Sample records for task-based lens design

  1. Task-based lens design with application to digital mammography

    NASA Astrophysics Data System (ADS)

    Chen, Liying; Barrett, Harrison H.

    2005-01-01

    Recent advances in model observers that predict human perceptual performance now make it possible to optimize medical imaging systems for human task performance. We illustrate the procedure by considering the design of a lens for use in an optically coupled digital mammography system. The channelized Hotelling observer is used to model human performance, and the channels chosen are differences of Gaussians. The task performed by the model observer is detection of a lesion at a random but known location in a clustered lumpy background mimicking breast tissue. The entire system is simulated with a Monte Carlo application according to physics principles, and the main system component under study is the imaging lens that couples a fluorescent screen to a CCD detector. The signal-to-noise ratio (SNR) of the channelized Hotelling observer is used to quantify this detectability of the simulated lesion (signal) on the simulated mammographic background. Plots of channelized Hotelling SNR versus signal location for various lens apertures, various working distances, and various focusing places are presented. These plots thus illustrate the trade-off between coupling efficiency and blur in a task-based manner. In this way, the channelized Hotelling SNR is used as a merit function for lens design.

  2. Task-based lens design, with application to digital mammography

    NASA Astrophysics Data System (ADS)

    Chen, Liying

    Recent advances in model observers that predict human perceptual performance now make it possible to optimize medical imaging systems for human task performance. We illustrate the procedure by considering the design of a lens for use in an optically coupled digital mammography system. The channelized Hotelling observer is used to model human performance, and the channels chosen are differences of Gaussians (DOGs). The task performed by the model observer is detection of a lesion at a random but known location in a clustered lumpy background mimicking breast tissue. The entire system is simulated with a Monte Carlo application according to the physics principles, and the main system component under study is the imaging lens that couples a fluorescent screen to a CCD detector. The SNR of the channelized Hotelling observer is used to quantify the detectability of the simulated lesion (signal) upon the simulated mammographic background. In this work, plots of channelized Hotelling SNR vs. signal location for various lens apertures, various working distances, and various focusing places are shown. These plots thus illustrate the trade-off between coupling efficiency and blur in a task-based manner. In this way, the channelized Hotelling SNR is used as a merit function for lens design.

  3. Integral freeform illumination lens design of LED based pico-projector.

    PubMed

    Zhao, Shuang; Wang, Kai; Chen, Fei; Qin, Zong; Liu, Sheng

    2013-05-01

    In this paper, an illumination lens design for a LED-based pico-projector is presented. Different from the traditional illumination systems composed by lens group, the integral illumination lens consists of a total internal reflector (TIR) and a freeform surface. TIR acts as collimation lens and its top surface formed by a freeform surface reshapes the nonuniform circular light pattern generated by TIR to be rectangular and uniform. Diameter and height of the lens are 16 and 10 mm, respectively. An optimization method to deal with the problem of extended light source is also presented in detail in this paper. According to the simulation results of the final optimized lens, 77% (neglecting the effect of polarization) of the power of light source is collected on liquid crystal on silicon panel with a 16∶9 ratio and illumination uniformity achieves 92%.

  4. Aberration design of zoom lens systems using thick lens modules.

    PubMed

    Zhang, Jinkai; Chen, Xiaobo; Xi, Juntong; Wu, Zhuoqi

    2014-12-20

    A systematic approach for the aberration design of a zoom lens system using a thick lens module is presented. Each component is treated as a thick lens module at the beginning of the design. A thick lens module refers to a thick lens component with a real lens structure, like lens materials, lens curvatures, lens thicknesses, and lens interval distances. All nine third-order aberrations of a thick lens component are considered during the design. The relationship of component aberrations in different zoom positions can be approximated from the aberration shift. After minimizing the aberrations of the zoom lens system, the nine third-order aberrations of every lens component can be determined. Then the thick lens structure of every lens component can be determined after optimization according to their first-order properties and third-order aberration targets. After a third optimization for minimum practical third-order aberrations of a zoom lens system, the aberration design using the thick lens module is complete, which provides a practical zoom lens system with thick lens structures. A double-sided telecentric zoom lens system is designed using the thick lens module in this paper, which shows that this method is practical for zoom lens design.

  5. Optical design of transmitter lens for asymmetric distributed free space optical networks

    NASA Astrophysics Data System (ADS)

    Wojtanowski, Jacek; Traczyk, Maciej

    2018-05-01

    We present a method of transmitter lens design dedicated for light distribution shaping on a curved and asymmetric target. In this context, target is understood as a surface determined by hypothetical optical detectors locations. In the proposed method, ribbon-like surfaces of arbitrary shape are considered. The designed lens has the task to transform collimated and generally non-uniform input beam into desired irradiance distribution on such irregular targets. Desired irradiance is associated with space-dependant efficiency of power flow between the source and receivers distributed on the target surface. This unconventional nonimaging task is different from most illumination or beam shaping objectives, where constant or prescribed irradiance has to be produced on a flat target screen. The discussed optical challenge comes from the applications where single transmitter cooperates with multitude of receivers located in various positions in space and oriented in various directions. The proposed approach is not limited to optical networks, but can be applied in a variety of other applications where nonconventional irradiance distribution has to be engineered. The described method of lens design is based on geometrical optics, radiometry and ray mapping philosophy. Rays are processed as a vector field, each of them carrying a certain amount of power. Having the target surface shape and orientation of receivers distribution, the rays-surface crossings map is calculated. It corresponds to the output rays vector field, which is referred to the calculated input rays spatial distribution on the designed optical surface. The application of Snell's law in a vector form allows one to obtain surface local normal vector and calculate lens profile. In the paper, we also present the case study dealing with exemplary optical network. The designed freeform lens is implemented in commercially available optical design software and irradiance three-dimensional spatial distribution is

  6. Micro sized implantable ball lens-based fiber optic probe design

    NASA Astrophysics Data System (ADS)

    Cha, Jaepyeong; Kang, Jin U.

    2014-02-01

    A micro sized implantable ball lens-based fiber optic probe design is described for continuous monitoring of brain activity in freely behaving mice. A prototype uses a 500-micron ball lens and a highly flexible 350-micron-diameter fiber bundle, which are enclosed by a 21G stainless steel sheath. Several types and thickness of brain tissue, consisting of fluorescent probes such as GFP, GCaMP3 calcium indicator, are used to evaluate the performance of the imaging probe. Measured working distance is approximately 400-μm, but is long enough to detect neural activities from cortical and cerebellar tissues of mice brain.

  7. Design of LED projector based on gradient-index lens

    NASA Astrophysics Data System (ADS)

    Qian, Liyong; Zhu, Xiangbing; Cui, Haitian; Wang, Yuanhang

    2018-01-01

    In this study, a new type of projector light path is designed to eliminate the deficits of existing projection systems, such as complex structure and low collection efficiency. Using a three-color LED array as the lighting source, by means of the special optical properties of a gradient-index lens, the complex structure of the traditional projector is simplified. Traditional components, such as the color wheel, relay lens, and mirror, become unnecessary. In this way, traditional problems, such as low utilization of light energy and loss of light energy, are solved. With the help of Zemax software, the projection lens is optimized. The optimized projection lens, LED, gradient-index lens, and digital micromirror device are imported into Tracepro. The ray tracing results show that both the utilization of light energy and the uniformity are improved significantly.

  8. Efficient numerical method of freeform lens design for arbitrary irradiance shaping

    NASA Astrophysics Data System (ADS)

    Wojtanowski, Jacek

    2018-05-01

    A computational method to design a lens with a flat entrance surface and a freeform exit surface that can transform a collimated, generally non-uniform input beam into a beam with a desired irradiance distribution of arbitrary shape is presented. The methodology is based on non-linear elliptic partial differential equations, known as Monge-Ampère PDEs. This paper describes an original numerical algorithm to solve this problem by applying the Gauss-Seidel method with simplified boundary conditions. A joint MATLAB-ZEMAX environment is used to implement and verify the method. To prove the efficiency of the proposed approach, an exemplary study where the designed lens is faced with the challenging illumination task is shown. An analysis of solution stability, iteration-to-iteration ray mapping evolution (attached in video format), depth of focus and non-zero étendue efficiency is performed.

  9. Design method of freeform light distribution lens for LED automotive headlamp based on DMD

    NASA Astrophysics Data System (ADS)

    Ma, Jianshe; Huang, Jianwei; Su, Ping; Cui, Yao

    2018-01-01

    We propose a new method to design freeform light distribution lens for light-emitting diode (LED) automotive headlamp based on digital micro mirror device (DMD). With the Parallel optical path architecture, the exit pupil of the illuminating system is set in infinity. Thus the principal incident rays of micro lens in DMD is parallel. DMD is made of high speed digital optical reflection array, the function of distribution lens is to distribute the emergent parallel rays from DMD and get a lighting pattern that fully comply with the national regulation GB 25991-2010.We use DLP 4500 to design the light distribution lens, mesh the target plane regulated by the national regulation GB 25991-2010 and correlate the mesh grids with the active mirror array of DLP4500. With the mapping relations and the refraction law, we can build the mathematics model and get the parameters of freeform light distribution lens. Then we import its parameter into the three-dimensional (3D) software CATIA to construct its 3D model. The ray tracing results using Tracepro demonstrate that the Illumination value of target plane is easily adjustable and fully comply with the requirement of the national regulation GB 25991-2010 by adjusting the exit brightness value of DMD. The theoretical optical efficiencies of the light distribution lens designed using this method could be up to 92% without any other auxiliary lens.

  10. Task Analysis in Optical & Contact Lens Dispensing. Dispensing Opticians.

    ERIC Educational Resources Information Center

    Hrushowy, Eugene; Stanley, Dale

    A task force of opticians and educators in British Columbia was assembled to determine the knowledge and skills required of dispensing opticians and contact lens specialists. The ideas generated by the task force were analyzed and distilled into the standardized tasks listed in this document, using Krathwohl's taxonomy. The document contains 36…

  11. Algorithm design of liquid lens inspection system

    NASA Astrophysics Data System (ADS)

    Hsieh, Lu-Lin; Wang, Chun-Chieh

    2008-08-01

    In mobile lens domain, the glass lens is often to be applied in high-resolution requirement situation; but the glass zoom lens needs to be collocated with movable machinery and voice-coil motor, which usually arises some space limits in minimum design. In high level molding component technology development, the appearance of liquid lens has become the focus of mobile phone and digital camera companies. The liquid lens sets with solid optical lens and driving circuit has replaced the original components. As a result, the volume requirement is decreased to merely 50% of the original design. Besides, with the high focus adjusting speed, low energy requirement, high durability, and low-cost manufacturing process, the liquid lens shows advantages in the competitive market. In the past, authors only need to inspect the scrape defect made by external force for the glass lens. As to the liquid lens, authors need to inspect the state of four different structural layers due to the different design and structure. In this paper, authors apply machine vision and digital image processing technology to administer inspections in the particular layer according to the needs of users. According to our experiment results, the algorithm proposed can automatically delete non-focus background, extract the region of interest, find out and analyze the defects efficiently in the particular layer. In the future, authors will combine the algorithm of the system with automatic-focus technology to implement the inside inspection based on the product inspective demands.

  12. IODC 1998 Lens Design Problem Revisited: A Strategy for Simplifying Glass Choices in an Apochromatic Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seppala, L G

    2000-09-15

    A glass-choice strategy, based on separately designing an achromatic lens before progressing to an apochromatic lens, simplified my approach to solving the International Optical Design Conference (IODC) 1998 lens design problem. The glasses that are needed to make the lens apochromatic are combined into triplet correctors with two ''buried'' surfaces. By applying this strategy, I reached successful solutions that used only six glasses--three glasses for the achromatic design and three additional glasses for the apochromatic design.

  13. Fresnel Lens Solar Concentrator Design Based on Geometric Optics and Blackbody Radiation Equations

    NASA Technical Reports Server (NTRS)

    Watson, Michael D.; Jayroe, Robert, Jr.

    1999-01-01

    Fresnel lenses have been used for years as solar concentrators in a variety of applications. Several variables effect the final design of these lenses including: lens diameter, image spot distance from the lens, and bandwidth focused in the image spot. Defining the image spot as the geometrical optics circle of least confusion and applying blackbody radiation equations the spot energy distribution can be determined. These equations are used to design a fresnel lens to produce maximum flux for a given spot size, lens diameter, and image distance. This approach results in significant increases in solar efficiency over traditional single wavelength designs.

  14. Fresnel Lens Solar Concentrator Design Based on Geometric Optics and Blackbody Radiation Equations

    NASA Technical Reports Server (NTRS)

    Watson, Michael D.; Jayroe, Robert

    1998-01-01

    Fresnel lenses have been used for years as solar concentrators in a variety of applications. Several variables effect the final design of these lenses including: lens diameter, image spot distance from the lens, and bandwidth focused in the image spot. Defining the image spot as the geometrical optics circle of least confusion, a set of design equations has been derived to define the groove angles for each groove on the lens. These equations allow the distribution of light by wavelength within the image spot to be calculated. Combining these equations with the blackbody radiation equations, energy distribution, power, and flux within the image spot can be calculated. In addition, equations have been derived to design a lens to produce maximum flux in a given spot size. Using these equations, a lens may be designed to optimize the spot energy concentration for given energy source.

  15. Panoramic lens designed with transformation optics.

    PubMed

    Wang, Huaping; Deng, Yangyang; Zheng, Bin; Li, Rujiang; Jiang, Yuyu; Dehdashti, Shahram; Xu, Zhiwei; Chen, Hongsheng

    2017-01-06

    The panoramic lens is a special kind of lens, which is applied to observe full view. In this letter, we theoretically present a panoramic lens (PL) using transformation optics method. The lens is designed with inhomogeneous and anisotropic constitutive parameters, which has the ability to gather light from all directions and confine light within the visual angle of observer. Simulation results validate our theoretical design.

  16. Design method of high-efficient 
LED headlamp lens.

    PubMed

    Chen, Fei; Wang, Kai; Qin, Zong; Wu, Dan; Luo, Xiaobing; Liu, Sheng

    2010-09-27

    Low optical efficiency of light-emitting diode (LED) based headlamp is one of the most important issues to obstruct applications of LEDs in headlamp. An effective high-efficient LED headlamp freeform lens design method is introduced in this paper. A low-beam lens and a high-beam lens for LED headlamp are designed according to this method. Monte Carlo ray tracing simulation results demonstrate that the LED headlamp with these two lenses can fully comply with the ECE regulation without any other lens or reflector. Moreover, optical efficiencies of both these two lenses are more than 88% in theory.

  17. Design of retinal-projection-based near-eye display with contact lens.

    PubMed

    Wu, Yuhang; Chen, Chao Ping; Mi, Lantian; Zhang, Wenbo; Zhao, Jingxin; Lu, Yifan; Guo, Weiqian; Yu, Bing; Li, Yang; Maitlo, Nizamuddin

    2018-04-30

    We propose a design of a retinal-projection-based near-eye display for achieving ultra-large field of view, vision correction, and occlusion. Our solution is highlighted by a contact lens combo, a transparent organic light-emitting diode panel, and a twisted nematic liquid crystal panel. Its design rules are set forth in detail, followed by the results and discussion regarding the field of view, angular resolution, modulation transfer function, contrast ratio, distortion, and simulated imaging.

  18. Recent developments in high speed lens design at the NPRL

    NASA Astrophysics Data System (ADS)

    McDowell, M. W.; Klee, H. W.

    An account is given of recent South African developments in large aperture lens design for high speed photography that are based on the novel zero-power corrector concept. Complex multiple-element lens configurations based on such conventional optical layouts as the Petzval and double-Gauss can by the means presented be replaced with greatly simplified lens configurations employing as few as four basic elements. A tabulation is made of third-order monochromatic and first-order chromatic aberrations of the basic four-element zero-power corrector design.

  19. Design of a zoom lens without motorized optical elements

    NASA Astrophysics Data System (ADS)

    Peng, Runling; Chen, Jiabi; Zhu, Cheng; Zhuang, Songlin

    2007-05-01

    A novel design of a zoom lens system without motorized movements is proposed. The lens system consists of a fixed lens and two double-liquid variable-focus lenses. The liquid lenses, made out of two immiscible liquids, are based on the principle of electrowetting: an effect controlling the wetting properties of a liquid on a solid by modifying the applied voltage at the solid-liquid interface. The structure and principle of the lens system are introduced in this paper. Detailed calculations and simulation examples are presented to show that this zoom lens system appears viable as the next-generation zoom lens.

  20. Design of a zoom lens without motorized optical elements.

    PubMed

    Peng, Runling; Chen, Jiabi; Zhu, Cheng; Zhuang, Songlin

    2007-05-28

    A novel design of a zoom lens system without motorized movements is proposed. The lens system consists of a fixed lens and two double-liquid variable-focus lenses. The liquid lenses, made out of two immiscible liquids, are based on the principle of electrowetting: an effect controlling the wetting properties of a liquid on a solid by modifying the applied voltage at the solid-liquid interface. The structure and principle of the lens system are introduced in this paper. Detailed calculations and simulation examples are presented to show that this zoom lens system appears viable as the next-generation zoom lens.

  1. An ultrashort throw ratio projection lens design based on a catadioptric structure

    NASA Astrophysics Data System (ADS)

    Wang, Hsiu-Cheng; Pan, Jui-Wen

    2018-07-01

    In this paper, we present a rotational symmetry for an ultrashort throw (UST) lens with offset field. The UST lens has a throw ratio of 0.23 and a total track of 195 mm. The optical elements of the UST lens are comprised of two parts. First, a catadioptric projection lens where the catadioptric function permits reaching an ultrashort throw ratio, short total track, while at the same time requiring fewer lens elements. The second part is a collimating lens which takes advantage of the telecentric condition to generate uniform total internal reflection (TIR) in the TIR prism. With this design, an effective focal length of -1.96 mm and a f-number of 2.4 can be obtained. The root mean square spot size and lateral colour of all fields are smaller than one pixel in size. The maximum optical distortion of -0.97% and TV distortion of 0.2% are acceptable. In terms of image quality, the modulation transfer function (MTF) values for all fields are above 0.65 at 0.245 line pairs/mm. Even when the tolerance error is considered, the MTF values for all fields are still above 0.3. The suitability of the novel UST lens design for projection applications is discussed.

  2. Computerized method and system for designing an aerodynamic focusing lens stack

    DOEpatents

    Gard, Eric [San Francisco, CA; Riot, Vincent [Oakland, CA; Coffee, Keith [Diablo Grande, CA; Woods, Bruce [Livermore, CA; Tobias, Herbert [Kensington, CA; Birch, Jim [Albany, CA; Weisgraber, Todd [Brentwood, CA

    2011-11-22

    A computerized method and system for designing an aerodynamic focusing lens stack, using input from a designer related to, for example, particle size range to be considered, characteristics of the gas to be flowed through the system, the upstream temperature and pressure at the top of a first focusing lens, the flow rate through the aerodynamic focusing lens stack equivalent at atmosphere pressure; and a Stokes number range. Based on the design parameters, the method and system determines the total number of focusing lenses and their respective orifice diameters required to focus the particle size range to be considered, by first calculating for the orifice diameter of the first focusing lens in the Stokes formula, and then using that value to determine, in iterative fashion, intermediate flow values which are themselves used to determine the orifice diameters of each succeeding focusing lens in the stack design, with the results being output to a designer. In addition, the Reynolds numbers associated with each focusing lens as well as exit nozzle size may also be determined to enhance the stack design.

  3. Support vector machine firefly algorithm based optimization of lens system.

    PubMed

    Shamshirband, Shahaboddin; Petković, Dalibor; Pavlović, Nenad T; Ch, Sudheer; Altameem, Torki A; Gani, Abdullah

    2015-01-01

    Lens system design is an important factor in image quality. The main aspect of the lens system design methodology is the optimization procedure. Since optimization is a complex, nonlinear task, soft computing optimization algorithms can be used. There are many tools that can be employed to measure optical performance, but the spot diagram is the most useful. The spot diagram gives an indication of the image of a point object. In this paper, the spot size radius is considered an optimization criterion. Intelligent soft computing scheme support vector machines (SVMs) coupled with the firefly algorithm (FFA) are implemented. The performance of the proposed estimators is confirmed with the simulation results. The result of the proposed SVM-FFA model has been compared with support vector regression (SVR), artificial neural networks, and generic programming methods. The results show that the SVM-FFA model performs more accurately than the other methodologies. Therefore, SVM-FFA can be used as an efficient soft computing technique in the optimization of lens system designs.

  4. High convergence efficiency design of flat Fresnel lens with large aperture

    NASA Astrophysics Data System (ADS)

    Ke, Jieyao; Zhao, Changming; Guan, Zhe

    2018-01-01

    This paper designed a circle-shaped Fresnel lens with large aperture as part of the solar pumped laser design project. The Fresnel lens designed in this paper simulate in size 1000mm×1000mm, focus length 1200mm and polymethyl methacrylate (PMMA) material in order to conduct high convergence efficiency. In the light of design requirement of concentric ring with same width of 0.3mm, this paper proposed an optimized Fresnel lens design based on previous sphere design and conduct light tracing simulation in Matlab. This paper also analyzed the effect of light spot size, light intensity distribution, optical efficiency under four conditions, monochromatic parallel light, parallel spectrum light, divergent monochromatic light and sunlight. Design by 550nm wavelength and under the condition of Fresnel reflection, the results indicated that the designed lens could convergent sunlight in diffraction limit of 11.8mm with a 78.7% optical efficiency, better than the sphere cutting design results of 30.4%.

  5. Testing safety eyewear: how frame and lens design affect lens retention.

    PubMed

    McMahon, Janice M; Beckerman, Stephen

    2007-02-01

    The aim of this study was to determine the role that frame and lens design play in lens retention during high-impact testing of safety eyewear that advertises conformance to the performance-based ANSI Z87.1-2003 standard. A total of 75 Z87 safety eyeglass frames (3 each of 25 frame models) were used in this study, procured from 5 of the leading U.S. safety frame manufacturers. Frames were fitted by an independent laboratory with 2.0-mm plano polycarbonate lenses in compliance with ANSI Z87.1-2003. Finished spectacles were sent to a subsequent laboratory testing facility where each frame was subjected to both high-mass and oblique-incidence high-velocity impacts to determine frame characteristics that were most highly associated with testing failure. Among the frame and lens parameters that were considered in this analysis were the A and B dimensions, effective diameter, distance between lenses, bridge type, frame material, bevel type, and frame cost. Certain variables were controlled for by maintaining consistency among all spectacle pairs, e.g., lens prescription, center thickness, and edge thickness. Multiple logistic regression was used to control potential confounding variables and to develop the best combination of them for predictive value. Of 25 separate frame models assessed, 10 passed both high-mass and high-velocity impact testing, i.e., none of the 3 frame/lens samples failed. Of the models that failed, 13 failures were caused by high-velocity testing, 1 by high-mass testing, and 1 failed both high-mass and high-velocity testing. None of the 15 spectacles with the SprinGuardtrade mark (Hilco, Plainville, Massachusetts) bevel design failed, although these were proprietary to 1 manufacturer and included only 5 frame models. Two spectacle designs (6 individual frames) incorporated an inverted bevel design of which 3 of the frames failed impact testing. Controlling for drop ball velocity among the 54 remaining standard "V" bevel spectacle pairs, the odds of

  6. MEMS-based liquid lens for capsule endoscope

    NASA Astrophysics Data System (ADS)

    Seo, S. W.; Han, S.; Seo, J. H.; Kim, Y. M.; Kang, M. S.; Min, N. G.; Choi, W. B.; Sung, M. Y.

    2008-03-01

    The capsule endoscope, a new application area of digital imaging, is growing rapidly but needs the versatile imaging capabilities such as auto-focusing and zoom-in to be an active diagnostic tool. The liquid lens based on MEMS technology can be a strong candidate because it is able to be small enough. In this paper, a cylinder-type liquid lens was designed based on Young-Lippmann model and then fabricated with MEMS technology combining the silicon thin-film process and the wafer bonding process. The focal length of the lens module including the fabricated liquid lens was changed reproducibly as a function of the applied voltage. With the change of 30V in the applied bias, the focal length of the constructed lens module could be tuned in the range of about 42cm. The fabricated liquid lens was also proven to be small enough to be adopted in the capsule endoscope, which means the liquid lens can be utilized for the imaging capability improvement of the capsule endoscope.

  7. Electrowetting-Based Variable-Focus Lens for Miniature Systems

    NASA Astrophysics Data System (ADS)

    Hendriks, B. H. W.; Kuiper, S.; van As, M. A. J.; et al.

    The meniscus between two immiscible liquids of different refractive indices can be used as a lens. A change in curvature of this meniscus by electrostatic control of the solid/liquid interfacial tension leads to a change in focal distance. It is demonstrated that two liquids in a tube form a self-centred variable-focus lens. The optical properties of this lens were investigated experimentally. We designed and constructed a miniature camera module based on this variable lens suitable for mobile applications. Furthermore, the liquid lens was applied in a Blu-ray Disc optical recording system to enable dual layer disc reading/writing.

  8. Designing Spreadsheet-Based Tasks for Purposeful Algebra

    ERIC Educational Resources Information Center

    Ainley, Janet; Bills, Liz; Wilson, Kirsty

    2005-01-01

    We describe the design of a sequence of spreadsheet-based pedagogic tasks for the introduction of algebra in the early years of secondary schooling within the Purposeful Algebraic Activity project. This design combines two relatively novel features to bring a different perspective to research in the use of spreadsheets for the learning and…

  9. Focus-tunable liquid cylindrical lens based on electrowetting

    NASA Astrophysics Data System (ADS)

    Tan, Yanting; Peng, Runling

    2017-10-01

    The double-liquid focus-tunable lens based on electrowetting on dielectrics is attracting many researchers' attention because of compact volume, quick responding speed, low consumption etc. In this paper, a focus-tunable liquid cylindrical lens based on electrowetting is designed, the structure and operating principles of this lens are introduced. COMSOL Multiphysics is chamber, and the focal length is varied continuously. According to the materials used in our laboratory, the focal length is estimated, ranging between (-∞, -38.6mm)υ(61.4mm, +∞).

  10. Gravitational-Like Lens Based on Graphene Ripple.

    PubMed

    Liu, Daqing; Chen, Shuyue; Ma, Ning; Zhao, Xiang; Xu, Zhuo

    2015-10-01

    We conducted a semiclassical study on carrier movement in curved graphene. A previous attempt was made to show that curved graphene is a readily available and cheap laboratory material used to study general relativity effects, especially if the electron energies satisfy 4μeV ≪ |E| ≪ 3eV. Furthermore, a gravitational-like lens can be constructed based on a special graphene ripple; this lens has neither chromatic nor cometic aberration. One can design an ideal electron lens using a graphene ripple.

  11. Recent Developments In High Speed Lens Design At The NPRL

    NASA Astrophysics Data System (ADS)

    Mcdowell, M. W.; Klee, H. W.

    1987-09-01

    Although the lens provides the link between the high speed camera and the outside world, there has over the years been little evidence of co-operation between the optical design and high speed photography communities. It is still only too common for a manufacturer to develop a camera of improved performance and resolution and then to combine this with a standard camera lens. These lenses were often designed for a completely different recording medium and, more often than not, their use results in avoidable degradation of the overall system performance. There is a tendency to assume that a specialized lens would be too expensive and that pushing the aperture automatically implies more complex optical systems. In the present paper some recent South African developments in the design of large aperture lenses are described. The application of a new design principle, based on the work earlier this century of Bernhard Schmidt, shows that ultra-fast lenses need not be overly complex and a basic four-element lens configuration can be adapted to a wide variety of applications.

  12. Particle swarm optimization applied to automatic lens design

    NASA Astrophysics Data System (ADS)

    Qin, Hua

    2011-06-01

    This paper describes a novel application of Particle Swarm Optimization (PSO) technique to lens design. A mathematical model is constructed, and merit functions in an optical system are employed as fitness functions, which combined radiuses of curvature, thicknesses among lens surfaces and refractive indices regarding an optical system. By using this function, the aberration correction is carried out. A design example using PSO is given. Results show that PSO as optical design tools is practical and powerful, and this method is no longer dependent on the lens initial structure and can arbitrarily create search ranges of structural parameters of a lens system, which is an important step towards automatic design with artificial intelligence.

  13. Robust design study on the wide angle lens with free distortion for mobile lens

    NASA Astrophysics Data System (ADS)

    Kim, Taeyoung; Yong, Liu; Xu, Qing

    2017-10-01

    Recently new trend applying wide angle in mobile imaging lens is attracting. Specially, customer requirements for capturing wider scene result that a field of view of lens be wider than 100deg. Introduction of retro-focus type lens in mobile imaging lens is required. However, imaging lens in mobile phone always face to many constraints such as lower total length, low F/# and higher performance. The sensitivity for fabrication may become more severe because of wide angle FOV. In this paper, we investigate an optical lens design satisfy all requirements for mobile imaging lens. In order to accomplish Low cost and small depth of optical system, we used plastic materials for all element and the productivity is considered for realization. The lateral color is minimized less than 2 pixels and optical distortion is less than 5%. Also, we divided optical system into 2 part for robust design. The compensation between 2 groups can help us to increase yield in practice. The 2 group alignment for high yield may be a promising solution for wide angle lens.

  14. A lazy way to design infrared lens

    NASA Astrophysics Data System (ADS)

    Qiu, RongSheng; Wu, JianDong; Chen, LongJiang; Yu, Kun; Pang, HaoJun; Hu, BaiZhen

    2017-08-01

    We designed a compact middle-wave infrared (MWIR) lens with a large focal length ratio (about 1.5:1), used in the 3.7 to 4.8 μm range. The lens is consisted of a compact front group and a re-imaging group. Thanks to the compact front group configuration, it is possible to install a filter wheel mechanism in such a tight space. The total track length of the lens is about 50mm, which includes a 2mm thick protective window and a cold shield of 12mm. The full field of view of the lens is about 3.6°, and F number is less than 1.6, the image circle is about 4.6mm in diameter. The design performance of the lens reaches diffraction limitation, and doesn't change a lot during a temperature range of -40°C +60°C. This essay proposed a stepwise design method of infrared optical system guided by the qualitative approach. The method fully utilize the powerful global optimization ability, with a little effort to write code snippet in optical design software, frees optical engineer from tedious calculation of the original structure.

  15. Ultrathin zoom lens system based on liquid lenses

    NASA Astrophysics Data System (ADS)

    Li, Lei; Liu, Chao; Wang, Qiong-Hua

    2015-07-01

    In this paper, we propose an ultrathin zoom lens system based on liquid lenses. The proposed system consists of an annular folded lens and three electrowetting liquid lenses. The annular folded lens has several concentric surfaces. The annular folded lens is used to get the main power and correct aberrations. The three liquid lenses are used to change the focal length and correct aberration. An analysis of the proposed system is presented along with the design, fabrication, and testing of a prototype. All the elements in the proposed system are very thin, so the system is an ultrathin zoom lens system, which has potential application as lightweight, thin, high-quality imagers for aerospace, consumer, and military applications.

  16. Design of a broadband hemispherical wave collimator lens using the ray inserting method.

    PubMed

    Taskhiri, Mohammad Mahdi; Amirhosseini, Mohammad Khalaj

    2017-07-01

    This paper presents a novel inhomogeneous hemispherical dielectric lens. The proposed lens is designed based on the ray inserting method (RIM). Applying this approach, a uniform distribution of the rays' end points over the lens plane aperture is achieved while lens matching to the environment refractive index is perfectly fulfilled. We can change the antenna features such as sidelobe level and gain by controlling the end point of each ray propagated through the hemispherical lens. The refractive index of the designed hemispherical inhomogeneous lens is derived and it is validated using COMSOL Multiphysics. The proposed lens is realized using material drilling and multilayer techniques. Analysis of the realized lens is performed using CST-Microwave Studio. The structure has been fabricated. The results of a simulation and experiment indicate good performances of realized planar lens in a wide frequency bandwidth. Comparing with other hemispherical lenses like classical half Maxwell fish-eye, the improvements in the gain, sidelobe levels, and input matching are achieved by using the RIM.

  17. Intraocular lens design for treating high myopia based on individual eye model

    NASA Astrophysics Data System (ADS)

    Wang, Yang; Wang, Zhaoqi; Wang, Yan; Zuo, Tong

    2007-02-01

    In this research, we firstly design the phakic intraocular lens (PIOL) based on individual eye model with optical design software ZEMAX. The individual PIOL is designed to correct the defocus and astigmatism, and then we compare the PIOL power calculated from the individual eye model with that from the experiential formula. Close values of PIOL power are obtained between the individual eye model and the formula, but the suggested method has more accuracy with more functions. The impact of PIOL decentration on human eye is evaluated, including rotation decentration, flat axis decentration, steep axis decentration and axial movement of PIOL, which is impossible with traditional method. To control the PIOL decentration errors, we give the limit values of PIOL decentration for the specific eye in this study.

  18. Deformable Surface Accommodating Intraocular Lens: Second Generation Prototype Design Methodology and Testing.

    PubMed

    McCafferty, Sean J; Schwiegerling, Jim T

    2015-04-01

    Present an analysis methodology for developing and evaluating accommodating intraocular lenses incorporating a deformable interface. The next generation design of extruded gel interface intraocular lens is presented. A prototype based upon similar previously in vivo proven design was tested with measurements of actuation force, lens power, interface contour, optical transfer function, and visual Strehl ratio. Prototype verified mathematical models were used to optimize optical and mechanical design parameters to maximize the image quality and minimize the required force to accommodate. The prototype lens produced adequate image quality with the available physiologic accommodating force. The iterative mathematical modeling based upon the prototype yielded maximized optical and mechanical performance through maximum allowable gel thickness to extrusion diameter ratio, maximum feasible refractive index change at the interface, and minimum gel material properties in Poisson's ratio and Young's modulus. The design prototype performed well. It operated within the physiologic constraints of the human eye including the force available for full accommodative amplitude using the eye's natural focusing feedback, while maintaining image quality in the space available. The parameters that optimized optical and mechanical performance were delineated as those, which minimize both asphericity and actuation pressure. The design parameters outlined herein can be used as a template to maximize the performance of a deformable interface intraocular lens. The article combines a multidisciplinary basic science approach from biomechanics, optical science, and ophthalmology to optimize an intraocular lens design suitable for preliminary animal trials.

  19. Designing Digital Problem Based Learning Tasks that Motivate Students

    ERIC Educational Resources Information Center

    van Loon, Anne-Marieke; Ros, Anje; Martens, Rob

    2013-01-01

    This study examines whether teachers are able to apply the principles of autonomy support and structure support in designing digital problem based learning (PBL) tasks. We examine whether these tasks are more autonomy- and structure-supportive and whether primary and secondary school students experience greater autonomy, competence, and motivation…

  20. Lens Design Using Group Indices of Refraction

    NASA Technical Reports Server (NTRS)

    Vaughan, A. H.

    1995-01-01

    An approach to lens design is described in which the ratio of the group velocity to the speed of light (the group index) in glass is used, in conjunction with the more familiar phase index of refraction, to control certain chromatic properties of a system of thin lenses in contact. The first-order design of thin-lens systems is illustrated by examples incorporating the methods described.

  1. Freeform lens design for LED collimating illumination.

    PubMed

    Chen, Jin-Jia; Wang, Te-Yuan; Huang, Kuang-Lung; Liu, Te-Shu; Tsai, Ming-Da; Lin, Chin-Tang

    2012-05-07

    We present a simple freeform lens design method for an application to LED collimating illumination. The method is derived from a basic geometric-optics analysis and construction approach. By using this method, a highly collimating lens with LED chip size of 1.0 mm × 1.0 mm and optical simulation efficiency of 86.5% under a view angle of ± 5 deg is constructed. To verify the practical performance of the lens, a prototype of the collimator lens is also made, and an optical efficiency of 90.3% with a beam angle of 4.75 deg is measured.

  2. Circuit design for the retina-like image sensor based on space-variant lens array

    NASA Astrophysics Data System (ADS)

    Gao, Hongxun; Hao, Qun; Jin, Xuefeng; Cao, Jie; Liu, Yue; Song, Yong; Fan, Fan

    2013-12-01

    Retina-like image sensor is based on the non-uniformity of the human eyes and the log-polar coordinate theory. It has advantages of high-quality data compression and redundant information elimination. However, retina-like image sensors based on the CMOS craft have drawbacks such as high cost, low sensitivity and signal outputting efficiency and updating inconvenience. Therefore, this paper proposes a retina-like image sensor based on space-variant lens array, focusing on the circuit design to provide circuit support to the whole system. The circuit includes the following parts: (1) A photo-detector array with a lens array to convert optical signals to electrical signals; (2) a strobe circuit for time-gating of the pixels and parallel paths for high-speed transmission of the data; (3) a high-precision digital potentiometer for the I-V conversion, ratio normalization and sensitivity adjustment, a programmable gain amplifier for automatic generation control(AGC), and a A/D converter for the A/D conversion in every path; (4) the digital data is displayed on LCD and stored temporarily in DDR2 SDRAM; (5) a USB port to transfer the data to PC; (6) the whole system is controlled by FPGA. This circuit has advantages as lower cost, larger pixels, updating convenience and higher signal outputting efficiency. Experiments have proved that the grayscale output of every pixel basically matches the target and a non-uniform image of the target is ideally achieved in real time. The circuit can provide adequate technical support to retina-like image sensors based on space-variant lens array.

  3. Microelectromechanical-System-Based Variable-Focus Liquid Lens for Capsule Endoscopes

    NASA Astrophysics Data System (ADS)

    Seo, Sang Won; Han, Seungoh; Seo, Jun Ho; Kim, Young Mok; Kang, Moon Sik; Min, Nam Ki; Choi, Woo Beom; Sung, Man Young

    2009-05-01

    A liquid lens based on the electrowetting phenomenon was designed to be cylindrical to minimize dead area. The lens was fabricated with microelectromechanical-system (MEMS) technology using silicon thin film and wafer bonding processes. A multiple dielectric layer comprising Teflon, silicon nitride, and thermal oxide was formed on the cylinder wall. With a change of 11 Vrms in the applied bias, the lens module, including the fabricated liquid lens, showed a focal length change of approximately 166 mm. A capsule endoscope was assembled, including the lens module, and was successfully used to take images of a pig colon at various focal lengths.

  4. Ordering Design Tasks Based on Coupling Strengths

    NASA Technical Reports Server (NTRS)

    Rogers, J. L.; Bloebaum, C. L.

    1994-01-01

    The design process associated with large engineering systems requires an initial decomposition of the complex system into modules of design tasks which are coupled through the transference of output data. In analyzing or optimizing such a coupled system, it is essential to be able to determine which interactions figure prominently enough to significantly affect the accuracy of the system solution. Many decomposition approaches assume the capability is available to determine what design tasks and interactions exist and what order of execution will be imposed during the analysis process. Unfortunately, this is often a complex problem and beyond the capabilities of a human design manager. A new feature for DeMAID (Design Manager's Aid for Intelligent Decomposition) will allow the design manager to use coupling strength information to find a proper sequence for ordering the design tasks. In addition, these coupling strengths aid in deciding if certain tasks or couplings could be removed (or temporarily suspended) from consideration to achieve computational savings without a significant loss of system accuracy. New rules are presented and two small test cases are used to show the effects of using coupling strengths in this manner.

  5. Ordering design tasks based on coupling strengths

    NASA Technical Reports Server (NTRS)

    Rogers, James L., Jr.; Bloebaum, Christina L.

    1994-01-01

    The design process associated with large engineering systems requires an initial decomposition of the complex system into modules of design tasks which are coupled through the transference of output data. In analyzing or optimizing such a coupled system, it is essential to be able to determine which interactions figure prominently enough to significantly affect the accuracy of the system solution. Many decomposition approaches assume the capability is available to determine what design tasks and interactions exist and what order of execution will be imposed during the analysis process. Unfortunately, this is often a complex problem and beyond the capabilities of a human design manager. A new feature for DeMAID (Design Manager's Aid for Intelligent Decomposition) will allow the design manager to use coupling strength information to find a proper sequence for ordering the design tasks. In addition, these coupling strengths aid in deciding if certain tasks or couplings could be removed (or temporarily suspended) from consideration to achieve computational savings without a significant loss of system accuracy. New rules are presented and two small test cases are used to show the effects of using coupling strengths in this manner.

  6. Design of a lens table for a double toroidal electron spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Xiaojng; Nicolas, Christophe; Miron, Catalin

    2013-03-15

    We report here on the method we developed to build a lens table for a four-element electrostatic transfer lens operated together with a double toroidal electron energy analyzer designed by one of us, and whose original design and further improvements are described in detail in Miron et al. [Rev. Sci. Instrum. 68, 3728 (1997)] and Le Guen et al. [Rev. Sci. Instrum. 73, 3885 (2002)]. Both computer simulations and laboratory instrument tuning were performed in order to build this lens table. The obtained result was tested for a broad range of electron kinetic energies and analyzer pass energies. Based onmore » this new lens table, allowing to easily computer control the spectrometer working conditions, we could routinely achieve an electron energy resolution ranging between 0.6% and 0.8% of the analyzer pass energy, while the electron count rate was also significantly improved. The establishment of such a lens table is of high importance to relieve experimentalists from the tedious laboring of the lens optimization, which was previously necessary prior to any measurement. The described method can be adapted to any type of electron/ion energy analyzer, and will thus be interesting for all experimentalists who own, or plan to build or improve their charged particle energy analyzers.« less

  7. Internet based post-graduate course in spectacle lens design

    NASA Astrophysics Data System (ADS)

    Jalie, Mo

    2014-07-01

    The complexity of spectacle lenses has increased enormously over the last three decades. The advent of aspheric lenses for the normal power range and the, now commonplace, progressive lenses for the correction of presbyopia, are just two examples of 21st Century technology. Freeform surfaces are now employed to personalize lenses to wearer's needs and these may be both progressive and atoroidal in nature. At the same time, optometry has taken a sideways step from optics and physics into a more general primary health care profession with an ever-increasing amount of biological and medical content added to an already brimming curriculum, hence the need for persons without optometry training to undertake the study of spectacle lenses. Some years ago a post-graduate course was designed for opticians who had a good grasp of mathematics and the ability to pay close attention to detail in the lengthy trigonometric ray-tracing techniques employed in lens design calculations. The year-long course, is undertaken by distance learning, and has been undertaken via the internet by students from many countries around the world. Final assessment is by means of examination held by the Association of British Dispensing Opticians and takes the form of two three-hour papers, Paper One consisting of the determination of the aberrations of a spectacle lens by accurate trigonometric ray tracing and the second, a general paper on the optics of ophthalmic lenses. It leads to the professional qualification, ABDO (Hons) SLD.

  8. Photographic zoom fisheye lens design for DSLR cameras

    NASA Astrophysics Data System (ADS)

    Yan, Yufeng; Sasian, Jose

    2017-09-01

    Photographic fisheye lenses with fixed focal length for cameras with different sensor formats have been well developed for decades. However, photographic fisheye lenses with variable focal length are rare on the market due in part to the greater design difficulty. This paper presents a large aperture zoom fisheye lens for DSLR cameras that produces both circular and diagonal fisheye imaging for 35-mm sensors and diagonal fisheye imaging for APS-C sensors. The history and optical characteristics of fisheye lenses are briefly reviewed. Then, a 9.2- to 16.1-mm F/2.8 to F/3.5 zoom fisheye lens design is presented, including the design approach and aberration control. Image quality and tolerance performance analysis for this lens are also presented.

  9. Improving the lens design and performance of a contemporary electromagnetic shock wave lithotripter.

    PubMed

    Neisius, Andreas; Smith, Nathan B; Sankin, Georgy; Kuntz, Nicholas John; Madden, John Francis; Fovargue, Daniel E; Mitran, Sorin; Lipkin, Michael Eric; Simmons, Walter Neal; Preminger, Glenn M; Zhong, Pei

    2014-04-01

    The efficiency of shock wave lithotripsy (SWL), a noninvasive first-line therapy for millions of nephrolithiasis patients, has not improved substantially in the past two decades, especially in regard to stone clearance. Here, we report a new acoustic lens design for a contemporary electromagnetic (EM) shock wave lithotripter, based on recently acquired knowledge of the key lithotripter field characteristics that correlate with efficient and safe SWL. The new lens design addresses concomitantly three fundamental drawbacks in EM lithotripters, namely, narrow focal width, nonidealized pulse profile, and significant misalignment in acoustic focus and cavitation activities with the target stone at high output settings. Key design features and performance of the new lens were evaluated using model calculations and experimental measurements against the original lens under comparable acoustic pulse energy (E+) of 40 mJ. The -6-dB focal width of the new lens was enhanced from 7.4 to 11 mm at this energy level, and peak pressure (41 MPa) and maximum cavitation activity were both realigned to be within 5 mm of the lithotripter focus. Stone comminution produced by the new lens was either statistically improved or similar to that of the original lens under various in vitro test conditions and was significantly improved in vivo in a swine model (89% vs. 54%, P = 0.01), and tissue injury was minimal using a clinical treatment protocol. The general principle and associated techniques described in this work can be applied to design improvement of all EM lithotripters.

  10. Athermal design and analysis of glass-plastic hybrid lens

    NASA Astrophysics Data System (ADS)

    Yang, Jian; Cen, Zhaofeng; Li, Xiaotong

    2018-01-01

    With the rapid development of security market, the glass-plastic hybrid lens has gradually become a choice for the special requirements like high imaging quality in a wide temperature range and low cost. The reduction of spherical aberration is achieved by using aspherical surface instead of increasing the number of lenses. Obviously, plastic aspherical lens plays a great role in the cost reduction. However, the hybrid lens has a priority issue, which is the large thermal coefficient of expansion of plastic, causing focus shift and seriously affecting the imaging quality, so the hybrid lens is highly sensitive to the change of temperature. To ensure the system operates normally in a wide temperature range, it is necessary to eliminate the influence of temperature on the hybrid lens system. A practical design method named the Athermal Material Map is summarized and verified by an athermal design example according to the design index. It includes the distribution of optical power and selection of glass or plastic. The design result shows that the optical system has excellent imaging quality at a wide temperature range from -20 ° to 70 °. The method of athermal design in this paper has generality which could apply to optical system with plastic aspherical surface.

  11. Dynamic metasurface lens based on MEMS technology

    NASA Astrophysics Data System (ADS)

    Roy, Tapashree; Zhang, Shuyan; Jung, Il Woong; Troccoli, Mariano; Capasso, Federico; Lopez, Daniel

    2018-02-01

    In the recent years, metasurfaces, being flat and lightweight, have been designed to replace bulky optical components with various functions. We demonstrate a monolithic Micro-Electro-Mechanical System (MEMS) integrated with a metasurface-based flat lens that focuses light in the mid-infrared spectrum. A two-dimensional scanning MEMS platform controls the angle of the lens along two orthogonal axes by ±9°, thus enabling dynamic beam steering. The device could be used to compensate for off-axis incident light and thus correct for aberrations such as coma. We show that for low angular displacements, the integrated lens-on-MEMS system does not affect the mechanical performance of the MEMS actuators and preserves the focused beam profile as well as the measured full width at half maximum. We envision a new class of flat optical devices with active control provided by the combination of metasurfaces and MEMS for a wide range of applications, such as miniaturized MEMS-based microscope systems, LIDAR scanners, and projection systems.

  12. Varifocal liquid lens based on microelectrofluidic technology.

    PubMed

    Chang, Jong-hyeon; Jung, Kyu-Dong; Lee, Eunsung; Choi, Minseog; Lee, Seungwan; Kim, Woonbae

    2012-11-01

    This Letter presents a tunable liquid lens based on microelectrofluidic technology. In the microelectrofluidic lens (MEFL), electrowetting in the hydrophobic surface channel induces the Laplace pressure difference between two fluidic interfaces on the lens aperture and the surface channel. Then, the pressure difference makes the lens curvature tunable. In spite of the contact angle saturation, the narrow surface channel increases the Laplace pressure to have a wide range of optical power variation in the MEFL. The magnitude of the applied voltage determines the lens curvature in the analog mode MEFL. Digital operation is also possible when the control electrodes of the MEFL are patterned to have an array. The lens aperture and maximum surface channel diameter were designed to 3.2 mm and 6.4 mm, respectively, with a channel height of 0.2 mm for an optical power range between +210 and -30 D. By switching the control electrodes, the averaged transit time in steps and turnaround time were as low as 2.4 ms and 16.5 ms, respectively, in good agreement with the simulation results. It is expected that the proposed MEFL may be widely used with advantages of wide variation of the optical power with fast and precise controllability in a digital manner.

  13. Lens design of LED searchlight of high brightness and distant spot.

    PubMed

    Zhao, Shuang; Wang, Kai; Chen, Fei; Wu, Dan; Liu, Sheng

    2011-05-01

    The study related in this paper is the design of a ship-mounted LED of high brightness and distant spot. The freeform lens design obeying the edge ray principle and Snell's law is presented first. Then, to fit the illumination requirement of the searchlight, we designed a freeform lens to collimate all the light rays coming from the LED. However, theoretical analysis proves that there is a critical angle for incident rays beyond which the rays cannot be collimated, and 55% is the light-efficiency limit for polymethyl methacrylate freeform lens. We then designed a combination of a freeform lens-coupled parabolic reflector that improved light efficiency to 70%. In this paper, the design of the freeform lens-coupled parabolic reflector is given in detail. In addition, tolerance analysis and the effect of manufacturing defect are presented.

  14. Designing simulator-based training: an approach integrating cognitive task analysis and four-component instructional design.

    PubMed

    Tjiam, Irene M; Schout, Barbara M A; Hendrikx, Ad J M; Scherpbier, Albert J J M; Witjes, J Alfred; van Merriënboer, Jeroen J G

    2012-01-01

    Most studies of simulator-based surgical skills training have focused on the acquisition of psychomotor skills, but surgical procedures are complex tasks requiring both psychomotor and cognitive skills. As skills training is modelled on expert performance consisting partly of unconscious automatic processes that experts are not always able to explicate, simulator developers should collaborate with educational experts and physicians in developing efficient and effective training programmes. This article presents an approach to designing simulator-based skill training comprising cognitive task analysis integrated with instructional design according to the four-component/instructional design model. This theory-driven approach is illustrated by a description of how it was used in the development of simulator-based training for the nephrostomy procedure.

  15. Experimental validation of a transformation optics based lens for beam steering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yi, Jianjia; Burokur, Shah Nawaz, E-mail: shah-nawaz.burokur@u-psud.fr; Lustrac, André de

    2015-10-12

    A transformation optics based lens for beam control is experimentally realized and measured at microwave frequencies. Laplace's equation is adopted to construct the mapping between the virtual and physical spaces. The metamaterial-based lens prototype is designed using electric LC resonators. A planar microstrip antenna source is used as transverse electric polarized wave launcher for the lens. Both the far field radiation patterns and the near-field distributions have been measured to experimentally demonstrate the beam steering properties. Measurements agree quantitatively and qualitatively with numerical simulations, and a non-narrow frequency bandwidth operation is observed.

  16. Improving the lens design and performance of a contemporary electromagnetic shock wave lithotripter

    PubMed Central

    Neisius, Andreas; Smith, Nathan B.; Sankin, Georgy; Kuntz, Nicholas John; Madden, John Francis; Fovargue, Daniel E.; Mitran, Sorin; Lipkin, Michael Eric; Simmons, Walter Neal; Preminger, Glenn M.; Zhong, Pei

    2014-01-01

    The efficiency of shock wave lithotripsy (SWL), a noninvasive first-line therapy for millions of nephrolithiasis patients, has not improved substantially in the past two decades, especially in regard to stone clearance. Here, we report a new acoustic lens design for a contemporary electromagnetic (EM) shock wave lithotripter, based on recently acquired knowledge of the key lithotripter field characteristics that correlate with efficient and safe SWL. The new lens design addresses concomitantly three fundamental drawbacks in EM lithotripters, namely, narrow focal width, nonidealized pulse profile, and significant misalignment in acoustic focus and cavitation activities with the target stone at high output settings. Key design features and performance of the new lens were evaluated using model calculations and experimental measurements against the original lens under comparable acoustic pulse energy (E+) of 40 mJ. The −6-dB focal width of the new lens was enhanced from 7.4 to 11 mm at this energy level, and peak pressure (41 MPa) and maximum cavitation activity were both realigned to be within 5 mm of the lithotripter focus. Stone comminution produced by the new lens was either statistically improved or similar to that of the original lens under various in vitro test conditions and was significantly improved in vivo in a swine model (89% vs. 54%, P = 0.01), and tissue injury was minimal using a clinical treatment protocol. The general principle and associated techniques described in this work can be applied to design improvement of all EM lithotripters. PMID:24639497

  17. A planar lens based on the electrowetting of two immiscible liquids

    NASA Astrophysics Data System (ADS)

    Liu, Chao-Xuan; Park, Jihwan; Choi, Jin-Woo

    2008-03-01

    This paper reports the development and characterization of a planar liquid lens based on electrowetting. The working concept of electrowetting two immiscible liquids is demonstrated with measurement and characterization of contact angles with regard to externally applied electric voltages. Consequently, a planar liquid lens is designed and implemented based on this competitive electrowetting. A droplet of silicone oil confined in an aqueous solution (1% KCl) works as a liquid lens. Electrowetting then controls the shape of the confined silicone oil and the focal length of the liquid lens varies depending upon an applied dc voltage. A unique feature of this lens design is the double-ring planar electrodes beneath the hydrophobic substrate. While an outer ring electrode provides an initial boundary for the silicone oil droplet, an inner ring works as the actuation electrode for the lens. Further, the planar electrodes, instead of vertical or out-of-plane wall electrodes, facilitate the integration of liquid lenses into microfluidic systems. With the voltage applied in the range of 50-250 V, the confined silicone oil droplet changed its shape and the optical magnification of a 3 mm-diameter liquid lens was clearly demonstrated. Moreover, focal lengths of liquid lenses with diameters of 2 mm, 3 mm and 4 mm were characterized, respectively. The obtained results suggest that a larger lens diameter yields a longer focal length and a wider range of focal length change in response to voltage. The demonstrated liquid lens has a simple structure and is easy to fabricate.

  18. International Lens Design Conference, Monterey, CA, June 11-14, 1990, Proceedings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawrence, G.N.

    1990-01-01

    The present conference on lens design encompasses physical and geometrical optics, diffractive optics, the optimization of optical design, software packages, ray tracing, the use of artificial intelligence, the achromatization of materials, zoom optics, microoptics and GRIN lenses, and IR lens design. Specific issues addressed include diffraction-performance calculations in lens design, the optimization of the optical transfer function, a rank-down method for automatic lens design, applications of quadric surfaces, the correction of aberrations by using HOEs in UV and visible imaging systems, and an all-refractive telescope for intersatellite communications. Also addressed are automation techniques for optics manufacturing, all-reflective phased-array imaging telescopes,more » the thermal aberration analysis of a Nd:YAG laser, the analysis of illumination systems, athermalized FLIR optics, and the design of array systems using shared symmetry.« less

  19. Utilizing gamma band to improve mental task based brain-computer interface design.

    PubMed

    Palaniappan, Ramaswamy

    2006-09-01

    A common method for designing brain-computer Interface (BCI) is to use electroencephalogram (EEG) signals extracted during mental tasks. In these BCI designs, features from EEG such as power and asymmetry ratios from delta, theta, alpha, and beta bands have been used in classifying different mental tasks. In this paper, the performance of the mental task based BCI design is improved by using spectral power and asymmetry ratios from gamma (24-37 Hz) band in addition to the lower frequency bands. In the experimental study, EEG signals extracted during five mental tasks from four subjects were used. Elman neural network (ENN) trained by the resilient backpropagation algorithm was used to classify the power and asymmetry ratios from EEG into different combinations of two mental tasks. The results indicated that ((1) the classification performance and training time of the BCI design were improved through the use of additional gamma band features; (2) classification performances were nearly invariant to the number of ENN hidden units or feature extraction method.

  20. Effects of Progressive Addition Lens Wear on Digital Work in Pre-presbyopes

    PubMed Central

    Kee, Chea-su; Leung, Tsz Wing; Kan, Ka-hung; Lam, Christie Hang-I

    2018-01-01

    SIGNIFICANCE Growing popularity of handheld digital devices imposes significant challenges to our visual system and clinical management. This study aimed to determine the effects of lens design on parameters that may influence the refractive management of pre-presbyopic adult computer users. PURPOSE To determine the effects of wearing conventional single-vision lenses (SVL) versus progressive addition lenses (PAL) on the working distance and refractive status. METHODS Adult computer users, recruited from two age cohorts (18 to 25 years, n = 19; 30 to 40 years, n = 45), were prescribed SVLs and PALs designed for use with handheld digital devices. For each lens type, the working distance and refractive shift (post-task − pre-task) were measured immediately after lens delivery (T0) and after 1 month of lens wear (T1). Working distances were recorded with an automatic ultrasound device while the participants were playing a video game. Refractive status through the subjects' glasses was measured before (pre-task) and after playing the game (post-task). Questionnaires assessing the frequencies of 10 digital work–related visual symptoms were conducted for both lens types at T1. RESULTS Switching from SVL to PAL increased the working distance in both cohorts (mean ± SEM = 1.88 ± 0.60 cm; P = .002) and induced a small but significant positive refractive shift (+0.08 ± 0.04 D, P = .021) in the older cohort at T1. In the younger cohort, the changes in working distance due to the switching lens design were correlated with myopic error (r = +0.66, P = .002). In the older cohort, the changes in refractive shift due to switching lens design were correlated with amplitude of accommodation at both time points (r for T0 and T1 = −0.32 and −0.30, respectively; both P < .05). Progressive addition lens was rated as causing less “increased sensitivity to light” compared with SVL. CONCLUSIONS Switching from SVL to PAL increased the working distance and induced a positive

  1. The Influence of Different OK Lens Designs on Peripheral Refraction.

    PubMed

    Kang, Pauline; Swarbrick, Helen

    2016-09-01

    To compare peripheral refraction changes along the horizontal and vertical meridians induced by three different orthokeratology (OK) lens designs: BE, Paragon CRT, and Contex lenses. Nineteen subjects (6M, 13F, mean age 28 ± 7 years) were initially fitted with BE OK lenses in both eyes which were worn overnight for 14 days. Central and peripheral refraction and corneal topography were measured at baseline and after 14 nights of lens wear. After a minimum 2-week washout period, one randomly selected eye was re-fitted with a Paragon CRT lens and the other eye with a Contex OK lens. Measurements were repeated before and after 14 nights of lens wear. The three different OK lenses caused significant changes in peripheral refraction along both the horizontal and vertical visual fields (VFs). BE and Paragon CRT lenses induced a significant hyperopic shift within the central ±20° along the horizontal VF and at all positions along the vertical meridian except at 30° in the superior VF. There were no significant differences in peripheral refraction changes induced between BE and Paragon CRT lenses. When comparing BE and Contex OK lens designs, BE caused greater hyperopic shifts at 10° and 30° in the temporal VF and at center, 10°, and 20° in the superior VF along the vertical meridian. Furthermore, BE lenses caused greater reduction in Flat and Steep K values compared to Contex OK. OK lenses induced significant changes in peripheral refraction along the horizontal and vertical meridians. Despite the clinically significant difference in central corneal flattening induced by BE and Contex OK lenses, relative peripheral refraction changes differed minimally between the three OK lens designs. If the peripheral retina influences refractive error development, these results suggest that myopia control effects are likely to be similar between different OK lens designs.

  2. Intraocular lens based on double-liquid variable-focus lens.

    PubMed

    Peng, Runling; Li, Yifan; Hu, Shuilan; Wei, Maowei; Chen, Jiabi

    2014-01-10

    In this work, the crystalline lens in the Gullstrand-Le Grand human eye model is replaced by a double-liquid variable-focus lens, the structure data of which are based on theoretical analysis and experimental results. When the pseudoaphakic eye is built in Zemax, aspherical surfaces are introduced to the double-liquid variable-focus lens to reduce the axial spherical aberration existent in the system. After optimization, the zoom range of the pseudoaphakic eye greatly exceeds that of normal human eyes, and the spot size on an image plane basically reaches the normal human eye's limit of resolution.

  3. Engineering hurdles in contact and intraocular lens lathe design: the view ahead

    NASA Astrophysics Data System (ADS)

    Bradley, Norman D.; Keller, John R.; Ball, Gary A.

    1994-05-01

    Current trends in and intraocular lens design suggest ever- increasing demand for aspheric lens geometries - multisurface and/or toric surfaces - in a variety of new materials. As computer numeric controls (CNC) lathes and mills continue to evolve with he ophthalmic market, engineering hurdles present themselves to designers: Can hardware based upon single-point diamond turning accommodate the demands of software-driven designs? What are the limits of CNC resolution and repeatability in high-throughput production? What are the controlling factors in lathed, polish-free surface production? Emerging technologies in the lathed biomedical optics field are discussed along with their limitations, including refined diamond tooling, vibrational control, automation, and advanced motion control systems.

  4. Population-based Incidence of Intraocular Lens Exchange in Olmsted County, Minnesota.

    PubMed

    Bothun, Erick D; Cavalcante, Lilian C B; Hodge, David O; Patel, Sanjay V

    2018-03-01

    To determine the population-based incidence of pseudophakic intraocular lens exchange in Olmsted County, Minnesota. Retrospective review of a population-based cohort. Patients undergoing pseudophakic intraocular lens exchange in Olmsted County, Minnesota, between January 1, 1986 and December 31, 2016 were identified from the Rochester Epidemiology Project medical record linkage system. Indications and outcomes were determined, and the incidence rate was calculated as cases per 1 000 000 person-years. Poisson regression analysis was used to assess changes in incidence over time, and the cumulative probability of needing a lens exchange was estimated by Kaplan-Meier analysis. Eighty cases of intraocular lens exchange were identified, yielding an overall age- and sex-adjusted incidence rate of 28.4 per million (confidence interval [CI], 22.1-34.7), which increased over the study period (P = .04). The 30-year cumulative probability of intraocular lens exchange among patients undergoing cataract surgery was 1.5% (CI, 0.6%-2.4%), increasing at a relatively constant rate. Dislocated lenses accounted for 72.5% of lens exchanges. Unplanned refractive outcome of primary cataract surgery and uveitis-glaucoma-hyphema syndrome from squared-edged haptics emerged as newer indications for intraocular lens exchange. The population-based incidence of pseudophakic intraocular lens exchange has increased over the last 30 years, and can be explained by the increase in incidence rate of cataract surgery over the same period. Surgeons should be aware of emerging indications of intraocular lens exchange, which reflect changes in lens design and increasing expectations of refractive outcomes. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. The design and application of large area intensive lens array focal spots measurement system

    NASA Astrophysics Data System (ADS)

    Chen, Bingzhen; Yao, Shun; Yang, Guanghui; Dai, Mingchong; Wang, Zhiyong

    2014-12-01

    Concentrating Photovoltaic (CPV) modules are getting thinner and using smaller cells now days. Correspondingly, large area intensive lens arrays with smaller unit dimension and shorter focal length are wanted. However, the size and power center of lens array focal spots usually differ from the design value and are hard to measure, especially under large area situation. It is because the machining error and deformation of material of the lens array are hard to simulate in the optical design process. Thus the alignment error between solar cells and focal spots in the module assembly process will be hard to control. Under this kind of situation, the efficiency of CPV module with thinner body and smaller cells is much lower than expected. In this paper, a design of large area lens array focal spots automatic measurement system is presented, as well as its prototype application results. In this system, a four-channel parallel light path and its corresponding image capture and process modules are designed. These modules can simulate focal spots under sunlight and have the spots image captured and processed using charge coupled devices and certain gray level algorithm. Thus the important information of focal spots such as spot size and location will be exported. Motion control module based on grating scale signal and interval measurement method are also employed in this system in order to get test results with high speed and high precision on large area lens array no less than 1m×0.8m. The repeatability of the system prototype measurement is +/-10μm with a velocity of 90 spot/min. Compared to the original module assembled using coordinates from optical design, modules assembled using data exported from the prototype is 18% higher in output power, reaching a conversion efficiency of over 31%. This system and its design can be used in the focal spot measurement of planoconvex lens array and Fresnel lens array, as well as other kinds of large area lens array application

  6. Opto-mechatronics issues in solid immersion lens based near-field recording

    NASA Astrophysics Data System (ADS)

    Park, No-Cheol; Yoon, Yong-Joong; Lee, Yong-Hyun; Kim, Joong-Gon; Kim, Wan-Chin; Choi, Hyun; Lim, Seungho; Yang, Tae-Man; Choi, Moon-Ho; Yang, Hyunseok; Rhim, Yoon-Chul; Park, Young-Pil

    2007-06-01

    We analyzed the effects of an external shock on a collision problem in a solid immersion lens (SIL) based near-field recording (NFR) through a shock response analysis and proposed a possible solution to this problem with adopting a protector and safety mode. With this proposed method the collision between SIL and media can be avoided. We showed possible solution for contamination problem in SIL based NFR through a numerical air flow analysis. We also introduced possible solid immersion lens designs to increase the fabrication and assembly tolerances of an optical head with replicated lens. Potentially, these research results could advance NFR technology for commercial product.

