Sample records for taste reactivity behaviors

  1. Smell differential reactivity, but not taste differential reactivity, is related to food neophobia in toddlers.

    PubMed

    Monnery-Patris, Sandrine; Wagner, Sandra; Rigal, Natalie; Schwartz, Camille; Chabanet, Claire; Issanchou, Sylvie; Nicklaus, Sophie

    2015-12-01

    Previous research has identified relationships between chemosensory reactivity and food neophobia in children. However, most studies have investigated this relationship using declarative data and without separately analysing smell and taste reactivity. Our first objective was to assess the relationships between smell and taste differential reactivity in toddlers (i.e. reactivity towards several stimuli), using experimental behavioural measurements. The second objective was to determine the relationships between smell (or taste) differential reactivity and food neophobia in toddlers, with the hypothesis that the more responsive a toddler was across food odours or tastes, the more neophobic s/he would be. An additional objective was to determine whether the potential relationships between smell (or taste) differential reactivity and food neophobia differ according to gender. One hundred and twenty-three toddlers aged from 20 to 22 months from the Opaline birth cohort (Observatory of Food Preferences in Infants and Children) were involved. A questionnaire was used to assess child's food neophobia. Toddlers' differential reactivity for smell (and for taste) was defined as the variability of behavioural responses over 8 odorants, and over the five basic tastes. Smell and taste differential reactivities were not correlated. Food neophobia scores were modestly but significantly positively correlated with smell differential reactivity but not with taste differential reactivity. When gender was considered, smell reactivity and neophobia were correlated only among boys. This indicates the need to study smell and taste reactivity separately to determine their associations with eating behaviours. This suggests that the rejection of novel foods in neophobic boys could be partly due to food odour. This finding is new and clearly requires further investigation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Delta receptor antagonism, ethanol taste reactivity, and ethanol consumption in outbred male rats.

    PubMed

    Higley, Amanda E; Kiefer, Stephen W

    2006-11-01

    Naltrexone, a nonspecific opioid antagonist, produces significant changes in ethanol responsivity in rats by rendering the taste of ethanol aversive as well as producing a decrease in voluntary ethanol consumption. The present study investigated the effect of naltrindole, a specific antagonist of delta opioid receptors, on ethanol taste reactivity and ethanol consumption in outbred rats. In the first experiment, rats received acute treatment of naltrexone, naltrindole, or saline followed by the measurement of ethanol consumption in a short-term access period. The second experiment involved the same treatments and investigated ethanol palatability (using the taste-reactivity test) as well as ethanol consumption. Results indicated that treatment with 3 mg/kg naltrexone significantly affected palatability (rendered ethanol more aversive, Experiment 2) and decreased voluntary ethanol consumption (Experiments 1 and 2). The effects of naltrindole were inconsistent. In Experiment 1, 8 mg/kg naltrindole significantly decreased voluntary ethanol consumption but this was not replicated in Experiment 2. The 8 mg/kg dose produced a significant increase in aversive responding (Experiment 2) but did not affect ingestive responding. Lower doses of naltrindole (2 and 4 mg/kg) were ineffective in altering rats' taste-reactivity response to and consumption of ethanol. While these data suggest that delta receptors are involved in rats' taste-reactivity response to ethanol and rats' ethanol consumption, it is likely that multiple opioid receptors mediate both behavioral responses.

  3. Control of Appetitive and Aversive Taste-Reactivity Responses by an Auditory Conditioned Stimulus in a Devaluation Task: A FOS and Behavioral Analysis

    ERIC Educational Resources Information Center

    Kerfoot, Erin C.; Agarwal, Isha; Lee, Hongjoo J.; Holland, Peter C.

    2007-01-01

    Through associative learning, cues for biologically significant reinforcers such as food may gain access to mental representations of those reinforcers. Here, we used devaluation procedures, behavioral assessment of hedonic taste-reactivity responses, and measurement of immediate-early gene (IEG) expression to show that a cue for food engages…

  4. Behavioral genetics and taste

    PubMed Central

    Boughter, John D; Bachmanov, Alexander A

    2007-01-01

    This review focuses on behavioral genetic studies of sweet, umami, bitter and salt taste responses in mammals. Studies involving mouse inbred strain comparisons and genetic analyses, and their impact on elucidation of taste receptors and transduction mechanisms are discussed. Finally, the effect of genetic variation in taste responsiveness on complex traits such as drug intake is considered. Recent advances in development of genomic resources make behavioral genetics a powerful approach for understanding mechanisms of taste. PMID:17903279

  5. Music Taste Groups and Problem Behavior.

    PubMed

    Mulder, Juul; Bogt, Tom Ter; Raaijmakers, Quinten; Vollebergh, Wilma

    2007-04-01

    Internalizing and externalizing problems differ by musical tastes. A high school-based sample of 4159 adolescents, representative of Dutch youth aged 12 to 16, reported on their personal and social characteristics, music preferences and social-psychological functioning, measured with the Youth Self-Report (YSR). Cluster analysis on their music preferences revealed six taste groups: Middle-of-the-road (MOR) listeners, Urban fans, Exclusive Rock fans, Rock-Pop fans, Elitists, and Omnivores. A seventh group of musically Low-Involved youth was added. Multivariate analyses revealed that when gender, age, parenting, school, and peer variables were controlled, Omnivores and fans within the Exclusive Rock groups showed relatively high scores on internalizing YSR measures, and social, thought and attention problems. Omnivores, Exclusive Rock, Rock-Pop and Urban fans reported more externalizing problem behavior. Belonging to the MOR group that highly appreciates the most popular, chart-based pop music appears to buffer problem behavior. Music taste group membership uniquely explains variance in both internalizing and externalizing problem behavior.

  6. Supertaster, super reactive: oral sensitivity for bitter taste modulates emotional approach and avoidance behavior in the affective startle paradigm.

    PubMed

    Herbert, Cornelia; Platte, Petra; Wiemer, Julian; Macht, Michael; Blumenthal, Terry D

    2014-08-01

    People differ in both their sensitivity for bitter taste and their tendency to respond to emotional stimuli with approach or avoidance. The present study investigated the relationship between these sensitivities in an affective picture paradigm with startle responding. Emotion-induced changes in arousal and attention (pupil modulation), priming of approach and avoidance behavior (startle reflex modulation), and subjective evaluations (ratings) were examined. Sensitivity for bitter taste was assessed with the 6-n-propylthiouracil (PROP)-sensitivity test, which discriminated individuals who were highly sensitive to PROP compared to NaCl (PROP-tasters) and those who were less sensitive or insensitive to the bitter taste of PROP. Neither pupil responses nor picture ratings differed between the two taster groups. The startle eye blink response, however, significantly differentiated PROP-tasters from PROP-insensitive subjects. Facilitated response priming to emotional stimuli emerged in PROP-tasters but not in PROP-insensitive subjects at shorter startle lead intervals (200-300ms between picture onset and startle stimulus onset). At longer lead intervals (3-4.5s between picture onset and startle stimulus onset) affective startle modulation did not differ between the two taster groups. This implies that in PROP-sensitive individuals action tendencies of approach or avoidance are primed immediately after emotional stimulus exposure. These results suggest a link between PROP taste perception and biologically relevant patterns of emotional responding. Direct perception-action links have been proposed to underlie motivational priming effects of the startle reflex, and the present results extend these to the sensory dimension of taste. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. The Differential Role of Smell and Taste For Eating Behavior.

    PubMed

    Boesveldt, Sanne; de Graaf, Kees

    2017-01-01

    Food choice and food intake are guided by both sensory and metabolic processes. The senses of taste and smell play a key role in the sensory effects on choice and intake. This article provides a comprehensive overview of, and will argue for, the differential role of smell and taste for eating behavior by focusing on appetite, choice, intake, and satiation. The sense of smell mainly plays a priming role in eating behavior. It has been demonstrated that (orthonasal) odor exposure induces appetite specifically for the cued food. However, the influence of odors on food choice and intake is less clear, and may also depend on awareness or intensity of the odors, or personality traits of the participants. Taste on the other hand, has a clear role as a (macro)nutrient sensing system, during consumption. Together with texture, taste is responsible for eating rate, and thus in determining the oral exposure duration of food in the mouth, thereby contributing to satiation. Results from these experimental studies should be taken to real-life situations, to assess longer-term effects on energy intake. With this knowledge, it will be possible to steer people's eating behavior, as well as food product development, toward a less obesogenic society.

  8. Postnatal development of bitter taste avoidance behavior in mice is associated with ACTIN-dependent localization of bitter taste receptors to the microvilli of taste cells.

    PubMed

    Yamashita, Atsuko; Kondo, Kaori; Kunishima, Yoshimi; Iseki, Sachiko; Kondo, Takashi; Ota, Masato S

    2018-01-22

    Bitter taste avoidance behavior (BAB) plays a fundamental role in the avoidance of toxic substances with a bitter taste. However, the molecular basis underlying the development of BAB is unknown. To study critical developmental events by which taste buds turn into functional organs with BAB, we investigated the early phase development of BAB in postnatal mice in response to bitter-tasting compounds, such as quinine and thiamine. Postnatal mice started to exhibit BAB for thiamine and quinine at postnatal day 5 (PD5) and PD7, respectively. Histological analyses of taste buds revealed the formation of microvilli in the taste pores starting at PD5 and the localization of type 2 taste receptor 119 (TAS2R119) at the microvilli at PD6. Treatment of the tongue epithelium with cytochalasin D (CytD), which disturbs ACTIN polymerization in the microvilli, resulted in the loss of TAS2R119 localization at the microvilli and the loss of BAB for quinine and thiamine. The release of ATP from the circumvallate papillae tissue due to taste stimuli was also declined following CytD treatment. These results suggest that the localization of TAS2R119 at the microvilli of taste pores is critical for the initiation of BAB. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. The tarsal taste of honey bees: behavioral and electrophysiological analyses

    PubMed Central

    de Brito Sanchez, Maria Gabriela; Lorenzo, Esther; Su, Songkun; Liu, Fanglin; Zhan, Yi; Giurfa, Martin

    2014-01-01

    Taste plays a crucial role in the life of honey bees as their survival depends on the collection and intake of nectar and pollen, and other natural products. Here we studied the tarsal taste of honey bees through a series of behavioral and electrophysiological analyses. We characterized responsiveness to various sweet, salty and bitter tastants delivered to gustatory sensilla of the fore tarsi. Behavioral experiments showed that stimulation of opposite fore tarsi with sucrose and bitter substances or water yielded different outcomes depending on the stimulation sequence. When sucrose was applied first, thereby eliciting proboscis extension, no bitter substance could induce proboscis retraction, thus suggesting that the primacy of sucrose stimulation induced a central excitatory state. When bitter substances or water were applied first, sucrose stimulation could still elicit proboscis extension but to a lower level, thus suggesting central inhibition based on contradictory gustatory input on opposite tarsi. Electrophysiological experiments showed that receptor cells in the gustatory sensilla of the tarsomeres are highly sensitive to saline solutions at low concentrations. No evidence for receptors responding specifically to sucrose or to bitter substances was found in these sensilla. Receptor cells in the gustatory sensilla of the claws are highly sensitive to sucrose. Although bees do not possess dedicated bitter-taste receptors in the tarsi, indirect bitter detection is possible because bitter tastes inhibit sucrose receptor cells of the claws when mixed with sucrose solution. By combining behavioral and electrophysiological approaches, these results provide the first integrative study on tarsal taste detection in the honey bee. PMID:24550801

  10. The tarsal taste of honey bees: behavioral and electrophysiological analyses.

    PubMed

    de Brito Sanchez, Maria Gabriela; Lorenzo, Esther; Su, Songkun; Liu, Fanglin; Zhan, Yi; Giurfa, Martin

    2014-01-01

    Taste plays a crucial role in the life of honey bees as their survival depends on the collection and intake of nectar and pollen, and other natural products. Here we studied the tarsal taste of honey bees through a series of behavioral and electrophysiological analyses. We characterized responsiveness to various sweet, salty and bitter tastants delivered to gustatory sensilla of the fore tarsi. Behavioral experiments showed that stimulation of opposite fore tarsi with sucrose and bitter substances or water yielded different outcomes depending on the stimulation sequence. When sucrose was applied first, thereby eliciting proboscis extension, no bitter substance could induce proboscis retraction, thus suggesting that the primacy of sucrose stimulation induced a central excitatory state. When bitter substances or water were applied first, sucrose stimulation could still elicit proboscis extension but to a lower level, thus suggesting central inhibition based on contradictory gustatory input on opposite tarsi. Electrophysiological experiments showed that receptor cells in the gustatory sensilla of the tarsomeres are highly sensitive to saline solutions at low concentrations. No evidence for receptors responding specifically to sucrose or to bitter substances was found in these sensilla. Receptor cells in the gustatory sensilla of the claws are highly sensitive to sucrose. Although bees do not possess dedicated bitter-taste receptors in the tarsi, indirect bitter detection is possible because bitter tastes inhibit sucrose receptor cells of the claws when mixed with sucrose solution. By combining behavioral and electrophysiological approaches, these results provide the first integrative study on tarsal taste detection in the honey bee.

  11. Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex.

    PubMed

    Ramírez-Lugo, Leticia; Peñas-Rincón, Ana; Ángeles-Durán, Sandybel; Sotres-Bayon, Francisco

    2016-10-12

    The ability to select an appropriate behavioral response guided by previous emotional experiences is critical for survival. Although much is known about brain mechanisms underlying emotional associations, little is known about how these associations guide behavior when several choices are available. To address this, we performed local pharmacological inactivations of several cortical regions before retrieval of an aversive memory in choice-based versus no-choice-based conditioned taste aversion (CTA) tasks in rats. Interestingly, we found that inactivation of the orbitofrontal cortex (OFC), but not the dorsal or ventral medial prefrontal cortices, blocked retrieval of choice CTA. However, OFC inactivation left retrieval of no-choice CTA intact, suggesting its role in guiding choice, but not in retrieval of CTA memory. Consistently, OFC activity increased in the choice condition compared with no-choice, as measured with c-Fos immunolabeling. Notably, OFC inactivation did not affect choice behavior when it was guided by innate taste aversion. Consistent with an anterior insular cortex (AIC) involvement in storing taste memories, we found that AIC inactivation impaired retrieval of both choice and no-choice CTA. Therefore, this study provides evidence for OFC's role in guiding choice behavior and shows that this is dissociable from AIC-dependent taste aversion memory. Together, our results suggest that OFC is required and recruited to guide choice selection between options of taste associations relayed from AIC. Survival and mental health depend on being able to choose stimuli not associated with danger. This is particularly important when danger is associated with stimuli that we ingest. Although much is known about the brain mechanisms that underlie associations with dangerous taste stimuli, very little is known about how these stored emotional associations guide behavior when it involves choice. By combining pharmacological and immunohistochemistry tools with taste

  12. Barium versus nonbarium stimuli: differences in taste intensity, chemesthesis, and swallowing behavior in healthy adult women.

    PubMed

    Nagy, Ahmed; Steele, Catriona M; Pelletier, Cathy A

    2014-06-01

    The authors examined the impact of barium on the perceived taste intensity of 7 different liquid tastant stimuli and the modulatory effect that these differences in perceived taste intensity have on swallowing behaviors. Participants were 80 healthy women, stratified by age group (<40; >60) and genetic taste status (supertasters; nontasters). Perceived taste intensity and chemesthetic properties (fizziness; burning-stinging) were rated for 7 tastant solutions (each prepared with and without barium) using the general Labeled Magnitude Scale. Tongue-palate pressures and submental surface electromyography (sEMG) were simultaneously measured during swallowing of these same randomized liquids. Path analysis differentiated the effects of stimulus, genetic taste status, age, barium condition, taste intensity, and an effortful saliva swallow strength covariate on swallowing. Barium stimuli were rated as having reduced taste intensity compared with nonbarium stimuli. Barium also dampened fizziness but did not influence burning-stinging sensation. The amplitudes of tongue-palate pressure or submental sEMG did not differ when swallowing barium versus nonbarium stimuli. Despite impacting taste intensity, the addition of barium to liquid stimuli does not appear to alter behavioral parameters of swallowing. Barium solutions can be considered to elicit behaviors that are similar to those used with nonbarium liquids outside the assessment situation.

  13. μ-Opioid modulation in the rostral solitary nucleus and reticular formation alters taste reactivity: evidence for a suppressive effect on consummatory behavior.

    PubMed

    Kinzeler, Nicole R; Travers, Susan P

    2011-09-01

    The neural control of feeding involves many neuromodulators, including the endogenous opioids that bind μ-opioid receptors (MORs). Injections of the MOR agonist, Damgo, into limbic and hypothalamic forebrain sites increase intake, particularly of palatable foods. Indeed, forebrain Damgo injections increase sucrose-elicited licking but reduce aversive responding (gaping) to quinine, suggesting that MOR activation may enhance taste palatability. A μ-opioid influence on taste reactivity has not been assessed in the brain stem. However, MORs are present in the first-order taste relay, the rostral nucleus of the solitary tract (rNST), and in the immediately subjacent reticular formation (RF), a region known to be essential for consummatory responses. Thus, to evaluate the consequences of rNST/dorsal RF Damgo in this region, we implanted rats with intraoral cannulas, electromyographic electrodes, and brain cannulas aimed at the ventral border of the rNST. Licking and gaping elicited with sucrose, water, and quinine were assessed before and after intramedullary Damgo and saline infusions. Damgo slowed the rate, increased the amplitude, and decreased the size of fluid-induced lick and gape bouts. In addition, the neutral stimulus water, which typically elicits licks, began to evoke gapes. Thus, the current results demonstrate that μ-opioid activation in the rNST/dorsal RF exerts complex effects on oromotor responding that contrast with forebrain effects and are more indicative of a suppressive, rather than a facilitatory effect on ingestion.

  14. Gastric bypass surgery alters behavioral and neural taste functions for sweet taste in obese rats.

    PubMed

    Hajnal, Andras; Kovacs, Peter; Ahmed, Tamer; Meirelles, Katia; Lynch, Christopher J; Cooney, Robert N

    2010-10-01

    Roux-en-Y gastric bypass surgery (GBS) is the most effective treatment for morbid obesity. GBS is a restrictive malabsorptive procedure, but many patients also report altered taste preferences. This study investigated the effects of GBS or a sham operation (SH) on body weight, glucose tolerance, and behavioral and neuronal taste functions in the obese Otsuka Long-Evans Tokushima Fatty (OLETF) rats lacking CCK-1 receptors and lean controls (LETO). OLETF-GBS rats lost body weight (-26%) and demonstrated improved glucose tolerance. They also expressed a reduction in 24-h two-bottle preference for sucrose (0.3 and 1.0 M) and decreased 10-s lick responses for sucrose (0.3 through 1.5 M) compared with OLETF-SH or LETO-GBS. A similar effect was noted for other sweet compounds but not for salty, sour, or bitter tastants. In lean rats, GBS did not alter responses to any stimulus tested. Extracellular recordings from 170 taste-responsive neurons of the pontine parabrachial nucleus revealed a rightward shift in concentration responses to oral sucrose in obese compared with lean rats (OLETF-SH vs. LETO-SH): overall increased response magnitudes (above 0.9 M), and maximum responses occurring at higher concentrations (+0.46 M). These effects were reversed by GBS, and neural responses in OLETF-GBS were statistically not different from those in any LETO groups. These findings confirm obesity-related alterations in taste functions and demonstrate the ability of GBS to alleviate these impairments. Furthermore, the beneficial effects of GBS appear to be independent of CCK-1 receptor signaling. An understanding of the underlying mechanisms for reduced preferences for sweet taste could help in developing less invasive treatments for obesity.

  15. Sweet and fat taste preference in obesity have different associations with personality and eating behavior.

    PubMed

    Elfhag, K; Erlanson-Albertsson, C

    2006-06-15

    The aim of this study was to test associations between self-reported attitudes of sweet and fat taste preferences and psychological constructs of eating behavior and personality in obesity. Sixty obese patients were included. The Three Factor Eating Questionnaire was used for the assessment of psychological constructs of eating behavior, and the Swedish universities Scales of Personality was used for measuring personality traits. A strong sweet taste preference was associated with more neurotic personality traits (P=.003), in particular lack of assertiveness (P=.001) and embitterment (P=.002). Strong fat taste preference was rather related to lower levels of the eating characteristic cognitive restraint (P=.017), implying less attempts to restrict and control food intake. Whereas strong sweet taste preference was linked to a personality style in obesity, strong fat preference could be more an aspect of eating behavior. A psychobiological stress model is discussed in relation to the results on sweet preference and hampered personality functioning.

  16. Increased preference for ethanol in the infant rat after prenatal ethanol exposure, expressed on intake and taste reactivity tests.

    PubMed

    Arias, Carlos; Chotro, M Gabriela

    2005-03-01

    Previous studies have shown that prenatal exposure during gestational days 17 to 20 to low or moderate doses of ethanol (1 or 2 g/kg) increases alcohol intake in infant rats. Taking into account that higher consumption does not necessarily suggest a preference for alcohol, in the present study, the hedonic nature of the prenatal experience was analyzed further with the use of a taste reactivity test. General activity, wall climbing, passive drips, paw licking, and mouthing in response to intraoral infusions of alcohol, water, and a sucrose-quinine solution (which resembles alcohol taste in rats) were tested in 161 preweanling 14-day-old rat pups that were prenatally exposed to 0, 1, or 2 g/kg of alcohol during gestational days 17 to 20. Consumption of those substances was measured during the taste reactivity test and on postnatal day 15. Pups that were prenatally exposed to both doses of ethanol displayed lower levels of general activity and wall climbing than controls in response to ethanol. Infant rats that were treated prenatally with both doses of ethanol showed higher intake of the drug and also more mouthing and paw licking in response to ethanol taste. Only pups that were exposed to the higher ethanol dose in utero generalized those responses to the sucrose-quinine compound. These results seem to indicate that for the infant rat, the palatability of ethanol is enhanced after exposure to the drug during the last days of gestation.

  17. Barium versus Nonbarium Stimuli: Differences in Taste Intensity, Chemesthesis, and Swallowing Behavior in Healthy Adult Women

    ERIC Educational Resources Information Center

    Nagy, Ahmed; Steele, Catriona M.; Pelletier, Cathy A.

    2014-01-01

    Purpose: The authors examined the impact of barium on the perceived taste intensity of 7 different liquid tastant stimuli and the modulatory effect that these differences in perceived taste intensity have on swallowing behaviors. Method: Participants were 80 healthy women, stratified by age group (<40; >60) and genetic taste status…

  18. The role of taste in alcohol preference, consumption and risk behavior.

    PubMed

    Thibodeau, Margaret; Pickering, Gary J

    2017-10-05

    Alcohol consumption is widespread, and high levels of use are associated with increased risk of developing an alcohol use disorder. Thus, understanding the factors that influence alcohol intake is important for disease prevention and management. Additionally, elucidating the factors that associate with alcohol preference and intake in non-clinical populations allows for product development and optimisation opportunities for the alcoholic beverage industry. The literature on how taste (orosensation) influences alcohol behavior is critically appraised in this review. Ethanol, the compound common to all alcoholic beverages, is generally aversive as it primarily elicits bitterness and irritation when ingested. Individuals who experience orosensations (both taste and chemesthetic) more intensely tend to report lower liking and consumption of alcoholic beverages. Additionally, a preference for sweetness is likely associated with a paternal history of alcohol use disorders. However, conflicting findings in the literature are common and may be partially attributable to differences in the methods used to access orosensory responsiveness and taste phenotypes. We conclude that while taste is a key driver in alcohol preference, intake and use disorder, no single taste-related factor can adequately predict alcohol behaviour. Areas for further research and suggestions for improved methodological and analytical approaches are highlighted.

  19. Genetic variations in taste perception modify alcohol drinking behavior in Koreans.

    PubMed

    Choi, Jeong-Hwa; Lee, Jeonghee; Yang, Sarah; Kim, Jeongseon

    2017-06-01

    The sensory components of alcohol affect the onset of individual's drinking. Therefore, variations in taste receptor genes may lead to differential sensitivity for alcohol taste, which may modify an individual's drinking behavior. This study examined the influence of genetic variants in the taste-sensing mechanism on alcohol drinking behavior and the choice of alcoholic beverages. A total of 1829 Koreans were analyzed for their alcohol drinking status (drinker/non-drinker), total alcohol consumption (g/day), heavy drinking (≥30 g/day) and type of regularly consumed alcoholic beverages. Twenty-one genetic variations in bitterness, sweetness, umami and fatty acid sensing were also genotyped. Our findings suggested that multiple genetic variants modified individuals' alcohol drinking behavior. Genetic variations in the T2R bitterness receptor family were associated with overall drinking behavior. Subjects with the TAS2R38 AVI haplotype were less likely to be a drinker [odds ratio (OR): 0.75, 95% confidence interval (CI): 0.59-0.95], and TAS2R5 rs2227264 predicted the level of total alcohol consumption (p = 0.01). In contrast, the T1R sweet and umami receptor family was associated with heavy drinking. TAS1R3 rs307355 CT carriers were more likely to be heavy drinkers (OR: 1.53, 95% CI: 1.06-2.19). The genetic variants were also associated with the choice of alcoholic beverages. The homo-recessive type of TAS2R4 rs2233998 (OR: 1.62, 95% CI: 1.11-2.37) and TAS2R5 rs2227264 (OR: 1.72, 95% CI: 1.14-2.58) were associated with consumption of rice wine. However, TAS1R2 rs35874116 was associated with wine drinking (OR: 0.65, 95% CI: 0.43-0.98) and the consumption level (p = 0.04). These findings suggest that multiple genetic variations in taste receptors influence drinking behavior in Koreans. Genetic variations are also responsible for the preference of particular alcoholic beverages, which may contribute to an individual's alcohol drinking behavior. Copyright © 2017

  20. Preschool children's taste acceptance of highly concentrated fluoride compounds: effects on nonverbal behavior.

    PubMed

    Kolb, Anne-Kathrin; Schmied, Kirsten; Fassheber, Peter; Heinrich-Weltzien, Roswitha

    2013-01-01

    The aim of this video-based study was to examine the taste acceptance of children between the ages of 2 and 5 years regarding highly concentrated fluoride preparations in kindergarten-based preventive programs. The fluoride preparation Duraphat was applied to 16 children, Elmex fluid to 15 children, and Fluoridin N5 to 14 children. The procedure was conducted according to a standardized protocol and videotaped Three raters evaluated the children's nonverbal behavior as a measure of taste acceptance on the Frankl Behavior Rating Scale. The interrater reliability (intraclass correlation coefficient; ICC) was .86. In an interview, children indicated the taste of the fluoride preparations on a three-point "smiley" rating scale. The interviewer used a hand puppet during the survey to establish confidence between the children and examiners. Children's nonverbal behavior was significantly more positive after Fluoridin N5 and Duraphat were applied compared to the application of Elmex fluid. The same trend was found during the smiley assessment. The response of children who displayed cooperative positive behavior before the application of fluoride preparations was significantly more positive than those who displayed uncooperative negative behavior. To achieve a high acceptance of the application of fluoride preparations among preschool children, flavorful preparations should be used.

  1. Participation of the peripheral taste system in aging-dependent changes in taste sensitivity.

    PubMed

    Narukawa, Masataka; Kurokawa, Azusa; Kohta, Rie; Misaka, Takumi

    2017-09-01

    Previous studies have shown that aging modifies taste sensitivity. However, the factors affecting the changes in taste sensitivity remain unclear. To investigate the cause of the age-related changes in taste sensitivity, we compared the peripheral taste detection systems in young and old mice. First, we examined whether taste sensitivity varied according to age using behavioral assays. We confirmed that the taste sensitivities to salty and bitter tastes decreased with aging. In other assays, the gustatory nerve responses to salty and sweet tastes increased significantly with aging, while those to bitter taste did not change. Thus, the profile of the gustatory nerve responses was inconsistent with the profile of the behavioral responses. Next, we evaluated the expressions of taste-related molecules in the taste buds. Although no apparent differences in the expressions of representative taste receptors were observed between the two age groups, the mRNA expressions of signaling effectors were slightly, but significantly, decreased in old mice. No significant differences in the turnover rates of taste bud cells were observed between the two age groups. Thus, we did not observe any large decreases in the expressions of taste-related molecules and turnover rates of taste bud cells with aging. Based on these findings, we conclude that changes in taste sensitivity with aging were not caused by aging-related degradation of peripheral taste organs. Meanwhile, the concentrations of several serum components that modify taste responses changed with age. Thus, taste signal-modifying factors such as serum components may have a contributing role in aging-related changes in taste sensitivity. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  2. Staff Food-Related Behaviors and Children's Tastes of Food Groups during Lunch at Child Care in Oklahoma.

    PubMed

    Anundson, Katherine; Sisson, Susan B; Anderson, Michael; Horm, Diane; Soto, Jill; Hoffman, Leah

    2017-10-04

    Young children should consume a variety of nutrient-dense foods to support growth, while limiting added fat and sugar. A majority of children between the ages of 3 and 5 years attend child care in the United States, which makes this environment and the child-care staff influential at meals. The aim was to determine the association between best-practice food-related behaviors and young children's tastes of fruit, vegetable, low-fat dairy, and high-fat/high-sugar foods at child care. This was a cross-sectional study. A community-based study with 201 children ages 3 to 5 years from 25 early care and education centers, including 11 tribally affiliated centers and two Head Start programs across Oklahoma. Data collection occurred from fall 2011 to spring 2014. Classroom observations used the Environmental Policy Assessment Observation tool to measure the staff behaviors and environment. Staff behavior was compared at three different levels: the composite score of staff nutrition behavior, each constituent staff behavior, and staff behaviors grouped into broader feeding behaviors. Tasted food was measured through the Dietary Observation in Child Care method. The children's meals were categorized into the following food groups: fruit, vegetable, low-fat dairy, fried vegetable, fried meat, high-fat meat, and high-fat/high-sugar food. Descriptive statistics were calculated for relevant variables. Relationships between the constituent staff behaviors and food groups that children tasted were compared using multilevel mixed-model analysis. The mean number of tasted fruit or vegetable items was higher and the mean number of tasted high-fat/high-sugar food items was lower when staff: 1) determined fullness before plate removal when less than half of food was eaten, 2) ate with the children, 3) and talked about healthy food. The utilization of the three staff behaviors and their association with higher mean tastes of nutrient-dense items and lower mean tastes of high

  3. Drosophila Bitter Taste(s)

    PubMed Central

    French, Alice; Ali Agha, Moutaz; Mitra, Aniruddha; Yanagawa, Aya; Sellier, Marie-Jeanne; Marion-Poll, Frédéric

    2015-01-01

    Most animals possess taste receptors neurons detecting potentially noxious compounds. In humans, the ligands which activate these neurons define a sensory space called “bitter”. By extension, this term has been used in animals and insects to define molecules which induce aversive responses. In this review, based on our observations carried out in Drosophila, we examine how bitter compounds are detected and if bitter-sensitive neurons respond only to molecules bitter to humans. Like most animals, flies detect bitter chemicals through a specific population of taste neurons, distinct from those responding to sugars or to other modalities. Activating bitter-sensitive taste neurons induces aversive reactions and inhibits feeding. Bitter molecules also contribute to the suppression of sugar-neuron responses and can lead to a complete inhibition of the responses to sugar at the periphery. Since some bitter molecules activate bitter-sensitive neurons and some inhibit sugar detection, bitter molecules are represented by two sensory spaces which are only partially congruent. In addition to molecules which impact feeding, we recently discovered that the activation of bitter-sensitive neurons also induces grooming. Bitter-sensitive neurons of the wings and of the legs can sense chemicals from the gram negative bacteria, Escherichia coli, thus adding another biological function to these receptors. Bitter-sensitive neurons of the proboscis also respond to the inhibitory pheromone, 7-tricosene. Activating these neurons by bitter molecules in the context of sexual encounter inhibits courting and sexual reproduction, while activating these neurons with 7-tricosene in a feeding context will inhibit feeding. The picture that emerges from these observations is that the taste system is composed of detectors which monitor different “categories” of ligands, which facilitate or inhibit behaviors depending on the context (feeding, sexual reproduction, hygienic behavior), thus

  4. β-catenin is required for taste bud cell renewal and behavioral taste perception in adult mice.

    PubMed

    Gaillard, Dany; Bowles, Spencer G; Salcedo, Ernesto; Xu, Mingang; Millar, Sarah E; Barlow, Linda A

    2017-08-01

    Taste stimuli are transduced by taste buds and transmitted to the brain via afferent gustatory fibers. Renewal of taste receptor cells from actively dividing progenitors is finely tuned to maintain taste sensitivity throughout life. We show that conditional β-catenin deletion in mouse taste progenitors leads to rapid depletion of progenitors and Shh+ precursors, which in turn causes taste bud loss, followed by loss of gustatory nerve fibers. In addition, our data suggest LEF1, TCF7 and Wnt3 are involved in a Wnt pathway regulatory feedback loop that controls taste cell renewal in the circumvallate papilla epithelium. Unexpectedly, taste bud decline is greater in the anterior tongue and palate than in the posterior tongue. Mutant mice with this regional pattern of taste bud loss were unable to discern sweet at any concentration, but could distinguish bitter stimuli, albeit with reduced sensitivity. Our findings are consistent with published reports wherein anterior taste buds have higher sweet sensitivity while posterior taste buds are better tuned to bitter, and suggest β-catenin plays a greater role in renewal of anterior versus posterior taste buds.

  5. β-catenin is required for taste bud cell renewal and behavioral taste perception in adult mice

    PubMed Central

    Gaillard, Dany; Xu, Mingang; Millar, Sarah E.

    2017-01-01

    Taste stimuli are transduced by taste buds and transmitted to the brain via afferent gustatory fibers. Renewal of taste receptor cells from actively dividing progenitors is finely tuned to maintain taste sensitivity throughout life. We show that conditional β-catenin deletion in mouse taste progenitors leads to rapid depletion of progenitors and Shh+ precursors, which in turn causes taste bud loss, followed by loss of gustatory nerve fibers. In addition, our data suggest LEF1, TCF7 and Wnt3 are involved in a Wnt pathway regulatory feedback loop that controls taste cell renewal in the circumvallate papilla epithelium. Unexpectedly, taste bud decline is greater in the anterior tongue and palate than in the posterior tongue. Mutant mice with this regional pattern of taste bud loss were unable to discern sweet at any concentration, but could distinguish bitter stimuli, albeit with reduced sensitivity. Our findings are consistent with published reports wherein anterior taste buds have higher sweet sensitivity while posterior taste buds are better tuned to bitter, and suggest β-catenin plays a greater role in renewal of anterior versus posterior taste buds. PMID:28846687

  6. Behavioral Evidence for More than One Taste Signaling Pathway for Sugars in Rats

    PubMed Central

    Schier, Lindsey A.

    2016-01-01

    By conventional behavioral measures, rodents respond to natural sugars, such as glucose and fructose, as though they elicit an identical perceptual taste quality. Beyond that, the metabolic and sensory effects of these two sugars are quite different. Considering the capacity to immediately respond to the more metabolically expedient sugar, glucose, would seem advantageous for energy intake, the present experiment assessed whether experience consuming these two sugars would modify taste-guided ingestive responses to their yet unknown distinguishing orosensory properties. One group (GvF) had randomized access to three concentrations of glucose and fructose (0.316, 0.56, 1.1 m) in separate 30-min single access training sessions, whereas control groups received equivalent exposure to the three glucose or fructose concentrations only, or remained sugar naive. Comparison of the microstructural licking patterns for the two sugars revealed that GvF responded more positively to glucose (increased total intake, increased burst size, decreased number of pauses), relative to fructose, across training. As training progressed, GvF rats began to respond more positively to glucose in the first minute of the session when intake is principally taste-driven. During post-training brief-access taste tests, GvF rats licked more for glucose than for fructose, whereas the other training groups did not respond differentially to the two sugars. Additional brief access testing showed that this did not generalize to Na-saccharin or galactose. Thus, in addition to eliciting a common taste signal, glucose and fructose produce distinct signals that are apparently rendered behaviorally relevant and hedonically distinct through experience. The taste pathway(s) underlying this remain to be identified. SIGNIFICANCE STATEMENT The T1R2+T1R3 heterodimer is thought by many to be the only taste receptor for sugars. Although most sugars have been conventionally shown to correspondingly produce a unitary

  7. Modulation of taste sensitivity by GLP-1 signaling in taste buds.

    PubMed

    Martin, Bronwen; Dotson, Cedrick D; Shin, Yu-Kyong; Ji, Sunggoan; Drucker, Daniel J; Maudsley, Stuart; Munger, Steven D

    2009-07-01

    Modulation of sensory function can help animals adjust to a changing external and internal environment. Even so, mechanisms for modulating taste sensitivity are poorly understood. Using immunohistochemical, biochemical, and behavioral approaches, we found that the peptide hormone glucagon-like peptide-1 (GLP-1) and its receptor (GLP-1R) are expressed in mammalian taste buds. Furthermore, we found that GLP-1 signaling plays an important role in the modulation of taste sensitivity: GLP-1R knockout mice exhibit a dramatic reduction in sweet taste sensitivity as well as an enhanced sensitivity to umami-tasting stimuli. Together, these findings suggest a novel paracrine mechanism for the hormonal modulation of taste function in mammals.

  8. Genetics of Taste Receptors

    PubMed Central

    Bachmanov, Alexander A.; Bosak, Natalia P.; Lin, Cailu; Matsumoto, Ichiro; Ohmoto, Makoto; Reed, Danielle R.; Nelson, Theodore M.

    2016-01-01

    Taste receptors function as one of the interfaces between internal and external milieus. Taste receptors for sweet and umami (T1R [taste receptor, type 1]), bitter (T2R [taste receptor, type 2]), and salty (ENaC [epithelial sodium channel]) have been discovered in the recent years, but transduction mechanisms of sour taste and ENaC-independent salt taste are still poorly understood. In addition to these five main taste qualities, the taste system detects such noncanonical “tastes” as water, fat, and complex carbohydrates, but their reception mechanisms require further research. Variations in taste receptor genes between and within vertebrate species contribute to individual and species differences in taste-related behaviors. These variations are shaped by evolutionary forces and reflect species adaptations to their chemical environments and feeding ecology. Principles of drug discovery can be applied to taste receptors as targets in order to develop novel taste compounds to satisfy demand in better artificial sweeteners, enhancers of sugar and sodium taste, and blockers of bitterness of food ingredients and oral medications. PMID:23886383

  9. Vismodegib, an antagonist of hedgehog signaling, directly alters taste molecular signaling in taste buds

    PubMed Central

    Yang, Hyekyung; Cong, Wei-na; Yoon, Jeong Seon; Egan, Josephine M

    2015-01-01

    Vismodegib, a highly selective inhibitor of hedgehog (Hh) pathway, is an approved treatment for basal-cell carcinoma. Patients on treatment with vismodegib often report profound alterations in taste sensation. The cellular mechanisms underlying the alterations have not been studied. Sonic Hh (Shh) signaling is required for cell growth and differentiation. In taste buds, Shh is exclusively expressed in type IV taste cells, which are undifferentiated basal cells and the precursors of the three types of taste sensing cells. Thus, we investigated if vismodegib has an inhibitory effect on taste cell turnover because of its known effects on Hh signaling. We gavaged C57BL/6J male mice daily with either vehicle or 30 mg/kg vismodegib for 15 weeks. The gustatory behavior and immunohistochemical profile of taste cells were examined. Vismodegib-treated mice showed decreased growth rate and behavioral responsivity to sweet and bitter stimuli, compared to vehicle-treated mice. We found that vismodegib-treated mice had significant reductions in taste bud size and numbers of taste cells per taste bud. Additionally, vismodegib treatment resulted in decreased numbers of Ki67- and Shh-expressing cells in taste buds. The numbers of phospholipase Cβ2- and α-gustducin-expressing cells, which contain biochemical machinery for sweet and bitter sensing, were reduced in vismodegib-treated mice. Furthermore, vismodegib treatment resulted in reduction in numbers of T1R3, glucagon-like peptide-1, and glucagon-expressing cells, which are known to modulate sweet taste sensitivity. These results suggest that inhibition of Shh signaling by vismodegib treatment directly results in alteration of taste due to local effects in taste buds. PMID:25354792

  10. Reactive Behavior Patterns Go Online.

    ERIC Educational Resources Information Center

    Dziuban, Charles D.; Moskal, Patsy D.; Dziuban, Emily K.

    2000-01-01

    Surveys of all online students at the University of Central Florida during summer 1997 and spring 1998 provided 381 useable survey instruments assessing learner reactive behavior patterns with the Long-Dziuban Reactive Behavior Protocol. Results indicated that students in online courses tended not to be the independent learners. (PGS)

  11. On the connection between nonmonotonic taste behavior and molecular conformation in solution: The case of rebaudioside-A.

    PubMed

    Chopade, Prashant D; Sarma, Bipul; Santiso, Erik E; Simpson, Jeffrey; Fry, John C; Yurttas, Nese; Biermann, Kari L; Chen, Jie; Trout, Bernhardt L; Myerson, Allan S

    2015-12-28

    The diterpene steviol glycoside, rebaudioside A, is a natural high potency non-caloric sweetener extracted from the leaves of Stevia rebaudiana. This compound shows a parabolic change in sweet taste intensity with temperature which contrasts with the general finding for other synthetic or natural sweeteners whose sweet taste increases with temperature. The nonmonotonic taste behavior was determined by sensory analysis using large taste panels. The conformational landscape of rebaudioside A was established at a range of temperatures by means of nuclear magnetic resonance and molecular dynamics simulation. The relationship between various conformations and the observed sweetness of rebaudioside A is described.

  12. On the connection between nonmonotonic taste behavior and molecular conformation in solution: The case of rebaudioside-A

    NASA Astrophysics Data System (ADS)

    Chopade, Prashant D.; Sarma, Bipul; Santiso, Erik E.; Simpson, Jeffrey; Fry, John C.; Yurttas, Nese; Biermann, Kari L.; Chen, Jie; Trout, Bernhardt L.; Myerson, Allan S.

    2015-12-01

    The diterpene steviol glycoside, rebaudioside A, is a natural high potency non-caloric sweetener extracted from the leaves of Stevia rebaudiana. This compound shows a parabolic change in sweet taste intensity with temperature which contrasts with the general finding for other synthetic or natural sweeteners whose sweet taste increases with temperature. The nonmonotonic taste behavior was determined by sensory analysis using large taste panels. The conformational landscape of rebaudioside A was established at a range of temperatures by means of nuclear magnetic resonance and molecular dynamics simulation. The relationship between various conformations and the observed sweetness of rebaudioside A is described.

  13. On the connection between nonmonotonic taste behavior and molecular conformation in solution: The case of rebaudioside-A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chopade, Prashant D.; Sarma, Bipul; Santiso, Erik E.

    The diterpene steviol glycoside, rebaudioside A, is a natural high potency non-caloric sweetener extracted from the leaves of Stevia rebaudiana. This compound shows a parabolic change in sweet taste intensity with temperature which contrasts with the general finding for other synthetic or natural sweeteners whose sweet taste increases with temperature. The nonmonotonic taste behavior was determined by sensory analysis using large taste panels. The conformational landscape of rebaudioside A was established at a range of temperatures by means of nuclear magnetic resonance and molecular dynamics simulation. The relationship between various conformations and the observed sweetness of rebaudioside A is described.

  14. Vismodegib, an antagonist of hedgehog signaling, directly alters taste molecular signaling in taste buds.

    PubMed

    Yang, Hyekyung; Cong, Wei-Na; Yoon, Jeong Seon; Egan, Josephine M

    2015-02-01

    Vismodegib, a highly selective inhibitor of hedgehog (Hh) pathway, is an approved treatment for basal-cell carcinoma. Patients on treatment with vismodegib often report profound alterations in taste sensation. The cellular mechanisms underlying the alterations have not been studied. Sonic Hh (Shh) signaling is required for cell growth and differentiation. In taste buds, Shh is exclusively expressed in type IV taste cells, which are undifferentiated basal cells and the precursors of the three types of taste sensing cells. Thus, we investigated if vismodegib has an inhibitory effect on taste cell turnover because of its known effects on Hh signaling. We gavaged C57BL/6J male mice daily with either vehicle or 30 mg/kg vismodegib for 15 weeks. The gustatory behavior and immunohistochemical profile of taste cells were examined. Vismodegib-treated mice showed decreased growth rate and behavioral responsivity to sweet and bitter stimuli, compared to vehicle-treated mice. We found that vismodegib-treated mice had significant reductions in taste bud size and numbers of taste cells per taste bud. Additionally, vismodegib treatment resulted in decreased numbers of Ki67- and Shh-expressing cells in taste buds. The numbers of phospholipase Cβ2- and α-gustducin-expressing cells, which contain biochemical machinery for sweet and bitter sensing, were reduced in vismodegib-treated mice. Furthermore, vismodegib treatment resulted in reduction in numbers of T1R3, glucagon-like peptide-1, and glucagon-expressing cells, which are known to modulate sweet taste sensitivity. These results suggest that inhibition of Shh signaling by vismodegib treatment directly results in alteration of taste due to local effects in taste buds. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  15. A high-protein diet enhances satiety without conditioned taste aversion in the rat.

    PubMed

    Bensaïd, Ahmed; Tomé, Daniel; L'Heureux-Bourdon, Diane; Even, Patrick; Gietzen, Dorothy; Morens, Céline; Gaudichon, Claire; Larue-Achagiotis, Christiane; Fromentin, Gilles

    2003-02-01

    In order to determine the respective roles of conditioned food aversion, satiety and palatability, we studied behavioral responses to a 50% total milk protein diet, compared with those to a normal protein diet containing 14% total milk protein. Different paradigms were employed, including meal pattern analysis, two-choice testing, flavor testing, a behavioral satiety sequence (BSS) and taste reactivity. Our experiments showed that only behavioral and food intake parameters were disturbed during the first day when an animal ate the high-protein (P50) diet, and that most parameters returned to baseline values as soon as the second day of P50. Rats adapted to P50 did not acquire a conditioned taste aversion (CTA) but exhibited satiety, and a normal BSS. The initial reduction in high-protein diet intake appeared to result from the lower palatability of the food combined with the satiety effect of the high-protein diet and the delay required for metabolic adaptation to the higher protein level.

  16. Taste of Fat: A Sixth Taste Modality?

    PubMed

    Besnard, Philippe; Passilly-Degrace, Patricia; Khan, Naim A

    2016-01-01

    An attraction for palatable foods rich in lipids is shared by rodents and humans. Over the last decade, the mechanisms responsible for this specific eating behavior have been actively studied, and compelling evidence implicates a taste component in the orosensory detection of dietary lipids [i.e., long-chain fatty acids (LCFA)], in addition to textural, olfactory, and postingestive cues. The interactions between LCFA and specific receptors in taste bud cells (TBC) elicit physiological changes that affect both food intake and digestive functions. After a short overview of the gustatory pathway, this review brings together the key findings consistent with the existence of a sixth taste modality devoted to the perception of lipids. The main steps leading to this new paradigm (i.e., chemoreception of LCFA in TBC, cell signaling cascade, transfer of lipid signals throughout the gustatory nervous pathway, and their physiological consequences) will be critically analyzed. The limitations to this concept will also be discussed in the light of our current knowledge of the sense of taste. Finally, we will analyze the recent literature on obesity-related dysfunctions in the orosensory detection of lipids ("fatty" taste?), in relation to the overconsumption of fat-rich foods and the associated health risks. Copyright © 2016 the American Physiological Society.

  17. Endocannabinoids selectively enhance sweet taste.

    PubMed

    Yoshida, Ryusuke; Ohkuri, Tadahiro; Jyotaki, Masafumi; Yasuo, Toshiaki; Horio, Nao; Yasumatsu, Keiko; Sanematsu, Keisuke; Shigemura, Noriatsu; Yamamoto, Tsuneyuki; Margolskee, Robert F; Ninomiya, Yuzo

    2010-01-12

    Endocannabinoids such as anandamide [N-arachidonoylethanolamine (AEA)] and 2-arachidonoyl glycerol (2-AG) are known orexigenic mediators that act via CB(1) receptors in hypothalamus and limbic forebrain to induce appetite and stimulate food intake. Circulating endocannabinoid levels inversely correlate with plasma levels of leptin, an anorexigenic mediator that reduces food intake by acting on hypothalamic receptors. Recently, taste has been found to be a peripheral target of leptin. Leptin selectively suppresses sweet taste responses in wild-type mice but not in leptin receptor-deficient db/db mice. Here, we show that endocannabinoids oppose the action of leptin to act as enhancers of sweet taste. We found that administration of AEA or 2-AG increases gustatory nerve responses to sweeteners in a concentration-dependent manner without affecting responses to salty, sour, bitter, and umami compounds. The cannabinoids increase behavioral responses to sweet-bitter mixtures and electrophysiological responses of taste receptor cells to sweet compounds. Mice genetically lacking CB(1) receptors show no enhancement by endocannnabinoids of sweet taste responses at cellular, nerve, or behavioral levels. In addition, the effects of endocannabinoids on sweet taste responses of taste cells are diminished by AM251, a CB(1) receptor antagonist, but not by AM630, a CB(2) receptor antagonist. Immunohistochemistry shows that CB(1) receptors are expressed in type II taste cells that also express the T1r3 sweet taste receptor component. Taken together, these observations suggest that the taste organ is a peripheral target of endocannabinoids. Reciprocal regulation of peripheral sweet taste reception by endocannabinoids and leptin may contribute to their opposing actions on food intake and play an important role in regulating energy homeostasis.

  18. The Bamboo-Eating Giant Panda (Ailuropoda melanoleuca) Has a Sweet Tooth: Behavioral and Molecular Responses to Compounds That Taste Sweet to Humans

    PubMed Central

    Jiang, Peihua; Li, Xia; Brand, Joseph G.; Margolskee, Robert F.; Reed, Danielle R.; Beauchamp, Gary K.

