Sample records for tasks requiring visual

  1. Task-Appropriate Visualizations: Can the Very Same Visualization Format Either Promote or Hinder Learning Depending on the Task Requirements?

    ERIC Educational Resources Information Center

    Soemer, Alexander; Schwan, Stephan

    2016-01-01

    In a series of experiments, we tested a recently proposed hypothesis stating that the degree of alignment between the form of a mental representation resulting from learning with a particular visualization format and the specific requirements of a learning task determines learning performance (task-appropriateness). Groups of participants were…

  2. Task-related modulation of visual neglect in cancellation tasks

    PubMed Central

    Sarri, Margarita; Greenwood, Richard; Kalra, Lalit; Driver, Jon

    2008-01-01

    Unilateral neglect involves deficits of spatial exploration and awareness that do not always affect a fixed portion of extrapersonal space, but may vary with current stimulation and possibly with task demands. Here, we assessed any ‘top-down’, task-related influences on visual neglect, with novel experimental variants of the cancellation test. Many different versions of the cancellation test are used clinically, and can differ in the extent of neglect revealed, though the exact factors determining this are not fully understood. Few cancellation studies have isolated the influence of top-down factors, as typically the stimuli are changed also when comparing different tests. Within each of three cancellation studies here, we manipulated task factors, while keeping visual displays identical across conditions to equate purely bottom-up factors. Our results show that top-down task-demands can significantly modulate neglect as revealed by cancellation on the same displays. Varying the target/non-target discrimination required for identical displays has a significant impact. Varying the judgement required can also have an impact on neglect even when all items are targets, so that non-targets no longer need filtering out. Requiring local versus global aspects of shape to be judged for the same displays also has a substantial impact, but the nature of discrimination required by the task still matters even when local/global level is held constant (e.g. for different colour discriminations on the same stimuli). Finally, an exploratory analysis of lesions among our neglect patients suggested that top-down task-related influences on neglect, as revealed by the new cancellation experiments here, might potentially depend on right superior temporal gyrus surviving the lesion. PMID:18790703

  3. Task-related modulation of visual neglect in cancellation tasks.

    PubMed

    Sarri, Margarita; Greenwood, Richard; Kalra, Lalit; Driver, Jon

    2009-01-01

    Unilateral neglect involves deficits of spatial exploration and awareness that do not always affect a fixed portion of extrapersonal space, but may vary with current stimulation and possibly with task demands. Here, we assessed any 'top-down', task-related influences on visual neglect, with novel experimental variants of the cancellation test. Many different versions of the cancellation test are used clinically, and can differ in the extent of neglect revealed, though the exact factors determining this are not fully understood. Few cancellation studies have isolated the influence of top-down factors, as typically the stimuli are changed also when comparing different tests. Within each of three cancellation studies here, we manipulated task factors, while keeping visual displays identical across conditions to equate purely bottom-up factors. Our results show that top-down task demands can significantly modulate neglect as revealed by cancellation on the same displays. Varying the target/non-target discrimination required for identical displays has a significant impact. Varying the judgement required can also have an impact on neglect even when all items are targets, so that non-targets no longer need filtering out. Requiring local versus global aspects of shape to be judged for the same displays also has a substantial impact, but the nature of discrimination required by the task still matters even when local/global level is held constant (e.g. for different colour discriminations on the same stimuli). Finally, an exploratory analysis of lesions among our neglect patients suggested that top-down task-related influences on neglect, as revealed by the new cancellation experiments here, might potentially depend on right superior temporal gyrus surviving the lesion.

  4. Task-dependent modulation of the visual sensory thalamus assists visual-speech recognition.

    PubMed

    Díaz, Begoña; Blank, Helen; von Kriegstein, Katharina

    2018-05-14

    The cerebral cortex modulates early sensory processing via feed-back connections to sensory pathway nuclei. The functions of this top-down modulation for human behavior are poorly understood. Here, we show that top-down modulation of the visual sensory thalamus (the lateral geniculate body, LGN) is involved in visual-speech recognition. In two independent functional magnetic resonance imaging (fMRI) studies, LGN response increased when participants processed fast-varying features of articulatory movements required for visual-speech recognition, as compared to temporally more stable features required for face identification with the same stimulus material. The LGN response during the visual-speech task correlated positively with the visual-speech recognition scores across participants. In addition, the task-dependent modulation was present for speech movements and did not occur for control conditions involving non-speech biological movements. In face-to-face communication, visual speech recognition is used to enhance or even enable understanding what is said. Speech recognition is commonly explained in frameworks focusing on cerebral cortex areas. Our findings suggest that task-dependent modulation at subcortical sensory stages has an important role for communication: Together with similar findings in the auditory modality the findings imply that task-dependent modulation of the sensory thalami is a general mechanism to optimize speech recognition. Copyright © 2018. Published by Elsevier Inc.

  5. Validating a visual version of the metronome response task.

    PubMed

    Laflamme, Patrick; Seli, Paul; Smilek, Daniel

    2018-02-12

    The metronome response task (MRT)-a sustained-attention task that requires participants to produce a response in synchrony with an audible metronome-was recently developed to index response variability in the context of studies on mind wandering. In the present studies, we report on the development and validation of a visual version of the MRT (the visual metronome response task; vMRT), which uses the rhythmic presentation of visual, rather than auditory, stimuli. Participants completed the vMRT (Studies 1 and 2) and the original (auditory-based) MRT (Study 2) while also responding to intermittent thought probes asking them to report the depth of their mind wandering. The results showed that (1) individual differences in response variability during the vMRT are highly reliable; (2) prior to thought probes, response variability increases with increasing depth of mind wandering; (3) response variability is highly consistent between the vMRT and the original MRT; and (4) both response variability and depth of mind wandering increase with increasing time on task. Our results indicate that the original MRT findings are consistent across the visual and auditory modalities, and that the response variability measured in both tasks indexes a non-modality-specific tendency toward behavioral variability. The vMRT will be useful in the place of the MRT in experimental contexts in which researchers' designs require a visual-based primary task.

  6. Task-Driven Evaluation of Aggregation in Time Series Visualization

    PubMed Central

    Albers, Danielle; Correll, Michael; Gleicher, Michael

    2014-01-01

    Many visualization tasks require the viewer to make judgments about aggregate properties of data. Recent work has shown that viewers can perform such tasks effectively, for example to efficiently compare the maximums or means over ranges of data. However, this work also shows that such effectiveness depends on the designs of the displays. In this paper, we explore this relationship between aggregation task and visualization design to provide guidance on matching tasks with designs. We combine prior results from perceptual science and graphical perception to suggest a set of design variables that influence performance on various aggregate comparison tasks. We describe how choices in these variables can lead to designs that are matched to particular tasks. We use these variables to assess a set of eight different designs, predicting how they will support a set of six aggregate time series comparison tasks. A crowd-sourced evaluation confirms these predictions. These results not only provide evidence for how the specific visualizations support various tasks, but also suggest using the identified design variables as a tool for designing visualizations well suited for various types of tasks. PMID:25343147

  7. Distractor devaluation requires visual working memory.

    PubMed

    Goolsby, Brian A; Shapiro, Kimron L; Raymond, Jane E

    2009-02-01

    Visual stimuli seen previously as distractors in a visual search task are subsequently evaluated more negatively than those seen as targets. An attentional inhibition account for this distractor-devaluation effect posits that associative links between attentional inhibition and to-be-ignored stimuli are established during search, stored, and then later reinstantiated, implying that distractor devaluation may require visual working memory (WM) resources. To assess this, we measured distractor devaluation with and without a concurrent visual WM load. Participants viewed a memory array, performed a simple search task, evaluated one of the search items (or a novel item), and then viewed a memory test array. Although distractor devaluation was observed with low (and no) WM load, it was absent when WM load was increased. This result supports the notions that active association of current attentional states with stimuli requires WM and that memory for these associations plays a role in affective response.

  8. A task-dependent causal role for low-level visual processes in spoken word comprehension.

    PubMed

    Ostarek, Markus; Huettig, Falk

    2017-08-01

    It is well established that the comprehension of spoken words referring to object concepts relies on high-level visual areas in the ventral stream that build increasingly abstract representations. It is much less clear whether basic low-level visual representations are also involved. Here we asked in what task situations low-level visual representations contribute functionally to concrete word comprehension using an interference paradigm. We interfered with basic visual processing while participants performed a concreteness task (Experiment 1), a lexical-decision task (Experiment 2), and a word class judgment task (Experiment 3). We found that visual noise interfered more with concrete versus abstract word processing, but only when the task required visual information to be accessed. This suggests that basic visual processes can be causally involved in language comprehension, but that their recruitment is not automatic and rather depends on the type of information that is required in a given task situation. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  9. Task relevance induces momentary changes in the functional visual field during reading.

    PubMed

    Kaakinen, Johanna K; Hyönä, Jukka

    2014-02-01

    In the research reported here, we examined whether task demands can induce momentary tunnel vision during reading. More specifically, we examined whether the size of the functional visual field depends on task relevance. Forty participants read an expository text with a specific task in mind while their eye movements were recorded. A display-change paradigm with random-letter strings as preview masks was used to study the size of the functional visual field within sentences that contained task-relevant and task-irrelevant information. The results showed that orthographic parafoveal-on-foveal effects and preview benefits were observed for words within task-irrelevant but not task-relevant sentences. The results indicate that the size of the functional visual field is flexible and depends on the momentary processing demands of a reading task. The higher cognitive processing requirements experienced when reading task-relevant text rather than task-irrelevant text induce momentary tunnel vision, which narrows the functional visual field.

  10. Task set induces dynamic reallocation of resources in visual short-term memory.

    PubMed

    Sheremata, Summer L; Shomstein, Sarah

    2017-08-01

    Successful interaction with the environment requires the ability to flexibly allocate resources to different locations in the visual field. Recent evidence suggests that visual short-term memory (VSTM) resources are distributed asymmetrically across the visual field based upon task demands. Here, we propose that context, rather than the stimulus itself, determines asymmetrical distribution of VSTM resources. To test whether context modulates the reallocation of resources to the right visual field, task set, defined by memory-load, was manipulated to influence visual short-term memory performance. Performance was measured for single-feature objects embedded within predominantly single- or two-feature memory blocks. Therefore, context was varied to determine whether task set directly predicts changes in visual field biases. In accord with the dynamic reallocation of resources hypothesis, task set, rather than aspects of the physical stimulus, drove improvements in performance in the right- visual field. Our results show, for the first time, that preparation for upcoming memory demands directly determines how resources are allocated across the visual field.

  11. Selective maintenance in visual working memory does not require sustained visual attention.

    PubMed

    Hollingworth, Andrew; Maxcey-Richard, Ashleigh M

    2013-08-01

    In four experiments, we tested whether sustained visual attention is required for the selective maintenance of objects in visual working memory (VWM). Participants performed a color change-detection task. During the retention interval, a valid cue indicated the item that would be tested. Change-detection performance was higher in the valid-cue condition than in a neutral-cue control condition. To probe the role of visual attention in the cuing effect, on half of the trials, a difficult search task was inserted after the cue, precluding sustained attention on the cued item. The addition of the search task produced no observable decrement in the magnitude of the cuing effect. In a complementary test, search efficiency was not impaired by simultaneously prioritizing an object for retention in VWM. The results demonstrate that selective maintenance in VWM can be dissociated from the locus of visual attention. 2013 APA, all rights reserved

  12. Concurrent deployment of visual attention and response selection bottleneck in a dual-task: Electrophysiological and behavioural evidence.

    PubMed

    Reimer, Christina B; Strobach, Tilo; Schubert, Torsten

    2017-12-01

    Visual attention and response selection are limited in capacity. Here, we investigated whether visual attention requires the same bottleneck mechanism as response selection in a dual-task of the psychological refractory period (PRP) paradigm. The dual-task consisted of an auditory two-choice discrimination Task 1 and a conjunction search Task 2, which were presented at variable temporal intervals (stimulus onset asynchrony, SOA). In conjunction search, visual attention is required to select items and to bind their features resulting in a serial search process around the items in the search display (i.e., set size). We measured the reaction time of the visual search task (RT2) and the N2pc, an event-related potential (ERP), which reflects lateralized visual attention processes. If the response selection processes in Task 1 influence the visual attention processes in Task 2, N2pc latency and amplitude would be delayed and attenuated at short SOA compared to long SOA. The results, however, showed that latency and amplitude were independent of SOA, indicating that visual attention was concurrently deployed to response selection. Moreover, the RT2 analysis revealed an underadditive interaction of SOA and set size. We concluded that visual attention does not require the same bottleneck mechanism as response selection in dual-tasks.

  13. A design space of visualization tasks.

    PubMed

    Schulz, Hans-Jörg; Nocke, Thomas; Heitzler, Magnus; Schumann, Heidrun

    2013-12-01

    Knowledge about visualization tasks plays an important role in choosing or building suitable visual representations to pursue them. Yet, tasks are a multi-faceted concept and it is thus not surprising that the many existing task taxonomies and models all describe different aspects of tasks, depending on what these task descriptions aim to capture. This results in a clear need to bring these different aspects together under the common hood of a general design space of visualization tasks, which we propose in this paper. Our design space consists of five design dimensions that characterize the main aspects of tasks and that have so far been distributed across different task descriptions. We exemplify its concrete use by applying our design space in the domain of climate impact research. To this end, we propose interfaces to our design space for different user roles (developers, authors, and end users) that allow users of different levels of expertise to work with it.

  14. Selective Maintenance in Visual Working Memory Does Not Require Sustained Visual Attention

    PubMed Central

    Hollingworth, Andrew; Maxcey-Richard, Ashleigh M.

    2012-01-01

    In four experiments, we tested whether sustained visual attention is required for the selective maintenance of objects in VWM. Participants performed a color change-detection task. During the retention interval, a valid cue indicated the item that would be tested. Change detection performance was higher in the valid-cue condition than in a neutral-cue control condition. To probe the role of visual attention in the cuing effect, on half of the trials, a difficult search task was inserted after the cue, precluding sustained attention on the cued item. The addition of the search task produced no observable decrement in the magnitude of the cuing effect. In a complementary test, search efficiency was not impaired by simultaneously prioritizing an object for retention in VWM. The results demonstrate that selective maintenance in VWM can be dissociated from the locus of visual attention. PMID:23067118

  15. Surgical simulation tasks challenge visual working memory and visual-spatial ability differently.

    PubMed

    Schlickum, Marcus; Hedman, Leif; Enochsson, Lars; Henningsohn, Lars; Kjellin, Ann; Felländer-Tsai, Li

    2011-04-01

    New strategies for selection and training of physicians are emerging. Previous studies have demonstrated a correlation between visual-spatial ability and visual working memory with surgical simulator performance. The aim of this study was to perform a detailed analysis on how these abilities are associated with metrics in simulator performance with different task content. The hypothesis is that the importance of visual-spatial ability and visual working memory varies with different task contents. Twenty-five medical students participated in the study that involved testing visual-spatial ability using the MRT-A test and visual working memory using the RoboMemo computer program. Subjects were also trained and tested for performance in three different surgical simulators. The scores from the psychometric tests and the performance metrics were then correlated using multivariate analysis. MRT-A score correlated significantly with the performance metrics Efficiency of screening (p = 0.006) and Total time (p = 0.01) in the GI Mentor II task and Total score (p = 0.02) in the MIST-VR simulator task. In the Uro Mentor task, both the MRT-A score and the visual working memory 3-D cube test score as presented in the RoboMemo program (p = 0.02) correlated with Total score (p = 0.004). In this study we have shown that some differences exist regarding the impact of visual abilities and task content on simulator performance. When designing future cognitive training programs and testing regimes, one might have to consider that the design must be adjusted in accordance with the specific surgical task to be trained in mind.

  16. Motion/visual cueing requirements for vortex encounters during simulated transport visual approach and landing

    NASA Technical Reports Server (NTRS)

    Parrish, R. V.; Bowles, R. L.

    1983-01-01

    This paper addresses the issues of motion/visual cueing fidelity requirements for vortex encounters during simulated transport visual approaches and landings. Four simulator configurations were utilized to provide objective performance measures during simulated vortex penetrations, and subjective comments from pilots were collected. The configurations used were as follows: fixed base with visual degradation (delay), fixed base with no visual degradation, moving base with visual degradation (delay), and moving base with no visual degradation. The statistical comparisons of the objective measures and the subjective pilot opinions indicated that although both minimum visual delay and motion cueing are recommended for the vortex penetration task, the visual-scene delay characteristics were not as significant a fidelity factor as was the presence of motion cues. However, this indication was applicable to a restricted task, and to transport aircraft. Although they were statistically significant, the effects of visual delay and motion cueing on the touchdown-related measures were considered to be of no practical consequence.

  17. Minimum visual requirements in different occupations in Finland.

    PubMed

    Aine, E

    1984-01-01

    In Finland the employers can individually fix the minimum visual requirements for their personnel in almost every occupation. In transportation, in police and national defence proper eyesight is regarded so important that strict visual requirements for these have been fixed by the Government. The regulations are often more close when accepting the person to the occupation than later on when working. The minimum requirements are mostly stated for visual acuity, colour perception and visual fields. In some occupations the regulations concern also the refractive error of the eyes and possible eye diseases. In aviation the regulations have been stated by the International Civil Aviation Organization ( ICAO ). The minimum visual requirements for a driving license in highway traffic are classed according to the types of motor vehicles. In railways , maritime commerce and national defence the task of the worker determines the specified regulations. The policeman must have a distant visual acuity of 0.5 without eyeglasses in both eyes and nearly normal colour perception when starting the training course.

  18. A taxonomy of visualization tasks for the analysis of biological pathway data.

    PubMed

    Murray, Paul; McGee, Fintan; Forbes, Angus G

    2017-02-15

    Understanding complicated networks of interactions and chemical components is essential to solving contemporary problems in modern biology, especially in domains such as cancer and systems research. In these domains, biological pathway data is used to represent chains of interactions that occur within a given biological process. Visual representations can help researchers understand, interact with, and reason about these complex pathways in a number of ways. At the same time, these datasets offer unique challenges for visualization, due to their complexity and heterogeneity. Here, we present taxonomy of tasks that are regularly performed by researchers who work with biological pathway data. The generation of these tasks was done in conjunction with interviews with several domain experts in biology. These tasks require further classification than is provided by existing taxonomies. We also examine existing visualization techniques that support each task, and we discuss gaps in the existing visualization space revealed by our taxonomy. Our taxonomy is designed to support the development and design of future biological pathway visualization applications. We conclude by suggesting future research directions based on our taxonomy and motivated by the comments received by our domain experts.

  19. Interference with olfactory memory by visual and verbal tasks.

    PubMed

    Annett, J M; Cook, N M; Leslie, J C

    1995-06-01

    It has been claimed that olfactory memory is distinct from memory in other modalities. This study investigated the effectiveness of visual and verbal tasks in interfering with olfactory memory and included methodological changes from other recent studies. Subjects were allocated to one of four experimental conditions involving interference tasks [no interference task; visual task; verbal task; visual-plus-verbal task] and presented 15 target odours. Either recognition of the odours or free recall of the odour names was tested on one occasion, either within 15 minutes of presentation or one week later. Recognition and recall performance both showed effects of interference of visual and verbal tasks but there was no effect for time of testing. While the results may be accommodated within a dual coding framework, further work is indicated to resolve theoretical issues relating to task complexity.

  20. Frequency modulation of neural oscillations according to visual task demands.

    PubMed

    Wutz, Andreas; Melcher, David; Samaha, Jason

    2018-02-06

    Temporal integration in visual perception is thought to occur within cycles of occipital alpha-band (8-12 Hz) oscillations. Successive stimuli may be integrated when they fall within the same alpha cycle and segregated for different alpha cycles. Consequently, the speed of alpha oscillations correlates with the temporal resolution of perception, such that lower alpha frequencies provide longer time windows for perceptual integration and higher alpha frequencies correspond to faster sampling and segregation. Can the brain's rhythmic activity be dynamically controlled to adjust its processing speed according to different visual task demands? We recorded magnetoencephalography (MEG) while participants switched between task instructions for temporal integration and segregation, holding stimuli and task difficulty constant. We found that the peak frequency of alpha oscillations decreased when visual task demands required temporal integration compared with segregation. Alpha frequency was strategically modulated immediately before and during stimulus processing, suggesting a preparatory top-down source of modulation. Its neural generators were located in occipital and inferotemporal cortex. The frequency modulation was specific to alpha oscillations and did not occur in the delta (1-3 Hz), theta (3-7 Hz), beta (15-30 Hz), or gamma (30-50 Hz) frequency range. These results show that alpha frequency is under top-down control to increase or decrease the temporal resolution of visual perception.

  1. Visual attention is required for multiple object tracking.

    PubMed

    Tran, Annie; Hoffman, James E

    2016-12-01

    In the multiple object tracking task, participants attempt to keep track of a moving set of target objects embedded in an identical set of moving distractors. Depending on several display parameters, observers are usually only able to accurately track 3 to 4 objects. Various proposals attribute this limit to a fixed number of discrete indexes (Pylyshyn, 1989), limits in visual attention (Cavanagh & Alvarez, 2005), or "architectural limits" in visual cortical areas (Franconeri, 2013). The present set of experiments examined the specific role of visual attention in tracking using a dual-task methodology in which participants tracked objects while identifying letter probes appearing on the tracked objects and distractors. As predicted by the visual attention model, probe identification was faster and/or more accurate when probes appeared on tracked objects. This was the case even when probes were more than twice as likely to appear on distractors suggesting that some minimum amount of attention is required to maintain accurate tracking performance. When the need to protect tracking accuracy was relaxed, participants were able to allocate more attention to distractors when probes were likely to appear there but only at the expense of large reductions in tracking accuracy. A final experiment showed that people attend to tracked objects even when letters appearing on them are task-irrelevant, suggesting that allocation of attention to tracked objects is an obligatory process. These results support the claim that visual attention is required for tracking objects. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  2. Distinct Effects of Trial-Driven and Task Set-Related Control in Primary Visual Cortex

    PubMed Central

    Vaden, Ryan J.; Visscher, Kristina M.

    2015-01-01

    Task sets are task-specific configurations of cognitive processes that facilitate task-appropriate reactions to stimuli. While it is established that the trial-by-trial deployment of visual attention to expected stimuli influences neural responses in primary visual cortex (V1) in a retinotopically specific manner, it is not clear whether the mechanisms that help maintain a task set over many trials also operate with similar retinotopic specificity. Here, we address this question by using BOLD fMRI to characterize how portions of V1 that are specialized for different eccentricities respond during distinct components of an attention-demanding discrimination task: cue-driven preparation for a trial, trial-driven processing, task-initiation at the beginning of a block of trials, and task-maintenance throughout a block of trials. Tasks required either unimodal attention to an auditory or a visual stimulus or selective intermodal attention to the visual or auditory component of simultaneously presented visual and auditory stimuli. We found that while the retinotopic patterns of trial-driven and cue-driven activity depended on the attended stimulus, the retinotopic patterns of task-initiation and task-maintenance activity did not. Further, only the retinotopic patterns of trial-driven activity were found to depend on the presence of intermodal distraction. Participants who performed well on the intermodal selective attention tasks showed strong task-specific modulations of both trial-driven and task-maintenance activity. Importantly, task-related modulations of trial-driven and task-maintenance activity were in opposite directions. Together, these results confirm that there are (at least) two different processes for top-down control of V1: One, working trial-by-trial, differently modulates activity across different eccentricity sectors—portions of V1 corresponding to different visual eccentricities. The second process works across longer epochs of task performance, and

  3. Motor-cognitive dual-task performance: effects of a concurrent motor task on distinct components of visual processing capacity.

    PubMed

    Künstler, E C S; Finke, K; Günther, A; Klingner, C; Witte, O; Bublak, P

    2018-01-01

    Dual tasking, or the simultaneous execution of two continuous tasks, is frequently associated with a performance decline that can be explained within a capacity sharing framework. In this study, we assessed the effects of a concurrent motor task on the efficiency of visual information uptake based on the 'theory of visual attention' (TVA). TVA provides parameter estimates reflecting distinct components of visual processing capacity: perceptual threshold, visual processing speed, and visual short-term memory (VSTM) storage capacity. Moreover, goodness-of-fit values and bootstrapping estimates were derived to test whether the TVA-model is validly applicable also under dual task conditions, and whether the robustness of parameter estimates is comparable in single- and dual-task conditions. 24 subjects of middle to higher age performed a continuous tapping task, and a visual processing task (whole report of briefly presented letter arrays) under both single- and dual-task conditions. Results suggest a decline of both visual processing capacity and VSTM storage capacity under dual-task conditions, while the perceptual threshold remained unaffected by a concurrent motor task. In addition, goodness-of-fit values and bootstrapping estimates support the notion that participants processed the visual task in a qualitatively comparable, although quantitatively less efficient way under dual-task conditions. The results support a capacity sharing account of motor-cognitive dual tasking and suggest that even performing a relatively simple motor task relies on central attentional capacity that is necessary for efficient visual information uptake.

  4. A cognitive task analysis of a visual analytic workflow: Exploring molecular interaction networks in systems biology.

    PubMed

    Mirel, Barbara; Eichinger, Felix; Keller, Benjamin J; Kretzler, Matthias

    2011-03-21

    Bioinformatics visualization tools are often not robust enough to support biomedical specialists’ complex exploratory analyses. Tools need to accommodate the workflows that scientists actually perform for specific translational research questions. To understand and model one of these workflows, we conducted a case-based, cognitive task analysis of a biomedical specialist’s exploratory workflow for the question: What functional interactions among gene products of high throughput expression data suggest previously unknown mechanisms of a disease? From our cognitive task analysis four complementary representations of the targeted workflow were developed. They include: usage scenarios, flow diagrams, a cognitive task taxonomy, and a mapping between cognitive tasks and user-centered visualization requirements. The representations capture the flows of cognitive tasks that led a biomedical specialist to inferences critical to hypothesizing. We created representations at levels of detail that could strategically guide visualization development, and we confirmed this by making a trial prototype based on user requirements for a small portion of the workflow. Our results imply that visualizations should make available to scientific users “bundles of features” consonant with the compositional cognitive tasks purposefully enacted at specific points in the workflow. We also highlight certain aspects of visualizations that: (a) need more built-in flexibility; (b) are critical for negotiating meaning; and (c) are necessary for essential metacognitive support.

  5. Classification of visual and linguistic tasks using eye-movement features.

    PubMed

    Coco, Moreno I; Keller, Frank

    2014-03-07

    The role of the task has received special attention in visual-cognition research because it can provide causal explanations of goal-directed eye-movement responses. The dependency between visual attention and task suggests that eye movements can be used to classify the task being performed. A recent study by Greene, Liu, and Wolfe (2012), however, fails to achieve accurate classification of visual tasks based on eye-movement features. In the present study, we hypothesize that tasks can be successfully classified when they differ with respect to the involvement of other cognitive domains, such as language processing. We extract the eye-movement features used by Greene et al. as well as additional features from the data of three different tasks: visual search, object naming, and scene description. First, we demonstrated that eye-movement responses make it possible to characterize the goals of these tasks. Then, we trained three different types of classifiers and predicted the task participants performed with an accuracy well above chance (a maximum of 88% for visual search). An analysis of the relative importance of features for classification accuracy reveals that just one feature, i.e., initiation time, is sufficient for above-chance performance (a maximum of 79% accuracy in object naming). Crucially, this feature is independent of task duration, which differs systematically across the three tasks we investigated. Overall, the best task classification performance was obtained with a set of seven features that included both spatial information (e.g., entropy of attention allocation) and temporal components (e.g., total fixation on objects) of the eye-movement record. This result confirms the task-dependent allocation of visual attention and extends previous work by showing that task classification is possible when tasks differ in the cognitive processes involved (purely visual tasks such as search vs. communicative tasks such as scene description).

  6. Evidence that primary visual cortex is required for image, orientation, and motion discrimination by rats.

    PubMed

    Petruno, Sarah K; Clark, Robert E; Reinagel, Pamela

    2013-01-01

    The pigmented Long-Evans rat has proven to be an excellent subject for studying visually guided behavior including quantitative visual psychophysics. This observation, together with its experimental accessibility and its close homology to the mouse, has made it an attractive model system in which to dissect the thalamic and cortical circuits underlying visual perception. Given that visually guided behavior in the absence of primary visual cortex has been described in the literature, however, it is an empirical question whether specific visual behaviors will depend on primary visual cortex in the rat. Here we tested the effects of cortical lesions on performance of two-alternative forced-choice visual discriminations by Long-Evans rats. We present data from one highly informative subject that learned several visual tasks and then received a bilateral lesion ablating >90% of primary visual cortex. After the lesion, this subject had a profound and persistent deficit in complex image discrimination, orientation discrimination, and full-field optic flow motion discrimination, compared with both pre-lesion performance and sham-lesion controls. Performance was intact, however, on another visual two-alternative forced-choice task that required approaching a salient visual target. A second highly informative subject learned several visual tasks prior to receiving a lesion ablating >90% of medial extrastriate cortex. This subject showed no impairment on any of the four task categories. Taken together, our data provide evidence that these image, orientation, and motion discrimination tasks require primary visual cortex in the Long-Evans rat, whereas approaching a salient visual target does not.

  7. Coherent visualization of spatial data adapted to roles, tasks, and hardware

    NASA Astrophysics Data System (ADS)

    Wagner, Boris; Peinsipp-Byma, Elisabeth

    2012-06-01

    Modern crisis management requires that users with different roles and computer environments have to deal with a high volume of various data from different sources. For this purpose, Fraunhofer IOSB has developed a geographic information system (GIS) which supports the user depending on available data and the task he has to solve. The system provides merging and visualization of spatial data from various civilian and military sources. It supports the most common spatial data standards (OGC, STANAG) as well as some proprietary interfaces, regardless if these are filebased or database-based. To set the visualization rules generic Styled Layer Descriptors (SLDs) are used, which are an Open Geospatial Consortium (OGC) standard. SLDs allow specifying which data are shown, when and how. The defined SLDs consider the users' roles and task requirements. In addition it is possible to use different displays and the visualization also adapts to the individual resolution of the display. Too high or low information density is avoided. Also, our system enables users with different roles to work together simultaneously using the same data base. Every user is provided with the appropriate and coherent spatial data depending on his current task. These so refined spatial data are served via the OGC services Web Map Service (WMS: server-side rendered raster maps), or the Web Map Tile Service - (WMTS: pre-rendered and cached raster maps).

  8. Non-visual spatial tasks reveal increased interactions with stance postural control.

    PubMed

    Woollacott, Marjorie; Vander Velde, Timothy

    2008-05-07

    The current investigation aimed to contrast the level and quality of dual-task interactions resulting from the combined performance of a challenging primary postural task and three specific, yet categorically dissociated, secondary central executive tasks. Experiments determined the extent to which modality (visual vs. auditory) and code (non-spatial vs. spatial) specific cognitive resources contributed to postural interference in young adults (n=9) in a dual-task setting. We hypothesized that the different forms of executive n-back task processing employed (visual-object, auditory-object and auditory-spatial) would display contrasting levels of interactions with tandem Romberg stance postural control, and that interactions within the spatial domain would be revealed as most vulnerable to dual-task interactions. Across all cognitive tasks employed, including auditory-object (aOBJ), auditory-spatial (aSPA), and visual-object (vOBJ) tasks, increasing n-back task complexity produced correlated increases in verbal reaction time measures. Increasing cognitive task complexity also resulted in consistent decreases in judgment accuracy. Postural performance was significantly influenced by the type of cognitive loading delivered. At comparable levels of cognitive task difficulty (n-back demands and accuracy judgments) the performance of challenging auditory-spatial tasks produced significantly greater levels of postural sway than either the auditory-object or visual-object based tasks. These results suggest that it is the employment of limited non-visual spatially based coding resources that may underlie previously observed visual dual-task interference effects with stance postural control in healthy young adults.

  9. Choosing Your Poison: Optimizing Simulator Visual System Selection as a Function of Operational Tasks

    NASA Technical Reports Server (NTRS)

    Sweet, Barbara T.; Kaiser, Mary K.

    2013-01-01

    Although current technology simulator visual systems can achieve extremely realistic levels they do not completely replicate the experience of a pilot sitting in the cockpit, looking at the outside world. Some differences in experience are due to visual artifacts, or perceptual features that would not be present in a naturally viewed scene. Others are due to features that are missing from the simulated scene. In this paper, these differences will be defined and discussed. The significance of these differences will be examined as a function of several particular operational tasks. A framework to facilitate the choice of visual system characteristics based on operational task requirements will be proposed.

  10. Visual tasks and postural sway in children with and without autism spectrum disorders.

    PubMed

    Chang, Chih-Hui; Wade, Michael G; Stoffregen, Thomas A; Hsu, Chin-Yu; Pan, Chien-Yu

    2010-01-01

    We investigated the influences of two different suprapostural visual tasks, visual searching and visual inspection, on the postural sway of children with and without autism spectrum disorder (ASD). Sixteen ASD children (age=8.75±1.34 years; height=130.34±11.03 cm) were recruited from a local support group. Individuals with an intellectual disability as a co-occurring condition and those with severe behavior problems that required formal intervention were excluded. Twenty-two sex- and age-matched typically developing (TD) children (age=8.93±1.39 years; height=133.47±8.21 cm) were recruited from a local public elementary school. Postural sway was recorded using a magnetic tracking system (Flock of Birds, Ascension Technologies, Inc., Burlington, VT). Results indicated that the ASD children exhibited greater sway than the TD children. Despite this difference, both TD and ASD children showed reduced sway during the search task, relative to sway during the inspection task. These findings replicate those of Stoffregen et al. (2000), Stoffregen, Giveans, et al. (2009), Stoffregen, Villard, et al. (2009) and Prado et al. (2007) and extend them to TD children as well as ASD children. Both TD and ASD children were able to functionally modulate postural sway to facilitate the performance of a task that required higher perceptual effort. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. Visual Processing on Graphics Task: The Case of a Street Map

    ERIC Educational Resources Information Center

    Logan, Tracy; Lowrie, Tom

    2013-01-01

    Tracy Logan and Tom Lowrie argue that while little attention is given to visual imagery and spatial reasoning within the Australian Curriculum, a significant proportion of National Assessment Program--Literacy and Numeracy (NAPLAN) tasks require high levels of visuospatial reasoning. This article includes teaching ideas to promote visuospatial…

  12. The Use of Computer-Generated Fading Materials to Teach Visual-Visual Non-Identity Matching Tasks

    ERIC Educational Resources Information Center

    Murphy, Colleen; Figueroa, Maria; Martin, Garry L.; Yu, C. T.; Figueroa, Josue

    2008-01-01

    Many everyday matching tasks taught to persons with developmental disabilities are visual-visual non-identity matching (VVNM) tasks, such as matching the printed word DOG to a picture of a dog, or matching a sock to a shoe. Research has shown that, for participants who have failed a VVNM prototype task, it is very difficult to teach them various…

  13. More visual mind wandering occurrence during visual task performance: Modality of the concurrent task affects how the mind wanders.

    PubMed

    Choi, HeeSun; Geden, Michael; Feng, Jing

    2017-01-01

    Mind wandering has been considered as a mental process that is either independent from the concurrent task or regulated like a secondary task. These accounts predict that the form of mind wandering (i.e., images or words) should be either unaffected by or different from the modality form (i.e., visual or auditory) of the concurrent task. Findings from this study challenge these accounts. We measured the rate and the form of mind wandering in three task conditions: fixation, visual 2-back, and auditory 2-back. Contrary to the general expectation, we found that mind wandering was more likely in the same form as the task. This result can be interpreted in light of recent findings on overlapping brain activations during internally- and externally-oriented processes. Our result highlights the importance to consider the unique interplay between the internal and external mental processes and to measure mind wandering as a multifaceted rather than a unitary construct.

  14. More visual mind wandering occurrence during visual task performance: Modality of the concurrent task affects how the mind wanders

    PubMed Central

    Choi, HeeSun; Geden, Michael

    2017-01-01

    Mind wandering has been considered as a mental process that is either independent from the concurrent task or regulated like a secondary task. These accounts predict that the form of mind wandering (i.e., images or words) should be either unaffected by or different from the modality form (i.e., visual or auditory) of the concurrent task. Findings from this study challenge these accounts. We measured the rate and the form of mind wandering in three task conditions: fixation, visual 2-back, and auditory 2-back. Contrary to the general expectation, we found that mind wandering was more likely in the same form as the task. This result can be interpreted in light of recent findings on overlapping brain activations during internally- and externally-oriented processes. Our result highlights the importance to consider the unique interplay between the internal and external mental processes and to measure mind wandering as a multifaceted rather than a unitary construct. PMID:29240817

  15. How low can you go? Changing the resolution of novel complex objects in visual working memory according to task demands

    PubMed Central

    Allon, Ayala S.; Balaban, Halely; Luria, Roy

    2014-01-01

    In three experiments we manipulated the resolution of novel complex objects in visual working memory (WM) by changing task demands. Previous studies that investigated the trade-off between quantity and resolution in visual WM yielded mixed results for simple familiar stimuli. We used the contralateral delay activity as an electrophysiological marker to directly track the deployment of visual WM resources while participants preformed a change-detection task. Across three experiments we presented the same novel complex items but changed the task demands. In Experiment 1 we induced a medium resolution task by using change trials in which a random polygon changed to a different type of polygon and replicated previous findings showing that novel complex objects are represented with higher resolution relative to simple familiar objects. In Experiment 2 we induced a low resolution task that required distinguishing between polygons and other types of stimulus categories, but we failed in finding a corresponding decrease in the resolution of the represented item. Finally, in Experiment 3 we induced a high resolution task that required discriminating between highly similar polygons with somewhat different contours. This time, we observed an increase in the item’s resolution. Our findings indicate that the resolution for novel complex objects can be increased but not decreased according to task demands, suggesting that minimal resolution is required in order to maintain these items in visual WM. These findings support studies claiming that capacity and resolution in visual WM reflect different mechanisms. PMID:24734026

  16. Brain functional network connectivity based on a visual task: visual information processing-related brain regions are significantly activated in the task state.

    PubMed

    Yang, Yan-Li; Deng, Hong-Xia; Xing, Gui-Yang; Xia, Xiao-Luan; Li, Hai-Fang

    2015-02-01

    It is not clear whether the method used in functional brain-network related research can be applied to explore the feature binding mechanism of visual perception. In this study, we investigated feature binding of color and shape in visual perception. Functional magnetic resonance imaging data were collected from 38 healthy volunteers at rest and while performing a visual perception task to construct brain networks active during resting and task states. Results showed that brain regions involved in visual information processing were obviously activated during the task. The components were partitioned using a greedy algorithm, indicating the visual network existed during the resting state. Z-values in the vision-related brain regions were calculated, confirming the dynamic balance of the brain network. Connectivity between brain regions was determined, and the result showed that occipital and lingual gyri were stable brain regions in the visual system network, the parietal lobe played a very important role in the binding process of color features and shape features, and the fusiform and inferior temporal gyri were crucial for processing color and shape information. Experimental findings indicate that understanding visual feature binding and cognitive processes will help establish computational models of vision, improve image recognition technology, and provide a new theoretical mechanism for feature binding in visual perception.

  17. Effects of age and auditory and visual dual tasks on closed-road driving performance.

    PubMed

    Chaparro, Alex; Wood, Joanne M; Carberry, Trent

    2005-08-01

    This study investigated how driving performance of young and old participants is affected by visual and auditory secondary tasks on a closed driving course. Twenty-eight participants comprising two age groups (younger, mean age = 27.3 years; older, mean age = 69.2 years) drove around a 5.1-km closed-road circuit under both single and dual task conditions. Measures of driving performance included detection and identification of road signs, detection and avoidance of large low-contrast road hazards, gap judgment, lane keeping, and time to complete the course. The dual task required participants to verbally report the sums of pairs of single-digit numbers presented through either a computer speaker (auditorily) or a dashboard-mounted monitor (visually) while driving. Participants also completed a vision and cognitive screening battery, including LogMAR visual acuity, Pelli-Robson letter contrast sensitivity, the Trails test, and the Digit Symbol Substitution (DSS) test. Drivers reported significantly fewer signs, hit more road hazards, misjudged more gaps, and increased their time to complete the course under the dual task (visual and auditory) conditions compared with the single task condition. The older participants also reported significantly fewer road signs and drove significantly more slowly than the younger participants, and this was exacerbated for the visual dual task condition. The results of the regression analysis revealed that cognitive aging (measured by the DSS and Trails test) rather than chronologic age was a better predictor of the declines seen in driving performance under dual task conditions. An overall z score was calculated, which took into account both driving and the secondary task (summing) performance under the two dual task conditions. Performance was significantly worse for the auditory dual task compared with the visual dual task, and the older participants performed significantly worse than the young subjects. These findings demonstrate

  18. Accommodation in Astigmatic Children During Visual Task Performance

    PubMed Central

    Harvey, Erin M.; Miller, Joseph M.; Apple, Howard P.; Parashar, Pavan; Twelker, J. Daniel; Crescioni, Mabel; Davis, Amy L.; Leonard-Green, Tina K.; Campus, Irene; Sherrill, Duane L.

    2014-01-01

    Purpose. To determine the accuracy and stability of accommodation in uncorrected children during visual task performance. Methods. Subjects were second- to seventh-grade children from a highly astigmatic population. Measurements of noncycloplegic right eye spherical equivalent (Mnc) were obtained while uncorrected subjects performed three visual tasks at near (40 cm) and distance (2 m). Tasks included reading sentences with stimulus letter size near acuity threshold and an age-appropriate letter size (high task demands) and viewing a video (low task demand). Repeated measures ANOVA assessed the influence of astigmatism, task demand, and accommodative demand on accuracy (mean Mnc) and variability (mean SD of Mnc) of accommodation. Results. For near and distance analyses, respectively, sample size was 321 and 247, mean age was 10.37 (SD 1.77) and 10.30 (SD 1.74) years, mean cycloplegic M was 0.48 (SD 1.10) and 0.79 diopters (D) (SD 1.00), and mean astigmatism was 0.99 (SD 1.15) and 0.75 D (SD 0.96). Poor accommodative accuracy was associated with high astigmatism, low task demand (video viewing), and high accommodative demand. The negative effect of accommodative demand on accuracy increased with increasing astigmatism, with the poorest accommodative accuracy observed in high astigmats (≥3.00 D) with high accommodative demand/high hyperopia (1.53 D and 2.05 D of underaccommodation for near and distant stimuli, respectively). Accommodative variability was greatest in high astigmats and was uniformly high across task condition. No/low and moderate astigmats showed higher variability for the video task than the reading tasks. Conclusions. Accuracy of accommodation is reduced in uncorrected children with high astigmatism and high accommodative demand/high hyperopia, but improves with increased visual task demand (reading). High astigmats showed the greatest variability in accommodation. PMID:25103265

  19. Normal Performance in Non-Visual Social Cognition Tasks in Women with Turner Syndrome.

    PubMed

    Anaki, David; Zadikov-Mor, Tal; Gepstein, Vardit; Hochberg, Ze'ev

    2018-01-01

    Turner syndrome (TS) is a chromosomal disorder in women resulting from a partial or complete absence of the X chromosome. In addition to physical and hormonal dysfunctions, along with a unique neurocognitive profile, women with TS are reported to suffer from social functioning difficulties. Yet, it is unclear whether these difficulties stem from impairments in social cognition per se or from other deficits that characterize TS but are not specific to social cognition. Previous research that has probed social functioning in TS is equivocal regarding the source of these psychosocial problems since they have mainly used tasks that were dependent on visual-spatial skills, which are known to be compromised in TS. In the present study, we tested 26 women with TS and 26 matched participants on three social cognition tasks that did not require any visual-spatial capacities but rather relied on auditory-verbal skills. The results revealed that in all three tasks the TS participants did not differ from their control counterparts. The same TS cohort was found, in an earlier study, to be impaired, relative to controls, in other social cognition tasks that were dependent on visual-spatial skills. Taken together these findings suggest that the social problems, documented in TS, may be related to non-specific spatial-visual factors that affect their social cognition skills.

  20. Influence of social presence on eye movements in visual search tasks.

    PubMed

    Liu, Na; Yu, Ruifeng

    2017-12-01

    This study employed an eye-tracking technique to investigate the influence of social presence on eye movements in visual search tasks. A total of 20 male subjects performed visual search tasks in a 2 (target presence: present vs. absent) × 2 (task complexity: complex vs. simple) × 2 (social presence: alone vs. a human audience) within-subject experiment. Results indicated that the presence of an audience could evoke a social facilitation effect on response time in visual search tasks. Compared with working alone, the participants made fewer and shorter fixations, larger saccades and shorter scan path in simple search tasks and more and longer fixations, smaller saccades and longer scan path in complex search tasks when working with an audience. The saccade velocity and pupil diameter in the audience-present condition were larger than those in the working-alone condition. No significant change in target fixation number was observed between two social presence conditions. Practitioner Summary: This study employed an eye-tracking technique to examine the influence of social presence on eye movements in visual search tasks. Results clarified the variation mechanism and characteristics of oculomotor scanning induced by social presence in visual search.

  1. Measuring the effects of a visual or auditory Stroop task on dual-task costs during obstacle crossing.

    PubMed

    Worden, Timothy A; Mendes, Matthew; Singh, Pratham; Vallis, Lori Ann

    2016-10-01

    Successful planning and execution of motor strategies while concurrently performing a cognitive task has been previously examined, but unfortunately the varied and numerous cognitive tasks studied has limited our fundamental understanding of how the central nervous system successfully integrates and executes these tasks simultaneously. To gain a better understanding of these mechanisms we used a set of cognitive tasks requiring similar central executive function processes and response outputs but requiring different perceptual mechanisms to perform the motor task. Thirteen healthy young adults (20.6±1.6years old) were instrumented with kinematic markers (60Hz) and completed 5 practice, 10 single-task obstacle walking trials and two 40 trial experimental blocks. Each block contained 20 trials of seated (single-task) trials followed by 20 cognitive and obstacle (30% lower leg length) crossing trials (dual-task). Blocks were randomly presented and included either an auditory Stroop task (AST; central interference only) or a visual Stroop task (VST; combined central and structural interference). Higher accuracy rates and shorter response times were observed for the VST versus AST single-task trials (p<0.05). Conversely, for the obstacle stepping performance, larger dual task costs were observed for the VST as compared to the AST for clearance measures (the VST induced larger clearance values for both the leading and trailing feet), indicating VST tasks caused greater interference for obstacle crossing (p<0.05). These results supported the hypothesis that structural interference has a larger effect on motor performance in a dual-task situation compared to cognitive tasks that pose interference at only the central processing stage. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Visual task performance using a monocular see-through head-mounted display (HMD) while walking.

    PubMed

    Mustonen, Terhi; Berg, Mikko; Kaistinen, Jyrki; Kawai, Takashi; Häkkinen, Jukka

    2013-12-01

    A monocular see-through head-mounted display (HMD) allows the user to view displayed information while simultaneously interacting with the surrounding environment. This configuration lets people use HMDs while they are moving, such as while walking. However, sharing attention between the display and environment can compromise a person's performance in any ongoing task, and controlling one's gait may add further challenges. In this study, the authors investigated how the requirements of HMD-administered visual tasks altered users' performance while they were walking. Twenty-four university students completed 3 cognitive tasks (high- and low-working memory load, visual vigilance) on an HMD while seated and while simultaneously performing a paced walking task in a controlled environment. The results show that paced walking worsened performance (d', reaction time) in all HMD-administered tasks, but visual vigilance deteriorated more than memory performance. The HMD-administered tasks also worsened walking performance (speed, path overruns) in a manner that varied according to the overall demands of the task. These results suggest that people's ability to process information displayed on an HMD may worsen while they are in motion. Furthermore, the use of an HMD can critically alter a person's natural performance, such as their ability to guide and control their gait. In particular, visual tasks that involve constant monitoring of the HMD should be avoided. These findings highlight the need for careful consideration of the type and difficulty of information that can be presented through HMDs while still letting the user achieve an acceptable overall level of performance in various contexts of use. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  3. Task-relevant perceptual features can define categories in visual memory too.

    PubMed

    Antonelli, Karla B; Williams, Carrick C

    2017-11-01

    Although Konkle, Brady, Alvarez, and Oliva (2010, Journal of Experimental Psychology: General, 139(3), 558) claim that visual long-term memory (VLTM) is organized on underlying conceptual, not perceptual, information, visual memory results from visual search tasks are not well explained by this theory. We hypothesized that when viewing an object, any task-relevant visual information is critical to the organizational structure of VLTM. In two experiments, we examined the organization of VLTM by measuring the amount of retroactive interference created by objects possessing different combinations of task-relevant features. Based on task instructions, only the conceptual category was task relevant or both the conceptual category and a perceptual object feature were task relevant. Findings indicated that when made task relevant, perceptual object feature information, along with conceptual category information, could affect memory organization for objects in VLTM. However, when perceptual object feature information was task irrelevant, it did not contribute to memory organization; instead, memory defaulted to being organized around conceptual category information. These findings support the theory that a task-defined organizational structure is created in VLTM based on the relevance of particular object features and information.

  4. Mixed Initiative Visual Analytics Using Task-Driven Recommendations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, Kristin A.; Cramer, Nicholas O.; Israel, David

    2015-12-07

    Visual data analysis is composed of a collection of cognitive actions and tasks to decompose, internalize, and recombine data to produce knowledge and insight. Visual analytic tools provide interactive visual interfaces to data to support tasks involved in discovery and sensemaking, including forming hypotheses, asking questions, and evaluating and organizing evidence. Myriad analytic models can be incorporated into visual analytic systems, at the cost of increasing complexity in the analytic discourse between user and system. Techniques exist to increase the usability of interacting with such analytic models, such as inferring data models from user interactions to steer the underlying modelsmore » of the system via semantic interaction, shielding users from having to do so explicitly. Such approaches are often also referred to as mixed-initiative systems. Researchers studying the sensemaking process have called for development of tools that facilitate analytic sensemaking through a combination of human and automated activities. However, design guidelines do not exist for mixed-initiative visual analytic systems to support iterative sensemaking. In this paper, we present a candidate set of design guidelines and introduce the Active Data Environment (ADE) prototype, a spatial workspace supporting the analytic process via task recommendations invoked by inferences on user interactions within the workspace. ADE recommends data and relationships based on a task model, enabling users to co-reason with the system about their data in a single, spatial workspace. This paper provides an illustrative use case, a technical description of ADE, and a discussion of the strengths and limitations of the approach.« less

  5. Effects of speech intelligibility level on concurrent visual task performance.

    PubMed

    Payne, D G; Peters, L J; Birkmire, D P; Bonto, M A; Anastasi, J S; Wenger, M J

    1994-09-01

    Four experiments were performed to determine if changes in the level of speech intelligibility in an auditory task have an impact on performance in concurrent visual tasks. The auditory task used in each experiment was a memory search task in which subjects memorized a set of words and then decided whether auditorily presented probe items were members of the memorized set. The visual tasks used were an unstable tracking task, a spatial decision-making task, a mathematical reasoning task, and a probability monitoring task. Results showed that performance on the unstable tracking and probability monitoring tasks was unaffected by the level of speech intelligibility on the auditory task, whereas accuracy in the spatial decision-making and mathematical processing tasks was significantly worse at low speech intelligibility levels. The findings are interpreted within the framework of multiple resource theory.

  6. Sex differences in verbal and visual-spatial tasks under different hemispheric visual-field presentation conditions.

    PubMed

    Boyle, Gregory J; Neumann, David L; Furedy, John J; Westbury, H Rae

    2010-04-01

    This paper reports sex differences in cognitive task performance that emerged when 39 Australian university undergraduates (19 men, 20 women) were asked to solve verbal (lexical) and visual-spatial cognitive matching tasks which varied in difficulty and visual field of presentation. Sex significantly interacted with task type, task difficulty, laterality, and changes in performance across trials. The results revealed that the significant individual-differences' variable of sex does not always emerge as a significant main effect, but instead in terms of significant interactions with other variables manipulated experimentally. Our results show that sex differences must be taken into account when conducting experiments into human cognitive-task performance.

  7. Brain activity during auditory and visual phonological, spatial and simple discrimination tasks.

    PubMed

    Salo, Emma; Rinne, Teemu; Salonen, Oili; Alho, Kimmo

    2013-02-16

    We used functional magnetic resonance imaging to measure human brain activity during tasks demanding selective attention to auditory or visual stimuli delivered in concurrent streams. Auditory stimuli were syllables spoken by different voices and occurring in central or peripheral space. Visual stimuli were centrally or more peripherally presented letters in darker or lighter fonts. The participants performed a phonological, spatial or "simple" (speaker-gender or font-shade) discrimination task in either modality. Within each modality, we expected a clear distinction between brain activations related to nonspatial and spatial processing, as reported in previous studies. However, within each modality, different tasks activated largely overlapping areas in modality-specific (auditory and visual) cortices, as well as in the parietal and frontal brain regions. These overlaps may be due to effects of attention common for all three tasks within each modality or interaction of processing task-relevant features and varying task-irrelevant features in the attended-modality stimuli. Nevertheless, brain activations caused by auditory and visual phonological tasks overlapped in the left mid-lateral prefrontal cortex, while those caused by the auditory and visual spatial tasks overlapped in the inferior parietal cortex. These overlapping activations reveal areas of multimodal phonological and spatial processing. There was also some evidence for intermodal attention-related interaction. Most importantly, activity in the superior temporal sulcus elicited by unattended speech sounds was attenuated during the visual phonological task in comparison with the other visual tasks. This effect might be related to suppression of processing irrelevant speech presumably distracting the phonological task involving the letters. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Eye movements and postural control in dyslexic children performing different visual tasks.

    PubMed

    Razuk, Milena; Barela, José Angelo; Peyre, Hugo; Gerard, Christophe Loic; Bucci, Maria Pia

    2018-01-01

    The aim of this study was to examine eye movements and postural control performance among dyslexic children while reading a text and performing the Landolt reading task. Fifteen dyslexic and 15 non-dyslexic children were asked to stand upright while performing two experimental visual tasks: text reading and Landolt reading. In the text reading task, children were asked to silently read a text displayed on a monitor, while in the Landolt reading task, the letters in the text were replaced by closed circles and Landolt rings, and children were asked to scan each circle/ring in a reading-like fashion, from left to right, and to count the number of Landolt rings. Eye movements (Mobile T2®, SuriCog) and center of pressure excursions (Framiral®, Grasse, France) were recorded. Visual performance variables were total reading time, mean duration of fixation, number of pro- and retro-saccades, and amplitude of pro-saccades. Postural performance variable was the center of pressure area. The results showed that dyslexic children spent more time reading the text and had a longer duration of fixation than non-dyslexic children. However, no difference was observed between dyslexic and non-dyslexic children in the Landolt reading task. Dyslexic children performed a higher number of pro- and retro-saccades than non-dyslexic children in both text reading and Landolt reading tasks. Dyslexic children had smaller pro-saccade amplitude than non-dyslexic children in the text reading task. Finally, postural performance was poorer in dyslexic children than in non-dyslexic children. Reading difficulties in dyslexic children are related to eye movement strategies required to scan and obtain lexical and semantic meaning. However, postural control performance, which was poor in dyslexic children, is not related to lexical and semantic reading requirements and might not also be related to different eye movement behavior.

  9. Alpha-power modulation reflects the balancing of task requirements in a selective attention task.

    PubMed

    Limbach, Katharina; Corballis, Paul M

    2017-02-01

    Recent research has related the orienting of selective attention to the lateralization of posterior EEG alpha power (∼8 to 12 Hz). Typically, alpha power decreases over the side of the head contralateral to the cued side of space. However, it is not clear how this lateralization affects behavior. We recorded EEG from 20 participants while they performed a cued visual discrimination task under three different response-deadline conditions to investigate the effect of alpha-power modulation on behavioral performance in more detail. Although all participants benefited from the cue behaviorally and adjusted their performance according to the response deadlines, we found the cue-related alpha-power modulation to depend on the general alpha-power level at baseline: Only participants with high baseline alpha power showed significant cue-related alpha-power lateralization that was, however, strikingly similar across response-deadline conditions. On the other hand, participants with low alpha power at baseline did not show any lateralization, but adjusted their alpha levels according to the response-deadline instructions and, more importantly, showed a stronger influence of the task instructions on behavioral performance and adapted their response accuracies to the task requirements more flexibly. These findings challenge the often-assumed role of alpha-power lateralization for attentional deployment. While alpha power seems to be related to behavioral performance and the orienting of attention, this relationship is rather complex and, at least under the current task requirements, the general alpha-power state seems to be more strongly related to behavioral performance (in our case, the flexible adjustment to task requirements) than the cue-related lateralization. © 2016 Society for Psychophysiological Research.

  10. When Kinesthesia Becomes Visual: A Theoretical Justification for Executing Motor Tasks in Visual Space

    PubMed Central

    Tagliabue, Michele; McIntyre, Joseph

    2013-01-01

    Several experimental studies in the literature have shown that even when performing purely kinesthetic tasks, such as reaching for a kinesthetically felt target with a hidden hand, the brain reconstructs a visual representation of the movement. In our previous studies, however, we did not observe any role of a visual representation of the movement in a purely kinesthetic task. This apparent contradiction could be related to a fundamental difference between the studied tasks. In our study subjects used the same hand to both feel the target and to perform the movement, whereas in most other studies, pointing to a kinesthetic target consisted of pointing with one hand to the finger of the other, or to some other body part. We hypothesize, therefore, that it is the necessity of performing inter-limb transformations that induces a visual representation of purely kinesthetic tasks. To test this hypothesis we asked subjects to perform the same purely kinesthetic task in two conditions: INTRA and INTER. In the former they used the right hand to both perceive the target and to reproduce its orientation. In the latter, subjects perceived the target with the left hand and responded with the right. To quantify the use of a visual representation of the movement we measured deviations induced by an imperceptible conflict that was generated between visual and kinesthetic reference frames. Our hypothesis was confirmed by the observed deviations of responses due to the conflict in the INTER, but not in the INTRA, condition. To reconcile these observations with recent theories of sensori-motor integration based on maximum likelihood estimation, we propose here a new model formulation that explicitly considers the effects of covariance between sensory signals that are directly available and internal representations that are ‘reconstructed’ from those inputs through sensori-motor transformations. PMID:23861903

  11. Attention is required for maintenance of feature binding in visual working memory

    PubMed Central

    Heider, Maike; Husain, Masud

    2013-01-01

    Working memory and attention are intimately connected. However, understanding the relationship between the two is challenging. Currently, there is an important controversy about whether objects in working memory are maintained automatically or require resources that are also deployed for visual or auditory attention. Here we investigated the effects of loading attention resources on precision of visual working memory, specifically on correct maintenance of feature-bound objects, using a dual-task paradigm. Participants were presented with a memory array and were asked to remember either direction of motion of random dot kinematograms of different colour, or orientation of coloured bars. During the maintenance period, they performed a secondary visual or auditory task, with varying levels of load. Following a retention period, they adjusted a coloured probe to match either the motion direction or orientation of stimuli with the same colour in the memory array. This allowed us to examine the effects of an attention-demanding task performed during maintenance on precision of recall on the concurrent working memory task. Systematic increase in attention load during maintenance resulted in a significant decrease in overall working memory performance. Changes in overall performance were specifically accompanied by an increase in feature misbinding errors: erroneous reporting of nontarget motion or orientation. Thus in trials where attention resources were taxed, participants were more likely to respond with nontarget values rather than simply making random responses. Our findings suggest that resources used during attention-demanding visual or auditory tasks also contribute to maintaining feature-bound representations in visual working memory—but not necessarily other aspects of working memory. PMID:24266343

  12. Attention is required for maintenance of feature binding in visual working memory.

    PubMed

    Zokaei, Nahid; Heider, Maike; Husain, Masud

    2014-01-01

    Working memory and attention are intimately connected. However, understanding the relationship between the two is challenging. Currently, there is an important controversy about whether objects in working memory are maintained automatically or require resources that are also deployed for visual or auditory attention. Here we investigated the effects of loading attention resources on precision of visual working memory, specifically on correct maintenance of feature-bound objects, using a dual-task paradigm. Participants were presented with a memory array and were asked to remember either direction of motion of random dot kinematograms of different colour, or orientation of coloured bars. During the maintenance period, they performed a secondary visual or auditory task, with varying levels of load. Following a retention period, they adjusted a coloured probe to match either the motion direction or orientation of stimuli with the same colour in the memory array. This allowed us to examine the effects of an attention-demanding task performed during maintenance on precision of recall on the concurrent working memory task. Systematic increase in attention load during maintenance resulted in a significant decrease in overall working memory performance. Changes in overall performance were specifically accompanied by an increase in feature misbinding errors: erroneous reporting of nontarget motion or orientation. Thus in trials where attention resources were taxed, participants were more likely to respond with nontarget values rather than simply making random responses. Our findings suggest that resources used during attention-demanding visual or auditory tasks also contribute to maintaining feature-bound representations in visual working memory-but not necessarily other aspects of working memory.

  13. Orienting attention in visual working memory requires central capacity: decreased retro-cue effects under dual-task conditions.

    PubMed

    Janczyk, Markus; Berryhill, Marian E

    2014-04-01

    The retro-cue effect (RCE) describes superior working memory performance for validly cued stimulus locations long after encoding has ended. Importantly, this happens with delays beyond the range of iconic memory. In general, the RCE is a stable phenomenon that emerges under varied stimulus configurations and timing parameters. We investigated its susceptibility to dual-task interference to determine the attentional requirements at the time point of cue onset and encoding. In Experiment 1, we compared single- with dual-task conditions. In Experiment 2, we borrowed from the psychological refractory period paradigm and compared conditions with high and low (dual-) task overlap. The secondary task was always binary tone discrimination requiring a manual response. Across both experiments, an RCE was found, but it was diminished in magnitude in the critical dual-task conditions. A previous study did not find evidence that sustained attention is required in the interval between cue offset and test. Our results apparently contradict these findings and point to a critical time period around cue onset and briefly thereafter during which attention is required.

  14. Orienting attention in visual working memory requires central capacity: Decreased retro-cue effects under dual-task conditions

    PubMed Central

    Berryhill, Marian E.

    2014-01-01

    The retro-cue effect (RCE) describes superior working memory performance for validly cued stimulus locations long after encoding has ended. Importantly, this happens with delays beyond the range of iconic memory. In general, the RCE is a stable phenomenon that emerges under varied stimulus configurations and timing parameters. We investigated its susceptibility to dual-task interference to determine the attentional requirements at the time point of cue onset and encoding. In Experiment 1, we compared single- with dual-task conditions. In Experiment 2, we borrowed from the psychological refractory period paradigm and compared conditions with high and low (dual-) task overlap. The secondary task was always binary tone discrimination requiring amanual response. Across both experiments, an RCE was found, but it was diminished in magnitude in the critical dual-task conditions. A previous study did not find evidence that sustained attention is required in the interval between cue offset and test. Our results apparently contradict these findings and point to a critical time period around cue onset and briefly thereafter during which attention is required. PMID:24452383

  15. Comparing capacity coefficient and dual task assessment of visual multitasking workload

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blaha, Leslie M.

    Capacity coefficient analysis could offer a theoretically grounded alternative approach to subjective measures and dual task assessment of cognitive workload. Workload capacity or workload efficiency is a human information processing modeling construct defined as the amount of information that can be processed by the visual cognitive system given a specified of amount of time. In this paper, I explore the relationship between capacity coefficient analysis of workload efficiency and dual task response time measures. To capture multitasking performance, I examine how the relatively simple assumptions underlying the capacity construct generalize beyond the single visual decision making tasks. The fundamental toolsmore » for measuring workload efficiency are the integrated hazard and reverse hazard functions of response times, which are defined by log transforms of the response time distribution. These functions are used in the capacity coefficient analysis to provide a functional assessment of the amount of work completed by the cognitive system over the entire range of response times. For the study of visual multitasking, capacity coefficient analysis enables a comparison of visual information throughput as the number of tasks increases from one to two to any number of simultaneous tasks. I illustrate the use of capacity coefficients for visual multitasking on sample data from dynamic multitasking in the modified Multi-attribute Task Battery.« less

  16. Investigating the visual span in comparative search: the effects of task difficulty and divided attention.

    PubMed

    Pomplun, M; Reingold, E M; Shen, J

    2001-09-01

    In three experiments, participants' visual span was measured in a comparative visual search task in which they had to detect a local match or mismatch between two displays presented side by side. Experiment 1 manipulated the difficulty of the comparative visual search task by contrasting a mismatch detection task with a substantially more difficult match detection task. In Experiment 2, participants were tested in a single-task condition involving only the visual task and a dual-task condition in which they concurrently performed an auditory task. Finally, in Experiment 3, participants performed two dual-task conditions, which differed in the difficulty of the concurrent auditory task. Both the comparative search task difficulty (Experiment 1) and the divided attention manipulation (Experiments 2 and 3) produced strong effects on visual span size.

  17. Do Multielement Visual Tracking and Visual Search Draw Continuously on the Same Visual Attention Resources?

    ERIC Educational Resources Information Center

    Alvarez, George A.; Horowitz, Todd S.; Arsenio, Helga C.; DiMase, Jennifer S.; Wolfe, Jeremy M.

    2005-01-01

    Multielement visual tracking and visual search are 2 tasks that are held to require visual-spatial attention. The authors used the attentional operating characteristic (AOC) method to determine whether both tasks draw continuously on the same attentional resource (i.e., whether the 2 tasks are mutually exclusive). The authors found that observers…

  18. Visual Experience Enhances Infants' Use of Task-Relevant Information in an Action Task

    ERIC Educational Resources Information Center

    Wang, Su-hua; Kohne, Lisa

    2007-01-01

    Four experiments examined whether infants' use of task-relevant information in an action task could be facilitated by visual experience in the laboratory. Twelve- but not 9-month-old infants spontaneously used height information and chose an appropriate (taller) cover in search of a hidden tall toy. After watching examples of covering events in a…

  19. More insight into the interplay of response selection and visual attention in dual-tasks: masked visual search and response selection are performed in parallel.

    PubMed

    Reimer, Christina B; Schubert, Torsten

    2017-09-15

    Both response selection and visual attention are limited in capacity. According to the central bottleneck model, the response selection processes of two tasks in a dual-task situation are performed sequentially. In conjunction search, visual attention is required to select the items and to bind their features (e.g., color and form), which results in a serial search process. Search time increases as items are added to the search display (i.e., set size effect). When the search display is masked, visual attention deployment is restricted to a brief period of time and target detection decreases as a function of set size. Here, we investigated whether response selection and visual attention (i.e., feature binding) rely on a common or on distinct capacity limitations. In four dual-task experiments, participants completed an auditory Task 1 and a conjunction search Task 2 that were presented with an experimentally modulated temporal interval between them (Stimulus Onset Asynchrony, SOA). In Experiment 1, Task 1 was a two-choice discrimination task and the conjunction search display was not masked. In Experiment 2, the response selection difficulty in Task 1 was increased to a four-choice discrimination and the search task was the same as in Experiment 1. We applied the locus-of-slack method in both experiments to analyze conjunction search time, that is, we compared the set size effects across SOAs. Similar set size effects across SOAs (i.e., additive effects of SOA and set size) would indicate sequential processing of response selection and visual attention. However, a significantly smaller set size effect at short SOA compared to long SOA (i.e., underadditive interaction of SOA and set size) would indicate parallel processing of response selection and visual attention. In both experiments, we found underadditive interactions of SOA and set size. In Experiments 3 and 4, the conjunction search display in Task 2 was masked. Task 1 was the same as in Experiments 1 and 2

  20. Global Statistical Learning in a Visual Search Task

    ERIC Educational Resources Information Center

    Jones, John L.; Kaschak, Michael P.

    2012-01-01

    Locating a target in a visual search task is facilitated when the target location is repeated on successive trials. Global statistical properties also influence visual search, but have often been confounded with local regularities (i.e., target location repetition). In two experiments, target locations were not repeated for four successive trials,…

  1. Visual Search Performance in the Autism Spectrum II: The Radial Frequency Search Task with Additional Segmentation Cues

    ERIC Educational Resources Information Center

    Almeida, Renita A.; Dickinson, J. Edwin; Maybery, Murray T.; Badcock, Johanna C.; Badcock, David R.

    2010-01-01

    The Embedded Figures Test (EFT) requires detecting a shape within a complex background and individuals with autism or high Autism-spectrum Quotient (AQ) scores are faster and more accurate on this task than controls. This research aimed to uncover the visual processes producing this difference. Previously we developed a search task using radial…

  2. The role of early visual cortex in visual short-term memory and visual attention.

    PubMed

    Offen, Shani; Schluppeck, Denis; Heeger, David J

    2009-06-01

    We measured cortical activity with functional magnetic resonance imaging to probe the involvement of early visual cortex in visual short-term memory and visual attention. In four experimental tasks, human subjects viewed two visual stimuli separated by a variable delay period. The tasks placed differential demands on short-term memory and attention, but the stimuli were visually identical until after the delay period. Early visual cortex exhibited sustained responses throughout the delay when subjects performed attention-demanding tasks, but delay-period activity was not distinguishable from zero when subjects performed a task that required short-term memory. This dissociation reveals different computational mechanisms underlying the two processes.

  3. Poor Performance on Serial Visual Tasks in Persons with Reading Disabilities: Impaired Working Memory?

    ERIC Educational Resources Information Center

    Ram-Tsur, Ronit; Faust, Miriam; Zivotofsky, Ari Z.