  7. Design and experimental study on Fresnel lens of the combination of equal-width and equal-height of grooves

    NASA Astrophysics Data System (ADS)

    Guo, Limin; Liu, Youqiang; Huang, Rui; Wang, Zhiyong

    2017-06-01

    High concentrating PV systems rely on large Fresnel lens that must be precisely oriented in the direction of the Sun to maintain high concentration ratio. We propose a new Fresnel lens design method combining equal-width and equal-height of grooves in this paper based on the principle of focused spot maximum energy. In the ring band near the center of Fresnel lens, the design with equal-width grooves is applied, and when the given condition is reached, the design with equal-height grooves is introduced near the edges of the Fresnel lens, which ensures all the lens grooves are planar. In this paper, we establish a Fresnel lens design example model by Solidworks, and simulate it with the software ZEMAX. An experimental test platform is built to test, and the simulation correctness is proved by experiments. Experimental result shows the concentrating efficiency of this example is 69.3%, slightly lower than the simulation result 75.1%.

  8. Characterization of lens based photoacoustic imaging system.

    PubMed

    Francis, Kalloor Joseph; Chinni, Bhargava; Channappayya, Sumohana S; Pachamuthu, Rajalakshmi; Dogra, Vikram S; Rao, Navalgund

    2017-12-01

    Some of the challenges in translating photoacoustic (PA) imaging to clinical applications includes limited view of the target tissue, low signal to noise ratio and the high cost of developing real-time systems. Acoustic lens based PA imaging systems, also known as PA cameras are a potential alternative to conventional imaging systems in these scenarios. The 3D focusing action of lens enables real-time C-scan imaging with a 2D transducer array. In this paper, we model the underlying physics in a PA camera in the mathematical framework of an imaging system and derive a closed form expression for the point spread function (PSF). Experimental verification follows including the details on how to design and fabricate the lens inexpensively. The system PSF is evaluated over a 3D volume that can be imaged by this PA camera. Its utility is demonstrated by imaging phantom and an ex vivo human prostate tissue sample.

  9. Multi-acoustic lens design methodology for a low cost C-scan photoacoustic imaging camera

    NASA Astrophysics Data System (ADS)

    Chinni, Bhargava; Han, Zichao; Brown, Nicholas; Vallejo, Pedro; Jacobs, Tess; Knox, Wayne; Dogra, Vikram; Rao, Navalgund

    2016-03-01

    We have designed and implemented a novel acoustic lens based focusing technology into a prototype photoacoustic imaging camera. All photoacoustically generated waves from laser exposed absorbers within a small volume get focused simultaneously by the lens onto an image plane. We use a multi-element ultrasound transducer array to capture the focused photoacoustic signals. Acoustic lens eliminates the need for expensive data acquisition hardware systems, is faster compared to electronic focusing and enables real-time image reconstruction. Using this photoacoustic imaging camera, we have imaged more than 150 several centimeter size ex-vivo human prostate, kidney and thyroid specimens with a millimeter resolution for cancer detection. In this paper, we share our lens design strategy and how we evaluate the resulting quality metrics (on and off axis point spread function, depth of field and modulation transfer function) through simulation. An advanced toolbox in MATLAB was adapted and used for simulating a two-dimensional gridded model that incorporates realistic photoacoustic signal generation and acoustic wave propagation through the lens with medium properties defined on each grid point. Two dimensional point spread functions have been generated and compared with experiments to demonstrate the utility of our design strategy. Finally we present results from work in progress on the use of two lens system aimed at further improving some of the quality metrics of our system.

  10. Double Sided-Design of Electrodes Driving Tunable Dielectrophoretic Miniature Lens.

    PubMed

    Almoallem, Yousuf; Jiang, Hongrui

    2017-10-01

    We demonstrate the design methodology, geometrical analysis, device fabrication, and testing of a double-sided design (DSD) of tunable-focus dielectrophoretic liquid miniature lenses. This design is intended to reduce the driving voltage for tuning the lens, utilizing a double-sided electrode design that enhances the electric field magnitude. Fabricated devices were tested and measurements on a goniometer showed changes of up to 14° in the contact angle when the dielectrophoretic force was applied under 25 V rms . Correspondingly, the back focal length of the liquid lens changed from 67.1 mm to 14.4 mm when the driving voltage was increased from zero to 25 V rms . The driving voltage was significantly lower than those previously reported with similar device dimensions using single-sided electrode designs. This design allows for a range of both positive and negative menisci dependent on the volume of the lens liquid initially dispensed.

  11. Report of IRPA task group on the impact of the eye lens dose limits.

    PubMed

    Cantone, Marie Claire; Ginjaume, Merce; Miljanic, Saveta; Martin, Colin J; Akahane, Keiichi; Mpete, Louisa; Michelin, Severino C; Flannery, Cynthia M; Dauer, Lawrence T; Balter, Stephen

    2017-06-26

    In 2012 IRPA established a task group (TG) to identify key issues in the implementation of the revised eye lens dose limit. The TG reported its conclusions in 2013. In January 2015, IRPA asked the TG to review progress with the implementation of the recommendations from the early report and to collate current practitioner experience. This report presents the results of a survey on the view of the IRPA professionals on the new limit to the lens of the eye and on the wider issue of tissue reactions. Recommendations derived from the survey are presented. This report was approved by IRPA Executive Council on 31 January 2017.

  12. Short-focus and ultra-wide-angle lens design in wavefront coding

    NASA Astrophysics Data System (ADS)

    Zhang, Jiyan; Huang, Yuanqing; Xiong, Feibing

    2016-10-01

    Wavefront coding (WFC) is a hybrid technology designed to increase depth of field of conventional optics. The goal of our research is to apply this technology to the short-focus and ultra-wide-angle lens which suffers from the aberration related with large field of view (FOV) such as coma and astigmatism. WFC can also be used to compensate for other aberration which is sensitive to the FOV. Ultra-wide-angle lens has a little depth of focus because it has small F number and short-focus. We design a hybrid lens combing WFC with the ultra-wide-angle lens. The full FOV and relative aperture of the final design are up to170° and 1/1.8 respectively. The focal length is 2 mm. We adopt the cubic phase mask (CPM) in the design. The conventional design will have a wide variation of the point spread function (PSF) across the FOV and it is very sensitive with the variation of the FOV. The new design we obtain the PSF is nearly invariant over the whole FOV. But the result of the design also shows the little difference between the horizontal and vertical length of the PSF. We analyze that the CPM is non-symmetric phase mask and the FOV is so large, which will generate variation in the final image quality. For that reason, we apply a new method to avoid that happened. We try to make the rays incident on the CPM with small angle and decrease the deformation of the PSF. The experimental result shows the new method to optimize the CPM is fit for the ultra-wide-angle lens. The research above will be a helpful instruction to design the ultra-wide-angle lens with WFC.

  13. Challenges and solutions for high performance SWIR lens design

    NASA Astrophysics Data System (ADS)

    Gardner, M. C.; Rogers, P. J.; Wilde, M. F.; Cook, T.; Shipton, A.

    2016-10-01

    Shortwave infrared (SWIR) cameras are becoming increasingly attractive due to the improving size, resolution and decreasing prices of InGaAs focal plane arrays (FPAs). The rapid development of competitively priced HD performance SWIR cameras has not been matched in SWIR imaging lenses with the result that the lens is now more likely to be the limiting factor in imaging quality than the FPA. Adapting existing lens designs from the visible region by re-coating for SWIR will improve total transmission but diminished image quality metrics such as MTF, and in particular large field angle performance such as vignetting, field curvature and distortion are serious consequences. To meet this challenge original SWIR solutions are presented including a wide field of view fixed focal length lens for commercial machine vision (CMV) and a wide angle, small, lightweight defence lens and their relevant design considerations discussed. Issues restricting suitable glass types will be examined. The index and dispersion properties at SWIR wavelengths can differ significantly from their visible values resulting in unusual glass combinations when matching doublet elements. Materials chosen simultaneously allow athermalization of the design as well as containing matched CTEs in the elements of doublets. Recently, thinned backside-illuminated InGaAs devices have made Vis.SWIR cameras viable. The SWIR band is sufficiently close to the visible that the same constituent materials can be used for AR coatings covering both bands. Keeping the lens short and mass low can easily result in high incidence angles which in turn complicates coating design, especially when extended beyond SWIR into the visible band. This paper also explores the potential performance of wideband Vis.SWIR AR coatings.

  14. Design of tracking and detecting lens system by diffractive optical method

    NASA Astrophysics Data System (ADS)

    Yang, Jiang; Qi, Bo; Ren, Ge; Zhou, Jianwei

    2016-10-01

    Many target-tracking applications require an optical system to acquire the target for tracking and identification. This paper describes a new detecting optical system that can provide automatic flying object detecting, tracking and measuring in visible band. The main feature of the detecting lens system is the combination of diffractive optics with traditional lens design by a technique was invented by Schupmann. Diffractive lens has great potential for developing the larger aperture and lightweight lens. First, the optical system scheme was described. Then the Schupmann achromatic principle with diffractive lens and corrective optics is introduced. According to the technical features and requirements of the optical imaging system for detecting and tracking, we designed a lens system with flat surface Fresnel lens and cancels the optical system chromatic aberration by another flat surface Fresnel lens with effective focal length of 1980mm, an F-Number of F/9.9 and a field of view of 2ωω = 14.2', spatial resolution of 46 lp/mm and a working wavelength range of 0.6 0.85um. At last, the system is compact and easy to fabricate and assembly, the diffuse spot size and MTF function and other analysis provide good performance.

  15. Design and analysis of all-dielectric subwavelength focusing flat lens

    NASA Astrophysics Data System (ADS)

    Turduev, M.; Bor, E.; Kurt, H.

    2017-09-01

    In this letter, we numerically designed and experimentally demonstrated a compact photonic structure for the subwavelength focusing of light using all-dielectric absorption-free and nonmagnetic scattering objects distributed in an air medium. In order to design the subwavelength focusing flat lens, an evolutionary algorithm is combined with the finite-difference time-domain method for determining the locations of cylindrical scatterers. During the multi-objective optimization process, a specific objective function is defined to reduce the full width at half maximum (FWHM) and diminish side lobe level (SLL) values of light at the focal point. The time-domain response of the optimized flat lens exhibits subwavelength light focusing with an FWHM value of 0.19λ and an SLL value of 0.23, where λ denotes the operating wavelength of light. Experimental analysis of the proposed flat lens is conducted in a microwave regime and findings exactly verify the numerical results with an FWHM of 0.192λ and an SLL value of 0.311 at the operating frequency of 5.42 GHz. Moreover, the designed flat lens provides a broadband subwavelength focusing effect with a 9% bandwidth covering frequency range of 5.10 GHz-5.58 GHz, where corresponding FWHM values remain under 0.21λ. Also, it is important to note that the designed flat lens structure performs a line focusing effect. Possible applications of the designed structure in telecom wavelengths are speculated upon for future perspectives. Namely, the designed structure can perform well in photonic integrated circuits for different fields of applications such as high efficiency light coupling, imaging and optical microscopy, with its compact size and ability for strong focusing.

  16. A novel task-oriented optimal design for P300-based brain-computer interfaces.

    PubMed

    Zhou, Zongtan; Yin, Erwei; Liu, Yang; Jiang, Jun; Hu, Dewen

    2014-10-01

    Objective. The number of items of a P300-based brain-computer interface (BCI) should be adjustable in accordance with the requirements of the specific tasks. To address this issue, we propose a novel task-oriented optimal approach aimed at increasing the performance of general P300 BCIs with different numbers of items. Approach. First, we proposed a stimulus presentation with variable dimensions (VD) paradigm as a generalization of the conventional single-character (SC) and row-column (RC) stimulus paradigms. Furthermore, an embedding design approach was employed for any given number of items. Finally, based on the score-P model of each subject, the VD flash pattern was selected by a linear interpolation approach for a certain task. Main results. The results indicate that the optimal BCI design consistently outperforms the conventional approaches, i.e., the SC and RC paradigms. Specifically, there is significant improvement in the practical information transfer rate for a large number of items. Significance. The results suggest that the proposed optimal approach would provide useful guidance in the practical design of general P300-based BCIs.

  17. A novel task-oriented optimal design for P300-based brain-computer interfaces

    NASA Astrophysics Data System (ADS)

    Zhou, Zongtan; Yin, Erwei; Liu, Yang; Jiang, Jun; Hu, Dewen

    2014-10-01

    Objective. The number of items of a P300-based brain-computer interface (BCI) should be adjustable in accordance with the requirements of the specific tasks. To address this issue, we propose a novel task-oriented optimal approach aimed at increasing the performance of general P300 BCIs with different numbers of items. Approach. First, we proposed a stimulus presentation with variable dimensions (VD) paradigm as a generalization of the conventional single-character (SC) and row-column (RC) stimulus paradigms. Furthermore, an embedding design approach was employed for any given number of items. Finally, based on the score-P model of each subject, the VD flash pattern was selected by a linear interpolation approach for a certain task. Main results. The results indicate that the optimal BCI design consistently outperforms the conventional approaches, i.e., the SC and RC paradigms. Specifically, there is significant improvement in the practical information transfer rate for a large number of items. Significance. The results suggest that the proposed optimal approach would provide useful guidance in the practical design of general P300-based BCIs.

  18. Design of compact freeform lens for application specific Light-Emitting Diode packaging.

    PubMed

    Wang, Kai; Chen, Fei; Liu, Zongyuan; Luo, Xiaobing; Liu, Sheng

    2010-01-18

    Application specific LED packaging (ASLP) is an emerging technology for high performance LED lighting. We introduced a practical design method of compact freeform lens for extended sources used in ASLP. A new ASLP for road lighting was successfully obtained by integrating a polycarbonate compact freeform lens of small form factor with traditional LED packaging. Optical performance of the ASLP was investigated by both numerical simulation based on Monte Carlo ray tracing method and experiments. Results demonstrated that, comparing with traditional LED module integrated with secondary optics, the ASLP had advantages of much smaller size in volume (approximately 1/8), higher system lumen efficiency (approximately 8.1%), lower cost and more convenience for customers to design and assembly, enabling possible much wider applications of LED for general road lighting. Tolerance analyses were also conducted. Installation errors of horizontal and vertical deviations had more effects on the shape and uniformity of radiation pattern compared with rotational deviation. The tolerances of horizontal, vertical and rotational deviations of this lens were 0.11 mm, 0.14 mm and 2.4 degrees respectively, which were acceptable in engineering.

  19. Dual FOV infrared lens design with the laser common aperture optics

    NASA Astrophysics Data System (ADS)

    Chang, Wei-jun; Zhang, Xuan-zhi; Luan, Ya-dong; Zhang, Bo

    2015-02-01

    With the demand of autonomous precision guidance of air defense missile, the system scheme of the IR imaging/Ladar dual-mode seeker with a common aperture was proposed, and the optical system used in was designed. The system had a common receiving aperture, and its structure was very compact, so it could meet the requirement for the miniaturization of the seeker. Besides, it also could meet the demands of a wide field of view for searching target, and the demands for accurately recognizing and tracking the target at the same time. In order to increase the narrow FOV tracking performance, the dual FOV infrared optical used the zooming mode which some components flip in or out the optical system to firm the target signal. The dual FOV optics are divided into the zooming part, with dual variable focal length, and the reimaging part which was chosen in such a way to minimize the objective lens while maintaining 100% cold shield efficiency. The final infrared optics including 4°×3°(NFOV) and 16°×12°(WFOV) was designed. The NFOV lens composed of two common IR/Ladar lens, three relay lens, a beam splitter and two reflective fold mirrors, while WFOV lens increased two lens such as Germanium and Silicon. The common IR/Ladar lens ZnS and ZnSe could refractive the IR optics and Laser optics. The beam splitter which refractived IR optics and reflected Laser optics was located in the middle of Germanium and Silicon. The designed optical system had good image quality, and fulfilled the performance requirement of seeker system.

  20. Design of Fresnel Lens-Type Multi-Trapping Acoustic Tweezers

    PubMed Central

    Tu, You-Lin; Chen, Shih-Jui; Hwang, Yean-Ren

    2016-01-01

    In this paper, acoustic tweezers which use beam forming performed by a Fresnel zone plate are proposed. The performance has been demonstrated by finite element analysis, including the acoustic intensity, acoustic pressure, acoustic potential energy, gradient force, and particle distribution. The acoustic tweezers use an ultrasound beam produced by a lead zirconate titanate (PZT) transducer operating at 2.4 MHz and 100 Vpeak-to-peak in a water medium. The design of the Fresnel lens (zone plate) is based on air reflection, acoustic impedance matching, and the Fresnel half-wave band (FHWB) theory. This acoustic Fresnel lens can produce gradient force and acoustic potential wells that allow the capture and manipulation of single particles or clusters of particles. Simulation results strongly indicate a good trapping ability, for particles under 150 µm in diameter, in the minimum energy location. This can be useful for cell or microorganism manipulation. PMID:27886050

  1. [System design of open-path natural gas leakage detection based on Fresnel lens].

    PubMed

    Xia, Hui; Liu, Wen-Qing; Zhang, Yu-Jun; Kan, Rui-Feng; Cui, Yi-Ben; Wang, Min; He, Ying; Cui, Xiao-Juan; Ruan, Jun; Geng, Hui

    2009-03-01

    Based on the technology of tunable diode laser absorption spectroscopy (TDLAS) in conjunction with second harmonic wave detection, a long open-path TDLAS system using a 1.65 microm InGaAsP distributed feedback laser was developed, which is used for detecting pipeline leakage. In this system, a high cost performance Fresnel lens is used as the receiving optical system, which receives the laser-beam reflected by a solid corner cube reflector, and focuses the receiving laser-beam to the InGaAs detector. At the same time, the influences of the concentration to the fluctuation of light intensity were taken into account in the process of measurement, and were eliminated by the method of normalized light intensity. As a result, the measurement error caused by the fluctuation of light intensity was made less than 1%. The experiment of natural gas leakage detection was simulated, and the detection sensitivity is 0.1 x 10(-6) (ratio by volume) with a total path of 320 m. According to the receiving light efficiency of the optical system and the detectable minimum light intensity of the detector, the detectable maximal optical path of the system was counted to be 2 000 m. The results of experiment show that it is a feasible design to use the Fresnel lens as the receiving optical system and can satisfy the demand of the leakage detection of natural gas.

  2. Refraction-Assisted Solar Thermoelectric Generator based on Phase-Change Lens

    PubMed Central

    Kim, Myoung-Soo; Kim, Min-Ki; Jo, Sung-Eun; Joo, Chulmin; Kim, Yong-Jun

    2016-01-01

    Solar thermoelectric generators (STEGs), which are used for various applications, (particularly small size electronic devices), have optical concentration systems for high energy conversion efficiency. In this study, a refraction-assisted STEG (R-STEG) is designed based on phase-change materials. As the phase-change material (PCM) changes phase from solid to liquid, its refractive index and transmittance also change, resulting in changes in the refraction of the sunlight transmitted through it, and concentration of solar energy in the phase-change lens. This innovative design facilitates double focusing the solar energy through the optical lens and a phase-change lens. This mechanism resulted in the peak energy conversion efficiencies of the R-STEG being 60% and 86% higher than those of the typical STEG at solar intensities of 1 kW m−2 and 1.5 kW m−2, respectively. In addition, the energy stored in PCM can help to generate steady electrical energy when the solar energy was removed. This work presents significant progress regarding the optical characteristic of PCM and optical concentration systems of STEGs. PMID:27283350

  3. Refraction-Assisted Solar Thermoelectric Generator based on Phase-Change Lens.

    PubMed

    Kim, Myoung-Soo; Kim, Min-Ki; Jo, Sung-Eun; Joo, Chulmin; Kim, Yong-Jun

    2016-06-10

    Solar thermoelectric generators (STEGs), which are used for various applications, (particularly small size electronic devices), have optical concentration systems for high energy conversion efficiency. In this study, a refraction-assisted STEG (R-STEG) is designed based on phase-change materials. As the phase-change material (PCM) changes phase from solid to liquid, its refractive index and transmittance also change, resulting in changes in the refraction of the sunlight transmitted through it, and concentration of solar energy in the phase-change lens. This innovative design facilitates double focusing the solar energy through the optical lens and a phase-change lens. This mechanism resulted in the peak energy conversion efficiencies of the R-STEG being 60% and 86% higher than those of the typical STEG at solar intensities of 1 kW m(-2) and 1.5 kW m(-2), respectively. In addition, the energy stored in PCM can help to generate steady electrical energy when the solar energy was removed. This work presents significant progress regarding the optical characteristic of PCM and optical concentration systems of STEGs.

  4. Design and position control of AF lens actuator for mobile phone using IPMC-EMIM

    NASA Astrophysics Data System (ADS)

    Kim, Sung-Joo; Kim, Chul-Jin; Park, No-Cheol; Yang, Hyun-Seok; Park, Young-Pil; Park, Kang-Ho; Lee, Hyung-Kun; Choi, Nak-Jin

    2008-03-01

    IPMC-EMIM (Ionic Polyer Metal Composites + 1-ethyl-3- methyl imidazolium trifluromethane sulfonate, EMIM-Tfo) is fabricated by substituting ionic liquid for water in Nafion film, which improves water sensitiveness of IPMC and guarantees uniform performance regardless of the surrounding environment. In this paper, we will briefly introduce the procedure of fabrication of IPMC-EMIM and proceed to introduce the Hook-type actuator using IPMC-EMIM and application to AF Lens actuator. Parameters of Hook-type actuator are estimated from experimental data. In the simulation, The proposed AF Lens Actuator is assumed to be a linear system and based on estimated parameters, PID controller will be designed and controlled motion of AF Lens actuator will be shown through simulation.

  5. Preliminary Mechanical Design Study of the Hollow Electron Lens for HL-LHC

    NASA Astrophysics Data System (ADS)

    Zanoni, Carlo; Gobbi, Giorgia; Perini, Diego; Stancari, Giulio

    2017-07-01

    A Hollow Electron Lens (HEL) has been proposed in order to improve performance of halo control and collimation in the Large Hadron Collider in view of its High Luminosity upgrade (HL-LHC). The concept is based on a hollow beam of electrons that travels around the protons for a few meters. The electron beam is produced by a cathode and then guided by a strong magnetic field. The first step of the design is the definition of the magnetic field that drives the electron trajectories. The estimation of such trajectories by means of a dedicated MATLAB tool is presented. The influence of the main geometrical and electrical parameters is analyzed and discussed. Then, the main mechanical design choices for the solenoids, cryostats gun and collector are described. The aim of this paper is to provide an overview of the feasibility study of the Electron Lens for LHC. The methods used in this study also serve as examples for future mechanical and integration designs of similar devices.

  6. Optical design of f-theta lens for dual wavelength selective laser melting

    NASA Astrophysics Data System (ADS)

    Feng, Lianhua; Cao, Hongzhong; Zhang, Ning; Xu, Xiping; Duan, Xuanming

    2016-10-01

    F-theta lens is an important unit for selective laser melting (SLM) manufacture. The dual wavelength f-theta lens has not been used in SLM manufacture. Here, we present the design of the f-theta lens which satisfies SLM manufacture with coaxial 532 nm and 1030 nm 1080 nm laser beams. It is composed of three pieces of spherical lenses. The focal spots for 532 nm laser and 1030 nm 1080 nm laser are smaller than 35 μm and 70 μm, respectively. The results meet the demands of high precision SLM. The chromatic aberration could cause separation between two laser focal spots in the scanning plane, so chromatic aberration correction is very important to our design. The lateral color of the designed f-theta lens is less than 11 μm within the scan area of 150 mm x 150 mm, which meet the application requirements of dual wavelength selective laser melting.

  7. LWIR hyperspectral imager based on a diffractive optics lens

    NASA Astrophysics Data System (ADS)

    Gupta, Neelam

    2009-05-01

    A diffractive optics lens based longwave infrared hyperspectral imager has been used to collect laboratory and outdoor field test data. The imager uses a specially designed diffractive optics Ge lens with a 320×256 HgCdTe focal plane array (FPA) cooled with a Sterling-cooler. The imager operates in 8-10.5 μm (long wave IR, LWIR) spectral region and an image cube with 50 to 200 bands can be acquired rapidly. Spectral images at different wavelengths are obtained by moving the lens along its optical axis. An f/2.38 diffractive lens is used with a focal length of 70 mm at 8 μm. The IFOV is 0.57 mrad which corresponds to an FOV of 10.48°. The spectral resolution of the imager is 0.034 μm at 9 μm. The pixel size is 40×40 μm2 in the FPA. In post processing of image cube data contributions due to wavelengths other than the focused one are removed and a correction to account for the change in magnification due to the motion of the lens is applied to each spectral image. A brief description of the imager, data collection and analysis to characterize the performance of the imager will be presented in this paper.

  8. Task-Based EFL Language Teaching with Procedural Information Design in a Technical Writing Context

    ERIC Educational Resources Information Center

    Roy, Debopriyo

    2017-01-01

    Task-based language learning (TBLL) has heavily influenced syllabus design, classroom teaching, and learner assessment in a foreign or second language teaching context. In this English as foreign language (EFL) learning environment, the paper discussed an innovative language learning pedagogy based on design education and technical writing. In…

  9. Current And Future Directions Of Lens Design Software

    NASA Astrophysics Data System (ADS)

    Gustafson, Darryl E.

    1983-10-01

    The most effective environment for doing lens design continues to evolve as new computer hardware and software tools become available. Important recent hardware developments include: Low-cost but powerful interactive multi-user 32 bit computers with virtual memory that are totally software-compatible with prior larger and more expensive members of the family. A rapidly growing variety of graphics devices for both hard-copy and screen graphics, including many with color capability. In addition, with optical design software readily accessible in many forms, optical design has become a part-time activity for a large number of engineers instead of being restricted to a small number of full-time specialists. A designer interface that is friendly for the part-time user while remaining efficient for the full-time designer is thus becoming more important as well as more practical. Along with these developments, software tools in other scientific and engineering disciplines are proliferating. Thus, the optical designer is less and less unique in his use of computer-aided techniques and faces the challenge and opportunity of efficiently communicating his designs to other computer-aided-design (CAD), computer-aided-manufacturing (CAM), structural, thermal, and mechanical software tools. This paper will address the impact of these developments on the current and future directions of the CODE VTM optical design software package, its implementation, and the resulting lens design environment.

  10. Design of a novel freeform lens for LED uniform illumination and conformal phosphor coating.

    PubMed

    Hu, Run; Luo, Xiaobing; Zheng, Huai; Qin, Zong; Gan, Zhiqiang; Wu, Bulong; Liu, Sheng

    2012-06-18

    A conformal phosphor coating can realize a phosphor layer with uniform thickness, which could enhance the angular color uniformity (ACU) of light-emitting diode (LED) packaging. In this study, a novel freeform lens was designed for simultaneous realization of LED uniform illumination and conformal phosphor coating. The detailed algorithm of the design method, which involves an extended light source and double refractions, was presented. The packaging configuration of the LED modules and the modeling of the light-conversion process were also presented. Monte Carlo ray-tracing simulations were conducted to validate the design method by comparisons with a conventional freeform lens. It is demonstrated that for the LED module with the present freeform lens, the illumination uniformity and ACU was 0.89 and 0.9283, respectively. The present freeform lens can realize equivalent illumination uniformity, but the angular color uniformity can be enhanced by 282.3% when compared with the conventional freeform lens.

  11. EVALUATION OF EYE LENS DOSE TO WORKERS IN THE STEAM GENERATOR AT THE KOREAN OPTIMIZED POWER REACTOR 1000.

    PubMed

    Maeng, Sung Jun; Kim, Jinhwan; Cho, Gyuseong

    2018-03-15

    ICRP (2011) revised the dose limit to the eye lens to 20 mSv/y based on a recent epidemiological study of radiation-induced cataracts. Maintenance of steam generators at nuclear power plants is one of the highest radiation-associated tasks within a non-uniform radiation field. This study aims to evaluate eye lens doses in the steam generators of the Korean OPR1000 design. The source term was characterized based on the CRUD-specific activity, and both the eye lens dose and organ dose were simulated using MCNP6 combined with an ICRP voxel phantom and a mesh phantom, respectively. The eye lens dose was determined to be 5.39E-02-9.43E-02 Sv/h, with a negligible effect by beta particles. As the effective dose was found to be 0.81-1.21 times the lens equivalent dose depending on the phantom angles, the former can be used to estimate the lens dose in the SG of the OPR1000 for radiation monitoring purposes.

  12. Preliminary Mechanical Design Study of the Hollow Electron Lens for HL-LHC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zanoni, Carlo; Gobbi, Giorgia; Perini, Diego

    A Hollow Electron Lens (HEL) has been proposed in order to improve performance of halo control and collimation in the Large Hadron Collider in view of its High Luminosity upgrade (HL-LHC). The concept is based on a hollow beam of electrons that travels around the protons for a few meters. The electron beam is produced by a cathode and then guided by a strong magnetic field. The first step of the design is the definition of the magnetic field that drives the electron trajectories. The estimation of such trajectories by means of a dedicated MATLAB tool is presented. The influencemore » of the main geometrical and electrical parameters is analyzed and discussed. Then, the main mechanical design choices for the solenoids, cryostats gun and collector are described. The aim of this paper is to provide an overview of the feasibility study of the Electron Lens for LHC. The methods used in this study also serve as examples for future mechanical and integration designs of similar devices.« less

  13. Conceptual Design of a Space-Based Multimegawatt MHD Power System, Task 1 Topical Report; Volume 1: Technical Discussion

    DTIC Science & Technology

    1988-01-01

    system requirements, design guidelines, and interface requirements has been prepared and included as Volume II of this Task 1 topical report. The Volume ...WAESD-TR-88-0002 Conceptual Design Of A Space-Based Multimegawatt MHD Power System ffA«kjjjjjTfc Task 1 Topical Report Volume I: Technical...Space-Based Multimegawatt MHD Power System: Task 1 Topical Report, Volume I: Technical Discussion Personal Author: Dana, RA. Corporate Author Or

  14. Optical switch based on electrowetting liquid lens

    NASA Astrophysics Data System (ADS)

    Li, Lei; Liu, Chao; Peng, Hua-Rong; Wang, Qiong-Hua

    2012-05-01

    In this paper, we propose an optical switch based on an electrowetting liquid lens. The device consists of an electrowetting liquid lens and a non-transparent cap with a pin hole. When the lens is actuated to be positive, the incident light can be converged on the pin hole and pass through the hole with less attenuation. When the lens is deformed to be negative, the incident light is diverged and most of light is blocked by the cap. Our results show that the system can provide high contrast ratio (˜800:1) and reasonable response time (˜88 ms). The proposed optical switch has potential application in light shutters, variable optical attenuators, and adaptive irises.

  15. Elementary Students' Learning of Materials Science Practices Through Instruction Based on Engineering Design Tasks

    NASA Astrophysics Data System (ADS)

    Wendell, Kristen Bethke; Lee, Hee-Sun

    2010-12-01

    Materials science, which entails the practices of selecting, testing, and characterizing materials, is an important discipline within the study of matter. This paper examines how third grade students' materials science performance changes over the course of instruction based on an engineering design challenge. We conducted a case study of nine students who participated in engineering design-based science instruction with the goal of constructing a stable, quiet, thermally comfortable model house. The learning outcome of materials science practices was assessed by clinical interviews conducted before and after the instruction, and the learning process was assessed by students' workbooks completed during the instruction. The interviews included two materials selection tasks for designing a sturdy stepstool and an insulated pet habitat. Results indicate that: (1) students significantly improved on both materials selection tasks, (2) their gains were significantly positively associated with the degree of completion of their workbooks, and (3) students who were highly engaged with the workbook's reflective record-keeping tasks showed the greatest improvement on the interviews. These findings suggest the important role workbooks can play in facilitating elementary students' learning of science through authentic activity such as engineering design.

  16. Analysing task design and students' responses to context-based problems through different analytical frameworks

    NASA Astrophysics Data System (ADS)

    Broman, Karolina; Bernholt, Sascha; Parchmann, Ilka

    2015-05-01

    Background:Context-based learning approaches are used to enhance students' interest in, and knowledge about, science. According to different empirical studies, students' interest is improved by applying these more non-conventional approaches, while effects on learning outcomes are less coherent. Hence, further insights are needed into the structure of context-based problems in comparison to traditional problems, and into students' problem-solving strategies. Therefore, a suitable framework is necessary, both for the analysis of tasks and strategies. Purpose:The aim of this paper is to explore traditional and context-based tasks as well as students' responses to exemplary tasks to identify a suitable framework for future design and analyses of context-based problems. The paper discusses different established frameworks and applies the Higher-Order Cognitive Skills/Lower-Order Cognitive Skills (HOCS/LOCS) taxonomy and the Model of Hierarchical Complexity in Chemistry (MHC-C) to analyse traditional tasks and students' responses. Sample:Upper secondary students (n=236) at the Natural Science Programme, i.e. possible future scientists, are investigated to explore learning outcomes when they solve chemistry tasks, both more conventional as well as context-based chemistry problems. Design and methods:A typical chemistry examination test has been analysed, first the test items in themselves (n=36), and thereafter 236 students' responses to one representative context-based problem. Content analysis using HOCS/LOCS and MHC-C frameworks has been applied to analyse both quantitative and qualitative data, allowing us to describe different problem-solving strategies. Results:The empirical results show that both frameworks are suitable to identify students' strategies, mainly focusing on recall of memorized facts when solving chemistry test items. Almost all test items were also assessing lower order thinking. The combination of frameworks with the chemistry syllabus has been

  17. An Attempt To Develop An "Intelligent" Lens Design Program

    NASA Astrophysics Data System (ADS)

    Viswanathan, V. K.; Bohachevsky, I. O.; Cotter, T. P.

    1986-02-01

    We are developing a lens design program intended to operate without user intervention, and to improve its performance with repeated usage. The methodology and current status will be discussed in this paper.

  18. A broadband transformation-optics metasurface lens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wan, Xiang; Xiang Jiang, Wei; Feng Ma, Hui

    2014-04-14

    We present a transformational metasurface Luneburg lens based on the quasi-conformal mapping method, which has weakly anisotropic constitutive parameters. We design the metasurface lens using inhomogeneous artificial structures to realize the required surface refractive indexes. The transformational metasurface Luneburg lens is fabricated and the measurement results demonstrate very good performance in controlling the radiated surface waves.

  19. Effects of mold design of aspheric projector lens for head up display

    NASA Astrophysics Data System (ADS)

    Chen, Chao-Chang A.; Tang, Jyun-Cing; Teng, Lin-Ming

    2010-08-01

    This paper investigates the mold design and related effects on an aspheric projector lens for Head Up Display (HUD) with injection molding process. Injection flow analysis with a commercial software, Moldex3D has been used to simulate this projector lens for filling, packing, shrinkage, and flow-induced residual stress. This projector lens contains of variant thickness due to different aspheric design on both surfaces. Defects may be induced as the melt front from the gate into the cavity with jet-flow phenomenon, short shot, weld line, and even shrinkage. Thus, this paper performs a gate design to find the significant parameters including injection velocity, melt temperature, and mold temperature. After simulation by the Moldex3D, gate design for the final assembly of Head Up Display (HUD) has been obtained and then experimental tests have been proceeded for verification of short-shot, weight variation, and flow-induced stress. Moreover, warpage analysis of the Head Up Display (HUD) can be integrated with the optical design specification in future work.

  20. Design and analysis of an adaptive lens that mimics the performance of the crystalline lens in the human eye

    NASA Astrophysics Data System (ADS)

    Santiago-Alvarado, Agustin; Cruz-Félix, Angel S.; Iturbide-Jiménez, F.; Martínez-López, M.; Ramírez-Como, M.; Armengol-Cruz, V.; Vásquez-Báez, I.

    2014-09-01

    Tunable lenses are optical systems that have attracted much attention due to their potential applications in such areas like ophthalmology, machine vision, microscopy and laser processing. In recent years we have been working in the analysis and performance of a liquid-filled variable focal length lens, this is a lens that can modify its focal length by changing the amount of water within it. Nowadays we extend our study to a particular adaptive lens known as solid elastic lens (SEL) that it is formed by an elastic main body made of Polydimethylsiloxane (PDMS Sylgard 184). In this work, we present the design, simulation and analysis of an adaptive solid elastic lens that in principle imitates the accommodation process of the crystalline lens in the human eye. For this work, we have adopted the parameters of the schematic eye model developed in 1985 by Navarro et al.; this model represents the anatomy of the eye as close as possible to reality by predicting an acceptable and accurate quantity of spherical and chromatic aberrations without any shape fitting. An opto-mechanical analysis of the accommodation process of the adaptive lens is presented, by simulating a certain amount of radial force applied onto the SEL using the finite element method with the commercial software SolidWorks®. We also present ray-trace diagrams of the simulated compression process of the adaptive lens using the commercial software OSLO®.

  1. Miniature objective lens for array digital pathology: design improvement based on clinical evaluation

    NASA Astrophysics Data System (ADS)

    McCall, Brian; Pierce, Mark; Graviss, Edward A.; Richards-Kortum, Rebecca R.; Tkaczyk, Tomasz S.

    2016-03-01

    A miniature objective designed for digital detection of Mycobacterium tuberculosis (MTB) was evaluated for diagnostic accuracy. The objective was designed for array microscopy, but fabricated and evaluated at this stage of development as a single objective. The counts and diagnoses of patient samples were directly compared for digital detection and standard microscopy. The results were found to be correlated and highly concordant. The evaluation of this lens by direct comparison to standard fluorescence sputum smear microscopy presented unique challenges and led to some new insights in the role played by the system parameters of the microscope. The design parameters and how they were developed are reviewed in light of these results. New system parameters are proposed with the goal of easing the challenges of evaluating the miniature objective and maintaining the optical performance that produced the agreeable results presented without over-optimizing. A new design is presented that meets and exceeds these criteria.

  2. Collimating lens for light-emitting-diode light source based on non-imaging optics.

    PubMed

    Wang, Guangzhen; Wang, Lili; Li, Fuli; Zhang, Gongjian

    2012-04-10

    A collimating lens for a light-emitting-diode (LED) light source is an essential device widely used in lighting engineering. Lens surfaces are calculated by geometrical optics and nonimaging optics. This design progress does not rely on any software optimization and any complex iterative process. This method can be used for any type of light source not only Lambertian. The theoretical model is based on point source. But the practical LED source has a certain size. So in the simulation, an LED chip whose size is 1 mm*1 mm is used to verify the feasibility of the model. The mean results show that the lenses have a very compact structure and good collimating performance. Efficiency is defined as the ratio of the flux in the illuminated plane to the flux from LED source without considering the lens material transmission. Just investigating the loss in the designed lens surfaces, the two types of lenses have high efficiencies of more than 90% and 99%, respectively. Most lighting area (possessing 80% flux) radii are no more than 5 m when the illuminated plane is 200 m away from the light source.

  3. Lens Designers Are Real People Too

    NASA Astrophysics Data System (ADS)

    Kingslake, Rudolf

    1986-02-01

    This informal evening lecture covered briefly the careers and accomplishments of some of the more interesting lens designers and opticians of the past. Starting in the 1600s with the early astronomers and microscope makers, this was followed by the makers of photographic lenses after the introduction of photography in 1839. Numerous portraits of early workers were shown. The names of people specifically covered in this talk are listed below. Some other names were mentioned without comment; these are not included here.

  4. Optical design of laser zoom projective lens with variable total track

    NASA Astrophysics Data System (ADS)

    He, Yulan; Xiao, Xiangguo; Lu, Feng; Li, Yuan; Han, Kunye; Wang, Nanxi; Qiang, Hua

    2017-02-01

    In order to project the laser command information to the proper distance , so a laser zoom projective lens with variable total track optical system is designed in the carrier-based aircraft landing system. By choosing the zoom structure, designing of initial structure with PW solution, correcting and balancing the aberration, a large variable total track with 35 × zoom is carried out. The size of image is invariable that is φ25m, the distance of projective image is variable from 100m to 3500m. Optical reverse design, the spot is less than 8μm, the MTF is near the diffraction limitation, the value of MTF is bigger than 0.4 at 50lp/mm.

  5. Design of apochromatic lens with large field and high definition for machine vision.

    PubMed

    Yang, Ao; Gao, Xingyu; Li, Mingfeng

    2016-08-01

    Precise machine vision detection for a large object at a finite working distance (WD) requires that the lens has a high resolution for a large field of view (FOV). In this case, the effect of a secondary spectrum on image quality is not negligible. According to the detection requirements, a high resolution apochromatic objective is designed and analyzed. The initial optical structure (IOS) is combined with three segments. Next, the secondary spectrum of the IOS is corrected by replacing glasses using the dispersion vector analysis method based on the Buchdahl dispersion equation. Other aberrations are optimized by the commercial optical design software ZEMAX by properly choosing the optimization function operands. The optimized optical structure (OOS) has an f-number (F/#) of 3.08, a FOV of φ60  mm, a WD of 240 mm, and a modulated transfer function (MTF) of all fields of more than 0.1 at 320  cycles/mm. The design requirements for a nonfluorite material apochromatic objective lens with a large field and high definition for machine vision detection have been achieved.

  6. Qualification of a Null Lens Using Image-Based Phase Retrieval

    NASA Technical Reports Server (NTRS)

    Bolcar, Matthew R.; Aronstein, David L.; Hill, Peter C.; Smith, J. Scott; Zielinski, Thomas P.

    2012-01-01

    In measuring the figure error of an aspheric optic using a null lens, the wavefront contribution from the null lens must be independently and accurately characterized in order to isolate the optical performance of the aspheric optic alone. Various techniques can be used to characterize such a null lens, including interferometry, profilometry and image-based methods. Only image-based methods, such as phase retrieval, can measure the null-lens wavefront in situ - in single-pass, and at the same conjugates and in the same alignment state in which the null lens will ultimately be used - with no additional optical components. Due to the intended purpose of a Dull lens (e.g., to null a large aspheric wavefront with a near-equal-but-opposite spherical wavefront), characterizing a null-lens wavefront presents several challenges to image-based phase retrieval: Large wavefront slopes and high-dynamic-range data decrease the capture range of phase-retrieval algorithms, increase the requirements on the fidelity of the forward model of the optical system, and make it difficult to extract diagnostic information (e.g., the system F/#) from the image data. In this paper, we present a study of these effects on phase-retrieval algorithms in the context of a null lens used in component development for the Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission. Approaches for mitigation are also discussed.

  7. Designing informed game-based rehabilitation tasks leveraging advances in virtual reality.

    PubMed

    Lange, Belinda; Koenig, Sebastian; Chang, Chien-Yen; McConnell, Eric; Suma, Evan; Bolas, Mark; Rizzo, Albert

    2012-01-01

    This paper details a brief history and rationale for the use of virtual reality (VR) technology for clinical research and intervention, and then focuses on game-based VR applications in the area of rehabilitation. An analysis of the match between rehabilitation task requirements and the assets available with VR technology is presented. Low-cost camera-based systems capable of tracking user behavior at sufficient levels for game-based virtual rehabilitation activities are currently available for in-home use. Authoring software is now being developed that aims to provide clinicians with a usable toolkit for leveraging this technology. This will facilitate informed professional input on software design, development and application to ensure safe and effective use in the rehabilitation context. The field of rehabilitation generally stands to benefit from the continual advances in VR technology, concomitant system cost reductions and an expanding clinical research literature and knowledge base. Home-based activity within VR systems that are low-cost, easy to deploy and maintain, and meet the requirements for "good" interactive rehabilitation tasks could radically improve users' access to care, adherence to prescribed training and subsequently enhance functional activity in everyday life in clinical populations.

  8. Design study for a 16x zoom lens system for visible surveillance camera

    NASA Astrophysics Data System (ADS)

    Vella, Anthony; Li, Heng; Zhao, Yang; Trumper, Isaac; Gandara-Montano, Gustavo A.; Xu, Di; Nikolov, Daniel K.; Chen, Changchen; Brown, Nicolas S.; Guevara-Torres, Andres; Jung, Hae Won; Reimers, Jacob; Bentley, Julie

    2015-09-01

    *avella@ur.rochester.edu Design study for a 16x zoom lens system for visible surveillance camera Anthony Vella*, Heng Li, Yang Zhao, Isaac Trumper, Gustavo A. Gandara-Montano, Di Xu, Daniel K. Nikolov, Changchen Chen, Nicolas S. Brown, Andres Guevara-Torres, Hae Won Jung, Jacob Reimers, Julie Bentley The Institute of Optics, University of Rochester, Wilmot Building, 275 Hutchison Rd, Rochester, NY, USA 14627-0186 ABSTRACT High zoom ratio zoom lenses have extensive applications in broadcasting, cinema, and surveillance. Here, we present a design study on a 16x zoom lens with 4 groups (including two internal moving groups), designed for, but not limited to, a visible spectrum surveillance camera. Fifteen different solutions were discovered with nearly diffraction limited performance, using PNPX or PNNP design forms with the stop located in either the third or fourth group. Some interesting patterns and trends in the summarized results include the following: (a) in designs with such a large zoom ratio, the potential of locating the aperture stop in the front half of the system is limited, with ray height variations through zoom necessitating a very large lens diameter; (b) in many cases, the lens zoom motion has significant freedom to vary due to near zero total power in the middle two groups; and (c) we discuss the trade-offs between zoom configuration, stop location, packaging factors, and zoom group aberration sensitivity.

  9. Impact of Contact Lens Material, Design, and Fitting on Discomfort.

    PubMed

    Stapleton, Fiona; Tan, Jacqueline

    2017-01-01

    To review the effect of contact lens (CL) material, design, and fitting characteristics on CL discomfort. A PubMed search identified publications describing subjective comfort and CL material, fitting, and design parameters. The review included clinical signs associated with discomfort that may be a consequence of these parameters. Reduced lens movement or more CL tightness were associated with improved comfort. Increased lens-induced paralimbal conjunctival staining and indentation, considered as quasi-indicators of CL fitting or edge design, were also associated with better comfort. No recent studies have evaluated varying CL design parameters and subjective comfort. Silicone hydrogel CLs are no different in comfort compared with hydrogel CLs. Lower equilibrium water content is associated with improved comfort in hydrogel CL wear. Coefficient of friction shows promise as a material factor potentially associated with comfort. Lid wiper epitheliopathy and lid-parallel conjunctival folds have been linked with comfort in established wearers. Recent studies have confirmed the association between more mobile CLs and more discomfort, whereas closer conformity of the CL to the bulbar conjunctiva improved subjective comfort. There is no evidence to support the perceived comfort difference between silicone hydrogel and hydrogel CL. There has been limited progress in understanding the impact of varying specific CL design parameters. Although specific clinical signs may be predictive of discomfort, their role in the natural history of discomfort remains unclear. A better understanding of the relationship between coefficient of friction and comfort and strategies to improve lubricity may hold promise for limiting CL discomfort.

  10. Terahertz Artificial Dielectric Lens.

    PubMed

    Mendis, Rajind; Nagai, Masaya; Wang, Yiqiu; Karl, Nicholas; Mittleman, Daniel M

    2016-03-14

    We have designed, fabricated, and experimentally characterized a lens for the THz regime based on artificial dielectrics. These are man-made media that mimic properties of naturally occurring dielectric media, or even manifest properties that cannot generally occur in nature. For example, the well-known dielectric property, the refractive index, which usually has a value greater than unity, can have a value less than unity in an artificial dielectric. For our lens, the artificial-dielectric medium is made up of a parallel stack of 100 μm thick metal plates that form an array of parallel-plate waveguides. The convergent lens has a plano-concave geometry, in contrast to conventional dielectric lenses. Our results demonstrate that this lens is capable of focusing a 2 cm diameter beam to a spot size of 4 mm, at the design frequency of 0.17 THz. The results further demonstrate that the overall power transmission of the lens can be better than certain conventional dielectric lenses commonly used in the THz regime. Intriguingly, we also observe that under certain conditions, the lens boundary demarcated by the discontinuous plate edges actually resembles a smooth continuous surface. These results highlight the importance of this artificial-dielectric technology for the development of future THz-wave devices.

  11. Terahertz Artificial Dielectric Lens

    PubMed Central

    Mendis, Rajind; Nagai, Masaya; Wang, Yiqiu; Karl, Nicholas; Mittleman, Daniel M.

    2016-01-01

    We have designed, fabricated, and experimentally characterized a lens for the THz regime based on artificial dielectrics. These are man-made media that mimic properties of naturally occurring dielectric media, or even manifest properties that cannot generally occur in nature. For example, the well-known dielectric property, the refractive index, which usually has a value greater than unity, can have a value less than unity in an artificial dielectric. For our lens, the artificial-dielectric medium is made up of a parallel stack of 100 μm thick metal plates that form an array of parallel-plate waveguides. The convergent lens has a plano-concave geometry, in contrast to conventional dielectric lenses. Our results demonstrate that this lens is capable of focusing a 2 cm diameter beam to a spot size of 4 mm, at the design frequency of 0.17 THz. The results further demonstrate that the overall power transmission of the lens can be better than certain conventional dielectric lenses commonly used in the THz regime. Intriguingly, we also observe that under certain conditions, the lens boundary demarcated by the discontinuous plate edges actually resembles a smooth continuous surface. These results highlight the importance of this artificial-dielectric technology for the development of future THz-wave devices. PMID:26973294

  12. Effect of contact lens wear and a near task on tear film break-up.

    PubMed

    Jansen, Meredith E; Begley, Carolyn G; Himebaugh, Nikole H; Port, Nicholas L

    2010-05-01

    To study the effect of extrinsic controls on blinking by examining blink parameters and tear stability among adapted soft contact lens (CL) wearers performing tasks that require varying amounts of visual concentration. The Demographic Questionnaire, Contact Lens Dry Eye Questionnaire, and Current Symptoms Questionnaire were completed by 15 adapted soft CL wearers (nine females). Three 55 s simultaneous measurements of tear film stability via retroillumination and blinking were obtained with a slit-lamp biomicroscope and 200 Hz video camera while subjects listened to music and played a video game with and without their habitual CLs. Interblink interval (IBI) and blink amplitude (BA) were calculated. The area of break-up (AB) was calculated for the retroillumination image before each blink. The Current Symptoms Questionnaire was completed four times throughout testing. With the game compared to music, IBI was significantly longer and BA significantly decreased without CLs (p < or = 0.001). With CLs, the IBI did not significantly change between tasks but the BA significantly decreased (p = 0.100). The AB significantly increased with CL and the game (paired t-test, p < or = 0.001). The BA was significantly correlated with self-reported severity of dry eye for all testing scenarios (Spearman r > or = 0.5579, p < 0.0001) and several symptom measures (Spearman r > or = 0.6262, p < 0.0001). The AB was significantly correlated with symptom measures including bothersome discomfort for the game with and without CLs (Spearman r > or = 0.5064, p < 0.0001). During tasks requiring concentration, the IBI increased (blink rate decreased) and many blinks were incomplete without CLs. With CLs, tear film instability increased. Blinking frequency also increased, but it remained high when subjects played the game, and symptoms of ocular irritation increased. This suggests that wearing soft CLs, even when fully adapted, provides enough extrinsic ocular surface stimulation to override

  13. Didactical design based on sharing and jumping tasks for senior high school chemistry learning

    NASA Astrophysics Data System (ADS)

    Fatimah, I.; Hendayana, S.; Supriatna, A.

    2018-05-01

    The purpose of this research is to develop the didactical design of senior high school chemistry learning based on sharing and jumping tasks in shift equilibrium chemistry. Sharing tasks used to facilitate students slow learners with help by other students of fast learners so they engage in learning. While jumping tasks used to challenge fast learners students so they didn’t feel bored in learning. In developing the didactic design, teacher activity is not only to focus on students and learning materials but also on the relationship between students and learning materials. The results of the analysis teaching plan of shift equilibrium chemistry in attached Senior High School to Indonesia University of Education showed that the learning activities more focus on how the teacher teaches instead of how the process of students’ learning. The use of research method is didactical design research (DDR). Didactical design consisted of three steps i.e. (a) analysing didactical condition before learning, (b) analyzing metapedadidactical, and (c) analyzing retrospective. Data were collected by test, observations, interviews, documentation and recordings (audio and video).The result showed that the didactical design on shift equilibrium chemistry was valid.

  14. A compact spectrum splitting concentrator for high concentration photovoltaics based on the dispersion of a lens

    NASA Astrophysics Data System (ADS)

    He, J.; Flowers, C. A.; Yao, Y.; Atwater, H. A.; Rockett, A. A.; Nuzzo, R. G.

    2018-06-01

    Photovoltaic devices used in conjunction with functional optical elements for light concentration and spectrum splitting are known to be a viable approach for highly efficient photovoltaics. Conventional designs employ discrete optical elements, each with the task of either performing optical concentration or separating the solar spectrum. In the present work, we examine the performance of a compact photovoltaic architecture in which a single lens plays a dual role as both a concentrator and a spectrum splitter, the latter made possible by exploiting its intrinsic dispersion. A four-terminal two-junction InGaP/GaAs device is prepared to validate the concept and illustrates pathways for improvements. A spectral separation in the visible range is demonstrated at the focal point of a plano-convex lens with a geometric concentration ratio of 1104X with respect to the InGaP subcell.

  15. New reversing freeform lens design method for LED uniform illumination with extended source and near field

    NASA Astrophysics Data System (ADS)

    Zhao, Zhili; Zhang, Honghai; Zheng, Huai; Liu, Sheng

    2018-03-01

    In light-emitting diode (LED) array illumination (e.g. LED backlighting), obtainment of high uniformity in the harsh condition of the large distance height ratio (DHR), extended source and near field is a key as well as challenging issue. In this study, we present a new reversing freeform lens design algorithm based on the illuminance distribution function (IDF) instead of the traditional light intensity distribution, which allows uniform LED illumination in the above mentioned harsh conditions. IDF of freeform lens can be obtained by the proposed mathematical method, considering the effects of large DHR, extended source and near field target at the same time. In order to prove the claims, a slim direct-lit LED backlighting with DHR equal to 4 is designed. In comparison with the traditional lenses, illuminance uniformity of LED backlighting with the new lens increases significantly from 0.45 to 0.84, and CV(RMSE) decreases dramatically from 0.24 to 0.03 in the harsh condition. Meanwhile, luminance uniformity of LED backlighting with the new lens is obtained as high as 0.92 at the condition of extended source and near field. This new method provides a practical and effective way to solve the problem of large DHR, extended source and near field for LED array illumination.

  16. Conceptual design study of a 5 kilowatt solar dynamic Brayton power system using a dome Fresnel lens solar concentrator

    NASA Technical Reports Server (NTRS)

    Oneill, Mark J.; Mcdanal, A. J.; Spears, Don H.

    1989-01-01

    The primary project objective was to generate a conceptual design for a nominal 5 kW solar dynamic space power system, which uses a unique, patented, transmittance-optimized, dome-shaped, point-focus Fresnel lens as the optical concentrator. Compared to reflective concentrators, the dome lens allows 200 times larger slope errors for the same image displacement. Additionally, the dome lens allows the energy receiver, the power conversion unit (PCU), and the heat rejection radiator to be independently optimized in configuration and orientation, since none of these elements causes any aperture blockage. Based on optical and thermal trade studies, a 6.6 m diameter lens with a focal length of 7.2 m was selected. This lens should provide 87 percent net optical efficienty at 800X geometric concentration ratio. The large lens is comprised of 24 gores, which compactly stow together during launch, and automatically deploy on orbit. The total mass of the microglass lens panels, the graphite/epoxy support structure, and miscellaneous hardware is about 1.2 kg per square meter of aperture. The key problem for the dome lens approach relates to the selection of a space-durable lens material. For the first time, all-glass Fresnel lens samples were successfully made by a sol-gel casting process.

  17. Design and experimental evidence of a flat graded-index photonic crystal lens

    NASA Astrophysics Data System (ADS)

    Gaufillet, F.; Akmansoy, É.

    2013-08-01

    We report on the design and the experimental evidence of a flat graded index photonic crystal lens. The gradient has been designed so that the flat slab focuses a plane wave and so that it converts the wave issued from a point source into a plane wave. This graded-index photonic crystal lens operates as a convex lens. The gradient of index results from varying the filling factor of the photonic crystal in the direction perpendicular to that of the propagation of the electromagnetic field. The shape of the gradient of index has been designed by engineering the iso-frequency curves of the photonic crystal. As only a few layers were necessary and as graded photonic crystals may be fabricated by a variety of processes, this shows the ability of graded photonic crystals to efficiently apply for various photonic devices, from microwave range to the optical domain. 42.70.Qs Photonic bandgap materials, 78.67.Pt Optical properties of photonic structures, 41.20.Jb Electromagnetic wave propagation; radiowave propagation 84.40.Ba Antennas.

  18. Cosmetology: Task Analyses. Competency-Based Education.

    ERIC Educational Resources Information Center

    Henrico County Public Schools, Glen Allen, VA. Virginia Vocational Curriculum Center.

    These task analyses are designed to be used in combination with the "Trade and Industrial Education Service Area Resource" in order to implement competency-based education in the cosmetology program in Virginia. The task analysis document contains the task inventory, suggested task sequence lists, and content outlines for the secondary…

  19. Masonry: Task Analyses. Competency-Based Education.

    ERIC Educational Resources Information Center

    Henrico County Public Schools, Glen Allen, VA. Virginia Vocational Curriculum Center.

    These task analyses are designed to be used in combination with the "Trade and Industrial Education Service Area Resource" in order to implement competency-based education in the masonry program in Virginia. The task analysis document contains the task inventory, suggested task sequence lists, and content outlines for the secondary…

  20. 19. Detail of base of revolving lens assembly, showing bottom ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. Detail of base of revolving lens assembly, showing bottom of lamp at center and brass tens framework at edges of circular platform. Mercury float bearing lies in circular well just beneath lens platform. (Blurred due to lens motion.) - Block Island Southeast Light, Spring Street & Mohegan Trail at Mohegan Bluffs, New Shoreham, Washington County, RI

  1. The Low Energy Neutrino Spectrometry (LENS) Experiment and LENS prototype, μLENS, initial results

    NASA Astrophysics Data System (ADS)

    Yokley, Zachary

    2012-03-01

    LENS is a low energy solar neutrino detector that will measure the solar neutrino spectrum above 115 keV, >95% of the solar neutrino flux, in real time. The fundamental neutrino reaction in LENS is charged-current based capture on 115-In detected in a liquid scintillator medium. The reaction yields the prompt emission of an electron and the delayed emission of 2 gamma rays that serve as a time & space coincidence tag. Sufficient spatial resolution is used to exploit this signature and suppress background, particularly due to 115-In beta decay. A novel design of optical segmentation (Scintillation Lattice or SL) channels the signal light along the three primary axes. The channeling is achieved via total internal reflection by suitable low index gaps in the segmentation. The spatial resolution of a nuclear event is obtained digitally, much more precisely than possible by common time of flight methods. Advanced Geant4 analysis methods have been developed to suppress adequately the severe background due to 115-In beta decay, achieving at the same time high detection efficiency. LENS physics and detection methods along with initial results characterizing light transport in the as built μLENS prototype will be presented.

  2. Algorithm Design of CPCI Backboard's Interrupts Management Based on VxWorks' Multi-Tasks

    NASA Astrophysics Data System (ADS)

    Cheng, Jingyuan; An, Qi; Yang, Junfeng

    2006-09-01

    This paper begins with a brief introduction of the embedded real-time operating system VxWorks and CompactPCI standard, then gives the programming interfaces of Peripheral Controller Interface (PCI) configuring, interrupts handling and multi-tasks programming interface under VxWorks, and then emphasis is placed on the software frameworks of CPCI interrupt management based on multi-tasks. This method is sound in design and easy to adapt, ensures that all possible interrupts are handled in time, which makes it suitable for data acquisition systems with multi-channels, a high data rate, and hard real-time high energy physics.

  3. A study of GeV proton microprobe lens system designs with normal magnetic quadrupole

    NASA Astrophysics Data System (ADS)

    Dou, Yanxin; Jamieson, David N.; Liu, Jianli; Li, Liyi

    2017-12-01

    High energy proton irradiation has many applications to the study of radiation effects in semiconductor devices, biological tissues, proton tomography and space science. Many applications could be extended and enhanced by use of a high energy proton microprobe. However the design of a GeV proton microprobe must address significant challenges including beam collimation that minimizes ion scattering and the probe forming lens system for ions of high rigidity. Here we address the probe forming lens system design subject to several practical constraints including the use of non-superconducting normal magnetic quadrupole lenses, the ability to focus 1-5 GeV protons into 5 μm diameter microprobes and compatibility with the beam parameters of GeV proton accelerators. We show that 2, 3 and 4 lens systems of lenses with effective lengths up to 0.63 m can be employed for this purpose with a demagnification up to 58 and investigate the probe size limitations from beam brightness, lens aberrations and machining precision.

  4. Optimal lens design and use in laser-scanning microscopy

    PubMed Central

    Negrean, Adrian; Mansvelder, Huibert D.

    2014-01-01

    In laser-scanning microscopy often an off-the-shelf achromatic doublet is used as a scan lens which can reduce the available diffraction-limited field-of-view (FOV) by a factor of 3 and introduce chromatic aberrations that are scan angle dependent. Here we present several simple lens designs of superior quality that fully make use of high-NA low-magnification objectives, offering diffraction-limited imaging over a large FOV and wavelength range. We constructed a two-photon laser-scanning microscope with optimized custom lenses which had a near diffraction limit point-spread-function (PSF) with less than 3.6% variation over a 400 µm FOV and less than 0.5 µm lateral color between 750 and 1050 nm. PMID:24877017

  5. A design space of visualization tasks.

    PubMed

    Schulz, Hans-Jörg; Nocke, Thomas; Heitzler, Magnus; Schumann, Heidrun

    2013-12-01

    Knowledge about visualization tasks plays an important role in choosing or building suitable visual representations to pursue them. Yet, tasks are a multi-faceted concept and it is thus not surprising that the many existing task taxonomies and models all describe different aspects of tasks, depending on what these task descriptions aim to capture. This results in a clear need to bring these different aspects together under the common hood of a general design space of visualization tasks, which we propose in this paper. Our design space consists of five design dimensions that characterize the main aspects of tasks and that have so far been distributed across different task descriptions. We exemplify its concrete use by applying our design space in the domain of climate impact research. To this end, we propose interfaces to our design space for different user roles (developers, authors, and end users) that allow users of different levels of expertise to work with it.

  6. Lens Systems Incorporating A Zero Power Corrector Principle Of The Design And Its Application In Large Aperture, Moderate Field Of View Optical Systems

    NASA Astrophysics Data System (ADS)

    Klee, H. W.; McDowell, M. W.

    1986-02-01

    A new lens design concept, based on the use of a zero (or near zero) power corrector, will be described. The logical development of the design, based on the work of Schmidt', Houghton' and others will be discussed and examples will be given of moderate field of view lenses with apertures ranging from f/0.35 to f/2. It will also be shown that the lens configuration is relatively insensitive to the aperture stop location and that for less demanding applications only very basic optical glass types need be used.

  7. Variable-focus liquid lens for miniature cameras

    NASA Astrophysics Data System (ADS)

    Kuiper, S.; Hendriks, B. H. W.

    2004-08-01

    The meniscus between two immiscible liquids can be used as an optical lens. A change in curvature of this meniscus by electrowetting leads to a change in focal distance. It is demonstrated that two liquids in a tube form a self-centered lens with a high optical quality. The motion of the lens during a focusing action was studied by observation through the transparent tube wall. Finally, a miniature achromatic camera module was designed and constructed based on this adjustable lens, showing that it is excellently suited for use in portable applications.