    2014-01-01

    A growing body of behavioral and genetic information indicates that taste perception and food sources are highly coordinated across many animal species. For example, sweet taste perception is thought to serve to detect and motivate consumption of simple sugars in plants that provide calories. Supporting this is the observation that most plant-eating mammals examined exhibit functional sweet perception, whereas many obligate carnivores have independently lost function of their sweet taste receptors and exhibit no avidity for simple sugars that humans describe as tasting sweet. As part of a larger effort to compare taste structure/function among species, we examined both the behavioral and the molecular nature of sweet taste in a plant-eating animal that does not consume plants with abundant simple sugars, the giant panda (Ailuropoda melanoleuca). We evaluated two competing hypotheses: as plant-eating mammals, they should have a well-developed sweet taste system; however, as animals that do not normally consume plants with simple sugars, they may have lost sweet taste function, as has occurred in strict carnivores. In behavioral tests, giant pandas avidly consumed most natural sugars and some but not all artificial sweeteners. Cell-based assays revealed similar patterns of sweet receptor responses toward many of the sweeteners. Using mixed pairs of human and giant panda sweet taste receptor units (hT1R2+gpT1R3 and gpT1R2+hT1R3) we identified regions of the sweet receptor that may account for behavioral differences in giant pandas versus humans toward various sugars and artificial sweeteners. Thus, despite the fact that the giant panda's main food, bamboo, is very low in simple sugars, the species has a marked preference for several compounds that taste sweet to humans. We consider possible explanations for retained sweet perception in this species, including the potential extra-oral functions of sweet taste receptors that may be required for animals that consume

  19. The bamboo-eating giant panda (Ailuropoda melanoleuca) has a sweet tooth: behavioral and molecular responses to compounds that taste sweet to humans.

    PubMed

    Jiang, Peihua; Josue-Almqvist, Jesusa; Jin, Xuelin; Li, Xia; Brand, Joseph G; Margolskee, Robert F; Reed, Danielle R; Beauchamp, Gary K

    2014-01-01

    A growing body of behavioral and genetic information indicates that taste perception and food sources are highly coordinated across many animal species. For example, sweet taste perception is thought to serve to detect and motivate consumption of simple sugars in plants that provide calories. Supporting this is the observation that most plant-eating mammals examined exhibit functional sweet perception, whereas many obligate carnivores have independently lost function of their sweet taste receptors and exhibit no avidity for simple sugars that humans describe as tasting sweet. As part of a larger effort to compare taste structure/function among species, we examined both the behavioral and the molecular nature of sweet taste in a plant-eating animal that does not consume plants with abundant simple sugars, the giant panda (Ailuropoda melanoleuca). We evaluated two competing hypotheses: as plant-eating mammals, they should have a well-developed sweet taste system; however, as animals that do not normally consume plants with simple sugars, they may have lost sweet taste function, as has occurred in strict carnivores. In behavioral tests, giant pandas avidly consumed most natural sugars and some but not all artificial sweeteners. Cell-based assays revealed similar patterns of sweet receptor responses toward many of the sweeteners. Using mixed pairs of human and giant panda sweet taste receptor units (hT1R2+gpT1R3 and gpT1R2+hT1R3) we identified regions of the sweet receptor that may account for behavioral differences in giant pandas versus humans toward various sugars and artificial sweeteners. Thus, despite the fact that the giant panda's main food, bamboo, is very low in simple sugars, the species has a marked preference for several compounds that taste sweet to humans. We consider possible explanations for retained sweet perception in this species, including the potential extra-oral functions of sweet taste receptors that may be required for animals that consume

  20. Sweet taste liking is associated with impulsive behaviors in humans

    PubMed Central

    Weafer, Jessica; Burkhardt, Anne; de Wit, Harriet

    2014-01-01

    Evidence from both human and animal studies suggests that sensitivity to rewarding stimuli is positively associated with impulsive behaviors, including both impulsive decision making and inhibitory control. The current study examined associations between the hedonic value of a sweet taste and two forms of impulsivity (impulsive choice and impulsive action) in healthy young adults (N = 100). Participants completed a sweet taste test in which they rated their liking of various sweetness concentrations. Subjects also completed measures of impulsive choice (delay discounting), and impulsive action (go/no-go task). Subjects who discounted more steeply (i.e., greater impulsive choice) liked the high sweetness concentration solutions more. By contrast, sweet liking was not related to impulsive action. These findings indicate that impulsive choice may be associated with heightened sensitivity to the hedonic value of a rewarding stimulus, and that these constructs might share common underlying neurobiological mechanisms. PMID:24987343

  1. Ethanol, saccharin, and quinine: early ontogeny of taste responsiveness and intake.

    PubMed

    Kozlov, Andrey P; Varlinskaya, Elena I; Spear, Norman E

    2008-02-01

    Rat pups demonstrate high levels of immediate acceptance of ethanol during the first 2 weeks of postnatal life. Given that the taste of ethanol is most likely perceived by infant rats as a combination of sweet and bitter, high intake of ethanol early in ontogeny may be associated with age-related enhanced responsiveness to the sweet component of ethanol taste, as well as with ontogenetic decreases in sensitivity to its bitter component. Therefore, the present study compared responsiveness to ethanol and solutions with bitter (quinine) and sweet (saccharin) taste in terms of intake and palatability across the first 2 weeks of postnatal life. Characteristic patterns of responsiveness to 10% (v/v) ethanol, 0.1% saccharin, 0.2% quinine, and water in terms of taste reactivity and fluid intake were assessed in rat pups tested on postnatal day (P) 4, 9, or 12 using a new technique of on-line monitoring of fluid flow through a two-channel intraoral cannula. Taste reactivity included analysis of ingestive and aversive responses following six intraoral infusions of the test fluids. This taste reactivity probe was followed by the intake test, in which animals were allowed to voluntarily ingest fluids from an intraoral cannula. Pups of all ages showed more appetitive responses to saccharin and ethanol than to water or quinine. No age-related differences were apparent in taste responsiveness to saccharin and ethanol. However, the age-related pattern of ethanol intake drastically differed from that of saccharin. Intake of saccharin increased from P4 to P9 and decreased substantially by P12, whereas intake of ethanol gradually increased from P4 to P12. Intake of ethanol was significantly lower than intake of saccharin on P9, whereas P12 pups took in more ethanol than saccharin. The findings of the present study indicate ontogenetic dissociations between taste reactivity to ethanol and saccharin and intake of these solutions, and suggest that high acceptance of ethanol early in

  2. Extraversion and taste sensitivity.

    PubMed

    Zverev, Yuriy; Mipando, Mwapatsa

    2008-03-01

    The rationale for investigating the gustatory reactivity as influenced by personality dimensions was suggested by some prior findings of an association between extraversion and acuity in other sensory systems. Detection thresholds for sweet, salty, and bitter qualities of taste were measured in 60 young healthy male and female volunteers using a two-alternative forced-choice technique. Personality of the responders was assessed using the Eysenck Personality Inventory. Multivariate analysis of variance failed to demonstrate a statistically significant interaction between an extraversion-introversion score, neuroticism score, smoking, gender and age. The only reliable negative association was found between the body mass index (BMI) and taste sensitivity (Roy's largest root = 0.05, F(7436.5) = 8.34, P = 0.003). Possible reasons for lack of differences between introverts and extraverts in the values of taste detection thresholds were discussed.

  3. Motor control in a Drosophila taste circuit

    PubMed Central

    Gordon, Michael D.; Scott, Kristin

    2009-01-01

    Tastes elicit innate behaviors critical for directing animals to ingest nutritious substances and reject toxic compounds, but the neural basis of these behaviors is not understood. Here, we use a neural silencing screen to identify neurons required for a simple Drosophila taste behavior, and characterize a neural population that controls a specific subprogram of this behavior. By silencing and activating subsets of the defined cell population, we identify the neurons involved in the taste behavior as a pair of motor neurons located in the subesophageal ganglion (SOG). The motor neurons are activated by sugar stimulation of gustatory neurons and inhibited by bitter compounds; however, experiments utilizing split-GFP detect no direct connections between the motor neurons and primary sensory neurons, indicating that further study will be necessary to elucidate the circuitry bridging these populations. Combined, these results provide a general strategy and a valuable starting point for future taste circuit analysis. PMID:19217375

  4. Functional diversification of taste cells in vertebrates

    PubMed Central

    Matsumoto, Ichiro; Ohmoto, Makoto; Abe, Keiko

    2012-01-01

    Tastes are senses resulting from the activation of taste cells distributed in oral epithelia. Sweet, umami, bitter, sour, and salty tastes are called the five “basic” tastes, but why five, and why these five? In this review, we dissect the peripheral gustatory system in vertebrates from molecular and cellular perspectives. Recent behavioral and molecular genetic studies have revealed the nature of functional taste receptors and cells and show that different taste qualities are accounted for by the activation of different subsets of taste cells. Based on this concept, the diversity of basic tastes should be defined by the diversity of taste cells in taste buds, which varies among species. PMID:23085625

  5. Effects of Sleeve Gastrectomy vs. Roux-en-Y Gastric Bypass on Eating Behavior and Sweet Taste Perception in Subjects with Obesity.

    PubMed

    Nance, Katie; Eagon, J Christopher; Klein, Samuel; Pepino, Marta Yanina

    2017-12-24

    The goal of this study was to test the hypothesis that weight loss induced by Roux-en-Y gastric bypass (RYGB) has greater effects on taste perception and eating behavior than comparable weight loss induced by sleeve gastrectomy (SG). We evaluated the following outcomes in 31 subjects both before and after ~20% weight loss induced by RYGB ( n = 23) or SG ( n = 8): (1) sweet, savory, and salty taste sensitivity; (2) the most preferred concentrations of sucrose and monosodium glutamate; (3) sweetness palatability, by using validated sensory testing techniques; and (4) eating behavior, by using the Food Craving Inventory and the Dutch Eating Behavior Questionnaire. We found that neither RYGB nor SG affected sweetness or saltiness sensitivity. However, weight loss induced by either RYGB or SG caused the same decrease in: (1) frequency of cravings for foods; (2) influence of emotions and external food cues on eating behavior; and (3) shifted sweetness palatability from pleasant to unpleasant when repetitively tasting sucrose (all p -values ≤ 0.01). Therefore, when matched on weight loss, SG and RYGB cause the same beneficial effects on key factors involved in the regulation of eating behavior and hedonic component of taste perception.

  6. Taste transductions in taste receptor cells: basic tastes and moreover.

    PubMed

    Iwata, Shusuke; Yoshida, Ryusuke; Ninomiya, Yuzo

    2014-01-01

    In the oral cavity, taste receptor cells dedicate to detecting chemical compounds in foodstuffs and transmitting their signals to gustatory nerve fibers. Heretofore, five taste qualities (sweet, umami, bitter, salty and sour) are generally accepted as basic tastes. Each of these may have a specific role in the detection of nutritious and poisonous substances; sweet for carbohydrate sources of calories, umami for protein and amino acid contents, bitter for harmful compounds, salty for minerals and sour for ripeness of fruits and spoiled foods. Recent studies have revealed molecular mechanisms for reception and transduction of these five basic tastes. Sweet, umami and bitter tastes are mediated by G-protein coupled receptors (GPCRs) and second-messenger signaling cascades. Salty and sour tastes are mediated by channel-type receptors. In addition to five basic tastes, taste receptor cells may have the ability to detect fat taste, which is elicited by fatty acids, and calcium taste, which is elicited by calcium. Taste compounds eliciting either fat taste or calcium taste may be detected by specific GPCRs expressed in taste receptor cells. This review will focus on transduction mechanisms and cellular characteristics responsible for each of basic tastes, fat taste and calcium taste.

  7. Short-term perception of and conditioned taste aversion to umami taste, and oral expression patterns of umami taste receptors in chickens.

    PubMed

    Yoshida, Yuta; Kawabata, Fuminori; Kawabata, Yuko; Nishimura, Shotaro; Tabata, Shoji

    2018-07-01

    Umami taste is one of the five basic tastes (sweet, umami, bitter, sour, and salty), and is elicited by l-glutamate salts and 5'-ribonucleotides. In chickens, the elucidation of the umami taste sense is an important step in the production of new feedstuff for the animal industry. Although previous studies found that chickens show a preference for umami compounds in long-term behavioral tests, there are limitations to our understanding of the role of the umami taste sense in chicken oral tissues because the long-term tests partly reflected post-ingestive effects. Here, we performed a short-term test and observed agonists of chicken umami taste receptor, l-alanine and l-serine, affected the solution intakes of chickens. Using this method, we found that chickens could respond to umami solutions containing monosodium l-glutamate (MSG) + inosine 5'-monophosphate (IMP) within 5 min. We also demonstrated that chickens were successfully conditioned to avoid umami solution by the conditioned taste aversion test. It is noted that conditioning to umami solution was generalized to salty and sweet solutions. Thus, chickens may perceive umami taste as a salty- and sweet-like taste. In addition, we found that umami taste receptor candidates were differentially expressed in different regions of the chicken oral tissues. Taken together, the present results strongly suggest that chickens have a sense of umami taste and have umami taste receptors in their oral tissue. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Mental Reactivation and Pleasantness Judgment of Experience Related to Vision, Hearing, Skin Sensations, Taste and Olfaction

    PubMed Central

    2016-01-01

    Language acquisition is based on our knowledge about the world and forms through multiple sensory-motor interactions with the environment. We link the properties of individual experience formed at different stages of ontogeny with the phased development of sensory modalities and with the acquisition of words describing the appropriate forms of sensitivity. To test whether early-formed experience related to skin sensations, olfaction and taste differs from later-formed experience related to vision and hearing, we asked Russian-speaking participants to categorize or to assess the pleasantness of experience mentally reactivated by sense-related adjectives found in common dictionaries. It was found that categorizing adjectives in relation to vision, hearing and skin sensations took longer than categorizing adjectives in relation to olfaction and taste. In addition, experience described by adjectives predominantly related to vision, hearing and skin sensations took more time for the pleasantness judgment and generated less intense emotions than that described by adjectives predominantly related to olfaction and taste. Interestingly the dynamics of skin resistance corresponded to the intensity and pleasantness of reported emotions. We also found that sense-related experience described by early-acquired adjectives took less time for the pleasantness judgment and generated more intense and more positive emotions than that described by later-acquired adjectives. Correlations were found between the time of the pleasantness judgment of experience, intensity and pleasantness of reported emotions, age of acquisition, frequency, imageability and length of sense-related adjectives. All in all these findings support the hypothesis that early-formed experience is less differentiated than later-formed experience. PMID:27400090

  9. Impacts of in utero and early infant taste experiences on later taste acceptance: a systematic review.

    PubMed

    Nehring, Ina; Kostka, Tanja; von Kries, Rüdiger; Rehfuess, Eva A

    2015-06-01

    Dietary behavior exerts a critical influence on health and is the outcome of a broad range of interacting factors, including food and taste acceptance. These may be programmed in utero and during early infancy. We examined the hypothesis that fetuses and infants exposed to sweet, salty, sour, bitter, umami, or specific tastes show greater acceptance of that same taste later in life. We conducted a systematic review of the literature, using comprehensive searches and following established procedures for screening, data extraction, and quality appraisal. We used harvest plots to synthesize the evidence graphically. Twenty studies comprising 38 subgroups that differed by taste, age, medium, and duration of exposure were included. Exposure to bitter and specific tastes increased the acceptance of these tastes. Studies on sweet and salty tastes showed equivocal results. Studies on sour tastes were sparse. Our systematic review clearly shows programming of the acceptance of bitter and specific tastes. For other tastes the results were either equivocal or confined to a few number of studies that precluded us from drawing conclusions. Further research should examine the association of salty and sour taste exposures on later preferences of these tastes. Long-term studies and randomized clinical trials on each type of taste are needed. © 2015 American Society for Nutrition.

  10. Behavioral analysis of Drosophila transformants expressing human taste receptor genes in the gustatory receptor neurons.

    PubMed

    Adachi, Ryota; Sasaki, Yuko; Morita, Hiromi; Komai, Michio; Shirakawa, Hitoshi; Goto, Tomoko; Furuyama, Akira; Isono, Kunio

    2012-06-01

    Transgenic Drosophila expressing human T2R4 and T2R38 bitter-taste receptors or PKD2L1 sour-taste receptor in the fly gustatory receptor neurons and other tissues were prepared using conventional Gal4/UAS binary system. Molecular analysis showed that the transgene mRNAs are expressed according to the tissue specificity of the Gal4 drivers. Transformants expressing the transgene taste receptors in the fly taste neurons were then studied by a behavioral assay to analyze whether transgene chemoreceptors are functional and coupled to the cell response. Since wild-type flies show strong aversion against the T2R ligands as in mammals, the authors analyzed the transformants where the transgenes are expressed in the fly sugar receptor neurons so that they promote feeding ligand-dependently if they are functional and activate the neurons. Although the feeding preference varied considerably among different strains and individuals, statistical analysis using large numbers of transformants indicated that transformants expressing T2R4 showed a small but significant increase in the preference for denatonium and quinine, the T2R4 ligands, as compared to the control flies, whereas transformants expressing T2R38 did not. Similarly, transformants expressing T2R38 and PKD2L1 also showed a similar preference increase for T2R38-specific ligand phenylthiocarbamide (PTC) and a sour-taste ligand, citric acid, respectively. Taken together, the transformants expressing mammalian taste receptors showed a small but significant increase in the feeding preference that is taste receptor and also ligand dependent. Although future improvements are required to attain performance comparable to the endogenous robust response, Drosophila taste neurons may serve as a potential in vivo heterologous expression system for analyzing chemoreceptor function.

  11. Facilitation of Taste Memory Acquisition by Experiencing Previous Novel Taste Is Protein-Synthesis Dependent

    ERIC Educational Resources Information Center

    Merhav, Maayan; Rosenblum, Kobi

    2008-01-01

    Very little is known about the biological and molecular mechanisms that determine the effect of previous experience on implicit learning tasks. In the present study, we first defined weak and strong taste inputs according to measurements in the behavioral paradigm known as latent inhibition of conditioned taste aversion. We then demonstrated that…

  12. Taste and pheromone perception in the fruit fly Drosophila melanogaster.

    PubMed

    Ebbs, Michelle L; Amrein, Hubert

    2007-08-01

    Taste is an essential sense for detection of nutrient-rich food and avoidance of toxic substances. The Drosophila melanogaster gustatory system provides an excellent model to study taste perception and taste-elicited behaviors. "The fly" is unique in the animal kingdom with regard to available experimental tools, which include a wide repertoire of molecular-genetic analyses (i.e., efficient production of transgenics and gene knockouts), elegant behavioral assays, and the possibility to conduct electrophysiological investigations. In addition, fruit flies, like humans, recognize sugars as a food source, but avoid bitter tasting substances that are often toxic to insects and mammals alike. This paper will present recent research progress in the field of taste and contact pheromone perception in the fruit fly. First, we shall describe the anatomical properties of the Drosophila gustatory system and survey the family of taste receptors to provide an appropriate background. We shall then review taste and pheromone perception mainly from a molecular genetic perspective that includes behavioral, electrophysiological and imaging analyses of wild type flies and flies with genetically manipulated taste cells. Finally, we shall provide an outlook of taste research in this elegant model system for the next few years.

  13. Type III Cells in Anterior Taste Fields Are More Immunohistochemically Diverse Than Those of Posterior Taste Fields in Mice.

    PubMed

    Wilson, Courtney E; Finger, Thomas E; Kinnamon, Sue C

    2017-10-31

    Activation of Type III cells in mammalian taste buds is implicated in the transduction of acids (sour) and salty stimuli. Several lines of evidence suggest that function of Type III cells in the anterior taste fields may differ from that of Type III cells in posterior taste fields. Underlying anatomy to support this observation is, however, scant. Most existing immunohistochemical data characterizing this cell type focus on circumvallate taste buds in the posterior tongue. Equivalent data from anterior taste fields-fungiform papillae and soft palate-are lacking. Here, we compare Type III cells in four taste fields: fungiform, soft palate, circumvallate, and foliate in terms of reactivity to four canonical markers of Type III cells: polycystic kidney disease 2-like 1 (PKD2L1), synaptosomal associated protein 25 (SNAP25), serotonin (5-HT), and glutamate decarboxylase 67 (GAD67). Our findings indicate that while PKD2L1, 5-HT, and SNAP25 are highly coincident in posterior taste fields, they diverge in anterior taste fields. In particular, a subset of taste cells expresses PKD2L1 without the synaptic markers, and a subset of SNAP25 cells lacks expression of PKD2L1. In posterior taste fields, GAD67-positive cells are a subset of PKD2L1 expressing taste cells, but anterior taste fields also contain a significant population of GAD67-only expressing cells. These differences in expression patterns may underlie the observed functional differences between anterior and posterior taste fields. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. No haste, more taste: An EMA study of the effects of stress, negative and positive emotions on eating behavior.

    PubMed

    Reichenberger, Julia; Kuppens, Peter; Liedlgruber, Michael; Wilhelm, Frank H; Tiefengrabner, Martin; Ginzinger, Simon; Blechert, Jens

    2018-01-01

    Stress and emotions alter eating behavior in several ways: While experiencing negative or positive emotions typically leads to increased food intake, stress may result in either over- or undereating. Several participant characteristics, like gender, BMI and restrained, emotional, or external eating styles seem to influence these relationships. Thus far, most research relied on experimental laboratory studies, thereby reducing the complexity of real-life eating episodes. The aim of the present study was to delineate the effects of stress, negative and positive emotions on two key facets of eating behavior, namely taste- and hunger-based eating, in daily life using ecological momentary assessment (EMA). Furthermore, the already mentioned individual differences as well as time pressure during eating, an important but unstudied construct in EMA studies, were examined. Fifty-nine participants completed 10days of signal-contingent sampling and data were analyzed using multilevel modeling. Results revealed that higher stress led to decreased taste-eating which is in line with physiological stress-models. Time pressure during eating resulted in less taste- and more hunger-eating. In line with previous research, stronger positive emotions went along with increased taste-eating. Emotional eating style moderated the relationship between negative emotions and taste-eating as well as hunger-eating. BMI moderated the relationship between negative as well as positive emotions and hunger-eating. These findings emphasize the importance of individual differences for understanding eating behavior in daily life. Experienced time pressure may be an important aspect for future EMA eating studies. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Major taste loss in carnivorous mammals

    PubMed Central

    Jiang, Peihua; Josue, Jesusa; Li, Xia; Glaser, Dieter; Li, Weihua; Brand, Joseph G.; Margolskee, Robert F.; Reed, Danielle R.; Beauchamp, Gary K.

    2012-01-01

    Mammalian sweet taste is primarily mediated by the type 1 taste receptor Tas1r2/Tas1r3, whereas Tas1r1/Tas1r3 act as the principal umami taste receptor. Bitter taste is mediated by a different group of G protein-coupled receptors, the Tas2rs, numbering 3 to ∼66, depending on the species. We showed previously that the behavioral indifference of cats toward sweet-tasting compounds can be explained by the pseudogenization of the Tas1r2 gene, which encodes the Tas1r2 receptor. To examine the generality of this finding, we sequenced the entire coding region of Tas1r2 from 12 species in the order Carnivora. Seven of these nonfeline species, all of which are exclusive meat eaters, also have independently pseudogenized Tas1r2 caused by ORF-disrupting mutations. Fittingly, the purifying selection pressure is markedly relaxed in these species with a pseudogenized Tas1r2. In behavioral tests, the Asian otter (defective Tas1r2) showed no preference for sweet compounds, but the spectacled bear (intact Tas1r2) did. In addition to the inactivation of Tas1r2, we found that sea lion Tas1r1 and Tas1r3 are also pseudogenized, consistent with their unique feeding behavior, which entails swallowing food whole without chewing. The extensive loss of Tas1r receptor function is not restricted to the sea lion: the bottlenose dolphin, which evolved independently from the sea lion but displays similar feeding behavior, also has all three Tas1rs inactivated, and may also lack functional bitter receptors. These data provide strong support for the view that loss of taste receptor function in mammals is widespread and directly related to feeding specializations. PMID:22411809

  16. Taste responses to monosodium glutamate after alcohol exposure.

    PubMed

    Wrobel, Elzbieta; Skrok-Wolska, Dominika; Ziolkowski, Marcin; Korkosz, Agnieszka; Habrat, Boguslaw; Woronowicz, Bohdan; Kukwa, Andrzej; Kostowski, Wojciech; Bienkowski, Przemyslaw; Scinska, Anna

    2005-01-01

    The aim of the present study was to evaluate the effects of acute and chronic exposure to alcohol on taste responses to a prototypic umami substance, monosodium glutamate (MSG). The rated intensity and pleasantness of MSG taste (0.03-10.0%) was compared in chronic male alcoholics (n = 35) and control subjects (n = 25). In a separate experiment, the effects of acute exposure of the oral mucosa to ethanol rinse (0.5-4.0%) on MSG taste (0.3-3.0%) were studied in 10 social drinkers. The alcoholic and control group did not differ in terms of the rated intensity and pleasantness of MSG taste. Electrogustometric thresholds were significantly (P < 0.01) higher, i.e. worse, in the alcohol-dependent subjects. The difference remained significant after controlling for between-group differences in cigarette smoking and coffee drinking. Rinsing with ethanol did not alter either intensity or pleasantness of MSG taste in social drinkers. The present results suggest that: (i) neither acute nor chronic alcohol exposure modifies taste responses to MSG; (ii) alcohol dependence may be associated with deficit in threshold taste reactivity, as assessed by electrogustometry.

  17. Influence of the perceived taste intensity of chemesthetic stimuli on swallowing parameters given age and genetic taste differences in healthy adult women.

    PubMed

    Pelletier, Cathy A; Steele, Catriona M

    2014-02-01

    This study examined whether the perceived taste intensity of liquids with chemesthetic properties influenced lingua-palatal pressures and submental surface electromyography (sEMG) in swallowing, compared with water. Swallowing was studied in 80 healthy women, stratified by age group and genetic taste status. General Labeled Magnitude Scale ratings of taste intensity were collected for deionized water; carbonated water; 2.7% w/v citric acid; and diluted ethanol. These stimuli were swallowed, with measurement of tongue-palate pressures and submental sEMG. Path analysis differentiated stimulus, genetic taste status, age, and perceived taste intensity effects on swallowing. Signal amplitude during effortful saliva swallowing served as a covariate representing participant strength. Significant differences (p < .05) in taste intensity were seen across liquids: citric acid > ethanol > carbonated water > water. Supertasters perceived greater taste intensity than did nontasters. Lingua-palatal pressure and sEMG amplitudes were correlated with the strength covariate. Anterior palate pressures and sEMG amplitudes were significantly higher for the citric acid stimulus. Perceived taste intensity was a significant mediator of stimulus differences. These data provide confirmatory evidence that high-intensity sour stimuli do influence swallowing behaviors. In addition, taste genetics influence the perception of taste intensity for stimuli with chemesthetic properties, which modulates behavioral responses.

  18. Bitter taste receptor T2R1 activities were compatible with behavioral sensitivity to bitterness in chickens.

    PubMed

    Hirose, Nozomi; Kawabata, Yuko; Kawabata, Fuminori; Nishimura, Shotaro; Tabata, Shoji

    2015-05-01

    Clarification of the mechanism of the sense of taste in chickens will provide information useful for creating and improving new feedstuffs for chickens, because the character of the taste receptors in oral tissues affects feeding behavior in animals. In this study, we focused on the sensitivity to bitterness in chickens. We cloned one of the bitter taste receptors, T2R1, from the chicken palate, constructed several biosensor-cells expressing chicken T2R1 (cT2R1), and determined a highly sensitive biosensor of cT2R1 among them. By using Ca(2+) imaging methods, we identified two agonists of cT2R1, dextromethorphan (Dex) and diphenidol (Dip). Dex was a new agonist of cT2R1 that was more potent than Dip. In a behavioral drinking study, the intake volumes of solutions of these compounds were significantly lower than that of water in chickens. These aversive concentrations were identical to the concentrations that could activate cT2R1 in a cell-based assay. These results suggest that the cT2R1 activities induced by these agonists are linked to behavioral sensitivity to bitterness in chickens. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Taste perception, associated hormonal modulation, and nutrient intake

    PubMed Central

    Loper, Hillary B.; La Sala, Michael; Dotson, Cedrick

    2015-01-01

    It is well known that taste perception influences food intake. After ingestion, gustatory receptors relay sensory signals to the brain, which segregates, evaluates, and distinguishes the stimuli, leading to the experience known as “flavor.” It is well accepted that five taste qualities – sweet, salty, bitter, sour, and umami – can be perceived by animals. In this review, the anatomy and physiology of human taste buds, the hormonal modulation of taste function, the importance of genetic chemosensory variation, and the influence of gustatory functioning on macronutrient selection and eating behavior are discussed. Individual genotypic variation results in specific phenotypes of food preference and nutrient intake. Understanding the role of taste in food selection and ingestive behavior is important for expanding our understanding of the factors involved in body weight maintenance and the risk of chronic diseases including obesity, atherosclerosis, cancer, diabetes, liver disease, and hypertension. PMID:26024495

  20. Regulation of bitter taste responses by tumor necrosis factor

    PubMed Central

    Feng, Pu; Jyotaki, Masafumi; Kim, Agnes; Chai, Jinghua; Simon, Nirvine; Zhou, Minliang; Bachmanov, Alexander A.; Huang, Liquan; Wang, Hong

    2015-01-01

    Inflammatory cytokines are important regulators of metabolism and food intake. Over production of inflammatory cytokines during bacterial and viral infections leads to anorexia and reduced food intake. However, it remains unclear whether any inflammatory cytokines are involved in the regulation of taste reception, the sensory mechanism governing food intake. Previously, we showed that tumor necrosis factor (TNF), a potent proinflammatory cytokine, is preferentially expressed in a subset of taste bud cells. The level of TNF in taste cells can be further induced by inflammatory stimuli. To investigate whether TNF plays a role in regulating taste responses, in this study, we performed taste behavioral tests and gustatory nerve recordings in TNF knockout mice. Behavioral tests showed that TNF-deficient mice are significantly less sensitive to the bitter compound quinine than wild-type mice, while their responses to sweet, umami, salty, and sour compounds are comparable to those of wild-type controls. Furthermore, nerve recording experiments showed that the chorda tympani nerve in TNF knockout mice is much less responsive to bitter compounds than that in wild-type mice. Chorda tympani nerve responses to sweet, umami, salty, and sour compounds are similar between TNF knockout and wild-type mice, consistent with the results from behavioral tests. We further showed that taste bud cells express the two known TNF receptors TNFR1 and TNFR2 and, therefore, are potential targets of TNF. Together, our results suggest that TNF signaling preferentially modulates bitter taste responses. This mechanism may contribute to taste dysfunction, particularly taste distortion, associated with infections and some chronic inflammatory diseases. PMID:25911043

  1. Gazing behavior reactions of Vietnamese and Austrian consumers to Austrian wafers and their relations to wanting, expected and tasted liking.

    PubMed

    Vu, Thi Minh Hang; Tu, Viet Phu; Duerrschmid, Klaus

    2018-05-01

    Predictability of consumers' food choice based on their gazing behavior using eye-tracking has been shown and discussed in recent research. By applying this observational technique and conventional methods on a specific food product, this study aims at investigating consumers' reactions associated with gazing behavior, wanting, building up expectations, and the experience of tasting. The tested food products were wafers from Austria with hazelnut, whole wheat, lemon and vanilla flavors, which are very well known in Austria and not known in Vietnam. 114 Vietnamese and 128 Austrian participants took part in three sections: The results indicate that: i) the gazing behavior parameters are highly correlated in a positive way with the wanting-to-try choice; ii) wanting to try is in compliance with the expected liking for the Austrian consumer panel only, which is very familiar with the products; iii) the expected and tasted liking of the products are highly country and product dependent. The expected liking is strongly correlated with the tasted liking for the Austrian panel only. Differences between the reactions of the Vietnamese and Austrian consumers are discussed in detail. The results, which reflect the complex process from gazing for "wanting to try" to the expected and tasted liking, are discussed in the context of the cognitive theory and food choice habits of the consumers. Copyright © 2018. Published by Elsevier Ltd.

  2. Taste Perception of Sweet, Sour, Salty, Bitter, and Umami and Changes Due to l-Arginine Supplementation, as a Function of Genetic Ability to Taste 6-n-Propylthiouracil.

    PubMed

    Melis, Melania; Tomassini Barbarossa, Iole

    2017-05-25

    Behavioral reaction to different taste qualities affects nutritional status and health. 6- n -Propylthiouracil (PROP) tasting has been reported to be a marker of variation in taste perception, food preferences, and eating behavior, but results have been inconsistent. We showed that l-Arg can enhance the bitterness intensity of PROP, whilst others have demonstrated a suppression of the bitterness of quinine. Here, we analyze the taste perception of sweet, sour, salty, bitter, and umami and the modifications caused by l-Arg supplementation, as a function of PROP-taster status. Taste perception was assessed by testing the ability to recognize, and the responsiveness to, representative solutions of the five primary taste qualities, also when supplemented with l-Arg, in subjects classified as PROP-tasting. Super-tasters, who showed high papilla density, gave higher ratings to sucrose, citric acid, caffeine, and monosodium l-glutamate than non-tasters. l-Arg supplementation mainly modified sucrose perception, enhanced the umami taste, increased NaCl saltiness and caffeine bitterness only in tasters, and decreased citric acid sourness. Our findings confirm the role of PROP phenotype in the taste perception of sweet, sour, and bitter and show its role in umami. The results suggest that l-Arg could be used as a strategic tool to specifically modify taste responses related to eating behaviors.

  3. Taste Perception of Sweet, Sour, Salty, Bitter, and Umami and Changes Due to l-Arginine Supplementation, as a Function of Genetic Ability to Taste 6-n-Propylthiouracil

    PubMed Central

    Melis, Melania; Tomassini Barbarossa, Iole

    2017-01-01

    Behavioral reaction to different taste qualities affects nutritional status and health. 6-n-Propylthiouracil (PROP) tasting has been reported to be a marker of variation in taste perception, food preferences, and eating behavior, but results have been inconsistent. We showed that l-Arg can enhance the bitterness intensity of PROP, whilst others have demonstrated a suppression of the bitterness of quinine. Here, we analyze the taste perception of sweet, sour, salty, bitter, and umami and the modifications caused by l-Arg supplementation, as a function of PROP-taster status. Taste perception was assessed by testing the ability to recognize, and the responsiveness to, representative solutions of the five primary taste qualities, also when supplemented with l-Arg, in subjects classified as PROP-tasting. Super-tasters, who showed high papilla density, gave higher ratings to sucrose, citric acid, caffeine, and monosodium l-glutamate than non-tasters. l-Arg supplementation mainly modified sucrose perception, enhanced the umami taste, increased NaCl saltiness and caffeine bitterness only in tasters, and decreased citric acid sourness. Our findings confirm the role of PROP phenotype in the taste perception of sweet, sour, and bitter and show its role in umami. The results suggest that l-Arg could be used as a strategic tool to specifically modify taste responses related to eating behaviors. PMID:28587069

  4. Quarrelsome behavior in borderline personality disorder: influence of behavioral and affective reactivity to perceptions of others.

    PubMed

    Sadikaj, Gentiana; Moskowitz, D S; Russell, Jennifer J; Zuroff, David C; Paris, Joel

    2013-02-01

    We examined how the amplification of 3 within-person processes (behavioral reactivity to interpersonal perceptions, affect reactivity to interpersonal perceptions, and behavioral reactivity to a person's own affect) accounts for greater quarrelsome behavior among individuals with borderline personality disorder (BPD). Using an event-contingent recording (ECR) methodology, individuals with BPD (N = 38) and community controls (N = 31) reported on their negative affect, quarrelsome behavior, and perceptions of the interaction partner's agreeable-quarrelsome behavior in interpersonal events during a 20-day period. Behavioral reactivity to negative affect was similar in both groups. However, behavioral reactivity and affect reactivity to interpersonal perceptions were elevated in individuals with BPD relative to community controls; specifically, individuals with BPD reported more quarrelsome behavior and more negative affect during interactions in which they perceived others as more cold-quarrelsome. Greater negative affect reactivity to perceptions of other's cold-quarrelsome behavior partly accounted for the increased quarrelsome behavior reported by individuals with BPD during these interactions. This pattern of results suggests a cycle in which the perception of cold-quarrelsome behavior in others triggers elevated negative affect and quarrelsome behavior in individuals with BPD, which subsequently led to more quarrelsome behavior from their interaction partners, which leads to perceptions of others as cold-quarrelsomeness, which begins the cycle anew. 2013 APA, all rights reserved

  5. Differences in taste responses to Polycose and common sugars in the rat as revealed by behavioral and electrophysiological studies.

    PubMed

    Sako, N; Shimura, T; Komure, M; Mochizuki, R; Matsuo, R; Yamamoto, T

    1994-10-01

    Behavioral and electrophysiological experiments were performed to examine the suggestion that rats have two types of carbohydrate taste receptors, one for polysaccharides (e.g., Polycose) and one for common sugars (e.g., sucrose). Qualitative difference between the tastes of Polycose and sugars including sucrose, maltose, glucose, and fructose was surveyed by means of a conditioned taste aversion paradigm in which the number of licks for 20 s to each taste stimulus was measured. Aversive conditioning to Polycose did not generalize to sugars, while aversive conditioning to sucrose generalized to other sugars, but not to Polycose. In the electrophysiological study, taste responses of the whole chorda tympani were recorded. A proteolytic enzyme, pronase E, suppressed nerve responses to both Polycose and sugars to less than 50%. A novel anti-sweet peptide, gurmarin, strongly suppressed responses to sugars, but had essentially no effect on Polycose responses. On the other hand, KHCO3 enhanced responses to sugars to about 300%, but had little effect on Polycose responses. These results have confirmed the notion that rats can differentiate the tastes between Polycose and common sugars and that rats have two types of carbohydrate receptors.

  6. Sugars, Sweet Taste Receptors, and Brain Responses

    PubMed Central

    Lee, Allen A.; Owyang, Chung

    2017-01-01

    Sweet taste receptors are composed of a heterodimer of taste 1 receptor member 2 (T1R2) and taste 1 receptor member 3 (T1R3). Accumulating evidence shows that sweet taste receptors are ubiquitous throughout the body, including in the gastrointestinal tract as well as the hypothalamus. These sweet taste receptors are heavily involved in nutrient sensing, monitoring changes in energy stores, and triggering metabolic and behavioral responses to maintain energy balance. Not surprisingly, these pathways are heavily regulated by external and internal factors. Dysfunction in one or more of these pathways may be important in the pathogenesis of common diseases, such as obesity and type 2 diabetes mellitus. PMID:28672790

  7. Sugars, Sweet Taste Receptors, and Brain Responses.

    PubMed

    Lee, Allen A; Owyang, Chung

    2017-06-24

    Sweet taste receptors are composed of a heterodimer of taste 1 receptor member 2 (T1R2) and taste 1 receptor member 3 (T1R3). Accumulating evidence shows that sweet taste receptors are ubiquitous throughout the body, including in the gastrointestinal tract as well as the hypothalamus. These sweet taste receptors are heavily involved in nutrient sensing, monitoring changes in energy stores, and triggering metabolic and behavioral responses to maintain energy balance. Not surprisingly, these pathways are heavily regulated by external and internal factors. Dysfunction in one or more of these pathways may be important in the pathogenesis of common diseases, such as obesity and type 2 diabetes mellitus.

  8. Regulation of bitter taste responses by tumor necrosis factor.

    PubMed

    Feng, Pu; Jyotaki, Masafumi; Kim, Agnes; Chai, Jinghua; Simon, Nirvine; Zhou, Minliang; Bachmanov, Alexander A; Huang, Liquan; Wang, Hong

    2015-10-01

    Inflammatory cytokines are important regulators of metabolism and food intake. Over production of inflammatory cytokines during bacterial and viral infections leads to anorexia and reduced food intake. However, it remains unclear whether any inflammatory cytokines are involved in the regulation of taste reception, the sensory mechanism governing food intake. Previously, we showed that tumor necrosis factor (TNF), a potent proinflammatory cytokine, is preferentially expressed in a subset of taste bud cells. The level of TNF in taste cells can be further induced by inflammatory stimuli. To investigate whether TNF plays a role in regulating taste responses, in this study, we performed taste behavioral tests and gustatory nerve recordings in TNF knockout mice. Behavioral tests showed that TNF-deficient mice are significantly less sensitive to the bitter compound quinine than wild-type mice, while their responses to sweet, umami, salty, and sour compounds are comparable to those of wild-type controls. Furthermore, nerve recording experiments showed that the chorda tympani nerve in TNF knockout mice is much less responsive to bitter compounds than that in wild-type mice. Chorda tympani nerve responses to sweet, umami, salty, and sour compounds are similar between TNF knockout and wild-type mice, consistent with the results from behavioral tests. We further showed that taste bud cells express the two known TNF receptors TNFR1 and TNFR2 and, therefore, are potential targets of TNF. Together, our results suggest that TNF signaling preferentially modulates bitter taste responses. This mechanism may contribute to taste dysfunction, particularly taste distortion, associated with infections and some chronic inflammatory diseases. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Cellular mechanisms of cyclophosphamide-induced taste loss in mice.

    PubMed

    Mukherjee, Nabanita; Pal Choudhuri, Shreoshi; Delay, Rona J; Delay, Eugene R

    2017-01-01

    Many commonly prescribed chemotherapy drugs such as cyclophosphamide (CYP) have adverse side effects including disruptions in taste which can result in loss of appetite, malnutrition, poorer recovery and reduced quality of life. Previous studies in mice found evidence that CYP has a two-phase disturbance in taste behavior: a disturbance immediately following drug administration and a second which emerges several days later. In this study, we examined the processes by which CYP disturbs the taste system by examining the effects of the drug on taste buds and cells responsible for taste cell renewal using immunohistochemical assays. Data reported here suggest CYP has direct cytotoxic effects on lingual epithelium immediately following administration, causing an early loss of taste sensory cells. Types II and III cells in fungiform taste buds appear to be more susceptible to this effect than circumvallate cells. In addition, CYP disrupts the population of rapidly dividing cells in the basal layer of taste epithelium responsible for taste cell renewal, manifesting a disturbance days later. The loss of these cells temporarily retards the system's capacity to replace Type II and Type III taste sensory cells that survived the cytotoxic effects of CYP and died at the end of their natural lifespan. The timing of an immediate, direct loss of taste cells and a delayed, indirect loss without replacement of taste sensory cells are broadly congruent with previously published behavioral data reporting two periods of elevated detection thresholds for umami and sucrose stimuli. These findings suggest that chemotherapeutic disturbances in the peripheral mechanisms of the taste system may cause dietary challenges at a time when the cancer patient has significant need for well balanced, high energy nutritional intake.

  10. Expression of the synaptic exocytosis-regulating molecule complexin 2 in taste buds and its participation in peripheral taste transduction.

    PubMed

    Kurokawa, Azusa; Narukawa, Masataka; Ohmoto, Makoto; Yoshimoto, Joto; Abe, Keiko; Misaka, Takumi

    2015-06-01

    Taste information from type III taste cells to gustatory neurons is thought to be transmitted via synapses. However, the molecular mechanisms underlying taste transduction through this pathway have not been fully elucidated. In this study, to identify molecules that participate in synaptic taste transduction, we investigated whether complexins (Cplxs), which play roles in regulating membrane fusion in synaptic vesicle exocytosis, were expressed in taste bud cells. Among four Cplx isoforms, strong expression of Cplx2 mRNA was detected in type III taste cells. To investigate the function of CPLX2 in taste transduction, we observed taste responses in CPLX2-knockout mice. When assessed with electrophysiological and behavioral assays, taste responses to some sour stimuli in CPLX2-knockout mice were significantly lower than those in wild-type mice. These results suggested that CPLX2 participated in synaptic taste transduction from type III taste cells to gustatory neurons. A part of taste information is thought to be transmitted via synapses. However, the molecular mechanisms have not been fully elucidated. To identify molecules that participate in synaptic taste transduction, we investigated complexins (Cplxs) expression in taste bud cells. Strong expression of Cplx2 mRNA was detected in taste bud cells. Furthermore, taste responses to some sour stimuli in CPLX2- knockout mice were significantly lower than those in wild-type mice. These suggested that CPLX2 participated in synaptic taste transduction. © 2015 The Authors. Journal of Neurochemistry published by John Wiley & Sons Ltd on behalf of The International Society for Neurochemistry.

  11. Altered learning, memory, and social behavior in type 1 taste receptor subunit 3 knock-out mice are associated with neuronal dysfunction.

    PubMed

    Martin, Bronwen; Wang, Rui; Cong, Wei-Na; Daimon, Caitlin M; Wu, Wells W; Ni, Bin; Becker, Kevin G; Lehrmann, Elin; Wood, William H; Zhang, Yongqing; Etienne, Harmonie; van Gastel, Jaana; Azmi, Abdelkrim; Janssens, Jonathan; Maudsley, Stuart

    2017-07-07

    The type 1 taste receptor member 3 (T1R3) is a G protein-coupled receptor involved in sweet-taste perception. Besides the tongue, the T1R3 receptor is highly expressed in brain areas implicated in cognition, including the hippocampus and cortex. As cognitive decline is often preceded by significant metabolic or endocrinological dysfunctions regulated by the sweet-taste perception system, we hypothesized that a disruption of the sweet-taste perception in the brain could have a key role in the development of cognitive dysfunction. To assess the importance of the sweet-taste receptors in the brain, we conducted transcriptomic and proteomic analyses of cortical and hippocampal tissues isolated from T1R3 knock-out (T1R3KO) mice. The effect of an impaired sweet-taste perception system on cognition functions were examined by analyzing synaptic integrity and performing animal behavior on T1R3KO mice. Although T1R3KO mice did not present a metabolically disrupted phenotype, bioinformatic interpretation of the high-dimensionality data indicated a strong neurodegenerative signature associated with significant alterations in pathways involved in neuritogenesis, dendritic growth, and synaptogenesis. Furthermore, a significantly reduced dendritic spine density was observed in T1R3KO mice together with alterations in learning and memory functions as well as sociability deficits. Taken together our data suggest that the sweet-taste receptor system plays an important neurotrophic role in the extralingual central nervous tissue that underpins synaptic function, memory acquisition, and social behavior. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Oral lipase activities and fat-taste receptors for fat-taste sensing in chickens.

    PubMed

    Kawabata, Yuko; Kawabata, Fuminori; Nishimura, Shotaro; Tabata, Shoji

    2018-01-01

    It has been reported that a functional fat-taste receptor, GPR120, is present in chicken oral tissues, and that chickens can detect fat taste in a behavioral test. However, although triglycerides need to be digested to free fatty acids to be recognized by fat-taste receptors such as GPR120, it remains unknown whether lipase activities exist in chicken oral tissues. To examine this question, we first cloned another fat-taste receptor candidate gene, CD36, from the chicken palate. Then, using RT-PCR, we determined that GPR120 and CD36 were broadly expressed in chicken oral and gastrointestinal tissues. Also by RT-PCR, we confirmed that several lipase genes were expressed in both oral and gastrointestinal tissues. Finally, we analyzed the lipase activities of oral tissues by using a fluorogenic triglyceride analog as a lipase substrate. We found there are functional lipases in oral tissues as well as in the stomach and pancreas. These results suggested that chickens have a basic fat-taste reception system that incorporates a triglycerides/oral-lipases/free fatty acids/GPR120 axis and CD36 axis. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Sweet and bitter taste in the brain of awake behaving animals

    PubMed Central

    Peng, Yueqing; Gillis-Smith, Sarah; Jin, Hao; Tränkner, Dimitri; Ryba, Nicholas J. P.; Zuker, Charles S.

    2015-01-01

    Taste is responsible for evaluating the nutritious content of food, guiding essential appetitive behaviors, preventing the ingestion of toxic substances, and helping ensure the maintenance of a healthy diet. Sweet and bitter are two of the most salient sensory percepts for humans and other animals; sweet taste permits the identification of energy-rich nutrients while bitter warns against the intake of potentially noxious chemicals1. In mammals, information from taste receptor cells in the tongue is transmitted through multiple neural stations to the primary gustatory cortex in the brain2. Recent imaging studies have shown that sweet and bitter are represented in the primary gustatory cortex by neurons organized in a spatial map3,4, with each taste quality encoded by distinct cortical fields4. Here we demonstrate that by manipulating the brain fields representing sweet and bitter taste we directly control an animal’s internal representation, sensory perception, and behavioral actions. These results substantiate the segregation of taste qualities in the cortex, expose the innate nature of appetitive and aversive taste responses, and illustrate the ability of gustatory cortex to recapitulate complex behaviors in the absence of sensory input. PMID:26580015

  14. Genotype by environment interactions for behavioral reactivity in sheep.

    PubMed

    Hazard, D; Bouix, J; Chassier, M; Delval, E; Foulquié, D; Fassier, T; Bourdillon, Y; François, D; Boissy, A

    2016-04-01

    In sheep, social reactivity and reactivity to humans are relevant behavioral responses that are used to investigate the behavioral adaptation of farm animals to various rearing conditions. Such traits were previously reported as heritable and associated with several QTLs. However, few behavior-related genotype by environment (G × E) interactions have been reported to date. The experiment was performed on 2,989 male and female lambs issued from 30 sires. Every sire had progeny reared under both intensive and extensive conditions. After weaning, all lambs were individually exposed to two standardized behavioral tests. A broad range of behaviors including vocalizations, locomotion, localization, vigilance, and flight distance were assessed. Two complementary statistic approaches, with and without assumptions on the biological significance of behaviors, were performed to investigate social reactivity and reactivity to humans. G × E interactions were investigated based on the genetic correlations estimated for each factor or trait between farming conditions; those significantly different from 1 indicating a G × E. Environmental effects showed that social reactivity and reactivity to humans were higher in intensively reared lambs. The heritability of factors or traits used to measure social reactivity and reactivity to humans was similar in both rearing conditions. Estimated heritabilities were high for vocalizations in response to social isolation, moderate for locomotion and vigilance in response to social isolation, and low for both flight distance to an approaching human and proximity to a motionless human. No significant G × E interaction was found for vocalizations. G × E interactions were found for locomotion, vigilance and flight distance. Genetic correlations between both environments were low to moderate for vigilance, locomotion and flight distance. Vocalization in response to social isolation with or without human presence was identified as a robust

  15. Music Taste Groups and Problem Behavior

    ERIC Educational Resources Information Center

    Mulder, Juul; ter Bogt, Tom; Raaijmakers, Quinten; Vollebergh, Wilma

    2007-01-01

    Internalizing and externalizing problems differ by musical tastes. A high school-based sample of 4159 adolescents, representative of Dutch youth aged 12 to 16, reported on their personal and social characteristics, music preferences and social-psychological functioning, measured with the Youth Self-Report (YSR). Cluster analysis on their music…

  16. Taste quality decoding parallels taste sensations.

    PubMed

    Crouzet, Sébastien M; Busch, Niko A; Ohla, Kathrin

    2015-03-30

    In most species, the sense of taste is key in the distinction of potentially nutritious and harmful food constituents and thereby in the acceptance (or rejection) of food. Taste quality is encoded by specialized receptors on the tongue, which detect chemicals corresponding to each of the basic tastes (sweet, salty, sour, bitter, and savory [1]), before taste quality information is transmitted via segregated neuronal fibers [2], distributed coding across neuronal fibers [3], or dynamic firing patterns [4] to the gustatory cortex in the insula. In rodents, both hardwired coding by labeled lines [2] and flexible, learning-dependent representations [5] and broadly tuned neurons [6] seem to coexist. It is currently unknown how, when, and where taste quality representations are established in the cortex and whether these representations are used for perceptual decisions. Here, we show that neuronal response patterns allow to decode which of four tastants (salty, sweet, sour, and bitter) participants tasted in a given trial by using time-resolved multivariate pattern analyses of large-scale electrophysiological brain responses. The onset of this prediction coincided with the earliest taste-evoked responses originating from the insula and opercular cortices, indicating that quality is among the first attributes of a taste represented in the central gustatory system. These response patterns correlated with perceptual decisions of taste quality: tastes that participants discriminated less accurately also evoked less discriminated brain response patterns. The results therefore provide the first evidence for a link between taste-related decision-making and the predictive value of these brain response patterns. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Cellular mechanisms of cyclophosphamide-induced taste loss in mice

    PubMed Central

    Mukherjee, Nabanita; Pal Choudhuri, Shreoshi; Delay, Rona J.

