) were recorded. Statistical analyses were performed using SYSTAT v.12.0 (SPSS, Chicago, IL). Results: In 38 patients included, S5F improved HI (8.4 vs 10.1; p ≤ 0.001) and significantly reduced PTV Dmax and PTV V105%. The extra–target-tissue irradiation was significantly reduced using S5F for V105% (cm3) and V107% (cm3) with a very high difference in tissue irradiation (46.6 vs 3.0 cm3, p ≤ 0.001 for V105% and 12.2 vs 0.0 cm3, p ≤ 0.001 for V107% for tangential field and S5F plans, respectively). Only a slight increase in low-dose extra–target-tissue irradiation (V10%) was observed (2.2719 vs 1.8261 cm3, p = 0.002). Conclusion: The S5F technique in patients with large breast or high BMI increases HI and decreases hot spots in extra-target-tissues and can therefore be

  6. An analytical solution for the elastic response to surface loads imposed on a layered, transversely isotropic and self-gravitating Earth

    NASA Astrophysics Data System (ADS)

    Pan, E.; Chen, J. Y.; Bevis, M.; Bordoni, A.; Barletta, V. R.; Molavi Tabrizi, A.

    2015-12-01

    We present an analytical solution for the elastic deformation of an elastic, transversely isotropic, layered and self-gravitating Earth by surface loads. We first introduce the vector spherical harmonics to express the physical quantities in the layered Earth. This reduces the governing equations to a linear system of equations for the expansion coefficients. We then solve for the expansion coefficients analytically under the assumption (i.e. approximation) that in the mantle, the density in each layer varies as 1/r (where r is the radial coordinate) while the gravity is constant and that in the core the gravity in each layer varies linearly in r with constant density. These approximations dramatically simplify the subsequent mathematical analysis and render closed-form expressions for the expansion coefficients. We implement our solution in a MATLAB code and perform a benchmark which shows both the correctness of our solution and the implementation. We also calculate the load Love numbers (LLNs) of the PREM Earth for different degrees of the Legendre function for both isotropic and transversely isotropic, layered mantles with different core models, demonstrating for the first time the effect of Earth anisotropy on the LLNs.

  7. Relaxation processes of the liquid crystal ME6N in the isotropic phase studied by Raman scattering experiments

    NASA Astrophysics Data System (ADS)

    Giorgini, Maria Grazia; Arcioni, Alberto; Polizzi, Ciro; Musso, Maurizio; Ottaviani, Paolo

    2004-03-01

    We have investigated the Raman profiles of the ν(C≡N) and ν(C=O) vibrational modes of the nematic liquid crystal ME6N (4-cyanophenyl-4'-hexylbenzoate) in the isotropic phase at different temperatures and used them as probes of the dynamics and structural organization of this liquid. The vibrational time correlation functions of the ν(C≡N) mode, rather adequately interpreted within the assumption of exponential modulation function (the Kubo-Rothschild theory), indicate that the system experiences an intermediate dynamical regime that gets only slightly faster with increasing temperature. However, this theory fails in predicting the non-exponential behavior that the time correlation functions manifest in the long time range (t>3 ps). For this reason we have additionally approached the interpretation of vibrational correlation functions in terms of the theory formulated by Rothschild and co-workers for locally structured liquids. The application of this theory reveals that the molecular dynamics in this liquid crystal in the isotropic phase is that deriving from a distribution of differently sized clusters, which narrows as the temperature increases. Even at the highest temperature reached in this study (87 °C above the nematic-isotropic transition), the liquid has not yet achieved the structure of the simple liquid and the dynamics has not reached the limit of the single channel process. The vibrational and orientational relaxations occur in very different time scales. The temperature independence of the orientational dynamics in the whole range from 55 °C to 135 °C has been referred to the nonhydrodynamic behavior of the system, arising when local pseudonematic structures persist for times longer than the orientational relaxation. The occurrence of the process of resonant vibrational energy transfer between the C=O groups of adjacent molecules has been revealed in the isotropic phase by a slightly positive Raman noncoincidence effect in the band associated

  8. 800-MeV proton irradiation of thorium and depleted uranium targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russell, G.J.; Brun, T.O.; Pitcher, E.J.

    As part of the Los Alamos Fertile-to-Fissile-Conversion (FERFICON) program in the late 1980`s, thick targets of the fertile materials thorium and depleted uranium were bombarded by 800-MeV protons to produce the fissile materials {sup 233}U and {sup 239}Pu, respectively. The amount of {sup 233}U made was determined by measuring the {sup 233}Pa activity, and the yield of {sup 239}Pu was deduced by measuring the activity of {sup 239}Np. For the thorium target, 4 spallation products and 34 fission products were also measured. For the depleted uranium target, 3 spallation products and 16 fission products were also measured. The number ofmore » fissions in each target was deduced from fission product mass-yield curves. In actuality, axial distributions of the products were measured, and the distributions were then integrated over the target volume to obtain the total number of products for each reaction.« less

  9. Diffuse ultraviolet erythemal irradiance on inclined planes: a comparison of experimental and modeled data.

    PubMed

    Utrillas, María P; Marín, María J; Esteve, Anna R; Estellés, Victor; Tena, Fernando; Cañada, Javier; Martínez-Lozano, José A

    2009-01-01

    Values of measured and modeled diffuse UV erythemal irradiance (UVER) for all sky conditions are compared on planes inclined at 40 degrees and oriented north, south, east and west. The models used for simulating diffuse UVER are of the geometric-type, mainly the Isotropic, Klucher, Hay, Muneer, Reindl and Schauberger models. To analyze the precision of the models, some statistical estimators were used such as root mean square deviation, mean absolute deviation and mean bias deviation. It was seen that all the analyzed models reproduce adequately the diffuse UVER on the south-facing plane, with greater discrepancies for the other inclined planes. When the models are applied to cloud-free conditions, the errors obtained are higher because the anisotropy of the sky dome acquires more importance and the models do not provide the estimation of diffuse UVER accurately.

  10. Transverse isotropic modeling of the ballistic response of glass reinforced plastic composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, P.A.

    1997-12-31

    The use of glass reinforced plastic (GRP) composites is gaining significant attention in the DoD community for use in armor applications. These materials typically possess a laminate structure consisting of up to 100 plies, each of which is constructed of a glass woven roving fabric that reinforces a plastic matrix material. Current DoD attention is focused on a high strength, S-2 glass cross-weave (0/90) fabric reinforcing a polyester matrix material that forms each ply of laminate structure consisting anywhere from 20 to 70 plies. The resulting structure displays a material anisotropy that is, to a reasonable approximation, transversely isotropic. Whenmore » subjected to impact and penetration from a metal fragment projectile, the GRP displays damage and failure in an anisotropic manner due to various mechanisms such as matrix cracking, fiber fracture and pull-out, and fiber-matrix debonding. In this presentation, the author will describe the modeling effort to simulate the ballistic response of the GRP material described above using the transversely isotropic (TI) constitutive model which has been implemented in the shock physics code, CTH. The results of this effort suggest that the model is able to describe the delamination behavior of the material but has some difficulty capturing the in-plane (i.e., transverse) response of the laminate due to its cross-weave fabric reinforcement pattern which causes a departure from transverse isotropy.« less

  11. Constitutive modeling for isotropic materials

    NASA Technical Reports Server (NTRS)

    Chan, K. S.; Lindholm, U. S.; Bodner, S. R.

    1988-01-01

    The third and fourth years of a 4-year research program, part of the NASA HOST Program, are described. The program goals were: (1) to develop and validate unified constitutive models for isotropic materials, and (2) to demonstrate their usefulness for structural analysis of hot section components of gas turbine engines. The unified models selected for development and evaluation were those of Bodner-Partom and of Walker. The unified approach for elastic-viscoplastic constitutive equations is a viable method for representing and predicting material response characteristics in the range where strain rate and temperature dependent inelastic deformations are experienced. This conclusion is reached by extensive comparison of model calculations against the experimental results of a test program of two high temperature Ni-base alloys, B1900+Hf and Mar-M247, over a wide temperature range for a variety of deformation and thermal histories including uniaxial, multiaxial, and thermomechanical loading paths. The applicability of the Bodner-Partom and the Walker models for structural applications has been demonstrated by implementing these models into the MARC finite element code and by performing a number of analyses including thermomechanical histories on components of hot sections of gas turbine engines and benchmark notch tensile specimens. The results of the 4-year program have been published in four annual reports. The results of the base program are summarized in this report. The tasks covered include: (1) development of material test procedures, (2) thermal history effects, and (3) verification of the constitutive model for an alternative material.

  12. AGR-2: The first irradiation of French HTR fuel in Advanced Test Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    T. Lambert; B. Grover; P. Guillermier

    AGR-2, the second irradiation of the US program for qualification of the NGNP fuel, is open to international participation within the scope of the Generation IV International Forum. In this frame, it includes in its multi-capsule irradiation rig an irradiation of French HTR fuel manufactured in the CAPRI line (GAIA facility at CEA/Cadarache and AREVA/CERCA compacting line at Romans). The AGR-2 irradiation is designed to place our first fabrications of HTR particles under operating conditions that are representative of ANTARES project while keeping close to the test range of the German fuel as much as possible, which is the referencemore » in terms of irradiation behavior. A few batches of particles and 12 fuel compacts were produced and characterized in 2009 by CEA and CERCA. The fuel main characteristics are in conformity with our specifications and in compliance with INL requirements. The AGR-2 experiment is based on the design and devices used in the first experiment of the AGR program. The design makes it possible to monitor the irradiation conditions and in particular, the temperature, the power and the fission products released from fuel particles. The in pile equipment consists of a multi-capsule device designed to simultaneously irradiate six independent capsules with temperature control. The out-of-core part consists of the equipment for actively controlling temperature and measuring the fission products release on-line. The target conditions for the irradiation experiment were defined with the aim of comparing the results obtained under irradiation with German particles along with the objectives of reaching burn-up and fluence targets to validate the behavior of our fuel in a significant range (15% FIMA – 5 × 1025 n/m2 at 600 EFPD with centerline fuel temperature about 1100 degrees C). These conditions have to be representative of ANTARES project characteristics. These target conditions were compared with final results from neutron and thermal design

  13. Charged-Particle Transport in the Data-Driven, Non-Isotropic Turbulent Mangetic Field in the Solar Wind

    NASA Astrophysics Data System (ADS)

    Sun, P.; Jokipii, J. R.; Giacalone, J.

    2016-12-01

    Anisotropies in astrophysical turbulence has been proposed and observed for a long time. And recent observations adopting the multi-scale analysis techniques provided a detailed description of the scale-dependent power spectrum of the magnetic field parallel and perpendicular to the scale-dependent magnetic field line at different scales in the solar wind. In the previous work, we proposed a multi-scale method to synthesize non-isotropic turbulent magnetic field with pre-determined power spectra of the fluctuating magnetic field as a function of scales. We present the effect of test particle transport in the resulting field with a two-scale algorithm. We find that the scale-dependent turbulence anisotropy has a significant difference in the effect on charged par- ticle transport from what the isotropy or the global anisotropy has. It is important to apply this field synthesis method to the solar wind magnetic field based on spacecraft data. However, this relies on how we extract the power spectra of the turbulent magnetic field across different scales. In this study, we propose here a power spectrum synthesis method based on Fourier analysis to extract the large and small scale power spectrum from a single spacecraft observation with a long enough period and a high sampling frequency. We apply the method to the solar wind measurement by the magnetometer onboard the ACE spacecraft and regenerate the large scale isotropic 2D spectrum and the small scale anisotropic 2D spectrum. We run test particle simulations in the magnetid field generated in this way to estimate the transport coefficients and to compare with the isotropic turbulence model.