  8. Broadband Achromatic Telecentric Lens

    NASA Technical Reports Server (NTRS)

    Mouroulis, Pantazis

    2007-01-01

    A new type of lens design features broadband achromatic performance as well as telecentricity, using a minimum number of spherical elements. With appropriate modifications, the lens design form can be tailored to cover the range of response of the focal-plane array, from Si (400-1,000 nm) to InGaAs (400-1,700 or 2,100 nm) or InSb/HgCdTe reaching to 2,500 nm. For reference, lenses typically are achromatized over the visible wavelength range of 480-650 nm. In remote sensing applications, there is a need for broadband achromatic telescopes, normally satisfied with mirror-based systems. However, mirror systems are not always feasible due to size or geometry restrictions. They also require expensive aspheric surfaces. Non-obscured mirror systems can be difficult to align and have a limited (essentially one-dimensional) field of view. Centrally obscured types have a two-dimensional but very limited field in addition to the obscuration. Telecentricity is a highly desirable property for matching typical spectrometer types, as well as for reducing the variation of the angle of incidence and cross-talk on the detector for simple camera types. This rotationally symmetric telescope with no obscuration and using spherical surfaces and selected glass types fills a need in the range of short focal lengths. It can be used as a compact front unit for a matched spectrometer, as an ultra-broadband camera objective lens, or as the optics of an integrated camera/spectrometer in which the wavelength information is obtained by the use of strip or linear variable filters on the focal plane array. This kind of camera and spectrometer system can find applications in remote sensing, as well as in-situ applications for geological mapping and characterization of minerals, ecological studies, and target detection and identification through spectral signatures. Commercially, the lens can be used in quality-control applications via spectral analysis. The lens design is based on the rear landscape

  9. A high excitation magnetic quadrupole lens quadruplet incorporating a single octupole lens for a low spherical aberration probe forming lens system

    NASA Astrophysics Data System (ADS)

    Dou, Yanxin; Jamieson, David N.; Liu, Jianli; Li, Liyi

    2018-03-01

    This paper describes the design of a new probe forming lens system consisting of a high excitation magnetic quadrupole lens quadruplet that incorporates a single magnetic octupole lens. This system achieves both a high demagnification and a low spherical aberration compared to conventional high excitation systems and is intended for deployment for the Harbin 300 MeV proton microprobe for applications in space science and ion beam therapy. This relative simplicity of the ion optical design to include a single octupole lens minimizes the risks associated with the constructional and operational precision usually needed for the probe forming lens system and this system could also be deployed in microprobe systems that operate with less magnetically rigid ions. The design of the new system is validated with reference to two independent ion optical computer codes.

  10. Design of a novel panoramic lens without central blindness

    NASA Astrophysics Data System (ADS)

    Gong, Chen; Cheng, Dewen; Xu, Chen; Wang, Yongtian

    2015-08-01

    The panoramic lenses are getting more and more popular in recent years. However, these lenses have the drawback of obscuring the rays of the coaxial fields, thus cause blind area in the center field of vision. We present a novel panoramic system consisting of two optical channels to overcome this issue, the system has a field of view (FOV) reaching 200 in vertical and 360 in horizontal direction without blindness area. The two channels have different focal lengths, providing design flexibility to meet application requirements where the center FOV or the marginal FOV is of more interest. The system has no half-reflecting surfaces to ensure high transmission ratio, but this feature greatly increase the design difficulty. The distortion of the novel lens is much smaller than traditional panoramic lenses since the distortion has two node points. Due to the ability of information acquisition in real-time and wide-angle, the novel panoramic lens would be very useful for a variety of real-world applications such as surveillance, short-throw projector and pilotless automobile.

  11. Lessons in financial literacy task design: authentic, imaginable, useful

    NASA Astrophysics Data System (ADS)

    Sawatzki, Carly

    2017-03-01

    As part of ongoing design-based research exploring financial literacy teaching and learning, 10 tasks termed "financial dilemmas" were trialled by 14 teachers and more than 300 year 5 and 6 students in four government primary schools in urban Darwin. Drawing on data related to three tasks— Catching the bus, Laser Tag and Buying bread—this article explores insights into problem context and task design principles. The findings highlight that fit to circumstance, challenge yet accessibility and pedagogical architecture are important task design principles. Further, tasks involving unfamiliar, novel and imaginable problem contexts, while pedagogically demanding for teachers, can be considered useful by students and have the potential to broaden their horizons.

  12. Real-time design with peer tasks

    NASA Technical Reports Server (NTRS)

    Goforth, Andre; Howes, Norman R.; Wood, Jonathan D.; Barnes, Michael J.

    1995-01-01

    We introduce a real-time design methodology for large scale, distributed, parallel architecture, real-time systems (LDPARTS), as an alternative to those methods using rate or dead-line monotonic analysis. In our method the fundamental units of prioritization, work items, are domain specific objects with timing requirements (deadlines) found in user's specification. A work item consists of a collection of tasks of equal priority. Current scheduling theories are applied with artifact deadlines introduced by the designer whereas our method schedules work items to meet user's specification deadlines (sometimes called end-to-end deadlines). Our method supports these scheduling properties. Work item scheduling is based on domain specific importance instead of task level urgency and still meets as many user specification deadlines as can be met by scheduling tasks with respect to urgency. Second, the minimum (closest) on-line deadline that can be guaranteed for a work item of highest importance, scheduled at run time, is approximately the inverse of the throughput, measured in work items per second. Third, throughput is not degraded during overload and instead of resorting to task shedding during overload, the designer can specify which work items to shed. We prove these properties in a mathematical model.

  13. Oxygen transport through soft contact lens and cornea: Lens characterization and metabolic modeling

    NASA Astrophysics Data System (ADS)

    Chhabra, Mahendra

    The human cornea requires oxygen to sustain metabolic processes critical for its normal functioning. Any restriction to corneal oxygen supply from the external environment (e.g., by wearing a low oxygen-permeability contact lens) can lead to hypoxia, which may cause corneal edema (swelling), limbal hyperemia, neovascularization, and corneal acidosis. The need for adequate oxygen to the cornea is a major driving force for research and development of hypertransmissible soft contact lenses (SCLs). Currently, there is no standard technique for measuring oxygen permeability (Dk) of hypertransmissible silicone-hydrogel SCLs. In this work, an electrochemistry-based polarographic apparatus was designed, built, and operated to measure oxygen permeability in hypertransmissible SCLs. Unlike conventional methods where a range of lens thickness is needed for determining oxygen permeabilities of SCLs, this apparatus requires only a single lens thickness. The single-lens permeameter provides a reliable, efficient, and economic tool for measuring oxygen permeabilities of commercial hypertransmissible SCLs. The single-lens permeameter measures not only the product Dk, but, following modification, it measures separately diffusivity, D, and solubility, k, of oxygen in hypertransmissible SCLs. These properties are critical for designing better lens materials that ensure sufficient oxygen supply to the cornea. Metabolism of oxygen in the cornea is influenced by contact-lens-induced hypoxia, diseases such as diabetes, surgery, and drug treatment, Thus, estimation of the in-vivo corneal oxygen consumption rate is essential for gauging adequate oxygen supply to the cornea. Therefore, we have developed an unsteady-state reactive-diffusion model for the cornea-contact-lens system to determine in-vivo human corneal oxygen-consumption rate. Finally, a metabolic model was developed to determine the relation between contact-lens oxygen transmissibility (Dk/L) and corneal oxygen deficiency. A

  14. Nurse's Assistant: Task Analyses. Competency-Based Education.

    ERIC Educational Resources Information Center

    Henrico County Public Schools, Glen Allen, VA. Virginia Vocational Curriculum Center.

    These task analyses are designed to be used in combination with the "Health Occupations Education Service Area Resource" in order to implement competency-based education in the nurse's assistant program in Virginia. The task analysis document contains the task inventory, suggested task sequence lists, and content outlines for Nursing…

  15. Design and characterization of dielectric subwavelength focusing lens with polarization dependence

    NASA Astrophysics Data System (ADS)

    Kim, Sung W.; Pang, Lin; Fainman, Yeshaiahu

    2016-03-01

    We introduce and develop design, fabrication and characterization methodology for engineering the effective refractive index of a composite dielectric planar surface created by controlling the density of deeply subwavelength low index nanoholes (e.g., air) in a high index dielectric layer (e.g., Si). The nanoscale properties of a composite dielectric layer allows for full control of the optical wavefront phase by designing arbitrary space-variant refractive index profiles. We present the composite dielectric metasurface microlens exploiting symmetric design to achieve polarization invariant impulse response, and use asymmetric design to demonstrate polarization sensitive impulse response of the lens. This composite dielectric layers lenses were fabricated by patterning nanohole distributions on a dielectric surface and etching to submicron depths. Our dielectric microlens with asymmetric distribution of neff (neff x ≠ neff y) demonstrates a graded index lens with polarization dependent focusing with of 32um and 22 um for linearly x- and y-polarized light, respectively operating at a wavelength of λ = 1550nm. We also show numerically and demonstrate experimentally achromatic performance of the devices operating in the wavelength range of 1500nm - 1900nm with FWHM of the focal spots of about 4um. Namely, we have constructed a graded index lens that can overcome diffraction effects even when aperture/wavelength (D/λ) is smaller than 40. The demonstrated novel approach to engineer dielectric composite nanosurfaces has the potential to realize arbitrary phase functions with minimal insertion loss, submicron thickness and miniaturization to reduce element size and weight, and may have a significant impact on numerous miniature imaging systems applications.

  16. Polymeric hydrogels for novel contact lens-based ophthalmic drug delivery systems: a review.

    PubMed

    Xinming, Li; Yingde, Cui; Lloyd, Andrew W; Mikhalovsky, Sergey V; Sandeman, Susan R; Howel, Carol A; Liewen, Liao

    2008-04-01

    Only about 5% of drugs administrated by eye drops are bioavailable, and currently eye drops account for more than 90% of all ophthalmic formulations. The bioavailability of ophthalmic drugs can be improved by a soft contact lens-based ophthalmic drug delivery system. Several polymeric hydrogels have been investigated for soft contact lens-based ophthalmic drug delivery systems: (i) polymeric hydrogels for conventional contact lens to absorb and release ophthalmic drugs; (ii) polymeric hydrogels for piggyback contact lens combining with a drug plate or drug solution; (iii) surface-modified polymeric hydrogels to immobilize drugs on the surface of contact lenses; (iv) polymeric hydrogels for inclusion of drugs in a colloidal structure dispersed in the lens; (v) ion ligand-containing polymeric hydrogels; (vi) molecularly imprinted polymeric hydrogels which provide the contact lens with a high affinity and selectivity for a given drug. Polymeric hydrogels for these contact lens-based ophthalmic drug delivery systems, their advantages and drawbacks are critically analyzed in this review.

  17. Design of optical element combining Fresnel lens with microlens array for uniform light-emitting diode lighting.

    PubMed

    Wang, Guangzhen; Wang, Lili; Li, Fuli; Kong, Depeng

    2012-09-01

    One kind of optical element combining Fresnel lens with microlens array is designed simply for LED lighting based on geometrical optics and nonimaging optics. This design method imposes no restriction on the source intensity pattern. The designed element has compact construction and can produce multiple shapes of illumination distribution. Taking square lighting as an example, tolerance analysis is carried out to determine tolerance limits for applying the element in the assembly process. This element can produce on-axis lighting and off-axis lighting.

  18. Commercial Photography: Task Analyses. Competency-Based Education.

    ERIC Educational Resources Information Center

    Endo, Paula; Morrell, Linda

    These task analyses are designed to be used in combination with the "Trade and Industrial Education Service Area Resource" in order to implement competency-based education in the commercial photography program in Virginia. The task analysis document contains the task inventory, suggested task sequence lists, and content outlines for the…

  19. Variable focus photographic lens without mechanical movements

    NASA Astrophysics Data System (ADS)

    Chen, Jiabi; Peng, Runling; Zhuang, Songlin

    2007-09-01

    A novel design of a zoom lens system without motorized movements is proposed. The lens system consists of a fixed lens and two double-liquid variable-focus lenses. The liquid lenses, made out of two immiscible liquids, are based on the principle of electrowetting: an effect controlling the wetting properties of a liquid on a solid by modifying the applied voltage at the solid-liquid interface. The structure and principle of the lens system are introduced in this paper. And detailed calculations and simulation examples are presented to predict how two liquid lenses are related to meet the basic requirements of zoom lenses.

  20. Design and evaluation of a freeform lens by using a method of luminous intensity mapping and a differential equation

    NASA Astrophysics Data System (ADS)

    Essameldin, Mahmoud; Fleischmann, Friedrich; Henning, Thomas; Lang, Walter

    2017-02-01

    Freeform optical systems are playing an important role in the field of illumination engineering for redistributing the light intensity, because of its capability of achieving accurate and efficient results. The authors have presented the basic idea of the freeform lens design method at the 117th annual meeting of the German Society of Applied Optics (DGAOProceedings). Now, we demonstrate the feasibility of the design method by designing and evaluating a freeform lens. The concepts of luminous intensity mapping, energy conservation and differential equation are combined in designing a lens for non-imaging applications. The required procedures to design a lens including the simulations are explained in detail. The optical performance is investigated by using a numerical simulation of optical ray tracing. For evaluation, the results are compared with another recently published design method, showing the accurate performance of the proposed method using a reduced number of mapping angles. As a part of the tolerance analyses of the fabrication processes, the influence of the light source misalignments (translation and orientation) on the beam-shaping performance is presented. Finally, the importance of considering the extended light source while designing a freeform lens using the proposed method is discussed.

  1. Membrane-less variable focus liquid lens with manual actuation

    NASA Astrophysics Data System (ADS)

    Patra, Roshan; Agarwal, Shivam; Kondaraju, Sasidhar; Bahga, Supreet Singh

    2017-04-01

    We present a tunable, membrane-less, mechanical-wetting liquid lens that can be actuated manually using a linear actuator such as screw or piston. The operation of the liquid lens is based on deforming the interface separating two immiscible liquids with different refractive indices, while pinning the three-phase contact line at the sharp edge of lens aperture. Our lens design improves upon the existing designs of mechanical-wetting lenses by eliminating the use of complex actuation mechanisms, without compromising on the optical performance. We demonstrate the operation of the liquid lens by tuning its power back and forth from negative to positive by simple rotation of a screw. We also present an analytical description of the focal length of the lens and validate it with detailed experimental measurements. Our experiments show that the focal length of the liquid lens can be tuned repeatably without any adverse effects of hysteresis and gravity.

  2. Business Economics: Task Analyses. Competency-Based Education.

    ERIC Educational Resources Information Center

    Henrico County Public Schools, Glen Allen, VA. Virginia Vocational Curriculum Center.

    This task analyses guide is designed to be used in combination with the "Business Education Service Area Resource" in order to implement competency-based education in the Business Economics course in Virginia. The task analyses guide contains the task inventory, suggested task sequence list, and content outline for the specific course in business…

  3. New web-based algorithm to improve rigid gas permeable contact lens fitting in keratoconus.

    PubMed

    Ortiz-Toquero, Sara; Rodriguez, Guadalupe; de Juan, Victoria; Martin, Raul

    2017-06-01

    To calculate and validate a new web-based algorithm for selecting the back optic zone radius (BOZR) of spherical gas permeable (GP) lens in keratoconus eyes. A retrospective calculation (n=35; multiple regression analysis) and a posterior prospective validation (new sample of 50 keratoconus eyes) of a new algorithm to select the BOZR of spherical KAKC design GP lenses (Conoptica) in keratoconus were conducted. BOZR calculated with the new algorithm, manufacturer guidelines and APEX software were compared with the BOZR that was finally prescribed. Number of diagnostic lenses, ordered lenses and visits to achieve optimal fitting were recorded and compared those obtained for a control group [50 healthy eyes fitted with spherical GP (BIAS design; Conoptica)]. The new algorithm highly correlated with the final BOZR fitted (r 2 =0.825, p<0.001). BOZR of the first diagnostic lens using the new algorithm demonstrated lower difference with the final BOZR prescribed (-0.01±0.12mm, p=0.65; 58% difference≤0.05mm) than with the manufacturer guidelines (+0.12±0.22mm, p<0.001; 26% difference≤0.05mm) and APEX software (-0.14±0.16mm, p=0.001; 34% difference≤0.05mm). Close numbers of diagnostic lens (1.6±0.8, 1.3±0.5; p=0.02), ordered lens (1.4±0.6, 1.1±0.3; P<0.001), and visits (3.4±0.7, 3.2±0.4; p=0.08) were required to fit keratoconus and healthy eyes, respectively. This new algorithm (free access at www.calculens.com) improves spherical KAKC GP fitting in keratoconus and can reduce the practitioner and patient chair time to achieve a final acceptable fit in keratoconus. This algorithm reduces differences between keratoconus GP fitting (KAKC design) and standard GP (BIAS design) lenses fitting in healthy eyes. Copyright © 2016 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.

  4. Design of high-performance adaptive objective lens with large optical depth scanning range for ultrabroad near infrared microscopic imaging

    PubMed Central

    Lan, Gongpu; Mauger, Thomas F.; Li, Guoqiang

    2015-01-01

    We report on the theory and design of adaptive objective lens for ultra broadband near infrared light imaging with large dynamic optical depth scanning range by using an embedded tunable lens, which can find wide applications in deep tissue biomedical imaging systems, such as confocal microscope, optical coherence tomography (OCT), two-photon microscopy, etc., both in vivo and ex vivo. This design is based on, but not limited to, a home-made prototype of liquid-filled membrane lens with a clear aperture of 8mm and the thickness of 2.55mm ~3.18mm. It is beneficial to have an adaptive objective lens which allows an extended depth scanning range larger than the focal length zoom range, since this will keep the magnification of the whole system, numerical aperture (NA), field of view (FOV), and resolution more consistent. To achieve this goal, a systematic theory is presented, for the first time to our acknowledgment, by inserting the varifocal lens in between a front and a back solid lens group. The designed objective has a compact size (10mm-diameter and 15mm-length), ultrabroad working bandwidth (760nm - 920nm), a large depth scanning range (7.36mm in air) — 1.533 times of focal length zoom range (4.8mm in air), and a FOV around 1mm × 1mm. Diffraction-limited performance can be achieved within this ultrabroad bandwidth through all the scanning depth (the resolution is 2.22 μm - 2.81 μm, calculated at the wavelength of 800nm with the NA of 0.214 - 0.171). The chromatic focal shift value is within the depth of focus (field). The chromatic difference in distortion is nearly zero and the maximum distortion is less than 0.05%. PMID:26417508

  5. The Social Agenda of Education for Sustainable Development within Design & Technology: The Case of the Sustainable Design Award

    ERIC Educational Resources Information Center

    Pitt, James; Lubben, Fred

    2009-01-01

    The paper explores the adoption of the social dimensions of sustainability in technological design tasks. It uses a lens which contrasts education for sustainability as "a frame of mind" with an attempt to bridge a "value-action gap". This lens is used to analyse the effectiveness of the Sustainable Design Award, an intervention in post-16…

  6. A passively tunable acoustic metamaterial lens for selective ultrasonic excitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, H.; Semperlotti, F., E-mail: Fabio.Semperlotti.1@nd.edu

    2014-09-07

    In this paper, we present an approach to ultrasonic beam-forming and beam-steering in structures based on the concept of embedded acoustic metamaterial lenses. The lens design exploits the principle of acoustic drop-channel that enables the dynamic coupling of multiple ultrasonic waveguides at selected frequencies. In contrast with currently available technology, the embedded lens allows exploiting the host structure as a key component of the transducer system therefore enabling directional excitation by means of a single ultrasonic transducer. The design and the performance of the lens are numerically investigated by using Plane Wave Expansion and Finite Difference Time Domain techniques appliedmore » to bulk structures. Then, the design is experimentally validated on a thin aluminum plate waveguide where the lens is implemented by through-holes. The dynamic response of the embedded lens is estimated by reconstructing, via Laser Vibrometry, the velocity field induced by a single source located at the center of the lens.« less

  7. Metamaterial-based half Maxwell fish-eye lens for broadband directive emissions

    NASA Astrophysics Data System (ADS)

    Dhouibi, Abdallah; Nawaz Burokur, Shah; de Lustrac, André; Priou, Alain

    2013-01-01

    The broadband directive emission from a metamaterial surface is numerically and experimentally reported. The metasurface, composed of non-resonant complementary closed ring structures, is designed to obey the refractive index of a half Maxwell fish-eye lens. A planar microstrip Vivaldi antenna is used as transverse magnetic polarized wave launcher for the lens. A prototype of the lens associated with its feed structure has been fabricated using standard lithography techniques. To experimentally demonstrate the broadband focusing properties and directive emissions, both the far-field radiation patterns and the near-field distributions have been measured. Measurements agree quantitatively and qualitatively with theoretical simulations.

  8. Wide-aperture aspherical lens for high-resolution terahertz imaging

    NASA Astrophysics Data System (ADS)

    Chernomyrdin, Nikita V.; Frolov, Maxim E.; Lebedev, Sergey P.; Reshetov, Igor V.; Spektor, Igor E.; Tolstoguzov, Viktor L.; Karasik, Valeriy E.; Khorokhorov, Alexei M.; Koshelev, Kirill I.; Schadko, Aleksander O.; Yurchenko, Stanislav O.; Zaytsev, Kirill I.

    2017-01-01

    In this paper, we introduce wide-aperture aspherical lens for high-resolution terahertz (THz) imaging. The lens has been designed and analyzed by numerical methods of geometrical optics and electrodynamics. It has been made of high-density polyethylene by shaping at computer-controlled lathe and characterized using a continuous-wave THz imaging setup based on a backward-wave oscillator and Golay detector. The concept of image contrast has been implemented to estimate image quality. According to the experimental data, the lens allows resolving two points spaced at 0.95λ distance with a contrast of 15%. To highlight high resolution in the THz images, the wide-aperture lens has been employed for studying printed electronic circuit board containing sub-wavelength-scale elements. The observed results justify the high efficiency of the proposed lens design.

  9. LENS: web-based lens for enrichment and network studies of human proteins

    PubMed Central

    2015-01-01

    Background Network analysis is a common approach for the study of genetic view of diseases and biological pathways. Typically, when a set of genes are identified to be of interest in relation to a disease, say through a genome wide association study (GWAS) or a different gene expression study, these genes are typically analyzed in the context of their protein-protein interaction (PPI) networks. Further analysis is carried out to compute the enrichment of known pathways and disease-associations in the network. Having tools for such analysis at the fingertips of biologists without the requirement for computer programming or curation of data would accelerate the characterization of genes of interest. Currently available tools do not integrate network and enrichment analysis and their visualizations, and most of them present results in formats not most conducive to human cognition. Results We developed the tool Lens for Enrichment and Network Studies of human proteins (LENS) that performs network and pathway and diseases enrichment analyses on genes of interest to users. The tool creates a visualization of the network, provides easy to read statistics on network connectivity, and displays Venn diagrams with statistical significance values of the network's association with drugs, diseases, pathways, and GWASs. We used the tool to analyze gene sets related to craniofacial development, autism, and schizophrenia. Conclusion LENS is a web-based tool that does not require and download or plugins to use. The tool is free and does not require login for use, and is available at http://severus.dbmi.pitt.edu/LENS. PMID:26680011

  10. How to Develop an Engineering Design Task

    ERIC Educational Resources Information Center

    Dankenbring, Chelsey; Capobianco, Brenda M.; Eichinger, David

    2014-01-01

    In this article, the authors provide an overview of engineering and the engineering design process, and describe the steps they took to develop a fifth grade-level, standards-based engineering design task titled "Getting the Dirt on Decomposition." Their main goal was to focus more on modeling the discrete steps they took to create and…

  11. Application and System Design of Elastomer Based Optofluidic Lenses

    NASA Astrophysics Data System (ADS)

    Savidis, Nickolaos

    Adaptive optic technology has revolutionized real time correction of wavefront aberrations. Optofluidic based applied optic devices have offered an opportunity to produce flexible refractive lenses in the correction of wavefronts. Fluidic lenses have superiority relative to their solid lens counterparts in their capabilities of producing tunable optical systems, that when synchronized, can produce real time variable systems with no moving parts. We have developed optofluidic fluidic lenses for applications of applied optical devices, as well as ophthalmic optic devices. The first half of this dissertation discusses the production of fluidic lenses as optical devices. In addition, the design and testing of various fluidic systems made with these components are evaluated. We begin with the creation of spherical or defocus singlet fluidic lenses. We then produced zoom optical systems with no moving parts by synchronizing combinations of these fluidic spherical lenses. The variable power zoom system incorporates two singlet fluidic lenses that are synchronized. The coupled device has no moving parts and has produced a magnification range of 0.1 x to 10 x or a 20 x magnification range. The chapter after fluidic zoom technology focuses on producing achromatic lens designs. We offer an analysis of a hybrid diffractive and refractive achromat that offers discrete achromatized variable focal lengths. In addition, we offer a design of a fully optofluidic based achromatic lens. By synchronizing the two membrane surfaces of the fluidic achromat we develop a design for a fluidic achromatic lens. The second half of this dissertation discusses the production of optofluidic technology in ophthalmic applications. We begin with an introduction to an optofluidic phoropter system. A fluidic phoropter is designed through the combination of a defocus lens with two cylindrical fluidic lenses that are orientated 45° relative to each other. Here we discuss the designs of the fluidic

  12. Professional Development for Mathematics Teachers: Using Task Design and Analysis

    ERIC Educational Resources Information Center

    Lee, Hea-Jin; Özgün-Koca, S. Asli

    2016-01-01

    This study is based on a Task Design and Analysis activity from a year-long professional development program. The activity was designed to increase teacher growth in several areas, including knowledge of mathematics, understanding of students' cognitive activity, knowledge of good questions, and ability to develop and improve high quality tasks.…

  13. Using cognitive task analysis to develop simulation-based training for medical tasks.

    PubMed

    Cannon-Bowers, Jan; Bowers, Clint; Stout, Renee; Ricci, Katrina; Hildabrand, Annette

    2013-10-01

    Pressures to increase the efficacy and effectiveness of medical training are causing the Department of Defense to investigate the use of simulation technologies. This article describes a comprehensive cognitive task analysis technique that can be used to simultaneously generate training requirements, performance metrics, scenario requirements, and simulator/simulation requirements for medical tasks. On the basis of a variety of existing techniques, we developed a scenario-based approach that asks experts to perform the targeted task multiple times, with each pass probing a different dimension of the training development process. In contrast to many cognitive task analysis approaches, we argue that our technique can be highly cost effective because it is designed to accomplish multiple goals. The technique was pilot tested with expert instructors from a large military medical training command. These instructors were employed to generate requirements for two selected combat casualty care tasks-cricothyroidotomy and hemorrhage control. Results indicated that the technique is feasible to use and generates usable data to inform simulation-based training system design. Reprint & Copyright © 2013 Association of Military Surgeons of the U.S.

  14. LENS: Prototyping Program

    NASA Astrophysics Data System (ADS)

    Rountree, S. Derek

    2013-04-01

    The Low-Energy Neutrino Spectrometer (LENS) prototyping program is broken into two phases. The first of these is μLENS, a small prototype to study the light transmission in the as built LENS scintillation lattice--- a novel detector method of high segmentation in a large liquid scintillation detector. The μLENS prototype is currently deployed and taking data at the Kimballton Underground Research Facility (KURF) near Virginia Tech. I will discuss the Scintillation Lattice construction methods and schemes of the μLENS program for running with minimal channels instrumented to date ˜41 compared to full coverage 216). The second phase of prototyping is the miniLENS detector for which construction is under way. I will discuss the overall design from the miniLENS Scintillation Lattice to the shielding.

  15. Variable-focus liquid lens for portable applications

    NASA Astrophysics Data System (ADS)

    Kuiper, Stein; Hendriks, Benno H.; Huijbregts, Laura J.; Hirschberg, A. Mico; Renders, Christel A.; van As, Marco A.

    2004-10-01

    The meniscus between two immiscible liquids can be used as an optical lens. A change in curvature of this meniscus by electrowetting leads to a change in focal distance. We demonstrate that two liquids in a tube form a self-centered tunable lens of high optical quality. Several properties were studied, such as optical performance, electrical characteristics and dynamic behavior. We designed and constructed a miniature camera module based on this tunable lens and show that it is very well suited for use in portable applications.

  16. LENS: Light Transport

    NASA Astrophysics Data System (ADS)

    Yokley, Zachary

    2013-04-01

    The LENS detector uses an optically segmented 3D lattice, a scintillation lattice (SL), that channels light via total internal reflection from a scintillation event down channels parallel to the 3 primary Cartesian axes to the edge of the detector. This unique design provides spatial and temporal resolution required to distinguish the internal background of ^115In from the neutrino signal. Optical segmentation is achieved with Teflon films. Currently a 400 liter prototype, miniLENS, is being developed to demonstrate the internal background rejection techniques needed for LENS. This requires that miniLENS be shielded from external backgrounds from the surrounding materials and the photomultiplier tubes (PMTs). This shielding is provided by a water tank that surrounds miniLENS. In order to retain the channel information and separate the PMTs from the detector the LENS collaboration has developed light guides (LGs) made from multilayer films. These LGs transport light both by total internal and specular reflection providing an efficient means of coupling the SL through the water shield to the PMTs outside the water tank. This talk will discuss light transport in the SL as well as the design and construction of the LGs in the context of miniLENS.

  17. Experimental procedure for measuring and comparing head-neck-trunk posture and movements caused by different progressive addition lens designs.

    PubMed

    Mateo, B; Porcar-Seder, R; Solaz, J S; Dürsteler, J C

    2010-07-01

    This study demonstrates that appropriate measurement procedures can detect differences in head movement in a near reading task when using three different progressive addition lenses (PALs). The movements were measured using an anatomical reference system with a biomechanical rationale. This reference system was capable of representing rotations for comparing head flexion relative to trunk, head flexion relative to neck, head rotation relative to trunk and trunk flexion. The subject sample comprised 31 volunteers and three PAL designs with different viewing zones were selected. Significant differences were found between the lenses for three of the seven movement parameters examined. The differences occurred for both vertical and horizontal head movements and could be attributed to aspects of the PAL design. The measurement of the complete kinematic trunk-neck-head chain improved the number of differences that were found over those in previous studies. STATEMENT OF RELEVANCE: The study proposes a methodology based on a biomechanical rationale able to differentiate head-neck-trunk posture and movements caused by different progressive addition lens designs with minimum invasiveness. This methodology could also be applied to analyse the ergonomics of other devices that restrict the user's field of view, such as helmets, personal protective equipment or helmet-mounted displays for pilots. This analysis will allow designers to optimise designs offering higher comfort and performance.

  18. Flat dielectric metasurface lens array for three dimensional integral imaging

    NASA Astrophysics Data System (ADS)

    Zhang, Jianlei; Wang, Xiaorui; Yang, Yi; Yuan, Ying; Wu, Xiongxiong

    2018-05-01

    In conventional integral imaging, the singlet refractive lens array limits the imaging performance due to its prominent aberrations. Different from the refractive lens array relying on phase modulation via phase change accumulated along the optical paths, metasurfaces composed of nano-scatters can produce phase abrupt over the scale of wavelength. In this letter, we propose a novel lens array consisting of two neighboring flat dielectric metasurfaces for integral imaging system. The aspherical phase profiles of the metasurfaces are optimized to improve imaging performance. The simulation results show that our designed 5 × 5 metasurface-based lens array exhibits high image quality at designed wavelength 865 nm.

  19. Modulation transfer function of a fish-eye lens based on the sixth-order wave aberration theory.

    PubMed

    Jia, Han; Lu, Lijun; Cao, Yiqing

    2018-01-10

    A calculation program of the modulation transfer function (MTF) of a fish-eye lens is developed with the autocorrelation method, in which the sixth-order wave aberration theory of ultra-wide-angle optical systems is used to simulate the wave aberration distribution at the exit pupil of the optical systems. The autocorrelation integral is processed with the Gauss-Legendre integral, and the magnification chromatic aberration is discussed to calculate polychromatic MTF. The MTF calculation results of a given example are then compared with those previously obtained based on the fourth-order wave aberration theory of plane-symmetrical optical systems and with those from the Zemax program. The study shows that MTF based on the sixth-order wave aberration theory has satisfactory calculation accuracy even for a fish-eye lens with a large acceptance aperture. And the impacts of different types of aberrations on the MTF of a fish-eye lens are analyzed. Finally, we apply the self-adaptive and normalized real-coded genetic algorithm and the MTF developed in the paper to optimize the Nikon F/2.8 fish-eye lens; consequently, the optimized system shows better MTF performances than those of the original design.

  20. Compact and high resolution virtual mouse using lens array and light sensor

    NASA Astrophysics Data System (ADS)

    Qin, Zong; Chang, Yu-Cheng; Su, Yu-Jie; Huang, Yi-Pai; Shieh, Han-Ping David

    2016-06-01

    Virtual mouse based on IR source, lens array and light sensor was designed and implemented. Optical architecture including lens amount, lens pitch, baseline length, sensor length, lens-sensor gap, focal length etc. was carefully designed to achieve low detective error, high resolution, and simultaneously, compact system volume. System volume is 3.1mm (thickness) × 4.5mm (length) × 2, which is much smaller than that of camera-based device. Relative detective error of 0.41mm and minimum resolution of 26ppi were verified in experiments, so that it can replace conventional touchpad/touchscreen. If system thickness is eased to 20mm, resolution higher than 200ppi can be achieved to replace real mouse.

  1. Durability Enhancement of a Microelectromechanical System-Based Liquid Droplet Lens

    NASA Astrophysics Data System (ADS)

    Kyoo Lee, June; Park, Kyung-Woo; Kim, Hak-Rin; Kong, Seong Ho

    2010-06-01

    In this paper, we propose methods to enhance the durability of a microelectromechanical system (MEMS)-based liquid droplet lens driven by electrowetting. The enhanced durability of the lens is achieved through not only improvement in quality of dielectric layer for electrowetting by minimizing concentration of coarse pinholes, but also mitigation of physical and electrostatic stresses by reforming lens cavity. Silicon dioxide layer is deposited using plasma enhanced chemical vapor deposition, splitting the process into several steps to minimize the pinhole concentration in the oxide layer. And the stresses-reduced cavity in a form of overturned tetra-angular truncated pyramid with rounded corners, which is based on simulated results, is proposed and realized using silicon wet etching processes combined into anisotropic and isotropic etching.

  2. LENS: μLENS Simulations, Analysis, and Results

    NASA Astrophysics Data System (ADS)

    Rasco, Charles

    2013-04-01

    Simulations of the Low-Energy Neutrino Spectrometer prototype, μLENS, have been performed in order to benchmark the first measurements of the μLENS detector at the Kimballton Underground Research Facility (KURF). μLENS is a 6x6x6 celled scintillation lattice filled with Linear Alkylbenzene based scintillator. We have performed simulations of μLENS using the GEANT4 toolkit. We have measured various radioactive sources, LEDs, and environmental background radiation measurements at KURF using up to 96 PMTs with a simplified data acquisition system of QDCs and TDCs. In this talk we will demonstrate our understanding of the light propagation and we will compare simulation results with measurements of the μLENS detector of various radioactive sources, LEDs, and the environmental background radiation.

  3. Broadband astigmatism-corrected spectrometer design using a toroidal lens and a special filter

    NASA Astrophysics Data System (ADS)

    Ge, Xianying; Chen, Siying; Zhang, Yinchao; Chen, He; Guo, Pan; Mu, Taotao; Yang, Jian; Bu, Zhichao

    2015-01-01

    In the paper, a method to obtain a broadband, astigmatism-corrected spectrometer based on the existing Czerny-Turner spectrometer is proposed. The theories of astigmatism correction using a toroidal lens and a special filter are described in detail. Performance comparisons of the modified spectrometer and the traditional spectrometer are also presented. Results show that with the new design the RMS spot radius in sagittal view is one-eightieth of that in the traditional spectrometer over a broadband spectral range from 300 to 700 nm, without changing or moving any optical elements in the traditional spectrometer.

  4. Dual-beam laser autofocusing system based on liquid lens

    NASA Astrophysics Data System (ADS)

    Zhang, Fumin; Yao, Yannan; Qu, Xinghua; Zhang, Tong; Pei, Bing

    2017-02-01

    A dual-beam laser autofocusing system is designed in this paper. The autofocusing system is based on a liquid lens with less moving parts and fast response time, which makes the system simple, reliable, compact and fast. A novel scheme ;Time-sharing focus, fast conversion; is innovatively proposed. The scheme effectively solves the problem that the guiding laser and the working laser cannot focus at the same target point because of the existence of chromatic aberration. This scheme not only makes both guiding laser and working laser achieve optimal focusing in guiding stage and working stage respectively, but also greatly reduces the system complexity and simplifies the focusing process as well as makes autofocusing time of the working laser reduce to about 10 ms. In the distance range of 1 m to 30 m, the autofocusing spot size is kept under 4.3 mm at 30 m and just 0.18 mm at 1 m. The spot size is much less influenced by the target distance compared with the collimated laser with a micro divergence angle for its self-adaptivity. The dual-beam laser autofocusing system based on liquid lens is fully automatic, compact and efficient. It is fully meet the need of dynamicity and adaptivity and it will play an important role in a number of long-range control applications.

  5. The Zoom Lens: A Case Study in Geometrical Optics.

    ERIC Educational Resources Information Center

    Cheville, Alan; Scepanovic, Misa

    2002-01-01

    Introduces a case study on a motion picture company considering the purchase of a newly developed zoom lens in which students act as the engineers designing the zoom lens based on the criteria of company's specifications. Focuses on geometrical optics. Includes teaching notes and classroom management strategies. (YDS)

  6. Lessons in Financial Literacy Task Design: Authentic, Imaginable, Useful

    ERIC Educational Resources Information Center

    Sawatzki, Carly

    2017-01-01

    As part of ongoing design-based research exploring financial literacy teaching and learning, 10 tasks termed "financial dilemmas" were trialled by 14 teachers and more than 300 year 5 and 6 students in four government primary schools in urban Darwin. Drawing on data related to three tasks--"Catching the bus," "Laser…

  7. Design and analysis of a curved cylindrical Fresnel lens that produces high irradiance uniformity on the solar cell.

    PubMed

    González, Juan C

    2009-04-10

    A new type of convex Fresnel lens for linear photovoltaic concentration systems is presented. The lens designed with this method reaches 100% of geometrical optical efficiency, and the ratio (Aperture area)/(Receptor area) is up to 75% of the theoretical limit. The main goal of the design is high uniformity of the radiation on the cell surface for each input angle inside the acceptance. The ratio between the maximum and the minimum irradiance on points of the solar cell is less than 2. The lens has been designed with the simultaneous multiple surfaces (SMS) method of nonimaging optics, and ray tracing techniques have been used to characterize its performance for linear symmetry systems.

  8. Design of multisegmented freeform lens for LED fishing/working lamp with high efficiency.

    PubMed

    Lai, Min-Feng; Anh, Nguyen Doan Quoc; Gao, Jia-Zhi; Ma, Hsin-Yi; Lee, Hsiao-Yi

    2015-10-01

    A novel LED fishing/working light is proposed to enhance the lighting efficiency of a fishing boat. The study is focused on the freeform secondary lens design so as to create a lamp that attracts fish and sheds light on the deck for the crew's work. The experimental results show that the proposed multisegmented freeform lens can deliver the proposed aim, giving 3 times as much illuminating power as the traditional high-intensity discharge fishing lamp does with the same input of electrical power.

  9. Can manipulation of orthokeratology lens parameters modify peripheral refraction?

    PubMed

    Kang, Pauline; Gifford, Paul; Swarbrick, Helen

    2013-11-01

    To investigate changes in peripheral refraction, corneal topography, and aberrations induced by changes in orthokeratology (OK) lens parameters in myopes. Subjects were fitted with standard OK lenses that were worn overnight for 2 weeks. Peripheral refraction, corneal topography, and corneal surface aberrations were measured at baseline and after 14 nights of OK lens wear. Subsequent to a 2-week washout period, subjects were refitted with another set of lenses where one eye was randomly assigned to wear an OK lens with a smaller optic zone diameter (OZD) and the other eye with a steeper peripheral tangent. Measurements were taken again at a second baseline and after 14 days of overnight wear of the second OK lens set. Standard OK lenses with a 6-mm OZD and 1/4 peripheral tangent caused significant changes in both peripheral refraction and corneal topography. Significant hyperopic shift occurred in the central visual field (VF) while a myopic shift was found at 35 degrees in the nasal VF. OK induced significant reductions in corneal power at all positions along the horizontal corneal chord except at 2.4 mm nasal where there was no significant change and at 2.8 mm nasal where there was an increase in corneal refractive power. A positive shift in spherical aberration was induced for all investigated lens designs except for the 1/2 tangent design when calculated over a 4-mm pupil. Reducing OZD and steepening the peripheral tangent did not cause significant changes in peripheral refraction or corneal topography profiles across the horizontal meridian. OK lenses caused significant changes in peripheral refraction, corneal topography, and corneal surface aberrations. Modifying OZD and peripheral tangent made no significant difference to the peripheral refraction or corneal topography profile. Attempting to customize refraction and topography changes through manipulation of OK lens parameters appears to be a difficult task.

  10. OCT-based crystalline lens topography in accommodating eyes.

    PubMed

    Pérez-Merino, Pablo; Velasco-Ocana, Miriam; Martinez-Enriquez, Eduardo; Marcos, Susana

    2015-12-01

    Custom Spectral Domain Optical Coherence Tomography (SD-OCT) provided with automatic quantification and distortion correction algorithms was used to measure anterior and posterior crystalline lens surface elevation in accommodating eyes and to evaluate relationships between anterior segment surfaces. Nine young eyes were measured at different accommodative demands. Anterior and posterior lens radii of curvature decreased at a rate of 0.78 ± 0.18 and 0.13 ± 0.07 mm/D, anterior chamber depth decreased at 0.04 ± 0.01 mm/D and lens thickness increased at 0.04 ± 0.01 mm/D with accommodation. Three-dimensional surface elevations were estimated by subtracting best fitting spheres. In the relaxed state, the spherical term accounted for most of the surface irregularity in the anterior lens (47%) and astigmatism (70%) in the posterior lens. However, in accommodated lenses astigmatism was the predominant surface irregularity (90%) in the anterior lens. The RMS of high-order irregularities of the posterior lens surface was statistically significantly higher than that of the anterior lens surface (x2.02, p<0.0001). There was significant negative correlation in vertical coma (Z3 (-1)) and oblique trefoil (Z3 (-3)) between lens surfaces. The astigmatic angle showed high degree of alignment between corneal surfaces, moderate between corneal and anterior lens surface (~27 deg), but differed by ~80 deg between the anterior and posterior lens surfaces (including relative anterior/posterior lens astigmatic angle shifts (10-20 deg).

  11. OCT-based crystalline lens topography in accommodating eyes

    PubMed Central

    Pérez-Merino, Pablo; Velasco-Ocana, Miriam; Martinez-Enriquez, Eduardo; Marcos, Susana

    2015-01-01

    Custom Spectral Domain Optical Coherence Tomography (SD-OCT) provided with automatic quantification and distortion correction algorithms was used to measure anterior and posterior crystalline lens surface elevation in accommodating eyes and to evaluate relationships between anterior segment surfaces. Nine young eyes were measured at different accommodative demands. Anterior and posterior lens radii of curvature decreased at a rate of 0.78 ± 0.18 and 0.13 ± 0.07 mm/D, anterior chamber depth decreased at 0.04 ± 0.01 mm/D and lens thickness increased at 0.04 ± 0.01 mm/D with accommodation. Three-dimensional surface elevations were estimated by subtracting best fitting spheres. In the relaxed state, the spherical term accounted for most of the surface irregularity in the anterior lens (47%) and astigmatism (70%) in the posterior lens. However, in accommodated lenses astigmatism was the predominant surface irregularity (90%) in the anterior lens. The RMS of high-order irregularities of the posterior lens surface was statistically significantly higher than that of the anterior lens surface (x2.02, p<0.0001). There was significant negative correlation in vertical coma (Z3−1) and oblique trefoil (Z3−3) between lens surfaces. The astigmatic angle showed high degree of alignment between corneal surfaces, moderate between corneal and anterior lens surface (~27 deg), but differed by ~80 deg between the anterior and posterior lens surfaces (including relative anterior/posterior lens astigmatic angle shifts (10-20 deg). PMID:26713216

  12. Modeling and design of a cone-beam CT head scanner using task-based imaging performance optimization

    NASA Astrophysics Data System (ADS)

    Xu, J.; Sisniega, A.; Zbijewski, W.; Dang, H.; Stayman, J. W.; Wang, X.; Foos, D. H.; Aygun, N.; Koliatsos, V. E.; Siewerdsen, J. H.

    2016-04-01

    Detection of acute intracranial hemorrhage (ICH) is important for diagnosis and treatment of traumatic brain injury, stroke, postoperative bleeding, and other head and neck injuries. This paper details the design and development of a cone-beam CT (CBCT) system developed specifically for the detection of low-contrast ICH in a form suitable for application at the point of care. Recognizing such a low-contrast imaging task to be a major challenge in CBCT, the system design began with a rigorous analysis of task-based detectability including critical aspects of system geometry, hardware configuration, and artifact correction. The imaging performance model described the three-dimensional (3D) noise-equivalent quanta using a cascaded systems model that included the effects of scatter, scatter correction, hardware considerations of complementary metal-oxide semiconductor (CMOS) and flat-panel detectors (FPDs), and digitization bit depth. The performance was analyzed with respect to a low-contrast (40-80 HU), medium-frequency task representing acute ICH detection. The task-based detectability index was computed using a non-prewhitening observer model. The optimization was performed with respect to four major design considerations: (1) system geometry (including source-to-detector distance (SDD) and source-to-axis distance (SAD)); (2) factors related to the x-ray source (including focal spot size, kVp, dose, and tube power); (3) scatter correction and selection of an antiscatter grid; and (4) x-ray detector configuration (including pixel size, additive electronics noise, field of view (FOV), and frame rate, including both CMOS and a-Si:H FPDs). Optimal design choices were also considered with respect to practical constraints and available hardware components. The model was verified in comparison to measurements on a CBCT imaging bench as a function of the numerous design parameters mentioned above. An extended geometry (SAD  =  750 mm, SDD  =  1100

  13. Peak skin and eye lens radiation dose from brain perfusion CT based on Monte Carlo simulation.

    PubMed

    Zhang, Di; Cagnon, Chris H; Villablanca, J Pablo; McCollough, Cynthia H; Cody, Dianna D; Stevens, Donna M; Zankl, Maria; Demarco, John J; Turner, Adam C; Khatonabadi, Maryam; McNitt-Gray, Michael F

    2012-02-01

    The purpose of our study was to accurately estimate the radiation dose to skin and the eye lens from clinical CT brain perfusion studies, investigate how well scanner output (expressed as volume CT dose index [CTDI(vol)]) matches these estimated doses, and investigate the efficacy of eye lens dose reduction techniques. Peak skin dose and eye lens dose were estimated using Monte Carlo simulation methods on a voxelized patient model and 64-MDCT scanners from four major manufacturers. A range of clinical protocols was evaluated. CTDI(vol) for each scanner was obtained from the scanner console. Dose reduction to the eye lens was evaluated for various gantry tilt angles as well as scan locations. Peak skin dose and eye lens dose ranged from 81 mGy to 348 mGy, depending on the scanner and protocol used. Peak skin dose and eye lens dose were observed to be 66-79% and 59-63%, respectively, of the CTDI(vol) values reported by the scanners. The eye lens dose was significantly reduced when the eye lenses were not directly irradiated. CTDI(vol) should not be interpreted as patient dose; this study has shown it to overestimate dose to the skin or eye lens. These results may be used to provide more accurate estimates of actual dose to ensure that protocols are operated safely below thresholds. Tilting the gantry or moving the scanning region further away from the eyes are effective for reducing lens dose in clinical practice. These actions should be considered when they are consistent with the clinical task and patient anatomy.

  14. Supporting interruption management and multimodal interface design: three meta-analyses of task performance as a function of interrupting task modality.

    PubMed

    Lu, Sara A; Wickens, Christopher D; Prinet, Julie C; Hutchins, Shaun D; Sarter, Nadine; Sebok, Angelia

    2013-08-01

    The aim of this study was to integrate empirical data showing the effects of interrupting task modality on the performance of an ongoing visual-manual task and the interrupting task itself. The goal is to support interruption management and the design of multimodal interfaces. Multimodal interfaces have been proposed as a promising means to support interruption management.To ensure the effectiveness of this approach, their design needs to be based on an analysis of empirical data concerning the effectiveness of individual and redundant channels of information presentation. Three meta-analyses were conducted to contrast performance on an ongoing visual task and interrupting tasks as a function of interrupting task modality (auditory vs. tactile, auditory vs. visual, and single modality vs. redundant auditory-visual). In total, 68 studies were included and six moderator variables were considered. The main findings from the meta-analyses are that response times are faster for tactile interrupting tasks in case of low-urgency messages.Accuracy is higher with tactile interrupting tasks for low-complexity signals but higher with auditory interrupting tasks for high-complexity signals. Redundant auditory-visual combinations are preferable for communication tasks during high workload and with a small visual angle of separation. The three meta-analyses contribute to the knowledge base in multimodal information processing and design. They highlight the importance of moderator variables in predicting the effects of interruption task modality on ongoing and interrupting task performance. The findings from this research will help inform the design of multimodal interfaces in data-rich, event-driven domains.

  15. Design of an efficient Fresnel-type lens utilizing double total internal reflection for solar energy collection.

    PubMed

    Wallhead, Ian; Jiménez, Teresa Molina; Ortiz, Jose Vicente García; Toledo, Ignacio Gonzalez; Toledo, Cristóbal Gonzalez

    2012-11-05

    A novel of Fresnel-type lens for use as a solar collector has been designed which utilizes double total internal reflection (D-TIR) to optimize collection efficiency for high numerical aperture lenses (in the region of 0.3 to 0.6 NA). Results show that, depending on the numerical aperture and the size of the receiver, a collection efficiency theoretical improvement on the order of 20% can be expected with this new design compared with that of a conventional Fresnel lens.

  16. Principles for Designing Mathematical Tasks That Enhance Imitative and Creative Reasoning

    ERIC Educational Resources Information Center

    Lithner, Johan

    2017-01-01

    The design research programme learning by imitative and creative reasoning (LICR) studies whether, how and why tasks and teaching that enhance creative reasoning lead to a more productive struggle and more efficient learning than the common but inefficient task designs based on imitating given solution procedures. The purpose of this paper is to…

  17. Contact Lens Solutions and Contact Lens Discomfort: Examining the Correlations Between Solution Components, Keratitis, and Contact Lens Discomfort.

    PubMed

    Kuc, Christopher J; Lebow, Kenneth A

    2018-06-13

    This article will examine the current literature, as it relates to contact lens discomfort (CLD) secondary to contact lens solutions. The reader will better understand the characteristics of contact lenses, as they uniquely interact with each type of contact lens solution and also gain a better comprehension of the components of contact lens solution such as preservatives, surfactants, and chelating agents, which may contribute to discomfort. By investigating corneal staining theory and the mechanisms that contribute to its presence, the reader will gain insight into this clinical finding, which relates to selection of contact lens solutions. The FDA standards for testing solutions and how this relates to contact lens keratitis will also be appraised in regards to current ISO recommendations. Finally, better selection of multipurpose contact lens solution (MPS) and hydrogen peroxide-based solutions for patients should be accessible to the clinician based on this review and preexisting clinical findings or diagnoses. A review of current published literature from peer reviewed journals and online journals was conducted to gain an understanding of contact lens solution's impact on contact lens discomfort. Many studies have been conducted comparing comfort between various types of contact lens solutions. It is challenging to decipher this information and apply it clinically when selecting solutions for patients. By comparing solution components, how contact lens solutions interact with different types of lenses, keratitis related to contact lenses, and preexisting ocular conditions, this review will improve a clinician's ability to eliminate CLD.

  18. Fresnel Lens

    NASA Technical Reports Server (NTRS)

    Watson, Michael D.; Scott, Steve; Lamb, David; Zimmerman, Joe E. (Technical Monitor)

    2001-01-01

    Fresnel lenses span the full range of sizes from lens a few micrometers in diameter to lens several meters in diameter. These lenses are utilized in various fields including optical communication, theatrical lighting, office equipment, video entertainment systems, solar concentrators, and scientific research instruments. These lenses function either as diffractive or refractive optical elements depending on the geometrical feature size of the lens. The basic functions of these lenses is described followed by an overview of fabrication methods. A summary of applications is then provided illustrating the rich variety of applications for which fresnel lenses may be designed to fulfill.

  19. Compact touchless fingerprint reader based on digital variable-focus liquid lens

    NASA Astrophysics Data System (ADS)

    Tsai, C. W.; Wang, P. J.; Yeh, J. A.

    2014-09-01

    Identity certification in the cyberworld has always been troublesome if critical information and financial transaction must be processed. Biometric identification is the most effective measure to circumvent the identity issues in mobile devices. Due to bulky and pricy optical design, conventional optical fingerprint readers have been discarded for mobile applications. In this paper, a digital variable-focus liquid lens was adopted for capture of a floating finger via fast focusplane scanning. Only putting a finger in front of a camera could fulfill the fingerprint ID process. This prototyped fingerprint reader scans multiple focal planes from 30 mm to 15 mm in 0.2 second. Through multiple images at various focuses, one of the images is chosen for extraction of fingerprint minutiae used for identity certification. In the optical design, a digital liquid lens atop a webcam with a fixed-focus lens module is to fast-scan a floating finger at preset focus planes. The distance, rolling angle and pitching angle of the finger are stored for crucial parameters during the match process of fingerprint minutiae. This innovative compact touchless fingerprint reader could be packed into a minute size of 9.8*9.8*5 (mm) after the optical design and multiple focus-plane scan function are optimized.

  20. Design of a Test Bench for Intraocular Lens Optical Characterization

    NASA Astrophysics Data System (ADS)

    Alba-Bueno, Francisco; Vega, Fidel; Millán, María S.

    2011-01-01

    The crystalline lens is the responsible for focusing at different distances (accommodation) in the human eye. This organ grows throughout life increasing in size and rigidity. Moreover, due this growth it loses transparency through life, and becomes gradually opacified causing what is known as cataracts. Cataract is the most common cause of visual loss in the world. At present, this visual loss is recoverable by surgery in which the opacified lens is destroyed (phacoemulsification) and replaced by the implantation of an intraocular lens (IOL). If the IOL implanted is mono-focal the patient loses its natural capacity of accommodation, and as a consequence they would depend on an external optic correction to focus at different distances. In order to avoid this dependency, multifocal IOLs designs have been developed. The multi-focality can be achieved by using either, a refractive surface with different radii of curvature (refractive IOLs) or incorporating a diffractive surface (diffractive IOLs). To analyze the optical quality of IOLs it is necessary to test them in an optical bench that agrees with the ISO119679-2 1999 standard (Ophthalmic implants. Intraocular lenses. Part 2. Optical Properties and Test Methods). In addition to analyze the IOLs according to the ISO standard, we have designed an optical bench that allows us to simulate the conditions of a real human eye. To do that, we will use artificial corneas with different amounts of optical aberrations and several illumination sources with different spectral distributions. Moreover, the design of the test bench includes the possibility of testing the IOLs under off-axis conditions as well as in the presence of decentration and/or tilt. Finally, the optical imaging quality of the IOLs is assessed by using common metrics like the Modulation Transfer Function (MTF), the Point Spread Function (PSF) and/or the Strehl ratio (SR), or via registration of the IOL's wavefront with a Hartmann-Shack sensor and its

  1. Cognitive Task Analysis for Instructional Design: Applications in Distance Education.

    ERIC Educational Resources Information Center

    Redding, Richard E.

    1995-01-01

    Provides an overview of cognitive task analysis-based instructional design (CTA-BID) and its applications in the design of instructional and testing materials for distance education. Reviews developments in education, psychology, and instructional design that complement CTA-BID. (Author/AEF)

  2. Secondary optics for Fresnel lens solar concentrators

    NASA Astrophysics Data System (ADS)

    Fu, Ling; Leutz, Ralf; Annen, Hans Philipp

    2010-08-01

    Secondary optics are used in concentrating photovoltaic (CPV) systems with Fresnel lens primaries to increase the optical system efficiency by catching refracted light that otherwise would miss the receiver, better the tracking tolerance (acceptance half-angle) and enhance the flux uniformity on the cell. Several refractive secondary optics under the same Fresnel lens primary are designed, analyzed and compared based on their optical performances, materials, manufacturability, manufacturing tolerancing and cost. The goal of this work is to show the basic two different design approaches statistical mixing as opposed to deterministic mixing. Caustics are elementary in the deterministic tailoring approach. We find that statistical mixing offers higher flexibility for the solar application. It is also shown that there are conventional, i.e. designs based on conic section ("half-egg") that work well as solar secondaries. It is also made clear that primary and secondary must be designed as optical train.

  3. Microevaluating Learners' Task-Specific Motivation in a Task-Based Business Spanish Course

    ERIC Educational Resources Information Center

    Torres, Julio; Serafini, Ellen J.

    2016-01-01

    Scholars of task-based language teaching (TBLT) advocate for the identification of learners' communicative needs to inform syllabus design, particularly in language for specific purposes contexts (e.g., Long 2015). However, little research has applied TBLT principles in designing Spanish for specific purposes curricula. Moreover, despite the…

  4. Efficient flat metasurface lens for terahertz imaging.

    PubMed

    Yang, Quanlong; Gu, Jianqiang; Wang, Dongyang; Zhang, Xueqian; Tian, Zhen; Ouyang, Chunmei; Singh, Ranjan; Han, Jiaguang; Zhang, Weili

    2014-10-20

    Metamaterials offer exciting opportunities that enable precise control of amplitude, polarization and phase of the light beam at a subwavelength scale. A gradient metasurface consists of a class of anisotropic subwavelength metamaterial resonators that offer abrupt amplitude and phase changes, thus enabling new applications in optical device design such as ultrathin flat lenses. We propose a highly efficient gradient metasurface lens based on a metal-dielectric-metal structure that operates in the terahertz regime. The proposed structure consists of slotted metallic resonator arrays on two sides of a thin dielectric spacer. By varying the geometrical parameters, the metasurface lens efficiently manipulates the spatial distribution of the terahertz field and focuses the beam to a spot size on the order of a wavelength. The proposed flat metasurface lens design is polarization insensitive and works efficiently even at wide angles of incidence.

  5. Task Design and Interaction in Collaborative Writing: The Students' Story

    ERIC Educational Resources Information Center

    Bremner, Stephen; Peirson-Smith, Anne; Jones, Rodney; Bhatia, Vijay

    2014-01-01

    This article investigates student behaviour on collaborative assignments, looking at the relationship between task type and interaction, and considers the implications for task design. Students reported on interactions in a year-long workplace-focussed group communication project, comparing these with interactions on other academy-based group…

  6. Design of a secondary lens using gaussian function

    NASA Astrophysics Data System (ADS)

    Anh, Nguyen Doan Quoc; Long, Nguyen Ngoc; Van Phuoc, Nguyen; Voznak, Miroslav; Zdralek, Jaroslav

    2018-04-01

    In the article, it is recognized that the high-intensity discharge (HID) fishing lamp becomes obsolete, so we designed a free secondary lens for an LED fishing/working lamp (LFWL) to serve the lighting needs of fishing and the on-board activities on fishing boats through gaussian decomposition for taking the place it. The results proved that it is really useful to the board, sea-surface, and underwater. Moreover, the lighting efficiency of 91 % with the power consumption reducing more than 3 times could be achieved when the proposed LED fishing/working lamps are used instead of the HID fishing lamps.

  7. Finite Element Analysis of the LOLA Receiver Telescope Lens

    NASA Technical Reports Server (NTRS)

    Matzinger, Elizabeth

    2007-01-01

    This paper presents the finite element stress and distortion analysis completed on the Receiver Telescope lens of the Lunar Orbiter Laser Altimeter (LOLA). LOLA is one of six instruments on the Lunar Reconnaissance Orbiter (LRO), scheduled to launch in 2008. LOLA's main objective is to produce a high-resolution global lunar topographic model to aid in safe landings and enhance surface mobility in future exploration missions. The Receiver Telescope captures the laser pulses transmitted through a diffractive optical element (DOE) and reflected off the lunar surface. The largest lens of the Receiver Telescope, Lens 1, is a 150 mm diameter aspheric lens originally designed to be made of BK7 glass. The finite element model of the Receiver Telescope Lens 1 is comprised of solid elements and constrained in a manner consistent with the behavior of the mounting configuration of the Receiver Telescope tube. Twenty-one temperature load cases were mapped to the nodes based on thermal analysis completed by LOLA's lead thermal analyst, and loads were applied to simulate the preload applied from the ring flexure. The thermal environment of the baseline design (uncoated BK7 lens with no baffle) produces large radial and axial gradients in the lens. These large gradients create internal stresses that may lead to part failure, as well as significant bending that degrades optical performance. The high stresses and large distortions shown in the analysis precipitated a design change from BK7 glass to sapphire.

  8. CMU DeepLens: deep learning for automatic image-based galaxy-galaxy strong lens finding

    NASA Astrophysics Data System (ADS)

    Lanusse, François; Ma, Quanbin; Li, Nan; Collett, Thomas E.; Li, Chun-Liang; Ravanbakhsh, Siamak; Mandelbaum, Rachel; Póczos, Barnabás

    2018-01-01

    Galaxy-scale strong gravitational lensing can not only provide a valuable probe of the dark matter distribution of massive galaxies, but also provide valuable cosmological constraints, either by studying the population of strong lenses or by measuring time delays in lensed quasars. Due to the rarity of galaxy-scale strongly lensed systems, fast and reliable automated lens finding methods will be essential in the era of large surveys such as Large Synoptic Survey Telescope, Euclid and Wide-Field Infrared Survey Telescope. To tackle this challenge, we introduce CMU DeepLens, a new fully automated galaxy-galaxy lens finding method based on deep learning. This supervised machine learning approach does not require any tuning after the training step which only requires realistic image simulations of strongly lensed systems. We train and validate our model on a set of 20 000 LSST-like mock observations including a range of lensed systems of various sizes and signal-to-noise ratios (S/N). We find on our simulated data set that for a rejection rate of non-lenses of 99 per cent, a completeness of 90 per cent can be achieved for lenses with Einstein radii larger than 1.4 arcsec and S/N larger than 20 on individual g-band LSST exposures. Finally, we emphasize the importance of realistically complex simulations for training such machine learning methods by demonstrating that the performance of models of significantly different complexities cannot be distinguished on simpler simulations. We make our code publicly available at https://github.com/McWilliamsCenter/CMUDeepLens.

  9. Optical integration of Pancharatnam-Berry phase lens and dynamical phase lens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ke, Yougang; Liu, Yachao; Zhou, Junxiao

    In the optical system, most elements such as lens, prism, and optical fiber are made of silica glass. Therefore, integrating Pancharatnam-Berry phase elements into silica glass has potential applications in the optical system. In this paper, we take a lens, for example, which integrates a Pancharatnam-Berry phase lens into a conventional plano-convex lens. The spin states and positions of focal points can be modulated by controlling the polarization states of the incident beam. The proposed lens has a high transmission efficiency, and thereby acts as a simple and powerful tool to manipulate spin photons. Furthermore, the method can be convenientlymore » extended to the optical fiber and laser cavity, and may provide a route to the design of the spin-photonic devices.« less

  10. Studies on Muon Induction Acceleration and an Objective Lens Design for Transmission Muon Microscope

    NASA Astrophysics Data System (ADS)

    Artikova, Sayyora; Yoshida, Mitsuhiro; Naito, Fujio

    Muon acceleration will be accomplished by a set of induction cells, where each increases the energy of the muon beam by an increment of up to 30 kV. The cells are arranged in a linear way resulting in total accelerating voltage of 300 kV. Acceleration time in the linac is about hundred nanoseconds. Induction field calculation is based on an electrostatic approximation. Beam dynamics in the induction accelerator is investigated and final beam focusing on specimen is realized by designing a pole piece lens.

  11. Simulation design of light field imaging based on ZEMAX

    NASA Astrophysics Data System (ADS)

    Zhou, Ke; Xiao, Xiangguo; Luan, Yadong; Zhou, Xiaobin

    2017-02-01

    Based on the principium of light field imaging, there designed a objective lens and a microlens array for gathering the light field feature, the homologous ZEMAX models was also be built. Then all the parameters were optimized using ZEMAX and the simulation image was given out. It pointed out that the position relationship between the objective lens and the microlens array had a great affect on imaging, which was the guidance when developing a prototype.