    2008-01-01

    The present study investigates the performance of persons with reading disabilities (PRD) on a variety of sequential visual-comparison tasks that have different working-memory requirements. In addition, mediating relationships between the sequential comparison process and attention and memory skills were looked for. Our findings suggest that PRD…

  4. The impact of task demand on visual word recognition.

    PubMed

    Yang, J; Zevin, J

    2014-07-11

    The left occipitotemporal cortex has been found sensitive to the hierarchy of increasingly complex features in visually presented words, from individual letters to bigrams and morphemes. However, whether this sensitivity is a stable property of the brain regions engaged by word recognition is still unclear. To address the issue, the current study investigated whether different task demands modify this sensitivity. Participants viewed real English words and stimuli with hierarchical word-likeness while performing a lexical decision task (i.e., to decide whether each presented stimulus is a real word) and a symbol detection task. General linear model and independent component analysis indicated strong activation in the fronto-parietal and temporal regions during the two tasks. Furthermore, the bilateral inferior frontal gyrus and insula showed significant interaction effects between task demand and stimulus type in the pseudoword condition. The occipitotemporal cortex showed strong main effects for task demand and stimulus type, but no sensitivity to the hierarchical word-likeness was found. These results suggest that different task demands on semantic, phonological and orthographic processes can influence the involvement of the relevant regions during visual word recognition. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  5. Experimental system for measurement of radiologists' performance by visual search task.

    PubMed

    Maeda, Eriko; Yoshikawa, Takeharu; Nakashima, Ryoichi; Kobayashi, Kazufumi; Yokosawa, Kazuhiko; Hayashi, Naoto; Masutani, Yoshitaka; Yoshioka, Naoki; Akahane, Masaaki; Ohtomo, Kuni

    2013-01-01

    Detective performance of radiologists for "obvious" targets should be evaluated by visual search task instead of ROC analysis, but visual task have not been applied to radiology studies. The aim of this study was to set up an environment that allows visual search task in radiology, to evaluate its feasibility, and to preliminarily investigate the effect of career on the performance. In a darkroom, ten radiologists were asked to answer the type of lesion by pressing buttons, when images without lesions, with bulla, ground-glass nodule, and solid nodule were randomly presented on a display. Differences in accuracy and reaction times depending on board certification were investigated. The visual search task was successfully and feasibly performed. Radiologists were found to have high sensitivity, specificity, positive predictive values and negative predictive values in non-board and board groups. Reaction time was under 1 second for all target types in both groups. Board radiologists were significantly faster in answering for bulla, but there were no significant differences for other targets and values. We developed an experimental system that allows visual search experiment in radiology. Reaction time for detection of bulla was shortened with experience.

  6. HD-MTL: Hierarchical Deep Multi-Task Learning for Large-Scale Visual Recognition.

    PubMed

    Fan, Jianping; Zhao, Tianyi; Kuang, Zhenzhong; Zheng, Yu; Zhang, Ji; Yu, Jun; Peng, Jinye

    2017-02-09

    In this paper, a hierarchical deep multi-task learning (HD-MTL) algorithm is developed to support large-scale visual recognition (e.g., recognizing thousands or even tens of thousands of atomic object classes automatically). First, multiple sets of multi-level deep features are extracted from different layers of deep convolutional neural networks (deep CNNs), and they are used to achieve more effective accomplishment of the coarseto- fine tasks for hierarchical visual recognition. A visual tree is then learned by assigning the visually-similar atomic object classes with similar learning complexities into the same group, which can provide a good environment for determining the interrelated learning tasks automatically. By leveraging the inter-task relatedness (inter-class similarities) to learn more discriminative group-specific deep representations, our deep multi-task learning algorithm can train more discriminative node classifiers for distinguishing the visually-similar atomic object classes effectively. Our hierarchical deep multi-task learning (HD-MTL) algorithm can integrate two discriminative regularization terms to control the inter-level error propagation effectively, and it can provide an end-to-end approach for jointly learning more representative deep CNNs (for image representation) and more discriminative tree classifier (for large-scale visual recognition) and updating them simultaneously. Our incremental deep learning algorithms can effectively adapt both the deep CNNs and the tree classifier to the new training images and the new object classes. Our experimental results have demonstrated that our HD-MTL algorithm can achieve very competitive results on improving the accuracy rates for large-scale visual recognition.

  7. Dynamic Integration of Task-Relevant Visual Features in Posterior Parietal Cortex

    PubMed Central

    Freedman, David J.

    2014-01-01

    Summary The primate visual system consists of multiple hierarchically organized cortical areas, each specialized for processing distinct aspects of the visual scene. For example, color and form are encoded in ventral pathway areas such as V4 and inferior temporal cortex, while motion is preferentially processed in dorsal pathway areas such as the middle temporal area. Such representations often need to be integrated perceptually to solve tasks which depend on multiple features. We tested the hypothesis that the lateral intraparietal area (LIP) integrates disparate task-relevant visual features by recording from LIP neurons in monkeys trained to identify target stimuli composed of conjunctions of color and motion features. We show that LIP neurons exhibit integrative representations of both color and motion features when they are task relevant, and task-dependent shifts of both direction and color tuning. This suggests that LIP plays a role in flexibly integrating task-relevant sensory signals. PMID:25199703

  8. Dementia alters standing postural adaptation during a visual search task in older adult men.

    PubMed

    Jor'dan, Azizah J; McCarten, J Riley; Rottunda, Susan; Stoffregen, Thomas A; Manor, Brad; Wade, Michael G

    2015-04-23

    This study investigated the effects of dementia on standing postural adaptation during performance of a visual search task. We recruited 16 older adults with dementia and 15 without dementia. Postural sway was assessed by recording medial-lateral (ML) and anterior-posterior (AP) center-of-pressure when standing with and without a visual search task; i.e., counting target letter frequency within a block of displayed randomized letters. ML sway variability was significantly higher in those with dementia during visual search as compared to those without dementia and compared to both groups during the control condition. AP sway variability was significantly greater in those with dementia as compared to those without dementia, irrespective of task condition. In the ML direction, the absolute and percent change in sway variability between the control condition and visual search (i.e., postural adaptation) was greater in those with dementia as compared to those without. In contrast, postural adaptation to visual search was similar between groups in the AP direction. As compared to those without dementia, those with dementia identified fewer letters on the visual task. In the non-dementia group only, greater increases in postural adaptation in both the ML and AP direction, correlated with lower performance on the visual task. The observed relationship between postural adaptation during the visual search task and visual search task performance--in the non-dementia group only--suggests a critical link between perception and action. Dementia reduces the capacity to perform a visual-based task while standing and thus, appears to disrupt this perception-action synergy. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  9. Prism adaptation and generalization during visually guided locomotor tasks.

    PubMed

    Alexander, M Scott; Flodin, Brent W G; Marigold, Daniel S

    2011-08-01

    The ability of individuals to adapt locomotion to constraints associated with the complex environments normally encountered in everyday life is paramount for survival. Here, we tested the ability of 24 healthy young adults to adapt to a rightward prism shift (∼11.3°) while either walking and stepping to targets (i.e., precision stepping task) or stepping over an obstacle (i.e., obstacle avoidance task). We subsequently tested for generalization to the other locomotor task. In the precision stepping task, we determined the lateral end-point error of foot placement from the targets. In the obstacle avoidance task, we determined toe clearance and lateral foot placement distance from the obstacle before and after stepping over the obstacle. We found large, rightward deviations in foot placement on initial exposure to prisms in both tasks. The majority of measures demonstrated adaptation over repeated trials, and adaptation rates were dependent mainly on the task. On removal of the prisms, we observed negative aftereffects for measures of both tasks. Additionally, we found a unilateral symmetric generalization pattern in that the left, but not the right, lower limb indicated generalization across the 2 locomotor tasks. These results indicate that the nervous system is capable of rapidly adapting to a visuomotor mismatch during visually demanding locomotor tasks and that the prism-induced adaptation can, at least partially, generalize across these tasks. The results also support the notion that the nervous system utilizes an internal model for the control of visually guided locomotion.

  10. An analysis of the processing requirements of a complex perceptual-motor task

    NASA Technical Reports Server (NTRS)

    Kramer, A. F.; Wickens, C. D.; Donchin, E.

    1983-01-01

    Current concerns in the assessment of mental workload are discussed, and the event-related brain potential (ERP) is introduced as a promising mental-workload index. Subjects participated in a series of studies in which they were required to perform a target acquisition task while also covertly counting either auditory or visual probes. The effects of several task-difficulty manipulations on the P300 component of the ERP elicited by the counted stimulus probes were investigated. With sufficiently practiced subjects the amplitude of the P300 was found to decrease with increases in task difficulty. The second experiment also provided evidence that the P300 is selectively sensitive to task-relevant attributes. A third experiment demonstrated a convergence in the amplitude of the P300s elicited in the simple and difficult versions of the tracking task. The amplitude of the P300 was also found to covary with the measures of tracking performance. The results of the series of three experiments illustrate the sensitivity of the P300 to the processing requirements of a complex target acquisition task. The findings are discussed in terms of the multidimensional nature of processing resources.

  11. Task- and age-dependent effects of visual stimulus properties on children's explicit numerosity judgments.

    PubMed

    Defever, Emmy; Reynvoet, Bert; Gebuis, Titia

    2013-10-01

    Researchers investigating numerosity processing manipulate the visual stimulus properties (e.g., surface). This is done to control for the confound between numerosity and its visual properties and should allow the examination of pure number processes. Nevertheless, several studies have shown that, despite different visual controls, visual cues remained to exert their influence on numerosity judgments. This study, therefore, investigated whether the impact of the visual stimulus manipulations on numerosity judgments is dependent on the task at hand (comparison task vs. same-different task) and whether this impact changes throughout development. In addition, we examined whether the influence of visual stimulus manipulations on numerosity judgments plays a role in the relation between performance on numerosity tasks and mathematics achievement. Our findings confirmed that the visual stimulus manipulations affect numerosity judgments; more important, we found that these influences changed with increasing age and differed between the comparison and the same-different tasks. Consequently, direct comparisons between numerosity studies using different tasks and age groups are difficult. No meaningful relationship between the performance on the comparison and same-different tasks and mathematics achievement was found in typically developing children, nor did we find consistent differences between children with and without mathematical learning disability (MLD). Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Slushy weightings for the optimal pilot model. [considering visual tracking task

    NASA Technical Reports Server (NTRS)

    Dillow, J. D.; Picha, D. G.; Anderson, R. O.

    1975-01-01

    A pilot model is described which accounts for the effect of motion cues in a well defined visual tracking task. The effect of visual and motion cues are accounted for in the model in two ways. First, the observation matrix in the pilot model is structured to account for the visual and motion inputs presented to the pilot. Secondly, the weightings in the quadratic cost function associated with the pilot model are modified to account for the pilot's perception of the variables he considers important in the task. Analytic results obtained using the pilot model are compared to experimental results and in general good agreement is demonstrated. The analytic model yields small improvements in tracking performance with the addition of motion cues for easily controlled task dynamics and large improvements in tracking performance with the addition of motion cues for difficult task dynamics.

  13. Hierarchical organization of brain functional networks during visual tasks.

    PubMed

    Zhuo, Zhao; Cai, Shi-Min; Fu, Zhong-Qian; Zhang, Jie

    2011-09-01

    The functional network of the brain is known to demonstrate modular structure over different hierarchical scales. In this paper, we systematically investigated the hierarchical modular organizations of the brain functional networks that are derived from the extent of phase synchronization among high-resolution EEG time series during a visual task. In particular, we compare the modular structure of the functional network from EEG channels with that of the anatomical parcellation of the brain cortex. Our results show that the modular architectures of brain functional networks correspond well to those from the anatomical structures over different levels of hierarchy. Most importantly, we find that the consistency between the modular structures of the functional network and the anatomical network becomes more pronounced in terms of vision, sensory, vision-temporal, motor cortices during the visual task, which implies that the strong modularity in these areas forms the functional basis for the visual task. The structure-function relationship further reveals that the phase synchronization of EEG time series in the same anatomical group is much stronger than that of EEG time series from different anatomical groups during the task and that the hierarchical organization of functional brain network may be a consequence of functional segmentation of the brain cortex.

  14. Transfer of perceptual learning between different visual tasks

    PubMed Central

    McGovern, David P.; Webb, Ben S.; Peirce, Jonathan W.

    2012-01-01

    Practice in most sensory tasks substantially improves perceptual performance. A hallmark of this ‘perceptual learning' is its specificity for the basic attributes of the trained stimulus and task. Recent studies have challenged the specificity of learned improvements, although transfer between substantially different tasks has yet to be demonstrated. Here, we measure the degree of transfer between three distinct perceptual tasks. Participants trained on an orientation discrimination, a curvature discrimination, or a ‘global form' task, all using stimuli comprised of multiple oriented elements. Before and after training they were tested on all three and a contrast discrimination control task. A clear transfer of learning was observed, in a pattern predicted by the relative complexity of the stimuli in the training and test tasks. Our results suggest that sensory improvements derived from perceptual learning can transfer between very different visual tasks. PMID:23048211

  15. Transfer of perceptual learning between different visual tasks.

    PubMed

    McGovern, David P; Webb, Ben S; Peirce, Jonathan W

    2012-10-09

    Practice in most sensory tasks substantially improves perceptual performance. A hallmark of this 'perceptual learning' is its specificity for the basic attributes of the trained stimulus and task. Recent studies have challenged the specificity of learned improvements, although transfer between substantially different tasks has yet to be demonstrated. Here, we measure the degree of transfer between three distinct perceptual tasks. Participants trained on an orientation discrimination, a curvature discrimination, or a 'global form' task, all using stimuli comprised of multiple oriented elements. Before and after training they were tested on all three and a contrast discrimination control task. A clear transfer of learning was observed, in a pattern predicted by the relative complexity of the stimuli in the training and test tasks. Our results suggest that sensory improvements derived from perceptual learning can transfer between very different visual tasks.

  16. Body sway at sea for two visual tasks and three stance widths.

    PubMed

    Stoffregen, Thomas A; Villard, Sebastien; Yu, Yawen

    2009-12-01

    On land, body sway is influenced by stance width (the distance between the feet) and by visual tasks engaged in during stance. While wider stance can be used to stabilize the body against ship motion and crewmembers are obliged to carry out many visual tasks while standing, the influence of these factors on the kinematics of body sway has not been studied at sea. Crewmembers of the RN Atlantis stood on a force plate from which we obtained data on the positional variability of the center of pressure (COP). The sea state was 2 on the Beaufort scale. We varied stance width (5 cm, 17 cm, and 30 cm) and the nature of the visual tasks. In the Inspection task, participants viewed a plain piece of white paper, while in the Search task they counted the number of target letters that appeared in a block of text. Search task performance was similar to reports from terrestrial studies. Variability of the COP position was reduced during the Search task relative to the Inspection task. Variability was also reduced during wide stance relative to narrow stance. The influence of stance width was greater than has been observed in terrestrial studies. These results suggest that two factors that influence postural sway on land (variations in stance width and in the nature of visual tasks) also influence sway at sea. We conclude that--in mild sea states--the influence of these factors is not suppressed by ship motion.

  17. Task alters category representations in prefrontal but not high-level visual cortex.

    PubMed

    Bugatus, Lior; Weiner, Kevin S; Grill-Spector, Kalanit

    2017-07-15

    A central question in neuroscience is how cognitive tasks affect category representations across the human brain. Regions in lateral occipito-temporal cortex (LOTC), ventral temporal cortex (VTC), and ventro-lateral prefrontal cortex (VLFPC) constitute the extended "what" pathway, which is considered instrumental for visual category processing. However, it is unknown (1) whether distributed responses across LOTC, VTC, and VLPFC explicitly represent category, task, or some combination of both, and (2) in what way representations across these subdivisions of the extended 'what' pathway may differ. To fill these gaps in knowledge, we scanned 12 participants using fMRI to test the effect of category and task on distributed responses across LOTC, VTC, and VLPFC. Results reveal that task and category modulate responses in both high-level visual regions, as well as prefrontal cortex. However, we found fundamentally different types of representations across the brain. Distributed responses in high-level visual regions are more strongly driven by category than task, and exhibit task-independent category representations. In contrast, distributed responses in prefrontal cortex are more strongly driven by task than category, and contain task-dependent category representations. Together, these findings of differential representations across the brain support a new idea that LOTC and VTC maintain stable category representations allowing efficient processing of visual information, while prefrontal cortex contains flexible representations in which category information may emerge only when relevant to the task. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Automated Visual Cognitive Tasks for Recording Neural Activity Using a Floor Projection Maze

    PubMed Central

    Kent, Brendon W.; Yang, Fang-Chi; Burwell, Rebecca D.

    2014-01-01

    Neuropsychological tasks used in primates to investigate mechanisms of learning and memory are typically visually guided cognitive tasks. We have developed visual cognitive tasks for rats using the Floor Projection Maze1,2 that are optimized for visual abilities of rats permitting stronger comparisons of experimental findings with other species. In order to investigate neural correlates of learning and memory, we have integrated electrophysiological recordings into fully automated cognitive tasks on the Floor Projection Maze1,2. Behavioral software interfaced with an animal tracking system allows monitoring of the animal's behavior with precise control of image presentation and reward contingencies for better trained animals. Integration with an in vivo electrophysiological recording system enables examination of behavioral correlates of neural activity at selected epochs of a given cognitive task. We describe protocols for a model system that combines automated visual presentation of information to rodents and intracranial reward with electrophysiological approaches. Our model system offers a sophisticated set of tools as a framework for other cognitive tasks to better isolate and identify specific mechanisms contributing to particular cognitive processes. PMID:24638057

  19. Task-set inertia and memory-consolidation bottleneck in dual tasks.

    PubMed

    Koch, Iring; Rumiati, Raffaella I

    2006-11-01

    Three dual-task experiments examined the influence of processing a briefly presented visual object for deferred verbal report on performance in an unrelated auditory-manual reaction time (RT) task. RT was increased at short stimulus-onset asynchronies (SOAs) relative to long SOAs, showing that memory consolidation processes can produce a functional processing bottleneck in dual-task performance. In addition, the experiments manipulated the spatial compatibility of the orientation of the visual object and the side of the speeded manual response. This cross-task compatibility produced relative RT benefits only when the instruction for the visual task emphasized overlap at the level of response codes across the task sets (Experiment 1). However, once the effective task set was in place, it continued to produce cross-task compatibility effects even in single-task situations ("ignore" trials in Experiment 2) and when instructions for the visual task did not explicitly require spatial coding of object orientation (Experiment 3). Taken together, the data suggest a considerable degree of task-set inertia in dual-task performance, which is also reinforced by finding costs of switching task sequences (e.g., AC --> BC vs. BC --> BC) in Experiment 3.

  20. Task Demands Control Acquisition and Storage of Visual Information

    ERIC Educational Resources Information Center

    Droll, Jason A.; Hayhoe, Mary M.; Triesch, Jochen; Sullivan, Brian T.

    2005-01-01

    Attention and working memory limitations set strict limits on visual representations, yet researchers have little appreciation of how these limits constrain the acquisition of information in ongoing visually guided behavior. Subjects performed a brick sorting task in a virtual environment. A change was made to 1 of the features of the brick being…

  1. Eye Movements Reveal How Task Difficulty Moulds Visual Search

    ERIC Educational Resources Information Center

    Young, Angela H.; Hulleman, Johan

    2013-01-01

    In two experiments we investigated the relationship between eye movements and performance in visual search tasks of varying difficulty. Experiment 1 provided evidence that a single process is used for search among static and moving items. Moreover, we estimated the functional visual field (FVF) from the gaze coordinates and found that its size…

  2. Attainment of Developmental Tasks by Adolescents with Visual Impairments and Sighted Adolescents

    ERIC Educational Resources Information Center

    Pfeiffer, Jens P.; Pinquart, Martin

    2011-01-01

    This study compared the achievement of developmental tasks by 158 adolescents with visual impairments to that of 158 sighted adolescents. The groups did not differ in the fulfillment of 9 of 11 tasks. However, those with visual impairments were less successful in peer-group integration and forming intimate relationships. (Contains 4 tables.)

  3. Attention improves encoding of task-relevant features in the human visual cortex.

    PubMed

    Jehee, Janneke F M; Brady, Devin K; Tong, Frank

    2011-06-01

    When spatial attention is directed toward a particular stimulus, increased activity is commonly observed in corresponding locations of the visual cortex. Does this attentional increase in activity indicate improved processing of all features contained within the attended stimulus, or might spatial attention selectively enhance the features relevant to the observer's task? We used fMRI decoding methods to measure the strength of orientation-selective activity patterns in the human visual cortex while subjects performed either an orientation or contrast discrimination task, involving one of two laterally presented gratings. Greater overall BOLD activation with spatial attention was observed in visual cortical areas V1-V4 for both tasks. However, multivariate pattern analysis revealed that orientation-selective responses were enhanced by attention only when orientation was the task-relevant feature and not when the contrast of the grating had to be attended. In a second experiment, observers discriminated the orientation or color of a specific lateral grating. Here, orientation-selective responses were enhanced in both tasks, but color-selective responses were enhanced only when color was task relevant. In both experiments, task-specific enhancement of feature-selective activity was not confined to the attended stimulus location but instead spread to other locations in the visual field, suggesting the concurrent involvement of a global feature-based attentional mechanism. These results suggest that attention can be remarkably selective in its ability to enhance particular task-relevant features and further reveal that increases in overall BOLD amplitude are not necessarily accompanied by improved processing of stimulus information.

  4. Evaluating the Performance of a Visually Guided Hearing Aid Using a Dynamic Auditory-Visual Word Congruence Task.

    PubMed

    Roverud, Elin; Best, Virginia; Mason, Christine R; Streeter, Timothy; Kidd, Gerald

    2017-12-15

    The "visually guided hearing aid" (VGHA), consisting of a beamforming microphone array steered by eye gaze, is an experimental device being tested for effectiveness in laboratory settings. Previous studies have found that beamforming without visual steering can provide significant benefits (relative to natural binaural listening) for speech identification in spatialized speech or noise maskers when sound sources are fixed in location. The aim of the present study was to evaluate the performance of the VGHA in listening conditions in which target speech could switch locations unpredictably, requiring visual steering of the beamforming. To address this aim, the present study tested an experimental simulation of the VGHA in a newly designed dynamic auditory-visual word congruence task. Ten young normal-hearing (NH) and 11 young hearing-impaired (HI) adults participated. On each trial, three simultaneous spoken words were presented from three source positions (-30, 0, and 30 azimuth). An auditory-visual word congruence task was used in which participants indicated whether there was a match between the word printed on a screen at a location corresponding to the target source and the spoken target word presented acoustically from that location. Performance was compared for a natural binaural condition (stimuli presented using impulse responses measured on KEMAR), a simulated VGHA condition (BEAM), and a hybrid condition that combined lowpass-filtered KEMAR and highpass-filtered BEAM information (BEAMAR). In some blocks, the target remained fixed at one location across trials, and in other blocks, the target could transition in location between one trial and the next with a fixed but low probability. Large individual variability in performance was observed. There were significant benefits for the hybrid BEAMAR condition relative to the KEMAR condition on average for both NH and HI groups when the targets were fixed. Although not apparent in the averaged data, some

  5. Colour vision requirements in visually demanding occupations.

    PubMed

    Barbur, J L; Rodriguez-Carmona, M

    2017-06-01

    Normal trichromatic colour vision (CV) is often required as a condition for employment in visually demanding occupations. If this requirement could be enforced using current, colour assessment tests, a significant percentage of subjects with anomalous, congenital trichromacy who can perform the suprathreshold, colour-related tasks encountered in many occupations with the same accuracy as normal trichromats would fail. These applicants would therefore be discriminated against unfairly. One solution to this problem is to produce minimum, justifiable CV requirements that are specific to each occupation. This has been done successfully for commercial aviation (i.e. the flight crew) and for Transport for London train drivers. An alternative approach is to make use of new findings and the statistical outcomes of past practices to produce graded, justifiable CV categories that can be enforced. To achieve this aim, we analysed colour assessment outcomes and quantified severity of CV loss in 1363 subjects. The severity of CV loss was measured in each subject and statistical, pass/fail outcomes established for each of the most commonly used, conventional colour assessment tests and protocols. This evidence and new findings that relate severity of loss to the effective use of colour signals in a number of tasks provide the basis for a new colour grading system based on six categories. A single colour assessment test is needed to establish the applicant's CV category which can range from 'supernormal', for the most stringent, colour-demanding tasks, to 'severe colour deficiency', when red/green CV is either absent or extremely weak. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Cue Integration in Categorical Tasks: Insights from Audio-Visual Speech Perception

    PubMed Central

    Bejjanki, Vikranth Rao; Clayards, Meghan; Knill, David C.; Aslin, Richard N.

    2011-01-01

    Previous cue integration studies have examined continuous perceptual dimensions (e.g., size) and have shown that human cue integration is well described by a normative model in which cues are weighted in proportion to their sensory reliability, as estimated from single-cue performance. However, this normative model may not be applicable to categorical perceptual dimensions (e.g., phonemes). In tasks defined over categorical perceptual dimensions, optimal cue weights should depend not only on the sensory variance affecting the perception of each cue but also on the environmental variance inherent in each task-relevant category. Here, we present a computational and experimental investigation of cue integration in a categorical audio-visual (articulatory) speech perception task. Our results show that human performance during audio-visual phonemic labeling is qualitatively consistent with the behavior of a Bayes-optimal observer. Specifically, we show that the participants in our task are sensitive, on a trial-by-trial basis, to the sensory uncertainty associated with the auditory and visual cues, during phonemic categorization. In addition, we show that while sensory uncertainty is a significant factor in determining cue weights, it is not the only one and participants' performance is consistent with an optimal model in which environmental, within category variability also plays a role in determining cue weights. Furthermore, we show that in our task, the sensory variability affecting the visual modality during cue-combination is not well estimated from single-cue performance, but can be estimated from multi-cue performance. The findings and computational principles described here represent a principled first step towards characterizing the mechanisms underlying human cue integration in categorical tasks. PMID:21637344

  7. Comparing two types of engineering visualizations: task-related manipulations matter.

    PubMed

    Cölln, Martin C; Kusch, Kerstin; Helmert, Jens R; Kohler, Petra; Velichkovsky, Boris M; Pannasch, Sebastian

    2012-01-01

    This study focuses on the comparison of traditional engineering drawings with a CAD (computer aided design) visualization in terms of user performance and eye movements in an applied context. Twenty-five students of mechanical engineering completed search tasks for measures in two distinct depictions of a car engine component (engineering drawing vs. CAD model). Besides spatial dimensionality, the display types most notably differed in terms of information layout, access and interaction options. The CAD visualization yielded better performance, if users directly manipulated the object, but was inferior, if employed in a conventional static manner, i.e. inspecting only predefined views. An additional eye movement analysis revealed longer fixation durations and a stronger increase of task-relevant fixations over time when interacting with the CAD visualization. This suggests a more focused extraction and filtering of information. We conclude that the three-dimensional CAD visualization can be advantageous if its ability to manipulate is used. Copyright © 2011 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  8. Altered visual strategies and attention are related to increased force fluctuations during a pinch grip task in older adults.

    PubMed

    Keenan, Kevin G; Huddleston, Wendy E; Ernest, Bradley E

    2017-11-01

    The purpose of the study was to determine the visual strategies used by older adults during a pinch grip task and to assess the relations between visual strategy, deficits in attention, and increased force fluctuations in older adults. Eye movements of 23 older adults (>65 yr) were monitored during a low-force pinch grip task while subjects viewed three common visual feedback displays. Performance on the Grooved Pegboard test and an attention task (which required no concurrent hand movements) was also measured. Visual strategies varied across subjects and depended on the type of visual feedback provided to the subjects. First, while viewing a high-gain compensatory feedback display (horizontal bar moving up and down with force), 9 of 23 older subjects adopted a strategy of performing saccades during the task, which resulted in 2.5 times greater force fluctuations in those that exhibited saccades compared with those who maintained fixation near the target line. Second, during pursuit feedback displays (force trace moving left to right across screen and up and down with force), all subjects exhibited multiple saccades, and increased force fluctuations were associated ( r s = 0.6; P = 0.002) with fewer saccades during the pursuit task. Also, decreased low-frequency (<4 Hz) force fluctuations and Grooved Pegboard times were significantly related ( P = 0.033 and P = 0.005, respectively) with higher (i.e., better) attention z scores. Comparison of these results with our previously published results in young subjects indicates that saccadic eye movements and attention are related to force control in older adults. NEW & NOTEWORTHY The significant contributions of the study are the addition of eye movement data and an attention task to explain differences in hand motor control across different visual displays in older adults. Older participants used different visual strategies across varying feedback displays, and saccadic eye movements were related with motor performance

  9. Visual short-term memory always requires general attention.

    PubMed

    Morey, Candice C; Bieler, Malte

    2013-02-01

    The role of attention in visual memory remains controversial; while some evidence has suggested that memory for binding between features demands no more attention than does memory for the same features, other evidence has indicated cognitive costs or mnemonic benefits for explicitly attending to bindings. We attempted to reconcile these findings by examining how memory for binding, for features, and for features during binding is affected by a concurrent attention-demanding task. We demonstrated that performing a concurrent task impairs memory for as few as two visual objects, regardless of whether each object includes one or more features. We argue that this pattern of results reflects an essential role for domain-general attention in visual memory, regardless of the simplicity of the to-be-remembered stimuli. We then discuss the implications of these findings for theories of visual working memory.

  10. The effect of haptic guidance and visual feedback on learning a complex tennis task.

    PubMed

    Marchal-Crespo, Laura; van Raai, Mark; Rauter, Georg; Wolf, Peter; Riener, Robert

    2013-11-01

    While haptic guidance can improve ongoing performance of a motor task, several studies have found that it ultimately impairs motor learning. However, some recent studies suggest that the haptic demonstration of optimal timing, rather than movement magnitude, enhances learning in subjects trained with haptic guidance. Timing of an action plays a crucial role in the proper accomplishment of many motor skills, such as hitting a moving object (discrete timing task) or learning a velocity profile (time-critical tracking task). The aim of the present study is to evaluate which feedback conditions-visual or haptic guidance-optimize learning of the discrete and continuous elements of a timing task. The experiment consisted in performing a fast tennis forehand stroke in a virtual environment. A tendon-based parallel robot connected to the end of a racket was used to apply haptic guidance during training. In two different experiments, we evaluated which feedback condition was more adequate for learning: (1) a time-dependent discrete task-learning to start a tennis stroke and (2) a tracking task-learning to follow a velocity profile. The effect that the task difficulty and subject's initial skill level have on the selection of the optimal training condition was further evaluated. Results showed that the training condition that maximizes learning of the discrete time-dependent motor task depends on the subjects' initial skill level. Haptic guidance was especially suitable for less-skilled subjects and in especially difficult discrete tasks, while visual feedback seems to benefit more skilled subjects. Additionally, haptic guidance seemed to promote learning in a time-critical tracking task, while visual feedback tended to deteriorate the performance independently of the task difficulty and subjects' initial skill level. Haptic guidance outperformed visual feedback, although additional studies are needed to further analyze the effect of other types of feedback visualization on

  11. Beyond a mask and against the bottleneck: retroactive dual-task interference during working memory consolidation of a masked visual target.

    PubMed

    Nieuwenstein, Mark; Wyble, Brad

    2014-06-01

    While studies on visual memory commonly assume that the consolidation of a visual stimulus into working memory is interrupted by a trailing mask, studies on dual-task interference suggest that the consolidation of a stimulus can continue for several hundred milliseconds after a mask. As a result, estimates of the time course of working memory consolidation differ more than an order of magnitude. Here, we contrasted these opposing views by examining if and for how long the processing of a masked display of visual stimuli can be disturbed by a trailing 2-alternative forced choice task (2-AFC; a color discrimination task or a visual or auditory parity judgment task). The results showed that the presence of the 2-AFC task produced a pronounced retroactive interference effect that dissipated across stimulus onset asynchronies of 250-1,000 ms, indicating that the processing elicited by the 2-AFC task interfered with the gradual consolidation of the earlier shown stimuli. Furthermore, this interference effect occurred regardless of whether the to-be-remembered stimuli comprised a string of letters or an unfamiliar complex visual shape, and it occurred regardless of whether these stimuli were masked. Conversely, the interference effect was reduced when the memory load for the 1st task was reduced, or when the 2nd task was a color detection task that did not require decision making. Taken together, these findings show that the formation of a durable and consciously accessible working memory trace for a briefly shown visual stimulus can be disturbed by a trailing 2-AFC task for up to several hundred milliseconds after the stimulus has been masked. By implication, the current findings challenge the common view that working memory consolidation involves an immutable central processing bottleneck, and they also make clear that consolidation does not stop when a stimulus is masked. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  12. Task-dependent recurrent dynamics in visual cortex

    PubMed Central

    Tajima, Satohiro; Koida, Kowa; Tajima, Chihiro I; Suzuki, Hideyuki; Aihara, Kazuyuki; Komatsu, Hidehiko

    2017-01-01

    The capacity for flexible sensory-action association in animals has been related to context-dependent attractor dynamics outside the sensory cortices. Here, we report a line of evidence that flexibly modulated attractor dynamics during task switching are already present in the higher visual cortex in macaque monkeys. With a nonlinear decoding approach, we can extract the particular aspect of the neural population response that reflects the task-induced emergence of bistable attractor dynamics in a neural population, which could be obscured by standard unsupervised dimensionality reductions such as PCA. The dynamical modulation selectively increases the information relevant to task demands, indicating that such modulation is beneficial for perceptual decisions. A computational model that features nonlinear recurrent interaction among neurons with a task-dependent background input replicates the key properties observed in the experimental data. These results suggest that the context-dependent attractor dynamics involving the sensory cortex can underlie flexible perceptual abilities. DOI: http://dx.doi.org/10.7554/eLife.26868.001 PMID:28737487

  13. Effect of visual feedback on brain activation during motor tasks: an FMRI study.

    PubMed

    Noble, Jeremy W; Eng, Janice J; Boyd, Lara A

    2013-07-01

    This study examined the effect of visual feedback and force level on the neural mechanisms responsible for the performance of a motor task. We used a voxel-wise fMRI approach to determine the effect of visual feedback (with and without) during a grip force task at 35% and 70% of maximum voluntary contraction. Two areas (contralateral rostral premotor cortex and putamen) displayed an interaction between force and feedback conditions. When the main effect of feedback condition was analyzed, higher activation when visual feedback was available was found in 22 of the 24 active brain areas, while the two other regions (contralateral lingual gyrus and ipsilateral precuneus) showed greater levels of activity when no visual feedback was available. The results suggest that there is a potentially confounding influence of visual feedback on brain activation during a motor task, and for some regions, this is dependent on the level of force applied.

  14. Visual Task Demands and the Auditory Mismatch Negativity: An Empirical Study and a Meta-Analysis

    PubMed Central

    Wiens, Stefan; Szychowska, Malina; Nilsson, Mats E.

    2016-01-01

    Because the auditory system is particularly useful in monitoring the environment, previous research has examined whether task-irrelevant, auditory distracters are processed even if subjects focus their attention on visual stimuli. This research suggests that attentionally demanding visual tasks decrease the auditory mismatch negativity (MMN) to simultaneously presented auditory distractors. Because a recent behavioral study found that high visual perceptual load decreased detection sensitivity of simultaneous tones, we used a similar task (n = 28) to determine if high visual perceptual load would reduce the auditory MMN. Results suggested that perceptual load did not decrease the MMN. At face value, these nonsignificant findings may suggest that effects of perceptual load on the MMN are smaller than those of other demanding visual tasks. If so, effect sizes should differ systematically between the present and previous studies. We conducted a selective meta-analysis of published studies in which the MMN was derived from the EEG, the visual task demands were continuous and varied between high and low within the same task, and the task-irrelevant tones were presented in a typical oddball paradigm simultaneously with the visual stimuli. Because the meta-analysis suggested that the present (null) findings did not differ systematically from previous findings, the available evidence was combined. Results of this meta-analysis confirmed that demanding visual tasks reduce the MMN to auditory distracters. However, because the meta-analysis was based on small studies and because of the risk for publication biases, future studies should be preregistered with large samples (n > 150) to provide confirmatory evidence for the results of the present meta-analysis. These future studies should also use control conditions that reduce confounding effects of neural adaptation, and use load manipulations that are defined independently from their effects on the MMN. PMID:26741815

  15. Neural correlates of context-dependent feature conjunction learning in visual search tasks.

    PubMed

    Reavis, Eric A; Frank, Sebastian M; Greenlee, Mark W; Tse, Peter U

    2016-06-01

    Many perceptual learning experiments show that repeated exposure to a basic visual feature such as a specific orientation or spatial frequency can modify perception of that feature, and that those perceptual changes are associated with changes in neural tuning early in visual processing. Such perceptual learning effects thus exert a bottom-up influence on subsequent stimulus processing, independent of task-demands or endogenous influences (e.g., volitional attention). However, it is unclear whether such bottom-up changes in perception can occur as more complex stimuli such as conjunctions of visual features are learned. It is not known whether changes in the efficiency with which people learn to process feature conjunctions in a task (e.g., visual search) reflect true bottom-up perceptual learning versus top-down, task-related learning (e.g., learning better control of endogenous attention). Here we show that feature conjunction learning in visual search leads to bottom-up changes in stimulus processing. First, using fMRI, we demonstrate that conjunction learning in visual search has a distinct neural signature: an increase in target-evoked activity relative to distractor-evoked activity (i.e., a relative increase in target salience). Second, we demonstrate that after learning, this neural signature is still evident even when participants passively view learned stimuli while performing an unrelated, attention-demanding task. This suggests that conjunction learning results in altered bottom-up perceptual processing of the learned conjunction stimuli (i.e., a perceptual change independent of the task). We further show that the acquired change in target-evoked activity is contextually dependent on the presence of distractors, suggesting that search array Gestalts are learned. Hum Brain Mapp 37:2319-2330, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  16. How task demands shape brain responses to visual food cues.

    PubMed

    Pohl, Tanja Maria; Tempelmann, Claus; Noesselt, Toemme

    2017-06-01

    Several previous imaging studies have aimed at identifying the neural basis of visual food cue processing in humans. However, there is little consistency of the functional magnetic resonance imaging (fMRI) results across studies. Here, we tested the hypothesis that this variability across studies might - at least in part - be caused by the different tasks employed. In particular, we assessed directly the influence of task set on brain responses to food stimuli with fMRI using two tasks (colour vs. edibility judgement, between-subjects design). When participants judged colour, the left insula, the left inferior parietal lobule, occipital areas, the left orbitofrontal cortex and other frontal areas expressed enhanced fMRI responses to food relative to non-food pictures. However, when judging edibility, enhanced fMRI responses to food pictures were observed in the superior and middle frontal gyrus and in medial frontal areas including the pregenual anterior cingulate cortex and ventromedial prefrontal cortex. This pattern of results indicates that task sets can significantly alter the neural underpinnings of food cue processing. We propose that judging low-level visual stimulus characteristics - such as colour - triggers stimulus-related representations in the visual and even in gustatory cortex (insula), whereas discriminating abstract stimulus categories activates higher order representations in both the anterior cingulate and prefrontal cortex. Hum Brain Mapp 38:2897-2912, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  17. Stimulus-dependent modulation of visual neglect in a touch-screen cancellation task.

    PubMed

    Keller, Ingo; Volkening, Katharina; Garbacenkaite, Ruta

    2015-05-01

    Patients with left-sided neglect frequently show omissions and repetitive behavior on cancellation tests. Using a touch-screen-based cancellation task, we tested how visual feedback and distracters influence the number of omissions and perseverations. Eighteen patients with left-sided visual neglect and 18 healthy controls performed four different cancellation tasks on an iPad touch screen: no feedback (the display did not change during the task), visual feedback (touched targets changed their color from black to green), visual feedback with distracters (20 distracters were evenly embedded in the display; detected targets changed their color from black to green), vanishing targets (touched targets disappeared from the screen). Except for the condition with vanishing targets, neglect patients had significantly more omissions and perseverations than healthy controls in the remaining three subtests. Both conditions providing feedback by changing the target color showed the highest number of omissions. Erasure of targets nearly diminished omissions completely. The highest rate of perseverations was observed in the no-feedback condition. The implementation of distracters led to a moderate number of perseverations. Visual feedback without distracters and vanishing targets abolished perseverations nearly completely. Visual feedback and the presence of distracters aggravated hemispatial neglect. This finding is compatible with impaired disengagement from the ipsilesional side as an important factor of visual neglect. Improvement of cancellation behavior with vanishing targets could have therapeutic implications. (c) 2015 APA, all rights reserved).

  18. Functional relationships between the hippocampus and dorsomedial striatum in learning a visual scene-based memory task in rats.

    PubMed

    Delcasso, Sébastien; Huh, Namjung; Byeon, Jung Seop; Lee, Jihyun; Jung, Min Whan; Lee, Inah

    2014-11-19

    The hippocampus is important for contextual behavior, and the striatum plays key roles in decision making. When studying the functional relationships with the hippocampus, prior studies have focused mostly on the dorsolateral striatum (DLS), emphasizing the antagonistic relationships between the hippocampus and DLS in spatial versus response learning. By contrast, the functional relationships between the dorsomedial striatum (DMS) and hippocampus are relatively unknown. The current study reports that lesions to both the hippocampus and DMS profoundly impaired performance of rats in a visual scene-based memory task in which the animals were required to make a choice response by using visual scenes displayed in the background. Analysis of simultaneous recordings of local field potentials revealed that the gamma oscillatory power was higher in the DMS, but not in CA1, when the rat performed the task using familiar scenes than novel ones. In addition, the CA1-DMS networks increased coherence at γ, but not at θ, rhythm as the rat mastered the task. At the single-unit level, the neuronal populations in CA1 and DMS showed differential firing patterns when responses were made using familiar visual scenes than novel ones. Such learning-dependent firing patterns were observed earlier in the DMS than in CA1 before the rat made choice responses. The present findings suggest that both the hippocampus and DMS process memory representations for visual scenes in parallel with different time courses and that flexible choice action using background visual scenes requires coordinated operations of the hippocampus and DMS at γ frequencies. Copyright © 2014 the authors 0270-6474/14/3415534-14$15.00/0.

  19. Effects of visual and verbal interference tasks on olfactory memory: the role of task complexity.

    PubMed

    Annett, J M; Leslie, J C

    1996-08-01

    Recent studies have demonstrated that visual and verbal suppression tasks interfere with olfactory memory in a manner which is partially consistent with a dual coding interpretation. However, it has been suggested that total task complexity rather than modality specificity of the suppression tasks might account for the observed pattern of results. This study addressed the issue of whether or not the level of difficulty and complexity of suppression tasks could explain the apparent modality effects noted in earlier experiments. A total of 608 participants were each allocated to one of 19 experimental conditions involving interference tasks which varied suppression type (visual or verbal), nature of complexity (single, double or mixed) and level of difficulty (easy, optimal or difficult) and presented with 13 target odours. Either recognition of the odours or free recall of the odour names was tested on one occasion, either within 15 minutes of presentation or one week later. Both recognition and recall performance showed an overall effect for suppression nature, suppression level and time of testing with no effect for suppression type. The results lend only limited support to Paivio's (1986) dual coding theory, but have a number of characteristics which suggest that an adequate account of olfactory memory may be broadly similar to current theories of face and object recognition. All of these phenomena might be dealt with by an appropriately modified version of dual coding theory.

  20. Task-Dependent Masked Priming Effects in Visual Word Recognition

    PubMed Central

    Kinoshita, Sachiko; Norris, Dennis

    2012-01-01

    A method used widely to study the first 250 ms of visual word recognition is masked priming: These studies have yielded a rich set of data concerning the processes involved in recognizing letters and words. In these studies, there is an implicit assumption that the early processes in word recognition tapped by masked priming are automatic, and masked priming effects should therefore be invariant across tasks. Contrary to this assumption, masked priming effects are modulated by the task goal: For example, only word targets show priming in the lexical decision task, but both words and non-words do in the same-different task; semantic priming effects are generally weak in the lexical decision task but are robust in the semantic categorization task. We explain how such task dependence arises within the Bayesian Reader account of masked priming (Norris and Kinoshita, 2008), and how the task dissociations can be used to understand the early processes in lexical access. PMID:22675316

  1. The influence of time on task on mind wandering and visual working memory.

    PubMed

    Krimsky, Marissa; Forster, Daniel E; Llabre, Maria M; Jha, Amishi P

    2017-12-01

    Working memory relies on executive resources for successful task performance, with higher demands necessitating greater resource engagement. In addition to mnemonic demands, prior studies suggest that internal sources of distraction, such as mind wandering (i.e., having off-task thoughts) and greater time on task, may tax executive resources. Herein, the consequences of mnemonic demand, mind wandering, and time on task were investigated during a visual working memory task. Participants (N=143) completed a delayed-recognition visual working memory task, with mnemonic load for visual objects manipulated across trials (1 item=low load; 2 items=high load) and subjective mind wandering assessed intermittently throughout the experiment using a self-report Likert-type scale (1=on-task, 6=off-task). Task performance (correct/incorrect response) and self-reported mind wandering data were evaluated by hierarchical linear modeling to track trial-by-trial fluctuations. Performance declined with greater time on task, and the rate of decline was steeper for high vs low load trials. Self-reported mind wandering increased over time, and significantly varied asa function of both load and time on task. Participants reported greater mind wandering at the beginning of the experiment for low vs. high load trials; however, with greater time on task, more mind wandering was reported during high vs. low load trials. These results suggest that the availability of executive resources in support of working memory maintenance processes fluctuates in a demand-sensitive manner with time on task, and may be commandeered by mind wandering. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Comparison of Congruence Judgment and Auditory Localization Tasks for Assessing the Spatial Limits of Visual Capture

    PubMed Central

    Bosen, Adam K.; Fleming, Justin T.; Brown, Sarah E.; Allen, Paul D.; O'Neill, William E.; Paige, Gary D.

    2016-01-01

    Vision typically has better spatial accuracy and precision than audition, and as a result often captures auditory spatial perception when visual and auditory cues are presented together. One determinant of visual capture is the amount of spatial disparity between auditory and visual cues: when disparity is small visual capture is likely to occur, and when disparity is large visual capture is unlikely. Previous experiments have used two methods to probe how visual capture varies with spatial disparity. First, congruence judgment assesses perceived unity between cues by having subjects report whether or not auditory and visual targets came from the same location. Second, auditory localization assesses the graded influence of vision on auditory spatial perception by having subjects point to the remembered location of an auditory target presented with a visual target. Previous research has shown that when both tasks are performed concurrently they produce similar measures of visual capture, but this may not hold when tasks are performed independently. Here, subjects alternated between tasks independently across three sessions. A Bayesian inference model of visual capture was used to estimate perceptual parameters for each session, which were compared across tasks. Results demonstrated that the range of audio-visual disparities over which visual capture was likely to occur were narrower in auditory localization than in congruence judgment, which the model indicates was caused by subjects adjusting their prior expectation that targets originated from the same location in a task-dependent manner. PMID:27815630

  3. 3D Visual Tracking of an Articulated Robot in Precision Automated Tasks

    PubMed Central

    Alzarok, Hamza; Fletcher, Simon; Longstaff, Andrew P.

    2017-01-01

    The most compelling requirements for visual tracking systems are a high detection accuracy and an adequate processing speed. However, the combination between the two requirements in real world applications is very challenging due to the fact that more accurate tracking tasks often require longer processing times, while quicker responses for the tracking system are more prone to errors, therefore a trade-off between accuracy and speed, and vice versa is required. This paper aims to achieve the two requirements together by implementing an accurate and time efficient tracking system. In this paper, an eye-to-hand visual system that has the ability to automatically track a moving target is introduced. An enhanced Circular Hough Transform (CHT) is employed for estimating the trajectory of a spherical target in three dimensions, the colour feature of the target was carefully selected by using a new colour selection process, the process relies on the use of a colour segmentation method (Delta E) with the CHT algorithm for finding the proper colour of the tracked target, the target was attached to the six degree of freedom (DOF) robot end-effector that performs a pick-and-place task. A cooperation of two Eye-to Hand cameras with their image Averaging filters are used for obtaining clear and steady images. This paper also examines a new technique for generating and controlling the observation search window in order to increase the computational speed of the tracking system, the techniques is named Controllable Region of interest based on Circular Hough Transform (CRCHT). Moreover, a new mathematical formula is introduced for updating the depth information of the vision system during the object tracking process. For more reliable and accurate tracking, a simplex optimization technique was employed for the calculation of the parameters for camera to robotic transformation matrix. The results obtained show the applicability of the proposed approach to track the moving robot

  4. Cross-cultural differences for three visual memory tasks in Brazilian children.

    PubMed

    Santos, F H; Mello, C B; Bueno, O F A; Dellatolas, G

    2005-10-01

    Norms for three visual memory tasks, including Corsi's block tapping test and the BEM 144 complex figures and visual recognition, were developed for neuropsychological assessment in Brazilian children. The tasks were measured in 127 children ages 7 to 10 years from rural and urban areas of the States of São Paulo and Minas Gerais. Analysis indicated age-related but not sex-related differences. A cross-cultural effect was observed in relation to copying and recall of Complex pictures. Different performances between rural and urban children were noted.

  5. Parallel perceptual enhancement and hierarchic relevance evaluation in an audio-visual conjunction task.

    PubMed

    Potts, Geoffrey F; Wood, Susan M; Kothmann, Delia; Martin, Laura E

    2008-10-21

    Attention directs limited-capacity information processing resources to a subset of available perceptual representations. The mechanisms by which attention selects task-relevant representations for preferential processing are not fully known. Triesman and Gelade's [Triesman, A., Gelade, G., 1980. A feature integration theory of attention. Cognit. Psychol. 12, 97-136.] influential attention model posits that simple features are processed preattentively, in parallel, but that attention is required to serially conjoin multiple features into an object representation. Event-related potentials have provided evidence for this model showing parallel processing of perceptual features in the posterior Selection Negativity (SN) and serial, hierarchic processing of feature conjunctions in the Frontal Selection Positivity (FSP). Most prior studies have been done on conjunctions within one sensory modality while many real-world objects have multimodal features. It is not known if the same neural systems of posterior parallel processing of simple features and frontal serial processing of feature conjunctions seen within a sensory modality also operate on conjunctions between modalities. The current study used ERPs and simultaneously presented auditory and visual stimuli in three task conditions: Attend Auditory (auditory feature determines the target, visual features are irrelevant), Attend Visual (visual features relevant, auditory irrelevant), and Attend Conjunction (target defined by the co-occurrence of an auditory and a visual feature). In the Attend Conjunction condition when the auditory but not the visual feature was a target there was an SN over auditory cortex, when the visual but not auditory stimulus was a target there was an SN over visual cortex, and when both auditory and visual stimuli were targets (i.e. conjunction target) there were SNs over both auditory and visual cortex, indicating parallel processing of the simple features within each modality. In contrast

  6. Does the walking task matter? Influence of different walking conditions on dual-task performances in young and older persons.

    PubMed

    Beurskens, Rainer; Bock, Otmar

    2013-12-01

    Previous literature suggests that age-related deficits of dual-task walking are particularly pronounced with second tasks that require continuous visual processing. Here we evaluate whether the difficulty of the walking task matters as well. To this end, participants were asked to walk along a straight pathway of 20m length in four different walking conditions: (a) wide path and preferred pace; (b) narrow path and preferred pace, (c) wide path and fast pace, (d) obstacled wide path and preferred pace. Each condition was performed concurrently with a task requiring visual processing or fine motor control, and all tasks were also performed alone which allowed us to calculate the dual-task costs (DTC). Results showed that the age-related increase of DTC is substantially larger with the visually demanding than with the motor-demanding task, more so when walking on a narrow or obstacled path. We attribute these observations to the fact that visual scanning of the environment becomes more crucial when walking in difficult terrains: the higher visual demand of those conditions accentuates the age-related deficits in coordinating them with a visual non-walking task. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Attention improves encoding of task-relevant features in the human visual cortex

    PubMed Central

    Jehee, Janneke F.M.; Brady, Devin K.; Tong, Frank

    2011-01-01

    When spatial attention is directed towards a particular stimulus, increased activity is commonly observed in corresponding locations of the visual cortex. Does this attentional increase in activity indicate improved processing of all features contained within the attended stimulus, or might spatial attention selectively enhance the features relevant to the observer’s task? We used fMRI decoding methods to measure the strength of orientation-selective activity patterns in the human visual cortex while subjects performed either an orientation or contrast discrimination task, involving one of two laterally presented gratings. Greater overall BOLD activation with spatial attention was observed in areas V1-V4 for both tasks. However, multivariate pattern analysis revealed that orientation-selective responses were enhanced by attention only when orientation was the task-relevant feature, and not when the grating’s contrast had to be attended. In a second experiment, observers discriminated the orientation or color of a specific lateral grating. Here, orientation-selective responses were enhanced in both tasks but color-selective responses were enhanced only when color was task-relevant. In both experiments, task-specific enhancement of feature-selective activity was not confined to the attended stimulus location, but instead spread to other locations in the visual field, suggesting the concurrent involvement of a global feature-based attentional mechanism. These results suggest that attention can be remarkably selective in its ability to enhance particular task-relevant features, and further reveal that increases in overall BOLD amplitude are not necessarily accompanied by improved processing of stimulus information. PMID:21632942

  8. Attention during active visual tasks: counting, pointing, or simply looking

    PubMed Central

    Wilder, John D.; Schnitzer, Brian S.; Gersch, Timothy M.; Dosher, Barbara A.

    2009-01-01

    Visual attention and saccades are typically studied in artificial situations, with stimuli presented to the steadily fixating eye, or saccades made along specified paths. By contrast, in the real world saccadic patterns are constrained only by the demands of the motivating task. We studied attention during pauses between saccades made to perform 3 free-viewing tasks: counting dots, pointing to the same dots with a visible cursor, or simply looking at the dots using a freely-chosen path. Attention was assessed by the ability to identify the orientation of a briefly-presented Gabor probe. All primary tasks produced losses in identification performance, with counting producing the largest losses, followed by pointing and then looking-only. Looking-only resulted in a 37% increase in contrast thresholds in the orientation task. Counting produced more severe losses that were not overcome by increasing Gabor contrast. Detection or localization of the Gabor, unlike identification, were largely unaffected by any of the primary tasks. Taken together, these results show that attention is required to control saccades, even with freely-chosen paths, but the attentional demands of saccades are less than those attached to tasks such as counting, which have a significant cognitive load. Counting proved to be a highly demanding task that either exhausted momentary processing capacity (e.g., working memory or executive functions), or, alternatively, encouraged a strategy of filtering out all signals irrelevant to counting itself. The fact that the attentional demands of saccades (as well as those of detection/localization) are relatively modest makes it possible to continually adjust both the spatial and temporal pattern of saccades so as to re-allocate attentional resources as needed to handle the complex and multifaceted demands of real-world environments. PMID:18649913

  9. The influence of visual and vestibular orientation cues in a clock reading task.

    PubMed

    Davidenko, Nicolas; Cheong, Yeram; Waterman, Amanda; Smith, Jacob; Anderson, Barrett; Harmon, Sarah

    2018-05-23

    We investigated how performance in the real-life perceptual task of analog clock reading is influenced by the clock's orientation with respect to egocentric, gravitational, and visual-environmental reference frames. In Experiment 1, we designed a simple clock-reading task and found that observers' reaction time to correctly tell the time depends systematically on the clock's orientation. In Experiment 2, we dissociated egocentric from environmental reference frames by having participants sit upright or lie sideways while performing the task. We found that both reference frames substantially contribute to response times in this task. In Experiment 3, we placed upright or rotated participants in an upright or rotated immersive virtual environment, which allowed us to further dissociate vestibular from visual cues to the environmental reference frame. We found evidence of environmental reference frame effects only when visual and vestibular cues were aligned. We discuss the implications for the design of remote and head-mounted displays. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Neural Substrates of Visual Spatial Coding and Visual Feedback Control for Hand Movements in Allocentric and Target-Directed Tasks

    PubMed Central

    Thaler, Lore; Goodale, Melvyn A.

    2011-01-01

    Neuropsychological evidence suggests that different brain areas may be involved in movements that are directed at visual targets (e.g., pointing or reaching), and movements that are based on allocentric visual information (e.g., drawing or copying). Here we used fMRI to investigate the neural correlates of these two types of movements in healthy volunteers. Subjects (n = 14) performed right hand movements in either a target-directed task (moving a cursor to a target dot) or an allocentric task (moving a cursor to reproduce the distance and direction between two distal target dots) with or without visual feedback about their hand movement. Movements were monitored with an MR compatible touch panel. A whole brain analysis revealed that movements in allocentric conditions led to an increase in activity in the fundus of the left intra-parietal sulcus (IPS), in posterior IPS, in bilateral dorsal premotor cortex (PMd), and in the lateral occipital complex (LOC). Visual feedback in both target-directed and allocentric conditions led to an increase in activity in area MT+, superior parietal–occipital cortex (SPOC), and posterior IPS (all bilateral). In addition, we found that visual feedback affected brain activity differently in target-directed as compared to allocentric conditions, particularly in the pre-supplementary motor area, PMd, IPS, and parieto-occipital cortex. Our results, in combination with previous findings, suggest that the LOC is essential for allocentric visual coding and that SPOC is involved in visual feedback control. The differences in brain activity between target-directed and allocentric visual feedback conditions may be related to behavioral differences in visual feedback control. Our results advance the understanding of the visual coordinate frame used by the LOC. In addition, because of the nature of the allocentric task, our results have relevance for the understanding of neural substrates of magnitude estimation and vector coding of

  11. Executive function deficits in team sport athletes with a history of concussion revealed by a visual-auditory dual task paradigm.

    PubMed

    Tapper, Anthony; Gonzalez, Dave; Roy, Eric; Niechwiej-Szwedo, Ewa

    2017-02-01

    The purpose of this study was to examine executive functions in team sport athletes with and without a history of concussion. Executive functions comprise many cognitive processes including, working memory, attention and multi-tasking. Past research has shown that concussions cause difficulties in vestibular-visual and vestibular-auditory dual-tasking, however, visual-auditory tasks have been examined rarely. Twenty-nine intercollegiate varsity ice hockey athletes (age = 19.13, SD = 1.56; 15 females) performed an experimental dual-task paradigm that required simultaneously processing visual and auditory information. A brief interview, event description and self-report questionnaires were used to assign participants to each group (concussion, no-concussion). Eighteen athletes had a history of concussion and 11 had no concussion history. The two tests involved visuospatial working memory (i.e., Corsi block test) and auditory tone discrimination. Participants completed both tasks individually, then simultaneously. Two outcome variables were measured, Corsi block memory span and auditory tone discrimination accuracy. No differences were shown when each task was performed alone; however, athletes with a history of concussion had a significantly worse performance on the tone discrimination task in the dual-task condition. In conclusion, long-term deficits in executive functions were associated with a prior history of concussion when cognitive resources were stressed. Evaluations of executive functions and divided attention appear to be helpful in discriminating participants with and without a history concussion.

  12. Perceptual learning of basic visual features remains task specific with Training-Plus-Exposure (TPE) training.

    PubMed

    Cong, Lin-Juan; Wang, Ru-Jie; Yu, Cong; Zhang, Jun-Yun

    2016-01-01

    Visual perceptual learning is known to be specific to the trained retinal location, feature, and task. However, location and feature specificity can be eliminated by double-training or TPE training protocols, in which observers receive additional exposure to the transfer location or feature dimension via an irrelevant task besides the primary learning task Here we tested whether these new training protocols could even make learning transfer across different tasks involving discrimination of basic visual features (e.g., orientation and contrast). Observers practiced a near-threshold orientation (or contrast) discrimination task. Following a TPE training protocol, they also received exposure to the transfer task via performing suprathreshold contrast (or orientation) discrimination in alternating blocks of trials in the same sessions. The results showed no evidence for significant learning transfer to the untrained near-threshold contrast (or orientation) discrimination task after discounting the pretest effects and the suprathreshold practice effects. These results thus do not support a hypothetical task-independent component in perceptual learning of basic visual features. They also set the boundary of the new training protocols in their capability to enable learning transfer.

  13. Processing of pitch and location in human auditory cortex during visual and auditory tasks.

    PubMed

    Häkkinen, Suvi; Ovaska, Noora; Rinne, Teemu

    2015-01-01

    The relationship between stimulus-dependent and task-dependent activations in human auditory cortex (AC) during pitch and location processing is not well understood. In the present functional magnetic resonance imaging study, we investigated the processing of task-irrelevant and task-relevant pitch and location during discrimination, n-back, and visual tasks. We tested three hypotheses: (1) According to prevailing auditory models, stimulus-dependent processing of pitch and location should be associated with enhanced activations in distinct areas of the anterior and posterior superior temporal gyrus (STG), respectively. (2) Based on our previous studies, task-dependent activation patterns during discrimination and n-back tasks should be similar when these tasks are performed on sounds varying in pitch or location. (3) Previous studies in humans and animals suggest that pitch and location tasks should enhance activations especially in those areas that also show activation enhancements associated with stimulus-dependent pitch and location processing, respectively. Consistent with our hypotheses, we found stimulus-dependent sensitivity to pitch and location in anterolateral STG and anterior planum temporale (PT), respectively, in line with the view that these features are processed in separate parallel pathways. Further, task-dependent activations during discrimination and n-back tasks were associated with enhanced activations in anterior/posterior STG and posterior STG/inferior parietal lobule (IPL) irrespective of stimulus features. However, direct comparisons between pitch and location tasks performed on identical sounds revealed no significant activation differences. These results suggest that activations during pitch and location tasks are not strongly affected by enhanced stimulus-dependent activations to pitch or location. We also found that activations in PT were strongly modulated by task requirements and that areas in the inferior parietal lobule (IPL) showed

  14. Processing of pitch and location in human auditory cortex during visual and auditory tasks

    PubMed Central

    Häkkinen, Suvi; Ovaska, Noora; Rinne, Teemu

    2015-01-01

    The relationship between stimulus-dependent and task-dependent activations in human auditory cortex (AC) during pitch and location processing is not well understood. In the present functional magnetic resonance imaging study, we investigated the processing of task-irrelevant and task-relevant pitch and location during discrimination, n-back, and visual tasks. We tested three hypotheses: (1) According to prevailing auditory models, stimulus-dependent processing of pitch and location should be associated with enhanced activations in distinct areas of the anterior and posterior superior temporal gyrus (STG), respectively. (2) Based on our previous studies, task-dependent activation patterns during discrimination and n-back tasks should be similar when these tasks are performed on sounds varying in pitch or location. (3) Previous studies in humans and animals suggest that pitch and location tasks should enhance activations especially in those areas that also show activation enhancements associated with stimulus-dependent pitch and location processing, respectively. Consistent with our hypotheses, we found stimulus-dependent sensitivity to pitch and location in anterolateral STG and anterior planum temporale (PT), respectively, in line with the view that these features are processed in separate parallel pathways. Further, task-dependent activations during discrimination and n-back tasks were associated with enhanced activations in anterior/posterior STG and posterior STG/inferior parietal lobule (IPL) irrespective of stimulus features. However, direct comparisons between pitch and location tasks performed on identical sounds revealed no significant activation differences. These results suggest that activations during pitch and location tasks are not strongly affected by enhanced stimulus-dependent activations to pitch or location. We also found that activations in PT were strongly modulated by task requirements and that areas in the inferior parietal lobule (IPL) showed

  15. Dexterity: A MATLAB-based analysis software suite for processing and visualizing data from tasks that measure arm or forelimb function.

    PubMed

    Butensky, Samuel D; Sloan, Andrew P; Meyers, Eric; Carmel, Jason B

    2017-07-15

    Hand function is critical for independence, and neurological injury often impairs dexterity. To measure hand function in people or forelimb function in animals, sensors are employed to quantify manipulation. These sensors make assessment easier and more quantitative and allow automation of these tasks. While automated tasks improve objectivity and throughput, they also produce large amounts of data that can be burdensome to analyze. We created software called Dexterity that simplifies data analysis of automated reaching tasks. Dexterity is MATLAB software that enables quick analysis of data from forelimb tasks. Through a graphical user interface, files are loaded and data are identified and analyzed. These data can be annotated or graphed directly. Analysis is saved, and the graph and corresponding data can be exported. For additional analysis, Dexterity provides access to custom scripts created by other users. To determine the utility of Dexterity, we performed a study to evaluate the effects of task difficulty on the degree of impairment after injury. Dexterity analyzed two months of data and allowed new users to annotate the experiment, visualize results, and save and export data easily. Previous analysis of tasks was performed with custom data analysis, requiring expertise with analysis software. Dexterity made the tools required to analyze, visualize and annotate data easy to use by investigators without data science experience. Dexterity increases accessibility to automated tasks that measure dexterity by making analysis of large data intuitive, robust, and efficient. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Short-term visual deprivation reduces interference effects of task-irrelevant facial expressions on affective prosody judgments

    PubMed Central

    Fengler, Ineke; Nava, Elena; Röder, Brigitte

    2015-01-01

    Several studies have suggested that neuroplasticity can be triggered by short-term visual deprivation in healthy adults. Specifically, these studies have provided evidence that visual deprivation reversibly affects basic perceptual abilities. The present study investigated the long-lasting effects of short-term visual deprivation on emotion perception. To this aim, we visually deprived a group of young healthy adults, age-matched with a group of non-deprived controls, for 3 h and tested them before and after visual deprivation (i.e., after 8 h on average and at 4 week follow-up) on an audio–visual (i.e., faces and voices) emotion discrimination task. To observe changes at the level of basic perceptual skills, we additionally employed a simple audio–visual (i.e., tone bursts and light flashes) discrimination task and two unimodal (one auditory and one visual) perceptual threshold measures. During the 3 h period, both groups performed a series of auditory tasks. To exclude the possibility that changes in emotion discrimination may emerge as a consequence of the exposure to auditory stimulation during the 3 h stay in the dark, we visually deprived an additional group of age-matched participants who concurrently performed unrelated (i.e., tactile) tasks to the later tested abilities. The two visually deprived groups showed enhanced affective prosodic discrimination abilities in the context of incongruent facial expressions following the period of visual deprivation; this effect was partially maintained until follow-up. By contrast, no changes were observed in affective facial expression discrimination and in the basic perception tasks in any group. These findings suggest that short-term visual deprivation per se triggers a reweighting of visual and auditory emotional cues, which seems to possibly prevail for longer durations. PMID:25954166

  17. Age-related differences in processing visual device and task characteristics when using technical devices.

    PubMed

    Oehl, M; Sutter, C

    2015-05-01

    With aging visual feedback becomes increasingly relevant in action control. Consequently, visual device and task characteristics should more and more affect tool use. Focussing on late working age, the present study aims to investigate age-related differences in processing task irrelevant (display size) and task relevant visual information (task difficulty). Young and middle-aged participants (20-35 and 36-64 years of age, respectively) sat in front of a touch screen with differently sized active touch areas (4″ to 12″) and performed pointing tasks with differing task difficulties (1.8-5 bits). Both display size and age affected pointing performance, but the two variables did not interact and aiming duration moderated both effects. Furthermore, task difficulty affected the pointing durations of middle-aged adults moreso than those of young adults. Again, aiming duration accounted for the variance in the data. The onset of an age-related decline in aiming duration can be clearly located in middle adulthood. Thus, the fine psychomotor ability "aiming" is a moderator and predictor for age-related differences in pointing tasks. The results support a user-specific design for small technical devices with touch interfaces. Copyright © 2014 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  18. Generation of oculomotor images during tasks requiring visual recognition of polygons.

    PubMed

    Olivier, G; de Mendoza, J L

    2001-06-01

    This paper concerns the contribution of mentally simulated ocular exploration to generation of a visual mental image. In Exp. 1, repeated exploration of the outlines of an irregular decagon allowed an incidental learning of the shape. Analyses showed subjects memorized their ocular movements rather than the polygon. In Exp. 2, exploration of a reversible figure such as a Necker cube varied in opposite directions. Then, both perspective possibilities are presented. The perspective the subjects recognized depended on the way they explored the ambiguous figure. In both experiments, during recognition the subjects recalled a visual mental image of the polygon they compared with the different polygons proposed for recognition. To interpret the data, hypotheses concerning common processes underlying both motor intention of ocular movements and generation of a visual image are suggested.

  19. Task-dependent engagements of the primary visual cortex during kinesthetic and visual motor imagery.

    PubMed

    Mizuguchi, Nobuaki; Nakamura, Maiko; Kanosue, Kazuyuki

    2017-01-01

    Motor imagery can be divided into kinesthetic and visual aspects. In the present study, we investigated excitability in the corticospinal tract and primary visual cortex (V1) during kinesthetic and visual motor imagery. To accomplish this, we measured motor evoked potentials (MEPs) and probability of phosphene occurrence during the two types of motor imageries of finger tapping. The MEPs and phosphenes were induced by transcranial magnetic stimulation to the primary motor cortex and V1, respectively. The amplitudes of MEPs and probability of phosphene occurrence during motor imagery were normalized based on the values obtained at rest. Corticospinal excitability increased during both kinesthetic and visual motor imagery, while excitability in V1 was increased only during visual motor imagery. These results imply that modulation of cortical excitability during kinesthetic and visual motor imagery is task dependent. The present finding aids in the understanding of the neural mechanisms underlying motor imagery and provides useful information for the use of motor imagery in rehabilitation or motor imagery training. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. LANL surveillance requirements management and surveillance requirements from NA-12 tasking memo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hills, Charles R

    2011-01-25

    Surveillance briefing to NNSA to support a tasking memo from NA-12 on Surveillance requirements. This talk presents the process for developing surveillance requirements, discusses the LANL requirements that were issued as part of that tasking memo, and presents recommendations on Component Evaluation and Planning Committee activities for FY11.

  1. Assessment of image quality in soft tissue and bone visualization tasks for a dedicated extremity cone-beam CT system.