  14. A simple and rapid technique for radiochemical separation of iodine radionuclides from irradiated tellurium using an activated charcoal column.

    PubMed

    Chattopadhyay, Sankha; Saha Das, Sujata

    2009-10-01

    A simple and inexpensive method for the separation of medically useful no-carrier-added (nca) iodine radionuclides from bulk amounts of irradiated tellurium dioxide (TeO(2)) target was developed. The beta(-) emitting (131)I radionuclide, produced by the decay of (131)Te through the (nat)Te(n, gamma)(131)Te nuclear reaction, was used for standardization of the radiochemical separation procedure. The radiochemical separation was performed by precipitation followed by column (activated charcoal) chromatography. Quantitative post-irradiation recovery of the TeO(2) target material (98-99%), in a form suitable for reuse in future irradiations, was achieved. The overall radiochemical yield for the complete separation of (131)I was 75-85% (n=8). The separated nca (131)I was of high, approximately 99%, radionuclidic and radiochemical purities and did not contain detectable amounts of the target material. This method can be adopted for the radiochemical separation of other different iodine radionuclides produced from tellurium matrices through cyclotron as well as reactor irradiation.

  15. Dyadic Green function for the electromagnetic field in mutilayered isotropic media - An operator approach

    NASA Astrophysics Data System (ADS)

    Sphicopoulos, T.; Teodoridis, V.; Gardiol, F. E.

    1985-08-01

    The dyadic Green functions of electric and magnetic type for multilayered isotropic media are discussed, and a tractable form is obtained by an operator method, which does not involve infinite sums of Hansen functions. The formulation considers a TE-TM decomposition and the use of propagation matrices. Special attention is given to the application of these functions to the analysis of problems in the field of nondestructive measurement of materials.

  16. Field Line Random Walk in Isotropic Magnetic Turbulence up to Infinite Kubo Number

    NASA Astrophysics Data System (ADS)

    Sonsrettee, W.; Wongpan, P.; Ruffolo, D. J.; Matthaeus, W. H.; Chuychai, P.; Rowlands, G.

    2013-12-01

    In astrophysical plasmas, the magnetic field line random walk (FLRW) plays a key role in the transport of energetic particles. In the present, we consider isotropic magnetic turbulence, which is a reasonable model for interstellar space. Theoretical conceptions of the FLRW have been strongly influenced by studies of the limit of weak fluctuations (or a strong mean field) (e.g, Isichenko 1991a, b). In this case, the behavior of FLRW can be characterized by the Kubo number R = (b/B0)(l_∥ /l_ \\bot ) , where l∥ and l_ \\bot are turbulence coherence scales parallel and perpendicular to the mean field, respectively, and b is the root mean squared fluctuation field. In the 2D limit (R ≫ 1), there has been an apparent conflict between concepts of Bohm diffusion, which is based on the Corrsin's independence hypothesis, and percolative diffusion. Here we have used three non-perturbative analytic techniques based on Corrsin's independence hypothesis for B0 = 0 (R = ∞ ): diffusive decorrelation (DD), random ballistic decorrelation (RBD) and a general ordinary differential equation (ODE), and compared them with direct computer simulations. All the analytical models and computer simulations agree that isotropic turbulence for R = ∞ has a field line diffusion coefficient that is consistent with Bohm diffusion. Partially supported by the Thailand Research Fund, NASA, and NSF.

  17. Kerr effect in the isotropic phase of a side-chain polymeric liquid crystal

    NASA Astrophysics Data System (ADS)

    Reys, V.; Dormoy, Y.; Collin, D.; Keller, P.; Martinoty, P.

    1992-02-01

    The birefringence induced by a pulsed electrical field was used to study the pretransitional effects associated with the isotropic phase of a side-chain polysiloxane. The results obtained show that these effects are characterised by a conventional value of the static exponent and an abnormal value of the dynamic exponent, which shows that the dynamic theory of low molecular weight liquid crystals does not apply. The results also reveal competition between the dipolar moments induced by the electrical field and the permanent moments of the mesogenic molecules. La biréfringence induite par un champ électrique impulsionnel a été utilisée pour étudier les effets prétransitionnels associés à la phase isotrope d'un polysiloxane à chaînes latérales. Les résultats obtenus montrent que ces effets sont caractérisés par une valeur classique de l'exposant statique et une valeur anormale de l'exposant dynamique. Ce dernier résultat montre que la théorie dynamique des cristaux liquides de bas poids moléculaire n'est pas applicable au cas présent. Les expériences mettent également en évidence une compétition entre les moments dipolaires induits par le champ électrique et les moments permanents des molécules mésogènes.

  18. The accomplishments of lithium target and test facility validation activities in the IFMIF/EVEDA phase

    NASA Astrophysics Data System (ADS)

    Arbeiter, Frederik; Baluc, Nadine; Favuzza, Paolo; Gröschel, Friedrich; Heidinger, Roland; Ibarra, Angel; Knaster, Juan; Kanemura, Takuji; Kondo, Hiroo; Massaut, Vincent; Saverio Nitti, Francesco; Miccichè, Gioacchino; O'hira, Shigeru; Rapisarda, David; Sugimoto, Masayoshi; Wakai, Eiichi; Yokomine, Takehiko

    2018-01-01

    As part of the engineering validation and engineering design activities (EVEDA) phase for the international fusion materials irradiation facility IFMIF, major elements of a lithium target facility and the test facility were designed, prototyped and validated. For the lithium target facility, the EVEDA lithium test loop was built at JAEA and used to test the stability (waves and long term) of the lithium flow in the target, work out the startup procedures, and test lithium purification and analysis. It was confirmed by experiments in the Lifus 6 plant at ENEA that lithium corrosion on ferritic martensitic steels is acceptably low. Furthermore, complex remote handling procedures for the remote maintenance of the target in the test cell environment were successfully practiced. For the test facility, two variants of a high flux test module were prototyped and tested in helium loops, demonstrating their good capabilities of maintaining the material specimens at the desired temperature with a low temperature spread. Irradiation tests were performed for heated specimen capsules and irradiation instrumentation in the BR2 reactor at SCK-CEN. The small specimen test technique, essential for obtaining material test results with limited irradiation volume, was advanced by evaluating specimen shape and test technique influences.

  19. Uniqueness of the Isotropic Frame and Usefulness of the Lorentz Transformation

    NASA Astrophysics Data System (ADS)

    Choi, Yang-Ho

    2018-05-01

    According to the postulates of the special theory of relativity (STR), physical quantities such as proper times and Doppler shifts can be obtained from any inertial frame by regarding it as isotropic. Nonetheless many inconsistencies arise from the postulates, as shown in this paper. However, there are numerous experimental results that agree with the predictions of STR. It is explained why they are accurate despite the inconsistencies. The Lorentz transformation (LT), unless subject to the postulates of STR, may be a useful method to approach physics problems. As an example to show the usefulness of LT, the problem of the generalized Sagnac effect is solved by utilizing it.

  20. Universality of Critically Pinned Interfaces in Two-Dimensional Isotropic Random Media

    NASA Astrophysics Data System (ADS)

    Grassberger, Peter

    2018-05-01

    Based on extensive simulations, we conjecture that critically pinned interfaces in two-dimensional isotropic random media with short-range correlations are always in the universality class of ordinary percolation. Thus, in contrast to interfaces in >2 dimensions, there is no distinction between fractal (i.e., percolative) and rough but nonfractal interfaces. Our claim includes interfaces in zero-temperature random field Ising models (both with and without spontaneous nucleation), in heterogeneous bootstrap percolation, and in susceptible-weakened-infected-removed epidemics. It does not include models with long-range correlations in the randomness and models where overhangs are explicitly forbidden (which would imply nonisotropy of the medium).

  1. HIGH-TEMPERATURE SAFETY TESTING OF IRRADIATED AGR-1 TRISO FUEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stempien, John D.; Demkowicz, Paul A.; Reber, Edward L.

    High-Temperature Safety Testing of Irradiated AGR-1 TRISO Fuel John D. Stempien, Paul A. Demkowicz, Edward L. Reber, and Cad L. Christensen Idaho National Laboratory, P.O. Box 1625 Idaho Falls, ID 83415, USA Corresponding Author: john.stempien@inl.gov, +1-208-526-8410 Two new safety tests of irradiated tristructural isotropic (TRISO) coated particle fuel have been completed in the Fuel Accident Condition Simulator (FACS) furnace at the Idaho National Laboratory (INL). In the first test, three fuel compacts from the first Advanced Gas Reactor irradiation experiment (AGR-1) were simultaneously heated in the FACS furnace. Prior to safety testing, each compact was irradiated in the Advanced Testmore » Reactor to a burnup of approximately 15 % fissions per initial metal atom (FIMA), a fast fluence of 3×1025 n/m2 (E > 0.18 MeV), and a time-average volume-average (TAVA) irradiation temperature of about 1020 °C. In order to simulate a core-conduction cool-down event, a temperature-versus-time profile having a peak temperature of 1700 °C was programmed into the FACS furnace controllers. Gaseous fission products (i.e., Kr-85) were carried to the Fission Gas Monitoring System (FGMS) by a helium sweep gas and captured in cold traps featuring online gamma counting. By the end of the test, a total of 3.9% of an average particle’s inventory of Kr-85 was detected in the FGMS traps. Such a low Kr-85 activity indicates that no TRISO failures (failure of all three TRISO layers) occurred during the test. If released from the compacts, condensable fission products (e.g., Ag-110m, Cs-134, Cs-137, Eu-154, Eu-155, and Sr-90) were collected on condensation plates fitted to the end of the cold finger in the FACS furnace. These condensation plates were then analyzed for fission products. In the second test, five loose UCO fuel kernels, obtained from deconsolidated particles from an irradiated AGR-1 compact, were heated in the FACS furnace to a peak temperature of 1600 °C. This test

  2. A target development program for beamhole spallation neutron sources in the megawatt range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bauer, G.S.; Atchison, F.

    1995-10-01

    Spallation sources as an alternative to fission neutron sources have been operating successfully up to 160 kW of beam power. With the next generation of these facilities aiming at the medium power range between 0.5 and 5 MW, loads on the targets will be high enough to make present experience of little relevance. With the 0.6 MW continuous facility SINQ under construction, and a 5 MW pulsed facility (ESS) under study in Europe, a research and development program is about to be started which aimes at assessing the limits of stationary and moving solid targets and the feasibility and potentialmore » benefits of flowing liquid metal targets. Apart from theoretical work and examination of existing irradiated material, including used targets from ISIS, it is intended to take advantage of the SINQ solid rod target design to improve the relevant data base by building the target in such a way that individual rods can be equipped as irradiation capsules.« less

  3. Online virtual isocenter based radiation field targeting for high performance small animal microirradiation

    NASA Astrophysics Data System (ADS)

    Stewart, James M. P.; Ansell, Steve; Lindsay, Patricia E.; Jaffray, David A.

    2015-12-01

    Advances in precision microirradiators for small animal radiation oncology studies have provided the framework for novel translational radiobiological studies. Such systems target radiation fields at the scale required for small animal investigations, typically through a combination of on-board computed tomography image guidance and fixed, interchangeable collimators. Robust targeting accuracy of these radiation fields remains challenging, particularly at the millimetre scale field sizes achievable by the majority of microirradiators. Consistent and reproducible targeting accuracy is further hindered as collimators are removed and inserted during a typical experimental workflow. This investigation quantified this targeting uncertainty and developed an online method based on a virtual treatment isocenter to actively ensure high performance targeting accuracy for all radiation field sizes. The results indicated that the two-dimensional field placement uncertainty was as high as 1.16 mm at isocenter, with simulations suggesting this error could be reduced to 0.20 mm using the online correction method. End-to-end targeting analysis of a ball bearing target on radiochromic film sections showed an improved targeting accuracy with the three-dimensional vector targeting error across six different collimators reduced from 0.56+/- 0.05 mm (mean  ±  SD) to 0.05+/- 0.05 mm for an isotropic imaging voxel size of 0.1 mm.