  12. Development of a Double-Gauss Lens Based Setup for Optoacoustic Applications

    PubMed Central

    Choi, Hojong; Ryu, Jae-Myung; Yeom, Jung-Yeol

    2017-01-01

    In optoacoustic (photoacoustic) systems, different echo signal intensities such as amplitudes, center frequencies, and bandwidths need to be compensated by utilizing variable gain or time-gain compensation amplifiers. However, such electronic components can increase system complexities and signal noise levels. In this paper, we introduce a double-Gauss lens to generate a large field of view with uniform light intensity due to the low chromatic aberrations of the lens, thus obtaining uniform echo signal intensities across the field of view of the optoacoustic system. In order to validate the uniformity of the echo signal intensities in the system, an in-house transducer was placed at various positions above a tissue sample and echo signals were measured and compared with each other. The custom designed double-Gauss lens demonstrated negligible light intensity variation (±1.5%) across the illumination field of view (~2 cm diameter). When the transducer was used to measure echo signal from an eye of a bigeye tuna within a range of ±1 cm, the peak-to-peak amplitude, center frequency, and their −6 dB bandwidth variations were less than 2 mV, 1 MHz, and 6%, respectively. The custom designed double-Gauss lens can provide uniform light beam across a wide area while generating insignificant echo signal variations, and thus can lower the burden of the receiving electronics or signal processing in the optoacoustic system. PMID:28273794

  13. Influence of intraocular lens material and design on postoperative intracapsular cellular reactivity.

    PubMed Central

    Apple, D J

    2000-01-01

    PURPOSE: To evaluate the influence of intraocular lens (IOL) material and design on the outcome of postoperative lens epithelial cell proliferation within the capsular bag after cataract surgery. METHODS: A total of 5,079 human globes containing rigid and foldable posterior chamber IOL styles commonly implanted in the United States (n = 8) were analyzed in this study. Each globe, fixated in 10% formalin, was sectioned at the equator and analyzed using the Miyake-Apple posterior technique. The study consisted of 3 parts: First, to evaluate posterior capsule opacification (PCO); the Nd:YAG laser posterior capsulotomy rate (%) was documented and plotted on a monthly basis, creating a computerized trend line for each IOL style. Second, to evaluate anterior capsule opacification (ACO); 460 globes were processed for histologic examination. Anterior capsule fibrosis was scored from 0 to III, according to the thickness of proliferative tissue/cells on the inner surface of the anterior capsule at the capsulorhexis margin. Third, interlenticular opacification (ILO) was studied by analysis of 3 pairs of acrylic piggyback lenses that had been explanted because of opacification between their optics. Each IOL pair was processed for histologic examination, and scanning electron microscopy was performed on 1 of the lenses. RESULTS: In the first study, relatively higher Nd:YAG laser posterior capsulotomy rates (19.1% to 32.8%) were noted with the 4 oldest IOL designs in this study (2 foldable lenses, 1 3-piece polymethyl methacrylate [PMMA] design, and 1 single-piece all-PMMA design). Four modern lenses, 1 acrylic lens, and 3 silicone foldable IOL designs had Nd:YAG rates ranging from 1.3% to 14.6% (P < .0001). In the second study, mean ACO scores were highest with silicone-plate lenses (1.77 +/- 0.86 and 1.28 +/- 0.77). The lowest mean score was observed with the acrylic lens (0.51 +/- 0.52; P < .0001). In study 3, the analyses of the 3 pairs of explanted acrylic piggyback lenses

  14. Using Heuristic Task Analysis to Create Web-Based Instructional Design Theory

    ERIC Educational Resources Information Center

    Fiester, Herbert R.

    2010-01-01

    The first purpose of this study was to identify procedural and heuristic knowledge used when creating web-based instruction. The second purpose of this study was to develop suggestions for improving the Heuristic Task Analysis process, a technique for eliciting, analyzing, and representing expertise in cognitively complex tasks. Three expert…

  15. Space imaging measurement system based on fixed lens and moving detector

    NASA Astrophysics Data System (ADS)

    Akiyama, Akira; Doshida, Minoru; Mutoh, Eiichiro; Kumagai, Hideo; Yamada, Hirofumi; Ishii, Hiromitsu

    2006-08-01

    We have developed the Space Imaging Measurement System based on the fixed lens and fast moving detector to the control of the autonomous ground vehicle. The space measurement is the most important task in the development of the autonomous ground vehicle. In this study we move the detector back and forth along the optical axis at the fast rate to measure the three-dimensional image data. This system is just appropriate to the autonomous ground vehicle because this system does not send out any optical energy to measure the distance and keep the safety. And we use the digital camera of the visible ray range. Therefore it gives us the cost reduction of the three-dimensional image data acquisition with respect to the imaging laser system. We can combine many pieces of the narrow space imaging measurement data to construct the wide range three-dimensional data. This gives us the improvement of the image recognition with respect to the object space. To develop the fast movement of the detector, we build the counter mass balance in the mechanical crank system of the Space Imaging Measurement System. And then we set up the duct to prevent the optical noise due to the ray not coming through lens. The object distance is derived from the focus distance which related to the best focused image data. The best focused image data is selected from the image of the maximum standard deviation in the standard deviations of series images.

  16. Developing Students' Ideas about Lens Imaging: Teaching Experiments with an Image-Based Approach

    ERIC Educational Resources Information Center

    Grusche, Sascha

    2017-01-01

    Lens imaging is a classic topic in physics education. To guide students from their holistic viewpoint to the scientists' analytic viewpoint, an image-based approach to lens imaging has recently been proposed. To study the effect of the image-based approach on undergraduate students' ideas, teaching experiments are performed and evaluated using…

  17. Examining pre-service science teachers' developing pedagogical design capacity for planning and supporting task-based classroom discussions

    NASA Astrophysics Data System (ADS)

    Ross, Danielle Kristina

    ambitious planning practices they learned in their coursework. In contrast, pre-service teachers with low pedagogical design capacity appeared to appropriate the vocabulary and language they learned in coursework, but did not integrate these practices at a high level. This study suggests that pre-service teachers who receive intensive instruction on ambitious planning practices for task-based discussion effectively develop the pedagogical design capacity to plan for task-based discussion lessons.

  18. Generation of dark hollow beam by focusing a sine-Gaussian beam using a cylindrical lens and a focusing lens

    NASA Astrophysics Data System (ADS)

    Tang, Huiqin; Zhu, Kaicheng

    2013-12-01

    Based on the generalized Huygens-Fresnel diffraction integral, a closed-form propagation equation related to sine-Gaussian beams through a cylindrical lens and a focusing lens is derived and illustrated with numerical methods. It is found that a sine-Gaussian beam through such a system may be converted into a dark hollow beam (DHB) with topological charge index one and its bright enclosure is approximately an elongated ellipse with very high ellipticity. Moreover, the parameter values at which the DHBs have perfect intensity patterns are designed. The optimal relative orientation between the dislocation line of the input sine-Gaussian beam and the axial orientation of the cylindrical lens is specified. And the ellipticity of the elliptical DHBs is mainly defined by the focal length of the cylindrical lens and the Fresnel number of the optical system.

  19. Designing Templates for Interactive Tasks in CALL Tutorials.

    ERIC Educational Resources Information Center

    Ruhlmann, Felicitas

    The development of templates for computer-assisted language learning (CALL) is discussed, based on experiences with primarily linear multimedia tutorial programs. Design of templates for multiple-choice questions and interactive tasks in a prototype module is described. Possibilities of enhancing interactivity by introducing problem-oriented…

  20. Learning Effects in the Block Design Task: A Stimulus Parameter-Based Approach

    ERIC Educational Resources Information Center

    Miller, Joseph C.; Ruthig, Joelle C.; Bradley, April R.; Wise, Richard A.; Pedersen, Heather A.; Ellison, Jo M.

    2009-01-01

    Learning effects were assessed for the block design (BD) task, on the basis of variation in 2 stimulus parameters: perceptual cohesiveness (PC) and set size uncertainty (U). Thirty-one nonclinical undergraduate students (19 female) each completed 3 designs for each of 4 varied sets of the stimulus parameters (high-PC/high-U, high-PC/low-U,…

  1. Lens Systems for Sky Surveys and Space Surveillance

    NASA Astrophysics Data System (ADS)

    Ackermann, M.; McGraw, J.; Zimmer, P.

    2013-09-01

    Since the early days of astrophotography, lens systems have played a key role in capturing images of the night sky. The first images were attempted with visual-refractors. These were soon followed with color-corrected refractors and finally specially designed photo-refractors. Being telescopes, these instruments were of long-focus and imaged narrow fields of view. Simple photographic lenses were soon put into service to capture wide-field images. These lenses also had the advantage of requiring shorter exposure times than possible using large refractors. Eventually, lenses were specifically designed for astrophotography. With the introduction of the Schmidt-camera and related catadioptric systems, the popularity of astrograph lenses declined, but surprisingly, a few remained in use. Over the last 30 years, as small CCDs have displaced large photographic plates, lens systems have again found favor for their ability to image great swaths of sky in a relatively small and simple package. In this paper, we follow the development of lens-based astrograph systems from their beginnings through the current use of both commercial and custom lens systems for sky surveys and space surveillance. Some of the optical milestones discussed include the early Petzval-type portrait lenses, the Ross astrographic lens and the current generation of optics such as the commercial 200mm camera lens by Canon, and the Russian VT-53e in service with ISON.

  2. Mind the Gap: Task Design and Technology in Novice Language Teachers' Practice

    ERIC Educational Resources Information Center

    Smits, Tom F. H.; Oberhofer, Margret; Colpaert, Jozef

    2016-01-01

    This paper focuses on the possibilities/challenges for English as a Foreign Language (EFL) teachers designing tasks grounded in Task-Based Language Teaching (TBLT) and taking advantage of the affordances of technology--Interactive WhiteBoards (IWBs). Teachers have been shown to confuse tasks with exercises or activities. The interactive…

  3. Annular folded electrowetting liquid lens.

    PubMed

    Li, Lei; Liu, Chao; Ren, Hongwen; Deng, Huan; Wang, Qiong-Hua

    2015-05-01

    We report an annular folded electrowetting liquid lens. The front surface of the lens is coated with a circular reflection film, while the back surface of the lens is coated with a ring-shaped reflection film. This approach allows the lens to get optical power from the liquid-liquid interface three times so that the optical power is tripled. An analysis of the properties of the annular folded electrowetting liquid lens is presented along with the design, fabrication, and testing of a prototype. Our results show that the optical power of the proposed liquid lens can be enhanced from ∼20.1 to ∼50.2  m(-1) in comparison with that of the conventional liquid lens (aperture ∼3.9  mm). It can reduce the operating voltage by ∼10  V to reach the same diopter as a conventional liquid lens. Our liquid lens has the advantages of compact structure, light weight, and improved optical resolution.

  4. Coherent beam control with an all-dielectric transformation optics based lens

    NASA Astrophysics Data System (ADS)

    Yi, Jianjia; Burokur, Shah Nawaz; Piau, Gérard-Pascal; de Lustrac, André

    2016-01-01

    Transformation optics (TO) concept well known for its huge possibility in patterning the path of electromagnetic waves is exploited to design a beam steering lens. The broadband directive in-phase emission in a desired off-normal direction from an array of equally fed radiators is numerically and experimentally reported. Such manipulation is achieved without the use of complex and bulky phase shifters as it is the case in classical phased array antennas. The all-dielectric compact low-cost lens prototype presenting a graded permittivity profile is fabricated through three-dimensional (3D) polyjet printing technology. The array of radiators is composed of four planar microstrip antennas realized using standard lithography techniques and is used as excitation source for the lens. To validate the proposed lens, we experimentally demonstrate the broadband focusing properties and in-phase directive emissions deflected from the normal direction. Both the far-field radiation patterns and the near-field distributions are measured and reported. Measurements agree quantitatively and qualitatively with numerical full-wave simulations and confirm the corresponding steering properties. Such experimental validation paves the way to inexpensive easy-made all-dielectric microwave lenses for beam forming and collimation.

  5. Coherent beam control with an all-dielectric transformation optics based lens.

    PubMed

    Yi, Jianjia; Burokur, Shah Nawaz; Piau, Gérard-Pascal; de Lustrac, André

    2016-01-05

    Transformation optics (TO) concept well known for its huge possibility in patterning the path of electromagnetic waves is exploited to design a beam steering lens. The broadband directive in-phase emission in a desired off-normal direction from an array of equally fed radiators is numerically and experimentally reported. Such manipulation is achieved without the use of complex and bulky phase shifters as it is the case in classical phased array antennas. The all-dielectric compact low-cost lens prototype presenting a graded permittivity profile is fabricated through three-dimensional (3D) polyjet printing technology. The array of radiators is composed of four planar microstrip antennas realized using standard lithography techniques and is used as excitation source for the lens. To validate the proposed lens, we experimentally demonstrate the broadband focusing properties and in-phase directive emissions deflected from the normal direction. Both the far-field radiation patterns and the near-field distributions are measured and reported. Measurements agree quantitatively and qualitatively with numerical full-wave simulations and confirm the corresponding steering properties. Such experimental validation paves the way to inexpensive easy-made all-dielectric microwave lenses for beam forming and collimation.

  6. Peripheral myopization and visual performance with experimental rigid gas permeable and soft contact lens design.

    PubMed

    Pauné, J; Queiros, A; Quevedo, L; Neves, H; Lopes-Ferreira, D; González-Méijome, J M

    2014-12-01

    To evaluate the performance of two experimental contact lenses (CL) designed to induce relative peripheral myopic defocus in myopic eyes. Ten right eyes of 10 subjects were fitted with three different CL: a soft experimental lens (ExpSCL), a rigid gas permeable experimental lens (ExpRGP) and a standard RGP lens made of the same material (StdRGP). Central and peripheral refraction was measured using a Grand Seiko open-field autorefractometer across the central 60° of the horizontal visual field. Ocular aberrations were measured with a Hartman-Shack aberrometer, and monocular contrast sensitivity function (CSF) was measured with a VCTS6500 without and with the three contact lenses. Both experimental lenses were able to increase significantly the relative peripheral myopic defocus up to -0.50 D in the nasal field and -1.00 D in the temporal field (p<0.05). The ExpRGP induced a significantly higher myopic defocus in the temporal field compared to the ExpSCL. ExpSCL induced significantly lower levels of Spherical-like HOA than ExpRGP for the 5mm pupil size (p<0.05). Both experimental lenses kept CSF within normal limits without any statistically significant change from baseline (p>0.05). RGP lens design seems to be more effective to induce a significant myopic change in the relative peripheral refractive error. Both lenses preserve a good visual performance. The worsened optical quality observed in ExpRGP was due to an increased coma-like and spherical-like HOA. However, no impact on the visual quality as measured by CSF was observed. Copyright © 2014 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.

  7. Mechanically assisted liquid lens zoom system for mobile phone cameras

    NASA Astrophysics Data System (ADS)

    Wippermann, F. C.; Schreiber, P.; Bräuer, A.; Berge, B.

    2006-08-01

    Camera systems with small form factor are an integral part of today's mobile phones which recently feature auto focus functionality. Ready to market solutions without moving parts have been developed by using the electrowetting technology. Besides virtually no deterioration, easy control electronics and simple and therefore cost-effective fabrication, this type of liquid lenses enables extremely fast settling times compared to mechanical approaches. As a next evolutionary step mobile phone cameras will be equipped with zoom functionality. We present first order considerations for the optical design of a miniaturized zoom system based on liquid-lenses and compare it to its mechanical counterpart. We propose a design of a zoom lens with a zoom factor of 2.5 considering state-of-the-art commercially available liquid lens products. The lens possesses auto focus capability and is based on liquid lenses and one additional mechanical actuator. The combination of liquid lenses and a single mechanical actuator enables extremely short settling times of about 20ms for the auto focus and a simplified mechanical system design leading to lower production cost and longer life time. The camera system has a mechanical outline of 24mm in length and 8mm in diameter. The lens with f/# 3.5 provides market relevant optical performance and is designed for an image circle of 6.25mm (1/2.8" format sensor).

  8. Critical Issues in Telecollaborative Task Design

    ERIC Educational Resources Information Center

    O'Dowd, R.; Waire, P.

    2009-01-01

    In this article we examine how instructors make decisions about task design in telecollaboration and the factors that influence these decisions during the actual implementation of the tasks. We begin with a review of the recent literature of online intercultural exchanges to identify and describe a typology of 12 different types of tasks and task…

  9. A method of LED free-form tilted lens rapid modeling based on scheme language

    NASA Astrophysics Data System (ADS)

    Dai, Yidan

    2017-10-01

    According to nonimaging optical principle and traditional LED free-form surface lens, a new kind of LED free-form tilted lens was designed. And a method of rapid modeling based on Scheme language was proposed. The mesh division method was applied to obtain the corresponding surface configuration according to the character of the light source and the desired energy distribution on the illumination plane. Then 3D modeling software and the Scheme language programming are used to generate lens model respectively. With the help of optical simulation software, a light source with the size of 1mm*1mm*1mm in volume is used in experiment, and the lateral migration distance of illumination area is 0.5m, in which total one million rays are computed. We could acquire the simulated results of both models. The simulated output result shows that the Scheme language can prevent the model deformation problems caused by the process of the model transfer, and the degree of illumination uniformity is reached to 82%, and the offset angle is 26°. Also, the efficiency of modeling process is greatly increased by using Scheme language.

  10. Evaluation of lens distortion errors in video-based motion analysis

    NASA Technical Reports Server (NTRS)

    Poliner, Jeffrey; Wilmington, Robert; Klute, Glenn K.; Micocci, Angelo

    1993-01-01

    In an effort to study lens distortion errors, a grid of points of known dimensions was constructed and videotaped using a standard and a wide-angle lens. Recorded images were played back on a VCR and stored on a personal computer. Using these stored images, two experiments were conducted. Errors were calculated as the difference in distance from the known coordinates of the points to the calculated coordinates. The purposes of this project were as follows: (1) to develop the methodology to evaluate errors introduced by lens distortion; (2) to quantify and compare errors introduced by use of both a 'standard' and a wide-angle lens; (3) to investigate techniques to minimize lens-induced errors; and (4) to determine the most effective use of calibration points when using a wide-angle lens with a significant amount of distortion. It was seen that when using a wide-angle lens, errors from lens distortion could be as high as 10 percent of the size of the entire field of view. Even with a standard lens, there was a small amount of lens distortion. It was also found that the choice of calibration points influenced the lens distortion error. By properly selecting the calibration points and avoidance of the outermost regions of a wide-angle lens, the error from lens distortion can be kept below approximately 0.5 percent with a standard lens and 1.5 percent with a wide-angle lens.

  11. Evaluating the Potential of Teacher-Designed Technology-Based Tasks for Meaningful Learning: Identifying Needs for Professional Development

    ERIC Educational Resources Information Center

    George, Ann; Sanders, Martie

    2017-01-01

    With technology increasingly being introduced into classrooms worldwide, stakeholders are asking whether ICT provides educational value. It is not simply having access to technology but how teachers use it that will determine its worth to education. Thirty-three teacher-designed technology-based tasks from eight subject areas were analysed for…

  12. Improved illumination system of laparoscopes using an aspherical lens array.

    PubMed

    Wu, Rengmao; Qin, Yi; Hua, Hong

    2016-06-01

    The current fiber-based illumination systems of laparoscopes are unable to uniformly illuminate a large enough area in abdomen due to the limited numerical aperture (NA) of the fiber bundle. Most energy is concentrated in a small region at the center of the illumination area. This limitation becomes problematic in laparoscopes which require capturing a wide field of view. In this paper, we propose an aspherical lens array which is used to direct the outgoing rays from the fiber bundle of laparoscope to produce a more uniformly illuminated, substantially larger field coverage than standalone fiber source. An intensity feedback method is developed to design the aspherical lens unit for extended non-Lambertian sources, which is the key to the design of this lens array. By this method, the lens unit is obtained after only one iteration, and the lens array is constructed by Boolean operation. Then, the ray-tracing technique is used to verify the design. Further, the lens array is fabricated and experimental tests are performed. The results clearly show that the well-illuminated area is increased to about 0.107m(2) from 0.02m(2) (about 5x larger than a standard fiber illumination source). More details of the internal organs can be clearly observed under this improved illumination condition, which also reflects the significant improvement in the optical performance of the laparoscope.

  13. The Effects of Study Tasks in a Computer-Based Chemistry Learning Environment

    NASA Astrophysics Data System (ADS)

    Urhahne, Detlef; Nick, Sabine; Poepping, Anna Christin; Schulz, Sarah Jayne

    2013-12-01

    The present study examines the effects of different study tasks on the acquisition of knowledge about acids and bases in a computer-based learning environment. Three different task formats were selected to create three treatment conditions: learning with gap-fill and matching tasks, learning with multiple-choice tasks, and learning only from text and figures without any additional tasks. Participants were 196 ninth-grade students who learned with a self-developed multimedia program in a pretest-posttest control group design. Research results reveal that gap-fill and matching tasks were most effective in promoting knowledge acquisition, followed by multiple-choice tasks, and no tasks at all. The findings are in line with previous research on this topic. The effects can possibly be explained by the generation-recognition model, which predicts that gap-fill and matching tasks trigger more encompassing learning processes than multiple-choice tasks. It is concluded that instructional designers should incorporate more challenging study tasks for enhancing the effectiveness of computer-based learning environments.

  14. Developing students’ ideas about lens imaging: teaching experiments with an image-based approach

    NASA Astrophysics Data System (ADS)

    Grusche, Sascha

    2017-07-01

    Lens imaging is a classic topic in physics education. To guide students from their holistic viewpoint to the scientists’ analytic viewpoint, an image-based approach to lens imaging has recently been proposed. To study the effect of the image-based approach on undergraduate students’ ideas, teaching experiments are performed and evaluated using qualitative content analysis. Some of the students’ ideas have not been reported before, namely those related to blurry lens images, and those developed by the proposed teaching approach. To describe learning pathways systematically, a conception-versus-time coordinate system is introduced, specifying how teaching actions help students advance toward a scientific understanding.

  15. Freeform Lens Design for Scattering Data with General Radiant Fields

    NASA Astrophysics Data System (ADS)

    Gutiérrez, Cristian E.; Sabra, Ahmad

    2018-05-01

    We show the existence of a lens, when its lower face is given, such that it refracts radiation emanating from a planar source, with a given field of directions, into the far field that preserves a given distribution of energies. Conditions are shown under which the lens obtained is physically realizable. It is shown that the upper face of the lens satisfies a pde of Monge-Ampère type.

  16. Experimental evaluation and design of unfilled and concrete-filled FRP composite piles : Task 4A : design specifications.

    DOT National Transportation Integrated Search

    2015-08-01

    The overall goal of this project is the experimental evaluation and design of unfilled and concrete-filled FRP composite piles for load-bearing in bridges. This report covers Task 4A, Design Specifications. : Structural design specifications are base...

  17. Design and Use of Task Cards in the Reciprocal Style of Teaching

    ERIC Educational Resources Information Center

    Iserbyt, Peter; Byra, Mark

    2013-01-01

    Task cards are instructional tools that combine a picture of a skill with written instructions about how to perform the skill. This article provides practical guidelines for developing research-based task cards for use in physical education classes. Fitness-related motor skills are used as examples to clarify design principles for task cards. The…

  18. Balancing Expression and Structure in Game Design: Developing Computational Participation Using Studio-Based Design Pedagogy

    ERIC Educational Resources Information Center

    DeVane, Ben; Steward, Cody; Tran, Kelly M.

    2016-01-01

    This article reports on a project that used a game-creation tool to introduce middle-school students ages 10 to 13 to problem-solving strategies similar to those in computer science through the lens of studio-based design arts. Drawing on historic paradigms in design pedagogy and contemporary educational approaches in the digital arts to teach…

  19. Projection model for flame chemiluminescence tomography based on lens imaging

    NASA Astrophysics Data System (ADS)

    Wan, Minggang; Zhuang, Jihui

    2018-04-01

    For flame chemiluminescence tomography (FCT) based on lens imaging, the projection model is essential because it formulates the mathematical relation between the flame projections captured by cameras and the chemiluminescence field, and, through this relation, the field is reconstructed. This work proposed the blurry-spot (BS) model, which takes more universal assumptions and has higher accuracy than the widely applied line-of-sight model. By combining the geometrical camera model and the thin-lens equation, the BS model takes into account perspective effect of the camera lens; by combining ray-tracing technique and Monte Carlo simulation, it also considers inhomogeneous distribution of captured radiance on the image plane. Performance of these two models in FCT was numerically compared, and results showed that using the BS model could lead to better reconstruction quality in wider application ranges.

  20. Design of Magnetic Charged Particle Lens Using Analytical Potential Formula

    NASA Astrophysics Data System (ADS)

    Al-Batat, A. H.; Yaseen, M. J.; Abbas, S. R.; Al-Amshani, M. S.; Hasan, H. S.

    2018-05-01

    In the current research was to benefit from the potential of the two cylindrical electric lenses to be used in the product a mathematical model from which, one can determine the magnetic field distribution of the charged particle objective lens. With aid of simulink in matlab environment, some simulink models have been building to determine the distribution of the target function and their related axial functions along the optical axis of the charged particle lens. The present study showed that the physical parameters (i.e., the maximum value, Bmax, and the half width W of the field distribution) and the objective properties of the charged particle lens have been affected by varying the main geometrical parameter of the lens named the bore radius R.

  1. The influence of crystalline lens accommodation on post-saccadic oscillations in pupil-based eye trackers.

    PubMed

    Nyström, Marcus; Andersson, Richard; Magnusson, Måns; Pansell, Tony; Hooge, Ignace

    2015-02-01

    It is well known that the crystalline lens (henceforth lens) can oscillate (or 'wobble') relative to the eyeball at the end of saccades. Recent research has proposed that such wobbling of the lens is a source of post-saccadic oscillations (PSOs) seen in data recorded by eye trackers that estimate gaze direction from the location of the pupil. Since the size of the lens wobbles increases with accommodative effort, one would predict a similar increase of PSO-amplitude in data recorded with a pupil based eye tracker. In four experiments, we investigated the role of lens accommodation on PSOs in a video-based eye tracker. In Experiment 1, we replicated previous results showing that PSO-amplitudes increase at near viewing distances (large vergence angles), when the lens is highly accommodated. In Experiment 2a, we manipulated the accommodative state of the lens pharmacologically using eye drops at a fixed viewing distance and found, in contrast to Experiment 1, no significant difference in PSO-amplitude related to the accommodative state of the lens. Finally, in Experiment 2b, the effect of vergence angle was investigated by comparing PSO-amplitudes at near and far while maintaining a fixed lens accommodation. Despite the pharmacologically fixed degree of accommodation, PSO-amplitudes were systematically larger in the near condition. In summary, PSOs cannot exhaustively be explained by lens wobbles. Possible confounds related to pupil size and eye-camera angle are investigated in Experiments 3 and 4, and alternative mechanisms behind PSOs are probed in the discussion. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Effective Task Design for the TBL Classroom

    ERIC Educational Resources Information Center

    Roberson, Bill; Franchini, Billie

    2014-01-01

    Group and team tasks are the culminating outputs of student learning in team and collaborative learning environments. How they are conceived and designed, therefore, can directly determine the success of the pedagogical strategy. A key design issue for creating effective tasks is how best to focus student knowledge, observation, and analysis…

  3. Beam steering performance of compressed Luneburg lens based on transformation optics

    NASA Astrophysics Data System (ADS)

    Gao, Ju; Wang, Cong; Zhang, Kuang; Hao, Yang; Wu, Qun

    2018-06-01

    In this paper, two types of compressed Luneburg lenses based on transformation optics are investigated and simulated using two different sources, namely, waveguides and dipoles, which represent plane and spherical wave sources, respectively. We determined that the largest beam steering angle and the related feed point are intrinsic characteristics of a certain type of compressed Luneburg lens, and that the optimized distance between the feed and lens, gain enhancement, and side-lobe suppression are related to the type of source. Based on our results, we anticipate that these lenses will prove useful in various future antenna applications.

  4. Electrowetting based infrared lens using ionic liquids

    NASA Astrophysics Data System (ADS)

    Hu, Xiaodong; Zhang, Shiguo; Liu, Yu; Qu, Chao; Lu, Liujin; Ma, Xiangyuan; Zhang, Xiaoping; Deng, Youquan

    2011-11-01

    We demonstrated an infrared variable focus ionic liquids lens using electrowetting, which could overcome the problems caused by use of water, e.g., evaporation and poor thermostability, while keeping good optical transparency in visible light and near-infrared region. Besides, the type of lens (convex or concave) could be tuned by applied voltage or refractive index of ILs used, and the transmittance was measured to exceed 90% over the spectrum of visible light and near-infrared. We believe this infrared variable focus ionic liquids lens has a great application prospect in both visible light and infrared image systems.

  5. Contact lens design with slope-constrained Q-type aspheres for myopia correction

    NASA Astrophysics Data System (ADS)

    Peng, Wei-Jei; Cheng, Yuan-Chieh; Hsu, Wei-Yao; Yu, Zong-Ru; Ho, Cheng-Fang; Abou-El-Hossein, Khaled

    2017-08-01

    The design of the rigid contact lens (CL) with slope-constrained Q-type aspheres for myopia correction is presented in this paper. The spherical CL is the most common type for myopia correction, however the spherical aberration (SA) caused from the pupil dilation in dark leads to the degradation of visual acuity which cannot be corrected by spherical surface. The spherical and aspheric CLs are designed respectively based on Liou's schematic eye model, and the criterion is the modulation transfer function (MTF) at the frequency of 100 line pair per mm, which corresponds to the normal vision of one arc-minute. After optimization, the MTF of the aspheric design is superior to that of the spherical design, because the aspheric surface corrects the SA for improving the visual acuity in dark. For avoiding the scratch caused from the contact profilometer, the aspheric surface is designed to match the measurability of the interferometer. The Q-type aspheric surface is employed to constrain the root-mean-square (rms) slope of the departure from a best-fit sphere directly, because the fringe density is limited by the interferometer. The maximum sag departure from a best-fit sphere is also controlled according to the measurability of the aspheric stitching interferometer (ASI). The inflection point is removed during optimization for measurability and appearance. In this study, the aspheric CL is successfully designed with Q-type aspheres for the measurability of the interferometer. It not only corrects the myopia but also eliminates the SA for improving the visual acuity in dark based on the schematic eye model.

  6. LENS: Science Scope and Development Stages

    NASA Astrophysics Data System (ADS)

    Vogelaar, R. Bruce

    2013-04-01

    The Low-Energy Neutrino Spectroscopy (LENS) experiment will resolve the solar metallicity question via measurement of the CNO neutrino flux, as well as test the predicted equivalence of solar luminosity as measured by photon versus neutrinos. The LENS detector uses charged-current interaction of neutrinos on Indium-115 (loaded in a scintillator, InLS) to reveal the complete solar neutrino spectrum. LENS's optically segmented 3D lattice geometry achieves precise time and spatial resolution and unprecedented background rejection and sensitivity for low-energy neutrino events. This first-of-a-kind lattice design is also suited for a range of other applications where high segmentation and large light collection are required (eg: sterile neutrinos with sources, double beta decay, and surface detection of reactor neutrinos). The physics scope, detector design, and logic driving the microLENS and miniLENS prototyping stages will be presented. The collaboration is actively running programs; building, operating, developing, and simulating these prototypes using the Kimballton Underground Research Facility (KURF). New members are welcome to the LENS Collaboration, and interested parties should contact R. Bruce Vogelaar.

  7. Constructing Knowledge via a Peer Interaction in a CAS Environment with Tasks Designed from a Task-Technique-Theory Perspective

    ERIC Educational Resources Information Center

    Hitt, Fernando; Kieran, Carolyn

    2009-01-01

    Our research project aimed at understanding the complexity of the construction of knowledge in a CAS environment. Basing our work on the French instrumental approach, in particular the Task-Technique-Theory (T-T-T) theoretical frame as adapted from Chevallard's Anthropological Theory of Didactics, we were mindful that a careful task design process…

  8. Understanding Task-in-Process through the Lens of Laughter: Activity Designs, Instructional Materials, Learner Orientations, and Interpersonal Relationships

    ERIC Educational Resources Information Center

    Hasegawa, Atsushi

    2018-01-01

    Using the framework of conversation analysis, this study investigated the interactional workings of laughter in task-based interactions. The analysis was drawn from 160 cases of pair work interactions, collected in 2nd-semester Japanese-as-a-foreign-language classrooms. The pair work activities examined in this study are mostly grammar-focused,…

  9. Nonadhesive, silica nanoparticles-based brush-coated contact lens cases--compromising between ease of cleaning and microbial transmission to contact lenses.

    PubMed

    Qu, Wenwen; Hooymans, Johanna M M; Qiu, Jun; de-Bont, Nik; Gelling, Onko-Jan; van der Mei, Henny C; Busscher, Henk J

    2013-05-01

    Surface properties of lens cases are determinant for their cleanability and for microbial transmission from lens cases to contact lenses (CLs). PEG-polymer-brush-coatings are known to decrease microbial adhesion more than other surface-coatings. Here, we applied a robust, silica nanoparticles-based brush-coating to polypropylene cases to evaluate their ease of cleaning and probability of bacterial transmission to CLs. Adhesion forces of nine bacterial strains (Pseudomonas, Staphylococci, and Serratia) to rigid CLs, polypropylene, and silica nanoparticles-based brush-coated polypropylene were measured using atomic-force-microscopy and subjected to Weibull analyses to yield bacterial transmission probabilities. Biofilms of each strain were grown in coated and uncoated cases and rinsed with a NaCl or antimicrobial lens care solution. Residual, viable organisms were quantified. Bacterial adhesion forces of all strains were significantly, up to tenfold smaller on brush-coated than on uncoated polypropylene. This yielded, higher transmission probabilities to a CL, but mild-rinsing yielded 10-100 fold higher removal of bacteria from brush-coated than from polypropylene cases. Moreover, due to weak adhesion forces, bacteria on brush-coated cases were two-to-three fold more susceptible to an antimicrobial lens care solution than on polypropylene cases. Therewith, the design of lens case surfaces is a compromise between ease of cleaning and transmission probability to CLs. Copyright © 2013 Wiley Periodicals, Inc.

  10. Bifocal Fresnel Lens Based on the Polarization-Sensitive Metasurface

    NASA Astrophysics Data System (ADS)

    Markovich, Hen; Filonov, Dmitrii; Shishkin, Ivan; Ginzburg, Pavel

    2018-05-01

    Thin structured surfaces allow flexible control over propagation of electromagnetic waves. Focusing and polarization state analysis are among functions, required for effective manipulation of radiation. Here a polarization sensitive Fresnel zone plate lens is proposed and experimentally demonstrated for GHz spectral range. Two spatially separated focal spots for orthogonal polarizations are obtained by designing metasurface pattern, made of overlapping tightly packed cross and rod shaped antennas with a strong polarization selectivity. Optimized subwavelength pattern allows multiplexing two different lenses with low polarization crosstalk on the same substrate and provides a control over focal spots of the lens only by changing of the polarization state of the incident wave. More than a wavelength separation between the focal spots was demonstrated for a broad spectral range, covering half a decade in frequency. The proposed concept could be straightforwardly extended for THz and visible spectra, where polarization-sensitive elements utilize localized plasmon resonance phenomenon.

  11. Generation of Olympic logo with freeform lens array

    NASA Astrophysics Data System (ADS)

    Liu, Chengkun; Huang, Qilu; Qiu, Yishen; Chen, Weijuan; Liao, Tingdi

    2017-10-01

    In this paper, the Olympic rings pattern is generated by using freeform lens array and illumination light source array. Based on nonimaging optics, the freeform lens array is designed for point light source, which can generate the focused pattern of annular light spot. In order to obtain the Olympic logo pattern of five rings, the array with five freeform lenses is used. By adjusting the emission angle of each light source, the annular spot is obtained at different positions of the target plane and the Olympic rings logo is formed. We used the shading plate on the surface of the freeform lens to reduce the local light intensity so that the light spot overall irradiance distribution is more uniform. We designed a freeform lens with aperture of 26.2mm, focal length of 2000mm and the diameter of a single annual spot is 400mm. We modeled freeform lens and simulated by optical software TracePro. The ray tracing results show that the Olympic rings with uniform illumination can be obtained on the target plane with the optical efficiency up to 85.7%. At the same time, this paper also studies the effects of the target plane defocusing on the spot pattern. Simulations show that when the distance of the receiving surface to the focal plane varies within 300mm, a reasonable uniform and small distorted light spot pattern can be obtained. Compared with the traditional projection method, our method of design has the advantages of high optical efficiency, low cost and the pattern is clear and uniform.

  12. Determinants of linear judgment: a meta-analysis of lens model studies.

    PubMed

    Karelaia, Natalia; Hogarth, Robin M

    2008-05-01

    The mathematical representation of E. Brunswik's (1952) lens model has been used extensively to study human judgment and provides a unique opportunity to conduct a meta-analysis of studies that covers roughly 5 decades. Specifically, the authors analyzed statistics of the "lens model equation" (L. R. Tucker, 1964) associated with 249 different task environments obtained from 86 articles. On average, fairly high levels of judgmental achievement were found, and people were seen to be capable of achieving similar levels of cognitive performance in noisy and predictable environments. Further, the effects of task characteristics that influence judgment (numbers and types of cues, inter-cue redundancy, function forms and cue weights in the ecology, laboratory versus field studies, and experience with the task) were identified and estimated. A detailed analysis of learning studies revealed that the most effective form of feedback was information about the task. The authors also analyzed empirically under what conditions the application of bootstrapping--or replacing judges by their linear models--is advantageous. Finally, the authors note shortcomings of the kinds of studies conducted to date, limitations in the lens model methodology, and possibilities for future research. (Copyright) 2008 APA, all rights reserved.

  13. Development of high precision and cryogenic lens holders

    NASA Astrophysics Data System (ADS)

    Reutlinger, A.; Boesz, Anton; Mottaghibonab, A.; Eckert, P.; Dubowy, M.; Gebler, H.; Grupp, F.; Geis, N.; Bode, A.; Katterloher, R.; Bender, R.

    2017-11-01

    The optical system of the Near Infrared Spectrometer and Photometer (NISP) of the EUCLID mission consists mainly of a filter and grism wheel and 4 aspherical lenses with large diameters up to 170 mm. The single lenses require a high precision positioning at the operational temperature of 150 K. An additional design driver represents the CaF2 material of a lens, which is very sensitive wrt brittleness. The technical maturity of the combination of single features such as CaF2, large diameter (and mass), high precision and cryogenic conditions is considered as low. Therefore, a dedicated pre-development program has been launched to design and develop a first prototype of lens holder and to demonstrate the functional performance at representative operational conditions. The 4 lenses are divided into 3x lenses for the Camera Lens Assembly (CaLA) and 1x lens for the Corrector Lens Assembly (CoLA). Each lens is glue mounted onto solid state springs, part of an adaption ring. The adaption ring shall provide protection against vibration loads, high accuracy positioning, as well as quasi load free mounting of the lens under operational conditions. To reduce thermomechanical loads on the lens, the CTE of the adaption ring is adapted to that of the lens. The glue between lens and solid state spring has to withstand high tension loads during vibration. At the operational temperature the deviating CTE between glue and lens/adaption ring introduces shear loads into the glue interface, which are critical, in particular for the fragile CaF2 lens material. For the case of NISP the shear loads are controlled with the glue pad diameter and the glue thickness. In the context of the development activity many technology aspects such as various solid state spring designs, glue selection and glue handling have been investigated. A parametric structural model was developed to derive the specific design feature of each ring, such as spring force, number of springs, eigenfrequency, etc. This

  14. Trifocal intraocular lenses: a comparison of the visual performance and quality of vision provided by two different lens designs.

    PubMed

    Gundersen, Kjell G; Potvin, Rick

    2017-01-01

    To compare two different diffractive trifocal intraocular lens (IOL) designs, evaluating longer-term refractive outcomes, visual acuity (VA) at various distances, low contrast VA and quality of vision. Patients with binocularly implanted trifocal IOLs of two different designs (FineVision [FV] and Panoptix [PX]) were evaluated 6 months to 2 years after surgery. Best distance-corrected and uncorrected VA were tested at distance (4 m), intermediate (80 and 60 cm) and near (40 cm). A binocular defocus curve was collected with the subject's best distance correction in place. The preferred reading distance was determined along with the VA at that distance. Low contrast VA at distance was also measured. Quality of vision was measured with the National Eye Institute Visual Function Questionnaire near subset and the Quality of Vision questionnaire. Thirty subjects in each group were successfully recruited. The binocular defocus curves differed only at vergences of -1.0 D (FV better, P =0.02), -1.5 and -2.00 D (PX better, P <0.01 for both). Best distance-corrected and uncorrected binocular vision were significantly better for the PX lens at 60 cm ( P <0.01) with no significant differences at other distances. The preferred reading distance was between 42 and 43 cm for both lenses, with the VA at the preferred reading distance slightly better with the PX lens ( P =0.04). There were no statistically significant differences by lens for low contrast VA ( P =0.1) or for quality of vision measures ( P >0.3). Both trifocal lenses provided excellent distance, intermediate and near vision, but several measures indicated that the PX lens provided better intermediate vision at 60 cm. This may be important to users of tablets and other handheld devices. Quality of vision appeared similar between the two lens designs.

  15. A PDMS-based cylindrical hybrid lens for enhanced fluorescence detection in microfluidic systems.

    PubMed

    Lin, Bor-Shyh; Yang, Yu-Ching; Ho, Chong-Yi; Yang, Han-Yu; Wang, Hsiang-Yu

    2014-02-13

    Microfluidic systems based on fluorescence detection have been developed and applied for many biological and chemical applications. Because of the tiny amount of sample in the system; the induced fluorescence can be weak. Therefore, most microfluidic systems deploy multiple optical components or sophisticated equipment to enhance the efficiency of fluorescence detection. However, these strategies encounter common issues of complex manufacturing processes and high costs. In this study; a miniature, cylindrical and hybrid lens made of polydimethylsiloxane (PDMS) to improve the fluorescence detection in microfluidic systems is proposed. The hybrid lens integrates a laser focusing lens and a fluorescence collecting lens to achieve dual functions and simplify optical setup. Moreover, PDMS has advantages of low-cost and straightforward fabrication compared with conventional optical components. The performance of the proposed lens is first examined with two fluorescent dyes and the results show that the lens provides satisfactory enhancement for fluorescence detection of Rhodamine 6G and Nile Red. The overall increments in collected fluorescence signal and detection sensitivity are more than 220% of those without lens, and the detection limits of Rhodamine 6G and Nile red are lowered to 0.01 μg/mL and 0.05 μg/mL, respectively. The hybrid lens is further applied to the detection of Nile red-labeled Chlorella vulgaris cells and it increases both signal intensity and detection sensitivity by more than 520%. The proposed hybrid lens also dramatically reduces the variation in detected signal caused by the deviation in incident angle of excitation light.

  16. Free-form surface design method for a collimator TIR lens.

    PubMed

    Tsai, Chung-Yu

    2016-04-01

    A free-form (FF) surface design method is proposed for a general axial-symmetrical collimator system consisting of a light source and a total internal reflection lens with two coupled FF boundary surfaces. The profiles of the boundary surfaces are designed using a FF surface construction method such that each incident ray is directed (refracted and reflected) in such a way as to form a specified image pattern on the target plane. The light ray paths within the system are analyzed using an exact analytical model and a skew-ray tracing approach. In addition, the validity of the proposed FF design method is demonstrated by means of ZEMAX simulations. It is shown that the illumination distribution formed on the target plane is in good agreement with that specified by the user. The proposed surface construction method is mathematically straightforward and easily implemented in computer code. As such, it provides a useful tool for the design and analysis of general axial-symmetrical optical systems.

  17. "METHOD": A tool for mechanical, electrical, thermal, and optical characterization of single lens module design

    NASA Astrophysics Data System (ADS)

    Besson, Pierre; Dominguez, Cesar; Voarino, Philippe; Garcia-Linares, Pablo; Weick, Clement; Lemiti, Mustapha; Baudrit, Mathieu

    2015-09-01

    The optical characterization and electrical performance evaluation are essential in the design and optimization of a concentrator photovoltaic system. The geometry, materials, and size of concentrator optics are diverse and different environmental conditions impact their performance. CEA has developed a new concentrator photovoltaic system characterization bench, METHOD, which enables multi-physics optimization studies. The lens and cell temperatures are controlled independently with the METHOD to study their isolated effects on the electrical and optical performance of the system. These influences can be studied in terms of their effect on optical efficiency, focal distance, spectral sensitivity, electrical efficiency, or cell current matching. Furthermore, the irradiance map of a concentrator optic can be mapped to study its variations versus the focal length or the lens temperature. The present work shows this application to analyze the performance of a Fresnel lens linking temperature to optical and electrical performance.

  18. Broadband metamaterial lens antennas with special properties by controlling both refractive-index distribution and feed directivity

    NASA Astrophysics Data System (ADS)

    Ma, Qian; Shi, Chuan Bo; Chen, Tian Yi; Qing Qi, Mei; Li, Yun Bo; Cui, Tie Jun

    2018-04-01

    A new method is proposed to design gradient refractive-index metamaterial lens antennas by optimizing both the refractive-index distribution of the lens and the feed directivity. Comparing to the conventional design methods, source optimization provides a new degree of freedom to control aperture fields effectively. To demonstrate this method, two lenses with special properties based on this method are designed, to emit high-efficiency plane waves and fan-shaped beams, respectively. Both lenses have good performance and wide frequency band from 12 to 18 GHz, verifying the validity of the proposed method. The plane-wave emitting lens realized a high aperture efficiency of 75%, and the fan-beam lens achieved a high gain of 15 dB over board bandwidth. The experimental results have good agreement with the design targets and full-wave simulations.

  19. ProteoLens: a visual analytic tool for multi-scale database-driven biological network data mining.

    PubMed

    Huan, Tianxiao; Sivachenko, Andrey Y; Harrison, Scott H; Chen, Jake Y

    2008-08-12

    New systems biology studies require researchers to understand how interplay among myriads of biomolecular entities is orchestrated in order to achieve high-level cellular and physiological functions. Many software tools have been developed in the past decade to help researchers visually navigate large networks of biomolecular interactions with built-in template-based query capabilities. To further advance researchers' ability to interrogate global physiological states of cells through multi-scale visual network explorations, new visualization software tools still need to be developed to empower the analysis. A robust visual data analysis platform driven by database management systems to perform bi-directional data processing-to-visualizations with declarative querying capabilities is needed. We developed ProteoLens as a JAVA-based visual analytic software tool for creating, annotating and exploring multi-scale biological networks. It supports direct database connectivity to either Oracle or PostgreSQL database tables/views, on which SQL statements using both Data Definition Languages (DDL) and Data Manipulation languages (DML) may be specified. The robust query languages embedded directly within the visualization software help users to bring their network data into a visualization context for annotation and exploration. ProteoLens supports graph/network represented data in standard Graph Modeling Language (GML) formats, and this enables interoperation with a wide range of other visual layout tools. The architectural design of ProteoLens enables the de-coupling of complex network data visualization tasks into two distinct phases: 1) creating network data association rules, which are mapping rules between network node IDs or edge IDs and data attributes such as functional annotations, expression levels, scores, synonyms, descriptions etc; 2) applying network data association rules to build the network and perform the visual annotation of graph nodes and edges

  20. Miniature hybrid optical imaging lens

    DOEpatents

    Sitter, Jr., David N.; Simpson, Marc L.

    1997-01-01

    A miniature lens system that corrects for imaging and chromatic aberrations, the lens system being fabricated from primarily commercially-available components. A first element at the input to a lens housing is an aperture stop. A second optical element is a refractive element with a diffractive element closely coupled to, or formed a part of, the rear surface of the refractive element. Spaced closely to the diffractive element is a baffle to limit the area of the image, and this is closely followed by a second refractive lens element to provide the final correction. The image, corrected for aberrations exits the last lens element to impinge upon a detector plane were is positioned any desired detector array. The diffractive element is fabricated according to an equation that includes, as variables, the design wavelength, the index of refraction and the radius from an optical axis of the lens system components.

  1. Improved integrating-sphere throughput with a lens and nonimaging concentrator.

    PubMed

    Chenault, D B; Snail, K A; Hanssen, L M

    1995-12-01

    A reflectometer design utilizing an integrating sphere with a lens and nonimaging concentrator is described. Compared with previous designs where a collimator was used to restrict the detector field of view, the concentrator-lens combination significantly increases the throughput of the reflectometer. A procedure for designing lens-concentrators is given along with the results of parametric studies. The measured angular response of a lens-concentrator system is compared with ray-trace predictions and with the response of an ideal system.

  2. Multistage Polymeric Lens Structures Integrated into Silica Waveguides

    NASA Astrophysics Data System (ADS)

    Tate, Atsushi; Suzuki, Takanori; Tsuda, Hiroyuki

    2006-08-01

    A waveguide lens, composed of multistage polymer-filled thin grooves in a silica planar lightwave circuit (PLC) is proposed and a low-loss structure has been designed. A waveguide lens in a silica slab waveguide has been fabricated using reactive ion etching (RIE) and formed by filling with polymer. Both an imagding optical system and a Fourier-transform optical system can be configured in a PLC using a waveguide lens. It renders the PLC functional and its design flexible. To obtain a shorter focal length with a low insertion loss, it is more effective to use a multistage lens structure. An imaging optical system and a Fourier-transform optical system with a focal length of less than 1000 μm were fabricated in silica waveguides using a multistage lens structure. The lens imaging waveguides incorporate a 16-24-stage lens, with insertion losses of 4-7 dB. A 4 × 4 optical coupler, using a Fourier-transform optical system, utilizes a 6-stage lens with losses of 2-4 dB.

  3. Experimental Contact Lens to Prevent Glaucoma-Induced Blindness

    MedlinePlus

    ... By Sharon Reynolds Posted January 23, 2014 An experimental contact lens design releases a glaucoma medicine at a steady rate ... materials. Other designs have most often used a pre-made lens dipped in a drug solution, which ...

  4. A broadband terahertz ultrathin multi-focus lens

    PubMed Central

    He, Jingwen; Ye, Jiasheng; Wang, Xinke; Kan, Qiang; Zhang, Yan

    2016-01-01

    Ultrathin transmission metasurface devices are designed on the basis of the Yang-Gu amplitude-phase retrieval algorithm for focusing the terahertz (THz) radiation into four or nine spots with focal spacing of 2 or 3 mm at a frequency of 0.8 THz. The focal properties are experimentally investigated in detail, and the results agree well with the theoretical expectations. The designed THz multi-focus lens (TMFL) demonstrates a good focusing function over a broad frequency range from 0.3 to 1.1 THz. As a transmission-type device based on metasurface, the diffraction efficiency of the TMFL can be as high as 33.92% at the designed frequency. The imaging function of the TMFL is also demonstrated experimentally and clear images are obtained. The proposed method produces an ultrathin, low-cost, and broadband multi-focus lens for THz-band application PMID:27346430

  5. Design of an Adaptive Human-Machine System Based on Dynamical Pattern Recognition of Cognitive Task-Load.

    PubMed

    Zhang, Jianhua; Yin, Zhong; Wang, Rubin

    2017-01-01

    This paper developed a cognitive task-load (CTL) classification algorithm and allocation strategy to sustain the optimal operator CTL levels over time in safety-critical human-machine integrated systems. An adaptive human-machine system is designed based on a non-linear dynamic CTL classifier, which maps a set of electroencephalogram (EEG) and electrocardiogram (ECG) related features to a few CTL classes. The least-squares support vector machine (LSSVM) is used as dynamic pattern classifier. A series of electrophysiological and performance data acquisition experiments were performed on seven volunteer participants under a simulated process control task environment. The participant-specific dynamic LSSVM model is constructed to classify the instantaneous CTL into five classes at each time instant. The initial feature set, comprising 56 EEG and ECG related features, is reduced to a set of 12 salient features (including 11 EEG-related features) by using the locality preserving projection (LPP) technique. An overall correct classification rate of about 80% is achieved for the 5-class CTL classification problem. Then the predicted CTL is used to adaptively allocate the number of process control tasks between operator and computer-based controller. Simulation results showed that the overall performance of the human-machine system can be improved by using the adaptive automation strategy proposed.

  6. Numerical investigation on the viewing angle of a lenticular three-dimensional display with a triplet lens array.

    PubMed

    Kim, Hwi; Hahn, Joonku; Choi, Hee-Jin

    2011-04-10

    We investigate the viewing angle enhancement of a lenticular three-dimensional (3D) display with a triplet lens array. The theoretical limitations of the viewing angle and view number of the lenticular 3D display with the triplet lens array are analyzed numerically. For this, the genetic-algorithm-based design method of the triplet lens is developed. We show that a lenticular 3D display with viewing angle of 120° and 144 views without interview cross talk can be realized with the use of an optimally designed triplet lens array. © 2011 Optical Society of America

  7. Design, fabrication, and implementation of voxel-based 3D printed textured phantoms for task-based image quality assessment in CT

    NASA Astrophysics Data System (ADS)

    Solomon, Justin; Ba, Alexandre; Diao, Andrew; Lo, Joseph; Bier, Elianna; Bochud, François; Gehm, Michael; Samei, Ehsan

    2016-03-01

    In x-ray computed tomography (CT), task-based image quality studies are typically performed using uniform background phantoms with low-contrast signals. Such studies may have limited clinical relevancy for modern non-linear CT systems due to possible influence of background texture on image quality. The purpose of this study was to design and implement anatomically informed textured phantoms for task-based assessment of low-contrast detection. Liver volumes were segmented from 23 abdominal CT cases. The volumes were characterized in terms of texture features from gray-level co-occurrence and run-length matrices. Using a 3D clustered lumpy background (CLB) model, a fitting technique based on a genetic optimization algorithm was used to find the CLB parameters that were most reflective of the liver textures, accounting for CT system factors of spatial blurring and noise. With the modeled background texture as a guide, a cylinder phantom (165 mm in diameter and 30 mm height) was designed, containing 20 low-contrast spherical signals (6 mm in diameter at targeted contrast levels of ~3.2, 5.2, 7.2, 10, and 14 HU, 4 repeats per signal). The phantom was voxelized and input into a commercial multi-material 3D printer (Object Connex 350), with custom software for voxel-based printing. Using principles of digital half-toning and dithering, the 3D printer was programmed to distribute two base materials (VeroWhite and TangoPlus, nominal voxel size of 42x84x30 microns) to achieve the targeted spatial distribution of x-ray attenuation properties. The phantom was used for task-based image quality assessment of a clinically available iterative reconstruction algorithm (Sinogram Affirmed Iterative Reconstruction, SAFIRE) using a channelized Hotelling observer paradigm. Images of the textured phantom and a corresponding uniform phantom were acquired at six dose levels and observer model performance was estimated for each condition (5 contrasts x 6 doses x 2 reconstructions x 2

  8. Lens-based wavefront sensorless adaptive optics swept source OCT

    NASA Astrophysics Data System (ADS)

    Jian, Yifan; Lee, Sujin; Ju, Myeong Jin; Heisler, Morgan; Ding, Weiguang; Zawadzki, Robert J.; Bonora, Stefano; Sarunic, Marinko V.

    2016-06-01

    Optical coherence tomography (OCT) has revolutionized modern ophthalmology, providing depth resolved images of the retinal layers in a system that is suited to a clinical environment. Although the axial resolution of OCT system, which is a function of the light source bandwidth, is sufficient to resolve retinal features at a micrometer scale, the lateral resolution is dependent on the delivery optics and is limited by ocular aberrations. Through the combination of wavefront sensorless adaptive optics and the use of dual deformable transmissive optical elements, we present a compact lens-based OCT system at an imaging wavelength of 1060 nm for high resolution retinal imaging. We utilized a commercially available variable focal length lens to correct for a wide range of defocus commonly found in patient’s eyes, and a novel multi-actuator adaptive lens for aberration correction to achieve near diffraction limited imaging performance at the retina. With a parallel processing computational platform, high resolution cross-sectional and en face retinal image acquisition and display was performed in real time. In order to demonstrate the system functionality and clinical utility, we present images of the photoreceptor cone mosaic and other retinal layers acquired in vivo from research subjects.

  9. Miniature hybrid optical imaging lens

    DOEpatents

    Sitter, D.N. Jr.; Simpson, M.L.

    1997-10-21

    A miniature lens system that corrects for imaging and chromatic aberrations is disclosed, the lens system being fabricated from primarily commercially-available components. A first element at the input to a lens housing is an aperture stop. A second optical element is a refractive element with a diffractive element closely coupled to, or formed a part of, the rear surface of the refractive element. Spaced closely to the diffractive element is a baffle to limit the area of the image, and this is closely followed by a second refractive lens element to provide the final correction. The image, corrected for aberrations exits the last lens element to impinge upon a detector plane were is positioned any desired detector array. The diffractive element is fabricated according to an equation that includes, as variables, the design wavelength, the index of refraction and the radius from an optical axis of the lens system components. 2 figs.

  10. Storyboarding: A Method for Bootstrapping the Design of Computer-Based Educational Tasks

    ERIC Educational Resources Information Center

    Jones, Ian

    2008-01-01

    There has been a recent call for the use of more systematic thought experiments when investigating learning. This paper presents a storyboarding method for capturing and sharing initial ideas and their evolution in the design of a mathematics learning task. The storyboards produced can be considered as "virtual data" created by thought experiments…

  11. Task-oriented display design - Concept and example

    NASA Technical Reports Server (NTRS)

    Abbott, Terence S.

    1989-01-01

    The general topic was in the area of display design alternatives for improved man-machine performance. The intent was to define and assess a display design concept oriented toward providing this task-oriented information. The major focus of this concept deals with the processing of data into parameters that are more relevant to the task of the human operator. Closely coupled to this concept of relevant information is the form or manner in which this information is actually presented. Conventional forms of presentation are normally a direct representation of the underlying data. By providing information in a form that is more easily assimilated and understood, a reduction in human error and cognitive workload may be obtained. A description of this proposed concept with a design example is provided. The application for the example was an engine display for a generic, twin-engine civil transport aircraft. The product of this concept was evaluated against a functionally similar, traditional display. The results of this evaluation showed that a task-oriented approach to design is a viable concept with regard to reducing user error and cognitive workload. The goal of this design process, providing task-oriented information to the user, both in content and form, appears to be a feasible mechanism for increasing the overall performance of a man-machine system.

  12. Task-oriented display design: Concept and example

    NASA Technical Reports Server (NTRS)

    Abbott, Terence S.

    1989-01-01

    The general topic was in the area of display design alternatives for improved man-machine performance. The intent was to define and assess a display design concept oriented toward providing this task-oriented information. The major focus of this concept deals with the processing of data into parameters that are more relevant to the task of the human operator. Closely coupled to this concept of relevant information is the form or manner in which this information is actually presented. Conventional forms of presentation are normally a direct representation of the underlying data. By providing information in a form that is more easily assimilated and understood, a reduction in human error and cognitive workload may be obtained. A description of this proposed concept with a design example is provided. The application for the example was an engine display for a generic, twin-engine civil transport aircraft. The product of this concept was evaluated against a functionally similar, traditional display. The results of this evaluation showed that a task-oriented approach to design is a viable concept with regard to reducing user error and cognitive workload. The goal of this design process, providing task-oriented information to the user, both in content and form, appears to be a feasible mechanism for increasing the overall performance of a man-machine system.

  13. Aspheric glass lens modeling and machining

    NASA Astrophysics Data System (ADS)

    Johnson, R. Barry; Mandina, Michael

    2005-08-01

    The incorporation of aspheric lenses in complex lens system can provide significant image quality improvement, reduction of the number of lens elements, smaller size, and lower weight. Recently, it has become practical to manufacture aspheric glass lenses using diamond-grinding methods. The evolution of the manufacturing technology is discussed for a specific aspheric glass lens. When a prototype all-glass lens system (80 mm efl, F/2.5) was fabricated and tested, it was observed that the image quality was significantly less than was predicted by the optical design software. The cause of the degradation was identified as the large aspheric element in the lens. Identification was possible by precision mapping of the spatial coordinates of the lens surface and then transforming this data into an appropriate optical surface defined by derived grid sag data. The resulting optical analysis yielded a modeled image consistent with that observed when testing the prototype lens system in the laboratory. This insight into a localized slope-error problem allowed improvements in the fabrication process to be implemented. The second fabrication attempt, the resulting aspheric lens provided remarkable improvement in the observed image quality, although still falling somewhat short of the desired image quality goal. In parallel with the fabrication enhancement effort, optical modeling of the surface was undertaken to determine how much surface error and error types were allowable to achieve the desired image quality goal. With this knowledge, final improvements were made to the fabrication process. The third prototype lens achieved the goal of optical performance. Rapid development of the aspheric glass lens was made possible by the interactive relationship between the optical designer, diamond-grinding personnel, and the metrology personnel. With rare exceptions, the subsequent production lenses were optical acceptable and afforded reasonable manufacturing costs.

  14. Luneburg lens with extended flat focal surface for electronic scan applications.

    PubMed

    Li, Ying; Zhu, Qi

    2016-04-04

    Luneburg lens with flat focal surface has been developed to work together with planar antenna feeds for beam steering applications. According to our analysis of the conventional flattened Luneburg lens, it cannot accommodate enough feeding elements which can cover its whole scan range with half power beamwidths (HPBWs). In this paper, a novel Luneburg lens with extended flat focal surface is proposed based on the theory of Quasi-Conformal Transformation Optics (QCTO), with its beam steering features reserved. To demonstrate this design, a three-dimensional (3D) prototype of this novel extend-flattened Luneburg lens working at Ku band is fabricated based on 3D printing techniques, whose flat focal surface is attached to a 9-element microstrip antenna array to achieve different scan angles. Our measured results show that, with different antenna elements being fed, the HPBWs can cover the whole scan range.

  15. Snapshots of mathematics teacher noticing during task design

    NASA Astrophysics Data System (ADS)

    Choy, Ban Heng

    2016-09-01

    Designing a mathematically worthwhile task is critical for promoting students' reasoning. To improve task design skills, teachers often engage in collaborative lesson planning activities such as lesson study. However, to learn from the process of lesson study, it is important for teachers to notice productively the concepts, students' confusion and the design of the task. But what researchers mean by productive noticing varies. In this article, I present the FOCUS Framework which highlights two characteristics of productive noticing: having an explicit focus for noticing and focusing noticing through pedagogical reasoning. Using these two characteristics, I develop snapshots of noticing as a representation of practice to present a fine-grained analysis of teacher noticing. Through vignettes of teachers discussing the design of a task to teach fractions, I illustrate how two teachers' noticing can be analysed and represented using snapshots of noticing. To conclude, I highlight what snapshots of noticing tell us about a teacher's noticing and suggest ways to use these snapshots in future studies of noticing.

  16. Micro lens design for efficiency improvement of red organic light-emitting diode

    NASA Astrophysics Data System (ADS)

    Ki, Hyun-Chul; Kim, Doo-Gun; Kim, Seon-Hoon; Jung, U.-Ra; Kim, Sang-Gi; Hong, Kyung-Jin

    2012-11-01

    We have proposed a micro lens to improve the luminance of red organic light-emitting devices (ROLEDs). The micro lenses were applied on the glass/indium tin oxide (ITO)/OLED. The size, thickness and diameter of micro lenses were calculated by using FDTD (finite-difference timedomain) method. Simulations were performed for 5 µm and 10 µm sized. The thickness and the gap of the micro lens were both 1 µm. The material of the micro lenses was silicon dioxide. The highest luminance of an OLED applied with a micro lens was 11,185 cd/m2, at on approval voltage of 14.5 V, The efficiency of the device with a micro lens increased by 3 times compared to that of the device with no micro lens.

  17. Ultrasound liquid crystal lens

    NASA Astrophysics Data System (ADS)

    Shimizu, Yuki; Koyama, Daisuke; Fukui, Marina; Emoto, Akira; Nakamura, Kentaro; Matsukawa, Mami

    2018-04-01

    A variable-focus lens using a combination of liquid crystals and ultrasound is discussed. The lens uses a technique based on ultrasound vibration to control the molecular orientation of the liquid crystal. The lens structure is simple, with no mechanical moving parts and no transparent electrodes, which is helpful for device downsizing; the structure consists of a liquid crystal layer sandwiched between two glass substrates with a piezoelectric ring. The tens-of-kHz ultrasonic resonance flexural vibration used to excite the lens generates an acoustic radiation force on the liquid crystal layer to induce changes in the molecular orientation of the liquid crystal. The orientations of the liquid crystal molecules and the optical characteristics of the lens were investigated under ultrasound excitation. Clear optical images were observed through the lens, and the focal point could be controlled using the input voltage to the piezoelectric ring to give the lens its variable-focus action.