    PubMed

    Demehri, S; Muhit, A; Zbijewski, W; Stayman, J W; Yorkston, J; Packard, N; Senn, R; Yang, D; Foos, D; Thawait, G K; Fayad, L M; Chhabra, A; Carrino, J A; Siewerdsen, J H

    2015-06-01

    To assess visualization tasks using cone-beam CT (CBCT) compared to multi-detector CT (MDCT) for musculoskeletal extremity imaging. Ten cadaveric hands and ten knees were examined using a dedicated CBCT prototype and a clinical multi-detector CT using nominal protocols (80 kVp-108mAs for CBCT; 120 kVp- 300 mAs for MDCT). Soft tissue and bone visualization tasks were assessed by four radiologists using five-point satisfaction (for CBCT and MDCT individually) and five-point preference (side-by-side CBCT versus MDCT image quality comparison) rating tests. Ratings were analyzed using Kruskal-Wallis and Wilcoxon signed-rank tests, and observer agreement was assessed using the Kappa-statistic. Knee CBCT images were rated "excellent" or "good" (median scores 5 and 4) for "bone" and "soft tissue" visualization tasks. Hand CBCT images were rated "excellent" or "adequate" (median scores 5 and 3) for "bone" and "soft tissue" visualization tasks. Preference tests rated CBCT equivalent or superior to MDCT for bone visualization and favoured the MDCT for soft tissue visualization tasks. Intraobserver agreement for CBCT satisfaction tests was fair to almost perfect (κ ~ 0.26-0.92), and interobserver agreement was fair to moderate (κ ~ 0.27-0.54). CBCT provided excellent image quality for bone visualization and adequate image quality for soft tissue visualization tasks. • CBCT provided adequate image quality for diagnostic tasks in extremity imaging. • CBCT images were "excellent" for "bone" and "good/adequate" for "soft tissue" visualization tasks. • CBCT image quality was equivalent/superior to MDCT for bone visualization tasks.

  2. Patterned-string tasks: relation between fine motor skills and visual-spatial abilities in parrots.

    PubMed

    Krasheninnikova, Anastasia

    2013-01-01

    String-pulling and patterned-string tasks are often used to analyse perceptual and cognitive abilities in animals. In addition, the paradigm can be used to test the interrelation between visual-spatial and motor performance. Two Australian parrot species, the galah (Eolophus roseicapilla) and the cockatiel (Nymphicus hollandicus), forage on the ground, but only the galah uses its feet to manipulate food. I used a set of string pulling and patterned-string tasks to test whether usage of the feet during foraging is a prerequisite for solving the vertical string pulling problem. Indeed, the two species used techniques that clearly differed in the extent of beak-foot coordination but did not differ in terms of their success in solving the string pulling task. However, when the visual-spatial skills of the subjects were tested, the galahs outperformed the cockatiels. This supports the hypothesis that the fine motor skills needed for advanced beak-foot coordination may be interrelated with certain visual-spatial abilities needed for solving patterned-string tasks. This pattern was also found within each of the two species on the individual level: higher motor abilities positively correlated with performance in patterned-string tasks. This is the first evidence of an interrelation between visual-spatial and motor abilities in non-mammalian animals.

  3. Investigation of outside visual cues required for low speed and hover

    NASA Technical Reports Server (NTRS)

    Hoh, R. H.

    1985-01-01

    Knowledge of the visual cues required in the performance of stabilized hover in VTOL aircraft is a prerequisite for the development of both cockpit displays and ground-based simulation systems. Attention is presently given to the viability of experimental test flight techniques as the bases for the identification of essential external cues in aggressive and precise low speed and hovering tasks. The analysis and flight test program conducted employed a helicopter and a pilot wearing lenses that could be electronically fogged, where the primary variables were field-of-view, large object 'macrotexture', and fine detail 'microtexture', in six different fields-of-view. Fundamental metrics are proposed for the quantification of the visual field, to allow comparisons between tests, simulations, and aircraft displays.

  4. Perceptual learning of basic visual features remains task specific with Training-Plus-Exposure (TPE) training

    PubMed Central

    Cong, Lin-Juan; Wang, Ru-Jie; Yu, Cong; Zhang, Jun-Yun

    2016-01-01

    Visual perceptual learning is known to be specific to the trained retinal location, feature, and task. However, location and feature specificity can be eliminated by double-training or TPE training protocols, in which observers receive additional exposure to the transfer location or feature dimension via an irrelevant task besides the primary learning task Here we tested whether these new training protocols could even make learning transfer across different tasks involving discrimination of basic visual features (e.g., orientation and contrast). Observers practiced a near-threshold orientation (or contrast) discrimination task. Following a TPE training protocol, they also received exposure to the transfer task via performing suprathreshold contrast (or orientation) discrimination in alternating blocks of trials in the same sessions. The results showed no evidence for significant learning transfer to the untrained near-threshold contrast (or orientation) discrimination task after discounting the pretest effects and the suprathreshold practice effects. These results thus do not support a hypothetical task-independent component in perceptual learning of basic visual features. They also set the boundary of the new training protocols in their capability to enable learning transfer. PMID:26873777

  5. Spatial Frequency Requirements and Gaze Strategy in Visual-Only and Audiovisual Speech Perception

    PubMed Central

    Wilson, Amanda H.; Paré, Martin; Munhall, Kevin G.

    2016-01-01

    Purpose The aim of this article is to examine the effects of visual image degradation on performance and gaze behavior in audiovisual and visual-only speech perception tasks. Method We presented vowel–consonant–vowel utterances visually filtered at a range of frequencies in visual-only, audiovisual congruent, and audiovisual incongruent conditions (Experiment 1; N = 66). In Experiment 2 (N = 20), participants performed a visual-only speech perception task and in Experiment 3 (N = 20) an audiovisual task while having their gaze behavior monitored using eye-tracking equipment. Results In the visual-only condition, increasing image resolution led to monotonic increases in performance, and proficient speechreaders were more affected by the removal of high spatial information than were poor speechreaders. The McGurk effect also increased with increasing visual resolution, although it was less affected by the removal of high-frequency information. Observers tended to fixate on the mouth more in visual-only perception, but gaze toward the mouth did not correlate with accuracy of silent speechreading or the magnitude of the McGurk effect. Conclusions The results suggest that individual differences in silent speechreading and the McGurk effect are not related. This conclusion is supported by differential influences of high-resolution visual information on the 2 tasks and differences in the pattern of gaze. PMID:27537379

  6. 33 CFR 175.110 - Visual distress signals required.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Visual distress signals required... (CONTINUED) BOATING SAFETY EQUIPMENT REQUIREMENTS Visual Distress Signals § 175.110 Visual distress signals... signals selected from the list in § 175.130 or the alternatives in § 175.135, in the number required, are...

  7. 33 CFR 175.110 - Visual distress signals required.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Visual distress signals required... (CONTINUED) BOATING SAFETY EQUIPMENT REQUIREMENTS Visual Distress Signals § 175.110 Visual distress signals... signals selected from the list in § 175.130 or the alternatives in § 175.135, in the number required, are...

  8. 33 CFR 175.110 - Visual distress signals required.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Visual distress signals required... (CONTINUED) BOATING SAFETY EQUIPMENT REQUIREMENTS Visual Distress Signals § 175.110 Visual distress signals... signals selected from the list in § 175.130 or the alternatives in § 175.135, in the number required, are...

  9. 33 CFR 175.110 - Visual distress signals required.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Visual distress signals required... (CONTINUED) BOATING SAFETY EQUIPMENT REQUIREMENTS Visual Distress Signals § 175.110 Visual distress signals... signals selected from the list in § 175.130 or the alternatives in § 175.135, in the number required, are...

  10. Impact of Learning Styles on Air Force Technical Training: Multiple and Linear Imagery in the Presentation of a Comparative Visual Location Task to Visual and Haptic Subjects. Interim Report for Period January 1977-January 1978.

    ERIC Educational Resources Information Center

    Ausburn, Floyd B.

    A U.S. Air Force study was designed to develop instruction based on the supplantation theory, in which tasks are performed (supplanted) for individuals who are unable to perform them due to their cognitive style. The study examined the effects of linear and multiple imagery in presenting a task requiring visual comparison and location to…

  11. The involvement of central attention in visual search is determined by task demands.

    PubMed

    Han, Suk Won

    2017-04-01

    Attention, the mechanism by which a subset of sensory inputs is prioritized over others, operates at multiple processing stages. Specifically, attention enhances weak sensory signal at the perceptual stage, while it serves to select appropriate responses or consolidate sensory representations into short-term memory at the central stage. This study investigated the independence and interaction between perceptual and central attention. To do so, I used a dual-task paradigm, pairing a four-alternative choice task with a visual search task. The results showed that central attention for response selection was engaged in perceptual processing for visual search when the number of search items increased, thereby increasing the demand for serial allocation of focal attention. By contrast, central attention and perceptual attention remained independent as far as the demand for serial shifting of focal attention remained constant; decreasing stimulus contrast or increasing the set size of a parallel search did not evoke the involvement of central attention in visual search. These results suggest that the nature of concurrent visual search process plays a crucial role in the functional interaction between two different types of attention.

  12. Performance in a Visual Search Task Uniquely Predicts Reading Abilities in Third-Grade Hong Kong Chinese Children

    ERIC Educational Resources Information Center

    Liu, Duo; Chen, Xi; Chung, Kevin K. H.

    2015-01-01

    This study examined the relation between the performance in a visual search task and reading ability in 92 third-grade Hong Kong Chinese children. The visual search task, which is considered a measure of visual-spatial attention, accounted for unique variance in Chinese character reading after controlling for age, nonverbal intelligence,…

  13. Sonification and haptic feedback in addition to visual feedback enhances complex motor task learning.

    PubMed

    Sigrist, Roland; Rauter, Georg; Marchal-Crespo, Laura; Riener, Robert; Wolf, Peter

    2015-03-01

    Concurrent augmented feedback has been shown to be less effective for learning simple motor tasks than for complex tasks. However, as mostly artificial tasks have been investigated, transfer of results to tasks in sports and rehabilitation remains unknown. Therefore, in this study, the effect of different concurrent feedback was evaluated in trunk-arm rowing. It was then investigated whether multimodal audiovisual and visuohaptic feedback are more effective for learning than visual feedback only. Naïve subjects (N = 24) trained in three groups on a highly realistic virtual reality-based rowing simulator. In the visual feedback group, the subject's oar was superimposed to the target oar, which continuously became more transparent when the deviation between the oars decreased. Moreover, a trace of the subject's trajectory emerged if deviations exceeded a threshold. The audiovisual feedback group trained with oar movement sonification in addition to visual feedback to facilitate learning of the velocity profile. In the visuohaptic group, the oar movement was inhibited by path deviation-dependent braking forces to enhance learning of spatial aspects. All groups significantly decreased the spatial error (tendency in visual group) and velocity error from baseline to the retention tests. Audiovisual feedback fostered learning of the velocity profile significantly more than visuohaptic feedback. The study revealed that well-designed concurrent feedback fosters complex task learning, especially if the advantages of different modalities are exploited. Further studies should analyze the impact of within-feedback design parameters and the transferability of the results to other tasks in sports and rehabilitation.

  14. A dual-task investigation of automaticity in visual word processing

    NASA Technical Reports Server (NTRS)

    McCann, R. S.; Remington, R. W.; Van Selst, M.

    2000-01-01

    An analysis of activation models of visual word processing suggests that frequency-sensitive forms of lexical processing should proceed normally while unattended. This hypothesis was tested by having participants perform a speeded pitch discrimination task followed by lexical decisions or word naming. As the stimulus onset asynchrony between the tasks was reduced, lexical-decision and naming latencies increased dramatically. Word-frequency effects were additive with the increase, indicating that frequency-sensitive processing was subject to postponement while attention was devoted to the other task. Either (a) the same neural hardware shares responsibility for lexical processing and central stages of choice reaction time task processing and cannot perform both computations simultaneously, or (b) lexical processing is blocked in order to optimize performance on the pitch discrimination task. Either way, word processing is not as automatic as activation models suggest.

  15. Visual Tasks and Postural Sway in Children with and without Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Chang, Chih-Hui; Wade, Michael G.; Stoffregen, Thomas A.; Hsu, Chin-Yu; Pan, Chien-Yu

    2010-01-01

    We investigated the influences of two different suprapostural visual tasks, visual searching and visual inspection, on the postural sway of children with and without autism spectrum disorder (ASD). Sixteen ASD children (age=8.75 [plus or minus] 1.34 years; height=130.34 [plus or minus] 11.03 cm) were recruited from a local support group.…

  16. Open angle glaucoma effects on preattentive visual search efficiency for flicker, motion displacement and orientation pop-out tasks.

    PubMed

    Loughman, James; Davison, Peter; Flitcroft, Ian

    2007-11-01

    Preattentive visual search (PAVS) describes rapid and efficient retinal and neural processing capable of immediate target detection in the visual field. Damage to the nerve fibre layer or visual pathway might reduce the efficiency with which the visual system performs such analysis. The purpose of this study was to test the hypothesis that patients with glaucoma are impaired on parallel search tasks, and that this would serve to distinguish glaucoma in early cases. Three groups of observers (glaucoma patients, suspect and normal individuals) were examined, using computer-generated flicker, orientation, and vertical motion displacement targets to assess PAVS efficiency. The task required rapid and accurate localisation of a singularity embedded in a field of 119 homogeneous distractors on either the left or right-hand side of a computer monitor. All subjects also completed a choice reaction time (CRT) task. Independent sample T tests revealed PAVS efficiency to be significantly impaired in the glaucoma group compared with both normal and suspect individuals. Performance was impaired in all types of glaucoma tested. Analysis between normal and suspect individuals revealed a significant difference only for motion displacement response times. Similar analysis using a PAVS/CRT index confirmed the glaucoma findings but also showed statistically significant differences between suspect and normal individuals across all target types. A test of PAVS efficiency appears capable of differentiating early glaucoma from both normal and suspect cases. Analysis incorporating a PAVS/CRT index enhances the diagnostic capacity to differentiate normal from suspect cases.

  17. Task-specific usability requirements of electronic medical records systems: Lessons learned from a national survey of end-users.

    PubMed

    Farzandipour, Mehrdad; Meidani, Zahra; Riazi, Hossein; Sadeqi Jabali, Monireh

    2018-09-01

    There are various approaches to evaluating the usability of electronic medical record (EMR) systems. User perspectives are an integral part of evaluation. Usability evaluations efficiently and effectively contribute to user-centered design and supports tasks and increase user satisfaction. This study determined the main usability requirements for EMRs by means of an end-user survey. A mixed-method strategy was conducted in three phases. A qualitative approach was employed to collect and formulate EMR usability requirements using the focus group method and the modified Delphi technique. Classic Delphi technique was used to evaluate the proposed requirements among 380 end-users in Iran. The final list of EMR usability requirements was verified and included 163 requirements divided into nine groups. The highest rates of end-user agreement relate to EMR visual clarity (3.65 ± 0.61), fault tolerance (3.58 ± 0.56), and suitability for learning (3.55 ± 0.54). The lowest end-user agreement was for auditory presentation (3.18 ± 0.69). The highest and lowest agreement among end-users was for visual clarity and auditory presentation by EMRs, respectively. This suggests that user priorities in determination of EMR usability and their understanding of the importance of the types of individual tasks and context characteristics differ.

  18. Visual pathways from the perspective of cost functions and multi-task deep neural networks.

    PubMed

    Scholte, H Steven; Losch, Max M; Ramakrishnan, Kandan; de Haan, Edward H F; Bohte, Sander M

    2018-01-01

    Vision research has been shaped by the seminal insight that we can understand the higher-tier visual cortex from the perspective of multiple functional pathways with different goals. In this paper, we try to give a computational account of the functional organization of this system by reasoning from the perspective of multi-task deep neural networks. Machine learning has shown that tasks become easier to solve when they are decomposed into subtasks with their own cost function. We hypothesize that the visual system optimizes multiple cost functions of unrelated tasks and this causes the emergence of a ventral pathway dedicated to vision for perception, and a dorsal pathway dedicated to vision for action. To evaluate the functional organization in multi-task deep neural networks, we propose a method that measures the contribution of a unit towards each task, applying it to two networks that have been trained on either two related or two unrelated tasks, using an identical stimulus set. Results show that the network trained on the unrelated tasks shows a decreasing degree of feature representation sharing towards higher-tier layers while the network trained on related tasks uniformly shows high degree of sharing. We conjecture that the method we propose can be used to analyze the anatomical and functional organization of the visual system and beyond. We predict that the degree to which tasks are related is a good descriptor of the degree to which they share downstream cortical-units. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Effects of Field of View and Visual Complexity on Virtual Reality Training Effectiveness for a Visual Scanning Task

    DOE PAGES

    Ragan, Eric D.; Bowman, Doug A.; Kopper, Regis; ...

    2015-02-13

    Virtual reality training systems are commonly used in a variety of domains, and it is important to understand how the realism of a training simulation influences training effectiveness. The paper presents a framework for evaluating the effects of virtual reality fidelity based on an analysis of a simulation’s display, interaction, and scenario components. Following this framework, we conducted a controlled experiment to test the effects of fidelity on training effectiveness for a visual scanning task. The experiment varied the levels of field of view and visual realism during a training phase and then evaluated scanning performance with the simulator’s highestmore » level of fidelity. To assess scanning performance, we measured target detection and adherence to a prescribed strategy. The results show that both field of view and visual realism significantly affected target detection during training; higher field of view led to better performance and higher visual realism worsened performance. Additionally, the level of visual realism during training significantly affected learning of the prescribed visual scanning strategy, providing evidence that high visual realism was important for learning the technique. The results also demonstrate that task performance during training was not always a sufficient measure of mastery of an instructed technique. That is, if learning a prescribed strategy or skill is the goal of a training exercise, performance in a simulation may not be an appropriate indicator of effectiveness outside of training—evaluation in a more realistic setting may be necessary.« less

  20. Nimodipine alters acquisition of a visual discrimination task in chicks.

    PubMed

    Deyo, R; Panksepp, J; Conner, R L

    1990-03-01

    Chicks 5 days old received intraperitoneal injections of nimodipine 30 min before training on either a visual discrimination task (0, 0.5, 1.0, or 5.0 mg/kg) or a test of separation-induced distress vocalizations (0, 0.5, or 2.5 mg/kg). Chicks receiving 1.0 mg/kg nimodipine made significantly fewer visual discrimination errors than vehicle controls by trials 41-60, but did not differ from controls 24 h later. Chicks in the 5 mg/kg group made significantly more errors when compared to controls both during acquisition of the task and during retention. Nimodipine did not alter separation-induced distress vocalizations at any of the doses tested, suggesting that nimodipine's effects on learning cannot be attributed to a reduction in separation distress. These data indicate that nimodipine's facilitation of learning in young subjects is dose dependent, but nimodipine failed to enhance retention.

  1. RAVE: Rapid Visualization Environment

    NASA Technical Reports Server (NTRS)

    Klumpar, D. M.; Anderson, Kevin; Simoudis, Avangelos

    1994-01-01

    Visualization is used in the process of analyzing large, multidimensional data sets. However, the selection and creation of visualizations that are appropriate for the characteristics of a particular data set and the satisfaction of the analyst's goals is difficult. The process consists of three tasks that are performed iteratively: generate, test, and refine. The performance of these tasks requires the utilization of several types of domain knowledge that data analysts do not often have. Existing visualization systems and frameworks do not adequately support the performance of these tasks. In this paper we present the RApid Visualization Environment (RAVE), a knowledge-based system that interfaces with commercial visualization frameworks and assists a data analyst in quickly and easily generating, testing, and refining visualizations. RAVE was used for the visualization of in situ measurement data captured by spacecraft.

  2. The effects of task difficulty on visual search strategy in virtual 3D displays.

    PubMed

    Pomplun, Marc; Garaas, Tyler W; Carrasco, Marisa

    2013-08-28

    Analyzing the factors that determine our choice of visual search strategy may shed light on visual behavior in everyday situations. Previous results suggest that increasing task difficulty leads to more systematic search paths. Here we analyze observers' eye movements in an "easy" conjunction search task and a "difficult" shape search task to study visual search strategies in stereoscopic search displays with virtual depth induced by binocular disparity. Standard eye-movement variables, such as fixation duration and initial saccade latency, as well as new measures proposed here, such as saccadic step size, relative saccadic selectivity, and x-y target distance, revealed systematic effects on search dynamics in the horizontal-vertical plane throughout the search process. We found that in the "easy" task, observers start with the processing of display items in the display center immediately after stimulus onset and subsequently move their gaze outwards, guided by extrafoveally perceived stimulus color. In contrast, the "difficult" task induced an initial gaze shift to the upper-left display corner, followed by a systematic left-right and top-down search process. The only consistent depth effect was a trend of initial saccades in the easy task with smallest displays to the items closest to the observer. The results demonstrate the utility of eye-movement analysis for understanding search strategies and provide a first step toward studying search strategies in actual 3D scenarios.

  3. Hand Movement Deviations in a Visual Search Task with Cross Modal Cuing

    ERIC Educational Resources Information Center

    Aslan, Asli; Aslan, Hurol

    2007-01-01

    The purpose of this study is to demonstrate the cross-modal effects of an auditory organization on a visual search task and to investigate the influence of the level of detail in instructions describing or hinting at the associations between auditory stimuli and the possible locations of a visual target. In addition to measuring the participants'…

  4. Individual personality differences in goats predict their performance in visual learning and non-associative cognitive tasks.

    PubMed

    Nawroth, Christian; Prentice, Pamela M; McElligott, Alan G

    2017-01-01

    Variation in common personality traits, such as boldness or exploration, is often associated with risk-reward trade-offs and behavioural flexibility. To date, only a few studies have examined the effects of consistent behavioural traits on both learning and cognition. We investigated whether certain personality traits ('exploration' and 'sociability') of individuals were related to cognitive performance, learning flexibility and learning style in a social ungulate species, the goat (Capra hircus). We also investigated whether a preference for feature cues rather than impaired learning abilities can explain performance variation in a visual discrimination task. We found that personality scores were consistent across time and context. Less explorative goats performed better in a non-associative cognitive task, in which subjects had to follow the trajectory of a hidden object (i.e. testing their ability for object permanence). We also found that less sociable subjects performed better compared to more sociable goats in a visual discrimination task. Good visual learning performance was associated with a preference for feature cues, indicating personality-dependent learning strategies in goats. Our results suggest that personality traits predict the outcome in visual discrimination and non-associative cognitive tasks in goats and that impaired performance in a visual discrimination tasks does not necessarily imply impaired learning capacities, but rather can be explained by a varying preference for feature cues. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Do Visual Processing Deficits Cause Problem on Response Time Task for Dyslexics?

    ERIC Educational Resources Information Center

    Sigmundsson, H.

    2005-01-01

    This study was set out to explore the prediction that dyslexics would be likely to have particular problems compared to control group, on response time task when 'driving' a car simulator. The reason for doing so stems from the fact that there is considerable body of research on visual processing difficulties manifested by dyslexics. The task was…

  6. The Emergence of Visual Awareness: Temporal Dynamics in Relation to Task and Mask Type

    PubMed Central

    Kiefer, Markus; Kammer, Thomas

    2017-01-01

    One aspect of consciousness phenomena, the temporal emergence of visual awareness, has been subject of a controversial debate. How can visual awareness, that is the experiential quality of visual stimuli, be characterized best? Is there a sharp discontinuous or dichotomous transition between unaware and fully aware states, or does awareness emerge gradually encompassing intermediate states? Previous studies yielded conflicting results and supported both dichotomous and gradual views. It is well conceivable that these conflicting results are more than noise, but reflect the dynamic nature of the temporal emergence of visual awareness. Using a psychophysical approach, the present research tested whether the emergence of visual awareness is context-dependent with a temporal two-alternative forced choice task. During backward masking of word targets, it was assessed whether the relative temporal sequence of stimulus thresholds is modulated by the task (stimulus presence, letter case, lexical decision, and semantic category) and by mask type. Four masks with different similarity to the target features were created. Psychophysical functions were then fitted to the accuracy data in the different task conditions as a function of the stimulus mask SOA in order to determine the inflection point (conscious threshold of each feature) and slope of the psychophysical function (transition from unaware to aware within each feature). Depending on feature-mask similarity, thresholds in the different tasks were highly dispersed suggesting a graded transition from unawareness to awareness or had less differentiated thresholds indicating that clusters of features probed by the tasks quite simultaneously contribute to the percept. The latter observation, although not compatible with the notion of a sharp all-or-none transition between unaware and aware states, suggests a less gradual or more discontinuous emergence of awareness. Analyses of slopes of the fitted psychophysical functions

  7. Pretraining Cortical Thickness Predicts Subsequent Perceptual Learning Rate in a Visual Search Task.

    PubMed

    Frank, Sebastian M; Reavis, Eric A; Greenlee, Mark W; Tse, Peter U

    2016-03-01

    We report that preexisting individual differences in the cortical thickness of brain areas involved in a perceptual learning task predict the subsequent perceptual learning rate. Participants trained in a motion-discrimination task involving visual search for a "V"-shaped target motion trajectory among inverted "V"-shaped distractor trajectories. Motion-sensitive area MT+ (V5) was functionally identified as critical to the task: after 3 weeks of training, activity increased in MT+ during task performance, as measured by functional magnetic resonance imaging. We computed the cortical thickness of MT+ from anatomical magnetic resonance imaging volumes collected before training started, and found that it significantly predicted subsequent perceptual learning rates in the visual search task. Participants with thicker neocortex in MT+ before training learned faster than those with thinner neocortex in that area. A similar association between cortical thickness and training success was also found in posterior parietal cortex (PPC). © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  8. Stimulus novelty, task relevance and the visual evoked potential in man

    NASA Technical Reports Server (NTRS)

    Courchesne, E.; Hillyard, S. A.; Galambos, R.

    1975-01-01

    The effect of task relevance on P3 (waveform of human evoked potential) waves and the methodologies used to deal with them are outlined. Visual evoked potentials (VEPs) were recorded from normal adult subjects performing in a visual discrimination task. Subjects counted the number of presentations of the numeral 4 which was interposed rarely and randomly within a sequence of tachistoscopically flashed background stimuli. Intrusive, task-irrelevant (not counted) stimuli were also interspersed rarely and randomly in the sequence of 2s; these stimuli were of two types: simples, which were easily recognizable, and novels, which were completely unrecognizable. It was found that the simples and the counted 4s evoked posteriorly distributed P3 waves while the irrelevant novels evoked large, frontally distributed P3 waves. These large, frontal P3 waves to novels were also found to be preceded by large N2 waves. These findings indicate that the P3 wave is not a unitary phenomenon but should be considered in terms of a family of waves, differing in their brain generators and in their psychological correlates.

  9. Dual-Task Interference When A Response is Not Required

    NASA Technical Reports Server (NTRS)

    VanSelst, Mark; Johnston, James C.; Shafto, Michael (Technical Monitor)

    2002-01-01

    When subjects are required to respond to two stimuli presented in rapid succession, responses to the second stimulus are delayed. Such dual-task interference has been attributed to a fundamental processing bottleneck preventing simultaneous processing on both tasks. Two experiments show dual-task interference even when the first task does not require a response. The observed interference is caused by a bottleneck in central cognitive processing, rather than in response initiation or execution.

  10. Biometric recognition via texture features of eye movement trajectories in a visual searching task.

    PubMed

    Li, Chunyong; Xue, Jiguo; Quan, Cheng; Yue, Jingwei; Zhang, Chenggang

    2018-01-01

    Biometric recognition technology based on eye-movement dynamics has been in development for more than ten years. Different visual tasks, feature extraction and feature recognition methods are proposed to improve the performance of eye movement biometric system. However, the correct identification and verification rates, especially in long-term experiments, as well as the effects of visual tasks and eye trackers' temporal and spatial resolution are still the foremost considerations in eye movement biometrics. With a focus on these issues, we proposed a new visual searching task for eye movement data collection and a new class of eye movement features for biometric recognition. In order to demonstrate the improvement of this visual searching task being used in eye movement biometrics, three other eye movement feature extraction methods were also tested on our eye movement datasets. Compared with the original results, all three methods yielded better results as expected. In addition, the biometric performance of these four feature extraction methods was also compared using the equal error rate (EER) and Rank-1 identification rate (Rank-1 IR), and the texture features introduced in this paper were ultimately shown to offer some advantages with regard to long-term stability and robustness over time and spatial precision. Finally, the results of different combinations of these methods with a score-level fusion method indicated that multi-biometric methods perform better in most cases.

  11. Biometric recognition via texture features of eye movement trajectories in a visual searching task

    PubMed Central

    Li, Chunyong; Xue, Jiguo; Quan, Cheng; Yue, Jingwei

    2018-01-01

    Biometric recognition technology based on eye-movement dynamics has been in development for more than ten years. Different visual tasks, feature extraction and feature recognition methods are proposed to improve the performance of eye movement biometric system. However, the correct identification and verification rates, especially in long-term experiments, as well as the effects of visual tasks and eye trackers’ temporal and spatial resolution are still the foremost considerations in eye movement biometrics. With a focus on these issues, we proposed a new visual searching task for eye movement data collection and a new class of eye movement features for biometric recognition. In order to demonstrate the improvement of this visual searching task being used in eye movement biometrics, three other eye movement feature extraction methods were also tested on our eye movement datasets. Compared with the original results, all three methods yielded better results as expected. In addition, the biometric performance of these four feature extraction methods was also compared using the equal error rate (EER) and Rank-1 identification rate (Rank-1 IR), and the texture features introduced in this paper were ultimately shown to offer some advantages with regard to long-term stability and robustness over time and spatial precision. Finally, the results of different combinations of these methods with a score-level fusion method indicated that multi-biometric methods perform better in most cases. PMID:29617383

  12. Visual perceptual training reconfigures post-task resting-state functional connectivity with a feature-representation region.

    PubMed

    Sarabi, Mitra Taghizadeh; Aoki, Ryuta; Tsumura, Kaho; Keerativittayayut, Ruedeerat; Jimura, Koji; Nakahara, Kiyoshi

    2018-01-01

    The neural mechanisms underlying visual perceptual learning (VPL) have typically been studied by examining changes in task-related brain activation after training. However, the relationship between post-task "offline" processes and VPL remains unclear. The present study examined this question by obtaining resting-state functional magnetic resonance imaging (fMRI) scans of human brains before and after a task-fMRI session involving visual perceptual training. During the task-fMRI session, participants performed a motion coherence discrimination task in which they judged the direction of moving dots with a coherence level that varied between trials (20, 40, and 80%). We found that stimulus-induced activation increased with motion coherence in the middle temporal cortex (MT+), a feature-specific region representing visual motion. On the other hand, stimulus-induced activation decreased with motion coherence in the dorsal anterior cingulate cortex (dACC) and bilateral insula, regions involved in decision making under perceptual ambiguity. Moreover, by comparing pre-task and post-task rest periods, we revealed that resting-state functional connectivity (rs-FC) with the MT+ was significantly increased after training in widespread cortical regions including the bilateral sensorimotor and temporal cortices. In contrast, rs-FC with the MT+ was significantly decreased in subcortical regions including the thalamus and putamen. Importantly, the training-induced change in rs-FC was observed only with the MT+, but not with the dACC or insula. Thus, our findings suggest that perceptual training induces plastic changes in offline functional connectivity specifically in brain regions representing the trained visual feature, emphasising the distinct roles of feature-representation regions and decision-related regions in VPL.

  13. Young children do not require perceptual-motor feedback to solve Aesop's Fable tasks.

    PubMed

    Miller, Rachael; Jelbert, Sarah A; Loissel, Elsa; Taylor, Alex H; Clayton, Nicola S

    2017-01-01

    we describe could be used comparatively to test whether or not non-human animals require visual feedback to solve water displacement tasks.

  14. Visual mental image generation does not overlap with visual short-term memory: a dual-task interference study.

    PubMed

    Borst, Gregoire; Niven, Elaine; Logie, Robert H

    2012-04-01

    Visual mental imagery and working memory are often assumed to play similar roles in high-order functions, but little is known of their functional relationship. In this study, we investigated whether similar cognitive processes are involved in the generation of visual mental images, in short-term retention of those mental images, and in short-term retention of visual information. Participants encoded and recalled visually or aurally presented sequences of letters under two interference conditions: spatial tapping or irrelevant visual input (IVI). In Experiment 1, spatial tapping selectively interfered with the retention of sequences of letters when participants generated visual mental images from aural presentation of the letter names and when the letters were presented visually. In Experiment 2, encoding of the sequences was disrupted by both interference tasks. However, in Experiment 3, IVI interfered with the generation of the mental images, but not with their retention, whereas spatial tapping was more disruptive during retention than during encoding. Results suggest that the temporary retention of visual mental images and of visual information may be supported by the same visual short-term memory store but that this store is not involved in image generation.

  15. A Multi-Area Stochastic Model for a Covert Visual Search Task.

    PubMed

    Schwemmer, Michael A; Feng, Samuel F; Holmes, Philip J; Gottlieb, Jacqueline; Cohen, Jonathan D

    2015-01-01

    Decisions typically comprise several elements. For example, attention must be directed towards specific objects, their identities recognized, and a choice made among alternatives. Pairs of competing accumulators and drift-diffusion processes provide good models of evidence integration in two-alternative perceptual choices, but more complex tasks requiring the coordination of attention and decision making involve multistage processing and multiple brain areas. Here we consider a task in which a target is located among distractors and its identity reported by lever release. The data comprise reaction times, accuracies, and single unit recordings from two monkeys' lateral interparietal area (LIP) neurons. LIP firing rates distinguish between targets and distractors, exhibit stimulus set size effects, and show response-hemifield congruence effects. These data motivate our model, which uses coupled sets of leaky competing accumulators to represent processes hypothesized to occur in feature-selective areas and limb motor and pre-motor areas, together with the visual selection process occurring in LIP. Model simulations capture the electrophysiological and behavioral data, and fitted parameters suggest that different connection weights between LIP and the other cortical areas may account for the observed behavioral differences between the animals.

  16. The effects of task difficulty on visual search strategy in virtual 3D displays

    PubMed Central

    Pomplun, Marc; Garaas, Tyler W.; Carrasco, Marisa

    2013-01-01

    Analyzing the factors that determine our choice of visual search strategy may shed light on visual behavior in everyday situations. Previous results suggest that increasing task difficulty leads to more systematic search paths. Here we analyze observers' eye movements in an “easy” conjunction search task and a “difficult” shape search task to study visual search strategies in stereoscopic search displays with virtual depth induced by binocular disparity. Standard eye-movement variables, such as fixation duration and initial saccade latency, as well as new measures proposed here, such as saccadic step size, relative saccadic selectivity, and x−y target distance, revealed systematic effects on search dynamics in the horizontal-vertical plane throughout the search process. We found that in the “easy” task, observers start with the processing of display items in the display center immediately after stimulus onset and subsequently move their gaze outwards, guided by extrafoveally perceived stimulus color. In contrast, the “difficult” task induced an initial gaze shift to the upper-left display corner, followed by a systematic left-right and top-down search process. The only consistent depth effect was a trend of initial saccades in the easy task with smallest displays to the items closest to the observer. The results demonstrate the utility of eye-movement analysis for understanding search strategies and provide a first step toward studying search strategies in actual 3D scenarios. PMID:23986539

  17. Problem Behavior and Developmental Tasks in Adolescents with Visual Impairment and Sighted Peers

    ERIC Educational Resources Information Center

    Pfeiffer, Jens P.; Pinquart, Martin

    2013-01-01

    This longitudinal study analyzed associations of problem behavior with the attainment of developmental tasks in 133 adolescents with visual impairment and 449 sighted peers. Higher levels of initial problem behavior predicted less progress in the attainment of developmental tasks at the one-year follow-up only in sighted adolescents. This…

  18. Analyzing Web pages visual scanpaths: between and within tasks variability.

    PubMed

    Drusch, Gautier; Bastien, J M Christian

    2012-01-01

    In this paper, we propose a new method for comparing scanpaths in a bottom-up approach, and a test of the scanpath theory. To do so, we conducted a laboratory experiment in which 113 participants were invited to accomplish a set of tasks on two different websites. For each site, they had to perform two tasks that had to be repeated ounce. The data were analyzed using a procedure similar to the one used by Duchowski et al. [8]. The first step was to automatically identify, then label, AOIs with the mean-shift clustering procedure [19]. Then, scanpaths were compared two by two with a modified version of the string-edit method, which take into account the order of AOIs visualizations [2]. Our results show that scanpaths variability between tasks but within participants seems to be lower than the variability within task for a given participant. In other words participants seem to be more coherent when they perform different tasks, than when they repeat the same tasks. In addition, participants view more of the same AOI when they perform a different task on the same Web page than when they repeated the same task. These results are quite different from what predicts the scanpath theory.

  19. The Modulation of Visual and Task Characteristics of a Writing System on Hemispheric Lateralization in Visual Word Recognition--A Computational Exploration

    ERIC Educational Resources Information Center

    Hsiao, Janet H.; Lam, Sze Man

    2013-01-01

    Through computational modeling, here we examine whether visual and task characteristics of writing systems alone can account for lateralization differences in visual word recognition between different languages without assuming influence from left hemisphere (LH) lateralized language processes. We apply a hemispheric processing model of face…

  20. Dimension- and space-based intertrial effects in visual pop-out search: modulation by task demands for focal-attentional processing.

    PubMed

    Krummenacher, Joseph; Müller, Hermann J; Zehetleitner, Michael; Geyer, Thomas

    2009-03-01

    Two experiments compared reaction times (RTs) in visual search for singleton feature targets defined, variably across trials, in either the color or the orientation dimension. Experiment 1 required observers to simply discern target presence versus absence (simple-detection task); Experiment 2 required them to respond to a detection-irrelevant form attribute of the target (compound-search task). Experiment 1 revealed a marked dimensional intertrial effect of 34 ms for an target defined in a changed versus a repeated dimension, and an intertrial target distance effect, with an 4-ms increase in RTs (per unit of distance) as the separation of the current relative to the preceding target increased. Conversely, in Experiment 2, the dimension change effect was markedly reduced (11 ms), while the intertrial target distance effect was markedly increased (11 ms per unit of distance). The results suggest that dimension change/repetition effects are modulated by the amount of attentional focusing required by the task, with space-based attention altering the integration of dimension-specific feature contrast signals at the level of the overall-saliency map.

  1. A comparison of kinesthetic-tactual and visual displays via a critical tracking task. [for aircraft control

    NASA Technical Reports Server (NTRS)

    Jagacinski, R. J.; Miller, D. P.; Gilson, R. D.

    1979-01-01

    The feasibility of using the critical tracking task to evaluate kinesthetic-tactual displays was examined. The test subjects were asked to control a first-order unstable system with a continuously decreasing time constant by using either visual or tactual unidimensional displays. The results indicate that the critical tracking task is both a feasible and a reliable methodology for assessing tactual tracking. Further, that the critical tracking methodology is as sensitive and valid a measure of tactual tracking as visual tracking is demonstrated by the approximately equal effects of quickening for the tactual and visual displays.

  2. No Evidence for a Saccadic Range Effect for Visually Guided and Memory-Guided Saccades in Simple Saccade-Targeting Tasks

    PubMed Central

    Vitu, Françoise; Engbert, Ralf; Kliegl, Reinhold

    2016-01-01

    Saccades to single targets in peripheral vision are typically characterized by an undershoot bias. Putting this bias to a test, Kapoula [1] used a paradigm in which observers were presented with two different sets of target eccentricities that partially overlapped each other. Her data were suggestive of a saccadic range effect (SRE): There was a tendency for saccades to overshoot close targets and undershoot far targets in a block, suggesting that there was a response bias towards the center of eccentricities in a given block. Our Experiment 1 was a close replication of the original study by Kapoula [1]. In addition, we tested whether the SRE is sensitive to top-down requirements associated with the task, and we also varied the target presentation duration. In Experiments 1 and 2, we expected to replicate the SRE for a visual discrimination task. The simple visual saccade-targeting task in Experiment 3, entailing minimal top-down influence, was expected to elicit a weaker SRE. Voluntary saccades to remembered target locations in Experiment 3 were expected to elicit the strongest SRE. Contrary to these predictions, we did not observe a SRE in any of the tasks. Our findings complement the results reported by Gillen et al. [2] who failed to find the effect in a saccade-targeting task with a very brief target presentation. Together, these results suggest that unlike arm movements, saccadic eye movements are not biased towards making saccades of a constant, optimal amplitude for the task. PMID:27658191

  3. Visual Search Elicits the Electrophysiological Marker of Visual Working Memory

    PubMed Central

    Emrich, Stephen M.; Al-Aidroos, Naseem; Pratt, Jay; Ferber, Susanne

    2009-01-01

    Background Although limited in capacity, visual working memory (VWM) plays an important role in many aspects of visually-guided behavior. Recent experiments have demonstrated an electrophysiological marker of VWM encoding and maintenance, the contralateral delay activity (CDA), which has been shown in multiple tasks that have both explicit and implicit memory demands. Here, we investigate whether the CDA is evident during visual search, a thoroughly-researched task that is a hallmark of visual attention but has no explicit memory requirements. Methodology/Principal Findings The results demonstrate that the CDA is present during a lateralized search task, and that it is similar in amplitude to the CDA observed in a change-detection task, but peaks slightly later. The changes in CDA amplitude during search were strongly correlated with VWM capacity, as well as with search efficiency. These results were paralleled by behavioral findings showing a strong correlation between VWM capacity and search efficiency. Conclusions/Significance We conclude that the activity observed during visual search was generated by the same neural resources that subserve VWM, and that this activity reflects the maintenance of previously searched distractors. PMID:19956663

  4. Dynamic visual noise reduces confidence in short-term memory for visual information.

    PubMed

    Kemps, Eva; Andrade, Jackie

    2012-05-01

    Previous research has shown effects of the visual interference technique, dynamic visual noise (DVN), on visual imagery, but not on visual short-term memory, unless retention of precise visual detail is required. This study tested the prediction that DVN does also affect retention of gross visual information, specifically by reducing confidence. Participants performed a matrix pattern memory task with three retention interval interference conditions (DVN, static visual noise and no interference control) that varied from trial to trial. At recall, participants indicated whether or not they were sure of their responses. As in previous research, DVN did not impair recall accuracy or latency on the task, but it did reduce recall confidence relative to static visual noise and no interference. We conclude that DVN does distort visual representations in short-term memory, but standard coarse-grained recall measures are insensitive to these distortions.

  5. A crossmodal crossover: opposite effects of visual and auditory perceptual load on steady-state evoked potentials to irrelevant visual stimuli.

    PubMed

    Jacoby, Oscar; Hall, Sarah E; Mattingley, Jason B

    2012-07-16

    Mechanisms of attention are required to prioritise goal-relevant sensory events under conditions of stimulus competition. According to the perceptual load model of attention, the extent to which task-irrelevant inputs are processed is determined by the relative demands of discriminating the target: the more perceptually demanding the target task, the less unattended stimuli will be processed. Although much evidence supports the perceptual load model for competing stimuli within a single sensory modality, the effects of perceptual load in one modality on distractor processing in another is less clear. Here we used steady-state evoked potentials (SSEPs) to measure neural responses to irrelevant visual checkerboard stimuli while participants performed either a visual or auditory task that varied in perceptual load. Consistent with perceptual load theory, increasing visual task load suppressed SSEPs to the ignored visual checkerboards. In contrast, increasing auditory task load enhanced SSEPs to the ignored visual checkerboards. This enhanced neural response to irrelevant visual stimuli under auditory load suggests that exhausting capacity within one modality selectively compromises inhibitory processes required for filtering stimuli in another. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Reduced posterior parietal cortex activation after training on a visual search task.

    PubMed

    Bueichekú, Elisenda; Miró-Padilla, Anna; Palomar-García, María-Ángeles; Ventura-Campos, Noelia; Parcet, María-Antonia; Barrós-Loscertales, Alfonso; Ávila, César

    2016-07-15

    Gaining experience on a cognitive task improves behavioral performance and is thought to enhance brain efficiency. Despite the body of literature already published on the effects of training on brain activation, less research has been carried out on visual search attention processes under well controlled conditions. Thirty-six healthy adults divided into trained and control groups completed a pre-post letter-based visual search task fMRI study in one day. Twelve letters were used as targets and ten as distractors. The trained group completed a training session (840 trials) with half the targets between scans. The effects of training were studied at the behavioral and brain levels by controlling for repetition effects using both between-subjects (trained vs. control groups) and within-subject (trained vs. untrained targets) controls. The trained participants reduced their response speed by 31% as a result of training, maintaining their accuracy scores, whereas the control group hardly changed. Neural results revealed that brain changes associated with visual search training were circumscribed to reduced activation in the posterior parietal cortex (PPC) when controlling for group, and they included inferior occipital areas when controlling for targets. The observed behavioral and brain changes are discussed in relation to automatic behavior development. The observed training-related decreases could be associated with increased neural efficiency in specific key regions for task performance. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Spatial Frequency Requirements and Gaze Strategy in Visual-Only and Audiovisual Speech Perception

    ERIC Educational Resources Information Center

    Wilson, Amanda H.; Alsius, Agnès; Parè, Martin; Munhall, Kevin G.

    2016-01-01

    Purpose: The aim of this article is to examine the effects of visual image degradation on performance and gaze behavior in audiovisual and visual-only speech perception tasks. Method: We presented vowel-consonant-vowel utterances visually filtered at a range of frequencies in visual-only, audiovisual congruent, and audiovisual incongruent…

  8. Eye vergence responses during a visual memory task.

    PubMed

    Solé Puig, Maria; Romeo, August; Cañete Crespillo, Jose; Supèr, Hans

    2017-02-08

    In a previous report it was shown that covertly attending visual stimuli produce small convergence of the eyes, and that visual stimuli can give rise to different modulations of the angle of eye vergence, depending on their power to capture attention. Working memory is highly dependent on attention. Therefore, in this study we assessed vergence responses in a memory task. Participants scanned a set of 8 or 12 images for 10 s, and thereafter were presented with a series of single images. One half were repeat images - that is, they belonged to the initial set - and the other half were novel images. Participants were asked to indicate whether or not the images were included in the initial image set. We observed that eyes converge during scanning the set of images and during the presentation of the single images. The convergence was stronger for remembered images compared with the vergence for nonremembered images. Modulation in pupil size did not correspond to behavioural responses. The correspondence between vergence and coding/retrieval processes of memory strengthen the idea of a role for vergence in attention processing of visual information.

  9. The effects of task difficulty and resource requirements on attention strategies

    NASA Technical Reports Server (NTRS)

    King, Teresa

    1991-01-01

    The patterns of attention strategies for task difficulty/resource tasks for which experimental results are presented and analyzed support the hypothesis that subjects may adopt an alternating (rather than concurrent one) when compelled to do so by either the size or the complexity of a visual display. According to the multiple resource model, if subjects had been performing the two tasks concurrently, the cost of this strategy would have been shown by a decrement in the spatial format, rather than the verbal format, due to competition for the same resource. Subjects may apply different strategies as a function of task difficulty and/or resource demand.

  10. The course of visual searching to a target in a fixed location: electrophysiological evidence from an emotional flanker task.

    PubMed

    Dong, Guangheng; Yang, Lizhu; Shen, Yue

    2009-08-21

    The present study investigated the course of visual searching to a target in a fixed location, using an emotional flanker task. Event-related potentials (ERPs) were recorded while participants performed the task. Emotional facial expressions were used as emotion-eliciting triggers. The course of visual searching was analyzed through the emotional effects arising from these emotion-eliciting stimuli. The flanker stimuli showed effects at about 150-250 ms following the stimulus onset, while the effect of target stimuli showed effects at about 300-400 ms. The visual search sequence in an emotional flanker task moved from a whole overview to a specific target, even if the target always appeared at a known location. The processing sequence was "parallel" in this task. The results supported the feature integration theory of visual search.

  11. Web Camera Based Eye Tracking to Assess Visual Memory on a Visual Paired Comparison Task.

    PubMed

    Bott, Nicholas T; Lange, Alex; Rentz, Dorene; Buffalo, Elizabeth; Clopton, Paul; Zola, Stuart

    2017-01-01

    Background: Web cameras are increasingly part of the standard hardware of most smart devices. Eye movements can often provide a noninvasive "window on the brain," and the recording of eye movements using web cameras is a burgeoning area of research. Objective: This study investigated a novel methodology for administering a visual paired comparison (VPC) decisional task using a web camera.To further assess this method, we examined the correlation between a standard eye-tracking camera automated scoring procedure [obtaining images at 60 frames per second (FPS)] and a manually scored procedure using a built-in laptop web camera (obtaining images at 3 FPS). Methods: This was an observational study of 54 clinically normal older adults.Subjects completed three in-clinic visits with simultaneous recording of eye movements on a VPC decision task by a standard eye tracker camera and a built-in laptop-based web camera. Inter-rater reliability was analyzed using Siegel and Castellan's kappa formula. Pearson correlations were used to investigate the correlation between VPC performance using a standard eye tracker camera and a built-in web camera. Results: Strong associations were observed on VPC mean novelty preference score between the 60 FPS eye tracker and 3 FPS built-in web camera at each of the three visits ( r = 0.88-0.92). Inter-rater agreement of web camera scoring at each time point was high (κ = 0.81-0.88). There were strong relationships on VPC mean novelty preference score between 10, 5, and 3 FPS training sets ( r = 0.88-0.94). Significantly fewer data quality issues were encountered using the built-in web camera. Conclusions: Human scoring of a VPC decisional task using a built-in laptop web camera correlated strongly with automated scoring of the same task using a standard high frame rate eye tracker camera.While this method is not suitable for eye tracking paradigms requiring the collection and analysis of fine-grained metrics, such as fixation points, built

  12. A visual processing advantage for young-adolescent deaf observers: Evidence from face and object matching tasks

    PubMed Central

    Megreya, Ahmed M.; Bindemann, Markus

    2017-01-01

    It is unresolved whether the permanent auditory deprivation that deaf people experience leads to the enhanced visual processing of faces. The current study explored this question with a matching task in which observers searched for a target face among a concurrent lineup of ten faces. This was compared with a control task in which the same stimuli were presented upside down, to disrupt typical face processing, and an object matching task. A sample of young-adolescent deaf observers performed with higher accuracy than hearing controls across all of these tasks. These results clarify previous findings and provide evidence for a general visual processing advantage in deaf observers rather than a face-specific effect. PMID:28117407

  13. The time-course of activation in the dorsal and ventral visual streams during landmark cueing and perceptual discrimination tasks.

    PubMed

    Lambert, Anthony J; Wootton, Adrienne

    2017-08-01

    Different patterns of high density EEG activity were elicited by the same peripheral stimuli, in the context of Landmark Cueing and Perceptual Discrimination tasks. The C1 component of the visual event-related potential (ERP) at parietal - occipital electrode sites was larger in the Landmark Cueing task, and source localisation suggested greater activation in the superior parietal lobule (SPL) in this task, compared to the Perceptual Discrimination task, indicating stronger early recruitment of the dorsal visual stream. In the Perceptual Discrimination task, source localisation suggested widespread activation of the inferior temporal gyrus (ITG) and fusiform gyrus (FFG), structures associated with the ventral visual stream, during the early phase of the P1 ERP component. Moreover, during a later epoch (171-270ms after stimulus onset) increased temporal-occipital negativity, and stronger recruitment of ITG and FFG were observed in the Perceptual Discrimination task. These findings illuminate the contrasting functions of the dorsal and ventral visual streams, to support rapid shifts of attention in response to contextual landmarks, and conscious discrimination, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Visual-search models for location-known detection tasks

    NASA Astrophysics Data System (ADS)

    Gifford, H. C.; Karbaschi, Z.; Banerjee, K.; Das, M.

    2017-03-01

    Lesion-detection studies that analyze a fixed target position are generally considered predictive of studies involving lesion search, but the extent of the correlation often goes untested. The purpose of this work was to develop a visual-search (VS) model observer for location-known tasks that, coupled with previous work on localization tasks, would allow efficient same-observer assessments of how search and other task variations can alter study outcomes. The model observer featured adjustable parameters to control the search radius around the fixed lesion location and the minimum separation between suspicious locations. Comparisons were made against human observers, a channelized Hotelling observer and a nonprewhitening observer with eye filter in a two-alternative forced-choice study with simulated lumpy background images containing stationary anatomical and quantum noise. These images modeled single-pinhole nuclear medicine scans with different pinhole sizes. When the VS observer's search radius was optimized with training images, close agreement was obtained with human-observer results. Some performance differences between the humans could be explained by varying the model observer's separation parameter. The range of optimal pinhole sizes identified by the VS observer was in agreement with the range determined with the channelized Hotelling observer.

  15. Illusory conjunctions and perceptual grouping in a visual search task in schizophrenia.

    PubMed

    Carr, V J; Dewis, S A; Lewin, T J

    1998-07-27

    This report describes part of a series of experiments, conducted within the framework of feature integration theory, to determine whether patients with schizophrenia show deficits in preattentive processing. Thirty subjects with a DSM-III-R diagnosis of schizophrenia and 30 age-, gender-, and education-matched normal control subjects completed two computerized experimental tasks, a visual search task assessing the frequency of illusory conjunctions (i.e. false perceptions) under conditions of divided attention (Experiment 3) and a task which examined the effects of perceptual grouping on illusory conjunctions (Experiment 4). We also assessed current symptomatology and its relationship to task performance. Contrary to our hypotheses, schizophrenia subjects did not show higher rates of illusory conjunctions, and the influence of perceptual grouping on the frequency of illusory conjunctions was similar for schizophrenia and control subjects. Nonetheless, specific predictions from feature integration theory about the impact of different target types (Experiment 3) and perceptual groups (Experiment 4) on the likelihood of forming an illusory conjunction were strongly supported, thereby confirming the integrity of the experimental procedures. Overall, these studies revealed no firm evidence that schizophrenia is associated with a preattentive abnormality in visual search using stimuli that differ on the basis of physical characteristics.

  16. Memory under pressure: secondary-task effects on contextual cueing of visual search.

    PubMed

    Annac, Efsun; Manginelli, Angela A; Pollmann, Stefan; Shi, Zhuanghua; Müller, Hermann J; Geyer, Thomas

    2013-11-04

    Repeated display configurations improve visual search. Recently, the question has arisen whether this contextual cueing effect (Chun & Jiang, 1998) is itself mediated by attention, both in terms of selectivity and processing resources deployed. While it is accepted that selective attention modulates contextual cueing (Jiang & Leung, 2005), there is an ongoing debate whether the cueing effect is affected by a secondary working memory (WM) task, specifically at which stage WM influences the cueing effect: the acquisition of configural associations (e.g., Travis, Mattingley, & Dux, 2013) versus the expression of learned associations (e.g., Manginelli, Langer, Klose, & Pollmann, 2013). The present study re-investigated this issue. Observers performed a visual search in combination with a spatial WM task. The latter was applied on either early or late search trials--so as to examine whether WM load hampers the acquisition of or retrieval from contextual memory. Additionally, the WM and search tasks were performed either temporally in parallel or in succession--so as to permit the effects of spatial WM load to be dissociated from those of executive load. The secondary WM task was found to affect cueing in late, but not early, experimental trials--though only when the search and WM tasks were performed in parallel. This pattern suggests that contextual cueing involves a spatial WM resource, with spatial WM providing a workspace linking the current search array with configural long-term memory; as a result, occupying this workspace by a secondary WM task hampers the expression of learned configural associations.

  17. Correlated individual differences suggest a common mechanism underlying metacognition in visual perception and visual short-term memory.

    PubMed

    Samaha, Jason; Postle, Bradley R

    2017-11-29

    Adaptive behaviour depends on the ability to introspect accurately about one's own performance. Whether this metacognitive ability is supported by the same mechanisms across different tasks is unclear. We investigated the relationship between metacognition of visual perception and metacognition of visual short-term memory (VSTM). Experiments 1 and 2 required subjects to estimate the perceived or remembered orientation of a grating stimulus and rate their confidence. We observed strong positive correlations between individual differences in metacognitive accuracy between the two tasks. This relationship was not accounted for by individual differences in task performance or average confidence, and was present across two different metrics of metacognition and in both experiments. A model-based analysis of data from a third experiment showed that a cross-domain correlation only emerged when both tasks shared the same task-relevant stimulus feature. That is, metacognition for perception and VSTM were correlated when both tasks required orientation judgements, but not when the perceptual task was switched to require contrast judgements. In contrast with previous results comparing perception and long-term memory, which have largely provided evidence for domain-specific metacognitive processes, the current findings suggest that metacognition of visual perception and VSTM is supported by a domain-general metacognitive architecture, but only when both domains share the same task-relevant stimulus feature. © 2017 The Author(s).

  18. Effect of a concurrent auditory task on visual search performance in a driving-related image-flicker task.

    PubMed

    Richard, Christian M; Wright, Richard D; Ee, Cheryl; Prime, Steven L; Shimizu, Yujiro; Vavrik, John

    2002-01-01

    The effect of a concurrent auditory task on visual search was investigated using an image-flicker technique. Participants were undergraduate university students with normal or corrected-to-normal vision who searched for changes in images of driving scenes that involved either driving-related (e.g., traffic light) or driving-unrelated (e.g., mailbox) scene elements. The results indicated that response times were significantly slower if the search was accompanied by a concurrent auditory task. In addition, slower overall responses to scenes involving driving-unrelated changes suggest that the underlying process affected by the concurrent auditory task is strategic in nature. These results were interpreted in terms of their implications for using a cellular telephone while driving. Actual or potential applications of this research include the development of safer in-vehicle communication devices.

  19. High-performance execution of psychophysical tasks with complex visual stimuli in MATLAB

    PubMed Central

    Asaad, Wael F.; Santhanam, Navaneethan; McClellan, Steven

    2013-01-01

    Behavioral, psychological, and physiological experiments often require the ability to present sensory stimuli, monitor and record subjects' responses, interface with a wide range of devices, and precisely control the timing of events within a behavioral task. Here, we describe our recent progress developing an accessible and full-featured software system for controlling such studies using the MATLAB environment. Compared with earlier reports on this software, key new features have been implemented to allow the presentation of more complex visual stimuli, increase temporal precision, and enhance user interaction. These features greatly improve the performance of the system and broaden its applicability to a wider range of possible experiments. This report describes these new features and improvements, current limitations, and quantifies the performance of the system in a real-world experimental setting. PMID:23034363

  20. Coding the presence of visual objects in a recurrent neural network of visual cortex.

    PubMed

    Zwickel, Timm; Wachtler, Thomas; Eckhorn, Reinhard

    2007-01-01

    Before we can recognize a visual object, our visual system has to segregate it from its background. This requires a fast mechanism for establishing the presence and location of objects independently of their identity. Recently, border-ownership neurons were recorded in monkey visual cortex which might be involved in this task [Zhou, H., Friedmann, H., von der Heydt, R., 2000. Coding of border ownership in monkey visual cortex. J. Neurosci. 20 (17), 6594-6611]. In order to explain the basic mechanisms required for fast coding of object presence, we have developed a neural network model of visual cortex consisting of three stages. Feed-forward and lateral connections support coding of Gestalt properties, including similarity, good continuation, and convexity. Neurons of the highest area respond to the presence of an object and encode its position, invariant of its form. Feedback connections to the lowest area facilitate orientation detectors activated by contours belonging to potential objects, and thus generate the experimentally observed border-ownership property. This feedback control acts fast and significantly improves the figure-ground segregation required for the consecutive task of object recognition.

  1. Using task effort and pupil size to track covert shifts of visual attention independently of a pupillary light reflex.

    PubMed

    Brocher, Andreas; Harbecke, Raphael; Graf, Tim; Memmert, Daniel; Hüttermann, Stefanie

    2018-03-07

    We tested the link between pupil size and the task effort involved in covert shifts of visual attention. The goal of this study was to establish pupil size as a marker of attentional shifting in the absence of luminance manipulations. In three experiments, participants evaluated two stimuli that were presented peripherally, appearing equidistant from and on opposite sides of eye fixation. The angle between eye fixation and the peripherally presented target stimuli varied from 12.5° to 42.5°. The evaluation of more distant stimuli led to poorer performance than did the evaluation of more proximal stimuli throughout our study, confirming that the former required more effort than the latter. In addition, in Experiment 1 we found that pupil size increased with increasing angle and that this effect could not be reduced to the operation of low-level visual processes in the task. In Experiment 2 the pupil dilated more strongly overall when participants evaluated the target stimuli, which required shifts of attention, than when they merely reported on the target's presence versus absence. Both conditions yielded larger pupils for more distant than for more proximal stimuli, however. In Experiment 3, we manipulated task difficulty more directly, by changing the contrast at which the target stimuli were presented. We replicated the results from Experiment 1 only with the high-contrast stimuli. With stimuli of low contrast, ceiling effects in pupil size were observed. Our data show that the link between task effort and pupil size can be used to track the degree to which an observer covertly shifts attention to or detects stimuli in peripheral vision.

  2. The effect of changing the secondary task in dual-task paradigms for measuring listening effort.

    PubMed

    Picou, Erin M; Ricketts, Todd A

    2014-01-01

    revealed a significant main effect of background noise on listening effort only with the paradigm that required deep processing. Visual cues did not change listening effort as measured with any of the three dual-task paradigms. In Experiment 2 (listeners with hearing loss), analysis of median reaction times revealed expected significant effects of background noise using all three paradigms, but no significant effects of visual cues. None of the dual-task paradigms were sensitive to the effects of visual cues. Furthermore, changing the complexity of the secondary task did not change dual-task paradigm sensitivity to the effects of background noise on listening effort for either group of listeners. However, the paradigm whose secondary task involved deeper processing was more sensitive to the effects of background noise for both groups of listeners. While this paradigm differed from the others in several respects, depth of processing may be partially responsible for the increased sensitivity. Therefore, this paradigm may be a valuable tool for evaluating other factors that affect listening effort.

  3. Task relevance of emotional information affects anxiety-linked attention bias in visual search.

    PubMed

    Dodd, Helen F; Vogt, Julia; Turkileri, Nilgun; Notebaert, Lies

    2017-01-01

    Task relevance affects emotional attention in healthy individuals. Here, we investigate whether the association between anxiety and attention bias is affected by the task relevance of emotion during an attention task. Participants completed two visual search tasks. In the emotion-irrelevant task, participants were asked to indicate whether a discrepant face in a crowd of neutral, middle-aged faces was old or young. Irrelevant to the task, target faces displayed angry, happy, or neutral expressions. In the emotion-relevant task, participants were asked to indicate whether a discrepant face in a crowd of middle-aged neutral faces was happy or angry (target faces also varied in age). Trait anxiety was not associated with attention in the emotion-relevant task. However, in the emotion-irrelevant task, trait anxiety was associated with a bias for angry over happy faces. These findings demonstrate that the task relevance of emotional information affects conclusions about the presence of an anxiety-linked attention bias. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. A Task-Dependent Causal Role for Low-Level Visual Processes in Spoken Word Comprehension

    ERIC Educational Resources Information Center

    Ostarek, Markus; Huettig, Falk

    2017-01-01

    It is well established that the comprehension of spoken words referring to object concepts relies on high-level visual areas in the ventral stream that build increasingly abstract representations. It is much less clear whether basic low-level visual representations are also involved. Here we asked in what task situations low-level visual…

  5. Transfer of an induced preferred retinal locus of fixation to everyday life visual tasks.

    PubMed

    Barraza-Bernal, Maria J; Rifai, Katharina; Wahl, Siegfried

    2017-12-01

    Subjects develop a preferred retinal locus of fixation (PRL) under simulation of central scotoma. If systematic relocations are applied to the stimulus position, PRLs manifest at a location in favor of the stimulus relocation. The present study investigates whether the induced PRL is transferred to important visual tasks in daily life, namely pursuit eye movements, signage reading, and text reading. Fifteen subjects with normal sight participated in the study. To develop a PRL, all subjects underwent a scotoma simulation in a prior study, where five subjects were trained to develop the PRL in the left hemifield, five different subjects on the right hemifield, and the remaining five subjects could naturally chose the PRL location. The position of this PRL was used as baseline. Under central scotoma simulation, subjects performed a pursuit task, a signage reading task, and a reading-text task. In addition, retention of the behavior was also studied. Results showed that the PRL position was transferred to the pursuit task and that the vertical location of the PRL was maintained on the text reading task. However, when reading signage, a function-driven change in PRL location was observed. In addition, retention of the PRL position was observed over weeks and months. These results indicate that PRL positions can be induced and may further transferred to everyday life visual tasks, without hindering function-driven changes in PRL position.

  6. Young children do not require perceptual-motor feedback to solve Aesop’s Fable tasks

    PubMed Central

    Loissel, Elsa; Taylor, Alex H.; Clayton, Nicola S.

    2017-01-01

    -choice paradigm we describe could be used comparatively to test whether or not non-human animals require visual feedback to solve water displacement tasks. PMID:28729951

  7. Psychophysical testing of visual prosthetic devices: a call to establish a multi-national joint task force

    NASA Astrophysics Data System (ADS)

    Rizzo, Joseph F., III; Ayton, Lauren N.

    2014-04-01

    Recent advances in the field of visual prostheses, as showcased in this special feature of Journal of Neural Engineering , have led to promising results from clinical trials of a number of devices. However, as noted by these groups there are many challenges involved in assessing vision of people with profound vision loss. As such, it is important that there is consistency in the methodology and reporting standards for clinical trials of visual prostheses and, indeed, the broader vision restoration research field. Two visual prosthesis research groups, the Boston Retinal Implant Project (BRIP) and Bionic Vision Australia (BVA), have agreed to work cooperatively to establish a multi-national Joint Task Force. The aim of this Task Force will be to develop a consensus statement to guide the methods used to conduct and report psychophysical and clinical results of humans who receive visual prosthetic devices. The overarching goal is to ensure maximum benefit to the implant recipients, not only in the outcomes of the visual prosthesis itself, but also in enabling them to obtain accurate information about this research with ease. The aspiration to develop a Joint Task Force was first promulgated at the inaugural 'The Eye and the Chip' meeting in September 2000. This meeting was established to promote the development of the visual prosthetic field by applying the principles of inclusiveness, openness, and collegiality among the growing body of researchers in this field. These same principles underlie the intent of this Joint Task Force to enhance the quality of psychophysical research within our community. Despite prior efforts, a critical mass of interested parties could not congeal. Renewed interest for developing joint guidelines has developed recently because of a growing awareness of the challenges of obtaining reliable measurements of visual function in patients who are severely visually impaired (in whom testing is inherently noisy), and of the importance of

  8. A neural mechanism of dynamic gating of task-relevant information by top-down influence in primary visual cortex.

    PubMed

    Kamiyama, Akikazu; Fujita, Kazuhisa; Kashimori, Yoshiki

    2016-12-01

    Visual recognition involves bidirectional information flow, which consists of bottom-up information coding from retina and top-down information coding from higher visual areas. Recent studies have demonstrated the involvement of early visual areas such as primary visual area (V1) in recognition and memory formation. V1 neurons are not passive transformers of sensory inputs but work as adaptive processor, changing their function according to behavioral context. Top-down signals affect tuning property of V1 neurons and contribute to the gating of sensory information relevant to behavior. However, little is known about the neuronal mechanism underlying the gating of task-relevant information in V1. To address this issue, we focus on task-dependent tuning modulations of V1 neurons in two tasks of perceptual learning. We develop a model of the V1, which receives feedforward input from lateral geniculate nucleus and top-down input from a higher visual area. We show here that the change in a balance between excitation and inhibition in V1 connectivity is necessary for gating task-relevant information in V1. The balance change well accounts for the modulations of tuning characteristic and temporal properties of V1 neuronal responses. We also show that the balance change of V1 connectivity is shaped by top-down signals with temporal correlations reflecting the perceptual strategies of the two tasks. We propose a learning mechanism by which synaptic balance is modulated. To conclude, top-down signal changes the synaptic balance between excitation and inhibition in V1 connectivity, enabling early visual area such as V1 to gate context-dependent information under multiple task performances. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. A Comparison of the Visual Attention Patterns of People With Aphasia and Adults Without Neurological Conditions for Camera-Engaged and Task-Engaged Visual Scenes.

    PubMed

    Thiessen, Amber; Beukelman, David; Hux, Karen; Longenecker, Maria

    2016-04-01

    The purpose of the study was to compare the visual attention patterns of adults with aphasia and adults without neurological conditions when viewing visual scenes with 2 types of engagement. Eye-tracking technology was used to measure the visual attention patterns of 10 adults with aphasia and 10 adults without neurological conditions. Participants viewed camera-engaged (i.e., human figure facing camera) and task-engaged (i.e., human figure looking at and touching an object) visual scenes. Participants with aphasia responded to engagement cues by focusing on objects of interest more for task-engaged scenes than camera-engaged scenes; however, the difference in their responses to these scenes were not as pronounced as those observed in adults without neurological conditions. In addition, people with aphasia spent more time looking at background areas of interest and less time looking at person areas of interest for camera-engaged scenes than did control participants. Results indicate people with aphasia visually attend to scenes differently than adults without neurological conditions. As a consequence, augmentative and alternative communication (AAC) facilitators may have different visual attention behaviors than the people with aphasia for whom they are constructing or selecting visual scenes. Further examination of the visual attention of people with aphasia may help optimize visual scene selection.

  10. Transcranial direct current stimulation (tDCS) facilitates overall visual search response times but does not interact with visual search task factors

    PubMed Central

    Gordon, Barry

    2018-01-01

    Whether transcranial direct current stimulation (tDCS) affects mental functions, and how any such effects arise from its neural effects, continue to be debated. We investigated whether tDCS applied over the visual cortex (Oz) with a vertex (Cz) reference might affect response times (RTs) in a visual search task. We also examined whether any significant tDCS effects would interact with task factors (target presence, discrimination difficulty, and stimulus brightness) that are known to selectively influence one or the other of the two information processing stages posited by current models of visual search. Based on additive factor logic, we expected that the pattern of interactions involving a significant tDCS effect could help us colocalize the tDCS effect to one (or both) of the processing stages. In Experiment 1 (n = 12), anodal tDCS improved RTs significantly; cathodal tDCS produced a nonsignificant trend toward improvement. However, there were no interactions between the anodal tDCS effect and target presence or discrimination difficulty. In Experiment 2 (n = 18), we manipulated stimulus brightness along with target presence and discrimination difficulty. Anodal and cathodal tDCS both produced significant improvements in RTs. Again, the tDCS effects did not interact with any of the task factors. In Experiment 3 (n = 16), electrodes were placed at Cz and on the upper arm, to test for a possible effect of incidental stimulation of the motor regions under Cz. No effect of tDCS on RTs was found. These findings strengthen the case for tDCS having real effects on cerebral information processing. However, these effects did not clearly arise from either of the two processing stages of the visual search process. We suggest that this is because tDCS has a DIFFUSE, pervasive action across the task-relevant neuroanatomical region(s), not a discrete effect in terms of information processing stages. PMID:29558513

  11. Transcranial direct current stimulation (tDCS) facilitates overall visual search response times but does not interact with visual search task factors.