  4. Absorption spectra measurements of the x-ray radiation heated SiO2 aerogel plasma in 'dog-bone' targets irradiated by high power laser pulses

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Dong, Q.-L.; Wang, S.-J.; Li, Y.-T.; Zhang, J.; Wei, H.-G.; Shi, J.-R.; Zhao, G.; Zhang, J.-Y.; Wen, T.-S.; Zhang, W.-H.; Hu, X.; Liu, S.-Y.; Ding, Y.-K.; Zhang, L.; Tang, Y.-J.; Zhang, B.-H.; Zheng, Z.-J.; Nishimura, H.; Fujioka, S.; Takabe, H.

    2008-05-01

    We studied the opacity effect of the SiO2 aerogel plasma heated by x-ray radiation produced by high power laser pulses irradiating the inner surface of golden 'dog-bone' targets. The PET crystal spectrometer was used to measure the absorption spectra of the plasmas in the range from 6.4 Å to 7.4 Å, among which the line emissions involving the K shell of Si ions from He-like to neutral atom were located. The experimental results were analyzed with Detailed-Level-Accounting method. As the plasma temperature increased, the characteristic lines of highly ionized ions gradually dominated the absorption spectrum.

  5. Tritium target manufacturing for use in accelerators

    NASA Astrophysics Data System (ADS)

    Bach, P.; Monnin, C.; Van Rompay, M.; Ballanger, A.

    2001-07-01

    As a neutron tube manufacturer, SODERN is now in charge of manufacturing tritium targets for accelerators, in cooperation with CEA/DAM/DTMN in Valduc. Specific deuterium and tritium targets are manufactured on request, according to the requirements of the users, starting from titanium target on copper substrate, and going to more sophisticated devices. A wide range of possible uses is covered, including thin targets for neutron calibration, thick targets with controlled loading of deuterium and tritium, rotating targets for higher lifetimes, or large size rotating targets for accelerators used in boron neutron therapy. Activity of targets lies in the 1 to 1000 Curie, diameter of targets being up to 30 cm. Special targets are also considered, including surface layer targets for lowering tritium desorption under irradiation, or those made from different kinds of occluders such as titanium, zirconium, erbium, scandium, with different substrates. It is then possible to optimize either neutron output, or lifetime and stability, or thermal behavior.

  6. WE-EF-BRA-07: High Performance Preclinical Irradiation Through Optimized Dual Focal Spot Dose Painting and Online Virtual Isocenter Radiation Field Targeting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stewart, J; Princess Margaret Cancer Centre, University Health Network, Toronto, CA; Lindsay, P

    Purpose: Advances in radiotherapy practice facilitated by collimation systems to shape radiation fields and image guidance to target these conformal beams have motivated proposals for more complex dose patterns to improve the therapeutic ratio. Recent progress in small animal radiotherapy platforms has provided the foundation to validate the efficacy of such interventions, but robustly delivering heterogeneous dose distributions at the scale and accuracy demanded by preclinical studies remains challenging. This work proposes a dual focal spot optimization method to paint spatially heterogeneous dose regions and an online virtual isocenter targeting method to accurately target the dose distributions. Methods: Two-dimensional dosemore » kernels were empirically measured for the 1 mm diameter circular collimator with radiochromic film in a solid water phantom for the small and large x-ray focal spots on the X-RAD 225Cx microirradiator. These kernels were used in an optimization framework which determined a set of animal stage positions, beam-on times, and focal spot settings to optimally deliver a given desired dose distribution. An online method was developed which defined a virtual treatment isocenter based on a single image projection of the collimated radiation field. The method was demonstrated by optimization of a 6 mm circular 2 Gy target adjoining a 4 mm semicircular avoidance region. Results: The dual focal spot technique improved the optimized dose distribution with the proportion of avoidance region receiving more than 0.5 Gy reduced by 40% compared to the large focal spot technique. Targeting tests performed by irradiating ball bearing targets on radiochromic film pieced revealed the online targeting method improved the three-dimensional accuracy from 0.48 mm to 0.15 mm. Conclusion: The dual focal spot optimization and online virtual isocenter targeting framework is a robust option for delivering dose at the preclinical level and provides a new

  7. Near-affine-invariant texture learning for lung tissue analysis using isotropic wavelet frames.

    PubMed

    Depeursinge, Adrien; Van de Ville, Dimitri; Platon, Alexandra; Geissbuhler, Antoine; Poletti, Pierre-Alexandre; Müller, Henning

    2012-07-01

    We propose near-affine-invariant texture descriptors derived from isotropic wavelet frames for the characterization of lung tissue patterns in high-resolution computed tomography (HRCT) imaging. Affine invariance is desirable to enable learning of nondeterministic textures without a priori localizations, orientations, or sizes. When combined with complementary gray-level histograms, the proposed method allows a global classification accuracy of 76.9% with balanced precision among five classes of lung tissue using a leave-one-patient-out cross validation, in accordance with clinical practice.

  8. Study of neutron spectra in a water bath from a Pb target irradiated by 250 MeV protons

    NASA Astrophysics Data System (ADS)

    Li, Yan-Yan; Zhang, Xue-Ying; Ju, Yong-Qin; Ma, Fei; Zhang, Hong-Bin; Chen, Liang; Ge, Hong-Lin; Wan, Bo; Luo, Peng; Zhou, Bin; Zhang, Yan-Bin; Li, Jian-Yang; Xu, Jun-Kui; Wang, Song-Lin; Yang, Yong-Wei; Yang, Lei

    2015-04-01

    Spallation neutrons were produced by the irradiation of Pb with 250 MeV protons. The Pb target was surrounded by water which was used to slow down the emitted neutrons. The moderated neutrons in the water bath were measured by using the resonance detectors of Au, Mn and In with a cadmium (Cd) cover. According to the measured activities of the foils, the neutron flux at different resonance energies were deduced and the epithermal neutron spectra were proposed. Corresponding results calculated with the Monte Carlo code MCNPX were compared with the experimental data to check the validity of the code. The comparison showed that the simulation could give a good prediction for the neutron spectra above 50 eV, while the finite thickness of the foils greatly effected the experimental data in low energy. It was also found that the resonance detectors themselves had great impact on the simulated energy spectra. Supported by National Natural Science Foundation and Strategic Priority Research Program of the Chinese Academy of Sciences (11305229, 11105186, 91226107, 91026009, XDA03030300)

  9. Signature of non-isotropic distribution of stellar rotation inclination angles in the Praesepe cluster

    NASA Astrophysics Data System (ADS)

    Kovacs, Geza

    2018-04-01

    The distribution of the stellar rotation axes of 113 main sequence stars in the open cluster Praesepe are examined by using current photometric rotation periods, spectroscopic rotation velocities, and estimated stellar radii. Three different samples of stellar rotation data on spotted stars from the Galactic field and two independent samples of planetary hosts are used as control samples to support the consistency of the analysis. Considering the high completeness of the Praesepe sample and the behavior of the control samples, we find that the main sequence F - K stars in this cluster are susceptible to rotational axis alignment. Using a cone model, the most likely inclination angle is 76° ± 14° with a half opening angle of 47° ± 24°. Non-isotropic distribution of the inclination angles is preferred over the isotropic distribution, except if the rotation velocities used in this work are systematically overestimated. We found no indication of this being the case on the basis of the currently available data. Data are only available at the CDS, together with the other two compiled datasets used in this paper, via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/612/L2

  10. Erasure of memory in paste by irradiation of ultrasonic waves

    NASA Astrophysics Data System (ADS)

    Nakahara, Akio; Yoneyama, Ryota; Ito, Maruto; Matsuo, Yousuke; Kitsunezaki, So

    2017-06-01

    Densely packed colloidal suspension, called paste, remembers the direction of applied forces, such as vibration and flow, and these memories kept in paste can be visualized as morphology of desiccation crack patterns. For example, when the paste remembers the direction of vibration, all primary cracks propagate in the direction perpendicular to the direction of initial vibration. On the other hand, when the paste remembers the direction of flow, all primary cracks propagate along the direction of initial flow. These results indicate that external forces imprint easy-breakable direction into paste as memories. Therefore, by controlling memories in paste, we can tune to produce various types of crack patterns, such as cellular, radial, lamellar, ring, spiral and lattice structures. Recently we have found that memories in paste can be erased by the irradiation of ultrasonic waves to paste as we obtain only isotropic and cellular crack patterns without any anisotropy related to memory effect. This method can be applied to increase the breaking strength of dried paste by homogenizing microstructure in paste.

  11. Pre-irradiation testing of actively cooled Be-Cu divertor modules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Linke, J.; Duwe, R.; Kuehnlein, W.

    1995-09-01

    A set of neutron irradiation tests is prepared on different plasma facing materials (PFM) candidates and miniaturized components for ITER. Beside beryllium the irradiation program which will be performed in the High Flux Reactor (HFR) in Petten, includes different carbon fiber composites (CFQ) and tungsten alloys. The target values for the neutron irradiation will be 0.5 dpa at temperatures of 350{degrees}C and 700{degrees}C, resp.. The post irradiation examination (PIE) will cover a wide range of mechanical tests; in addition the degradation of thermal conductivity will be investigated. To determine the high heat flux (HHF) performance of actively cooled divertor modules,more » electron beam tests which simulate the expected heat loads during the operation of ITER, are scheduled in the hot cell electron beam facility JUDITH. These tests on a selection of different actively cooled beryllium-copper and CFC-copper divertor modules are performed before and after neutron irradiation; the pre-irradiation testing is an essential part of the program to quantify the zero-fluence high heat flux performance and to detect defects in the modules, in particular in the brazed joints.« less

  12. Proton irradiation effects on beryllium - A macroscopic assessment

    NASA Astrophysics Data System (ADS)

    Simos, Nikolaos; Elbakhshwan, Mohamed; Zhong, Zhong; Camino, Fernando

    2016-10-01

    Beryllium, due to its excellent neutron multiplication and moderation properties, in conjunction with its good thermal properties, is under consideration for use as plasma facing material in fusion reactors and as a very effective neutron reflector in fission reactors. While it is characterized by unique combination of structural, chemical, atomic number, and neutron absorption cross section it suffers, however, from irradiation generated transmutation gases such as helium and tritium which exhibit low solubility leading to supersaturation of the Be matrix and tend to precipitate into bubbles that coalesce and induce swelling and embrittlement thus degrading the metal and limiting its lifetime. Utilization of beryllium as a pion production low-Z target in high power proton accelerators has been sought both for its low Z and good thermal properties in an effort to mitigate thermos-mechanical shock that is expected to be induced under the multi-MW power demand. To assess irradiation-induced changes in the thermal and mechanical properties of Beryllium, a study focusing on proton irradiation damage effects has been undertaken using 200 MeV protons from the Brookhaven National Laboratory Linac and followed by a multi-faceted post-irradiation analysis that included the thermal and volumetric stability of irradiated beryllium, the stress-strain behavior and its ductility loss as a function of proton fluence and the effects of proton irradiation on the microstructure using synchrotron X-ray diffraction. The mimicking of high temperature irradiation of Beryllium via high temperature annealing schemes has been conducted as part of the post-irradiation study. This paper focuses on the thermal stability and mechanical property changes of the proton irradiated beryllium and presents results of the macroscopic property changes of Beryllium deduced from thermal and mechanical tests.