  18. Early lens extraction with intraocular lens implantation for the treatment of primary angle closure glaucoma: an economic evaluation based on data from the EAGLE trial

    PubMed Central

    Javanbakht, Mehdi; Azuara-Blanco, Augusto; Burr, Jennifer M; Ramsay, Craig; Cooper, David; Cochran, Claire; Norrie, John; Scotland, Graham

    2017-01-01

    Objective To investigate the cost-effectiveness of early lens extraction with intraocular lens implantation for the treatment of primary angle closure glaucoma (PACG) compared to standard care. Design Cost-effectiveness analysis alongside a multicentre pragmatic two-arm randomised controlled trial. Patients were followed-up for 36 months, and data on health service usage and health state utility were collected and analysed within the trial time horizon. A Markov model was developed to extrapolate the results over a 5-year and 10-year time horizon. Setting 22 hospital eye services in the UK. Population Males and females aged 50 years or over with newly diagnosed PACG or primary angle closure (PAC). Interventions Lens extraction compared to standard care (ie, laser iridotomy followed by medical therapy and glaucoma surgery). Outcome measures Costs of primary and secondary healthcare usage (UK NHS perspective), quality-adjusted life years (QALYs) and the incremental cost-effectiveness ratio (ICER) for lens extraction versus standard care. Results The mean age of participants was 67.5 (8.42), 57.5% were women, 44.6% had both eyes eligible, 1.4% were of Asian ethnicity and 35.4% had PAC. The mean health service costs were higher in patients randomised to lens extraction: £2467 vs £1486. The mean adjusted QALYs were also higher with early lens extraction: 2.602 vs 2.533. The ICER for lens extraction versus standard care was £14 284 per QALY gained at three years. Modelling suggests that the ICER may drop to £7090 per QALY gained by 5 years and that lens extraction may be cost saving by 10 years. Our results are generally robust to changes in the key input parameters and assumptions. Conclusions We find that lens extraction has a 67–89% chance of being cost-effective at 3 years and that it may be cost saving by 10 years. Trial registration number ISRCTN44464607; Results. PMID:28087548

  19. Measurements of a Newly Designed BPM for the Tevatron Electron Lens 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scarpine, V. E.; Kamerdzhiev, V.; Fellenz, B.

    2006-11-20

    Fermilab has developed a second electron lens (TEL-2) for beam-beam compensation in the Tevatron as part of its Run II upgrade program. Operation of the beam position monitors (BPMs) in the first electron lens (TEL-1) showed a systematic transverse position difference between short proton bunches (2 ns sigma) and long electron pulses ({approx}1 us) of up to {approx}1.5 mm. This difference was attributed to frequency dependence in the BPM system. The TEL-2 BPMs utilize a new, compact four-plate design with grounding strips between plates to minimize crosstalk. In-situ measurements of these new BPMs are made using a stretched wire pulsedmore » with both proton and electron beam formats. In addition, longitudinal impedance measurements of the TEL-2 are presented. Signal processing algorithm studies indicate that the frequency-dependent transverse position offset may be reduced to {approx}0.1 mm for the beam structures of interest.« less

  20. Measurements of a Newly Designed BPM for the Tevatron Electron Lens 2

    NASA Astrophysics Data System (ADS)

    Scarpine, V. E.; Kamerdzhiev, V.; Fellenz, B.; Olson, M.; Kuznetsov, G.; Kamerdzhiev, V.; Shiltsev, V. D.; Zhang, X. L.

    2006-11-01

    Fermilab has developed a second electron lens (TEL-2) for beam-beam compensation in the Tevatron as part of its Run II upgrade program. Operation of the beam position monitors (BPMs) in the first electron lens (TEL-1) showed a systematic transverse position difference between short proton bunches (2 ns sigma) and long electron pulses (˜1 us) of up to ˜1.5 mm. This difference was attributed to frequency dependence in the BPM system. The TEL-2 BPMs utilize a new, compact four-plate design with grounding strips between plates to minimize crosstalk. In-situ measurements of these new BPMs are made using a stretched wire pulsed with both proton and electron beam formats. In addition, longitudinal impedance measurements of the TEL-2 are presented. Signal processing algorithm studies indicate that the frequency-dependent transverse position offset may be reduced to ˜0.1 mm for the beam structures of interest.

  1. Lens-free shadow image based high-throughput continuous cell monitoring technique.

    PubMed

    Jin, Geonsoo; Yoo, In-Hwa; Pack, Seung Pil; Yang, Ji-Woon; Ha, Un-Hwan; Paek, Se-Hwan; Seo, Sungkyu

    2012-01-01

    A high-throughput continuous cell monitoring technique which does not require any labeling reagents or destruction of the specimen is demonstrated. More than 6000 human alveolar epithelial A549 cells are monitored for up to 72 h simultaneously and continuously with a single digital image within a cost and space effective lens-free shadow imaging platform. In an experiment performed within a custom built incubator integrated with the lens-free shadow imaging platform, the cell nucleus division process could be successfully characterized by calculating the signal-to-noise ratios (SNRs) and the shadow diameters (SDs) of the cell shadow patterns. The versatile nature of this platform also enabled a single cell viability test followed by live cell counting. This study firstly shows that the lens-free shadow imaging technique can provide a continuous cell monitoring without any staining/labeling reagent and destruction of the specimen. This high-throughput continuous cell monitoring technique based on lens-free shadow imaging may be widely utilized as a compact, low-cost, and high-throughput cell monitoring tool in the fields of drug and food screening or cell proliferation and viability testing. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. An RFID-based on-lens sensor system for long-term IOP monitoring.

    PubMed

    Hsu, Shun-Hsi; Chiou, Jin-Chern; Liao, Yu-Te; Yang, Tzu-Sen; Kuei, Cheng-Kai; Wu, Tsung-Wei; Huang, Yu-Chieh

    2015-01-01

    In this paper, an RFID-based on-lens sensor system is proposed for noninvasive long-term intraocular pressure monitoring. The proposed sensor IC, fabricated in a 0.18um CMOS process, consists of capacitive sensor readout circuitry, RFID communication circuits, and digital processing units. The sensor IC is integrated with electroplating capacitive sensors and a receiving antenna on the contact lens. The sensor IC can be wirelessly powered, communicate with RFID compatible equipment, and perform IOP measurement using on-lens capacitive sensor continuously from a 2cm distance while the incident power from an RFID reader is 20 dBm. The proposed system is compatible to Gen2 RFID protocol, extending the flexibility and reducing the self-developed firmware efforts.

  3. Tubular astigmatism-tunable fluidic lens.

    PubMed

    Kopp, Daniel; Zappe, Hans

    2016-06-15

    We demonstrate a new means to fabricate three-dimensional liquid lenses which may be tuned in focal length and astigmatism. Using actuation by electrowetting-on-dielectrics, astigmatism in arbitrary directions may be tuned independently, with almost no cross talk between orthogonal orientations. The lens is based on electrodes structured on planar polyimide foils and subsequently rolled, enabling high-resolution patterning of complex electrodes along the azimuthal and radial directions of the lens. Based on a design established through fluidic and optical simulations, the astigmatism tuning is experimentally verified by a change of the corresponding Zernike coefficients measured using a Shack-Hartmann wavefront sensor. It was seen that the back focal length can be tuned by 5 mm and 0° and 45° astigmatism by 3 μm through application of voltages in the range of 50  Vrms. It was observed that the cross talk with other aberrations is very low, suggesting a novel means for astigmatism control in imaging systems.

  4. A Broadband Bessel Beam Launcher Using Metamaterial Lens

    PubMed Central

    Qing Qi, Mei; Tang, Wen Xuan; Cui, Tie Jun

    2015-01-01

    An approach of generating broadband Bessel beams is presented. The broadband Bessel beams are produced by a gradient index (GRIN) metamaterial lens illuminated by broadband waveguide antenna. The metamaterial lens is constructed with multi-layered structure and each layer is composed of GRIN metamaterials. The metamaterials are designed as dielectric plates printed with metallic patterns in the center region and drilled by air holes near the edge, which operate in wide band. The metamaterial lens serves as a convertor which transforms the spherical beams emitted from feed into conical beams. The conical beams form quasi-Bessel beams in the near-field region. The aperture diameter of the GRIN lens is much larger than the operating wavelength to guarantee the transformation. In principle, this kind of metamaterial lens can produce Bessel beams at arbitrary distance by designing the refractive-index distribution. To verify the approach, we have designed, fabricated and tested a metamaterial lens. Full-wave simulation and experiment results have proved that the generated Bessel beams can be maintained in distance larger than 1 meter within a ranging from 12 GHz to 18 GHz. PMID:26122861

  5. A Broadband Bessel Beam Launcher Using Metamaterial Lens.

    PubMed

    Qi, Mei Qing; Tang, Wen Xuan; Cui, Tie Jun

    2015-06-30

    An approach of generating broadband Bessel beams is presented. The broadband Bessel beams are produced by a gradient index (GRIN) metamaterial lens illuminated by broadband waveguide antenna. The metamaterial lens is constructed with multi-layered structure and each layer is composed of GRIN metamaterials. The metamaterials are designed as dielectric plates printed with metallic patterns in the center region and drilled by air holes near the edge, which operate in wide band. The metamaterial lens serves as a convertor which transforms the spherical beams emitted from feed into conical beams. The conical beams form quasi-Bessel beams in the near-field region. The aperture diameter of the GRIN lens is much larger than the operating wavelength to guarantee the transformation. In principle, this kind of metamaterial lens can produce Bessel beams at arbitrary distance by designing the refractive-index distribution. To verify the approach, we have designed, fabricated and tested a metamaterial lens. Full-wave simulation and experiment results have proved that the generated Bessel beams can be maintained in distance larger than 1 meter within a ranging from 12 GHz to 18 GHz.

  6. Binding Task-Based Language Teaching and Task-Based Language Testing: A Survey into EFL Teachers and Learners' Views of Task-Based Approach

    ERIC Educational Resources Information Center

    Panahi, Ali

    2012-01-01

    In most settings, task-based language teaching and testing have been dissociated from each other. That is why this study came to rethink of the learners' views towards awareness and implementation of task-based language teaching through IELTS listening tasks. To these objectives, after sketching instrumentation, the learners were divided into…

  7. Ultra-thin metasurface microwave flat lens for broadband applications

    PubMed Central

    Azad, Abul K.; Efimov, Anatoly V.; Ghosh, Shuprio; Singleton, John; Taylor, Antoinette J.

    2017-01-01

    We demonstrate a metasurface-based ultrathin flat lens operating at microwave frequencies. A series of subwavelength metallic split-ring resonators, which are sandwiched between two cross-polarized metallic gratings, are defined to obtain a radially symmetric parabolic phase distribution, covering relative phase differences ranging from 0 to 2.5π radians to create a lens. The tri-layer lens exhibits focusing/collimating of broadband microwaves from 7.0 to 10.0 GHz, with a gain enhancement of 17 dBi at a central wavelength 9.0 GHz while fed by a rectangular horn antenna. The measured focal length agrees reasonably well with design, achieving a 3 dB directionality <4.5° and confirming high-quality beam collimation along the propagation direction. The demonstrated metasurface flat lens enables light-weight, low-cost, and easily deployable flat transceivers for microwave communication, detection, and imaging applications. PMID:29104299

  8. Ultra-thin metasurface microwave flat lens for broadband applications.

    PubMed

    Azad, Abul K; Efimov, Anatoly V; Ghosh, Shuprio; Singleton, John; Taylor, Antoinette J; Chen, Hou-Tong

    2017-05-29

    We demonstrate a metasurface-based ultrathin flat lens operating at microwave frequencies. A series of subwavelength metallic split-ring resonators, which are sandwiched between two cross-polarized metallic gratings, are defined to obtain a radially symmetric parabolic phase distribution, covering relative phase differences ranging from 0 to 2.5π radians to create a lens. The tri-layer lens exhibits focusing/collimating of broadband microwaves from 7.0 to 10.0 GHz, with a gain enhancement of 17 dBi at a central wavelength 9.0 GHz while fed by a rectangular horn antenna. The measured focal length agrees reasonably well with design, achieving a 3 dB directionality <4.5° and confirming high-quality beam collimation along the propagation direction. The demonstrated metasurface flat lens enables light-weight, low-cost, and easily deployable flat transceivers for microwave communication, detection, and imaging applications.

  9. TU-E-201-03: Eye Lens Dosimetry in Radiotherapy Using Contact Lens-Shaped Applicator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, J.

    Madan M. Rehani, Massachusetts General Hospital and Harvard Medical School, Boston Methods for Eye Lens Dosimetry and Studies On Lens Opacities with Interventionalists Radiation induced cataract is a major threat among staff working in interventional suites. Nearly 16 million interventional procedures are performed annually in USA. Recent studies by the principal investigator’s group, primarily among interventional cardiologists, on behalf of the International Atomic Energy Agency, show posterior subcapsular (PSC) changes in the eye lens in 38–53% of main operators and 21–45% of support staff. These changes have potential to lead to cataract in future years, as per information from A-Bombmore » survivors. The International Commission on Radiological Protection has reduced dose limit for staff by a factor of 7.5 (from 150 mSv/y to 20 mSv/y). With increasing emphasis on radiation induced cataracts and reduction in threshold dose for eye lens, there is a need to implement strategies for estimating eye lens dose. Unfortunately eye lens dosimetry is at infancy when it comes to routine application. Various approaches are being tried namely direct measurement using active or passive dosimeters kept close to eyes, retrospective estimations and lastly correlating patient dose in interventional procedures with staff eye dose. The talk will review all approaches available and ongoing active research in this area, as well as data from surveys done in Europe on status of eye dose monitoring in interventional radiology and nuclear medicine. The talk will provide update on how good is Hp(10) against Hp(3), estimations from CTDI values, Monte Carlo based simulations and current status of eye lens dosimetry in USA and Europe. The cataract risk among patients is in CT examinations of the head. Since radiation induced cataract predominantly occurs in posterior sub-capsular (PSC) region and is thus distinguishable from age or drug related cataracts and is also preventable

  10. OCT-based full crystalline lens shape change during accommodation in vivo.

    PubMed

    Martinez-Enriquez, Eduardo; Pérez-Merino, Pablo; Velasco-Ocana, Miriam; Marcos, Susana

    2017-02-01

    The full shape of the accommodating crystalline lens was estimated using custom three-dimensional (3-D) spectral OCT and image processing algorithms. Automatic segmentation and distortion correction were used to construct 3-D models of the lens region visible through the pupil. The lens peripheral region was estimated with a trained and validated parametric model. Nineteen young eyes were measured at 0-6 D accommodative demands in 1.5 D steps. Lens volume, surface area, diameter, and equatorial plane position were automatically quantified. Lens diameter & surface area correlated negatively and equatorial plane position positively with accommodation response. Lens volume remained constant and surface area decreased with accommodation, indicating that the lens material is incompressible and the capsular bag elastic.

  11. Task-Driven Tube Current Modulation and Regularization Design in Computed Tomography with Penalized-Likelihood Reconstruction.

    PubMed

    Gang, G J; Siewerdsen, J H; Stayman, J W

    2016-02-01

    This work applies task-driven optimization to design CT tube current modulation and directional regularization in penalized-likelihood (PL) reconstruction. The relative performance of modulation schemes commonly adopted for filtered-backprojection (FBP) reconstruction were also evaluated for PL in comparison. We adopt a task-driven imaging framework that utilizes a patient-specific anatomical model and information of the imaging task to optimize imaging performance in terms of detectability index ( d' ). This framework leverages a theoretical model based on implicit function theorem and Fourier approximations to predict local spatial resolution and noise characteristics of PL reconstruction as a function of the imaging parameters to be optimized. Tube current modulation was parameterized as a linear combination of Gaussian basis functions, and regularization was based on the design of (directional) pairwise penalty weights for the 8 in-plane neighboring voxels. Detectability was optimized using a covariance matrix adaptation evolutionary strategy algorithm. Task-driven designs were compared to conventional tube current modulation strategies for a Gaussian detection task in an abdomen phantom. The task-driven design yielded the best performance, improving d' by ~20% over an unmodulated acquisition. Contrary to FBP, PL reconstruction using automatic exposure control and modulation based on minimum variance (in FBP) performed worse than the unmodulated case, decreasing d' by 16% and 9%, respectively. This work shows that conventional tube current modulation schemes suitable for FBP can be suboptimal for PL reconstruction. Thus, the proposed task-driven optimization provides additional opportunities for improved imaging performance and dose reduction beyond that achievable with conventional acquisition and reconstruction.

  12. Characterizing Task-Based OpenMP Programs

    PubMed Central

    Muddukrishna, Ananya; Jonsson, Peter A.; Brorsson, Mats

    2015-01-01

    Programmers struggle to understand performance of task-based OpenMP programs since profiling tools only report thread-based performance. Performance tuning also requires task-based performance in order to balance per-task memory hierarchy utilization against exposed task parallelism. We provide a cost-effective method to extract detailed task-based performance information from OpenMP programs. We demonstrate the utility of our method by quickly diagnosing performance problems and characterizing exposed task parallelism and per-task instruction profiles of benchmarks in the widely-used Barcelona OpenMP Tasks Suite. Programmers can tune performance faster and understand performance tradeoffs more effectively than existing tools by using our method to characterize task-based performance. PMID:25860023

  13. OCT-based full crystalline lens shape change during accommodation in vivo

    PubMed Central

    Martinez-Enriquez, Eduardo; Pérez-Merino, Pablo; Velasco-Ocana, Miriam; Marcos, Susana

    2017-01-01

    The full shape of the accommodating crystalline lens was estimated using custom three-dimensional (3-D) spectral OCT and image processing algorithms. Automatic segmentation and distortion correction were used to construct 3-D models of the lens region visible through the pupil. The lens peripheral region was estimated with a trained and validated parametric model. Nineteen young eyes were measured at 0-6 D accommodative demands in 1.5 D steps. Lens volume, surface area, diameter, and equatorial plane position were automatically quantified. Lens diameter & surface area correlated negatively and equatorial plane position positively with accommodation response. Lens volume remained constant and surface area decreased with accommodation, indicating that the lens material is incompressible and the capsular bag elastic. PMID:28270993

  14. Spatial information is processed even when it is task-irrelevant: implications for neuroimaging task design.

    PubMed

    Meegan, Daniel V; Honsberger, Michael J M

    2005-05-01

    Many neuroimaging studies have been designed to differentiate domain-specific processes in the brain. A common design constraint is to use identical stimuli for different domain-specific tasks. For example, an experiment investigating spatial versus identity processing would present compound spatial-identity stimuli in both spatial and identity tasks, and participants would be instructed to attend to, encode, maintain, or retrieve spatial information in the spatial task, and identity information in the identity task. An assumption in such studies is that spatial information will not be processed in the identity task, as it is irrelevant for that task. We report three experiments demonstrating violations of this assumption. Our results suggest that comparisons of spatial and identity tasks in existing neuroimaging studies have underestimated the amount of brain activation that is spatial-specific. For future neuroimaging studies, we recommend unique stimulus displays for each domain-specific task, and event-related measurement of post-stimulus processing.

  15. Design of tapered arm impulse radiating antenna with log periodic lens system for skin cancer treatment.

    PubMed

    Petrishia, A; Sasikala, M

    2014-04-01

    A Prolate-Spheroidal Impulse Radiating Antenna (PSIRA) is used as a non-invasive technique for generating an electromagnetic implosion to kill melanoma cells. It can launch and focus fast (100 ps) high voltage (>50 KV) pulses into the biological targets. It can be used to obtain electromagnetic focusing on the target to reduce the damage to the tissue layers surrounding the target (skin). The main aim of this work is to improve the gain of the antenna, enhance the electric field intensity and to reduce the spot size at the focal point. In this work the PSIRA with tapered arm is designed to increase the gain of the antenna. The log periodic lens system is designed to enhance the electric field and reduce the spot size. The IRA with tapered arms located at the position of φ = 60° gives a gain improvement of 14.28% when compared to a traditional IRA. In this work a 10-layer dielectric lens system is designed to match the 100 ps pulses to the skin phantom. Simulation results show that the electric field is increased by a factor of 2. The spot size is reduced from 1 cm to 0.75 cm at the focal point where the target is placed. The proposed Log periodic lens system provides an increase in electric field amplitude and reduction in spot size.

  16. Mini-LENS: developing a charged-current approach to measuring CNO and pp solar neutrinos

    NASA Astrophysics Data System (ADS)

    Vogelaar, R. Bruce

    2014-03-01

    The Low-Energy Neutrino Spectroscopy (LENS) experiment is based on neutrino detection via a charged-current interaction with 115In and offers the ability to cleanly observe both pp and CNO neutrinos. In contrast, elastic-scattering detectors, such as Borexino and SNO + suffer from virtually inseparable backgrounds. Thus, LENS might be uniquely positioned to resolve the solar metallicity question via measurement of the CNO neutrino flux, as well as test the predicted equivalence of solar luminosity as measured by photons versus neutrinos The mini-LENS program is testing the performance of the optically-segmented 3D lattice geometry unique to LENS. This first-of-a-kind lattice design is also suited for a range of other applications where high segmentation and large light collection are required (eg: sterile neutrinos with sources, double beta decay, and surface detection of reactor neutrinos). The current status and recent design changes of miniLENS at KURF will be presented. funded by NSF: 1001394.

  17. Smart optical writing head design for laser-based manufacturing

    NASA Astrophysics Data System (ADS)

    Amin, M. Junaid; Riza, Nabeel A.

    2014-03-01

    Proposed is a smart optical writing head design suitable for high precision industrial laser based machining and manufacturing applications. The design uses an Electronically Controlled Variable Focus Lens (ECVFL) which enables the highest achievable spatial resolution of writing head spot sizes for axial target distances reaching 8 meters. A proof-of-concept experiment is conducted using a visible wavelength laser with a collimated beam that is coupled to beam conditioning optics which includes an electromagnetically actuated deformable membrane liquid ECVFL cascaded with a bias convex lens of fixed focal length. Electronic tuning and control of the ECVFL keeps the laser writing head far-field spot beam radii under 1 mm that is demonstrated over a target range of 20 cm to 800 cm. Applications for the proposed writing head design, which can accommodate both continuous wave and pulsed wave sources, include laser machining, high precision industrial molding of components, as well as materials processing requiring material sensitive optical power density control.

  18. Magnifying lens for 800 MeV proton radiography.

    PubMed

    Merrill, F E; Campos, E; Espinoza, C; Hogan, G; Hollander, B; Lopez, J; Mariam, F G; Morley, D; Morris, C L; Murray, M; Saunders, A; Schwartz, C; Thompson, T N

    2011-10-01

    This article describes the design and performance of a magnifying magnetic-lens system designed, built, and commissioned at the Los Alamos National Laboratory (LANL) for 800 MeV flash proton radiography. The technique of flash proton radiography has been developed at LANL to study material properties under dynamic loading conditions through the analysis of time sequences of proton radiographs. The requirements of this growing experimental program have resulted in the need for improvements in spatial radiographic resolution. To meet these needs, a new magnetic lens system, consisting of four permanent magnet quadrupoles, has been developed. This new lens system was designed to reduce the second order chromatic aberrations, the dominant source of image blur in 800 MeV proton radiography, as well as magnifying the image to reduce the blur contribution from the detector and camera systems. The recently commissioned lens system performed as designed, providing nearly a factor of three improvement in radiographic resolution.

  19. Magnifying lens for 800 MeV proton radiography

    NASA Astrophysics Data System (ADS)

    Merrill, F. E.; Campos, E.; Espinoza, C.; Hogan, G.; Hollander, B.; Lopez, J.; Mariam, F. G.; Morley, D.; Morris, C. L.; Murray, M.; Saunders, A.; Schwartz, C.; Thompson, T. N.

    2011-10-01

    This article describes the design and performance of a magnifying magnetic-lens system designed, built, and commissioned at the Los Alamos National Laboratory (LANL) for 800 MeV flash proton radiography. The technique of flash proton radiography has been developed at LANL to study material properties under dynamic loading conditions through the analysis of time sequences of proton radiographs. The requirements of this growing experimental program have resulted in the need for improvements in spatial radiographic resolution. To meet these needs, a new magnetic lens system, consisting of four permanent magnet quadrupoles, has been developed. This new lens system was designed to reduce the second order chromatic aberrations, the dominant source of image blur in 800 MeV proton radiography, as well as magnifying the image to reduce the blur contribution from the detector and camera systems. The recently commissioned lens system performed as designed, providing nearly a factor of three improvement in radiographic resolution.

  20. Designing Dendrimer and Miktoarm Polymer Based Multi-Tasking Nanocarriers for Efficient Medical Therapy.

    PubMed

    Sharma, Anjali; Kakkar, Ashok

    2015-09-17

    To address current complex health problems, there has been an increasing demand for smart nanocarriers that could perform multiple complimentary biological tasks with high efficacy. This has provoked the design of tailor made nanocarriers, and the scientific community has made tremendous effort in meeting daunting challenges associated with synthetically articulating multiple functions into a single scaffold. Branched and hyper-branched macromolecular architectures have offered opportunities in enabling carriers with capabilities including location, delivery, imaging etc. Development of simple and versatile synthetic methodologies for these nanomaterials has been the key in diversifying macromolecule based medical therapy and treatment. This review highlights the advancement from conventional "only one function" to multifunctional nanomedicine. It is achieved by synthetic elaboration of multivalent platforms in miktoarm polymers and dendrimers by physical encapsulation, covalent linking and combinations thereof.

  1. Two sided residual refocusing for acoustic lens based photoacoustic imaging system.

    PubMed

    Kalloor Joseph, Francis; Chinni, Bhargava; Channappayya, Sumohana S; Pachamuthu, Rajalakshmi; Dogra, Vikram S; Rao, Navalgund

    2018-05-30

    In photoacoustic (PA) imaging, an acoustic lens-based system can form a focused image of an object plane. A real-time C-scan PA image can be formed by simply time gating the transducer response. While most of the focusing action is done by the lens, residual refocusing is needed to image multiple depths with high resolution simultaneously. However, a refocusing algorithm for PA camera has not been studied so far in the literature. In this work, we reformulate this residual refocusing problem for a PA camera into a two-sided wave propagation from a planar sensor array. One part of the problem deals with forward wave propagation while the other deals with time reversal. We have chosen a Fast Fourier Transform (FFT) based wave propagation model for the refocusing to maintain the real-time nature of the system. We have conducted Point Spread Function (PSF) measurement experiments at multiple depths and refocused the signal using the proposed method. Full Width at Half Maximum (FWHM), peak value and Signal to Noise Ratio (SNR) of the refocused PSF is analyzed to quantify the effect of refocusing. We believe that using a two-dimensional transducer array combined with the proposed refocusing, can lead to real-time volumetric imaging using a lens based PA imaging system. © 2018 Institute of Physics and Engineering in Medicine.

  2. Task Listing for Introduction to Health Occupations. Competency-Based Education.

    ERIC Educational Resources Information Center

    Henrico County Public Schools, Glen Allen, VA. Virginia Vocational Curriculum Center.

    This task listing is designed to be used in combination with the "Health Occupations Education Service Area Resource" in order to implement competency-based education in health occupations programs in Virginia. The task listing contains four major sections: (1) content/concept areas; (2) program and course description; (3) content…

  3. Portraiture lens concept in a mobile phone camera

    NASA Astrophysics Data System (ADS)

    Sheil, Conor J.; Goncharov, Alexander V.

    2017-11-01

    A small form-factor lens was designed for the purpose of portraiture photography, the size of which allows use within smartphone casing. The current general requirement of mobile cameras having good all-round performance results in a typical, familiar, many-element design. Such designs have little room for improvement, in terms of the available degrees of freedom and highly-demanding target metrics such as low f-number and wide field of view. However, the specific application of the current portraiture lens relaxed the requirement of an all-round high-performing lens, allowing improvement of certain aspects at the expense of others. With a main emphasis on reducing depth of field (DoF), the current design takes advantage of the simple geometrical relationship between DoF and pupil diameter. The system has a large aperture, while a reasonable f-number gives a relatively large focal length, requiring a catadioptric lens design with double ray path; hence, field of view is reduced. Compared to typical mobile lenses, the large diameter reduces depth of field by a factor of four.

  4. Rotman lens for mm-wavelengths

    NASA Astrophysics Data System (ADS)

    Hall, Leonard T.; Hansen, Hedley J.; Abbott, Derek

    2002-11-01

    The 77 GHz band has been reserved for intelligent cruise control in luxury cars and some public transport services in America and the United Kingdom. The Rotman lens offers a cheap and compact means to extend the single beam systems generally used, to fully functional beam staring arrangements. Rotman lenses have been built for microwave frequencies with limited success. The flexibility of microstrip transmission lines and the advent of fast accurate simulation packages allow practical Rotman lenses to be designed at mm-wavelengths. This paper discusses the limitations of the conventional design approach and predicts the performance of a new Rotman lens designed at 77 GHz.

  5. Design, fabrication, and characterization of Fresnel lens array with spatial filtering for passive infrared motion sensors

    NASA Astrophysics Data System (ADS)

    Cirino, Giuseppe A.; Barcellos, Robson; Morato, Spero P.; Bereczki, Allan; Neto, Luiz G.

    2006-09-01

    A cubic-phase distribution is applied in the design, fabrication and characterization of inexpensive Fresnel lens arrays for passive infrared motion sensors. The resulting lens array produces a point spread function (PSF) capable of distinguish the presence of humans from pets by the employment of the so-called wavefront coding method. The cubic phase distribution used in the design can also reduce the optical aberrations present in the system. This aberration control allows a high tolerance in the fabrication of the lenses and in the alignment errors of the sensor. In order to proof the principle, a lens was manufactured on amorphous hydrogenated carbon thin film, by well-known micro fabrication process steps. The optical results demonstrates that the optical power falling onto the detector surface is attenuated for targets that present a mass that is horizontally distributed in space (e.g. pets) while the optical power is enhanced for targets that present a mass vertically distributed in space (e.g. humans). Then a mould on steel was fabricated by laser engraving, allowing large-scale production of the lens array in polymeric material. A polymeric lens was injected and its optical transmittance was characterized by Fourier Transform Infrared Spectrometry technique, which has shown an adequate optical transmittance in the 8-14 μm wavelength range. Finally the performance of the sensor was measured in a climate-controlled test laboratory constructed for this purpose. The results show that the sensor operates normally with a human target, with a 12 meter detection zone and within an angle of 100 degrees. On the other hand, when a small pet runs through a total of 22 different trajectories no sensor trips are observed. The novelty of this work is the fact that the so-called pet immunity function was implemented in a purely optical filtering. As a result, this approach allows the reduction of some hardware parts as well as decreasing the software complexity, once the

  6. An ontology-based telemedicine tasks management system architecture.

    PubMed

    Nageba, Ebrahim; Fayn, Jocelyne; Rubel, Paul

    2008-01-01

    The recent developments in ambient intelligence and ubiquitous computing offer new opportunities for the design of advanced Telemedicine systems providing high quality services, anywhere, anytime. In this paper we present an approach for building an ontology-based task-driven telemedicine system. The architecture is composed of a task management server, a communication server and a knowledge base for enabling decision makings taking account of different telemedical concepts such as actors, resources, services and the Electronic Health Record. The final objective is to provide an intelligent management of the different types of available human, material and communication resources.

  7. Ultra-thin metasurface microwave flat lens for broadband applications

    DOE PAGES

    Azad, Abul K.; Efimov, Anatoly V.; Ghosh, Shuprio; ...

    2017-05-31

    In this paper, we demonstrate a metasurface-based ultrathin flat lens operating at microwave frequencies. A series of subwavelength metallic split-ring resonators, which are sandwiched between two cross-polarized metallic gratings, are defined to obtain a radially symmetric parabolic phase distribution, covering relative phase differences ranging from 0 to 2.5π radians to create a lens. The tri-layer lens exhibits focusing/collimating of broadband microwaves from 7.0 to 10.0 GHz, with a gain enhancement of 17 dBi at a central wavelength 9.0 GHz while fed by a rectangular horn antenna. The measured focal length agrees reasonably well with design, achieving a 3 dB directionalitymore » <4.5° and confirming high-quality beam collimation along the propagation direction. Finally, the demonstrated metasurface flat lens enables light-weight, low-cost, and easily deployable flat transceivers for microwave communication, detection, and imaging applications.« less

  8. Ultra-thin metasurface microwave flat lens for broadband applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azad, Abul K.; Efimov, Anatoly V.; Ghosh, Shuprio

    In this paper, we demonstrate a metasurface-based ultrathin flat lens operating at microwave frequencies. A series of subwavelength metallic split-ring resonators, which are sandwiched between two cross-polarized metallic gratings, are defined to obtain a radially symmetric parabolic phase distribution, covering relative phase differences ranging from 0 to 2.5π radians to create a lens. The tri-layer lens exhibits focusing/collimating of broadband microwaves from 7.0 to 10.0 GHz, with a gain enhancement of 17 dBi at a central wavelength 9.0 GHz while fed by a rectangular horn antenna. The measured focal length agrees reasonably well with design, achieving a 3 dB directionalitymore » <4.5° and confirming high-quality beam collimation along the propagation direction. Finally, the demonstrated metasurface flat lens enables light-weight, low-cost, and easily deployable flat transceivers for microwave communication, detection, and imaging applications.« less

  9. Zoned near-zero refractive index fishnet lens antenna: Steering millimeter waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pacheco-Peña, V., E-mail: victor.pacheco@unavarra.es; Orazbayev, B., E-mail: b.orazbayev@unavarra.es; Beaskoetxea, U., E-mail: unai.beaskoetxea@unavarra.es

    2014-03-28

    A zoned fishnet metamaterial lens is designed, fabricated, and experimentally demonstrated at millimeter wavelengths to work as a negative near-zero refractive index lens suitable for compact lens antenna configurations. At the design frequency f = 56.7 GHz (λ{sub 0} = 5.29 mm), the zoned fishnet metamaterial lens, designed to have a focal length FL = 9λ{sub 0}, exhibits a refractive index n = −0.25. The focusing performance of the diffractive optical element is briefly compared with that of a non-zoned fishnet metamaterial lens and an isotropic homogeneous zoned lens made of a material with the same refractive index. Experimental and numerically-computed radiation diagrams of the fabricated zoned lens are presentedmore » and compared in detail with that of a simulated non-zoned lens. Simulation and experimental results are in good agreement, demonstrating an enhancement generated by the zoned lens of 10.7 dB, corresponding to a gain of 12.26 dB. Moreover, beam steering capability of the structure by shifting the feeder on the xz-plane is demonstrated.« less

  10. Evolutionary algorithm for optimization of nonimaging Fresnel lens geometry.

    PubMed

    Yamada, N; Nishikawa, T

    2010-06-21

    In this study, an evolutionary algorithm (EA), which consists of genetic and immune algorithms, is introduced to design the optical geometry of a nonimaging Fresnel lens; this lens generates the uniform flux concentration required for a photovoltaic cell. Herein, a design procedure that incorporates a ray-tracing technique in the EA is described, and the validity of the design is demonstrated. The results show that the EA automatically generated a unique geometry of the Fresnel lens; the use of this geometry resulted in better uniform flux concentration with high optical efficiency.

  11. Intraocular lens fabrication

    DOEpatents

    Salazar, Mike A.; Foreman, Larry R.

    1997-01-01

    This invention describes a method for fabricating an intraocular lens made rom clear Teflon.TM., Mylar.TM., or other thermoplastic material having a thickness of about 0.025 millimeters. These plastic materials are thermoformable and biocompatable with the human eye. The two shaped lenses are bonded together with a variety of procedures which may include thermosetting and solvent based adhesives, laser and impulse welding, and ultrasonic bonding. The fill tube, which is used to inject a refractive filling material is formed with the lens so as not to damage the lens shape. A hypodermic tube may be included inside the fill tube.

  12. Small form-factor VGA camera with variable focus by liquid lens

    NASA Astrophysics Data System (ADS)

    Oikarinen, Kari A.; Aikio, Mika

    2010-05-01

    We present the design of a 24 mm long variable focus lens for 1/4" sensor. The chosen CMOS color sensor has VGA (640×480) resolution and 5.6 μm pixel size. The lens utilizes one Varioptic Arctic 320 liquid lens that has a voltage-controllable focal length due to the electrowetting effect. There are no mechanical moving parts. The principle of operation of the liquid lens is explained briefly. We discuss designing optical systems with this type of lens. This includes a modeling approach that allows entering a voltage value to modify the configuration of the liquid lens. The presented design consists only of spherical glass surfaces. The choice to use spherical surfaces was made in order to decrease the costs of manufacturing and provide more predictable performance by the better established method. Fabrication tolerances are compensated by the adjustability of the liquid lens, further increasing the feasibility of manufacturing. The lens is manufactured and assembled into a demonstrator camera. It has an f-number of 2.5 and 40 degree full field of view. The effective focal length varies around 6 millimeters as the liquid lens is adjusted. In simulations we have achieved a focus distance controllable between 20 millimeters and infinity. The design differs from previous approaches by having the aperture stop in the middle of the system instead of in front.

  13. Optical Fourier filtering for whole lens assessment of progressive power lenses.

    PubMed

    Spiers, T; Hull, C C

    2000-07-01

    Four binary filter designs for use in an optical Fourier filtering set-up were evaluated when taking quantitative measurements and when qualitatively mapping the power variation of progressive power lenses (PPLs). The binary filters tested were concentric ring, linear grating, grid and "chevron" designs. The chevron filter was considered best for quantitative measurements since it permitted a vernier acuity task to be used for measuring the fringe spacing, significantly reducing errors, and it also gave information on the polarity of the lens power. The linear grating filter was considered best for qualitatively evaluating the power variation. Optical Fourier filtering and a Nidek automatic focimeter were then used to measure the powers in the distance and near portions of five PPLs of differing design. Mean measurement error was 0.04 D with a maximum value of 0.13 D. Good qualitative agreement was found between the iso-cylinder plots provided by the manufacturer and the Fourier filter fringe patterns for the PPLs indicating that optical Fourier filtering provides the ability to map the power distribution across the entire lens aperture without the need for multiple point measurements. Arguments are presented that demonstrate that it should be possible to derive both iso-sphere and iso-cylinder plots from the binary filter patterns.

  14. Impact of task design on task performance and injury risk: case study of a simulated drilling task.

    PubMed

    Alabdulkarim, Saad; Nussbaum, Maury A; Rashedi, Ehsan; Kim, Sunwook; Agnew, Michael; Gardner, Richard

    2017-06-01

    Existing evidence is limited regarding the influence of task design on performance and ergonomic risk, or the association between these two outcomes. In a controlled experiment, we constructed a mock fuselage to simulate a drilling task common in aircraft manufacturing, and examined the effect of three levels of workstation adjustability on performance as measured by productivity (e.g. fuselage completion time) and quality (e.g. fuselage defective holes), and ergonomic risk as quantified using two common methods (rapid upper limb assessment and the strain index). The primary finding was that both productivity and quality significantly improved with increased adjustability, yet this occurred only when that adjustability succeeded in reducing ergonomic risk. Supporting the inverse association between ergonomic risk and performance, the condition with highest adjustability created the lowest ergonomic risk and the best performance while there was not a substantial difference in ergonomic risk between the other two conditions, in which performance was also comparable. Practitioner Summary: Findings of this study supported a causal relationship between task design and both ergonomic risk and performance, and that ergonomic risk and performance are inversely associated. While future work is needed under more realistic conditions and a broader population, these results may be useful for task (re)design and to help cost-justify some ergonomic interventions.

  15. Detecting the spatial chirp signals by fractional Fourier lens with transformation materials

    NASA Astrophysics Data System (ADS)

    Chen, J.; Hu, J.

    2018-02-01

    Fractional Fourier transform (FrFT) is the general form of the Fourier transform and is an important tool in signal processing. As one typical application of FrFT, detecting the chirp rate (CR, or known as the rate of frequency change) of a chirp signal is important in many optical measurements. The optical FrFT that based on graded index lens fails to detect the high CR chirp because the short wave propagation distance of the impulse in the lens will weaken the paraxial approximation condition. With the help of transformation optics, the improved FrFT lens is proposed to adjust the high CR as well as the impulse location of the given input chirp signal. The designed transformation materials can implement the effect of space compression, making the input chirp signal is equivalent to have lower CR, therefore the system can satisfy the paraxial approximation better. As a result, this lens can improve the detection precision for the high CR. The numerical simulations verified the design. The proposed device may have both theoretical and practical values, and the design demonstrates the ability and flexibility of TO in spatial signal processing.

  16. Insights from a Financial Literacy Task Designer: The Curious Case of Problem Context

    ERIC Educational Resources Information Center

    Sawatzki, Carly

    2016-01-01

    As part of ongoing design-based research exploring financial literacy teaching and learning, ten tasks termed "financial dilemmas" were trialled by 14 teachers and more than 300 Year 5 and 6 students in 4 government primary schools in urban Darwin. Drawing on data related to two tasks--"Catching the bus" and "Buying…

  17. Creative Disruption: A Task-Based Approach to Engaging With Original Works of Art

    ERIC Educational Resources Information Center

    Walker, Keith; Smith, Liz

    2004-01-01

    This paper examines the value of a task-based approach to engaging with original works of art and focuses in particular upon the experiences of a group of PGCE Art and Design trainees when they visited an exhibition entitled, Air Guitar: Art Reconsidering Rock Music, to carry out given tasks. The extent to which a task-based approach might…

  18. Electro-optically actuated liquid-lens zoom

    NASA Astrophysics Data System (ADS)

    Pütsch, O.; Loosen, P.

    2012-06-01

    Progressive miniaturization and mass market orientation denote a challenge to the design of dynamic optical systems such as zoom-lenses. Two working principles can be identified: mechanical actuation and application of active optical components. Mechanical actuation changes the focal length of a zoom-lens system by varying the axial positions of optical elements. These systems are limited in speed and often require complex coupled movements. However, well established optical design approaches can be applied. In contrast, active optical components change their optical properties by varying their physical structure by means of applying external electric signals. An example are liquidlenses which vary their curvatures to change the refractive power. Zoom-lenses benefit from active optical components in two ways: first, no moveable structures are required and second, fast response characteristics can be realized. The precommercial development of zoom-lenses demands simplified and cost-effective system designs. However the number of efficient optical designs for electro-optically actuated zoom-lenses is limited. In this paper, the systematic development of an electro-optically actuated zoom-lens will be discussed. The application of aberration polynomials enables a better comprehension of the primary monochromatic aberrations at the lens elements during a change in magnification. This enables an enhanced synthesis of the system behavior and leads to a simplified zoom-lens design with no moving elements. The change of focal length is achieved only by varying curvatures of targeted integrated electro-optically actuated lenses.

  19. Comparative study of induced changes in effective lens position and refraction after Nd:YAG laser capsulotomy according to intraocular lens design.

    PubMed

    Monteiro, Tiago; Soares, Andreia; Leite, Ricardo Dourado; Franqueira, Nuno; Faria-Correia, Fernando; Vaz, Fernando

    2018-01-01

    To evaluate and compare the changes in refraction and effective intraocular lens (IOL) position between a plate-haptic IOL and a c-loop single-piece IOL after neodymium-doped yttrium aluminium garnet (YAG) laser posterior capsulotomy. In a prospective study, anterior chamber depth and subjective refraction were measured in 110 pseudophakic eyes from 110 patients, before and 1 month after YAG laser capsulotomy. Patients were divided into 2 groups according to the IOL design: group 1 (plate-haptic acrylic hydrophilic AT LISA tri 839MP ® ) and group 2 (c-loop acrylic hydrophobic single-piece AcrySof ® SA60AT). Lens position was obtained through optical coherence biometry (Biograph WaveLight OB820 ® ). YAG laser capsulotomy was performed 37.8±9.8 months after surgery in group 1 and 40.6±8.6 months in group 2 ( p =0.125). Significant changes were found in the lens effective position after treatment in the 2 groups. The YAG posterior capsulotomy led to a change of anterior chamber depth in group 1 from 4.03±0.32 mm to 3.86±0.34 mm ( p =0.02) and in group 2 from 4.03±0.37 mm to 4.14±0.45 mm ( p =0.025). After YAG laser posterior capsulotomy, no significant changes were observed in mean spherical equivalent, sphere or cylinder for both groups ( p >0.05). YAG laser posterior capsulotomy can induce a significant change in the IOL position according to the IOL type; however, the refractive change after treatment is clinically insignificant.

  20. Crystalline lens power and refractive error.

    PubMed

    Iribarren, Rafael; Morgan, Ian G; Nangia, Vinay; Jonas, Jost B

    2012-02-01

    To study the relationships between the refractive power of the crystalline lens, overall refractive error of the eye, and degree of nuclear cataract. All phakic participants of the population-based Central India Eye and Medical Study with an age of 50+ years were included. Calculation of the refractive lens power was based on distance noncycloplegic refractive error, corneal refractive power, anterior chamber depth, lens thickness, and axial length according to Bennett's formula. The study included 1885 subjects. Mean refractive lens power was 25.5 ± 3.0 D (range, 13.9-36.6). After adjustment for age and sex, the standardized correlation coefficients (β) of the association with the ocular refractive error were highest for crystalline lens power (β = -0.41; P < 0.001) and nuclear lens opacity grade (β = -0.42; P < 0.001), followed by axial length (β = -0.35; P < 0.001). They were lowest for corneal refractive power (β = -0.08; P = 0.001) and anterior chamber depth (β = -0.05; P = 0.04). In multivariate analysis, refractive error was significantly (P < 0.001) associated with shorter axial length (β = -1.26), lower refractive lens power (β = -0.95), lower corneal refractive power (β = -0.76), higher lens thickness (β = 0.30), deeper anterior chamber (β = 0.28), and less marked nuclear lens opacity (β = -0.05). Lens thickness was significantly lower in eyes with greater nuclear opacity. Variations in refractive error in adults aged 50+ years were mostly influenced by variations in axial length and in crystalline lens refractive power, followed by variations in corneal refractive power, and, to a minor degree, by variations in lens thickness and anterior chamber depth.

  1. Symmetrical optical imaging system with bionic variable-focus lens for off-axis aberration correction

    NASA Astrophysics Data System (ADS)

    Wang, Xuan-Yin; Du, Jia-Wei; Zhu, Shi-Qiang

    2017-09-01

    A bionic variable-focus lens with symmetrical layered structure was designed to mimic the crystalline lens. An optical imaging system based on this lens and with a symmetrical structure that mimics the human eye structure was proposed. The refractive index of the bionic variable-focus lens increases from outside to inside. The two PDMS lenses with a certain thickness were designed to improve the optical performance of the optical imaging system and minimise the gravity effect of liquid. The paper presents the overall structure of the optical imaging system and the detailed description of the bionic variable-focus lens. By pumping liquid in or out of the cavity, the surface curvatures of the rear PDMS lens were varied, resulting in a change in the focal length. The focal length range of the optical imaging system was 20.71-24.87 mm. The optical performance of the optical imaging system was evaluated by imaging experiments and analysed by ray tracing simulations. On the basis of test and simulation results, the optical performance of the system was quite satisfactory. Off-axis aberrations were well corrected, and the image quality was greatly improved.

  2. Preliminary Investigation of an Active PLZT Lens

    NASA Technical Reports Server (NTRS)

    Lightsey, W. D.; Peters, B. R.; Reardon, P. J.; Wong, J. K.

    2001-01-01

    The design, analysis and preliminary testing of a prototype Adjustable Focus Optical Correction Lens (AFOCL) is described. The AFOCL is an active optical component composed of solid state lead lanthanum-modified zirconate titanate (PLZT) ferroelectric ceramic with patterned indium tin oxide (ITO) transparent surface electrodes that modulate the refractive index of the PLZT to function as an electro-optic lens. The AFOCL was developed to perform optical re-alignment and wavefront correction to enhance the performance of Ultra-Lightweight Structures and Space Observatories (ULSSO). The AFOCL has potential application as an active optical component within a larger optical system. As such, information from a wavefront sensor would be processed to provide input to the AFOCL to drive the sensed wavefront to the desired shape and location. While offering variable and rapid focussing capability (controlled wavefront manipulation) similar to liquid crystal based spatial light modulators (SLM), the AFOCL offers some potential advantages because it is a solid-state, stationary, low-mass, rugged, and thin optical element that can produce wavefront quality comparable to the solid refractive lens it replaces. The AFOCL acts as a positive or negative lens by producing a parabolic phase-shift in the PLZT material through the application of a controlled voltage potential across the ITO electrodes. To demonstrate the technology, a 4 mm diameter lens was fabricated to produce 5-waves of optical power operating at 2.051 micrometer wavelength. Optical metrology was performed on the device to measure focal length, optical quality, and efficiency for a variety of test configurations. The data was analyzed and compared to theoretical data available from computer-based models of the AFOCL.

  3. Optical receiving system based on a compound parabolic concentrator and a hemispherical lens for visible light communication.

    PubMed

    Wang, Yun; Lan, Tian; Ni, Guoqiang

    2016-12-20

    We propose a scheme for designing a new optical receiving system that can reduce the received-energy spot size via integration of a compound parabolic concentrator with a hemispherical lens. SolidWorks is used to model the receiving system, while TracePro is employed for simulations. The field of view is set to 30° and the radius of the compound parabolic concentrator outlet is 5 mm, which is also the radius of the hemispherical lens. Ray-tracing results show that under the given simulation conditions, the radius of the spot area is reduced from 5 to 3 mm at the receiving system and the gain is 5.2. In regard to the relations between received power and the radius of the hemispherical lens R, and the received power and the distance d between the compound parabolic concentrator and hemispherical lens, our detailed analysis yields the following characteristics: (1) the received power increases as R increases, but decreases as d increases; (2) as R increases, the spot area increases and the received flux is dispersed over the receiving plane, which dispersion is disadvantageous for high-speed communication; (3) the gain of the receiving system also varies with R and d; (4) an increase in d leads to decrease in the received flux and gain when d>-2  mm. Based on these characteristics, we set R=5  mm and calculate the energy efficiency. We obtain maximum energy efficiencies for different detection areas.

  4. Intraocular lens fabrication

    DOEpatents

    Salazar, M.A.; Foreman, L.R.

    1997-07-08

    This invention describes a method for fabricating an intraocular lens made from clear Teflon{trademark}, Mylar{trademark}, or other thermoplastic material having a thickness of about 0.025 millimeters. These plastic materials are thermoformable and biocompatable with the human eye. The two shaped lenses are bonded together with a variety of procedures which may include thermosetting and solvent based adhesives, laser and impulse welding, and ultrasonic bonding. The fill tube, which is used to inject a refractive filling material is formed with the lens so as not to damage the lens shape. A hypodermic tube may be included inside the fill tube. 13 figs.

  5. Integrated Lens Antennas for Multi-Pixel Receivers

    NASA Technical Reports Server (NTRS)

    Lee, Choonsup; Chattopadhyay, Goutam

    2011-01-01

    Future astrophysics and planetary experiments are expected to require large focal plane arrays with thousands of detectors. Feedhorns have excellent performance, but their mass, size, fabrication challenges, and expense become prohibitive for very large focal plane arrays. Most planar antenna designs produce broad beam patterns, and therefore require additional elements for efficient coupling to the telescope optics, such as substrate lenses or micromachined horns. An antenna array with integrated silicon microlenses that can be fabricated photolithographically effectively addresses these issues. This approach eliminates manual assembly of arrays of lenses and reduces assembly errors and tolerances. Moreover, an antenna array without metallic horns will reduce mass of any planetary instrument significantly. The design has a monolithic array of lens-coupled, leaky-wave antennas operating in the millimeter- and submillimeter-wave frequencies. Electromagnetic simulations show that the electromagnetic fields in such lens-coupled antennas are mostly confined in approximately 12 15 . This means that one needs to design a small-angle sector lens that is much easier to fabricate using standard lithographic techniques, instead of a full hyper-hemispherical lens. Moreover, this small-angle sector lens can be easily integrated with the antennas in an array for multi-pixel imager and receiver implementation. The leaky antenna is designed using double-slot irises and fed with TE10 waveguide mode. The lens implementation starts with a silicon substrate. Photoresist with appropriate thickness (optimized for the lens size) is spun on the substrate and then reflowed to get the desired lens structure. An antenna array integrated with individual lenses for higher directivity and excellent beam profile will go a long way in realizing multi-pixel arrays and imagers. This technology will enable a new generation of compact, low-mass, and highly efficient antenna arrays for use in multi

  6. Common path ball lens probe for optical coherence tomography (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Singh, Kanwarpal; Yamada, Daisuke; Tearney, Guillermo J.

    2016-02-01

    Background: Common path probes are highly desirable for optical coherence tomography (OCT) as they reduce system complexity and cost. In this work we report an all-fiber common path side viewing monolithic probe for coronary artery imaging. Methods: Our common path probe was designed for spectrometer based Fourier domain OCT at 1310 nm wavelength. Light from the fiber expands in the coreless fiber region and then focussed by the ball lens. Reflection from ball lens-air interface served as reference signal. The monolithic ball lens probe was assembled within a 560 µmouter diameter drive shaft which was attached to a rotary junction. The drive shaft was placed inside an outer, transparent sheath of 800 µm diameter. Results: With a source input power of 25 mW, we could achieve sensitivity of 100.5 dB. The axial resolution of the system was found to be 15.6 µm in air and the lateral resolution (full width half maximum) was approximately 49 µm. As proof of principal, images of skin acquired using this probe demonstrated clear visualization of the stratum corneum, epidermis, and papillary dermis, along with sweat ducts. Conclusion: In this work we have demonstrated a monolithic, ball lens common, path probe for OCT imaging. The designed ball lens probe is easy to fabricate using a laser splicer. Based on the features and capability of common path probes to provide a simpler solution for OCT, we believe that this development will be an important enhancement for certain types of catheters.

  7. Design of Computer-aided Instruction for Radiology Interpretation: The Role of Cognitive Task Analysis

    PubMed Central

    Pusic, Martin V.; LeBlanc, Vicki; Patel, Vimla L.

    2001-01-01

    Traditional task analysis for instructional design has emphasized the importance of precisely defining behavioral educational objectives and working back to select objective-appropriate instructional strategies. However, this approach may miss effective strategies. Cognitive task analysis, on the other hand, breaks a process down into its component knowledge representations. Selection of instructional strategies based on all such representations in a domain is likely to lead to optimal instructional design. In this demonstration, using the interpretation of cervical spine x-rays as an educational example, we show how a detailed cognitive task analysis can guide the development of computer-aided instruction.

  8. Verification of eye lens dose in IMRT by MOSFET measurement.

    PubMed

    Wang, Xuetao; Li, Guangjun; Zhao, Jianling; Song, Ying; Xiao, Jianghong; Bai, Sen

    2018-04-17

    The eye lens is recognized as one of the most radiosensitive structures in the human body. The widespread use of intensity-modulated radiotherapy (IMRT) complicates dose verification and necessitates high standards of dose computation. The purpose of this work was to assess the computed dose accuracy of eye lens through measurements using a metal-oxide-semiconductor field-effect transistor (MOSFET) dosimetry system. Sixteen clinical IMRT plans of head and neck patients were copied to an anthropomorphic head phantom. Measurements were performed using the MOSFET dosimetry system based on the head phantom. Two MOSFET detectors were imbedded in the eyes of the head phantom as the left and the right lens, covered by approximately 5-mm-thick paraffin wax. The measurement results were compared with the calculated values with a dose grid size of 1 mm. Sixteen IMRT plans were delivered, and 32 measured lens doses were obtained for analysis. The MOSFET dosimetry system can be used to verify the lens dose, and our measurements showed that the treatment planning system used in our clinic can provide adequate dose assessment in eye lenses. The average discrepancy between measurement and calculation was 6.7 ± 3.4%, and the largest discrepancy was 14.3%, which met the acceptability criterion set by the American Association of Physicists in Medicine Task Group 53 for external beam calculation for multileaf collimator-shaped fields in buildup regions. Copyright © 2018 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  9. Designing the Widget: A Group Decision and Negotiation Task

    ERIC Educational Resources Information Center

    Delise, Lisa A.; Mello, Abby L.

    2017-01-01

    The Widget design task is an in-class, experiential exercise that affords students the opportunity to develop interpersonal skills in group negotiation. Students engage in new product design in committees of two dyads where one dyad represents Consumer Research and the other represents Strategic Management. Task information creates different…

  10. TU-E-201-01: Methods for Eye Lens Dosimetry and Studies On Lens Opacities with Interventionists

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rehani, M.

    Madan M. Rehani, Massachusetts General Hospital and Harvard Medical School, Boston Methods for Eye Lens Dosimetry and Studies On Lens Opacities with Interventionalists Radiation induced cataract is a major threat among staff working in interventional suites. Nearly 16 million interventional procedures are performed annually in USA. Recent studies by the principal investigator’s group, primarily among interventional cardiologists, on behalf of the International Atomic Energy Agency, show posterior subcapsular (PSC) changes in the eye lens in 38–53% of main operators and 21–45% of support staff. These changes have potential to lead to cataract in future years, as per information from A-Bombmore » survivors. The International Commission on Radiological Protection has reduced dose limit for staff by a factor of 7.5 (from 150 mSv/y to 20 mSv/y). With increasing emphasis on radiation induced cataracts and reduction in threshold dose for eye lens, there is a need to implement strategies for estimating eye lens dose. Unfortunately eye lens dosimetry is at infancy when it comes to routine application. Various approaches are being tried namely direct measurement using active or passive dosimeters kept close to eyes, retrospective estimations and lastly correlating patient dose in interventional procedures with staff eye dose. The talk will review all approaches available and ongoing active research in this area, as well as data from surveys done in Europe on status of eye dose monitoring in interventional radiology and nuclear medicine. The talk will provide update on how good is Hp(10) against Hp(3), estimations from CTDI values, Monte Carlo based simulations and current status of eye lens dosimetry in USA and Europe. The cataract risk among patients is in CT examinations of the head. Since radiation induced cataract predominantly occurs in posterior sub-capsular (PSC) region and is thus distinguishable from age or drug related cataracts and is also preventable

  11. Simulation, fabrication, and characterization of a tunable electrowetting-based lens with a wedge-shaped PDMS dielectric layer.

    PubMed

    Moghaddam, Mohammadreza Salehi; Latifi, H; Shahraki, Hamidreza; Cheri, Mohammad Sadegh

    2015-04-01

    Microlenses with tunable focal length have wide applications in optofluidic devices. This work presents a numerical and experimental investigation on a tunable electrowetting-based concave lens. Optical properties such as focal length of the lens and visibility of images were investigated numerically and experimentally. A finite element analysis and a ZEMAX simulation were used for determination of surface profile and focal length of the lens. The results show that the theoretical surface profile and focal length of the lens are in good agreement with the experimental ones. The lens has a wide tuning focal length equal to 6.5 (cm). Because the polydimethylsiloxane (PDMS) layer is wedge shaped (as both the dielectric and hydrophobic layers), lower applied voltage is needed. A commercial program was used to find the focal length of the lens from maximum visibility value by tuning the applied voltage.

  12. "I'm Still Not Sure What a Task Is": Teachers Designing Language Tasks

    ERIC Educational Resources Information Center

    Erlam, Rosemary

    2016-01-01

    Ellis (2003) identifies four key criteria that distinguish a "task" from the types of situational grammar exercises that are typically found in the more traditional language classroom. This study investigates how well teachers were able to design tasks that fulfilled these four criteria (Ellis, 2003) at the end of a year-long…

  13. Direct design of achromatic lens for Lambertian sources in collimating illumination

    NASA Astrophysics Data System (ADS)

    Yin, Peng; Xu, Xiping; Jiang, Zhaoguo; Wang, Hongshu

    2017-10-01

    Illumination design used to redistribute the spatial energy distribution of light source is a key technique in lighting applications. However, there is still no effective illumination design method for the removing of the chromatic dispersion. What we present here is an achromatic lens design to enhance the efficiency and uniform illumination of white light-emitting diode (LED) with diffractive optical element (DOE). We employ the chromatic aberration value (deg) to measure the degree of chromatic dispersion in illumination systems. Monte Carlo ray tracing simulation results indicate that the chromatic dispersion of the modified achromatic collimator significantly decreases from 0.5 to 0.1 with LED chip size of 1.0mm×1.0mm and simulation efficiency of 90.73%, compared with the traditional collimator. Moreover, with different corrected wavelengths we compared different chromatic aberration values that followed with the changing pupil percent. The achromatic collimator provided an effective way to achieve white LED with low chromatic dispersion at high efficiency and uniform illumination.

  14. Design of TIR collimating lens for ordinary differential equation of extended light source

    NASA Astrophysics Data System (ADS)

    Zhan, Qianjing; Liu, Xiaoqin; Hou, Zaihong; Wu, Yi

    2017-10-01

    The source of LED has been widely used in our daily life. The intensity angle distribution of single LED is lambert distribution, which does not satisfy the requirement of people. Therefore, we need to distribute light and change the LED's intensity angle distribution. The most commonly method to change its intensity angle distribution is the free surface. Generally, using ordinary differential equations to calculate free surface can only be applied in a point source, but it will lead to a big error for the expand light. This paper proposes a LED collimating lens based on the ordinary differential equation, combined with the LED's light distribution curve, and adopt the method of calculating the center gravity of the extended light to get the normal vector. According to the law of Snell, the ordinary differential equations are constructed. Using the runge-kutta method for solution of ordinary differential equation solution, the curve point coordinates are gotten. Meanwhile, the edge point data of lens are imported into the optical simulation software TracePro. Based on 1mm×1mm single lambert body for light conditions, The degrees of collimating light can be close to +/-3. Furthermore, the energy utilization rate is higher than 85%. In this paper, the point light source is used to calculate partial differential equation method and compared with the simulation of the lens, which improve the effect of 1 degree of collimation.

  15. Clinical Performance of a New Bitangential Mini-scleral Lens.

    PubMed

    Otten, Henny M; van der Linden, Bart J J J; Visser, Esther-Simone

    2018-06-01

    New bitangential mini-scleral lens designs provide a highly precise fit, follow the scleral shape, are comfortable to wear, and can correct residual astigmatism. This new scleral lens design complements the arsenal of medical contact lenses available to eye care practitioners. The aim of this study was to evaluate the subjective and objective performance of a new mini-scleral lens design with a bitangential periphery. In this observational study, data were collected for up to 15 months (median, 84 days; interquartile range, 76 days) from the left eyes of 133 patients fitted with this newly designed lens. Data were recorded during regular visits at Visser Contact Lens Practice's scleral lens clinics: diagnosis, clinical indication for scleral lenses, previous contact lens type, subjective performance, horizontal visible iris diameter, corrected distance visual acuity, and scleral lens fitting characteristics. The most common indication was keratoconus (45%), followed by irregular astigmatism (22%), keratoplasty (16.5%), ocular surface disease (13.5%), and other forms of irregular astigmatism (3%). The majority of patients (79%) scored comfort as either a 4 or 5 (out of 5), and 82% wore their lenses 12 hours or longer a day. Most lenses (81%) had a diameter of 16 mm (median, 16 mm; range, 15.5 to 17 mm) and were composed of Boston XO2 (46%), Menicon Z (44%), Boston XO (9%), or Boston Equalens II (1%). The median corrected distance visual acuity was 0.022 logarithm of the minimal angle of resolution (interquartile range, 0.155). The fitting characteristics revealed optimal values for centration and movement in 91% and 83%, respectively. Finally, the median stabilization axis was 50 degrees. New mini-scleral lenses with bitangential peripheral geometry yield satisfactory clinical results and good subjective performance and are therefore an effective option for managing patients who have irregular astigmatism or other corneal pathology.

  16. Numerical simulation for meniscus shape and optical performance of a MEMS-based liquid micro-lens.

    PubMed

    Lee, Shong-Leih; Yang, Chao-Fu

    2008-11-24

    It is very difficult to fabricate tunable optical systems having an aperture below 1000 micrometers with the conventional means on macroscopic scale. Krogmann et al. (J. Opt. A 8, S330-S336, 2006) presented a MEMS-based tunable liquid micro-lens system with an aperture of 300 micrometers. The system exhibited a tuning range of back focal length between 2.3mm and infinity by using the electrowetting effect to change the contact angle of the meniscus shape on silicon with a voltage of 0-45 V. However, spherical aberration was found in their lens system. In the present study, a numerical simulation is performed for this same physical configuration by solving the Young-Laplace equation on the interface of the lens liquid and the surrounding liquid. The resulting meniscus shape produces a back focal length that agrees with the experimental observation excellently. To eliminate the spherical aberration, an electric field is applied on the lens. The electric field alters the Young-Laplace equation and thus changes the meniscus shape and the lens quality. The numerical result shows that the spherical aberration of the lens can be essentially eliminated when a proper electric field is applied.

  17. Multi-tasking arbitration and behaviour design for human-interactive robots

    NASA Astrophysics Data System (ADS)

    Kobayashi, Yuichi; Onishi, Masaki; Hosoe, Shigeyuki; Luo, Zhiwei

    2013-05-01

    Robots that interact with humans in household environments are required to handle multiple real-time tasks simultaneously, such as carrying objects, collision avoidance and conversation with human. This article presents a design framework for the control and recognition processes to meet these requirements taking into account stochastic human behaviour. The proposed design method first introduces a Petri net for synchronisation of multiple tasks. The Petri net formulation is converted to Markov decision processes and processed in an optimal control framework. Three tasks (safety confirmation, object conveyance and conversation) interact and are expressed by the Petri net. Using the proposed framework, tasks that normally tend to be designed by integrating many if-then rules can be designed in a systematic manner in a state estimation and optimisation framework from the viewpoint of the shortest time optimal control. The proposed arbitration method was verified by simulations and experiments using RI-MAN, which was developed for interactive tasks with humans.