    PubMed

    Sung, Kyongje; Gordon, Barry

    2018-01-01

    Whether transcranial direct current stimulation (tDCS) affects mental functions, and how any such effects arise from its neural effects, continue to be debated. We investigated whether tDCS applied over the visual cortex (Oz) with a vertex (Cz) reference might affect response times (RTs) in a visual search task. We also examined whether any significant tDCS effects would interact with task factors (target presence, discrimination difficulty, and stimulus brightness) that are known to selectively influence one or the other of the two information processing stages posited by current models of visual search. Based on additive factor logic, we expected that the pattern of interactions involving a significant tDCS effect could help us colocalize the tDCS effect to one (or both) of the processing stages. In Experiment 1 (n = 12), anodal tDCS improved RTs significantly; cathodal tDCS produced a nonsignificant trend toward improvement. However, there were no interactions between the anodal tDCS effect and target presence or discrimination difficulty. In Experiment 2 (n = 18), we manipulated stimulus brightness along with target presence and discrimination difficulty. Anodal and cathodal tDCS both produced significant improvements in RTs. Again, the tDCS effects did not interact with any of the task factors. In Experiment 3 (n = 16), electrodes were placed at Cz and on the upper arm, to test for a possible effect of incidental stimulation of the motor regions under Cz. No effect of tDCS on RTs was found. These findings strengthen the case for tDCS having real effects on cerebral information processing. However, these effects did not clearly arise from either of the two processing stages of the visual search process. We suggest that this is because tDCS has a DIFFUSE, pervasive action across the task-relevant neuroanatomical region(s), not a discrete effect in terms of information processing stages.

  12. Correlation between observation task performance and visual acuity, contrast sensitivity and environmental light in a simulated maritime study.

    PubMed

    Koefoed, Vilhelm F; Assmuss, Jörg; Høvding, Gunnar

    2018-03-25

    To examine the relevance of visual acuity (VA) and index of contrast sensitivity (ICS) as predictors for visual observation task performance in a maritime environment. Sixty naval cadets were recruited to a study on observation tasks in a simulated maritime environment under three different light settings. Their ICS were computed based on contrast sensitivity (CS) data recorded by Optec 6500 and CSV-1000E CS tests. The correlation between object identification distance and VA/ICS was examined by stepwise linear regression. The object detection distance was significantly correlated to the level of environmental light (p < 0.001), but not to the VA or ICS recorded in the test subjects. Female cadets had a significantly shorter target identification range than the male cadets. Neither CS nor VA were found to be significantly correlated to observation task performance. This apparent absence of proven predictive value of visual parameters for observation tasks in a maritime environment may presumably be ascribed to the normal and uniform visual capacity in all our study subjects. © 2018 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  13. Diverse task scheduling for individualized requirements in cloud manufacturing

    NASA Astrophysics Data System (ADS)

    Zhou, Longfei; Zhang, Lin; Zhao, Chun; Laili, Yuanjun; Xu, Lida

    2018-03-01

    Cloud manufacturing (CMfg) has emerged as a new manufacturing paradigm that provides ubiquitous, on-demand manufacturing services to customers through network and CMfg platforms. In CMfg system, task scheduling as an important means of finding suitable services for specific manufacturing tasks plays a key role in enhancing the system performance. Customers' requirements in CMfg are highly individualized, which leads to diverse manufacturing tasks in terms of execution flows and users' preferences. We focus on diverse manufacturing tasks and aim to address their scheduling issue in CMfg. First of all, a mathematical model of task scheduling is built based on analysis of the scheduling process in CMfg. To solve this scheduling problem, we propose a scheduling method aiming for diverse tasks, which enables each service demander to obtain desired manufacturing services. The candidate service sets are generated according to subtask directed graphs. An improved genetic algorithm is applied to searching for optimal task scheduling solutions. The effectiveness of the scheduling method proposed is verified by a case study with individualized customers' requirements. The results indicate that the proposed task scheduling method is able to achieve better performance than some usual algorithms such as simulated annealing and pattern search.

  14. Affective ERP Processing in a Visual Oddball Task: Arousal, Valence, and Gender

    PubMed Central

    Rozenkrants, Bella; Polich, John

    2008-01-01

    Objective To assess affective event-related brain potentials (ERPs) using visual pictures that were highly distinct on arousal level/valence category ratings and a response task. Methods Images from the International Affective Pictures System (IAPS) were selected to obtain distinct affective arousal (low, high) and valence (negative, positive) rating levels. The pictures were used as target stimuli in an oddball paradigm, with a visual pattern as the standard stimulus. Participants were instructed to press a button whenever a picture occurred and to ignore the standard. Task performance and response time did not differ across conditions. Results High-arousal compared to low-arousal stimuli produced larger amplitudes for the N2, P3, early slow wave, and late slow wave components. Valence amplitude effects were weak overall and originated primarily from the later waveform components and interactions with electrode position. Gender differences were negligible. Conclusion The findings suggest that arousal level is the primary determinant of affective oddball processing, and valence minimally influences ERP amplitude. Significance Affective processing engages selective attentional mechanisms that are primarily sensitive to the arousal properties of emotional stimuli. The application and nature of task demands are important considerations for interpreting these effects. PMID:18783987

  15. Spatiotemporal oscillatory dynamics of visual selective attention during a flanker task.

    PubMed

    McDermott, Timothy J; Wiesman, Alex I; Proskovec, Amy L; Heinrichs-Graham, Elizabeth; Wilson, Tony W

    2017-08-01

    The flanker task is a test of visual selective attention that has been widely used to probe error monitoring, response conflict, and related constructs. However, to date, few studies have focused on the selective attention component of this task and imaged the underlying oscillatory dynamics serving task performance. In this study, 21 healthy adults successfully completed an arrow-based version of the Eriksen flanker task during magnetoencephalography (MEG). All MEG data were pre-processed and transformed into the time-frequency domain. Significant oscillatory brain responses were imaged using a beamforming approach, and voxel time series were extracted from the peak responses to identify the temporal dynamics. Across both congruent and incongruent flanker conditions, our results indicated robust decreases in alpha (9-12Hz) activity in medial and lateral occipital regions, bilateral parietal cortices, and cerebellar areas during task performance. In parallel, increases in theta (3-7Hz) oscillatory activity were detected in dorsal and ventral frontal regions, and the anterior cingulate. As per conditional effects, stronger alpha responses (i.e., greater desynchronization) were observed in parietal, occipital, and cerebellar cortices during incongruent relative to congruent trials, whereas the opposite pattern emerged for theta responses (i.e., synchronization) in the anterior cingulate, left dorsolateral prefrontal, and ventral prefrontal cortices. Interestingly, the peak latency of theta responses in these latter brain regions was significantly correlated with reaction time, and may partially explain the amplitude difference observed between congruent and incongruent trials. Lastly, whole-brain exploratory analyses implicated the frontal eye fields, right temporoparietal junction, and premotor cortices. These findings suggest that regions of both the dorsal and ventral attention networks contribute to visual selective attention processes during incongruent trials

  16. Stimulus similarity determines the prevalence of behavioral laterality in a visual discrimination task for mice

    PubMed Central

    Treviño, Mario

    2014-01-01

    Animal choices depend on direct sensory information, but also on the dynamic changes in the magnitude of reward. In visual discrimination tasks, the emergence of lateral biases in the choice record from animals is often described as a behavioral artifact, because these are highly correlated with error rates affecting psychophysical measurements. Here, we hypothesized that biased choices could constitute a robust behavioral strategy to solve discrimination tasks of graded difficulty. We trained mice to swim in a two-alterative visual discrimination task with escape from water as the reward. Their prevalence of making lateral choices increased with stimulus similarity and was present in conditions of high discriminability. While lateralization occurred at the individual level, it was absent, on average, at the population level. Biased choice sequences obeyed the generalized matching law and increased task efficiency when stimulus similarity was high. A mathematical analysis revealed that strongly-biased mice used information from past rewards but not past choices to make their current choices. We also found that the amount of lateralized choices made during the first day of training predicted individual differences in the average learning behavior. This framework provides useful analysis tools to study individualized visual-learning trajectories in mice. PMID:25524257

  17. Advanced Visualization and Interactive Display Rapid Innovation and Discovery Evaluation Research (VISRIDER) Program Task 6: Point Cloud Visualization Techniques for Desktop and Web Platforms

    DTIC Science & Technology

    2017-04-01

    ADVANCED VISUALIZATION AND INTERACTIVE DISPLAY RAPID INNOVATION AND DISCOVERY EVALUATION RESEARCH (VISRIDER) PROGRAM TASK 6: POINT CLOUD...To) OCT 2013 – SEP 2014 4. TITLE AND SUBTITLE ADVANCED VISUALIZATION AND INTERACTIVE DISPLAY RAPID INNOVATION AND DISCOVERY EVALUATION RESEARCH...various point cloud visualization techniques for viewing large scale LiDAR datasets. Evaluate their potential use for thick client desktop platforms

  18. Crack Damage Detection Method via Multiple Visual Features and Efficient Multi-Task Learning Model.

    PubMed

    Wang, Baoxian; Zhao, Weigang; Gao, Po; Zhang, Yufeng; Wang, Zhe

    2018-06-02

    This paper proposes an effective and efficient model for concrete crack detection. The presented work consists of two modules: multi-view image feature extraction and multi-task crack region detection. Specifically, multiple visual features (such as texture, edge, etc.) of image regions are calculated, which can suppress various background noises (such as illumination, pockmark, stripe, blurring, etc.). With the computed multiple visual features, a novel crack region detector is advocated using a multi-task learning framework, which involves restraining the variability for different crack region features and emphasizing the separability between crack region features and complex background ones. Furthermore, the extreme learning machine is utilized to construct this multi-task learning model, thereby leading to high computing efficiency and good generalization. Experimental results of the practical concrete images demonstrate that the developed algorithm can achieve favorable crack detection performance compared with traditional crack detectors.

  19. Chess players' eye movements reveal rapid recognition of complex visual patterns: Evidence from a chess-related visual search task.

    PubMed

    Sheridan, Heather; Reingold, Eyal M

    2017-03-01

    To explore the perceptual component of chess expertise, we monitored the eye movements of expert and novice chess players during a chess-related visual search task that tested anecdotal reports that a key differentiator of chess skill is the ability to visualize the complex moves of the knight piece. Specifically, chess players viewed an array of four minimized chessboards, and they rapidly searched for the target board that allowed a knight piece to reach a target square in three moves. On each trial, there was only one target board (i.e., the "Yes" board), and for the remaining "lure" boards, the knight's path was blocked on either the first move (the "Easy No" board) or the second move (i.e., "the Difficult No" board). As evidence that chess experts can rapidly differentiate complex chess-related visual patterns, the experts (but not the novices) showed longer first-fixation durations on the "Yes" board relative to the "Difficult No" board. Moreover, as hypothesized, the task strongly differentiated chess skill: Reaction times were more than four times faster for the experts relative to novices, and reaction times were correlated with within-group measures of expertise (i.e., official chess ratings, number of hours of practice). These results indicate that a key component of chess expertise is the ability to rapidly recognize complex visual patterns.

  20. Exploring Metacogntive Visual Literacy Tasks for Teaching Astronomy

    NASA Astrophysics Data System (ADS)

    Slater, Timothy F.; Slater, S.; Dwyer, W.

    2010-01-01

    Undoubtedly, astronomy is a scientific enterprise which often results in colorful and inspirational images of the cosmos that naturally capture our attention. Students encountering astronomy in the college classroom are often bombarded with images, movies, simulations, conceptual cartoons, graphs, and charts intended to convey the substance and technological advancement inherent in astronomy. For students who self-identify themselves as visual learners, this aspect can make the science of astronomy come alive. For students who naturally attend to visual aesthetics, this aspect can make astronomy seem relevant. In other words, the visual nature that accompanies much of the scientific realm of astronomy has the ability to connect a wide range of students to science, not just those few who have great abilities and inclinations toward the mathematical analysis world. Indeed, this is fortunate for teachers of astronomy, who actively try to find ways to connect and build astronomical understanding with a broad range of student interests, motivations, and abilities. In the context of learning science, metacognition describes students’ self-monitoring, -regulation, and -awareness when thinking about learning. As such, metacognition is one of the foundational pillars supporting what we know about how people learn. Yet, the astronomy teaching and learning community knows very little about how to operationalize and support students’ metacognition in the classroom. In response, the Conceptual Astronomy, Physics and Earth sciences Research (CAPER) Team is developing and pilot-testing metacogntive tasks in the context of astronomy that focus on visual literacy of astronomical phenomena. In the initial versions, students are presented with a scientifically inaccurate narrative supposedly describing visual information, including images and graphical information, and asked to assess and correct the narrative, in the form of peer evaluation. To guide student thinking, students

  1. Rightward biases in free-viewing visual bisection tasks: implications for leftward responses biases on similar tasks.

    PubMed

    Elias, Lorin J; Robinson, Brent; Saucier, Deborah M

    2005-12-01

    Neurologically normal individuals exhibit strong leftward response biases during free-viewing perceptual judgments of brightness, quantity, and size. When participants view two mirror-reversed objects and they are forced to choose which object appears darker, more numerous, or larger, the stimulus with the relevant feature on the left side is chosen 60-75% of the time. This effect could be influenced by inaccurate judgments of the true centre-point of the objects being compared. In order to test this possibility, 10 participants completed three visual bisection tasks on stimuli known to elicit strong leftward response biases. Participants were monitored using a remote eye-tracking device and instructed to stare at the subjective midpoint of objects presented on a computer screen. Although it was predicted that bisection errors would deviate to the left of centre (as is the case in the line bisection literature), the opposite effect was found. Significant rightward bisection errors were evident on two of the three tasks, and the leftward biases seen during forced-choice tasks could be the result of misjudgments to the right of centre on these same tasks.

  2. Divided visual attention: A comparison of patients with multiple sclerosis and controls, assessed with an optokinetic nystagmus suppression task.

    PubMed

    Williams, Isla M; Schofield, Peter; Khade, Neha; Abel, Larry A

    2016-12-01

    Multiple sclerosis (MS) frequently causes impairment of cognitive function. We compared patients with MS with controls on divided visual attention tasks. The MS patients' and controls' stare optokinetic nystagmus (OKN) was recorded in response to a 24°/s full field stimulus. Suppression of the OKN response, judged by the gain, was measured during tasks dividing visual attention between the fixation target and a second stimulus, central or peripheral, static or dynamic. All participants completed the Audio Recorded Cognitive Screen. MS patients had lower gain on the baseline stare OKN. OKN suppression in divided attention tasks was the same in MS patients as in controls but in both groups was better maintained in static than in dynamic tasks. In only dynamic tasks, older age was associated with less effective OKN suppression. MS patients had lower scores on a timed attention task and on memory. There was no significant correlation between attention or memory and eye movement parameters. Attention, a complex multifaceted construct, has different neural combinations for each task. Despite impairments on some measures of attention, MS patients completed the divided visual attention tasks normally. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Selective visual processing across competition episodes: a theory of task-driven visual attention and working memory

    PubMed Central

    Schneider, Werner X.

    2013-01-01

    The goal of this review is to introduce a theory of task-driven visual attention and working memory (TRAM). Based on a specific biased competition model, the ‘theory of visual attention’ (TVA) and its neural interpretation (NTVA), TRAM introduces the following assumption. First, selective visual processing over time is structured in competition episodes. Within an episode, that is, during its first two phases, a limited number of proto-objects are competitively encoded—modulated by the current task—in activation-based visual working memory (VWM). In processing phase 3, relevant VWM objects are transferred via a short-term consolidation into passive VWM. Second, each time attentional priorities change (e.g. after an eye movement), a new competition episode is initiated. Third, if a phase 3 VWM process (e.g. short-term consolidation) is not finished, whereas a new episode is called, a protective maintenance process allows its completion. After a VWM object change, its protective maintenance process is followed by an encapsulation of the VWM object causing attentional resource costs in trailing competition episodes. Viewed from this perspective, a new explanation of key findings of the attentional blink will be offered. Finally, a new suggestion will be made as to how VWM items might interact with visual search processes. PMID:24018722

  4. Detecting distortion: bridging visual and quantitative reasoning on similarity tasks

    NASA Astrophysics Data System (ADS)

    Cox, Dana C.; Lo, Jane-Jane

    2014-03-01

    This study is focused on identifying and describing the reasoning patterns of middle grade students when examining potentially similar figures. Described here is a framework that includes 11 strategies that students used during clinical interview to differentiate similar and non-similar figures. Two factors were found to influence the strategies students selected: the complexity of the figures being compared and the type of distortion present in nonsimilar pairings. Data from this study support the theory that distortions are identified as a dominant property of figures and that students use the presence and absence of distortion to visually decide if two figures are similar. Furthermore, this study shows that visual reasoning is not as primitive or nonconstructive as represented in earlier literature and supports students who are developing numeric reasoning strategies. This illuminates possible pathways students may take when advancing from using visual and additive reasoning strategies to using multiplicative proportional reasoning on similarity tasks. In particular, distortion detection is a visual activity that enables students to reflect upon and evaluate the validity and accuracy of differentiation and quantify perceived relationships leading to ratio. This study has implications for curriculum developers as well as future research.

  5. The sensory strength of voluntary visual imagery predicts visual working memory capacity.

    PubMed

    Keogh, Rebecca; Pearson, Joel

    2014-10-09

    How much we can actively hold in mind is severely limited and differs greatly from one person to the next. Why some individuals have greater capacities than others is largely unknown. Here, we investigated why such large variations in visual working memory (VWM) capacity might occur, by examining the relationship between visual working memory and visual mental imagery. To assess visual working memory capacity participants were required to remember the orientation of a number of Gabor patches and make subsequent judgments about relative changes in orientation. The sensory strength of voluntary imagery was measured using a previously documented binocular rivalry paradigm. Participants with greater imagery strength also had greater visual working memory capacity. However, they were no better on a verbal number working memory task. Introducing a uniform luminous background during the retention interval of the visual working memory task reduced memory capacity, but only for those with strong imagery. Likewise, for the good imagers increasing background luminance during imagery generation reduced its effect on subsequent binocular rivalry. Luminance increases did not affect any of the subgroups on the verbal number working memory task. Together, these results suggest that luminance was disrupting sensory mechanisms common to both visual working memory and imagery, and not a general working memory system. The disruptive selectivity of background luminance suggests that good imagers, unlike moderate or poor imagers, may use imagery as a mnemonic strategy to perform the visual working memory task. © 2014 ARVO.

  6. Do dyslexic individuals present a reduced visual attention span? Evidence from visual recognition tasks of non-verbal multi-character arrays.

    PubMed

    Yeari, Menahem; Isser, Michal; Schiff, Rachel

    2017-07-01

    A controversy has recently developed regarding the hypothesis that developmental dyslexia may be caused, in some cases, by a reduced visual attention span (VAS). To examine this hypothesis, independent of phonological abilities, researchers tested the ability of dyslexic participants to recognize arrays of unfamiliar visual characters. Employing this test, findings were rather equivocal: dyslexic participants exhibited poor performance in some studies but normal performance in others. The present study explored four methodological differences revealed between the two sets of studies that might underlie their conflicting results. Specifically, in two experiments we examined whether a VAS deficit is (a) specific to recognition of multi-character arrays as wholes rather than of individual characters within arrays, (b) specific to characters' position within arrays rather than to characters' identity, or revealed only under a higher attention load due to (c) low-discriminable characters, and/or (d) characters' short exposure. Furthermore, in this study we examined whether pure dyslexic participants who do not have attention disorder exhibit a reduced VAS. Although comorbidity of dyslexia and attention disorder is common and the ability to sustain attention for a long time plays a major rule in the visual recognition task, the presence of attention disorder was neither evaluated nor ruled out in previous studies. Findings did not reveal any differences between the performance of dyslexic and control participants on eight versions of the visual recognition task. These findings suggest that pure dyslexic individuals do not present a reduced visual attention span.

  7. The effect of visual taskload on critical flicker frequency (CFF) change during performance of a complex monitoring task.

    DOT National Transportation Integrated Search

    1985-10-01

    The present study examined the effect of differing levels of visual taskload on critical flicker frequency (CFF) change during performance of a complex monitoring task. The task employed was designed to functionally simulate the general task characte...

  8. Multiple Electrophysiological Markers of Visual-Attentional Processing in a Novel Task Directed toward Clinical Use

    PubMed Central

    Bolduc-Teasdale, Julie; Jolicoeur, Pierre; McKerral, Michelle

    2012-01-01

    Individuals who have sustained a mild brain injury (e.g., mild traumatic brain injury or mild cerebrovascular stroke) are at risk to show persistent cognitive symptoms (attention and memory) after the acute postinjury phase. Although studies have shown that those patients perform normally on neuropsychological tests, cognitive symptoms remain present, and there is a need for more precise diagnostic tools. The aim of this study was to develop precise and sensitive markers for the diagnosis of post brain injury deficits in visual and attentional functions which could be easily translated in a clinical setting. Using electrophysiology, we have developed a task that allows the tracking of the processes involved in the deployment of visual spatial attention from early stages of visual treatment (N1, P1, N2, and P2) to higher levels of cognitive processing (no-go N2, P3a, P3b, N2pc, SPCN). This study presents a description of this protocol and its validation in 19 normal participants. Results indicated the statistically significant presence of all ERPs aimed to be elicited by this novel task. This task could allow clinicians to track the recovery of the mechanisms involved in the deployment of visual-attentional processing, contributing to better diagnosis and treatment management for persons who suffer a brain injury. PMID:23227309

  9. Nintendo Wii Balance Board is sensitive to effects of visual tasks on standing sway in healthy elderly adults.

    PubMed

    Koslucher, Frank; Wade, Michael G; Nelson, Brent; Lim, Kelvin; Chen, Fu-Chen; Stoffregen, Thomas A

    2012-07-01

    Research has shown that the Nintendo Wii Balance Board (WBB) can reliably detect the quantitative kinematics of the center of pressure in stance. Previous studies used relatively coarse manipulations (1- vs. 2-leg stance, and eyes open vs. closed). We sought to determine whether the WBB could reliably detect postural changes associated with subtle variations in visual tasks. Healthy elderly adults stood on a WBB while performing one of two visual tasks. In the Inspection task, they maintained their gaze within the boundaries of a featureless target. In the Search task, they counted the occurrence of designated target letters within a block of text. Consistent with previous studies using traditional force plates, the positional variability of the center of pressure was reduced during performance of the Search task, relative to movement during performance of the Inspection task. Using detrended fluctuation analysis, a measure of movement dynamics, we found that COP trajectories were more predictable during performance of the Search task than during performance of the Inspection task. The results indicate that the WBB is sensitive to subtle variations in both the magnitude and dynamics of body sway that are related to variations in visual tasks engaged in during stance. The WBB is an inexpensive, reliable technology that can be used to evaluate subtle characteristics of body sway in large or widely dispersed samples. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Early auditory change detection implicitly facilitated by ignored concurrent visual change during a Braille reading task.

    PubMed

    Aoyama, Atsushi; Haruyama, Tomohiro; Kuriki, Shinya

    2013-09-01

    Unconscious monitoring of multimodal stimulus changes enables humans to effectively sense the external environment. Such automatic change detection is thought to be reflected in auditory and visual mismatch negativity (MMN) and mismatch negativity fields (MMFs). These are event-related potentials and magnetic fields, respectively, evoked by deviant stimuli within a sequence of standard stimuli, and both are typically studied during irrelevant visual tasks that cause the stimuli to be ignored. Due to the sensitivity of MMN/MMF to potential effects of explicit attention to vision, however, it is unclear whether multisensory co-occurring changes can purely facilitate early sensory change detection reciprocally across modalities. We adopted a tactile task involving the reading of Braille patterns as a neutral ignore condition, while measuring magnetoencephalographic responses to concurrent audiovisual stimuli that were infrequently deviated either in auditory, visual, or audiovisual dimensions; 1000-Hz standard tones were switched to 1050-Hz deviant tones and/or two-by-two standard check patterns displayed on both sides of visual fields were switched to deviant reversed patterns. The check patterns were set to be faint enough so that the reversals could be easily ignored even during Braille reading. While visual MMFs were virtually undetectable even for visual and audiovisual deviants, significant auditory MMFs were observed for auditory and audiovisual deviants, originating from bilateral supratemporal auditory areas. Notably, auditory MMFs were significantly enhanced for audiovisual deviants from about 100 ms post-stimulus, as compared with the summation responses for auditory and visual deviants or for each of the unisensory deviants recorded in separate sessions. Evidenced by high tactile task performance with unawareness of visual changes, we conclude that Braille reading can successfully suppress explicit attention and that simultaneous multisensory changes can

  11. Testing the accuracy of timing reports in visual timing tasks with a consumer-grade digital camera.

    PubMed

    Smyth, Rachael E; Oram Cardy, Janis; Purcell, David

    2017-06-01

    This study tested the accuracy of a visual timing task using a readily available and relatively inexpensive consumer grade digital camera. A visual inspection time task was recorded using short high-speed video clips and the timing as reported by the task's program was compared to the timing as recorded in the video clips. Discrepancies in these two timing reports were investigated further and based on display refresh rate, a decision was made whether the discrepancy was large enough to affect the results as reported by the task. In this particular study, the errors in timing were not large enough to impact the results of the study. The procedure presented in this article offers an alternative method for performing a timing test, which uses readily available hardware and can be used to test the timing in any software program on any operating system and display.

  12. Effects of task-irrelevant grouping on visual selection in partial report.

    PubMed

    Lunau, Rasmus; Habekost, Thomas

    2017-07-01

    Perceptual grouping modulates performance in attention tasks such as partial report and change detection. Specifically, grouping of search items according to a task-relevant feature improves the efficiency of visual selection. However, the role of task-irrelevant feature grouping is not clearly understood. In the present study, we investigated whether grouping of targets by a task-irrelevant feature influences performance in a partial-report task. In this task, participants must report as many target letters as possible from a briefly presented circular display. The crucial manipulation concerned the color of the elements in these trials. In the sorted-color condition, the color of the display elements was arranged according to the selection criterion, and in the unsorted-color condition, colors were randomly assigned. The distractor cost was inferred by subtracting performance in partial-report trials from performance in a control condition that had no distractors in the display. Across five experiments, we manipulated trial order, selection criterion, and exposure duration, and found that attentional selectivity was improved in sorted-color trials when the exposure duration was 200 ms and the selection criterion was luminance. This effect was accompanied by impaired selectivity in unsorted-color trials. Overall, the results suggest that the benefit of task-irrelevant color grouping of targets is contingent on the processing locus of the selection criterion.

  13. Multiple asynchronous stimulus- and task-dependent hierarchies (STDH) within the visual brain's parallel processing systems.

    PubMed

    Zeki, Semir

    2016-10-01

    Results from a variety of sources, some many years old, lead ineluctably to a re-appraisal of the twin strategies of hierarchical and parallel processing used by the brain to construct an image of the visual world. Contrary to common supposition, there are at least three 'feed-forward' anatomical hierarchies that reach the primary visual cortex (V1) and the specialized visual areas outside it, in parallel. These anatomical hierarchies do not conform to the temporal order with which visual signals reach the specialized visual areas through V1. Furthermore, neither the anatomical hierarchies nor the temporal order of activation through V1 predict the perceptual hierarchies. The latter shows that we see (and become aware of) different visual attributes at different times, with colour leading form (orientation) and directional visual motion, even though signals from fast-moving, high-contrast stimuli are among the earliest to reach the visual cortex (of area V5). Parallel processing, on the other hand, is much more ubiquitous than commonly supposed but is subject to a barely noticed but fundamental aspect of brain operations, namely that different parallel systems operate asynchronously with respect to each other and reach perceptual endpoints at different times. This re-assessment leads to the conclusion that the visual brain is constituted of multiple, parallel and asynchronously operating task- and stimulus-dependent hierarchies (STDH); which of these parallel anatomical hierarchies have temporal and perceptual precedence at any given moment is stimulus and task related, and dependent on the visual brain's ability to undertake multiple operations asynchronously. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  14. 49 CFR 236.1043 - Task analysis and basic requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Positive Train Control Systems § 236.1043 Task analysis and basic requirements. (a) Training structure and... installation, maintenance, repair, modification, inspection, testing, and operating tasks that must be...

  15. 49 CFR 236.1043 - Task analysis and basic requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Positive Train Control Systems § 236.1043 Task analysis and basic requirements. (a) Training structure and... installation, maintenance, repair, modification, inspection, testing, and operating tasks that must be...

  16. 49 CFR 236.1043 - Task analysis and basic requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Positive Train Control Systems § 236.1043 Task analysis and basic requirements. (a) Training structure and... installation, maintenance, repair, modification, inspection, testing, and operating tasks that must be...

  17. 49 CFR 236.1043 - Task analysis and basic requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Positive Train Control Systems § 236.1043 Task analysis and basic requirements. (a) Training structure and... installation, maintenance, repair, modification, inspection, testing, and operating tasks that must be...

  18. 49 CFR 236.1043 - Task analysis and basic requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Positive Train Control Systems § 236.1043 Task analysis and basic requirements. (a) Training structure and... installation, maintenance, repair, modification, inspection, testing, and operating tasks that must be...

  19. The contributions of visual and central attention to visual working memory.

    PubMed

    Souza, Alessandra S; Oberauer, Klaus

    2017-10-01

    We investigated the role of two kinds of attention-visual and central attention-for the maintenance of visual representations in working memory (WM). In Experiment 1 we directed attention to individual items in WM by presenting cues during the retention interval of a continuous delayed-estimation task, and instructing participants to think of the cued items. Attending to items improved recall commensurate with the frequency with which items were attended (0, 1, or 2 times). Experiments 1 and 3 further tested which kind of attention-visual or central-was involved in WM maintenance. We assessed the dual-task costs of two types of distractor tasks, one tapping sustained visual attention and one tapping central attention. Only the central attention task yielded substantial dual-task costs, implying that central attention substantially contributes to maintenance of visual information in WM. Experiment 2 confirmed that the visual-attention distractor task was demanding enough to disrupt performance in a task relying on visual attention. We combined the visual-attention and the central-attention distractor tasks with a multiple object tracking (MOT) task. Distracting visual attention, but not central attention, impaired MOT performance. Jointly, the three experiments provide a double dissociation between visual and central attention, and between visual WM and visual object tracking: Whereas tracking multiple targets across the visual filed depends on visual attention, visual WM depends mostly on central attention.

  20. 49 CFR 236.923 - Task analysis and basic requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... classroom, simulator, computer-based, hands-on, or other formally structured training and testing, except... for Processor-Based Signal and Train Control Systems § 236.923 Task analysis and basic requirements...) Based on a formal task analysis, identify the installation, maintenance, repair, modification...

  1. Task-dependent individual differences in prefrontal connectivity.

    PubMed

    Biswal, Bharat B; Eldreth, Dana A; Motes, Michael A; Rypma, Bart

    2010-09-01

    Recent advances in neuroimaging have permitted testing of hypotheses regarding the neural bases of individual differences, but this burgeoning literature has been characterized by inconsistent results. To test the hypothesis that differences in task demands could contribute to between-study variability in brain-behavior relationships, we had participants perform 2 tasks that varied in the extent of cognitive involvement. We examined connectivity between brain regions during a low-demand vigilance task and a higher-demand digit-symbol visual search task using Granger causality analysis (GCA). Our results showed 1) Significant differences in numbers of frontoparietal connections between low- and high-demand tasks 2) that GCA can detect activity changes that correspond with task-demand changes, and 3) faster participants showed more vigilance-related activity than slower participants, but less visual-search activity. These results suggest that relatively low-demand cognitive performance depends on spontaneous bidirectionally fluctuating network activity, whereas high-demand performance depends on a limited, unidirectional network. The nature of brain-behavior relationships may vary depending on the extent of cognitive demand. High-demand network activity may reflect the extent to which individuals require top-down executive guidance of behavior for successful task performance. Low-demand network activity may reflect task- and performance monitoring that minimizes executive requirements for guidance of behavior.

  2. Task-Dependent Individual Differences in Prefrontal Connectivity

    PubMed Central

    Biswal, Bharat B.; Eldreth, Dana A.; Motes, Michael A.

    2010-01-01

    Recent advances in neuroimaging have permitted testing of hypotheses regarding the neural bases of individual differences, but this burgeoning literature has been characterized by inconsistent results. To test the hypothesis that differences in task demands could contribute to between-study variability in brain-behavior relationships, we had participants perform 2 tasks that varied in the extent of cognitive involvement. We examined connectivity between brain regions during a low-demand vigilance task and a higher-demand digit–symbol visual search task using Granger causality analysis (GCA). Our results showed 1) Significant differences in numbers of frontoparietal connections between low- and high-demand tasks 2) that GCA can detect activity changes that correspond with task-demand changes, and 3) faster participants showed more vigilance-related activity than slower participants, but less visual-search activity. These results suggest that relatively low-demand cognitive performance depends on spontaneous bidirectionally fluctuating network activity, whereas high-demand performance depends on a limited, unidirectional network. The nature of brain-behavior relationships may vary depending on the extent of cognitive demand. High-demand network activity may reflect the extent to which individuals require top-down executive guidance of behavior for successful task performance. Low-demand network activity may reflect task- and performance monitoring that minimizes executive requirements for guidance of behavior. PMID:20064942

  3. Visual Analytics 101

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scholtz, Jean; Burtner, Edwin R.; Cook, Kristin A.

    This course will introduce the field of Visual Analytics to HCI researchers and practitioners highlighting the contributions they can make to this field. Topics will include a definition of visual analytics along with examples of current systems, types of tasks and end users, issues in defining user requirements, design of visualizations and interactions, guidelines and heuristics, the current state of user-centered evaluations, and metrics for evaluation. We encourage designers, HCI researchers, and HCI practitioners to attend to learn how their skills can contribute to advancing the state of the art of visual analytics

  4. Measuring Search Efficiency in Complex Visual Search Tasks: Global and Local Clutter

    ERIC Educational Resources Information Center

    Beck, Melissa R.; Lohrenz, Maura C.; Trafton, J. Gregory

    2010-01-01

    Set size and crowding affect search efficiency by limiting attention for recognition and attention against competition; however, these factors can be difficult to quantify in complex search tasks. The current experiments use a quantitative measure of the amount and variability of visual information (i.e., clutter) in highly complex stimuli (i.e.,…

  5. What Types of Visual Recognition Tasks Are Mediated by the Neural Subsystem that Subserves Face Recognition?

    ERIC Educational Resources Information Center

    Brooks, Brian E.; Cooper, Eric E.

    2006-01-01

    Three divided visual field experiments tested current hypotheses about the types of visual shape representation tasks that recruit the cognitive and neural mechanisms underlying face recognition. Experiment 1 found a right hemisphere advantage for subordinate but not basic-level face recognition. Experiment 2 found a right hemisphere advantage for…

  6. Underestimating numerosity of items in visual search tasks.

    PubMed

    Cassenti, Daniel N; Kelley, Troy D; Ghirardelli, Thomas G

    2010-10-01

    Previous research on numerosity judgments addressed attended items, while the present research addresses underestimation for unattended items in visual search tasks. One potential cause of underestimation for unattended items is that estimates of quantity may depend on viewing a large portion of the display within foveal vision. Another theory follows from the occupancy model: estimating quantity of items in greater proximity to one another increases the likelihood of an underestimation error. Three experimental manipulations addressed aspects of underestimation for unattended items: the size of the distracters, the distance of the target from fixation, and whether items were clustered together. Results suggested that the underestimation effect for unattended items was best explained within a Gestalt grouping framework.

  7. Reverse alignment "mirror image" visualization as a laparoscopic training tool improves task performance.

    PubMed

    Dunnican, Ward J; Singh, T Paul; Ata, Ashar; Bendana, Emma E; Conlee, Thomas D; Dolce, Charles J; Ramakrishnan, Rakesh

    2010-06-01

    Reverse alignment (mirror image) visualization is a disconcerting situation occasionally faced during laparoscopic operations. This occurs when the camera faces back at the surgeon in the opposite direction from which the surgeon's body and instruments are facing. Most surgeons will attempt to optimize trocar and camera placement to avoid this situation. The authors' objective was to determine whether the intentional use of reverse alignment visualization during laparoscopic training would improve performance. A standard box trainer was configured for reverse alignment, and 34 medical students and junior surgical residents were randomized to train with either forward alignment (DIRECT) or reverse alignment (MIRROR) visualization. Enrollees were tested on both modalities before and after a 4-week structured training program specific to their modality. Student's t test was used to determine differences in task performance between the 2 groups. Twenty-one participants completed the study (10 DIRECT, 11 MIRROR). There were no significant differences in performance time between DIRECT or MIRROR participants during forward or reverse alignment initial testing. At final testing, DIRECT participants had improved times only in forward alignment performance; they demonstrated no significant improvement in reverse alignment performance. MIRROR participants had significant time improvement in both forward and reverse alignment performance at final testing. Reverse alignment imaging for laparoscopic training improves task performance for both reverse alignment and forward alignment tasks. This may be translated into improved performance in the operating room when faced with reverse alignment situations. Minimal lab training can account for drastic adaptation to this environment.

  8. 49 CFR 236.923 - Task analysis and basic requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Standards for Processor-Based Signal and Train Control Systems § 236.923 Task analysis and basic requirements..., inspection, testing, and operating tasks that must be performed on a railroad's products. This includes the...

  9. 49 CFR 236.923 - Task analysis and basic requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Standards for Processor-Based Signal and Train Control Systems § 236.923 Task analysis and basic requirements..., inspection, testing, and operating tasks that must be performed on a railroad's products. This includes the...

  10. 49 CFR 236.923 - Task analysis and basic requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Standards for Processor-Based Signal and Train Control Systems § 236.923 Task analysis and basic requirements..., inspection, testing, and operating tasks that must be performed on a railroad's products. This includes the...

  11. 49 CFR 236.923 - Task analysis and basic requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Standards for Processor-Based Signal and Train Control Systems § 236.923 Task analysis and basic requirements..., inspection, testing, and operating tasks that must be performed on a railroad's products. This includes the...

  12. Task Listing for Piano Technology for the Visually Impaired. Competency-Based Education.

    ERIC Educational Resources Information Center

    Virginia State Dept. of Education, Richmond. Div. of Vocational and Adult Education.

    This task listing was developed for use in Piano Technology, a course offered to visually impaired students at the Virginia School for the Deaf and Blind. The listing is intended to be used with the "Trade and Industrial Education Service Area Resource Guide" in the implementation of competency-based education for this population. The…

  13. Visualizing stressful aspects of repetitive motion tasks and opportunities for ergonomic improvements using computer vision.

    PubMed

    Greene, Runyu L; Azari, David P; Hu, Yu Hen; Radwin, Robert G

    2017-11-01

    Patterns of physical stress exposure are often difficult to measure, and the metrics of variation and techniques for identifying them is underdeveloped in the practice of occupational ergonomics. Computer vision has previously been used for evaluating repetitive motion tasks for hand activity level (HAL) utilizing conventional 2D videos. The approach was made practical by relaxing the need for high precision, and by adopting a semi-automatic approach for measuring spatiotemporal characteristics of the repetitive task. In this paper, a new method for visualizing task factors, using this computer vision approach, is demonstrated. After videos are made, the analyst selects a region of interest on the hand to track and the hand location and its associated kinematics are measured for every frame. The visualization method spatially deconstructs and displays the frequency, speed and duty cycle components of tasks that are part of the threshold limit value for hand activity for the purpose of identifying patterns of exposure associated with the specific job factors, as well as for suggesting task improvements. The localized variables are plotted as a heat map superimposed over the video, and displayed in the context of the task being performed. Based on the intensity of the specific variables used to calculate HAL, we can determine which task factors most contribute to HAL, and readily identify those work elements in the task that contribute more to increased risk for an injury. Work simulations and actual industrial examples are described. This method should help practitioners more readily measure and interpret temporal exposure patterns and identify potential task improvements. Copyright © 2017. Published by Elsevier Ltd.

  14. Proactive Interference Does Not Meaningfully Distort Visual Working Memory Capacity Estimates in the Canonical Change Detection Task

    PubMed Central

    Lin, Po-Han; Luck, Steven J.

    2012-01-01

    The change detection task has become a standard method for estimating the storage capacity of visual working memory. Most researchers assume that this task isolates the properties of an active short-term storage system that can be dissociated from long-term memory systems. However, long-term memory storage may influence performance on this task. In particular, memory traces from previous trials may create proactive interference that sometimes leads to errors, thereby reducing estimated capacity. Consequently, the capacity of visual working memory may be higher than is usually thought, and correlations between capacity and other measures of cognition may reflect individual differences in proactive interference rather than individual differences in the capacity of the short-term storage system. Indeed, previous research has shown that change detection performance can be influenced by proactive interference under some conditions. The purpose of the present study was to determine whether the canonical version of the change detection task – in which the to-be-remembered information consists of simple, briefly presented features – is influenced by proactive interference. Two experiments were conducted using methods that ordinarily produce substantial evidence of proactive interference, but no proactive interference was observed. Thus, the canonical version of the change detection task can be used to assess visual working memory capacity with no meaningful influence of proactive interference. PMID:22403556

  15. Proactive interference does not meaningfully distort visual working memory capacity estimates in the canonical change detection task.

    PubMed

    Lin, Po-Han; Luck, Steven J

    2012-01-01

    The change detection task has become a standard method for estimating the storage capacity of visual working memory. Most researchers assume that this task isolates the properties of an active short-term storage system that can be dissociated from long-term memory systems. However, long-term memory storage may influence performance on this task. In particular, memory traces from previous trials may create proactive interference that sometimes leads to errors, thereby reducing estimated capacity. Consequently, the capacity of visual working memory may be higher than is usually thought, and correlations between capacity and other measures of cognition may reflect individual differences in proactive interference rather than individual differences in the capacity of the short-term storage system. Indeed, previous research has shown that change detection performance can be influenced by proactive interference under some conditions. The purpose of the present study was to determine whether the canonical version of the change detection task - in which the to-be-remembered information consists of simple, briefly presented features - is influenced by proactive interference. Two experiments were conducted using methods that ordinarily produce substantial evidence of proactive interference, but no proactive interference was observed. Thus, the canonical version of the change detection task can be used to assess visual working memory capacity with no meaningful influence of proactive interference.

  16. Acquisition of a visual discrimination and reversal learning task by Labrador retrievers.

    PubMed

    Lazarowski, Lucia; Foster, Melanie L; Gruen, Margaret E; Sherman, Barbara L; Case, Beth C; Fish, Richard E; Milgram, Norton W; Dorman, David C

    2014-05-01

    Optimal cognitive ability is likely important for military working dogs (MWD) trained to detect explosives. An assessment of a dog's ability to rapidly learn discriminations might be useful in the MWD selection process. In this study, visual discrimination and reversal tasks were used to assess cognitive performance in Labrador retrievers selected for an explosives detection program using a modified version of the Toronto General Testing Apparatus (TGTA), a system developed for assessing performance in a battery of neuropsychological tests in canines. The results of the current study revealed that, as previously found with beagles tested using the TGTA, Labrador retrievers (N = 16) readily acquired both tasks and learned the discrimination task significantly faster than the reversal task. The present study confirmed that the modified TGTA system is suitable for cognitive evaluations in Labrador retriever MWDs and can be used to further explore effects of sex, phenotype, age, and other factors in relation to canine cognition and learning, and may provide an additional screening tool for MWD selection.

  17. Brief Report: Eye Movements during Visual Search Tasks Indicate Enhanced Stimulus Discriminability in Subjects with PDD

    ERIC Educational Resources Information Center

    Kemner, Chantal; van Ewijk, Lizet; van Engeland, Herman; Hooge, Ignace

    2008-01-01

    Subjects with PDD excel on certain visuo-spatial tasks, amongst which visual search tasks, and this has been attributed to enhanced perceptual discrimination. However, an alternative explanation is that subjects with PDD show a different, more effective search strategy. The present study aimed to test both hypotheses, by measuring eye movements…

  18. Visual perspective taking impairment in children with autistic spectrum disorder.

    PubMed

    Hamilton, Antonia F de C; Brindley, Rachel; Frith, Uta

    2009-10-01

    Evidence from typical development and neuroimaging studies suggests that level 2 visual perspective taking - the knowledge that different people may see the same thing differently at the same time - is a mentalising task. Thus, we would expect children with autism, who fail typical mentalising tasks like false belief, to perform poorly on level 2 visual perspective taking as well. However, prior data on this issue are inconclusive. We re-examined this question, testing a group of 23 young autistic children, aged around 8years with a verbal mental age of around 4years and three groups of typical children (n=60) ranging in age from 4 to 8years on a level 2 visual perspective task and a closely matched mental rotation task. The results demonstrate that autistic children have difficulty with visual perspective taking compared to a task requiring mental rotation, relative to typical children. Furthermore, performance on the level 2 visual perspective taking task correlated with theory of mind performance. These findings resolve discrepancies in previous studies of visual perspective taking in autism, and demonstrate that level 2 visual perspective taking is a mentalising task.

  19. The relation of object naming and other visual speech production tasks: a large scale voxel-based morphometric study.

    PubMed

    Lau, Johnny King L; Humphreys, Glyn W; Douis, Hassan; Balani, Alex; Bickerton, Wai-Ling; Rotshtein, Pia

    2015-01-01

    We report a lesion-symptom mapping analysis of visual speech production deficits in a large group (280) of stroke patients at the sub-acute stage (<120 days post-stroke). Performance on object naming was evaluated alongside three other tests of visual speech production, namely sentence production to a picture, sentence reading and nonword reading. A principal component analysis was performed on all these tests' scores and revealed a 'shared' component that loaded across all the visual speech production tasks and a 'unique' component that isolated object naming from the other three tasks. Regions for the shared component were observed in the left fronto-temporal cortices, fusiform gyrus and bilateral visual cortices. Lesions in these regions linked to both poor object naming and impairment in general visual-speech production. On the other hand, the unique naming component was potentially associated with the bilateral anterior temporal poles, hippocampus and cerebellar areas. This is in line with the models proposing that object naming relies on a left-lateralised language dominant system that interacts with a bilateral anterior temporal network. Neuropsychological deficits in object naming can reflect both the increased demands specific to the task and the more general difficulties in language processing.

  20. Does Proactive Interference Play a Significant Role in Visual Working Memory Tasks?

    ERIC Educational Resources Information Center

    Makovski, Tal

    2016-01-01

    Visual working memory (VWM) is an online memory buffer that is typically assumed to be immune to source memory confusions. Accordingly, the few studies that have investigated the role of proactive interference (PI) in VWM tasks found only a modest PI effect at best. In contrast, a recent study has found a substantial PI effect in that performance…

  1. Similarity relations in visual search predict rapid visual categorization

    PubMed Central

    Mohan, Krithika; Arun, S. P.

    2012-01-01

    How do we perform rapid visual categorization?It is widely thought that categorization involves evaluating the similarity of an object to other category items, but the underlying features and similarity relations remain unknown. Here, we hypothesized that categorization performance is based on perceived similarity relations between items within and outside the category. To this end, we measured the categorization performance of human subjects on three diverse visual categories (animals, vehicles, and tools) and across three hierarchical levels (superordinate, basic, and subordinate levels among animals). For the same subjects, we measured their perceived pair-wise similarities between objects using a visual search task. Regardless of category and hierarchical level, we found that the time taken to categorize an object could be predicted using its similarity to members within and outside its category. We were able to account for several classic categorization phenomena, such as (a) the longer times required to reject category membership; (b) the longer times to categorize atypical objects; and (c) differences in performance across tasks and across hierarchical levels. These categorization times were also accounted for by a model that extracts coarse structure from an image. The striking agreement observed between categorization and visual search suggests that these two disparate tasks depend on a shared coarse object representation. PMID:23092947

  2. Development of visual expertise for reading: rapid emergence of visual familiarity for an artificial script

    PubMed Central

    Maurer, Urs; Blau, Vera C.; Yoncheva, Yuliya N.; McCandliss, Bruce D.

    2010-01-01

    Adults produce left-lateralized N170 responses to visual words relative to control stimuli, even within tasks that do not require active reading. This specialization begins in preschoolers as a right-lateralized N170 effect. We investigated whether this developmental shift reflects an early learning phenomenon, such as attaining visual familiarity with a script, by training adults in an artificial script and measuring N170 responses before and afterward. Training enhanced the N170 response, especially over the right hemisphere. This suggests N170 sensitivity to visual familiarity with a script before reading becomes sufficiently automatic to drive left-lateralized effects in a shallow encoding task. PMID:20614357

  3. Cultural differences in attention: Eye movement evidence from a comparative visual search task.

    PubMed

    Alotaibi, Albandri; Underwood, Geoffrey; Smith, Alastair D

    2017-10-01

    Individual differences in visual attention have been linked to thinking style: analytic thinking (common in individualistic cultures) is thought to promote attention to detail and focus on the most important part of a scene, whereas holistic thinking (common in collectivist cultures) promotes attention to the global structure of a scene and the relationship between its parts. However, this theory is primarily based on relatively simple judgement tasks. We compared groups from Great Britain (an individualist culture) and Saudi Arabia (a collectivist culture) on a more complex comparative visual search task, using simple natural scenes. A higher overall number of fixations for Saudi participants, along with longer search times, indicated less efficient search behaviour than British participants. Furthermore, intra-group comparisons of scan-path for Saudi participants revealed less similarity than within the British group. Together, these findings suggest that there is a positive relationship between an analytic cognitive style and controlled attention. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Age Differences in Visual-Auditory Self-Motion Perception during a Simulated Driving Task

    PubMed Central

    Ramkhalawansingh, Robert; Keshavarz, Behrang; Haycock, Bruce; Shahab, Saba; Campos, Jennifer L.

    2016-01-01

    Recent evidence suggests that visual-auditory cue integration may change as a function of age such that integration is heightened among older adults. Our goal was to determine whether these changes in multisensory integration are also observed in the context of self-motion perception under realistic task constraints. Thus, we developed a simulated driving paradigm in which we provided older and younger adults with visual motion cues (i.e., optic flow) and systematically manipulated the presence or absence of congruent auditory cues to self-motion (i.e., engine, tire, and wind sounds). Results demonstrated that the presence or absence of congruent auditory input had different effects on older and younger adults. Both age groups demonstrated a reduction in speed variability when auditory cues were present compared to when they were absent, but older adults demonstrated a proportionally greater reduction in speed variability under combined sensory conditions. These results are consistent with evidence indicating that multisensory integration is heightened in older adults. Importantly, this study is the first to provide evidence to suggest that age differences in multisensory integration may generalize from simple stimulus detection tasks to the integration of the more complex and dynamic visual and auditory cues that are experienced during self-motion. PMID:27199829

  5. Virtual reality in neurosurgical education: part-task ventriculostomy simulation with dynamic visual and haptic feedback.

    PubMed

    Lemole, G Michael; Banerjee, P Pat; Luciano, Cristian; Neckrysh, Sergey; Charbel, Fady T

    2007-07-01

    Mastery of the neurosurgical skill set involves many hours of supervised intraoperative training. Convergence of political, economic, and social forces has limited neurosurgical resident operative exposure. There is need to develop realistic neurosurgical simulations that reproduce the operative experience, unrestricted by time and patient safety constraints. Computer-based, virtual reality platforms offer just such a possibility. The combination of virtual reality with dynamic, three-dimensional stereoscopic visualization, and haptic feedback technologies makes realistic procedural simulation possible. Most neurosurgical procedures can be conceptualized and segmented into critical task components, which can be simulated independently or in conjunction with other modules to recreate the experience of a complex neurosurgical procedure. We use the ImmersiveTouch (ImmersiveTouch, Inc., Chicago, IL) virtual reality platform, developed at the University of Illinois at Chicago, to simulate the task of ventriculostomy catheter placement as a proof-of-concept. Computed tomographic data are used to create a virtual anatomic volume. Haptic feedback offers simulated resistance and relaxation with passage of a virtual three-dimensional ventriculostomy catheter through the brain parenchyma into the ventricle. A dynamic three-dimensional graphical interface renders changing visual perspective as the user's head moves. The simulation platform was found to have realistic visual, tactile, and handling characteristics, as assessed by neurosurgical faculty, residents, and medical students. We have developed a realistic, haptics-based virtual reality simulator for neurosurgical education. Our first module recreates a critical component of the ventriculostomy placement task. This approach to task simulation can be assembled in a modular manner to reproduce entire neurosurgical procedures.

  6. Brain activations during bimodal dual tasks depend on the nature and combination of component tasks

    PubMed Central

    Salo, Emma; Rinne, Teemu; Salonen, Oili; Alho, Kimmo

    2015-01-01

    We used functional magnetic resonance imaging to investigate brain activations during nine different dual tasks in which the participants were required to simultaneously attend to concurrent streams of spoken syllables and written letters. They performed a phonological, spatial or “simple” (speaker-gender or font-shade) discrimination task within each modality. We expected to find activations associated specifically with dual tasking especially in the frontal and parietal cortices. However, no brain areas showed systematic dual task enhancements common for all dual tasks. Further analysis revealed that dual tasks including component tasks that were according to Baddeley's model “modality atypical,” that is, the auditory spatial task or the visual phonological task, were not associated with enhanced frontal activity. In contrast, for other dual tasks, activity specifically associated with dual tasking was found in the left or bilateral frontal cortices. Enhanced activation in parietal areas, however, appeared not to be specifically associated with dual tasking per se, but rather with intermodal attention switching. We also expected effects of dual tasking in left frontal supramodal phonological processing areas when both component tasks required phonological processing and in right parietal supramodal spatial processing areas when both tasks required spatial processing. However, no such effects were found during these dual tasks compared with their component tasks performed separately. Taken together, the current results indicate that activations during dual tasks depend in a complex manner on specific demands of component tasks. PMID:25767443

  7. Redefining the L2 Listening Construct within an Integrated Writing Task: Considering the Impacts of Visual-Cue Interpretation and Note-Taking

    ERIC Educational Resources Information Center

    Cubilo, Justin; Winke, Paula

    2013-01-01

    Researchers debate whether listening tasks should be supported by visuals. Most empirical research in this area has been conducted on the effects of visual support on listening comprehension tasks employing multiple-choice questions. The present study seeks to expand this research by investigating the effects of video listening passages (vs.…

  8. The fate of task-irrelevant visual motion: perceptual load versus feature-based attention.

    PubMed

    Taya, Shuichiro; Adams, Wendy J; Graf, Erich W; Lavie, Nilli

    2009-11-18

    We tested contrasting predictions derived from perceptual load theory and from recent feature-based selection accounts. Observers viewed moving, colored stimuli and performed low or high load tasks associated with one stimulus feature, either color or motion. The resultant motion aftereffect (MAE) was used to evaluate attentional allocation. We found that task-irrelevant visual features received less attention than co-localized task-relevant features of the same objects. Moreover, when color and motion features were co-localized yet perceived to belong to two distinct surfaces, feature-based selection was further increased at the expense of object-based co-selection. Load theory predicts that the MAE for task-irrelevant motion would be reduced with a higher load color task. However, this was not seen for co-localized features; perceptual load only modulated the MAE for task-irrelevant motion when this was spatially separated from the attended color location. Our results suggest that perceptual load effects are mediated by spatial selection and do not generalize to the feature domain. Feature-based selection operates to suppress processing of task-irrelevant, co-localized features, irrespective of perceptual load.

  9. Executive function is necessary for perspective selection, not Level-1 visual perspective calculation: evidence from a dual-task study of adults.

    PubMed

    Qureshi, Adam W; Apperly, Ian A; Samson, Dana

    2010-11-01

    Previous research suggests that perspective-taking and other "theory of mind" processes may be cognitively demanding for adult participants, and may be disrupted by concurrent performance of a secondary task. In the current study, a Level-1 visual perspective task was administered to 32 adults using a dual-task paradigm in which the secondary task tapped executive function. Results suggested that the secondary task did not affect the calculation of perspective, but did affect the selection of the relevant (Self or Other) perspective for a given trial. This is the first direct evidence of a cognitively efficient process for "theory of mind" in adults that operates independently of executive function. The contrast between this and previous findings points to a distinction between simple perspective-taking and the more complex and cognitively demanding abilities more typically examined in studies of "theory of mind". It is suggested that these findings may provide a parsimonious explanation of the success of infants on 'indirect' measures of perspective-taking that do not explicitly require selection of the relevant perspective. Copyright © 2010 Elsevier B.V. All rights reserved.

  10. The effect of visual-motion time delays on pilot performance in a pursuit tracking task

    NASA Technical Reports Server (NTRS)

    Miller, G. K., Jr.; Riley, D. R.

    1976-01-01

    A study has been made to determine the effect of visual-motion time delays on pilot performance of a simulated pursuit tracking task. Three interrelated major effects have been identified: task difficulty, motion cues, and time delays. As task difficulty, as determined by airplane handling qualities or target frequency, increases, the amount of acceptable time delay decreases. However, when relatively complete motion cues are included in the simulation, the pilot can maintain his performance for considerably longer time delays. In addition, the number of degrees of freedom of motion employed is a significant factor.

  11. Dual-task interference in visual working memory: A limitation in storage capacity but not in encoding or retrieval

    PubMed Central

    Fougnie, Daryl; Marois, René

    2009-01-01

    The concurrent maintenance of two visual working memory (VWM) arrays can lead to profound interference. It is unclear, however, whether these costs arise from limitations in VWM storage capacity (Fougnie & Marois, 2006), or from interference between the storage of one visual array and encoding or retrieval of another visual array (Cowan & Morey, 2007). Here, we show that encoding a VWM array does not interfere with maintenance of another VWM array unless the two displays exceed maintenance capacity (Experiments 1 and 2). Moreover, manipulating the extent to which encoding and maintenance can interfere with one another had no discernable effect on dual-task performance (Experiment 2). Finally, maintenance of a VWM array was not affected by retrieval of information from another VWM array (Experiment 3). Taken together, these findings demonstrate that dual-task interference between two concurrent VWM tasks is due to a capacity-limited store that is independent from encoding and retrieval processes. PMID:19933566

  12. Shifts in Gamma Phase–Amplitude Coupling Frequency from Theta to Alpha Over Posterior Cortex During Visual Tasks

    PubMed Central

    Voytek, Bradley; Canolty, Ryan T.; Shestyuk, Avgusta; Crone, Nathan E.; Parvizi, Josef; Knight, Robert T.

    2010-01-01

    The phase of ongoing theta (4–8 Hz) and alpha (8–12 Hz) electrophysiological oscillations is coupled to high gamma (80–150 Hz) amplitude, which suggests that low-frequency oscillations modulate local cortical activity. While this phase–amplitude coupling (PAC) has been demonstrated in a variety of tasks and cortical regions, it has not been shown whether task demands differentially affect the regional distribution of the preferred low-frequency coupling to high gamma. To address this issue we investigated multiple-rhythm theta/alpha to high gamma PAC in two subjects with implanted subdural electrocorticographic grids. We show that high gamma amplitude couples to the theta and alpha troughs and demonstrate that, during visual tasks, alpha/high gamma coupling preferentially increases in visual cortical regions. These results suggest that low-frequency phase to high-frequency amplitude coupling is modulated by behavioral task and may reflect a mechanism for selection between communicating neuronal networks. PMID:21060716

  13. Task Specificity and the Influence of Memory on Visual Search: Comment on Vo and Wolfe (2012)

    ERIC Educational Resources Information Center

    Hollingworth, Andrew

    2012-01-01

    Recent results from Vo and Wolfe (2012b) suggest that the application of memory to visual search may be task specific: Previous experience searching for an object facilitated later search for that object, but object information acquired during a different task did not appear to transfer to search. The latter inference depended on evidence that a…

  14. Visual performance on detection tasks with double-targets of the same and different difficulty.

    PubMed

    Chan, Alan H S; Courtney, Alan J; Ma, C W

    2002-10-20

    This paper reports a study of measurement of horizontal visual sensitivity limits for 16 subjects in single-target and double-targets detection tasks. Two phases of tests were conducted in the double-targets task; targets of the same difficulty were tested in phase one while targets of different difficulty were tested in phase two. The range of sensitivity for the double-targets test was found to be smaller than that for single-target in both the same and different target difficulty cases. The presence of another target was found to affect performance to a marked degree. Interference effect of the difficult target on detection of the easy one was greater than that of the easy one on the detection of the difficult one. Performance decrement was noted when correct percentage detection was plotted against eccentricity of target in both the single-target and double-targets tests. Nevertheless, the non-significant correlation found between the performance for the two tasks demonstrated that it was impossible to predict quantitatively ability for detection of double targets from the data for single targets. This indicated probable problems in generalizing data for single target visual lobes to those for multiple targets. Also lobe area values obtained from measurements using a single-target task cannot be applied in a mathematical model for situations with multiple occurrences of targets.

  15. Visual selective attention in amnestic mild cognitive impairment.

    PubMed

    McLaughlin, Paula M; Anderson, Nicole D; Rich, Jill B; Chertkow, Howard; Murtha, Susan J E

    2014-11-01

    Subtle deficits in visual selective attention have been found in amnestic mild cognitive impairment (aMCI). However, few studies have explored performance on visual search paradigms or the Simon task, which are known to be sensitive to disease severity in Alzheimer's patients. Furthermore, there is limited research investigating how deficiencies can be ameliorated with exogenous support (auditory cues). Sixteen individuals with aMCI and 14 control participants completed 3 experimental tasks that varied in demand and cue availability: visual search-alerting, visual search-orienting, and Simon task. Visual selective attention was influenced by aMCI, auditory cues, and task characteristics. Visual search abilities were relatively consistent across groups. The aMCI participants were impaired on the Simon task when working memory was required, but conflict resolution was similar to controls. Spatially informative orienting cues improved response times, whereas spatially neutral alerting cues did not influence performance. Finally, spatially informative auditory cues benefited the aMCI group more than controls in the visual search task, specifically at the largest array size where orienting demands were greatest. These findings suggest that individuals with aMCI have working memory deficits and subtle deficiencies in orienting attention and rely on exogenous information to guide attention. © The Author 2013. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Measuring perceived ceiling height in a visual comparison task.

    PubMed

    von Castell, Christoph; Hecht, Heiko; Oberfeld, Daniel

    2017-03-01

    When judging interior space, a dark ceiling is judged to be lower than a light ceiling. The method of metric judgments (e.g., on a centimetre scale) that has typically been used in such tasks may reflect a genuine perceptual effect or it may reflect a cognitively mediated impression. We employed a height-matching method in which perceived ceiling height had to be matched with an adjustable pillar, thus obtaining psychometric functions that allowed for an estimation of the point of subjective equality (PSE) and the difference limen (DL). The height-matching method developed in this paper allows for a direct visual match and does not require metric judgment. It has the added advantage of providing superior precision. Experiment 1 used ceiling heights between 2.90 m and 3.00 m. The PSE proved sensitive to slight changes in perceived ceiling height. The DL was about 3% of the physical ceiling height. Experiment 2 found similar results for lower (2.30 m to 2.50 m) and higher (3.30 m to 3.50 m) ceilings. In Experiment 3, we additionally varied ceiling lightness (light grey vs. dark grey). The height matches showed that the light ceiling appeared significantly higher than the darker ceiling. We therefore attribute the influence of ceiling lightness on perceived ceiling height to a direct perceptual rather than a cognitive effect.

  17. Visual cortex activation in late-onset, Braille naive blind individuals: an fMRI study during semantic and phonological tasks with heard words.

    PubMed

    Burton, Harold; McLaren, Donald G

    2006-01-09

    Visual cortex activity in the blind has been shown in Braille literate people, which raise the question of whether Braille literacy influences cross-modal reorganization. We used fMRI to examine visual cortex activation during semantic and phonological tasks with auditory presentation of words in two late-onset blind individuals who lacked Braille literacy. Multiple visual cortical regions were activated in the Braille naive individuals. Positive BOLD responses were noted in lower tier visuotopic (e.g., V1, V2, VP, and V3) and several higher tier visual areas (e.g., V4v, V8, and BA 37). Activity was more extensive and cross-correlation magnitudes were greater during the semantic compared to the phonological task. These results with Braille naive individuals plausibly suggest that visual deprivation alone induces visual cortex reorganization. Cross-modal reorganization of lower tier visual areas may be recruited by developing skills in attending to selected non-visual inputs (e.g., Braille literacy, enhanced auditory skills). Such learning might strengthen remote connections with multisensory cortical areas. Of necessity, the Braille naive participants must attend to auditory stimulation for language. We hypothesize that learning to attend to non-visual inputs probably strengthens the remaining active synapses following visual deprivation, and thereby, increases cross-modal activation of lower tier visual areas when performing highly demanding non-visual tasks of which reading Braille is just one example.

  18. Complex Visual Adaptations in Squid for Specific Tasks in Different Environments

    PubMed Central

    Chung, Wen-Sung; Marshall, N. Justin

    2017-01-01

    In common with their major competitors, the fish, squid are fast moving visual predators that live over a great range of depths in the ocean. Both squid and fish show a variety of adaptations with respect to optical properties, receptors and their underlying neural circuits, and these adaptations are often linked to the light conditions of their specific niche. In contrast to the extensive investigations of adaptive strategies in fish, vision in response to the varying quantity and quality of available light, our knowledge of visual adaptations in squid remains sparse. This study therefore undertook a comparative study of visual adaptations and capabilities in a number of squid species collected between 0 and 1,200 m. Histology, magnetic resonance imagery (MRI), and depth distributions were used to compare brains, eyes, and visual capabilities, revealing that the squid eye designs reflect the lifestyle and the versatility of neural architecture in its visual system. Tubular eyes and two types of regional retinal deformation were identified and these eye modifications are strongly associated with specific directional visual tasks. In addition, a combination of conventional and immuno-histology demonstrated a new form of a complex retina possessing two inner segment layers in two mid-water squid species which they rhythmically move across a broad range of depths (50–1,000 m). In contrast to their relatives with the regular single-layered inner segment retina live in the upper mesopelagic layer (50–400 m), the new form of retinal interneuronal layers suggests that the visual sensitivity of these two long distance vertical migrants may increase in response to dimmer environments. PMID:28286484

  19. Alpha-Band Rhythms in Visual Task Performance: Phase-Locking by Rhythmic Sensory Stimulation

    PubMed Central

    de Graaf, Tom A.; Gross, Joachim; Paterson, Gavin; Rusch, Tessa; Sack, Alexander T.; Thut, Gregor

    2013-01-01

    Oscillations are an important aspect of neuronal activity. Interestingly, oscillatory patterns are also observed in behaviour, such as in visual performance measures after the presentation of a brief sensory event in the visual or another modality. These oscillations in visual performance cycle at the typical frequencies of brain rhythms, suggesting that perception may be closely linked to brain oscillations. We here investigated this link for a prominent rhythm of the visual system (the alpha-rhythm, 8–12 Hz) by applying rhythmic visual stimulation at alpha-frequency (10.6 Hz), known to lead to a resonance response in visual areas, and testing its effects on subsequent visual target discrimination. Our data show that rhythmic visual stimulation at 10.6 Hz: 1) has specific behavioral consequences, relative to stimulation at control frequencies (3.9 Hz, 7.1 Hz, 14.2 Hz), and 2) leads to alpha-band oscillations in visual performance measures, that 3) correlate in precise frequency across individuals with resting alpha-rhythms recorded over parieto-occipital areas. The most parsimonious explanation for these three findings is entrainment (phase-locking) of ongoing perceptually relevant alpha-band brain oscillations by rhythmic sensory events. These findings are in line with occipital alpha-oscillations underlying periodicity in visual performance, and suggest that rhythmic stimulation at frequencies of intrinsic brain-rhythms can be used to reveal influences of these rhythms on task performance to study their functional roles. PMID:23555873

  20. Low Target Prevalence Is a Stubborn Source of Errors in Visual Search Tasks

    ERIC Educational Resources Information Center

    Wolfe, Jeremy M.; Horowitz, Todd S.; Van Wert, Michael J.; Kenner, Naomi M.; Place, Skyler S.; Kibbi, Nour

    2007-01-01

    In visual search tasks, observers look for targets in displays containing distractors. Likelihood that targets will be missed varies with target prevalence, the frequency with which targets are presented across trials. Miss error rates are much higher at low target prevalence (1%-2%) than at high prevalence (50%). Unfortunately, low prevalence is…

  1. Empiric determination of corrected visual acuity standards for train crews.

    PubMed

    Schwartz, Steven H; Swanson, William H

    2005-08-01

    Probably the most common visual standard for employment in the transportation industry is best-corrected, high-contrast visual acuity. Because such standards were often established absent empiric linkage to job performance, it is possible that a job applicant or employee who has visual acuity less than the standard may be able to satisfactorily perform the required job activities. For the transportation system that we examined, the train crew is required to inspect visually the length of the train before and during the time it leaves the station. The purpose of the inspection is to determine if an individual is in a hazardous position with respect to the train. In this article, we determine the extent to which high-contrast visual acuity can predict performance on a simulated task. Performance at discriminating hazardous from safe conditions, as depicted in projected photographic slides, was determined as a function of visual acuity. For different levels of visual acuity, which was varied through the use of optical defocus, a subject was required to label scenes as hazardous or safe. Task performance was highly correlated with visual acuity as measured under conditions normally used for vision screenings (high-illumination and high-contrast): as the acuity decreases, performance at discriminating hazardous from safe scenes worsens. This empirically based methodology can be used to establish a corrected high-contrast visual acuity standard for safety-sensitive work in transportation that is linked to the performance of a job-critical task.