  13. Effects of weak electromagnetic irradiation on various types of behavior in the mealworm Tenebrio molitor.

    PubMed

    Sheiman, I M; Kreshchenko, N D

    2010-10-01

    The effects of weak electromagnetic irradiation on simple forms of behavior were studied using adult Tenebrio molitor mealworms. The beetles' motor behavior was studied in conditions of different motivations, i.e., positive (food) and negative (avoidance of light), in otherwise identical experimental conditions. The beetles had to navigate a defined space to reach their target - potato or cover from light. Experiments consisted of one trial per day for five days. Target attainment time was measured in groups of beetles. Behavior in both cases developed as follows: an initial orientation reaction appeared and was followed by adaptation to the apparatus. Exposure to weak electromagnetic irradiation led to increases in the response time at the initial stages of the experiments. The effects of irradiation were seasonal in nature and differed in the two types of behavior.

  14. In-plane dynamic Green's functions for inclined and uniformly distributed loads in a multi-layered transversely isotropic half-space

    NASA Astrophysics Data System (ADS)

    Ba, Zhenning; Kang, Zeqing; Liang, Jianwen

    2018-04-01

    The dynamic stiffness method combined with the Fourier transform is utilized to derive the in-plane Green's functions for inclined and uniformly distributed loads in a multi-layered transversely isotropic (TI) half-space. The loaded layer is fixed to obtain solutions restricted in it and the corresponding reactions forces, which are then applied to the total system with the opposite sign. By adding solutions restricted in the loaded layer to solutions from the reaction forces, the global solutions in the wavenumber domain are obtained, and the dynamic Green's functions in the space domain are recovered by the inverse Fourier transform. The presented formulations can be reduced to the isotropic case developed by Wolf (1985), and are further verified by comparisons with existing solutions in a uniform isotropic as well as a layered TI half-space subjected to horizontally distributed loads which are special cases of the more general problem addressed. The deduced Green's functions, in conjunction with boundary element methods, will lead to significant advances in the investigation of a variety of wave scattering, wave radiation and soil-structure interaction problems in a layered TI site. Selected numerical results are given to investigate the influence of material anisotropy, frequency of excitation, inclination angle and layered on the responses of displacement and stress, and some conclusions are drawn.

  15. Results of thermal test of metallic molybdenum disk target and fast-acting valve testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Virgo, M.; Chemerisov, S.; Gromov, R.

    2016-12-01

    This report describes the irradiation conditions for thermal testing of helium-cooled metallic disk targets that was conducted on March 9, 2016, at the Argonne National Laboratory electron linac. The four disks in this irradiation were pressed and sintered by Oak Ridge National Laboratory from molybdenum metal powder. Two of those disks were instrumented with thermocouples. Also reported are results of testing a fast-acting-valve system, which was designed to protect the accelerator in case of a target-window failure.

  16. Targets for production of the medical radioisotopes with alpha and proton or deuteron beams

    NASA Astrophysics Data System (ADS)

    Stolarz, Anna; Kowalska, J. A.; Jastrzebski, J.; Choiński, J.; Sitarz, M.; Szkliniarz, K.; Trzcińska, A.; Zipper, W.

    2018-05-01

    The research quantities of some medical radioisotopes were produced in reactions induced by 32 MeV internal alpha beam (211At, Sc isotopes), 16 MeV and 28 MeV proton beams (Sc isotopes) and 8 MeV deuteron beam (Sc isotopes). The frame-less targets used for irradiation with internal alpha beam were prepared from elemental (Bi for 211At) and compound (CaCO3 for Sc radioisotopes) materials. The CaCO3 powder targets were also used for production of Sc radioisotopes with proton or deuteron external beams. Methods developed for preparation of the targets suitable for the irradiating beam type are described in this work.

  17. Mineral chemistry of isotropic gabbros from the Manamedu Ophiolite Complex, Cauvery Suture Zone, southern India: Evidence for neoproterozoic suprasubduction zone tectonics

    NASA Astrophysics Data System (ADS)

    Yellappa, T.; Tsunogae, T.; Chetty, T. R. K.; Santosh, M.

    2016-11-01

    The dismembered units of the Neoproterozoic Manamedu Ophiolite Complex (MOC) in the Cauvery Suture Zone, southern India comprises a well preserved ophiolitic sequence of ultramafic cumulates of altered dunites, pyroxenites, mafic cumulates of gabbros, gabbro-norites and anorthosites in association with plagiogranites, isotropic gabbros, metadolerites, metabasalts/amphibolites and thin layers of ferruginous chert bands. The isotropic gabbros occur as intrusions in association with gabbroic anorthosites, plagiogranite and metabasalts/amphibolites. The gabbros are medium to fine grained with euhedral to subhedral orthopyroxenes, clinopyroxenes and subhedral plagioclase, together with rare amphiboles. Mineral chemistry of isotropic gabbros reveal that the clinopyroxenes are diopsidic to augitic in composition within the compositional ranges of En(42-59), Fs(5-12), Wo(31-50). They are Ca-rich and Na poor (Na2O < 0.77 wt%) characterized by high-Mg (Mg# 79-86) and low-Ti (TiO2 < 0.35 wt%) contents. The tectonic discrimination plots of clinopyroxene data indicate island arc signature of the source magma. Our study further confirms the suprasubduction zone origin of the Manamedu ophiolitic suite, associated with the subduction-collision history of the Neoproterozoic Mozambique ocean during the assembly of Gondwana supercontinent.

  18. Modification of homogeneous and isotropic turbulence by solid particles

    NASA Astrophysics Data System (ADS)

    Hwang, Wontae

    2005-12-01

    Particle-laden flows are prevalent in natural and industrial environments. Dilute loadings of small, heavy particles have been observed to attenuate the turbulence levels of the carrier-phase flow, up to 80% in some cases. We attempt to increase the physical understanding of this complex phenomenon by studying the interaction of solid particles with the most fundamental type of turbulence, which is homogeneous and isotropic with no mean flow. A flow facility was developed that could create air turbulence in a nearly-spherical chamber by means of synthetic jet actuators mounted on the corners. Loudspeakers were used as the actuators. Stationary turbulence and natural decaying turbulence were investigated using two-dimensional particle image velocimetry for the base flow qualification. Results indicated that the turbulence was fairly homogeneous throughout the measurement domain and very isotropic, with small mean flow. The particle-laden flow experiments were conducted in two different environments, the lab and in micro-gravity, to examine the effects of particle wakes and flow structure distortion caused by settling particles. The laboratory experiments showed that glass particles with diameters on the order of the turbulence Kolmogorov length scale attenuated the fluid turbulent kinetic energy (TKE) and dissipation rate with increasing particle mass loadings. The main source of fluid TKE production in the chamber was the speakers, but the loss of potential energy of the settling particles also resulted in a significant amount of production of extra TKE. The sink of TKE in the chamber was due to the ordinary fluid viscous dissipation and extra dissipation caused by particles. This extra dissipation could be divided into "unresolved" dissipation caused by local velocity disturbances in the vicinity of the small particles and dissipation caused by large-scale flow distortions from particle wakes and particle clusters. The micro-gravity experiments in NASA's KC-135

  19. Acquisition of reproducible transmission near-infrared (NIR) spectra of solid samples with inconsistent shapes by irradiation with isotropically diffused radiation using polytetrafluoroethylene (PTFE) beads.

    PubMed

    Lee, Jinah; Duy, Pham Khac; Yoon, Jihye; Chung, Hoeil

    2014-06-21

    A bead-incorporated transmission scheme (BITS) has been demonstrated for collecting reproducible transmission near-infrared (NIR) spectra of samples with inconsistent shapes. Isotropically diffused NIR radiation was applied around a sample and the surrounding radiation was allowed to interact homogeneously with the sample for transmission measurement. Samples were packed in 1.40 mm polytetrafluoroethylene (PTFE) beads, ideal diffusers without NIR absorption, and then transmission spectra were collected by illuminating the sample-containing beads using NIR radiation. When collimated radiation was directly applied, a small portion of the non-fully diffused radiation (NFDR) propagated through the void space of the packing and eventually degraded the reproducibility. Pre-diffused radiation was introduced by placing an additional PTFE disk in front of the packing to diminish NFDR, which produced more reproducible spectral features. The proposed scheme was evaluated by analyzing two different solid samples: density determination for individual polyethylene (PE) pellets and identification of mining locality for tourmalines. Because spectral collection was reproducible, the use of the spectrum acquired from one PE pellet was sufficient to accurately determine the density of nine other pellets with different shapes. The differentiation of tourmalines, which are even more dissimilar in appearance, according to their mining locality was also feasible with the help of the scheme.

  20. Irreducible structure, symmetry and average of Eshelby's tensor fields in isotropic elasticity

    NASA Astrophysics Data System (ADS)

    Zheng, Q.-S.; Zhao, Z.-H.; Du, D.-X.

    2006-02-01

    The strain field ɛ(x) in an infinitely large, homogenous, and isotropic elastic medium induced by a uniform eigenstrain ɛ0 in a domain ω depends linearly upon ɛ0 : ɛij(x)=Sijklω(x)ɛkl0. It has been a long-standing conjecture that the Eshelby's tensor field Sω(x) is uniform inside ω if and only if ω is ellipsoidally shaped. Because of the minor index symmetry Sijklω=Sjiklω=Sijlkω, Sω might have a maximum of 36 or nine independent components in three or two dimensions, respectively. In this paper, using the irreducible decomposition of Sω, we show that the isotropic part S of Sω vanishes outside ω and is uniform inside ω with the same value as the Eshelby's tensor S0 for 3D spherical or 2D circular domains. We further show that the anisotropic part Aω=Sω-S of Sω is characterized by a second- and a fourth-order deviatoric tensors and therefore have at maximum 14 or four independent components as characteristics of ω's geometry. Remarkably, the above irreducible structure of Sω is independent of ω's geometry (e.g., shape, orientation, connectedness, convexity, boundary smoothness, etc.). Interesting consequences have implication for a number of recently findings that, for example, both the values of Sω at the center of a 2D Cn(n⩾3,n≠4)-symmetric or 3D icosahedral ω and the average value of Sω over such a ω are equal to S0.

  1. Isotropic in-plane quenched disorder and dilution induce a robust nematic state in electron-doped pnictides

    DOE PAGES

    Liang, Shuhua; Bishop, Christopher B.; Moreo, Adriana; ...

    2015-09-21

    The phase diagram of electron-doped pnictides is studied varying the temperature, electronic density, and isotropic in-plane quenched disorder strength and dilution by means of computational techniques applied to a three-orbital (xz,yz,xy) spin-fermion model with lattice degrees of freedom. In experiments, chemical doping introduces disorder but in theoretical studies the relationship between electronic doping and the randomly located dopants, with their associated quenched disorder, is difficult to address. Moreover, in this publication, the use of computational techniques allows us to study independently the effects of electronic doping, regulated by a global chemical potential, and impurity disorder at randomly selected sites. Surprisingly,more » our Monte Carlo simulations reveal that the fast reduction with doping of the N eel T N and the structural T S transition temperatures, and the concomitant stabilization of a robust nematic state, is primarily controlled in our model by the magnetic dilution associated with the in-plane isotropic disorder introduced by Fe substitution. In the doping range studied, changes in the Fermi surface produced by electron doping affect only slightly both critical temperatures. Our results also suggest that the specific material-dependent phase diagrams experimentally observed could be explained as a consequence of the variation in disorder profiles introduced by the different dopants. Finally, our findings are also compatible with neutron scattering and scanning tunneling microscopy, unveiling a patchy network of locally magnetically ordered clusters with anisotropic shapes, even though the quenched disorder is locally isotropic. Our study reveals a remarkable and unexpected degree of complexity in pnictides: the fragile tendency to nematicity intrinsic of translational invariant electronic systems needs to be supplemented by quenched disorder and dilution to stabilize the robust nematic phase experimentally found in electron

  2. Isotropic in-plane quenched disorder and dilution induce a robust nematic state in electron-doped pnictides

    NASA Astrophysics Data System (ADS)

    Liang, Shuhua; Bishop, Christopher B.; Moreo, Adriana; Dagotto, Elbio

    2015-09-01

    The phase diagram of electron-doped pnictides is studied varying the temperature, electronic density, and isotropic in-plane quenched disorder strength and dilution by means of computational techniques applied to a three-orbital (x z ,y z ,x y ) spin-fermion model with lattice degrees of freedom. In experiments, chemical doping introduces disorder but in theoretical studies the relationship between electronic doping and the randomly located dopants, with their associated quenched disorder, is difficult to address. In this publication, the use of computational techniques allows us to study independently the effects of electronic doping, regulated by a global chemical potential, and impurity disorder at randomly selected sites. Surprisingly, our Monte Carlo simulations reveal that the fast reduction with doping of the Néel TN and the structural TS transition temperatures, and the concomitant stabilization of a robust nematic state, is primarily controlled in our model by the magnetic dilution associated with the in-plane isotropic disorder introduced by Fe substitution. In the doping range studied, changes in the Fermi surface produced by electron doping affect only slightly both critical temperatures. Our results also suggest that the specific material-dependent phase diagrams experimentally observed could be explained as a consequence of the variation in disorder profiles introduced by the different dopants. Our findings are also compatible with neutron scattering and scanning tunneling microscopy, unveiling a patchy network of locally magnetically ordered clusters with anisotropic shapes, even though the quenched disorder is locally isotropic. This study reveals a remarkable and unexpected degree of complexity in pnictides: the fragile tendency to nematicity intrinsic of translational invariant electronic systems needs to be supplemented by quenched disorder and dilution to stabilize the robust nematic phase experimentally found in electron-doped 122 compounds.