    2017-01-01

    Many commonly prescribed chemotherapy drugs such as cyclophosphamide (CYP) have adverse side effects including disruptions in taste which can result in loss of appetite, malnutrition, poorer recovery and reduced quality of life. Previous studies in mice found evidence that CYP has a two-phase disturbance in taste behavior: a disturbance immediately following drug administration and a second which emerges several days later. In this study, we examined the processes by which CYP disturbs the taste system by examining the effects of the drug on taste buds and cells responsible for taste cell renewal using immunohistochemical assays. Data reported here suggest CYP has direct cytotoxic effects on lingual epithelium immediately following administration, causing an early loss of taste sensory cells. Types II and III cells in fungiform taste buds appear to be more susceptible to this effect than circumvallate cells. In addition, CYP disrupts the population of rapidly dividing cells in the basal layer of taste epithelium responsible for taste cell renewal, manifesting a disturbance days later. The loss of these cells temporarily retards the system’s capacity to replace Type II and Type III taste sensory cells that survived the cytotoxic effects of CYP and died at the end of their natural lifespan. The timing of an immediate, direct loss of taste cells and a delayed, indirect loss without replacement of taste sensory cells are broadly congruent with previously published behavioral data reporting two periods of elevated detection thresholds for umami and sucrose stimuli. These findings suggest that chemotherapeutic disturbances in the peripheral mechanisms of the taste system may cause dietary challenges at a time when the cancer patient has significant need for well balanced, high energy nutritional intake. PMID:28950008

  18. Expression of the voltage-gated potassium channel KCNQ1 in mammalian taste bud cells and the effect of its null-mutation on taste preferences.

    PubMed

    Wang, Hong; Iguchi, Naoko; Rong, Qi; Zhou, Minliang; Ogunkorode, Martina; Inoue, Masashi; Pribitkin, Edmund A; Bachmanov, Alexander A; Margolskee, Robert F; Pfeifer, Karl; Huang, Liquan

    2009-01-20

    Vertebrate taste buds undergo continual cell turnover. To understand how the gustatory progenitor cells in the stratified lingual epithelium migrate and differentiate into different types of mature taste cells, we sought to identify genes that were selectively expressed in taste cells at different maturation stages. Here we report the expression of the voltage-gated potassium channel KCNQ1 in mammalian taste buds of mouse, rat, and human. Immunohistochemistry and nuclear staining showed that nearly all rodent and human taste cells express this channel. Double immunostaining with antibodies against type II and III taste cell markers validated the presence of KCNQ1 in these two types of cells. Co-localization studies with cytokeratin 14 indicated that KCNQ1 is also expressed in type IV basal precursor cells. Null mutation of the kcnq1 gene in mouse, however, did not alter the gross structure of taste buds or the expression of taste signaling molecules. Behavioral assays showed that the mutant mice display reduced preference to some umami substances, but not to any other taste compounds tested. Gustatory nerve recordings, however, were unable to detect any significant change in the integrated nerve responses of the mutant mice to umami stimuli. These results suggest that although it is expressed in nearly all taste bud cells, the function of KCNQ1 is not required for gross taste bud development or peripheral taste transduction pathways, and the reduced preference of kcnq1-null mice in the behavioral assays may be attributable to the deficiency in the central nervous system or other organs.

  19. Taste perception, associated hormonal modulation, and nutrient intake.

    PubMed

    Loper, Hillary B; La Sala, Michael; Dotson, Cedrick; Steinle, Nanette

    2015-02-01

    It is well known that taste perception influences food intake. After ingestion, gustatory receptors relay sensory signals to the brain, which segregates, evaluates, and distinguishes the stimuli, leading to the experience known as "flavor." It is well accepted that five taste qualities – sweet, salty, bitter, sour, and umami – can be perceived by animals. In this review, the anatomy and physiology of human taste buds, the hormonal modulation of taste function, the importance of genetic chemosensory variation, and the influence of gustatory functioning on macronutrient selection and eating behavior are discussed. Individual genotypic variation results in specific phenotypes of food preference and nutrient intake. Understanding the role of taste in food selection and ingestive behavior is important for expanding our understanding of the factors involved in body weight maintenance and the risk of chronic diseases including obesity, atherosclerosis, cancer, diabetes, liver disease, and hypertension. © The Author(s) 2015. Published by Oxford University Press on behalf of the International Life Sciences Institute. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. Tasting

    MedlinePlus Videos and Cool Tools

    ... about 10,000 taste buds. The taste buds are linked to the brain by nerve fibers. Food particles are detected by the taste buds, which send nerve ... to the brain. Certain areas of the tongue are more sensitive to certain tastes, like bitter, sour, ...

  1. Early life adversity reduces stress reactivity and enhances impulsive behavior: Implications for health behaviors

    PubMed Central

    Lovallo, William R.

    2012-01-01

    Altered reactivity to stress, either in the direction of exaggerated reactivity or diminished reactivity, may signal a dysregulation of systems intended to maintain homeostasis and a state of good health. Evidence has accumulated that diminished reactivity to psychosocial stress may signal poor health outcomes. One source of diminished cortisol and autonomic reactivity is the experience of adverse rearing during childhood and adolescence. The Oklahoma Family Health Patterns Project has examined a cohort of 426 healthy young adults with and without a family history of alcoholism. Regardless of family history, persons who had experienced high degrees of adversity prior to age 16 had a constellation of changes including reduced cortisol and heart rate reactivity, diminished cognitive capacity, and unstable regulation of affect, leading to behavioral impulsivity and antisocial tendencies. We present a model whereby this constellation of physiological, cognitive, and affective tendencies is consistent with altered central dopaminergic activity leading to changes in brain function that may foster impulsive and risky behaviors. These in turn may promote greater use of alcohol other drugs along with adopting poor health behaviors. This model provides a pathway from early life adversity to low stress reactivity that forms a basis for risky behaviors and poor health outcomes. PMID:23085387

  2. Acetylcholine is released from taste cells, enhancing taste signalling

    PubMed Central

    Dando, Robin; Roper, Stephen D

    2012-01-01

    Acetylcholine (ACh), a candidate neurotransmitter that has been implicated in taste buds, elicits calcium mobilization in Receptor (Type II) taste cells. Using RT-PCR analysis and pharmacological interventions, we demonstrate that the muscarinic acetylcholine receptor M3 mediates these actions. Applying ACh enhanced both taste-evoked Ca2+ responses and taste-evoked afferent neurotransmitter (ATP) secretion from taste Receptor cells. Blocking muscarinic receptors depressed taste-evoked responses in Receptor cells, suggesting that ACh is normally released from taste cells during taste stimulation. ACh biosensors confirmed that, indeed, taste Receptor cells secrete acetylcholine during gustatory stimulation. Genetic deletion of muscarinic receptors resulted in significantly diminished ATP secretion from taste buds. The data demonstrate a new role for acetylcholine as a taste bud transmitter. Our results imply specifically that ACh is an autocrine transmitter secreted by taste Receptor cells during gustatory stimulation, enhancing taste-evoked responses and afferent transmitter secretion. PMID:22570381

  3. Discrimination of taste qualities among mouse fungiform taste bud cells.

    PubMed

    Yoshida, Ryusuke; Miyauchi, Aya; Yasuo, Toshiaki; Jyotaki, Masafumi; Murata, Yoshihiro; Yasumatsu, Keiko; Shigemura, Noriatsu; Yanagawa, Yuchio; Obata, Kunihiko; Ueno, Hiroshi; Margolskee, Robert F; Ninomiya, Yuzo

    2009-09-15

    Multiple lines of evidence from molecular studies indicate that individual taste qualities are encoded by distinct taste receptor cells. In contrast, many physiological studies have found that a significant proportion of taste cells respond to multiple taste qualities. To reconcile this apparent discrepancy and to identify taste cells that underlie each taste quality, we investigated taste responses of individual mouse fungiform taste cells that express gustducin or GAD67, markers for specific types of taste cells. Type II taste cells respond to sweet, bitter or umami tastants, express taste receptors, gustducin and other transduction components. Type III cells possess putative sour taste receptors, and have well elaborated conventional synapses. Consistent with these findings we found that gustducin-expressing Type II taste cells responded best to sweet (25/49), bitter (20/49) or umami (4/49) stimuli, while all GAD67 (Type III) taste cells examined (44/44) responded to sour stimuli and a portion of them showed multiple taste sensitivities, suggesting discrimination of each taste quality among taste bud cells. These results were largely consistent with those previously reported with circumvallate papillae taste cells. Bitter-best taste cells responded to multiple bitter compounds such as quinine, denatonium and cyclohexamide. Three sour compounds, HCl, acetic acid and citric acid, elicited responses in sour-best taste cells. These results suggest that taste cells may be capable of recognizing multiple taste compounds that elicit similar taste sensation. We did not find any NaCl-best cells among the gustducin and GAD67 taste cells, raising the possibility that salt sensitive taste cells comprise a different population.

  4. Behavioral reactivity to emotion challenge is associated with cortisol reactivity and regulation at 7, 15, and 24 months of age.

    PubMed

    Ursache, Alexandra; Blair, Clancy; Granger, Douglas A; Stifter, Cynthia; Voegtline, Kristin

    2014-04-01

    Emotionally arousing stimuli have been largely unsuccessful in eliciting cortisol responses in young children. Whether or not emotion challenge will elicit a cortisol response, however, may in part be determined by the extent to which the tasks elicit behavioral reactivity and regulation. We examined relations of behavioral reactivity and regulation to emotional arousal in the context of fear and frustration to the cortisol response at 7, 15, and 24 months of age in a low income, rural population based sample of 1,292 families followed longitudinally from birth. At each age, children participated in fear and frustration inducing tasks, and cortisol samples were taken at three time points (before the tasks began, 20 min following peak emotional arousal or after the series of tasks ended, and 40 min after peak arousal or the tasks ended) in order to capture both increases (reactivity) and subsequent decreases (regulation) in the cortisol response. Using multilevel models, we predicted the cortisol response from measures of behavioral reactivity and regulation. At 7 months of age, cortisol reactivity and recovery were related to behavioral reactivity during a frustration-eliciting task and marginally related to behavioral reactivity during a fear-eliciting task. At 15 and 24 months of age, however, cortisol reactivity and recovery were related only to behavioral reactivity during a fear-eliciting task. Results indicate that while behavioral reactivity is predictive of whether or not infants and young children will exhibit a cortisol response to emotionally arousing tasks, behavioral and cortisol reactivity are not necessarily coupled. © 2013 Wiley Periodicals, Inc.

  5. Perinatal Factors, Parenting Behavior, and Reactive Aggression: Does Cortisol Reactivity Mediate This Developmental Risk Process?

    ERIC Educational Resources Information Center

    Ryan, Stacy R.; Schechter, Julia C.; Brennan, Patricia A.

    2012-01-01

    Little is known about the mechanisms of action that link perinatal risk and the development of aggressive behavior. The aim of this study was to examine whether perinatal risk and parenting interacted to specifically predict reactive aggression, as opposed to general aggressive behavior, and to examine cortisol reactivity as a mediator of this…

  6. Vasoactive intestinal peptide-null mice demonstrate enhanced sweet taste preference, dysglycemia, and reduced taste bud leptin receptor expression.

    PubMed

    Martin, Bronwen; Shin, Yu-Kyong; White, Caitlin M; Ji, Sunggoan; Kim, Wook; Carlson, Olga D; Napora, Joshua K; Chadwick, Wayne; Chapter, Megan; Waschek, James A; Mattson, Mark P; Maudsley, Stuart; Egan, Josephine M

    2010-05-01

    It is becoming apparent that there is a strong link between taste perception and energy homeostasis. Recent evidence implicates gut-related hormones in taste perception, including glucagon-like peptide 1 and vasoactive intestinal peptide (VIP). We used VIP knockout mice to investigate VIP's specific role in taste perception and connection to energy regulation. Body weight, food intake, and plasma levels of multiple energy-regulating hormones were measured and pancreatic morphology was determined. In addition, the immunocytochemical profile of taste cells and gustatory behavior were examined in wild-type and VIP knockout mice. VIP knockout mice demonstrate elevated plasma glucose, insulin, and leptin levels, with no islet beta-cell number/topography alteration. VIP and its receptors (VPAC1, VPAC2) were identified in type II taste cells of the taste bud, and VIP knockout mice exhibit enhanced taste preference to sweet tastants. VIP knockout mouse taste cells show a significant decrease in leptin receptor expression and elevated expression of glucagon-like peptide 1, which may explain sweet taste preference of VIP knockout mice. This study suggests that the tongue can play a direct role in modulating energy intake to correct peripheral glycemic imbalances. In this way, we could view the tongue as a sensory mechanism that is bidirectionally regulated and thus forms a bridge between available foodstuffs and the intricate hormonal balance in the animal itself.

  7. Angiotensin II modulates salty and sweet taste sensitivities.

    PubMed

    Shigemura, Noriatsu; Iwata, Shusuke; Yasumatsu, Keiko; Ohkuri, Tadahiro; Horio, Nao; Sanematsu, Keisuke; Yoshida, Ryusuke; Margolskee, Robert F; Ninomiya, Yuzo

    2013-04-10

    Understanding the mechanisms underlying gustatory detection of dietary sodium is important for the prevention and treatment of hypertension. Here, we show that Angiotensin II (AngII), a major mediator of body fluid and sodium homeostasis, modulates salty and sweet taste sensitivities, and that this modulation critically influences ingestive behaviors in mice. Gustatory nerve recording demonstrated that AngII suppressed amiloride-sensitive taste responses to NaCl. Surprisingly, AngII also enhanced nerve responses to sweeteners, but had no effect on responses to KCl, sour, bitter, or umami tastants. These effects of AngII on nerve responses were blocked by the angiotensin II type 1 receptor (AT1) antagonist CV11974. In behavioral tests, CV11974 treatment reduced the stimulated high licking rate to NaCl and sweeteners in water-restricted mice with elevated plasma AngII levels. In taste cells AT1 proteins were coexpressed with αENaC (epithelial sodium channel α-subunit, an amiloride-sensitive salt taste receptor) or T1r3 (a sweet taste receptor component). These results suggest that the taste organ is a peripheral target of AngII. The specific reduction of amiloride-sensitive salt taste sensitivity by AngII may contribute to increased sodium intake. Furthermore, AngII may contribute to increased energy intake by enhancing sweet responses. The linkage between salty and sweet preferences via AngII signaling may optimize sodium and calorie intakes.

  8. PTC/PROP tasting: anatomy, psychophysics, and sex effects.

    PubMed

    Bartoshuk, L M; Duffy, V B; Miller, I J

    1994-12-01

    Taste worlds of humans vary because of taste blindness to phenylthiocarbamide (PTC) and its chemical relative, 6-n-propylthiouracil (PROP). We review early PTC studies and apply modern statistical analyses to show that a higher frequency of women tasted PTC crystals, and were tasters (threshold classification). In our laboratory, scaling of PROP bitterness led to the identification of a subset of tasters (supertasters) who rate PROP as intensely bitter. Supertasters also perceive stronger tastes from a variety of bitter and sweet substances, and perceive more burn from oral irritants (alcohol and capsaicin). The density of taste receptors on the anterior tongue (fungiform papillae, taste buds) correlate significantly with perceived bitterness of PROP and support the supertaster concept. Psychophysical data from studies in our laboratory also show a sex effect; women are supertasters more frequently. The anatomical data also support the sex difference; women have more fungiform papillae and more taste buds. Future investigations of PTC/PROP tasting and food behaviors should include scaling to identify supertasters and separate sex effects.

  9. Evolution of taste and solitary chemoreceptor cell systems.

    PubMed

    Finger, T E

    1997-01-01

    Vertebrates possess four distinct chemosensory systems distinguishable on the basis of structure, innervation and utilization: olfaction, taste, solitary chemoreceptor cells (SCC) and the common chemical sense (free nerve endings). Of these, taste and the SCC sense rely on secondary receptor cells situated in the epidermis and synapsing on sensory nerve fibers innervating them near their base. The SCC sense occurs in anamniote aquatic craniates, including hagfish, and may be used for feeding or predator avoidance. The sense of taste occurs only in vertebrates and is always utilized for feeding. The SCC system achieves a high degree of specialization in two teleosts: sea robins (Prionotus) and rocklings (Ciliata). In sea robins, SCCs are abundant on the three anterior fin rays of the pectoral fin which are free of fin webbing and are used in active exploration of the substrate. Behavioral and physiological studies show that this SCC system responds to feeding cues and drives feeding behavior. It is connected centrally like a somatosensory system. In contrast, the specialized SCC system of rocklings occurs on the anterior dorsal fin which actively samples the surrounding water. This system responds to mucus substances and may serve as a predator detector. The SCC system in rocklings is connected centrally like a gustatory system. Taste buds contain multiple receptor cell types, including a serotonergic Merkel-like cell. Taste receptor cells respond to nutritionally relevant substances. Due to similarities between SCCs and one type of taste receptor cell, the suggestion is made that taste buds may be compound sensory organs that include some cells related to SCCs and others related to cutaneous Merkel cells. The lack of taste buds in hagfish and their presence in all vertebrates may indicate that the phylogenetic development of taste buds coincided with the elaboration of head structures at the craniate-vertebrate transition.

  10. Taste-immunosuppression engram: reinforcement and extinction.

    PubMed

    Niemi, Maj-Britt; Härting, Margarete; Kou, Wei; Del Rey, Adriana; Besedovsky, Hugo O; Schedlowski, Manfred; Pacheco-López, Gustavo

    2007-08-01

    Several Pavlovian conditioning paradigms have documented the brain's abilities to sense immune-derived signals or immune status, associate them with concurrently relevant extereoceptive stimuli, and reinstate such immune responses on demand. Specifically, the naturalistic relation of food ingestion with its possible immune consequences facilitates taste-immune associations. Here we demonstrate that the saccharin taste can be associated with the immunosuppressive agent cyclosporine A, and that such taste-immune associative learning is subject to reinforcement. Furthermore, once consolidated, this saccharin-immunosuppression engram is resistant to extinction when avoidance behavior is assessed. More importantly, the more this engram is activated, either at association or extinction phases, the more pronounced is the conditioned immunosuppression.

  11. Active avoidance: escape and dodging behaviors for reactive control

    NASA Astrophysics Data System (ADS)

    Arkin, Ronald C.; Carter, William M.

    1992-03-01

    New methods for producing avoidance behavior among moving obstacles within the context of reactive robotic control are described. These specifically include escape and dodging behaviors. Dodging is concerned with the avoidance of a ballistic projectile while escape is more useful within the context of chase. The motivation and formulation of these new reactive behaviors are presented. Simulation results of a robot in a cluttered and moving world are also provided.

  12. Processing umami and other tastes in mammalian taste buds.

    PubMed

    Roper, Stephen D; Chaudhari, Nirupa

    2009-07-01

    Neuroscientists are now coming to appreciate that a significant degree of information processing occurs in the peripheral sensory organs of taste prior to signals propagating to the brain. Gustatory stimulation causes taste bud cells to secrete neurotransmitters that act on adjacent taste bud cells (paracrine transmitters) as well as on primary sensory afferent fibers (neurocrine transmitters). Paracrine transmission, representing cell-cell communication within the taste bud, has the potential to shape the final signal output that taste buds transmit to the brain. The following paragraphs summarize current thinking about how taste signals generally, and umami taste in particular, are processed in taste buds.

  13. Smelling and Tasting Underwater.

    ERIC Educational Resources Information Center

    Atema, Jelle

    1980-01-01

    Discusses differences between smell and taste, comparing these senses in organisms in aquatic and terrestrial environments. Describes the chemical environment underwater and in air, differences in chemoreceptors to receive stimuli, and the organs, brain, and behavior involved in chemoreception. (CS)

  14. Children's aggressive responses to neutral peer behavior: a form of unprovoked reactive aggression.

    PubMed

    Kempes, Maaike; Matthys, Walter; de Vries, Han; van Engeland, Herman

    2010-04-30

    Previous studies that operationalized reactive aggression using behavioral observations in general populations have not taken into account the type of stimulus that elicits reactive aggression. In the present study we define a specific form of reactive aggression, i.e., reactive aggression in response to neutral behavior of a peer, which we will call unprovoked reactive aggression. We were specifically interested in children with severe aggressive behavior problems, since they may respond with reactive aggression even though the opponent did not clearly provoke them, but instead showed neutral behavior. Children with a disruptive behavior disorder (DBD) and normal control (NC) children participated in separate play sessions in which they played with a normal peer (NP). Children with DBD showed more unprovoked reactive aggression than NC children, during a cooperative game. Moreover, for children with DBD, unprovoked reactive aggressive behavior in this game correlated with parent-rated reactive aggression. Results of this study suggest that an unprovoked reactive form of aggression can be identified in children with DBD. Copyright (c) 2008. Published by Elsevier Ireland Ltd.

  15. Gustatory processing and taste memory in Drosophila

    PubMed Central

    Masek, Pavel; Keene, Alex C.

    2018-01-01

    Taste allows animals to discriminate the value and potential toxicity of food prior to ingestion. Many tastants elicit an innate attractive or avoidance response that is modifiable with nutritional state and prior experience. A powerful genetic tool kit, well-characterized gustatory system, and standardized behavioral assays make the fruit fly, Drosophila melanogaster, an excellent system for investigating taste processing and memory. Recent studies have used this system to identify the neural basis for acquired taste preference. These studies have revealed a role for dopamine-mediated plasticity of the mushroom bodies that modulate the threshold of response to appetitive tastants. The identification of neural circuitry regulating taste memory provides a system to study the genetic and physiological processes that govern plasticity within a defined memory circuit. PMID:27328844

  16. Sweet taste preferences and experiences predict prosocial inferences, personalities, and behaviors.

    PubMed

    Meier, Brian P; Moeller, Sara K; Riemer-Peltz, Miles; Robinson, Michael D

    2012-01-01

    It is striking that prosocial people are considered "sweet" (e.g., "she's a sweetie") because they are unlikely to differentially taste this way. These metaphors aid communication, but theories of conceptual metaphor and embodiment led us to hypothesize that they can be used to derive novel insights about personality processes. Five studies converged on this idea. Study 1 revealed that people believed strangers who liked sweet foods (e.g., candy) were also higher in agreeableness. Studies 2 and 3 showed that individual differences in the preference for sweet foods predicted prosocial personalities, prosocial intentions, and prosocial behaviors. Studies 4 and 5 used experimental designs and showed that momentarily savoring a sweet food (vs. a nonsweet food or no food) increased participants' self-reports of agreeableness and helping behavior. The results reveal that an embodied metaphor approach provides a complementary but unique perspective to traditional trait views of personality.

  17. Decrease in sweet taste in rats after gastric bypass surgery.

    PubMed

    Tichansky, David S; Glatt, A Rebecca; Madan, Atul K; Harper, Jason; Tokita, Kenichi; Boughter, John D

    2011-04-01

    The literature contains evidence that Roux-en-Y gastric bypass (RYGB) surgery has an effect in humans on taste and preference for carbohydrate-rich foods. This study tested the hypothesis that RYGB affects sweet taste behavior using a rat model. Male Sprague-Dawley rats underwent either RYGB or sham surgery. Then 4 weeks after surgery, the rats were given taste-salient, brief-access lick tests with a series of sucrose concentrations. The RYGB rats, but not the sham rats, lost weight over the 5-week postoperative period. The RYGB rats showed a significant decrease in mean licks for the highest concentration of sucrose (0.25-1.0 mol/l) but not for the low concentrations of sucrose or water. The findings showed that RYGB surgery affected sweet taste behavior in rats, with postsurgical rats having lower sensitivity or avidity for sucrose than sham-treated control rats. This finding is similar to human reports that sweet taste and preferences for high-caloric foods are altered after bypass surgery.

  18. Cue-reactivity in behavioral addictions: A meta-analysis and methodological considerations.

    PubMed

    Starcke, Katrin; Antons, Stephanie; Trotzke, Patrick; Brand, Matthias

    2018-05-23

    Background and aims Recent research has applied cue-reactivity paradigms to behavioral addictions. The aim of the current meta-analysis is to systematically analyze the effects of learning-based cue-reactivity in behavioral addictions. Methods The current meta-analysis includes 18 studies (29 data sets, 510 participants) that have used a cue-reactivity paradigm in persons with gambling (eight studies), gaming (nine studies), or buying (one study) disorders. We compared subjective, peripheral physiological, electroencephal, and neural responses toward addiction-relevant cues in patients versus control participants and toward addiction-relevant cues versus control cues in patients. Results Persons with behavioral addictions showed higher cue-reactivity toward addiction-relevant cues compared with control participants: subjective cue-reactivity (d = 0.84, p = .01) and peripheral physiological and electroencephal measures of cue-reactivity (d = 0.61, p < .01). Increased neural activation was found in the caudate nucleus, inferior frontal gyrus, median cingulate cortex, subgenual cingulate, and precentral gyrus. Persons with gambling, gaming, or buying disorders also showed higher cue-reactivity toward addiction-relevant cues compared with control cues: subjective cue-reactivity (d = 0.39, p = .11) and peripheral physiological and electroencephal measures of cue-reactivity (d = 0.47, p = .05). Increased neural activation was found in the caudate nucleus, inferior frontal gyrus, angular gyrus, inferior network, and precuneus. Discussion and conclusions Cue-reactivity not only exists in substance-use disorders but also in gambling, gaming, and buying disorders. Future research should differentiate between cue-reactivity in addictive behaviors and cue-reactivity in functional excessive behaviors such as passions, hobbies, or professions.

  19. Taste buds and nerve fibers in the rat larynx: an ultrastructural and immunohistochemical study.

    PubMed

    Nishijima, Kazutoshi; Atoji, Yasuro

    2004-09-01

    We investigated the rat laryngeal taste buds and their innervation by electron microscopy and immunohistochemical methods. Taste buds were densely arranged in the surface facing the laryngeal cavity of the epiglottis, the aryepiglottic fold, and the cuneiform process of the arytenoid cartilages. The cells of the buds were classified into types I, II, III, and basal cells, the ultrastucture of which was almost the same as that previously reported in lingual taste buds. The type III cells that had synaptic contacts with nerve fibers were considered to be sensory cells. Immunohistochemical analysis revealed thick calbindin D28k-immunoreactive fibers and thin varicose fibers immunoreactive for calcitonin gene-related peptide or substance P in and around the taste bud. Serotonin-immunoreactive cells were also observed here. The results revealed the innervation pattern of laryngeal taste buds to be the same as that in lingual taste buds. Carbonic anhydrase (CA) is known to catalyze the hydration of CO2 and dehydration of H2CO3, and seems to be essential in CO2 reception. Immunoreactivity for CAI was detected in slender cells and that for CAIII was observed in barrel-like cells in the laryngeal taste buds. The pH-sensitive inward rectifier K+ (Kir) channel in the cell membrane may be involved in CO2 reception as well. CAII-reactive cells were also reactive to Kir4.1, PGP 9.5 and serotonin. Our results indicated that CAII and Kir4.1 are located in type III cells of the laryngeal taste buds, and supported the idea that the buds may be involved in the recognition of CO2.

  20. The Insula and Taste Learning

    PubMed Central

    Yiannakas, Adonis; Rosenblum, Kobi

    2017-01-01

    The sense of taste is a key component of the sensory machinery, enabling the evaluation of both the safety as well as forming associations regarding the nutritional value of ingestible substances. Indicative of the salience of the modality, taste conditioning can be achieved in rodents upon a single pairing of a tastant with a chemical stimulus inducing malaise. This robust associative learning paradigm has been heavily linked with activity within the insular cortex (IC), among other regions, such as the amygdala and medial prefrontal cortex. A number of studies have demonstrated taste memory formation to be dependent on protein synthesis at the IC and to correlate with the induction of signaling cascades involved in synaptic plasticity. Taste learning has been shown to require the differential involvement of dopaminergic GABAergic, glutamatergic, muscarinic neurotransmission across an extended taste learning circuit. The subsequent activation of downstream protein kinases (ERK, CaMKII), transcription factors (CREB, Elk-1) and immediate early genes (c-fos, Arc), has been implicated in the regulation of the different phases of taste learning. This review discusses the relevant neurotransmission, molecular signaling pathways and genetic markers involved in novel and aversive taste learning, with a particular focus on the IC. Imaging and other studies in humans have implicated the IC in the pathophysiology of a number of cognitive disorders. We conclude that the IC participates in circuit-wide computations that modulate the interception and encoding of sensory information, as well as the formation of subjective internal representations that control the expression of motivated behaviors. PMID:29163022

  1. Molecular basis of fatty acid taste in Drosophila

    PubMed Central

    Ahn, Ji-Eun; Chen, Yan

    2017-01-01

    Behavioral studies have established that Drosophila appetitive taste responses towards fatty acids are mediated by sweet sensing Gustatory Receptor Neurons (GRNs). Here we show that sweet GRN activation requires the function of the Ionotropic Receptor genes IR25a, IR76b and IR56d. The former two IR genes are expressed in several neurons per sensillum, while IR56d expression is restricted to sweet GRNs. Importantly, loss of appetitive behavioral responses to fatty acids in IR25a and IR76b mutant flies can be completely rescued by expression of respective transgenes in sweet GRNs. Interestingly, appetitive behavioral responses of wild type flies to hexanoic acid reach a plateau at ~1%, but decrease with higher concentration, a property mediated through IR25a/IR76b independent activation of bitter GRNs. With our previous report on sour taste, our studies suggest that IR-based receptors mediate different taste qualities through cell-type specific IR subunits. PMID:29231818

  2. Maintenance of Taste Organs Is Strictly Dependent on Epithelial Hedgehog/GLI Signaling.

    PubMed

    Ermilov, Alexandre N; Kumari, Archana; Li, Libo; Joiner, Ariell M; Grachtchouk, Marina A; Allen, Benjamin L; Dlugosz, Andrzej A; Mistretta, Charlotte M

    2016-11-01

    For homeostasis, lingual taste papilla organs require regulation of epithelial cell survival and renewal, with sustained innervation and stromal interactions. To investigate a role for Hedgehog/GLI signaling in adult taste organs we used a panel of conditional mouse models to manipulate GLI activity within epithelial cells of the fungiform and circumvallate papillae. Hedgehog signaling suppression rapidly led to taste bud loss, papilla disruption, and decreased proliferation in domains of papilla epithelium that contribute to taste cells. Hedgehog responding cells were eliminated from the epithelium but retained in the papilla stromal core. Despite papilla disruption and loss of taste buds that are a major source of Hedgehog ligand, innervation to taste papillae was maintained, and not misdirected, even after prolonged GLI blockade. Further, vimentin-positive fibroblasts remained in the papilla core. However, retained innervation and stromal cells were not sufficient to maintain taste bud cells in the context of compromised epithelial Hedgehog signaling. Importantly taste organ disruption after GLI blockade was reversible in papillae that retained some taste bud cell remnants where reactivation of Hedgehog signaling led to regeneration of papilla epithelium and taste buds. Therefore, taste bud progenitors were either retained during epithelial GLI blockade or readily repopulated during recovery, and were poised to regenerate taste buds once Hedgehog signaling was restored, with innervation and papilla connective tissue elements in place. Our data argue that Hedgehog signaling is essential for adult tongue tissue maintenance and that taste papilla epithelial cells represent the key targets for physiologic Hedgehog-dependent regulation of taste organ homeostasis. Because disruption of GLI transcriptional activity in taste papilla epithelium is sufficient to drive taste organ loss, similar to pharmacologic Hedgehog pathway inhibition, the findings suggest that taste

  3. Maintenance of Taste Organs Is Strictly Dependent on Epithelial Hedgehog/GLI Signaling

    PubMed Central

    Mistretta, Charlotte M.

    2016-01-01

    For homeostasis, lingual taste papilla organs require regulation of epithelial cell survival and renewal, with sustained innervation and stromal interactions. To investigate a role for Hedgehog/GLI signaling in adult taste organs we used a panel of conditional mouse models to manipulate GLI activity within epithelial cells of the fungiform and circumvallate papillae. Hedgehog signaling suppression rapidly led to taste bud loss, papilla disruption, and decreased proliferation in domains of papilla epithelium that contribute to taste cells. Hedgehog responding cells were eliminated from the epithelium but retained in the papilla stromal core. Despite papilla disruption and loss of taste buds that are a major source of Hedgehog ligand, innervation to taste papillae was maintained, and not misdirected, even after prolonged GLI blockade. Further, vimentin-positive fibroblasts remained in the papilla core. However, retained innervation and stromal cells were not sufficient to maintain taste bud cells in the context of compromised epithelial Hedgehog signaling. Importantly taste organ disruption after GLI blockade was reversible in papillae that retained some taste bud cell remnants where reactivation of Hedgehog signaling led to regeneration of papilla epithelium and taste buds. Therefore, taste bud progenitors were either retained during epithelial GLI blockade or readily repopulated during recovery, and were poised to regenerate taste buds once Hedgehog signaling was restored, with innervation and papilla connective tissue elements in place. Our data argue that Hedgehog signaling is essential for adult tongue tissue maintenance and that taste papilla epithelial cells represent the key targets for physiologic Hedgehog-dependent regulation of taste organ homeostasis. Because disruption of GLI transcriptional activity in taste papilla epithelium is sufficient to drive taste organ loss, similar to pharmacologic Hedgehog pathway inhibition, the findings suggest that taste

  4. Leptin Suppresses Mouse Taste Cell Responses to Sweet Compounds

    PubMed Central

    Noguchi, Kenshi; Shigemura, Noriatsu; Jyotaki, Masafumi; Takahashi, Ichiro; Margolskee, Robert F.

    2015-01-01

    Leptin is known to selectively suppress neural and behavioral responses to sweet-tasting compounds. However, the molecular basis for the effect of leptin on sweet taste is not known. Here, we report that leptin suppresses sweet taste via leptin receptors (Ob-Rb) and KATP channels expressed selectively in sweet-sensitive taste cells. Ob-Rb was more often expressed in taste cells that expressed T1R3 (a sweet receptor component) than in those that expressed glutamate-aspartate transporter (a marker for Type I taste cells) or GAD67 (a marker for Type III taste cells). Systemically administered leptin suppressed taste cell responses to sweet but not to bitter or sour compounds. This effect was blocked by a leptin antagonist and was absent in leptin receptor–deficient db/db mice and mice with diet-induced obesity. Blocking the KATP channel subunit sulfonylurea receptor 1, which was frequently coexpressed with Ob-Rb in T1R3-expressing taste cells, eliminated the effect of leptin on sweet taste. In contrast, activating the KATP channel with diazoxide mimicked the sweet-suppressing effect of leptin. These results indicate that leptin acts via Ob-Rb and KATP channels that are present in T1R3-expressing taste cells to selectively suppress their responses to sweet compounds. PMID:26116698

  5. Biological rhythms: the taste-time continuum.

    PubMed

    Krupp, Joshua J; Levine, Joel D

    2010-02-23

    The gustatory system allows the fly to assess food quality, eliciting either acceptance or avoidance behaviors. A new study demonstrates that circadian clocks in gustatory receptor neurons regulate rhythms in taste sensitivity, drive rhythms in appetitive behavior and influence feeding. Copyright 2010 Elsevier Ltd. All rights reserved.

  6. Arecoline Alters Taste Bud Cell Morphology, Reduces Body Weight, and Induces Behavioral Preference Changes in Gustatory Discrimination in C57BL/6 Mice.

    PubMed

    Peng, Wei-Hau; Chau, Yat-Pang; Lu, Kuo-Shyan; Kung, Hsiu-Ni

    2016-01-01

    Arecoline, a major alkaloid in areca nuts, is involved in the pathogenesis of oral diseases. Mammalian taste buds are the structural unit for detecting taste stimuli in the oral cavity. The effects of arecoline on taste bud morphology are poorly understood. Arecoline was injected intraperitoneally (IP) into C57BL/6 mice twice daily for 1-4 weeks. After arecoline treatment, the vallate papillae were processed for electron microscopy and immunohistochemistry analysis of taste receptor proteins (T1R2, T1R3, T1R1, and T2R) and taste associated proteins (α-gustducin, PLCβ2, and SNAP25). Body weight, food intake and water consumption were recorded. A 2-bottle preference test was also performed. The results demonstrated that 1) arecoline treatment didn't change the number and size of the taste buds or taste bud cells, 2) electron microscopy revealed the change of organelles and the accumulation of autophagosomes in type II cells, 3) immunohistochemistry demonstrated a decrease of taste receptor T1R2- and T1R3-expressing cells, 4) the body weight and food intake were markedly reduced, and 5) the sweet preference behavior was reduced. We concluded that the long-term injection of arecoline alters the morphology of type II taste bud cells, retards the growth of mice, and affects discrimination competencies for sweet tastants. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Modulation and transmission of sweet taste information for energy homeostasis.

    PubMed

    Sanematsu, Keisuke; Horio, Nao; Murata, Yoshihiro; Yoshida, Ryusuke; Ohkuri, Tadahiro; Shigemura, Noriatsu; Ninomiya, Yuzo

    2009-07-01

    Perception of sweet taste is important for animals to detect external energy source of calories. In mice, sweet-sensitive cells possess a leptin receptor. Increase of plasma leptin with increasing internal energy storage in the adipose tissue suppresses sweet taste responses via this receptor. Data from our recent studies indicate that leptin may also modulate sweet taste sensation in humans with a diurnal variation in sweet sensitivity. This leptin modulation of sweet taste information to the brain may influence individuals' preference and ingestive behavior, thereby playing important roles in regulation of energy homeostasis.

  8. Profiles of disruptive behavior across early childhood: Contributions of frustration reactivity, physiological regulation, and maternal behavior

    PubMed Central

    Degnan, Kathryn A.; Calkins, Susan D.; Keane, Susan P.; Hill-Soderlund, Ashley L.

    2010-01-01

    Disruptive behavior, including aggression, defiance, and temper tantrums, typically peaks in early toddlerhood and decreases by school entry; however, some children do not show this normative decline. The current study examined disruptive behavior in 318 boys and girls at 2, 4, and 5 years of age and frustration reactivity, physiological regulation, and maternal behavior in the laboratory at 2 years of age. A latent profile analysis (LPA) resulted in 4 longitudinal profiles of disruptive behavior, which were differentiated by interactions between reactivity, regulation, and maternal behavior. A high profile was associated with high reactivity combined with high maternal control or low regulation combined with low maternal control. Results are discussed from a developmental psychopathology perspective. PMID:18826530

  9. Behavioral Reactivity and Approach-Withdrawal Bias in Infancy

    PubMed Central

    Hane, Amie Ashley; Fox, Nathan A.; Henderson, Heather A.; Marshall, Peter J.

    2008-01-01

    Seven hundred and seventy nine infants were screened at 4 months of age for motor and emotional reactivity. At age 9 months, infants who showed extreme patterns of motor and negative (n = 75) or motor and positive (n = 73) reactivity and an unselected control group (n = 86) were administered the Laboratory Temperament Assessment Battery (Lab-TAB), and baseline electroencephalogram (EEG) data were collected. Negatively reactive infants showed significantly more avoidance than positively reactive infants and displayed a pattern of right frontal EEG asymmetry. Positively reactive infants exhibited significantly more approach behavior than controls and exhibited a pattern of left frontal asymmetry. Results support the notion that approach-withdrawal bias underlies reactivity in infancy. PMID:18793079

  10. Brain response to taste in overweight children: A pilot feasibility study.

    PubMed

    Bohon, Cara

    2017-01-01

    Understanding the neural response to food and food cues during early stages of weight gain in childhood may help us determine the drive processes involved in unhealthy eating behavior and risk for obesity. Healthy weight and overweight children ages 6-8 (N = 18; 10 with BMI between 5th and 85th %ile and 8 with BMI >85th %ile) underwent fMRI scans while anticipating and receiving tastes of chocolate milkshake. Parents completed a Children's Eating Behaviour Questionnaire. Results reveal greater response to milkshake taste receipt in overweight children in the right insula, operculum, precentral gyrus, and angular gyrus, and bilateral precuneus and posterior cingulate. No group differences were found for brain response to a visual food cue. Exploratory analyses revealed interactions between self-report measures of eating behavior and weight status on brain response to taste. This pilot study provides preliminary evidence of feasibility of studying young children's taste processing and suggests a possible developmental shift in brain response to taste.

  11. A taste for ATP: neurotransmission in taste buds

    PubMed Central

    Kinnamon, Sue C.; Finger, Thomas E.

    2013-01-01

    Not only is ATP a ubiquitous source of energy but it is also used widely as an intercellular signal. For example, keratinocytes release ATP in response to numerous external stimuli including pressure, heat, and chemical insult. The released ATP activates purinergic receptors on nerve fibers to generate nociceptive signals. The importance of an ATP signal in epithelial-to-neuronal signaling is nowhere more evident than in the taste system. The receptor cells of taste buds release ATP in response to appropriate stimulation by tastants and the released ATP then activates P2X2 and P2X3 receptors on the taste nerves. Genetic ablation of the relevant P2X receptors leaves an animal without the ability to taste any primary taste quality. Of interest is that release of ATP by taste receptor cells occurs in a non-vesicular fashion, apparently via gated membrane channels. Further, in keeping with the crucial role of ATP as a neurotransmitter in this system, a subset of taste cells expresses a specific ectoATPase, NTPDase2, necessary to clear extracellular ATP which otherwise will desensitize the P2X receptors on the taste nerves. The unique utilization of ATP as a key neurotransmitter in the taste system may reflect the epithelial rather than neuronal origins of the receptor cells. PMID:24385952

  12. How Does Food Taste in Anorexia and Bulimia Nervosa? A Protocol for a Quasi-Experimental, Cross-Sectional Design to Investigate Taste Aversion or Increased Hedonic Valence of Food in Eating Disorders

    PubMed Central

    Garcia-Burgos, David; Maglieri, Sabine; Vögele, Claus; Munsch, Simone

    2018-01-01

    Background: Despite on-going efforts to better understand dysregulated eating, the olfactory-gustatory deficits and food preferences in eating disorders (ED), and the mechanisms underlying the perception of and responses to food properties in anorexia nervosa (AN) and bulimia nervosa (BN) remain largely unknown; both during the course of the illness and compared to healthy populations. It is, therefore, necessary to systematically investigate the gustatory perception and hedonics of taste in patients with AN and BN. To this end, we will examine whether aversions to the taste of high-calorie food is related to the suppression of energy intake in restricting-type AN, and whether an increased hedonic valence of sweet, caloric-dense foods may be part of the mechanisms triggering binge-eating episodes in BN. In addition, the role of cognitions influencing these mechanisms will be examined. Method: In study 1, four mixtures of sweet-fat stimuli will be presented in a sensory two-alternative forced-choice test involving signal detection analysis. In study 2, a full-scale taste reactivity test will be carried out, including psychophysiological and behavioral measures to assess subtle and covert hedonic changes. We will compare the responses of currently-ill AN and BN patients to those who have recovered from AN and BN, and also to those of healthy normal-weight and underweight individuals without any eating disorder pathology. Discussion: If taste response profiles are differentially linked to ED types, then future studies should investigate whether taste responsiveness represents a useful diagnostic measure in the prevention, assessment and treatment of EDs. The expected results on cognitive mechanisms in the top-down processes of food hedonics will complement current models and contribute to the refinement of interventions to change cognitive aspects of taste aversions, to establish functional food preferences and to better manage food cravings associated with binge

  13. How Does Food Taste in Anorexia and Bulimia Nervosa? A Protocol for a Quasi-Experimental, Cross-Sectional Design to Investigate Taste Aversion or Increased Hedonic Valence of Food in Eating Disorders.

    PubMed

    Garcia-Burgos, David; Maglieri, Sabine; Vögele, Claus; Munsch, Simone

    2018-01-01

    Background: Despite on-going efforts to better understand dysregulated eating, the olfactory-gustatory deficits and food preferences in eating disorders (ED), and the mechanisms underlying the perception of and responses to food properties in anorexia nervosa (AN) and bulimia nervosa (BN) remain largely unknown; both during the course of the illness and compared to healthy populations. It is, therefore, necessary to systematically investigate the gustatory perception and hedonics of taste in patients with AN and BN. To this end, we will examine whether aversions to the taste of high-calorie food is related to the suppression of energy intake in restricting-type AN, and whether an increased hedonic valence of sweet, caloric-dense foods may be part of the mechanisms triggering binge-eating episodes in BN. In addition, the role of cognitions influencing these mechanisms will be examined. Method: In study 1, four mixtures of sweet-fat stimuli will be presented in a sensory two-alternative forced-choice test involving signal detection analysis. In study 2, a full-scale taste reactivity test will be carried out, including psychophysiological and behavioral measures to assess subtle and covert hedonic changes. We will compare the responses of currently-ill AN and BN patients to those who have recovered from AN and BN, and also to those of healthy normal-weight and underweight individuals without any eating disorder pathology. Discussion: If taste response profiles are differentially linked to ED types, then future studies should investigate whether taste responsiveness represents a useful diagnostic measure in the prevention, assessment and treatment of EDs. The expected results on cognitive mechanisms in the top-down processes of food hedonics will complement current models and contribute to the refinement of interventions to change cognitive aspects of taste aversions, to establish functional food preferences and to better manage food cravings associated with binge

  14. Taste responses in patients with Parkinson's disease

    PubMed Central

    Sienkiewicz-Jaros..., H; Scinska, A; Kuran, W; Ryglewicz, D; Rogowski, A; Wrobel, E; Korkosz, A; Kukwa, A; Kostowski, W; Bienkowski, P

    2005-01-01

    Objective: Preclinical studies indicate that dopaminergic transmission in the basal ganglia may be involved in processing of both pleasant and unpleasant stimuli. Given this, the aim of the present study was to assess taste responses to sweet, bitter, sour, and salty substances in patients with Parkinson's disease (PD). Methods: Rated intensity and pleasantness of filter paper discs soaked in sucrose (10–60%), quinine (0.025–0.5%), citric acid (0.25–4.0%), or sodium chloride (1.25–20%) solutions was evaluated in 30 patients with PD and in 33 healthy controls. Paper discs soaked in deionised water served as control stimuli. In addition, reactivity to 100 ml samples of chocolate and vanilla milk was assessed in both groups. Taste detection thresholds were assessed by means of electrogustometry. Sociodemographic and neuropsychiatric data, including cigarette smoking, alcohol consumption, tea and coffee drinking, depressive symptoms, and cognitive functioning were collected. Results: In general, perceived intensity, pleasantness, and identification of the sucrose, quinine, citric acid, or sodium chloride samples did not differ between the PD patients and controls. Intensity ratings of the filter papers soaked in 0.025% quinine were significantly higher in the PD patients compared with the control group. No inter-group differences were found in taste responses to chocolate and vanilla milk. Electrogustometric thresholds were significantly (p = 0.001) more sensitive in the PD patients. Conclusions: PD is not associated with any major alterations in responses to pleasant or unpleasant taste stimuli. Patients with PD may present enhanced taste acuity in terms of electrogustometric threshold. PMID:15607993

  15. Sensing of Taste

    NASA Astrophysics Data System (ADS)

    Toko, Kiyoshi

    A taste sensor with global selectivity, i. e., electronic tongue, is composed of several kinds of lipid/polymer membranes for transforming information of taste substances into electric signal. The sensor output shows different patterns for chemical substances which have different taste qualities such as saltiness and sourness. Taste interactions such as suppression effect, which occurs between bitterness and sweetness, can be detected and quantified using the taste sensor. Amino acids can be classified into several groups according to their own tastes from sensor outputs. The taste of foodstuffs such as beer, coffee, mineral water and milk can be discussed quantitatively. The taste sensor provides the objective scale for the human sensory expression. We are now standing at the beginning of a new age of communication using digitized taste.

  16. Cracking Taste Codes by Tapping into Sensory Neuron Impulse Traffic

    PubMed Central

    Frank, Marion E.; Lundy, Robert F.; Contreras, Robert J.