  2. Application of Cognitive Task Analysis in User Requirements and Prototype Design Presentation/Briefing

    DTIC Science & Technology

    2005-10-01

    AFRL-HE-WP-TP-2005-0030 AIR FORCE RESEARCH LABORATORY Application of Cognitive Task Analysis in User Requirements and Prototype Design Presentation...TITLE AND SUBTITLE 5a. CONTRACT NUMBER FA8650-04-C-6406 Application of Cognitive Task Analysis in User Requirements 5b.GRANTNUMBER and Prototype...maintainer experience 21 21 Questions & Answers Application of Cognitive Task Analysis in User Requirements Definition and Prototype Design Christopher Curtis

  3. Effects of Visual Feedback and Memory on Unintentional Drifts in Performance During Finger Pressing Tasks

    PubMed Central

    Solnik, Stanislaw; Qiao, Mu; Latash, Mark L.

    2017-01-01

    This study tested two hypotheses on the nature of unintentional force drifts elicited by removing visual feedback during accurate force production tasks. The role of working memory (memory hypothesis) was explored in tasks with continuous force production, intermittent force production, and rest intervals over the same time interval. The assumption of unintentional drifts in referent coordinate for the fingertips was tested using manipulations of visual feedback: Young healthy subjects performed accurate steady-state force production tasks by pressing with the two index fingers on individual force sensors with visual feedback on the total force, sharing ratio, both, or none. Predictions based on the memory hypothesis have been falsified. In particular, we observed consistent force drifts to lower force values during continuous force production trials only. No force drift or drifts to higher forces were observed during intermittent force production trials and following rest intervals. The hypotheses based on the idea of drifts in referent finger coordinates have been confirmed. In particular, we observed superposition of two drift processes: A drift of total force to lower magnitudes and a drift of the sharing ratio to 50:50. When visual feedback on total force only was provided, the two finger forces showed drifts in opposite directions. We interpret the findings as evidence for the control of motor actions with changes in referent coordinates for participating effectors. Unintentional drifts in performance are viewed as natural relaxation processes in the involved systems; their typical time reflects stability in the direction of the drift. The magnitude of the drift was higher in the right (dominant) hand, which is consistent with the dynamic dominance hypothesis. PMID:28168396

  4. What you say matters: exploring visual-verbal interactions in visual working memory.

    PubMed

    Mate, Judit; Allen, Richard J; Baqués, Josep

    2012-01-01

    The aim of this study was to explore whether the content of a simple concurrent verbal load task determines the extent of its interference on memory for coloured shapes. The task consisted of remembering four visual items while repeating aloud a pair of words that varied in terms of imageability and relatedness to the task set. At test, a cue appeared that was either the colour or the shape of one of the previously seen objects, with participants required to select the object's other feature from a visual array. During encoding and retention, there were four verbal load conditions: (a) a related, shape-colour pair (from outside the experimental set, i.e., "pink square"); (b) a pair of unrelated but visually imageable, concrete, words (i.e., "big elephant"); (c) a pair of unrelated and abstract words (i.e., "critical event"); and (d) no verbal load. Results showed differential effects of these verbal load conditions. In particular, imageable words (concrete and related conditions) interfered to a greater degree than abstract words. Possible implications for how visual working memory interacts with verbal memory and long-term memory are discussed.

  5. Gaze shifts during dual-tasking stair descent.

    PubMed

    Miyasike-daSilva, Veronica; McIlroy, William E

    2016-11-01

    To investigate the role of vision in stair locomotion, young adults descended a seven-step staircase during unrestricted walking (CONTROL), and while performing a concurrent visual reaction time (RT) task displayed on a monitor. The monitor was located at either 3.5 m (HIGH) or 0.5 m (LOW) above ground level at the end of the stairway, which either restricted (HIGH) or facilitated (LOW) the view of the stairs in the lower field of view as participants walked downstairs. Downward gaze shifts (recorded with an eye tracker) and gait speed were significantly reduced in HIGH and LOW compared with CONTROL. Gaze and locomotor behaviour were not different between HIGH and LOW. However, inter-individual variability increased in HIGH, in which participants combined different response characteristics including slower walking, handrail use, downward gaze, and/or increasing RTs. The fastest RTs occurred in the midsteps (non-transition steps). While gait and visual task performance were not statistically different prior to the top and bottom transition steps, gaze behaviour and RT were more variable prior to transition steps in HIGH. This study demonstrated that, in the presence of a visual task, people do not look down as often when walking downstairs and require minimum adjustments provided that the view of the stairs is available in the lower field of view. The middle of the stairs seems to require less from executive function, whereas visual attention appears a requirement to detect the last transition via gaze shifts or peripheral vision.

  6. Pilot Task Profiles, Human Factors, And Image Realism

    NASA Astrophysics Data System (ADS)

    McCormick, Dennis

    1982-06-01

    Computer Image Generation (CIG) visual systems provide real time scenes for state-of-the-art flight training simulators. The visual system reauires a greater understanding of training tasks, human factors, and the concept of image realism to produce an effective and efficient training scene than is required by other types of visual systems. Image realism must be defined in terms of pilot visual information reauirements. Human factors analysis of training and perception is necessary to determine the pilot's information requirements. System analysis then determines how the CIG and display device can best provide essential information to the pilot. This analysis procedure ensures optimum training effectiveness and system performance.

  7. Visual search performance in the autism spectrum II: the radial frequency search task with additional segmentation cues.

    PubMed

    Almeida, Renita A; Dickinson, J Edwin; Maybery, Murray T; Badcock, Johanna C; Badcock, David R

    2010-12-01

    The Embedded Figures Test (EFT) requires detecting a shape within a complex background and individuals with autism or high Autism-spectrum Quotient (AQ) scores are faster and more accurate on this task than controls. This research aimed to uncover the visual processes producing this difference. Previously we developed a search task using radial frequency (RF) patterns with controllable amounts of target/distracter overlap on which high AQ participants showed more efficient search than low AQ observers. The current study extended the design of this search task by adding two lines which traverse the display on random paths sometimes intersecting target/distracters, other times passing between them. As with the EFT, these lines segment and group the display in ways that are task irrelevant. We tested two new groups of observers and found that while RF search was slowed by the addition of segmenting lines for both groups, the high AQ group retained a consistent search advantage (reflected in a shallower gradient for reaction time as a function of set size) over the low AQ group. Further, the high AQ group were significantly faster and more accurate on the EFT compared to the low AQ group. That is, the results from the present RF search task demonstrate that segmentation and grouping created by intersecting lines does not further differentiate the groups and is therefore unlikely to be a critical factor underlying the EFT performance difference. However, once again, we found that superior EFT performance was associated with shallower gradients on the RF search task. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Development of flight experiment task requirements. Volume 2: Technical Report. Part 2: Appendix H: Tasks-skills data series

    NASA Technical Reports Server (NTRS)

    Hatterick, G. R.

    1972-01-01

    The data sheets presented contain the results of the task analysis portion of the study to identify skill requirements of space shuttle crew personnel. A comprehensive data base is provided of crew functions, operating environments, task dependencies, and task-skills applicable to a representative cross section of earth orbital research experiments.

  9. Human performance in a multiple-task environment: effects of automation reliability on visual attention allocation.

    PubMed

    Cullen, Ralph H; Rogers, Wendy A; Fisk, Arthur D

    2013-11-01

    Diagnostic automation has been posited to alleviate the high demands of multiple-task environments; however, mixed effects have been found pertaining to performance aid success. To better understand these effects, attention allocation must be studied directly. We developed a multiple-task environment to study the effects of automation on visual attention. Participants interacted with a system providing varying levels of automation and automation reliability and then were transferred to a system with no support. Attention allocation was measured by tracking the number of times each task was viewed. We found that participants receiving automation allocated their time according to the task frequency and that tasks that benefited most from automation were most harmed when it was removed. The results suggest that the degree to which automation affects multiple-task performance is dependent on the relative attributes of the tasks involved. Moreover, there is an inverse relationship between support and cost when automation fails. Copyright © 2013 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  10. From Foreground to Background: How Task-Neutral Context Influences Contextual Cueing of Visual Search.

    PubMed

    Zang, Xuelian; Geyer, Thomas; Assumpção, Leonardo; Müller, Hermann J; Shi, Zhuanghua

    2016-01-01

    Selective attention determines the effectiveness of implicit contextual learning (e.g., Jiang and Leung, 2005). Visual foreground-background segmentation, on the other hand, is a key process in the guidance of attention (Wolfe, 2003). In the present study, we examined the impact of foreground-background segmentation on contextual cueing of visual search in three experiments. A visual search display, consisting of distractor 'L's and a target 'T', was overlaid on a task-neutral cuboid on the same depth plane (Experiment 1), on stereoscopically separated depth planes (Experiment 2), or spread over the entire display on the same depth plane (Experiment 3). Half of the search displays contained repeated target-distractor arrangements, whereas the other half was always newly generated. The task-neutral cuboid was constant during an initial training session, but was either rotated by 90° or entirely removed in the subsequent test sessions. We found that the gains resulting from repeated presentation of display arrangements during training (i.e., contextual-cueing effects) were diminished when the cuboid was changed or removed in Experiment 1, but remained intact in Experiments 2 and 3 when the cuboid was placed in a different depth plane, or when the items were randomly spread over the whole display but not on the edges of the cuboid. These findings suggest that foreground-background segmentation occurs prior to contextual learning, and only objects/arrangements that are grouped as foreground are learned over the course of repeated visual search.

  11. Increased Complexities in Visual Search Behavior in Skilled Players for a Self-Paced Aiming Task

    PubMed Central

    Chia, Jingyi S.; Burns, Stephen F.; Barrett, Laura A.; Chow, Jia Y.

    2017-01-01

    The badminton serve is an important shot for winning a rally in a match. It combines good technique with the ability to accurately integrate visual information from the shuttle, racket, opponent, and intended landing point. Despite its importance and repercussive nature, to date no study has looked at the visual search behaviors during badminton service in the singles discipline. Unlike anticipatory tasks (e.g., shot returns), the serve presents an opportunity to explore the role of visual search behaviors in movement control for self-paced tasks. Accordingly, this study examined skill-related differences in visual behavior during the badminton singles serve. Skilled (n = 12) and less skilled (n = 12) participants performed 30 serves to a live opponent, while real-time eye movements were captured using a mobile gaze registration system. Frame-by-frame analyses of 662 serves were made and the skilled players took a longer preparatory time before serving. Visual behavior of the skilled players was characterized by significantly greater number of fixations on more areas of interest per trial than the less skilled. In addition, the skilled players spent a significantly longer time fixating on the court and net, whereas the less skilled players found the shuttle to be more informative. Quiet eye (QE) duration (indicative of superior sports performance) however, did not differ significantly between groups which has implications on the perceived importance of QE in the badminton serve. Moreover, while visual behavior differed by skill level, considerable individual differences were also observed especially within the skilled players. This augments the need for not just group-level analyses, but individualized analysis for a more accurate representation of visual behavior. Findings from this study thus provide an insight to the possible visual search strategies as players serve in net-barrier games. Moreover, this study highlighted an important aspect of badminton relating

  12. Increased Complexities in Visual Search Behavior in Skilled Players for a Self-Paced Aiming Task.

    PubMed

    Chia, Jingyi S; Burns, Stephen F; Barrett, Laura A; Chow, Jia Y

    2017-01-01

    The badminton serve is an important shot for winning a rally in a match. It combines good technique with the ability to accurately integrate visual information from the shuttle, racket, opponent, and intended landing point. Despite its importance and repercussive nature, to date no study has looked at the visual search behaviors during badminton service in the singles discipline. Unlike anticipatory tasks (e.g., shot returns), the serve presents an opportunity to explore the role of visual search behaviors in movement control for self-paced tasks. Accordingly, this study examined skill-related differences in visual behavior during the badminton singles serve. Skilled ( n = 12) and less skilled ( n = 12) participants performed 30 serves to a live opponent, while real-time eye movements were captured using a mobile gaze registration system. Frame-by-frame analyses of 662 serves were made and the skilled players took a longer preparatory time before serving. Visual behavior of the skilled players was characterized by significantly greater number of fixations on more areas of interest per trial than the less skilled. In addition, the skilled players spent a significantly longer time fixating on the court and net, whereas the less skilled players found the shuttle to be more informative. Quiet eye (QE) duration (indicative of superior sports performance) however, did not differ significantly between groups which has implications on the perceived importance of QE in the badminton serve. Moreover, while visual behavior differed by skill level, considerable individual differences were also observed especially within the skilled players. This augments the need for not just group-level analyses, but individualized analysis for a more accurate representation of visual behavior. Findings from this study thus provide an insight to the possible visual search strategies as players serve in net-barrier games. Moreover, this study highlighted an important aspect of badminton

  13. Visual cortex activation in late-onset, Braille naive blind individuals: An fMRI study during semantic and phonological tasks with heard words

    PubMed Central

    Burton, Harold; McLaren, Donald G.

    2013-01-01

    Visual cortex activity in the blind has been shown in Braille literate people, which raise the question of whether Braille literacy influences cross-modal reorganization. We used fMRI to examine visual cortex activation during semantic and phonological tasks with auditory presentation of words in two late-onset blind individuals who lacked Braille literacy. Multiple visual cortical regions were activated in the Braille naive individuals. Positive BOLD responses were noted in lower tier visuotopic (e.g., V1, V2, VP, and V3) and several higher tier visual areas (e.g., V4v, V8, and BA 37). Activity was more extensive and cross-correlation magnitudes were greater during the semantic compared to the phonological task. These results with Braille naive individuals plausibly suggest that visual deprivation alone induces visual cortex reorganization. Cross-modal reorganization of lower tier visual areas may be recruited by developing skills in attending to selected non-visual inputs (e.g., Braille literacy, enhanced auditory skills). Such learning might strengthen remote connections with multisensory cortical areas. Of necessity, the Braille naive participants must attend to auditory stimulation for language. We hypothesize that learning to attend to non-visual inputs probably strengthens the remaining active synapses following visual deprivation, and thereby, increases cross-modal activation of lower tier visual areas when performing highly demanding non-visual tasks of which reading Braille is just one example. PMID:16198053

  14. Sex differences in retention after a visual or a spatial discrimination learning task in brood parasitic shiny cowbirds.

    PubMed

    Astié, Andrea A; Scardamaglia, Romina C; Muzio, Rubén N; Reboreda, Juan C

    2015-10-01

    Females of avian brood parasites, like the shiny cowbird (Molothrus bonariensis), locate host nests and on subsequent days return to parasitize them. This ecological pressure for remembering the precise location of multiple host nests may have selected for superior spatial memory abilities. We tested the hypothesis that shiny cowbirds show sex differences in spatial memory abilities associated with sex differences in host nest searching behavior and relative hippocampus volume. We evaluated sex differences during acquisition, reversal and retention after extinction in a visual and a spatial discrimination learning task. Contrary to our prediction, females did not outperform males in the spatial task in either the acquisition or the reversal phases. Similarly, there were no sex differences in either phase in the visual task. During extinction, in both tasks the retention of females was significantly higher than expected by chance up to 50 days after the last rewarded session (∼85-90% of the trials with correct responses), but the performance of males at that time did not differ than that expected by chance. This last result shows a long-term memory capacity of female shiny cowbirds, which were able to remember information learned using either spatial or visual cues after a long retention interval. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Components of working memory and visual selective attention.

    PubMed

    Burnham, Bryan R; Sabia, Matthew; Langan, Catherine

    2014-02-01

    Load theory (Lavie, N., Hirst, A., De Fockert, J. W., & Viding, E. [2004]. Load theory of selective attention and cognitive control. Journal of Experimental Psychology: General, 133, 339-354.) proposes that control of attention depends on the amount and type of load that is imposed by current processing. Specifically, perceptual load should lead to efficient distractor rejection, whereas working memory load (dual-task coordination) should hinder distractor rejection. Studies support load theory's prediction that working memory load will lead to larger distractor effects; however, these studies used secondary tasks that required only verbal working memory and the central executive. The present study examined which other working memory components (visual, spatial, and phonological) influence visual selective attention. Subjects completed an attentional capture task alone (single-task) or while engaged in a working memory task (dual-task). Results showed that along with the central executive, visual and spatial working memory influenced selective attention, but phonological working memory did not. Specifically, attentional capture was larger when visual or spatial working memory was loaded, but phonological working memory load did not affect attentional capture. The results are consistent with load theory and suggest specific components of working memory influence visual selective attention. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  16. The Attentional Boost Effect: Transient increases in attention to one task enhance performance in a second task.

    PubMed

    Swallow, Khena M; Jiang, Yuhong V

    2010-04-01

    Recent work on event perception suggests that perceptual processing increases when events change. An important question is how such changes influence the way other information is processed, particularly during dual-task performance. In this study, participants monitored a long series of distractor items for an occasional target as they simultaneously encoded unrelated background scenes. The appearance of an occasional target could have two opposite effects on the secondary task: It could draw attention away from the second task, or, as a change in the ongoing event, it could improve secondary task performance. Results were consistent with the second possibility. Memory for scenes presented simultaneously with the targets was better than memory for scenes that preceded or followed the targets. This effect was observed when the primary detection task involved visual feature oddball detection, auditory oddball detection, and visual color-shape conjunction detection. It was eliminated when the detection task was omitted, and when it required an arbitrary response mapping. The appearance of occasional, task-relevant events appears to trigger a temporal orienting response that facilitates processing of concurrently attended information (Attentional Boost Effect). Copyright 2009 Elsevier B.V. All rights reserved.

  17. The Attentional Boost Effect: Transient Increases in Attention to One Task Enhance Performance in a Second Task

    PubMed Central

    Swallow, Khena M.; Jiang, Yuhong V.

    2009-01-01

    Recent work on event perception suggests that perceptual processing increases when events change. An important question is how such changes influence the way other information is processed, particularly during dual-task performance. In this study, participants monitored a long series of distractor items for an occasional target as they simultaneously encoded unrelated background scenes. The appearance of an occasional target could have two opposite effects on the secondary task: It could draw attention away from the second task, or, as a change in the ongoing event, it could improve secondary task performance. Results were consistent with the second possibility. Memory for scenes presented simultaneously with the targets was better than memory for scenes that preceded or followed the targets. This effect was observed when the primary detection task involved visual feature oddball detection, auditory oddball detection, and visual color-shape conjunction detection. It was eliminated when the detection task was omitted, and when it required an arbitrary response mapping. The appearance of occasional, task-relevant events appears to trigger a temporal orienting response that facilitates processing of concurrently attended information (Attentional Boost Effect). PMID:20080232

  18. Irrelevant reward and selection histories have different influences on task-relevant attentional selection.

    PubMed

    MacLean, Mary H; Giesbrecht, Barry

    2015-07-01

    Task-relevant and physically salient features influence visual selective attention. In the present study, we investigated the influence of task-irrelevant and physically nonsalient reward-associated features on visual selective attention. Two hypotheses were tested: One predicts that the effects of target-defining task-relevant and task-irrelevant features interact to modulate visual selection; the other predicts that visual selection is determined by the independent combination of relevant and irrelevant feature effects. These alternatives were tested using a visual search task that contained multiple targets, placing a high demand on the need for selectivity, and that was data-limited and required unspeeded responses, emphasizing early perceptual selection processes. One week prior to the visual search task, participants completed a training task in which they learned to associate particular colors with a specific reward value. In the search task, the reward-associated colors were presented surrounding targets and distractors, but were neither physically salient nor task-relevant. In two experiments, the irrelevant reward-associated features influenced performance, but only when they were presented in a task-relevant location. The costs induced by the irrelevant reward-associated features were greater when they oriented attention to a target than to a distractor. In a third experiment, we examined the effects of selection history in the absence of reward history and found that the interaction between task relevance and selection history differed, relative to when the features had previously been associated with reward. The results indicate that under conditions that demand highly efficient perceptual selection, physically nonsalient task-irrelevant and task-relevant factors interact to influence visual selective attention.

  19. Context matters: the structure of task goals affects accuracy in multiple-target visual search.

    PubMed

    Clark, Kait; Cain, Matthew S; Adcock, R Alison; Mitroff, Stephen R

    2014-05-01

    Career visual searchers such as radiologists and airport security screeners strive to conduct accurate visual searches, but despite extensive training, errors still occur. A key difference between searches in radiology and airport security is the structure of the search task: Radiologists typically scan a certain number of medical images (fixed objective), and airport security screeners typically search X-rays for a specified time period (fixed duration). Might these structural differences affect accuracy? We compared performance on a search task administered either under constraints that approximated radiology or airport security. Some displays contained more than one target because the presence of multiple targets is an established source of errors for career searchers, and accuracy for additional targets tends to be especially sensitive to contextual conditions. Results indicate that participants searching within the fixed objective framework produced more multiple-target search errors; thus, adopting a fixed duration framework could improve accuracy for career searchers. Copyright © 2013 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  20. Closed head injury and perceptual processing in dual-task situations.

    PubMed

    Hein, G; Schubert, T; von Cramon, D Y

    2005-01-01

    Using a classical psychological refractory period (PRP) paradigm we investigated whether increased interference between dual-task input processes is one possible source of dual-task deficits in patients with closed-head injury (CHI). Patients and age-matched controls were asked to give speeded motor reactions to an auditory and a visual stimulus. The perceptual difficulty of the visual stimulus was manipulated by varying its intensity. The results of Experiment 1 showed that CHI patients suffer from increased interference between dual-task input processes, which is related to the salience of the visual stimulus. A second experiment indicated that this input interference may be specific to brain damage following CHI. It is not evident in other groups of neurological patients like Parkinson's disease patients. We conclude that the non-interfering processing of input stages in dual-tasks requires cognitive control. A decline in the control of input processes should be considered as one source of dual-task deficits in CHI patients.

  1. Throwing out the rules: anticipatory alpha-band oscillatory attention mechanisms during task-set reconfigurations.

    PubMed

    Foxe, John J; Murphy, Jeremy W; De Sanctis, Pierfilippo

    2014-06-01

    We assessed the role of alpha-band oscillatory activity during a task-switching design that required participants to switch between an auditory and a visual task, while task-relevant audiovisual inputs were simultaneously presented. Instructional cues informed participants which task to perform on a given trial and we assessed alpha-band power in the short 1.35-s period intervening between the cue and the task-imperative stimuli, on the premise that attentional biasing mechanisms would be deployed to resolve competition between the auditory and visual inputs. Prior work had shown that alpha-band activity was differentially deployed depending on the modality of the cued task. Here, we asked whether this activity would, in turn, be differentially deployed depending on whether participants had just made a switch of task or were being asked to simply repeat the task. It is well established that performance speed and accuracy are poorer on switch than on repeat trials. Here, however, the use of instructional cues completely mitigated these classic switch-costs. Measures of alpha-band synchronisation and desynchronisation showed that there was indeed greater and earlier differential deployment of alpha-band activity on switch vs. repeat trials. Contrary to our hypothesis, this differential effect was entirely due to changes in the amount of desynchronisation observed during switch and repeat trials of the visual task, with more desynchronisation over both posterior and frontal scalp regions during switch-visual trials. These data imply that particularly vigorous, and essentially fully effective, anticipatory biasing mechanisms resolved the competition between competing auditory and visual inputs when a rapid switch of task was required. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  2. Flexible attention allocation to visual and auditory working memory tasks: manipulating reward induces a trade-off.

    PubMed

    Morey, Candice Coker; Cowan, Nelson; Morey, Richard D; Rouder, Jeffery N

    2011-02-01

    Prominent roles for general attention resources are posited in many models of working memory, but the manner in which these can be allocated differs between models or is not sufficiently specified. We varied the payoffs for correct responses in two temporally-overlapping recognition tasks, a visual array comparison task and a tone sequence comparison task. In the critical conditions, an increase in reward for one task corresponded to a decrease in reward for the concurrent task, but memory load remained constant. Our results show patterns of interference consistent with a trade-off between the tasks, suggesting that a shared resource can be flexibly divided, rather than only fully allotted to either of the tasks. Our findings support a role for a domain-general resource in models of working memory, and furthermore suggest that this resource is flexibly divisible.

  3. Secondary visual workload capability with primary visual and kinesthetic-tactual displays

    NASA Technical Reports Server (NTRS)

    Gilson, R. D.; Burke, M. W.; Jagacinski, R. J.

    1978-01-01

    Subjects performed a cross-adaptive tracking task with a visual secondary display and either a visual or a quickened kinesthetic-tactual (K-T) primary display. The quickened K-T display resulted in superior secondary task performance. Comparisons of secondary workload capability with integrated and separated visual displays indicated that the superiority of the quickened K-T display was not simply due to the elimination of visual scanning. When subjects did not have to perform a secondary task, there was no significant difference between visual and quickened K-T displays in performing a critical tracking task.

  4. Visual Attention Allocation Between Robotic Arm and Environmental Process Control: Validating the STOM Task Switching Model

    NASA Technical Reports Server (NTRS)

    Wickens, Christopher; Vieanne, Alex; Clegg, Benjamin; Sebok, Angelia; Janes, Jessica

    2015-01-01

    Fifty six participants time shared a spacecraft environmental control system task with a realistic space robotic arm control task in either a manual or highly automated version. The former could suffer minor failures, whose diagnosis and repair were supported by a decision aid. At the end of the experiment this decision aid unexpectedly failed. We measured visual attention allocation and switching between the two tasks, in each of the eight conditions formed by manual-automated arm X expected-unexpected failure X monitoring- failure management. We also used our multi-attribute task switching model, based on task attributes of priority interest, difficulty and salience that were self-rated by participants, to predict allocation. An un-weighted model based on attributes of difficulty, interest and salience accounted for 96 percent of the task allocation variance across the 8 different conditions. Task difficulty served as an attractor, with more difficult tasks increasing the tendency to stay on task.

  5. Pathways to Identity: Aiding Law Enforcement in Identification Tasks With Visual Analytics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruce, Joseph R.; Scholtz, Jean; Hodges, Duncan

    The nature of identity has changed dramatically in recent years, and has grown in complexity. Identities are defined in multiple domains: biological and psychological elements strongly contribute, but also biographical and cyber elements are necessary to complete the picture. Law enforcement is beginning to adjust to these changes, recognizing its importance in criminal justice. The SuperIdentity project seeks to aid law enforcement officials in their identification tasks through research of techniques for discovering identity traits, generation of statistical models of identity and analysis of identity traits through visualization. We present use cases compiled through user interviews in multiple fields, includingmore » law enforcement, as well as the modeling and visualization tools design to aid in those use cases.« less

  6. Pathways to Identity. Using Visualization to Aid Law Enforcement in Identification Tasks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruce, Joseph R.; Scholtz, Jean; Hodges, Duncan

    The nature of identity has changed dramatically in recent years and has grown in complexity. Identities are defined in multiple domains: biological and psychological elements strongly contribute, but biographical and cyber elements also are necessary to complete the picture. Law enforcement is beginning to adjust to these changes, recognizing identity’s importance in criminal justice. The SuperIdentity project seeks to aid law enforcement officials in their identification tasks through research of techniques for discovering identity traits, generation of statistical models of identity and analysis of identity traits through visualization. We present use cases compiled through user interviews in multiple fields, includingmore » law enforcement, and describe the modeling and visualization tools design to aid in those use cases.« less

  7. Visual field tunneling in aviators induced by memory demands.

    PubMed

    Williams, L J

    1995-04-01

    Aviators are required rapidly and accurately to process enormous amounts of visual information located foveally and peripherally. The present study, expanding upon an earlier study (Williams, 1988), required young aviators to process within the framework of a single eye fixation a briefly displayed foveally presented memory load while simultaneously trying to identify common peripheral targets presented on the same display at locations up to 4.5 degrees of visual angle from the fixation point. This task, as well as a character classification task (Williams, 1985, 1988), has been shown to be very difficult for nonaviators: It results in a tendency toward tunnel vision. Limited preliminary measurements of peripheral accuracy suggested that aviators might be less susceptible than nonaviators to this visual tunneling. The present study demonstrated moderate susceptibility to cognitively induced tunneling in aviators when the foveal task was sufficiently difficult and reaction time was the principal dependent measure.

  8. Task modulates functional connectivity networks in free viewing behavior.

    PubMed

    Seidkhani, Hossein; Nikolaev, Andrey R; Meghanathan, Radha Nila; Pezeshk, Hamid; Masoudi-Nejad, Ali; van Leeuwen, Cees

    2017-10-01

    In free visual exploration, eye-movement is immediately followed by dynamic reconfiguration of brain functional connectivity. We studied the task-dependency of this process in a combined visual search-change detection experiment. Participants viewed two (nearly) same displays in succession. First time they had to find and remember multiple targets among distractors, so the ongoing task involved memory encoding. Second time they had to determine if a target had changed in orientation, so the ongoing task involved memory retrieval. From multichannel EEG recorded during 200 ms intervals time-locked to fixation onsets, we estimated the functional connectivity using a weighted phase lag index at the frequencies of theta, alpha, and beta bands, and derived global and local measures of the functional connectivity graphs. We found differences between both memory task conditions for several network measures, such as mean path length, radius, diameter, closeness and eccentricity, mainly in the alpha band. Both the local and the global measures indicated that encoding involved a more segregated mode of operation than retrieval. These differences arose immediately after fixation onset and persisted for the entire duration of the lambda complex, an evoked potential commonly associated with early visual perception. We concluded that encoding and retrieval differentially shape network configurations involved in early visual perception, affecting the way the visual input is processed at each fixation. These findings demonstrate that task requirements dynamically control the functional connectivity networks involved in early visual perception. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Exploring the role of task performance and learning style on prefrontal hemodynamics during a working memory task.

    PubMed

    Anderson, Afrouz A; Parsa, Kian; Geiger, Sydney; Zaragoza, Rachel; Kermanian, Riley; Miguel, Helga; Dashtestani, Hadis; Chowdhry, Fatima A; Smith, Elizabeth; Aram, Siamak; Gandjbakhche, Amir H

    2018-01-01

    Existing literature outlines the quality and location of activation in the prefrontal cortex (PFC) during working memory (WM) tasks. However, the effects of individual differences on the underlying neural process of WM tasks are still unclear. In this functional near infrared spectroscopy study, we administered a visual and auditory n-back task to examine activation in the PFC while considering the influences of task performance, and preferred learning strategy (VARK score). While controlling for age, results indicated that high performance (HP) subjects (accuracy > 90%) showed task dependent lower activation compared to normal performance subjects in PFC region Specifically HP groups showed lower activation in left dorsolateral PFC (DLPFC) region during performance of auditory task whereas during visual task they showed lower activation in the right DLPFC. After accounting for learning style, we found a correlation between visual and aural VARK score and level of activation in the PFC. Subjects with higher visual VARK scores displayed lower activation during auditory task in left DLPFC, while those with higher visual scores exhibited higher activation during visual task in bilateral DLPFC. During performance of auditory task, HP subjects had higher visual VARK scores compared to NP subjects indicating an effect of learning style on the task performance and activation. The results of this study show that learning style and task performance can influence PFC activation, with applications toward neurological implications of learning style and populations with deficits in auditory or visual processing.

  10. Exploring the role of task performance and learning style on prefrontal hemodynamics during a working memory task

    PubMed Central

    Anderson, Afrouz A.; Parsa, Kian; Geiger, Sydney; Zaragoza, Rachel; Kermanian, Riley; Miguel, Helga; Chowdhry, Fatima A.; Smith, Elizabeth; Aram, Siamak; Gandjbakhche, Amir H.

    2018-01-01

    Existing literature outlines the quality and location of activation in the prefrontal cortex (PFC) during working memory (WM) tasks. However, the effects of individual differences on the underlying neural process of WM tasks are still unclear. In this functional near infrared spectroscopy study, we administered a visual and auditory n-back task to examine activation in the PFC while considering the influences of task performance, and preferred learning strategy (VARK score). While controlling for age, results indicated that high performance (HP) subjects (accuracy > 90%) showed task dependent lower activation compared to normal performance subjects in PFC region Specifically HP groups showed lower activation in left dorsolateral PFC (DLPFC) region during performance of auditory task whereas during visual task they showed lower activation in the right DLPFC. After accounting for learning style, we found a correlation between visual and aural VARK score and level of activation in the PFC. Subjects with higher visual VARK scores displayed lower activation during auditory task in left DLPFC, while those with higher visual scores exhibited higher activation during visual task in bilateral DLPFC. During performance of auditory task, HP subjects had higher visual VARK scores compared to NP subjects indicating an effect of learning style on the task performance and activation. The results of this study show that learning style and task performance can influence PFC activation, with applications toward neurological implications of learning style and populations with deficits in auditory or visual processing. PMID:29870536

  11. Does gravity influence the visual line bisection task?

    PubMed

    Drakul, A; Bockisch, C J; Tarnutzer, A A

    2016-08-01

    The visual line bisection task (LBT) is sensitive to perceptual biases of visuospatial attention, showing slight leftward (for horizontal lines) and upward (for vertical lines) errors in healthy subjects. It may be solved in an egocentric or allocentric reference frame, and there is no obvious need for graviceptive input. However, for other visual line adjustments, such as the subjective visual vertical, otolith input is integrated. We hypothesized that graviceptive input is incorporated when performing the LBT and predicted reduced accuracy and precision when roll-tilted. Twenty healthy right-handed subjects repetitively bisected Earth-horizontal and body-horizontal lines in darkness. Recordings were obtained before, during, and after roll-tilt (±45°, ±90°) for 5 min each. Additionally, bisections of Earth-vertical and oblique lines were obtained in 17 subjects. When roll-tilted ±90° ear-down, bisections of Earth-horizontal (i.e., body-vertical) lines were shifted toward the direction of the head (P < 0.001). However, after correction for vertical line-bisection errors when upright, shifts disappeared. Bisecting body-horizontal lines while roll-tilted did not cause any shifts. The precision of Earth-horizontal line bisections decreased (P ≤ 0.006) when roll-tilted, while no such changes were observed for body-horizontal lines. Regardless of the trial condition and paradigm, the scanning direction of the bisecting cursor (leftward vs. rightward) significantly (P ≤ 0.021) affected line bisections. Our findings reject our hypothesis and suggest that gravity does not modulate the LBT. Roll-tilt-dependent shifts are instead explained by the headward bias when bisecting lines oriented along a body-vertical axis. Increased variability when roll-tilted likely reflects larger variability when bisecting body-vertical than body-horizontal lines. Copyright © 2016 the American Physiological Society.

  12. Accurate expectancies diminish perceptual distraction during visual search

    PubMed Central

    Sy, Jocelyn L.; Guerin, Scott A.; Stegman, Anna; Giesbrecht, Barry

    2014-01-01

    The load theory of visual attention proposes that efficient selective perceptual processing of task-relevant information during search is determined automatically by the perceptual demands of the display. If the perceptual demands required to process task-relevant information are not enough to consume all available capacity, then the remaining capacity automatically and exhaustively “spills-over” to task-irrelevant information. The spill-over of perceptual processing capacity increases the likelihood that task-irrelevant information will impair performance. In two visual search experiments, we tested the automaticity of the allocation of perceptual processing resources by measuring the extent to which the processing of task-irrelevant distracting stimuli was modulated by both perceptual load and top-down expectations using behavior, functional magnetic resonance imaging, and electrophysiology. Expectations were generated using a trial-by-trial cue that provided information about the likely load of the upcoming visual search task. When the cues were valid, behavioral interference was eliminated and the influence of load on frontoparietal and visual cortical responses was attenuated relative to when the cues were invalid. In conditions in which task-irrelevant information interfered with performance and modulated visual activity, individual differences in mean blood oxygenation level dependent responses measured from the left intraparietal sulcus were negatively correlated with individual differences in the severity of distraction. These results are consistent with the interpretation that a top-down biasing mechanism interacts with perceptual load to support filtering of task-irrelevant information. PMID:24904374

  13. Performance drifts in two-finger cyclical force production tasks performed by one and two actors.

    PubMed

    Hasanbarani, Fariba; Reschechtko, Sasha; Latash, Mark L

    2018-03-01

    We explored changes in the cyclical two-finger force performance task caused by turning visual feedback off performed either by the index and middle fingers of the dominant hand or by two index fingers of two persons. Based on an earlier study, we expected drifts in finger force amplitude and midpoint without a drift in relative phase. The subjects performed two rhythmical tasks at 1 Hz while paced by an auditory metronome. One of the tasks required cyclical changes in total force magnitude without changes in the sharing of the force between the two fingers. The other task required cyclical changes in the force sharing without changing total force magnitude. Subjects were provided with visual feedback, which showed total force magnitude and force sharing via cursor motion along the vertical and horizontal axes, respectively. Further, visual feedback was turned off, first on the variable that was not required to change and then on both variables. Turning visual feedback off led to a mean force drift toward lower magnitudes while force amplitude increased. There was a consistent drift in the relative phase in the one-hand task with the index finger leading the middle finger. No consistent relative phase drift was seen in the two-person tasks. The shape of the force cycle changed without visual feedback reflected in the lower similarity to a perfect cosine shape and in the higher time spent at lower force magnitudes. The data confirm findings of earlier studies regarding force amplitude and midpoint changes, but falsify predictions of an earlier proposed model with respect to the relative phase changes. We discuss factors that could contribute to the observed relative phase drift in the one-hand tasks including the leader-follower pattern generalized for two-effector tasks performed by one person.

  14. Is a Responsive Default Mode Network Required for Successful Working Memory Task Performance?

    PubMed Central

    Čeko, Marta; Gracely, John L.; Fitzcharles, Mary-Ann; Seminowicz, David A.; Schweinhardt, Petra

    2015-01-01

    In studies of cognitive processing using tasks with externally directed attention, regions showing increased (external-task-positive) and decreased or “negative” [default-mode network (DMN)] fMRI responses during task performance are dynamically responsive to increasing task difficulty. Responsiveness (modulation of fMRI signal by increasing load) has been linked directly to successful cognitive task performance in external-task-positive regions but not in DMN regions. To investigate whether a responsive DMN is required for successful cognitive performance, we compared healthy human subjects (n = 23) with individuals shown to have decreased DMN engagement (chronic pain patients, n = 28). Subjects performed a multilevel working-memory task (N-back) during fMRI. If a responsive DMN is required for successful performance, patients having reduced DMN responsiveness should show worsened performance; if performance is not reduced, their brains should show compensatory activation in external-task-positive regions or elsewhere. All subjects showed decreased accuracy and increased reaction times with increasing task level, with no significant group differences on either measure at any level. Patients had significantly reduced negative fMRI response (deactivation) of DMN regions (posterior cingulate/precuneus, medial prefrontal cortex). Controls showed expected modulation of DMN deactivation with increasing task difficulty. Patients showed significantly reduced modulation of DMN deactivation by task difficulty, despite their successful task performance. We found no evidence of compensatory neural recruitment in external-task-positive regions or elsewhere. Individual responsiveness of the external-task-positive ventrolateral prefrontal cortex, but not of DMN regions, correlated with task accuracy. These findings suggest that a responsive DMN may not be required for successful cognitive performance; a responsive external-task-positive network may be sufficient

  15. Activity-Centered Domain Characterization for Problem-Driven Scientific Visualization

    PubMed Central

    Marai, G. Elisabeta

    2018-01-01

    Although visualization design models exist in the literature in the form of higher-level methodological frameworks, these models do not present a clear methodological prescription for the domain characterization step. This work presents a framework and end-to-end model for requirements engineering in problem-driven visualization application design. The framework and model are based on the activity-centered design paradigm, which is an enhancement of human-centered design. The proposed activity-centered approach focuses on user tasks and activities, and allows an explicit link between the requirements engineering process with the abstraction stage—and its evaluation—of existing, higher-level visualization design models. In a departure from existing visualization design models, the resulting model: assigns value to a visualization based on user activities; ranks user tasks before the user data; partitions requirements in activity-related capabilities and nonfunctional characteristics and constraints; and explicitly incorporates the user workflows into the requirements process. A further merit of this model is its explicit integration of functional specifications, a concept this work adapts from the software engineering literature, into the visualization design nested model. A quantitative evaluation using two sets of interdisciplinary projects supports the merits of the activity-centered model. The result is a practical roadmap to the domain characterization step of visualization design for problem-driven data visualization. Following this domain characterization model can help remove a number of pitfalls that have been identified multiple times in the visualization design literature. PMID:28866550

  16. Developmental Shifts in Children's Sensitivity to Visual Speech: A New Multimodal Picture-Word Task

    ERIC Educational Resources Information Center

    Jerger, Susan; Damian, Markus F.; Spence, Melanie J.; Tye-Murray, Nancy; Abdi, Herve

    2009-01-01

    This research developed a multimodal picture-word task for assessing the influence of visual speech on phonological processing by 100 children between 4 and 14 years of age. We assessed how manipulation of seemingly to-be-ignored auditory (A) and audiovisual (AV) phonological distractors affected picture naming without participants consciously…

  17. Visual scanning with or without spatial uncertainty and time-sharing performance

    NASA Technical Reports Server (NTRS)

    Liu, Yili; Wickens, Christopher D.

    1989-01-01

    An experiment is reported that examines the pattern of task interference between visual scanning as a sequential and selective attention process and other concurrent spatial or verbal processing tasks. A distinction is proposed between visual scanning with or without spatial uncertainty regarding the possible differential effects of these two types of scanning on interference with other concurrent processes. The experiment required the subject to perform a simulated primary tracking task, which was time-shared with a secondary spatial or verbal decision task. The relevant information that was needed to perform the decision tasks were displayed with or without spatial uncertainty. The experiment employed a 2 x 2 x 2 design with types of scanning (with or without spatial uncertainty), expected scanning distance (low/high), and codes of concurrent processing (spatial/verbal) as the three experimental factors. The results provide strong evidence that visual scanning as a spatial exploratory activity produces greater task interference with concurrent spatial tasks than with concurrent verbal tasks. Furthermore, spatial uncertainty in visual scanning is identified to be the crucial factor in producing this differential effect.

  18. Brain activity during divided and selective attention to auditory and visual sentence comprehension tasks

    PubMed Central

    Moisala, Mona; Salmela, Viljami; Salo, Emma; Carlson, Synnöve; Vuontela, Virve; Salonen, Oili; Alho, Kimmo

    2015-01-01

    Using functional magnetic resonance imaging (fMRI), we measured brain activity of human participants while they performed a sentence congruence judgment task in either the visual or auditory modality separately, or in both modalities simultaneously. Significant performance decrements were observed when attention was divided between the two modalities compared with when one modality was selectively attended. Compared with selective attention (i.e., single tasking), divided attention (i.e., dual-tasking) did not recruit additional cortical regions, but resulted in increased activity in medial and lateral frontal regions which were also activated by the component tasks when performed separately. Areas involved in semantic language processing were revealed predominantly in the left lateral prefrontal cortex by contrasting incongruent with congruent sentences. These areas also showed significant activity increases during divided attention in relation to selective attention. In the sensory cortices, no crossmodal inhibition was observed during divided attention when compared with selective attention to one modality. Our results suggest that the observed performance decrements during dual-tasking are due to interference of the two tasks because they utilize the same part of the cortex. Moreover, semantic dual-tasking did not appear to recruit additional brain areas in comparison with single tasking, and no crossmodal inhibition was observed during intermodal divided attention. PMID:25745395

  19. Brain activity during divided and selective attention to auditory and visual sentence comprehension tasks.

    PubMed

    Moisala, Mona; Salmela, Viljami; Salo, Emma; Carlson, Synnöve; Vuontela, Virve; Salonen, Oili; Alho, Kimmo

    2015-01-01

    Using functional magnetic resonance imaging (fMRI), we measured brain activity of human participants while they performed a sentence congruence judgment task in either the visual or auditory modality separately, or in both modalities simultaneously. Significant performance decrements were observed when attention was divided between the two modalities compared with when one modality was selectively attended. Compared with selective attention (i.e., single tasking), divided attention (i.e., dual-tasking) did not recruit additional cortical regions, but resulted in increased activity in medial and lateral frontal regions which were also activated by the component tasks when performed separately. Areas involved in semantic language processing were revealed predominantly in the left lateral prefrontal cortex by contrasting incongruent with congruent sentences. These areas also showed significant activity increases during divided attention in relation to selective attention. In the sensory cortices, no crossmodal inhibition was observed during divided attention when compared with selective attention to one modality. Our results suggest that the observed performance decrements during dual-tasking are due to interference of the two tasks because they utilize the same part of the cortex. Moreover, semantic dual-tasking did not appear to recruit additional brain areas in comparison with single tasking, and no crossmodal inhibition was observed during intermodal divided attention.

  20. Computer vision enhances mobile eye-tracking to expose expert cognition in natural-scene visual-search tasks

    NASA Astrophysics Data System (ADS)

    Keane, Tommy P.; Cahill, Nathan D.; Tarduno, John A.; Jacobs, Robert A.; Pelz, Jeff B.

    2014-02-01

    Mobile eye-tracking provides the fairly unique opportunity to record and elucidate cognition in action. In our research, we are searching for patterns in, and distinctions between, the visual-search performance of experts and novices in the geo-sciences. Traveling to regions resultant from various geological processes as part of an introductory field studies course in geology, we record the prima facie gaze patterns of experts and novices when they are asked to determine the modes of geological activity that have formed the scene-view presented to them. Recording eye video and scene video in natural settings generates complex imagery that requires advanced applications of computer vision research to generate registrations and mappings between the views of separate observers. By developing such mappings, we could then place many observers into a single mathematical space where we can spatio-temporally analyze inter- and intra-subject fixations, saccades, and head motions. While working towards perfecting these mappings, we developed an updated experiment setup that allowed us to statistically analyze intra-subject eye-movement events without the need for a common domain. Through such analyses we are finding statistical differences between novices and experts in these visual-search tasks. In the course of this research we have developed a unified, open-source, software framework for processing, visualization, and interaction of mobile eye-tracking and high-resolution panoramic imagery.

  1. Interference effects of vocalization on dual task performance

    NASA Astrophysics Data System (ADS)

    Owens, J. M.; Goodman, L. S.; Pianka, M. J.

    1984-09-01

    Voice command and control systems have been proposed as a potential means of off-loading the typically overburdened visual information processing system. However, prior to introducing novel human-machine interfacing technologies in high workload environments, consideration must be given to the integration of the new technologists within existing task structures to ensure that no new sources of workload or interference are systematically introduced. This study examined the use of voice interactive systems technology in the joint performance of two cognitive information processing tasks requiring continuous memory and choice reaction wherein a basis for intertask interference might be expected. Stimuli for the continuous memory task were presented aurally and either voice or keyboard responding was required in the choice reaction task. Performance was significantly degraded in each task when voice responding was required in the choice reaction time task. Performance degradation was evident in higher error scores for both the choice reaction and continuous memory tasks. Performance decrements observed under conditions of high intertask stimulus similarity were not statistically significant. The results signal the need to consider further the task requirements for verbal short-term memory when applying speech technology in multitask environments.

  2. From Foreground to Background: How Task-Neutral Context Influences Contextual Cueing of Visual Search

    PubMed Central

    Zang, Xuelian; Geyer, Thomas; Assumpção, Leonardo; Müller, Hermann J.; Shi, Zhuanghua

    2016-01-01

    Selective attention determines the effectiveness of implicit contextual learning (e.g., Jiang and Leung, 2005). Visual foreground-background segmentation, on the other hand, is a key process in the guidance of attention (Wolfe, 2003). In the present study, we examined the impact of foreground-background segmentation on contextual cueing of visual search in three experiments. A visual search display, consisting of distractor ‘L’s and a target ‘T’, was overlaid on a task-neutral cuboid on the same depth plane (Experiment 1), on stereoscopically separated depth planes (Experiment 2), or spread over the entire display on the same depth plane (Experiment 3). Half of the search displays contained repeated target-distractor arrangements, whereas the other half was always newly generated. The task-neutral cuboid was constant during an initial training session, but was either rotated by 90° or entirely removed in the subsequent test sessions. We found that the gains resulting from repeated presentation of display arrangements during training (i.e., contextual-cueing effects) were diminished when the cuboid was changed or removed in Experiment 1, but remained intact in Experiments 2 and 3 when the cuboid was placed in a different depth plane, or when the items were randomly spread over the whole display but not on the edges of the cuboid. These findings suggest that foreground-background segmentation occurs prior to contextual learning, and only objects/arrangements that are grouped as foreground are learned over the course of repeated visual search. PMID:27375530

  3. The functional neuroanatomy of multitasking: combining dual tasking with a short term memory task.

    PubMed

    Deprez, Sabine; Vandenbulcke, Mathieu; Peeters, Ron; Emsell, Louise; Amant, Frederic; Sunaert, Stefan

    2013-09-01

    Insight into the neural architecture of multitasking is crucial when investigating the pathophysiology of multitasking deficits in clinical populations. Presently, little is known about how the brain combines dual-tasking with a concurrent short-term memory task, despite the relevance of this mental operation in daily life and the frequency of complaints related to this process, in disease. In this study we aimed to examine how the brain responds when a memory task is added to dual-tasking. Thirty-three right-handed healthy volunteers (20 females, mean age 39.9 ± 5.8) were examined with functional brain imaging (fMRI). The paradigm consisted of two cross-modal single tasks (a visual and auditory temporal same-different task with short delay), a dual-task combining both single tasks simultaneously and a multi-task condition, combining the dual-task with an additional short-term memory task (temporal same-different visual task with long delay). Dual-tasking compared to both individual visual and auditory single tasks activated a predominantly right-sided fronto-parietal network and the cerebellum. When adding the additional short-term memory task, a larger and more bilateral frontoparietal network was recruited. We found enhanced activity during multitasking in components of the network that were already involved in dual-tasking, suggesting increased working memory demands, as well as recruitment of multitask-specific components including areas that are likely to be involved in online holding of visual stimuli in short-term memory such as occipito-temporal cortex. These results confirm concurrent neural processing of a visual short-term memory task during dual-tasking and provide evidence for an effective fMRI multitasking paradigm. © 2013 Elsevier Ltd. All rights reserved.

  4. Mood & alcohol-related attentional biases: New considerations for gender differences and reliability of the visual-probe task.

    PubMed

    Emery, Noah N; Simons, Jeffrey S

    2015-11-01

    Alcohol-related attentional biases are positively associated with drinking history and may represent a mechanism by which alcohol use behavior is maintained over time. This study was designed to address two unresolved issues regarding alcohol-related attention biases. Specifically, this study tested whether acute changes in positive and negative mood increase attentional biases toward alcohol cues and whether coping and enhancement drinking motives moderate these effects. Participants were 100 college students aged 18-25, who drank alcohol at least once in the last 90 days. In a 2 × 3 mixed design, participants were randomized to one of three mood conditions (neutral, negative, or positive) and completed visual-probe tasks pre- and post-mood-induction. Attentional biases toward alcohol cues were significantly associated with alcohol consumption among men, but not women. Although the mood manipulation was highly successful, attentional biases did not vary as a function of mood condition and hypothesized moderating effects of drinking motives were not significant. The largely null findings of the experiment are discussed in light of the fact that the visual probe task had poor reliability. Issues related to the reliability of visual-probe task are discussed, as more research is needed to evaluate and improve the psychometrics of this method. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Development of a computerized visual search test.

    PubMed

    Reid, Denise; Babani, Harsha; Jon, Eugenia

    2009-09-01

    Visual attention and visual search are the features of visual perception, essential for attending and scanning one's environment while engaging in daily occupations. This study describes the development of a novel web-based test of visual search. The development information including the format of the test will be described. The test was designed to provide an alternative to existing cancellation tests. Data from two pilot studies will be reported that examined some aspects of the test's validity. To date, our assessment of the test shows that it discriminates between healthy and head-injured persons. More research and development work is required to examine task performance changes in relation to task complexity. It is suggested that the conceptual design for the test is worthy of further investigation.

  6. Visual search in divided areas: dividers initially interfere with and later facilitate visual search.

    PubMed

    Nakashima, Ryoichi; Yokosawa, Kazuhiko

    2013-02-01

    A common search paradigm requires observers to search for a target among undivided spatial arrays of many items. Yet our visual environment is populated with items that are typically arranged within smaller (subdivided) spatial areas outlined by dividers (e.g., frames). It remains unclear how dividers impact visual search performance. In this study, we manipulated the presence and absence of frames and the number of frames subdividing search displays. Observers searched for a target O among Cs, a typically inefficient search task, and for a target C among Os, a typically efficient search. The results indicated that the presence of divider frames in a search display initially interferes with visual search tasks when targets are quickly detected (i.e., efficient search), leading to early interference; conversely, frames later facilitate visual search in tasks in which targets take longer to detect (i.e., inefficient search), leading to late facilitation. Such interference and facilitation appear only for conditions with a specific number of frames. Relative to previous studies of grouping (due to item proximity or similarity), these findings suggest that frame enclosures of multiple items may induce a grouping effect that influences search performance.

  7. The effect of visual-motion time-delays on pilot performance in a simulated pursuit tracking task

    NASA Technical Reports Server (NTRS)

    Miller, G. K., Jr.; Riley, D. R.

    1977-01-01

    An experimental study was made to determine the effect on pilot performance of time delays in the visual and motion feedback loops of a simulated pursuit tracking task. Three major interrelated factors were identified: task difficulty either in the form of airplane handling qualities or target frequency, the amount and type of motion cues, and time delay itself. In general, the greater the task difficulty, the smaller the time delay that could exist without degrading pilot performance. Conversely, the greater the motion fidelity, the greater the time delay that could be tolerated. The effect of motion was, however, pilot dependent.

  8. Method matters: Systematic effects of testing procedure on visual working memory sensitivity

    PubMed Central

    Makovski, Tal; Watson, Leah M.; Koutstaal, Wilma; Jiang, Yuhong V.

    2010-01-01

    Visual working memory (WM) is traditionally considered a robust form of visual representation that survives changes in object motion, observer's position, and other visual transients. This study presents data that are inconsistent with the traditional view. We show that memory sensitivity is dramatically influenced by small variations in the testing procedure, supporting the idea that representations in visual WM are susceptible to interference from testing. In this study, participants were shown an array of colors to remember. After a short retention interval, memory for one of the items was tested with either a same-different task or a 2-alternative-forced-choice (2AFC) task. Memory sensitivity was much lower in the 2AFC task than in the same-different task. This difference was found regardless of encoding similarity or whether visual WM required a fine memory resolution or a coarse resolution. The 2AFC disadvantage was reduced when participants were informed shortly before testing which item would be probed. The 2AFC disadvantage diminished in perceptual tasks and was not found in tasks probing visual long-term memory. These results support memory models that acknowledge the labile nature of visual WM, and have implications for the format of visual WM and its assessment. PMID:20854011

  9. Is a Responsive Default Mode Network Required for Successful Working Memory Task Performance?

    PubMed

    Čeko, Marta; Gracely, John L; Fitzcharles, Mary-Ann; Seminowicz, David A; Schweinhardt, Petra; Bushnell, M Catherine

    2015-08-19

    In studies of cognitive processing using tasks with externally directed attention, regions showing increased (external-task-positive) and decreased or "negative" [default-mode network (DMN)] fMRI responses during task performance are dynamically responsive to increasing task difficulty. Responsiveness (modulation of fMRI signal by increasing load) has been linked directly to successful cognitive task performance in external-task-positive regions but not in DMN regions. To investigate whether a responsive DMN is required for successful cognitive performance, we compared healthy human subjects (n = 23) with individuals shown to have decreased DMN engagement (chronic pain patients, n = 28). Subjects performed a multilevel working-memory task (N-back) during fMRI. If a responsive DMN is required for successful performance, patients having reduced DMN responsiveness should show worsened performance; if performance is not reduced, their brains should show compensatory activation in external-task-positive regions or elsewhere. All subjects showed decreased accuracy and increased reaction times with increasing task level, with no significant group differences on either measure at any level. Patients had significantly reduced negative fMRI response (deactivation) of DMN regions (posterior cingulate/precuneus, medial prefrontal cortex). Controls showed expected modulation of DMN deactivation with increasing task difficulty. Patients showed significantly reduced modulation of DMN deactivation by task difficulty, despite their successful task performance. We found no evidence of compensatory neural recruitment in external-task-positive regions or elsewhere. Individual responsiveness of the external-task-positive ventrolateral prefrontal cortex, but not of DMN regions, correlated with task accuracy. These findings suggest that a responsive DMN may not be required for successful cognitive performance; a responsive external-task-positive network may be sufficient. We studied the

  10. Evaluation of several secondary tasks in the determination of permissible time delays in simulator visual and motion cues

    NASA Technical Reports Server (NTRS)

    Miller, G. K., Jr.; Riley, D. R.

    1978-01-01

    The effect of secondary tasks in determining permissible time delays in visual-motion simulation of a pursuit tracking task was examined. A single subject, a single set of aircraft handling qualities, and a single motion condition in tracking a target aircraft that oscillates sinusoidally in altitude were used. In addition to the basic simulator delays the results indicate that the permissible time delay is about 250 msec for either a tapping task, an adding task, or an audio task and is approximately 125 msec less than when no secondary task is involved. The magnitudes of the primary task performance measures, however, differ only for the tapping task. A power spectraldensity analysis basically confirms the result by comparing the root-mean-square performance measures. For all three secondary tasks, the total pilot workload was quite high.

  11. Walking with eyes closed is easier than walking with eyes open without visual cues: The Romberg task versus the goggle task.

    PubMed

    Yelnik, A P; Tasseel Ponche, S; Andriantsifanetra, C; Provost, C; Calvalido, A; Rougier, P

    2015-12-01

    The Romberg test, with the subject standing and with eyes closed, gives diagnostic arguments for a proprioceptive disorder. Closing the eyes is also used in balance rehabilitation as a main way to stimulate neural plasticity with proprioceptive, vestibular and even cerebellar disorders. Nevertheless, standing and walking with eyes closed or with eyes open in the dark are certainly 2 different tasks. We aimed to compare walking with eyes open, closed and wearing black or white goggles in healthy subjects. A total of 50 healthy participants were randomly divided into 2 protocols and asked to walk on a 5-m pressure-sensitive mat, under 3 conditions: (1) eyes open (EO), eyes closed (EC) and eyes open with black goggles (BG) and (2) EO, EO with BG and with white goggles (WG). Gait was described by velocity (m·s(-1)), double support (% gait cycle), gait variability index (GVI/100) and exit from the mat (%). Analysis involved repeated measures Anova, Holm-Sidak's multiple comparisons test for parametric parameters (GVI) and Dunn's multiple comparisons test for non-parametric parameters. As compared with walking with EC, walking with BG produced lower median velocity, by 6% (EO 1.26; BG 1.01 vs EC 1.07 m·s(-1), P=0.0328), and lower mean GVI, by 8% (EO 91.8; BG 66.8 vs EC 72.24, P=0.009). Parameters did not differ between walking under the BG and WG conditions. The goggle task increases the difficulty in walking with visual deprivation compared to the Romberg task, so the goggle task can be proposed to gradually increase the difficulty in walking with visual deprivation (from eyes closed to eyes open in black goggles). Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  12. Modality-specific effects on crosstalk in task switching: evidence from modality compatibility using bimodal stimulation.

    PubMed

    Stephan, Denise Nadine; Koch, Iring

    2016-11-01

    The present study was aimed at examining modality-specific influences in task switching. To this end, participants switched either between modality compatible tasks (auditory-vocal and visual-manual) or incompatible spatial discrimination tasks (auditory-manual and visual-vocal). In addition, auditory and visual stimuli were presented simultaneously (i.e., bimodally) in each trial, so that selective attention was required to process the task-relevant stimulus. The inclusion of bimodal stimuli enabled us to assess congruence effects as a converging measure of increased between-task interference. The tasks followed a pre-instructed sequence of double alternations (AABB), so that no explicit task cues were required. The results show that switching between two modality incompatible tasks increases both switch costs and congruence effects compared to switching between two modality compatible tasks. The finding of increased congruence effects in modality incompatible tasks supports our explanation in terms of ideomotor "backward" linkages between anticipated response effects and the stimuli that called for this response in the first place. According to this generalized ideomotor idea, the modality match between response effects and stimuli would prime selection of a response in the compatible modality. This priming would cause increased difficulties to ignore the competing stimulus and hence increases the congruence effect. Moreover, performance would be hindered when switching between modality incompatible tasks and facilitated when switching between modality compatible tasks.

  13. Color is processed less efficiently than orientation in change detection but more efficiently in visual search.

    PubMed

    Huang, Liqiang

    2015-05-01

    Basic visual features (e.g., color, orientation) are assumed to be processed in the same general way across different visual tasks. Here, a significant deviation from this assumption was predicted on the basis of the analysis of stimulus spatial structure, as characterized by the Boolean-map notion. If a task requires memorizing the orientations of a set of bars, then the map consisting of those bars can be readily used to hold the overall structure in memory and will thus be especially useful. If the task requires visual search for a target, then the map, which contains only an overall structure, will be of little use. Supporting these predictions, the present study demonstrated that in comparison to stimulus colors, bar orientations were processed more efficiently in change-detection tasks but less efficiently in visual search tasks (Cohen's d = 4.24). In addition to offering support for the role of the Boolean map in conscious access, the present work also throws doubts on the generality of processing visual features. © The Author(s) 2015.

  14. Feature binding in visual short-term memory is unaffected by task-irrelevant changes of location, shape, and color.

    PubMed

    Logie, Robert H; Brockmole, James R; Jaswal, Snehlata

    2011-01-01

    Three experiments used a change detection paradigm across a range of study-test intervals to address the respective contributions of location, shape, and color to the formation of bindings of features in sensory memory and visual short-term memory (VSTM). In Experiment 1, location was designated task irrelevant and was randomized between study and test displays. The task was to detect changes in the bindings between shape and color. In Experiments 2 and 3, shape and color, respectively, were task irrelevant and randomized, with bindings tested between location and color (Experiment 2) and location and shape (Experiment 3). At shorter study-test intervals, randomizing location was most disruptive, followed by shape and then color. At longer intervals, randomizing any task-irrelevant feature had no impact on change detection for bindings between features, and location had no special role. Results suggest that location is crucial for initial perceptual binding but loses that special status once representations are formed in VSTM, which operates according to different principles, than do visual attention and perception.

  15. Examining the Use of a Visual Analytics System for Sensemaking Tasks: Case Studies with Domain Experts.

    PubMed

    Kang, Youn-Ah; Stasko, J

    2012-12-01

    While the formal evaluation of systems in visual analytics is still relatively uncommon, particularly rare are case studies of prolonged system use by domain analysts working with their own data. Conducting case studies can be challenging, but it can be a particularly effective way to examine whether visual analytics systems are truly helping expert users to accomplish their goals. We studied the use of a visual analytics system for sensemaking tasks on documents by six analysts from a variety of domains. We describe their application of the system along with the benefits, issues, and problems that we uncovered. Findings from the studies identify features that visual analytics systems should emphasize as well as missing capabilities that should be addressed. These findings inform design implications for future systems.

  16. Visual skills in airport-security screening.

    PubMed

    McCarley, Jason S; Kramer, Arthur F; Wickens, Christopher D; Vidoni, Eric D; Boot, Walter R

    2004-05-01

    An experiment examined visual performance in a simulated luggage-screening task. Observers participated in five sessions of a task requiring them to search for knives hidden in x-ray images of cluttered bags. Sensitivity and response times improved reliably as a result of practice. Eye movement data revealed that sensitivity increases were produced entirely by changes in observers' ability to recognize target objects, and not by changes in the effectiveness of visual scanning. Moreover, recognition skills were in part stimulus-specific, such that performance was degraded by the introduction of unfamiliar target objects. Implications for screener training are discussed.

  17. Sustaining visual attention in the face of distraction: a novel gradual-onset continuous performance task.

    PubMed

    Rosenberg, Monica; Noonan, Sarah; DeGutis, Joseph; Esterman, Michael

    2013-04-01

    Sustained attention is a fundamental aspect of human cognition and has been widely studied in applied and clinical contexts. Despite a growing understanding of how attention varies throughout task performance, moment-to-moment fluctuations are often difficult to assess. In order to better characterize fluctuations in sustained visual attention, in the present study we employed a novel continuous performance task (CPT), the gradual-onset CPT (gradCPT). In the gradCPT, a central face stimulus gradually transitions between individuals at a constant rate (1,200 ms), and participants are instructed to respond to each male face but not to a rare target female face. In the distractor-present version, the background distractors consist of scene images, and in the distractor-absent condition, of phase-scrambled scene images. The results confirmed that the gradCPT taxes sustained attention, as vigilance decrements were observed over the task's 12-min duration: Participants made more commission errors and showed increasingly variable response latencies (RTs) over time. Participants' attentional states also fluctuated from moment to moment, with periods of higher RT variability being associated with increased likelihood of errors and greater speed-accuracy trade-offs. In addition, task performance was related to self-reported mindfulness and the propensity for attention lapses in everyday life. The gradCPT is a useful tool for studying both low- and high-frequency fluctuations in sustained visual attention and is sensitive to individual differences in attentional ability.

  18. Associated reactions during a visual pursuit position tracking task in hemiplegic and quadriplegic cerebral palsy.

    PubMed

    Chiu, Hsiu-Ching; Halaki, Mark; O'Dwyer, Nicholas

    2013-04-30

    Most previous studies of associated reactions (ARs) in people with cerebral palsy have used observation scales, such as recording the degree of movement through observation. The sensitive quantitative method can detect ARs that are not amply visible. The aim of this study was to provide quantitative measures of ARs during a visual pursuit position tracking task. Twenty-three hemiplegia (H) (mean +/- SD: 21y 8m +/- 11y 10m), twelve quadriplegia (Q) (21y 5m +/- 10y 3m) and twenty-two subjects with normal development (N) (21y 2m +/- 10y 10m) participated in the study. An upper limb visual pursuit tracking task was used to study ARs. The participants were required to follow a moving target with a response cursor via elbow flexion and extension movements. The occurrence of ARs was quantified by the overall coherence between the movements of tracking and non-tracking limbs and the amount of movement due to ARs was quantified by the amplitude of movement the non-tracking limbs. The amplitude of movement of the non-tracking limb indicated that the amount of ARs was larger in the Q group than the H and N groups with no significant differences between the H and N groups. The amplitude of movement of the non-tracking limb was larger during non-dominant than dominant tracking in all three groups. Some movements in the non-tracking limb were correlated with the tracking limb (correlated ARs) and some movements that were not correlated with the tracking limb (uncorrelated ARs). The correlated ARs comprised less than 40% of the total ARs for all three groups. Correlated ARs were negatively associated with clinical evaluations, but not the uncorrelated ARs. The correlated and uncorrelated ARs appear to have different relationships with clinical evaluations, implying the effect of ARs on upper limb activities could be varied.

  19. What top-down task sets do for us: an ERP study on the benefits of advance preparation in visual search.

    PubMed

    Eimer, Martin; Kiss, Monika; Nicholas, Susan

    2011-12-01

    When target-defining features are specified in advance, attentional target selection in visual search is controlled by preparatory top-down task sets. We used ERP measures to study voluntary target selection in the absence of such feature-specific task sets, and to compare it to selection that is guided by advance knowledge about target features. Visual search arrays contained two different color singleton digits, and participants had to select one of these as target and report its parity. Target color was either known in advance (fixed color task) or had to be selected anew on each trial (free color-choice task). ERP correlates of spatially selective attentional target selection (N2pc) and working memory processing (SPCN) demonstrated rapid target selection and efficient exclusion of color singleton distractors from focal attention and working memory in the fixed color task. In the free color-choice task, spatially selective processing also emerged rapidly, but selection efficiency was reduced, with nontarget singleton digits capturing attention and gaining access to working memory. Results demonstrate the benefits of top-down task sets: Feature-specific advance preparation accelerates target selection, rapidly resolves attentional competition, and prevents irrelevant events from attracting attention and entering working memory.

  20. Visual search deficits in amblyopia.

    PubMed

    Tsirlin, Inna; Colpa, Linda; Goltz, Herbert C; Wong, Agnes M F

    2018-04-01

    Amblyopia is a neurodevelopmental disorder defined as a reduction in visual acuity that cannot be corrected by optical means. It has been associated with low-level deficits. However, research has demonstrated a link between amblyopia and visual attention deficits in counting, tracking, and identifying objects. Visual search is a useful tool for assessing visual attention but has not been well studied in amblyopia. Here, we assessed the extent of visual search deficits in amblyopia using feature and conjunction search tasks. We compared the performance of participants with amblyopia (n = 10) to those of controls (n = 12) on both feature and conjunction search tasks using Gabor patch stimuli, varying spatial bandwidth and orientation. To account for the low-level deficits inherent in amblyopia, we measured individual contrast and crowding thresholds and monitored eye movements. The display elements were then presented at suprathreshold levels to ensure that visibility was equalized across groups. There was no performance difference between groups on feature search, indicating that our experimental design controlled successfully for low-level amblyopia deficits. In contrast, during conjunction search, median reaction times and reaction time slopes were significantly larger in participants with amblyopia compared with controls. Amblyopia differentially affects performance on conjunction visual search, a more difficult task that requires feature binding and possibly the involvement of higher-level attention processes. Deficits in visual search may affect day-to-day functioning in people with amblyopia.

  1. Flexible Visual Processing in Young Adults with Autism: The Effects of Implicit Learning on a Global-Local Task

    ERIC Educational Resources Information Center

    Hayward, Dana A.; Shore, David I.; Ristic, Jelena; Kovshoff, Hanna; Iarocci, Grace; Mottron, Laurent; Burack, Jacob A.