  3. Highly Porous NiTi with Isotropic Pore Morphology Fabricated by Self-Propagated High-Temperature Synthesis

    NASA Astrophysics Data System (ADS)

    Hosseini, S. A.; Alizadeh, M.; Ghasemi, A.; Meshkot, M. A.

    2013-02-01

    Highly porous NiTi with isotropic pore morphology has been successfully produced by self-propagating high-temperature synthesis of elemental Ni/Ti metallic powders. The effects of adding urea and NaCl as temporary pore fillers were investigated on pore morphology, microstructure, chemical composition, and the phase transformation temperatures of specimens. These parameters were studied by optical microscopy, scanning electron microscopy, x-ray diffraction, and differential scanning calorimetry (DSC). Highly porous specimens were obtained with up to 83% total porosity and pore sizes between 300 and 500 μm in diameter. Results show pore characteristics were improved from anisotropic to isotropic and pore morphology was changed from channel-like to irregular by adding pore filler powders. Furthermore, the highly porous specimens produced when using urea as a space holder, were of more uniform composition in comparison to NaCl. DSC results showed that a two-step martensitic phase transformation takes place during the cooling cycles and the austenite finish temperature ( A f) is close to human body temperature. Compression test results reveal that the compressive strength of highly porous NiTi is about 155 MPa and recoverable strain about 6% in superelasticity regime.

  4. A FFT-based formulation for efficient mechanical fields computation in isotropic and anisotropic periodic discrete dislocation dynamics

    NASA Astrophysics Data System (ADS)

    Bertin, N.; Upadhyay, M. V.; Pradalier, C.; Capolungo, L.

    2015-09-01

    In this paper, we propose a novel full-field approach based on the fast Fourier transform (FFT) technique to compute mechanical fields in periodic discrete dislocation dynamics (DDD) simulations for anisotropic materials: the DDD-FFT approach. By coupling the FFT-based approach to the discrete continuous model, the present approach benefits from the high computational efficiency of the FFT algorithm, while allowing for a discrete representation of dislocation lines. It is demonstrated that the computational time associated with the new DDD-FFT approach is significantly lower than that of current DDD approaches when large number of dislocation segments are involved for isotropic and anisotropic elasticity, respectively. Furthermore, for fine Fourier grids, the treatment of anisotropic elasticity comes at a similar computational cost to that of isotropic simulation. Thus, the proposed approach paves the way towards achieving scale transition from DDD to mesoscale plasticity, especially due to the method’s ability to incorporate inhomogeneous elasticity.

  5. Effective potentials for H2O-He and H2O-Ar systems. Isotropic induction-dispersion potentials

    NASA Astrophysics Data System (ADS)

    Starikov, Vitali I.; Petrova, Tatiana M.; Solodov, Alexander M.; Solodov, Alexander A.; Deichuli, Vladimir M.

    2017-05-01

    The vibrational and rotational dependence of the effective isotropic interaction potential of H2O-He and H2O-Ar systems, taken in the form of Lennard-Jones 6-12 potential has been analyzed. The analysis is based on the experimental line broadening (γ) and line shift (δ) coefficients obtained for different vibrational bands of H2O molecule perturbed by He and Ar. The first and second derivatives of the function C(1)(q) for the long-range part of the induction-dispersion potential with respect to the dimensionless normal coordinates q were calculated using literature information for the dipole moment and mean polarizability functions μ(q) and α(q), respectively. These derivatives have been used in the calculations of the quantities which determine the vibrational and rotational dependence of the long-range part of the effective isotropic potential. The optimal set of the derivatives for the function C(1)(q) is proposed. The comparison with the experimental data has been performed.

  6. Spectrum of the Isotropic Diffuse Gamma-Ray Emission Derived from First-Year Fermi Large Area Telescope Data

    DOE PAGES

    Abdo, A. A.

    2010-03-08

    Here, we report on the first Fermi Large Area Telescope (LAT) measurements of the so-called “extragalactic” diffuse γ -ray emission (EGB). This component of the diffuse γ -ray emission is generally considered to have an isotropic or nearly isotropic distribution on the sky with diverse contributions discussed in the literature. The derivation of the EGB is based on detailed modeling of the bright foreground diffuse Galactic γ -ray emission, the detected LAT sources, and the solar γ -ray emission. We also find the spectrum of the EGB is consistent with a power law with a differential spectral index γ =more » 2.41 ± 0.05 and intensity I ( > 100 MeV ) = ( 1.03 ± 0.17 ) × 10 - 5 cm -2 s - 1 sr - 1 , where the error is systematics dominated. The EGB spectrum, presented here, is featureless, less intense, and softer than that derived from EGRET data.« less

  7. Laser irradiation effects on thin aluminum plates subjected to surface flow

    NASA Astrophysics Data System (ADS)

    Jiang, Houman; Zhao, Guomin; Chen, Minsun; Peng, Xin

    2016-10-01

    The irradiation effects of LD laser on thin aluminum alloy plates are studied in experiments characterized by relatively large laser spot and the presence of 0.3Ma surface airflow. A high speed profilometer is used to record the profile change along a vertical line in the rear surface of the target, and the history of the displacement along the direction of thickness of the central point at the rear surface is obtained. The results are compared with those without airflow and those by C. D. Boley. We think that it is the temperature rise difference along the direction of thickness instead of the pressure difference caused by the airflow that makes the thin target bulge into the incoming beam, no matter whether the airflow is blown or not, and that only when the thin aluminum target is heated thus softened enough by the laser irradiation, can the aerodynamic force by the surface airflow cause non-ignorable localized plastic deformation and result a burn-through without melting in the target. However, though the target isn't softened enough in terms of the pressure difference, it might have experienced notable deformation as it is heated from room temperature to several hundred degree centigrade.

  8. The mechanism of untargeted mutagenesis in UV-irradiated yeast.

    PubMed

    Lawrence, C W; Christensen, R B

    1982-01-01

    The SOS error-prone repair hypothesis proposes that untargeted and targeted mutations in E. coli both result from the inhibition of polymerase functions that normally maintain fidelity, and that this is a necessary precondition for translesion synthesis. Using mating experiments with excision deficient strains of Bakers' yeast, Saccharomyces cerevisiae, we find that up to 40% of cycl-91 revertants induced by UV are untargeted, showing that a reduction in fidelity is also found in irradiated cells of this organism. We are, however, unable to detect the induction or activation of any diffusible factor capable of inhibiting fidelity, and therefore suggest that untargeted and targeted mutations are the consequence of largely different processes. We propose that these observations are best explained in terms of a limited fidelity model. Untargeted mutations are thought to result from the limited capacity of processes which normally maintain fidelity, which are active during replication on both irradiated and unirradiated templates. Even moderate UV fluences saturate this capacity, leading to competition for the limited resource. Targeted mutations are believed to result from the limited, though far from negligible, capacity of lesions like pyrimidine dimers to form Watson-Crick base pairs.

  9. Spatiotemporal attention operator using isotropic contrast and regional homogeneity

    NASA Astrophysics Data System (ADS)

    Palenichka, Roman; Lakhssassi, Ahmed; Zaremba, Marek

    2011-04-01

    A multiscale operator for spatiotemporal isotropic attention is proposed to reliably extract attention points during image sequence analysis. Its consecutive local maxima indicate attention points as the centers of image fragments of variable size with high intensity contrast, region homogeneity, regional shape saliency, and temporal change presence. The scale-adaptive estimation of temporal change (motion) and its aggregation with the regional shape saliency contribute to the accurate determination of attention points in image sequences. Multilocation descriptors of an image sequence are extracted at the attention points in the form of a set of multidimensional descriptor vectors. A fast recursive implementation is also proposed to make the operator's computational complexity independent from the spatial scale size, which is the window size in the spatial averaging filter. Experiments on the accuracy of attention-point detection have proved the operator consistency and its high potential for multiscale feature extraction from image sequences.

  10. Electron microscopy study of Pd, Ag, and Cs in carbon areas in the locally corroded SiC layer in a neutron-irradiated TRISO fuel particle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wen, Haiming; van Rooyen, Isabella J.; Hunn, John D.

    Here, a detailed electron microscopy study was performed on focused ion beam-prepared lamellae from different locations relative to a crack across the inner pyrolytic carbon layer of a neutron-irradiated tristructural isotropic-coated particle. The distribution and composition of fission products across the inner pyrolytic carbon and silicon carbide (SiC) layers were studied. Previously, this crack was identified in the particle that released significant inventory fractions of cesium and silver during irradiation and displayed localized palladium pileup with SiC degradation. In this study, carbon areas were found in the SiC layer close to the crack tip and they had precipitates that consistedmore » mostly of palladium silicides or palladium, with silver and/or cadmium frequently identified. Results confirmed that areas in the SiC layer close to the crack tip with localized accumulation of palladium were corroded by palladium, forming pure carbon areas and palladium silicide that provided pathways for silver, cadmium and cesium migration.« less

  11. Electron microscopy study of Pd, Ag, and Cs in carbon areas in the locally corroded SiC layer in a neutron-irradiated TRISO fuel particle

    DOE PAGES

    Wen, Haiming; van Rooyen, Isabella J.; Hunn, John D.; ...