    2008-01-01

    Insights into the biological basis for mammalian taste quality coding began with electrophysiological recordings from “taste” nerves and this technique continues to produce essential information today. Chorda tympani (geniculate ganglion) neurons, which are particularly involved in taste quality discrimination, are specialists or generalists. Specialists respond to stimuli characterized by a single taste quality as defined by behavioral cross-generalization in conditioned taste tests. Generalists respond to electrolytes that elicit multiple aversive qualities. Na+-salt (N) specialists in rodents and sweet-stimulus (S) specialists in multiple orders of mammals are well-characterized. Specialists are associated with species’ nutritional needs and their activation is known to be malleable by internal physiological conditions and contaminated external caloric sources. S specialists, associated with the heterodimeric G-protein coupled receptor: T1R, and N specialists, associated with the epithelial sodium channel: ENaC, are consistent with labeled line coding from taste bud to afferent neuron. Yet, S-specialist neurons and behavior are less specific thanT1R2-3 in encompassing glutamate and E generalist neurons are much less specific than a candidate, PDK TRP channel, sour receptor in encompassing salts and bitter stimuli. Specialist labeled lines for nutrients and generalist patterns for aversive electrolytes may be transmitting taste information to the brain side by side. However, specific roles of generalists in taste quality coding may be resolved by selecting stimuli and stimulus levels found in natural situations. T2Rs, participating in reflexes via the glossopharynygeal nerve, became highly diversified in mammalian phylogenesis as they evolved to deal with dangerous substances within specific environmental niches. Establishing the information afferent neurons traffic to the brain about natural taste stimuli imbedded in dynamic complex mixtures will

  17. Taste information derived from T1R-expressing taste cells in mice.

    PubMed

    Yoshida, Ryusuke; Ninomiya, Yuzo

    2016-03-01

    The taste system of animals is used to detect valuable nutrients and harmful compounds in foods. In humans and mice, sweet, bitter, salty, sour and umami tastes are considered the five basic taste qualities. Sweet and umami tastes are mediated by G-protein-coupled receptors, belonging to the T1R (taste receptor type 1) family. This family consists of three members (T1R1, T1R2 and T1R3). They function as sweet or umami taste receptors by forming heterodimeric complexes, T1R1+T1R3 (umami) or T1R2+T1R3 (sweet). Receptors for each of the basic tastes are thought to be expressed exclusively in taste bud cells. Sweet (T1R2+T1R3-expressing) taste cells were thought to be segregated from umami (T1R1+T1R3-expressing) taste cells in taste buds. However, recent studies have revealed that a significant portion of taste cells in mice expressed all T1R subunits and responded to both sweet and umami compounds. This suggests that sweet and umami taste cells may not be segregated. Mice are able to discriminate between sweet and umami tastes, and both tastes contribute to behavioural preferences for sweet or umami compounds. There is growing evidence that T1R3 is also involved in behavioural avoidance of calcium tastes in mice, which implies that there may be a further population of T1R-expressing taste cells that mediate aversion to calcium taste. Therefore the simple view of detection and segregation of sweet and umami tastes by T1R-expressing taste cells, in mice, is now open to re-examination. © 2016 Authors; published by Portland Press Limited.

  18. Brain response to taste in overweight children: A pilot feasibility study

    PubMed Central

    Bohon, Cara

    2017-01-01

    Understanding the neural response to food and food cues during early stages of weight gain in childhood may help us determine the drive processes involved in unhealthy eating behavior and risk for obesity. Healthy weight and overweight children ages 6–8 (N = 18; 10 with BMI between 5th and 85th %ile and 8 with BMI >85th %ile) underwent fMRI scans while anticipating and receiving tastes of chocolate milkshake. Parents completed a Children’s Eating Behaviour Questionnaire. Results reveal greater response to milkshake taste receipt in overweight children in the right insula, operculum, precentral gyrus, and angular gyrus, and bilateral precuneus and posterior cingulate. No group differences were found for brain response to a visual food cue. Exploratory analyses revealed interactions between self-report measures of eating behavior and weight status on brain response to taste. This pilot study provides preliminary evidence of feasibility of studying young children’s taste processing and suggests a possible developmental shift in brain response to taste. PMID:28235080

  19. Mice Lacking Pannexin 1 Release ATP and Respond Normally to All Taste Qualities.

    PubMed

    Vandenbeuch, Aurelie; Anderson, Catherine B; Kinnamon, Sue C

    2015-09-01

    Adenosine triphosphate (ATP) is required for the transmission of all taste qualities from taste cells to afferent nerve fibers. ATP is released from Type II taste cells by a nonvesicular mechanism and activates purinergic receptors containing P2X2 and P2X3 on nerve fibers. Several ATP release channels are expressed in taste cells including CALHM1, Pannexin 1, Connexin 30, and Connexin 43, but whether all are involved in ATP release is not clear. We have used a global Pannexin 1 knock out (Panx1 KO) mouse in a series of in vitro and in vivo experiments. Our results confirm that Panx1 channels are absent in taste buds of the knockout mice and that other known ATP release channels are not upregulated. Using a luciferin/luciferase assay, we show that circumvallate taste buds from Panx1 KO mice normally release ATP upon taste stimulation compared with wild type (WT) mice. Gustatory nerve recordings in response to various tastants applied to the tongue and brief-access behavioral testing with SC45647 also show no difference between Panx1 KO and WT. These results confirm that Panx1 is not required for the taste evoked release of ATP or for neural and behavioral responses to taste stimuli. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Prenatal Drug Exposure and Adolescent Cortisol Reactivity: Association with Behavioral Concerns.

    PubMed

    Buckingham-Howes, Stacy; Mazza, Dayna; Wang, Yan; Granger, Douglas A; Black, Maureen M

    2016-09-01

    To examine stress reactivity in a sample of adolescents with prenatal drug exposure (PDE) by examining the consequences of PDE on stress-related adrenocortical reactivity, behavioral problems, and drug experimentation during adolescence. Participants (76 PDE, 61 non-drug exposed [NE]; 99% African-American; 50% male; mean age = 14.17 yr, SD = 1.17) provided a urine sample, completed a drug use questionnaire, and provided saliva samples (later assayed for cortisol) before and after a mild laboratory stress task. Caregivers completed the Behavior Assessment System for Children, Second Edition (BASC II) and reported their relationship to the adolescent. The NE group was more likely to exhibit task-related cortisol reactivity compared to the PDE group. Overall behavior problems and drug experimentation were comparable across groups with no differences between PDE and NE groups. In unadjusted mediation analyses, cortisol reactivity mediated the association between PDE and BASC II aggression scores (95% bootstrap confidence interval [CI], 0.04-4.28), externalizing problems scores (95% bootstrap CI, 0.03-4.50), and drug experimentation (95% bootstrap CI, 0.001-0.54). The associations remain with the inclusion of gender as a covariate but not when age is included. Findings support and expand current research in cortisol reactivity and PDE by demonstrating that cortisol reactivity attenuates the association between PDE and behavioral problems (aggression) and drug experimentation. If replicated, PDE may have long-lasting effects on stress-sensitive physiological mechanisms associated with behavioral problems (aggression) and drug experimentation in adolescence.

  1. NEURAL ORGANIZATION OF SENSORY INFORMATIONS FOR TASTE,

    DTIC Science & Technology

    TASTE , ELECTROPHYSIOLOGY), (*NERVES, *TONGUE), NERVE CELLS, NERVE IMPULSES, PHYSIOLOGY, NERVOUS SYSTEM, STIMULATION(PHYSIOLOGY), NERVE FIBERS, RATS...HAMSTERS, STIMULATION(PHYSIOLOGY), PERCEPTION, COOLING, BEHAVIOR, PSYCHOPHYSIOLOGY, TEMPERATURE, THRESHOLDS(PHYSIOLOGY), CHEMORECEPTORS , STATISTICAL ANALYSIS, JAPAN

  2. Taste-dependent sociophobia: when food and company do not mix.

    PubMed

    Guitton, Matthieu J; Klin, Yael; Dudai, Yadin

    2008-08-22

    Using a combination of the paradigm of conditioned taste aversion (CTA) and of the paradigm of social interactions, we report here that in the rat, eating while anxious may result in long-term alterations in social behavior. In the conventional CTA, the subject learns to associate a tastant (the conditioned stimulus, CS) with delayed toxicosis (an unconditioned stimulus, UCS) to yield taste aversion (the conditioned response, CR). However, the association of taste with delayed negative internal states that could generate CRs that are different from taste aversion should not be neglected. Such associations may contribute to the ontogenesis, reinforcement and symptoms of some types of taste- and food-related disorders. We have recently reported that a delayed anxiety-like state, induced by the anxiogenic drug meta-chlorophenylpiperazine (mCPP), can specifically associate with taste to produce CTA. We now show that a similar protocol results in a marked lingering impairment in social interactions in response to the conditioned taste. This is hence a learned situation in which food and company do not mix well.

  3. Salivary cortisol reactivity in preschoolers is associated with hair cortisol and behavioral problems.

    PubMed

    Kao, Katie; Doan, Stacey N; St John, Ashley M; Meyer, Jerrold S; Tarullo, Amanda R

    2018-01-01

    The interplay between children's cortisol reactivity to challenge and cumulative cortisol exposure is not well understood. Examining the role of cortisol reactivity in early childhood may elucidate biological mechanisms that contribute to children's chronic physiological stress and behavioral dysregulation. In a sample of 65 preschool-aged children, we examined the relation between children's salivary cortisol reactivity to challenging tasks and their hair cortisol concentration (HCC). While both are biomarkers of the hypothalamic-pituitary-adrenal (HPA) axis, salivary cortisol reactivity reflects an acute cortisol response to a stressor and HCC reflects cumulative cortisol exposure. In addition, we examined the relations of these stress biomarkers with internalizing and externalizing problems. Salivary cortisol reactivity was associated with higher HCC and with increased externalizing behaviors. Child HCC also was positively correlated with parent HCC. Results highlight the contributions of salivary cortisol reactivity to children's cumulative cortisol exposure, which may add to their biological risk for health problems later. The observed association between externalizing problems and salivary cortisol reactivity indicates concordances between dysregulated behavioral reactions and dysregulated cortisol responses to challenges. The finding that salivary cortisol reactivity to challenge in early childhood plays a role in children's cumulative cortisol exposure and behavioral development suggests pathways through which cortisol reactivity may influence long-term physical and mental health.

  4. A comparison of English and Japanese taste languages: taste descriptive methodology, codability and the umami taste.

    PubMed

    O'Mahony, M; Ishii, R

    1986-05-01

    Everyday taste descriptions for a range of stimuli were obtained from selected groups of American and Japanese subjects, using a variety of stimuli, stimulus presentation procedures and response conditions. In English there was a tendency to use a quadrapartite classification system: 'sweet', 'sour', 'salty' and 'bitter'. The Japanese had a different strategy, adding a fifth label: 'Ajinomoto', referring to the taste of monosodium glutamate. This label was generally replaced by umami--the scientific term--by Japanese who were workers or trained tasters involved with glutamate manufacture. Cultural differences in taste language have consequences for taste psychophysicists who impose a quadrapartite restriction on allowable taste descriptions. Stimulus presentation by filter-paper or aqueous solution elicited the same response trends. Language codability was only an indicator of degree of taste mixedness/singularity if used statistically with samples of sufficient size; it had little value as an indicator for individual subjects.

  5. Nutrition training for chefs: taste as an essential determinant of choice.

    PubMed

    Palmer, J; Leontos, C

    1995-12-01

    The primary objective of Project LEAN (Low-fat Eating for Americans Now), a social marketing initiative of the Henry J. Kaiser Family Foundation, is to help Americans reduce their fat intake to less than 30% of total energy. In Las Vegas, Nev, one of the 10 community sites selected to implement this goal, Las Vegas LEAN acted to change the food environment for restaurant patrons. This program empowered chefs to use their culinary expertise in developing good-tasting, low-fat menu items. The literature shows that consumers, despite verbalizing health concerns, choose food on the basis of taste. This ambivalence between belief and behavior demonstrates the need for innovative culinary techniques to develop food dishes that consumers will not only accept, but will enjoy and order repeatedly. Entrepreneurial dietitians, thus, have an opportunity to market nutrition skills to restaurants and hotels wishing to implement low-fat cuisine with good taste. Our intervention demonstrated that nutrition education for chefs is the key to long-term and successful menu changes. If taste is what consumers are seeking in low-fat items, and improved taste will finally get ambivalent consumers to change their eating behavior, enlisting the expertise of chefs is key.

  6. Age-Related Changes in Mouse Taste Bud Morphology, Hormone Expression, and Taste Responsivity

    PubMed Central

    Shin, Yu-Kyong; Cong, Wei-na; Cai, Huan; Kim, Wook; Maudsley, Stuart; Martin, Bronwen

    2012-01-01

    Normal aging is a complex process that affects every organ system in the body, including the taste system. Thus, we investigated the effects of the normal aging process on taste bud morphology, function, and taste responsivity in male mice at 2, 10, and 18 months of age. The 18-month-old animals demonstrated a significant reduction in taste bud size and number of taste cells per bud compared with the 2- and 10-month-old animals. The 18-month-old animals exhibited a significant reduction of protein gene product 9.5 and sonic hedgehog immunoreactivity (taste cell markers). The number of taste cells expressing the sweet taste receptor subunit, T1R3, and the sweet taste modulating hormone, glucagon-like peptide-1, were reduced in the 18-month-old mice. Concordant with taste cell alterations, the 18-month-old animals demonstrated reduced sweet taste responsivity compared with the younger animals and the other major taste modalities (salty, sour, and bitter) remained intact. PMID:22056740

  7. Age-related changes in mouse taste bud morphology, hormone expression, and taste responsivity.

    PubMed

    Shin, Yu-Kyong; Cong, Wei-na; Cai, Huan; Kim, Wook; Maudsley, Stuart; Egan, Josephine M; Martin, Bronwen

    2012-04-01

    Normal aging is a complex process that affects every organ system in the body, including the taste system. Thus, we investigated the effects of the normal aging process on taste bud morphology, function, and taste responsivity in male mice at 2, 10, and 18 months of age. The 18-month-old animals demonstrated a significant reduction in taste bud size and number of taste cells per bud compared with the 2- and 10-month-old animals. The 18-month-old animals exhibited a significant reduction of protein gene product 9.5 and sonic hedgehog immunoreactivity (taste cell markers). The number of taste cells expressing the sweet taste receptor subunit, T1R3, and the sweet taste modulating hormone, glucagon-like peptide-1, were reduced in the 18-month-old mice. Concordant with taste cell alterations, the 18-month-old animals demonstrated reduced sweet taste responsivity compared with the younger animals and the other major taste modalities (salty, sour, and bitter) remained intact.

  8. Umami Responses in Mouse Taste Cells Indicate More than One Receptor

    PubMed Central

    Maruyama, Yutaka; Pereira, Elizabeth; Margolskee, Robert F.; Chaudhari, Nirupa; Roper, Stephen D.

    2013-01-01

    A number of gustatory receptors have been proposed to underlie umami, the taste of L-glutamate, and certain other amino acids and nucleotides. However, the response profiles of these cloned receptors have not been validated against responses recorded from taste receptor cells that are the native detectors of umami taste. We investigated umami taste responses in mouse circumvallate taste buds in an intact slice preparation, using confocal calcium imaging. Approximately 5% of taste cells selectively responded to L-glutamate when it was focally applied to the apical chemosensitive tips of receptor cells. The concentration–response range for L-glutamate fell approximately within the physiologically relevant range for taste behavior in mice, namely 10 mM and above. Inosine monophosphate enhanced taste cell responses to L-glutamate, a characteristic feature of umami taste. Using pharmacological agents, ion substitution, and immunostaining, we showed that intracellular pathways downstream of receptor activation involve phospholipase C β2. Each of the above features matches those predicted by studies of cloned and expressed receptors. However, the ligand specificity of each of the proposed umami receptors [taste metabotropic glutamate receptor 4, truncated metabotropic glutamate receptor 1, or taste receptor 1 (T1R1) and T1R3 dimers], taken alone, did not appear to explain the taste responses observed in mouse taste cells. Furthermore, umami responses were still observed in mutant mice lacking T1R3. A full explanation of umami taste transduction may involve novel combinations of the proposed receptors and/or as-yet-undiscovered taste receptors. PMID:16495449

  9. Why do we like sweet taste: A bitter tale?

    PubMed Central

    Beauchamp, Gary K.

    2016-01-01

    Sweet is widely considered to be one of a small number of basic or primary taste qualities. Liking for sweet tasting substances is innate, although postnatal experiences can shape responses. The power of sweet taste to induce consumption and to motivate behavior is profound, suggesting the importance of this sense for many species. Most investigators presume that the ability to identify sweet molecules through the sense of taste evolved to allow organisms to detect sources of readily available glucose from plants. Perhaps the best evidence supporting this presumption are recent discoveries in comparative biology demonstrating that species in the order Carnivora that do not consume plants also do not perceive sweet taste due to the pseudogenization of a component of the primary sweet taste receptor. However, arguing against this idea is the observation that the sweetness of a plant, or the amount of easily metabolizable sugars contained in the plant, provides little quantitative indication of the plant’s energy or broadly conceived food value. Here it is suggested that the perceptual ratio of sweet taste to bitter taste (a signal for toxicity) may be a better gauge of a plant’s broadly conceived food value than sweetness alone and that it is this ratio that helps guide selection or rejection of a potential plant food. PMID:27174610

  10. Altered lipid and salt taste responsivity in ghrelin and GOAT null mice.

    PubMed

    Cai, Huan; Cong, Wei-Na; Daimon, Caitlin M; Wang, Rui; Tschöp, Matthias H; Sévigny, Jean; Martin, Bronwen; Maudsley, Stuart

    2013-01-01

    Taste perception plays an important role in regulating food preference, eating behavior and energy homeostasis. Taste perception is modulated by a variety of factors, including gastric hormones such as ghrelin. Ghrelin can regulate growth hormone release, food intake, adiposity, and energy metabolism. Octanoylation of ghrelin by ghrelin O-acyltransferase (GOAT) is a specific post-translational modification which is essential for many biological activities of ghrelin. Ghrelin and GOAT are both widely expressed in many organs including the gustatory system. In the current study, overall metabolic profiles were assessed in wild-type (WT), ghrelin knockout (ghrelin(-/-)), and GOAT knockout (GOAT(-/-)) mice. Ghrelin(-/-) mice exhibited decreased food intake, increased plasma triglycerides and increased ketone bodies compared to WT mice while demonstrating WT-like body weight, fat composition and glucose control. In contrast GOAT(-/-) mice exhibited reduced body weight, adiposity, resting glucose and insulin levels compared to WT mice. Brief access taste behavioral tests were performed to determine taste responsivity in WT, ghrelin(-/-) and GOAT(-/-) mice. Ghrelin and GOAT null mice possessed reduced lipid taste responsivity. Furthermore, we found that salty taste responsivity was attenuated in ghrelin(-/-) mice, yet potentiated in GOAT(-/-) mice compared to WT mice. Expression of the potential lipid taste regulators Cd36 and Gpr120 were reduced in the taste buds of ghrelin and GOAT null mice, while the salt-sensitive ENaC subunit was increased in GOAT(-/-) mice compared with WT mice. The altered expression of Cd36, Gpr120 and ENaC may be responsible for the altered lipid and salt taste perception in ghrelin(-/-) and GOAT(-/-) mice. The data presented in the current study potentially implicates ghrelin signaling activity in the modulation of both lipid and salt taste modalities.

  11. A2BR adenosine receptor modulates sweet taste in circumvallate taste buds.

    PubMed

    Kataoka, Shinji; Baquero, Arian; Yang, Dan; Shultz, Nicole; Vandenbeuch, Aurelie; Ravid, Katya; Kinnamon, Sue C; Finger, Thomas E

    2012-01-01

    In response to taste stimulation, taste buds release ATP, which activates ionotropic ATP receptors (P2X2/P2X3) on taste nerves as well as metabotropic (P2Y) purinergic receptors on taste bud cells. The action of the extracellular ATP is terminated by ectonucleotidases, ultimately generating adenosine, which itself can activate one or more G-protein coupled adenosine receptors: A1, A2A, A2B, and A3. Here we investigated the expression of adenosine receptors in mouse taste buds at both the nucleotide and protein expression levels. Of the adenosine receptors, only A2B receptor (A2BR) is expressed specifically in taste epithelia. Further, A2BR is expressed abundantly only in a subset of taste bud cells of posterior (circumvallate, foliate), but not anterior (fungiform, palate) taste fields in mice. Analysis of double-labeled tissue indicates that A2BR occurs on Type II taste bud cells that also express Gα14, which is present only in sweet-sensitive taste cells of the foliate and circumvallate papillae. Glossopharyngeal nerve recordings from A2BR knockout mice show significantly reduced responses to both sucrose and synthetic sweeteners, but normal responses to tastants representing other qualities. Thus, our study identified a novel regulator of sweet taste, the A2BR, which functions to potentiate sweet responses in posterior lingual taste fields.

  12. A2BR Adenosine Receptor Modulates Sweet Taste in Circumvallate Taste Buds

    PubMed Central

    Yang, Dan; Shultz, Nicole; Vandenbeuch, Aurelie; Ravid, Katya; Kinnamon, Sue C.; Finger, Thomas E.

    2012-01-01

    In response to taste stimulation, taste buds release ATP, which activates ionotropic ATP receptors (P2X2/P2X3) on taste nerves as well as metabotropic (P2Y) purinergic receptors on taste bud cells. The action of the extracellular ATP is terminated by ectonucleotidases, ultimately generating adenosine, which itself can activate one or more G-protein coupled adenosine receptors: A1, A2A, A2B, and A3. Here we investigated the expression of adenosine receptors in mouse taste buds at both the nucleotide and protein expression levels. Of the adenosine receptors, only A2B receptor (A2BR) is expressed specifically in taste epithelia. Further, A2BR is expressed abundantly only in a subset of taste bud cells of posterior (circumvallate, foliate), but not anterior (fungiform, palate) taste fields in mice. Analysis of double-labeled tissue indicates that A2BR occurs on Type II taste bud cells that also express Gα14, which is present only in sweet-sensitive taste cells of the foliate and circumvallate papillae. Glossopharyngeal nerve recordings from A2BR knockout mice show significantly reduced responses to both sucrose and synthetic sweeteners, but normal responses to tastants representing other qualities. Thus, our study identified a novel regulator of sweet taste, the A2BR, which functions to potentiate sweet responses in posterior lingual taste fields. PMID:22253866

  13. Glucagon-like peptide-1 is specifically involved in sweet taste transmission.

    PubMed

    Takai, Shingo; Yasumatsu, Keiko; Inoue, Mayuko; Iwata, Shusuke; Yoshida, Ryusuke; Shigemura, Noriatsu; Yanagawa, Yuchio; Drucker, Daniel J; Margolskee, Robert F; Ninomiya, Yuzo

    2015-06-01

    Five fundamental taste qualities (sweet, bitter, salty, sour, umami) are sensed by dedicated taste cells (TCs) that relay quality information to gustatory nerve fibers. In peripheral taste signaling pathways, ATP has been identified as a functional neurotransmitter, but it remains to be determined how specificity of different taste qualities is maintained across synapses. Recent studies demonstrated that some gut peptides are released from taste buds by prolonged application of particular taste stimuli, suggesting their potential involvement in taste information coding. In this study, we focused on the function of glucagon-like peptide-1 (GLP-1) in initial responses to taste stimulation. GLP-1 receptor (GLP-1R) null mice had reduced neural and behavioral responses specifically to sweet compounds compared to wild-type (WT) mice. Some sweet responsive TCs expressed GLP-1 and its receptors were expressed in gustatory neurons. GLP-1 was released immediately from taste bud cells in response to sweet compounds but not to other taste stimuli. Intravenous administration of GLP-1 elicited transient responses in a subset of sweet-sensitive gustatory nerve fibers but did not affect other types of fibers, and this response was suppressed by pre-administration of the GLP-1R antagonist Exendin-4(3-39). Thus GLP-1 may be involved in normal sweet taste signal transmission in mice. © FASEB.

  14. Post-Acquisition Release of Glutamate and Norepinephrine in the Amygdala Is Involved in Taste-Aversion Memory Consolidation

    ERIC Educational Resources Information Center

    Guzman-Ramos, Kioko; Osorio-Gomez, Daniel; Moreno-Castilla, Perla; Bermudez-Rattoni, Federico

    2012-01-01

    Amygdala activity mediates the acquisition and consolidation of emotional experiences; we have recently shown that post-acquisition reactivation of this structure is necessary for the long-term storage of conditioned taste aversion (CTA). However, the specific neurotransmitters involved in such reactivation are not known. The aim of the present…

  15. The Taste of Caffeine

    PubMed Central

    Tordoff, Michael G.

    2017-01-01

    Many people avidly consume foods and drinks containing caffeine, despite its bitter taste. Here, we review what is known about caffeine as a bitter taste stimulus. Topics include caffeine's action on the canonical bitter taste receptor pathway and caffeine's action on noncanonical receptor-dependent and -independent pathways in taste cells. Two conclusions are that (1) caffeine is a poor prototypical bitter taste stimulus because it acts on bitter taste receptor-independent pathways, and (2) caffeinated products most likely stimulate “taste” receptors in nongustatory cells. This review is relevant for taste researchers, manufacturers of caffeinated products, and caffeine consumers. PMID:28660093

  16. Stress-induced reliance on habitual behavior is moderated by cortisol reactivity.

    PubMed

    Smeets, T; van Ruitenbeek, P; Hartogsveld, B; Quaedflieg, Conny W E M

    2018-05-25

    Instrumental learning, i.e., learning that specific behaviors lead to desired outcomes, occurs through goal-directed and habit memory systems. Exposure to acute stress has been shown to result in less goal-directed control, thus rendering behavior more habitual. The aim of the current studies was to replicate and extend findings on stress-induced prompting of habitual responding and specifically focused on the role of stress-induced cortisol reactivity. Study 1 used an established outcome devaluation paradigm to assess goal-directed and habitual control. Study 2 utilized a modified version of this paradigm that was intended to establish stronger habitual responding through more extensive reward training and applying a relevant behavioral devaluation procedure (i.e., eating to satiety). Both studies failed to replicate that stress overall, i.e., independent of cortisol reactivity, shifted behavior from goal-directed to habitual control. However, both studies found that relative to stress-exposed cortisol non-responders and no-stress controls, participants displaying stress-induced cortisol reactivity displayed prominent habitual responding. These findings highlight the importance of stress-induced cortisol reactivity in facilitating habits. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Molecular and cellular organization of taste neurons in adult Drosophila pharynx

    PubMed Central

    Chen, Yu-Chieh (David); Dahanukar, Anupama

    2017-01-01

    SUMMARY The Drosophila pharyngeal taste organs are poorly characterized despite their location at important sites for monitoring food quality. Functional analysis of pharyngeal neurons has been hindered by the paucity of molecular tools to manipulate them, as well as their relative inaccessibility for neurophysiological investigations. Here, we generate receptor-to-neuron maps of all three pharyngeal taste organs by performing a comprehensive chemoreceptor-GAL4/LexA expression analysis. The organization of pharyngeal neurons reveals similarities and distinctions in receptor repertoires and neuronal groupings compared to external taste neurons. We validate the mapping results by pinpointing a single pharyngeal neuron required for feeding avoidance of L-canavanine. Inducible activation of pharyngeal taste neurons reveals functional differences between external and internal taste neurons and functional subdivision within pharyngeal sweet neurons. Our results provide road maps of pharyngeal taste organs in an insect model system for probing the role of these understudied neurons in controlling feeding behaviors. PMID:29212040

  18. Affective reactivity to cry sounds predicts young women's reactivity and behavior in a simulated caregiving task.

    PubMed

    Gustafson, Gwen E; Bisson, Jennifer B; MacDonald, Jillian M; Green, James A

    2017-09-13

    Different populations of adults (experienced vs. inexperienced caregivers, men vs. women, abusive vs. nonabusive parents, etc.) have been reported to differ in their affective reactions to the sounds of infant crying. These differences are thought to impact caregiving behavior and, in some instances, to affect long-term outcomes for infants. There can be great intra-group variation, however, even when group differences are significant; modeling developmental process will require a finer grained approach. We have undertaken a pair of studies intended to validate the Negative Affect Scale (NA) from the PANAS as a measure of individuals' affective reactivity to cry sounds. In Study 1, 306 young women who were not yet mothers listened either to infant crying or to birdsong. The results supported the NA as a measure of reactivity to crying. In Study 2, a new sample of 301 young women listened to crying in a screening task; a group of "high reactors" (n=21) and a group of "low reactors" (n=22) then participated in a simulated caregiving situation. Individuals' affective reactivity to the caregiving simulation mirrored their affective reactivity in the screening task, and rates and overall organization of caregiving behavior differed between the groups. Changes in negative affect, then, appear to be both a result of infant crying and a determinant of some aspects of caregiving behavior. Further studies will extend these laboratory results to real infants and their caregivers, and further validate the NA as a measure of individual differences in reactivity to cry sounds. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Adenosine enhances sweet taste through A2B receptors in the taste bud

    PubMed Central

    Dando, Robin; Dvoryanchikov, Gennady; Pereira, Elizabeth; Chaudhari, Nirupa; Roper, Stephen D.

    2012-01-01

    Mammalian taste buds use ATP as a neurotransmitter. Taste Receptor (Type II) cells secrete ATP via gap junction hemichannels into the narrow extracellular spaces within a taste bud. This ATP excites primary sensory afferent fibers and also stimulates neighboring taste bud cells. Here we show that extracellular ATP is enzymatically degraded to adenosine within mouse vallate taste buds and that this nucleoside acts as an autocrine neuromodulator to selectively enhance sweet taste. In Receptor cells in a lingual slice preparation, Ca2+ mobilization evoked by focally applied artificial sweeteners was significantly enhanced by adenosine (50 µM). Adenosine had no effect on bitter or umami taste responses, and the nucleoside did not affect Presynaptic (Type III) taste cells. We also used biosensor cells to measure transmitter release from isolated taste buds. Adenosine (5 µM) enhanced ATP release evoked by sweet but not bitter taste stimuli. Using single-cell RT-PCR on isolated vallate taste cells, we show that many Receptor cells express adenosine receptors, Adora2b, while Presynaptic (Type III) and Glial-like (Type I) cells seldom do. Furthermore, Adora2b receptors are significantly associated with expression of the sweet taste receptor subunit, Tas1r2. Adenosine is generated during taste stimulation mainly by the action of the ecto-5′-nucleotidase, NT5E, and to a lesser extent, prostatic acid phosphatase (ACPP). Both these ecto-nucleotidases are expressed by Presynaptic cells, as shown by single-cell RT-PCR, enzyme histochemistry and immunofluorescence. Our findings suggest that ATP released during taste reception is degraded to adenosine to exert positive modulation particularly on sweet taste. PMID:22219293

  20. Adenosine enhances sweet taste through A2B receptors in the taste bud.

    PubMed

    Dando, Robin; Dvoryanchikov, Gennady; Pereira, Elizabeth; Chaudhari, Nirupa; Roper, Stephen D

    2012-01-04

    Mammalian taste buds use ATP as a neurotransmitter. Taste Receptor (type II) cells secrete ATP via gap junction hemichannels into the narrow extracellular spaces within a taste bud. This ATP excites primary sensory afferent fibers and also stimulates neighboring taste bud cells. Here we show that extracellular ATP is enzymatically degraded to adenosine within mouse vallate taste buds and that this nucleoside acts as an autocrine neuromodulator to selectively enhance sweet taste. In Receptor cells in a lingual slice preparation, Ca(2+) mobilization evoked by focally applied artificial sweeteners was significantly enhanced by adenosine (50 μM). Adenosine had no effect on bitter or umami taste responses, and the nucleoside did not affect Presynaptic (type III) taste cells. We also used biosensor cells to measure transmitter release from isolated taste buds. Adenosine (5 μM) enhanced ATP release evoked by sweet but not bitter taste stimuli. Using single-cell reverse transcriptase (RT)-PCR on isolated vallate taste cells, we show that many Receptor cells express the adenosine receptor, Adora2b, while Presynaptic (type III) and Glial-like (type I) cells seldom do. Furthermore, Adora2b receptors are significantly associated with expression of the sweet taste receptor subunit, Tas1r2. Adenosine is generated during taste stimulation mainly by the action of the ecto-5'-nucleotidase, NT5E, and to a lesser extent, prostatic acid phosphatase. Both these ecto-nucleotidases are expressed by Presynaptic cells, as shown by single-cell RT-PCR, enzyme histochemistry, and immunofluorescence. Our findings suggest that ATP released during taste reception is degraded to adenosine to exert positive modulation particularly on sweet taste.

  1. Taste Receptor Genes

    PubMed Central

    Bachmanov, Alexander A.; Beauchamp, Gary K.

    2009-01-01

    In the past several years, tremendous progress has been achieved with the discovery and characterization of vertebrate taste receptors from the T1R and T2R families, which are involved in recognition of bitter, sweet, and umami taste stimuli. Individual differences in taste, at least in some cases, can be attributed to allelic variants of the T1R and T2R genes. Progress with understanding how T1R and T2R receptors interact with taste stimuli and with identifying their patterns of expression in taste cells sheds light on coding of taste information by the nervous system. Candidate mechanisms for detection of salts, acids, fat, complex carbohydrates, and water have also been proposed, but further studies are needed to prove their identity. PMID:17444812

  2. THE TASTE OF SUGARS

    PubMed Central

    McCaughey, Stuart A.

    2008-01-01

    Sugars evoke a distinctive perceptual quality (“sweetness” in humans) and are generally highly preferred. The neural basis for these phenomena is reviewed for rodents, in which detailed electrophysiological measurements have been made. A receptor has been identified that binds sweeteners and activates G-protein-mediated signaling in taste receptor cells, which leads to changes in neural firing rates in the brain, where perceptions of taste quality, intensity, and palatability are generated. Most cells in gustatory nuclei are broadly-tuned, so quality perception presumably arises from patterns of activity across neural populations. However, some manipulations affect only the most sugar-oriented cells, making it useful to consider them as a distinct neural subtype. Quality perception may also arise partly due to temporal patterns of activity to sugars, especially within sugar-oriented cells that give large but delayed responses. Non-specific gustatory neurons that are excited by both sugars and unpalatable stimuli project to ventral forebrain areas, where neural responses provide a closer match with behavioral preferences. This transition likely involves opposing excitatory and inhibitory influences by different subgroups of gustatory cells. Sweeteners are generally preferred over water, but the strength of this preference can vary across time or between individuals, and higher preferences for sugars are often associated with larger taste-evoked responses. PMID:18499254

  3. Orosensory and Homeostatic Functions of the Insular Taste Cortex.

    PubMed

    de Araujo, Ivan E; Geha, Paul; Small, Dana M

    2012-03-01

    The gustatory aspect of the insular cortex is part of the brain circuit that controls ingestive behaviors based on chemosensory inputs. However, the sensory properties of foods are not restricted to taste and should also include salient features such as odor, texture, temperature, and appearance. Therefore, it is reasonable to hypothesize that specialized circuits within the central taste pathways must be involved in representing several other oral sensory modalities in addition to taste. In this review, we evaluate current evidence indicating that the insular gustatory cortex functions as an integrative circuit, with taste-responsive regions also showing heightened sensitivity to olfactory, somatosensory, and even visual stimulation. We also review evidence for modulation of taste-responsive insular areas by changes in physiological state, with taste-elicited neuronal responses varying according to the nutritional state of the organism. We then examine experimental support for a functional map within the insular cortex that might reflect the various sensory and homeostatic roles associated with this region. Finally, we evaluate the potential role of the taste insular cortex in weight-gain susceptibility. Taken together, the current experimental evidence favors the view that the insular gustatory cortex functions as an orosensory integrative system that not only enables the formation of complex flavor representations but also mediates their modulation by the internal state of the body, playing therefore a central role in food intake regulation.

  4. Targeted taste cell-specific overexpression of brain-derived neurotrophic factor in adult taste buds elevates phosphorylated TrkB protein levels in taste cells, increases taste bud size, and promotes gustatory innervation.

    PubMed

    Nosrat, Irina V; Margolskee, Robert F; Nosrat, Christopher A

    2012-05-11

    Brain-derived neurotrophic factor (BDNF) is the most potent neurotrophic factor in the peripheral taste system during embryonic development. It is also expressed in adult taste buds. There is a lack of understanding of the role of BDNF in the adult taste system. To address this, we generated novel transgenic mice in which transgene expression was driven by an α-gustducin promoter coupling BDNF expression to the postnatal expression of gustducin in taste cells. Immunohistochemistry revealed significantly stronger BDNF labeling in taste cells of high BDNF-expressing mouse lines compared with controls. We show that taste buds in these mice are significantly larger and have a larger number of taste cells compared with controls. To examine whether innervation was affected in Gust-BDNF mice, we used antibodies to neural cell adhesion molecule (NCAM) and ATP receptor P2X3. The total density of general innervation and specifically the gustatory innervation was markedly increased in high BDNF-expressing mice compared with controls. TrkB and NCAM gene expression in laser capture microdissected taste epithelia were significantly up-regulated in these mice. Up-regulation of TrkB transcripts in taste buds and elevated taste cell-specific TrkB phosphorylation in response to increased BDNF levels indicate that BDNF controls the expression and activation of its high affinity receptor in taste cells. This demonstrates a direct taste cell function for BDNF. BDNF also orchestrates and maintains taste bud innervation. We propose that the Gust-BDNF transgenic mouse models can be employed to further dissect the specific roles of BDNF in the adult taste system.

  5. Glucagon-like peptide-1 is specifically involved in sweet taste transmission

    PubMed Central

    Takai, Shingo; Yasumatsu, Keiko; Inoue, Mayuko; Iwata, Shusuke; Yoshida, Ryusuke; Shigemura, Noriatsu; Yanagawa, Yuchio; Drucker, Daniel J.; Margolskee, Robert F.; Ninomiya, Yuzo

    2015-01-01

    Five fundamental taste qualities (sweet, bitter, salty, sour, umami) are sensed by dedicated taste cells (TCs) that relay quality information to gustatory nerve fibers. In peripheral taste signaling pathways, ATP has been identified as a functional neurotransmitter, but it remains to be determined how specificity of different taste qualities is maintained across synapses. Recent studies demonstrated that some gut peptides are released from taste buds by prolonged application of particular taste stimuli, suggesting their potential involvement in taste information coding. In this study, we focused on the function of glucagon-like peptide-1 (GLP-1) in initial responses to taste stimulation. GLP-1 receptor (GLP-1R) null mice had reduced neural and behavioral responses specifically to sweet compounds compared to wild-type (WT) mice. Some sweet responsive TCs expressed GLP-1 and its receptors were expressed in gustatory neurons. GLP-1 was released immediately from taste bud cells in response to sweet compounds but not to other taste stimuli. Intravenous administration of GLP-1 elicited transient responses in a subset of sweet-sensitive gustatory nerve fibers but did not affect other types of fibers, and this response was suppressed by pre-administration of the GLP-1R antagonist Exendin-4(3-39). Thus GLP-1 may be involved in normal sweet taste signal transmission in mice.—Takai, S., Yasumatsu, K., Inoue, M., Iwata, S., Yoshida, R., Shigemura, N., Yanagawa, Y., Drucker, D. J., Margolskee, R. F., Ninomiya, Y. Glucagon-like peptide-1 is specifically involved in sweet taste transmission. PMID:25678625

  6. Massive Losses of Taste Receptor Genes in Toothed and Baleen Whales

    PubMed Central

    Feng, Ping; Zheng, Jinsong; Rossiter, Stephen J.; Wang, Ding; Zhao, Huabin

    2014-01-01

    Taste receptor genes are functionally important in animals, with a surprising exception in the bottlenose dolphin, which shows extensive losses of sweet, umami, and bitter taste receptor genes. To examine the generality of taste gene loss, we examined seven toothed whales and five baleen whales and sequenced the complete repertoire of three sweet/umami (T1Rs) and ten bitter (T2Rs) taste receptor genes. We found all amplified T1Rs and T2Rs to be pseudogenes in all 12 whales, with a shared premature stop codon in 10 of the 13 genes, which demonstrated massive losses of taste receptor genes in the common ancestor of whales. Furthermore, we analyzed three genome sequences from two toothed whales and one baleen whale and found that the sour taste marker gene Pkd2l1 is a pseudogene, whereas the candidate salty taste receptor genes are intact and putatively functional. Additionally, we examined three genes that are responsible for taste signal transduction and found the relaxation of functional constraints on taste signaling pathways along the ancestral branch leading to whales. Together, our results strongly suggest extensive losses of sweet, umami, bitter, and sour tastes in whales, and the relaxation of taste function most likely arose in the common ancestor of whales between 36 and 53 Ma. Therefore, whales represent the first animal group to lack four of five primary tastes, probably driven by the marine environment with high concentration of sodium, the feeding behavior of swallowing prey whole, and the dietary switch from plants to meat in the whale ancestor. PMID:24803572

  7. Modulation of taste responsiveness by the satiation hormone peptide YY

    PubMed Central

    La Sala, Michael S.; Hurtado, Maria D.; Brown, Alicia R.; Bohórquez, Diego V.; Liddle, Rodger A.; Herzog, Herbert; Zolotukhin, Sergei; Dotson, Cedrick D.

    2013-01-01

    It has been hypothesized that the peripheral taste system may be modulated in the context of an animal's metabolic state. One purported mechanism for this phenomenon is that circulating gastrointestinal peptides modulate the functioning of the peripheral gustatory system. Recent evidence suggests endocrine signaling in the oral cavity can influence food intake (FI) and satiety. We hypothesized that these hormones may be affecting FI by influencing taste perception. We used immunohistochemistry along with genetic knockout models and the specific reconstitution of peptide YY (PYY) in saliva using gene therapy protocols to identify a role for PYY signaling in taste. We show that PYY is expressed in subsets of taste cells in murine taste buds. We also show, using brief-access testing with PYY knockouts, that PYY signaling modulates responsiveness to bitter-tasting stimuli, as well as to lipid emulsions. We show that salivary PYY augmentation, via viral vector therapy, rescues behavioral responsiveness to a lipid emulsion but not to bitter stimuli and that this response is likely mediated via activation of Y2 receptors localized apically in taste cells. Our findings suggest distinct functions for PYY produced locally in taste cells vs. that circulating systemically.—La Sala, M. S., Hurtado, M. D., Brown, A. R., Bohórquez, D. V., Liddle, R. A., Herzog, H., Zolotukhin, S., Dotson, C. D. Modulation of taste responsiveness by the satiation hormone peptide YY. PMID:24043261

  8. T1r3 taste receptor involvement in gustatory neural responses to ethanol and oral ethanol preference.

    PubMed

    Brasser, Susan M; Norman, Meghan B; Lemon, Christian H

    2010-05-01

    Elevated alcohol consumption is associated with enhanced preference for sweet substances across species and may be mediated by oral alcohol-induced activation of neurobiological substrates for sweet taste. Here, we directly examined the contribution of the T1r3 receptor protein, important for sweet taste detection in mammals, to ethanol intake and preference and the neural processing of ethanol taste by measuring behavioral and central neurophysiological responses to oral alcohol in T1r3 receptor-deficient mice and their C57BL/6J background strain. T1r3 knockout and wild-type mice were tested in behavioral preference assays for long-term voluntary intake of a broad concentration range of ethanol, sucrose, and quinine. For neurophysiological experiments, separate groups of mice of each genotype were anesthetized, and taste responses to ethanol and stimuli of different taste qualities were electrophysiologically recorded from gustatory neurons in the nucleus of the solitary tract. Mice lacking the T1r3 receptor were behaviorally indifferent to alcohol (i.e., ∼50% preference values) at concentrations typically preferred by wild-type mice (5-15%). Central neural taste responses to ethanol in T1r3-deficient mice were significantly lower compared with C57BL/6J controls, a strain for which oral ethanol stimulation produced a concentration-dependent activation of sweet-responsive NTS gustatory neurons. An attenuated difference in ethanol preference between knockouts and controls at concentrations >15% indicated that other sensory and/or postingestive effects of ethanol compete with sweet taste input at high concentrations. As expected, T1r3 knockouts exhibited strongly suppressed behavioral and neural taste responses to sweeteners but did not differ from wild-type mice in responses to prototypic salt, acid, or bitter stimuli. These data implicate the T1r3 receptor in the sensory detection and transduction of ethanol taste.

  9. Presynaptic (Type III) cells in mouse taste buds sense sour (acid) taste.

    PubMed

    Huang, Yijen A; Maruyama, Yutaka; Stimac, Robert; Roper, Stephen D

    2008-06-15

    Taste buds contain two types of cells that directly participate in taste transduction - receptor (Type II) cells and presynaptic (Type III) cells. Receptor cells respond to sweet, bitter and umami taste stimulation but until recently the identity of cells that respond directly to sour (acid) tastants has only been inferred from recordings in situ, from behavioural studies, and from immunostaining for putative sour transduction molecules. Using calcium imaging on single isolated taste cells and with biosensor cells to identify neurotransmitter release, we show that presynaptic (Type III) cells specifically respond to acid taste stimulation and release serotonin. By recording responses in cells isolated from taste buds and in taste cells in lingual slices to acetic acid titrated to different acid levels (pH), we also show that the active stimulus for acid taste is the membrane-permeant, uncharged acetic acid moiety (CH(3)COOH), not free protons (H(+)). That observation is consistent with the proximate stimulus for acid taste being intracellular acidification, not extracellular protons per se. These findings may also have implications for other sensory receptors that respond to acids, such as nociceptors.

  10. Targeted Taste Cell-specific Overexpression of Brain-derived Neurotrophic Factor in Adult Taste Buds Elevates Phosphorylated TrkB Protein Levels in Taste Cells, Increases Taste Bud Size, and Promotes Gustatory Innervation*

    PubMed Central

    Nosrat, Irina V.; Margolskee, Robert F.; Nosrat, Christopher A.

    2012-01-01

    Brain-derived neurotrophic factor (BDNF) is the most potent neurotrophic factor in the peripheral taste system during embryonic development. It is also expressed in adult taste buds. There is a lack of understanding of the role of BDNF in the adult taste system. To address this, we generated novel transgenic mice in which transgene expression was driven by an α-gustducin promoter coupling BDNF expression to the postnatal expression of gustducin in taste cells. Immunohistochemistry revealed significantly stronger BDNF labeling in taste cells of high BDNF-expressing mouse lines compared with controls. We show that taste buds in these mice are significantly larger and have a larger number of taste cells compared with controls. To examine whether innervation was affected in Gust-BDNF mice, we used antibodies to neural cell adhesion molecule (NCAM) and ATP receptor P2X3. The total density of general innervation and specifically the gustatory innervation was markedly increased in high BDNF-expressing mice compared with controls. TrkB and NCAM gene expression in laser capture microdissected taste epithelia were significantly up-regulated in these mice. Up-regulation of TrkB transcripts in taste buds and elevated taste cell-specific TrkB phosphorylation in response to increased BDNF levels indicate that BDNF controls the expression and activation of its high affinity receptor in taste cells. This demonstrates a direct taste cell function for BDNF. BDNF also orchestrates and maintains taste bud innervation. We propose that the Gust-BDNF transgenic mouse models can be employed to further dissect the specific roles of BDNF in the adult taste system. PMID:22442142

  11. Oxaliplatin Alters Expression of T1R2 Receptor and Sensitivity to Sweet Taste in Rats.

    PubMed

    Ohishi, Akihiro; Nishida, Kentaro; Yamanaka, Yuri; Miyata, Ai; Ikukawa, Akiko; Yabu, Miharu; Miyamoto, Karin; Bansho, Saho; Nagasawa, Kazuki

    2016-01-01

    As one of the adverse effects of oxaliplatin, a key agent in colon cancer chemotherapy, a taste disorder is a severe issue in a clinical situation because it decreases the quality of life of patients. However, there is little information on the mechanism underlying the oxaliplatin-induced taste disorder. Here, we examined the molecular and behavioral characteristics of the oxaliplatin-induced taste disorder in rats. Oxaliplatin (4-16 mg/kg) was administered to Sprague-Dawley (SD) rats intraperitoneally for 2 d. Expression levels of mRNA and protein of taste receptors in circumvallate papillae (CP) were measured by real-time quantitative polymerase chain reaction (PCR) and immunohistochemistry, respectively. Taste sensitivity was assessed by their behavioral change using a brief-access test. Morphological change of the taste buds in CP was evaluated by hematoxyline-eosin (HE) staining, and the number of taste cells in taste buds was counted by immunohistochemical analysis. Among taste receptors, the expression levels of mRNA and protein of T1R2, a sweet taste receptor subunit, were increased transiently in CP of oxaliplatin-administered rats on day 7. In a brief-access test, the lick ratio was decreased in oxaliplatin-administered rats on day 7 and the alteration was recovered to the control level on day 14. There was no detectable alteration in the morphology of taste buds, number of taste cells or plasma zinc level in oxaliplatin-administered rats. These results suggest that decreased sensitivity to sweet taste in oxaliplatin-administered rats is due, at least in part, to increased expression of T1R2, while these alterations are reversible.

  12. Microstructural investigation using synchrotron radiation X-ray microtomography reveals taste-masking mechanism of acetaminophen microspheres.

    PubMed

    Guo, Zhen; Yin, Xianzhen; Liu, Congbiao; Wu, Li; Zhu, Weifeng; Shao, Qun; York, Peter; Patterson, Laurence; Zhang, Jiwen

    2016-02-29

    The structure of solid drug delivery systems has considerable influence on drug release behaviors from particles and granules and also impacts other properties relevant to release characteristics such as taste. In this study, lipid-based microspheres of acetaminophen were prepared to mask the undesirable taste of drug and therefore to identify the optimal formulation for drug release. Synchrotron radiation X-ray computed microtomography (SR-μCT) was used to investigate the fine structural architectures of microspheres non-destructively at different sampling times during drug release test, which were simultaneously determined to quantitatively correlate the structural data with drug release behaviors. The results demonstrated that the polymeric formulation component, namely, cationic polymethacrylate (Eudragit E100), was the key factor to mask the bitter taste of acetaminophen by inhibiting immediate drug release thereby reducing the interaction intensity of the bitter material with the oral cavity taste buds. The structure and morphology of the microspheres were found to be influenced by the shape and particle size of the drug, which was also an important factor for taste-masking performance. The quantitative analysis generated detailed structural information which was correlated well with drug release behaviors. Thus, SR-μCT has been proved as a powerful tool to investigate the fine microstructure of particles and provides a new approach in the design of particles for taste masking. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Allelic Variation of the Tas1r3 Taste Receptor Gene Selectively Affects Behavioral and Neural Taste Responses to Sweeteners in the F2 Hybrids between C57BL/6ByJ and 129P3/J Mice

    PubMed Central

    Inoue, Masashi; Reed, Danielle R.; Li, Xia; Tordoff, Michael G.; Beauchamp, Gary K.; Bachmanov, Alexander A.