  18. Electrically tunable soft solid lens inspired by reptile and bird accommodation.

    PubMed

    Pieroni, Michael; Lagomarsini, Clara; De Rossi, Danilo; Carpi, Federico

    2016-10-26

    Electrically tunable lenses are conceived as deformable adaptive optical components able to change focus without motor-controlled translations of stiff lenses. In order to achieve large tuning ranges, large deformations are needed. This requires new technologies for the actuation of highly stretchable lenses. This paper presents a configuration to obtain compact tunable lenses entirely made of soft solid matter (elastomers). This was achieved by combining the advantages of dielectric elastomer actuation (DEA) with a design inspired by the accommodation of reptiles and birds. An annular DEA was used to radially deform a central solid-body lens. Using an acrylic elastomer membrane, a silicone lens and a simple fabrication method, we assembled a tunable lens capable of focal length variations up to 55%, driven by an actuator four times larger than the lens. As compared to DEA-based liquid lenses, the novel architecture halves the required driving voltages, simplifies the fabrication process and allows for a higher versatility in design. These new lenses might find application in systems requiring large variations of focus with low power consumption, silent operation, low weight, shock tolerance, minimized axial encumbrance and minimized changes of performance against vibrations and variations in temperature.

  19. Stretched Lens Array Photovoltaic Concentrator Technology Developed

    NASA Technical Reports Server (NTRS)

    Piszczor, Michael F., Jr.; O'Neill, Mark J.

    2004-01-01

    Solar arrays have been and continue to be the mainstay in providing power to nearly all commercial and government spacecraft. Light from the Sun is directly converted into electrical energy using solar cells. One way to reduce the cost of future space power systems is by minimizing the size and number of expensive solar cells by focusing the sunlight onto smaller cells using concentrator optics. The stretched lens array (SLA) is a unique concept that uses arched Fresnel lens concentrators to focus sunlight onto a line of high-efficiency solar cells located directly beneath. The SLA concept is based on the Solar Concentrator Array with Refractive Linear Element Technology (SCARLET) design that was used on NASA's New Millennium Deep Space 1 mission. The highly successful asteroid/comet rendezvous mission (1998 to 2001) demonstrated the performance and long-term durability of the SCARLET/SLA solar array design and set the foundation for further improvements to optimize its performance.

  20. New analysis strategies for micro aspheric lens metrology

    NASA Astrophysics Data System (ADS)

    Gugsa, Solomon Abebe

    Effective characterization of an aspheric micro lens is critical for understanding and improving processing in micro-optic manufacturing. Since most microlenses are plano-convex, where the convex geometry is a conic surface, current practice is often limited to obtaining an estimate of the lens conic constant, which average out the surface geometry that departs from an exact conic surface and any addition surface irregularities. We have developed a comprehensive approach of estimating the best fit conic and its uncertainty, and in addition propose an alternative analysis that focuses on surface errors rather than best-fit conic constant. We describe our new analysis strategy based on the two most dominant micro lens metrology methods in use today, namely, scanning white light interferometry (SWLI) and phase shifting interferometry (PSI). We estimate several parameters from the measurement. The major uncertainty contributors for SWLI are the estimates of base radius of curvature, the aperture of the lens, the sag of the lens, noise in the measurement, and the center of the lens. In the case of PSI the dominant uncertainty contributors are noise in the measurement, the radius of curvature, and the aperture. Our best-fit conic procedure uses least squares minimization to extract a best-fit conic value, which is then subjected to a Monte Carlo analysis to capture combined uncertainty. In our surface errors analysis procedure, we consider the surface errors as the difference between the measured geometry and the best-fit conic surface or as the difference between the measured geometry and the design specification for the lens. We focus on a Zernike polynomial description of the surface error, and again a Monte Carlo analysis is used to estimate a combined uncertainty, which in this case is an uncertainty for each Zernike coefficient. Our approach also allows us to investigate the effect of individual uncertainty parameters and measurement noise on both the best

  1. Miniature Wide-Angle Lens for Small-Pixel Electronic Camera

    NASA Technical Reports Server (NTRS)

    Mouroulils, Pantazis; Blazejewski, Edward

    2009-01-01

    A proposed wideangle lens is shown that would be especially well suited for an electronic camera in which the focal plane is occupied by an image sensor that has small pixels. The design of the lens is intended to satisfy requirements for compactness, high image quality, and reasonably low cost, while addressing issues peculiar to the operation of small-pixel image sensors. Hence, this design is expected to enable the development of a new generation of compact, high-performance electronic cameras. The lens example shown has a 60 degree field of view and a relative aperture (f-number) of 3.2. The main issues affecting the design are also shown.

  2. Luneburg lens and optical matrix algebra research

    NASA Technical Reports Server (NTRS)

    Wood, V. E.; Busch, J. R.; Verber, C. M.; Caulfield, H. J.

    1984-01-01

    Planar, as opposed to channelized, integrated optical circuits (IOCs) were stressed as the basis for computational devices. Both fully-parallel and systolic architectures are considered and the tradeoffs between the two device types are discussed. The Kalman filter approach is a most important computational method for many NASA problems. This approach to deriving a best-fit estimate for the state vector describing a large system leads to matrix sizes which are beyond the predicted capacities of planar IOCs. This problem is overcome by matrix partitioning, and several architectures for accomplishing this are described. The Luneburg lens work has involved development of lens design techniques, design of mask arrangements for producing lenses of desired shape, investigation of optical and chemical properties of arsenic trisulfide films, deposition of lenses both by thermal evaporation and by RF sputtering, optical testing of these lenses, modification of lens properties through ultraviolet irradiation, and comparison of measured lens properties with those expected from ray trace analyses.

  3. Transferring cognitive tasks between brain imaging modalities: implications for task design and results interpretation in FMRI studies.

    PubMed

    Warbrick, Tracy; Reske, Martina; Shah, N Jon

    2014-09-22

    As cognitive neuroscience methods develop, established experimental tasks are used with emerging brain imaging modalities. Here transferring a paradigm (the visual oddball task) with a long history of behavioral and electroencephalography (EEG) experiments to a functional magnetic resonance imaging (fMRI) experiment is considered. The aims of this paper are to briefly describe fMRI and when its use is appropriate in cognitive neuroscience; illustrate how task design can influence the results of an fMRI experiment, particularly when that task is borrowed from another imaging modality; explain the practical aspects of performing an fMRI experiment. It is demonstrated that manipulating the task demands in the visual oddball task results in different patterns of blood oxygen level dependent (BOLD) activation. The nature of the fMRI BOLD measure means that many brain regions are found to be active in a particular task. Determining the functions of these areas of activation is very much dependent on task design and analysis. The complex nature of many fMRI tasks means that the details of the task and its requirements need careful consideration when interpreting data. The data show that this is particularly important in those tasks relying on a motor response as well as cognitive elements and that covert and overt responses should be considered where possible. Furthermore, the data show that transferring an EEG paradigm to an fMRI experiment needs careful consideration and it cannot be assumed that the same paradigm will work equally well across imaging modalities. It is therefore recommended that the design of an fMRI study is pilot tested behaviorally to establish the effects of interest and then pilot tested in the fMRI environment to ensure appropriate design, implementation and analysis for the effects of interest.

  4. Comparative study of induced changes in effective lens position and refraction after Nd:YAG laser capsulotomy according to intraocular lens design

    PubMed Central

    Monteiro, Tiago; Soares, Andreia; Leite, Ricardo Dourado; Franqueira, Nuno; Faria-Correia, Fernando; Vaz, Fernando

    2018-01-01

    Purpose To evaluate and compare the changes in refraction and effective intraocular lens (IOL) position between a plate-haptic IOL and a c-loop single-piece IOL after neodymium-doped yttrium aluminium garnet (YAG) laser posterior capsulotomy. Methods In a prospective study, anterior chamber depth and subjective refraction were measured in 110 pseudophakic eyes from 110 patients, before and 1 month after YAG laser capsulotomy. Patients were divided into 2 groups according to the IOL design: group 1 (plate-haptic acrylic hydrophilic AT LISA tri 839MP®) and group 2 (c-loop acrylic hydrophobic single-piece AcrySof® SA60AT). Lens position was obtained through optical coherence biometry (Biograph WaveLight OB820®). Results YAG laser capsulotomy was performed 37.8±9.8 months after surgery in group 1 and 40.6±8.6 months in group 2 (p=0.125). Significant changes were found in the lens effective position after treatment in the 2 groups. The YAG posterior capsulotomy led to a change of anterior chamber depth in group 1 from 4.03±0.32 mm to 3.86±0.34 mm (p=0.02) and in group 2 from 4.03±0.37 mm to 4.14±0.45 mm (p=0.025). After YAG laser posterior capsulotomy, no significant changes were observed in mean spherical equivalent, sphere or cylinder for both groups (p>0.05). Conclusion YAG laser posterior capsulotomy can induce a significant change in the IOL position according to the IOL type; however, the refractive change after treatment is clinically insignificant. PMID:29593378

  5. A comparison of four different lens mappers.

    PubMed

    Larrue, Denis; Legeard, Morgane

    2014-11-01

    Recently, a number of lens mappers have become available for measuring the detailed optical properties of progressive addition lenses (PALs). The goal of this study was to compare the results obtained from several different lens mappers for a range of different lenses. The optical power maps of six lenses-two single-vision lenses, a parallel-sided slide, a flat prism, and two progressive lenses-were measured using four different lens mappers: the Dual Lens Mapper, the Nimo TR4005, the Rotlex Class Plus, and the Visionix VM2500. The repeatability of the instruments was also evaluated. All lens mappers gave very repeatable measurements; however, measurements among the lens mappers varied considerably. Differences appeared to be above the tolerance at the optical center for measurements of single-vision lenses, and these differences increase in the periphery up to 1.00 diopter. Similar differences were observed for the PALs, even increased by prism and base curve effect, with figures greater than 1 diopter in the periphery. The measurements made on the prism and lenses with different base curves suggest that base curve, thickness, and prismatic effect can all contribute to the differences among instruments. Measurements of a given lens taken with different lens mappers can vary substantially. Particular caution should be exercised when interpreting power maps for PALs taken with different instruments.

  6. Solar powered desalination system using Fresnel lens

    NASA Astrophysics Data System (ADS)

    Sales, M. T. B. F.

    2016-11-01

    The Philippines is surrounded by coastal areas and these areas can be a potential source for potable water. This study aims to design and construct a solar powered desalination system using Fresnel lens. The experimental study was conducted using polluted salt water for the sample and desalination was carried out using the designed system. The desalination system was composed of the solar concentrator, solar still and the condenser system. The Fresnel lens was made of acrylic plastic and was an effective solar concentrator. Solar stills made of dark colored glass bottles were effective in absorbing the solar energy. The condenser system made of polybutylene and polystyrene were effective in condensing the vapor at ambient temperature. The shortest time of vaporization of the salt water was at 293 sec and the optimum angle of position of the lens was 36.42°. The amount of condensate collected was directly proportional to the amount of salt water in the solar still. The highest mean efficiency of the designed set-up was 34.82%. The water produced by the solar powered desalination system using Fresnel lens passed the standards set by WHO (World Health Organization) for drinking water.

  7. Professional Task-Based Curriculum Development for Distance Education Practitioners at Master's Level: A Design-Based Research

    ERIC Educational Resources Information Center

    Feng, Xiaoying; Lu, Guangxin; Yao, Zhihong

    2015-01-01

    Curriculum development for distance education (DE) practitioners is more and more focusing on practical requirements and competence development. Delphi and DACUM methods have been used at some universities. However, in the competency-based development area, these methods have been taken over by professional-task-based development in the last…

  8. Designing PISA-Like Mathematics Tasks In Indonesia: Experiences and Challenges

    NASA Astrophysics Data System (ADS)

    Zulkardi, Z.; Kohar, A. W.

    2018-01-01

    The insignificant improvement of Indonesian students in PISA mathematics survey triggered researchers in Indonesia to develop PISA-like mathematics tasks. Some development studies have been conducted to produce valid and practical PISA-like problems that potentially effect on improving students’ mathematical literacy. This article describes the experiences of Indonesian task designers in developing PISA-like mathematics tasks as well as the potential future studies regarding to mathematical literacy as challenges for policy makers, researchers, and practitioners to improve students’ mathematical literacy in Indonesia. The results of this research indicate the task designers to consider domains of PISA like: context, mathematical content, and process as the first profiles of their missions. Our analysis shows that the designers mostly experienced difficulties regarding to the authenticity of context use and language structure. Interestingly, many of them used a variety of local wisdom in Indonesia as contexts for designing PISA-like tasks. In addition, the products developed were reported to be potentially effects on students’ interest and elicit students’ mathematical competencies as mentioned in PISA framework. Finally, this paper discusses future studies such as issues in bringing PISA task into an instructional practice.

  9. Elementary students' engagement in failure-prone engineering design tasks

    NASA Astrophysics Data System (ADS)

    Andrews, Chelsea Joy

    Although engineering education has been practiced at the undergraduate level for over a century, only fairly recently has the field broadened to include the elementary level; the pre-college division of the American Society of Engineering Education was established in 2003. As a result, while recent education standards require engineering in elementary schools, current studies are still filling in basic research on how best to design and implement elementary engineering activities. One area in need of investigation is how students engage with physical failure in design tasks. In this dissertation, I explore how upper elementary students engage in failure-prone engineering design tasks in an out-of-school environment. In a series of three empirical case studies, I look closely at how students evaluate failed tests and decide on changes to their design constructions, how their reasoning evolves as they repeatedly encounter physical failure, and how students and facilitators co-construct testing norms where repetitive failure is manageable. I also briefly investigate how students' engagement differs in a task that features near-immediate success. By closely examining student groups' discourse and their interactions with their design constructions, I found that these students: are able to engage in iteration and see failure-as-feedback with minimal externally-imposed structure; seem to be designing in a more sophisticated manner, attending to multiple causal factors, after experiencing repetitive failure; and are able to manage the stress and frustration of repetitive failure, provided the co-constructed testing norms of the workshop environment are supportive of failure management. These results have both pedagogical implications, in terms of how to create and facilitate design tasks, and methodological implications--namely, I highlight the particular insights afforded by a case study approach for analyzing engagement in design tasks.

  10. Design and Fabrication of a Radio Frequency GRIN Lens Using 3D Printing Technology

    DTIC Science & Technology

    2013-04-01

    simulation of a homogenized 3D lens ..................... 6 Figure 4: GRIN lens fabricated using 3D printer ...properties of the dielectric used by the 3D printer are ε=2.86 in the frequency regime of interest. We begin with a structure where the dimensions are...CHARACTERIZATION OF THE LENS We used a 3D rapid prototyping printer to fabricate the GRIN lens shown in Figure 4. 3D printers can be used to print a diverse

  11. The Impact of Learning Task Design on Students' Situational Interest in Physical Education

    ERIC Educational Resources Information Center

    Roure, Cédric; Pasco, Denis

    2018-01-01

    Purpose: Based on the framework of interest, studies have shown that teachers can enhance students' situational interest (SI) by manipulating the components of learning tasks. The purpose of this study was to examine the impact of learning task design on students' SI in physical education (PE). Method: The participants were 167 secondary school…

  12. Temporal Co-Variation between Eye Lens Accommodation and Trapezius Muscle Activity during a Dynamic Near-Far Visual Task

    PubMed Central

    Zetterberg, Camilla; Richter, Hans O.; Forsman, Mikael

    2015-01-01

    Near work is associated with increased activity in the neck and shoulder muscles, but the underlying mechanism is still unknown. This study was designed to determine whether a dynamic change in focus, alternating between a nearby and a more distant visual target, produces a direct parallel change in trapezius muscle activity. Fourteen healthy controls and 12 patients with a history of visual and neck/shoulder symptoms performed a Near-Far visual task under three different viewing conditions; one neutral condition with no trial lenses, one condition with negative trial lenses to create increased accommodation, and one condition with positive trial lenses to create decreased accommodation. Eye lens accommodation and trapezius muscle activity were continuously recorded. The trapezius muscle activity was significantly higher during Near than during Far focusing periods for both groups within the neutral viewing condition, and there was a significant co-variation in time between accommodation and trapezius muscle activity within the neutral and positive viewing conditions for the control group. In conclusion, these results reveal a connection between Near focusing and increased muscle activity during dynamic changes in focus between a nearby and a far target. A direct link, from the accommodation/vergence system to the trapezius muscles cannot be ruled out, but the connection may also be explained by an increased need for eye-neck (head) stabilization when focusing on a nearby target as compared to a more distant target. PMID:25961299

  13. Temporal Co-Variation between Eye Lens Accommodation and Trapezius Muscle Activity during a Dynamic Near-Far Visual Task.

    PubMed

    Zetterberg, Camilla; Richter, Hans O; Forsman, Mikael

    2015-01-01

    Near work is associated with increased activity in the neck and shoulder muscles, but the underlying mechanism is still unknown. This study was designed to determine whether a dynamic change in focus, alternating between a nearby and a more distant visual target, produces a direct parallel change in trapezius muscle activity. Fourteen healthy controls and 12 patients with a history of visual and neck/shoulder symptoms performed a Near-Far visual task under three different viewing conditions; one neutral condition with no trial lenses, one condition with negative trial lenses to create increased accommodation, and one condition with positive trial lenses to create decreased accommodation. Eye lens accommodation and trapezius muscle activity were continuously recorded. The trapezius muscle activity was significantly higher during Near than during Far focusing periods for both groups within the neutral viewing condition, and there was a significant co-variation in time between accommodation and trapezius muscle activity within the neutral and positive viewing conditions for the control group. In conclusion, these results reveal a connection between Near focusing and increased muscle activity during dynamic changes in focus between a nearby and a far target. A direct link, from the accommodation/vergence system to the trapezius muscles cannot be ruled out, but the connection may also be explained by an increased need for eye-neck (head) stabilization when focusing on a nearby target as compared to a more distant target.

  14. Assessing Whether Students Seek Constructive Criticism: The Design of an Automated Feedback System for a Graphic Design Task

    ERIC Educational Resources Information Center

    Cutumisu, Maria; Blair, Kristen P.; Chin, Doris B.; Schwartz, Daniel L.

    2017-01-01

    We introduce a choice-based assessment strategy that measures students' choices to seek constructive feedback and to revise their work. We present the feedback system of a game we designed to assess whether students choose positive or negative feedback and choose to revise their posters in the context of a poster design task, where they learn…

  15. Task-oriented rehabilitation robotics.

    PubMed

    Schweighofer, Nicolas; Choi, Younggeun; Winstein, Carolee; Gordon, James

    2012-11-01

    Task-oriented training is emerging as the dominant and most effective approach to motor rehabilitation of upper extremity function after stroke. Here, the authors propose that the task-oriented training framework provides an evidence-based blueprint for the design of task-oriented robots for the rehabilitation of upper extremity function in the form of three design principles: skill acquisition of functional tasks, active participation training, and individualized adaptive training. The previous robotic systems that incorporate elements of task-oriented trainings are then reviewed. Finally, the authors critically analyze their own attempt to design and test the feasibility of a TOR robot, ADAPT (Adaptive and Automatic Presentation of Tasks), which incorporates the three design principles. Because of its task-oriented training-based design, ADAPT departs from most other current rehabilitation robotic systems: it presents realistic functional tasks in which the task goal is constantly adapted, so that the individual actively performs doable but challenging tasks without physical assistance. To maximize efficacy for a large clinical population, the authors propose that future task-oriented robots need to incorporate yet-to-be developed adaptive task presentation algorithms that emphasize acquisition of fine motor coordination skills while minimizing compensatory movements.

  16. Recent advances in plasma devices based on plasma lens configuration for manipulating high-current heavy ion beams.

    PubMed

    Dobrovolskiy, A; Dunets, S; Evsyukov, A; Goncharov, A; Gushenets, V; Litovko, I; Oks, E

    2010-02-01

    We describe new results of development of novel generation cylindrical plasma devices based on the electrostatic plasma lens configuration and concept of electrons magnetic insulation. The crossed electric and magnetic fields plasma lens configuration provides us with the attractive and suitable method for establishing a stable plasma discharge at low pressure. Using plasma lens configuration in this way some cost-effective plasma devices were developed for ion treatment and deposition of exotic coatings and the effective lens was first proposed for manipulating high-current beams of negatively charged particles. Here we describe operation and features of these plasma devices, and results of theoretical consideration of mechanisms determining their optimal operation conditions.

  17. Preliminary investigation of an active PLZT lens

    NASA Astrophysics Data System (ADS)

    Peters, Bruce R.; Reardon, Patrick J.; Wong, K. J.

    2001-05-01

    The design analysis and preliminary testing of a prototype AFOCL is described. The AFOCL is an active optical component composed of solid state lead lanthanum-modified zirconate titanate (PLZT) ferroelectric ceramic with patterned indium tin oxide (ITO) transparent surface electrodes that modulate the refractive index of the PLZT to function as an electro- optic lens. The AFOCL was developed to perform optical re- alignment and wavefront correction to enhance the performance of Ultra-Lightweight Structures and Space Observatories. The AFOCL would be an active optical component within a larger optical system. Information from a wavefront sensor would be processed to provide input to the AFOCL to drive the sense4d wavefront tot he desired shape and location. While offering variable and rapid focusing capability similar to liquid crystal based spatial light modulators, the AFOCL offers some potential advantages because it is a solid-stat, stationary, low-mass, rugged, and thin optical element that can produce wavefront quality comparable to the solid refractive lens it replaces. The AFOCL acts as a positive or negative lens by producing a parabolic phase-shift in the PLZT material through the application of a controlled voltage potential across the ITO electrodes. To demonstrate the technology, a 4 mm diameter lens was fabricated to produce 5-waves of optical power operating at 2.051 micrometers wavelength. Optical metrology was performed on the device to measure focal length, optical quality, and efficiency for a variety of test configurations. Preliminary data was analyzed and compared to idealized performance available from computer-based models of the AFOCL.

  18. Multi-robot task allocation based on two dimensional artificial fish swarm algorithm

    NASA Astrophysics Data System (ADS)

    Zheng, Taixiong; Li, Xueqin; Yang, Liangyi

    2007-12-01

    The problem of task allocation for multiple robots is to allocate more relative-tasks to less relative-robots so as to minimize the processing time of these tasks. In order to get optimal multi-robot task allocation scheme, a twodimensional artificial swarm algorithm based approach is proposed in this paper. In this approach, the normal artificial fish is extended to be two dimension artificial fish. In the two dimension artificial fish, each vector of primary artificial fish is extended to be an m-dimensional vector. Thus, each vector can express a group of tasks. By redefining the distance between artificial fish and the center of artificial fish, the behavior of two dimension fish is designed and the task allocation algorithm based on two dimension artificial swarm algorithm is put forward. At last, the proposed algorithm is applied to the problem of multi-robot task allocation and comparer with GA and SA based algorithm is done. Simulation and compare result shows the proposed algorithm is effective.

  19. The influence of lens care systems on eyelid tissue changes during silicone hydrogel contact lens wear.

    PubMed

    Guillon, Michel; Maissa, Cécile; Wong, Stéphanie; Patel, Trisha; Garofalo, Renée

    2018-04-14

    To compare the effects of a hydrogen peroxide (H 2 O 2 )-based lens care solution and a polyhexamethylene biguanide (PHMB) multi-purpose solution on the eyelids when used with silicone hydrogel (SiHy) contact lenses. A total of 74 symptomatic wearers of ACUVUE ® OASYS ® (senofilcon A; n = 39) or PureVision ® (balafilcon A; n = 35) contact lenses were randomised 1:1 to either CLEAR CARE ® Cleaning & Disinfecting Solution or renu ® fresh™ multi-purpose solution (n = 37 each). Assessments of hyperaemia, papillae and lid margin staining of eyelid tissue were evaluated subjectively by a masked investigator at enrolment (with the subjects' habitual SiHy contact lenses and PHMB-preserved care systems), at dispensing visit (when no lenses were worn) and at 3-months' follow-up. There were no differences in eyelid assessments between the two lens care groups at dispensing visit (p = 0.086 to 0.947). After 3 months, the papillae response was significantly less marked with H2O2-based solution than with PHMB-based solution (p = 0.017). Lid hyperaemia (p < 0.001) and papillae (p = 0.002) were also significantly reduced. Although lid hyperaemia was also reduced with PHMB-based solution (p < 0.001), there was no concurrent decrease in papillae response (p = 0.051). No improvements were found in eyelid margin staining either over time or between the two lens care groups. In symptomatic contact lens wearers, a H 2 O 2 -based lens care solution used with senofilcon A and balafilcon A lenses was better tolerated by eyelid tissues than was a PHMB-based solution and led to a decrease in clinical markers of eyelid inflammation. Copyright © 2018 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.

  20. Research on Mathematics Teachers as Partners in Task Design

    ERIC Educational Resources Information Center

    Jones, Keith; Pepin, Birgit

    2016-01-01

    Mathematical tasks and tools, including tasks in the form of digital tools, are key resources in mathematics teaching and in mathematics teacher education. Even so, the "design" of mathematical tasks is perceived in different ways: sometimes seen as something distinct from the teaching and learning process, and sometimes as integral to…

  1. ArchE - An Architecture Design Assistant

    DTIC Science & Technology

    2007-08-02

    Architecture Design Assistant Len Bass August 2, 2007 Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the...ArchE - An Architecture Design Assistant 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK...X, Module X 3 Author / Presenter, Date if Needed What is ArchE? ArchE is a software architecture design assistant, which: • Takes quality and

  2. Liquid lens based on electrowetting: actual developments on larger aperture and multiple electrodes design for image stabilization or beam steering

    NASA Astrophysics Data System (ADS)

    Berge, Bruno; Broutin, Jérôme; Gaton, Hilario; Malet, Géraldine; Simon, Eric; Thieblemont, Florent

    2013-03-01

    This paper presents experimental results on several liquid lenses based on Electrowetting which are commercially available. It will be shown that larger aperture lenses are basically of the same optical quality than smaller lenses, sometimes reaching the diffraction limit, then opening new kind of applications areas for variable lenses in laser science. Regarding response time, actual performances of liquids lenses based on Electrowetting are presented and compared to a model simulating the internal fluid reorganization, seen as the main source of delay between electrical actuation and optical evolution of the lens. This simplified analytical model is supporting experimental results in various situations (focus and tilt variations), in static and dynamic regimes.

  3. All plastic ultra-small size imaging lens unit fabrication and evaluation for endoscope

    NASA Astrophysics Data System (ADS)

    Ishii, Kenta; Okamoto, Dai; Ushio, Makoto; Tai, Hidetoshi; Nishihara, Atsuhiko; Tokuda, Kimio; Kawai, Shinsuke; Kitagawa, Seiichiro

    2017-02-01

    There is demand for small-size lens units for endoscope and industrial applications. Polished glass lenses with a diameter of 1 - 2mm exist, however plastic lenses similar in size are not commonplace. For low-cost, light-weight, and mass production, plastic lens fabrication is extremely beneficial. Especially, in the medical field, there is strong demand for disposable lens unit for endoscopes which prevent contamination due to reuse of the lens. Therefore, high mass producible and low cost becomes increasingly important. This paper reports our findings on injection-molded ultra-small size plastic lens units with a diameter of 1.3mm and total thickness of 1.4mm. We performed optical design, injection molding, and lens unit assembly for injection moldable, high imaging performance ultra-small sized lens units. We prioritize a robust product design, considering injection molding properties and lens unit assembly, with feedback from molding simulations reflected into the optical design. A mold capable of high precision lens positioning is used to fabricate the lenses and decrease the variability of the assembly. The geometric dimensions of the resulting lenses, are measured and used in the optical simulation to validate the optical performance, and a high agreement is reported. The injection molding of the lens and the assembly of the lens unit is performed with high precision, and results in high optical performance.

  4. Microelectrofluidic lens for variable curvature

    NASA Astrophysics Data System (ADS)

    Chang, Jong-hyeon; Lee, Eunsung; Jung, Kyu-Dong; Lee, Seungwan; Choi, Minseog; Kim, Woonbae

    2012-10-01

    This paper presents a tunable liquid lens based on microelectrofluidic technology which integrates electrowetting and microfluidics. In the novel microelectrofluidic lens (MEFL), electrowetting in the hydrophobic surface channel induces the Laplace pressure difference between two fluidic interfaces on the lens aperture and the surface channel. Then, the pressure difference makes the lens curvature tunable. The previous electrowetting lens in which the contact angle changes at the side wall has a certain limitation of the curvature variation because of the contact angle saturation. Although the contact angle saturation also appears in the surface channel of the MEFL, the low surface channel increases the Laplace pressure and it makes the MEFL to have full variation of the optical power possible. The magnitude of the applied voltage determines the lens curvature in the analog mode MEFL as well as the electrowetting lens. Digital operation is also possible when the control electrodes of the MEFL are patterned to have an array. It is expected that the proposed MEFL is able to be widely used because of its full variation of the optical power without the use of oil and digital operation with fast response.

  5. Fluidic lens of floating oil using round-pot chamber based on electrowetting.

    PubMed

    Choi, Hyunhwan; Won, Yonghyub

    2013-07-01

    This study presents a liquid lens using electrowetting that employs an oil phase floating in between the conducting fluids. The lens shape has double-sided surfaces and operates with a bias of 0-60 V. The focal length of the lens, with an aperture size of 2 mm, is ~5.8 mm, and it is converted into an optical power of 172. The lens is sufficient to suppress the fluctuation of fluids due to the external vibration. An image seen through the lens clearly resolves the element better than 6.35 LP/mm on USAF 1951 1×.

  6. Optical Assessment of Soft Contact Lens Edge-Thickness.

    PubMed

    Tankam, Patrice; Won, Jungeun; Canavesi, Cristina; Cox, Ian; Rolland, Jannick P

    2016-08-01

    To assess the edge shape of soft contact lenses using Gabor-Domain Optical Coherence Microscopy (GD-OCM) with a 2-μm imaging resolution in three dimensions and to generate edge-thickness profiles at different distances from the edge tip of soft contact lenses. A high-speed custom-designed GD-OCM system was used to produce 3D images of the edge of an experimental soft contact lens (Bausch + Lomb, Rochester, NY) in four different configurations: in air, submerged into water, submerged into saline with contrast agent, and placed onto the cornea of a porcine eyeball. An algorithm to compute the edge-thickness was developed and applied to cross-sectional images. The proposed algorithm includes the accurate detection of the interfaces between the lens and the environment, and the correction of the refraction error. The sharply defined edge tip of a soft contact lens was visualized in 3D. Results showed precise thickness measurement of the contact lens edge profile. Fifty cross-sectional image frames for each configuration were used to test the robustness of the algorithm in evaluating the edge-thickness at any distance from the edge tip. The precision of the measurements was less than 0.2 μm. The results confirmed the ability of GD-OCM to provide high-definition images of soft contact lens edges. As a nondestructive, precise, and fast metrology tool for soft contact lens measurement, the integration of GD-OCM in the design and manufacturing of contact lenses will be beneficial for further improvement in edge design and quality control. In the clinical perspective, the in vivo evaluation of the lens fitted onto the cornea will advance our understanding of how the edge interacts with the ocular surface. The latter will provide insights into the impact of long-term use of contact lenses on the visual performance.

  7. Optical Assessment of Soft Contact Lens Edge-Thickness

    PubMed Central

    Tankam, Patrice; Won, Jungeun; Canavesi, Cristina; Cox, Ian; Rolland, Jannick P.

    2016-01-01

    Purpose To assess the edge shape of soft contact lenses using Gabor-Domain Optical Coherence Microscopy (GD-OCM) with a 2 μm imaging resolution in three dimensions, and to generate edge-thickness profiles at different distances from the edge tip of soft contact lenses. Methods A high-speed custom-designed GD-OCM system was used to produce 3D images of the edge of an experimental soft contact lens (Bausch + Lomb, Rochester NY) in four different configurations: in air, submerged into water, submerged into saline with contrast agent, and placed onto the cornea of a porcine eyeball. An algorithm to compute the edge-thickness was developed and applied to cross-sectional images. The proposed algorithm includes the accurate detection of the interfaces between the lens and the environment, and the correction of the refraction error. Results The sharply defined edge tip of a soft contact lens was visualized in 3D. Results showed precise thickness measurement of the contact lens edge profile. 50 cross-sectional image frames for each configuration were used to test the robustness of the algorithm in evaluating the edge-thickness at any distance from the edge tip. The precision of the measurements was less than 0.2 μm. Conclusions The results confirmed the ability of GD-OCM to provide high definition images of soft contact lens edges. As a non-destructive, precise, and fast metrology tool for soft contact lens measurement, the integration of GD-OCM in the design and manufacturing of contact lenses will be beneficial for further improvement in edge design and quality control. In the clinical perspective, the in-vivo evaluation of the lens fitted onto the cornea will advance our understanding of how the edge interacts with the ocular surface. The latter will provide insights into the impact of long-term use of contact lenses on the visual performance. PMID:27232902

  8. The analysis of the wavefront aberration caused by the gravity of the tunable-focus liquid-filled membrane lens

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Liu, Pengfei; Wei, Xiaona; Zhuang, Songlin; Yang, Bo

    2010-11-01

    Liquid lens is a novel optical device which can implement active zooming. With liquid lens, zoom camera can be designed with more miniature size and simpler structure than before. It is thought that the micro zoom system with liquid lens has a very wide potential applications in many fields, in which the volume and weight of the system are critically limited, such as endoscope, mobile, PDA and so on. There are mainly three types of tunable-focus liquid lens: liquid crystal lens, electrowetting effect based liquid lens and liquid-filled membrane lens. Comparing with the other two kinds of liquid lens, the liquid-filled membrane lens has the advantages of simple structure, flexible aperture and high zooming efficiency. But its membrane surface will have an initial shape deformation caused by the gravity when the aperture of the lens is at large size, which will lead to the wave front aberration and the imaging quality impairing. In this paper, the initial deformation of the lens caused by the gravity was simulated based on the theory of Elastic Mechanics, which was calculated by the Finite Element Analysis method. The relationship between the diameter of the lens and the wave front aberration caused by the gravity was studied. And the Optical path difference produced by different liquid density was also analyzed.

  9. Wood lens design philosophy based on a binary additive manufacturing technique

    NASA Astrophysics Data System (ADS)

    Marasco, Peter L.; Bailey, Christopher

    2016-04-01

    Using additive manufacturing techniques in optical engineering to construct a gradient index (GRIN) optic may overcome a number of limitations of GRIN technology. Such techniques are maturing quickly, yielding additional design degrees of freedom for the engineer. How best to employ these degrees of freedom is not completely clear at this time. This paper describes a preliminary design philosophy, including assumptions, pertaining to a particular printing technique for GRIN optics. It includes an analysis based on simulation and initial component measurement.

  10. Comparison of postoperative vault height predictability using white-to-white or sulcus diameter-based sizing for the visian implantable collamer lens.

    PubMed

    Reinstein, Dan Z; Lovisolo, Carlo F; Archer, Timothy J; Gobbe, Marine

    2013-01-01

    To compare vault height predictability of Implantable Collamer Lens (ICL; Staar Surgical) sizing using a sulcus diameter-based formula or the manufacturer-recommended white-to-white-based method. In 50 myopic eyes, ICL size was calculated using both a formula including sulcus diameter and the traditional formula based on white-to-white diameter. Sulcus diameter was measured using Artemis 2 very high-frequency (VHF) digital ultrasound (ArcScan Inc). Implantation was based on the sulcus diameter derived size. Actual postoperative vault height achieved was measured by VHF digital ultrasound scanning. Circle segment trigonometry was used to calculate the vault height that would have resulted had lens sizing been based on the white-to-white formula. The same lens size would have been used in 60% of eyes, a smaller lens would have been used in 34% of eyes and a larger lens in 6% of eyes had lens sizing been based on the white-to-white formula. Mean vault for eyes with lenses sized using the sulcus diameter formula was 0.37±0.16 mm (range: 0.08 to 0.92 mm), with 2% <0.09 mm, the recognized low-vault height for risk of cataract. Circle segment trigonometry predicted that the vault height would have been 0.24±0.28 mm (range: -0.31 to 0.92 mm), with 26% <0.09 mm had lens sizing been based on the white-to-white formula. Significantly better predictability of postoperative vault height was achieved by including sulcus diameter into the ICL sizing formula compared with using the traditional white-to-white-based formula. Copyright 2013, SLACK Incorporated.

  11. [Representation and mathematical analysis of human crystalline lens].

    PubMed

    Tălu, Stefan; Giovanzana, Stefano; Tălu, Mihai

    2011-01-01

    The surface of human crystalline lens can be described and analyzed using mathematical models based on parametric representations, used in biomechanical studies and 3D solid modeling of the lens. The mathematical models used in lens biomechanics allow the study and the behavior of crystalline lens on variables and complex dynamic loads. Also, the lens biomechanics has the potential to improve the results in the development of intraocular lenses and cataract surgery. The paper presents the most representative mathematical models currently used for the modeling of human crystalline lens, both optically and biomechanically.

  12. Knowledge-based environment for optical system design

    NASA Astrophysics Data System (ADS)

    Johnson, R. Barry

    1991-01-01

    Optical systems are extensively utilized by industry government and military organizations. The conceptual design engineering design fabrication and testing of these systems presently requires significant time typically on the order of 3-5 years. The Knowledge-Based Environment for Optical System Design (KB-OSD) Program has as its principal objectives the development of a methodology and tool(s) that will make a notable reduction in the development time of optical system projects reduce technical risk and overall cost. KB-OSD can be considered as a computer-based optical design associate for system engineers and design engineers. By utilizing artificial intelligence technology coupled with extensive design/evaluation computer application programs and knowledge bases the KB-OSD will provide the user with assistance and guidance to accomplish such activities as (i) develop system level and hardware level requirements from mission requirements (ii) formulate conceptual designs (iii) construct a statement of work for an RFP (iv) develop engineering level designs (v) evaluate an existing design and (vi) explore the sensitivity of a system to changing scenarios. The KB-OSD comprises a variety of computer platforms including a Stardent Titan supercomputer numerous design programs (lens design coating design thermal materials structural atmospherics etc. ) data bases and heuristic knowledge bases. An important element of the KB-OSD Program is the inclusion of the knowledge of individual experts in various areas of optics and optical system engineering. This knowledge is obtained by KB-OSD knowledge engineers performing

  13. System and Method for Null-Lens Wavefront Sensing

    NASA Technical Reports Server (NTRS)

    Hill, Peter C. (Inventor); Thompson, Patrick L. (Inventor); Aronstein, David L. (Inventor); Bolcar, Matthew R. (Inventor); Smith, Jeffrey S. (Inventor)

    2015-01-01

    A method of measuring aberrations in a null-lens including assembly and alignment aberrations. The null-lens may be used for measuring aberrations in an aspheric optic with the null-lens. Light propagates from the aspheric optic location through the null-lens, while sweeping a detector through the null-lens focal plane. Image data being is collected at locations about said focal plane. Light is simulated propagating to the collection locations for each collected image. Null-lens aberrations may extracted, e.g., applying image-based wavefront-sensing to collected images and simulation results. The null-lens aberrations improve accuracy in measuring aspheric optic aberrations.

  14. Design of a solar collector system formed by a Fresnel lens and a CEC coupled to plastic fibers

    NASA Astrophysics Data System (ADS)

    Viera-González, Perla M.; Sánchez-Guerrero, Guillermo E.; Ceballos-Herrera, Daniel E.; Selvas-Aguilar, Romeo

    2015-08-01

    Among the main challenges for systems based in solar concentrators and plastic optical fibers (POF) the accuracy needed for the solar tracking is founded. One approach to overcome these requirements is increasing acceptance angle of the components, usually by secondary optical elements (SOE), however this technique is effective for photovoltaic applications but it has not been analyzed for systems coupled to POFs for indoor illumination. On this subject, it is presented a numerical analysis of a solar collector assembled by a Fresnel lens as primary optical element (POE) combined with a compound elliptical concentrator (CEC) coupled to POF in order to compare its performance under incidence angle direction and also to show a trade-off analysis for two different Fresnel lens shapes, imaging and nonimaging, used in the collector system. The description of the Fresnel lenses and its designs are included, in addition to the focal areas with space and angular distribution profiles considering the optimal alignment with the source and maximum permissible incident angle for each case. For both systems the coupling between the optical components is analyzed and the total performance is calculated, having as result its comparison for indoor illumination. In both cases, the systems have better performance increasing the final output power, but the angular tolerance only was improved for the system with nonimaging concentrator that had an efficiency over 80% with acceptance angles 𝜃𝑖 ≤ 2° and, the system integrated by the imaging lens, presented an efficiency ratio over 75% for acceptance angles 𝜃𝑖 ≤ 0.7°.

  15. RISK FACTORS FOR CONTACT LENS INDUCED PAPILLARY CONJUNCTIVITIS ASSOCIATED WITH SILICONE HYDROGEL CONTACT LENS WEAR

    PubMed Central

    Tagliaferri, Angela; Love, Thomas E.; Szczotka-Flynn, Loretta

    2014-01-01

    BACKGROUND Contact lens induced papillary conjunctivitis (CLPC) continues to be a major cause of dropout during contact lens extended wear. This retrospective study explores risk factors for the development of CLPC during silicone hydrogel lens extended wear. METHODS Data from 205 subjects enrolled in the Longitudinal Analysis of Silicone Hydrogel Contact Lens (LASH) study wearing lotrafilcon A silicone hydrogel lenses for up to 30 days of continuous wear were used to determine risk factors for CLPC in this secondary analysis of the main cohort. The main covariates of interest included substantial lens-associated bacterial bioburden, and topographically determined lens base curve-to-cornea fitting relationships. Additional covariates of interest included history of prior adverse events, time of year, race, education level, gender and other subject demographics. Statistical analyses included univariate logistic regression to assess the impact of potential risk factors on the binary CLPC outcome, and Cox proportional hazards regression to describe the impact of those factors on time-to-CLPC diagnosis. RESULTS Across 12 months of follow-up, 52 subjects (25%) experienced CLPC. No associations were found between CLPC development and the presence of bacterial bioburden, lens-to-cornea fitting relationships, history of prior adverse events, gender or race. CLPC development followed the same seasonal trends as the local peaks in environmental allergans. CONCLUSIONS Lens fit and biodeposits, in the form of lens associated bacterial bioburden, were not associated with the development of CLPC during extended wear with lotrafilcon A silicone hydrogel lenses. PMID:24681609

  16. Broadband Focusing Acoustic Lens Based on Fractal Metamaterials

    PubMed Central

    Song, Gang Yong; Huang, Bei; Dong, Hui Yuan; Cheng, Qiang; Cui, Tie Jun

    2016-01-01

    Acoustic metamaterials are artificial structures which can manipulate sound waves through their unconventional effective properties. Different from the locally resonant elements proposed in earlier studies, we propose an alternate route to realize acoustic metamaterials with both low loss and large refractive indices. We describe a new kind of acoustic metamaterial element with the fractal geometry. Due to the self-similar properties of the proposed structure, broadband acoustic responses may arise within a broad frequency range, making it a good candidate for a number of applications, such as super-resolution imaging and acoustic tunneling. A flat acoustic lens is designed and experimentally verified using this approach, showing excellent focusing abilities from 2 kHz and 5 kHz in the measured results. PMID:27782216

  17. Task design for improving students’ engagement in mathematics learning

    NASA Astrophysics Data System (ADS)

    Khairunnisa

    2018-01-01

    This article analysed the importance of task design as one of the instruments in the learning and its application in several studies. Through task design, students engage in learning caused them enthusiastically in expressing ideas, opinion or knowledge of them. Thus, the teacher was able to gain an idea of knowledge belonging to students. By using this information, teachers are able to develop the thinking ability of students.

  18. Expert system for generating initial layouts of zoom systems with multiple moving lens groups

    NASA Astrophysics Data System (ADS)

    Cheng, Xuemin; Wang, Yongtian; Hao, Qun; Sasián, José M.

    2005-01-01

    An expert system is developed for the automatic generation of initial layouts for the design of zoom systems with multiple moving lens groups. The Gaussian parameters of the zoom system are optimized using the damped-least-squares method to achieve smooth zoom cam curves, with the f-number of each lens group in the zoom system constrained to a rational value. Then each lens group is selected automatically from a database according to its range of f-number, field of view, and magnification ratio as it is used in the zoom system. The lens group database is established from the results of analyzing thousands of zoom lens patents. Design examples are given, which show that the scheme is a practical approach to generate starting points for zoom lens design.

  19. Focal length hysteresis of a double-liquid lens based on electrowetting

    NASA Astrophysics Data System (ADS)

    Peng, Runling; Wang, Dazhen; Hu, Zhiwei; Chen, Jiabi; Zhuang, Songlin

    2013-02-01

    In this paper, an extended Young equation especially suited for an ideal cylindrical double-liquid variable-focus lens is derived by means of an energy minimization method. Based on the extended Young equation, a kind of focal length hysteresis effect is introduced into the double-liquid variable-focus lens. Such an effect can be explained theoretically by adding a force of friction to the tri-phase contact line. Theoretical analysis shows that the focal length at a particular voltage can be different depending on whether the applied voltage is increasing or decreasing, that is, there is a focal length hysteresis effect. Moreover, the focal length at a particular voltage must be larger when the voltage is rising than when it is dropping. These conclusions are also verified by experiments.

  20. Behavior-Based Multi-Robot Collaboration for Autonomous Construction Tasks

    NASA Technical Reports Server (NTRS)

    Stroupe, Ashley; Huntsberger, Terry; Okon, Avi; Aghazarian, Hrand; Robinson, Matthew

    2005-01-01

    We present a heterogeneous multi-robot system for autonomous construction of a structure through assembly of long components. Placement of a component within an existing structure in a realistic environment is demonstrated on a two-robot team. The task requires component acquisition, cooperative transport, and cooperative precision manipulation. Far adaptability, the system is designed as a behavior-based architecture. Far applicability to space-related construction efforts, computation, power, communication, and sensing are minimized, though the techniques developed are also applicable to terrestrial construction tasks.

  1. Case-based reasoning in design: An apologia

    NASA Technical Reports Server (NTRS)

    Pulaski, Kirt

    1990-01-01

    Three positions are presented and defended: the process of generating solutions in problem solving is viewable as a design task; case-based reasoning is a strong method of problem solving; and a synergism exists between case-based reasoning and design problem solving.

  2. Artificial dielectric stepped-refractive-index lens for the terahertz region.

    PubMed

    Hernandez-Serrano, A I; Mendis, Rajind; Reichel, Kimberly S; Zhang, Wei; Castro-Camus, E; Mittleman, Daniel M

    2018-02-05

    In this paper we theoretically and experimentally demonstrate a stepped-refractive-index convergent lens made of a parallel stack of metallic plates for terahertz frequencies based on artificial dielectrics. The lens consist of a non-uniformly spaced stack of metallic plates, forming a mirror-symmetric array of parallel-plate waveguides (PPWGs). The operation of the device is based on the TE 1 mode of the PPWG. The effective refractive index of the TE 1 mode is a function of the frequency of operation and the spacing between the plates of the PPWG. By varying the spacing between the plates, we can modify the local refractive index of the structure in every individual PPWG that constitutes the lens producing a stepped refractive index profile across the multi stack structure. The theoretical and experimental results show that this structure is capable of focusing a 1 cm diameter beam to a line focus of less than 4 mm for the design frequency of 0.18 THz. This structure shows that this artificial-dielectric concept is an important technology for the fabrication of next generation terahertz devices.

  3. Smart lens: tunable liquid lens for laser tracking

    NASA Astrophysics Data System (ADS)

    Lin, Fan-Yi; Chu, Li-Yu; Juan, Yu-Shan; Pan, Sih-Ting; Fan, Shih-Kang

    2007-05-01

    A tracking system utilizing tunable liquid lens is proposed and demonstrated. Adapting the concept of EWOD (electrowetting-on-dielectric), the curvature of a droplet on a dielectric film can be controlled by varying the applied voltage. When utilizing the droplet as an optical lens, the focal length of this adaptive liquid lens can be adjusted as desired. Moreover, the light that passes through it can therefore be focused to different positions in space. In this paper, the tuning range of the curvature and focal length of the tunable liquid lens is investigated. Droplet transformation is observed and analyzed under a CCD camera. A tracking system combining the tunable liquid lens with a laser detection system is also proposed. With a feedback circuit that maximizing the returned signal by controlling the tunable lens, the laser beam can keep tracked on a distant reflected target while it is moving.

  4. The Lens Capsule

    PubMed Central

    Danysh, Brian P.; Duncan, Melinda K.

    2009-01-01

    The lens capsule is a modified basement membrane that completely surrounds the ocular lens. It is known that this extracellular matrix is important for both the structure and biomechanics of the lens in addition to providing informational cues to maintain lens cell phenotype. This review covers the development and structure of the lens capsule, lens diseases associated with mutations in extracellular matrix genes and the role of the capsule in lens function including those proposed for visual accommodation, selective permeability to infectious agents, and cell signaling. PMID:18773892

  5. Learner Use of Holistic Language Units in Multimodal, Task-Based Synchronous Computer-Mediated Communication

    ERIC Educational Resources Information Center

    Collentine, Karina

    2009-01-01

    Second language acquisition (SLA) researchers strive to understand the language and exchanges that learners generate in synchronous computer-mediated communication (SCMC). Doughty and Long (2003) advocate replacing open-ended SCMC with task-based language teaching (TBLT) design principles. Since most task-based SCMC (TB-SCMC) research addresses an…

  6. Industrial Arts Instructional Tasks/Competencies for Energy and Power. Competency-Based Education.

    ERIC Educational Resources Information Center

    George Mason Univ., Fairfax, VA.

    This instructional task/competency package is designed to help teachers and administrators in developing competency-based instructional materials for an energy and power course. Part 1 contains a description of the industrial arts program and a course description, instructional task/competency list, and content outline for energy and power. The…

  7. Integrated Task And Data Parallel Programming: Language Design

    NASA Technical Reports Server (NTRS)

    Grimshaw, Andrew S.; West, Emily A.

    1998-01-01

    his research investigates the combination of task and data parallel language constructs within a single programming language. There are an number of applications that exhibit properties which would be well served by such an integrated language. Examples include global climate models, aircraft design problems, and multidisciplinary design optimization problems. Our approach incorporates data parallel language constructs into an existing, object oriented, task parallel language. The language will support creation and manipulation of parallel classes and objects of both types (task parallel and data parallel). Ultimately, the language will allow data parallel and task parallel classes to be used either as building blocks or managers of parallel objects of either type, thus allowing the development of single and multi-paradigm parallel applications. 1995 Research Accomplishments In February I presented a paper at Frontiers '95 describing the design of the data parallel language subset. During the spring I wrote and defended my dissertation proposal. Since that time I have developed a runtime model for the language subset. I have begun implementing the model and hand-coding simple examples which demonstrate the language subset. I have identified an astrophysical fluid flow application which will validate the data parallel language subset. 1996 Research Agenda Milestones for the coming year include implementing a significant portion of the data parallel language subset over the Legion system. Using simple hand-coded methods, I plan to demonstrate (1) concurrent task and data parallel objects and (2) task parallel objects managing both task and data parallel objects. My next steps will focus on constructing a compiler and implementing the fluid flow application with the language. Concurrently, I will conduct a search for a real-world application exhibiting both task and data parallelism within the same program m. Additional 1995 Activities During the fall I collaborated

  8. SU-E-I-37: Eye Lens Dose Reduction From CT Scan Using Organ Based Tube Current Modulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, H; Rensselaer Polytechnic Inst., Troy, NY; Liu, T

    Purpose: To investigate the eye lens dose reduction by CT scan with organ based tube current modulation (OBTCM) using GPU Monte Carlo code ARCHER-CT. Methods: 36 X-ray sources and bowtie filters were placed around the patient head with the projection angle interval of 10° for one rotation of CT scan, each projection was simulated respectively. The voxel eye models with high resolution(0.1mm*0.1mm*0.1mm) were used in the simulation and different tube voltage including 80kVp, 100kVp, 120kVp and 140kVp were taken into consideration. Results: The radiation doses to the eye lens increased with the tube voltage raised from 80kVp to 140kVp, andmore » the dose results from 0° (AP) direction are much higher than those from 180° (PA) direction for all the 4 different tube voltage investigated. This 360° projection dose characteristic enables organ based TCM, which can reduce the eye lens dose by more than 55%. Conclusion: As the eye lens belongs to superficial tissues, its radiation dose to external exposure like CT is direction sensitive, and this characteristic feature makes organ based TCM to be an effective way to reduce the eye lens dose, so more clinical use of this technique were recommended. National Nature Science Foundation of China(No.11475047)« less

  9. Using IMPRINT to Guide Experimental Design with Simulated Task Environments

    DTIC Science & Technology

    2015-06-18

    USING IMPRINT TO GUIDE EXPERIMENTAL DESIGN OF SIMULATED TASK ENVIRONMENTS THESIS Gregory...ENG-MS-15-J-052 USING IMPRINT TO GUIDE EXPERIMENTAL DESIGN WITH SIMULATED TASK ENVIRONMENTS THESIS Presented to the Faculty Department...Civilian, USAF June 2015 DISTRIBUTION STATEMENT A. APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. AFIT-ENG-MS-15-J-052 USING IMPRINT

  10. The Multiple Roles of the Task Design Mediator in Telecollaboration

    ERIC Educational Resources Information Center

    Fuchs, Carolin; Snyder, Bill; Tung, Bruce; Jung Han, Yu

    2017-01-01

    This case study explores how a Chinese-American novice teacher acted as mediator in a telecollaboration with student teacher (ST) peers in the USA who designed tasks for his English as a foreign language (EFL) learners in China. The novice teacher was instrumental in mediating the student teachers' task design process by providing feedback…

  11. OPTICAL PRINCIPLES, BIOMECHANICS, AND INITIAL CLINICAL PERFORMANCE OF A DUAL-OPTIC ACCOMMODATING INTRAOCULAR LENS (AN AMERICAN OPHTHALMOLOGICAL SOCIETY THESIS)

    PubMed Central

    McLeod, Stephen D.

    2006-01-01

    Purpose To design and develop an accommodating intraocular lens (IOL) for endocapsular fixation with extended accommodative range that can be adapted to current standard extracapsular phacoemulsification technique. Methods Ray tracing analysis and lens design; finite element modeling of biomechanical properties; cadaver eye implantation; initial clinical evaluation. Results Ray tracing analysis indicated that a dual-optic design with a high plus-power front optic coupled to an optically compensatory minus posterior optic produced greater change in conjugation power of the eye compared to that produced by axial movement of a single-optic IOL, and that magnification effects were unlikely to account for improved near vision. Finite element modeling indicated that the two optics can be linked by spring-loaded haptics that allow anterior and posterior axial displacement of the front optic in response to changes in ciliary body tone and capsular tension. A dual-optic single-piece foldable silicone lens was constructed based on these principles. Subsequent initial clinical evaluation in 24 human eyes after phacoemulsification for cataract indicated mean 3.22 diopters of accommodation (range, 1 to 5 D) based on defocus curve measurement. Accommodative amplitude evaluation at 1- and 6-month follow-up in all eyes indicated that the accommodative range was maintained and that the lens was well tolerated. Conclusions A dual-optic design increases the accommodative effect of axial optic displacement, with minimal magnification effect. Initial clinical trials suggest that IOLs designed on this principle might provide true pseudophakic accommodation following cataract extraction and lens implantation. PMID:17471355

  12. Designing for Interaction: Six Steps to Designing Computer-Supported Group-Based Learning

    ERIC Educational Resources Information Center

    Strijbos, J. W.; Martens, R. L.; Jochems, W. M. G.

    2004-01-01

    At present, the design of computer-supported group-based learning (CSGBL) is often based on subjective decisions regarding tasks, pedagogy and technology, or concepts such as "cooperative learning" and "collaborative learning." Critical review reveals these concepts as insufficiently substantial to serve as a basis for CSGBL design. Furthermore,…

  13. Tethered capsule OCT endomicroscopy for upper gastrointestinal tract imaging by using ball lens probe (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Dong, Jing; Gora, Michalina J.; Reddy, Rohith; Trasischker, Wolfgang; Poupart, Oriane; Lu, Weina; Carruth, Robert W.; Grant, Catriona N.; Soomro, Amna R.; Tiernan, Aubrey R.; Rosenberg, Mireille; Nishioka, Norman S.; Tearney, Guillermo J.

    2016-03-01

    While endoscopy is the most commonly used modality for diagnosing upper GI tract disease, this procedure usually requires patient sedation that increases cost and mandates its operation in specialized settings. In addition, endoscopy only visualizes tissue superfically at the macroscopic scale, which is problematic for many diseases that manifest below the surface at a microscopic scale. Our lab has previously developed technology termed tethered capsule OCT endomicroscopy (TCE) to overcome these diagnostic limitations of endoscopy. The TCE device is a swallowable capsule that contains optomechanical components that circumferentially scan the OCT beam inside the body as the pill traverses the organ via peristalsis. While we have successfully imaged ~100 patients with the TCE device, the optics of our current device have many elements and are complex, comprising a glass ferrule, optical fiber, glass spacer, GRIN lens and prism. As we scale up manufacturing of this device for clinical translation, we must decrease the cost and improve the manufacturability of the capsule's optical configuration. In this abstract, we report on the design and development of simplificed TCE optics that replace the GRIN lens-based configuration with an angle-polished ball lens design. The new optics include a single mode optical fiber, a glass spacer and an angle polished ball lens, that are all fusion spliced together. The ball lens capsule has resolutions that are comparable with those of our previous GRIN lens configuration (30µm (lateral) × 7 µm (axial)). Results in human subjects show that OCT-based TCE using the ball lens not only provides rapid, high quality microstructural images of upper GI tract, but also makes it possible to implement this technology inexpensively and on a larger scale.

  14. Identifying and individuating cognitive systems: a task-based distributed cognition alternative to agent-based extended cognition.

    PubMed

    Davies, Jim; Michaelian, Kourken

    2016-08-01

    This article argues for a task-based approach to identifying and individuating cognitive systems. The agent-based extended cognition approach faces a problem of cognitive bloat and has difficulty accommodating both sub-individual cognitive systems ("scaling down") and some supra-individual cognitive systems ("scaling up"). The standard distributed cognition approach can accommodate a wider variety of supra-individual systems but likewise has difficulties with sub-individual systems and faces the problem of cognitive bloat. We develop a task-based variant of distributed cognition designed to scale up and down smoothly while providing a principled means of avoiding cognitive bloat. The advantages of the task-based approach are illustrated by means of two parallel case studies: re-representation in the human visual system and in a biomedical engineering laboratory.

  15. Learning Tasks, Peer Interaction, and Cognition Process: An Online Collaborative Design Model

    ERIC Educational Resources Information Center

    Du, Jianxia; Durrington, Vance A.

    2013-01-01

    This paper illustrates a model for Online Group Collaborative Learning. The authors based the foundation of the Online Collaborative Design Model upon Piaget's concepts of assimilation and accommodation, and Vygotsky's theory of social interaction. The four components of online collaborative learning include: individual processes, the task(s)…

  16. Thrive or overload? The effect of task complexity on novices' simulation-based learning.

    PubMed

    Haji, Faizal A; Cheung, Jeffrey J H; Woods, Nicole; Regehr, Glenn; de Ribaupierre, Sandrine; Dubrowski, Adam

    2016-09-01

    Fidelity is widely viewed as an important element of simulation instructional design based on its purported relationship with transfer of learning. However, higher levels of fidelity may increase task complexity to a point at which novices' cognitive resources become overloaded. In this experiment, we investigate the effects of variations in task complexity on novices' cognitive load and learning during simulation-based procedural skills training. Thirty-eight medical students were randomly assigned to simulation training on a simple or complex lumbar puncture (LP) task. Participants completed four practice trials on this task (skill acquisition). After 10 days of rest, all participants completed one additional trial on their assigned task (retention) and one trial on a 'very complex' simulation designed to be similar to the complex task (transfer). We assessed LP performance and cognitive load on each trial using multiple measures. In both groups, LP performance improved significantly during skill acquisition (p ≤ 0.047, f = 0.29-0.96) and was maintained at retention. The simple task group demonstrated superior performance compared with the complex task group throughout these phases (p ≤ 0.002, d = 1.13-2.31). Cognitive load declined significantly in the simple task group (p < 0.009, f = 0.48-0.76), but not in the complex task group during skill acquisition, and remained lower at retention (p ≤ 0.024, d = 0.78-1.39). Between retention and transfer, LP performance declined and cognitive load increased in the simple task group, whereas both remained stable in the complex task group. At transfer, no group differences were observed in LP performance and cognitive load, except that the simple task group made significantly fewer breaches of sterility (p = 0.023, d = 0.80). Reduced task complexity was associated with superior LP performance and lower cognitive load during skill acquisition and retention, but mixed results on transfer to a more

  17. Optomechanical integrated simulation of Mars medium resolution lens with large field of view

    NASA Astrophysics Data System (ADS)

    Yang, Wenqiang; Xu, Guangzhou; Yang, Jianfeng; Sun, Yi

    2017-10-01

    The lens of Mars detector is exposed to solar radiation and space temperature for long periods of time during orbit, so that the ambient temperature of the optical system is in a dynamic state. The optical and mechanical change caused by heat will lead to camera's visual axis drift and the wavefront distortion. The surface distortion of the optical lens includes the displacement of the rigid body and the distortion of the surface shape. This paper used the calculation method based on the integrated optomechanical analysis, to explore the impact of thermodynamic load on image quality. Through the analysis software, established a simulation model of the lens structure. The shape distribution and the surface characterization parameters of the lens in some temperature ranges were analyzed and compared. the PV / RMS value, deformation cloud of the lens surface and quality evaluation of imaging was achieved. This simulation has been successfully measured the lens surface shape and shape distribution under the load which is difficult to measure on the experimental conditions. The integrated simulation method of the optical machine can obtain the change of the optical parameters brought by the temperature load. It shows that the application of Integrated analysis has play an important role in guiding the designing the lens.

  18. Electrowetting-based adaptive vari-focal liquid lens array for 3D display

    NASA Astrophysics Data System (ADS)

    Won, Yong Hyub

    2014-10-01

    Electrowetting is a phenomenon that can control the surface tension of liquid when a voltage is applied. This paper introduces the fabrication method of liquid lens array by the electrowetting phenomenon. The fabricated 23 by 23 lens array has 1mm diameter size with 1.6 mm interval distance between adjacent lenses. The diopter of each lens was - 24~27 operated at 0V to 50V. The lens array chamber fabricated by Deep Reactive-Ion Etching (DRIE) is deposited with IZO and parylene C and tantalum oxide. To prevent water penetration and achieve high dielectric constant, parylene C and tantalum oxide (ɛ = 23 ~ 25) are used respectively. Hydrophobic surface which enables the range of contact angle from 60 to 160 degree is coated to maximize the effect of electrowetting causing wide band of dioptric power. Liquid is injected into each lens chamber by two different ways. First way was self water-oil dosing that uses cosolvent and diffusion effect, while the second way was micro-syringe by the hydrophobic surface properties. To complete the whole process of the lens array fabrication, underwater sealing was performed using UV adhesive that does not dissolve in water. The transient time for changing from concave to convex lens was measured <33ms (at frequency of 1kHz AC voltage.). The liquid lens array was tested unprecedentedly for integral imaging to achieve more advanced depth information of 3D image.

  19. Approximating lens power.

    PubMed

    Kaye, Stephen B

    2009-04-01

    To provide a scalar measure of refractive error, based on geometric lens power through principal, orthogonal and oblique meridians, that is not limited to the paraxial and sag height approximations. A function is derived to model sections through the principal meridian of a lens, followed by rotation of the section through orthogonal and oblique meridians. Average focal length is determined using the definition for the average of a function. Average univariate power in the principal meridian (including spherical aberration), can be computed from the average of a function over the angle of incidence as determined by the parameters of the given lens, or adequately computed from an integrated series function. Average power through orthogonal and oblique meridians, can be similarly determined using the derived formulae. The widely used computation for measuring refractive error, the spherical equivalent, introduces non-constant approximations, leading to a systematic bias. The equations proposed provide a good univariate representation of average lens power and are not subject to a systematic bias. They are particularly useful for the analysis of aggregate data, correlating with biological treatment variables and for developing analyses, which require a scalar equivalent representation of refractive power.