    2018-05-07

    Here, a detailed electron microscopy study was performed on focused ion beam-prepared lamellae from different locations relative to a crack across the inner pyrolytic carbon layer of a neutron-irradiated tristructural isotropic-coated particle. The distribution and composition of fission products across the inner pyrolytic carbon and silicon carbide (SiC) layers were studied. Previously, this crack was identified in the particle that released significant inventory fractions of cesium and silver during irradiation and displayed localized palladium pileup with SiC degradation. In this study, carbon areas were found in the SiC layer close to the crack tip and they had precipitates that consistedmore » mostly of palladium silicides or palladium, with silver and/or cadmium frequently identified. Results confirmed that areas in the SiC layer close to the crack tip with localized accumulation of palladium were corroded by palladium, forming pure carbon areas and palladium silicide that provided pathways for silver, cadmium and cesium migration.« less

  12. Radiographic findings after treatment with balloon brachytherapy accelerated partial breast irradiation.

    PubMed

    Ibrahim, Nafisa B; Anandan, Srividya; Hartman, Audrey L; McSweeney, Michelle; Chun, Jeanette; McKee, Andrea; Yang, Rebecca; Kim, Cathleen

    2015-01-01

    The use of accelerated partial breast irradiation (APBI) following breast-conserving surgery is rapidly gaining popularity as an alternative to whole-breast irradiation (WBI) in selected patients with early-stage breast cancer. Although data on the long-term effectiveness and safety of APBI accelerated partial breast irradiation are still being gathered, the shorter treatment course and narrowed radiation target of APBI accelerated partial breast irradiation provide an attractive alternative for carefully selected patients. These patients include those with relatively small tumors (≤3 cm), negative or close margins, and negative sentinel lymph nodes. Possible long-term complications include telangiectasia and the development of a palpable mass at the lumpectomy site. Mammographic findings in patients who have undergone APBI accelerated partial breast irradiation are distinct from those in patients who have undergone conventional WBI whole-breast irradiation . The most common post-APBI accelerated partial breast irradiation radiographic findings include formation of seromas at the lumpectomy site, focal parenchymal changes such as increased trabeculation and parenchymal distortion, fat necrosis, and skin changes such as thickening or retraction. Given the continued evolution of breast cancer treatment, it is important that radiologists have a comprehensive understanding of APBI accelerated partial breast irradiation in terms of rationale, patient selection criteria, common postprocedural radiographic findings (and how they differ from post-WBI whole-breast irradiation findings), and advantages and potential complications. RSNA, 2015

  13. Spherical cloaking using nonlinear transformations for improved segmentation into concentric isotropic coatings.

    PubMed

    Qiu, Cheng-Wei; Hu, Li; Zhang, Baile; Wu, Bae-Ian; Johnson, Steven G; Joannopoulos, John D

    2009-08-03

    Two novel classes of spherical invisibility cloaks based on nonlinear transformation have been studied. The cloaking characteristics are presented by segmenting the nonlinear transformation based spherical cloak into concentric isotropic homogeneous coatings. Detailed investigations of the optimal discretization (e.g., thickness control of each layer, nonlinear factor, etc.) are presented for both linear and nonlinear spherical cloaks and their effects on invisibility performance are also discussed. The cloaking properties and our choice of optimal segmentation are verified by the numerical simulation of not only near-field electric-field distribution but also the far-field radar cross section (RCS).

  14. Imaging of isotropic and anisotropic conductivities from power densities in three dimensions

    NASA Astrophysics Data System (ADS)

    Monard, François; Rim, Donsub

    2018-07-01

    We present numerical reconstructions of anisotropic conductivity tensors in three dimensions, from knowledge of a finite family of power density functionals. Such a problem arises in the coupled-physics imaging modality ultrasound modulated electrical impedance tomography for instance. We improve on the algorithms previously derived in Bal et al (2013 Inverse Problems Imaging 7 353–75) Monard and Bal (2013 Commun. PDE 38 1183–207) for both isotropic and anisotropic cases, and we address the well-known issue of vanishing determinants in particular. The algorithm is implemented and we provide numerical results that illustrate the improvements.

  15. Effects of collection geometry variations on linear and circular polarization persistence in both isotropic-scattering and forward-scattering environments

    DOE PAGES

    van der Laan, John D.; Wright, Jeremy B.; Scrymgeour, David A.; ...

    2016-11-04

    We present simulation and experimental results showing circular polarization is more tolerant of optical collection geometry (field of view and collection area) variations than linear polarization for forward-scattering environments. Circular polarization also persists superiorly in the forward-scattering environment compared to linear polarization by maintaining its degree of polarization better through increasing optical thicknesses. In contrast, both linear and circular polarizations are susceptible to collection geometry variations for isotropic-scattering (Rayleigh regime) environments, and linear polarization maintains a small advantage in polarization persistence. Simulations and measurements are presented for laboratory-based environments of polystyrene microspheres in water. As a result, particle diameters weremore » 0.0824 μm (for isotropic-scattering) and 1.925 μm (for forward-scattering) with an illumination wavelength of 543.5 nm.« less

  16. Effects of collection geometry variations on linear and circular polarization persistence in both isotropic-scattering and forward-scattering environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    van der Laan, John D.; Wright, Jeremy B.; Scrymgeour, David A.

    We present simulation and experimental results showing circular polarization is more tolerant of optical collection geometry (field of view and collection area) variations than linear polarization for forward-scattering environments. Circular polarization also persists superiorly in the forward-scattering environment compared to linear polarization by maintaining its degree of polarization better through increasing optical thicknesses. In contrast, both linear and circular polarizations are susceptible to collection geometry variations for isotropic-scattering (Rayleigh regime) environments, and linear polarization maintains a small advantage in polarization persistence. Simulations and measurements are presented for laboratory-based environments of polystyrene microspheres in water. As a result, particle diameters weremore » 0.0824 μm (for isotropic-scattering) and 1.925 μm (for forward-scattering) with an illumination wavelength of 543.5 nm.« less

  17. Stress reduction in an isotropic plate with a hole by applied induced strains

    NASA Technical Reports Server (NTRS)

    Sensharma, Pradeep K.; Palantera, Markku J.; Haftka, Raphael T.

    1992-01-01

    Recently there has been much interest in adaptive structures that can respond to a varying environment by changing their properties. Shape memory alloys and piezoelectric materials can be used as induced strain actuators to reduce stresses in the regions of stress concentration. The objective of the work was to find the maximum possible reduction in the stress concentration factor in an isotropic plate with a hole by applying induced strains in a small area near the hole. Induced strains were simulated by thermal expansion.

  18. Estimation of crystallinity in isotropic isotactic polypropylene with Raman spectroscopy.

    PubMed

    Minogianni, Chrysa; Gatos, Konstantinos G; Galiotis, Costas

    2005-09-01

    The Raman spectrum of isotactic polypropylene (iPP) has been found to exhibit vibrational peaks in the region of 750 to 880 cm(-1) that are sensitive to the degree of crystallinity. These features are broadly assigned to various modes of methyl group rocking, rho(CH2), and there have been various attempts to assess crystallinity based on the integrated intensities of these bands. Various vibrational analyses performed in the past in combination with experimental studies have concluded that the presence of crystalline order with trans-gauche conformation gives rise to a peak at 809 cm(-1), which is assigned to a rho(CH2) mode coupled with the skeletal stretching mode. However, the presence of additional peaks at 830 cm(-1), 841 cm(-1), and 854 cm(-1), within the same envelope, have been the subject of controversy. In this work isotropic films of iPP derived from the same precursor of identical tacticity have been subjected to various degrees of annealing and the integrated intensities of the Raman bands were measured. The results showed that true 3d crystallinity in isotropic iPP can only be expressed by the 809 cm(-1) band whereas the band at 841 cm(-1) corresponds to an uncoupled rho(CH2) fundamental mode and thus is a measure of the amorphous content. The less intense satellite bands at 830 cm(-1) and 854 cm(-1) of solid iPP cannot be distinguished from the 841 cm(-1) band in the melt and are generally considered as intermediate phases possibly related to non-crystalline components with 3(1)-helical conformations. Independent differential scanning calorimetry (DSC) crystallinity measurements were in broad agreement with the Raman measurements based on the normalized intensity of the 809 cm(-1) Raman band. By comparing the Raman with the DSC data a new value for the theoretical heat of fusion for the 100% crystalline iPP has been proposed.

  19. Statistics of pressure fluctuations in decaying isotropic turbulence.

    PubMed

    Kalelkar, Chirag

    2006-04-01

    We present results from a systematic direct-numerical simulation study of pressure fluctuations in an unforced, incompressible, homogeneous, and isotropic three-dimensional turbulent fluid. At cascade completion, isosurfaces of low pressure are found to be organized as slender filaments, whereas the predominant isostructures appear sheetlike. We exhibit several results, including plots of probability distributions of the spatial pressure difference, the pressure-gradient norm, and the eigenvalues of the pressure-Hessian tensor. Plots of the temporal evolution of the mean pressure-gradient norm, and the mean eigenvalues of the pressure-Hessian tensor are also exhibited. We find the statistically preferred orientations between the eigenvectors of the pressure-Hessian tensor, the pressure gradient, the eigenvectors of the strain-rate tensor, the vorticity, and the velocity. Statistical properties of the nonlocal part of the pressure-Hessian tensor are also exhibited. We present numerical tests (in the viscous case) of some conjectures of Ohkitani [Phys. Fluids A 5, 2570 (1993)] and Ohkitani and Kishiba [Phys. Fluids 7, 411 (1995)] concerning the pressure-Hessian and the strain-rate tensors, for the unforced, incompressible, three-dimensional Euler equations.

  20. Crossing fields in thin films of isotropic superconductors

    DOE PAGES

    Vlasko-Vlasov, V. K.; Colauto, Fabiano; Buzdin, Alexander A.; ...

    2016-11-04

    We study interactions of perpendicular and longitudinal magnetic fields in niobium films of different thickness in a wide range of temperatures below the superconducting transition temperature ( T C) . In 100 nm Nb film at all temperatures the longitudinal field H || practically does not influence the dynamics of the normal flux. However, in 200nm Nb film, a considerable anisotropy in the vortex motion is found with advanced propagation of the normal flux along H || at T>TC/2 and the preferential jump-wise growth of the thermo-magnetic flux dendrites across H || at T < T C. Appearance of themore » in-plane vortices and their cutting-reconnection with tilted vortices induced by the normal field H || is the reason of the observed anisotropy in the thicker film. Absence of the in-plane vortices and much smaller tilt of vortices generated by H || explain the isotropic normal flux dynamics in the thinner film. Lastly, our results open a new way of manipulating both slow vortex motion and fast thermo-magnetic avalanches.« less

  1. Molecular dynamics study of the isotropic-nematic quench.

    PubMed

    Bradac, Z; Kralj, S; Zumer, S

    2002-02-01

    Effects of cylindrical and spherical confinement on the kinetics of the isotropic-nematic quench is studied numerically. The nematic liquid crystal structure was modeled by a modified induced-dipole--induced-dipole interaction. Molecules were allowed to wander around points of a hexagonal lattice. Brownian molecular dynamics was used in order to access macroscopic time scales. In the bulk we distinguish between the early, domain, and late stage regime. The early regime is characterized by the exponential growth of the nematic uniaxial order parameter. In the domain regime domains are clearly visible and the average nematic domain size xi(d) obeys the dynamical scaling law xi(d)-t(gamma). The late stage evolution is dominated by dynamics of individual defects. In a confined system the qualitative change of the scaling behavior appears when xi(d) becomes comparable to a typical linear dimension R of the confinement. In the confining regime (xi(d)>or=R) the scaling coefficient gamma depends on the details of the confinement and also the final equilibrium nematic structure. The domain growth is well described with the Kibble-Zurek mechanism.