    2006-01-01

    Recent studies have shown that the T1R3 receptor protein encoded by the Tas1r3 gene is involved in transduction of sweet taste. To assess ligand specificity of the T1R3 receptor, we analyzed the association of Tas1r3 allelic variants with taste responses in mice. In the F2 hybrids between the C57BL/6ByJ (B6) and 129P3/J (129) inbred mouse strains, we determined genotypes of markers on chromosome 4, where Tas1r3 resides, measured consumption of taste solutions presented in two-bottle preference tests, and recorded integrated responses of the chorda tympani gustatory nerve to lingual application of taste stimuli. For intakes and preferences, significant linkages to Tas1r3 were found for the sweeteners sucrose, saccharin, and d-phenylalanine but not glycine. For chorda tympani responses, significant linkages to Tas1r3 were found for the sweeteners sucrose, saccharin, d-phenylalanine, d-tryptophan, and SC-45647 but not glycine, l-proline, l-alanine, or l-glutamine. No linkages to distal chromosome 4 were detected for behavioral or neural responses to non-sweet quinine, citric acid, HCl, NaCl, KCl, monosodium glutamate, inosine 5′-monophosphate, or ammonium glutamate. These results demonstrate that allelic variation of the Tas1r3 gene affects gustatory neural and behavioral responses to some, but not all, sweeteners. This study describes the range of ligand sensitivity of the T1R3 receptor using an in vivo approach and, to our knowledge, is the first genetic mapping study of activity in gustatory nerves. PMID:14999080

  14. Preexposure to salty and sour taste enhances conditioned taste aversion to novel sucrose

    PubMed Central

    Flores, Veronica L.; Moran, Anan; Bernstein, Max

    2016-01-01

    Conditioned taste aversion (CTA) is an intensively studied single-trial learning paradigm whereby animals are trained to avoid a taste that has been paired with malaise. Many factors influence the strength of aversion learning; prominently studied among these is taste novelty—the fact that preexposure to the taste conditioned stimulus (CS) reduces its associability. The effect of exposure to tastes other than the CS has, in contrast, received little investigation. Here, we exposed rats to sodium chloride (N) and citric acid (C), either before or within a conditioning session involving novel sucrose (S). Presentation of this taste array within the conditioning session weakened the resultant S aversion, as expected. The opposite effect, however, was observed when exposure to the taste array was provided in sessions that preceded conditioning: such experience enhanced the eventual S aversion—a result that was robust to differences in CS delivery method and number of tastes presented in conditioning sessions. This “non-CS preexposure effect” scaled with the number of tastes in the exposure array (experience with more stimuli was more effective than experience with fewer) and with the amount of exposure sessions (three preexposure sessions were more effective than two). Together, our results provide evidence that exposure and experience with the realm of tastes changes an animal's future handling of even novel tastes. PMID:27084929

  15. Calcitonin Gene-Related Peptide Reduces Taste-Evoked ATP Secretion from Mouse Taste Buds.

    PubMed

    Huang, Anthony Y; Wu, Sandy Y

    2015-09-16

    Immunoelectron microscopy revealed that peripheral afferent nerve fibers innervating taste buds contain calcitonin gene-related peptide (CGRP), which may be as an efferent transmitter released from peripheral axon terminals. In this report, we determined the targets of CGRP within taste buds and studied what effect CGRP exerts on taste bud function. We isolated mouse taste buds and taste cells, conducted functional imaging using Fura-2, and used cellular biosensors to monitor taste-evoked transmitter release. The findings showed that a subset of Presynaptic (Type III) taste cells (53%) responded to 0.1 μm CGRP with an increase in intracellular Ca(2+). In contrast, Receptor (Type II) taste cells rarely (4%) responded to 0.1 μm CGRP. Using pharmacological tools, the actions of CGRP were probed and elucidated by the CGRP receptor antagonist CGRP(8-37). We demonstrated that this effect of CGRP was dependent on phospholipase C activation and was prevented by the inhibitor U73122. Moreover, applying CGRP caused taste buds to secrete serotonin (5-HT), a Presynaptic (Type III) cell transmitter, but not ATP, a Receptor (Type II) cell transmitter. Further, our previous studies showed that 5-HT released from Presynaptic (Type III) cells provides negative paracrine feedback onto Receptor (Type II) cells by activating 5-HT1A receptors, and reducing ATP secretion. Our data showed that CGRP-evoked 5-HT release reduced taste-evoked ATP secretion. The findings are consistent with a role for CGRP as an inhibitory transmitter that shapes peripheral taste signals via serotonergic signaling during processing gustatory information in taste buds. The taste sensation is initiated with a highly complex set of interactions between a variety of cells located within the taste buds before signal propagation to the brain. Afferent signals from the oral cavity are carried to the brain in chemosensory fibers that contribute to chemesthesis, the general chemical sensitivity of the mucus

  16. What Are Taste Buds?

    MedlinePlus

    ... on your tongue and allow you to experience tastes that are sweet, salty, sour, and bitter. How exactly do your taste ... send messages to the brain about how something tastes, so you know if it's sweet, sour, bitter, or salty. The average person has about 10,000 taste ...

  17. An oxytocin receptor polymorphism predicts amygdala reactivity and antisocial behavior in men

    PubMed Central

    Waller, Rebecca; Corral-Frías, Nadia S.; Vannucci, Bianca; Bogdan, Ryan; Knodt, Annchen R.; Hariri, Ahmad R.

    2016-01-01

    Variability in oxytocin (OXT) signaling is associated with individual differences in sex-specific social behavior across species. The effects of OXT signaling on social behavior are, in part, mediated through its modulation of amygdala function. Here, we use imaging genetics to examine sex-specific effects of three single-nucleotide polymorphisms in the human oxytocin receptor gene (OXTR; rs1042778, rs53576 and rs2254298) on threat-related amygdala reactivity and social behavior in 406 Caucasians. Analyses revealed that among men but not women, OXTR rs1042778 TT genotype was associated with increased right amygdala reactivity to angry facial expressions, which was uniquely related to higher levels of antisocial behavior among men. Moderated meditation analysis suggested a trending indirect effect of OXTR rs1042778 TT genotype on higher antisocial behavior via increased right amygdala reactivity to angry facial expressions in men. Our results provide evidence linking genetic variation in OXT signaling to individual differences in amygdala function. The results further suggest that these pathways may be uniquely important in shaping antisocial behavior in men. PMID:27036876

  18. Measuring diversity of music tastes in online musical society

    NASA Astrophysics Data System (ADS)

    Li, Hao; Han, Xiao-Pu; Lü, Linyuan; Pan, Zhigeng

    The diversity of people’s musical tastes is one of the significant parts which helps people to better understand the behavior trends and cultural preferences of people. In this paper, based on Hill-type true diversity, we propose an improved diversity metric that fairly captures the diversity of musical tastes. This diversity efficiently considers all the three aspects of diversity definitions: variety, balance, and disparity, and keeps higher discriminatory power. Using this diversity metric, one can analyze users’ music tastes on Xiami.com, one of the largest social music media in China; we explore the association between the diversity and various variables which represent users’ personal traits, as well as the difference between different genre levels and map the cultural pattern of difference genres. Our findings dig out many efficient factors that deeply impact users’ music tastes, and provide the global pattern of musical cultural structure on the Chinese online music society.

  19. Purification and complete amino acid sequence of a new type of sweet protein taste-modifying activity, curculin.

    PubMed

    Yamashita, H; Theerasilp, S; Aiuchi, T; Nakaya, K; Nakamura, Y; Kurihara, Y

    1990-09-15

    A new taste-modifying protein named curculin was extracted with 0.5 M NaCl from the fruits of Curculigo latifolia and purified by ammonium sulfate fractionation, CM-Sepharose ion-exchange chromatography, and gel filtration. Purified curculin thus obtained gave a single band having a Mr of 12,000 on sodium dodecyl sulfate-polyacrylamide gel electrophoresis in the presence of 8 M urea. The molecular weight determined by low-angle laser light scattering was 27,800. These results suggest that native curculin is a dimer of a 12,000-Da polypeptide. The complete amino acid sequence of curculin was determined by automatic Edman degradation. Curculin consists of 114 residues. Curculin itself elicits a sweet taste. After curculin, water elicits a sweet taste, and sour substances induce a stronger sense of sweetness. No protein with both sweet-tasting and taste-modifying activities has ever been found. There are five sets of tripeptides common to miraculin (a taste-modifying protein), six sets of tripeptides common to thaumatin (a sweet protein), and two sets of tripeptides common to monellin (a sweet protein). Anti-miraculin serum was not immunologically reactive with curculin. The mechanism of the taste-modifying action of curculin is discussed.

  20. Effects of fast food branding on young children's taste preferences.

    PubMed

    Robinson, Thomas N; Borzekowski, Dina L G; Matheson, Donna M; Kraemer, Helena C

    2007-08-01

    To examine the effects of cumulative, real-world marketing and brand exposures on young children by testing the influence of branding from a heavily marketed source on taste preferences. Experimental study. Children tasted 5 pairs of identical foods and beverages in packaging from McDonald's and matched but unbranded packaging and were asked to indicate if they tasted the same or if one tasted better. Preschools for low-income children. Sixty-three children (mean +/- SD age, 4.6 +/- 0.5 years; range, 3.5-5.4 years). Branding of fast foods. A summary total taste preference score (ranging from -1 for the unbranded samples to 0 for no preference and +1 for McDonald's branded samples) was used to test the null hypothesis that children would express no preference. The mean +/- SD total taste preference score across all food comparisons was 0.37 +/- 0.45 (median, 0.20; interquartile range, 0.00-0.80) and significantly greater than zero (P<.001), indicating that children preferred the tastes of foods and drinks if they thought they were from McDonald's. Moderator analysis found significantly greater effects of branding among children with more television sets in their homes and children who ate food from McDonald's more often. Branding of foods and beverages influences young children's taste perceptions. The findings are consistent with recommendations to regulate marketing to young children and also suggest that branding may be a useful strategy for improving young children's eating behaviors.

  1. Discrete innervation of murine taste buds by peripheral taste neurons.

    PubMed

    Zaidi, Faisal N; Whitehead, Mark C

    2006-08-09

    The peripheral taste system likely maintains a specific relationship between ganglion cells that signal a particular taste quality and taste bud cells responsive to that quality. We have explored a measure of the receptoneural relationship in the mouse. By injecting single fungiform taste buds with lipophilic retrograde neuroanatomical markers, the number of labeled geniculate ganglion cells innervating single buds on the tongue were identified. We found that three to five ganglion cells innervate a single bud. Injecting neighboring buds with different color markers showed that the buds are primarily innervated by separate populations of geniculate cells (i.e., multiply labeled ganglion cells are rare). In other words, each taste bud is innervated by a population of neurons that only connects with that bud. Palate bud injections revealed a similar, relatively exclusive receptoneural relationship. Injecting buds in different regions of the tongue did not reveal a topographic representation of buds in the geniculate ganglion, despite a stereotyped patterned arrangement of fungiform buds as rows and columns on the tongue. However, ganglion cells innervating the tongue and palate were differentially concentrated in lateral and rostral regions of the ganglion, respectively. The principal finding that small groups of ganglion cells send sensory fibers that converge selectively on a single bud is a new-found measure of specific matching between the two principal cellular elements of the mouse peripheral taste system. Repetition of the experiments in the hamster showed a more divergent innervation of buds in this species. The results indicate that whatever taste quality is signaled by a murine geniculate ganglion neuron, that signal reflects the activity of cells in a single taste bud.

  2. Optogenetic Induction of Aversive Taste Memory

    PubMed Central

    C. Keene, Alex; Masek, Pavel

    2013-01-01

    The Drosophila melanogaster gustatory system consists of several neuronal pathways representing diverse taste modalities. The two predominant modalities are a sweet sensing pathway that mediates attraction, and a bitter sensing pathway that mediates avoidance. A central question is how flies integrate stimuli from these pathways and generate the appropriate behavioral response. We have developed a novel assay for induction of taste memories. We demonstrate that the gustatory response to fructose is suppressed when followed by the presence of bitter quinine. We employ optogenetic neural activation using infrared laser in combination with heat sensitive channel - TRPA1 to precisely activate gustatory neurons. This optogenetic system allows for spatially and temporally controlled activation of distinct neural classes in the gustatory circuit. We directly activated bitter-sensing neurons together with presentation of fructose for remote induction of aversive taste memories. Here we report that activation of bitter-sensing neurons in the proboscis suffices as a conditioning stimulus. Spatially restricted stimulation indicates that the conditioning stimulus is indeed a signal from the bitter neurons in the proboscis and it is independent of postingestive feedback. The coincidence of temporally specific activation of bitter-sensing neurons with fructose presentation is crucial for memory formation, establishing aversive taste learning in Drosophila as associative learning. Taken together, this optogenetic system provides a powerful new tool for interrogation of the central brain circuits that mediate memory formation. PMID:22820051

  3. Longitudinal synergies between cortisol reactivity and diurnal testosterone and antisocial behavior in young adolescents.

    PubMed

    Susman, Elizabeth J; Peckins, Melissa K; Bowes, Jacey L; Dorn, Lorah D

    2017-10-01

    The aims were to identify the correspondence between simultaneous, longitudinal changes in cortisol reactivity and diurnal testosterone and to test the hypothesis that cortisol reactivity and diurnal testosterone interact so as to influence antisocial behavior. Participants were 135 children and young adolescents assessed at 6-month intervals over 1 year. Upon enrollment girls were age 8, 10, or 12 years (N = 69, M = 10.06 years) and boys were age 9, 11, or 13 years (N = 66, M = 10.94 years). Assessments included Tanner staging by a nurse, cortisol reactivity (Trier Social Stress Test for Children), diurnal testosterone, and interviews and questionnaires. Growth models showed that cortisol reactivity and diurnal testosterone basal levels (intercept) and rate of change (slopes) were not related, suggesting different mechanisms of growth. Longitudinal regression analyses assessed cortisol reactivity and diurnal testosterone longitudinally. The interactions of cortisol reactivity and diurnal testosterone showed that when diurnal testosterone was low, boys with low cortisol reactivity were reported to have more behavior problems (i.e., oppositional defiant disorder symptoms and attention problems) than when testosterone was high. In addition, when diurnal testosterone was high, boys with high or moderate cortisol reactivity were significantly higher on total antisocial behavior, attention behavior problems, and oppositional defiant disorder symptoms than when testosterone was low or moderate. The results were similar but less frequent for girls. These findings advance the science of young adolescence by showing the interaction between preexisting sensitivity to stressors and the normative testosterone changes of puberty and antisocial behavior.

  4. Identification of functional bitter taste receptors and their antagonist in chickens.

    PubMed

    Dey, Bapon; Kawabata, Fuminori; Kawabata, Yuko; Yoshida, Yuta; Nishimura, Shotaro; Tabata, Shoji

    2017-01-22

    Elucidation of the taste sense of chickens is important not only for the development of chicken feedstuffs for the chicken industry but also to help clarify the evolution of the taste sense among animals. There are three putative chicken bitter taste receptors, chicken T2R1 (cT2R1), cT2R2 and cT2R7, which were identified using genome information and cell-based assays. Previously, we have shown that cT2R1 is a functional bitter taste receptor through both cell-based assays and behavioral tests. In this study, therefore, we focused on the sensitivities of the other two bitter receptors, cT2R2 and cT2R7, by using their agonists in behavioral tests. We tested three agonists of cT2R2 and three agonists of cT2R7. In a 10-min drinking study, the intakes of cT2R2 agonist solutions were not different from that of water. On the other hand, the intakes of cT2R7 agonist solutions were significantly lower compared to water. In addition, we constructed cT2R1-and cT2R7-expressing cells in order to search for an antagonist for these functional bitter taste receptors. By using Ca 2+ imaging methods, we found that 6-methoxyflavanone (6-meth) can inhibit the activities of both cT2R1 and cT2R7. Moreover, 6-meth also inhibited the reduction of the intake of bitter solutions containing cT2R1 or cT2R7 agonists in behavioral tests. Taken together, these results suggested that cT2R7 is a functional bitter taste receptor like cT2R1, but that cT2R2 is not, and that 6-meth is an antagonist for these two functional chicken bitter taste receptors. This is the first identification of an antagonist of chicken bitter receptors. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. The taste of condoms.

    PubMed

    Jeminez-david, R

    1995-01-01

    DKT International manufactures flavored condoms for sale in the Philippines. One year after introduction to the market, flavored condoms now already 10% of total condom sales in the country. The production and sale of flavored condoms by DKT comes on the heels of recent market research. The organization examined the sex behavior and practices of 300 prostitutes in Pasay, and found that about half of the sex workers performed fellatio for their customers. Of those prostitutes who engaged in oral sex, 50% chose not to use condoms because they tasted bad. Were pleasant-tasting condoms put on the market, however, people may choose to use them more often during oral sex. BFAD had held up the renewal of DKT's license to market the flavored condoms pending data on why a flavored condom was being marketed. The author notes the anti-condom lobby's attempt to keep flavored condoms off of the market. Detractors claim that such condoms may be eaten by children who think that they are candy.

  6. REVIEW ARTICLE: A taste sensor

    NASA Astrophysics Data System (ADS)

    Toko, Kiyoshi

    1998-12-01

    A multichannel taste sensor, namely an electronic tongue, with global selectivity is composed of several kinds of lipid/polymer membranes for transforming information about substances producing taste into electrical signals, which are input to a computer. The sensor output exhibits different patterns for chemical substances which have different taste qualities such as saltiness, sourness and bitterness, whereas it exhibits similar patterns for chemical substances with similar tastes. The sensor responds to the taste itself, as can be understood from the fact that taste interactions such as the suppression effect, which appears for mixtures of sweet and bitter substances, can be reproduced well. The suppression of the bitterness of quinine and a drug substance by sucrose can be quantified. Amino acids can be classified into several groups according to their own tastes on the basis of sensor outputs. The tastes of foodstuffs such as beer, coffee, mineral water, milk, sake, rice, soybean paste and vegetables can be discussed quantitatively using the taste sensor, which provides the objective scale for the human sensory expression. The flavour of a wine is also discriminated using the taste-odour sensory fusion conducted by combining the taste sensor and an odour-sensor array using conducting polymer elements. The taste sensor can also be applied to measurements of water pollution. Miniaturization of the taste sensor using FET produces the same characteristics as those of the above taste sensor by measuring the gate-source voltage. Use of the taste sensor will lead to a new era of food and environmental sciences.

  7. Molecular architecture of smell and taste in Drosophila.

    PubMed

    Vosshall, Leslie B; Stocker, Reinhard F

    2007-01-01

    The chemical senses-smell and taste-allow animals to evaluate and distinguish valuable food resources from dangerous substances in the environment. The central mechanisms by which the brain recognizes and discriminates attractive and repulsive odorants and tastants, and makes behavioral decisions accordingly, are not well understood in any organism. Recent molecular and neuroanatomical advances in Drosophila have produced a nearly complete picture of the peripheral neuroanatomy and function of smell and taste in this insect. Neurophysiological experiments have begun to provide insight into the mechanisms by which these animals process chemosensory cues. Given the considerable anatomical and functional homology in smell and taste pathways in all higher animals, experimental approaches in Drosophila will likely provide broad insights into the problem of sensory coding. Here we provide a critical review of the recent literature in this field and comment on likely future directions.

  8. Labeling and analysis of chicken taste buds using molecular markers in oral epithelial sheets

    PubMed Central

    Rajapaksha, Prasangi; Wang, Zhonghou; Venkatesan, Nandakumar; Tehrani, Kayvan F.; Payne, Jason; Swetenburg, Raymond L.; Kawabata, Fuminori; Tabata, Shoji; Mortensen, Luke J.; Stice, Steven L.; Beckstead, Robert; Liu, Hong-Xiang

    2016-01-01

    In chickens, the sensory organs for taste are the taste buds in the oral cavity, of which there are ~240–360 in total number as estimated by scanning electron microscopy (SEM). There is not an easy way to visualize all taste buds in chickens. Here, we report a highly efficient method for labeling chicken taste buds in oral epithelial sheets using the molecular markers Vimentin and α-Gustducin. Immediate tissue fixation following incubation with sub-epithelially injected proteases enabled us to peel off whole epithelial sheets, leaving the shape and integrity of the tissue intact. In the peeled epithelial sheets, taste buds labeled with antibodies against Vimentin and α-Gustducin were easily identified and counted under a light microscope and many more taste buds, patterned in rosette-like clusters, were found than previously reported with SEM. Broiler-type, female-line males have more taste buds than other groups and continue to increase the number of taste buds over stages after hatch. In addition to ovoid-shaped taste buds, big tube-shaped taste buds were observed in the chicken using 2-photon microscopy. Our protocol for labeling taste buds with molecular markers will factilitate future mechanistic studies on the development of chicken taste buds in association with their feeding behaviors. PMID:27853250

  9. Labeling and analysis of chicken taste buds using molecular markers in oral epithelial sheets.

    PubMed

    Rajapaksha, Prasangi; Wang, Zhonghou; Venkatesan, Nandakumar; Tehrani, Kayvan F; Payne, Jason; Swetenburg, Raymond L; Kawabata, Fuminori; Tabata, Shoji; Mortensen, Luke J; Stice, Steven L; Beckstead, Robert; Liu, Hong-Xiang

    2016-11-17

    In chickens, the sensory organs for taste are the taste buds in the oral cavity, of which there are ~240-360 in total number as estimated by scanning electron microscopy (SEM). There is not an easy way to visualize all taste buds in chickens. Here, we report a highly efficient method for labeling chicken taste buds in oral epithelial sheets using the molecular markers Vimentin and α-Gustducin. Immediate tissue fixation following incubation with sub-epithelially injected proteases enabled us to peel off whole epithelial sheets, leaving the shape and integrity of the tissue intact. In the peeled epithelial sheets, taste buds labeled with antibodies against Vimentin and α-Gustducin were easily identified and counted under a light microscope and many more taste buds, patterned in rosette-like clusters, were found than previously reported with SEM. Broiler-type, female-line males have more taste buds than other groups and continue to increase the number of taste buds over stages after hatch. In addition to ovoid-shaped taste buds, big tube-shaped taste buds were observed in the chicken using 2-photon microscopy. Our protocol for labeling taste buds with molecular markers will factilitate future mechanistic studies on the development of chicken taste buds in association with their feeding behaviors.

  10. Hedgehog pathway blockade with the cancer drug LDE225 disrupts taste organs and taste sensation.

    PubMed

    Kumari, Archana; Ermilov, Alexandre N; Allen, Benjamin L; Bradley, Robert M; Dlugosz, Andrzej A; Mistretta, Charlotte M

    2015-02-01

    Taste sensation on the anterior tongue requires chorda tympani nerve function and connections with continuously renewing taste receptor cells. However, it is unclear which signaling pathways regulate the receptor cells to maintain chorda tympani sensation. Hedgehog (HH) signaling controls cell proliferation and differentiation in numerous tissues and is active in taste papillae and taste buds. In contrast, uncontrolled HH signaling drives tumorigenesis, including the common skin cancer, basal cell carcinoma. Systemic HH pathway inhibitors (HPIs) lead to basal cell carcinoma regression, but these drugs cause severe taste disturbances. We tested the hypothesis that taste disruption by HPIs reflects a direct requirement for HH signaling in maintaining taste organs and gustatory sensation. In mice treated with the HPI LDE225 up to 28 days, HH-responding cells were lost in fungiform papilla epithelium, and papillae acquired a conical apex. Taste buds were either absent or severely reduced in size in more than 90% of aberrant papillae. Taste bud remnants expressed the taste cell marker keratin 8, and papillae retained expression of nerve markers, neurofilament and P2X3. Chorda tympani nerve responses to taste stimuli were markedly reduced or absent in LDE225-treated mice. Responses to touch were retained, however, whereas cold responses were retained after 16 days of treatment but lost after 28 days. These data identify a critical, modality-specific requirement for HH signaling in maintaining taste papillae, taste buds and neurophysiological taste function, supporting the proposition that taste disturbances in HPI-treated patients are an on-target response to HH pathway blockade in taste organs. Copyright © 2015 the American Physiological Society.

  11. Preexposure to Salty and Sour Taste Enhances Conditioned Taste Aversion to Novel Sucrose

    ERIC Educational Resources Information Center

    Flores, Veronica L.; Moran, Anan; Bernstein, Max; Katz, Donald B.

    2016-01-01

    Conditioned taste aversion (CTA) is an intensively studied single-trial learning paradigm whereby animals are trained to avoid a taste that has been paired with malaise. Many factors influence the strength of aversion learning; prominently studied among these is taste novelty--the fact that preexposure to the taste conditioned stimulus (CS)…

  12. Massive losses of taste receptor genes in toothed and baleen whales.

    PubMed

    Feng, Ping; Zheng, Jinsong; Rossiter, Stephen J; Wang, Ding; Zhao, Huabin

    2014-05-06

    Taste receptor genes are functionally important in animals, with a surprising exception in the bottlenose dolphin, which shows extensive losses of sweet, umami, and bitter taste receptor genes. To examine the generality of taste gene loss, we examined seven toothed whales and five baleen whales and sequenced the complete repertoire of three sweet/umami (T1Rs) and ten bitter (T2Rs) taste receptor genes. We found all amplified T1Rs and T2Rs to be pseudogenes in all 12 whales, with a shared premature stop codon in 10 of the 13 genes, which demonstrated massive losses of taste receptor genes in the common ancestor of whales. Furthermore, we analyzed three genome sequences from two toothed whales and one baleen whale and found that the sour taste marker gene Pkd2l1 is a pseudogene, whereas the candidate salty taste receptor genes are intact and putatively functional. Additionally, we examined three genes that are responsible for taste signal transduction and found the relaxation of functional constraints on taste signaling pathways along the ancestral branch leading to whales. Together, our results strongly suggest extensive losses of sweet, umami, bitter, and sour tastes in whales, and the relaxation of taste function most likely arose in the common ancestor of whales between 36 and 53 Ma. Therefore, whales represent the first animal group to lack four of five primary tastes, probably driven by the marine environment with high concentration of sodium, the feeding behavior of swallowing prey whole, and the dietary switch from plants to meat in the whale ancestor. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  13. Mouse model of fragile X syndrome: behavioral and hormonal response to stressors.

    PubMed

    Nielsen, Darci M; Evans, Jeffrey J; Derber, William J; Johnston, Kenzie A; Laudenslager, Mark L; Crnic, Linda S; Maclean, Kenneth N

    2009-06-01

    Fragile X syndrome, a form of mental retardation caused by inadequate levels of fragile X mental retardation protein (FMRP), is characterized by extreme sensitivity to sensory stimuli and increased behavioral and hormonal reactivity to stressors. Fmr1 knockout mice lack FMRP and exhibit abnormal responses to auditory stimuli. This study sought to determine whether Fmr1 knockout mice on an F1 hybrid background are normal in their response to footshock. Knockout mice were also examined for signs of hyperexcitation across an extended trial range, and serum corticosterone levels were evaluated in response to various stressors. The ability to acquire conditioned taste aversion was also assessed. Knockout mice exhibited no impairment in associative aversive learning or memory, since they successfully expressed conditioned taste aversion. Footshock-sensitivity, freezing behavior, and corticosterone response to various stressors did not differ between knockout and wild-type mice. However, knockout mice exhibited significantly increased responses during the extended test. The knockout mice's increased responsiveness to footshock in the extended test may be an indication of increased vulnerability to stress or enhanced emotional reactivity. Copyright (c) 2009 APA, all rights reserved.

  14. Wine Expertise Predicts Taste Phenotype.

    PubMed

    Hayes, John E; Pickering, Gary J

    2012-03-01

    Taste phenotypes have long been studied in relation to alcohol intake, dependence, and family history, with contradictory findings. However, on balance - with appropriate caveats about populations tested, outcomes measured and psychophysical methods used - an association between variation in taste responsiveness and some alcohol behaviors is supported. Recent work suggests super-tasting (operationalized via propylthiouracil (PROP) bitterness) not only associates with heightened response but also with more acute discrimination between stimuli. Here, we explore relationships between food and beverage adventurousness and taste phenotype. A convenience sample of wine drinkers (n=330) were recruited in Ontario and phenotyped for PROP bitterness via filter paper disk. They also filled out a short questionnaire regarding willingness to try new foods, alcoholic beverages and wines as well as level of wine involvement, which was used to classify them as a wine expert (n=110) or wine consumer (n=220). In univariate logisitic models, food adventurousness predicted trying new wines and beverages but not expertise. Likewise, wine expertise predicted willingness to try new wines and beverages but not foods. In separate multivariate logistic models, willingness to try new wines and beverages was predicted by expertise and food adventurousness but not PROP. However, mean PROP bitterness was higher among wine experts than wine consumers, and the conditional distribution functions differed between experts and consumers. In contrast, PROP means and distributions did not differ with food adventurousness. These data suggest individuals may self-select for specific professions based on sensory ability (i.e., an active gene-environment correlation) but phenotype does not explain willingness to try new stimuli.

  15. Sweets and fats tasting in patients with anorexia nervosa: the role of the thought-shape fusion cognitive distortion.

    PubMed

    Monje Moreno, José Manuel; Alvarez Amor, Leticia; Ruiz-Prieto, Inmaculada; Bolaños-Ríos, Patricia; Jáuregui-Lobera, Ignacio

    2014-05-01

    It has been found that the olfactorygustatory function is altered in patients with eating disorders, with an impairment affecting the perception of olfactory and gustatory stimuli. The aim was to explore the subjective reactivity after the exposure and tasting of foods with different gradient of sweetness and different fats textures. In addition, changes in the thought-shape fusion (TSF) cognitive distortion were assessed after tasting those different presentations as well as the correlations between the initial scores on TSF-Questionnaire (TSF-Q) and the different responses after that tasting. A total of 15 healthy controls and 23 outpatients with anorexia nervosa underwent two sessions of tasting (sweets with different gradient of sweetness and fats with different textures) and they filled several questionnaires (pre- and post-tasting) to measure their responses after tasting. Participants showed less "self-control" after tasting sweets. The score on TSF-Q increased significantly after the sweets tasting in the patients group. Patients had the worst response after tasting presentations with more quantity of glucose (less gradient of sweetness) than after tasting those with more amount of sucrose (much more sweetness). With respect to the fats, patients showed the worst reaction after tasting the most unfamiliar texture. Pre fats tasting TSF-Q scores correlated significantly with all responses in the patients group. Both psychological and biological (e.g. genetic) factors could be involved in the reactions of patients with anorexia nervosa after tasting sweets and fats. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  16. Quantitative analysis of taste bud cell numbers in fungiform and soft palate taste buds of mice.

    PubMed

    Ohtubo, Yoshitaka; Yoshii, Kiyonori

    2011-01-07

    Mammalian taste bud cells (TBCs) consist of several cell types equipped with different taste receptor molecules, and hence the ratio of cell types in a taste bud constitutes the taste responses of the taste bud. Here we show that the population of immunohistochemically identified cell types per taste bud is proportional to the number of total TBCs in the taste bud or the area of the taste bud in fungiform papillae, and that the proportions differ among cell types. This result is applicable to soft palate taste buds. However, the density of almost all cell types, the population of cell types divided by the area of the respective taste buds, is significantly higher in soft palates. These results suggest that the turnover of TBCs is regulated to keep the ratio of each cell type constant, and that taste responsiveness is different between fungiform and soft palate taste buds. Copyright © 2010 Elsevier B.V. All rights reserved.

  17. Presentation Order Effects in Product Taste Tests.

    ERIC Educational Resources Information Center

    Dean, Michael L.

    1980-01-01

    Presentation order in paired-comparison testing was varied to measure the impact of primacy v recency effects on consumer product evaluation. First position preference bias characterized the findings, lending support to the attention decrement hypothesis or a suggested palate desensitization effect on subsequent taste trial behavior. (Author)

  18. Allelic variation of the Tas1r3 taste receptor gene selectively affects taste responses to sweeteners: evidence from 129.B6-Tas1r3 congenic mice

    PubMed Central

    Inoue, Masashi; Glendinning, John I.; Theodorides, Maria L.; Harkness, Sarah; Li, Xia; Bosak, Natalia; Beauchamp, Gary K.; Bachmanov, Alexander A.

    2008-01-01

    The Tas1r3 gene encodes the T1R3 receptor protein, which is involved in sweet taste transduction. To characterize ligand specificity of the T1R3 receptor and the genetic architecture of sweet taste responsiveness, we analyzed taste responses of 129.B6-Tas1r3 congenic mice to a variety of chemically diverse sweeteners and glucose polymers with three different measures: consumption in 48-h two-bottle preference tests, initial licking responses, and responses of the chorda tympani nerve. The results were generally consistent across the three measures. Allelic variation of the Tas1r3 gene influenced taste responsiveness to nonnutritive sweeteners (saccharin, acesulfame-K, sucralose, SC-45647), sugars (sucrose, maltose, glucose, fructose), sugar alcohols (erythritol, sorbitol), and some amino acids (d-tryptophan, d-phenylalanine, l-proline). Tas1r3 genotype did not affect taste responses to several sweet-tasting amino acids (l-glutamine, l-threonine, l-alanine, glycine), glucose polymers (Polycose, maltooligosaccharide), and nonsweet NaCl, HCl, quinine, monosodium glutamate, and inosine 5′-monophosphate. Thus Tas1r3 polymorphisms affect taste responses to many nutritive and nonnutritive sweeteners (all of which must interact with a taste receptor involving T1R3), but not to all carbohydrates and amino acids. In addition, we found that the genetic architecture of sweet taste responsiveness changes depending on the measure of taste response and the intensity of the sweet taste stimulus. Variation in the T1R3 receptor influenced peripheral taste responsiveness over a wide range of sweetener concentrations, but behavioral responses to higher concentrations of some sweeteners increasingly depended on mechanisms that could override input from the peripheral taste system. PMID:17911381

  19. Taste perception and sensory sensitivity: Relationship to feeding problems in boys with Barth Syndrome.

    PubMed

    Reynolds, Stacey; Kreider, Consuelo M; Meeley, Lauren E; Bendixen, Roxanna M

    2015-03-01

    Feeding problems are common in boys with Barth syndrome and may contribute to the population's propensity for growth delay and muscle weakness. The purpose of this study was to quantify and describe these feeding issues and examine altered taste perception and sensory sensitivity as contributing factors. A cross-sectional, two-group comparison design was used to examine feeding preferences and behaviors, chemical taste perception, and sensory sensitivities in fifty boys with (n=24) and without (n=26) Barth ages 4-17 years. Taste perception was measured using chemical test strips saturated with phenylthiocarbamide (PTC) and sodium benzoate (NaB). Feeding problems were documented by parents using a Food Inventory, while sensory sensitivities were recorded using a Short Sensory Profile. Boys with Barth differed significantly from typical peers with regards to problem feeding behaviors. For boys with Barth, food refusal and food selectivity were identified as being present in 50% the sample, while 70% of had identified problems related to gagging or swallowing foods. About half of all Barth families noted that their child's eating habits did not match the family's and that separate meals were often prepared. As demonstrated in previous research, about 50% of boys with Barth demonstrated probable or definite differences in taste/smell sensitivity, which was significantly higher than controls. On tests of chemical taste perception, boys with Barth were significantly more likely to be supertasters to PTC and non-tasters to NaB. Taster-status did not directly relate to the presence of feeding problems, however, taste/smell sensitivity did significantly relate to food selectivity by type and texture. Results indicate feeding problems in at least 50-70% of boys with Barth syndrome, and suggest that behaviors are often present before 6 months of age. Differences in taste perception may influence dietary choices in boys with Barth, particularly their craving of salty foods

  20. Lateral Hypothalamus Contains Two Types of Palatability-Related Taste Responses with Distinct Dynamics

    PubMed Central

    Yoshida, Takashi; Monk, Kevin J.; Katz, Donald B.

    2013-01-01

    The taste of foods, in particular the palatability of these tastes, exerts a powerful influence on our feeding choices. Although the lateral hypothalamus (LH) has long been known to regulate feeding behavior, taste processing in LH remains relatively understudied. Here, we examined single-unit LH responses in rats subjected to a battery of taste stimuli that differed in both chemical composition and palatability. Like neurons in cortex and amygdala, LH neurons produced a brief epoch of nonspecific responses followed by a protracted period of taste-specific firing. Unlike in cortex, however, where palatability-related information only appears 500 ms after the onset of taste-specific firing, taste specificity in LH was dominated by palatability-related firing, consistent with LH's role as a feeding center. Upon closer inspection, taste-specific LH neurons fell reliably into one of two subtypes: the first type showed a reliable affinity for palatable tastes, low spontaneous firing rates, phasic responses, and relatively narrow tuning; the second type showed strongest modulation to aversive tastes, high spontaneous firing rates, protracted responses, and broader tuning. Although neurons producing both types of responses were found within the same regions of LH, cross-correlation analyses suggest that they may participate in distinct functional networks. Our data shed light on the implementation of palatability processing both within LH and throughout the taste circuit, and may ultimately have implications for LH's role in the formation and maintenance of taste preferences and aversions. PMID:23719813

  1. Lateral hypothalamus contains two types of palatability-related taste responses with distinct dynamics.

    PubMed

    Li, Jennifer X; Yoshida, Takashi; Monk, Kevin J; Katz, Donald B

    2013-05-29

    The taste of foods, in particular the palatability of these tastes, exerts a powerful influence on our feeding choices. Although the lateral hypothalamus (LH) has long been known to regulate feeding behavior, taste processing in LH remains relatively understudied. Here, we examined single-unit LH responses in rats subjected to a battery of taste stimuli that differed in both chemical composition and palatability. Like neurons in cortex and amygdala, LH neurons produced a brief epoch of nonspecific responses followed by a protracted period of taste-specific firing. Unlike in cortex, however, where palatability-related information only appears 500 ms after the onset of taste-specific firing, taste specificity in LH was dominated by palatability-related firing, consistent with LH's role as a feeding center. Upon closer inspection, taste-specific LH neurons fell reliably into one of two subtypes: the first type showed a reliable affinity for palatable tastes, low spontaneous firing rates, phasic responses, and relatively narrow tuning; the second type showed strongest modulation to aversive tastes, high spontaneous firing rates, protracted responses, and broader tuning. Although neurons producing both types of responses were found within the same regions of LH, cross-correlation analyses suggest that they may participate in distinct functional networks. Our data shed light on the implementation of palatability processing both within LH and throughout the taste circuit, and may ultimately have implications for LH's role in the formation and maintenance of taste preferences and aversions.

  2. A Proactive Model to Control Reactive Behaviors

    ERIC Educational Resources Information Center

    Dehnad, Vida

    2017-01-01

    Adaptation to change is not an easy process and sometimes does not happen at all. When people perceive that their freedom is going to be altered due to an unwanted change, they outwardly exhibit some symptomatic reactive behaviors such as inertia, resistance, skepticism, and aggression. No matter how intense people's reactance is, only a few of…

  3. An oxytocin receptor polymorphism predicts amygdala reactivity and antisocial behavior in men.

    PubMed

    Waller, Rebecca; Corral-Frías, Nadia S; Vannucci, Bianca; Bogdan, Ryan; Knodt, Annchen R; Hariri, Ahmad R; Hyde, Luke W

    2016-08-01

    Variability in oxytocin (OXT) signaling is associated with individual differences in sex-specific social behavior across species. The effects of OXT signaling on social behavior are, in part, mediated through its modulation of amygdala function. Here, we use imaging genetics to examine sex-specific effects of three single-nucleotide polymorphisms in the human oxytocin receptor gene (OXTR; rs1042778, rs53576 and rs2254298) on threat-related amygdala reactivity and social behavior in 406 Caucasians. Analyses revealed that among men but not women, OXTR rs1042778 TT genotype was associated with increased right amygdala reactivity to angry facial expressions, which was uniquely related to higher levels of antisocial behavior among men. Moderated meditation analysis suggested a trending indirect effect of OXTR rs1042778 TT genotype on higher antisocial behavior via increased right amygdala reactivity to angry facial expressions in men. Our results provide evidence linking genetic variation in OXT signaling to individual differences in amygdala function. The results further suggest that these pathways may be uniquely important in shaping antisocial behavior in men. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  4. The Role of Emotional Reactivity, Self-regulation, and Puberty in Adolescents' Prosocial Behaviors

    PubMed Central

    Carlo, Gustavo; Crockett, Lisa J.; Wolff, Jennifer M.; Beal, Sarah J.

    2017-01-01

    This study was designed to examine the roles of emotional reactivity, self-regulation, and pubertal timing in prosocial behaviors during adolescence. Participants were 850 sixth graders (50% female, Mean age = 11.03, SD = .17) who were followed up at age 15. In hierarchical regression models, measures of emotional reactivity, self-regulation, pubertal timing and their interactions were used to predict (concurrently and over time) adolescents’ prosocial behaviors in the home and with peers. Overall, the findings provide evidence for pubertal and temperament based predictors of prosocial behaviors expressed in different contexts. Self-regulation was positively related to both forms of prosocial behavior, concurrently and longitudinally. Emotional reactivity showed moderately consistent effects, showing negative concurrent relations to prosocial behavior with peers and negative longitudinal relations (four years later) to prosocial behavior at home. Some curvilinear effects of temperament on prosocial behaviors were also found. Effects of pubertal timing were found to interact with gender, such that boys who were early maturers showed the highest levels of prosocial behavior at home concurrently. Discussion focuses on the role of temperament-based mechanisms in the expression of prosocial behaviors in different contexts in adolescence. PMID:28316370

  5. "Turn Up the Taste": Assessing the Role of Taste Intensity and Emotion in Mediating Crossmodal Correspondences between Basic Tastes and Pitch.

    PubMed

    Wang, Qian Janice; Wang, Sheila; Spence, Charles

    2016-05-01

    People intuitively match basic tastes to sounds of different pitches, and the matches that they make tend to be consistent across individuals. It is, though, not altogether clear what governs such crossmodal mappings between taste and auditory pitch. Here, we assess whether variations in taste intensity influence the matching of taste to pitch as well as the role of emotion in mediating such crossmodal correspondences. Participants were presented with 5 basic tastants at 3 concentrations. In Experiment 1, the participants rated the tastants in terms of their emotional arousal and valence/pleasantness, and selected a musical note (from 19 possible pitches ranging from C2 to C8) and loudness that best matched each tastant. In Experiment 2, the participants made emotion ratings and note matches in separate blocks of trials, then made emotion ratings for all 19 notes. Overall, the results of the 2 experiments revealed that both taste quality and concentration exerted a significant effect on participants' loudness selection, taste intensity rating, and valence and arousal ratings. Taste quality, not concentration levels, had a significant effect on participants' choice of pitch, but a significant positive correlation was observed between individual perceived taste intensity and pitch choice. A significant and strong correlation was also demonstrated between participants' valence assessments of tastants and their valence assessments of the best-matching musical notes. These results therefore provide evidence that: 1) pitch-taste correspondences are primarily influenced by taste quality, and to a lesser extent, by perceived intensity; and 2) such correspondences may be mediated by valence/pleasantness. © The Author 2016. Published by Oxford University Press.

  6. Taste Bud-Derived BDNF Is Required to Maintain Normal Amounts of Innervation to Adult Taste Buds.

    PubMed

    Meng, Lingbin; Ohman-Gault, Lisa; Ma, Liqun; Krimm, Robin F

    2015-01-01

    Gustatory neurons transmit chemical information from taste receptor cells, which reside in taste buds in the oral cavity, to the brain. As adult taste receptor cells are renewed at a constant rate, nerve fibers must reconnect with new taste receptor cells as they arise. Therefore, the maintenance of gustatory innervation to the taste bud is an active process. Understanding how this process is regulated is a fundamental concern of gustatory system biology. We speculated that because brain-derived neurotrophic factor (BDNF) is required for taste bud innervation during development, it might function to maintain innervation during adulthood. If so, taste buds should lose innervation when Bdnf is deleted in adult mice. To test this idea, we first removed Bdnf from all cells in adulthood using transgenic mice with inducible CreERT2 under the control of the Ubiquitin promoter. When Bdnf was removed, approximately one-half of the innervation to taste buds was lost, and taste buds became smaller because of the loss of taste bud cells. Individual taste buds varied in the amount of innervation each lost, and those that lost the most innervation also lost the most taste bud cells. We then tested the idea that that the taste bud was the source of this BDNF by reducing Bdnf levels specifically in the lingual epithelium and taste buds. Taste buds were confirmed as the source of BDNF regulating innervation. We conclude that BDNF expressed in taste receptor cells is required to maintain normal levels of innervation in adulthood.

  7. Duplex Bioelectronic Tongue for Sensing Umami and Sweet Tastes Based on Human Taste Receptor Nanovesicles.

    PubMed

    Ahn, Sae Ryun; An, Ji Hyun; Song, Hyun Seok; Park, Jin Wook; Lee, Sang Hun; Kim, Jae Hyun; Jang, Jyongsik; Park, Tai Hyun

    2016-08-23

    For several decades, significant efforts have been made in developing artificial taste sensors to recognize the five basic tastes. So far, the well-established taste sensor is an E-tongue, which is constructed with polymer and lipid membranes. However, the previous artificial taste sensors have limitations in various food, beverage, and cosmetic industries because of their failure to mimic human taste reception. There are many interactions between tastants. Therefore, detecting the interactions in a multiplexing system is required. Herein, we developed a duplex bioelectronic tongue (DBT) based on graphene field-effect transistors that were functionalized with heterodimeric human umami taste and sweet taste receptor nanovesicles. Two types of nanovesicles, which have human T1R1/T1R3 for the umami taste and human T1R2/T1R3 for the sweet taste on their membranes, immobilized on micropatterned graphene surfaces were used for the simultaneous detection of the umami and sweet tastants. The DBT platform led to highly sensitive and selective recognition of target tastants at low concentrations (ca. 100 nM). Moreover, our DBT was able to detect the enhancing effect of taste enhancers as in a human taste sensory system. This technique can be a useful tool for the detection of tastes instead of sensory evaluation and development of new artificial tastants in the food and beverage industry.

  8. Individual differences in bitter taste preferences are associated with antisocial personality traits.

    PubMed

    Sagioglou, Christina; Greitemeyer, Tobias

    2016-01-01

    In two studies, we investigated how bitter taste preferences might be associated with antisocial personality traits. Two US American community samples (total N = 953; mean age = 35.65 years; 48% females) self-reported their taste preferences using two complementary preference measures and answered a number of personality questionnaires assessing Machiavellianism, psychopathy, narcissism, everyday sadism, trait aggression, and the Big Five factors of personality. The results of both studies confirmed the hypothesis that bitter taste preferences are positively associated with malevolent personality traits, with the most robust relation to everyday sadism and psychopathy. Regression analyses confirmed that this association holds when controlling for sweet, sour, and salty taste preferences and that bitter taste preferences are the overall strongest predictor compared to the other taste preferences. The data thereby provide novel insights into the relationship between personality and the ubiquitous behaviors of eating and drinking by consistently demonstrating a robust relation between increased enjoyment of bitter foods and heightened sadistic proclivities. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Changes in taste bud volume during taste disturbance.

    PubMed

    Srur, Ehab; Pau, Hans Wilhelm; Just, Tino

    2011-08-01

    On-line mapping and serial volume measurements of taste buds with confocal laser scanning microscopy provide information on the peripheral gustatory organ over time. We report the volumetric measurements of four selected fungiform papillae over 8 weeks in a 62-year-old man with taste disturbance, which was more apparent on the right than on the left side. In the two papillae on the right side, no taste buds were detected within the fungiform papillae in the sixth and eighth week. During sixth and eighth week, there was no response to the highest presented stimuli in electrogustometry (1 mA) on the right-sided tongue tip nor at the tongue edge. The morphology (shape, diameter) of the fungiform papillae on both sides remained unchanged. Comparison of the time course of the volume changes revealed differences corresponding to gustatory sensitivity. These findings suggest that the time course of volume changes indicated taste disturbance in our patient, rather than morphological changes in the fungiform papillae. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  10. Genetics of sweet taste preferences†

    PubMed Central

    Bachmanov, Alexander A; Bosak, Natalia P; Floriano, Wely B; Inoue, Masashi; Li, Xia; Lin, Cailu; Murovets, Vladimir O; Reed, Danielle R; Zolotarev, Vasily A; Beauchamp, Gary K

    2011-01-01

    Sweet taste is a powerful factor influencing food acceptance. There is considerable variation in sweet taste perception and preferences within and among species. Although learning and homeostatic mechanisms contribute to this variation in sweet taste, much of it is genetically determined. Recent studies have shown that variation in the T1R genes contributes to within- and between-species differences in sweet taste. In addition, our ongoing studies using the mouse model demonstrate that a significant portion of variation in sweetener preferences depends on genes that are not involved in peripheral taste processing. These genes are likely involved in central mechanisms of sweet taste processing, reward and/or motivation. Genetic variation in sweet taste not only influences food choice and intake, but is also associated with proclivity to drink alcohol. Both peripheral and central mechanisms of sweet taste underlie correlation between sweet-liking and alcohol consumption in animal models and humans. All these data illustrate complex genetics of sweet taste preferences and its impact on human nutrition and health. Identification of genes responsible for within- and between-species variation in sweet taste can provide tools to better control food acceptance in humans and other animals. PMID:21743773

  11. Neural Reactivity to Emotional Faces Mediates the Relationship Between Childhood Empathy and Adolescent Prosocial Behavior

    PubMed Central

    Flournoy, John C.; Pfeifer, Jennifer H.; Moore, William E.; Tackman, Allison; Masten, Carrie L.; Mazziotta, John C.; Iacoboni, Marco; Dapretto, Mirella

    2017-01-01

    Reactivity to others' emotions can result in empathic concern (EC), an important motivator of prosocial behavior, but can also result in personal distress (PD), which may hinder prosocial behavior. Examining neural substrates of emotional reactivity may elucidate how EC and PD differentially influence prosocial behavior. Participants (N=57) provided measures of EC, PD, prosocial behavior, and neural responses to emotional expressions at age 10 and 13. Initial EC predicted subsequent prosocial behavior. Initial EC and PD predicted subsequent reactivity to emotions in the inferior frontal gyrus (IFG) and inferior parietal lobule, respectively. Activity in the IFG, a region linked to mirror neuron processes, as well as cognitive control and language, mediated the relation between initial EC and subsequent prosocial behavior. PMID:28262939

  12. Amygdala reactivity predicts adolescent antisocial behavior but not callous-unemotional traits

    PubMed Central

    Dotterer, Hailey L.; Hyde, Luke W.; Swartz, Johnna R.; Hariri, Ahmad R.; Williamson, Douglas E.