    2012-01-01

    We utilized a hierarchical figures task to determine the default level of perceptual processing and the flexibility of visual processing in a group of high-functioning young adults with autism (n = 12) and a typically developing young adults, matched by chronological age and IQ (n = 12). In one task, participants attended to one level of the…

  2. Neural Correlates of Changes in a Visual Search Task due to Cognitive Training in Seniors

    PubMed Central

    Wild-Wall, Nele; Falkenstein, Michael; Gajewski, Patrick D.

    2012-01-01

    This study aimed to elucidate the underlying neural sources of near transfer after a multidomain cognitive training in older participants in a visual search task. Participants were randomly assigned to a social control, a no-contact control and a training group, receiving a 4-month paper-pencil and PC-based trainer guided cognitive intervention. All participants were tested in a before and after session with a conjunction visual search task. Performance and event-related potentials (ERPs) suggest that the cognitive training improved feature processing of the stimuli which was expressed in an increased rate of target detection compared to the control groups. This was paralleled by enhanced amplitudes of the frontal P2 in the ERP and by higher activation in lingual and parahippocampal brain areas which are discussed to support visual feature processing. Enhanced N1 and N2 potentials in the ERP for nontarget stimuli after cognitive training additionally suggest improved attention and subsequent processing of arrays which were not immediately recognized as targets. Possible test repetition effects were confined to processes of stimulus categorisation as suggested by the P3b potential. The results show neurocognitive plasticity in aging after a broad cognitive training and allow pinpointing the functional loci of effects induced by cognitive training. PMID:23029625

  3. Subjective Estimation of Task Time and Task Difficulty of Simple Movement Tasks.

    PubMed

    Chan, Alan H S; Hoffmann, Errol R

    2017-01-01

    It has been demonstrated in previous work that the same neural structures are used for both imagined and real movements. To provide a strong test of the similarity of imagined and actual movement times, 4 simple movement tasks were used to determine the relationship between estimated task time and actual movement time. The tasks were single-component visually controlled movements, 2-component visually controlled, low index of difficulty (ID) moves and pin-to-hole transfer movements. For each task there was good correspondence between the mean estimated times and actual movement times. In all cases, the same factors determined the actual and estimated movement times: the amplitudes of movement and the IDs of the component movements, however the contribution of each of these variables differed for the imagined and real tasks. Generally, the standard deviations of the estimated times were linearly related to the estimated time values. Overall, the data provide strong evidence for the same neural structures being used for both imagined and actual movements.

  4. Exploring the Impact of Target Eccentricity and Task Difficulty on Covert Visual Spatial Attention and Its Implications for Brain Computer Interfacing

    PubMed Central

    Roijendijk, Linsey; Farquhar, Jason; van Gerven, Marcel; Jensen, Ole; Gielen, Stan

    2013-01-01

    Objective Covert visual spatial attention is a relatively new task used in brain computer interfaces (BCIs) and little is known about the characteristics which may affect performance in BCI tasks. We investigated whether eccentricity and task difficulty affect alpha lateralization and BCI performance. Approach We conducted a magnetoencephalography study with 14 participants who performed a covert orientation discrimination task at an easy or difficult stimulus contrast at either a near (3.5°) or far (7°) eccentricity. Task difficulty was manipulated block wise and subjects were aware of the difficulty level of each block. Main Results Grand average analyses revealed a significantly larger hemispheric lateralization of posterior alpha power in the difficult condition than in the easy condition, while surprisingly no difference was found for eccentricity. The difference between task difficulty levels was significant in the interval between 1.85 s and 2.25 s after cue onset and originated from a stronger decrease in the contralateral hemisphere. No significant effect of eccentricity was found. Additionally, single-trial classification analysis revealed a higher classification rate in the difficult (65.9%) than in the easy task condition (61.1%). No effect of eccentricity was found in classification rate. Significance Our results indicate that manipulating the difficulty of a task gives rise to variations in alpha lateralization and that using a more difficult task improves covert visual spatial attention BCI performance. The variations in the alpha lateralization could be caused by different factors such as an increased mental effort or a higher visual attentional demand. Further research is necessary to discriminate between them. We did not discover any effect of eccentricity in contrast to results of previous research. PMID:24312477

  5. Exploring the impact of target eccentricity and task difficulty on covert visual spatial attention and its implications for brain computer interfacing.

    PubMed

    Roijendijk, Linsey; Farquhar, Jason; van Gerven, Marcel; Jensen, Ole; Gielen, Stan

    2013-01-01

    Covert visual spatial attention is a relatively new task used in brain computer interfaces (BCIs) and little is known about the characteristics which may affect performance in BCI tasks. We investigated whether eccentricity and task difficulty affect alpha lateralization and BCI performance. We conducted a magnetoencephalography study with 14 participants who performed a covert orientation discrimination task at an easy or difficult stimulus contrast at either a near (3.5°) or far (7°) eccentricity. Task difficulty was manipulated block wise and subjects were aware of the difficulty level of each block. Grand average analyses revealed a significantly larger hemispheric lateralization of posterior alpha power in the difficult condition than in the easy condition, while surprisingly no difference was found for eccentricity. The difference between task difficulty levels was significant in the interval between 1.85 s and 2.25 s after cue onset and originated from a stronger decrease in the contralateral hemisphere. No significant effect of eccentricity was found. Additionally, single-trial classification analysis revealed a higher classification rate in the difficult (65.9%) than in the easy task condition (61.1%). No effect of eccentricity was found in classification rate. Our results indicate that manipulating the difficulty of a task gives rise to variations in alpha lateralization and that using a more difficult task improves covert visual spatial attention BCI performance. The variations in the alpha lateralization could be caused by different factors such as an increased mental effort or a higher visual attentional demand. Further research is necessary to discriminate between them. We did not discover any effect of eccentricity in contrast to results of previous research.

  6. Determining robot actions for tasks requiring sensor interaction

    NASA Technical Reports Server (NTRS)

    Budenske, John; Gini, Maria

    1989-01-01

    The performance of non-trivial tasks by a mobile robot has been a long term objective of robotic research. One of the major stumbling blocks to this goal is the conversion of the high-level planning goals and commands into the actuator and sensor processing controls. In order for a mobile robot to accomplish a non-trivial task, the task must be described in terms of primitive actions of the robot's actuators. Most non-trivial tasks require the robot to interact with its environment; thus necessitating coordination of sensor processing and actuator control to accomplish the task. The main contention is that the transformation from the high level description of the task to the primitive actions should be performed primarily at execution time, when knowledge about the environment can be obtained through sensors. It is proposed to produce the detailed plan of primitive actions by using a collection of low-level planning components that contain domain specific knowledge and knowledge about the available sensors, actuators, and sensor/actuator processing. This collection will perform signal and control processing as well as serve as a control interface between an actual mobile robot and a high-level planning system. Previous research has shown the usefulness of high-level planning systems to plan the coordination of activities such to achieve a goal, but none have been fully applied to actual mobile robots due to the complexity of interacting with sensors and actuators. This control interface is currently being implemented on a LABMATE mobile robot connected to a SUN workstation and will be developed such to enable the LABMATE to perform non-trivial, sensor-intensive tasks as specified by a planning system.

  7. Task-irrelevant distractors in the delay period interfere selectively with visual short-term memory for spatial locations.

    PubMed

    Marini, Francesco; Scott, Jerry; Aron, Adam R; Ester, Edward F

    2017-07-01

    Visual short-term memory (VSTM) enables the representation of information in a readily accessible state. VSTM is typically conceptualized as a form of "active" storage that is resistant to interference or disruption, yet several recent studies have shown that under some circumstances task-irrelevant distractors may indeed disrupt performance. Here, we investigated how task-irrelevant visual distractors affected VSTM by asking whether distractors induce a general loss of remembered information or selectively interfere with memory representations. In a VSTM task, participants recalled the spatial location of a target visual stimulus after a delay in which distractors were presented on 75% of trials. Notably, the distractor's eccentricity always matched the eccentricity of the target, while in the critical conditions the distractor's angular position was shifted either clockwise or counterclockwise relative to the target. We then computed estimates of recall error for both eccentricity and polar angle. A general interference model would predict an effect of distractors on both polar angle and eccentricity errors, while a selective interference model would predict effects of distractors on angle but not on eccentricity errors. Results showed that for stimulus angle there was an increase in the magnitude and variability of recall errors. However, distractors had no effect on estimates of stimulus eccentricity. Our results suggest that distractors selectively interfere with VSTM for spatial locations.

  8. There's Waldo! A Normalization Model of Visual Search Predicts Single-Trial Human Fixations in an Object Search Task

    PubMed Central

    Miconi, Thomas; Groomes, Laura; Kreiman, Gabriel

    2016-01-01

    When searching for an object in a scene, how does the brain decide where to look next? Visual search theories suggest the existence of a global “priority map” that integrates bottom-up visual information with top-down, target-specific signals. We propose a mechanistic model of visual search that is consistent with recent neurophysiological evidence, can localize targets in cluttered images, and predicts single-trial behavior in a search task. This model posits that a high-level retinotopic area selective for shape features receives global, target-specific modulation and implements local normalization through divisive inhibition. The normalization step is critical to prevent highly salient bottom-up features from monopolizing attention. The resulting activity pattern constitues a priority map that tracks the correlation between local input and target features. The maximum of this priority map is selected as the locus of attention. The visual input is then spatially enhanced around the selected location, allowing object-selective visual areas to determine whether the target is present at this location. This model can localize objects both in array images and when objects are pasted in natural scenes. The model can also predict single-trial human fixations, including those in error and target-absent trials, in a search task involving complex objects. PMID:26092221

  9. Attention effects on the processing of task-relevant and task-irrelevant speech sounds and letters

    PubMed Central

    Mittag, Maria; Inauri, Karina; Huovilainen, Tatu; Leminen, Miika; Salo, Emma; Rinne, Teemu; Kujala, Teija; Alho, Kimmo

    2013-01-01

    We used event-related brain potentials (ERPs) to study effects of selective attention on the processing of attended and unattended spoken syllables and letters. Participants were presented with syllables randomly occurring in the left or right ear and spoken by different voices and with a concurrent foveal stream of consonant letters written in darker or lighter fonts. During auditory phonological (AP) and non-phonological tasks, they responded to syllables in a designated ear starting with a vowel and spoken by female voices, respectively. These syllables occurred infrequently among standard syllables starting with a consonant and spoken by male voices. During visual phonological and non-phonological tasks, they responded to consonant letters with names starting with a vowel and to letters written in dark fonts, respectively. These letters occurred infrequently among standard letters with names starting with a consonant and written in light fonts. To examine genuine effects of attention and task on ERPs not overlapped by ERPs associated with target processing or deviance detection, these effects were studied only in ERPs to auditory and visual standards. During selective listening to syllables in a designated ear, ERPs to the attended syllables were negatively displaced during both phonological and non-phonological auditory tasks. Selective attention to letters elicited an early negative displacement and a subsequent positive displacement (Pd) of ERPs to attended letters being larger during the visual phonological than non-phonological task suggesting a higher demand for attention during the visual phonological task. Active suppression of unattended speech during the AP and non-phonological tasks and during the visual phonological tasks was suggested by a rejection positivity (RP) to unattended syllables. We also found evidence for suppression of the processing of task-irrelevant visual stimuli in visual ERPs during auditory tasks involving left-ear syllables

  10. Visual attention modulates brain activation to angry voices.

    PubMed

    Mothes-Lasch, Martin; Mentzel, Hans-Joachim; Miltner, Wolfgang H R; Straube, Thomas

    2011-06-29

    In accordance with influential models proposing prioritized processing of threat, previous studies have shown automatic brain responses to angry prosody in the amygdala and the auditory cortex under auditory distraction conditions. However, it is unknown whether the automatic processing of angry prosody is also observed during cross-modal distraction. The current fMRI study investigated brain responses to angry versus neutral prosodic stimuli during visual distraction. During scanning, participants were exposed to angry or neutral prosodic stimuli while visual symbols were displayed simultaneously. By means of task requirements, participants either attended to the voices or to the visual stimuli. While the auditory task revealed pronounced activation in the auditory cortex and amygdala to angry versus neutral prosody, this effect was absent during the visual task. Thus, our results show a limitation of the automaticity of the activation of the amygdala and auditory cortex to angry prosody. The activation of these areas to threat-related voices depends on modality-specific attention.

  11. Unintentional Activation of Translation Equivalents in Bilinguals Leads to Attention Capture in a Cross-Modal Visual Task

    PubMed Central

    Singh, Niharika; Mishra, Ramesh Kumar

    2015-01-01

    Using a variant of the visual world eye tracking paradigm, we examined if language non- selective activation of translation equivalents leads to attention capture and distraction in a visual task in bilinguals. High and low proficient Hindi-English speaking bilinguals were instructed to programme a saccade towards a line drawing which changed colour among other distractor objects. A spoken word, irrelevant to the main task, was presented before the colour change. On critical trials, one of the line drawings was a phonologically related word of the translation equivalent of the spoken word. Results showed that saccade latency was significantly higher towards the target in the presence of this cross-linguistic translation competitor compared to when the display contained completely unrelated objects. Participants were also slower when the display contained the referent of the spoken word among the distractors. However, the bilingual groups did not differ with regard to the interference effect observed. These findings suggest that spoken words activates translation equivalent which bias attention leading to interference in goal directed action in the visual domain. PMID:25775184

  12. ASSESSMENT OF ATTENTION THRESHOLD IN RATS BY TITRATION OF VISUAL CUE DURATION DURING THE FIVE CHOICE SERIAL REACTION TIME TASK

    PubMed Central

    Martin, Thomas J.; Grigg, Amanda; Kim, Susy A.; Ririe, Douglas G.; Eisenach, James C.

    2014-01-01

    Background The 5 choice serial reaction time task (5CSRTT) is commonly used to assess attention in rodents. We sought to develop a variant of the 5CSRTT that would speed training to objective success criteria, and to test whether this variant could determine attention capability in each subject. New Method Fisher 344 rats were trained to perform a variant of the 5CSRTT in which the duration of visual cue presentation (cue duration) was titrated between trials based upon performance. The cue duration was decreased when the subject made a correct response, or increased with incorrect responses or omissions. Additionally, test day challenges were provided consisting of lengthening the intertrial interval and inclusion of a visual distracting stimulus. Results Rats readily titrated the cue duration to less than 1 sec in 25 training sessions or less (mean ± SEM, 22.9 ± 0.7), and the median cue duration (MCD) was calculated as a measure of attention threshold. Increasing the intertrial interval increased premature responses, decreased the number of trials completed, and increased the MCD. Decreasing the intertrial interval and time allotted for consuming the food reward demonstrated that a minimum of 3.5 sec is required for rats to consume two food pellets and successfully attend to the next trial. Visual distraction in the form of a 3 Hz flashing light increased the MCD and both premature and time out responses. Comparison with existing method The titration variant of the 5CSRTT is a useful method that dynamically measures attention threshold across a wide range of subject performance, and significantly decreases the time required for training. Task challenges produce similar effects in the titration method as reported for the classical procedure. Conclusions The titration 5CSRTT method is an efficient training procedure for assessing attention and can be utilized to assess the limit in performance ability across subjects and various schedule manipulations. PMID

  13. Earth orbital teleoperator visual system evaluation program

    NASA Technical Reports Server (NTRS)

    Shields, N. L., Jr.; Kirkpatrick, M., III; Frederick, P. N.; Malone, T. B.

    1975-01-01

    Empirical tests of range estimation accuracy and resolution, via television, under monoptic and steroptic viewing conditions are discussed. Test data are used to derive man machine interface requirements and make design decisions for an orbital remote manipulator system. Remote manipulator system visual tasks are given and the effects of system parameters of these tasks are evaluated.

  14. Crossmodal attention switching: auditory dominance in temporal discrimination tasks.

    PubMed

    Lukas, Sarah; Philipp, Andrea M; Koch, Iring

    2014-11-01

    Visual stimuli are often processed more efficiently than accompanying stimuli in another modality. In line with this "visual dominance", earlier studies on attentional switching showed a clear benefit for visual stimuli in a bimodal visual-auditory modality-switch paradigm that required spatial stimulus localization in the relevant modality. The present study aimed to examine the generality of this visual dominance effect. The modality appropriateness hypothesis proposes that stimuli in different modalities are differentially effectively processed depending on the task dimension, so that processing of visual stimuli is favored in the dimension of space, whereas processing auditory stimuli is favored in the dimension of time. In the present study, we examined this proposition by using a temporal duration judgment in a bimodal visual-auditory switching paradigm. Two experiments demonstrated that crossmodal interference (i.e., temporal stimulus congruence) was larger for visual stimuli than for auditory stimuli, suggesting auditory dominance when performing temporal judgment tasks. However, attention switch costs were larger for the auditory modality than for visual modality, indicating a dissociation of the mechanisms underlying crossmodal competition in stimulus processing and modality-specific biasing of attentional set. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Visual Reliance for Balance Control in Older Adults Persists When Visual Information Is Disrupted by Artificial Feedback Delays

    PubMed Central

    Balasubramaniam, Ramesh

    2014-01-01

    Sensory information from our eyes, skin and muscles helps guide and correct balance. Less appreciated, however, is that delays in the transmission of sensory information between our eyes, limbs and central nervous system can exceed several 10s of milliseconds. Investigating how these time-delayed sensory signals influence balance control is central to understanding the postural system. Here, we investigate how delayed visual feedback and cognitive performance influence postural control in healthy young and older adults. The task required that participants position their center of pressure (COP) in a fixed target as accurately as possible without visual feedback about their COP location (eyes-open balance), or with artificial time delays imposed on visual COP feedback. On selected trials, the participants also performed a silent arithmetic task (cognitive dual task). We separated COP time series into distinct frequency components using low and high-pass filtering routines. Visual feedback delays affected low frequency postural corrections in young and older adults, with larger increases in postural sway noted for the group of older adults. In comparison, cognitive performance reduced the variability of rapid center of pressure displacements in young adults, but did not alter postural sway in the group of older adults. Our results demonstrate that older adults prioritize vision to control posture. This visual reliance persists even when feedback about the task is delayed by several hundreds of milliseconds. PMID:24614576

  16. Wavefront-Guided Versus Wavefront-Optimized Photorefractive Keratectomy: Visual and Military Task Performance.

    PubMed

    Ryan, Denise S; Sia, Rose K; Stutzman, Richard D; Pasternak, Joseph F; Howard, Robin S; Howell, Christopher L; Maurer, Tana; Torres, Mark F; Bower, Kraig S

    2017-01-01

    To compare visual performance, marksmanship performance, and threshold target identification following wavefront-guided (WFG) versus wavefront-optimized (WFO) photorefractive keratectomy (PRK). In this prospective, randomized clinical trial, active duty U.S. military Soldiers, age 21 or over, electing to undergo PRK were randomized to undergo WFG (n = 27) or WFO (n = 27) PRK for myopia or myopic astigmatism. Binocular visual performance was assessed preoperatively and 1, 3, and 6 months postoperatively: Super Vision Test high contrast, Super Vision Test contrast sensitivity (CS), and 25% contrast acuity with night vision goggle filter. CS function was generated testing at five spatial frequencies. Marksmanship performance in low light conditions was evaluated in a firing tunnel. Target detection and identification performance was tested for probability of identification of varying target sets and probability of detection of humans in cluttered environments. Visual performance, CS function, marksmanship, and threshold target identification demonstrated no statistically significant differences over time between the two treatments. Exploratory regression analysis of firing range tasks at 6 months showed no significant differences or correlations between procedures. Regression analysis of vehicle and handheld probability of identification showed a significant association with pretreatment performance. Both WFG and WFO PRK results translate to excellent and comparable visual and military performance. Reprint & Copyright © 2017 Association of Military Surgeons of the U.S.

  17. Visual processing speed.

    PubMed

    Owsley, Cynthia

    2013-09-20

    Older adults commonly report difficulties in visual tasks of everyday living that involve visual clutter, secondary task demands, and time sensitive responses. These difficulties often cannot be attributed to visual sensory impairment. Techniques for measuring visual processing speed under divided attention conditions and among visual distractors have been developed and have established construct validity in that those older adults performing poorly in these tests are more likely to exhibit daily visual task performance problems. Research suggests that computer-based training exercises can increase visual processing speed in older adults and that these gains transfer to enhancement of health and functioning and a slowing in functional and health decline as people grow older. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Executive Function Is Necessary for Perspective Selection, Not Level-1 Visual Perspective Calculation: Evidence from a Dual-Task Study of Adults

    ERIC Educational Resources Information Center

    Qureshi, Adam W.; Apperly, Ian A.; Samson, Dana

    2010-01-01

    Previous research suggests that perspective-taking and other "theory of mind" processes may be cognitively demanding for adult participants, and may be disrupted by concurrent performance of a secondary task. In the current study, a Level-1 visual perspective task was administered to 32 adults using a dual-task paradigm in which the secondary task…

  19. Visual attention in a complex search task differs between honeybees and bumblebees.

    PubMed

    Morawetz, Linde; Spaethe, Johannes

    2012-07-15

    Mechanisms of spatial attention are used when the amount of gathered information exceeds processing capacity. Such mechanisms have been proposed in bees, but have not yet been experimentally demonstrated. We provide evidence that selective attention influences the foraging performance of two social bee species, the honeybee Apis mellifera and the bumblebee Bombus terrestris. Visual search tasks, originally developed for application in human psychology, were adapted for behavioural experiments on bees. We examined the impact of distracting visual information on search performance, which we measured as error rate and decision time. We found that bumblebees were significantly less affected by distracting objects than honeybees. Based on the results, we conclude that the search mechanism in honeybees is serial like, whereas in bumblebees it shows the characteristics of a restricted parallel-like search. Furthermore, the bees differed in their strategy to solve the speed-accuracy trade-off. Whereas bumblebees displayed slow but correct decision-making, honeybees exhibited fast and inaccurate decision-making. We propose two neuronal mechanisms of visual information processing that account for the different responses between honeybees and bumblebees, and we correlate species-specific features of the search behaviour to differences in habitat and life history.

  20. Visual function and fitness to drive.

    PubMed

    Kotecha, Aachal; Spratt, Alexander; Viswanathan, Ananth

    2008-01-01

    Driving is recognized to be a visually intensive task and accordingly there is a legal minimum standard of vision required for all motorists. The purpose of this paper is to review the current United Kingdom (UK) visual requirements for driving and discuss the evidence base behind these legal rules. The role of newer, alternative tests of visual function that may be better indicators of driving safety will also be considered. Finally, the implications of ageing on driving ability are discussed. A search of Medline and PubMed databases was performed using the following keywords: driving, vision, visual function, fitness to drive and ageing. In addition, papers from the Department of Transport website and UK Royal College of Ophthalmologists guidelines were studied. Current UK visual standards for driving are based upon historical concepts, but recent advances in technology have brought about more sophisticated methods for assessing the status of the binocular visual field and examining visual attention. These tests appear to be better predictors of driving performance. Further work is required to establish whether these newer tests should be incorporated in the current UK visual standards when examining an individual's fitness to drive.

  1. Postural Responses to a Suprapostural Visual Task among Children with and without Developmental Coordination Disorder

    ERIC Educational Resources Information Center

    Chen, F. C.; Tsai, C. L.; Stoffregen, T. A.; Wade, M. G.

    2011-01-01

    We sought to determine the effects of varying the perceptual demands of a suprapostural visual task on the postural activity of children with developmental coordination disorder (DCD), and typically developing children (TDC). Sixty-four (32 per group) children aged between 9 and 10 years participated. In a within-participants design, each child…

  2. Learning Enhances Sensory and Multiple Non-sensory Representations in Primary Visual Cortex

    PubMed Central

    Poort, Jasper; Khan, Adil G.; Pachitariu, Marius; Nemri, Abdellatif; Orsolic, Ivana; Krupic, Julija; Bauza, Marius; Sahani, Maneesh; Keller, Georg B.; Mrsic-Flogel, Thomas D.; Hofer, Sonja B.

    2015-01-01

    Summary We determined how learning modifies neural representations in primary visual cortex (V1) during acquisition of a visually guided behavioral task. We imaged the activity of the same layer 2/3 neuronal populations as mice learned to discriminate two visual patterns while running through a virtual corridor, where one pattern was rewarded. Improvements in behavioral performance were closely associated with increasingly distinguishable population-level representations of task-relevant stimuli, as a result of stabilization of existing and recruitment of new neurons selective for these stimuli. These effects correlated with the appearance of multiple task-dependent signals during learning: those that increased neuronal selectivity across the population when expert animals engaged in the task, and those reflecting anticipation or behavioral choices specifically in neuronal subsets preferring the rewarded stimulus. Therefore, learning engages diverse mechanisms that modify sensory and non-sensory representations in V1 to adjust its processing to task requirements and the behavioral relevance of visual stimuli. PMID:26051421

  3. Visual soil evaluation - future research requirements

    NASA Astrophysics Data System (ADS)

    Emmet-Booth, Jeremy; Forristal, Dermot; Fenton, Owen; Ball, Bruce; Holden, Nick

    2017-04-01

    A review of Visual Soil Evaluation (VSE) techniques (Emmet-Booth et al., 2016) highlighted their established utility for soil quality assessment, though some limitations were identified; (1) The examination of aggregate size, visible intra-porosity and shape forms a key assessment criterion in almost all methods, thus limiting evaluation to structural form. The addition of criteria that holistically examine structure may be desirable. For example, structural stability can be indicated using dispersion tests or examining soil surface crusting, while the assessment of soil colour may indirectly indicate soil organic matter content, a contributor to stability. Organic matter assessment may also indicate structural resilience, along with rooting, earthworm numbers or shrinkage cracking. (2) Soil texture may influence results or impeded method deployment. Modification of procedures to account for extreme texture variation is desirable. For example, evidence of compaction in sandy or single grain soils greatly differs to that in clayey soils. Some procedures incorporate separate classification systems or adjust deployment based on texture. (3) Research into impacts of soil moisture content on VSE evaluation criteria is required. Criteria such as rupture resistance and shape may be affected by moisture content. It is generally recommended that methods are deployed on moist soils and quantification of influences of moisture variation on results is necessary. (4) Robust sampling strategies for method deployment are required. Dealing with spatial variation differs between methods, but where methods can be deployed over large areas, clear instruction on sampling is required. Additionally, as emphasis has been placed on the agricultural production of soil, so the ability of VSE for exploring structural quality in terms of carbon storage, water purification and biodiversity support also requires research. References Emmet-Booth, J.P., Forristal. P.D., Fenton, O., Ball, B

  4. Screening for Impaired Visual Acuity in Older Adults: US Preventive Services Task Force Recommendation Statement.

    PubMed

    Siu, Albert L; Bibbins-Domingo, Kirsten; Grossman, David C; Baumann, Linda Ciofu; Davidson, Karina W; Ebell, Mark; García, Francisco A R; Gillman, Matthew; Herzstein, Jessica; Kemper, Alex R; Krist, Alex H; Kurth, Ann E; Owens, Douglas K; Phillips, William R; Phipps, Maureen G; Pignone, Michael P

    2016-03-01

    Update of the US Preventive Services Task Force (USPSTF) recommendation on screening for impaired visual acuity in older adults. The USPSTF reviewed the evidence on screening for visual acuity impairment associated with uncorrected refractive error, cataracts, and age-related macular degeneration among adults 65 years or older in the primary care setting; the benefits and harms of screening; the accuracy of screening; and the benefits and harms of treatment of early vision impairment due to uncorrected refractive error, cataracts, and age-related macular degeneration. This recommendation applies to asymptomatic adults 65 years or older who do not present to their primary care clinician with vision problems. The USPSTF concludes that the current evidence is insufficient to assess the balance of benefits and harms of screening for impaired visual acuity in older adults. (I statement).

  5. The effect of a concurrent working memory task and temporal offsets on the integration of auditory and visual speech information.

    PubMed

    Buchan, Julie N; Munhall, Kevin G

    2012-01-01

    Audiovisual speech perception is an everyday occurrence of multisensory integration. Conflicting visual speech information can influence the perception of acoustic speech (namely the McGurk effect), and auditory and visual speech are integrated over a rather wide range of temporal offsets. This research examined whether the addition of a concurrent cognitive load task would affect the audiovisual integration in a McGurk speech task and whether the cognitive load task would cause more interference at increasing offsets. The amount of integration was measured by the proportion of responses in incongruent trials that did not correspond to the audio (McGurk response). An eye-tracker was also used to examine whether the amount of temporal offset and the presence of a concurrent cognitive load task would influence gaze behavior. Results from this experiment show a very modest but statistically significant decrease in the number of McGurk responses when subjects also perform a cognitive load task, and that this effect is relatively constant across the various temporal offsets. Participant's gaze behavior was also influenced by the addition of a cognitive load task. Gaze was less centralized on the face, less time was spent looking at the mouth and more time was spent looking at the eyes, when a concurrent cognitive load task was added to the speech task.

  6. Spatial Reasoning with External Visualizations: What Matters Is What You See, Not whether You Interact

    ERIC Educational Resources Information Center

    Keehner, Madeleine; Hegarty, Mary; Cohen, Cheryl; Khooshabeh, Peter; Montello, Daniel R.

    2008-01-01

    Three experiments examined the effects of interactive visualizations and spatial abilities on a task requiring participants to infer and draw cross sections of a three-dimensional (3D) object. The experiments manipulated whether participants could interactively control a virtual 3D visualization of the object while performing the task, and…

  7. Unintentional force changes in cyclical tasks performed by an abundant system: Empirical observations and a dynamical model.

    PubMed

    Reschechtko, Sasha; Hasanbarani, Fariba; Akulin, Vladimir M; Latash, Mark L

    2017-05-14

    The study explored unintentional force changes elicited by removing visual feedback during cyclical, two-finger isometric force production tasks. Subjects performed two types of tasks at 1Hz, paced by an auditory metronome. One - Force task - required cyclical changes in total force while maintaining the sharing, defined as relative contribution of a finger to total force. The other task - Share task - required cyclical changes in sharing while keeping total force unchanged. Each trial started under full visual feedback on both force and sharing; subsequently, feedback on the variable that was instructed to stay constant was frozen, and finally feedback on the other variable was also removed. In both tasks, turning off visual feedback on total force elicited a drop in the mid-point of the force cycle and an increase in the peak-to-peak force amplitude. Turning off visual feedback on sharing led to a drift of mean share toward 50:50 across both tasks. Without visual feedback there was consistent deviation of the two force time series from the in-phase pattern (typical of the Force task) and from the out-of-phase pattern (typical of the Share task). This finding is in contrast to most earlier studies that demonstrated only two stable patterns, in-phase and out-of-phase. We interpret the results as consequences of drifts of parameters in a dynamical system leading in particular to drifts in the referent finger coordinates toward their actual coordinates. The relative phase desynchronization is caused by the right-left differences in the hypothesized drift processes, consistent with the dynamic dominance hypothesis. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  8. Unintentional force changes in cyclical tasks performed by an abundant system: Empirical observations and a dynamical model

    PubMed Central

    Reschechtko, Sasha; Hasanbarani, Fariba; Akulin, Vladimir M.; Latash, Mark L.

    2017-01-01

    The study explored unintentional force changes elicited by removing visual feedback during cyclical, two-finger isometric force production tasks. Subjects performed two types of tasks at 1 Hz, paced by an auditory metronome. One – Force taskrequired cyclical changes in total force while maintaining the sharing, defined as relative contribution of a finger to total force. The other task – Share taskrequired cyclical changes in sharing while keeping total force unchanged. Each trial started under full visual feedback on both force and sharing; subsequently, feedback on the variable that was instructed to stay constant was frozen, and finally feedback on the other variable was also removed. In both tasks, turning off visual feedback on total force elicited a drop in the mid-point of the force cycle and an increase in the peak-to-peak force amplitude. Turning off visual feedback on sharing led to a drift of mean share toward 50:50 across both tasks. Without visual feedback there was consistent deviation of the two force time series from the in-phase pattern (typical of the Force task) and from the out-of-phase pattern (typical of the Share task). This finding is in contrast to most earlier studies that demonstrated only two stable patterns, in-phase and out-of-phase. We interpret the results as consequences of drifts of parameters in a dynamical system leading in particular to drifts in the referent finger coordinates toward their actual coordinates. The relative phase desynchronization is caused by the right-left differences in the hypothesized drift processes, consistent with the dynamic dominance hypothesis. PMID:28344070

  9. Infrastructure Task Force National Environmental Policy Act Requirements - February 2011

    EPA Pesticide Factsheets

    This document summarizes in a matrix format the federal regulations requirements and guidance for complying with the National Environmental Policy Act for the Infrastructure Task Force federal partner agencies.

  10. The effect of four user interface concepts on visual scan pattern similarity and information foraging in a complex decision making task.

    PubMed

    Starke, Sandra D; Baber, Chris

    2018-07-01

    User interface (UI) design can affect the quality of decision making, where decisions based on digitally presented content are commonly informed by visually sampling information through eye movements. Analysis of the resulting scan patterns - the order in which people visually attend to different regions of interest (ROIs) - gives an insight into information foraging strategies. In this study, we quantified scan pattern characteristics for participants engaging with conceptually different user interface designs. Four interfaces were modified along two dimensions relating to effort in accessing information: data presentation (either alpha-numerical data or colour blocks), and information access time (all information sources readily available or sequential revealing of information required). The aim of the study was to investigate whether a) people develop repeatable scan patterns and b) different UI concepts affect information foraging and task performance. Thirty-two participants (eight for each UI concept) were given the task to correctly classify 100 credit card transactions as normal or fraudulent based on nine transaction attributes. Attributes varied in their usefulness of predicting the correct outcome. Conventional and more recent (network analysis- and bioinformatics-based) eye tracking metrics were used to quantify visual search. Empirical findings were evaluated in context of random data and possible accuracy for theoretical decision making strategies. Results showed short repeating sequence fragments within longer scan patterns across participants and conditions, comprising a systematic and a random search component. The UI design concept showing alpha-numerical data in full view resulted in most complete data foraging, while the design concept showing colour blocks in full view resulted in the fastest task completion time. Decision accuracy was not significantly affected by UI design. Theoretical calculations showed that the difference in achievable

  11. Disturbed holistic processing in autism spectrum disorders verified by two cognitive tasks requiring perception of complex visual stimuli.

    PubMed

    Nakahachi, Takayuki; Yamashita, Ko; Iwase, Masao; Ishigami, Wataru; Tanaka, Chitaru; Toyonaga, Koji; Maeda, Shizuyo; Hirotsune, Hideto; Tei, Yosyo; Yokoi, Koichi; Okajima, Shoji; Shimizu, Akira; Takeda, Masatoshi

    2008-06-30

    Central coherence is a key concept in research on autism spectrum disorders (ASD). It refers to the process in which diverse information is integrated and higher meaning is constructed in context. A malfunction in this process could result in abnormal attention to partial information in preference to the whole. To verify this hypothesis, we studied the performance of two visual tasks by 10 patients with autistic disorder or Asperger's disorder and by 26 (experiment 1) or 25 (experiment 2) normal subjects. In experiment 1, the subjects memorized pictures, some pictures with a change related to the main theme (D1) and others with a change not related to the main theme (D2); then the same pictures were randomly presented to the subjects who were asked to find the change. In experiment 2, the subjects were presented pictures of a normal (N) or a Thatcherized (T) face arranged side by side inversely (I) or uprightly (U) and to judge them as the same or different. In experiment 1, ASD subjects exhibited significantly lower rates of correct responses in D1 but not in D2. In experiment 2, ASD subjects exhibited significantly longer response times in NT-U but not in TN-I. These results showed a deficit in holistic processing, which is consistent with weak central coherence in ASD.

  12. Visual attention and emotional memory: recall of aversive pictures is partially mediated by concurrent task performance.

    PubMed

    Pottage, Claire L; Schaefer, Alexandre

    2012-02-01

    The emotional enhancement of memory is often thought to be determined by attention. However, recent evidence using divided attention paradigms suggests that attention does not play a significant role in the formation of memories for aversive pictures. We report a study that investigated this question using a paradigm in which participants had to encode lists of randomly intermixed negative and neutral pictures under conditions of full attention and divided attention followed by a free recall test. Attention was divided by a highly demanding concurrent task tapping visual processing resources. Results showed that the advantage in recall for aversive pictures was still present in the DA condition. However, mediation analyses also revealed that concurrent task performance significantly mediated the emotional enhancement of memory under divided attention. This finding suggests that visual attentional processes play a significant role in the formation of emotional memories. PsycINFO Database Record (c) 2012 APA, all rights reserved

  13. Impaired visual recognition of biological motion in schizophrenia.

    PubMed

    Kim, Jejoong; Doop, Mikisha L; Blake, Randolph; Park, Sohee

    2005-09-15

    Motion perception deficits have been suggested to be an important feature of schizophrenia but the behavioral consequences of such deficits are unknown. Biological motion refers to the movements generated by living beings. The human visual system rapidly and effortlessly detects and extracts socially relevant information from biological motion. A deficit in biological motion perception may have significant consequences for detecting and interpreting social information. Schizophrenia patients and matched healthy controls were tested on two visual tasks: recognition of human activity portrayed in point-light animations (biological motion task) and a perceptual control task involving detection of a grouped figure against the background noise (global-form task). Both tasks required detection of a global form against background noise but only the biological motion task required the extraction of motion-related information. Schizophrenia patients performed as well as the controls in the global-form task, but were significantly impaired on the biological motion task. In addition, deficits in biological motion perception correlated with impaired social functioning as measured by the Zigler social competence scale [Zigler, E., Levine, J. (1981). Premorbid competence in schizophrenia: what is being measured? Journal of Consulting and Clinical Psychology, 49, 96-105.]. The deficit in biological motion processing, which may be related to the previously documented deficit in global motion processing, could contribute to abnormal social functioning in schizophrenia.

  14. Using task analysis to improve the requirements elicitation in health information system.

    PubMed

    Teixeira, Leonor; Ferreira, Carlos; Santos, Beatriz Sousa

    2007-01-01

    This paper describes the application of task analysis within the design process of a Web-based information system for managing clinical information in hemophilia care, in order to improve the requirements elicitation and, consequently, to validate the domain model obtained in a previous phase of the design process (system analysis). The use of task analysis in this case proved to be a practical and efficient way to improve the requirements engineering process by involving users in the design process.

  15. Conveying Clinical Reasoning Based on Visual Observation via Eye-Movement Modelling Examples

    ERIC Educational Resources Information Center

    Jarodzka, Halszka; Balslev, Thomas; Holmqvist, Kenneth; Nystrom, Marcus; Scheiter, Katharina; Gerjets, Peter; Eika, Berit

    2012-01-01

    Complex perceptual tasks, like clinical reasoning based on visual observations of patients, require not only conceptual knowledge about diagnostic classes but also the skills to visually search for symptoms and interpret these observations. However, medical education so far has focused very little on how visual observation skills can be…

  16. Effects of regular aerobic exercise on visual perceptual learning.

    PubMed

    Connell, Charlotte J W; Thompson, Benjamin; Green, Hayden; Sullivan, Rachel K; Gant, Nicholas

    2017-12-02

    This study investigated the influence of five days of moderate intensity aerobic exercise on the acquisition and consolidation of visual perceptual learning using a motion direction discrimination (MDD) task. The timing of exercise relative to learning was manipulated by administering exercise either before or after perceptual training. Within a matched-subjects design, twenty-seven healthy participants (n = 9 per group) completed five consecutive days of perceptual training on a MDD task under one of three interventions: no exercise, exercise before the MDD task, or exercise after the MDD task. MDD task accuracy improved in all groups over the five-day period, but there was a trend for impaired learning when exercise was performed before visual perceptual training. MDD task accuracy (mean ± SD) increased in exercise before by 4.5 ± 6.5%; exercise after by 11.8 ± 6.4%; and no exercise by 11.3 ± 7.2%. All intervention groups displayed similar MDD threshold reductions for the trained and untrained motion axes after training. These findings suggest that moderate daily exercise does not enhance the rate of visual perceptual learning for an MDD task or the transfer of learning to an untrained motion axis. Furthermore, exercise performed immediately prior to a visual perceptual learning task may impair learning. Further research with larger groups is required in order to better understand these effects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Flow visualization of CFD using graphics workstations

    NASA Technical Reports Server (NTRS)

    Lasinski, Thomas; Buning, Pieter; Choi, Diana; Rogers, Stuart; Bancroft, Gordon

    1987-01-01

    High performance graphics workstations are used to visualize the fluid flow dynamics obtained from supercomputer solutions of computational fluid dynamic programs. The visualizations can be done independently on the workstation or while the workstation is connected to the supercomputer in a distributed computing mode. In the distributed mode, the supercomputer interactively performs the computationally intensive graphics rendering tasks while the workstation performs the viewing tasks. A major advantage of the workstations is that the viewers can interactively change their viewing position while watching the dynamics of the flow fields. An overview of the computer hardware and software required to create these displays is presented. For complex scenes the workstation cannot create the displays fast enough for good motion analysis. For these cases, the animation sequences are recorded on video tape or 16 mm film a frame at a time and played back at the desired speed. The additional software and hardware required to create these video tapes or 16 mm movies are also described. Photographs illustrating current visualization techniques are discussed. Examples of the use of the workstations for flow visualization through animation are available on video tape.

  18. Signal detection theory applied to three visual search tasks--identification, yes/no detection and localization.

    PubMed

    Cameron, E Leslie; Tai, Joanna C; Eckstein, Miguel P; Carrasco, Marisa

    2004-01-01

    Adding distracters to a display impairs performance on visual tasks (i.e. the set-size effect). While keeping the display characteristics constant, we investigated this effect in three tasks: 2 target identification, yes-no detection with 2 targets, and 8-alternative localization. A Signal Detection Theory (SDT) model, tailored for each task, accounts for the set-size effects observed in identification and localization tasks, and slightly under-predicts the set-size effect in a detection task. Given that sensitivity varies as a function of spatial frequency (SF), we measured performance in each of these three tasks in neutral and peripheral precue conditions for each of six spatial frequencies (0.5-12 cpd). For all spatial frequencies tested, performance on the three tasks decreased as set size increased in the neutral precue condition, and the peripheral precue reduced the effect. Larger set-size effects were observed at low SFs in the identification and localization tasks. This effect can be described using the SDT model, but was not predicted by it. For each of these tasks we also established the extent to which covert attention modulates performance across a range of set sizes. A peripheral precue substantially diminished the set-size effect and improved performance, even at set size 1. These results provide support for distracter exclusion, and suggest that signal enhancement may also be a mechanism by which covert attention can impose its effect.

  19. Visual event-related potential changes in multiple system atrophy: delayed N2 latency in selective attention to a color task.

    PubMed

    Kamitani, Toshiaki; Kuroiwa, Yoshiyuki

    2009-01-01

    Recent studies demonstrated an altered P3 component and prolonged reaction time during the visual discrimination tasks in multiple system atrophy (MSA). In MSA, however, little is known about the N2 component which is known to be closely related to the visual discrimination process. We therefore compared the N2 component as well as the N1 and P3 components in 17 MSA patients with these components in 10 normal controls, by using a visual selective attention task to color or to shape. While the P3 in MSA was significantly delayed in selective attention to shape, the N2 in MSA was significantly delayed in selective attention to color. N1 was normally preserved both in attention to color and in attention to shape. Our electrophysiological results indicate that the color discrimination process during selective attention is impaired in MSA.

  20. Different Levels of Food Restriction Reveal Genotype-Specific Differences in Learning a Visual Discrimination Task

    PubMed Central

    Makowiecki, Kalina; Hammond, Geoff; Rodger, Jennifer

    2012-01-01

    In behavioural experiments, motivation to learn can be achieved using food rewards as positive reinforcement in food-restricted animals. Previous studies reduce animal weights to 80–90% of free-feeding body weight as the criterion for food restriction. However, effects of different degrees of food restriction on task performance have not been assessed. We compared learning task performance in mice food-restricted to 80 or 90% body weight (BW). We used adult wildtype (WT; C57Bl/6j) and knockout (ephrin-A2−/−) mice, previously shown to have a reverse learning deficit. Mice were trained in a two-choice visual discrimination task with food reward as positive reinforcement. When mice reached criterion for one visual stimulus (80% correct in three consecutive 10 trial sets) they began the reverse learning phase, where the rewarded stimulus was switched to the previously incorrect stimulus. For the initial learning and reverse phase of the task, mice at 90%BW took almost twice as many trials to reach criterion as mice at 80%BW. Furthermore, WT 80 and 90%BW groups significantly differed in percentage correct responses and learning strategy in the reverse learning phase, whereas no differences between weight restriction groups were observed in ephrin-A2−/− mice. Most importantly, genotype-specific differences in reverse learning strategy were only detected in the 80%BW groups. Our results indicate that increased food restriction not only results in better performance and a shorter training period, but may also be necessary for revealing behavioural differences between experimental groups. This has important ethical and animal welfare implications when deciding extent of diet restriction in behavioural studies. PMID:23144936

  1. Different levels of food restriction reveal genotype-specific differences in learning a visual discrimination task.

    PubMed

    Makowiecki, Kalina; Hammond, Geoff; Rodger, Jennifer

    2012-01-01

    In behavioural experiments, motivation to learn can be achieved using food rewards as positive reinforcement in food-restricted animals. Previous studies reduce animal weights to 80-90% of free-feeding body weight as the criterion for food restriction. However, effects of different degrees of food restriction on task performance have not been assessed. We compared learning task performance in mice food-restricted to 80 or 90% body weight (BW). We used adult wildtype (WT; C57Bl/6j) and knockout (ephrin-A2⁻/⁻) mice, previously shown to have a reverse learning deficit. Mice were trained in a two-choice visual discrimination task with food reward as positive reinforcement. When mice reached criterion for one visual stimulus (80% correct in three consecutive 10 trial sets) they began the reverse learning phase, where the rewarded stimulus was switched to the previously incorrect stimulus. For the initial learning and reverse phase of the task, mice at 90%BW took almost twice as many trials to reach criterion as mice at 80%BW. Furthermore, WT 80 and 90%BW groups significantly differed in percentage correct responses and learning strategy in the reverse learning phase, whereas no differences between weight restriction groups were observed in ephrin-A2⁻/⁻ mice. Most importantly, genotype-specific differences in reverse learning strategy were only detected in the 80%BW groups. Our results indicate that increased food restriction not only results in better performance and a shorter training period, but may also be necessary for revealing behavioural differences between experimental groups. This has important ethical and animal welfare implications when deciding extent of diet restriction in behavioural studies.

  2. Effects of spatial congruency on saccade and visual discrimination performance in a dual-task paradigm.

    PubMed

    Moehler, Tobias; Fiehler, Katja

    2014-12-01

    The present study investigated the coupling of selection-for-perception and selection-for-action during saccadic eye movement planning in three dual-task experiments. We focused on the effects of spatial congruency of saccade target (ST) location and discrimination target (DT) location and the time between ST-cue and Go-signal (SOA) on saccadic eye movement performance. In two experiments, participants performed a visual discrimination task at a cued location while programming a saccadic eye movement to a cued location. In the third experiment, the discrimination task was not cued and appeared at a random location. Spatial congruency of ST-location and DT-location resulted in enhanced perceptual performance irrespective of SOA. Perceptual performance in spatially incongruent trials was above chance, but only when the DT-location was cued. Saccade accuracy and precision were also affected by spatial congruency showing superior performance when the ST- and DT-location coincided. Saccade latency was only affected by spatial congruency when the DT-cue was predictive of the ST-location. Moreover, saccades consistently curved away from the incongruent DT-locations. Importantly, the effects of spatial congruency on saccade parameters only occurred when the DT-location was cued; therefore, results from experiments 1 and 2 are due to the endogenous allocation of attention to the DT-location and not caused by the salience of the probe. The SOA affected saccade latency showing decreasing latencies with increasing SOA. In conclusion, our results demonstrate that visuospatial attention can be voluntarily distributed upon spatially distinct perceptual and motor goals in dual-task situations, resulting in a decline of visual discrimination and saccade performance.

  3. The role of the human pulvinar in visual attention and action: evidence from temporal-order judgment, saccade decision, and antisaccade tasks.

    PubMed

    Arend, Isabel; Machado, Liana; Ward, Robert; McGrath, Michelle; Ro, Tony; Rafal, Robert D

    2008-01-01

    The pulvinar nucleus of the thalamus has been considered as a key structure for visual attention functions (Grieve, K.L. et al. (2000). Trends Neurosci., 23: 35-39; Shipp, S. (2003). Philos. Trans. R. Soc. Lond. B Biol. Sci., 358(1438): 1605-1624). During the past several years, we have studied the role of the human pulvinar in visual attention and oculomotor behaviour by testing a small group of patients with unilateral pulvinar lesions. Here we summarize some of these findings, and present new evidence for the role of this structure in both eye movements and visual attention through two versions of a temporal-order judgment task and an antisaccade task. Pulvinar damage induces an ipsilesional bias in perceptual temporal-order judgments and in saccadic decision, and also increases the latency of antisaccades away from contralesional targets. The demonstration that pulvinar damage affects both attention and oculomotor behaviour highlights the role of this structure in the integration of visual and oculomotor signals and, more generally, its role in flexibly linking visual stimuli with context-specific motor responses.

  4. A conditioned visual orientation requires the ellipsoid body in Drosophila

    PubMed Central

    Guo, Chao; Du, Yifei; Yuan, Deliang; Li, Meixia; Gong, Haiyun; Gong, Zhefeng

    2015-01-01

    Orientation, the spatial organization of animal behavior, is an essential faculty of animals. Bacteria and lower animals such as insects exhibit taxis, innate orientation behavior, directly toward or away from a directional cue. Organisms can also orient themselves at a specific angle relative to the cues. In this study, using Drosophila as a model system, we established a visual orientation conditioning paradigm based on a flight simulator in which a stationary flying fly could control the rotation of a visual object. By coupling aversive heat shocks to a fly's orientation toward one side of the visual object, we found that the fly could be conditioned to orientate toward the left or right side of the frontal visual object and retain this conditioned visual orientation. The lower and upper visual fields have different roles in conditioned visual orientation. Transfer experiments showed that conditioned visual orientation could generalize between visual targets of different sizes, compactness, or vertical positions, but not of contour orientation. Rut—Type I adenylyl cyclase and Dnc—phosphodiesterase were dispensable for visual orientation conditioning. Normal activity and scb signaling in R3/R4d neurons of the ellipsoid body were required for visual orientation conditioning. Our studies established a visual orientation conditioning paradigm and examined the behavioral properties and neural circuitry of visual orientation, an important component of the insect's spatial navigation. PMID:25512578

  5. Conceptual design study for a teleoperator visual system, phase 1

    NASA Technical Reports Server (NTRS)

    Adams, D.; Grant, C.; Johnson, C.; Meirick, R.; Polhemus, C.; Ray, A.; Rittenhouse, D.; Skidmore, R.

    1972-01-01

    Results are reported for work performed during the first phase of the conceptual design study for a teleoperator visual system. This phase consists of four tasks: General requirements, concept development, subsystem requirements and analysis, and concept evaluation.

  6. Validation of a Visual-Spatial Secondary Task to Assess Automaticity in Laparoscopic Skills.

    PubMed

    Castillo, Richard; Alvarado, Juan; Moreno, Pablo; Billeke, Pablo; Martínez, Carlos; Varas, Julián; Jarufe, Nicolás

    2017-12-26

    Our objective was to assess reliability and validity of a visual-spatial secondary task (VSST) as a method to measure automaticity on a basic simulated laparoscopic skill model. In motor skill acquisition, expertise is defined by automaticity. The highest level of performance with less cognitive and attentional resources characterizes this stage, allowing experts to perform multiple tasks. Conventional validated parameters as operative time, objective assessment skills scales (OSATS), and movement economy, are insufficient to distinguish if an individual has reached the more advanced learning phases, such as automaticity. There is literature about using a VSST as an attention indicator that correlates with the automaticity level. Novices with completed and approved Fundamentals of Laparoscopic Surgery course, and laparoscopy experts were enrolled for an experimental study and measured under dual tasks conditions. Each participant performed the test giving priority to the primary task while at the same time they responded to a VSST. The primary task consisted of 4 interrupted laparoscopic stitches (ILS) on a bench-model. The VSST was a screen that showed different patterns that the surgeon had to recognize and press a pedal while doing the stitches (PsychoPsy software, Python, MacOS). Novices were overtrained on ILS until they reach at least 100 repetitions and then were retested. Participants were video recorded and then assessed by 2 blinded evaluators who measured operative time and OSATS. These scores were considered indicators of quality for the primary task. The VSST performance was measured by the detectability index (DI), which is a ratio between correct and wrong detections. A reliable evaluation was defined as two measures of DI with less than 10% of difference, maintaining the cutoff scores for performance on the primary task (operative time <110 seg and OSATS >17 points). Novices (n = 11) achieved reliable measure of the test after 2 (2-5) repetitions on

  7. Action Recognition and Movement Direction Discrimination Tasks Are Associated with Different Adaptation Patterns

    PubMed Central

    de la Rosa, Stephan; Ekramnia, Mina; Bülthoff, Heinrich H.

    2016-01-01

    The ability to discriminate between different actions is essential for action recognition and social interactions. Surprisingly previous research has often probed action recognition mechanisms with tasks that did not require participants to discriminate between actions, e.g., left-right direction discrimination tasks. It is not known to what degree visual processes in direction discrimination tasks are also involved in the discrimination of actions, e.g., when telling apart a handshake from a high-five. Here, we examined whether action discrimination is influenced by movement direction and whether direction discrimination depends on the type of action. We used an action adaptation paradigm to target action and direction discrimination specific visual processes. In separate conditions participants visually adapted to forward and backward moving handshake and high-five actions. Participants subsequently categorized either the action or the movement direction of an ambiguous action. The results showed that direction discrimination adaptation effects were modulated by the type of action but action discrimination adaptation effects were unaffected by movement direction. These results suggest that action discrimination and direction categorization rely on partly different visual information. We propose that action discrimination tasks should be considered for the exploration of visual action recognition mechanisms. PMID:26941633

  8. Effect of task set-modulating attentional capture depends on the distractor cost in visual search: evidence from N2pc.

    PubMed

    Zhao, Dandan; Liang, Shengnan; Jin, Zhenlan; Li, Ling

    2014-07-09

    Previous studies have confirmed that attention can be modulated by the current task set while involuntarily captured by salient items. However, little is known on which factors the modulation of attentional capture is dependent on when the same stimuli with different task sets are presented. In the present study, participants conducted two visual search tasks with the same search arrays by varying target and distractor settings (color singleton as target, onset singleton as distractor, named as color task, and vice versa). Ipsilateral and contralateral color distractors resulted in two different relative saliences in two tasks, respectively. Both reaction times (RTs) and N2-posterior-contralateral (N2pc) results showed that there was no difference between ipsilateral and contralateral color distractors in the onset task. However, both RTs and the latency of N2pc showed a delay to the ipsilateral onset distractor compared with the contralateral onset distractor. Moreover, the N2pc observed under the contralateral distractor condition in the color task was reversed, and its amplitude was attenuated. On the basis of these results, we proposed a parameter called distractor cost (DC), computed by subtracting RTs under the contralateral distractor condition from the ipsilateral condition. The results suggest that an enhanced DC might be related to the modification of N2pc in searching for the color target. Taken together, these findings provide evidence that the effect of task set-modulating attentional capture in visual search is related to the DC.

  9. Validity and reliability of an online visual-spatial working memory task for self-reliant administration in school-aged children.

    PubMed

    Van de Weijer-Bergsma, Eva; Kroesbergen, Evelyn H; Prast, Emilie J; Van Luit, Johannes E H

    2015-09-01

    Working memory is an important predictor of academic performance, and of math performance in particular. Most working memory tasks depend on one-to-one administration by a testing assistant, which makes the use of such tasks in large-scale studies time-consuming and costly. Therefore, an online, self-reliant visual-spatial working memory task (the Lion game) was developed for primary school children (6-12 years of age). In two studies, the validity and reliability of the Lion game were investigated. The results from Study 1 (n = 442) indicated satisfactory six-week test-retest reliability, excellent internal consistency, and good concurrent and predictive validity. The results from Study 2 (n = 5,059) confirmed the results on the internal consistency and predictive validity of the Lion game. In addition, multilevel analysis revealed that classroom membership influenced Lion game scores. We concluded that the Lion game is a valid and reliable instrument for the online computerized and self-reliant measurement of visual-spatial working memory (i.e., updating).

  10. Performance under dichoptic versus binocular viewing conditions - Effects of attention and task requirements

    NASA Technical Reports Server (NTRS)

    Kimchi, Ruth; Gopher, Daniel; Rubin, Yifat; Raij, David

    1993-01-01

    Three experiments investigated subjects' ability to allocate attention and cope with task requirements under dichoptic versus binocular viewing conditions. Experiments 1 and 2 employed a target detection task in compound and noncompound stimuli, and Experiment 3 employed a relative-proximity judgment task. The tasks were performed in a focused attention condition in which subjects had to attend to the stimulus presented to one eye or field (under dichoptic and binocular viewing conditions, respectively) while ignoring the stimulus presented to the other eye or field, and in a divided attention condition in which subjects had to attend to the stimuli presented to both eyes or fields. Subjects' performance was affected by the interaction of attention conditions with task requirements, but it was generally the same under dichoptic and binocular viewing conditions. The more dependent the task was on finer discrimination, the more performance was impaired by divided attention. These results suggest that at least with discrete tasks and relatively short exposure durations, performance when each eye is presented with a separate stimulus is the same as when the entire field of stimulation is viewed by both eyes.

  11. Low target prevalence is a stubborn source of errors in visual search tasks

    PubMed Central

    Wolfe, Jeremy M.; Horowitz, Todd S.; Van Wert, Michael J.; Kenner, Naomi M.; Place, Skyler S.; Kibbi, Nour

    2009-01-01

    In visual search tasks, observers look for targets in displays containing distractors. Likelihood that targets will be missed varies with target prevalence, the frequency with which targets are presented across trials. Miss error rates are much higher at low target prevalence (1–2%) than at high prevalence (50%). Unfortunately, low prevalence is characteristic of important search tasks like airport security and medical screening where miss errors are dangerous. A series of experiments show this prevalence effect is very robust. In signal detection terms, the prevalence effect can be explained as a criterion shift and not a change in sensitivity. Several efforts to induce observers to adopt a better criterion fail. However, a regime of brief retraining periods with high prevalence and full feedback allows observers to hold a good criterion during periods of low prevalence with no feedback. PMID:17999575

  12. Visual and skill effects on soccer passing performance, kinematics, and outcome estimations

    PubMed Central

    Basevitch, Itay; Tenenbaum, Gershon; Land, William M.; Ward, Paul

    2015-01-01

    The role of visual information and action representations in executing a motor task was examined from a mental representations approach. High-skill (n = 20) and low-skill (n = 20) soccer players performed a passing task to two targets at distances of 9.14 and 18.29 m, under three visual conditions: normal, occluded, and distorted vision (i.e., +4.0 corrective lenses, a visual acuity of approximately 6/75) without knowledge of results. Following each pass, participants estimated the relative horizontal distance from the target as the ball crossed the target plane. Kinematic data during each pass were also recorded for the shorter distance. Results revealed that performance on the motor task decreased as a function of visual information and task complexity (i.e., distance from target) regardless of skill level. High-skill players performed significantly better than low-skill players on both the actual passing and estimation tasks, at each target distance and visual condition. In addition, kinematic data indicated that high-skill participants were more consistent and had different kinematic movement patterns than low-skill participants. Findings contribute to the understanding of the underlying mechanisms required for successful performance in a self-paced, discrete and closed motor task. PMID:25784886

  13. Functional magnetic resonance imaging of visual object construction and shape discrimination : relations among task, hemispheric lateralization, and gender.

    PubMed

    Georgopoulos, A P; Whang, K; Georgopoulos, M A; Tagaris, G A; Amirikian, B; Richter, W; Kim, S G; Uğurbil, K

    2001-01-01

    We studied the brain activation patterns in two visual image processing tasks requiring judgements on object construction (FIT task) or object sameness (SAME task). Eight right-handed healthy human subjects (four women and four men) performed the two tasks in a randomized block design while 5-mm, multislice functional images of the whole brain were acquired using a 4-tesla system using blood oxygenation dependent (BOLD) activation. Pairs of objects were picked randomly from a set of 25 oriented fragments of a square and presented to the subjects approximately every 5 sec. In the FIT task, subjects had to indicate, by pushing one of two buttons, whether the two fragments could match to form a perfect square, whereas in the SAME task they had to decide whether they were the same or not. In a control task, preceding and following each of the two tasks above, a single square was presented at the same rate and subjects pushed any of the two keys at random. Functional activation maps were constructed based on a combination of conservative criteria. The areas with activated pixels were identified using Talairach coordinates and anatomical landmarks, and the number of activated pixels was determined for each area. Altogether, 379 pixels were activated. The counts of activated pixels did not differ significantly between the two tasks or between the two genders. However, there were significantly more activated pixels in the left (n = 218) than the right side of the brain (n = 161). Of the 379 activated pixels, 371 were located in the cerebral cortex. The Talairach coordinates of these pixels were analyzed with respect to their overall distribution in the two tasks. These distributions differed significantly between the two tasks. With respect to individual dimensions, the two tasks differed significantly in the anterior--posterior and superior--inferior distributions but not in the left--right (including mediolateral, within the left or right side) distribution. Specifically

  14. The visual attention span deficit in dyslexia is visual and not verbal.

    PubMed

    Lobier, Muriel; Zoubrinetzky, Rachel; Valdois, Sylviane

    2012-06-01

    The visual attention (VA) span deficit hypothesis of dyslexia posits that letter string deficits are a consequence of impaired visual processing. Alternatively, some have interpreted this deficit as resulting from a visual-to-phonology code mapping impairment. This study aims to disambiguate between the two interpretations by investigating performance in a non-verbal character string visual categorization task with verbal and non-verbal stimuli. Results show that VA span ability predicts performance for the non-verbal visual processing task in normal reading children. Furthermore, VA span impaired dyslexic children are also impaired for the categorization task independently of stimuli type. This supports the hypothesis that the underlying impairment responsible for the VA span deficit is visual, not verbal. Copyright © 2011 Elsevier Srl. All rights reserved.

  15. Visual and motion cueing in helicopter simulation

    NASA Technical Reports Server (NTRS)

    Bray, R. S.

    1985-01-01

    Early experience in fixed-cockpit simulators, with limited field of view, demonstrated the basic difficulties of simulating helicopter flight at the level of subjective fidelity required for confident evaluation of vehicle characteristics. More recent programs, utilizing large-amplitude cockpit motion and a multiwindow visual-simulation system have received a much higher degree of pilot acceptance. However, none of these simulations has presented critical visual-flight tasks that have been accepted by the pilots as the full equivalent of flight. In this paper, the visual cues presented in the simulator are compared with those of flight in an attempt to identify deficiencies that contribute significantly to these assessments. For the low-amplitude maneuvering tasks normally associated with the hover mode, the unique motion capabilities of the Vertical Motion Simulator (VMS) at Ames Research Center permit nearly a full representation of vehicle motion. Especially appreciated in these tasks are the vertical-acceleration responses to collective control. For larger-amplitude maneuvering, motion fidelity must suffer diminution through direct attenuation through high-pass filtering washout of the computer cockpit accelerations or both. Experiments were conducted in an attempt to determine the effects of these distortions on pilot performance of height-control tasks.

  16. What Top-Down Task Sets Do for Us: An ERP Study on the Benefits of Advance Preparation in Visual Search

    ERIC Educational Resources Information Center

    Eimer, Martin; Kiss, Monika; Nicholas, Susan

    2011-01-01

    When target-defining features are specified in advance, attentional target selection in visual search is controlled by preparatory top-down task sets. We used ERP measures to study voluntary target selection in the absence of such feature-specific task sets, and to compare it to selection that is guided by advance knowledge about target features.…

  17. Influence of early rising on performance in tasks requiring attention and memory.

    PubMed

    Kumaran, V Shankar; Raghavendra, Bhat Ramachandra; Manjunath, Nandi Krishnamurthy

    2012-01-01

    Rising early in the morning has been a prescribed discipline of ancient Indian tradition. While there are no scientific studies comparing early rising volitionally versus circumstantially, selected studies on the latter (rising forcefully) have shown negative impact on an individual's peroformance. Hence the present study was undertaken to assess the influence of early rising (during Brahma-muhurtha) on tasks requiring attention and the ability to recall. Fifty four normal healthy male volunteers, with ages ranging from 16-22 years from a residential school were selected. They were randomly allocated to two groups (Brahma-muhurtha and control). They were assessed on day 1, day 10 and day 20 of the intervention, using a digit letter substitution task and verbal and spatial memory task. The Brahma-muhurtha group were asked to rise before 4:30 am in the morning based on the traditional Indian astrological calculations, while the control group were allowed to wake up just before 7 am which was their regular timing for waking. Brahma-muhurtha group after 20 days showed a significant improvement in the net scores for digit letter substitution task as well as scores for verbal and spatial memory tasks. The control group also showed an improvement in the memory task but not in the task requiring attentional processes. The present study suggests that rising early in the morning as described in ancient Indian tradition influences the process of attention and can improve the ability to recall.

  18. Impaired Activation of Visual Attention Network for Motion Salience Is Accompanied by Reduced Functional Connectivity between Frontal Eye Fields and Visual Cortex in Strabismic Amblyopia

    PubMed Central

    Wang, Hao; Crewther, Sheila G.; Liang, Minglong; Laycock, Robin; Yu, Tao; Alexander, Bonnie; Crewther, David P.; Wang, Jian; Yin, Zhengqin

    2017-01-01

    Strabismic amblyopia is now acknowledged to be more than a simple loss of acuity and to involve alterations in visually driven attention, though whether this applies to both stimulus-driven and goal-directed attention has not been explored. Hence we investigated monocular threshold performance during a motion salience-driven attention task involving detection of a coherent dot motion target in one of four quadrants in adult controls and those with strabismic amblyopia. Psychophysical motion thresholds were impaired for the strabismic amblyopic eye, requiring longer inspection time and consequently slower target speed for detection compared to the fellow eye or control eyes. We compared fMRI activation and functional connectivity between four ROIs of the occipital-parieto-frontal visual attention network [primary visual cortex (V1), motion sensitive area V5, intraparietal sulcus (IPS) and frontal eye fields (FEF)], during a suprathreshold version of the motion-driven attention task, and also a simple goal-directed task, requiring voluntary saccades to targets randomly appearing along a horizontal line. Activation was compared when viewed monocularly by controls and the amblyopic and its fellow eye in strabismics. BOLD activation was weaker in IPS, FEF and V5 for both tasks when viewing through the amblyopic eye compared to viewing through the fellow eye or control participants' non-dominant eye. No difference in V1 activation was seen between the amblyopic and fellow eye, nor between the two eyes of control participants during the motion salience task, though V1 activation was significantly less through the amblyopic eye than through the fellow eye and control group non-dominant eye viewing during the voluntary saccade task. Functional correlations of ROIs within the attention network were impaired through the amblyopic eye during the motion salience task, whereas this was not the case during the voluntary saccade task. Specifically, FEF showed reduced functional

  19. Shoulder Strength Requirements for Upper Limb Functional Tasks: Do Age and Rotator Cuff Tear Status Matter?

    PubMed

    Santago, Anthony C; Vidt, Meghan E; Li, Xiaotong; Tuohy, Christopher J; Poehling, Gary G; Freehill, Michael T; Saul, Katherine R

    2017-12-01

    Understanding upper limb strength requirements for daily tasks is imperative for early detection of strength loss that may progress to disability due to age or rotator cuff tear. We quantified shoulder strength requirements for 5 upper limb tasks performed by 3 groups: uninjured young adults and older adults, and older adults with a degenerative supraspinatus tear prior to repair. Musculoskeletal models were developed for each group representing age, sex, and tear-related strength losses. Percentage of available strength used was quantified for the subset of tasks requiring the largest amount of shoulder strength. Significant differences in strength requirements existed across tasks: upward reach 105° required the largest average strength; axilla wash required the largest peak strength. However, there were limited differences across participant groups. Older adults with and without a tear used a larger percentage of their shoulder elevation (p < .001, p < .001) and external rotation (p < .001, p = .017) strength than the young adults, respectively. Presence of a tear significantly increased percentage of internal rotation strength compared to young (p < .001) and uninjured older adults (p = .008). Marked differences in strength demand across tasks indicate the need for evaluating a diversity of functional tasks to effectively detect early strength loss, which may lead to disability.

  20. Context generalization in Drosophila visual learning requires the mushroom bodies

    NASA Astrophysics Data System (ADS)

    Liu, Li; Wolf, Reinhard; Ernst, Roman; Heisenberg, Martin

    1999-08-01

    The world is permanently changing. Laboratory experiments on learning and memory normally minimize this feature of reality, keeping all conditions except the conditioned and unconditioned stimuli as constant as possible. In the real world, however, animals need to extract from the universe of sensory signals the actual predictors of salient events by separating them from non-predictive stimuli (context). In principle, this can be achieved ifonly those sensory inputs that resemble the reinforcer in theirtemporal structure are taken as predictors. Here we study visual learning in the fly Drosophila melanogaster, using a flight simulator,, and show that memory retrieval is, indeed, partially context-independent. Moreover, we show that the mushroom bodies, which are required for olfactory but not visual or tactile learning, effectively support context generalization. In visual learning in Drosophila, it appears that a facilitating effect of context cues for memory retrieval is the default state, whereas making recall context-independent requires additional processing.

  1. Attentional load and sensory competition in human vision: modulation of fMRI responses by load at fixation during task-irrelevant stimulation in the peripheral visual field.