  2. Quantitative evaluation of potential irradiation geometries for carbon-ion beam grid therapy.

    PubMed

    Tsubouchi, Toshiro; Henry, Thomas; Ureba, Ana; Valdman, Alexander; Bassler, Niels; Siegbahn, Albert

    2018-03-01

    Radiotherapy using grids containing cm-wide beam elements has been carried out sporadically for more than a century. During the past two decades, preclinical research on radiotherapy with grids containing small beam elements, 25 μm-0.7 mm wide, has been performed. Grid therapy with larger beam elements is technically easier to implement, but the normal tissue tolerance to the treatment is decreasing. In this work, a new approach in grid therapy, based on irradiations with grids containing narrow carbon-ion beam elements was evaluated dosimetrically. The aim formulated for the suggested treatment was to obtain a uniform target dose combined with well-defined grids in the irradiated normal tissue. The gain, obtained by crossfiring the carbon-ion beam grids over a simulated target volume, was quantitatively evaluated. The dose distributions produced by narrow rectangular carbon-ion beams in a water phantom were simulated with the PHITS Monte Carlo code. The beam-element height was set to 2.0 cm in the simulations, while the widths varied from 0.5 to 10.0 mm. A spread-out Bragg peak (SOBP) was then created for each beam element in the grid, to cover the target volume with dose in the depth direction. The dose distributions produced by the beam-grid irradiations were thereafter constructed by adding the dose profiles simulated for single beam elements. The variation of the valley-to-peak dose ratio (VPDR) with depth in water was thereafter evaluated. The separation of the beam elements inside the grids were determined for different irradiation geometries with a selection criterion. The simulated carbon-ion beams remained narrow down to the depths of the Bragg peaks. With the formulated selection criterion, a beam-element separation which was close to the beam-element width was found optimal for grids containing 3.0-mm-wide beam elements, while a separation which was considerably larger than the beam-element width was found advantageous for grids containing 0.5-mm

  3. Modeling pressure rise in gas targets

    NASA Astrophysics Data System (ADS)

    Jahangiri, P.; Lapi, S. E.; Publicover, J.; Buckley, K.; Martinez, D. M.; Ruth, T. J.; Hoehr, C.

    2017-05-01

    The purpose of this work is to introduce a universal mathematical model to explain a gas target behaviour at steady-state time scale. To obtain our final goal, an analytical model is proposed to study the pressure rise in the targets used to produce medical isotopes on low-energy cyclotrons. The model is developed based on the assumption that during irradiation the system reaches steady-state. The model is verified by various experiments performed at different beam currents, gas type, and initial pressures at 13 MeV cyclotron at TRIUMF. Excellent agreement is achieved.

  4. Transgenerational effects of proton beam irradiation on Caenorhabditis elegans germline apoptosis.

    PubMed

    Min, Hyemin; Sung, Minhee; Son, Miseol; Kawasaki, Ichiro; Shim, Yhong-Hee

    2017-08-26

    When treating cancer using radiation therapy, it is critical to increase patient survival rates and to reduce side effects. In this respect, proton beam radiation treatment performs better than other radiation treatments because of its high target specificity. However, complications still remain after proton beam radiation treatment. Among them, the risk to progeny after irradiation of their parents is a major concern. In this study, we analyzed the transgenerational effects of proton beam irradiation using the model organism Caenorhabditis. elegans. We found that germline apoptosis increased after proton beam irradiation and its effects were sustained transgenerationally. Moreover, we identified that a germline-specific histone methyltransferase component, SET-2, has a critical role in transmitting the transgenerational effect on germline apoptosis to the next generation after proton beam irradiation. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Helicity statistics in homogeneous and isotropic turbulence and turbulence models

    NASA Astrophysics Data System (ADS)

    Sahoo, Ganapati; De Pietro, Massimo; Biferale, Luca

    2017-02-01

    We study the statistical properties of helicity in direct numerical simulations of fully developed homogeneous and isotropic turbulence and in a class of turbulence shell models. We consider correlation functions based on combinations of vorticity and velocity increments that are not invariant under mirror symmetry. We also study the scaling properties of high-order structure functions based on the moments of the velocity increments projected on a subset of modes with either positive or negative helicity (chirality). We show that mirror symmetry is recovered at small scales, i.e., chiral terms are subleading and they are well captured by a dimensional argument plus anomalous corrections. These findings are also supported by a high Reynolds numbers study of helical shell models with the same chiral symmetry of Navier-Stokes equations.

  6. Redshift and lateshift from homogeneous and isotropic modified dispersion relations

    NASA Astrophysics Data System (ADS)

    Pfeifer, Christian

    2018-05-01

    Observables which would indicate a modified vacuum dispersion relations, possibly caused by quantum gravity effects, are a four momentum dependence of the cosmological redshift and the existence of a so called lateshift effect for massless or very light particles. Existence or non-existence of the latter is currently analyzed on the basis of the available observational data from gamma-ray bursts and compared to predictions of specific modified dispersion relation models. We consider the most general perturbation of the general relativistic dispersion relation of freely falling particles on homogeneous and isotropic spacetimes and derive the red- and lateshift to first order in the perturbation. Our result generalizes the existing formulae in the literature and we find that there exist modified dispersion relations causing both, one or none of the two effects to first order.

  7. Elastic properties and fracture strength of quasi-isotropic graphite/epoxy composites

    NASA Technical Reports Server (NTRS)

    Sullivan, T. L.

    1977-01-01

    A research program is described which was devised to determine experimentally the elastic properties in tension and bending of quasi-isotropic laminates made from high-modulus graphite fiber and epoxy. Four laminate configurations were investigated, and determinations were made of the tensile modulus, Poisson's ratio, bending stiffness, fracture strength, and fracture strain. The measured properties are compared with those predicted by laminate theory, reasons for scatter in the experimental data are discussed, and the effect of fiber misalignment on predicted elastic tensile properties is examined. The results strongly suggest that fiber misalignment in combination with variation in fiber volume content is responsible for the scatter in both elastic constants and fracture strength.

  8. Petrology of forearc basalt-related isotropic gabbros from the Bonin Ridge, Izu-Bonin forearc

    NASA Astrophysics Data System (ADS)

    Garcia, S. E.; Loocke, M. P.; Snow, J. E.

    2017-12-01

    The early arc volcanic rocks exposed on the Bonin Ridge (BR), a large forearc massif in the Izu-Bonin arc, have provided us with a natural laboratory for the study of subduction initiation and early arc development. The BR has been the subject of focused sampling by way of dredging, diving, and drilling (IODP EXP352) expeditions which have revealed a composite stratigraphy consisting, from bottom to top, of intercalated peridotites and gabbros, isotropic gabbros, sheeted dykes, and a lava sequence which transitions from forearc basalt (FAB) to more arc-like volcanics up section. Although little has been published regarding the moho-transition zone rocks of the BR in comparison to the volcanic rocks, even less work has been published regarding the isotropic gabbros recovered in close association with FABs. Ishizuka et al. (2011) determined that the isotropic gabbros are compositionally and temporally related to the FABs. We provide the first petrologic characterization, including petrography and electron probe microanalysis, of a suite of FAB-related gabbros recovered by dredge D42 of the 2007 R/V Hakuho Maru KH07-02 dredging cruise. Preliminary petrographic observations of the fourteen thin sections reveal that all of the samples contain variable amounts of relict orthopyroxene and consist of five disseminated oxide gabbros, 5 oxide gabbros, and 2 gabbros. We note that all of the D42 gabbros exhibit strong textural variability akin to the varitextured gabbros described in the dyke-gabbro transition of ophiolites (e.g., MacLeod and Yaouancq, 2000). Geochemical data from this critically understudied horizon have the potential to inform regarding the nature of crustal accretion during subduction initiation and the formation, migration, and evolution of FABs. Further, with many authors comparing the volcanic record and crustal stratigraphy of the BR to ophiolites (e.g., Ishizuka et al., 2014), these data would provide another in situ analogue for comparison with the

  9. EPR study of a gamma-irradiated (2-hydroxyethyl)triphenylphosphonium chloride single crystal

    NASA Astrophysics Data System (ADS)

    Karakaş, E.; Türkkan, E.; Dereli, Ö.; Sayιn, Ü.; Tapramaz, R.

    2011-12-01

    In this study, gamma-irradiated single crystals of (2-hydroxyethyl)triphenylphosphonium chloride [CH2CH2OH P(C6H5)3Cl] were investigated with electron paramagnetic resonance (EPR) spectroscopy at room temperature for different orientations in the magnetic field. The single crystals were irradiated with a 60Co-γ-ray source at 0.818 kGy/h for about 36 h. Taking the chemical structure and the experimental spectra of the irradiated single crystal of the title compound into consideration, a paramagnetic species was produced with the unpaired electron delocalized around 31P and several 1H nuclei. The anisotropic hyperfine values due to the 31P nucleus, slightly anisotropic hyperfine values due to the 1H nuclei and the g-tensor of the radical were measured from the spectra. Depending on the molecular structure and measured parameters, three possible radicals were modeled using the B3LYP/6-31+G(d) level of density-functional theory, and EPR parameters were calculated for modeled radicals using the B3LYP/TZVP method/basis set combination. The calculated hyperfine coupling constants were found to be in good agreement with the observed EPR parameters. The experimental and theoretically simulated spectra for each of the three crystallographic axes were well matched with one of the modeled radicals (discussed in the text). We thus identified the radical C˙H2CH2 P(C 6H5)3 Cl as a paramagnetic species produced in a single crystal of the title compound in two magnetically distinct sites. The experimental g-factor and hyperfine coupling constants of the radical were found to be anisotropic, with the isotropic values g iso = 2.0032, ? G, ? G, ? G and ? G for site 1 and g iso=2.0031, ? G, ? G ? G and ? G for site 2.

  10. In-plane isotropic magnetic and electrical properties of MnAs/InAs/GaAs (111) B hybrid structure

    NASA Astrophysics Data System (ADS)

    Islam, Md. Earul; Akabori, Masashi

    2018-03-01

    We characterized in-plane magnetic and electrical properties of MnAs/InAs/GaAs (111) B hybrid structure grown by molecular beam epitaxy (MBE). We observed isotropic easy magnetization in two crystallographic in-plane directions, [ 2 ̅ 110 ] and [ 0 1 ̅ 10 ] of hexagonal MnAs i.e. [ 1 ̅ 10 ] and [ 11 2 ̅ ] of cubic InAs. We also fabricated transmission line model (TLM) devices, and observed almost isotropic electrical properties in two crystallographic in-plane directions, [ 1 ̅ 10 ] and [ 11 2 ̅ ] of cubic InAs. Also we tried to fabricate and characterize lateral spin-valve (LSV) devices from the hybrid structure. We could roughly estimate the spin injection efficiency and the spin diffusion length at room temperature in [ 11 2 ̅ ] direction. We believe that the hybrid structures are helpful to design spintronic device with good flexibility in-plane.

  11. Production of Y-86 and other radiometals for research purposes using a solution target system.

    PubMed

    Oehlke, Elisabeth; Hoehr, Cornelia; Hou, Xinchi; Hanemaayer, Victoire; Zeisler, Stefan; Adam, Michael J; Ruth, Thomas J; Celler, Anna; Buckley, Ken; Benard, Francois; Schaffer, Paul

    2015-11-01

    Diagnostic radiometals are typically obtained from cyclotrons by irradiating solid targets or from radioisotope generators. These methods have the advantage of high production yields, but require additional solid target handling infrastructure that is not readily available to many cyclotron facilities. Herein, we provide an overview of our results regarding the production of various positron-emitting radiometals using a liquid target system installed on a 13 MeV cyclotron at TRIUMF. Details about the production, purification and quality control of (89)Zr, (68)Ga and for the first time (86)Y are discussed. Aqueous solutions containing 1.35-1.65 g/mL of natural-abundance zinc nitrate, yttrium nitrate, and strontium nitrate were irradiated on a 13 MeV cyclotron using a standard liquid target. Different target body and foil materials were investigated for corrosion. Production yields were calculated using theoretical cross-sections from the EMPIRE code and compared with experimental results. The radioisotopes were extracted from irradiated target material using solid phase extraction methods adapted from previously reported methods, and used for radiolabelling experiments. We demonstrated production quantities that are sufficient for chemical and biological studies for three separate radiometals, (89)Zr (Asat = 360 MBq/μA and yield = 3.17 MBq/μA), (86)Y (Asat = 31 MBq/μA and yield = 1.44 MBq/μA), and (68)Ga (Asat = 141 MBq/μA and yield = 64 MBq/μA) from one hour long irradiations on a typical medical cyclotron. (68)Ga yields were sufficient for potential clinical applications. In order to avoid corrosion of the target body and target foil, nitrate solutions were chosen as well as niobium as target-body material. An automatic loading system enabled up to three production runs per day. The separation efficiency ranged from 82 to 99%. Subsequently, (68)Ga and (86)Y were successfully used to radiolabel DOTA-based chelators while deferoxamine was used to coordinate

  12. Flyer Target Acceleration and Energy Transfer at its Collision with Massive Targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borodziuk, S.; Kasperczuk, A.; Pisarczyk, T.