    2017-01-01

    Recent neuroimaging studies have suggested divergent relationships between antisocial behavior (AB) and callous-unemotional (CU) traits and amygdala reactivity to fearful and angry facial expressions in adolescents. However, little work has examined if these findings extend to dimensional measures of behavior in ethnically diverse, non-clinical samples, or if participant sex, ethnicity, pubertal stage, and age moderate associations. We examined links between amygdala reactivity and dimensions of AB and CU traits in 220 Hispanic and non-Hispanic Caucasian adolescents (age 11–15; 49.5% female; 38.2% Hispanic), half of whom had a family history for depression and thus were at relatively elevated risk for late starting, emotionally dysregulated AB. We found that AB was significantly related to increased right amygdala reactivity to angry facial expressions independent of sex, ethnicity, pubertal stage, age, and familial risk status for depression. CU traits were not related to fear- or anger-related amygdala reactivity. The present study further demonstrates that AB is related to increased amygdala reactivity to interpersonal threat cues in adolescents, and that this relationship generalizes across sex, ethnicity, pubertal stage, age, and familial risk status for depression. PMID:28279916

  13. Amygdala reactivity predicts adolescent antisocial behavior but not callous-unemotional traits.

    PubMed

    Dotterer, Hailey L; Hyde, Luke W; Swartz, Johnna R; Hariri, Ahmad R; Williamson, Douglas E

    2017-04-01

    Recent neuroimaging studies have suggested divergent relationships between antisocial behavior (AB) and callous-unemotional (CU) traits and amygdala reactivity to fearful and angry facial expressions in adolescents. However, little work has examined if these findings extend to dimensional measures of behavior in ethnically diverse, non-clinical samples, or if participant sex, ethnicity, pubertal stage, and age moderate associations. We examined links between amygdala reactivity and dimensions of AB and CU traits in 220 Hispanic and non-Hispanic Caucasian adolescents (age 11-15; 49.5% female; 38.2% Hispanic), half of whom had a family history for depression and thus were at relatively elevated risk for late starting, emotionally dysregulated AB. We found that AB was significantly related to increased right amygdala reactivity to angry facial expressions independent of sex, ethnicity, pubertal stage, age, and familial risk status for depression. CU traits were not related to fear- or anger-related amygdala reactivity. The present study further demonstrates that AB is related to increased amygdala reactivity to interpersonal threat cues in adolescents, and that this relationship generalizes across sex, ethnicity, pubertal stage, age, and familial risk status for depression. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Taste buds: cells, signals and synapses.

    PubMed

    Roper, Stephen D; Chaudhari, Nirupa

    2017-08-01

    The past decade has witnessed a consolidation and refinement of the extraordinary progress made in taste research. This Review describes recent advances in our understanding of taste receptors, taste buds, and the connections between taste buds and sensory afferent fibres. The article discusses new findings regarding the cellular mechanisms for detecting tastes, new data on the transmitters involved in taste processing and new studies that address longstanding arguments about taste coding.

  15. Calcium Signaling in Taste Cells

    PubMed Central

    Medler, Kathryn F.

    2014-01-01

    The sense of taste is a common ability shared by all organisms and is used to detect nutrients as well as potentially harmful compounds. Thus taste is critical to survival. Despite its importance, surprisingly little is known about the mechanisms generating and regulating responses to taste stimuli. All taste responses depend on calcium signals to generate appropriate responses which are relayed to the brain. Some taste cells have conventional synapses and rely on calcium influx through voltage-gated calcium channels. Other taste cells lack these synapses and depend on calcium release to formulate an output signal through a hemichannel. Beyond establishing these characteristics, few studies have focused on understanding how these calcium signals are formed. We identified multiple calcium clearance mechanisms that regulate calcium levels in taste cells as well as a calcium influx that contributes to maintaining appropriate calcium homeostasis in these cells. Multiple factors regulate the evoked taste signals with varying roles in different cell populations. Clearly, calcium signaling is a dynamic process in taste cells and is more complex than has previously been appreciated. PMID:25450977

  16. Emotional Reactivity and Regulation in Head Start Children: Links to Ecologically-Valid Behaviors and Internalizing Problems

    PubMed Central

    Morgan, Judith K.; Izard, Carroll E.; Hyde, Christopher

    2013-01-01

    Children’s emotional reactivity may interact with their regulatory behaviors to contribute to internalizing problems and social functioning even early in development. Ninety-one preschool children participated in a longitudinal project examining children’s reactivity and regulatory behaviors as predictors of internalizing problems and positive and negative social behavior in the classroom. Children who paired negative emotion expression with disengagement during a laboratory task showed higher levels of internalizing problems and more negative social behavior in the classroom six months later. Positive emotion expression paired with engagement during a laboratory task predicted more positive social behavior in the classroom six months later. Physiological reactivity and regulation also predicted children’s social behavior in the classroom. Findings suggest that preschool children with maladaptive reactivity and regulatory patterns may be at greater risk for internalizing problems even in early childhood. PMID:25067866

  17. Maternal Anxiety and Physiological Reactivity as Mechanisms to Explain Overprotective Primiparous Parenting Behaviors

    PubMed Central

    Kalomiris, Anne E.; Kiel, Elizabeth J.

    2016-01-01

    This study sought to determine if the affective and physiological experience of primiparous, or first-time, motherhood is distinct from multiparous mothers, how this is impacted by the child’s level of inhibited temperament, and if this results in overprotective parenting behaviors. A total of 117 mothers and their 24-month-old toddlers participated in novelty tasks designed to elicit parenting behaviors and toddler’s typical fear reactions. Mothers also completed a battery of questionnaires. Results suggest that primiparous mothers experienced more worry and this was associated with increased overprotective parenting behaviors. Primiparous mothers also demonstrated greater physiological (i.e., cortisol) reactivity while watching their first-born children interact with novel stimuli but how this related to overprotective parenting was dependent on the child’s level of inhibition. Specifically, primiparous mothers displayed more cortisol reactivity with their uninhibited toddlers and this indirectly linked parity to less overprotective parenting behaviors. Primiparous mothers of highly inhibited toddlers displayed greater overprotective parenting behaviors, independent of maternal cortisol reactivity. The results indicate that the transition to motherhood is a unique experience associated with greater worry and physiological reactivity and is meaningfully influenced by the toddler’s temperament. Distinctions in both observed and self-reported overprotective parenting are evident through considering the dynamic interaction of these various aspects. PMID:27513283

  18. Social Behavior and Cortisol Reactivity in Children with Fragile X Syndrome

    ERIC Educational Resources Information Center

    Hessl, David; Glaser, Bronwyn; Dyer-Friedman, Jennifer; Reiss, Allan L.

    2006-01-01

    Objective: To examine the association between limbic-hypothalamic-pituitary-adrenal (L-HPA) axis reactivity and social behavior in children with fragile X syndrome (FXS). Method: Salivary cortisol changes and concurrent anxiety-related behaviors consistent with the behavioral phenotype of FXS were measured in 90 children with the fragile X full…

  19. Emotional Reactivity, Behavior Problems, and Social Adjustment at School Entry in a High-risk Sample.

    PubMed

    Kalvin, Carla B; Bierman, Karen L; Gatzke-Kopp, Lisa M

    2016-11-01

    Prior research suggests that heightened emotional reactivity to emotionally distressing stimuli may be associated with elevated internalizing and externalizing behaviors, and contribute to impaired social functioning. These links were explored in a sample of 169 economically-disadvantaged kindergarteners (66 % male; 68 % African American, 22 % Hispanic, 10 % Caucasian) oversampled for elevated aggression. Physiological measures of emotional reactivity (respiratory sinus arrhythmia [RSA], heart rate [HR], and cardiac pre-ejection period [PEP]) were collected, and teachers and peers provided ratings of externalizing and internalizing behavior, prosocial competence, and peer rejection. RSA withdrawal, HR reactivity, and PEP shortening (indicating increased arousal) were correlated with reduced prosocial competence, and RSA withdrawal and HR reactivity were correlated with elevated internalizing problems. HR reactivity was also correlated with elevated externalizing problems and peer rejection. Linear regressions controlling for age, sex, race, verbal proficiency, and resting physiology showed that HR reactivity explained unique variance in both teacher-rated prosocial competence and peer rejection, and contributed indirectly to these outcomes through pathways mediated by internalizing and externalizing problems. A trend also emerged for the unique contribution of PEP reactivity to peer-rated prosocial competence. These findings support the contribution of emotional reactivity to behavior problems and social adjustment among children living in disadvantaged urban contexts, and further suggest that elevated reactivity may confer risk for social difficulties in ways that overlap only partially with internalizing and externalizing behavior problems.

  20. Emotional Reactivity, Behavior Problems, and Social Adjustment at School Entry in a High-risk Sample

    PubMed Central

    Kalvin, Carla B.; Bierman, Karen L.; Gatzke-Kopp, Lisa M.

    2016-01-01

    Prior research suggests that heightened emotional reactivity to emotionally distressing stimuli may be associated with elevated internalizing and externalizing behaviors, and contribute to impaired social functioning. These links were explored in a sample of 169 economically-disadvantaged kindergarteners (66 % male; 68 % African American, 22 % Hispanic, 10 % Caucasian) oversampled for elevated aggression. Physiological measures of emotional reactivity (respiratory sinus arrhythmia [RSA], heart rate [HR], and cardiac pre-ejection period [PEP]) were collected, and teachers and peers provided ratings of externalizing and internalizing behavior, prosocial competence, and peer rejection. RSA withdrawal, HR reactivity, and PEP shortening (indicating increased arousal) were correlated with reduced prosocial competence, and RSA withdrawal and HR reactivity were correlated with elevated internalizing problems. HR reactivity was also correlated with elevated externalizing problems and peer rejection. Linear regressions controlling for age, sex, race, verbal proficiency, and resting physiology showed that HR reactivity explained unique variance in both teacher-rated prosocial competence and peer rejection, and contributed indirectly to these outcomes through pathways mediated by internalizing and externalizing problems. A trend also emerged for the unique contribution of PEP reactivity to peer-rated prosocial competence. These findings support the contribution of emotional reactivity to behavior problems and social adjustment among children living in disadvantaged urban contexts, and further suggest that elevated reactivity may confer risk for social difficulties in ways that overlap only partially with internalizing and externalizing behavior problems. PMID:26943804

  1. Wine Expertise Predicts Taste Phenotype

    PubMed Central

    Hayes, John E; Pickering, Gary J

    2011-01-01

    Taste phenotypes have long been studied in relation to alcohol intake, dependence, and family history, with contradictory findings. However, on balance – with appropriate caveats about populations tested, outcomes measured and psychophysical methods used – an association between variation in taste responsiveness and some alcohol behaviors is supported. Recent work suggests super-tasting (operationalized via propylthiouracil (PROP) bitterness) not only associates with heightened response but also with more acute discrimination between stimuli. Here, we explore relationships between food and beverage adventurousness and taste phenotype. A convenience sample of wine drinkers (n=330) were recruited in Ontario and phenotyped for PROP bitterness via filter paper disk. They also filled out a short questionnaire regarding willingness to try new foods, alcoholic beverages and wines as well as level of wine involvement, which was used to classify them as a wine expert (n=110) or wine consumer (n=220). In univariate logisitic models, food adventurousness predicted trying new wines and beverages but not expertise. Likewise, wine expertise predicted willingness to try new wines and beverages but not foods. In separate multivariate logistic models, willingness to try new wines and beverages was predicted by expertise and food adventurousness but not PROP. However, mean PROP bitterness was higher among wine experts than wine consumers, and the conditional distribution functions differed between experts and consumers. In contrast, PROP means and distributions did not differ with food adventurousness. These data suggest individuals may self-select for specific professions based on sensory ability (i.e., an active gene-environment correlation) but phenotype does not explain willingness to try new stimuli. PMID:22888174

  2. TRPs in Taste and Chemesthesis

    PubMed Central

    2015-01-01

    TRP channels are expressed in taste buds, nerve fibers, and keratinocytes in the oronasal cavity. These channels play integral roles in transducing chemical stimuli, giving rise to sensations of taste, irritation, warmth, coolness, and pungency. Specifically, TRPM5 acts downstream of taste receptors in the taste transduction pathway. TRPM5 channels convert taste-evoked intracellular Ca2+ release into membrane depolarization to trigger taste transmitter secretion. PKD2L1 is expressed in acid-sensitive (sour) taste bud cells but is unlikely to be the transducer for sour taste. TRPV1 is a receptor for pungent chemical stimuli such as capsaicin and for several irritants (chemesthesis). It is controversial whether TRPV1 is present in the taste buds and plays a direct role in taste. Instead, TRPV1 is expressed in non-gustatory sensory afferent fibers and in keratinocytes of the oronasal cavity. In many sensory fibers and epithelial cells lining the oronasal cavity, TRPA1 is also co-expressed with TRPV1. As with TRPV1, TRPA1 transduces a wide variety of irritants and, in combination with TRPV1, assures that there is a broad response to noxious chemical stimuli. Other TRP channels, including TRPM8, TRPV3, and TRPV4, play less prominent roles in chemesthesis and no known role in taste, per se. The pungency of foods and beverages is likely highly influenced by the temperature at which they are consumed, their acidity, and, for beverages, their carbonation. All these factors modulate the activity of TRP channels in taste buds and in the oronasal mucosa. PMID:24961971

  3. TRPs in taste and chemesthesis.

    PubMed

    Roper, Stephen D

    2014-01-01

    TRP channels are expressed in taste buds, nerve fibers, and keratinocytes in the oronasal cavity. These channels play integral roles in transducing chemical stimuli, giving rise to sensations of taste, irritation, warmth, coolness, and pungency. Specifically, TRPM5 acts downstream of taste receptors in the taste transduction pathway. TRPM5 channels convert taste-evoked intracellular Ca(2+) release into membrane depolarization to trigger taste transmitter secretion. PKD2L1 is expressed in acid-sensitive (sour) taste bud cells but is unlikely to be the transducer for sour taste. TRPV1 is a receptor for pungent chemical stimuli such as capsaicin and for several irritants (chemesthesis). It is controversial whether TRPV1 is present in the taste buds and plays a direct role in taste. Instead, TRPV1 is expressed in non-gustatory sensory afferent fibers and in keratinocytes of the oronasal cavity. In many sensory fibers and epithelial cells lining the oronasal cavity, TRPA1 is also co-expressed with TRPV1. As with TRPV1, TRPA1 transduces a wide variety of irritants and, in combination with TRPV1, assures that there is a broad response to noxious chemical stimuli. Other TRP channels, including TRPM8, TRPV3, and TRPV4, play less prominent roles in chemesthesis and no known role in taste, per se. The pungency of foods and beverages is likely highly influenced by the temperature at which they are consumed, their acidity, and, for beverages, their carbonation. All these factors modulate the activity of TRP channels in taste buds and in the oronasal mucosa.

  4. Taste buds: cells, signals and synapses

    PubMed Central

    Roper, Stephen D.; Chaudhari, Nirupa

    2018-01-01

    The past decade has witnessed a consolidation and refinement of the extraordinary progress made in taste research. This Review describes recent advances in our understanding of taste receptors, taste buds, and the connections between taste buds and sensory afferent fibres. The article discusses new findings regarding the cellular mechanisms for detecting tastes, new data on the transmitters involved in taste processing and new studies that address longstanding arguments about taste coding. PMID:28655883

  5. The taste of music.

    PubMed

    Mesz, Bruno; Trevisan, Marcos A; Sigman, Mariano

    2011-01-01

    Zarlino, one of the most important music theorists of the XVI century, described the minor consonances as 'sweet' (dolci) and 'soft' (soavi) (Zarlino 1558/1983, in On the Modes New Haven, CT: Yale University Press, 1983). Hector Berlioz, in his Treatise on Modern Instrumentation and Orchestration (London: Novello, 1855), speaks about the 'small acid-sweet voice' of the oboe. In line with this tradition of describing musical concepts in terms of taste words, recent empirical studies have found reliable associations between taste perception and low-level sound and musical parameters, like pitch and phonetic features. Here we investigated whether taste words elicited consistent musical representations by asking trained musicians to improvise on the basis of the four canonical taste words: sweet, sour, bitter, and salty. Our results showed that, even in free improvisation, taste words elicited very reliable and consistent musical patterns:'bitter' improvisations are low-pitched and legato (without interruption between notes), 'salty' improvisations are staccato (notes sharply detached from each other), 'sour' improvisations are high-pitched and dissonant, and 'sweet' improvisations are consonant, slow, and soft. Interestingly, projections of the improvisations of taste words to musical space (a vector space defined by relevant musical parameters) revealed that, in musical space, improvisations based on different taste words were nearly orthogonal or opposite. Decoding methods could classify binary choices of improvisations (i.e., identify the improvisation word from the melody) at performance of around 80%--well above chance. In a second experiment we investigated the mapping from perception of music to taste words. Fifty-seven non-musical experts listened to a fraction of the improvisations. We found that listeners classified with high performance the taste word which had elicited the improvisation. Our results, furthermore, show that associations of taste and music

  6. Physiological Reactivity During Parent-Adolescent Discussions: Associations with Scaffolding Behaviors and Relationship Quality.

    PubMed

    Manczak, Erika M; McLean, Kate C; McAdams, Dan P; Chen, Edith

    2015-08-01

    Parents and adolescents commonly discuss stressful experiences. However, little is known about the features of these conversations that may have implications for health. One hundred five adolescents and their parents engaged in conversations about two challenging events, with parental contributions to the discussions coded for four scaffolding behaviors (reiterations, negations, move alongs, and new interpretations). Systolic blood pressure, diastolic blood pressure, and heart rate were measured in both participants at baseline and throughout the conversation. Parent-reported relationship quality was also assessed. For both parents and adolescents, negative scaffolding behaviors were associated with increased physiological reactivity, whereas positive scaffolding behaviors were associated with decreased reactivity. Furthermore, children in higher quality parent-child relationships showed greater reactivity to reiterations and lower reactivity to new interpretations, but those in lower quality relationships demonstrated the opposite patterns. Specific aspects of parent-child interactions appear to contribute to physiological responses to challenging events, which in turn may have implications for health.

  7. Human biology of taste.

    PubMed

    Gravina, Stephen A; Yep, Gregory L; Khan, Mehmood

    2013-01-01

    Taste or gustation is one of the 5 traditional senses including hearing, sight, touch, and smell. The sense of taste has classically been limited to the 5 basic taste qualities: sweet, salty, sour, bitter, and umami or savory. Advances from the Human Genome Project and others have allowed the identification and determination of many of the genes and molecular mechanisms involved in taste biology. The ubiquitous G protein-coupled receptors (GPCRs) make up the sweet, umami, and bitter receptors. Although less clear in humans, transient receptor potential ion channels are thought to mediate salty and sour taste; however, other targets have been identified. Furthermore, taste receptors have been located throughout the body and appear to be involved in many regulatory processes. An emerging interplay is revealed between chemical sensing in the periphery, cortical processing, performance, and physiology and likely the pathophysiology of diseases such as diabetes.

  8. Failure of Serial Taste-Taste Compound Presentations to Produce Overshadowing of Extinction of Conditioned Taste Aversion

    ERIC Educational Resources Information Center

    Pineno, Oskar

    2010-01-01

    Two experiments were conducted to study overshadowing of extinction in a conditioned taste aversion preparation. In both experiments, aversive conditioning with sucrose was followed by extinction treatment with either sucrose alone or in compound with another taste, citric acid. Experiment 1 employed a simultaneous compound extinction treatment…

  9. Caregiver Protective Behavior, Toddler Fear and Sadness, and Toddler Cortisol Reactivity in Novel Contexts

    PubMed Central

    Hutt, Rachel L.; Buss, Kristin A.; Kiel, Elizabeth J.

    2012-01-01

    Previous research has shown that caregiver protective behavior may exacerbate toddler distress in specific contexts. The current study sought to extend this work to examine associations between these variables and toddler cortisol reactivity. Ninety-three 24-month-old toddlers were observed across six novel contexts designed to elicit distress. Toddlers were asked to give saliva samples at the beginning and end of the laboratory procedure. Toddler sadness, toddler fear, and caregiver protective behavior were coded. Results indicate that caregiver protective behavior accounted for the association between toddler sadness and cortisol reactivity where higher levels of protective behavior were associated with higher cortisol reactivity. The current study showed that caregiver protective behavior, which functions to prevent a child from interacting with a novel stimulus, is an important mechanism to consider when understanding toddler stress responses during novel contexts. PMID:24659922

  10. The number of taste buds is related to bitter taste sensitivity in layer and broiler chickens.

    PubMed

    Kudo, Ken-ichi; Shiraishi, Jun-ichi; Nishimura, Shotaro; Bungo, Takashi; Tabata, Shoji

    2010-04-01

    The relationship between taste sensitivity and the number of taste buds using a bitter tastant, quinine hydrochloride, was investigated in White Leghorn, Rhode Island Red, and broiler chickens. The White Leghorn and Rhode Island Red strains were able to perceive 2.0 mmol/L quinine hydrochloride, but the taste sensitivity of Rhode Island Red chickens was higher than that of White Leghorn chickens. Broiler chickens perceived 0.5 mmol/L quinine hydrochloride. The number of taste buds in the White Leghorn strain was the lowest, then the Rhode Island Red strain, with the number of taste buds highest in the broiler chickens. The number of taste buds was well correlated with bitter taste sensitivity. Therefore, we suggest that the number of taste buds is a vital factor in the perception of bitter taste and may be useful in selecting appropriate feeds for chickens.

  11. Dollars and scents: commercial opportunities in olfaction and taste.

    PubMed

    Gilbert, Avery N; Firestein, Stuart

    2002-11-01

    Research successes over the past decade have provided a broad outline of the neuroscience of olfaction and taste. Our understanding of these systems now spans the molecular to the psychological. It will soon reach critical mass and begin to generate a variety of practical applications with commercial potential. Given the ubiquity of smell and taste and their importance to health, nutrition and quality of life, these applications could have a major impact on consumer product markets and create entirely new ones. Sensory biotechnology could be the first post-genomic application to break through to the consumer market. We describe odor modulation technologies with implications for food intake, health care and other arenas. Our deeper understanding of olfaction and taste in animal behavior and reproduction provides opportunities in pest control and animal husbandry, where environmentally neutral interventions are much in demand.

  12. Neural crest contribution to lingual mesenchyme, epithelium and developing taste papillae and taste buds.

    PubMed

    Liu, Hong-Xiang; Komatsu, Yoshihiro; Mishina, Yuji; Mistretta, Charlotte M

    2012-08-15

    The epithelium of mammalian tongue hosts most of the taste buds that transduce gustatory stimuli into neural signals. In the field of taste biology, taste bud cells have been described as arising from "local epithelium", in distinction from many other receptor organs that are derived from neurogenic ectoderm including neural crest (NC). In fact, contribution of NC to both epithelium and mesenchyme in the developing tongue is not fully understood. In the present study we used two independent, well-characterized mouse lines, Wnt1-Cre and P0-Cre that express Cre recombinase in a NC-specific manner, in combination with two Cre reporter mouse lines, R26R and ZEG, and demonstrate a contribution of NC-derived cells to both tongue mesenchyme and epithelium including taste papillae and taste buds. In tongue mesenchyme, distribution of NC-derived cells is in close association with taste papillae. In tongue epithelium, labeled cells are observed in an initial scattered distribution and progress to a clustered pattern between papillae, and within papillae and early taste buds. This provides evidence for a contribution of NC to lingual epithelium. Together with previous reports for the origin of taste bud cells from local epithelium in postnatal mouse, we propose that NC cells migrate into and reside in the epithelium of the tongue primordium at an early embryonic stage, acquire epithelial cell phenotypes, and undergo cell proliferation and differentiation that is involved in the development of taste papillae and taste buds. Our findings lead to a new concept about derivation of taste bud cells that include a NC origin. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Neural crest contribution to lingual mesenchyme, epithelium and developing taste papillae and taste buds

    PubMed Central

    Liu, Hong-Xiang; Komatsu, Yoshihiro; Mishina, Yuji; Mistretta, Charlotte M.

    2012-01-01

    The epithelium of mammalian tongue hosts most of the taste buds that transduce gustatory stimuli into neural signals. In the field of taste biology, taste bud cells have been described as arising from “local epithelium”, in distinction from many other receptor organs that are derived from neurogenic ectoderm including neural crest (NC). In fact, contribution of NC to both epithelium and mesenchyme in the developing tongue is not fully understood. In the present study we used two independent, well-characterized mouse lines, Wnt1-Cre and P0-Cre that express Cre recombinase in a NC-specific manner, in combination with two Cre reporter mouse lines, R26R and ZEG, and demonstrate a contribution of NC-derived cells to both tongue mesenchyme and epithelium including taste papillae and taste buds. In tongue mesenchyme, distribution of NC-derived cells is in close association with taste papillae. In tongue epithelium, labeled cells are observed in an initial scattered distribution and progress to a clustered pattern between papillae, and within papillae and early taste buds. This provides evidence for a contribution of NC to lingual epithelium. Together with previous reports for the origin of taste bud cells from local epithelium in postnatal mouse, we propose that NC cells migrate into and reside in the epithelium of the tongue primordium at an early embryonic stage, acquire epithelial cell phenotypes, and undergo cell proliferation and differentiation that is involved in the development of taste papillae and taste buds. Our findings lead to a new concept about derivation of taste bud cells that include a NC origin. PMID:22659543

  14. Genetic Variation in Taste Sensitivity to Sugars in Drosophila melanogaster.

    PubMed

    Uchizono, Shun; Tanimura, Teiichi

    2017-05-01

    Taste sensitivity plays a major role in controlling feeding behavior, and alterations in feeding habit induced by changes in taste sensitivity can drive speciation. We investigated variability in taste preferences in wild-derived inbred lines from the Drosophila melanogaster Genetic Reference Panel. Preferences for different sugars, which are essential nutrients for fruit flies, were assessed using two-choice preference tests that paired glucose with fructose, sucrose, or trehalose. The two-choice tests revealed that individual lines have differential and widely variable sugar preferences, and that sugar taste sensitivity is polygenic in the inbred population tested. We focused on 2 strains that exhibited opposing preferences for glucose and fructose, and performed proboscis extension reflex tests and electrophysiological recordings on taste sensilla upon exposure to fructose and glucose. The results indicated that taste sensitivity to fructose is dimorphic between the 2 lines. Genetic analysis showed that high sensitivity to fructose is autosomal dominant over low sensitivity, and that multiple loci on chromosomes 2 and 3 influence sensitivity. Further genetic complementation tests for fructose sensitivity on putative gustatory receptor (Gr) genes for sugars suggested that the Gr64a-Gr64f locus, not the fructose receptor gene Gr43a, might contribute to the dimorphic sensitivity to fructose between the 2 lines. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Taste preference and psychopathology.

    PubMed

    Aguayo, G A; Vaillant, M T; Arendt, C; Bachim, S; Pull, C B

    2012-01-01

    Excessive food intake has been linked to many factors including taste preference and the presence of psychopathology. The purpose of this study was to investigate the association between sweet and salty taste preference and psychopathology in patients with severe obesity. A consecutive series of patients applying for bariatric surgery was recruited for the study. Taste preference was self-reported. Psychopathology was assessed using the revised version of the Minnesota Multiphasic Personality Inventory-2 (MMPI-2). 190 patients were included in the study. In comparison with patients who had salty taste preference, patients with sweet taste preference had significantly higher elevations on the depression (OD: 4.090, p = 0.010) and the hysteria (OD: 2.951, p = 0.026) clinical scales of the MMPI-2. The results suggest the presence of an association between taste preference and psychopathology. The findings may be of interest for clinicians who are involved in the treatment of obesity. In particular, they may wish to pay increased attention to patients with sweet taste preference or who have a strong attraction for both sweet and salty foods, in order to detect psychopathology and to adapt the treatment.

  16. (+)-(S)-alapyridaine--a general taste enhancer?

    PubMed

    Soldo, Tomislav; Blank, Imre; Hofmann, Thomas

    2003-06-01

    N-(1-Carboxyethyl)-6-hydroxymethyl-pyridinium-3-ol inner salt (alapyridaine), recently identified in heated sugar/amino acid mixtures as well as in beef bouillon, has been shown to exhibit general taste-enhancing activities, although tasteless on its own. Differing from other taste enhancers reported so far, racemic (R/S)-alapyridaine and, to an even greater extent (+)-(S)-alapyridaine, the physiologically active enantiomer, are able to enhance more than one basic taste quality. The threshold concentrations for the sweet taste of glucose and sucrose, for the umami taste of monosodium L-glutamate (MSG) and guanosine-5'-monophosphate (GMP), as well as the salty taste of NaCl, were significantly decreased when alapyridaine was present. In contrast, perception of the bitter tastes of caffeine and L-phenylalanine, as well as of sour-tasting citric acid, was unaffected. Furthermore, alapyridaine was shown to intensify known taste synergies such as, for example, the enhancing effect of L-arginine on the salty taste of NaCl, as well as that of GMP on the umami taste of MSG. The activity of (+)-(S)-alapyridaine could be observed not only in solutions of single taste compounds, but also in more complex tastant mixtures; for example, the umami, sweet and salty taste of a solution containing MSG, sucrose, NaCl and caffeine was significantly modulated, thus indicating that alapyridaine is a general taste enhancer.

  17. Taste Bud-Derived BDNF Is Required to Maintain Normal Amounts of Innervation to Adult Taste Buds123

    PubMed Central

    Meng, Lingbin; Ohman-Gault, Lisa; Ma, Liqun

    2015-01-01

    Abstract Gustatory neurons transmit chemical information from taste receptor cells, which reside in taste buds in the oral cavity, to the brain. As adult taste receptor cells are renewed at a constant rate, nerve fibers must reconnect with new taste receptor cells as they arise. Therefore, the maintenance of gustatory innervation to the taste bud is an active process. Understanding how this process is regulated is a fundamental concern of gustatory system biology. We speculated that because brain-derived neurotrophic factor (BDNF) is required for taste bud innervation during development, it might function to maintain innervation during adulthood. If so, taste buds should lose innervation when Bdnf is deleted in adult mice. To test this idea, we first removed Bdnf from all cells in adulthood using transgenic mice with inducible CreERT2 under the control of the Ubiquitin promoter. When Bdnf was removed, approximately one-half of the innervation to taste buds was lost, and taste buds became smaller because of the loss of taste bud cells. Individual taste buds varied in the amount of innervation each lost, and those that lost the most innervation also lost the most taste bud cells. We then tested the idea that that the taste bud was the source of this BDNF by reducing Bdnf levels specifically in the lingual epithelium and taste buds. Taste buds were confirmed as the source of BDNF regulating innervation. We conclude that BDNF expressed in taste receptor cells is required to maintain normal levels of innervation in adulthood. PMID:26730405

  18. Subtype-dependent postnatal development of taste receptor cells in mouse fungiform taste buds.

    PubMed

    Ohtubo, Yoshitaka; Iwamoto, Masafumi; Yoshii, Kiyonori

    2012-06-01

    Taste buds contain two types of taste receptor cells, inositol 1,4,5-triphosphate receptor type 3-immunoreactive cells (type II cells) and synaptosomal-associating protein-25-immunoreactive cells (type III cells). We investigated their postnatal development in mouse fungiform taste buds immunohistochemically and electrophysiologically. The cell density, i.e. the number of cells per taste bud divided by the maximal area of the horizontal cross-section of the taste bud, of type II cells increased by postnatal day (PD)49, where as that of type III cells was unchanged throughout the postnatal observation period and was equal to that of the adult cells at PD1. The immunoreactivity of taste bud cell subtypes was the same as that of their respective subtypes in adult mice throughout the postnatal observation period. Almost all type II cells were immunoreactive to gustducin at PD1, and then the ratio of gustducin-immunoreactive type II cells to all type II cells decreased to a saturation level, ∼60% of all type II cells, by PD15. Type II and III cells generated voltage-gated currents similar to their respective adult cells even at PD3. These results show that infant taste receptor cells are as excitable as those of adults and propagate in a subtype-dependent manner. The relationship between the ratio of each taste receptor cell subtype to all cells and taste nerve responses are discussed. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  19. Expression of GDNF and GFR alpha 1 in mouse taste bud cells.

    PubMed

    Takeda, Masako; Suzuki, Yuko; Obara, Nobuko; Uchida, Nobuhiko; Kawakoshi, Kentaro

    2004-11-01

    GDNF (glial cell line-derived neurotrophic factor) affects the survival and maintenance of central and peripheral neurons. Using an immunocytochemical method, we examined whether the taste bud cells in the circumvallate papillae of normal mice expressed GDNF and its GFR alpha 1 receptor. Using double immunostaining for either of them and NCAM, PGP 9.5, or alpha-gustducin, we additionally sought to determine what type of taste bud cells expressed GDNF or GFR alpha 1, because NCAM is reported to be expressed in type-III cells, PGP 9.5, in type-III and some type-II cells, and alpha-gustducin, in some type-II cells. Normal taste bud cells expressed both GDNF and GFR alpha 1. The percentage of GDNF-immunoreactive cells among all taste bud cells was 31.63%, and that of GFR alpha 1-immunoreactive cells, 83.21%. Confocal laser scanning microscopic observations after double immunostaining showed that almost none of the GDNF-immunoreactive cells in the taste buds were reactive with anti-NCAM or anti-PGP 9.5 antibody, but could be stained with anti-alpha-gustducin antibody. On the other hand, almost all anti-PGP 9.5- or anti-alpha-gustducin-immunoreactive cells were positive for GFR alpha 1. Thus, GDNF-immunoreactive cells did not include type-III cells, but type-II cells, which are alpha-gustducin-immunoreactive; on the other hand, GFR alpha 1-immunoreactive cells included type-II and -III cells, and perhaps type-I cells. We conclude that GDNF in the type-II cells may exert trophic actions on type-I, -II, and -III taste bud cells by binding to their GFR alpha 1 receptors.

  20. Lipopolysaccharide-induced inflammation attenuates taste progenitor cell proliferation and shortens the life span of taste bud cells.

    PubMed

    Cohn, Zachary J; Kim, Agnes; Huang, Liquan; Brand, Joseph; Wang, Hong

    2010-06-10

    The mammalian taste bud, a complex collection of taste sensory cells, supporting cells, and immature basal cells, is the structural unit for detecting taste stimuli in the oral cavity. Even though the cells of the taste bud undergo constant turnover, the structural homeostasis of the bud is maintained by balancing cell proliferation and cell death. Compared with nongustatory lingual epithelial cells, taste cells express higher levels of several inflammatory receptors and signalling proteins. Whether inflammation, an underlying condition in some diseases associated with taste disorders, interferes with taste cell renewal and turnover is unknown. Here we report the effects of lipopolysaccharide (LPS)-induced inflammation on taste progenitor cell proliferation and taste bud cell turnover in mouse taste tissues. Intraperitoneal injection of LPS rapidly induced expression of several inflammatory cytokines, including tumor necrosis factor (TNF)-alpha, interferon (IFN)-gamma, and interleukin (IL)-6, in mouse circumvallate and foliate papillae. TNF-alpha and IFN-gamma immunoreactivities were preferentially localized to subsets of cells in taste buds. LPS-induced inflammation significantly reduced the number of 5-bromo-2'-deoxyuridine (BrdU)-labeled newborn taste bud cells 1-3 days after LPS injection, suggesting an inhibition of taste bud cell renewal. BrdU pulse-chase experiments showed that BrdU-labeled taste cells had a shorter average life span in LPS-treated mice than in controls. To investigate whether LPS inhibits taste cell renewal by suppressing taste progenitor cell proliferation, we studied the expression of Ki67, a cell proliferation marker. Quantitative real-time RT-PCR revealed that LPS markedly reduced Ki67 mRNA levels in circumvallate and foliate epithelia. Immunofluorescent staining using anti-Ki67 antibodies showed that LPS decreased the number of Ki67-positive cells in the basal regions surrounding circumvallate taste buds, the niche for taste progenitor

  1. Musical Taste Cultures and Tase Publics

    ERIC Educational Resources Information Center

    Fox, William A.; Wince, Michael H.

    1975-01-01

    An analysis of the material tastes of college students support Gan's concepts of taste culture and taste public. While Gan's contention that class has a major effect upon involvement with taste culture, this requires qualification where musical tastes of college students are concerned. (Author/AM)

  2. The Bad Taste of Medicines: Overview of Basic Research on Bitter Taste

    PubMed Central

    Mennella, Julie A.; Spector, Alan C.; Reed, Danielle R.; Coldwell, Susan E.

    2013-01-01

    Background Many active pharmaceutical ingredients taste bitter and thus are aversive to children, as well as many adults. Encapsulation of the medicine in pill or tablet form, an effective method for adults to avoid the unpleasant taste, is problematic for children. Many children cannot or will not swallow solid dosage forms. Objective This review highlights basic principles of gustatory function, with a special focus on the science of bitter taste, derived from studies of animal models and human psychophysics. We focus on the set of genes that encode the proteins that function as bitter receptors, as well as the cascade of events that lead to multidimensional aspects of taste function, highlighting the role that animal models played in these discoveries. We also summarize psychophysical approaches to studying bitter taste in adult and pediatric populations, highlighting evidence of the similarities and differences in bitter taste perception and acceptance between adults and children and drawing on useful strategies from animal models. Results Medicine often tastes bitter, and because children are more bitter sensitive than are adults, this creates problems with compliance. Bitter arises from stimulating receptors in taste receptor cells, with signals processed in the taste bud and relayed to the brain. However, there are many gaps in our understanding of how best to measure bitterness and how to ameliorate it, including whether it is more efficiently addressed at the level of receptor and sensory signaling, at the level of central processing, or by masking techniques. All methods of measuring responsiveness to bitter ligands—in animal models, through human psychophysics, or with “electronic tongues”—have limitations. Conclusions Better-tasting medications may enhance pediatric adherence to drug therapy. Sugars, acids, salt, and other substances reduce perceived bitterness of several pharmaceuticals, and although pleasant flavorings may help children

  3. The molecular basis for water taste in Drosophila

    PubMed Central

    Cameron, Peter; Hiroi, Makoto; Ngai, John; Scott, Kristin

    2010-01-01

    The detection of water and the regulation of water intake are essential for animals to maintain proper osmotic homeostasis1. Drosophila and other insects have gustatory sensory neurons that mediate the recognition of external water sources2-4, but little is known about the underlying molecular mechanism for water taste detection. Here, we identify a member of the Degenerin/Epithelial Sodium Channel family5, ppk28, as an osmosensitive ion channel that mediates the cellular and behavioral response to water. We use molecular, cellular, calcium imaging and electrophysiological approaches to show that ppk28 is expressed in water-sensing neurons and loss of ppk28 abolishes water sensitivity. Moreover, ectopic expression of ppk28 confers water sensitivity to bitter-sensing gustatory neurons in the fly and sensitivity to hypo-osmotic solutions when expressed in heterologous cells. These studies link an osmosensitive ion channel to water taste detection and drinking behavior, providing the framework for examining the molecular basis for water detection in other animals. PMID:20364123

  4. Maternal anxiety and physiological reactivity as mechanisms to explain overprotective primiparous parenting behaviors.

    PubMed

    Kalomiris, Anne E; Kiel, Elizabeth J

    2016-10-01

    In this study, we sought to determine whether the affective and physiological experience of primiparous, or first-time, motherhood is distinct from multiparous motherhood, how the child's level of inhibited temperament impacts it, and if such a temperament results in overprotective parenting behaviors. A total of 117 mothers and their 24-month-old toddlers participated in novelty tasks designed to elicit parenting behaviors and toddler's typical fear reactions. Mothers also completed a battery of questionnaires. Results suggest that primiparous mothers experienced more worry, which was associated with increased overprotective parenting behaviors. Primiparous mothers also demonstrated greater physiological (i.e., cortisol) reactivity while watching their first-born children interact with novel stimuli, but how this related to overprotective parenting was dependent on the child's level of inhibition. Specifically, primiparous mothers displayed more cortisol reactivity with their uninhibited toddlers, which indirectly linked parity to less overprotective parenting behaviors. Primiparous mothers of highly inhibited toddlers displayed greater overprotective parenting behaviors, independent of maternal cortisol reactivity. The results indicate that the transition to motherhood is a unique experience associated with greater worry and physiological reactivity and is meaningfully influenced by the toddler's temperament. Distinctions in both observed and self-reported overprotective parenting are evident through considering the dynamic interaction of these various aspects. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  5. Oxytocin signaling in mouse taste buds.

    PubMed

    Sinclair, Michael S; Perea-Martinez, Isabel; Dvoryanchikov, Gennady; Yoshida, Masahide; Nishimori, Katsuhiko; Roper, Stephen D; Chaudhari, Nirupa

    2010-08-05

    The neuropeptide, oxytocin (OXT), acts on brain circuits to inhibit food intake. Mutant mice lacking OXT (OXT knockout) overconsume salty and sweet (i.e. sucrose, saccharin) solutions. We asked if OXT might also act on taste buds via its receptor, OXTR. Using RT-PCR, we detected the expression of OXTR in taste buds throughout the oral cavity, but not in adjacent non-taste lingual epithelium. By immunostaining tissues from OXTR-YFP knock-in mice, we found that OXTR is expressed in a subset of Glial-like (Type I) taste cells, and also in cells on the periphery of taste buds. Single-cell RT-PCR confirmed this cell-type assignment. Using Ca2+ imaging, we observed that physiologically appropriate concentrations of OXT evoked [Ca2+]i mobilization in a subset of taste cells (EC50 approximately 33 nM). OXT-evoked responses were significantly inhibited by the OXTR antagonist, L-371,257. Isolated OXT-responsive taste cells were neither Receptor (Type II) nor Presynaptic (Type III) cells, consistent with our immunofluorescence observations. We also investigated the source of OXT peptide that may act on taste cells. Both RT-PCR and immunostaining suggest that the OXT peptide is not produced in taste buds or in their associated nerves. Finally, we also examined the morphology of taste buds from mice that lack OXTR. Taste buds and their constituent cell types appeared very similar in mice with two, one or no copies of the OXTR gene. We conclude that OXT elicits Ca2+ signals via OXTR in murine taste buds. OXT-responsive cells are most likely a subset of Glial-like (Type I) taste cells. OXT itself is not produced locally in taste tissue and is likely delivered through the circulation. Loss of OXTR does not grossly alter the morphology of any of the cell types contained in taste buds. Instead, we speculate that OXT-responsive Glial-like (Type I) taste bud cells modulate taste signaling and afferent sensory output. Such modulation would complement central pathways of appetite

  6. Contribution of different taste cells and signaling pathways to the discrimination of "bitter" taste stimuli by an insect.

    PubMed

    Glendinning, John I; Davis, Adrienne; Ramaswamy, Sudha

    2002-08-15

    Animals can discriminate among many different types of foods. This discrimination process involves multiple sensory systems, but the sense of taste is known to play a central role. We asked how the taste system contributes to the discrimination of different "bitter" taste stimuli in Manduca sexta caterpillars. This insect has approximately eight bilateral pairs of taste cells that respond selectively to bitter taste stimuli. Each bilateral pair of bitter-sensitive taste cells has a different molecular receptive range (MRR); some of these taste cells also contain two signaling pathways with distinctive MRRs and temporal patterns of spiking. To test for discrimination, we habituated the caterpillar's taste-mediated aversive response to one bitter taste stimulus (salicin) and then asked whether this habituation phenomenon generalized to four other bitter taste stimuli (caffeine, aristolochic acid, Grindelia extract, and Canna extract). We inferred that the two compounds were discriminable if the habituation phenomenon failed to generalize (e.g., from salicin to aristolochic acid). We found that M. sexta could discriminate between salicin and those bitter taste stimuli that activate (1) different populations of bitter-sensitive taste cells (Grindelia extract and Canna extract) or (2) different signaling pathways within the same bitter-sensitive taste cell (aristolochic acid). M. sexta could not discriminate between salicin and a bitter taste stimulus that activates the same signaling pathway within the same bitter-sensitive taste cell (caffeine). We propose that the heterogeneous population of bitter-sensitive taste cells and signaling pathways within this insect facilitates the discrimination of bitter taste stimuli.

  7. Neural Reactivity to Emotional Faces May Mediate the Relationship between Childhood Empathy and Adolescent Prosocial Behavior

    ERIC Educational Resources Information Center

    Flournoy, John C.; Pfeifer, Jennifer H.; Moore, William E.; Tackman, Allison M.; Masten, Carrie L.; Mazziotta, John C.; Iacoboni, Marco; Dapretto, Mirella

    2016-01-01

    Reactivity to others' emotions not only can result in empathic concern (EC), an important motivator of prosocial behavior, but can also result in personal distress (PD), which may hinder prosocial behavior. Examining neural substrates of emotional reactivity may elucidate how EC and PD differentially influence prosocial behavior. Participants…

  8. The Development of Sweet Taste: From Biology to Hedonics

    PubMed Central

    Mennella, Julie A.; Bobowski, Nuala K.; Reed, Danielle R.

    2016-01-01

    From the age of two years, an American child is more likely to consume a sugar-sweetened product than a fruit or vegetable on any given day—a troubling statistic, given that food preferences are established early in childhood, as well as the strong association between this dietary pattern and increased risk of developing a number of chronic diseases. Here, we review the ontogeny and biopsychology of sweet taste, highlighting how a biological drive to prefer sweetness at high concentrations during childhood, which would have conferred an advantage in environments of scarcity, now predisposes children to overconsume all that is sweet in a modern food system replete with added sugars. We review the power of sweet taste to blunt expressions of pain and mask bad tastes in foods as well as factors that predispose some to consume high-sugar diets, including experiential learning and taste preferences driven in part by genetics. Understanding children’s unique vulnerability to our current food environment, rich in both nutritive and nonnutritive sweeteners, is highlighted as a priority for future research to develop evidence-based strategies to help establish healthy dietary behaviors early in life. PMID:27193110

  9. Shrinkage of ipsilateral taste buds and hyperplasia of contralateral taste buds following chorda tympani nerve transection.

    PubMed

    Li, Yi-Ke; Yang, Juan-Mei; Huang, Yi-Bo; Ren, Dong-Dong; Chi, Fang-Lu

    2015-06-01

    The morphological changes that occur in the taste buds after denervation are not well understood in rats, especially in the contralateral tongue epithelium. In this study, we investigated the time course of morphological changes in the taste buds following unilateral nerve transection. The role of the trigeminal component of the lingual nerve in maintaining the structural integrity of the taste buds was also examined. Twenty-four Sprague-Dawley rats were randomly divided into three groups: control, unilateral chorda tympani nerve transection and unilateral chorda tympani nerve transection + lingual nerve transection. Rats were allowed up to 42 days of recovery before being euthanized. The taste buds were visualized using a cytokeratin 8 antibody. Taste bud counts, volumes and taste receptor cell numbers were quantified and compared among groups. No significant difference was detected between the chorda tympani nerve transection and chorda tympani nerve transection + lingual nerve transection groups. Taste bud counts, volumes and taste receptor cell numbers on the ipsilateral side all decreased significantly compared with control. On the contralateral side, the number of taste buds remained unchanged over time, but they were larger, and taste receptor cells were more numerous postoperatively. There was no evidence for a role of the trigeminal branch of the lingual nerve in maintaining the structural integrity of the anterior taste buds.

  10. Longitudinal analysis of calorie restriction on rat taste bud morphology and expression of sweet taste modulators.

    PubMed

    Cai, Huan; Daimon, Caitlin M; Cong, Wei-Na; Wang, Rui; Chirdon, Patrick; de Cabo, Rafael; Sévigny, Jean; Maudsley, Stuart; Martin, Bronwen

    2014-05-01

    Calorie restriction (CR) is a lifestyle intervention employed to reduce body weight and improve metabolic functions primarily via reduction of ingested carbohydrates and fats. Taste perception is highly related to functional metabolic status and body adiposity. We have previously shown that sweet taste perception diminishes with age; however, relatively little is known about the effects of various lengths of CR upon taste cell morphology and function. We investigated the effects of CR on taste bud morphology and expression of sweet taste-related modulators in 5-, 17-, and 30-month-old rats. In ad libitum (AL) and CR rats, we consistently found the following parameters altered significantly with advancing age: reduction of taste bud size and taste cell numbers per taste bud and reduced expression of sonic hedgehog, type 1 taste receptor 3 (T1r3), α-gustducin, and glucagon-like peptide-1 (GLP-1). In the oldest rats, CR affected a significant reduction of tongue T1r3, GLP-1, and α-gustducin expression compared with age-matched AL rats. Leptin receptor immunopositive cells were elevated in 17- and 30-month-old CR rats compared with age-matched AL rats. These alterations of sweet taste-related modulators, specifically during advanced aging, suggest that sweet taste perception may be altered in response to different lengths of CR.