  20. Holographic Lens for Pilot’s Head-Up Display

    DTIC Science & Technology

    1976-02-01

    holog; rdm lens. The dynamically-stabilized recording apparatus for the full- scale transmission hologram lens was designed and assembled in Phase 2...8217LjI for which the fringe visibility measured is 0.707 ........... 25 3 Coherence lengjth for TEMQ is 3.5 cm........27 4 Masured sinkile frequency...horizontal focal surfaces ofthe T90-N8-21.9 hologram lens . . . . . . . 118 41 Chief ray efficiency measured as a function of vertical and horizontal field

  1. fMRI reliability: influences of task and experimental design.

    PubMed

    Bennett, Craig M; Miller, Michael B

    2013-12-01

    As scientists, it is imperative that we understand not only the power of our research tools to yield results, but also their ability to obtain similar results over time. This study is an investigation into how common decisions made during the design and analysis of a functional magnetic resonance imaging (fMRI) study can influence the reliability of the statistical results. To that end, we gathered back-to-back test-retest fMRI data during an experiment involving multiple cognitive tasks (episodic recognition and two-back working memory) and multiple fMRI experimental designs (block, event-related genetic sequence, and event-related m-sequence). Using these data, we were able to investigate the relative influences of task, design, statistical contrast (task vs. rest, target vs. nontarget), and statistical thresholding (unthresholded, thresholded) on fMRI reliability, as measured by the intraclass correlation (ICC) coefficient. We also utilized data from a second study to investigate test-retest reliability after an extended, six-month interval. We found that all of the factors above were statistically significant, but that they had varying levels of influence on the observed ICC values. We also found that these factors could interact, increasing or decreasing the relative reliability of certain Task × Design combinations. The results suggest that fMRI reliability is a complex construct whose value may be increased or decreased by specific combinations of factors.

  2. Simple-structured capillary-force-dominated tunable-focus liquid lens based on the higher-order-harmonic resonance of a piezoelectric ring transducer.

    PubMed

    Feng, Guo-Hua; Liu, Jun-Hao

    2013-02-01

    This paper proposes a tunable-focus liquid lens implemented with a simple cylindrical container structure and liquid as the lens material. The cylindrical container was constructed using a Pb [Zr(0.52)Ti(0.48)]O(3) (PZT) ring transducer and a polydimethylsiloxane membrane that was attached to a flat side of the transducer. The free surface of the liquid in the cylindrical container can be driven as a static-like convex lens with different curvatures because the higher-order harmonic resonance of the PZT transducer was electrically controlled. Based on a capillary-force-dominant design, the activated liquid lens maintained surface curvature in an arbitrary orientation without a gravitational effect. Profiles of the liquid lenses were characterized with the driving voltages of the transducer ranging from 12 to 60 V peak-to-peak (Vpp) at a resonant frequency of 460 kHz. The temperature effects on the lenses caused by the continuous operation of the transducer were measured. Images showed the various curvatures of the lenses with a range of actuation voltages. A change in focal length of eight times (5.72 to 46.03 cm) was demonstrated within the 10 Vpp variation of the driving voltage. For the characterized liquid lenses, the distortion was less than 2%, and the modulation transfer function reached 63 line pairs per mm (lp/mm) using ZEMAX analysis.

  3. Contact lens complications.

    PubMed

    Suchecki, Jeanine K; Donshik, Peter; Ehlers, William H

    2003-09-01

    Complications associated with contact lenses range from mild to severe and occur with all lens modalities. Contact lens wear can cause a change in corneal physiology, which can lead to epithelial, stromal, and endothelial compromise. Other complications include lens deposition, allergic conjunctivitis, giant papillary conjunctivitis, peripheral infiltrates, microbial keratitis, and neovascularization. Pre-existing conditions can contribute to these complications, or they can occur in association with contact lens wear and care regimens. Patient-related factors, such as alteration of the recommended wearing or replacement schedules and noncompliance with recommended contact lens care regimens for economic reasons, convenience, or in error, contribute to contact lens-related complications and have led to difficulty in accurate determination of complication rates among the various lens wear modalities. Complications may require discontinuation of contact lenses, topical therapy, and changes in contact lens wearing schedules, materials, and care solutions. On initial lens fitting and follow-up evaluations, practitioners should review contact lens replacement and cleaning regimens with patients and discuss complications. To avoid serious complications, patients should be reminded to remove their contact lenses as soon as ocular irritation occurs, and to call their eye care practitioner immediately if symptoms persist.

  4. The SADI Personal Health Lens: A Web Browser-Based System for Identifying Personally Relevant Drug Interactions.

    PubMed

    Vandervalk, Ben; McCarthy, E Luke; Cruz-Toledo, José; Klein, Artjom; Baker, Christopher J O; Dumontier, Michel; Wilkinson, Mark D

    2013-04-05

    The Web provides widespread access to vast quantities of health-related information that can improve quality-of-life through better understanding of personal symptoms, medical conditions, and available treatments. Unfortunately, identifying a credible and personally relevant subset of information can be a time-consuming and challenging task for users without a medical background. The objective of the Personal Health Lens system is to aid users when reading health-related webpages by providing warnings about personally relevant drug interactions. More broadly, we wish to present a prototype for a novel, generalizable approach to facilitating interactions between a patient, their practitioner(s), and the Web. We utilized a distributed, Semantic Web-based architecture for recognizing personally dangerous drugs consisting of: (1) a private, local triple store of personal health information, (2) Semantic Web services, following the Semantic Automated Discovery and Integration (SADI) design pattern, for text mining and identifying substance interactions, (3) a bookmarklet to trigger analysis of a webpage and annotate it with personalized warnings, and (4) a semantic query that acts as an abstract template of the analytical workflow to be enacted by the system. A prototype implementation of the system is provided in the form of a Java standalone executable JAR file. The JAR file bundles all components of the system: the personal health database, locally-running versions of the SADI services, and a javascript bookmarklet that triggers analysis of a webpage. In addition, the demonstration includes a hypothetical personal health profile, allowing the system to be used immediately without configuration. Usage instructions are provided. The main strength of the Personal Health Lens system is its ability to organize medical information and to present it to the user in a personalized and contextually relevant manner. While this prototype was limited to a single knowledge domain

  5. The SADI Personal Health Lens: A Web Browser-Based System for Identifying Personally Relevant Drug Interactions

    PubMed Central

    Vandervalk, Ben; McCarthy, E Luke; Cruz-Toledo, José; Klein, Artjom; Baker, Christopher J O; Dumontier, Michel

    2013-01-01

    Background The Web provides widespread access to vast quantities of health-related information that can improve quality-of-life through better understanding of personal symptoms, medical conditions, and available treatments. Unfortunately, identifying a credible and personally relevant subset of information can be a time-consuming and challenging task for users without a medical background. Objective The objective of the Personal Health Lens system is to aid users when reading health-related webpages by providing warnings about personally relevant drug interactions. More broadly, we wish to present a prototype for a novel, generalizable approach to facilitating interactions between a patient, their practitioner(s), and the Web. Methods We utilized a distributed, Semantic Web-based architecture for recognizing personally dangerous drugs consisting of: (1) a private, local triple store of personal health information, (2) Semantic Web services, following the Semantic Automated Discovery and Integration (SADI) design pattern, for text mining and identifying substance interactions, (3) a bookmarklet to trigger analysis of a webpage and annotate it with personalized warnings, and (4) a semantic query that acts as an abstract template of the analytical workflow to be enacted by the system. Results A prototype implementation of the system is provided in the form of a Java standalone executable JAR file. The JAR file bundles all components of the system: the personal health database, locally-running versions of the SADI services, and a javascript bookmarklet that triggers analysis of a webpage. In addition, the demonstration includes a hypothetical personal health profile, allowing the system to be used immediately without configuration. Usage instructions are provided. Conclusions The main strength of the Personal Health Lens system is its ability to organize medical information and to present it to the user in a personalized and contextually relevant manner. While this

  6. Developing a "Conjecturing Atmosphere" in the Classroom through Task Design and Enactment

    ERIC Educational Resources Information Center

    Hunter, Jodie

    2014-01-01

    In recent years there has been an increased emphasis on algebraic reasoning in primary school classrooms. This includes introducing students to the mathematical practices of making conjectures, justifying and generalising. Drawing on findings from a classroom-based study, this paper explores one teacher's journey in shifting her task design and…

  7. A Prototype Antifungal Contact Lens

    PubMed Central

    Ciolino, Joseph B.; Hudson, Sarah P.; Mobbs, Ashley N.; Hoare, Todd R.; Iwata, Naomi G.; Fink, Gerald R.

    2011-01-01

    Purpose. To design a contact lens to treat and prevent fungal ocular infections. Methods. Curved contact lenses were created by encapsulating econazole-impregnated poly(lactic-co-glycolic) acid (PLGA) films in poly(hydroxyethyl methacrylate) (pHEMA) by ultraviolet photopolymerization. Release studies were conducted in phosphate-buffered saline at 37°C with continuous shaking. The contact lenses and their release media were tested in an antifungal assay against Candida albicans. Cross sections of the pre- and postrelease contact lenses were characterized by scanning electron microscopy and by Raman spectroscopy. Results. Econazole-eluting contact lenses provided extended antifungal activity against Candida albicans fungi. Fungicidal activity varied in duration and effectiveness depending on the mass of the econazole-PLGA film encapsulated in the contact lens. Conclusions. An econazole-eluting contact lens could be used as a treatment for fungal ocular infections. PMID:21527380

  8. Promoting Discourse with Task-Based Scenario Interaction.

    ERIC Educational Resources Information Center

    Dinapoli, Russell

    Tasks have become an essential feature of second language (L2) learning in recent years. Tasks range from getting learners to repeat linguistic elements satisfactorily to having them perform in "free" production. Along this task-based continuum, task-based scenario interaction lies at the point midway between controlled and…

  9. [Keratoconus special soft contact lens fitting].

    PubMed

    Yamazaki, Ester Sakae; da Silva, Vanessa Cristina Batista; Morimitsu, Vagner; Sobrinho, Marcelo; Fukushima, Nelson; Lipener, César

    2006-01-01

    To evaluate the fitting and use of a soft contact lens in keratoconic patients. Retrospective study on 80 eyes of 66 patients, fitted with a special soft contact lens for keratoconus, at the Contact Lens Section of UNIFESP and private clinics. Keratoconus was classified according to degrees of disease severity by keratometric pattern. Age, gender, diagnosis, keratometry, visual acuity, spherical equivalent (SE), base curve and clinical indication were recorded. Of 66 patients (80 eyes) with keratoconus the mean age was 29 years, 51.5% were men and 48.5% women. According to the groups: 15.0% were incipient, 53.7% moderate, 26.3% advanced and 5.0% were severe. The majority of the eyes of patients using contact lenses (91.25%) achieved visual acuity better than 20/40. To 88 eyes 58% were tihed with lens with spherical power (mean -5.45 diopters) and 41% with spherocylinder power (from -0.5 to -5.00 cylindrical diopters). The most frequent base curve was 7.6 in 61% of the eyes. The main reasons for this special lens fitting were due to reduced tolerance and poor fitting pattern achieved with other lenses. The special soft contact lens is useful in fitting difficult keratoconic patients by offering comfort and improving visual rehabilitation that may allow more patients to postpone the need for corneal transplant.

  10. SPACE-BASED MICROLENS PARALLAX OBSERVATION AS A WAY TO RESOLVE THE SEVERE DEGENERACY BETWEEN MICROLENS-PARALLAX AND LENS-ORBITAL EFFECTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, C.; Udalski, A.; Szymański, M. K.

    In this paper, we demonstrate the severity of the degeneracy between the microlens-parallax and lens-orbital effects by presenting the analysis of the gravitational binary-lens event OGLE-2015-BLG-0768. Despite the obvious deviation from the model based on the linear observer motion and the static binary, it is found that the residual can be almost equally well explained by either the parallactic motion of the Earth or the rotation of the binary-lens axis, resulting in the severe degeneracy between the two effects. We show that the degeneracy can be readily resolved with the additional data provided by space-based microlens parallax observations. By enablingmore » us to distinguish between the two higher-order effects, space-based microlens parallax observations will not only make it possible to accurately determine the physical lens parameters but also to further constrain the orbital parameters of binary lenses.« less

  11. The neutronic design and performance of the Indiana University Cyclotron Facility (IUCF) Low Energy Neutron Source (LENS)

    NASA Astrophysics Data System (ADS)

    Lavelle, Christopher M.

    Neutron scattering research is performed primarily at large-scale facilities. However, history has shown that smaller scale neutron scattering facilities can play a useful role in education and innovation while performing valuable materials research. This dissertation details the design and experimental validation of the LENS TMR as an example for a small scale accelerator driven neutron source. LENS achieves competitive long wavelength neutron intensities by employing a novel long pulse mode of operation, where the neutron production target is irradiated on a time scale comparable to the emission time of neutrons from the system. Monte Carlo methods have been employed to develop a design for optimal production of long wavelength neutrons from the 9Be(p,n) reaction at proton energies ranging from 7 to 13 MeV proton energy. The neutron spectrum was experimentally measured using time of flight, where it is found that the impact of the long pulse mode on energy resolution can be eliminated at sub-eV neutron energies if the emission time distribution of neutron from the system is known. The emission time distribution from the TMR system is measured using a time focussed crystal analyzer. Emission time of the fundamental cold neutron mode is found to be consistent with Monte Carlo results. The measured thermal neutron spectrum from the water reflector is found to be in agreement with Monte Carlo predictions if the scattering kernels employed are well established. It was found that the scattering kernels currently employed for cryogenic methane are inadequate for accurate prediction of the cold neutron intensity from the system. The TMR and neutronic modeling have been well characterized and the source design is flexible, such that it is possible for LENS to serve as an effective test bed for future work in neutronic development. Suggestions for improvements to the design that would allow increased neutron flux into the instruments are provided.

  12. Electrowetting Lens Employing Hemispherical Cavity Formed by Hydrofluoric Acid, Nitric Acid, and Acetic Acid Etching of Silicon

    NASA Astrophysics Data System (ADS)

    Lee, June Kyoo; Choi, Ju Chan; Jang, Won Ick; Kim, Hak-Rin; Kong, Seong Ho

    2012-06-01

    We demonstrate the design of an electrowetting lens employing a high-aspect-ratio hemispherical lens cavity and its micro-electro-mechanical-system (MEMS) fabrication process in this study. Our preliminary simulation results showed that the physical and electrical durability of the lens can be improved by the mitigation of stresses on the insulator at the hemispherical cavity. High-aspect-ratio hemispherical cavities with various diameters and very smooth sidewall surfaces were uniformly fabricated on a silicon wafer by a sophisticated isotropic wet etching technique. Moreover, we experimentally investigated the optical properties of the MEMS-based electrowetting lens with the proposed cavity. Two immiscible liquids in the proposed lens cavity were electrostatically controlled with negligible optical distortion and low focal-length hysteresis due to the fully axis-symmetrical geometry and smooth sidewall of the cavity.

  13. Plasma Lens for Muon and Neutrino Beams

    NASA Astrophysics Data System (ADS)

    Kahn, Stephen; Korenev, Sergey; Bishai, Mary; Diwan, Milind; Gallardo, Juan; Hershcovitch, Ady; Johnson, Brant

    2008-04-01

    The plasma lens is examined as an alternate to focusing horns and solenoids for use in a neutrino or muon beam facility. The plasma lens concept is based on a combined high-current lens/target configuration. The current is fed at electrodes located upstream and downstream from the target where pion capturing is needed. The current flows primarily in the plasma, which has a lower resistivity than the target. A second plasma lens section, with an additional current feed, follows the target to provide shaping of the plasma stability. The geometry of the plasma is shaped to provide optimal pion capture. Simulations of this plasma lens system have shown a 25% higher neutrino production than the horn system. A plasma lens has additional advantage: larger axial current than horns, minimal neutrino contamination during antineutrino running, and negligible pion absorption or scattering. Results from particle simulations using a plasma lens will be presented.

  14. An electrostatic deceleration lens for highly charged ions.

    PubMed

    Rajput, J; Roy, A; Kanjilal, D; Ahuja, R; Safvan, C P

    2010-04-01

    The design and implementation of a purely electrostatic deceleration lens used to obtain beams of highly charged ions at very low energies is presented. The design of the lens is such that it can be used with parallel as well as diverging incoming beams and delivers a well focused low energy beam at the target. In addition, tuning of the final energy of the beam over a wide range (1 eV/q to several hundred eV/q, where q is the beam charge state) is possible without any change in hardware configuration. The deceleration lens was tested with Ar(8+), extracted from an electron cyclotron resonance ion source, having an initial energy of 30 keV/q and final energies as low as 70 eV/q have been achieved.

  15. Examining Co-Teaching through a Socio-Technical Systems Lens

    ERIC Educational Resources Information Center

    Isherwood, Robert S.; Barger-Anderson, Richard; Erickson, Matthew

    2012-01-01

    Qualitative research was conducted in a large suburban school district implementing co-teaching as a new service delivery model for special education. Researchers examined the changes that resulted from the new service delivery model using a socio-technical systems lens. This framework views schools as open systems that contain a structural, task,…

  16. Evolutionary optimization of compact dielectric lens for farfield sub-wavelength imaging

    PubMed Central

    Zhang, Jingjing

    2015-01-01

    The resolution of conventional optical lenses is limited by diffraction. For decades researchers have made various attempts to beat the diffraction limit and realize subwavelength imaging. Here we present the approach to design modified solid immersion lenses that deliver the subwavelength information of objects into the far field, yielding magnified images. The lens is composed of an isotropic dielectric core and anisotropic or isotropic dielectric matching layers. It is designed by combining a transformation optics forward design with an inverse design scheme, where an evolutionary optimization procedure is applied to find the material parameters for the matching layers. Notably, the total radius of the lens is only 2.5 wavelengths and the resolution can reach λ/6. Compared to previous approaches based on the simple discretized approximation of a coordinate transformation design, our method allows for much more precise recovery of the information of objects, especially for those with asymmetric shapes. It allows for the far-field subwavelength imaging at optical frequencies with compact dielectric devices. PMID:26017657

  17. Far-field characteristics of the square grooved-dielectric lens antenna for the terahertz band.

    PubMed

    Pan, Wu; Zeng, Wei

    2016-09-10

    In order to improve the gain and directionality of a terahertz antenna, a square grooved-dielectric lens antenna based on a Fresnel zone plate is proposed. First, a diagonal horn, which is adopted as the primary feed antenna, is designed. Then, the far-field characteristics of the lens antenna are studied by using Fresnel-Kirchhoff diffraction theory and the paraxial approximation. The effects of the full-wave period, the focus diameter ratio, the subregion, and the dielectric substrate thickness on radiation characteristics are studied. The experimental results show that the proposed lens antenna has axisymmetric radiation patterns. The gain is over 26.1 dB, and the 3 dB main lobe beam width is lower than 5.6° across the operation band. The proposed lens antenna is qualified for applications in terahertz wireless communication systems.

  18. Fast-response variable focusing micromirror array lens

    NASA Astrophysics Data System (ADS)

    Boyd, James G., IV; Cho, Gyoungil

    2003-07-01

    A reflective type Fresnel lens using an array of micromirrors is designed and fabricated using the MUMPs® surface micromachining process. The focal length of the lens can be rapidly changed by controlling both the rotation and translation of electrostatically actuated micromirrors. The rotation converges rays and the translation adjusts the optical path length difference of the rays to be integer multiples of the wavelength. The suspension spring, pedestal and electrodes are located under the mirror to maximize the optical efficiency. Relations are provided for the fill-factor and the numerical aperture as functions of the lens diameter, the mirror size, and the tolerances specified by the MUMPs® design rules. The fabricated lens is 1.8mm in diameter, and each micromirror is approximately 100mm x 100mm. The lens fill-factor is 83.7%, the numerical aperture is 0.018 for a wavelength of 632.8nm, and the resolution is approximately 22mm, whereas the resolution of a perfect aberration-free lens is 21.4μm for a NA of 0.018. The focal length ranges from 11.3mm to infinity. The simulated Strehl ratio, which is the ratio of the point spread function maximum intensity to the theoretical diffraction-limited PSF maximum intensity, is 31.2%. A mechanical analysis was performed using the finite element code IDEAS. The combined maximum rotation and translation produces a maximum stress of 301MPa, below the yield strength of polysilicon, 1.21 to 1.65GPa. Potential applications include adaptive microscope lenses for scanning particle imaging velocimetry and a visually aided micro-assembly.

  19. Mathematical Tasks and the Student: Navigating "Tensions of Intentions" between Designers, Teachers, and Students

    ERIC Educational Resources Information Center

    Johnson, Heather Lynn; Coles, Alf; Clarke, David

    2017-01-01

    We articulate a student perspective on task design in mathematics education, foregrounding a dynamic relationship between intentions of task designers, teachers, and students. First, we characterize a student perspective on task design. Second, we provide theoretical perspectives that we use as tools to account for different facets of task design…

  20. Post-lens tear turbidity and visual quality after scleral lens wear.

    PubMed

    Carracedo, Gonzalo; Serramito-Blanco, Maria; Martin-Gil, Alba; Wang, Zicheng; Rodriguez-Pomar, Candela; Pintor, Jesús

    2017-11-01

    The aim was to evaluate the turbidity and thickness of the post-lens tear layer and its effect on visual quality in patients with keratoconus after the beginning of lens wear and before lens removal at the end of eight hours. Twenty-six patients with keratoconus (aged 36.95 ± 8.95 years) participated voluntarily in the study. The sample was divided into two groups: patients with intrastromal corneal ring (ICRS group) and patients without ICRS (KC group). Distance visual acuity (VA), contrast sensitivity, pachymetry, post-lens tear layer height and post-lens tear layer turbidity (percentage area occupied and number of particles per mm 2 ) were evaluated with optical coherence tomography before and after wearing a scleral lens. A significant increase of turbidity was found in all groups assessed (p < 0.05). The number of particles per square millimetre was eight times higher after scleral lens wear than at the beginning of wearing the lens for all groups. VA decreases in all groups after scleral lens wear (p < 0.001). All patients showed a statistical diminishing of contrast sensitivity after scleral lens wear (p < 0.05). A significant correlation was found for both turbidity parameters with distance VA but no correlation between turbidity and post-lens tear layer thickness at the beginning was found (p > 0.05). A strong correlation in all groups between the post-lens tear layer at the beginning and differences of tear layer thickness between two measures was also found (p < 0.05). The VA decrease during the scleral lens wearing, filled with preserved saline solution, was due to the increasing post-lens tear layer turbidity. © 2017 Optometry Australia.

  1. Crystalline lens and refractive development.

    PubMed

    Iribarren, Rafael

    2015-07-01

    Individual refractive errors usually change along lifespan. Most children are hyperopic in early life. This hyperopia is usually lost during growth years, leading to emmetropia in adults, but myopia also develops in children during school years or during early adult life. Those subjects who remain emmetropic are prone to have hyperopic shifts in middle life. And even later, at older ages, myopic shifts are developed with nuclear cataract. The eye grows from 15 mm in premature newborns to approximately 24 mm in early adult years, but, in most cases, refractions are maintained stable in a clustered distribution. This growth in axial length would represent a refractive change of more than 40 diopters, which is compensated by changes in corneal and lens powers. The process which maintains the balance between the ocular components of refraction during growth is still under study. As the lens power cannot be measured in vivo, but can only be calculated based on the other ocular components, there have not been many studies of lens power in humans. Yet, recent studies have confirmed that the lens loses power during growth in children, and that hyperopic and myopic shifts in adulthood may be also produced by changes in the lens. These studies in children and adults give a picture of the changing power of the lens along lifespan. Other recent studies about the growth of the lens and the complexity of its internal structure give clues about how these changes in lens power are produced along life. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. The Significance of the Discordant Occurrence of Lens Tumors in Humans versus Other Species

    PubMed Central

    Albert, Daniel M.; Phelps, Paul O.; Surapaneni, Krishna R.; Thuro, Bradley A.; Potter, Heather D.; Ikeda, Akihiro; Teixeira, Leandro B. C.; Dubielzig, Richard R.

    2015-01-01

    Purpose The purpose of this study was to determine in which species and under what conditions lens tumors occur. Design A review of data bases of available human and veterinary ocular pathological material and the previously reported literature. Participants Approximately 18,000 patients who had ocular surgical specimens submitted and studied at the University of Wisconsin School of Medicine and Public Health (UWSMPH) between 1920 and 2014 and 45,000 ocular veterinary cases from the Comparative Ocular Pathology Laboratory of Wisconsin (COPLOW) between 1983 and 2014. Methods Material in two major archived collections at the University of Wisconsin medical and veterinary schools were studied for occurrence of lens tumors. Tumor was defined as “a new growth of tissue characterized by progressive, uncontrolled proliferation of cells.” In addition, cases presented at 3 major eye pathology societies (Verhoeff-Zimmerman Ophthalmic Pathology Society, Eastern Ophthalmic Pathology Society, and The Armed Forces Institute of Pathology Ophthalmic Alumni Society) from 1975 through 2014 were reviewed. Finally, a careful search of the literature was carried out. Approval from the IRB to carry out this study was obtained. Main Outcome Measures The presence of tumors of the lens. Results The database search and literature review failed to find an example of a lens tumor in humans. In contrast, examples of naturally occurring lens tumors were found in cats, dogs, rabbits, and birds. 4.5% of feline intraocular and adnexal neoplasms (234/5153) in the veterinary school database were designated as feline ocular post-traumatic sarcoma (FOPTS), a tumor previously demonstrated to be of lens epithelial origin. Similar tumors were seen in rabbit eyes, a bird, and in a dog. All four species with lens tumors had a history of either ocular trauma or protracted uveitis. The literature search also revealed cases where lens tumors were induced in zebrafish, rainbow trout, hamsters, and mice, by

  3. Effect of oil liquid viscosity on hysteresis in double-liquid variable-focus lens based on electrowetting

    NASA Astrophysics Data System (ADS)

    Zeng, Zhi; Peng, Runling; He, Mei

    2017-02-01

    The double-liquid variable-focus lens based on the electrowetting has the characteristics of small size, light weight, fast response, and low price and so on. In this paper, double-liquid variable-focus lens's Principle and structure are introduced. The reasons for the existence and improvement of contact angle hysteresis are given according improved Young's equation. At last, 1-Bromododecane with silicone oil are mixed to get oil liquid with different viscosity and proportion liquid as insulating liquid. External voltages are applied to these three liquid lens and focal lengths of the lenses versus applied voltage are investigated. Experiments show that, the decreasing of oil liquid viscosity can reduce focal length hysteresis.

  4. Effects of Variations in Task Design on Mathematics Teachers' Learning Experiences: A Case of a Sorting Task

    ERIC Educational Resources Information Center

    Koichu, Boris; Zaslavsky, Orit; Dolev, Lea

    2016-01-01

    The goal of the study presented in this article was to examine how variations in task design may affect mathematics teachers' learning experiences. The study focuses on sorting tasks, i.e., learning tasks that require grouping a given set of mathematical items, in as many ways as possible, according to different criteria suggested by the learners.…

  5. Contourlet domain multiband deblurring based on color correlation for fluid lens cameras.

    PubMed

    Tzeng, Jack; Liu, Chun-Chen; Nguyen, Truong Q

    2010-10-01

    Due to the novel fluid optics, unique image processing challenges are presented by the fluidic lens camera system. Developed for surgical applications, unique properties, such as no moving parts while zooming and better miniaturization than traditional glass optics, are advantages of the fluid lens. Despite these abilities, sharp color planes and blurred color planes are created by the nonuniform reaction of the liquid lens to different color wavelengths. Severe axial color aberrations are caused by this reaction. In order to deblur color images without estimating a point spread function, a contourlet filter bank system is proposed. Information from sharp color planes is used by this multiband deblurring method to improve blurred color planes. Compared to traditional Lucy-Richardson and Wiener deconvolution algorithms, significantly improved sharpness and reduced ghosting artifacts are produced by a previous wavelet-based method. Directional filtering is used by the proposed contourlet-based system to adjust to the contours of the image. An image is produced by the proposed method which has a similar level of sharpness to the previous wavelet-based method and has fewer ghosting artifacts. Conditions for when this algorithm will reduce the mean squared error are analyzed. While improving the blue color plane by using information from the green color plane is the primary focus of this paper, these methods could be adjusted to improve the red color plane. Many multiband systems such as global mapping, infrared imaging, and computer assisted surgery are natural extensions of this work. This information sharing algorithm is beneficial to any image set with high edge correlation. Improved results in the areas of deblurring, noise reduction, and resolution enhancement can be produced by the proposed algorithm.

  6. Sharing of secondary electrons by in-lens and out-lens detector in low-voltage scanning electron microscope equipped with immersion lens.

    PubMed

    Kumagai, Kazuhiro; Sekiguchi, Takashi

    2009-03-01

    To understand secondary electron (SE) image formation with in-lens and out-lens detector in low-voltage scanning electron microscopy (LV-SEM), we have evaluated SE signals of an in-lens and an out-lens detector in LV-SEM. From the energy distribution spectra of SEs with various boosting voltages of the immersion lens system, we revealed that the electrostatic field of the immersion lens mainly collects electrons with energy lower than 40eV, acting as a low-pass filter. This effect is also observed as a contrast change in LV-SEM images taken by in-lens and out-lens detectors.

  7. Creating Task-Centered Instruction for Web-Based Instruction: Obstacles and Solutions

    ERIC Educational Resources Information Center

    Gardner, Joel; Jeon, Tae

    2010-01-01

    Merrill proposes First Principles of Instruction, including a problem- or task-centered strategy for designing instruction. However, when the tasks or problems are ill-defined or complex, task-centered instruction can be difficult to design. We describe an online task-centered training at a land-grant university designed to train employees to use…

  8. The study about forming high-precision optical lens minimalized sinuous error structures for designed surface

    NASA Astrophysics Data System (ADS)

    Katahira, Yu; Fukuta, Masahiko; Katsuki, Masahide; Momochi, Takeshi; Yamamoto, Yoshihiro

    2016-09-01

    Recently, it has been required to improve qualities of aspherical lenses mounted on camera units. Optical lenses in highvolume production generally are applied with molding process using cemented carbide or Ni-P coated steel, which can be selected from lens material such as glass and plastic. Additionally it can be obtained high quality of the cut or ground surface on mold due to developments of different mold product technologies. As results, it can be less than 100nmPV as form-error and 1nmRa as surface roughness in molds. Furthermore it comes to need higher quality, not only formerror( PV) and surface roughness(Ra) but also other surface characteristics. For instance, it can be caused distorted shapes at imaging by middle spatial frequency undulations on the lens surface. In this study, we made focus on several types of sinuous structures, which can be classified into form errors for designed surface and deteriorate optical system performances. And it was obtained mold product processes minimalizing undulations on the surface. In the report, it was mentioned about the analyzing process by using PSD so as to evaluate micro undulations on the machined surface quantitatively. In addition, it was mentioned that the grinding process with circumferential velocity control was effective for large aperture lenses fabrication and could minimalize undulations appeared on outer area of the machined surface, and mentioned about the optical glass lens molding process by using the high precision press machine.

  9. Contact lens-induced circumlimbal staining in silicone hydrogel contact lenses worn on a daily wear basis.

    PubMed

    Maïssa, Cécile; Guillon, Michel; Garofalo, Renee J

    2012-01-01

    The principal objective of the study was to measure the conjunctival staining produced in the circumlimbal region by silicone hydrogel contact lenses with different edge designs. The secondary objective was to investigate the association between circumlimbal staining and comfort. Four silicone hydrogel contact lenses: ACUVUE OASYS (knife edge design), AIR OPTIX, Biofinity (chisel edge rounded edge combination), and PureVision (rounded edge design), and 1 hydrogel contact lens, ACUVUE 2 (knife edge design), were tested. The study was conducted on a cohort population of 27 established soft contact lens wearers, who wore each contact lens type, in a random order, for a period of 10 (±2) days. Circumlimbal staining was measured in a double-masked fashion through image analysis of digital photographs of lissamine green taken under controlled experimental conditions. The results obtained showed that contact lens edge design was the primary factor controlling circumlimbal staining for silicone hydrogel lenses: a rounded edge away from the ocular surface produced the lowest staining (average, 0.19%) and a knife edge in close apposition to the ocular surface produced the highest staining (average, 1.34%). Contact lens material rigidity was also identified to affect circumlimbal staining and an inverse association between circumlimbal staining and contact lens comfort was demonstrated: the rounded edge design produced the lowest comfort (72 of 100) and the knife edge design produced the highest (87 out of 100). Soft contact lens wear induces circumlimbal staining, the level of staining being influenced by the contact lens edge design. However, high level of circumlimbal staining is not associated with decreased comfort.

  10. Pentacam Scheimpflug quantitative imaging of the crystalline lens and intraocular lens.

    PubMed

    Rosales, Patricia; Marcos, Susana

    2009-05-01

    To implement geometrical and optical distortion correction methods for anterior segment Scheimpflug images obtained with a commercially available system (Pentacam, Oculus Optikgeräte GmbH). Ray tracing algorithms were implemented to obtain corrected ocular surface geometry from the original images captured by the Pentacam's CCD camera. As details of the optical layout were not fully provided by the manufacturer, an iterative procedure (based on imaging of calibrated spheres) was developed to estimate the camera lens specifications. The correction procedure was tested on Scheimpflug images of a physical water cell model eye (with polymethylmethacrylate cornea and a commercial IOL of known dimensions) and of a normal human eye previously measured with a corrected optical and geometrical distortion Scheimpflug camera (Topcon SL-45 [Topcon Medical Systems Inc] from the Vrije University, Amsterdam, Holland). Uncorrected Scheimpflug images show flatter surfaces and thinner lenses than in reality. The application of geometrical and optical distortion correction algorithms improves the accuracy of the estimated anterior lens radii of curvature by 30% to 40% and of the estimated posterior lens by 50% to 100%. The average error in the retrieved radii was 0.37 and 0.46 mm for the anterior and posterior lens radii of curvature, respectively, and 0.048 mm for lens thickness. The Pentacam Scheimpflug system can be used to obtain quantitative information on the geometry of the crystalline lens, provided that geometrical and optical distortion correction algorithms are applied, within the accuracy of state-of-the art phakometry and biometry. The techniques could improve with exact knowledge of the technical specifications of the instrument, improved edge detection algorithms, consideration of aspheric and non-rotationally symmetrical surfaces, and introduction of a crystalline gradient index.

  11. Symbolic algebra approach to the calculation of intraocular lens power following cataract surgery

    NASA Astrophysics Data System (ADS)

    Hjelmstad, David P.; Sayegh, Samir I.

    2013-03-01

    We present a symbolic approach based on matrix methods that allows for the analysis and computation of intraocular lens power following cataract surgery. We extend the basic matrix approach corresponding to paraxial optics to include astigmatism and other aberrations. The symbolic approach allows for a refined analysis of the potential sources of errors ("refractive surprises"). We demonstrate the computation of lens powers including toric lenses that correct for both defocus (myopia, hyperopia) and astigmatism. A specific implementation in Mathematica allows an elegant and powerful method for the design and analysis of these intraocular lenses.

  12. Achromatic triplet and athermalized lens assembly for both midwave and longwave infrared spectra

    NASA Astrophysics Data System (ADS)

    Kuo, Chih-Wei

    2014-02-01

    Analytic solutions for finding the achromatic triplet in the midwave and longwave infrared spectra simultaneously are explored. The relationship between the combination of promising refractive materials and the system's optical power is also formulated. The principles for stabilizing the effective focal length of an air-spaced lens group with respect to temperature are explored, and the thermal properties of the optical component and mechanical elements mutually counterbalanced. An optical design based on these achromatic and athermal theories is demonstrated, and the image quality of the lens assembly seems to approach the diffractive limitation.

  13. Numerical analyses of planer plasmonic focusing lens

    NASA Astrophysics Data System (ADS)

    Chou, Yen-Yu; Lee, Yeeu-Chang

    2018-03-01

    The use of polystyrene (PS) sphere lithography has been widely applied in the fabrication of micron and nano structures, due to their low cost and ease of fabrication in large scale applications. This study evaluated the feasibility of plasmonic lens base on metal thin films with nanohole structures fabricated by using PS sphere lithography through three-dimensional (3D) finite difference time domain (FDTD) method. We calculated the intensity profile of lens with various wavelength of incident light, lens size, cutting positions, diameters of nanohole, and periods of nanohole to investigate the geometric parameters influence on the focusing properties of the plasmonic lens.

  14. Optimal design of a high accuracy photoelectric auto-collimator based on position sensitive detector

    NASA Astrophysics Data System (ADS)

    Yan, Pei-pei; Yang, Yong-qing; She, Wen-ji; Liu, Kai; Jiang, Kai; Duan, Jing; Shan, Qiusha

    2018-02-01

    A kind of high accuracy Photo-electric auto-collimator based on PSD was designed. The integral structure composed of light source, optical lens group, Position Sensitive Detector (PSD) sensor, and its hardware and software processing system constituted. Telephoto objective optical type is chosen during the designing process, which effectively reduces the length, weight and volume of the optical system, as well as develops simulation-based design and analysis of the auto-collimator optical system. The technical indicators of auto-collimator presented by this paper are: measuring resolution less than 0.05″; a field of view is 2ω=0.4° × 0.4° measuring range is +/-5' error of whole range measurement is less than 0.2″. Measuring distance is 10m, which are applicable to minor-angle precise measuring environment. Aberration analysis indicates that the MTF close to the diffraction limit, the spot in the spot diagram is much smaller than the Airy disk. The total length of the telephoto lens is only 450mm by the design of the optical machine structure optimization. The autocollimator's dimension get compact obviously under the condition of the image quality is guaranteed.

  15. A little-known 3-lens Catadioptric Camera by Bernard Schmidt

    NASA Astrophysics Data System (ADS)

    Busch, Wolfgang; Ceragioli, Roger C.; Stephani, Walter

    2013-07-01

    The authors investigate a prototype 3-lens f/1 catadioptric camera, built in 1934 by the famous optician Bernhard Schmidt at the Hamburg-Bergedorf Observatory in Germany, where Schmidt worked before his death in 1935. The prototype is in the observatory's collection of Schmidt artifacts, but its nature was not understood before the authors' recent examination. It is an astronomical camera of a form known as 'Buchroeder-Houghton', consisting of a spherical mirror and a 3-element afocal corrector lens placed at the mirror's center of curvature. The design is named for R.A. Buchroeder and J.L. Houghton who independently published this and related forms of wide-field spherical-lens cameras after 1942. Schmidt died before he could publish his own design. The authors disassembled the prototype and measured its optical parameters. These they present together with a transmission test of the corrector lens. The authors also consider the theoretical performance of the design as built, the theory of Houghton cameras, Schmidt's possible path to his invention, and the place of the prototype in his scientific output.

  16. Using Crises, Feedback, and Fading for Online Task Design

    ERIC Educational Resources Information Center

    Bokhove, Christian

    2014-01-01

    A recent discussion involves the elaboration on possible design principles for sequences of tasks. This paper builds on three principles, as described by Bokhove and Drijvers (2012a). A model with ingredients of crises, feedback and fading of sequences with near-similar tasks can be used to address both procedural fluency and conceptual…

  17. Prototyping for LENS

    NASA Astrophysics Data System (ADS)

    Rasco, B. C.

    2012-03-01

    The Low-Energy Neutrino Spectroscopy (LENS) experiment will precisely measure the energy spectrum of low-energy solar neutrinos via charged-current neutrino reactions on indium. The LENS detector concept applies indium-loaded scintillator in an optically-segmented lattice geometry to achieve precise time and spatial resolution with unprecedented sensitivity for low-energy neutrino events. The LENS collaboration is currently developing prototypes that aim to demonstrate the performance and selectivity of the technology and to benchmark Monte Carlo simulations that will guide scaling to the full LENS instrument. Currently a 120 liter prototype, microLENS, is operating with pure scintillator (no indium loading) in the Kimballton Underground Research Facility (KURF). We will present results from initial measurements with microLENS and plans for a 400 liter prototype, miniLENS, using indium loaded scintillator that will be installed this summer.

  18. Visualization design and verification of Ada tasking using timing diagrams

    NASA Technical Reports Server (NTRS)

    Vidale, R. F.; Szulewski, P. A.; Weiss, J. B.

    1986-01-01

    The use of timing diagrams is recommended in the design and testing of multi-task Ada programs. By displaying the task states vs. time, timing diagrams can portray the simultaneous threads of data flow and control which characterize tasking programs. This description of the system's dynamic behavior from conception to testing is a necessary adjunct to other graphical techniques, such as structure charts, which essentially give a static view of the system. A series of steps is recommended which incorporates timing diagrams into the design process. Finally, a description is provided of a prototype Ada Execution Analyzer (AEA) which automates the production of timing diagrams from VAX/Ada debugger output.

  19. Interactive Computer Based Assessment Tasks: How Problem-Solving Process Data Can Inform Instruction

    ERIC Educational Resources Information Center

    Zoanetti, Nathan

    2010-01-01

    This article presents key steps in the design and analysis of a computer based problem-solving assessment featuring interactive tasks. The purpose of the assessment is to support targeted instruction for students by diagnosing strengths and weaknesses at different stages of problem-solving. The first focus of this article is the task piloting…

  20. Color waveguide transparent screen using lens array holographic optical element

    NASA Astrophysics Data System (ADS)

    Liu, Siqi; Sun, Peng; Wang, Chang; Zheng, Zhenrong

    2017-11-01

    A color transparent screen was designed in this paper, a planar glass was used as a waveguide structure and the lens array holographic optical element (HOE) was used as a display unit. The lens array HOE was exposed by two coherent beams. One was the reference wave which directly illuminated on the holographic material and the other was modulated by the micro lens array. The lens array HOE can display the images with see-through abilities. Unlike the conventional lens array HOE, a planar glass was adopted as the waveguide in the experiment. The projecting light was totally internal-reflected in the planar glass to eliminate the undesired zero-order diffracted light. By using waveguide, it also brings advantage of compact structure. Colorful display can be realized in our system as the holographic materials were capable for multi-wavelength display. In this paper, a color transparent screen utilizing the lens array HOE and waveguide were designed. Experiment results showed a circular display area on the transparent screen. The diameter of the area is 20 mm and it achieved the pixel resolution of 100 μm. This simple and effective method could be an alternative in the augment reality (AR) applications, such as transparent phone and television.

  1. Novel compact panomorph lens based vision system for monitoring around a vehicle

    NASA Astrophysics Data System (ADS)

    Thibault, Simon

    2008-04-01

    Automotive applications are one of the largest vision-sensor market segments and one of the fastest growing ones. The trend to use increasingly more sensors in cars is driven both by legislation and consumer demands for higher safety and better driving experiences. Awareness of what directly surrounds a vehicle affects safe driving and manoeuvring of a vehicle. Consequently, panoramic 360° Field of View imaging can contributes most to the perception of the world around the driver than any other sensors. However, to obtain a complete vision around the car, several sensor systems are necessary. To solve this issue, a customized imaging system based on a panomorph lens will provide the maximum information for the drivers with a reduced number of sensors. A panomorph lens is a hemispheric wide angle anamorphic lens with enhanced resolution in predefined zone of interest. Because panomorph lenses are optimized to a custom angle-to-pixel relationship, vision systems provide ideal image coverage that reduces and optimizes the processing. We present various scenarios which may benefit from the use of a custom panoramic sensor. We also discuss the technical requirements of such vision system. Finally we demonstrate how the panomorph based visual sensor is probably one of the most promising ways to fuse many sensors in one. For example, a single panoramic sensor on the front of a vehicle could provide all necessary information for assistance in crash avoidance, lane tracking, early warning, park aids, road sign detection, and various video monitoring views.

  2. Fitting an MSD (mini scleral design) rigid contact lens in advanced keratoconus with INTACS.

    PubMed

    Dalton, Kristine; Sorbara, Luigina

    2011-12-01

    Keratoconus is a bilateral degenerative disease characterized by a non-inflammatory, progressive central corneal ectasia (typically asymmetric) and decreased vision. In its early stages it may be managed with spectacles and soft contact lenses but more commonly it is managed with rigid contact lenses. In advanced stages, when contact lenses can no longer be fit, have become intolerable, or corneal damage is severe, a penetrating keratoplasty is commonly performed. Alternative surgical techniques, such as the use of intra-stromal corneal ring segments (INTACS) have been developed to try and improve the fit of rigid contact lenses in keratoconic patients and avoid penetrating keratoplasties. This case report follows through the fitting of rigid contact lenses in an advanced keratoconic cornea after an INTACS procedure and discusses clinical findings, treatment options, and the use of mini-scleral and scleral lens designs as they relate to the challenges encountered in managing such a patient. Mini-scleral and scleral lenses are relatively easy to fit, and can be of benefit to many patients, including advanced keratoconic patients, post-INTAC patients and post-penetrating keratoplasty patients. 2011 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.

  3. Task-driven optimization of CT tube current modulation and regularization in model-based iterative reconstruction

    NASA Astrophysics Data System (ADS)

    Gang, Grace J.; Siewerdsen, Jeffrey H.; Webster Stayman, J.

    2017-06-01

    Tube current modulation (TCM) is routinely adopted on diagnostic CT scanners for dose reduction. Conventional TCM strategies are generally designed for filtered-backprojection (FBP) reconstruction to satisfy simple image quality requirements based on noise. This work investigates TCM designs for model-based iterative reconstruction (MBIR) to achieve optimal imaging performance as determined by a task-based image quality metric. Additionally, regularization is an important aspect of MBIR that is jointly optimized with TCM, and includes both the regularization strength that controls overall smoothness as well as directional weights that permits control of the isotropy/anisotropy of the local noise and resolution properties. Initial investigations focus on a known imaging task at a single location in the image volume. The framework adopts Fourier and analytical approximations for fast estimation of the local noise power spectrum (NPS) and modulation transfer function (MTF)—each carrying dependencies on TCM and regularization. For the single location optimization, the local detectability index (d‧) of the specific task was directly adopted as the objective function. A covariance matrix adaptation evolution strategy (CMA-ES) algorithm was employed to identify the optimal combination of imaging parameters. Evaluations of both conventional and task-driven approaches were performed in an abdomen phantom for a mid-frequency discrimination task in the kidney. Among the conventional strategies, the TCM pattern optimal for FBP using a minimum variance criterion yielded a worse task-based performance compared to an unmodulated strategy when applied to MBIR. Moreover, task-driven TCM designs for MBIR were found to have the opposite behavior from conventional designs for FBP, with greater fluence assigned to the less attenuating views of the abdomen and less fluence to the more attenuating lateral views. Such TCM patterns exaggerate the intrinsic anisotropy of the MTF and NPS

  4. Removal of biofilm from contact lens storage cases.

    PubMed

    Wu, Yvonne T; Zhu, Hua; Willcox, Mark; Stapleton, Fiona

    2010-12-01

    Lens case hygiene practices are important in maintaining safe contact lens wear. However, the effectiveness of various lens case cleaning practices have not been evaluated and compared. This in vitro study aimed to evaluate and compare the efficacy of cleaning practices that are most commonly carried out by lens wearers and recommended by practitioners. Pseudomonas aeruginosa 122, Serratia marcescens ATCC 13880, and Staphylococcus aureus ATCC 6538 were the challenge bacteria for biofilm formation on unused lens cases from two different manufacturers. After establishment of the biofilm, each lens case was subjected to one of the six cleaning regimens: "rinsed," "rubbed and rinsed," "air-dried," "soaked in a multipurpose contact lens solution," "tissue-wiped," and "lids recapped." The level of residual biofilm was quantified at the end of each cleaning regimen. The efficacy of each cleaning regimen was then compared. Mechanical rubbing and wiping of lens cases were the most effective cleaning regimen tested in reducing biofilm. Soaking lenses in disinfecting solution for 6 hours removed the majority of biofilm from lens cases. Rinsing lens cases alone provided only minimal efficacy in reducing biofilm. Air-drying or recapping the cases with the lid without any other additional cleaning methods were the least efficient at removing biofilm. Based on this study, digital rubbing and rinsing and/or wiping the lens cases with tissue is recommended. Air-drying or recapping the lens case lids after use without any additional cleaning methods should be discouraged with non-antimicrobial lens cases.

  5. Cognitive Task Analysis, Interface Design, and Technical Troubleshooting.

    ERIC Educational Resources Information Center

    Steinberg, Linda S.; Gitomer, Drew H.

    A model of the interface design process is proposed that makes use of two interdependent levels of cognitive analysis: the study of the criterion task through an analysis of expert/novice differences and the evaluation of the working user interface design through the application of a practical interface analysis methodology (GOMS model). This dual…

  6. Design of an optical lens combined with a total internal reflection (TIR) freeform surface for a LED front fog lamp

    NASA Astrophysics Data System (ADS)

    Wang, Hong; Li, Xiufeng; Ge, Peng

    2017-02-01

    We propose a design method of an optical lens combined with a total internal reflection (TIR) freeform surface for a LED front fog lamp. The TIR freeform surface controls the edge rays of the LED source. It totally reflects the edge rays and makes them emit from the top surface of the lens. And the middle rays of the LED source go through the refractive surface and reach the measured plane. We simulate the model by Monte Carlo method. Simulation results show that the front fog lamp system can satisfy the requirement of ECE R19 Rev7. The light control efficiency can reach up to 76%.

  7. Multistage polymeric lens structure in silica-waveguides for photonic functional circuits

    NASA Astrophysics Data System (ADS)

    Tate, Atsushi; Suzuki, Takanori; Tsuda, Hiroyuki

    2005-04-01

    A waveguide lens composed of multistage polymer-filled thin grooves in a silica planar lightwave circuit (PLC) is proposed and the low-loss structure is designed. Both an imaging optical system and a Fourier-Transform optical system can be configured in a PLC by use of a waveguide lens. It makes a PLC functional and its design flexible. Moreover, a focal length of a lens is tunable with large thermo-optic effect of the polymer. A concatenated lens is formed to attain a desirable focal length with low-loss. The thickness of each lens and the spacing are about 10-50 microns. The simulation showed that the radiation loss of the light propagate through 20-stage grooves filled with a polymer was only 0.868 dB when the refractive index of the polymer was 1.57, the groove width was 30 microns, and the spacing between adjacent grooves was 15 microns. For example, the single lens structure that the center thickness is 30 microns, the diameter is 300 microns, and the refractive index of the polymer was 1.57, have a focal length of 4600 microns. The focal length of 450 microns can be obtained with 20-stage concatenated lens structure. The larger numerical aperture can be realized with a polymer of higher refractive index. We have applied the concatenated lens structure to various photonic circuits including optical couplers, a variable optical attenuator.

  8. Copper crystal lens for medical imaging: first results

    NASA Astrophysics Data System (ADS)

    Roa, Dante E.; Smither, Robert K.

    2001-06-01

    A copper crystal lens designed to focus gamma ray energies of 100 to 200 keV has been assembled at Argonne National Laboratory. In particular, the lens has been optimized to focus the 140.6 keV gamma rays from technetium-99 m typically used in radioactive tracers. This new approach to medical imaging relies on crystal diffraction to focus incoming gamma rays in a manner similar to a simple convex lens focusing visible light. The lens is envisioned to be part of an array of lenses that can be used as a complementary technique to gamma cameras for localized scans of suspected tumor regions in the body. In addition, a 2- lens array can be used to scan a woman's breast in search of tumors with no discomfort to the patient. The incoming gamma rays are diffracted by a set of 828 copper crystal cubes arranged in 13 concentric rings, which focus the gamma rays into a very small area on a well-shielded NaI detector. Experiments performance with technetium-99 m and cobalt 57 radioactive sources indicate that a 6-lens array should be capable of detecting sources with (mu) Ci strength.

  9. Using task analysis in healthcare design to improve clinical efficiency.

    PubMed

    Lu, Jun; Hignett, Sue

    2009-01-01

    To review the functionality of the proposed soiled workroom design for efficient and safe clinical activities. As part of a hospital refurbishment program, the planning team of a United Kingdom National Health Service hospital requested a review of a proposed standardized room design. A 7-day observational study was conducted in five clinical departments at three hospitals. Link analysis was used to record and analyze the movements among components, i.e., nursing staff, equipment/devices, and furniture. Fifty-four observations were recorded for 18 clinical tasks. The most frequent tasks were the disposal of urine and used urine bottles, and returning used commode chairs. Minor recommendations were made to improve the proposed design, and major revisions were suggested to address functionality problems. It was found that the proposed design did not offer the optimal layout for efficient and safe clinical activities. Link analysis was found to be effective for plotting the movements of the staff and accounting for the complexity of tasks. This ergonomic method, in combination with observational field studies, provided a simple and effective way to determine functional space requirements for clinical activities and should be used in all healthcare building design projects.

  10. Repeating Input-Based Tasks with Young Beginner Learners

    ERIC Educational Resources Information Center

    Shintani, Natsuko

    2012-01-01

    The study reported in this article investigated task-repetition with young Japanese children. Fifteen children with no prior knowledge of English completed a communicative listening task that was designed to introduce new vocabulary. The same task was repeated nine times over five weeks. In line with Allwright's (1984) claim that "interaction…

  11. Image watermarking against lens flare effects

    NASA Astrophysics Data System (ADS)

    Chotikawanid, Piyanart; Amornraksa, Thumrongrat

    2017-02-01

    Lens flare effects in various photo and camera software nowadays can partially or fully damage the watermark information within the watermarked image. We propose in this paper a spatial domain based image watermarking against lens flare effects. The watermark embedding is based on the modification of the saturation color component in HSV color space of a host image. For watermark extraction, a homomorphic filter is used to predict the original embedding component from the watermarked component, and the watermark is blindly recovered by differentiating both components. The watermarked image's quality is evaluated by wPSNR, while the extracted watermark's accuracy is evaluated by NC. The experimental results against various types of lens flare effects from both computer software and mobile application showed that our proposed method outperformed the previous methods.

  12. Disinfection capacity of PuriLens contact lens cleaning unit against Acanthamoeba.

    PubMed

    Hwang, Thomas S; Hyon, Joon Young; Song, Jae Kyung; Reviglio, Victor E; Spahr, Harry T; O'Brien, Terrence P

    2004-01-01

    The PuriLens contact lens system is indicated for cleaning and disinfection of soft (hydrophilic) contact lenses by means of subsonic agitation to remove lens deposits and microorganisms, and ultraviolet irradiation of the storage solution for disinfection. The capacity of the PuriLens system to disinfect storage solutions contaminated with known concentrations of Staphylococcus aureus, Pseudomonas aeruginosa, and Acanthamoeba species was evaluated. An in vitro assessment of the antibacterial and antiparasitic efficacy of the PuriLens system was performed. Separated batches of the storage solution for the cleansing system were contaminated with stock strains of S. aureus and P. aeruginosa. A comparison of the microbiologic content was made between the solution before and after the cycle. The PuriLens system effectively eradicated S. aureus and P. aeruginosa organisms after a 15-minute cycle. However, viable cysts of acanthamoeba were recovered in the solution after the 15-minute cycle. The PuriLens system is highly efficient in protecting against contamination with common bacterial ocular pathogens. Acanthamoeba cysts, however, can survive in the solution or contact lens bath undergoing integrated subsonic debridement and indirect ultraviolet light disinfection. Use of chemical disinfecting solutions that contain agents such as chlorhexidine or other cationic antiseptics may be advisable in conjunction with use of the PuriLens device, especially in high-risk settings.

  13. A Novel Variable-Focus Lens for HFGW

    NASA Astrophysics Data System (ADS)

    Woods, R. Clive

    2006-01-01

    Li and Torr published calculations claiming to show that gravitational waves (GWs) propagate inside superconductors with a phase velocity reduction (compared to free space) by a factor n ~ 300× and a wavenumber increase by a factor n. This gives major opportunities for designing future GW components able to focus, refract, reflect, and otherwise manipulate gravitational waves for efficient coupling to detectors, transmitters, generators, resonant chambers, and other sensors. To exploit this result, a novel type of HFGW lens design is proposed here using a magnetic field to adjust the focal length in an infinitely-variable manner. Type-II superconductors do not always completely expel large magnetic fields; above their lower critical field they allow vortices of magnetic flux to channel the magnetic field through the material. Within these vortices, the superconductor is magnetically quenched and so behaves as a non-superconductor. Varying the applied magnetic field varies the proportion of material that is quenched. This subsequently affects GW propagation behavior through a type II superconductor. Therefore, using a suitable non-uniform magnetic field, the GW optical path length may be arranged to vary in a technologically useful manner. A GW lens may be designed with focal length dependent upon the applied magnetic field. Such a lens would be invaluable in the design of advanced GW optics since focusing will be achieved electrically with no moving parts; for this reason it would be unparalleled in conventional optics. Since, therefore, variations in n (due to calculation error limits) can be compensated electrically, successful demonstration of this device would confirm the Li and Torr prediction much more easily than directly using a fixed lens structure. The device would also enable fast auto-focusing, zooming, and imaging tomography using electronic servos following development of the necessary HFGW detectors.

  14. Revealing the spectral response of a plasmonic lens using low-energy electrons

    NASA Astrophysics Data System (ADS)

    Cao, Shuiyan; Le Moal, Eric; Bigourdan, Florian; Hugonin, Jean-Paul; Greffet, Jean-Jacques; Drezet, Aurélien; Huant, Serge; Dujardin, Gérald; Boer-Duchemin, Elizabeth

    2017-09-01

    Plasmonic lenses, even of simple design, may have intricate spectral behavior. The spectral response of a plasmonic lens to a local, broadband excitation has rarely been studied despite its central importance in future applications. Here we use the unique combination of scanning tunneling microscopy (STM) and angle-resolved optical spectroscopy to probe the spectral response of a plasmonic lens. Such a lens consists of a series of concentric circular slits etched in a thick gold film. Spectrally broad, circular surface plasmon polariton (SPP) waves are electrically launched from the STM tip at the plasmonic lens center, and these waves scatter at the slits into a narrow, out-of-plane, light beam. We show that the angular distribution of the emitted light results from the interplay of the size of the plasmonic lens and the spectral width of the SPP nanosource. We then propose simple design rules for optimized light beaming with the smallest possible footprint. The spectral distribution of the emitted light depends not only on the SPP nanosource, but on the local density of electromagnetic states (EM-LDOS) at the nanosource position, which in turn depends on the cavity modes of the plasmonic microstructure. The key parameters for tailoring the spectral response of the plasmonic lens are the period of the slits forming the lens, the number of slits, and the lens inner diameter.

  15. Electrowetting-actuated zoom lens with spherical-interface liquid lenses.

    PubMed

    Peng, Runling; Chen, Jiabi; Zhuang, Songlin

    2008-11-01

    The interface shape of two immiscible liquids in a conical chamber is discussed. The analytical solution of the differential equation describing the interface shape shows that the interface shape is completely spherical when the density difference of two liquids is zero. On the basis of the spherical-interface shape and an energy-minimization method, explicit calculations and detailed analyses of an extended Young-type equation for the conical double-liquid lens are given. Finally, a novel design of a zoom lens system without motorized movements is proposed. The lens system consists of a fixed lens and two conical double-liquid variable-focus lenses. The structure and principle of the lens system are introduced in this paper. Taking finite objects as example, detailed calculations and simulation examples are presented to predict how two liquid lenses are related to meet the basic requirements of zoom lenses.

  16. Multiocular image sensor with on-chip beam-splitter and inner meta-micro-lens for single-main-lens stereo camera.

    PubMed

    Koyama, Shinzo; Onozawa, Kazutoshi; Tanaka, Keisuke; Saito, Shigeru; Kourkouss, Sahim Mohamed; Kato, Yoshihisa

    2016-08-08

    We developed multiocular 1/3-inch 2.75-μm-pixel-size 2.1M- pixel image sensors by co-design of both on-chip beam-splitter and 100-nm-width 800-nm-depth patterned inner meta-micro-lens for single-main-lens stereo camera systems. A camera with the multiocular image sensor can capture horizontally one-dimensional light filed by both the on-chip beam-splitter horizontally dividing ray according to incident angle, and the inner meta-micro-lens collecting the divided ray into pixel with small optical loss. Cross-talks between adjacent light field images of a fabricated binocular image sensor and of a quad-ocular image sensor are as low as 6% and 7% respectively. With the selection of two images from one-dimensional light filed images, a selective baseline for stereo vision is realized to view close objects with single-main-lens. In addition, by adding multiple light field images with different ratios, baseline distance can be tuned within an aperture of a main lens. We suggest the electrically selective or tunable baseline stereo vision to reduce 3D fatigue of viewers.

  17. The Effect of Authentic Problem-Based Vocabulary Tasks on Vocabulary Learning of EFL Learners

    ERIC Educational Resources Information Center

    Mohammadi, Fateme Shir

    2017-01-01

    Language learners' cognitive engagement with the content in language classes has been advocated in the last few decades (Laufer & Hulstjin, 2001). To this end, the researcher designed authentic problem-based tasks which make use of learners' cognitive and metacognitive skills to solve real-life vocabulary tasks. Nelson vocabulary test was…

  18. Optical performance of a PDMS tunable lens with automatically controlled applied stress

    NASA Astrophysics Data System (ADS)

    Cruz-Felix, Angel S.; Santiago-Alvarado, Agustín.; Hernández-Méndez, Arturo; Reyes-Pérez, Emilio R.; Tepichín-Rodriguez, Eduardo

    2016-09-01

    The advances in the field of adaptive optics and in the fabrication of tunable optical components capable to automatically modify their physical features are of great interest in areas like machine vision, imaging systems, ophthalmology, etc. Such components like tunable lenses are used to reduce the overall size of optical setups like in small camera systems and even to imitate some biological functions made by the human eye. In this direction, in the last years we have been working in the development and fabrication of PDMS-made tunable lenses and in the design of special mechanical mounting systems to manipulate them. A PDMS-made tunable lens was previously designed by us, following the scheme reported by Navarro et al. in 1985, in order to mimic the accommodation process made by the crystalline lens of the human eye. The design included a simulation of the application of radial stress onto the lens and it was shown that the effective focal length was indeed changed. In this work we show the fabrication process of this particular tunable lens and an optimized mechanism that is able to automatically change the curvature of both surfaces of the lens by the application of controlled stress. We also show results of a study and analysis of aberrations performed to the Solid Elastic Lens (SEL).

  19. Psychometric and Evidentiary Advances, Opportunities, and Challenges for Simulation-Based Assessment

    ERIC Educational Resources Information Center

    Levy, Roy

    2013-01-01

    This article characterizes the advances, opportunities, and challenges for psychometrics of simulation-based assessments through a lens that views assessment as evidentiary reasoning. Simulation-based tasks offer the prospect for student experiences that differ from traditional assessment. Such tasks may be used to support evidentiary arguments…

  20. Advantages of using newly developed quartz contact lens with slit illumination from operating microscope.

    PubMed

    Kiyokawa, Masatoshi; Sakuma, Toshiro; Hatano, Noriko; Mizota, Atsushi; Tanaka, Minoru

    2009-06-01

    The purpose of this article is to report the characteristics and advantages of using a newly designed quartz contact lens with slit illumination from an operating microscope for intraocular surgery. The new contact lens is made of quartz. The lens is convex-concave and is used in combination with slit illumination from an operating microscope. The optical properties of quartz make this lens less reflective with greater transmittance. The combination of a quartz contact lens with slit illumination provided a brighter and wider field of view than conventional lenses. This system enabled us to perform bimanual vitrectomy and scleral buckling surgery without indirect ophthalmoscope. Small intraocular structures in the posterior pole or in the periphery were detected more easily. In conclusion, the newly designed quartz lens with slit beam illumination from an operating microscope provided a bright, clear and wide surgical field, and allowed intraocular surgery to be performed more easily.