    PubMed

    Schwartz, Sophie; Vuilleumier, Patrik; Hutton, Chloe; Maravita, Angelo; Dolan, Raymond J; Driver, Jon

    2005-06-01

    Perceptual suppression of distractors may depend on both endogenous and exogenous factors, such as attentional load of the current task and sensory competition among simultaneous stimuli, respectively. We used functional magnetic resonance imaging (fMRI) to compare these two types of attentional effects and examine how they may interact in the human brain. We varied the attentional load of a visual monitoring task performed on a rapid stream at central fixation without altering the central stimuli themselves, while measuring the impact on fMRI responses to task-irrelevant peripheral checkerboards presented either unilaterally or bilaterally. Activations in visual cortex for irrelevant peripheral stimulation decreased with increasing attentional load at fixation. This relative decrease was present even in V1, but became larger for successive visual areas through to V4. Decreases in activation for contralateral peripheral checkerboards due to higher central load were more pronounced within retinotopic cortex corresponding to 'inner' peripheral locations relatively near the central targets than for more eccentric 'outer' locations, demonstrating a predominant suppression of nearby surround rather than strict 'tunnel vision' during higher task load at central fixation. Contralateral activations for peripheral stimulation in one hemifield were reduced by competition with concurrent stimulation in the other hemifield only in inferior parietal cortex, not in retinotopic areas of occipital visual cortex. In addition, central attentional load interacted with competition due to bilateral versus unilateral peripheral stimuli specifically in posterior parietal and fusiform regions. These results reveal that task-dependent attentional load, and interhemifield stimulus-competition, can produce distinct influences on the neural responses to peripheral visual stimuli within the human visual system. These distinct mechanisms in selective visual processing may be integrated within

  2. The Task-Relevant Attribute Representation Can Mediate the Simon Effect

    PubMed Central

    Chen, Antao

    2014-01-01

    Researchers have previously suggested a working memory (WM) account of spatial codes, and based on this suggestion, the present study carries out three experiments to investigate how the task-relevant attribute representation (verbal or visual) in the typical Simon task affects the Simon effect. Experiment 1 compared the Simon effect between the between- and within-category color conditions, which required subjects to discriminate between red and blue stimuli (presumed to be represented by verbal WM codes because it was easy and fast to name the colors verbally) and to discriminate between two similar green stimuli (presumed to be represented by visual WM codes because it was hard and time-consuming to name the colors verbally), respectively. The results revealed a reliable Simon effect that only occurs in the between-category condition. Experiment 2 assessed the Simon effect by requiring subjects to discriminate between two different isosceles trapezoids (within-category shapes) and to discriminate isosceles trapezoid from rectangle (between-category shapes), and the results replicated and expanded the findings of Experiment 1. In Experiment 3, subjects were required to perform both tasks from Experiment 1. Wherein, in Experiment 3A, the between-category task preceded the within-category task; in Experiment 3B, the task order was opposite. The results showed the reliable Simon effect when subjects represented the task-relevant stimulus attributes by verbal WM encoding. In addition, the response times (RTs) distribution analysis for both the between- and within-category conditions of Experiments 3A and 3B showed decreased Simon effect with the RTs lengthened. Altogether, although the present results are consistent with the temporal coding account, we put forth that the Simon effect also depends on the verbal WM representation of task-relevant stimulus attribute. PMID:24618692

  3. Enhancing perceptual and attentional skills requires common demands between the action video games and transfer tasks.

    PubMed

    Oei, Adam C; Patterson, Michael D

    2015-01-01

    Despite increasing evidence that shows action video game play improves perceptual and cognitive skills, the mechanisms of transfer are not well-understood. In line with previous work, we suggest that transfer is dependent upon common demands between the game and transfer task. In the current study, participants played one of four action games with varying speed, visual, and attentional demands for 20 h. We examined whether training enhanced performance for attentional blink, selective attention, attending to multiple items, visual search and auditory detection. Non-gamers who played the game (Modern Combat) with the highest demands showed transfer to tasks of attentional blink and attending to multiple items. The game (MGS Touch) with fewer attentional demands also decreased attentional blink, but to a lesser degree. Other games failed to show transfer, despite having many action game characteristics but at a reduced intensity. The results support the common demands hypothesis.

  4. Enhancing perceptual and attentional skills requires common demands between the action video games and transfer tasks

    PubMed Central

    Oei, Adam C.; Patterson, Michael D.

    2015-01-01

    Despite increasing evidence that shows action video game play improves perceptual and cognitive skills, the mechanisms of transfer are not well-understood. In line with previous work, we suggest that transfer is dependent upon common demands between the game and transfer task. In the current study, participants played one of four action games with varying speed, visual, and attentional demands for 20 h. We examined whether training enhanced performance for attentional blink, selective attention, attending to multiple items, visual search and auditory detection. Non-gamers who played the game (Modern Combat) with the highest demands showed transfer to tasks of attentional blink and attending to multiple items. The game (MGS Touch) with fewer attentional demands also decreased attentional blink, but to a lesser degree. Other games failed to show transfer, despite having many action game characteristics but at a reduced intensity. The results support the common demands hypothesis. PMID:25713551

  5. CHARACTERIZATION OF THE EFFECTS OF INHALED PERCHLOROETHYLENE ON SUSTAINED ATTENTION IN RATS PERFORMING A VISUAL SIGNAL DETECTION TASK

    EPA Science Inventory

    The aliphatic hydrocarbon perchloroethyelene (PCE) has been associated with neurobehavioral dysfunction including reduced attention in humans. The current study sought to assess the effects of inhaled PCE on sustained attention in rats performing a visual signal detection task (S...

  6. Judgments of auditory-visual affective congruence in adolescents with and without autism: a pilot study of a new task using fMRI.

    PubMed

    Loveland, Katherine A; Steinberg, Joel L; Pearson, Deborah A; Mansour, Rosleen; Reddoch, Stacy

    2008-10-01

    One of the most widely reported developmental deficits associated with autism is difficulty perceiving and expressing emotion appropriately. Brain activation associated with performance on a new task, the Emotional Congruence Task, requires judging affective congruence of facial expression and voice, compared with their sex congruence. Participants in this pilot study were adolescents with normal IQ (n = 5) and autism or without (n = 4) autism. In the emotional congruence condition, as compared to the sex congruence of voice and face, controls had significantly more activation than the Autism group in the orbitofrontal cortex, the superior temporal, parahippocampal, and posterior cingulate gyri and occipital regions. Unlike controls, the Autism group did not have significantly greater prefrontal activation during the emotional congruence condition, but did during the sex congruence condition. Results indicate the Emotional Congruence Task can be used successfully to assess brain activation and behavior associated with integration of auditory and visual information for emotion. While the numbers in the groups are small, the results suggest that brain activity while performing the Emotional Congruence Task differed between adolescents with and without autism in fronto-limbic areas and in the superior temporal region. These findings must be confirmed using larger samples of participants.

  7. Quantifying fast optical signal and event-related potential relationships during a visual oddball task.

    PubMed

    Proulx, Nicole; Samadani, Ali-Akbar; Chau, Tom

    2018-05-16

    Event-related potentials (ERPs) have previously been used to confirm the existence of the fast optical signal (FOS) but validation methods have mainly been limited to exploring the temporal correspondence of FOS peaks to those of ERPs. The purpose of this study was to systematically quantify the relationship between FOS and ERP responses to a visual oddball task in both time and frequency domains. Near-infrared spectroscopy (NIRS) and electroencephalography (EEG) sensors were co-located over the prefrontal cortex while participants performed a visual oddball task. Fifteen participants completed 2 data collection sessions each, where they were instructed to keep a mental count of oddball images. The oddball condition produced a positive ERP at 200 ms followed by a negativity 300-500 ms after image onset in the frontal electrodes. In contrast to previous FOS studies, a FOS response was identified only in DC intensity signals and not in phase delay signals. A decrease in DC intensity was found 150-250 ms after oddball image onset with a 400-trial average in 10 of 15 participants. The latency of the positive 200 ms ERP and the FOS DC intensity decrease were significantly correlated for only 6 (out of 15) participants due to the low signal-to-noise ratio of the FOS response. Coherence values between the FOS and ERP oddball responses were found to be significant in the 3-5 Hz frequency band for 10 participants. A significant Granger causal influence of the ERP on the FOS oddball response was uncovered in the 2-6 Hz frequency band for 7 participants. Collectively, our findings suggest that, for a majority of participants, the ERP and the DC intensity signal of the FOS are spectrally coherent, specifically in narrow frequency bands previously associated with event-related oscillations in the prefrontal cortex. However, these electro-optical relationships were only found in a subset of participants. Further research on enhancing the quality of the event-related FOS

  8. Eye Movement Analysis and Cognitive Assessment. The Use of Comparative Visual Search Tasks in a Non-immersive VR Application.

    PubMed

    Rosa, Pedro J; Gamito, Pedro; Oliveira, Jorge; Morais, Diogo; Pavlovic, Matthew; Smyth, Olivia; Maia, Inês; Gomes, Tiago

    2017-03-23

    An adequate behavioral response depends on attentional and mnesic processes. When these basic cognitive functions are impaired, the use of non-immersive Virtual Reality Applications (VRAs) can be a reliable technique for assessing the level of impairment. However, most non-immersive VRAs use indirect measures to make inferences about visual attention and mnesic processes (e.g., time to task completion, error rate). To examine whether the eye movement analysis through eye tracking (ET) can be a reliable method to probe more effectively where and how attention is deployed and how it is linked with visual working memory during comparative visual search tasks (CVSTs) in non-immersive VRAs. The eye movements of 50 healthy participants were continuously recorded while CVSTs, selected from a set of cognitive tasks in the Systemic Lisbon Battery (SLB). Then a VRA designed to assess of cognitive impairments were randomly presented. The total fixation duration, the number of visits in the areas of interest and in the interstimulus space, along with the total execution time was significantly different as a function of the Mini Mental State Examination (MMSE) scores. The present study demonstrates that CVSTs in SLB, when combined with ET, can be a reliable and unobtrusive method for assessing cognitive abilities in healthy individuals, opening it to potential use in clinical samples.

  9. Attentive Tracking Disrupts Feature Binding in Visual Working Memory

    PubMed Central

    Fougnie, Daryl; Marois, René

    2009-01-01

    One of the most influential theories in visual cognition proposes that attention is necessary to bind different visual features into coherent object percepts (Treisman & Gelade, 1980). While considerable evidence supports a role for attention in perceptual feature binding, whether attention plays a similar function in visual working memory (VWM) remains controversial. To test the attentional requirements of VWM feature binding, here we gave participants an attention-demanding multiple object tracking task during the retention interval of a VWM task. Results show that the tracking task disrupted memory for color-shape conjunctions above and beyond any impairment to working memory for object features, and that this impairment was larger when the VWM stimuli were presented at different spatial locations. These results demonstrate that the role of visuospatial attention in feature binding is not unique to perception, but extends to the working memory of these perceptual representations as well. PMID:19609460

  10. Influence of age, speed and duration of monotonous driving task in traffic on the driver's useful visual field.

    PubMed

    Rogé, Joceline; Pébayle, Thierry; Lambilliotte, Elina; Spitzenstetter, Florence; Giselbrecht, Danièle; Muzet, Alain

    2004-10-01

    Recent research has shown that the useful visual field deteriorates in simulated car driving when the latter can induce a decrease in the level of activation. The first aim of this study was to verify if the same phenomenon occurs when driving is performed in a simulated road traffic situation. The second aim was to discover if this field also deteriorates as a function of the driver's age and of the vehicle's speed. Nine young drivers (from 22 to 34 years) and nine older drivers (from 46 to 59 years) followed a vehicle in road traffic during two two-hour sessions. The car-following task involved driving at 90 km.h(-1) (speed limit on road in France) in one session and at 130 km.h(-1) (speed limit on motorway in France) in the other session. While following the vehicle, the driver had to detect the changes in colour of a luminous signal located in the central part of his/her visual field and a visual signal that appeared at different eccentricities on the rear lights of the vehicles in the traffic. The analysis of the data indicates that the useful visual field deteriorates with the prolongation of the monotonous simulated driving task, with the driver's age and with the vehicle's speed. The results are discussed in terms of general interference and tunnel vision.

  11. Visual Simulation The Old Way

    NASA Astrophysics Data System (ADS)

    Gomes, Gary G.

    1986-05-01

    A cost effective and supportable color visual system has been developed to provide the necessary visual cues to United States Air Force B-52 bomber pilots training to become proficient at the task of inflight refueling. This camera model visual system approach is not suitable for all simulation applications, but provides a cost effective alternative to digital image generation systems when high fidelity of a single movable object is required. The system consists of a three axis gimballed KC-l35 tanker model, a range carriage mounted color augmented monochrome television camera, interface electronics, a color light valve projector and an infinity optics display system.

  12. Validating Visual Cues In Flight Simulator Visual Displays

    NASA Astrophysics Data System (ADS)

    Aronson, Moses

    1987-09-01

    Currently evaluation of visual simulators are performed by either pilot opinion questionnaires or comparison of aircraft terminal performance. The approach here is to compare pilot performance in the flight simulator with a visual display to his performance doing the same visual task in the aircraft as an indication that the visual cues are identical. The A-7 Night Carrier Landing task was selected. Performance measures which had high pilot performance prediction were used to compare two samples of existing pilot performance data to prove that the visual cues evoked the same performance. The performance of four pilots making 491 night landing approaches in an A-7 prototype part task trainer were compared with the performance of 3 pilots performing 27 A-7E carrier landing qualification approaches on the CV-60 aircraft carrier. The results show that the pilots' performances were similar, therefore concluding that the visual cues provided in the simulator were identical to those provided in the real world situation. Differences between the flight simulator's flight characteristics and the aircraft have less of an effect than the pilots individual performances. The measurement parameters used in the comparison can be used for validating the visual display for adequacy for training.

  13. Supporting interruption management and multimodal interface design: three meta-analyses of task performance as a function of interrupting task modality.

    PubMed

    Lu, Sara A; Wickens, Christopher D; Prinet, Julie C; Hutchins, Shaun D; Sarter, Nadine; Sebok, Angelia

    2013-08-01

    The aim of this study was to integrate empirical data showing the effects of interrupting task modality on the performance of an ongoing visual-manual task and the interrupting task itself. The goal is to support interruption management and the design of multimodal interfaces. Multimodal interfaces have been proposed as a promising means to support interruption management.To ensure the effectiveness of this approach, their design needs to be based on an analysis of empirical data concerning the effectiveness of individual and redundant channels of information presentation. Three meta-analyses were conducted to contrast performance on an ongoing visual task and interrupting tasks as a function of interrupting task modality (auditory vs. tactile, auditory vs. visual, and single modality vs. redundant auditory-visual). In total, 68 studies were included and six moderator variables were considered. The main findings from the meta-analyses are that response times are faster for tactile interrupting tasks in case of low-urgency messages.Accuracy is higher with tactile interrupting tasks for low-complexity signals but higher with auditory interrupting tasks for high-complexity signals. Redundant auditory-visual combinations are preferable for communication tasks during high workload and with a small visual angle of separation. The three meta-analyses contribute to the knowledge base in multimodal information processing and design. They highlight the importance of moderator variables in predicting the effects of interruption task modality on ongoing and interrupting task performance. The findings from this research will help inform the design of multimodal interfaces in data-rich, event-driven domains.

  14. Transferring cognitive tasks between brain imaging modalities: implications for task design and results interpretation in FMRI studies.

    PubMed

    Warbrick, Tracy; Reske, Martina; Shah, N Jon

    2014-09-22

    As cognitive neuroscience methods develop, established experimental tasks are used with emerging brain imaging modalities. Here transferring a paradigm (the visual oddball task) with a long history of behavioral and electroencephalography (EEG) experiments to a functional magnetic resonance imaging (fMRI) experiment is considered. The aims of this paper are to briefly describe fMRI and when its use is appropriate in cognitive neuroscience; illustrate how task design can influence the results of an fMRI experiment, particularly when that task is borrowed from another imaging modality; explain the practical aspects of performing an fMRI experiment. It is demonstrated that manipulating the task demands in the visual oddball task results in different patterns of blood oxygen level dependent (BOLD) activation. The nature of the fMRI BOLD measure means that many brain regions are found to be active in a particular task. Determining the functions of these areas of activation is very much dependent on task design and analysis. The complex nature of many fMRI tasks means that the details of the task and its requirements need careful consideration when interpreting data. The data show that this is particularly important in those tasks relying on a motor response as well as cognitive elements and that covert and overt responses should be considered where possible. Furthermore, the data show that transferring an EEG paradigm to an fMRI experiment needs careful consideration and it cannot be assumed that the same paradigm will work equally well across imaging modalities. It is therefore recommended that the design of an fMRI study is pilot tested behaviorally to establish the effects of interest and then pilot tested in the fMRI environment to ensure appropriate design, implementation and analysis for the effects of interest.

  15. Behavioral evidence for inter-hemispheric cooperation during a lexical decision task: a divided visual field experiment.

    PubMed

    Perrone-Bertolotti, Marcela; Lemonnier, Sophie; Baciu, Monica

    2013-01-01

    HIGHLIGHTSThe redundant bilateral visual presentation of verbal stimuli decreases asymmetry and increases the cooperation between the two hemispheres.The increased cooperation between the hemispheres is related to semantic information during lexical processing.The inter-hemispheric interaction is represented by both inhibition and cooperation. This study explores inter-hemispheric interaction (IHI) during a lexical decision task by using a behavioral approach, the bilateral presentation of stimuli within a divided visual field experiment. Previous studies have shown that compared to unilateral presentation, the bilateral redundant (BR) presentation decreases the inter-hemispheric asymmetry and facilitates the cooperation between hemispheres. However, it is still poorly understood which type of information facilitates this cooperation. In the present study, verbal stimuli were presented unilaterally (left or right visual hemi-field successively) and bilaterally (left and right visual hemi-field simultaneously). Moreover, during the bilateral presentation of stimuli, we manipulated the relationship between target and distractors in order to specify the type of information which modulates the IHI. Thus, three types of information were manipulated: perceptual, semantic, and decisional, respectively named pre-lexical, lexical and post-lexical processing. Our results revealed left hemisphere (LH) lateralization during the lexical decision task. In terms of inter-hemisphere interaction, the perceptual and decision-making information increased the inter-hemispheric asymmetry, suggesting the inhibition of one hemisphere upon the other. In contrast, semantic information decreased the inter-hemispheric asymmetry, suggesting cooperation between the hemispheres. We discussed our results according to current models of IHI and concluded that cerebral hemispheres interact and communicate according to various excitatory and inhibitory mechanisms, all which depend on specific

  16. Behavioral evidence for inter-hemispheric cooperation during a lexical decision task: a divided visual field experiment

    PubMed Central

    Perrone-Bertolotti, Marcela; Lemonnier, Sophie; Baciu, Monica

    2013-01-01

    HIGHLIGHTS The redundant bilateral visual presentation of verbal stimuli decreases asymmetry and increases the cooperation between the two hemispheres.The increased cooperation between the hemispheres is related to semantic information during lexical processing.The inter-hemispheric interaction is represented by both inhibition and cooperation. This study explores inter-hemispheric interaction (IHI) during a lexical decision task by using a behavioral approach, the bilateral presentation of stimuli within a divided visual field experiment. Previous studies have shown that compared to unilateral presentation, the bilateral redundant (BR) presentation decreases the inter-hemispheric asymmetry and facilitates the cooperation between hemispheres. However, it is still poorly understood which type of information facilitates this cooperation. In the present study, verbal stimuli were presented unilaterally (left or right visual hemi-field successively) and bilaterally (left and right visual hemi-field simultaneously). Moreover, during the bilateral presentation of stimuli, we manipulated the relationship between target and distractors in order to specify the type of information which modulates the IHI. Thus, three types of information were manipulated: perceptual, semantic, and decisional, respectively named pre-lexical, lexical and post-lexical processing. Our results revealed left hemisphere (LH) lateralization during the lexical decision task. In terms of inter-hemisphere interaction, the perceptual and decision-making information increased the inter-hemispheric asymmetry, suggesting the inhibition of one hemisphere upon the other. In contrast, semantic information decreased the inter-hemispheric asymmetry, suggesting cooperation between the hemispheres. We discussed our results according to current models of IHI and concluded that cerebral hemispheres interact and communicate according to various excitatory and inhibitory mechanisms, all which depend on specific

  17. A Critical Review of the "Motor-Free Visual Perception Test-Fourth Edition" (MVPT-4)

    ERIC Educational Resources Information Center

    Brown, Ted; Peres, Lisa

    2018-01-01

    The "Motor-Free Visual Perception Test-fourth edition" (MVPT-4) is a revised version of the "Motor-Free Visual Perception Test-third edition." The MVPT-4 is used to assess the visual-perceptual ability of individuals aged 4.0 through 80+ years via a series of visual-perceptual tasks that do not require a motor response. Test…

  18. Alterations in task-induced activity and resting-state fluctuations in visual and DMN areas revealed in long-term meditators.

    PubMed

    Berkovich-Ohana, Aviva; Harel, Michal; Hahamy, Avital; Arieli, Amos; Malach, Rafael

    2016-07-15

    Recently we proposed that the information contained in spontaneously emerging (resting-state) fluctuations may reflect individually unique neuro-cognitive traits. One prediction of this conjecture, termed the "spontaneous trait reactivation" (STR) hypothesis, is that resting-state activity patterns could be diagnostic of unique personalities, talents and life-styles of individuals. Long-term meditators could provide a unique experimental group to test this hypothesis. Using fMRI we found that, during resting-state, the amplitude of spontaneous fluctuations in long-term mindfulness meditation (MM) practitioners was enhanced in the visual cortex and significantly reduced in the DMN compared to naïve controls. Importantly, during a visual recognition memory task, the MM group showed heightened visual cortex responsivity, concomitant with weaker negative responses in Default Mode Network (DMN) areas. This effect was also reflected in the behavioral performance, where MM practitioners performed significantly faster than the control group. Thus, our results uncover opposite changes in the visual and default mode systems in long-term meditators which are revealed during both rest and task. The results support the STR hypothesis and extend it to the domain of local changes in the magnitude of the spontaneous fluctuations. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Identifying the computational requirements of an integrated top-down-bottom-up model for overt visual attention within an active vision system.

    PubMed

    McBride, Sebastian; Huelse, Martin; Lee, Mark

    2013-01-01

    Computational visual attention systems have been constructed in order for robots and other devices to detect and locate regions of interest in their visual world. Such systems often attempt to take account of what is known of the human visual system and employ concepts, such as 'active vision', to gain various perceived advantages. However, despite the potential for gaining insights from such experiments, the computational requirements for visual attention processing are often not clearly presented from a biological perspective. This was the primary objective of this study, attained through two specific phases of investigation: 1) conceptual modeling of a top-down-bottom-up framework through critical analysis of the psychophysical and neurophysiological literature, 2) implementation and validation of the model into robotic hardware (as a representative of an active vision system). Seven computational requirements were identified: 1) transformation of retinotopic to egocentric mappings, 2) spatial memory for the purposes of medium-term inhibition of return, 3) synchronization of 'where' and 'what' information from the two visual streams, 4) convergence of top-down and bottom-up information to a centralized point of information processing, 5) a threshold function to elicit saccade action, 6) a function to represent task relevance as a ratio of excitation and inhibition, and 7) derivation of excitation and inhibition values from object-associated feature classes. The model provides further insight into the nature of data representation and transfer between brain regions associated with the vertebrate 'active' visual attention system. In particular, the model lends strong support to the functional role of the lateral intraparietal region of the brain as a primary area of information consolidation that directs putative action through the use of a 'priority map'.

  20. A pilot's opinion - VTOL control design requirements for the instrument approach task.

    NASA Technical Reports Server (NTRS)

    Patton, J. M., Jr.

    1972-01-01

    This paper presents pilot opinion supported by test data concerning flight control and display concepts and control system design requirements for VTOL aircraft in the instrument approach task. Material presented is drawn from research flights in the following aircraft: Dornier DO-31, Short SC-1, LTV XC-142A, and Boeing-Vertol CH-46. The control system concepts and mechanizations employed in the above aircraft are discussed, and the effect of control system augmentation is shown on performance. Operational procedures required in the instrument approach task are described, with comments on need for automation and combining of control functions.

  1. Selective attention reduces physiological noise in the external ear canals of humans. II: Visual attention

    PubMed Central

    Walsh, Kyle P.; Pasanen, Edward G.; McFadden, Dennis

    2014-01-01

    Human subjects performed in several behavioral conditions requiring, or not requiring, selective attention to visual stimuli. Specifically, the attentional task was to recognize strings of digits that had been presented visually. A nonlinear version of the stimulus-frequency otoacoustic emission (SFOAE), called the nSFOAE, was collected during the visual presentation of the digits. The segment of the physiological response discussed here occurred during brief silent periods immediately following the SFOAE-evoking stimuli. For all subjects tested, the physiological-noise magnitudes were substantially weaker (less noisy) during the tasks requiring the most visual attention. Effect sizes for the differences were >2.0. Our interpretation is that cortico-olivo influences adjusted the magnitude of efferent activation during the SFOAE-evoking stimulation depending upon the attention task in effect, and then that magnitude of efferent activation persisted throughout the silent period where it also modulated the physiological noise present. Because the results were highly similar to those obtained when the behavioral conditions involved auditory attention, similar mechanisms appear to operate both across modalities and within modalities. Supplementary measurements revealed that the efferent activation was spectrally global, as it was for auditory attention. PMID:24732070

  2. Object representations in visual working memory change according to the task context.

    PubMed

    Balaban, Halely; Luria, Roy

    2016-08-01

    This study investigated whether an item's representation in visual working memory (VWM) can be updated according to changes in the global task context. We used a modified change detection paradigm, in which the items moved before the retention interval. In all of the experiments, we presented identical color-color conjunction items that were arranged to provide a common fate Gestalt grouping cue during their movement. Task context was manipulated by adding a condition highlighting either the integrated interpretation of the conjunction items or their individuated interpretation. We monitored the contralateral delay activity (CDA) as an online marker of VWM. Experiment 1 employed only a minimal global context; the conjunction items were integrated during their movement, but then were partially individuated, at a late stage of the retention interval. The same conjunction items were perfectly integrated in an integration context (Experiment 2). An individuation context successfully produced strong individuation, already during the movement, overriding Gestalt grouping cues (Experiment 3). In Experiment 4, a short priming of the individuation context managed to individuate the conjunction items immediately after the Gestalt cue was no longer available. Thus, the representations of identical items changed according to the task context, suggesting that VWM interprets incoming input according to global factors which can override perceptual cues. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Why Do We Move Our Eyes while Trying to Remember? The Relationship between Non-Visual Gaze Patterns and Memory

    ERIC Educational Resources Information Center

    Micic, Dragana; Ehrlichman, Howard; Chen, Rebecca

    2010-01-01

    Non-visual gaze patterns (NVGPs) involve saccades and fixations that spontaneously occur in cognitive activities that are not ostensibly visual. While reasons for their appearance remain obscure, convergent empirical evidence suggests that NVGPs change according to processing requirements of tasks. We examined NVGPs in tasks with long-term memory…

  4. The effects of stimulus modality and task integrality: Predicting dual-task performance and workload from single-task levels

    NASA Technical Reports Server (NTRS)

    Hart, S. G.; Shively, R. J.; Vidulich, M. A.; Miller, R. C.

    1986-01-01

    The influence of stimulus modality and task difficulty on workload and performance was investigated. The goal was to quantify the cost (in terms of response time and experienced workload) incurred when essentially serial task components shared common elements (e.g., the response to one initiated the other) which could be accomplished in parallel. The experimental tasks were based on the Fittsberg paradigm; the solution to a SternBERG-type memory task determines which of two identical FITTS targets are acquired. Previous research suggested that such functionally integrated dual tasks are performed with substantially less workload and faster response times than would be predicted by suming single-task components when both are presented in the same stimulus modality (visual). The physical integration of task elements was varied (although their functional relationship remained the same) to determine whether dual-task facilitation would persist if task components were presented in different sensory modalities. Again, it was found that the cost of performing the two-stage task was considerably less than the sum of component single-task levels when both were presented visually. Less facilitation was found when task elements were presented in different sensory modalities. These results suggest the importance of distinguishing between concurrent tasks that complete for limited resources from those that beneficially share common resources when selecting the stimulus modalities for information displays.

  5. Intelligence and information processing during a visual search task in children: an event-related potential study.

    PubMed

    Zhang, Qiong; Shi, Jiannong; Luo, Yuejia; Zhao, Daheng; Yang, Jie

    2006-05-15

    To investigate the differences in event-related potential parameters related to children's intelligence, we selected 15 individuals from an experimental class of intellectually gifted children and 13 intellectually average children as control to finish three types of visual search tasks (Chinese words, English letters and Arabic numbers). We recorded the electroencephalogram and calculated the peak latencies and amplitudes. Our results suggest comparatively increased P3 amplitudes and shorter P3 latencies in brighter individuals than in less intelligent individuals, but this expected neural efficiency effect interacted with task content. The differences were explained by a more spatially and temporally coordinated neural network for more intelligent children.

  6. Effect of subliminal visual material on an auditory signal detection task.

    PubMed

    Moroney, E; Bross, M

    1984-02-01

    An experiment assessed the effect of subliminally embedded, visual material on an auditory detection task. 22 women and 19 men were presented tachistoscopically with words designated as "emotional" or "neutral" on the basis of prior GSRs and a Word Rating List under four conditions: (a) Unembedded Neutral, (b) Embedded Neutral, (c) Unembedded Emotional, and (d) Embedded Emotional. On each trial subjects made forced choices concerning the presence or absence of an auditory tone (1000 Hz) at threshold level; hits and false alarm rates were used to compute non-parametric indices for sensitivity (A') and response bias (B"). While over-all analyses of variance yielded no significant differences, further examination of the data suggests the presence of subliminally "receptive" and "non-receptive" subpopulations.

  7. Productivity associated with visual status of computer users.

    PubMed

    Daum, Kent M; Clore, Katherine A; Simms, Suzanne S; Vesely, Jon W; Wilczek, Dawn D; Spittle, Brian M; Good, Greg W

    2004-01-01

    The aim of this project is to examine the potential connection between the astigmatic refractive corrections of subjects using computers and their productivity and comfort. We hypothesize that improving the visual status of subjects using computers results in greater productivity, as well as improved visual comfort. Inclusion criteria required subjects 19 to 30 years of age with complete vision examinations before being enrolled. Using a double-masked, placebo-controlled, randomized design, subjects completed three experimental tasks calculated to assess the effects of refractive error on productivity (time to completion and the number of errors) at a computer. The tasks resembled those commonly undertaken by computer users and involved visual search tasks of: (1) counties and populations; (2) nonsense word search; and (3) a modified text-editing task. Estimates of productivity for time to completion varied from a minimum of 2.5% upwards to 28.7% with 2 D cylinder miscorrection. Assuming a conservative estimate of an overall 2.5% increase in productivity with appropriate astigmatic refractive correction, our data suggest a favorable cost-benefit ratio of at least 2.3 for the visual correction of an employee (total cost 268 dollars) with a salary of 25,000 dollars per year. We conclude that astigmatic refractive error affected both productivity and visual comfort under the conditions of this experiment. These data also suggest a favorable cost-benefit ratio for employers who provide computer-specific eyewear to their employees.

  8. Food's visually perceived fat content affects discrimination speed in an orthogonal spatial task.

    PubMed

    Harrar, Vanessa; Toepel, Ulrike; Murray, Micah M; Spence, Charles

    2011-10-01

    Choosing what to eat is a complex activity for humans. Determining a food's pleasantness requires us to combine information about what is available at a given time with knowledge of the food's palatability, texture, fat content, and other nutritional information. It has been suggested that humans may have an implicit knowledge of a food's fat content based on its appearance; Toepel et al. (Neuroimage 44:967-974, 2009) reported visual-evoked potential modulations after participants viewed images of high-energy, high-fat food (HF), as compared to viewing low-fat food (LF). In the present study, we investigated whether there are any immediate behavioural consequences of these modulations for human performance. HF, LF, or non-food (NF) images were used to exogenously direct participants' attention to either the left or the right. Next, participants made speeded elevation discrimination responses (up vs. down) to visual targets presented either above or below the midline (and at one of three stimulus onset asynchronies: 150, 300, or 450 ms). Participants responded significantly more rapidly following the presentation of a HF image than following the presentation of either LF or NF images, despite the fact that the identity of the images was entirely task-irrelevant. Similar results were found when comparing response speeds following images of high-carbohydrate (HC) food items to low-carbohydrate (LC) food items. These results support the view that people rapidly process (i.e. within a few hundred milliseconds) the fat/carbohydrate/energy value or, perhaps more generally, the pleasantness of food. Potentially as a result of HF/HC food items being more pleasant and thus having a higher incentive value, it seems as though seeing these foods results in a response readiness, or an overall alerting effect, in the human brain.

  9. No psychological effect of color context in a low level vision task

    PubMed Central

    Pedley, Adam; Wade, Alex R

    2013-01-01

    Background: A remarkable series of recent papers have shown that colour can influence performance in cognitive tasks. In particular, they suggest that viewing a participant number printed in red ink or other red ancillary stimulus elements improves performance in tasks requiring local processing and impedes performance in tasks requiring global processing whilst the reverse is true for the colour blue. The tasks in these experiments require high level cognitive processing such as analogy solving or remote association tests and the chromatic effect on local vs. global processing is presumed to involve widespread activation of the autonomic nervous system. If this is the case, we might expect to see similar effects on all local vs. global task comparisons. To test this hypothesis, we asked whether chromatic cues also influence performance in tasks involving low level visual feature integration. Methods: Subjects performed either local (contrast detection) or global (form detection) tasks on achromatic dynamic Glass pattern stimuli. Coloured instructions, target frames and fixation points were used to attempt to bias performance to different task types. Based on previous literature, we hypothesised that red cues would improve performance in the (local) contrast detection task but would impede performance in the (global) form detection task.  Results: A two-way, repeated measures, analysis of covariance (2×2 ANCOVA) with gender as a covariate, revealed no influence of colour on either task, F(1,29) = 0.289, p = 0.595, partial η 2 = 0.002. Additional analysis revealed no significant differences in only the first attempts of the tasks or in the improvement in performance between trials. Discussion: We conclude that motivational processes elicited by colour perception do not influence neuronal signal processing in the early visual system, in stark contrast to their putative effects on processing in higher areas. PMID:25075280

  10. No psychological effect of color context in a low level vision task.

    PubMed

    Pedley, Adam; Wade, Alex R

    2013-01-01

    A remarkable series of recent papers have shown that colour can influence performance in cognitive tasks. In particular, they suggest that viewing a participant number printed in red ink or other red ancillary stimulus elements improves performance in tasks requiring local processing and impedes performance in tasks requiring global processing whilst the reverse is true for the colour blue. The tasks in these experiments require high level cognitive processing such as analogy solving or remote association tests and the chromatic effect on local vs. global processing is presumed to involve widespread activation of the autonomic nervous system. If this is the case, we might expect to see similar effects on all local vs. global task comparisons. To test this hypothesis, we asked whether chromatic cues also influence performance in tasks involving low level visual feature integration. Subjects performed either local (contrast detection) or global (form detection) tasks on achromatic dynamic Glass pattern stimuli. Coloured instructions, target frames and fixation points were used to attempt to bias performance to different task types. Based on previous literature, we hypothesised that red cues would improve performance in the (local) contrast detection task but would impede performance in the (global) form detection task.  A two-way, repeated measures, analysis of covariance (2×2 ANCOVA) with gender as a covariate, revealed no influence of colour on either task, F(1,29) = 0.289, p = 0.595, partial η (2) = 0.002. Additional analysis revealed no significant differences in only the first attempts of the tasks or in the improvement in performance between trials. We conclude that motivational processes elicited by colour perception do not influence neuronal signal processing in the early visual system, in stark contrast to their putative effects on processing in higher areas.

  11. Trifocal Tensor-Based Adaptive Visual Trajectory Tracking Control of Mobile Robots.

    PubMed

    Chen, Jian; Jia, Bingxi; Zhang, Kaixiang

    2017-11-01

    In this paper, a trifocal tensor-based approach is proposed for the visual trajectory tracking task of a nonholonomic mobile robot equipped with a roughly installed monocular camera. The desired trajectory is expressed by a set of prerecorded images, and the robot is regulated to track the desired trajectory using visual feedback. Trifocal tensor is exploited to obtain the orientation and scaled position information used in the control system, and it works for general scenes owing to the generality of trifocal tensor. In the previous works, the start, current, and final images are required to share enough visual information to estimate the trifocal tensor. However, this requirement can be easily violated for perspective cameras with limited field of view. In this paper, key frame strategy is proposed to loosen this requirement, extending the workspace of the visual servo system. Considering the unknown depth and extrinsic parameters (installing position of the camera), an adaptive controller is developed based on Lyapunov methods. The proposed control strategy works for almost all practical circumstances, including both trajectory tracking and pose regulation tasks. Simulations are made based on the virtual experimentation platform (V-REP) to evaluate the effectiveness of the proposed approach.

  12. Attentional demands of movement observation as tested by a dual task approach.

    PubMed

    Saucedo Marquez, Cinthia M; Ceux, Tanja; Wenderoth, Nicole

    2011-01-01

    Movement observation (MO) has been shown to activate the motor cortex of the observer as indicated by an increase of corticomotor excitability for muscles involved in the observed actions. Moreover, behavioral work has strongly suggested that this process occurs in a near-automatic manner. Here we further tested this proposal by applying transcranial magnetic stimulation (TMS) when subjects observed how an actor lifted objects of different weights as a single or a dual task. The secondary task was either an auditory discrimination task (experiment 1) or a visual discrimination task (experiment 2). In experiment 1, we found that corticomotor excitability reflected the force requirements indicated in the observed movies (i.e. higher responses when the actor had to apply higher forces). Interestingly, this effect was found irrespective of whether MO was performed as a single or a dual task. By contrast, no such systematic modulations of corticomotor excitability were observed in experiment 2 when visual distracters were present. We conclude that interference effects might arise when MO is performed while competing visual stimuli are present. However, when a secondary task is situated in a different modality, neural responses are in line with the notion that the observers motor system responds in a near-automatic manner. This suggests that MO is a task with very low cognitive demands which might be a valuable supplement for rehabilitation training, particularly, in the acute phase after the incident or in patients suffering from attention deficits. However, it is important to keep in mind that visual distracters might interfere with the neural response in M1.

  13. 78 FR 15110 - Aviation Rulemaking Advisory Committee; Engine Bird Ingestion Requirements-New Task

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-08

    ...: During the bird-ingestion rulemaking database (BRDB) working group`s reevaluation of the current engine... engine core ingestion. If the BRDB working group`s reevaluation determines that such requirements are... Task ARAC accepted the task and will establish the Engine Harmonization Working Group (EHWG), under the...

  14. High Performance Molecular Visualization: In-Situ and Parallel Rendering with EGL

    PubMed Central

    Stone, John E.; Messmer, Peter; Sisneros, Robert; Schulten, Klaus

    2016-01-01

    Large scale molecular dynamics simulations produce terabytes of data that is impractical to transfer to remote facilities. It is therefore necessary to perform visualization tasks in-situ as the data are generated, or by running interactive remote visualization sessions and batch analyses co-located with direct access to high performance storage systems. A significant challenge for deploying visualization software within clouds, clusters, and supercomputers involves the operating system software required to initialize and manage graphics acceleration hardware. Recently, it has become possible for applications to use the Embedded-system Graphics Library (EGL) to eliminate the requirement for windowing system software on compute nodes, thereby eliminating a significant obstacle to broader use of high performance visualization applications. We outline the potential benefits of this approach in the context of visualization applications used in the cloud, on commodity clusters, and supercomputers. We discuss the implementation of EGL support in VMD, a widely used molecular visualization application, and we outline benefits of the approach for molecular visualization tasks on petascale computers, clouds, and remote visualization servers. We then provide a brief evaluation of the use of EGL in VMD, with tests using developmental graphics drivers on conventional workstations and on Amazon EC2 G2 GPU-accelerated cloud instance types. We expect that the techniques described here will be of broad benefit to many other visualization applications. PMID:27747137

  15. High Performance Molecular Visualization: In-Situ and Parallel Rendering with EGL.

    PubMed

    Stone, John E; Messmer, Peter; Sisneros, Robert; Schulten, Klaus

    2016-05-01

    Large scale molecular dynamics simulations produce terabytes of data that is impractical to transfer to remote facilities. It is therefore necessary to perform visualization tasks in-situ as the data are generated, or by running interactive remote visualization sessions and batch analyses co-located with direct access to high performance storage systems. A significant challenge for deploying visualization software within clouds, clusters, and supercomputers involves the operating system software required to initialize and manage graphics acceleration hardware. Recently, it has become possible for applications to use the Embedded-system Graphics Library (EGL) to eliminate the requirement for windowing system software on compute nodes, thereby eliminating a significant obstacle to broader use of high performance visualization applications. We outline the potential benefits of this approach in the context of visualization applications used in the cloud, on commodity clusters, and supercomputers. We discuss the implementation of EGL support in VMD, a widely used molecular visualization application, and we outline benefits of the approach for molecular visualization tasks on petascale computers, clouds, and remote visualization servers. We then provide a brief evaluation of the use of EGL in VMD, with tests using developmental graphics drivers on conventional workstations and on Amazon EC2 G2 GPU-accelerated cloud instance types. We expect that the techniques described here will be of broad benefit to many other visualization applications.

  16. Student Computer Use in Selected Undergraduate Agriculture Courses: An Examination of Required Tasks.

    ERIC Educational Resources Information Center

    Johnson, Donald M.; Ferguson, James A.; Vokins, Nancy W.; Lester, Melissa L.

    2000-01-01

    Over 50% of faculty teaching undergraduate agriculture courses (n=58) required use of word processing, Internet, and electronic mail; less than 50% required spreadsheets, databases, graphics, or specialized software. They planned to maintain or increase required computer tasks in their courses. (SK)

  17. Goal-Directed Visual Processing Differentially Impacts Human Ventral and Dorsal Visual Representations

    PubMed Central

    2017-01-01

    Recent studies have challenged the ventral/“what” and dorsal/“where” two-visual-processing-pathway view by showing the existence of “what” and “where” information in both pathways. Is the two-pathway distinction still valid? Here, we examined how goal-directed visual information processing may differentially impact visual representations in these two pathways. Using fMRI and multivariate pattern analysis, in three experiments on human participants (57% females), by manipulating whether color or shape was task-relevant and how they were conjoined, we examined shape-based object category decoding in occipitotemporal and parietal regions. We found that object category representations in all the regions examined were influenced by whether or not object shape was task-relevant. This task effect, however, tended to decrease as task-relevant and irrelevant features were more integrated, reflecting the well-known object-based feature encoding. Interestingly, task relevance played a relatively minor role in driving the representational structures of early visual and ventral object regions. They were driven predominantly by variations in object shapes. In contrast, the effect of task was much greater in dorsal than ventral regions, with object category and task relevance both contributing significantly to the representational structures of the dorsal regions. These results showed that, whereas visual representations in the ventral pathway are more invariant and reflect “what an object is,” those in the dorsal pathway are more adaptive and reflect “what we do with it.” Thus, despite the existence of “what” and “where” information in both visual processing pathways, the two pathways may still differ fundamentally in their roles in visual information representation. SIGNIFICANCE STATEMENT Visual information is thought to be processed in two distinctive pathways: the ventral pathway that processes “what” an object is and the dorsal pathway

  18. Empirical Evaluation of Visual Fatigue from Display Alignment Errors Using Cerebral Hemodynamic Responses

    PubMed Central

    Wiyor, Hanniebey D.; Ntuen, Celestine A.

    2013-01-01

    The purpose of this study was to investigate the effect of stereoscopic display alignment errors on visual fatigue and prefrontal cortical tissue hemodynamic responses. We collected hemodynamic data and perceptual ratings of visual fatigue while participants performed visual display tasks on 8 ft × 6 ft NEC LT silver screen with NEC LT 245 DLP projectors. There was statistical significant difference between subjective measures of visual fatigue before air traffic control task (BATC) and after air traffic control task (ATC 3), (P < 0.05). Statistical significance was observed between left dorsolateral prefrontal cortex oxygenated hemoglobin (l DLPFC-HbO2), left dorsolateral prefrontal cortex deoxygenated hemoglobin (l DLPFC-Hbb), and right dorsolateral prefrontal cortex deoxygenated hemoglobin (r DLPFC-Hbb) on stereoscopic alignment errors (P < 0.05). Thus, cortical tissue oxygenation requirement in the left hemisphere indicates that the effect of visual fatigue is more pronounced in the left dorsolateral prefrontal cortex. PMID:27006917

  19. Seeing without knowing: task relevance dissociates between visual awareness and recognition.

    PubMed

    Eitam, Baruch; Shoval, Roy; Yeshurun, Yaffa

    2015-03-01

    We demonstrate that task relevance dissociates between visual awareness and knowledge activation to create a state of seeing without knowing-visual awareness of familiar stimuli without recognizing them. We rely on the fact that in order to experience a Kanizsa illusion, participants must be aware of its inducers. While people can indicate the orientation of the illusory rectangle with great ease (signifying that they have consciously experienced the illusion's inducers), almost 30% of them could not report the inducers' color. Thus, people can see, in the sense of phenomenally experiencing, but not know, in the sense of recognizing what the object is or activating appropriate knowledge about it. Experiment 2 tests whether relevance-based selection operates within objects and shows that, contrary to the pattern of results found with features of different objects in our previous studies and replicated in Experiment 1, selection does not occur when both relevant and irrelevant features belong to the same object. We discuss these findings in relation to the existing theories of consciousness and to attention and inattentional blindness, and the role of cognitive load, object-based attention, and the use of self-reports as measures of awareness. © 2015 New York Academy of Sciences.

  20. Simulator study of the effect of visual-motion time delays on pilot tracking performance with an audio side task

    NASA Technical Reports Server (NTRS)

    Riley, D. R.; Miller, G. K., Jr.

    1978-01-01

    The effect of time delay was determined in the visual and motion cues in a flight simulator on pilot performance in tracking a target aircraft that was oscillating sinusoidally in altitude only. An audio side task was used to assure the subject was fully occupied at all times. The results indicate that, within the test grid employed, about the same acceptable time delay (250 msec) was obtained for a single aircraft (fighter type) by each of two subjects for both fixed-base and motion-base conditions. Acceptable time delay is defined as the largest amount of delay that can be inserted simultaneously into the visual and motion cues before performance degradation occurs. A statistical analysis of the data was made to establish this value of time delay. Audio side task provided quantitative data that documented the subject's work level.

  1. Signals in inferotemporal and perirhinal cortex suggest an “untangling” of visual target information

    PubMed Central

    Pagan, Marino; Urban, Luke S.; Wohl, Margot P.; Rust, Nicole C.

    2013-01-01

    Finding sought visual targets requires our brains to flexibly combine working memory information about what we are looking for with visual information about what we are looking at. To investigate the neural computations involved in finding visual targets, we recorded neural responses in inferotemporal (IT) and perirhinal (PRH) cortex as macaque monkeys performed a task that required them to find targets within sequences of distractors. We found similar amounts of total task-specific information in both areas, however, information about whether a target was in view was more accessible using a linear read-out (i.e. was more “untangled”) in PRH. Consistent with the flow of information from IT to PRH, we also found that task-relevant information arrived earlier in IT. PRH responses were well-described by a functional model in which “untangling” computations in PRH reformat input from IT by combining neurons with asymmetric tuning correlations for target matches and distractors. PMID:23792943

  2. The conjunction of non-consciously perceived object identity and spatial position can be retained during a visual short-term memory task.

    PubMed

    Bergström, Fredrik; Eriksson, Johan

    2015-01-01

    Although non-consciously perceived information has previously been assumed to be short-lived (< 500 ms), recent findings show that non-consciously perceived information can be maintained for at least 15 s. Such findings can be explained as working memory without a conscious experience of the information to be retained. However, whether or not working memory can operate on non-consciously perceived information remains controversial, and little is known about the nature of such non-conscious visual short-term memory (VSTM). Here we used continuous flash suppression to render stimuli non-conscious, to investigate the properties of non-consciously perceived representations in delayed match-to-sample (DMS) tasks. In Experiment I we used variable delays (5 or 15 s) and found that performance was significantly better than chance and was unaffected by delay duration, thereby replicating previous findings. In Experiment II the DMS task required participants to combine information of spatial position and object identity on a trial-by-trial basis to successfully solve the task. We found that the conjunction of spatial position and object identity was retained, thereby verifying that non-conscious, trial-specific information can be maintained for prospective use. We conclude that our results are consistent with a working memory interpretation, but that more research is needed to verify this interpretation.

  3. Change blindness and visual memory: visual representations get rich and act poor.

    PubMed

    Varakin, D Alexander; Levin, Daniel T

    2006-02-01

    Change blindness is often taken as evidence that visual representations are impoverished, while successful recognition of specific objects is taken as evidence that they are richly detailed. In the current experiments, participants performed cover tasks that required each object in a display to be attended. Change detection trials were unexpectedly introduced and surprise recognition tests were given for nonchanging displays. For both change detection and recognition, participants had to distinguish objects from the same basic-level category, making it likely that specific visual information had to be used for successful performance. Although recognition was above chance, incidental change detection usually remained at floor. These results help reconcile demonstrations of poor change detection with demonstrations of good memory because they suggest that the capability to store visual information in memory is not reflected by the visual system's tendency to utilize these representations for purposes of detecting unexpected changes.

  4. An on-road assessment of cognitive distraction: impacts on drivers' visual behavior and braking performance.

    PubMed

    Harbluk, Joanne L; Noy, Y Ian; Trbovich, Patricia L; Eizenman, Moshe

    2007-03-01

    In this on-road experiment, drivers performed demanding cognitive tasks while driving in city traffic. All task interactions were carried out in hands-free mode so that the 21 drivers were not required to take their visual attention away from the road or to manually interact with a device inside the vehicle. Visual behavior and vehicle control were assessed while they drove an 8 km city route under three conditions: no additional task, easy cognitive task and difficult cognitive task. Changes in visual behavior were most apparent when performance between the No Task and Difficult Task conditions were compared. When looking outside of the vehicle, drivers spent more time looking centrally ahead and spent less time looking to the areas in the periphery. Drivers also reduced their visual monitoring of the instruments and mirrors, with some drivers abandoning these tasks entirely. When approaching and driving through intersections, drivers made fewer inspection glances to traffic lights compared to the No Task condition and their scanning of intersection areas to the right was also reduced. Vehicle control was also affected; during the most difficult cognitive tasks there were more occurrences of hard braking. Although hands-free designs for telematics devices are intended to reduce or eliminate the distraction arising from manual operation of these units, the potential for cognitive distraction associated with their use must also be considered and appropriately assessed. These changes are captured in measures of drivers' visual behavior.

  5. Viewer Perspective Affects Central Bottleneck Requirements in Spatial Translation Tasks

    ERIC Educational Resources Information Center

    Franz, Elizabeth A.; Sebastian, Alexandra; Hust, Christina; Norris, Tom

    2008-01-01

    A psychological refractory period (PRP) approach and the locus of slack logic were applied to examine the novel question of whether spatial translation processes can begin before the central bottleneck when effector or noneffector stimuli are processed from an egocentric (viewer-centered) perspective. In single tasks, trials requiring spatial…

  6. Visual Short-Term Memory Activity in Parietal Lobe Reflects Cognitive Processes beyond Attentional Selection.

    PubMed

    Sheremata, Summer L; Somers, David C; Shomstein, Sarah

    2018-02-07

    Visual short-term memory (VSTM) and attention are distinct yet interrelated processes. While both require selection of information across the visual field, memory additionally requires the maintenance of information across time and distraction. VSTM recruits areas within human (male and female) dorsal and ventral parietal cortex that are also implicated in spatial selection; therefore, it is important to determine whether overlapping activation might reflect shared attentional demands. Here, identical stimuli and controlled sustained attention across both tasks were used to ask whether fMRI signal amplitude, functional connectivity, and contralateral visual field bias reflect memory-specific task demands. While attention and VSTM activated similar cortical areas, BOLD amplitude and functional connectivity in parietal cortex differentiated the two tasks. Relative to attention, VSTM increased BOLD amplitude in dorsal parietal cortex and decreased BOLD amplitude in the angular gyrus. Additionally, the tasks differentially modulated parietal functional connectivity. Contrasting VSTM and attention, intraparietal sulcus (IPS) 1-2 were more strongly connected with anterior frontoparietal areas and more weakly connected with posterior regions. This divergence between tasks demonstrates that parietal activation reflects memory-specific functions and consequently modulates functional connectivity across the cortex. In contrast, both tasks demonstrated hemispheric asymmetries for spatial processing, exhibiting a stronger contralateral visual field bias in the left versus the right hemisphere across tasks, suggesting that asymmetries are characteristic of a shared selection process in IPS. These results demonstrate that parietal activity and patterns of functional connectivity distinguish VSTM from more general attention processes, establishing a central role of the parietal cortex in maintaining visual information. SIGNIFICANCE STATEMENT Visual short-term memory (VSTM) and

  7. The Identification and Modeling of Visual Cue Usage in Manual Control Task Experiments

    NASA Technical Reports Server (NTRS)

    Sweet, Barbara Townsend; Trejo, Leonard J. (Technical Monitor)

    1999-01-01

    Many fields of endeavor require humans to conduct manual control tasks while viewing a perspective scene. Manual control refers to tasks in which continuous, or nearly continuous, control adjustments are required. Examples include flying an aircraft, driving a car, and riding a bicycle. Perspective scenes can arise through natural viewing of the world, simulation of a scene (as in flight simulators), or through imaging devices (such as the cameras on an unmanned aerospace vehicle). Designers frequently have some degree of control over the content and characteristics of a perspective scene; airport designers can choose runway markings, vehicle designers can influence the size and shape of windows, as well as the location of the pilot, and simulator database designers can choose scene complexity and content. Little theoretical framework exists to help designers determine the answers to questions related to perspective scene content. An empirical approach is most commonly used to determine optimum perspective scene configurations. The goal of the research effort described in this dissertation has been to provide a tool for modeling the characteristics of human operators conducting manual control tasks with perspective-scene viewing. This is done for the purpose of providing an algorithmic, as opposed to empirical, method for analyzing the effects of changing perspective scene content for closed-loop manual control tasks.

  8. Inhibition in movement plan competition: reach trajectories curve away from remembered and task-irrelevant present but not from task-irrelevant past visual stimuli.

    PubMed

    Moehler, Tobias; Fiehler, Katja

    2017-11-01

    The current study investigated the role of automatic encoding and maintenance of remembered, past, and present visual distractors for reach movement planning. The previous research on eye movements showed that saccades curve away from locations actively kept in working memory and also from task-irrelevant perceptually present visual distractors, but not from task-irrelevant past distractors. Curvature away has been associated with an inhibitory mechanism resolving the competition between multiple active movement plans. Here, we examined whether reach movements underlie a similar inhibitory mechanism and thus show systematic modulation of reach trajectories when the location of a previously presented distractor has to be (a) maintained in working memory or (b) ignored, or (c) when the distractor is perceptually present. Participants performed vertical reach movements on a computer monitor from a home to a target location. Distractors appeared laterally and near or far from the target (equidistant from central fixation). We found that reaches curved away from the distractors located close to the target when the distractor location had to be memorized and when it was perceptually present, but not when the past distractor had to be ignored. Our findings suggest that automatically encoding present distractors and actively maintaining the location of past distractors in working memory evoke a similar response competition resolved by inhibition, as has been previously shown for saccadic eye movements.

  9. Decision Making in Concurrent Multitasking: Do People Adapt to Task Interference?

    PubMed Central

    Nijboer, Menno; Taatgen, Niels A.; Brands, Annelies; Borst, Jelmer P.; van Rijn, Hedderik

    2013-01-01

    While multitasking has received a great deal of attention from researchers, we still know little about how well people adapt their behavior to multitasking demands. In three experiments, participants were presented with a multicolumn subtraction task, which required working memory in half of the trials. This primary task had to be combined with a secondary task requiring either working memory or visual attention, resulting in different types of interference. Before each trial, participants were asked to choose which secondary task they wanted to perform concurrently with the primary task. We predicted that if people seek to maximize performance or minimize effort required to perform the dual task, they choose task combinations that minimize interference. While performance data showed that the predicted optimal task combinations indeed resulted in minimal interference between tasks, the preferential choice data showed that a third of participants did not show any adaptation, and for the remainder it took a considerable number of trials before the optimal task combinations were chosen consistently. On the basis of these results we argue that, while in principle people are able to adapt their behavior according to multitasking demands, selection of the most efficient combination of strategies is not an automatic process. PMID:24244527

  10. Amplitude modulation of steady-state visual evoked potentials by event-related potentials in a working memory task

    PubMed Central

    Yao, Dezhong; Tang, Yu; Huang, Yilan; Su, Sheng

    2009-01-01

    Previous studies have shown that the amplitude and phase of the steady-state visual-evoked potential (SSVEP) can be influenced by a cognitive task, yet the mechanism of this influence has not been understood. As the event-related potential (ERP) is the direct neural electric response to a cognitive task, studying the relationship between the SSVEP and ERP would be meaningful in understanding this underlying mechanism. In this work, the traditional average method was applied to extract the ERP directly, following the stimulus of a working memory task, while a technique named steady-state probe topography was utilized to estimate the SSVEP under the simultaneous stimulus of an 8.3-Hz flicker and a working memory task; a comparison between the ERP and SSVEP was completed. The results show that the ERP can modulate the SSVEP amplitude, and for regions where both SSVEP and ERP are strong, the modulation depth is large. PMID:19960240

  11. Task-specific reorganization of the auditory cortex in deaf humans

    PubMed Central

    Bola, Łukasz; Zimmermann, Maria; Mostowski, Piotr; Jednoróg, Katarzyna; Marchewka, Artur; Rutkowski, Paweł; Szwed, Marcin

    2017-01-01

    The principles that guide large-scale cortical reorganization remain unclear. In the blind, several visual regions preserve their task specificity; ventral visual areas, for example, become engaged in auditory and tactile object-recognition tasks. It remains open whether task-specific reorganization is unique to the visual cortex or, alternatively, whether this kind of plasticity is a general principle applying to other cortical areas. Auditory areas can become recruited for visual and tactile input in the deaf. Although nonhuman data suggest that this reorganization might be task specific, human evidence has been lacking. Here we enrolled 15 deaf and 15 hearing adults into an functional MRI experiment during which they discriminated between temporally complex sequences of stimuli (rhythms). Both deaf and hearing subjects performed the task visually, in the central visual field. In addition, hearing subjects performed the same task in the auditory modality. We found that the visual task robustly activated the auditory cortex in deaf subjects, peaking in the posterior–lateral part of high-level auditory areas. This activation pattern was strikingly similar to the pattern found in hearing subjects performing the auditory version of the task. Although performing the visual task in deaf subjects induced an increase in functional connectivity between the auditory cortex and the dorsal visual cortex, no such effect was found in hearing subjects. We conclude that in deaf humans the high-level auditory cortex switches its input modality from sound to vision but preserves its task-specific activation pattern independent of input modality. Task-specific reorganization thus might be a general principle that guides cortical plasticity in the brain. PMID:28069964

  12. Task-specific reorganization of the auditory cortex in deaf humans.

    PubMed

    Bola, Łukasz; Zimmermann, Maria; Mostowski, Piotr; Jednoróg, Katarzyna; Marchewka, Artur; Rutkowski, Paweł; Szwed, Marcin

    2017-01-24

    The principles that guide large-scale cortical reorganization remain unclear. In the blind, several visual regions preserve their task specificity; ventral visual areas, for example, become engaged in auditory and tactile object-recognition tasks. It remains open whether task-specific reorganization is unique to the visual cortex or, alternatively, whether this kind of plasticity is a general principle applying to other cortical areas. Auditory areas can become recruited for visual and tactile input in the deaf. Although nonhuman data suggest that this reorganization might be task specific, human evidence has been lacking. Here we enrolled 15 deaf and 15 hearing adults into an functional MRI experiment during which they discriminated between temporally complex sequences of stimuli (rhythms). Both deaf and hearing subjects performed the task visually, in the central visual field. In addition, hearing subjects performed the same task in the auditory modality. We found that the visual task robustly activated the auditory cortex in deaf subjects, peaking in the posterior-lateral part of high-level auditory areas. This activation pattern was strikingly similar to the pattern found in hearing subjects performing the auditory version of the task. Although performing the visual task in deaf subjects induced an increase in functional connectivity between the auditory cortex and the dorsal visual cortex, no such effect was found in hearing subjects. We conclude that in deaf humans the high-level auditory cortex switches its input modality from sound to vision but preserves its task-specific activation pattern independent of input modality. Task-specific reorganization thus might be a general principle that guides cortical plasticity in the brain.

  13. Identifying the Computational Requirements of an Integrated Top-Down-Bottom-Up Model for Overt Visual Attention within an Active Vision System

    PubMed Central

    McBride, Sebastian; Huelse, Martin; Lee, Mark

    2013-01-01

    Computational visual attention systems have been constructed in order for robots and other devices to detect and locate regions of interest in their visual world. Such systems often attempt to take account of what is known of the human visual system and employ concepts, such as ‘active vision’, to gain various perceived advantages. However, despite the potential for gaining insights from such experiments, the computational requirements for visual attention processing are often not clearly presented from a biological perspective. This was the primary objective of this study, attained through two specific phases of investigation: 1) conceptual modeling of a top-down-bottom-up framework through critical analysis of the psychophysical and neurophysiological literature, 2) implementation and validation of the model into robotic hardware (as a representative of an active vision system). Seven computational requirements were identified: 1) transformation of retinotopic to egocentric mappings, 2) spatial memory for the purposes of medium-term inhibition of return, 3) synchronization of ‘where’ and ‘what’ information from the two visual streams, 4) convergence of top-down and bottom-up information to a centralized point of information processing, 5) a threshold function to elicit saccade action, 6) a function to represent task relevance as a ratio of excitation and inhibition, and 7) derivation of excitation and inhibition values from object-associated feature classes. The model provides further insight into the nature of data representation and transfer between brain regions associated with the vertebrate ‘active’ visual attention system. In particular, the model lends strong support to the functional role of the lateral intraparietal region of the brain as a primary area of information consolidation that directs putative action through the use of a ‘priority map’. PMID:23437044

  14. Direct and indirect effects of attention and visual function on gait impairment in Parkinson's disease: influence of task and turning.

    PubMed

    Stuart, Samuel; Galna, Brook; Delicato, Louise S; Lord, Sue; Rochester, Lynn

    2017-07-01

    Gait impairment is a core feature of Parkinson's disease (PD) which has been linked to cognitive and visual deficits, but interactions between these features are poorly understood. Monitoring saccades allows investigation of real-time cognitive and visual processes and their impact on gait when walking. This study explored: (i) saccade frequency when walking under different attentional manipulations of turning and dual-task; and (ii) direct and indirect relationships between saccades, gait impairment, vision and attention. Saccade frequency (number of fast eye movements per-second) was measured during gait in 60 PD and 40 age-matched control participants using a mobile eye-tracker. Saccade frequency was significantly reduced in PD compared to controls during all conditions. However, saccade frequency increased with a turn and decreased under dual-task for both groups. Poorer attention directly related to saccade frequency, visual function and gait impairment in PD, but not controls. Saccade frequency did not directly relate to gait in PD, but did in controls. Instead, saccade frequency and visual function deficit indirectly impacted gait impairment in PD, which was underpinned by their relationship with attention. In conclusion, our results suggest a vital role for attention with direct and indirect influences on gait impairment in PD. Attention directly impacted saccade frequency, visual function and gait impairment in PD, with connotations for falls. It also underpinned indirect impact of visual and saccadic impairment on gait. Attention therefore represents a key therapeutic target that should be considered in future research. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  15. Effects of motor congruence on visual working memory.

    PubMed

    Quak, Michel; Pecher, Diane; Zeelenberg, Rene

    2014-10-01

    Grounded-cognition theories suggest that memory shares processing resources with perception and action. The motor system could be used to help memorize visual objects. In two experiments, we tested the hypothesis that people use motor affordances to maintain object representations in working memory. Participants performed a working memory task on photographs of manipulable and nonmanipulable objects. The manipulable objects were objects that required either a precision grip (i.e., small items) or a power grip (i.e., large items) to use. A concurrent motor task that could be congruent or incongruent with the manipulable objects caused no difference in working memory performance relative to nonmanipulable objects. Moreover, the precision- or power-grip motor task did not affect memory performance on small and large items differently. These findings suggest that the motor system plays no part in visual working memory.

  16. Conflicting demands of abstract and specific visual object processing resolved by frontoparietal networks.

    PubMed

    McMenamin, Brenton W; Marsolek, Chad J; Morseth, Brianna K; Speer, MacKenzie F; Burton, Philip C; Burgund, E Darcy

    2016-06-01

    Object categorization and exemplar identification place conflicting demands on the visual system, yet humans easily perform these fundamentally contradictory tasks. Previous studies suggest the existence of dissociable visual processing subsystems to accomplish the two abilities-an abstract category (AC) subsystem that operates effectively in the left hemisphere and a specific exemplar (SE) subsystem that operates effectively in the right hemisphere. This multiple subsystems theory explains a range of visual abilities, but previous studies have not explored what mechanisms exist for coordinating the function of multiple subsystems and/or resolving the conflicts that would arise between them. We collected functional MRI data while participants performed two variants of a cue-probe working memory task that required AC or SE processing. During the maintenance phase of the task, the bilateral intraparietal sulcus (IPS) exhibited hemispheric asymmetries in functional connectivity consistent with exerting proactive control over the two visual subsystems: greater connectivity to the left hemisphere during the AC task, and greater connectivity to the right hemisphere during the SE task. Moreover, probe-evoked activation revealed activity in a broad frontoparietal network (containing IPS) associated with reactive control when the two visual subsystems were in conflict, and variations in this conflict signal across trials was related to the visual similarity of the cue-probe stimulus pairs. Although many studies have confirmed the existence of multiple visual processing subsystems, this study is the first to identify the mechanisms responsible for coordinating their operations.

  17. Does proactive interference play a significant role in visual working memory tasks?

    PubMed

    Makovski, Tal

    2016-10-01

    Visual working memory (VWM) is an online memory buffer that is typically assumed to be immune to source memory confusions. Accordingly, the few studies that have investigated the role of proactive interference (PI) in VWM tasks found only a modest PI effect at best. In contrast, a recent study has found a substantial PI effect in that performance in a VWM task was markedly improved when all memory items were unique compared to the more standard condition in which only a limited set of objects was used. The goal of the present study was to reconcile this discrepancy between the findings, and to scrutinize the extent to which PI is involved in VWM tasks. Experiments 1-2 showed that the robust advantage in using unique memory items can also be found in a within-subject design and is largely independent of set size, encoding duration, or intertrial interval. Importantly, however, PI was found mainly when all items were presented at the same location, and the effect was greatly diminished when the items were presented, either simultaneously (Experiment 3) or sequentially (Experiments 4-5), at distinct locations. These results indicate that PI is spatially specific and that without the assistance of spatial information VWM is not protected from PI. Thus, these findings imply that spatial information plays a key role in VWM, and underscore the notion that VWM is more vulnerable to interference than is typically assumed. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  18. Pilot/vehicle model analysis of visual and motion cue requirements in flight simulation. [helicopter hovering

    NASA Technical Reports Server (NTRS)

    Baron, S.; Lancraft, R.; Zacharias, G.

    1980-01-01

    The optimal control model (OCM) of the human operator is used to predict the effect of simulator characteristics on pilot performance and workload. The piloting task studied is helicopter hover. Among the simulator characteristics considered were (computer generated) visual display resolution, field of view and time delay.

  19. Psychological Issues in Online Adaptive Task Allocation

    NASA Technical Reports Server (NTRS)

    Morris, N. M.; Rouse, W. B.; Ward, S. L.; Frey, P. R.

    1984-01-01

    Adaptive aiding is an idea that offers potential for improvement over many current approaches to aiding in human-computer systems. The expected return of tailoring the system to fit the user could be in the form of improved system performance and/or increased user satisfaction. Issues such as the manner in which information is shared between human and computer, the appropriate division of labor between them, and the level of autonomy of the aid are explored. A simulated visual search task was developed. Subjects are required to identify targets in a moving display while performing a compensatory sub-critical tracking task. By manipulating characteristics of the situation such as imposed task-related workload and effort required to communicate with the computer, it is possible to create conditions in which interaction with the computer would be more or less desirable. The results of preliminary research using this experimental scenario are presented, and future directions for this research effort are discussed.

  20. Object localization, discrimination, and grasping with the optic nerve visual prosthesis.

    PubMed

    Duret, Florence; Brelén, Måten E; Lambert, Valerie; Gérard, Benoît; Delbeke, Jean; Veraart, Claude

    2006-01-01

    This study involved a volunteer completely blind from retinis pigmentosa who had previously been implanted with an optic nerve visual prosthesis. The aim of this two-year study was to train the volunteer to localize a given object in nine different positions, to discriminate the object within a choice of six, and then to grasp it. In a closed-loop protocol including a head worn video camera, the nerve was stimulated whenever a part of the processed image of the object being scrutinized matched the center of an elicitable phosphene. The accessible visual field included 109 phosphenes in a 14 degrees x 41 degrees area. Results showed that training was required to succeed in the localization and discrimination tasks, but practically no training was required for grasping the object. The volunteer was able to successfully complete all tasks after training. The volunteer systematically performed several left-right and bottom-up scanning movements during the discrimination task. Discrimination strategies included stimulation phases and no-stimulation phases of roughly similar duration. This study provides a step towards the practical use of the optic nerve visual prosthesis in current daily life.