  11. Salty taste deficits in CALHM1 knockout mice.

    PubMed

    Tordoff, Michael G; Ellis, Hillary T; Aleman, Tiffany R; Downing, Arnelle; Marambaud, Philippe; Foskett, J Kevin; Dana, Rachel M; McCaughey, Stuart A

    2014-07-01

    Genetic ablation of calcium homeostasis modulator 1 (CALHM1), which releases adenosine triphosphate from Type 2 taste cells, severely compromises the behavioral and electrophysiological responses to tastes detected by G protein-coupled receptors, such as sweet and bitter. However, the contribution of CALHM1 to salty taste perception is less clear. Here, we evaluated several salty taste-related phenotypes of CALHM1 knockout (KO) mice and their wild-type (WT) controls: 1) In a conditioned aversion test, CALHM1 WT and KO mice had similar NaCl avoidance thresholds. 2) In two-bottle choice tests, CALHM1 WT mice showed the classic inverted U-shaped NaCl concentration-preference function but CALHM1 KO mice had a blunted peak response. 3) In brief-access tests, CALHM1 KO mice showed less avoidance than did WT mice of high concentrations of NaCl, KCl, NH(4)Cl, and sodium lactate (NaLac). Amiloride further ameliorated the NaCl avoidance of CALHM1 KO mice, so that lick rates to a mixture of 1000 mM NaCl + 10 µM amiloride were statistically indistinguishable from those to water. 4) Relative to WT mice, CALHM1 KO mice had reduced chorda tympani nerve activity elicited by oral application of NaCl, NaLac, and sucrose but normal responses to HCl and NH(4)Cl. Chorda tympani responses to NaCl and NaLac were amiloride sensitive in WT but not KO mice. These results reinforce others demonstrating that multiple transduction pathways make complex, concentration-dependent contributions to salty taste perception. One of these pathways depends on CALHM1 to detect hypertonic NaCl in the mouth and signal the aversive taste of concentrated salt. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Using sound-taste correspondences to enhance the subjective value of tasting experiences

    PubMed Central

    Reinoso Carvalho, Felipe; Van Ee, Raymond; Rychtarikova, Monika; Touhafi, Abdellah; Steenhaut, Kris; Persoone, Dominique; Spence, Charles

    2015-01-01

    The soundscapes of those places where we eat and drink can influence our perception of taste. Here, we investigated whether contextual sound would enhance the subjective value of a tasting experience. The customers in a chocolate shop were invited to take part in an experiment in which they had to evaluate a chocolate’s taste while listening to an auditory stimulus. Four different conditions were presented in a between-participants design. Envisioning a more ecological approach, a pre-recorded piece of popular music and the shop’s own soundscape were used as the sonic stimuli. The results revealed that not only did the customers report having a significantly better tasting experience when the sounds were presented as part of the food’s identity, but they were also willing to pay significantly more for the experience. The method outlined here paves a new approach to dealing with the design of multisensory tasting experiences, and gastronomic situations. PMID:26388813

  13. Using sound-taste correspondences to enhance the subjective value of tasting experiences.

    PubMed

    Reinoso Carvalho, Felipe; Van Ee, Raymond; Rychtarikova, Monika; Touhafi, Abdellah; Steenhaut, Kris; Persoone, Dominique; Spence, Charles

    2015-01-01

    The soundscapes of those places where we eat and drink can influence our perception of taste. Here, we investigated whether contextual sound would enhance the subjective value of a tasting experience. The customers in a chocolate shop were invited to take part in an experiment in which they had to evaluate a chocolate's taste while listening to an auditory stimulus. Four different conditions were presented in a between-participants design. Envisioning a more ecological approach, a pre-recorded piece of popular music and the shop's own soundscape were used as the sonic stimuli. The results revealed that not only did the customers report having a significantly better tasting experience when the sounds were presented as part of the food's identity, but they were also willing to pay significantly more for the experience. The method outlined here paves a new approach to dealing with the design of multisensory tasting experiences, and gastronomic situations.

  14. Polymorphisms in TAS2R38 and the taste bud trophic factor, gustin gene co-operate in modulating PROP taste phenotype.

    PubMed

    Calò, Carla; Padiglia, Alessandra; Zonza, Andrea; Corrias, Laura; Contu, Paolo; Tepper, Beverly J; Barbarossa, Iole Tomassini

    2011-10-24

    The PROP taste phenotype varies greatly among individuals, influencing eating behavior and therefore may play a role in body composition. This variation is associated with polymorphisms in the bitter receptor gene TAS2R38 and the taste-bud trophic factor gustin gene. The aim of this study was to examine the relationship between TAS2R38 haplotypes and the gustin gene polymorphism rs2274333 in modulating PROP taste phenotype. PROP phenotype was determined in seventy-six volunteers (29 males, 47 females, age 25±3 y) by scaling methods and threshold measurements. TAS2R38 and gustin gene genotyping was performed using PCR techniques. The lowest responsiveness in PROP nontasters is strongly associated with the AVI nontasting TAS2R38 variant and the highest responsiveness in supertasters is strongly associated to allele A and genotype AA of the gustin gene. These data support the hypothesis that the greater sensitivity of supertasters could be mediated by a greater taste-bud density. Polymorphisms in TAS2R38 and gustin gene, together, accounted for up to 60% of the phenotypic variance in PROP bitterness and to 40% in threshold values. These data, suggest that other unidentified factors may be more relevant for detecting low concentrations of PROP. Moreover, the presence of the PAV variant receptor may be important for detecting high concentrations of PROP, whereas the presence of allele A in gustin polymorphism may be relevant for perceiving low concentrations. These data show how the combination of the TAS2R38 and gustin gene genotypes modulate PROP phenotype, providing an additional tool for the evaluation of human eating behavior and nutritional status. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Peripheral coding of taste

    PubMed Central

    Liman, Emily R.; Zhang, Yali V.; Montell, Craig

    2014-01-01

    Five canonical tastes, bitter, sweet, umami (amino acid), salty and sour (acid) are detected by animals as diverse as fruit flies and humans, consistent with a near universal drive to consume fundamental nutrients and to avoid toxins or other harmful compounds. Surprisingly, despite this strong conservation of basic taste qualities between vertebrates and invertebrates, the receptors and signaling mechanisms that mediate taste in each are highly divergent. The identification over the last two decades of receptors and other molecules that mediate taste has led to stunning advances in our understanding of the basic mechanisms of transduction and coding of information by the gustatory systems of vertebrates and invertebrates. In this review, we discuss recent advances in taste research, mainly from the fly and mammalian systems, and we highlight principles that are common across species, despite stark differences in receptor types. PMID:24607224

  16. Neural and behavioral mechanisms of proactive and reactive inhibition

    PubMed Central

    Meyer, Heidi C.

    2016-01-01

    Response inhibition is an important component of adaptive behavior. Substantial prior research has focused on reactive inhibition, which refers to the cessation of a motor response that is already in progress. More recently, a growing number of studies have begun to examine mechanisms underlying proactive inhibition, whereby preparatory processes result in a response being withheld before it is initiated. It has become apparent that proactive inhibition is an essential component of the overall ability to regulate behavior and has implications for the success of reactive inhibition. Moreover, successful inhibition relies on learning the meaning of specific environmental cues that signal when a behavioral response should be withheld. Proactive inhibitory control is mediated by stopping goals, which reflect the desired outcome of inhibition and include information about how and when inhibition should be implemented. However, little is known about the circuits and cellular processes that encode and represent features in the environment that indicate the necessity for proactive inhibition or how these representations are implemented in response inhibition. In this article, we will review the brain circuits and systems involved in implementing inhibitory control through both reactive and proactive mechanisms. We also comment on possible cellular mechanisms that may contribute to inhibitory control processes, noting that substantial further research is necessary in this regard. Furthermore, we will outline a number of ways in which the temporal dynamics underlying the generation of the proactive inhibitory signal may be particularly important for parsing out the neurobiological correlates that contribute to the learning processes underlying various aspects of inhibitory control. PMID:27634142

  17. Functional dissociation in sweet taste receptor neurons between and within taste organs of Drosophila

    PubMed Central

    Thoma, Vladimiros; Knapek, Stephan; Arai, Shogo; Hartl, Marion; Kohsaka, Hiroshi; Sirigrivatanawong, Pudith; Abe, Ayako; Hashimoto, Koichi; Tanimoto, Hiromu

    2016-01-01

    Finding food sources is essential for survival. Insects detect nutrients with external taste receptor neurons. Drosophila possesses multiple taste organs that are distributed throughout its body. However, the role of different taste organs in feeding remains poorly understood. By blocking subsets of sweet taste receptor neurons, we show that receptor neurons in the legs are required for immediate sugar choice. Furthermore, we identify two anatomically distinct classes of sweet taste receptor neurons in the leg. The axonal projections of one class terminate in the thoracic ganglia, whereas the other projects directly to the brain. These two classes are functionally distinct: the brain-projecting neurons are involved in feeding initiation, whereas the thoracic ganglia-projecting neurons play a role in sugar-dependent suppression of locomotion. Distinct receptor neurons for the same taste quality may coordinate early appetitive responses, taking advantage of the legs as the first appendages to contact food. PMID:26893070

  18. Profiles of Disruptive Behavior across Early Childhood: Contributions of Frustration Reactivity, Physiological Regulation, and Maternal Behavior

    ERIC Educational Resources Information Center

    Degnan, Kathryn A.; Calkins, Susan D.; Keane, Susan P.; Hill-Soderlund, Ashley L.

    2008-01-01

    Disruptive behavior, including aggression, defiance, and temper tantrums, typically peaks in early toddlerhood and decreases by school entry; however, some children do not show this normative decline. The current study examined disruptive behavior in 318 boys and girls at 2, 4, and 5 years of age and frustration reactivity, physiological…

  19. The chemistry of sour taste and the strategy to reduce the sour taste of beer.

    PubMed

    Li, Hong; Liu, Fang

    2015-10-15

    The contributions of free hydrogen ions, undissociated hydrogen ions in protonated acid species, and anionic acid species to sour taste were studied through sensory experiments. According to tasting results, it can be inferred that the basic substance producing a sour taste is the hydrogen ion, including free hydrogen ions and undissociated hydrogen ions. The intensity of a sour taste is determined by the total concentration of free hydrogen ions and undissociated hydrogen ions. The anionic acid species (without hydrogen ions) does not produce a sour taste but can intensify or weaken the intensity of a sour taste. It seems that hydroxyl or conjugated groups in anionic acid species can intensify the sour taste produced by hydrogen ions. The following strategy to reduce the sensory sourness is advanced: not only reduce free hydrogen ions, namely elevate pH value, but also reduce the undissociated hydrogen ions contained in protonated acid species. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Single Lgr5- or Lgr6-expressing taste stem/progenitor cells generate taste bud cells ex vivo

    PubMed Central

    Ren, Wenwen; Lewandowski, Brian C.; Watson, Jaime; Aihara, Eitaro; Iwatsuki, Ken; Bachmanov, Alexander A.; Margolskee, Robert F.; Jiang, Peihua

    2014-01-01

    Leucine-rich repeat-containing G protein-coupled receptor 5 (Lgr5) and its homologs (e.g., Lgr6) mark adult stem cells in multiple tissues. Recently, we and others have shown that Lgr5 marks adult taste stem/progenitor cells in posterior tongue. However, the regenerative potential of Lgr5-expressing (Lgr5+) cells and the identity of adult taste stem/progenitor cells that regenerate taste tissue in anterior tongue remain elusive. In the present work, we describe a culture system in which single isolated Lgr5+ or Lgr6+ cells from taste tissue can generate continuously expanding 3D structures (“organoids”). Many cells within these taste organoids were cycling and positive for proliferative cell markers, cytokeratin K5 and Sox2, and incorporated 5-bromo-2’-deoxyuridine. Importantly, mature taste receptor cells that express gustducin, carbonic anhydrase 4, taste receptor type 1 member 3, nucleoside triphosphate diphosphohydrolase-2, or cytokeratin K8 were present in the taste organoids. Using calcium imaging assays, we found that cells grown out from taste organoids derived from isolated Lgr5+ cells were functional and responded to tastants in a dose-dependent manner. Genetic lineage tracing showed that Lgr6+ cells gave rise to taste bud cells in taste papillae in both anterior and posterior tongue. RT-PCR data demonstrated that Lgr5 and Lgr6 may mark the same subset of taste stem/progenitor cells both anteriorly and posteriorly. Together, our data demonstrate that functional taste cells can be generated ex vivo from single Lgr5+ or Lgr6+ cells, validating the use of this model for the study of taste cell generation. PMID:25368147

  1. Single Lgr5- or Lgr6-expressing taste stem/progenitor cells generate taste bud cells ex vivo.

    PubMed

    Ren, Wenwen; Lewandowski, Brian C; Watson, Jaime; Aihara, Eitaro; Iwatsuki, Ken; Bachmanov, Alexander A; Margolskee, Robert F; Jiang, Peihua

    2014-11-18

    Leucine-rich repeat-containing G protein-coupled receptor 5 (Lgr5) and its homologs (e.g., Lgr6) mark adult stem cells in multiple tissues. Recently, we and others have shown that Lgr5 marks adult taste stem/progenitor cells in posterior tongue. However, the regenerative potential of Lgr5-expressing (Lgr5(+)) cells and the identity of adult taste stem/progenitor cells that regenerate taste tissue in anterior tongue remain elusive. In the present work, we describe a culture system in which single isolated Lgr5(+) or Lgr6(+) cells from taste tissue can generate continuously expanding 3D structures ("organoids"). Many cells within these taste organoids were cycling and positive for proliferative cell markers, cytokeratin K5 and Sox2, and incorporated 5-bromo-2'-deoxyuridine. Importantly, mature taste receptor cells that express gustducin, carbonic anhydrase 4, taste receptor type 1 member 3, nucleoside triphosphate diphosphohydrolase-2, or cytokeratin K8 were present in the taste organoids. Using calcium imaging assays, we found that cells grown out from taste organoids derived from isolated Lgr5(+) cells were functional and responded to tastants in a dose-dependent manner. Genetic lineage tracing showed that Lgr6(+) cells gave rise to taste bud cells in taste papillae in both anterior and posterior tongue. RT-PCR data demonstrated that Lgr5 and Lgr6 may mark the same subset of taste stem/progenitor cells both anteriorly and posteriorly. Together, our data demonstrate that functional taste cells can be generated ex vivo from single Lgr5(+) or Lgr6(+) cells, validating the use of this model for the study of taste cell generation.

  2. Effects of smoking on taste: assessment with contact endoscopy and taste strips.

    PubMed

    Konstantinidis, Iordanis; Chatziavramidis, Angelos; Printza, Athanasia; Metaxas, Spyros; Constantinidis, Jannis

    2010-10-01

    This study aims to compare the taste function between smokers and nonsmokers with clinical testing, subjective ratings, and contact endoscopy of the tongue. Cross-sectional survey. Data were collected from 38 smokers (mean age 37 years; 25 female, 23 male) and 34 nonsmokers (mean age 33.5 years; 18 female, 16 male). The parameters assessed were the number of fungiform papillae per square centimeter in a noncontact way and their morphology (surface, capillary vessels) by contact endoscopy. The morphology of the filiform papillae has also been assessed. In addition, clinical testing of gustatory function was performed by means of taste strips and subjective intensity ratings of natural taste stimuli. No significant difference was found in clinical testing and intensity ratings between the two study groups. A trend toward significance was found in taste strip results for decreased bitter taste in heavy smokers (P = .06). The number and the size of fungiform papillae did not significantly differ between the study groups. No sex-related differences were observed. Smokers exhibited significantly more keratin structures on the fungiform papillae surface, less tortuous capillary vessels, and a significant distortion of their filiform papillae. Taste function presents significant resistance to smoking, although changes in morphology of fungiform and filiform papillae have been observed especially in heavy smokers. Laryngoscope, 2010.

  3. Kokumi Substances, Enhancers of Basic Tastes, Induce Responses in Calcium-Sensing Receptor Expressing Taste Cells

    PubMed Central

    Maruyama, Yutaka; Yasuda, Reiko; Kuroda, Motonaka; Eto, Yuzuru

    2012-01-01

    Recently, we reported that calcium-sensing receptor (CaSR) is a receptor for kokumi substances, which enhance the intensities of salty, sweet and umami tastes. Furthermore, we found that several γ-glutamyl peptides, which are CaSR agonists, are kokumi substances. In this study, we elucidated the receptor cells for kokumi substances, and their physiological properties. For this purpose, we used Calcium Green-1 loaded mouse taste cells in lingual tissue slices and confocal microscopy. Kokumi substances, applied focally around taste pores, induced an increase in the intracellular Ca2+ concentration ([Ca2+]i) in a subset of taste cells. These responses were inhibited by pretreatment with the CaSR inhibitor, NPS2143. However, the kokumi substance-induced responses did not require extracellular Ca2+. CaSR-expressing taste cells are a different subset of cells from the T1R3-expressing umami or sweet taste receptor cells. These observations indicate that CaSR-expressing taste cells are the primary detectors of kokumi substances, and that they are an independent population from the influenced basic taste receptor cells, at least in the case of sweet and umami. PMID:22511946

  4. Prenatal Maternal Anxiety and Depression Predict Negative Behavioral Reactivity in Infancy

    ERIC Educational Resources Information Center

    Davis, Elysia Poggi; Snidman, Nancy; Wadhwa, Pathik D.; Glynn, Laura M.; Schetter, Chris Dunkel; Sandman, Curt A.

    2004-01-01

    The effects of maternal antenatal and postnatal anxiety and depression on infant negative behavioral reactivity were examined in a sample of 22 mother-infant pairs. Maternal anxiety and depression were assessed by standardized measures during the third trimester of pregnancy and postpartum. Infant negative behavioral responses to novelty were…

  5. Knocking out P2X receptors reduces transmitter secretion in taste buds.

    PubMed

    Huang, Yijen A; Stone, Leslie M; Pereira, Elizabeth; Yang, Ruibiao; Kinnamon, John C; Dvoryanchikov, Gennady; Chaudhari, Nirupa; Finger, Thomas E; Kinnamon, Sue C; Roper, Stephen D

    2011-09-21

    In response to gustatory stimulation, taste bud cells release a transmitter, ATP, that activates P2X2 and P2X3 receptors on gustatory afferent fibers. Taste behavior and gustatory neural responses are largely abolished in mice lacking P2X2 and P2X3 receptors [P2X2 and P2X3 double knock-out (DKO) mice]. The assumption has been that eliminating P2X2 and P2X3 receptors only removes postsynaptic targets but that transmitter secretion in mice is normal. Using functional imaging, ATP biosensor cells, and a cell-free assay for ATP, we tested this assumption. Surprisingly, although gustatory stimulation mobilizes Ca(2+) in taste Receptor (Type II) cells from DKO mice, as from wild-type (WT) mice, taste cells from DKO mice fail to release ATP when stimulated with tastants. ATP release could be elicited by depolarizing DKO Receptor cells with KCl, suggesting that ATP-release machinery remains functional in DKO taste buds. To explore the difference in ATP release across genotypes, we used reverse transcriptase (RT)-PCR, immunostaining, and histochemistry for key proteins underlying ATP secretion and degradation: Pannexin1, TRPM5, and NTPDase2 (ecto-ATPase) are indistinguishable between WT and DKO mice. The ultrastructure of contacts between taste cells and nerve fibers is also normal in the DKO mice. Finally, quantitative RT-PCR show that P2X4 and P2X7, potential modulators of ATP secretion, are similarly expressed in taste buds in WT and DKO taste buds. Importantly, we find that P2X2 is expressed in WT taste buds and appears to function as an autocrine, positive feedback signal to amplify taste-evoked ATP secretion.

  6. Knocking out P2X receptors reduces transmitter secretion in taste buds

    PubMed Central

    Huang, Yijen A.; Stone, Leslie M.; Pereira, Elizabeth; Yang, Ruibiao; Kinnamon, John C.; Dvoryanchikov, Gennady; Chaudhari, Nirupa; Finger, Thomas E.; Kinnamon, Sue C.; Roper, Stephen D.

    2011-01-01

    In response to gustatory stimulation, taste bud cells release a transmitter, ATP, that activates P2X2 and P2X3 receptors on gustatory afferent fibers. Taste behavior and gustatory neural responses are largely abolished in mice lacking P2X2 and P2X3 receptors (P2X2 and P2X3 double knockout, or “DKO” mice). The assumption has been that eliminating P2X2 and P2X3 receptors only removes postsynaptic targets but that transmitter secretion in mice is normal. Using functional imaging, ATP biosensor cells, and a cell-free assay for ATP, we tested this assumption. Surprisingly, although gustatory stimulation mobilizes Ca2+ in taste Receptor (Type II) cells from DKO mice, as from wild type (WT) mice, taste cells from DKO mice fail to release ATP when stimulated with tastants. ATP release could be elicited by depolarizing DKO Receptor cells with KCl, suggesting that ATP-release machinery remains functional in DKO taste buds. To explore the difference in ATP release across genotypes, we employed reverse transcriptase (RT)-PCR, immunostaining, and histochemistry for key proteins underlying ATP secretion and degradation: Pannexin1, TRPM5, and NTPDase2 (ecto-ATPase) are indistinguishable between WT and DKO mice. The ultrastructure of contacts between taste cells and nerve fibers is also normal in the DKO mice. Finally, quantitative RT-PCR show that P2X4 and P2X7, potential modulators of ATP secretion, are similarly expressed in taste buds in WT and DKO taste buds. Importantly, we find that P2X2 is expressed in WT taste buds and appears to function as an autocrine, positive feedback signal to amplify taste-evoked ATP secretion. PMID:21940456

  7. Intensity of regionally applied tastes in relation to administration method: an investigation based on the "taste strips" test.

    PubMed

    Manzi, Brian; Hummel, Thomas

    2014-02-01

    To compare various methods to apply regional taste stimuli to the tongue. "Taste strips" are a clinical tool to determine gustatory function. How a patient perceives the chemical environment in the mouth is a result of many factors such as taste bud distribution and interactions between the cranial nerves. To date, there have been few studies describing the different approaches to administer taste strips to maximize taste identification accuracy and intensity. This is a normative value acquisition pilot and single-center study. The investigation involved 30 participants reporting a normal sense of smell and taste (18 women, 12 men, mean age 33 years). The taste test was based on spoon-shaped filter paper strips impregnated with four taste qualities (sweet, sour, salty, and bitter) at concentrations shown to be easily detectable by young healthy subjects. The strips were administered in three methods (held stationary on the tip of the tongue, applied across the tongue, held in the mouth), resulting in a total of 12 trials per participant. Subjects identified the taste from a list of four descriptors, (sweet, sour, salty, bitter) and ranked the intensity on a scale from 0 to 10. Statistical analyses were performed on the accuracy of taste identification and rated intensities. The participants perceived in order of most to least intense: salt, sour, bitter, sweet. Of the four tastes, sour consistently was least accurately identified. Presenting the taste strip inside the closed mouth of the participants produced the least accurate taste identification, whereas moving the taste strip across the tongue led to a significant increase in intensity for the sweet taste. In this study of 30 subjects at the second concentration, optimized accuracy and intensity of taste identification was observed through administration of taste strips laterally across the anterior third of the extended tongue. Further studies are required on more subjects and the additional concentrations

  8. Variation in Behavioral Reactivity Is Associated with Cooperative Restraint Training Efficiency

    PubMed Central

    Bliss-Moreau, Eliza; Moadab, Gilda

    2016-01-01

    Training techniques that prepare laboratory animals to participate in testing via cooperation are useful tools that have the potential to benefit animal wellbeing. Understanding how animals systematically vary in their cooperative training trajectories will help trainers to design effective and efficient training programs. In the present report we document an updated method for training rhesus monkeys to cooperatively participate in restraint in a ‘primate chair.’ We trained 14 adult male macaques to raise their head above a yoke and accept yoke closure in an average of 6.36 training days in sessions that lasted an average of 10.52 min. Behavioral observations at 2 time points prior to training (approximately 3 y and 1.3 y prior) were used to quantify behavioral reactivity directed toward humans and toward other macaques. Individual differences in submissive–affiliative reactivity to humans but not reactivity toward other monkeys were related to learning outcomes. Macaques that were more reactive to humans were less willing to participate in training, were less attentive to the trainer, were more reactive during training sessions, and required longer training sessions, longer time to yoke, and more instances of negative reinforcement. These results suggest that rhesus macaques can be trained to cooperate with restraint rapidly and that individual difference data can be used to structure training programs to accommodate variation in animal temperament. PMID:26817979

  9. Taste responses in mice lacking taste receptor subunit T1R1

    PubMed Central

    Kusuhara, Yoko; Yoshida, Ryusuke; Ohkuri, Tadahiro; Yasumatsu, Keiko; Voigt, Anja; Hübner, Sandra; Maeda, Katsumasa; Boehm, Ulrich; Meyerhof, Wolfgang; Ninomiya, Yuzo

    2013-01-01

    The T1R1 receptor subunit acts as an umami taste receptor in combination with its partner, T1R3. In addition, metabotropic glutamate receptors (brain and taste variants of mGluR1 and mGluR4) are thought to function as umami taste receptors. To elucidate the function of T1R1 and the contribution of mGluRs to umami taste detection in vivo, we used newly developed knock-out (T1R1−/−) mice, which lack the entire coding region of the Tas1r1 gene and express mCherry in T1R1-expressing cells. Gustatory nerve recordings demonstrated that T1R1−/− mice exhibited a serious deficit in inosine monophosphate-elicited synergy but substantial residual responses to glutamate alone in both chorda tympani and glossopharyngeal nerves. Interestingly, chorda tympani nerve responses to sweeteners were smaller in T1R1−/− mice. Taste cell recordings demonstrated that many mCherry-expressing taste cells in T1R1+/− mice responded to sweet and umami compounds, whereas those in T1R1−/− mice responded to sweet stimuli. The proportion of sweet-responsive cells was smaller in T1R1−/− than in T1R1+/− mice. Single-cell RT-PCR demonstrated that some single mCherry-expressing cells expressed all three T1R subunits. Chorda tympani and glossopharyngeal nerve responses to glutamate were significantly inhibited by addition of mGluR antagonists in both T1R1−/− and T1R1+/− mice. Conditioned taste aversion tests demonstrated that both T1R1−/− and T1R1+/− mice were equally capable of discriminating glutamate from other basic taste stimuli. Avoidance conditioned to glutamate was significantly reduced by addition of mGluR antagonists. These results suggest that T1R1-expressing cells mainly contribute to umami taste synergism and partly to sweet sensitivity and that mGluRs are involved in the detection of umami compounds. PMID:23339178

  10. [The relationship between the abnormal behavior and serum C-reactive protein in children with obstructive sleep apnea-hypopnea syndrome].

    PubMed

    Wang, Yan; Li, Yanzhong; Wang, Xin

    2009-12-01

    To explore the pathogenesis of abnormal behavior in children with obstructive sleep apnea-hypopnea syndrome (OSAHS). The behavioral problems and C-reactive protein were measured in 40 children with OSAHS and 30 children with habitual snoring who underwent overnight Polysomnography, 40 cases of healthy children for the control group. The ratio of abnormal behavior in OSAHS and habitual snoring children was significantly higher than that of the healthy control group, while no significant difference between the two groups. The content of C-reactive protein in OSAHS children (4.24 mg/L) was significantly higher than habitual snoring (2.76 mg/L) and healthy control group (1.27 mg/L); in habitual snoring children C-reactive protein was higher than in healthy control group. The content of serum C-reactive protein in OSAHS children accompanied by abnormal behavior (4.63 mg/L) was significantly higher than that without abnormal behavior (3.23 mg/L). The content of serum C-reactive protein content in habitual snoring children accompanied by abnormal behavior (3.63 mg/L) was significantly higher than that without abnormal behavior (1.76 mg/L). OSAHS and habitual snoring children have more behavior problems. C-reactive protein levels are higher in children with OSAHS and habitual snoring, and the levels of C-reactive protein are related to the abnormal behavior in these children.

  11. "What's Your Taste in Music?" A Comparison of the Effectiveness of Various Soundscapes in Evoking Specific Tastes.

    PubMed

    Wang, Qian Janice; Woods, Andy T; Spence, Charles

    2015-12-01

    We report on the results of two online experiments designed to compare different soundtracks that had been composed (by various researchers and sound designers) in order to evoke/match different basic tastes. In Experiment 1, 100 participants listened to samples from 24 soundtracks and chose the taste (sweet, sour, salty, or bitter) that best matched each sample. Overall, the sweet soundtracks most effectively evoked the taste intended by the composer (participants chose sweet 56.9% of the time for the sweet soundtracks), whereas the bitter soundtracks were the least effective (participants chose bitter 31.4% of the time for the bitter soundtracks), compared with chance (choosing any specific taste 25% of the time). In Experiment 2, 50 participants rated their emotional responses (in terms of pleasantness and arousal) to the same 24 soundtrack samples and also to imaginary sweet/sour/salty/bitter-tasting foods. Associations between soundtracks and tastes were partly mediated by pleasantness for the sweet and bitter tastes and partly by arousal for the sour tastes. These results demonstrate how emotion mediation may be an additional mechanism behind sound-taste correspondences.

  12. The Interactive Effects of Stressful Family Life Events and Cortisol Reactivity on Adolescent Externalizing and Internalizing Behaviors.

    PubMed

    Steeger, Christine M; Cook, Emily C; Connell, Christian M

    2017-04-01

    This study investigated the associations between stressful family life events and adolescent externalizing and internalizing behaviors, and the interactive effects of family life events and cortisol reactivity on problem behaviors. In a sample of 100 mothers and their adolescents (M age = 15.09; SD age = .98; 68 % girls), adolescent cortisol reactivity was measured in response to a mother-adolescent conflict interaction task designed to elicit a stress response. Mothers reported on measures of family life events and adolescent problem behaviors. Results indicated that a heightened adolescent cortisol response moderated the relations between stressful family life events and both externalizing and internalizing behaviors. Results support context-dependent theoretical models, suggesting that for adolescents with higher cortisol reactivity (compared to those with lower cortisol reactivity), higher levels of stressful family life events were associated with greater problem behaviors, whereas lower levels of stressful family life events were related to fewer problem behaviors.

  13. The Interactive Effects of Stressful Family Life Events and Cortisol Reactivity on Adolescent Externalizing and Internalizing Behaviors

    PubMed Central

    Steeger, Christine M.; Cook, Emily C.; Connell, Christian M.

    2016-01-01

    This study investigated the associations between stressful family life events and adolescent externalizing and internalizing behaviors, and the interactive effects of family life events and cortisol reactivity on problem behaviors. In a sample of 100 mothers and their adolescents (M age = 15.09; SD age = 0.98; 68% girls), adolescent cortisol reactivity was measured in response to a mother-adolescent conflict interaction task designed to elicit a stress response. Mothers reported on measures of family life events and adolescent problem behaviors. Results indicated that a heightened adolescent cortisol response moderated the relations between stressful family life events and both externalizing and internalizing behaviors. Results support context-dependent theoretical models, suggesting that for adolescents with higher cortisol reactivity (compared to those with lower cortisol reactivity), higher levels of stressful family life events were associated with greater problem behaviors, whereas lower levels of stressful family life events were related to fewer problem behaviors. PMID:26961703

  14. Rapidly disintegrating tablets containing taste masked metoclopramide hydrochloride prepared by extrusion-precipitation method.

    PubMed

    Randale, Shivsagar Ashok; Dabhi, Chandu Somatbhai; Tekade, Avinash Ramrao; Belgamwar, Veena Shailendra; Gattani, Surendra Ganeshlal; Surana, Sanjay Javarilal

    2010-04-01

    The purpose of this study was to mask the intensely bitter taste of metoclopramide HCl and to formulate a rapid disintegrating tablet (RDT) of the taste-masked drug. Taste masking was done by complexing metoclopramide HCl with aminoalkyl methacrylate copolymer (Eudragit EPO) in different ratio by the extrusion-precipitation method. Drug-polymer complexes (DPCs) were tested for drug content, in vitro taste in simulated salivary fluid (SSF) of pH 6.8, taste evaluation in oral cavity and molecular property. The complex having drug-polymer ratio of 1 : 2 shows significant taste masking, confirmed by drug release in SSF and in-vivo taste evaluation; therefore, it was selected for further study. Taste evaluation of DPCs in human volunteers revealed considerable taste masking with the degree of bitterness below threshold value (0.5) within 10 s, whereas, metoclopramide HCl was rated intensely bitter with a score of +3 for 10 s. Tablets were evaluated for various parameters like tensile strength, wetting time, water absorption ratio, in-vitro disintegration time, and disintegration in oral cavity. The effect of diluents, lubricants and sweetening agent (Xylisorb) on the disintegration time was also evaluated. Tablets of batch F3 containing mannitol and microcrystalline cellulose in the ratio 1 : 1 and 8% w/w crosspovidone showed faster disintegration (within 20 s) than the marketed formulation (180 s). Good correlation between in vitro disintegration behavior and in the oral cavity was recognized. Tablets of batch F3 also revealed rapid drug release (t(90), 90 s) in SGF compared with marketed formulation (t(90), 600 s).

  15. Peptide regulators of peripheral taste function.

    PubMed

    Dotson, Cedrick D; Geraedts, Maartje C P; Munger, Steven D

    2013-03-01

    The peripheral sensory organ of the gustatory system, the taste bud, contains a heterogeneous collection of sensory cells. These taste cells can differ in the stimuli to which they respond and the receptors and other signaling molecules they employ to transduce and encode those stimuli. This molecular diversity extends to the expression of a varied repertoire of bioactive peptides that appear to play important functional roles in signaling taste information between the taste cells and afferent sensory nerves and/or in processing sensory signals within the taste bud itself. Here, we review studies that examine the expression of bioactive peptides in the taste bud and the impact of those peptides on taste functions. Many of these peptides produced in taste buds are known to affect appetite, satiety or metabolism through their actions in the brain, pancreas and other organs, suggesting a functional link between the gustatory system and the neural and endocrine systems that regulate feeding and nutrient utilization. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Perinatal Sex Differences in Physiological and Behavioral Stress Reactivity.

    ERIC Educational Resources Information Center

    Davis, Maryann

    This study examined physiological and behavioral stress reactivity in perinates in order to determine whether sex differences exist before extensive socialization. Fetal plasma cortisol response to the stress of labor and delivery, and neonatal heart rate and salivary cortisol response to a Brazelton Neonatal Assessment (NBAS), were measured. Male…

  17. Neural Reactivity to Emotional Faces May Mediate the Relationship Between Childhood Empathy and Adolescent Prosocial Behavior.

    PubMed

    Flournoy, John C; Pfeifer, Jennifer H; Moore, William E; Tackman, Allison M; Masten, Carrie L; Mazziotta, John C; Iacoboni, Marco; Dapretto, Mirella

    2016-11-01

    Reactivity to others' emotions not only can result in empathic concern (EC), an important motivator of prosocial behavior, but can also result in personal distress (PD), which may hinder prosocial behavior. Examining neural substrates of emotional reactivity may elucidate how EC and PD differentially influence prosocial behavior. Participants (N = 57) provided measures of EC, PD, prosocial behavior, and neural responses to emotional expressions at ages 10 and 13. Initial EC predicted subsequent prosocial behavior. Initial EC and PD predicted subsequent reactivity to emotions in the inferior frontal gyrus (IFG) and inferior parietal lobule, respectively. Activity in the IFG, a region linked to mirror neuron processes, as well as cognitive control and language, mediated the relation between initial EC and subsequent prosocial behavior. © 2016 The Authors. Child Development © 2016 Society for Research in Child Development, Inc.

  18. Harmonic and reactive behavior of the quasiparticle tunnel current in SIS junctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rashid, H., E-mail: hawal@chalmers.se; Desmaris, V.; Pavolotsky, A.

    In this paper, we show theoretically and experimentally that the reactive quasiparticle tunnel current of the superconductor tunnel junction could be directly measured at specific bias voltages for the higher harmonics of the quasiparticle tunnel current. We used the theory of quasiparticle tunneling to study the higher harmonics of the quasiparticle tunnel current in superconducting tunnel junction in the presence of rf irradiation. The impact of the reactive current on the harmonic behavior of the quasiparticle tunnel current was carefully studied by implementing a practical model with four parameters to model the dc I-V characteristics of the superconducting tunnel junction.more » The measured reactive current at the specific bias voltage is in good agreement with our theoretically calculated reactive current through the Kramers-Kronig transform. This study also shows that there is an excellent correspondence between the behavior of the predicted higher harmonics using the previously established theory of quasiparticle tunnel current in superconducting tunnel junctions by J.R. Tucker and M.J. Feldman and the measurements presented in this paper.« less

  19. Effectiveness of Taste Lessons with and without additional experiential learning activities on children's willingness to taste vegetables.

    PubMed

    Battjes-Fries, Marieke C E; Haveman-Nies, Annemien; Zeinstra, Gertrude G; van Dongen, Ellen J I; Meester, Hante J; van den Top-Pullen, Rinelle; Van't Veer, Pieter; de Graaf, Kees

    2017-02-01

    This study assessed the effectiveness of the Dutch school programme Taste Lessons with and without additional experiential learning activities on children's willingness to taste unfamiliar vegetables. Thirty-three primary schools (877 children in grades 6-7 with a mean age of 10.3 years) participated in Taste Lessons Vegetable Menu (TLVM, lessons and extra activities), Taste Lessons (TL, lessons), or a control group. A baseline and follow-up measurement was used to assess for each child: number of four familiar and four unfamiliar vegetables tasted, quantity tasted, choice of vegetable of which to eat more, and number of vegetables willing to taste again later. Furthermore, children filled out a questionnaire on daily vegetable intake and food neophobia. Multilevel and Cox regression analyses were conducted to compare changes in the outcome measures between the three study groups. No significant intervention effects were found on willingness to taste unfamiliar vegetables. Neither were effects found on familiar vegetables, except for number of familiar vegetables tasted (p < 0.05). Furthermore, no significant intervention effects were found on daily vegetable consumption and food neophobia. These results indicate that more intensive school-based nutrition education activities are needed to increase children's willingness to taste unfamiliar vegetables and increase their vegetable intake. Copyright © 2016. Published by Elsevier Ltd.

  20. E-tongue: a tool for taste evaluation.

    PubMed

    Gupta, Himanshu; Sharma, Aarti; Kumar, Suresh; Roy, Saroj K

    2010-01-01

    Taste has an important role in the development of oral pharmaceuticals. With respect to patient acceptability and compliance, taste is one of the prime factors determining the market penetration and commercial success of oral formulations, especially in pediatric medicine. Taste assessment is one important quality-control parameter for evaluating taste-masked formulations. Hence, pharmaceutical industries invest time, money and resources into developing palatable and pleasant-tasting products. The primary method for the taste measurement of a drug substance or a formulation is by human sensory evaluation, in which tasting a sample is relayed to inspectors. However, this method is impractical for early stage drug development because the test in humans is expensive and the taste of a drug candidate may not be important to the final product. Therefore, taste-sensing analytical devices, which can detect tastes, have been replacing the taste panelists. In the present review we are presenting different aspect of electronic tongue. The review article also discussed some useful patents and instrument with respect to E-tongue.

  1. What Does Diabetes "Taste" Like?

    PubMed

    Neiers, Fabrice; Canivenc-Lavier, Marie-Chantal; Briand, Loïc

    2016-06-01

    The T1R2 (taste type 1 receptor, member 2)/T1R3 (taste type 1 receptor, member 3) sweet taste receptor is expressed in taste buds on the tongue, where it allows the detection of energy-rich carbohydrates of food. This single receptor responds to all compounds perceived as sweet by humans, including natural sugars and natural and artificial sweeteners. Importantly, the T1R2/T1R3 sweet taste receptor is also expressed in extra-oral tissues, including the stomach, pancreas, gut, liver, and brain. Although its physiological role remains to be established in numerous organs, T1R2/T1R3 is suspected to be involved in the regulation of metabolic processes, such as sugar sensing, glucose homeostasis, and satiety hormone release. In this review, the physiological role of the sweet taste receptor in taste perception and metabolic regulation is discussed by focusing on dysfunctions leading to diabetes. Current knowledge of T1R2/T1R3 inhibitors making this receptor a promising therapeutic target for the treatment of type 2 diabetes is also summarized and discussed.

  2. Salt taste inhibition by cathodal current.

    PubMed

    Hettinger, Thomas P; Frank, Marion E

    2009-09-28

    Effects of cathodal current, which draws cations away from the tongue and drives anions toward the tongue, depend on the ionic content of electrolytes through which the current is passed. To address the role of cations and anions in human salt tastes, cathodal currents of -40 microA to -80 microA were applied to human subjects' tongues through supra-threshold salt solutions. The salts were sodium chloride, sodium bromide, potassium chloride, ammonium chloride, calcium chloride, sodium nitrate, sodium sulfate, sodium saccharin, sodium acetate and sodium benzoate, which taken together encompass salty, bitter, sour and sweet taste qualities. The taste of NaCl, the salty and bitter tastes of the other chloride salts and the taste of NaNO(3) was inhibited, suggesting the current displaced stimulatory cations from salty and bitter receptors. However, bitter tastes of non-halide sodium salts were not inhibited, likely because other bitter receptors respond to anions. A discharge current at cathode-off ubiquitously evoked a metallic taste reminiscent of anodal taste used in clinical electrogustometry. Analogous effects on ambient NaCl responses were recorded from the hamster chorda tympani nerve. Increases in tastes of the saccharin and benzoate anions were not evoked during current flow, suggesting that cathodal current does not carry stimulatory anions to sweet receptors. Cathodal current may selectively inhibit salty and bitter-salty tastes for which proximal stimuli are cations.

  3. Understanding taste dysfunction in patients with cancer.

    PubMed

    McLaughlin, Laura; Mahon, Suzanne M

    2012-04-01

    Taste dysfunction is a significant but underestimated issue for patients with cancer. Impaired taste results in changes in diet and appetite, early satiety, and impaired social interactions. Nurses can play a key role in educating patients and families on the pathophysiology of taste dysfunction by suggesting interventions to treat the consequences of taste dysfunction, when available, and offering psychosocial support as patients cope with this often devastating consequence of treatment. Taste recognition helps humans identify the nutritional quality of food and signals the digestive tract to begin secreting enzymes. Spoiled or tainted foods typically are recognized by their bad taste. Along with the other sensory systems, taste is crucial for helping patients treated for cancer feel normal. This article will review the anatomy and physiology of taste; define the different types of taste dysfunction, including the underlying pathophysiologic basis related to cancer treatment; and discuss potential nursing interventions to manage the consequences of taste dysfunction.

  4. Longitudinal Analysis of Calorie Restriction on Rat Taste Bud Morphology and Expression of Sweet Taste Modulators

    PubMed Central

    Cai, Huan; Daimon, Caitlin M.; Cong, Wei-na; Wang, Rui; Chirdon, Patrick; de Cabo, Rafael; Sévigny, Jean; Maudsley, Stuart; Martin, Bronwen

    2014-01-01

    Calorie restriction (CR) is a lifestyle intervention employed to reduce body weight and improve metabolic functions primarily via reduction of ingested carbohydrates and fats. Taste perception is highly related to functional metabolic status and body adiposity. We have previously shown that sweet taste perception diminishes with age; however, relatively little is known about the effects of various lengths of CR upon taste cell morphology and function. We investigated the effects of CR on taste bud morphology and expression of sweet taste–related modulators in 5-, 17-, and 30-month-old rats. In ad libitum (AL) and CR rats, we consistently found the following parameters altered significantly with advancing age: reduction of taste bud size and taste cell numbers per taste bud and reduced expression of sonic hedgehog, type 1 taste receptor 3 (T1r3), α-gustducin, and glucagon-like peptide-1 (GLP-1). In the oldest rats, CR affected a significant reduction of tongue T1r3, GLP-1, and α-gustducin expression compared with age-matched AL rats. Leptin receptor immunopositive cells were elevated in 17- and 30-month-old CR rats compared with age-matched AL rats. These alterations of sweet taste–related modulators, specifically during advanced aging, suggest that sweet taste perception may be altered in response to different lengths of CR. PMID:24077597

  5. Taste identification in adults with autism spectrum conditions.

    PubMed

    Tavassoli, T; Baron-Cohen, S

    2012-07-01

    Sensory issues are widely reported in Autism Spectrum Conditions (ASC). Since taste perception is one of the least studied senses in ASC we explored taste identification in adults with ASC (12 males, 11 females) compared to control participants (14 males, 12 females). 'Taste strips' were used to measure taste identification overall, as well as bitter, sour, sweet and salty tastes. Results revealed lower taste scores overall in the ASC group, as well as for bitter, sour and sweet tastes. Salty taste scores did not differ between the groups. Examining error types showed that adults with ASC more often misidentified a taste as salty or as no taste. Future studies should investigate underlying mechanisms of taste identification difficulties in ASC.

  6. Phase behavior and reactive transport of partial melt in heterogeneous mantle model

    NASA Astrophysics Data System (ADS)

    Jordan, J.; Hesse, M. A.

    2013-12-01

    The reactive transport of partial melt is the key process that leads to the chemical and physical differentiation of terrestrial planets and smaller celestial bodies. The essential role of the lithological heterogeneities during partial melting of the mantle is increasingly recognized. How far can enriched melts propagate while interacting with the ambient mantle? Can the melt flow emanating from a fertile heterogeneity be localized through a reactive infiltration feedback in a model without exogenous factors or contrived initial conditions? A full understanding of the role of heterogeneities requires reactive melt transport models that account for the phase behavior of major elements. Previous work on reactive transport in the mantle focuses on trace element partitioning; we present the first nonlinear chromatographic analysis of reactive melt transport in systems with binary solid solution. Our analysis shows that reactive melt transport in systems with binary solid solution leads to the formation of two separate reaction fronts: a slow melting/freezing front along which enthalpy change is dominant and a fast dissolution/precipitation front along which compositional changes are dominated by an ion-exchange process over enthalpy change. An intermediate state forms between these two fronts with a bulk-rock composition and enthalpy that are not necessarily bounded by the bulk-rock composition and enthalpy of either the enriched heterogeneity or the depleted ambient mantle. The formation of this intermediate state makes it difficult to anticipate the porosity changes and hence the stability of reaction fronts. Therefore, we develop a graphical representation for the solution that allows identification of the intermediate state by inspection, for all possible bulk-rock compositions and enthalpies of the heterogeneity and the ambient mantle. We apply the analysis to the partial melting of an enriched heterogeneity. This leads to the formation of moving precipitation

  7. A New Gustometer for Taste Testing in Rodents

    PubMed Central

    Blonde, Ginger D.; Henderson, Ross P.; Treesukosol, Yada; Hendrick, Paul; Newsome, Ryan; Fletcher, Fred H.; Tang, Te; Donaldson, James A.

    2015-01-01

    In recent years, to circumvent the interpretive limitations associated with intake tests commonly used to assess taste function in rodents, investigators have developed devices called gustometers to deliver small volumes of taste samples and measure immediate responses, thereby increasing confidence that the behavior of the animal is under orosensory control. Most of these gustometers can be used to measure unconditioned licking behavior to stimuli presented for short durations and/or can be used to train the animal to respond to various fluid stimuli differentially so as to obtain a reward and/or avoid punishment. Psychometric sensitivity and discrimination functions can thus be derived. Here, we describe a new gustometer design, successfully used in behavioral experiments, that was guided by our experience with an older version used for over 2 decades. The new computer-controlled gustometer features no dead space in stimulus delivery lines, effective cleaning of the licking substrate, and the ability to measure licking without passing electrical current through the animal. The parts and dimensions are detailed, and the benefits and limitations of certain design features are discussed. Schematics for key circuits are provided as supplemental information. Accordingly, it should be possible to fabricate this device in a fashion customized for one’s needs. PMID:25616763

  8. DEVELOPING A SENSE OF TASTE

    PubMed Central

    Kapsimali, Marika; Barlow, Linda A.

    2012-01-01

    Taste buds are found in a distributed array on the tongue surface, and are innervated by cranial nerves that convey taste information to the brain. For nearly a century, taste buds were thought to be induced by nerves late in embryonic development. However, this view has shifted dramatically. A host of studies now indicate that taste bud development is initiated and proceeds via processes that are nerve-independent, occur long before birth, and governed by cellular and molecular mechanisms intrinsic to the developing tongue. Here we review the state of our understanding of the molecular and cellular regulation of taste bud development, incorporating important new data obtained through the use of two powerful genetic systems, mouse and zebrafish. PMID:23182899

  9. Taste and physiological responses to glucosinolates: seed predator versus seed disperser.

    PubMed

    Samuni-Blank, Michal; Izhaki, Ido; Gerchman, Yoram; Dearing, M Denise; Karasov, William H; Trabelcy, Beny; Edwards, Thea M; Arad, Zeev

    2014-01-01

    In contrast to most other plant tissues, fleshy fruits are meant to be eaten in order to facilitate seed dispersal. Although fleshy fruits attract consumers, they may also contain toxic secondary metabolites. However, studies that link the effect of fruit toxins with seed dispersal and predation are scarce. Glucosinolates (GLSs) are a family of bitter-tasting compounds. The fleshy fruit pulp of Ochradenus baccatus was previously found to harbor high concentrations of GLSs, whereas the myrosinase enzyme, which breaks down GLSs to produce foul tasting chemicals, was found only in the seeds. Here we show the differential behavioral and physiological responses of three rodent species to high dose (80%) Ochradenus' fruits diets. Acomys russatus, a predator of Ochradenus' seeds, was the least sensitive to the taste of the fruit and the only rodent to exhibit taste-related physiological adaptations to deal with the fruits' toxins. In contrast, Acomys cahirinus, an Ochradenus seed disperser, was more sensitive to a diet containing the hydrolyzed products of the GLSs. A third rodent (Mus musculus) was deterred from Ochradenus fruits consumption by the GLSs and their hydrolyzed products. We were able to alter M. musculus avoidance of whole fruit consumption by soaking Ochradenus fruits in a water solution containing 1% adenosine monophosphate, which blocks the bitter taste receptor in mice. The observed differential responses of these three rodent species may be due to evolutionary pressures that have enhanced or reduced their sensitivity to the taste of GLSs.

  10. Taste buds as peripheral chemosensory processors

    PubMed Central

    Roper, Stephen D.