    2006-01-15

    Numerical modelling was aimed at simulation of successive events resulting from interaction of laser beam-single and double targets. It was performed by means of the 2D Lagrangian hydrodynamics code ATLANT-HE. This code is based on one-fluid and two-temperature model of plasma with electron and ion heat conductivity considerations. The code has an advanced treatment of laser light propagation and absorption. This numerical modelling corresponds to the experiment, which was carried out with the use of the PALS facility. Two types of planar solid targets, i.e. single massive Al slabs and double targets consisting of 6 {mu}m thick Al foil andmore » Al slab were applied. The targets were irradiated by the iodine laser pulses of two wavelengths: 1.315 and 0.438 {mu}m. A pulse duration of 0.4 ns and a focal spot diameter of 250 {mu}m at a laser energy of 130 J were used. The numerical modelling allowed us to obtain a more detailed description of shock wave propagation and crater formation.« less

  13. Pulsed TEA CO2 Laser Irradiation of Titanium in Nitrogen and Carbon Dioxide Gases

    NASA Astrophysics Data System (ADS)

    Ciganovic, J.; Matavulj, P.; Trtica, M.; Stasic, J.; Savovic, J.; Zivkovic, S.; Momcilovic, M.

    2017-12-01

    Surface changes created by interaction of transversely excited atmospheric carbon dioxide (TEA CO2) laser with titanium target/implant in nitrogen and carbon dioxide gas were studied. TEA CO2 laser operated at 10.6 μm, pulse length of 100 ns and fluence of ˜17 J/cm2 which was sufficient for inducing surface modifications. Induced changes depend on the gas used. In both gases the grain structure was produced (central irradiated zone) but its forms were diverse, (N2: irregular shape; CO2: hill-like forms). Hydrodynamic features at peripheral zone, like resolidified droplets, were recorded only in CO2 gas. Elemental analysis of the titanium target surface indicated that under a nitrogen atmosphere surface nitridation occurred. In addition, irradiation in both gases was followed by appearance of plasma in front of the target. The existence of plasma indicates relatively high temperatures created above the target surface offering a sterilizing effect.

  14. Commercial scale irradiation for insect disinfestation preserves peach quality

    NASA Astrophysics Data System (ADS)

    McDonald, Heather; McCulloch, Mary; Caporaso, Fred; Winborne, Ian; Oubichon, Michon; Rakovski, Cyril; Prakash, Anuradha

    2012-06-01

    Irradiation is approved as a generic quarantine treatment by the US Department of Agriculture, Animal and Plant Health Inspection Service. Due to the effectiveness of irradiation in controlling insects on commodities, there is a growing need to understand the effects of low dose irradiation on fruit quality. The goal of this study was to determine the sensitivity of peaches (Prunus persica) to irradiation, and secondly, to determine the effect of commercial scale treatment on shelf-life, overall quality and consumer liking. Six varieties of peaches were irradiated in small batches at 0.29, 0.49, 0.69 and 0.90 kGy to observe the sensitivity of peaches at different dose levels. Changes in quality were evaluated by 8 trained panelists using descriptive analysis. Sensory characteristics (color, smoothness, aroma, touch firmness, mouth firmness, graininess, overall flavor and off-flavor) were evaluated at 2-4 day intervals and untreated samples served as control. To simulate commercial treatment, peaches were irradiated in pallet quantities at a target dose level of 0.4 kGy. The average absorbed dose was 0.66 kGy with an average dose uniformity ratio of 1.57. Commercially treated peaches were evaluated by 40-80 untrained consumers for acceptability routinely throughout the shelf life. Titratable acidity, Brix, texture and weight loss were also monitored for both commercial and small scale irradiated peaches. There was no dose effect on TA, Brix and weight loss due to irradiation. Peaches irradiated at 0.69 and 0.90 kGy were darker in flesh color, more juicy and less firm as determined by the trained panel and analytical pressure tests. Commercial scale irradiation did not adversely affect shelf life but was seen to enhance ripening. This, however, was perceived as a positive change by consumers. Overall, consumers rated the acceptability of irradiated peaches higher than untreated peaches. Statistical analysis was performed using linear mixed models to find determinates

  15. Development of a Pressure-Dependent Constitutive Model with Combined Multilinear Kinematic and Isotropic Hardening

    NASA Technical Reports Server (NTRS)

    Allen Phillip A.; Wilson, Christopher D.

    2003-01-01

    The development of a pressure-dependent constitutive model with combined multilinear kinematic and isotropic hardening is presented. The constitutive model is developed using the ABAQUS user material subroutine (UMAT). First the pressure-dependent plasticity model is derived. Following this, the combined bilinear and combined multilinear hardening equations are developed for von Mises plasticity theory. The hardening rule equations are then modified to include pressure dependency. The method for implementing the new constitutive model into ABAQUS is given.

  16. Isotropic microscale mechanical properties of coral skeletons

    PubMed Central

    Pasquini, Luca; Molinari, Alan; Fantazzini, Paola; Dauphen, Yannicke; Cuif, Jean-Pierre; Levy, Oren; Dubinsky, Zvy; Caroselli, Erik; Prada, Fiorella; Goffredo, Stefano; Di Giosia, Matteo; Reggi, Michela; Falini, Giuseppe

    2015-01-01

    Scleractinian corals are a major source of biogenic calcium carbonate, yet the relationship between their skeletal microstructure and mechanical properties has been scarcely studied. In this work, the skeletons of two coral species: solitary Balanophyllia europaea and colonial Stylophora pistillata, were investigated by nanoindentation. The hardness HIT and Young's modulus EIT were determined from the analysis of several load–depth data on two perpendicular sections of the skeletons: longitudinal (parallel to the main growth axis) and transverse. Within the experimental and statistical uncertainty, the average values of the mechanical parameters are independent on the section's orientation. The hydration state of the skeletons did not affect the mechanical properties. The measured values, EIT in the 76–77 GPa range, and HIT in the 4.9–5.1 GPa range, are close to the ones expected for polycrystalline pure aragonite. Notably, a small difference in HIT is observed between the species. Different from corals, single-crystal aragonite and the nacreous layer of the seashell Atrina rigida exhibit clearly orientation-dependent mechanical properties. The homogeneous and isotropic mechanical behaviour of the coral skeletons at the microscale is correlated with the microstructure, observed by electron microscopy and atomic force microscopy, and with the X-ray diffraction patterns of the longitudinal and transverse sections. PMID:25977958

  17. A new method for reconstruction of solar irradiance

    NASA Astrophysics Data System (ADS)

    Privalsky, Victor

    2018-07-01

    The purpose of this research is to show how time series should be reconstructed using an example with the data on total solar irradiation (TSI) of the Earth and on sunspot numbers (SSN) since 1749. The traditional approach through regression equation(s) is designed for time-invariant vectors of random variables and is not applicable to time series, which present random functions of time. The autoregressive reconstruction (ARR) method suggested here requires fitting a multivariate stochastic difference equation to the target/proxy time series. The reconstruction is done through the scalar equation for the target time series with the white noise term excluded. The time series approach is shown to provide a better reconstruction of TSI than the correlation/regression method. A reconstruction criterion is introduced which allows one to define in advance the achievable level of success in the reconstruction. The conclusion is that time series, including the total solar irradiance, cannot be reconstructed properly if the data are not treated as sample records of random processes and analyzed in both time and frequency domains.

  18. Optical rogue waves associated with the negative coherent coupling in an isotropic medium.

    PubMed

    Sun, Wen-Rong; Tian, Bo; Jiang, Yan; Zhen, Hui-Ling

    2015-02-01

    Optical rogue waves of the coupled nonlinear Schrödinger equations with negative coherent coupling, which describe the propagation of orthogonally polarized optical waves in an isotropic medium, are reported. We construct and discuss a family of the vector rogue-wave solutions, including the bright rogue waves, four-petaled rogue waves, and dark rogue waves. A bright rogue wave without a valley can split up, giving birth to two bright rogue waves, and an eye-shaped rogue wave can split up, giving birth to two dark rogue waves.

  19. Inertial Currents in Isotropic Plasma

    NASA Technical Reports Server (NTRS)

    Heinemann, M.; Erickson, G. M.; Pontius, D. H., Jr.

    1993-01-01

    The magnetospheric convection electric field contributes to Birkeland currents. The effects of the field are to polarize the plasma by displacing the bounce paths of the ions from those of electrons, to redistribute the pressure so that it is not constant along magnetic field lines, and to enhance the pressure gradient by the gradient of the bulk speed. Changes in the polarization charge during the convection of the plasma are neutralized by electrons in the form of field-aligned currents that close through the ionosphere. The pressure drives field-aligned currents through its gradient in the same manner as in quasi-static plasma, but with modifications that are important if the bulk speed is of the order of the ion thermal speed; the variations in the pressure along field lines are maintained by a weak parallel potential drop. These effects are described in terms of the field-aligned currents in steady state, isotropic, MED plasma. Solutions are developed by taking the MHD limit of two-fluid solutions and illustrated in the special case of Maxwellian plasma for which the temperature is constant along magnetic field lines. The expression for the Birkeland current density is a generalization of Vasyliunas' expression for the field-aligned current density in quasi-static plasma and provides a unifying expression when both pressure gradients and ion inertia operate simultaneously as sources of field-aligned currents. It contains a full account of different aspects of the ion flow (parallel and perpendicular velocity and vorticity) that contribute to the currents. Contributions of ion inertia to field-aligned currents will occur in regions of strong velocity shear, electric field reversal, or large gradients in the parallel velocity or number density, and may be important in the low-latitude boundary layer, plasma sheet boundary layer, and the inner edge region of the plasma sheet.

  20. Inertial currents in isotropic plasma

    NASA Technical Reports Server (NTRS)

    Heinemann, M.; Erickson, G. M.; Pontius, D. H. JR.

    1994-01-01

    The magnetospheric convection electric field contributes to Birkeland currents. The effects of the field are to polarize the plasma by displacing the bounce paths of the ions from those of electrons, to redistribute the pressure so that it is not constant along magnetic field lines, and to enhance the pressure gradient by the gradient of the bulk speed. Changes in the polarization charge during the convection of the plasma are neutralized by electrons in the form of field-aligned currents that close through the ionosphere. The pressure drives field-aligned currents through its gradient in the same manner as in quasi-static plasma, but with modifications that are important if the bulk speed is of the order of the ion thermal speed; the variations in the pressure along field lines are maintained by a weak parallel potential drop. These effects are described in terms of the field-aligned currents in steady state, isotropic, magnetohyrodynamic (MHD) plasma. Solutions are developed by taking the MHD limit of two-fluid solutions and illustrated in the special case of Maxwellian plasma for which the temperature is constant along magnetic field lines. The expression for the Birkeland current density is a generalization of Vasyliunas' expression for the field-aligned current density in quasi-static plasma and provides a unifying expression when both pressure gradients and ion inertia operate simultaneously as sources of field-aligned currents. It contains a full account of different aspects of the ion flow (parallel and perpendicular velocity and vorticity) that contribute to the currents. Contributions of ion inertia to field-aligned currents will occur in regions of strong velocity shear, electric field reversal, or large gradients in the parallel velocity or number density, and may be important in the low-latitude boundary layer, plasma sheet boundary layer, and the inner edge region of the plasma sheet.