  1. Interhemispheric interaction expands attentional capacity in an auditory selective attention task.

    PubMed

    Scalf, Paige E; Banich, Marie T; Erickson, Andrew B

    2009-04-01

    Previous work from our laboratory indicates that interhemispheric interaction (IHI) functionally increases the attentional capacity available to support performance on visual tasks (Banich in The asymmetrical brain, pp 261-302, 2003). Because manipulations of both computational complexity and selection demand alter the benefits of IHI to task performance, we argue that IHI may be a general strategy for meeting increases in attentional demand. Other researchers, however, have suggested that the apparent benefits of IHI to attentional capacity are an epiphenomenon of the organization of the visual system (Fecteau and Enns in Neuropsychologia 43:1412-1428, 2005; Marsolek et al. in Neuropsychologia 40:1983-1999, 2002). In the current experiment, we investigate whether IHI increases attentional capacity outside the visual system by manipulating the selection demands of an auditory temporal pattern-matching task. We find that IHI expands attentional capacity in the auditory system. This suggests that the benefits of requiring IHI derive from a functional increase in attentional capacity rather than the organization of a specific sensory modality.

  2. Octopus vulgaris uses visual information to determine the location of its arm.

    PubMed

    Gutnick, Tamar; Byrne, Ruth A; Hochner, Binyamin; Kuba, Michael

    2011-03-22

    Octopuses are intelligent, soft-bodied animals with keen senses that perform reliably in a variety of visual and tactile learning tasks. However, researchers have found them disappointing in that they consistently fail in operant tasks that require them to combine central nervous system reward information with visual and peripheral knowledge of the location of their arms. Wells claimed that in order to filter and integrate an abundance of multisensory inputs that might inform the animal of the position of a single arm, octopuses would need an exceptional computing mechanism, and "There is no evidence that such a system exists in Octopus, or in any other soft bodied animal." Recent electrophysiological experiments, which found no clear somatotopic organization in the higher motor centers, support this claim. We developed a three-choice maze that required an octopus to use a single arm to reach a visually marked goal compartment. Using this operant task, we show for the first time that Octopus vulgaris is capable of guiding a single arm in a complex movement to a location. Thus, we claim that octopuses can combine peripheral arm location information with visual input to control goal-directed complex movements. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Task Analysis Schema Based on Cognitive Style and Supplantational Instructional Design with Application to an Air Force Training Course.

    DTIC Science & Technology

    1980-02-01

    ADOAA82 342 OKLAHOMA UNIV NORMAN COLL OF EDUCATION F/B 5/9 TASK ANALYSIS SCHEMA BASED ON COGNITIVE STYLE AND SUPPLANFATION--ETC(U) FEB GO F B AUSBURN...separately- perceived fragments) 6. Tasks requiring use of a. Visual/haptic (pre- kinesthetic or tactile ference for kinesthetic stimuli stimuli; ability...to transform kinesthetic stimuli into visual images; ability to learn directly from tactile or kinesthet - ic impressions) b. Field independence/de

  4. Global/local processing of hierarchical visual stimuli in a conflict-choice task by capuchin monkeys (Sapajus spp.).

    PubMed

    Truppa, Valentina; Carducci, Paola; De Simone, Diego Antonio; Bisazza, Angelo; De Lillo, Carlo

    2017-03-01

    In the last two decades, comparative research has addressed the issue of how the global and local levels of structure of visual stimuli are processed by different species, using Navon-type hierarchical figures, i.e. smaller local elements that form larger global configurations. Determining whether or not the variety of procedures adopted to test different species with hierarchical figures are equivalent is of crucial importance to ensure comparability of results. Among non-human species, global/local processing has been extensively studied in tufted capuchin monkeys using matching-to-sample tasks with hierarchical patterns. Local dominance has emerged consistently in these New World primates. In the present study, we assessed capuchins' processing of hierarchical stimuli with a method frequently adopted in studies of global/local processing in non-primate species: the conflict-choice task. Different from the matching-to-sample procedure, this task involved processing local and global information retained in long-term memory. Capuchins were trained to discriminate between consistent hierarchical stimuli (similar global and local shape) and then tested with inconsistent hierarchical stimuli (different global and local shapes). We found that capuchins preferred the hierarchical stimuli featuring the correct local elements rather than those with the correct global configuration. This finding confirms that capuchins' local dominance, typically observed using matching-to-sample procedures, is also expressed as a local preference in the conflict-choice task. Our study adds to the growing body of comparative studies on visual grouping functions by demonstrating that the methods most frequently used in the literature on global/local processing produce analogous results irrespective of extent of the involvement of memory processes.

  5. The influence of artificial scotomas on eye movements during visual search.

    PubMed

    Cornelissen, Frans W; Bruin, Klaas J; Kooijman, Aart C

    2005-01-01

    Fixation durations are normally adapted to the difficulty of the foveal analysis task. We examine to what extent artificial central and peripheral visual field defects interfere with this adaptation process. Subjects performed a visual search task while their eye movements were registered. The latter were used to drive a real-time gaze-dependent display that was used to create artificial central and peripheral visual field defects. Recorded eye movements were used to determine saccadic amplitude, number of fixations, fixation durations, return saccades, and changes in saccade direction. For central defects, although fixation duration increased with the size of the absolute central scotoma, this increase was too small to keep recognition performance optimal, evident from an associated increase in the rate of return saccades. Providing a relatively small amount of visual information in the central scotoma did substantially reduce subjects' search times but not their fixation durations. Surprisingly, reducing the size of the tunnel also prolonged fixation duration for peripheral defects. This manipulation also decreased the rate of return saccades, suggesting that the fixations were prolonged beyond the duration required by the foveal task. Although we find that adaptation of fixation duration to task difficulty clearly occurs in the presence of artificial scotomas, we also find that such field defects may render the adaptation suboptimal for the task at hand. Thus, visual field defects may not only hinder vision by limiting what the subject sees of the environment but also by limiting the visual system's ability to program efficient eye movements. We speculate this is because of how visual field defects bias the balance between saccade generation and fixation stabilization.

  6. An Empirical Study on Using Visual Embellishments in Visualization.

    PubMed

    Borgo, R; Abdul-Rahman, A; Mohamed, F; Grant, P W; Reppa, I; Floridi, L; Chen, Min

    2012-12-01

    In written and spoken communications, figures of speech (e.g., metaphors and synecdoche) are often used as an aid to help convey abstract or less tangible concepts. However, the benefits of using rhetorical illustrations or embellishments in visualization have so far been inconclusive. In this work, we report an empirical study to evaluate hypotheses that visual embellishments may aid memorization, visual search and concept comprehension. One major departure from related experiments in the literature is that we make use of a dual-task methodology in our experiment. This design offers an abstraction of typical situations where viewers do not have their full attention focused on visualization (e.g., in meetings and lectures). The secondary task introduces "divided attention", and makes the effects of visual embellishments more observable. In addition, it also serves as additional masking in memory-based trials. The results of this study show that visual embellishments can help participants better remember the information depicted in visualization. On the other hand, visual embellishments can have a negative impact on the speed of visual search. The results show a complex pattern as to the benefits of visual embellishments in helping participants grasp key concepts from visualization.

  7. Workflows and individual differences during visually guided routine tasks in a road traffic management control room.

    PubMed

    Starke, Sandra D; Baber, Chris; Cooke, Neil J; Howes, Andrew

    2017-05-01

    Road traffic control rooms rely on human operators to monitor and interact with information presented on multiple displays. Past studies have found inconsistent use of available visual information sources in such settings across different domains. In this study, we aimed to broaden the understanding of observer behaviour in control rooms by analysing a case study in road traffic control. We conducted a field study in a live road traffic control room where five operators responded to incidents while wearing a mobile eye tracker. Using qualitative and quantitative approaches, we investigated the operators' workflow using ergonomics methods and quantified visual information sampling. We found that individuals showed differing preferences for viewing modalities and weighting of task components, with a strong coupling between eye and head movement. For the quantitative analysis of the eye tracking data, we propose a number of metrics which may prove useful to compare visual sampling behaviour across domains in future. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Reduced dual-task gait speed is associated with visual Go/No-Go brain network activation in children and adolescents with concussion.

    PubMed

    Howell, David R; Meehan, William P; Barber Foss, Kim D; Reches, Amit; Weiss, Michal; Myer, Gregory D

    2018-05-31

    To investigate the association between dual-task gait performance and brain network activation (BNA) using an electroencephalography (EEG)-based Go/No-Go paradigm among children and adolescents with concussion. Participants with a concussion completed a visual Go/No-Go task with collection of electroencephalogram brain activity. Data were treated with BNA analysis, which involves an algorithmic approach to EEG-ERP activation quantification. Participants also completed a dual-task gait assessment. The relationship between dual-task gait speed and BNA was assessed using multiple linear regression models. Participants (n = 20, 13.9 ± 2.3 years of age, 50% female) were tested at a mean of 7.0 ± 2.5 days post-concussion and were symptomatic at the time of testing (post-concussion symptom scale = 40.4 ± 21.9). Slower dual-task average gait speed (mean = 82.2 ± 21.0 cm/s) was significantly associated with lower relative time BNA scores (mean = 39.6 ± 25.8) during the No-Go task (β = 0.599, 95% CI = 0.214, 0.985, p = 0.005, R 2  = 0.405), while controlling for the effect of age and gender. Among children and adolescents with a concussion, slower dual-task gait speed was independently associated with lower BNA relative time scores during a visual Go/No-Go task. The relationship between abnormal gait behaviour and brain activation deficits may be reflective of disruption to multiple functional abilities after concussion.

  9. Does scene context always facilitate retrieval of visual object representations?

    PubMed

    Nakashima, Ryoichi; Yokosawa, Kazuhiko

    2011-04-01

    An object-to-scene binding hypothesis maintains that visual object representations are stored as part of a larger scene representation or scene context, and that scene context facilitates retrieval of object representations (see, e.g., Hollingworth, Journal of Experimental Psychology: Learning, Memory and Cognition, 32, 58-69, 2006). Support for this hypothesis comes from data using an intentional memory task. In the present study, we examined whether scene context always facilitates retrieval of visual object representations. In two experiments, we investigated whether the scene context facilitates retrieval of object representations, using a new paradigm in which a memory task is appended to a repeated-flicker change detection task. Results indicated that in normal scene viewing, in which many simultaneous objects appear, scene context facilitation of the retrieval of object representations-henceforth termed object-to-scene binding-occurred only when the observer was required to retain much information for a task (i.e., an intentional memory task).

  10. Visual search in a forced-choice paradigm

    NASA Technical Reports Server (NTRS)

    Holmgren, J. E.

    1974-01-01

    The processing of visual information was investigated in the context of two visual search tasks. The first was a forced-choice task in which one of two alternative letters appeared in a visual display of from one to five letters. The second task included trials on which neither of the two alternatives was present in the display. Search rates were estimated from the slopes of best linear fits to response latencies plotted as a function of the number of items in the visual display. These rates were found to be much slower than those estimated in yes-no search tasks. This result was interpreted as indicating that the processes underlying visual search in yes-no and forced-choice tasks are not the same.

  11. "Hot" Facilitation of "Cool" Processing: Emotional Distraction Can Enhance Priming of Visual Search

    ERIC Educational Resources Information Center

    Kristjansson, Arni; Oladottir, Berglind; Most, Steven B.

    2013-01-01

    Emotional stimuli often capture attention and disrupt effortful cognitive processing. However, cognitive processes vary in the degree to which they require effort. We investigated the impact of emotional pictures on visual search and on automatic priming of search. Observers performed visual search after task-irrelevant neutral or emotionally…

  12. Visual cognition in amnesic H.M.: selective deficits on the What's-Wrong-Here and Hidden-Figure tasks.

    PubMed

    MacKay, Donald G; James, Lori E

    2009-10-01

    Two experiments compared the visual cognition performance of amnesic H.M. and memory-normal controls matched for age, background, intelligence, and education. In Experiment 1 H.M. exhibited deficits relative to the controls in detecting "erroneous objects" in complex visual scenes--for example, a bird flying inside a fishbowl. In Experiment 2 H.M. exhibited deficits relative to the controls in standard Hidden-Figure tasks when detecting unfamiliar targets but not when detecting familiar targets--for example, circles, squares, and right-angle triangles. H.M.'s visual cognition deficits were not due to his well-known problems in explicit learning and recall, inability to comprehend or remember the instructions, general slowness, motoric difficulties, low motivation, low IQ relative to the controls, or working-memory limitations. Parallels between H.M.'s selective deficits in visual cognition, language, and memory are discussed. These parallels contradict the standard "systems theory" account of H.M.'s condition but comport with the hypothesis that H.M. has difficulty representing unfamiliar but not familiar information in visual cognition, language, and memory. Implications of our results are discussed for binding theory and the ongoing debate over what counts as "memory" versus "not-memory."

  13. Understanding and Visualizing Multitasking and Task Switching Activities: A Time Motion Study to Capture Nursing Workflow

    PubMed Central

    Yen, Po-Yin; Kelley, Marjorie; Lopetegui, Marcelo; Rosado, Amber L.; Migliore, Elaina M.; Chipps, Esther M.; Buck, Jacalyn

    2016-01-01

    A fundamental understanding of multitasking within nursing workflow is important in today’s dynamic and complex healthcare environment. We conducted a time motion study to understand nursing workflow, specifically multitasking and task switching activities. We used TimeCaT, a comprehensive electronic time capture tool, to capture observational data. We established inter-observer reliability prior to data collection. We completed 56 hours of observation of 10 registered nurses. We found, on average, nurses had 124 communications and 208 hands-on tasks per 4-hour block of time. They multitasked (having communication and hands-on tasks simultaneously) 131 times, representing 39.48% of all times; the total multitasking duration ranges from 14.6 minutes to 109 minutes, 44.98 minutes (18.63%) on average. We also reviewed workflow visualization to uncover the multitasking events. Our study design and methods provide a practical and reliable approach to conducting and analyzing time motion studies from both quantitative and qualitative perspectives. PMID:28269924

  14. Understanding and Visualizing Multitasking and Task Switching Activities: A Time Motion Study to Capture Nursing Workflow.

    PubMed

    Yen, Po-Yin; Kelley, Marjorie; Lopetegui, Marcelo; Rosado, Amber L; Migliore, Elaina M; Chipps, Esther M; Buck, Jacalyn

    2016-01-01

    A fundamental understanding of multitasking within nursing workflow is important in today's dynamic and complex healthcare environment. We conducted a time motion study to understand nursing workflow, specifically multitasking and task switching activities. We used TimeCaT, a comprehensive electronic time capture tool, to capture observational data. We established inter-observer reliability prior to data collection. We completed 56 hours of observation of 10 registered nurses. We found, on average, nurses had 124 communications and 208 hands-on tasks per 4-hour block of time. They multitasked (having communication and hands-on tasks simultaneously) 131 times, representing 39.48% of all times; the total multitasking duration ranges from 14.6 minutes to 109 minutes, 44.98 minutes (18.63%) on average. We also reviewed workflow visualization to uncover the multitasking events. Our study design and methods provide a practical and reliable approach to conducting and analyzing time motion studies from both quantitative and qualitative perspectives.

  15. Conflicting Demands of Abstract and Specific Visual Object Processing Resolved by Fronto-Parietal Networks

    PubMed Central

    McMenamin, Brenton W.; Marsolek, Chad J.; Morseth, Brianna K.; Speer, MacKenzie F.; Burton, Philip C.; Burgund, E. Darcy

    2016-01-01

    Object categorization and exemplar identification place conflicting demands on the visual system, yet humans easily perform these fundamentally contradictory tasks. Previous studies suggest the existence of dissociable visual processing subsystems to accomplish the two abilities – an abstract category (AC) subsystem that operates effectively in the left hemisphere, and a specific exemplar (SE) subsystem that operates effectively in the right hemisphere. This multiple subsystems theory explains a range of visual abilities, but previous studies have not explored what mechanisms exist for coordinating the function of multiple subsystems and/or resolving the conflicts that would arise between them. We collected functional MRI data while participants performed two variants of a cue-probe working memory task that required AC or SE processing. During the maintenance phase of the task, the bilateral intraparietal sulcus (IPS) exhibited hemispheric asymmetries in functional connectivity consistent with exerting proactive control over the two visual subsystems: greater connectivity to the left hemisphere during the AC task, and greater connectivity to the right hemisphere during the SE task. Moreover, probe-evoked activation revealed activity in a broad fronto-parietal network (containing IPS) associated with reactive control when the two visual subsystems were in conflict, and variations in this conflict signal across trials was related to the visual similarity of the cue/probe stimulus pairs. Although many studies have confirmed the existence of multiple visual processing subsystems, this study is the first to identify the mechanisms responsible for coordinating their operations. PMID:26883940

  16. Age-related slowing of response selection and production in a visual choice reaction time task

    PubMed Central

    Woods, David L.; Wyma, John M.; Yund, E. William; Herron, Timothy J.; Reed, Bruce

    2015-01-01

    Aging is associated with delayed processing in choice reaction time (CRT) tasks, but the processing stages most impacted by aging have not been clearly identified. Here, we analyzed CRT latencies in a computerized serial visual feature-conjunction task. Participants responded to a target letter (probability 40%) by pressing one mouse button, and responded to distractor letters differing either in color, shape, or both features from the target (probabilities 20% each) by pressing the other mouse button. Stimuli were presented randomly to the left and right visual fields and stimulus onset asynchronies (SOAs) were adaptively reduced following correct responses using a staircase procedure. In Experiment 1, we tested 1466 participants who ranged in age from 18 to 65 years. CRT latencies increased significantly with age (r = 0.47, 2.80 ms/year). Central processing time (CPT), isolated by subtracting simple reaction times (SRT) (obtained in a companion experiment performed on the same day) from CRT latencies, accounted for more than 80% of age-related CRT slowing, with most of the remaining increase in latency due to slowed motor responses. Participants were faster and more accurate when the stimulus location was spatially compatible with the mouse button used for responding, and this effect increased slightly with age. Participants took longer to respond to distractors with target color or shape than to distractors with no target features. However, the additional time needed to discriminate the more target-like distractors did not increase with age. In Experiment 2, we replicated the findings of Experiment 1 in a second population of 178 participants (ages 18–82 years). CRT latencies did not differ significantly in the two experiments, and similar effects of age, distractor similarity, and stimulus-response spatial compatibility were found. The results suggest that the age-related slowing in visual CRT latencies is largely due to delays in response selection and

  17. The Benefit of a Visually Guided Beamformer in a Dynamic Speech Task

    PubMed Central

    Roverud, Elin; Streeter, Timothy; Mason, Christine R.; Kidd, Gerald

    2017-01-01

    The aim of this study was to evaluate the performance of a visually guided hearing aid (VGHA) under conditions designed to capture some aspects of “real-world” communication settings. The VGHA uses eye gaze to steer the acoustic look direction of a highly directional beamforming microphone array. Although the VGHA has been shown to enhance speech intelligibility for fixed-location, frontal targets, it is currently not known whether these benefits persist in the face of frequent changes in location of the target talker that are typical of conversational turn-taking. Participants were 14 young adults, 7 with normal hearing and 7 with bilateral sensorineural hearing impairment. Target stimuli were sequences of 12 question–answer pairs that were embedded in a mixture of competing conversations. The participant’s task was to respond via a key press after each answer indicating whether it was correct or not. Spatialization of the stimuli and microphone array processing were done offline using recorded impulse responses, before presentation over headphones. The look direction of the array was steered according to the eye movements of the participant as they followed a visual cue presented on a widescreen monitor. Performance was compared for a “dynamic” condition in which the target stimulus moved between three locations, and a “fixed” condition with a single target location. The benefits of the VGHA over natural binaural listening observed in the fixed condition were reduced in the dynamic condition, largely because visual fixation was less accurate. PMID:28758567

  18. Towards a visual modeling approach to designing microelectromechanical system transducers

    NASA Astrophysics Data System (ADS)

    Dewey, Allen; Srinivasan, Vijay; Icoz, Evrim

    1999-12-01

    In this paper, we address initial design capture and system conceptualization of microelectromechanical system transducers based on visual modeling and design. Visual modeling frames the task of generating hardware description language (analog and digital) component models in a manner similar to the task of generating software programming language applications. A structured topological design strategy is employed, whereby microelectromechanical foundry cell libraries are utilized to facilitate the design process of exploring candidate cells (topologies), varying key aspects of the transduction for each topology, and determining which topology best satisfies design requirements. Coupled-energy microelectromechanical system characterizations at a circuit level of abstraction are presented that are based on branch constitutive relations and an overall system of simultaneous differential and algebraic equations. The resulting design methodology is called visual integrated-microelectromechanical VHDL-AMS interactive design (VHDL-AMS is visual hardware design language for analog and mixed signal).

  19. Recalibration of the Multisensory Temporal Window of Integration Results from Changing Task Demands

    PubMed Central

    Mégevand, Pierre; Molholm, Sophie; Nayak, Ashabari; Foxe, John J.

    2013-01-01

    The notion of the temporal window of integration, when applied in a multisensory context, refers to the breadth of the interval across which the brain perceives two stimuli from different sensory modalities as synchronous. It maintains a unitary perception of multisensory events despite physical and biophysical timing differences between the senses. The boundaries of the window can be influenced by attention and past sensory experience. Here we examined whether task demands could also influence the multisensory temporal window of integration. We varied the stimulus onset asynchrony between simple, short-lasting auditory and visual stimuli while participants performed two tasks in separate blocks: a temporal order judgment task that required the discrimination of subtle auditory-visual asynchronies, and a reaction time task to the first incoming stimulus irrespective of its sensory modality. We defined the temporal window of integration as the range of stimulus onset asynchronies where performance was below 75% in the temporal order judgment task, as well as the range of stimulus onset asynchronies where responses showed multisensory facilitation (race model violation) in the reaction time task. In 5 of 11 participants, we observed audio-visual stimulus onset asynchronies where reaction time was significantly accelerated (indicating successful integration in this task) while performance was accurate in the temporal order judgment task (indicating successful segregation in that task). This dissociation suggests that in some participants, the boundaries of the temporal window of integration can adaptively recalibrate in order to optimize performance according to specific task demands. PMID:23951203

  20. MBSE-Driven Visualization of Requirements Allocation and Traceability

    NASA Technical Reports Server (NTRS)

    Jackson, Maddalena; Wilkerson, Marcus

    2016-01-01

    In a Model Based Systems Engineering (MBSE) infusion effort, there is a usually a concerted effort to define the information architecture, ontologies, and patterns that drive the construction and architecture of MBSE models, but less attention is given to the logical follow-on of that effort: how to practically leverage the resulting semantic richness of a well-formed populated model to enable systems engineers to work more effectively, as MBSE promises. While ontologies and patterns are absolutely necessary, an MBSE effort must also design and provide practical demonstration of value (through human-understandable representations of model data that address stakeholder concerns) or it will not succeed. This paper will discuss opportunities that exist for visualization in making the richness of a well-formed model accessible to stakeholders, specifically stakeholders who rely on the model for their day-to-day work. This paper will discuss the value added by MBSE-driven visualizations in the context of a small case study of interactive visualizations created and used on NASA's proposed Europa Mission. The case study visualizations were created for the purpose of understanding and exploring targeted aspects of requirements flow, allocation, and comparing the structure of that flow-down to a conceptual project decomposition. The work presented in this paper is an example of a product that leverages the richness and formalisms of our knowledge representation while also responding to the quality attributes SEs care about.

  1. Coding Local and Global Binary Visual Features Extracted From Video Sequences

    NASA Astrophysics Data System (ADS)

    Baroffio, Luca; Canclini, Antonio; Cesana, Matteo; Redondi, Alessandro; Tagliasacchi, Marco; Tubaro, Stefano

    2015-11-01

    Binary local features represent an effective alternative to real-valued descriptors, leading to comparable results for many visual analysis tasks, while being characterized by significantly lower computational complexity and memory requirements. When dealing with large collections, a more compact representation based on global features is often preferred, which can be obtained from local features by means of, e.g., the Bag-of-Visual-Word (BoVW) model. Several applications, including for example visual sensor networks and mobile augmented reality, require visual features to be transmitted over a bandwidth-limited network, thus calling for coding techniques that aim at reducing the required bit budget, while attaining a target level of efficiency. In this paper we investigate a coding scheme tailored to both local and global binary features, which aims at exploiting both spatial and temporal redundancy by means of intra- and inter-frame coding. In this respect, the proposed coding scheme can be conveniently adopted to support the Analyze-Then-Compress (ATC) paradigm. That is, visual features are extracted from the acquired content, encoded at remote nodes, and finally transmitted to a central controller that performs visual analysis. This is in contrast with the traditional approach, in which visual content is acquired at a node, compressed and then sent to a central unit for further processing, according to the Compress-Then-Analyze (CTA) paradigm. In this paper we experimentally compare ATC and CTA by means of rate-efficiency curves in the context of two different visual analysis tasks: homography estimation and content-based retrieval. Our results show that the novel ATC paradigm based on the proposed coding primitives can be competitive with CTA, especially in bandwidth limited scenarios.

  2. The Effects of Task Clarification, Visual Prompts, and Graphic Feedback on Customer Greeting and Up-Selling in a Restaurant

    ERIC Educational Resources Information Center

    Squires, James; Wilder, David A.; Fixsen, Amanda; Hess, Erica; Rost, Kristen; Curran, Ryan; Zonneveld, Kimberly

    2007-01-01

    An intervention consisting of task clarification, visual prompts, and graphic feedback was evaluated to increase customer greeting and up-selling in a restaurant. A combination multiple baseline and reversal design was used to evaluate intervention effects. Although all interventions improved performance over baseline, the delivery of graphic…

  3. Parameter-Based Assessment of Disturbed and Intact Components of Visual Attention in Children with Developmental Dyslexia

    ERIC Educational Resources Information Center

    Bogon, Johanna; Finke, Kathrin; Schulte-Körne, Gerd; Müller, Hermann J.; Schneider, Werner X.; Stenneken, Prisca

    2014-01-01

    People with developmental dyslexia (DD) have been shown to be impaired in tasks that require the processing of multiple visual elements in parallel. It has been suggested that this deficit originates from disturbed visual attentional functions. The parameter-based assessment of visual attention based on Bundesen's (1990) theory of visual…

  4. Visual short-term memory load reduces retinotopic cortex response to contrast.

    PubMed

    Konstantinou, Nikos; Bahrami, Bahador; Rees, Geraint; Lavie, Nilli

    2012-11-01

    Load Theory of attention suggests that high perceptual load in a task leads to reduced sensory visual cortex response to task-unrelated stimuli resulting in "load-induced blindness" [e.g., Lavie, N. Attention, distraction and cognitive control under load. Current Directions in Psychological Science, 19, 143-148, 2010; Lavie, N. Distracted and confused?: Selective attention under load. Trends in Cognitive Sciences, 9, 75-82, 2005]. Consideration of the findings that visual STM (VSTM) involves sensory recruitment [e.g., Pasternak, T., & Greenlee, M. Working memory in primate sensory systems. Nature Reviews Neuroscience, 6, 97-107, 2005] within Load Theory led us to a new hypothesis regarding the effects of VSTM load on visual processing. If VSTM load draws on sensory visual capacity, then similar to perceptual load, high VSTM load should also reduce visual cortex response to incoming stimuli leading to a failure to detect them. We tested this hypothesis with fMRI and behavioral measures of visual detection sensitivity. Participants detected the presence of a contrast increment during the maintenance delay in a VSTM task requiring maintenance of color and position. Increased VSTM load (manipulated by increased set size) led to reduced retinotopic visual cortex (V1-V3) responses to contrast as well as reduced detection sensitivity, as we predicted. Additional visual detection experiments established a clear tradeoff between the amount of information maintained in VSTM and detection sensitivity, while ruling out alternative accounts for the effects of VSTM load in terms of differential spatial allocation strategies or task difficulty. These findings extend Load Theory to demonstrate a new form of competitive interactions between early visual cortex processing and visual representations held in memory under load and provide a novel line of support for the sensory recruitment hypothesis of VSTM.

  5. Active sensing in the categorization of visual patterns

    PubMed Central

    Yang, Scott Cheng-Hsin; Lengyel, Máté; Wolpert, Daniel M

    2016-01-01

    Interpreting visual scenes typically requires us to accumulate information from multiple locations in a scene. Using a novel gaze-contingent paradigm in a visual categorization task, we show that participants' scan paths follow an active sensing strategy that incorporates information already acquired about the scene and knowledge of the statistical structure of patterns. Intriguingly, categorization performance was markedly improved when locations were revealed to participants by an optimal Bayesian active sensor algorithm. By using a combination of a Bayesian ideal observer and the active sensor algorithm, we estimate that a major portion of this apparent suboptimality of fixation locations arises from prior biases, perceptual noise and inaccuracies in eye movements, and the central process of selecting fixation locations is around 70% efficient in our task. Our results suggest that participants select eye movements with the goal of maximizing information about abstract categories that require the integration of information from multiple locations. DOI: http://dx.doi.org/10.7554/eLife.12215.001 PMID:26880546

  6. A Closer Look at Visual Manuals.

    ERIC Educational Resources Information Center

    van der Meij, Hans

    1996-01-01

    Examines the visual manual genre, discussing main forms and functions of step-by-step and guided tour manuals in detail. Examines whether a visual manual helps computer users realize tasks faster and more accurately than a non-visual manual. Finds no effects on accuracy, but speedier task execution by 35% for visual manuals. Concludes there is no…

  7. Specialization in the default mode: Task-induced brain deactivations dissociate between visual working memory and attention.

    PubMed

    Mayer, Jutta S; Roebroeck, Alard; Maurer, Konrad; Linden, David E J

    2010-01-01

    The idea of an organized mode of brain function that is present as default state and suspended during goal-directed behaviors has recently gained much interest in the study of human brain function. The default mode hypothesis is based on the repeated observation that certain brain areas show task-induced deactivations across a wide range of cognitive tasks. In this event-related functional resonance imaging study we tested the default mode hypothesis by comparing common and selective patterns of BOLD deactivation in response to the demands on visual attention and working memory (WM) that were independently modulated within one task. The results revealed task-induced deactivations within regions of the default mode network (DMN) with a segregation of areas that were additively deactivated by an increase in the demands on both attention and WM, and areas that were selectively deactivated by either high attentional demand or WM load. Attention-selective deactivations appeared in the left ventrolateral and medial prefrontal cortex and the left lateral temporal cortex. Conversely, WM-selective deactivations were found predominantly in the right hemisphere including the medial-parietal, the lateral temporo-parietal, and the medial prefrontal cortex. Moreover, during WM encoding deactivated regions showed task-specific functional connectivity. These findings demonstrate that task-induced deactivations within parts of the DMN depend on the specific characteristics of the attention and WM components of the task. The DMN can thus be subdivided into a set of brain regions that deactivate indiscriminately in response to cognitive demand ("the core DMN") and a part whose deactivation depends on the specific task. 2009 Wiley-Liss, Inc.

  8. Autonomic nervous system correlates to readiness state and negative outcome during visual discrimination tasks.

    PubMed

    Salvia, Emilie; Guillot, Aymeric; Collet, Christian

    2012-05-01

    Decision-making in daily activities require different levels of mental load depending on both objective task requirements and self-perception of task constraints. Such factors elicit strain that could influence information processing, decision-making, and forthcoming performance. This experiment aimed at studying how task difficulty, errors and unfair feedback may impact strain. Participants were requested to compare two polygons and to decide as quickly and accurately as possible whether these were identical or different. Task difficulty depended upon the number of polygon sides (from 12 to 21 sides) and their degree of similarity (different by 1, 2 or 3 sides). Reaction time (RT) and response accuracy were the dependent variables as well as electrodermal activity (EDA) and Instantaneous Heart Rate (IHR). Physiological variables from the autonomic nervous system were expected to evolve as a function of strain. As expected, we found that RT increased along with task difficulty. Similarly, the amplitude of IHR responses was affected by task difficulty. We recorded bradycardia during the 5s pre-stimulation period associated with correct responses, while wrong responses were associated with tachycardia. Bradycardia was thus a predictive index of performance related to the readiness to act when the participants focused on external cues. Processing identical polygons elicited longer electrodermal responses than those for different polygons. Indeed, the comparison of two different polygons ended as early as the difference was found. When similar, the participants were still looking for a difference and the issue was uncertain until the performance was displayed. Unfair information, i.e. wrong feedback associated with a good response, as well as response errors elicited larger and longer electrodermal responses. Autonomic nervous system activity was thus task-specific, and correlated to both cognitive and emotional processes. Copyright © 2012 Elsevier B.V. All rights

  9. Visualization and Tracking of Parallel CFD Simulations

    NASA Technical Reports Server (NTRS)

    Vaziri, Arsi; Kremenetsky, Mark

    1995-01-01

    We describe a system for interactive visualization and tracking of a 3-D unsteady computational fluid dynamics (CFD) simulation on a parallel computer. CM/AVS, a distributed, parallel implementation of a visualization environment (AVS) runs on the CM-5 parallel supercomputer. A CFD solver is run as a CM/AVS module on the CM-5. Data communication between the solver, other parallel visualization modules, and a graphics workstation, which is running AVS, are handled by CM/AVS. Partitioning of the visualization task, between CM-5 and the workstation, can be done interactively in the visual programming environment provided by AVS. Flow solver parameters can also be altered by programmable interactive widgets. This system partially removes the requirement of storing large solution files at frequent time steps, a characteristic of the traditional 'simulate (yields) store (yields) visualize' post-processing approach.

  10. Visual Working Memory Enhances the Neural Response to Matching Visual Input.

    PubMed

    Gayet, Surya; Guggenmos, Matthias; Christophel, Thomas B; Haynes, John-Dylan; Paffen, Chris L E; Van der Stigchel, Stefan; Sterzer, Philipp

    2017-07-12

    Visual working memory (VWM) is used to maintain visual information available for subsequent goal-directed behavior. The content of VWM has been shown to affect the behavioral response to concurrent visual input, suggesting that visual representations originating from VWM and from sensory input draw upon a shared neural substrate (i.e., a sensory recruitment stance on VWM storage). Here, we hypothesized that visual information maintained in VWM would enhance the neural response to concurrent visual input that matches the content of VWM. To test this hypothesis, we measured fMRI BOLD responses to task-irrelevant stimuli acquired from 15 human participants (three males) performing a concurrent delayed match-to-sample task. In this task, observers were sequentially presented with two shape stimuli and a retro-cue indicating which of the two shapes should be memorized for subsequent recognition. During the retention interval, a task-irrelevant shape (the probe) was briefly presented in the peripheral visual field, which could either match or mismatch the shape category of the memorized stimulus. We show that this probe stimulus elicited a stronger BOLD response, and allowed for increased shape-classification performance, when it matched rather than mismatched the concurrently memorized content, despite identical visual stimulation. Our results demonstrate that VWM enhances the neural response to concurrent visual input in a content-specific way. This finding is consistent with the view that neural populations involved in sensory processing are recruited for VWM storage, and it provides a common explanation for a plethora of behavioral studies in which VWM-matching visual input elicits a stronger behavioral and perceptual response. SIGNIFICANCE STATEMENT Humans heavily rely on visual information to interact with their environment and frequently must memorize such information for later use. Visual working memory allows for maintaining such visual information in the mind

  11. Synthetic perspective optical flow: Influence on pilot control tasks

    NASA Technical Reports Server (NTRS)

    Bennett, C. Thomas; Johnson, Walter W.; Perrone, John A.; Phatak, Anil V.

    1989-01-01

    One approach used to better understand the impact of visual flow on control tasks has been to use synthetic perspective flow patterns. Such patterns are the result of apparent motion across a grid or random dot display. Unfortunately, the optical flow so generated is based on a subset of the flow information that exists in the real world. The danger is that the resulting optical motions may not generate the visual flow patterns useful for actual flight control. Researchers conducted a series of studies directed at understanding the characteristics of synthetic perspective flow that support various pilot tasks. In the first of these, they examined the control of altitude over various perspective grid textures (Johnson et al., 1987). Another set of studies was directed at studying the head tracking of targets moving in a 3-D coordinate system. These studies, parametric in nature, utilized both impoverished and complex virtual worlds represented by simple perspective grids at one extreme, and computer-generated terrain at the other. These studies are part of an applied visual research program directed at understanding the design principles required for the development of instruments displaying spatial orientation information. The experiments also highlight the need for modeling the impact of spatial displays on pilot control tasks.

  12. Testing visual short-term memory of pigeons (Columba livia) and a rhesus monkey (Macaca mulatta) with a location change detection task.

    PubMed

    Leising, Kenneth J; Elmore, L Caitlin; Rivera, Jacquelyne J; Magnotti, John F; Katz, Jeffrey S; Wright, Anthony A

    2013-09-01

    Change detection is commonly used to assess capacity (number of objects) of human visual short-term memory (VSTM). Comparisons with the performance of non-human animals completing similar tasks have shown similarities and differences in object-based VSTM, which is only one aspect ("what") of memory. Another important aspect of memory, which has received less attention, is spatial short-term memory for "where" an object is in space. In this article, we show for the first time that a monkey and pigeons can be accurately trained to identify location changes, much as humans do, in change detection tasks similar to those used to test object capacity of VSTM. The subject's task was to identify (touch/peck) an item that changed location across a brief delay. Both the monkey and pigeons showed transfer to delays longer than the training delay, to greater and smaller distance changes than in training, and to novel colors. These results are the first to demonstrate location-change detection in any non-human species and encourage comparative investigations into the nature of spatial and visual short-term memory.

  13. Performance monitoring and response conflict resolution associated with choice stepping reaction tasks.

    PubMed

    Watanabe, Tatsunori; Tsutou, Kotaro; Saito, Kotaro; Ishida, Kazuto; Tanabe, Shigeo; Nojima, Ippei

    2016-11-01

    Choice reaction requires response conflict resolution, and the resolution processes that occur during a choice stepping reaction task undertaken in a standing position, which requires maintenance of balance, may be different to those processes occurring during a choice reaction task performed in a seated position. The study purpose was to investigate the resolution processes during a choice stepping reaction task at the cortical level using electroencephalography and compare the results with a control task involving ankle dorsiflexion responses. Twelve young adults either stepped forward or dorsiflexed the ankle in response to a visual imperative stimulus presented on a computer screen. We used the Simon task and examined the error-related negativity (ERN) that follows an incorrect response and the correct-response negativity (CRN) that follows a correct response. Error was defined as an incorrect initial weight transfer for the stepping task and as an incorrect initial tibialis anterior activation for the control task. Results revealed that ERN and CRN amplitudes were similar in size for the stepping task, whereas the amplitude of ERN was larger than that of CRN for the control task. The ERN amplitude was also larger in the stepping task than the control task. These observations suggest that a choice stepping reaction task involves a strategy emphasizing post-response conflict and general performance monitoring of actual and required responses and also requires greater cognitive load than a choice dorsiflexion reaction. The response conflict resolution processes appear to be different for stepping tasks and reaction tasks performed in a seated position.

  14. Comparing visual search and eye movements in bilinguals and monolinguals

    PubMed Central

    Hout, Michael C.; Walenchok, Stephen C.; Azuma, Tamiko; Goldinger, Stephen D.

    2017-01-01

    Recent research has suggested that bilinguals show advantages over monolinguals in visual search tasks, although these findings have been derived from global behavioral measures of accuracy and response times. In the present study we sought to explore the bilingual advantage by using more sensitive eyetracking techniques across three visual search experiments. These spatially and temporally fine-grained measures allowed us to carefully investigate any nuanced attentional differences between bilinguals and monolinguals. Bilingual and monolingual participants completed visual search tasks that varied in difficulty. The experiments required participants to make careful discriminations in order to detect target Landolt Cs among similar distractors. In Experiment 1, participants performed both feature and conjunction search. In Experiments 2 and 3, participants performed visual search while making different types of speeded discriminations, after either locating the target or mentally updating a constantly changing target. The results across all experiments revealed that bilinguals and monolinguals were equally efficient at guiding attention and generating responses. These findings suggest that the bilingual advantage does not reflect a general benefit in attentional guidance, but could reflect more efficient guidance only under specific task demands. PMID:28508116

  15. The effect of spectral filters on visual search in stroke patients.

    PubMed

    Beasley, Ian G; Davies, Leon N

    2013-01-01

    Visual search impairment can occur following stroke. The utility of optimal spectral filters on visual search in stroke patients has not been considered to date. The present study measured the effect of optimal spectral filters on visual search response time and accuracy, using a task requiring serial processing. A stroke and control cohort undertook the task three times: (i) using an optimally selected spectral filter; (ii) the subjects were randomly assigned to two groups with group 1 using an optimal filter for two weeks, whereas group 2 used a grey filter for two weeks; (iii) the groups were crossed over with group 1 using a grey filter for a further two weeks and group 2 given an optimal filter, before undertaking the task for the final time. Initial use of an optimal spectral filter improved visual search response time but not error scores in the stroke cohort. Prolonged use of neither an optimal nor a grey filter improved response time or reduced error scores. In fact, response times increased with the filter, regardless of its type, for stroke and control subjects; this outcome may be due to contrast reduction or a reflection of task design, given that significant practice effects were noted.

  16. Opposite brain laterality in analogous auditory and visual tests.

    PubMed

    Oltedal, Leif; Hugdahl, Kenneth

    2017-11-01

    Laterality for language processing can be assessed by auditory and visual tasks. Typically, a right ear/right visual half-field (VHF) advantage is observed, reflecting left-hemispheric lateralization for language. Historically, auditory tasks have shown more consistent and reliable results when compared to VHF tasks. While few studies have compared analogous tasks applied to both sensory modalities for the same participants, one such study by Voyer and Boudreau [(2003). Cross-modal correlation of auditory and visual language laterality tasks: a serendipitous finding. Brain Cogn, 53(2), 393-397] found opposite laterality for visual and auditory language tasks. We adapted an experimental paradigm based on a dichotic listening and VHF approach, and applied the combined language paradigm in two separate experiments, including fMRI in the second experiment to measure brain activation in addition to behavioural data. The first experiment showed a right-ear advantage for the auditory task, but a left half-field advantage for the visual task. The second experiment, confirmed the findings, with opposite laterality effects for the visual and auditory tasks. In conclusion, we replicate the finding by Voyer and Boudreau (2003) and support their interpretation that these visual and auditory language tasks measure different cognitive processes.

  17. Visual scanning behavior and pilot workload

    NASA Technical Reports Server (NTRS)

    Harris, R. L., Sr.; Tole, J. R.; Stephens, A. T.; Ephrath, A. R.

    1981-01-01

    An experimental paradigm and a set of results which demonstrate a relationship between the level of performance on a skilled man-machine control task, the skill of the operator, the level of mental difficulty induced by an additional task imposed on the basic control task, and visual scanning performance. During a constant, simulated piloting task, visual scanning of instruments was found to vary as a function of the level of difficulty of a verbal mental loading task. The average dwell time of each fixation on the pilot's primary instrument increased as a function of the estimated skill level of the pilots, with novices being affected by the loading task much more than the experts. The results suggest that visual scanning of instruments in a controlled task may be an indicator of both workload and skill.

  18. Visual scanning behavior and pilot workload

    NASA Technical Reports Server (NTRS)

    Harris, R. L., Sr.; Tole, J. R.; Stephens, A. T.; Ephrath, A. R.

    1982-01-01

    This paper describes an experimental paradigm and a set of results which demonstrate a relationship between the level of performance on a skilled man-machine control task, the skill of the operator, the level of mental difficulty induced by an additional task imposed on the basic control task, and visual scanning performance. During a constant, simulated piloting task, visual scanning of instruments was found to vary with the difficulty of a verbal mental loading task. The average dwell time of each fixation on the pilot's primary instrument increased with the estimated skill level of the pilots, with novices being affected by the loading task much more than experts. The results suggest that visual scanning of instruments in a controlled task may be an indicator of both workload and skill.

  19. Feature-based memory-driven attentional capture: visual working memory content affects visual attention.

    PubMed

    Olivers, Christian N L; Meijer, Frank; Theeuwes, Jan

    2006-10-01

    In 7 experiments, the authors explored whether visual attention (the ability to select relevant visual information) and visual working memory (the ability to retain relevant visual information) share the same content representations. The presence of singleton distractors interfered more strongly with a visual search task when it was accompanied by an additional memory task. Singleton distractors interfered even more when they were identical or related to the object held in memory, but only when it was difficult to verbalize the memory content. Furthermore, this content-specific interaction occurred for features that were relevant to the memory task but not for irrelevant features of the same object or for once-remembered objects that could be forgotten. Finally, memory-related distractors attracted more eye movements but did not result in longer fixations. The results demonstrate memory-driven attentional capture on the basis of content-specific representations. Copyright 2006 APA.

  20. Insensitivity of visual short-term memory to irrelevant visual information.

    PubMed

    Andrade, Jackie; Kemps, Eva; Werniers, Yves; May, Jon; Szmalec, Arnaud

    2002-07-01

    Several authors have hypothesized that visuo-spatial working memory is functionally analogous to verbal working memory. Irrelevant background speech impairs verbal short-term memory. We investigated whether irrelevant visual information has an analogous effect on visual short-term memory, using a dynamic visual noise (DVN) technique known to disrupt visual imagery (Quinn & McConnell, 1996b). Experiment I replicated the effect of DVN on pegword imagery. Experiments 2 and 3 showed no effect of DVN on recall of static matrix patterns, despite a significant effect of a concurrent spatial tapping task. Experiment 4 showed no effect of DVN on encoding or maintenance of arrays of matrix patterns, despite testing memory by a recognition procedure to encourage visual rather than spatial processing. Serial position curves showed a one-item recency effect typical of visual short-term memory. Experiment 5 showed no effect of DVN on short-term recognition of Chinese characters, despite effects of visual similarity and a concurrent colour memory task that confirmed visual processing of the characters. We conclude that irrelevant visual noise does not impair visual short-term memory. Visual working memory may not be functionally analogous to verbal working memory, and different cognitive processes may underlie visual short-term memory and visual imagery.

  1. Bouncing Ball with a Uniformly Varying Velocity in a Metronome Synchronization Task.

    PubMed

    Huang, Yingyu; Gu, Li; Yang, Junkai; Wu, Xiang

    2017-09-21

    Sensorimotor synchronization (SMS), a fundamental human ability to coordinate movements with external rhythms, has long been thought to be modality specific. In the canonical metronome synchronization task that requires tapping a finger along with an isochronous sequence, a well-established finding is that synchronization is much more stable to an auditory sequence consisting of auditory tones than to a visual sequence consisting of visual flashes. However, recent studies have shown that periodically moving visual stimuli can substantially improve synchronization compared with visual flashes. In particular, synchronization of a visual bouncing ball that has a uniformly varying velocity was found to be not less stable than synchronization of auditory tones. Here, the current protocol describes the application of the bouncing ball with a uniformly varying velocity in a metronome synchronization task. The usage of the bouncing ball in sequences with different inter-onset intervals (IOI) is included. The representative results illustrate synchronization performance of the bouncing ball, as compared with the performances of auditory tones and visual flashes. Given its comparable synchronization performance to that of auditory tones, the bouncing ball is of particular importance for addressing the current research topic of whether modality-specific mechanisms underlay SMS.

  2. Visual attention shifting in autism spectrum disorders.

    PubMed

    Richard, Annette E; Lajiness-O'Neill, Renee

    2015-01-01

    Abnormal visual attention has been frequently observed in autism spectrum disorders (ASD). Abnormal shifting of visual attention is related to abnormal development of social cognition and has been identified as a key neuropsychological finding in ASD. Better characterizing attention shifting in ASD and its relationship with social functioning may help to identify new targets for intervention and improving social communication in these disorders. Thus, the current study investigated deficits in attention shifting in ASD as well as relationships between attention shifting and social communication in ASD and neurotypicals (NT). To investigate deficits in visual attention shifting in ASD, 20 ASD and 20 age- and gender-matched NT completed visual search (VS) and Navon tasks with attention-shifting demands as well as a set-shifting task. VS was a feature search task with targets defined in one of two dimensions; Navon required identification of a target letter presented at the global or local level. Psychomotor and processing speed were entered as covariates. Relationships between visual attention shifting, set shifting, and social functioning were also examined. ASD and NT showed comparable costs of shifting attention. However, psychomotor and processing speed were slower in ASD than in NT, and psychomotor and processing speed were positively correlated with attention-shifting costs on Navon and VS, respectively, for both groups. Attention shifting on VS and Navon were correlated among NT, while attention shifting on Navon was correlated with set shifting among ASD. Attention-shifting costs on Navon were positively correlated with restricted and repetitive behaviors among ASD. Relationships between attention shifting and psychomotor and processing speed, as well as relationships between measures of different aspects of visual attention shifting, suggest inefficient top-down influences over preattentive visual processing in ASD. Inefficient attention shifting may be

  3. Scientific Visualization of Radio Astronomy Data using Gesture Interaction

    NASA Astrophysics Data System (ADS)

    Mulumba, P.; Gain, J.; Marais, P.; Woudt, P.

    2015-09-01

    MeerKAT in South Africa (Meer = More Karoo Array Telescope) will require software to help visualize, interpret and interact with multidimensional data. While visualization of multi-dimensional data is a well explored topic, little work has been published on the design of intuitive interfaces to such systems. More specifically, the use of non-traditional interfaces (such as motion tracking and multi-touch) has not been widely investigated within the context of visualizing astronomy data. We hypothesize that a natural user interface would allow for easier data exploration which would in turn lead to certain kinds of visualizations (volumetric, multidimensional). To this end, we have developed a multi-platform scientific visualization system for FITS spectral data cubes using VTK (Visualization Toolkit) and a natural user interface to explore the interaction between a gesture input device and multidimensional data space. Our system supports visual transformations (translation, rotation and scaling) as well as sub-volume extraction and arbitrary slicing of 3D volumetric data. These tasks were implemented across three prototypes aimed at exploring different interaction strategies: standard (mouse/keyboard) interaction, volumetric gesture tracking (Leap Motion controller) and multi-touch interaction (multi-touch monitor). A Heuristic Evaluation revealed that the volumetric gesture tracking prototype shows great promise for interfacing with the depth component (z-axis) of 3D volumetric space across multiple transformations. However, this is limited by users needing to remember the required gestures. In comparison, the touch-based gesture navigation is typically more familiar to users as these gestures were engineered from standard multi-touch actions. Future work will address a complete usability test to evaluate and compare the different interaction modalities against the different visualization tasks.

  4. [Visual perception of Japanese characters and complicated figures: developmental changes of visual P300 event-related potentials].

    PubMed

    Sata, Yoshimi; Inagaki, Masumi; Shirane, Seiko; Kaga, Makiko

    2002-07-01

    In order to evaluate developmental change of visual perception, the P300 event-related potentials (ERPs) of visual oddball task were recorded in 34 healthy volunteers ranging from 7 to 37 years of age. The latency and amplitude of visual P300 in response to the Japanese ideogram stimuli (a pair of familiar Kanji characters or unfamiliar Kanji characters) and a pair of meaningless complicated figures were measured. Visual P300 was dominant at parietal area in almost all subjects. There was a significant difference of P300 latency among the three tasks. Reaction time to the both kind of Kanji tasks were significantly shorter than those to the complicated figure task. P300 latencies to the familiar Kanji, unfamiliar Kanji and figure stimuli decreased until 25.8, 26.9 and 29.4 years of age, respectively, and regression analysis revealed that a positive quadratic function could be fitted to the data. Around 9 years of age, the P300 latency/age slope was largest in the unfamiliar Kanji task. These findings suggest that visual P300 development depends on both the complexity of the tasks and specificity of the stimuli, which might reflect the variety in visual information processing.

  5. An overview of 3D software visualization.

    PubMed

    Teyseyre, Alfredo R; Campo, Marcelo R

    2009-01-01

    Software visualization studies techniques and methods for graphically representing different aspects of software. Its main goal is to enhance, simplify and clarify the mental representation a software engineer has of a computer system. During many years, visualization in 2D space has been actively studied, but in the last decade, researchers have begun to explore new 3D representations for visualizing software. In this article, we present an overview of current research in the area, describing several major aspects like: visual representations, interaction issues, evaluation methods and development tools. We also perform a survey of some representative tools to support different tasks, i.e., software maintenance and comprehension, requirements validation and algorithm animation for educational purposes, among others. Finally, we conclude identifying future research directions.

  6. The development of organized visual search

    PubMed Central

    Woods, Adam J.; Goksun, Tilbe; Chatterjee, Anjan; Zelonis, Sarah; Mehta, Anika; Smith, Sabrina E.

    2013-01-01

    Visual search plays an important role in guiding behavior. Children have more difficulty performing conjunction search tasks than adults. The present research evaluates whether developmental differences in children's ability to organize serial visual search (i.e., search organization skills) contribute to performance limitations in a typical conjunction search task. We evaluated 134 children between the ages of 2 and 17 on separate tasks measuring search for targets defined by a conjunction of features or by distinct features. Our results demonstrated that children organize their visual search better as they get older. As children's skills at organizing visual search improve they become more accurate at locating targets with conjunction of features amongst distractors, but not for targets with distinct features. Developmental limitations in children's abilities to organize their visual search of the environment are an important component of poor conjunction search in young children. In addition, our findings provide preliminary evidence that, like other visuospatial tasks, exposure to reading may influence children's spatial orientation to the visual environment when performing a visual search. PMID:23584560

  7. Degradation of learned skills: Effectiveness of practice methods on visual approach and landing skill retention

    NASA Technical Reports Server (NTRS)

    Sitterley, T. E.; Zaitzeff, L. P.; Berge, W. A.

    1972-01-01

    Flight control and procedural task skill degradation, and the effectiveness of retraining methods were evaluated for a simulated space vehicle approach and landing under instrument and visual flight conditions. Fifteen experienced pilots were trained and then tested after 4 months either without the benefits of practice or with static rehearsal, dynamic rehearsal or with dynamic warmup practice. Performance on both the flight control and procedure tasks degraded significantly after 4 months. The rehearsal methods effectively countered procedure task skill degradation, while dynamic rehearsal or a combination of static rehearsal and dynamic warmup practice was required for the flight control tasks. The quality of the retraining methods appeared to be primarily dependent on the efficiency of visual cue reinforcement.

  8. Dorso-Lateral Frontal Cortex of the Ferret Encodes Perceptual Difficulty during Visual Discrimination

    PubMed Central

    Zhou, Zhe Charles; Yu, Chunxiu; Sellers, Kristin K.; Fröhlich, Flavio

    2016-01-01

    Visual discrimination requires sensory processing followed by a perceptual decision. Despite a growing understanding of visual areas in this behavior, it is unclear what role top-down signals from prefrontal cortex play, in particular as a function of perceptual difficulty. To address this gap, we investigated how neurons in dorso-lateral frontal cortex (dl-FC) of freely-moving ferrets encode task variables in a two-alternative forced choice visual discrimination task with high- and low-contrast visual input. About two-thirds of all recorded neurons in dl-FC were modulated by at least one of the two task variables, task difficulty and target location. More neurons in dl-FC preferred the hard trials; no such preference bias was found for target location. In individual neurons, this preference for specific task types was limited to brief epochs. Finally, optogenetic stimulation confirmed the functional role of the activity in dl-FC before target touch; suppression of activity in pyramidal neurons with the ArchT silencing opsin resulted in a decrease in reaction time to touch the target but not to retrieve reward. In conclusion, dl-FC activity is differentially recruited for high perceptual difficulty in the freely-moving ferret and the resulting signal may provide top-down behavioral inhibition. PMID:27025995

  9. Dorso-Lateral Frontal Cortex of the Ferret Encodes Perceptual Difficulty during Visual Discrimination.

    PubMed

    Zhou, Zhe Charles; Yu, Chunxiu; Sellers, Kristin K; Fröhlich, Flavio

    2016-03-30

    Visual discrimination requires sensory processing followed by a perceptual decision. Despite a growing understanding of visual areas in this behavior, it is unclear what role top-down signals from prefrontal cortex play, in particular as a function of perceptual difficulty. To address this gap, we investigated how neurons in dorso-lateral frontal cortex (dl-FC) of freely-moving ferrets encode task variables in a two-alternative forced choice visual discrimination task with high- and low-contrast visual input. About two-thirds of all recorded neurons in dl-FC were modulated by at least one of the two task variables, task difficulty and target location. More neurons in dl-FC preferred the hard trials; no such preference bias was found for target location. In individual neurons, this preference for specific task types was limited to brief epochs. Finally, optogenetic stimulation confirmed the functional role of the activity in dl-FC before target touch; suppression of activity in pyramidal neurons with the ArchT silencing opsin resulted in a decrease in reaction time to touch the target but not to retrieve reward. In conclusion, dl-FC activity is differentially recruited for high perceptual difficulty in the freely-moving ferret and the resulting signal may provide top-down behavioral inhibition.

  10. Development of the Visual Word Form Area Requires Visual Experience: Evidence from Blind Braille Readers

    PubMed Central

    Kanjlia, Shipra; Merabet, Lotfi B.

    2017-01-01

    Learning to read causes the development of a letter- and word-selective region known as the visual word form area (VWFA) within the human ventral visual object stream. Why does a reading-selective region develop at this anatomical location? According to one hypothesis, the VWFA develops at the nexus of visual inputs from retinotopic cortices and linguistic input from the frontotemporal language network because reading involves extracting linguistic information from visual symbols. Surprisingly, the anatomical location of the VWFA is also active when blind individuals read Braille by touch, suggesting that vision is not required for the development of the VWFA. In this study, we tested the alternative prediction that VWFA development is in fact influenced by visual experience. We predicted that in the absence of vision, the “VWFA” is incorporated into the frontotemporal language network and participates in high-level language processing. Congenitally blind (n = 10, 9 female, 1 male) and sighted control (n = 15, 9 female, 6 male), male and female participants each took part in two functional magnetic resonance imaging experiments: (1) word reading (Braille for blind and print for sighted participants), and (2) listening to spoken sentences of different grammatical complexity (both groups). We find that in blind, but not sighted participants, the anatomical location of the VWFA responds both to written words and to the grammatical complexity of spoken sentences. This suggests that in blindness, this region takes on high-level linguistic functions, becoming less selective for reading. More generally, the current findings suggest that experience during development has a major effect on functional specialization in the human cortex. SIGNIFICANCE STATEMENT The visual word form area (VWFA) is a region in the human cortex that becomes specialized for the recognition of written letters and words. Why does this particular brain region become specialized for reading? We

  11. Visual affective classification by combining visual and text features.

    PubMed

    Liu, Ningning; Wang, Kai; Jin, Xin; Gao, Boyang; Dellandréa, Emmanuel; Chen, Liming

    2017-01-01

    Affective analysis of images in social networks has drawn much attention, and the texts surrounding images are proven to provide valuable semantic meanings about image content, which can hardly be represented by low-level visual features. In this paper, we propose a novel approach for visual affective classification (VAC) task. This approach combines visual representations along with novel text features through a fusion scheme based on Dempster-Shafer (D-S) Evidence Theory. Specifically, we not only investigate different types of visual features and fusion methods for VAC, but also propose textual features to effectively capture emotional semantics from the short text associated to images based on word similarity. Experiments are conducted on three public available databases: the International Affective Picture System (IAPS), the Artistic Photos and the MirFlickr Affect set. The results demonstrate that the proposed approach combining visual and textual features provides promising results for VAC task.

  12. Visual affective classification by combining visual and text features

    PubMed Central

    Liu, Ningning; Wang, Kai; Jin, Xin; Gao, Boyang; Dellandréa, Emmanuel; Chen, Liming

    2017-01-01

    Affective analysis of images in social networks has drawn much attention, and the texts surrounding images are proven to provide valuable semantic meanings about image content, which can hardly be represented by low-level visual features. In this paper, we propose a novel approach for visual affective classification (VAC) task. This approach combines visual representations along with novel text features through a fusion scheme based on Dempster-Shafer (D-S) Evidence Theory. Specifically, we not only investigate different types of visual features and fusion methods for VAC, but also propose textual features to effectively capture emotional semantics from the short text associated to images based on word similarity. Experiments are conducted on three public available databases: the International Affective Picture System (IAPS), the Artistic Photos and the MirFlickr Affect set. The results demonstrate that the proposed approach combining visual and textual features provides promising results for VAC task. PMID:28850566

  13. Do school classrooms meet the visual requirements of children and recommended vision standards?

    PubMed

    Negiloni, Kalpa; Ramani, Krishna Kumar; Sudhir, Rachapalle Reddi

    2017-01-01

    Visual demands of school children tend to vary with diverse classroom environments. The study aimed to evaluate the distance and near Visual Acuity (VA) demand in Indian school classrooms and their comparison with the recommended vision standards. The distance and near VA demands were assessed in 33 classrooms (grades 4 to 12) of eight schools. The VA threshold demand relied on the smallest size of distance and near visual task material and viewing distance. The logMAR equivalents of minimum VA demand at specific seating positions (desk) and among different grades were evaluated. The near threshold was converted into actual near VA demand by including the acuity reserve. The existing dimensions of chalkboard and classroom, gross area in a classroom per student and class size in all the measured classrooms were compared to the government recommended standards. In 33 classrooms assessed (35±10 students per room), the average distance and near logMAR VA threshold demand was 0.31±0.17 and 0.44±0.14 respectively. The mean distance VA demand (minimum) in front desk position was 0.56±0.18 logMAR. Increased distance threshold demand (logMAR range -0.06, 0.19) was noted in 7 classrooms (21%). The mean VA demand in grades 4 to 8 and grades 9 to 12 was 0.35±0.16 and 0.24±0.16 logMAR respectively and the difference was not statistically significant (p = 0.055). The distance from board to front desk was greater than the recommended standard of 2.2m in 27 classrooms (82%). The other measured parameters were noted to be different from the proposed standards in majority of the classrooms. The study suggests the inclusion of task demand assessment in school vision screening protocol to provide relevant guidance to school authorities. These findings can serve as evidence to accommodate children with mild to moderate visual impairment in the regular classrooms.

  14. Neck/shoulder discomfort due to visually demanding experimental near work is influenced by previous neck pain, task duration, astigmatism, internal eye discomfort and accommodation

    PubMed Central

    Forsman, Mikael; Richter, Hans O.

    2017-01-01

    Visually demanding near work can cause eye discomfort, and eye and neck/shoulder discomfort during, e.g., computer work are associated. To investigate direct effects of experimental near work on eye and neck/shoulder discomfort, 33 individuals with chronic neck pain and 33 healthy control subjects performed a visual task four times using four different trial lenses (referred to as four different viewing conditions), and they rated eye and neck/shoulder discomfort at baseline and after each task. Since symptoms of eye discomfort may differ depending on the underlying cause, two categories were used; internal eye discomfort, such as ache and strain, that may be caused by accommodative or vergence stress; and external eye discomfort, such as burning and smarting, that may be caused by dry-eye disorders. The cumulative performance time (reflected in the temporal order of the tasks), astigmatism, accommodation response and concurrent symptoms of internal eye discomfort all aggravated neck/shoulder discomfort, but there was no significant effect of external eye discomfort. There was also an interaction effect between the temporal order and internal eye discomfort: participants with a greater mean increase in internal eye discomfort also developed more neck/shoulder discomfort with time. Since moderate musculoskeletal symptoms are a risk factor for more severe symptoms, it is important to ensure a good visual environment in occupations involving visually demanding near work. PMID:28832612

  15. Neck/shoulder discomfort due to visually demanding experimental near work is influenced by previous neck pain, task duration, astigmatism, internal eye discomfort and accommodation.

    PubMed

    Zetterberg, Camilla; Forsman, Mikael; Richter, Hans O

    2017-01-01

    Visually demanding near work can cause eye discomfort, and eye and neck/shoulder discomfort during, e.g., computer work are associated. To investigate direct effects of experimental near work on eye and neck/shoulder discomfort, 33 individuals with chronic neck pain and 33 healthy control subjects performed a visual task four times using four different trial lenses (referred to as four different viewing conditions), and they rated eye and neck/shoulder discomfort at baseline and after each task. Since symptoms of eye discomfort may differ depending on the underlying cause, two categories were used; internal eye discomfort, such as ache and strain, that may be caused by accommodative or vergence stress; and external eye discomfort, such as burning and smarting, that may be caused by dry-eye disorders. The cumulative performance time (reflected in the temporal order of the tasks), astigmatism, accommodation response and concurrent symptoms of internal eye discomfort all aggravated neck/shoulder discomfort, but there was no significant effect of external eye discomfort. There was also an interaction effect between the temporal order and internal eye discomfort: participants with a greater mean increase in internal eye discomfort also developed more neck/shoulder discomfort with time. Since moderate musculoskeletal symptoms are a risk factor for more severe symptoms, it is important to ensure a good visual environment in occupations involving visually demanding near work.

  16. Pleasant music improves visual attention in patients with unilateral neglect after stroke.

    PubMed

    Chen, Mei-Ching; Tsai, Pei-Luen; Huang, Yu-Ting; Lin, Keh-Chung

    2013-01-01

    To investigate whether listening to pleasant music improves visual attention to and awareness of contralesional stimuli in patients with unilateral neglect after stroke. A within-subject design was used with 19 participants with unilateral neglect following a right hemisphere stroke. Participants were tested in three conditions (pleasant music, unpleasant music and white noise) within 1 week. All musical pieces were chosen by the participants. In each condition, participants were asked to complete three sub-tests of the Behavioural Inattention Test (the Star Cancellation Test, the Line Bisection Test and the Picture Scanning test) and a visual exploration task with everyday scenes. Eye movements in the visual exploration task were recorded simultaneously. Mood and arousal induced by different auditory stimuli were assessed using visual analogue scales, heart rate and galvanic skin response. Compared with unpleasant music and white noise, participants rated their moods as more positive and arousal as higher with pleasant music, but also showed significant improvement on all tasks and eye movement data, except the Line Bisection Test. The findings suggest that pleasant music can improve visual attention in patients with unilateral neglect after stroke. Additional research using randomized controlled trials is required to validate these findings.

  17. Developing Tests of Visual Dependency

    NASA Technical Reports Server (NTRS)

    Kindrat, Alexandra N.

    2011-01-01

    Astronauts develop neural adaptive responses to microgravity during space flight. Consequently these adaptive responses cause maladaptive disturbances in balance and gait function when astronauts return to Earth and are re-exposed to gravity. Current research in the Neuroscience Laboratories at NASA-JSC is focused on understanding how exposure to space flight produces post-flight disturbances in balance and gait control and developing training programs designed to facilitate the rapid recovery of functional mobility after space flight. In concert with these disturbances, astronauts also often report an increase in their visual dependency during space flight. To better understand this phenomenon, studies were conducted with specially designed training programs focusing on visual dependency with the aim to understand and enhance subjects ability to rapidly adapt to novel sensory situations. The Rod and Frame test (RFT) was used first to assess an individual s visual dependency, using a variety of testing techniques. Once assessed, subjects were asked to perform two novel tasks under transformation (both the Pegboard and Cube Construction tasks). Results indicate that head position cues and initial visual test conditions had no effect on an individual s visual dependency scores. Subjects were also able to adapt to the manual tasks after several trials. Individual visual dependency correlated with ability to adapt manual to a novel visual distortion only for the cube task. Subjects with higher visual dependency showed decreased ability to adapt to this task. Ultimately, it was revealed that the RFT may serve as an effective prediction tool to produce individualized adaptability training prescriptions that target the specific sensory profile of each crewmember.

  18. Impaired visual search in rats reveals cholinergic contributions to feature binding in visuospatial attention.

    PubMed

    Botly, Leigh C P; De Rosa, Eve

    2012-10-01

    The visual search task established the feature integration theory of attention in humans and measures visuospatial attentional contributions to feature binding. We recently demonstrated that the neuromodulator acetylcholine (ACh), from the nucleus basalis magnocellularis (NBM), supports the attentional processes required for feature binding using a rat digging-based task. Additional research has demonstrated cholinergic contributions from the NBM to visuospatial attention in rats. Here, we combined these lines of evidence and employed visual search in rats to examine whether cortical cholinergic input supports visuospatial attention specifically for feature binding. We trained 18 male Long-Evans rats to perform visual search using touch screen-equipped operant chambers. Sessions comprised Feature Search (no feature binding required) and Conjunctive Search (feature binding required) trials using multiple stimulus set sizes. Following acquisition of visual search, 8 rats received bilateral NBM lesions using 192 IgG-saporin to selectively reduce cholinergic afferentation of the neocortex, which we hypothesized would selectively disrupt the visuospatial attentional processes needed for efficient conjunctive visual search. As expected, relative to sham-lesioned rats, ACh-NBM-lesioned rats took significantly longer to locate the target stimulus on Conjunctive Search, but not Feature Search trials, thus demonstrating that cholinergic contributions to visuospatial attention are important for feature binding in rats.

  19. Study of space shuttle EVA/IVA support requirements. Volume 2: EVA/IVA tasks, guidelines, and constraints definition

    NASA Technical Reports Server (NTRS)

    Webbon, B. W.; Copeland, R. J.; Wood, P. W., Jr.; Cox, R. L.

    1973-01-01

    The guidelines for EVA and IVA tasks to be performed on the space shuttle are defined. In deriving tasks, guidelines, and constraints, payloads were first identified from the mission model. Payload requirements, together with man and manipulator capabilities, vehicle characteristics and operation, and safety considerations led to a definition of candidate tasks. Guidelines and constraints were also established from these considerations. Scenarios were established, and screening criteria, such as commonality of EVA and IVA activities, were applied to derive representative planned and unplanned tasks. The whole spectrum of credible contingency situations with a potential requirement for EVA/IVA was analyzed.

  20. Multi-modal information processing for visual workload relief

    NASA Technical Reports Server (NTRS)

    Burke, M. W.; Gilson, R. D.; Jagacinski, R. J.

    1980-01-01

    The simultaneous performance of two single-dimensional compensatory tracking tasks, one with the left hand and one with the right hand, is discussed. The tracking performed with the left hand was considered the primary task and was performed with a visual display or a quickened kinesthetic-tactual (KT) display. The right-handed tracking was considered the secondary task and was carried out only with a visual display. Although the two primary task displays had afforded equivalent performance in a critical tracking task performed alone, in the dual-task situation the quickened KT primary display resulted in superior secondary visual task performance. Comparisons of various combinations of primary and secondary visual displays in integrated or separated formats indicate that the superiority of the quickened KT display is not simply due to the elimination of visual scanning. Additional testing indicated that quickening per se also is not the immediate cause of the observed KT superiority.