  1. Study and Design of a Cylindrical Lens Array Antenna for Wideband Electronic Scanning.

    DTIC Science & Technology

    1983-12-01

    n Block 30, Ii difetren from Report) Same IS. SUPPLEMENTARY NOTES RADC Project Engineer: Peter R. Franchi (RADC/EEAA) 11. KEY WORDS (COntinue on...defined by Rotman and Franchi is studied for contours, phase aberrations, amplitude distortions, and sur- face incidence angles. One form of this lens is...Rotman and Franchi (refs 1, 2, 3). The three-dimensional cylindrical lens comprises a stacked set of identical two-dimensional lenses. Each two

  2. Off-axis astigmatism in the isolated chicken crystalline lens.

    PubMed

    Maier, Felix; Wahl, Siegfried; Schaeffel, Frank

    2016-12-01

    The chicken eye was previously found to have little off-axis astigmatism which is not explained by its special corneal shape but rather by the optical properties of the crystalline lens. To learn more about lens design, we studied off-axis astigmatism in the chicken lens in situ and compared it to a glass lens of similar power but with homogenous refractive index. After euthanasia, enucleated eye balls were cut in the equatorial plane right behind the scleral ossicles. The anterior segment was placed in a water-filled chamber. Several thin laser beams were projected in two perpendicular meridians through the lens under various eccentricities and the focal lengths were determined. Off-axis astigmatism across the horizontal visual field was determined as the differences in power in the two meridians. The same procedure was used for the glass lens. On-axis, the chicken crystalline lens had slightly more power in the vertical than in the horizontal meridian (-2.8±0.7D (SEM)). Astigmatism flipped sign and increased with eccentricity to reach +6.1±2.1D (SEM) at 33.5deg off-axis, as expected from off-axis astigmatism. Even though this value appears high, it was still 2.5 times lower than in the glass lens. A ZEMAX model of a lens with a homogeneous index and with surface profiles taken of the natural chicken lens revealed even higher levels of off-axis astigmatism. Obviously, the natural chicken lens displays much less off-axis astigmatism than a glass lens with similar power. Since its shape does not explain the low off-axis astigmatism, it must be due to a refined internal refractive index structure. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Measurement of Crystalline Lens Volume During Accommodation in a Lens Stretcher

    PubMed Central

    Marussich, Lauren; Manns, Fabrice; Nankivil, Derek; Maceo Heilman, Bianca; Yao, Yue; Arrieta-Quintero, Esdras; Ho, Arthur; Augusteyn, Robert; Parel, Jean-Marie

    2015-01-01

    Purpose To determine if the lens volume changes during accommodation. Methods The study used data acquired on 36 cynomolgus monkey lenses that were stretched in a stepwise fashion to simulate disaccommodation. At each step, stretching force and dioptric power were measured and a cross-sectional image of the lens was acquired using an optical coherence tomography system. Images were corrected for refractive distortions and lens volume was calculated assuming rotational symmetry. The average change in lens volume was calculated and the relation between volume change and power change, and between volume change and stretching force, were quantified. Linear regressions of volume-power and volume-force plots were calculated. Results The mean (±SD) volume in the unstretched (accommodated) state was 97 ± 8 mm3. On average, there was a small but statistically significant (P = 0.002) increase in measured lens volume with stretching. The mean change in lens volume was +0.8 ± 1.3 mm3. The mean volume-power and volume-load slopes were −0.018 ± 0.058 mm3/D and +0.16 ± 0.40 mm3/g. Conclusions Lens volume remains effectively constant during accommodation, with changes that are less than 1% on average. This result supports a hypothesis that the change in lens shape with accommodation is accompanied by a redistribution of tissue within the capsular bag without significant compression of the lens contents or fluid exchange through the capsule. PMID:26161985

  4. Measurement of Crystalline Lens Volume During Accommodation in a Lens Stretcher.

    PubMed

    Marussich, Lauren; Manns, Fabrice; Nankivil, Derek; Maceo Heilman, Bianca; Yao, Yue; Arrieta-Quintero, Esdras; Ho, Arthur; Augusteyn, Robert; Parel, Jean-Marie

    2015-07-01

    To determine if the lens volume changes during accommodation. The study used data acquired on 36 cynomolgus monkey lenses that were stretched in a stepwise fashion to simulate disaccommodation. At each step, stretching force and dioptric power were measured and a cross-sectional image of the lens was acquired using an optical coherence tomography system. Images were corrected for refractive distortions and lens volume was calculated assuming rotational symmetry. The average change in lens volume was calculated and the relation between volume change and power change, and between volume change and stretching force, were quantified. Linear regressions of volume-power and volume-force plots were calculated. The mean (± SD) volume in the unstretched (accommodated) state was 97 ± 8 mm3. On average, there was a small but statistically significant (P = 0.002) increase in measured lens volume with stretching. The mean change in lens volume was +0.8 ± 1.3 mm3. The mean volume-power and volume-load slopes were -0.018 ± 0.058 mm3/D and +0.16 ± 0.40 mm3/g. Lens volume remains effectively constant during accommodation, with changes that are less than 1% on average. This result supports a hypothesis that the change in lens shape with accommodation is accompanied by a redistribution of tissue within the capsular bag without significant compression of the lens contents or fluid exchange through the capsule.

  5. A new task scheduling algorithm based on value and time for cloud platform

    NASA Astrophysics Data System (ADS)

    Kuang, Ling; Zhang, Lichen

    2017-08-01

    Tasks scheduling, a key part of increasing resource utilization and enhancing system performance, is a never outdated problem especially in cloud platforms. Based on the value density algorithm of the real-time task scheduling system and the character of the distributed system, the paper present a new task scheduling algorithm by further studying the cloud technology and the real-time system: Least Level Value Density First (LLVDF). The algorithm not only introduces some attributes of time and value for tasks, it also can describe weighting relationships between these properties mathematically. As this feature of the algorithm, it can gain some advantages to distinguish between different tasks more dynamically and more reasonably. When the scheme was used in the priority calculation of the dynamic task scheduling on cloud platform, relying on its advantage, it can schedule and distinguish tasks with large amounts and many kinds more efficiently. The paper designs some experiments, some distributed server simulation models based on M/M/C model of queuing theory and negative arrivals, to compare the algorithm against traditional algorithm to observe and show its characters and advantages.

  6. Optical Coherence Tomography Based Estimates of Crystalline Lens Volume, Equatorial Diameter, and Plane Position.

    PubMed

    Martinez-Enriquez, Eduardo; Sun, Mengchan; Velasco-Ocana, Miriam; Birkenfeld, Judith; Pérez-Merino, Pablo; Marcos, Susana

    2016-07-01

    Measurement of crystalline lens geometry in vivo is critical to optimize performance of state-of-the-art cataract surgery. We used custom-developed quantitative anterior segment optical coherence tomography (OCT) and developed dedicated algorithms to estimate lens volume (VOL), equatorial diameter (DIA), and equatorial plane position (EPP). The method was validated ex vivo in 27 human donor (19-71 years of age) lenses, which were imaged in three-dimensions by OCT. In vivo conditions were simulated assuming that only the information within a given pupil size (PS) was available. A parametric model was used to estimate the whole lens shape from PS-limited data. The accuracy of the estimated lens VOL, DIA, and EPP was evaluated by comparing estimates from the whole lens data and PS-limited data ex vivo. The method was demonstrated in vivo using 2 young eyes during accommodation and 2 cataract eyes. Crystalline lens VOL was estimated within 96% accuracy (average estimation error across lenses ± standard deviation: 9.30 ± 7.49 mm3). Average estimation errors in EPP were below 40 ± 32 μm, and below 0.26 ± 0.22 mm in DIA. Changes in lens VOL with accommodation were not statistically significant (2-way ANOVA, P = 0.35). In young eyes, DIA decreased and EPP increased statistically significantly with accommodation (P < 0.001) by 0.14 mm and 0.13 mm, respectively, on average across subjects. In cataract eyes, VOL = 205.5 mm3, DIA = 9.57 mm, and EPP = 2.15 mm on average. Quantitative OCT with dedicated image processing algorithms allows estimation of human crystalline lens volume, diameter, and equatorial lens position, as validated from ex vivo measurements, where entire lens images are available.

  7. Iris reconstruction combined with iris-claw intraocular lens implantation for the management of iris-lens injured patients

    PubMed Central

    Hu, Shufang; Wang, Mingling; Xiao, Tianlin; Zhao, Zhenquan

    2016-01-01

    Aim: To study the efficiency and safety of iris reconstruction combined with iris-claw intraocular lens (IOL) implantation in the patients with iris-lens injuries. Settings and Design: Retrospective, noncomparable consecutive case series study. Materials and Methods: Eleven patients (11 eyes) following iris-lens injuries underwent iris reconstructions combined with iris-claw IOL implantations. Clinical data, such as cause and time of injury, visual acuity (VA), iris and lens injuries, surgical intervention, follow-up period, corneal endothelial cell count, and optical coherence tomography, were collected. Results: Uncorrected VA (UCVA) in all injured eyes before combined surgery was equal to or <20/1000. Within a 1.1–4.2-year follow-up period, a significant increase, equal to or better than 20/66, in UCVA was observed in six (55%) cases, and in best-corrected VA (BCVA) was observed in nine (82%) cases. Postoperative BCVA was 20/40 or better in seven cases (64%). After combined surgery, the iris returned to its natural round shape or smaller pupil, and the iris-claw IOLs in the 11 eyes were well-positioned on the anterior surface of reconstructed iris. No complications occurred in those patients. Conclusions: Iris reconstruction combined with iris-claw IOL implantation is a safe and efficient procedure for an eye with iris-lens injury in the absence of capsular support. PMID:27146932

  8. Chapter 04: Bloodless wood specimen preparation for hand lens observation

    Treesearch

    Alex Wiedenhoeft

    2011-01-01

    The single most difficult physical skill involved in wood identification is producing a smoothly prepared surface for observing anatomical features. This skill must be practiced patiently; it takes time to become proficient at this task. Producing a cleanly cut surface is also the only appreciably dangerous aspect of wood identification with a hand lens; the tools used...

  9. Contact lens material characteristics associated with hydrogel lens dehydration.

    PubMed

    Ramamoorthy, Padmapriya; Sinnott, Loraine T; Nichols, Jason J

    2010-03-01

    To determine the association between material dehydration and hydrogel contact lens material characteristics, including water content and ionicity. Water content and refractive index data were derived from automated refractometry measurements of worn hydrogel contact lenses of 318 participants in the Contact Lens and Dry Eye Study (CLADES). Dehydration was determined in two ways; as the difference between nominal and measured (1) water content and (2) refractive index. Multiple regression models were used to examine the relation between dehydration and material characteristics, controlling for tear osmolality. The overall measured and nominal water content values were 52.58 +/- 7.49% and 56.88 +/- 7.81% respectively, while the measured and nominal refractive indices were 1.429 +/- 0.015 and 1.410 +/- 0.017. High water content and ionic hydrogel lens materials were associated with greater dehydration (p < 0.0001 for both) than low water content and non-ionic materials. When dehydration was assessed as the difference in refractive index, only high water content was associated with dehydration (p < 0.0001). High water content and ionic characteristics of hydrogel lens materials are associated with hydrogel lens dehydration, with the former being more strongly associated. Such dehydration changes could in turn lead to important clinical ramifications such as reduced oxygen transmissibility, greater lens adherence and reduced tear exchange.

  10. Toward a model-based predictive controller design in brain-computer interfaces.

    PubMed

    Kamrunnahar, M; Dias, N S; Schiff, S J

    2011-05-01

    A first step in designing a robust and optimal model-based predictive controller (MPC) for brain-computer interface (BCI) applications is presented in this article. An MPC has the potential to achieve improved BCI performance compared to the performance achieved by current ad hoc, nonmodel-based filter applications. The parameters in designing the controller were extracted as model-based features from motor imagery task-related human scalp electroencephalography. Although the parameters can be generated from any model-linear or non-linear, we here adopted a simple autoregressive model that has well-established applications in BCI task discriminations. It was shown that the parameters generated for the controller design can as well be used for motor imagery task discriminations with performance (with 8-23% task discrimination errors) comparable to the discrimination performance of the commonly used features such as frequency specific band powers and the AR model parameters directly used. An optimal MPC has significant implications for high performance BCI applications.

  11. Toward a Model-Based Predictive Controller Design in Brain–Computer Interfaces

    PubMed Central

    Kamrunnahar, M.; Dias, N. S.; Schiff, S. J.

    2013-01-01

    A first step in designing a robust and optimal model-based predictive controller (MPC) for brain–computer interface (BCI) applications is presented in this article. An MPC has the potential to achieve improved BCI performance compared to the performance achieved by current ad hoc, nonmodel-based filter applications. The parameters in designing the controller were extracted as model-based features from motor imagery task-related human scalp electroencephalography. Although the parameters can be generated from any model-linear or non-linear, we here adopted a simple autoregressive model that has well-established applications in BCI task discriminations. It was shown that the parameters generated for the controller design can as well be used for motor imagery task discriminations with performance (with 8–23% task discrimination errors) comparable to the discrimination performance of the commonly used features such as frequency specific band powers and the AR model parameters directly used. An optimal MPC has significant implications for high performance BCI applications. PMID:21267657

  12. Intraocular camera for retinal prostheses: Refractive and diffractive lens systems

    NASA Astrophysics Data System (ADS)

    Hauer, Michelle Christine

    The focus of this thesis is on the design and analysis of refractive, diffractive, and hybrid refractive/diffractive lens systems for a miniaturized camera that can be surgically implanted in the crystalline lens sac and is designed to work in conjunction with current and future generation retinal prostheses. The development of such an intraocular camera (IOC) would eliminate the need for an external head-mounted or eyeglass-mounted camera. Placing the camera inside the eye would allow subjects to use their natural eye movements for foveation (attention) instead of more cumbersome head tracking, would notably aid in personal navigation and mobility, and would also be significantly more psychologically appealing from the standpoint of personal appearances. The capability for accommodation with no moving parts or feedback control is incorporated by employing camera designs that exhibit nearly infinite depth of field. Such an ultracompact optical imaging system requires a unique combination of refractive and diffractive optical elements and relaxed system constraints derived from human psychophysics. This configuration necessitates an extremely compact, short focal-length lens system with an f-number close to unity. Initially, these constraints appear highly aggressive from an optical design perspective. However, after careful analysis of the unique imaging requirements of a camera intended to work in conjunction with the relatively low pixellation levels of a retinal microstimulator array, it becomes clear that such a design is not only feasible, but could possibly be implemented with a single lens system.

  13. Lens lipids.

    PubMed

    Zelenka, P S

    1984-11-01

    Lens cells can synthesize, degrade, and remodel lipids. Endogenous lipid synthesis, in conjunction with uptake of exogenous cholesterol and certain fatty acids, leads to the formation of a plasma membrane that is especially rich in sphingomyelin, cholesterol, and long-chain saturated fatty acids. As a result of this unusual lipid composition, lens membranes have very low fluidity, which is restricted even further by lipid-protein interactions. The composition and metabolism of membrane lipids may affect the formation of various types of cataracts. Diets rich in vegetable oils offer some protection against the formation of osmotic cataracts and the hereditary cataract of the RCS rat, although the mechanism of this effect is not clear. Vitamin E also protects against the formation of several types of cataract in vivo and in vitro, suggesting that lipid peroxidation may play a role in cataractogenesis. Certain drugs which inhibit lipid synthesis or degradation are cataractogenic, and a deficiency in cataractogenic, and a deficiency in phosphatidylserine is associated with a loss of Na+/K+ ATPase activity in several types of cataract. Human senile cataracts show a marked loss of protein-lipid interactions, although the overall lipid composition is normal. This loss of protein-lipid interactions may be related to oxidative damage to membrane-associated proteins. Interestingly, the decrease in the fluidity of lens membranes with age would counteract the formation of aqueous pores in the membrane, which can result from the oxidative cross-linking of membrane-associated proteins. Certain pathways of lipid metabolism seem to have regulatory functions. Among these are phosphatidylinositol turnover, phosphatidylethanolamine methylation, and arachidonic acid metabolism. All of these pathways function in the lens. Phosphatidylinositol turnover is correlated with the rate of lens epithelial cell division, while phosphatidylethanolamine methylation seems to be related to the

  14. Two presentations of contact lens-induced papillary conjunctivitis (CLPC) in hydrogel lens wear: local and general.

    PubMed

    Skotnitsky, Cheryl C; Naduvilath, Thomas J; Sweeney, Deborah F; Sankaridurg, Padmaja R

    2006-01-01

    The purpose of this study was to confirm that two distinct clinical presentations of contact lens-induced papillary conjunctivitis (CLPC), local and general, occur in hydrogel lens wear. Retrospective analyses of 124 CLPC events were identified. The classification of CLPC was based on location and extent of papillae. CLPC was classified as local if papillae were present in one to two areas of the tarsal conjunctiva and general if papillae occurred in three or more areas. The CLPC events were compared with an asymptomatic control group in prospective clinical trials conducted from 1993 until 2003 at two clinical sites, Australia and India. Two hundred sixteen subjects from Australia and 914 subjects from India wore either high Dk silicone hydrogel or low Dk hydrogel lenses on a 6-night (6N) or 30-night extended-wear (EW) schedule. The physiological responses of the ocular surface, including tarsal conjunctiva redness and roughness, number of papillae present, lens fit and performance, and subjective patient symptoms, were measured during each visit at each site. These variables listed were compared between local CLPC groups and asymptomatic controls and general CLPC groups and asymptomatic controls. Two types of CLPC in hydrogel lens wearers have been confirmed. Of the 124 CLPC events, there were 61 local and 63 general events. Local and general CLPC cases reported significantly greater frequency of symptoms compared with the asymptomatic controls, in particular itching, lens awareness, secretion, and blurred vision (p < 0.1). The classification of CLPC into two types, local and general, in hydrogel lens wear was confirmed based on presentations at both sites. This distribution of papillae between local and general CLPC may indicate separate etiologies involved in the pathogenesis of the condition.

  15. Microbial Keratitis: Could Contact Lens Material Affect Disease Pathogenesis?

    PubMed Central

    Evans, David J.; Fleiszig, Suzanne M. J.

    2012-01-01

    Microbial keratitis is a sight-threatening complication associated with contact lenses. The introduction of silicone hydrogel lens materials with increased oxygen transmission to the ocular surface has not significantly altered the incidence of microbial keratitis. These data suggest that alternate, or additional, predisposing factors involving lens wear must be addressed to reduce or eliminate these infections. The contact lens can provide a surface for microbial growth in situ, and can also influence ocular surface homeostasis through effects on the tear fluid and corneal epithelium. Thus, it is intuitive that future contact lens materials could make a significant contribution to preventing microbial keratitis. Design of the “right” material to prevent microbial keratitis requires understanding the effects of current materials on bacterial virulence in the cornea, and on ocular surface innate defenses. Current knowledge in each of these areas will be presented, with a discussion of future directions needed to understand the influence of lens material on the pathogenesis of microbial keratitis. PMID:23266587

  16. Tunable Polymer Lens

    DTIC Science & Technology

    2008-08-04

    can also be initiated mechanically to produce variable lenses [9-11]. Recent work shows lens properties of a controlled liquid drop shape, with no... liquid crystal spherical lens ," Appl. Phys. Lett. 84, 4789-4791 (2004). 3. H. W. Ren, D. W. Fox, B. Wu, and S. T. Wu, " Liquid crystal lens with large...and S. S. Lee, "Focal tunable liquid lens integrated with an electromagnetic actuator," Appl. Phys. Lett. 90, 121129 (2007). 10. H. W. Ren, D. Fox

  17. Enabling the detection of UV signal in multimodal nonlinear microscopy with catalogue lens components.

    PubMed

    Vogel, Martin; Wingert, Axel; Fink, Rainer H A; Hagl, Christian; Ganikhanov, Feruz; Pfeffer, Christian P

    2015-10-01

    Using an optical system made from fused silica catalogue optical components, third-order nonlinear microscopy has been enabled on conventional Ti:sapphire laser-based multiphoton microscopy setups. The optical system is designed using two lens groups with straightforward adaptation to other microscope stands when one of the lens groups is exchanged. Within the theoretical design, the optical system collects and transmits light with wavelengths between the near ultraviolet and the near infrared from an object field of at least 1 mm in diameter within a resulting numerical aperture of up to 0.56. The numerical aperture can be controlled with a variable aperture stop between the two lens groups of the condenser. We demonstrate this new detection capability in third harmonic generation imaging experiments at the harmonic wavelength of ∼300 nm and in multimodal nonlinear optical imaging experiments using third-order sum frequency generation and coherent anti-Stokes Raman scattering microscopy so that the wavelengths of the detected signals range from ∼300 nm to ∼660 nm. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  18. The Effect of the Crystalline Lens on Central Vault After Implantable Collamer Lens Implantation.

    PubMed

    Qi, Meng-Ying; Chen, Qian; Zeng, Qing-Yan

    2017-08-01

    To identify associations between crystalline lens-related factors and central vault after Implantable Collamer Lens (ICL) (Staar Surgical, Monrovia, CA) implantation. This retrospective clinical study included 320 eyes from 186 patients who underwent ICL implantation surgery. At 1 year after surgery, the central vault was measured using anterior segment optical coherence tomography. Preoperative anterior chamber depth, lens thickness, lens position (lens position = anterior chamber depth + 1/2 lens thickness), and vault were analyzed to investigate the effects of lens-related factors on postoperative vault. The mean vault was 513 ± 215 µm at 1 year after surgery. Vault was positively correlated with preoperative anterior chamber depth (r = 0.495, P < .001) and lens position (r = 0.371, P < .001), but negatively correlated with lens thickness (r = -0.262, P < .001). Eyes with vaults of less than 250 µm had shallower anterior chambers, thicker lenses, and smaller lens position than eyes in the other two vault groups (which had vaults ≥ 250 µm) (P < .001). Eyes with both anterior chamber depth less than 3.1 mm and lens position less than 5.1 mm had greatly reduced vaults (P < .001). The crystalline lens could have an important influence on postoperative vault. Eyes with a shallower anterior chamber and a forward lens position will have lower vaults. [J Refract Surg. 2017;33(8):519-523.]. Copyright 2017, SLACK Incorporated.

  19. Topogram-based tube current modulation of head computed tomography for optimizing image quality while protecting the eye lens with shielding.

    PubMed

    Lin, Ming-Fang; Chen, Chia-Yuen; Lee, Yuan-Hao; Li, Chia-Wei; Gerweck, Leo E; Wang, Hao; Chan, Wing P

    2018-01-01

    Background Multiple rounds of head computed tomography (CT) scans increase the risk of radiation-induced lens opacification. Purpose To investigate the effects of CT eye shielding and topogram-based tube current modulation (TCM) on the radiation dose received by the lens and the image quality of nasal and periorbital imaging. Material and Methods An anthropomorphic phantom was CT-scanned using either automatic tube current modulation or a fixed tube current. The lens radiation dose was estimated using cropped Gafchromic films irradiated with or without a shield over the orbit. Image quality, assessed using regions of interest drawn on the bilateral extraorbital areas and the nasal bone with a water-based marker, was evaluated using both a signal-to-noise ratio (SNR) and contrast-noise ratio (CNR). Two CT specialists independently assessed image artifacts using a three-point Likert scale. Results The estimated radiation dose received by the lens was significantly lower when barium sulfate or bismuth-antimony shields were used in conjunction with a fixed tube current (22.0% and 35.6% reduction, respectively). Topogram-based TCM mitigated the beam hardening-associated artifacts of bismuth-antimony and barium sulfate shields. This increased the SNR by 21.6% in the extraorbital region and the CNR by 7.2% between the nasal bones and extraorbital regions. The combination of topogram-based TCM and barium sulfate or bismuth-antimony shields reduced lens doses by 12.2% and 27.2%, respectively. Conclusion Image artifacts induced by the bismuth-antimony shield at a fixed tube current for lenticular radioprotection were significantly reduced by topogram-based TCM, which increased the SNR of the anthropomorphic nasal bones and periorbital tissues.

  20. Task-based design of a synthetic-collimator SPECT system used for small animal imaging.

    PubMed

    Lin, Alexander; Kupinski, Matthew A; Peterson, Todd E; Shokouhi, Sepideh; Johnson, Lindsay C

    2018-05-07

    In traditional multipinhole SPECT systems, image multiplexing - the overlapping of pinhole projection images - may occur on the detector, which can inhibit quality image reconstructions due to photon-origin uncertainty. One proposed system to mitigate the effects of multiplexing is the synthetic-collimator SPECT system. In this system, two detectors, a silicon detector and a germanium detector, are placed at different distances behind the multipinhole aperture, allowing for image detection to occur at different magnifications and photon energies, resulting in higher overall sensitivity while maintaining high resolution. The unwanted effects of multiplexing are reduced by utilizing the additional data collected from the front silicon detector. However, determining optimal system configurations for a given imaging task requires efficient parsing of the complex parameter space, to understand how pinhole spacings and the two detector distances influence system performance. In our simulation studies, we use the ensemble mean-squared error of the Wiener estimator (EMSE W ) as the figure of merit to determine optimum system parameters for the task of estimating the uptake of an 123 I-labeled radiotracer in three different regions of a computer-generated mouse brain phantom. The segmented phantom map is constructed by using data from the MRM NeAt database and allows for the reduction in dimensionality of the system matrix which improves the computational efficiency of scanning the system's parameter space. To contextualize our results, the Wiener estimator is also compared against a region of interest estimator using maximum-likelihood reconstructed data. Our results show that the synthetic-collimator SPECT system outperforms traditional multipinhole SPECT systems in this estimation task. We also find that image multiplexing plays an important role in the system design of the synthetic-collimator SPECT system, with optimal germanium detector distances occurring at maxima

  1. Devising Principles of Design for Numeracy Tasks

    ERIC Educational Resources Information Center

    Geiger, Vince; Forgasz, Helen; Goos, Merrilyn; Bennison, Anne

    2014-01-01

    Numeracy is a fundamental component of the Australian National Curriculum as a General Capability identified in each F-10 subject. In this paper, we consider the principles of design necessary for the development of numeracy tasks specific to subjects other than mathematics--in this case, the subject of English. We explore the nature of potential…

  2. Fabrication and Performance of a Lithium X-Ray Lens

    NASA Astrophysics Data System (ADS)

    Young, Kristina; Khounsary, Ali; Jansen, Andrew N.; Dufresne, Eric M.; Nash, Philip

    2007-01-01

    Compound refractive lenses (CRLs) are arrays of concave lenses whose simple design and ease in implementation and alignment make them an attractive optic to focus x-rays. Factors considered in designing CRLs include lens material, fabrication, and assembly. Lithium is a desirable material because it provides the largest index of refraction decrement per unit absorption length of any solid elements. Lithium is a difficult material to handle and fabricate because it is rather malleable and more importantly, it reacts with moisture, and to a lesser extent, with oxygen and nitrogen in air. It also tends to adhere to molds and dies. We report on the fabrication and performance of a parabolic lithium lens consisting of 32 lenslets. Lenslets are fabricated in a precision press using an indenter with a parabolic profile and a 100 μm tip radius. The indenter is made of stainless steel and is figured using a computer numerically controlled (CNC) machine. The lens is designed to have a 1.7 m focal length at 10 keV energy. In an experiment conducted at the Advanced Photon Source (APS), a 0.5 mm × 0.5 mm monochromatic undulator beam strikes the lens. A focal length of 1.71, a focal spot size of 24 μm × 34 μm, and a peak intensity gain of over 18 are obtained.

  3. Effects of Stress on Judgment and Decision Making in Dynamic Tasks

    DTIC Science & Technology

    1991-06-01

    their normal working conditions, (2) to ascertain whether the results from lens model theory and research in static tasks generalize to these...8217 normal work environment. A further generalization from lens model theory is that those precursors (secondary cues) that are more conceptual in...potential microburst cases. Although this sample of cases is admittedly smaller than desirable, many hours of technical work were required to remove

  4. Status of eye lens radiation dose monitoring in European hospitals.

    PubMed

    Carinou, Eleftheria; Ginjaume, Merce; O'Connor, Una; Kopec, Renata; Sans Merce, Marta

    2014-12-01

    A questionnaire was developed by the members of WG12 of EURADOS in order to establish an overview of the current status of eye lens radiation dose monitoring in hospitals. The questionnaire was sent to medical physicists and radiation protection officers in hospitals across Europe. Specific topics were addressed in the questionnaire such as: knowledge of the proposed eye lens dose limit; monitoring and dosimetry issues; training and radiation protection measures. The results of the survey highlighted that the new eye lens dose limit can be exceeded in interventional radiology procedures and that eye lens protection is crucial. Personnel should be properly trained in how to use protective equipment in order to keep eye lens doses as low as reasonably achievable. Finally, the results also highlighted the need to improve the design of eye dosemeters in order to ensure satisfactory use by workers.

  5. Task design influences prosociality in captive chimpanzees (Pan troglodytes).

    PubMed

    House, Bailey R; Silk, Joan B; Lambeth, Susan P; Schapiro, Steven J

    2014-01-01

    Chimpanzees confer benefits on group members, both in the wild and in captive populations. Experimental studies of how animals allocate resources can provide useful insights about the motivations underlying prosocial behavior, and understanding the relationship between task design and prosocial behavior provides an important foundation for future research exploring these animals' social preferences. A number of studies have been designed to assess chimpanzees' preferences for outcomes that benefit others (prosocial preferences), but these studies vary greatly in both the results obtained and the methods used, and in most cases employ procedures that reduce critical features of naturalistic social interactions, such as partner choice. The focus of the current study is on understanding the link between experimental methodology and prosocial behavior in captive chimpanzees, rather than on describing these animals' social motivations themselves. We introduce a task design that avoids isolating subjects and allows them to freely decide whether to participate in the experiment. We explore key elements of the methods utilized in previous experiments in an effort to evaluate two possibilities that have been offered to explain why different experimental designs produce different results: (a) chimpanzees are less likely to deliver food to others when they obtain food for themselves, and (b) evidence of prosociality may be obscured by more "complex" experimental apparatuses (e.g., those including more components or alternative choices). Our results suggest that the complexity of laboratory tasks may generate observed variation in prosocial behavior in laboratory experiments, and highlights the need for more naturalistic research designs while also providing one example of such a paradigm.

  6. Task Design Influences Prosociality in Captive Chimpanzees (Pan troglodytes)

    PubMed Central

    House, Bailey R.; Silk, Joan B.; Lambeth, Susan P.; Schapiro, Steven J.

    2014-01-01

    Chimpanzees confer benefits on group members, both in the wild and in captive populations. Experimental studies of how animals allocate resources can provide useful insights about the motivations underlying prosocial behavior, and understanding the relationship between task design and prosocial behavior provides an important foundation for future research exploring these animals' social preferences. A number of studies have been designed to assess chimpanzees' preferences for outcomes that benefit others (prosocial preferences), but these studies vary greatly in both the results obtained and the methods used, and in most cases employ procedures that reduce critical features of naturalistic social interactions, such as partner choice. The focus of the current study is on understanding the link between experimental methodology and prosocial behavior in captive chimpanzees, rather than on describing these animals' social motivations themselves. We introduce a task design that avoids isolating subjects and allows them to freely decide whether to participate in the experiment. We explore key elements of the methods utilized in previous experiments in an effort to evaluate two possibilities that have been offered to explain why different experimental designs produce different results: (a) chimpanzees are less likely to deliver food to others when they obtain food for themselves, and (b) evidence of prosociality may be obscured by more “complex” experimental apparatuses (e.g., those including more components or alternative choices). Our results suggest that the complexity of laboratory tasks may generate observed variation in prosocial behavior in laboratory experiments, and highlights the need for more naturalistic research designs while also providing one example of such a paradigm. PMID:25191860

  7. Focusing and directional beaming effects of airborne sound through a planar lens with zigzag slits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Kun; Qiu, Chunyin, E-mail: cyqiu@whu.edu.cn; Lu, Jiuyang

    2015-01-14

    Based on the Huygens-Fresnel principle, we design a planar lens to efficiently realize the interconversion between the point-like sound source and Gaussian beam in ambient air. The lens is constructed by a planar plate perforated elaborately with a nonuniform array of zigzag slits, where the slit exits act as subwavelength-sized secondary sources carrying desired sound responses. The experiments operated at audible regime agree well with the theoretical predictions. This compact device could be useful in daily life applications, such as for medical and detection purposes.

  8. Terahertz lens made out of natural stone.

    PubMed

    Han, Daehoon; Lee, Kanghee; Lim, Jongseok; Hong, Sei Sun; Kim, Young Kie; Ahn, Jaewook

    2013-12-20

    Terahertz (THz) time-domain spectroscopy probes the optical properties of naturally occurring solid aggregates of minerals, or stones, in the THz frequency range. Refractive index and extinction coefficient measurement reveals that most natural stones, including mudstone, sandstone, granite, tuff, gneiss, diorite, slate, marble, and dolomite, are fairly transparent for THz frequency waves. Dolomite in particular exhibits a nearly uniform refractive index of 2.7 over the broad frequency range from 0.1 to 1 THz. The high index of refraction allows flexibility in lens designing with a shorter accessible focal length or a thinner lens with a given focal length. Good agreement between the experiment and calculation for the THz beam profile confirms that dolomite has high homogeneity as a lens material, suggesting the possibility of using natural stones for THz optical elements.

  9. Task-Based Variability in Children's Singing Accuracy

    ERIC Educational Resources Information Center

    Nichols, Bryan E.

    2016-01-01

    The purpose of this study was to explore the effect of task demands on children's singing accuracy. A 2 × 4 factorial design was used to examine the performance of fourth-grade children (N = 120) in solo and doubled response conditions. Each child sang four task types: single pitch, interval, pattern, and the song "Jingle Bells." The…

  10. Task Analysis in Instructional Design: Some Cases from Mathematics.

    ERIC Educational Resources Information Center

    Resnick, Lauren B.

    Task analysis as a tool in the design of instruction is the subject of this paper. Some of the major historical approaches (associationist/behaviorist, gestalt, and Piagetian) are described using examples from mathematics. The usefulness of these approaches to instructional design is evaluated on the basis of four criteria: instructional…

  11. Pupil diameter, working distance and illumination during habitual tasks. Implications for simultaneous vision contact lenses for presbyopia.

    PubMed

    Cardona, Genís; López, Sílvia

    2016-01-01

    To determine working distance, pupil diameter and illumination in real life conditions in a sample of presbyopic participants performing habitual tasks. A total of 59 presbyopic subjects (aged between 45 and 63 years) with different occupational backgrounds participated in the study. Participants were first interviewed regarding their habitual tasks with the aid of an ad hoc questionnaire, following which in-office photopic and mesopic pupil diameter was determined. Pupil diameter was also evaluated while participants conducted each of the self-reported habitual tasks by taking a photograph, which was later submitted to image analysis. In addition, working distance was determined with a measuring tape and the illumination that reached the pupil during each of the different tasks was measured, in lux, with a light meter. The four most common habitual tasks were computer use, reading, sewing and sports. A high intersubject variability was found in pupil diameter, working distance and illumination conditions while conducting the same task. Statistically significant differences were found between the in-office measured photopic and mesopic pupil diameters and those obtained while participants were conducting their habitual tasks in real life conditions (all p<0.001). Potential multifocal contact lens users may present with different ages, different jobs or hobbies and different preferences regarding lighting conditions and working distances. This results in different pupil size, even within the same task. This information may be critical when selecting a particular lens design and add power. Eye care practitioners are therefore advised to assess pupil diameter in real life conditions. Copyright © 2015 Spanish General Council of Optometry. Published by Elsevier Espana. All rights reserved.

  12. Application of Cognitive Task Analysis in User Requirements and Prototype Design Presentation/Briefing

    DTIC Science & Technology

    2005-10-01

    AFRL-HE-WP-TP-2005-0030 AIR FORCE RESEARCH LABORATORY Application of Cognitive Task Analysis in User Requirements and Prototype Design Presentation...TITLE AND SUBTITLE 5a. CONTRACT NUMBER FA8650-04-C-6406 Application of Cognitive Task Analysis in User Requirements 5b.GRANTNUMBER and Prototype...maintainer experience 21 21 Questions & Answers Application of Cognitive Task Analysis in User Requirements Definition and Prototype Design Christopher Curtis

  13. AutoLens: Automated Modeling of a Strong Lens's Light, Mass and Source

    NASA Astrophysics Data System (ADS)

    Nightingale, J. W.; Dye, S.; Massey, Richard J.

    2018-05-01

    This work presents AutoLens, the first entirely automated modeling suite for the analysis of galaxy-scale strong gravitational lenses. AutoLens simultaneously models the lens galaxy's light and mass whilst reconstructing the extended source galaxy on an adaptive pixel-grid. The method's approach to source-plane discretization is amorphous, adapting its clustering and regularization to the intrinsic properties of the lensed source. The lens's light is fitted using a superposition of Sersic functions, allowing AutoLens to cleanly deblend its light from the source. Single component mass models representing the lens's total mass density profile are demonstrated, which in conjunction with light modeling can detect central images using a centrally cored profile. Decomposed mass modeling is also shown, which can fully decouple a lens's light and dark matter and determine whether the two component are geometrically aligned. The complexity of the light and mass models are automatically chosen via Bayesian model comparison. These steps form AutoLens's automated analysis pipeline, such that all results in this work are generated without any user-intervention. This is rigorously tested on a large suite of simulated images, assessing its performance on a broad range of lens profiles, source morphologies and lensing geometries. The method's performance is excellent, with accurate light, mass and source profiles inferred for data sets representative of both existing Hubble imaging and future Euclid wide-field observations.

  14. Is a "Complex" Task Really Complex? Validating the Assumption of Cognitive Task Complexity

    ERIC Educational Resources Information Center

    Sasayama, Shoko

    2016-01-01

    In research on task-based learning and teaching, it has traditionally been assumed that differing degrees of cognitive task complexity can be inferred through task design and/or observations of differing qualities in linguistic production elicited by second language (L2) communication tasks. Without validating this assumption, however, it is…

  15. Correction of a liquid lens for 3D imaging systems

    NASA Astrophysics Data System (ADS)

    Bower, Andrew J.; Bunch, Robert M.; Leisher, Paul O.; Li, Weixu; Christopher, Lauren A.

    2012-06-01

    3D imaging systems are currently being developed using liquid lens technology for use in medical devices as well as in consumer electronics. Liquid lenses operate on the principle of electrowetting to control the curvature of a buried surface, allowing for a voltage-controlled change in focal length. Imaging systems which utilize a liquid lens allow extraction of depth information from the object field through a controlled introduction of defocus into the system. The design of such a system must be carefully considered in order to simultaneously deliver good image quality and meet the depth of field requirements for image processing. In this work a corrective model has been designed for use with the Varioptic Arctic 316 liquid lens. The design is able to be optimized for depth of field while minimizing aberrations for a 3D imaging application. The modeled performance is compared to the measured performance of the corrected system over a large range of focal lengths.

  16. Wavefront correction and high-resolution in vivo OCT imaging with an objective integrated multi-actuator adaptive lens

    PubMed Central

    Bonora, Stefano; Jian, Yifan; Zhang, Pengfei; Zam, Azhar; Pugh, Edward N.; Zawadzki, Robert J.; Sarunic, Marinko V.

    2015-01-01

    Adaptive optics is rapidly transforming microscopy and high-resolution ophthalmic imaging. The adaptive elements commonly used to control optical wavefronts are liquid crystal spatial light modulators and deformable mirrors. We introduce a novel Multi-actuator Adaptive Lens that can correct aberrations to high order, and which has the potential to increase the spread of adaptive optics to many new applications by simplifying its integration with existing systems. Our method combines an adaptive lens with an imaged-based optimization control that allows the correction of images to the diffraction limit, and provides a reduction of hardware complexity with respect to existing state-of-the-art adaptive optics systems. The Multi-actuator Adaptive Lens design that we present can correct wavefront aberrations up to the 4th order of the Zernike polynomial characterization. The performance of the Multi-actuator Adaptive Lens is demonstrated in a wide field microscope, using a Shack-Hartmann wavefront sensor for closed loop control. The Multi-actuator Adaptive Lens and image-based wavefront-sensorless control were also integrated into the objective of a Fourier Domain Optical Coherence Tomography system for in vivo imaging of mouse retinal structures. The experimental results demonstrate that the insertion of the Multi-actuator Objective Lens can generate arbitrary wavefronts to correct aberrations down to the diffraction limit, and can be easily integrated into optical systems to improve the quality of aberrated images. PMID:26368169

  17. Wavefront correction and high-resolution in vivo OCT imaging with an objective integrated multi-actuator adaptive lens.

    PubMed

    Bonora, Stefano; Jian, Yifan; Zhang, Pengfei; Zam, Azhar; Pugh, Edward N; Zawadzki, Robert J; Sarunic, Marinko V

    2015-08-24

    Adaptive optics is rapidly transforming microscopy and high-resolution ophthalmic imaging. The adaptive elements commonly used to control optical wavefronts are liquid crystal spatial light modulators and deformable mirrors. We introduce a novel Multi-actuator Adaptive Lens that can correct aberrations to high order, and which has the potential to increase the spread of adaptive optics to many new applications by simplifying its integration with existing systems. Our method combines an adaptive lens with an imaged-based optimization control that allows the correction of images to the diffraction limit, and provides a reduction of hardware complexity with respect to existing state-of-the-art adaptive optics systems. The Multi-actuator Adaptive Lens design that we present can correct wavefront aberrations up to the 4th order of the Zernike polynomial characterization. The performance of the Multi-actuator Adaptive Lens is demonstrated in a wide field microscope, using a Shack-Hartmann wavefront sensor for closed loop control. The Multi-actuator Adaptive Lens and image-based wavefront-sensorless control were also integrated into the objective of a Fourier Domain Optical Coherence Tomography system for in vivo imaging of mouse retinal structures. The experimental results demonstrate that the insertion of the Multi-actuator Objective Lens can generate arbitrary wavefronts to correct aberrations down to the diffraction limit, and can be easily integrated into optical systems to improve the quality of aberrated images.

  18. A framework for analyzing interdisciplinary tasks: implications for student learning and curricular design.

    PubMed

    Gouvea, Julia Svoboda; Sawtelle, Vashti; Geller, Benjamin D; Turpen, Chandra

    2013-06-01

    The national conversation around undergraduate science instruction is calling for increased interdisciplinarity. As these calls increase, there is a need to consider the learning objectives of interdisciplinary science courses and how to design curricula to support those objectives. We present a framework that can help support interdisciplinary design research. We developed this framework in an introductory physics for life sciences majors (IPLS) course for which we designed a series of interdisciplinary tasks that bridge physics and biology. We illustrate how this framework can be used to describe the variation in the nature and degree of interdisciplinary interaction in tasks, to aid in redesigning tasks to better align with interdisciplinary learning objectives, and finally, to articulate design conjectures that posit how different characteristics of these tasks might support or impede interdisciplinary learning objectives. This framework will be useful for both curriculum designers and education researchers seeking to understand, in more concrete terms, what interdisciplinary learning means and how integrated science curricula can be designed to support interdisciplinary learning objectives.

  19. A Framework for Analyzing Interdisciplinary Tasks: Implications for Student Learning and Curricular Design

    PubMed Central

    Gouvea, Julia Svoboda; Sawtelle, Vashti; Geller, Benjamin D.; Turpen, Chandra

    2013-01-01

    The national conversation around undergraduate science instruction is calling for increased interdisciplinarity. As these calls increase, there is a need to consider the learning objectives of interdisciplinary science courses and how to design curricula to support those objectives. We present a framework that can help support interdisciplinary design research. We developed this framework in an introductory physics for life sciences majors (IPLS) course for which we designed a series of interdisciplinary tasks that bridge physics and biology. We illustrate how this framework can be used to describe the variation in the nature and degree of interdisciplinary interaction in tasks, to aid in redesigning tasks to better align with interdisciplinary learning objectives, and finally, to articulate design conjectures that posit how different characteristics of these tasks might support or impede interdisciplinary learning objectives. This framework will be useful for both curriculum designers and education researchers seeking to understand, in more concrete terms, what interdisciplinary learning means and how integrated science curricula can be designed to support interdisciplinary learning objectives. PMID:23737627

  20. The development and testing of the Lens Antenna Deployment Demonstration (LADD) test article

    NASA Technical Reports Server (NTRS)

    Pugh, Mark L.; Denton, Robert J., Jr.; Strange, Timothy J.

    1993-01-01

    The USAF Rome Laboratory and NASA Marshall Space Flight Center, through contract to Grumman Corporation, have developed a space-qualifiable test article for the Strategic Defense Initiative Organization to demonstrate the critical structural and mechanical elements of single-axis roll-out membrane deployment for Space Based Radar (SBR) applications. The Lens Antenna Deployment Demonstration (LADD) test article, originally designed as a shuttle-attached flight experiment, is a large precision space structure which is representative of operational designs for space-fed lens antennas. Although the flight experiment was cancelled due to funding constraints and major revisions in the Strategic Defense System (SDS) architecture, development of this test article was completed in June 1989. To take full advantage of the existence of this unique structure, a series of ground tests are proposed which include static, dynamic, and thermal measurements in a simulated space environment. An equally important objective of these tests is the verification of the analytical tools used to design and develop large precision space structures.

  1. Converging or Diverging Lens?

    ERIC Educational Resources Information Center

    Branca, Mario

    2013-01-01

    Why does a lens magnify? Why does it shrink objects? Why does this happen? The activities that we propose here are useful in helping us to understand how lenses work, and they show that the same lens can have different magnification capabilities. A converging lens can also act as a diverging lens. (Contains 4 figures.)

  2. Development of a task analysis tool to facilitate user interface design

    NASA Technical Reports Server (NTRS)

    Scholtz, Jean C.

    1992-01-01

    A good user interface is one that facilitates the user in carrying out his task. Such interfaces are difficult and costly to produce. The most important aspect in producing a good interface is the ability to communicate to the software designers what the user's task is. The Task Analysis Tool is a system for cooperative task analysis and specification of the user interface requirements. This tool is intended to serve as a guide to development of initial prototypes for user feedback.

  3. 50. (no plate) Lens, lens pedestal, mercury float, drawing # ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    50. (no plate) Lens, lens pedestal, mercury float, drawing # 3101, sheet 1 of 2. Approved April 6, 1928. - Block Island Southeast Light, Spring Street & Mohegan Trail at Mohegan Bluffs, New Shoreham, Washington County, RI

  4. Sustained Ocular Delivery of Ciprofloxacin Using Nanospheres and Conventional Contact Lens Materials

    PubMed Central

    Garhwal, Rahul; Shady, Sally F.; Ellis, Edward J.; Ellis, Jeanne Y.; Leahy, Charles D.; McCarthy, Stephen P.; Crawford, Kathryn S.

    2012-01-01

    Purpose. To formulate conventional contact lenses that incorporate nanosphere-encapsulated antibiotic and demonstrate that the lenses provide for sustained antibacterial activity. Methods. A copolymer composed of pullulan and polycaprolactone (PCL) was used to synthesize core-shell nanospheres that encapsulated ciprofloxacin. Bactericidal activity of the nanosphere-encapsulated ciprofloxacin (nanosphere/cipro) was tested by using liquid cultures of either Staphylococcus aureus or Pseudomonas aeruginosa. Nanosphere/cipro was then incorporated into HEMA-based contact lenses that were tested for growth inhibition of S. aureus or P. aeruginosa in liquid cultures inoculated daily with fresh bacteria. Lens designs included thin or thick lenses incorporating nanosphere/cipro and ciprofloxacin-HCl-soaked Acuvue lenses (Acuvue; Johnson & Johnson Vision Care, Inc., Jacksonville, FL). Results. Less than 2 μg/mL of nanosphere/cipro effectively inhibited the proliferation of cultures inoculated with 107 or 108 bacteria/mL of S. aureus and P. aeruginosa, respectively. HEMA-based contact lenses polymerized with nanosphere/cipro were transparent, effectively inhibited the proliferation of greater than 107/mL of bacteria added daily over 3 days of culture, and killed up to 5 × 109 total microbes in a single inoculation. A thicker lens design provided additional inhibition of bacterial growth for up to 96 hours. Conclusions. Core-shell nanospheres loaded with an antibiotic can be incorporated into a conventional, transparent contact lens and provide for sustained and effective bactericidal activity and thereby provide a new drug delivery platform for widespread use in treating ocular disorders. PMID:22266514

  5. An Agent-Based Cockpit Task Management System

    NASA Technical Reports Server (NTRS)

    Funk, Ken

    1997-01-01

    An agent-based program to facilitate Cockpit Task Management (CTM) in commercial transport aircraft is developed and evaluated. The agent-based program called the AgendaManager (AMgr) is described and evaluated in a part-task simulator study using airline pilots.

  6. Meta-analysis and review: effectiveness, safety, and central port design of the intraocular collamer lens

    PubMed Central

    Packer, Mark

    2016-01-01

    The purpose of this review is to summarize relevant data from publications appearing in the peer-reviewed scientific literature over the past decade since US Food and Drug Administration approval of the implantable collamer lens (ICL), and, in particular, to review studies relating to sizing methodology, safety, and effectiveness, as well as more recent studies reporting clinical outcomes of the V4c Visian ICL with KS Aquaport, VICMO. A literature search was conducted using two databases, PubMed.gov and Science.gov, to identify all articles published after 2005 related to the Visian ICL (STAAR Surgical, Inc.). Articles were examined for their relevance to sizing methodology, clinical safety, and effectiveness, and the references cited in each article were also searched for additional relevant publications. The literature review revealed that all currently reported methods of determining the best-fit size of the ICL achieve similarly satisfactory results in terms of vault, the safe distance between the crystalline lens and the ICL. Specifically, meta-analysis demonstrated that sulcus-to-sulcus and white-to-white measurement-based sizing methods do not result in clinically meaningful nor statistically significant differences in vault (two-sample two-sided t-test using pooled mean and standard deviations; t (2,594)=1.33; P=0.18). The reported rates of complications related to vault are very low, except in two case series where additional risk factors such as higher levels of myopia and older age impacted the incidence of cataract. On the basis of preclinical studies and initial clinical reports, with up to 5 years of follow-up, the new VICMO central port design holds promise for further reduction of complications. Given its safety record and the significant improvement in vision and quality of life that the ICL makes possible, the benefits of ICL implantation outweigh the risks. PMID:27354760

  7. Meta-analysis and review: effectiveness, safety, and central port design of the intraocular collamer lens.

    PubMed

    Packer, Mark

    2016-01-01

    The purpose of this review is to summarize relevant data from publications appearing in the peer-reviewed scientific literature over the past decade since US Food and Drug Administration approval of the implantable collamer lens (ICL), and, in particular, to review studies relating to sizing methodology, safety, and effectiveness, as well as more recent studies reporting clinical outcomes of the V4c Visian ICL with KS Aquaport, VICMO. A literature search was conducted using two databases, PubMed.gov and Science.gov, to identify all articles published after 2005 related to the Visian ICL (STAAR Surgical, Inc.). Articles were examined for their relevance to sizing methodology, clinical safety, and effectiveness, and the references cited in each article were also searched for additional relevant publications. The literature review revealed that all currently reported methods of determining the best-fit size of the ICL achieve similarly satisfactory results in terms of vault, the safe distance between the crystalline lens and the ICL. Specifically, meta-analysis demonstrated that sulcus-to-sulcus and white-to-white measurement-based sizing methods do not result in clinically meaningful nor statistically significant differences in vault (two-sample two-sided t-test using pooled mean and standard deviations; t (2,594)=1.33; P=0.18). The reported rates of complications related to vault are very low, except in two case series where additional risk factors such as higher levels of myopia and older age impacted the incidence of cataract. On the basis of preclinical studies and initial clinical reports, with up to 5 years of follow-up, the new VICMO central port design holds promise for further reduction of complications. Given its safety record and the significant improvement in vision and quality of life that the ICL makes possible, the benefits of ICL implantation outweigh the risks.

  8. Teaching Database Design with Constraint-Based Tutors

    ERIC Educational Resources Information Center

    Mitrovic, Antonija; Suraweera, Pramuditha

    2016-01-01

    Design tasks are difficult to teach, due to large, unstructured solution spaces, underspecified problems, non-existent problem solving algorithms and stopping criteria. In this paper, we comment on our approach to develop KERMIT, a constraint-based tutor that taught database design. In later work, we re-implemented KERMIT as EER-Tutor, and…

  9. Solutions on a high-speed wide-angle zoom lens with aspheric surfaces

    NASA Astrophysics Data System (ADS)

    Yamanashi, Takanori

    2012-10-01

    Recent development in CMOS and digital camera technology has accelerated the business and market share of digital cinematography. In terms of optical design, this technology has increased the need to carefully consider pixel pitch and characteristics of the imager. When the field angle at the wide end, zoom ratio, and F-number are specified, choosing an appropriate zoom lens type is crucial. In addition, appropriate power distributions and lens configurations are required. At points near the wide end of a zoom lens, it is known that an aspheric surface is an effective means to correct off-axis aberrations. On the other hand, optical designers have to focus on manufacturability of aspheric surfaces and perform required analysis with respect to the surface shape. Centration errors aside, it is also important to know the sensitivity to aspheric shape errors and their effect on image quality. In this paper, wide angle cine zoom lens design examples are introduced and their main characteristics are described. Moreover, technical challenges are pointed out and solutions are proposed.

  10. Applications of Task-Based Learning in TESOL

    ERIC Educational Resources Information Center

    Shehadeh, Ali, Ed.; Coombe, Christine, Ed.

    2010-01-01

    Why are many teachers around the world moving toward task-based learning (TBL)? This shift is based on the strong belief that TBL facilitates second language acquisition and makes second language learning and teaching more principled and effective. Based on insights gained from using tasks as research tools, this volume shows how teachers can use…

  11. Risk Factors for Cortical, Nuclear, Posterior Subcapsular, and Mixed Lens Opacities: The Los Angeles Latino Eye Study

    PubMed Central

    Richter, Grace M.; Torres, Mina; Choudhury, Farzana; Azen, Stanley P.; Varma, Rohit

    2012-01-01

    Purpose To identify socio-demographic and biological risk factors associated with having cortical, nuclear, posterior sub-capsular (PSC), and mixed lens opacities. Design Population-based, cross-sectional study Participants Five thousand nine hundred forty-five Latinos 40 years and older from 6 census tracts in Los Angeles, California. Methods Participants underwent an interview and detailed eye examination, including best-corrected visual acuity and slit-lamp assessment of lens opacities using the Lens Opacities Classification System II. Univariate and stepwise logistic regression analyses were used to identify independent risk factors associated with each type of lens opacity. Main Outcome Measures Odds ratios for socio-demographic and biological risk factors associated with cortical only, nuclear only, PSC only, and mixed lens opacities. Results Of the 5945 participants with gradable lenses, 468 had cortical only lens opacities, 217 had nuclear only lens opacities, 27 had PSC only opacities, and 364 had mixed lens opacities. Older age, higher hemoglobin A1c, and history of diabetes mellitus were independent risk factors for cortical only lens opacities. Older age, smoking, and myopic refractive error were independent risk factors for nuclear only lens opacities. Higher systolic blood pressure and history of diabetes were independent risk factors for posterior sub-capsular lens opacities. Older age, myopic refractive error, history of diabetes, higher systolic blood pressure, female gender, and presence of large drusen were independent risk factors for mixed lens opacities. Conclusions The modifiable and non-modifiable risk factors identified in this study provide insight into the mechanisms related to the development of lens opacification. Improved glycemic control, smoking cessation and prevention, and blood pressure control may help to reduce the risk of having lens opacities and their associated vision loss. PMID:22197433

  12. Association Between Contact Lens Discomfort and Pre-lens Tear Film Kinetics.

    PubMed

    Guillon, Michel; Dumbleton, Kathryn A; Theodoratos, Panagiotis; Wong, Stephanie; Patel, Kishan; Banks, Gaidig; Patel, Trisha

    2016-08-01

    The relationship between contact lens wettability and comfort has been extensively evaluated; however, a direct correlation between the characteristics of the pre-lens tear film and the symptoms associated with contact lens discomfort has yet to be established. In addition, there is relatively limited knowledge relating to the entire tear film kinetics during the inter-blink period in contact lens wearers. The purpose of this analysis was to identify the characteristics of the pre-lens tear film kinetics that may be associated with the symptoms of contact lens discomfort. The study population comprised 202 soft (hydrogel and silicone hydrogel) contact lens wearers attending pre-screening visits at the OTG-i research clinic. All participants completed the Ocular Surface Disease Index (OSDI) questionnaire and the tear film was quantified via post hoc, masked analysis of high definition digital Tearscope videos recorded at the visit. The tear film kinetics of the least symptomatic wearers (OSDI lowest quintile scores, n = 45) were compared to the tear film kinetics of the most symptomatic wearers (OSDI highest quintile scores, n = 43). The hypothesis tested was that the tear film kinetics of asymptomatic wearers were better than tear film kinetics of symptomatic wearers. The distribution of lens types worn was as follows: Daily Disposable 46.5%, 1-Month Replacement 39.6%, and 2-Week Replacement 13.6%. 48.2% of lenses were silicone hydrogel and 51.8% hydrogel. Symptomatic wearers had a shorter break-up time (4.7 s vs. 6.0 s; p = 0.003), lesser surface coverage by the tear film during the interblink period (95.1% vs. 98.5%; p < 0.001) and greater surface exposure at the time of the blink (9.4% vs. 3.9%; p = 0.001). The current study demonstrated that the tear film kinetics of asymptomatic and symptomatic contact lens wearers were different, the findings supporting the hypothesis of poorer tear film kinetics for symptomatic than asymptomatic wearers in a general contact

  13. Vietnamese children and language-based processing tasks.

    PubMed

    Hwa-Froelich, Deborah A; Matsuo, Hisako

    2005-07-01

    Vietnamese children's performance on language-based processing tasks of fast-mapping (FM) word-learning and dynamic assessment (DA) word- and rule-learning tasks were investigated. Twenty-one first- and second-generation Vietnamese preschool children participated in this study. All children were enrolled in 2 Head Start programs in a large city in the Midwest. All children had passed a developmental assessment and routine speech, language, and hearing screenings. All participants were taught 4 invented monosyllabic words in an FM word task, an invented monosyllabic suffix rule (-po) meaning "a part of" in a DA rule task, and 4 invented bisyllabic words in a DA word task. Potential relationships among task performances were investigated. Receptive task performances, expressive task performances, and task totals were added to create receptive total, expressive total, and accumulated performance total (APT) scores. Relationships among receptive total, expressive total, and APT scores were also investigated. Significant correlations were found between FM word, DA rule, and the receptive total. The expressive total correlated with all task total scores, APT, age, and modifiability scores. Modifiability scores correlated with the two DA tasks, expressive total, and the APT. Findings indicate that FM word and the expressive total were positively correlated with most of the other tasks, composite totals, and age. Performance on language-based processing tasks may provide valuable information for separating typically developing Vietnamese preschool children from their peers with language disorders. Practitioners should consider linguistic characteristics of target stimuli. Comparisons should include task, receptive, expressive, and APT.

  14. Bacterial flora of the eye and contact lens. Cases during hydrogel lens wear.

    PubMed

    Callender, M G; Tse, L S; Charles, A M; Lutzi, D

    1986-03-01

    Bacteriological comparisons between the tear fluids of soft contact lens wearers and noncontact lens wearers indicate that there is an increase in the bacterial population in contact lens wearers but not a significant change in the varieties present. Differences between groups of contact lens wearers appear to depend on the method of disinfection used.

  15. Electron Lens Construction for the Integrable Optics Test Accelerator at Fermilab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGee, Mike; Carlson, Kermit; Nobrega, Lucy

    The Integrable Optics Test Accelerator (IOTA) is proposed for operation at Fermilab. The goal of IOTA is to create practical nonlinear accelerator focusing systems with a large frequency spread and stable particle motion. The IOTA is a 40 m circumference, 150 MeV (e-), 2.5 MeV (p⁺) diagnostic test ring. Construction of an electron lens for IOTA is necessary for both electron and proton operation. Components required for the Electron Lens design include; a 0.8 T conventional water-cooled main solenoid, and magnetic bending and focusing elements. The foundation of the design relies on repurposing the Fermilab Tevatron Electron Lens II (TELII)more » gun and collector under ultra-high vacuum (UHV) conditions.« less

  16. Tool and Task Analysis Guide for Vocational Welding (150 Tasks). Performance Based Vocational Education.

    ERIC Educational Resources Information Center

    John H. Hinds Area Vocational School, Elwood, IN.

    This book contains a task inventory, a task analysis of 150 tasks from that inventory, and a tool list for performance-based welding courses in the state of Indiana. The task inventory and tool list reflect 28 job titles found in Indiana. In the first part of the guide, tasks are listed by these domains: carbon-arc, electron beam, G.M.A.W., gas…

  17. Image registration reveals central lens thickness minimally increases during accommodation

    PubMed Central

    Schachar, Ronald A; Mani, Majid; Schachar, Ira H

    2017-01-01

    Purpose To evaluate anterior chamber depth, central crystalline lens thickness and lens curvature during accommodation. Setting California Retina Associates, El Centro, CA, USA. Design Healthy volunteer, prospective, clinical research swept-source optical coherence biometric image registration study of accommodation. Methods Ten subjects (4 females and 6 males) with an average age of 22.5 years (range: 20–26 years) participated in the study. A 45° beam splitter attached to a Zeiss IOLMaster 700 (Carl Zeiss Meditec Inc., Jena, Germany) biometer enabled simultaneous imaging of the cornea, anterior chamber, entire central crystalline lens and fovea in the dilated right eyes of subjects before, and during focus on a target 11 cm from the cornea. Images with superimposable foveal images, obtained before and during accommodation, that met all of the predetermined alignment criteria were selected for comparison. This registration requirement assured that changes in anterior chamber depth and central lens thickness could be accurately and reliably measured. The lens radii of curvatures were measured with a pixel stick circle. Results Images from only 3 of 10 subjects met the predetermined criteria for registration. Mean anterior chamber depth decreased, −67 μm (range: −0.40 to −110 μm), and mean central lens thickness increased, 117 μm (range: 100–130 μm). The lens surfaces steepened, anterior greater than posterior, while the lens, itself, did not move or shift its position as appeared from the lack of movement of the lens nucleus, during 7.8 diopters of accommodation, (range: 6.6–9.7 diopters). Conclusion Image registration, with stable invariant references for image correspondence, reveals that during accommodation a large increase in lens surface curvatures is associated with only a small increase in central lens thickness and no change in lens position. PMID:28979092

  18. Task-Based Learning and Content and Language Integrated Learning Materials Design: Process and Product

    ERIC Educational Resources Information Center

    Moore, Pat; Lorenzo, Francisco

    2015-01-01

    Content and language integrated learning (CLIL) represents an increasingly popular approach to bilingual education in Europe. In this article, we describe and discuss a project which, in response to teachers' pleas for materials, led to the production of a significant bank of task-based primary and secondary CLIL units for three L2s (English,…

  19. Peripheral Defocus of the Monkey Crystalline Lens With Accommodation in a Lens Stretcher

    PubMed Central

    Maceo Heilman, Bianca; Manns, Fabrice; Ruggeri, Marco; Ho, Arthur; Gonzalez, Alex; Rowaan, Cor; Bernal, Andres; Arrieta, Esdras; Parel, Jean-Marie

    2018-01-01

    Purpose To characterize the peripheral defocus of the monkey crystalline lens and its changes with accommodation. Methods Experiments were performed on 15 lenses from 11 cynomolgus monkey eyes (age: 3.8–12.4 years, postmortem time: 33.5 ± 15.3 hours). The tissue was mounted in a motorized lens stretcher to allow for measurements of the lens in the accommodated (unstretched) and unaccommodated (stretched) states. A custom-built combined laser ray tracing and optical coherence tomography system was used to measure the paraxial on-axis and off-axis lens power for delivery angles ranging from −20° to +20° (in air). For each delivery angle, peripheral defocus was quantified as the difference between paraxial off-axis and on-axis power. The peripheral defocus of the lens was compared in the unstretched and stretched states. Results On average, the paraxial on-axis lens power was 52.0 ± 3.4 D in the unstretched state and 32.5 ± 5.1 D in the stretched state. In both states, the lens power increased with increasing delivery angle. From 0° to +20°, the relative peripheral lens power increased by 10.7 ± 1.4 D in the unstretched state and 7.5 ± 1.6 D in the stretched state. The change in field curvature with accommodation was statistically significant (P < 0.001), indicating that the unstretched (accommodated) lens has greater curvature or relative peripheral power. Conclusions The cynomolgus monkey lens has significant accommodation-dependent curvature of field, which suggests that the lens asserts a significant contribution to the peripheral optical performance of the eye that also varies with the state of accommodation.

  20. Optimal power distribution for minimizing pupil walk in a 7.5X afocal zoom lens

    NASA Astrophysics Data System (ADS)

    Song, Wanyue; Zhao, Yang; Berman, Rebecca; Bodell, S. Yvonne; Fennig, Eryn; Ni, Yunhui; Papa, Jonathan C.; Yang, Tianyi; Yee, Anthony J.; Moore, Duncan T.; Bentley, Julie L.

    2017-11-01

    An extensive design study was conducted to find the best optimal power distribution and stop location for a 7.5x afocal zoom lens that controls the pupil walk and pupil location through zoom. This afocal zoom lens is one of the three components in a VIS-SWIR high-resolution microscope for inspection of photonic chips. The microscope consists of an afocal zoom, a nine-element objective and a tube lens and has diffraction limited performance with zero vignetting. In this case, the required change in object (sample) size and resolution is achieved by the magnification change of the afocal component. This creates strict requirements for both the entrance and exit pupil locations of the afocal zoom to couple the two sides successfully. The first phase of the design study looked at conventional four group zoom lenses with positive groups in the front and back and the stop at a fixed location outside the lens but resulted in significant pupil walk. The second phase of the design study focused on several promising unconventional four-group power distribution designs with moving stops that minimized pupil walk and had an acceptable pupil location (as determined by the objective and tube lens).