    2012-01-01

    Taste buds are peripheral chemosensory organs situated in the oral cavity. Each taste bud consists of a community of 50–100 cells that interact synaptically during gustatory stimulation. At least three distinct cell types are found in mammalian taste buds – Type I cells, Receptor (Type II) cells, and Presynaptic (Type III) cells. Type I cells appear to be glial-like cells. Receptor cells express G protein-coupled taste receptors for sweet, bitter, or umami compounds. Presynaptic cells transduce acid stimuli (sour taste). Cells that sense salt (NaCl) taste have not yet been confidently identified in terms of these cell types. During gustatory stimulation, taste bud cells secrete synaptic, autocrine, and paracrine transmitters. These transmitters include ATP, acetylcholine (ACh), serotonin (5-HT), norepinephrine (NE), and GABA. Glutamate is an efferent transmitter that stimulates Presynaptic cells to release 5-HT. This chapter discusses these transmitters, which cells release them, the postsynaptic targets for the transmitters, and how cell–cell communication shapes taste bud signaling via these transmitters. PMID:23261954

  11. Taste buds as peripheral chemosensory processors.

    PubMed

    Roper, Stephen D

    2013-01-01

    Taste buds are peripheral chemosensory organs situated in the oral cavity. Each taste bud consists of a community of 50-100 cells that interact synaptically during gustatory stimulation. At least three distinct cell types are found in mammalian taste buds - Type I cells, Receptor (Type II) cells, and Presynaptic (Type III) cells. Type I cells appear to be glial-like cells. Receptor cells express G protein-coupled taste receptors for sweet, bitter, or umami compounds. Presynaptic cells transduce acid stimuli (sour taste). Cells that sense salt (NaCl) taste have not yet been confidently identified in terms of these cell types. During gustatory stimulation, taste bud cells secrete synaptic, autocrine, and paracrine transmitters. These transmitters include ATP, acetylcholine (ACh), serotonin (5-HT), norepinephrine (NE), and GABA. Glutamate is an efferent transmitter that stimulates Presynaptic cells to release 5-HT. This chapter discusses these transmitters, which cells release them, the postsynaptic targets for the transmitters, and how cell-cell communication shapes taste bud signaling via these transmitters. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Taste acuity of the human palate. III. Studies with taste solutions on subjects in different age groups.

    PubMed

    Nilsson, B

    1979-01-01

    The taste acuity at the midline of the hard and soft palate near their junction and, for comparison, on representative areas of the tongue was determined in 80 subjects aged 11-79 years by applying test solutions of the four basic tastes. Twenty-one subjects (26%) could identify at least one taste on the hard palate but none could recognize all four tastes. Seventy subjects (87%) could identify at least one taste on the soft palate and 37 subjects (46%) could recognize all four tastes. Taste thresholds were much higher on the hard palate than on the tongue and were in most cases higher on the soft palate than on the tongue. The ability to recognize all four tastes was less frequent in older than in younger subjects and the difference was greatest on the soft palate and least at the foliate papillae. The differences were greatest for citric acid and least for sucrose. There was a tendency to lower thresholds for women compared to men for all four tastes on all areas examined which was most pronounced on the soft palate. No differences in taste thresholds were found between denture wearers and subjects with natural dentition. Smokers had higher thresholds than non-smokers only for salt on the soft palate and the base of the tongue.

  13. [Functional properties of taste bud cells. Mechanisms of afferent neurotransmission in Type II taste receptor cells].

    PubMed

    Romanov, R A

    2013-01-01

    Taste Bud cells are heterogeneous in their morphology and functionality. These cells are responsible for sensing a wide variety of substances and for associating detected compounds with a different taste: bitter, sweet, salty, sour and umami. Today we know that each of the five basic tastes corresponds to distinct cell populations organized into three basic morpho-functional cell types. In addition, some receptor cells of the taste bud demonstrate glia-related functions. In this article we expand on some properties of these three morphological receptor cell types. Main focus is devoted to the Type II cells and unusual mechanism for afferent neurotransmission in these cells. Taste cells of the Type II consist of three populations detecting bitter, sweet and umami tastes, and, thus, evoke a serious scientific interest.

  14. NaCl responsive taste cells in the mouse fungiform taste buds.

    PubMed

    Yoshida, R; Horio, N; Murata, Y; Yasumatsu, K; Shigemura, N; Ninomiya, Y

    2009-03-17

    Previous studies have demonstrated that rodents' chorda tympani (CT) nerve fibers responding to NaCl can be classified according to their sensitivities to the epithelial sodium channel (ENaC) blocker amiloride into two groups: amiloride-sensitive (AS) and -insensitive (AI). The AS fibers were shown to respond specifically to NaCl, whereas AI fibers broadly respond to various electrolytes, including NaCl. These data suggest that salt taste transduction in taste cells may be composed of at least two different systems; AS and AI ones. To further address this issue, we investigated the responses to NaCl, KCl and HCl and the amiloride sensitivity of mouse fungiform papilla taste bud cells which are innervated by the CT nerve. Comparable with the CT data, the results indicated that 56 NaCl-responsive cells tested were classified into two groups; 25 cells ( approximately 44%) narrowly responded to NaCl and their NaCl response were inhibited by amiloride (AS cells), whereas the remaining 31 cells ( approximately 56%) responded not only to NaCl, but to KCl and/or HCl and showed no amiloride inhibition of NaCl responses (AI cells). Amiloride applied to the basolateral side of taste cells had no effect on NaCl responses in the AS and AI cells. Single cell reverse transcription-polymerase chain reaction (RT-PCR) experiments indicated that ENaC subunit mRNA was expressed in a subset of AS cells. These findings suggest that the mouse fungiform taste bud is composed of AS and AI cells that can transmit taste information differently to their corresponding types of CT fibers, and apical ENaCs may be involved in the NaCl responses of AS cells.

  15. A question of taste.

    PubMed

    Mitchison, T J

    2013-11-01

    A career in science is shaped by many factors, one of the most important being our tastes in research. These typically form early and are shaped by subsequent successes and failures. My tastes run to microscopes, chemistry, and spatial organization of cytoplasm. I will try to identify where they came from, how they shaped my career, and how they continue to evolve. My hope is to inspire young scientists to identify and celebrate their own unique tastes.

  16. A question of taste

    PubMed Central

    Mitchison, T. J.

    2013-01-01

    A career in science is shaped by many factors, one of the most important being our tastes in research. These typically form early and are shaped by subsequent successes and failures. My tastes run to microscopes, chemistry, and spatial organization of cytoplasm. I will try to identify where they came from, how they shaped my career, and how they continue to evolve. My hope is to inspire young scientists to identify and celebrate their own unique tastes. PMID:24174461

  17. Enhancing Perception of Contaminated Food through Acid-Mediated Modulation of Taste Neuron Responses

    PubMed Central

    Chen, Yan; Amrein, Hubert

    2015-01-01

    SUMMARY Background Natural foods not only contain nutrients, but also non-nutritious and potentially harmful chemicals. Thus, animals need to evaluate food content in order to make adequate feeding decisions. Results Here, we investigate the effects of acids on the taste neuron responses and on taste behavior of desirable, nutritious sugars and sugar/bitter compound mixtures in Drosophila melanogaster. Using Ca2+ imaging, we show that acids neither activate sweet nor bitter taste neurons in tarsal taste sensilla. However, they suppress responses to bitter compounds in bitter-sensing neurons. Moreover, acids reverse suppression of bitter compounds exerted on sweet-sensing neurons. Consistent with these observations, behavioral analyses show that bitter compound-mediated inhibition on feeding behavior is alleviated by acids. To investigate the cellular mechanism by which acids modulate these effects, we silenced bitter sensing gustatory neurons. Surprisingly, this intervention had little effect on acid-mediated de-repression of sweet neuron or feeding responses to either sugar/bitter compound mixtures, or sugar/bitter compound/acid mixtures, suggesting two independent pathways by which bitter compounds are sensed. Conclusions Our investigations reveal that acids, when presented in dietary relevant concentrations, enhance the perception of sugar/bitter compound mixtures. Drosophila’s natural food sources - fruits and cohabitating yeast - are rich in sugars and acids, but are rapidly colonized by microorganisms, such as fungi, protozoan parasites and bacteria, many of which produce bitter compounds. We propose that acids present in most fruits counteract the inhibitory effects of these bitter compounds during feeding. PMID:25131671

  18. Enhancing perception of contaminated food through acid-mediated modulation of taste neuron responses.

    PubMed

    Chen, Yan; Amrein, Hubert

    2014-09-08

    Natural foods contain not only nutrients, but also nonnutritious and potentially harmful chemicals. Thus, animals need to evaluate food content in order to make adequate feeding decisions. Here, we investigate the effects of acids on the taste neuron responses and on taste behavior of desirable, nutritious sugars and sugar/bitter compound mixtures in Drosophila melanogaster. Using Ca2+ imaging, we show that acids activate neither sweet nor bitter taste neurons in tarsal taste sensilla. However, they suppress responses to bitter compounds in bitter-sensing neurons. Moreover, acids reverse suppression of bitter compounds exerted on sweet-sensing neurons. Consistent with these observations, behavioral analyses show that bitter-compound-mediated inhibition on feeding behavior is alleviated by acids. To investigate the cellular mechanism by which acids modulate these effects, we silenced bitter-sensing gustatory neurons. Surprisingly, this intervention had little effect on acid-mediated derepression of sweet neuron or feeding responses to either sugar/bitter compound mixtures or sugar/bitter compound/acid mixtures, suggesting that there are two independent pathways by which bitter compounds are sensed. Our investigations reveal that acids, when presented in dietary relevant concentrations, enhance the perception of sugar/bitter compound mixtures. Drosophila's natural food sources-fruits and cohabitating yeast-are rich in sugars and acids but are rapidly colonized by microorganisms, such as fungi, protozoan parasites, and bacteria, many of which produce bitter compounds. We propose that the acids present in most fruits counteract the inhibitory effects of these bitter compounds during feeding. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Taste Bud Homeostasis in Health, Disease, and Aging

    PubMed Central

    2014-01-01

    The mammalian taste bud is an onion-shaped epithelial structure with 50–100 tightly packed cells, including taste receptor cells, supporting cells, and basal cells. Taste receptor cells detect nutrients and toxins in the oral cavity and transmit the sensory information to gustatory nerve endings in the buds. Supporting cells may play a role in the clearance of excess neurotransmitters after their release from taste receptor cells. Basal cells are precursor cells that differentiate into mature taste cells. Similar to other epithelial cells, taste cells turn over continuously, with an average life span of about 8–12 days. To maintain structural homeostasis in taste buds, new cells are generated to replace dying cells. Several recent studies using genetic lineage tracing methods have identified populations of progenitor/stem cells for taste buds, although contributions of these progenitor/stem cell populations to taste bud homeostasis have yet to be fully determined. Some regulatory factors of taste cell differentiation and degeneration have been identified, but our understanding of these aspects of taste bud homoeostasis remains limited. Many patients with various diseases develop taste disorders, including taste loss and taste distortion. Decline in taste function also occurs during aging. Recent studies suggest that disruption or alteration of taste bud homeostasis may contribute to taste dysfunction associated with disease and aging. PMID:24287552

  20. Taste bud homeostasis in health, disease, and aging.

    PubMed

    Feng, Pu; Huang, Liquan; Wang, Hong

    2014-01-01

    The mammalian taste bud is an onion-shaped epithelial structure with 50-100 tightly packed cells, including taste receptor cells, supporting cells, and basal cells. Taste receptor cells detect nutrients and toxins in the oral cavity and transmit the sensory information to gustatory nerve endings in the buds. Supporting cells may play a role in the clearance of excess neurotransmitters after their release from taste receptor cells. Basal cells are precursor cells that differentiate into mature taste cells. Similar to other epithelial cells, taste cells turn over continuously, with an average life span of about 8-12 days. To maintain structural homeostasis in taste buds, new cells are generated to replace dying cells. Several recent studies using genetic lineage tracing methods have identified populations of progenitor/stem cells for taste buds, although contributions of these progenitor/stem cell populations to taste bud homeostasis have yet to be fully determined. Some regulatory factors of taste cell differentiation and degeneration have been identified, but our understanding of these aspects of taste bud homoeostasis remains limited. Many patients with various diseases develop taste disorders, including taste loss and taste distortion. Decline in taste function also occurs during aging. Recent studies suggest that disruption or alteration of taste bud homeostasis may contribute to taste dysfunction associated with disease and aging.

  1. Glucagon signaling modulates sweet taste responsiveness.

    PubMed

    Elson, Amanda E T; Dotson, Cedrick D; Egan, Josephine M; Munger, Steven D

    2010-10-01

    The gustatory system provides critical information about the quality and nutritional value of food before it is ingested. Thus, physiological mechanisms that modulate taste function in the context of nutritional needs or metabolic status could optimize ingestive decisions. We report that glucagon, which plays important roles in the maintenance of glucose homeostasis, enhances sweet taste responsiveness through local actions in the mouse gustatory epithelium. Using immunohistochemistry and confocal microscopy, we found that glucagon and its receptor (GlucR) are coexpressed in a subset of mouse taste receptor cells. Most of these cells also express the T1R3 taste receptor implicated in sweet and/or umami taste. Genetic or pharmacological disruption of glucagon signaling in behaving mice indicated a critical role for glucagon in the modulation of taste responsiveness. Scg5(-/-) mice, which lack mature glucagon, had significantly reduced responsiveness to sucrose as compared to wild-type littermates in brief-access taste tests. No significant differences were seen in responses to prototypical salty, sour, or bitter stimuli. Taste responsiveness to sucrose was similarly reduced upon acute and local disruption of glucagon signaling by the GlucR antagonist L-168,049. Together, these data indicate a role for local glucagon signaling in the peripheral modulation of sweet taste responsiveness.

  2. Self-reported taste preference can be a proxy for daily sodium intake in middle-aged Japanese adults.

    PubMed

    Takachi, Ribeka; Ishihara, Junko; Iwasaki, Motoki; Ishii, Yuri; Tsugane, Shoichiro

    2014-05-01

    Reducing dietary salt intake remains a challenging issue in the management of chronic disease. Taste preference is suspected to be an important proxy index of daily sodium consumption. This study examined the difference in daily sodium intake according to self-reported taste preference for miso soup as representative of homemade cooking in middle-aged urban Japanese adults. Among 896 candidates randomly selected from examinees of cancer screening provided by the National Cancer Center, Japan, 143 men and women participated in this cross-sectional study. During the period from May 2007 through April 2008, participants provided a food frequency questionnaire, which included information on taste preference and dietary behaviors, a weighed food record over 4 consecutive days, a simultaneous 24-hour urine collection, and a sample of miso soup as it is usually prepared in the home. Mean 24-hour urinary sodium excretion and daily sodium intake were compared according to the self-reported taste preference for miso soup. Taste preference was significantly associated with both 24-hour urinary sodium excretion (trend P<0.01) and daily sodium intake (trend P=0.01), with a corresponding regression coefficient per 1 rank preference increment of 403 mg and 315 mg/day, respectively. The observed association between preference and urinary excretion was attenuated by further adjustment for discretionary salt-related behaviors. These findings suggest that self-reported taste preference for homemade cooking is a defining feature of daily sodium intake through discretionary salt-related dietary behaviors. A reduction in daily sodium consumption per 1 rank light preference was estimated to equate to approximately 1 g salt/day. Copyright © 2014 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.

  3. Diversity in cell motility reveals the dynamic nature of the formation of zebrafish taste sensory organs.

    PubMed

    Soulika, Marina; Kaushik, Anna-Lila; Mathieu, Benjamin; Lourenço, Raquel; Komisarczuk, Anna Z; Romano, Sebastian Alejo; Jouary, Adrien; Lardennois, Alicia; Tissot, Nicolas; Okada, Shinji; Abe, Keiko; Becker, Thomas S; Kapsimali, Marika

    2016-06-01

    Taste buds are sensory organs in jawed vertebrates, composed of distinct cell types that detect and transduce specific taste qualities. Taste bud cells differentiate from oropharyngeal epithelial progenitors, which are localized mainly in proximity to the forming organs. Despite recent progress in elucidating the molecular interactions required for taste bud cell development and function, the cell behavior underlying the organ assembly is poorly defined. Here, we used time-lapse imaging to observe the formation of taste buds in live zebrafish larvae. We found that tg(fgf8a.dr17)-expressing cells form taste buds and get rearranged within the forming organs. In addition, differentiating cells move from the epithelium to the forming organs and can be displaced between developing organs. During organ formation, tg(fgf8a.dr17) and type II taste bud cells are displaced in random, directed or confined mode relative to the taste bud they join or by which they are maintained. Finally, ascl1a activity in the 5-HT/type III cell is required to direct and maintain tg(fgf8a.dr17)-expressing cells into the taste bud. We propose that diversity in displacement modes of differentiating cells acts as a key mechanism for the highly dynamic process of taste bud assembly. © 2016. Published by The Company of Biologists Ltd.

  4. Sarco/Endoplasmic Reticulum Ca2+-ATPases (SERCA) Contribute to GPCR-Mediated Taste Perception

    PubMed Central

    Iguchi, Naoko; Ohkuri, Tadahiro; Slack, Jay P.; Zhong, Ping; Huang, Liquan

    2011-01-01

    The sense of taste is important for providing animals with valuable information about the qualities of food, such as nutritional or harmful nature. Mammals, including humans, can recognize at least five primary taste qualities: sweet, umami (savory), bitter, sour, and salty. Recent studies have identified molecules and mechanisms underlying the initial steps of tastant-triggered molecular events in taste bud cells, particularly the requirement of increased cytosolic free Ca2+ concentration ([Ca2+]c) for normal taste signal transduction and transmission. Little, however, is known about the mechanisms controlling the removal of elevated [Ca2+]c from the cytosol of taste receptor cells (TRCs) and how the disruption of these mechanisms affects taste perception. To investigate the molecular mechanism of Ca2+ clearance in TRCs, we sought the molecules involved in [Ca2+]c regulation using a single-taste-cell transcriptome approach. We found that Serca3, a member of the sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) family that sequesters cytosolic Ca2+ into endoplasmic reticulum, is exclusively expressed in sweet/umami/bitter TRCs, which rely on intracellular Ca2+ release for signaling. Serca3-knockout (KO) mice displayed significantly increased aversive behavioral responses and greater gustatory nerve responses to bitter taste substances but not to sweet or umami taste substances. Further studies showed that Serca2 was mainly expressed in the T1R3-expressing sweet and umami TRCs, suggesting that the loss of function of Serca3 was possibly compensated by Serca2 in these TRCs in the mutant mice. Our data demonstrate that the SERCA family members play an important role in the Ca2+ clearance in TRCs and that mutation of these proteins may alter bitter and perhaps sweet and umami taste perception. PMID:21829714

  5. Developing Prosocial Behaviors in Early Adolescence with Reactive Aggression

    ERIC Educational Resources Information Center

    Fung, Annis L. C.

    2008-01-01

    Despite the alarming rise of early adolescence aggression in Hong Kong, it is the pioneer evidence-based outcome study on Anger Coping Training (ACT) program for early adolescence with reactive aggression to develop their prosocial behaviors. This research program involved experimental and control groups with pre- and post-comparison using a …

  6. The Impact of Pregnancy on Taste Function.

    PubMed

    Choo, Ezen; Dando, Robin

    2017-05-01

    It is common for women to report a change in taste (for instance an increased bitter or decreased sweet response) during pregnancy, however specifics of any variation in taste with pregnancy remain elusive. Here we review studies of taste in pregnancy, and discuss how physiological changes occurring during pregnancy may influence taste signaling. We aim to consolidate studies of human pregnancy and "taste function" (studies of taste thresholds, discrimination, and intensity perception, rather than hedonic response or self-report), discussing differences in methodology and findings. Generally, the majority of studies report either no change, or an increase in threshold/decrease in perceived taste intensity, particularly in the early stages of pregnancy, suggesting a possible decrease in taste acuity when pregnant. We further discuss several non-human studies of taste and pregnancy that may extend our understanding. Findings demonstrate that taste buds express receptors for many of the same hormones and circulating factors that vary with pregnancy. Circulating gonadal hormones or other contributions from the endocrine system, as well as physiological changes in weight and immune response could all bear some responsibility for such a modulation of taste during pregnancy. Given our growing understanding of taste, we propose that a change in taste function during pregnancy may not be solely driven by hormonal fluctuations of progesterone and estrogen, as many have suggested. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Rewiring the taste system.

    PubMed

    Lee, Hojoon; Macpherson, Lindsey J; Parada, Camilo A; Zuker, Charles S; Ryba, Nicholas J P

    2017-08-17

    In mammals, taste buds typically contain 50-100 tightly packed taste-receptor cells (TRCs), representing all five basic qualities: sweet, sour, bitter, salty and umami. Notably, mature taste cells have life spans of only 5-20 days and, consequently, are constantly replenished by differentiation of taste stem cells. Given the importance of establishing and maintaining appropriate connectivity between TRCs and their partner ganglion neurons (that is, ensuring that a labelled line from sweet TRCs connects to sweet neurons, bitter TRCs to bitter neurons, sour to sour, and so on), we examined how new connections are specified to retain fidelity of signal transmission. Here we show that bitter and sweet TRCs provide instructive signals to bitter and sweet target neurons via different guidance molecules (SEMA3A and SEMA7A). We demonstrate that targeted expression of SEMA3A or SEMA7A in different classes of TRCs produces peripheral taste systems with miswired sweet or bitter cells. Indeed, we engineered mice with bitter neurons that now responded to sweet tastants, sweet neurons that responded to bitter or sweet neurons responding to sour stimuli. Together, these results uncover the basic logic of the wiring of the taste system at the periphery, and illustrate how a labelled-line sensory circuit preserves signalling integrity despite rapid and stochastic turnover of receptor cells.

  8. Rewiring the Taste System

    PubMed Central

    Lee, Hojoon; Macpherson, Lindsey J.; Parada, Camilo A.; Zuker, Charles S.; Ryba, Nicholas J.P.

    2018-01-01

    In mammals, taste buds typically contain 50-100 tightly packed taste receptor cells (TRCs) representing all five basic qualities: sweet, sour, bitter, salty and umami1,2. Notably, mature taste cells have life spans of only 5-20 days, and consequently, are constantly replenished by differentiation of taste stem cells3. Given the importance of establishing and maintaining appropriate connectivity between TRCs and their partner ganglion neurons (i.e. ensuring that a labeled line from sweet TRCs connects to sweet neurons, bitter TRCs to bitter neurons, sour to sour, etc.), we examined how new connections are specified to retain fidelity of signal transmission. Our results show that bitter and sweet TRCs provide instructive signals to bitter and sweet target neurons via different guidance molecules (Sema3A and Sema7A)4-6. Here, we demonstrate that targeted expression of Sema3A or Sema7A in different classes of TRCs produce peripheral taste systems with miswired sweet or bitter cells. Indeed, we engineered animals whereby bitter neurons now respond to sweet tastants, sweet neurons respond to bitter, or with sweet neurons responding to sour stimuli. Together, these results uncover the basic logic of the wiring of the taste system at the periphery, and illustrate how a labeled-line sensory circuit preserves signaling integrity despite rapid and stochastic turnover of receptor cells. PMID:28792937

  9. Developing and regenerating a sense of taste.

    PubMed

    Barlow, Linda A; Klein, Ophir D

    2015-01-01

    Taste is one of the fundamental senses, and it is essential for our ability to ingest nutritious substances and to detect and avoid potentially toxic ones. Taste buds, which are clusters of neuroepithelial receptor cells, are housed in highly organized structures called taste papillae in the oral cavity. Whereas the overall structure of the taste periphery is conserved in almost all vertebrates examined to date, the anatomical, histological, and cell biological, as well as potentially the molecular details of taste buds in the oral cavity are diverse across species and even among individuals. In mammals, several types of gustatory papillae reside on the tongue in highly ordered arrangements, and the patterning and distribution of the mature papillae depend on coordinated molecular events in embryogenesis. In this review, we highlight new findings in the field of taste development, including how taste buds are patterned and how taste cell fate is regulated. We discuss whether a specialized taste bud stem cell population exists and how extrinsic signals can define which cell lineages are generated. We also address the question of whether molecular regulation of taste cell renewal is analogous to that of taste bud development. Finally, we conclude with suggestions for future directions, including the potential influence of the maternal diet and maternal health on the sense of taste in utero. © 2015 Elsevier Inc. All rights reserved.

  10. Developing and regenerating a sense of taste

    PubMed Central

    Barlow, Linda A.; Klein, Ophir D.

    2015-01-01

    Taste is one of the fundamental senses, and it is essential for our ability to ingest nutritious substances and to detect and avoid potentially toxic ones. Taste buds, which are clusters of neuroepithelial receptor cells, are housed in highly organized structures called taste papillae in the oral cavity. Whereas the overall structure of the taste periphery is conserved in almost all vertebrates examined to date, the anatomical, histological, and cell biological, as well as potentially the molecular details of taste buds in the oral cavity are diverse across species and even among individuals. In mammals, several types of gustatory papillae reside on the tongue in highly ordered arrangements, and the patterning and distribution of the mature papillae depends on coordinated molecular events in embryogenesis. In this review, we highlight new findings in the field of taste development, including how taste buds are patterned and how taste cell fate is regulated. We discuss whether a specialized taste bud stem cell population exists and how extrinsic signals can define which cell lineages are generated. We also address the question of whether molecular regulation of taste cell renewal is analogous to that of taste bud development. Finally, we conclude with suggestions for future directions, including the potential influence of the maternal diet and maternal health on the sense of taste in utero. PMID:25662267

  11. Insulin-Like Growth Factors Are Expressed in the Taste System, but Do Not Maintain Adult Taste Buds.

    PubMed

    Biggs, Bradley T; Tang, Tao; Krimm, Robin F

    2016-01-01

    Growth factors regulate cell growth and differentiation in many tissues. In the taste system, as yet unknown growth factors are produced by neurons to maintain taste buds. A number of growth factor receptors are expressed at greater levels in taste buds than in the surrounding epithelium and may be receptors for candidate factors involved in taste bud maintenance. We determined that the ligands of eight of these receptors were expressed in the E14.5 geniculate ganglion and that four of these ligands were expressed in the adult geniculate ganglion. Of these, the insulin-like growth factors (IGF1, IGF2) were expressed in the ganglion and their receptor, insulin-like growth factor receptor 1 (IGF1R), were expressed at the highest levels in taste buds. To determine whether IGF1R regulates taste bud number or structure, we conditionally eliminated IGF1R from the lingual epithelium of mice using the keratin 14 (K14) promoter (K14-Cre::Igf1rlox/lox). While K14-Cre::Igf1rlox/lox mice had significantly fewer taste buds at P30 compared with control mice (Igf1rlox/lox), this difference was not observed by P80. IGF1R removal did not affect taste bud size or cell number, and the number of phospholipase C β2- (PLCβ2) and carbonic anhydrase 4- (Car4) positive taste receptor cells did not differ between genotypes. Taste buds at the back of the tongue fungiform taste field were larger and contained more cells than those at the tongue tip, and these differences were diminished in K14-Cre::Igf1rlox/lox mice. The epithelium was thicker at the back versus the tip of the tongue, and this difference was also attenuated in K14-Cre::Igf1rlox/lox mice. We conclude that, although IGFs are expressed at high levels in the taste system, they likely play little or no role in maintaining adult taste bud structure. IGFs have a potential role in establishing the initial number of taste buds, and there may be limits on epithelial thickness in the absence of IGF1R signaling.

  12. Insulin-Like Growth Factors Are Expressed in the Taste System, but Do Not Maintain Adult Taste Buds

    PubMed Central

    Biggs, Bradley T.; Tang, Tao; Krimm, Robin F.

    2016-01-01

    Growth factors regulate cell growth and differentiation in many tissues. In the taste system, as yet unknown growth factors are produced by neurons to maintain taste buds. A number of growth factor receptors are expressed at greater levels in taste buds than in the surrounding epithelium and may be receptors for candidate factors involved in taste bud maintenance. We determined that the ligands of eight of these receptors were expressed in the E14.5 geniculate ganglion and that four of these ligands were expressed in the adult geniculate ganglion. Of these, the insulin-like growth factors (IGF1, IGF2) were expressed in the ganglion and their receptor, insulin-like growth factor receptor 1 (IGF1R), were expressed at the highest levels in taste buds. To determine whether IGF1R regulates taste bud number or structure, we conditionally eliminated IGF1R from the lingual epithelium of mice using the keratin 14 (K14) promoter (K14-Cre::Igf1rlox/lox). While K14-Cre::Igf1rlox/lox mice had significantly fewer taste buds at P30 compared with control mice (Igf1rlox/lox), this difference was not observed by P80. IGF1R removal did not affect taste bud size or cell number, and the number of phospholipase C β2- (PLCβ2) and carbonic anhydrase 4- (Car4) positive taste receptor cells did not differ between genotypes. Taste buds at the back of the tongue fungiform taste field were larger and contained more cells than those at the tongue tip, and these differences were diminished in K14-Cre::Igf1rlox/lox mice. The epithelium was thicker at the back versus the tip of the tongue, and this difference was also attenuated in K14-Cre::Igf1rlox/lox mice. We conclude that, although IGFs are expressed at high levels in the taste system, they likely play little or no role in maintaining adult taste bud structure. IGFs have a potential role in establishing the initial number of taste buds, and there may be limits on epithelial thickness in the absence of IGF1R signaling. PMID:26901525

  13. Infant temperamental reactivity, maternal and grandparental sensitivity: Differential susceptibility for behavior problems in China.

    PubMed

    Xing, Shufen; Zhou, Quan; Archer, Marc; Yue, Jianhong; Wang, Zhengyan

    2016-10-01

    The differential susceptibility hypothesis suggests that children's innate characteristics and their rearing experiences interact differentially during development. Recently, the study of interactions between infants' temperament and rearing experiences has become a research hotspot. In China, grandparental care is a very common phenomenon, with many infants taken care of by grandparents while mothers are out for work. To investigate whether the associations between maternal and grandmaternal sensitivity, and behavior problems were moderated by infant temperamental reactivity, while the infants were raised by both their mothers and grandmothers. A total of 71 infants (average age of 17.6months), their mothers and grandmothers were included in this study. Maternal sensitivity and grandmaternal sensitivity were assessed with the Maternal Behavior Q-sort-Chinese Version, infants' temperamental reactivity was measured with Carey's Toddler Temperament Questionnaire-Chinese Revision, and infants' behavior problems were measured with the Infant-Toddler Social and Emotional Assessment-Chinese Version. Maternal sensitivity significantly predicted infants' impulsivity and aggression. Infants' temperamental reactivity moderated the effect of maternal sensitivity on infants' general anxiety. In addition, infant temperamental reactivity moderated the impact of grandmaternal sensitivity on infants' separation distress. Our results support the differential susceptibility hypothesis to some extent. Infants with high temperamental reactivity not only suffer more from low maternal and grandmaternal sensitivity, but also benefit more from high maternal and grandmaternal sensitivity as compared to those infants with low temperamental reactivity. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. A National Test of Taste and Smell

    MedlinePlus

    ... Javascript on. Feature: Taste, Smell, Hearing, Language, Voice, Balance At Last: A National Test of Taste and ... smell. Read More "Taste, Smell, Hearing, Language, Voice, Balance" Articles At Last: A National Test of Taste ...

  15. [Molecular receptors of taste agents].

    PubMed

    Giliarov, D A; Sakharova, T A; Buzdin, A A

    2009-01-01

    All representatives of higher eukaryotes can probably differentially perceive nutrients and poisonous substances. Molecular mechanisms of transduction of taste information have been best studied for mammals and for the fruit fly Drosophila. Here, we consider receptor mechanisms and conjugated primary signal processes of stimulation of taste receptor cells by stimuli of various taste modalities.

  16. Taste of Clindamycin and Acetaminophen.

    PubMed

    Hashiba, Kimberlee A; Wo, Shane R; Yamamoto, Loren G

    2017-02-01

    This study evaluated the taste palatability of liquid clindamycin and acetaminophen products on the market. Subjects rated the palatability of 3 clindamycin suspensions, 1 amoxicillin suspension (tasted twice), an acetaminophen elixir, and an acetaminophen suspension in a randomized blinded fashion on a 0 to 5 scale. Forty-six adults aged 20 to 82 years volunteered for this study. Means (and 95% confidence intervals) were as follows: amoxicillin-first taste 3.6 (3.3-3.9), amoxicillin-second taste 3.5 (3.2-3.7). Clindamycin Rising, Perrigo, Greenstone; 2.0 (1.6-2.5), 3.0 (2.7-3.3), and 2.2 (1.8-2.6), respectively. Acetaminophen elixir 0.6 (0.4-0.8) and acetaminophen suspension 3.4 (3.1-3.6). One clindamycin tasted significantly better than the others. Additionally, although 2 acetaminophen formulations are currently available over-the-counter, the suspension is more palatable and less costly. Medicaid drug programs that perpetuate the use of elixir should change their coverage to save money and provide patients access to better tasting acetaminophen.

  17. Oleogustus: The Unique Taste of Fat.

    PubMed

    Running, Cordelia A; Craig, Bruce A; Mattes, Richard D

    2015-09-01

    Considerable mechanistic data indicate there may be a sixth basic taste: fat. However, evidence demonstrating that the sensation of nonesterified fatty acids (NEFA, the proposed stimuli for "fat taste") differs qualitatively from other tastes is lacking. Using perceptual mapping, we demonstrate that medium and long-chain NEFA have a taste sensation that is distinct from other basic tastes (sweet, sour, salty, and bitter). Although some overlap was observed between these NEFA and umami taste, this overlap is likely due to unfamiliarity with umami sensations rather than true similarity. Shorter chain fatty acids stimulate a sensation similar to sour, but as chain length increases this sensation changes. Fat taste oral signaling, and the different signals caused by different alkyl chain lengths, may hold implications for food product development, clinical practice, and public health policy. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Salt taste adaptation: the psychophysical effects of adapting solutions and residual stimuli from prior tastings on the taste of sodium chloride.

    PubMed

    O'Mahony, M

    1979-01-01

    The paper reviews how adaptation to sodium chloride, changing in concentration as a result of various experimental procedures, affects measurements of the sensitivity, intensity, and quality of the salt taste. The development of and evidence for the current model that the salt taste depends on an adaptation level (taste zero) determined by the sodium cation concentration is examined and found to be generally supported, despite great methodological complications. It would seem that lower adaptation levels elicit lower thresholds, higher intensity estimates, and altered quality descriptions with predictable effects on psychophysical measures.

  19. Taste responses to sweet stimuli in alpha-gustducin knockout and wild-type mice.

    PubMed

    Danilova, Vicktoria; Damak, Sami; Margolskee, Robert F; Hellekant, Göran

    2006-07-01

    The importance of alpha-gustducin in sweet taste transduction is based on data obtained with sucrose and the artificial sweetener SC45647. Here we studied the role of alpha-gustducin in sweet taste. We compared the behavioral and electrophysiological responses of alpha-gustducin knockout (KO) and wild-type (WT) mice to 11 different sweeteners, representing carbohydrates, artificial sweeteners, and sweet amino acids. In behavioral experiments, over 48-h preference ratios were measured in two-bottle preference tests. In electrophysiological experiments, integrated responses of chorda tympani (CT) and glossopharyngeal (NG) nerves were recorded. We found that preference ratios of the KO mice were significantly lower than those of WT for acesulfame-K, dulcin, fructose, NC00174, D-phenylalanine, L-proline, D-tryptophan, saccharin, SC45647, sucrose, but not neotame. The nerve responses to all sweeteners, except neotame, were smaller in the KO mice than in the WT mice. The differences between the responses in WT and KO mice were more pronounced in the CT than in the NG. These data indicate that alpha-gustducin participates in the transduction of the sweet taste in general.

  20. Salty Taste Deficits in CALHM1 Knockout Mice

    PubMed Central

    Ellis, Hillary T.; Aleman, Tiffany R.; Downing, Arnelle; Marambaud, Philippe; Foskett, J. Kevin; Dana, Rachel M.; McCaughey, Stuart A.

    2014-01-01

    Genetic ablation of calcium homeostasis modulator 1 (CALHM1), which releases adenosine triphosphate from Type 2 taste cells, severely compromises the behavioral and electrophysiological responses to tastes detected by G protein–coupled receptors, such as sweet and bitter. However, the contribution of CALHM1 to salty taste perception is less clear. Here, we evaluated several salty taste–related phenotypes of CALHM1 knockout (KO) mice and their wild-type (WT) controls: 1) In a conditioned aversion test, CALHM1 WT and KO mice had similar NaCl avoidance thresholds. 2) In two-bottle choice tests, CALHM1 WT mice showed the classic inverted U-shaped NaCl concentration-preference function but CALHM1 KO mice had a blunted peak response. 3) In brief-access tests, CALHM1 KO mice showed less avoidance than did WT mice of high concentrations of NaCl, KCl, NH4Cl, and sodium lactate (NaLac). Amiloride further ameliorated the NaCl avoidance of CALHM1 KO mice, so that lick rates to a mixture of 1000mM NaCl + 10 µM amiloride were statistically indistinguishable from those to water. 4) Relative to WT mice, CALHM1 KO mice had reduced chorda tympani nerve activity elicited by oral application of NaCl, NaLac, and sucrose but normal responses to HCl and NH4Cl. Chorda tympani responses to NaCl and NaLac were amiloride sensitive in WT but not KO mice. These results reinforce others demonstrating that multiple transduction pathways make complex, concentration-dependent contributions to salty taste perception. One of these pathways depends on CALHM1 to detect hypertonic NaCl in the mouth and signal the aversive taste of concentrated salt. PMID:24846212

  1. Clinical Significance of Umami Taste and Umami-Related Gene Expression Analysis for the Objective Assessment of Umami Taste Loss.

    PubMed

    Shoji, Noriaki; Satoh-Ku Riwada, Shizuko; Sasano, Takashi

    2016-01-01

    Loss of umami taste sensation affects quality of life and causes weight loss and health problems, particularly in the elderly. We recently expanded the use of the filter paper disc method to include assessment of umami taste sensitivity, using monosodium glutamate as the test solution. This test showed high diagnostic performance for discriminating between normal taste function and disorders in sensation of the umami taste, according to established cut-off values. The test also revealed: (1) some elderly patients suffered from specific loss of umami taste sensation with preservation of the other four taste sensations (sweet, salty, sour, and bitter); (2) umami taste disorder caused a loss of appetite and decline in weight, resulting in poor health; (3) appetite, weight and overall health improved after appropriate treatment for umami taste disorder. Because of the subjective nature of the test, however, it may not be useful for patients who cannot express which taste sensation is induced by a tastant, such as those with dementia. Most recently, using tissue samples collected from the tongue by scraping the foliate papillae, we showed that evaluation of umami taste receptor gene expression may be clinically useful for the objective genetic diagnosis of umami taste disorders.

  2. Role of the area postrema in radiation-induced taste aversion learning and emesis in cats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rabin, B.M.; Hunt, W.A.; Chedester, A.L.

    1986-01-01

    The role of the area postrema in radiation-induced emesis and taste aversion learning and the relationship between these behaviors were studied in cats. The potential involvement of neural factors which might be independent of the area postrema was minimized by using low levels of ionizing radiation (100 rads at a dose rate of 40 rads/min) to elicit a taste aversion, and by using body-only exposures (4500 and 6000 rads at 450 rads/min) to produce emesis. Lesions of the area postrema disrupted both taste aversion learning and emesis following irradiation. These results, which indicate that the area postrema is involved inmore » the mediation of both radiation-induced emesis and taste aversion learning in cats under these experimental conditions, are interpreted as being consistent with the hypotheses that similar mechanisms mediate both responses to exposure to ionizing radiation, and that the taste aversion learning paradigm can therefore serve as a model system for studying radiation-induced emesis.« less

  3. TGF-beta3 is expressed in taste buds and inhibits proliferation of primary cultured taste epithelial cells.

    PubMed

    Nakamura, Shin-ichi; Kawai, Takayuki; Kamakura, Takashi; Ookura, Tetsuya

    2010-01-01

    Transforming growth factor-betas (TGF-betas), expressed in various tissues, play important roles in embryonic development and adult tissue homeostasis through their effects on cell proliferation, cell differentiation, cell death, and cell motility. However, expression of TGF-beta signaling components and their biological effect on taste epithelia has not been elucidated. We performed expression analysis of TGF-beta signaling components in taste epithelia and found that the TGF-beta3 mRNA was specifically expressed in taste buds. Type II TGF-betas receptor (TbetaR-II) mRNA was specifically expressed in the tongue epithelia including the taste epithelia. To elucidate the biological function of TGF-beta3 in taste epithelia, we performed proliferation assay with primary cultured taste epithelial cells. In the presence of TGF-beta3, percentage of BrdU-labeled cells decreased significantly, suggesting that the TGF-beta3 inhibited the proliferation of cultured taste epithelial cells through inhibiting cell-cycle entry into S phase. By quantitative reverse transcription-polymerase chain reaction assay, we found that the TGF-beta3 resulted in an increased level of expression of p15Ink4b and p21Cip1, suggesting that the TGF-beta3 inhibited the taste epithelial cell proliferation through inhibiting G1cyclin-Cdk complexes. Taken together, these results suggested that the TGF-beta3 may regulate taste epithelial cell homeostasis through controlling cell proliferation.

  4. Taste-independent detection of the caloric content of sugar in Drosophila

    PubMed Central

    Dus, Monica; Min, SooHong; Keene, Alex C.; Lee, Ga Young; Suh, Greg S. B.

    2011-01-01

    Feeding behavior is influenced primarily by two factors: nutritional needs and food palatability. However, the role of food deprivation and metabolic needs in the selection of appropriate food is poorly understood. Here, we show that the fruit fly, Drosophila melanogaster, selects calorie-rich foods following prolonged food deprivation in the absence of taste-receptor signaling. Flies mutant for the sugar receptors Gr5a and Gr64a cannot detect the taste of sugar, but still consumed sugar over plain agar after 15 h of starvation. Similarly, pox-neuro mutants that are insensitive to the taste of sugar preferentially consumed sugar over plain agar upon starvation. Moreover, when given a choice between metabolizable sugar (sucrose or d-glucose) and nonmetabolizable (zero-calorie) sugar (sucralose or l-glucose), starved Gr5a; Gr64a double mutants preferred metabolizable sugars. These findings suggest the existence of a taste-independent metabolic sensor that functions in food selection. The preference for calorie-rich food correlates with a decrease in the two main hemolymph sugars, trehalose and glucose, and in glycogen stores, indicating that this sensor is triggered when the internal energy sources are depleted. Thus, the need to replenish depleted energy stores during periods of starvation may be met through the activity of a taste-independent metabolic sensing pathway. PMID:21709242

  5. Taste-independent detection of the caloric content of sugar in Drosophila.

    PubMed

    Dus, Monica; Min, SooHong; Keene, Alex C; Lee, Ga Young; Suh, Greg S B

    2011-07-12

    Feeding behavior is influenced primarily by two factors: nutritional needs and food palatability. However, the role of food deprivation and metabolic needs in the selection of appropriate food is poorly understood. Here, we show that the fruit fly, Drosophila melanogaster, selects calorie-rich foods following prolonged food deprivation in the absence of taste-receptor signaling. Flies mutant for the sugar receptors Gr5a and Gr64a cannot detect the taste of sugar, but still consumed sugar over plain agar after 15 h of starvation. Similarly, pox-neuro mutants that are insensitive to the taste of sugar preferentially consumed sugar over plain agar upon starvation. Moreover, when given a choice between metabolizable sugar (sucrose or D-glucose) and nonmetabolizable (zero-calorie) sugar (sucralose or L-glucose), starved Gr5a; Gr64a double mutants preferred metabolizable sugars. These findings suggest the existence of a taste-independent metabolic sensor that functions in food selection. The preference for calorie-rich food correlates with a decrease in the two main hemolymph sugars, trehalose and glucose, and in glycogen stores, indicating that this sensor is triggered when the internal energy sources are depleted. Thus, the need to replenish depleted energy stores during periods of starvation may be met through the activity of a taste-independent metabolic sensing pathway.

  6. Radiation-induced taste aversion: effects of radiation exposure level and the exposure-taste interval

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spector, A.C.; Smith, J.C.; Hollander, G.R.

    1986-05-01

    Radiation-induced taste aversion has been suggested to possibly play a role in the dietary difficulties observed in some radiotherapy patients. In rats, these aversions can still be formed even when the radiation exposure precedes the taste experience by several hours. This study was conducted to examine whether increasing the radiation exposure level could extend the range of the exposure-taste interval that would still support the formation of a taste aversion. Separate groups of rats received either a 100 or 300 R gamma-ray exposure followed 1, 3, 6, or 24 h later by a 10-min saccharin (0.1% w/v) presentation. A controlmore » group received a sham exposure followed 1 h later by a 10-min saccharin presentation. Twenty-four hours following the saccharin presentation all rats received a series of twelve 23-h two-bottle preference tests between saccharin and water. The results indicated that the duration of the exposure-taste interval plays an increasingly more important role in determining the initial extent of the aversion as the dose decreases. The course of recovery from taste aversion seems more affected by dose than by the temporal parameters of the conditioning trial.« less

  7. Expression of synaptogyrin-1 in T1R2-expressing type II taste cells and type III taste cells of rat circumvallate taste buds.

    PubMed

    Kotani, Takeshi; Toyono, Takashi; Seta, Yuji; Kitou, Ayae; Kataoka, Shinji; Toyoshima, Kuniaki

    2013-09-01

    Synaptogyrins are conserved components of the exocytic apparatus and function as regulators of Ca(2+)-dependent exocytosis. The synaptogyrin family comprises three isoforms: two neuronal (synaptogyrin-1 and -3) and one ubiquitous (synaptogyrin-2) form. Although the expression patterns of the exocytic proteins synaptotagmin-1, SNAP-25, synaptobrevin-2 and synaptophysin have been elucidated in taste buds, the function and expression pattern of synaptogyrin-1 in rat gustatory tissues have not been determined. Therefore, we examined the expression patterns of synaptogyrin-1 and several cell-specific markers of type II and III cells in rat gustatory tissues. Reverse transcription/polymerase chain reaction assays and immunoblot analysis revealed the expression of synaptogyrin-1 mRNA and its protein in circumvallate papillae. In fungiform, foliate and circumvallate papillae, the antibody against synaptogyrin-1 immunolabeled a subset of taste bud cells and intra- and subgemmal nerve processes. Double-labeling experiments revealed the expression of synaptogyrin-1 in most taste cells immunoreactive for aromatic L-amino acid decarboxylase and the neural cell adhesion molecule. A subset of synaptogyrin-1-immunoreactive taste cells also expressed phospholipase Cβ2, gustducin, or sweet taste receptor (T1R2). In addition, most synaptogyrin-1-immunoreactive taste cells expressed synaptobrevin-2. These results suggest that synaptogyrin-1 plays a regulatory role in transmission at the synapses of type III cells and is involved in exocytic function with synaptobrevin-2 in a subset of type II cells in rat taste buds.

  8. Taste intensity and hedonic responses to simple beverages in gastrointestinal cancer patients.

    PubMed

    Bossola, Maurizio; Cadoni, Gabriella; Bellantone, Rocco; Carriero, Concetta; Carriero, Elena; Ottaviani, Fabrizio; Borzomati, Domenico; Tortorelli, Antonio; Doglietto, Giovan Battista

    2007-11-01

    subjects for most of the concentrations of the salty taste and all the concentrations of the sour taste. The present study suggests that cancer patients, compared to healthy individuals, have a normal sensitivity, a normal liking for pleasant stimuli, and a decreased dislike for unpleasant stimuli. Moreover, when compared to controls, they show higher hedonic scores for middle and high concentrations of the salty taste and for all concentrations of the sour taste. Further studies are needed to evaluate whether these changes observed in cancer patients translate into any alteration in dietary behavior and/or food preferences.

  9. The good taste of peptides.

    PubMed

    Temussi, Piero A

    2012-02-01

    The taste of peptides is seldom one of the most relevant issues when one considers the many important biological functions of this class of molecules. However, peptides generally do have a taste, covering essentially the entire range of established taste modalities: sweet, bitter, umami, sour and salty. The last two modalities cannot be attributed to peptides as such because they are due to the presence of charged terminals and/or charged side chains, thus reflecting only the zwitterionic nature of these compounds and/or the nature of some side chains but not the electronic and/or conformational features of a specific peptide. The other three tastes, that is, sweet, umami and bitter, are represented by different families of peptides. This review describes the main peptides with a sweet, umami or bitter taste and their relationship with food acceptance or rejection. Particular emphasis will be given to the sweet taste modality, owing to the practical and scientific relevance of aspartame, the well-known sweetener, and to the theoretical importance of sweet proteins, the most potent peptide sweet molecules. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.

  10. The neural processing of taste

    PubMed Central

    Lemon, Christian H; Katz, Donald B

    2007-01-01

    Although there have been many recent advances in the field of gustatory neurobiology, our knowledge of how the nervous system is organized to process information about taste is still far from complete. Many studies on this topic have focused on understanding how gustatory neural circuits are spatially organized to represent information about taste quality (e.g., "sweet", "salty", "bitter", etc.). Arguments pertaining to this issue have largely centered on whether taste is carried by dedicated neural channels or a pattern of activity across a neural population. But there is now mounting evidence that the timing of neural events may also importantly contribute to the representation of taste. In this review, we attempt to summarize recent findings in the field that pertain to these issues. Both space and time are variables likely related to the mechanism of the gustatory neural code: information about taste appears to reside in spatial and temporal patterns of activation in gustatory neurons. What is more, the organization of the taste network in the brain would suggest that the parameters of space and time extend to the neural processing of gustatory information on a much grander scale. PMID:17903281

  11. Pharmacological effects of ethanol on ingestive behavior of the preweanling rat

    PubMed Central

    Kozlov, Andrey P.; Nizhnikov, Michael E.; Varlinskaya, Elena I.; Spear, Norman E.

    2009-01-01

    The present study was designed to test the hypothesis that sensitivity of ingestive behavior of infant rat to the pharmacological effects of ethanol changes between postnatal (P) days 9 and 12. The intake of 0.1% saccharin and water, general motor activity, and myoclonic twitching activity were assessed following administration of three doses of ethanol (0, 0.25, 0.5g/kg) while fluids were free available to the animals. The 0.5g/kg dose of ethanol attenuated saccharin intake in P9 pups and enhanced saccharin intake in P12 rats. On P12 some sex-related differences emerged at 0.5g/kg of ethanol, with saccharin intake being higher in females than in their male counterparts. Taste reactivity probe revealed that 0.5 g/kg of ethanol increased taste responsiveness to saccharin on P12 but only to infusions presented at a high rate. The results of the present study indicate that ontogenetic changes in sensitivity to the effects of ethanol on ingestive behavior occur during the second postnatal week, with P9 animals being more sensitive to the inhibitory (sedative) effects on saccharin intake and P12 rats being more sensitive to the stimulatory effects of ethanol. We suggest that acute ethanol enhanced saccharin intake via sensitization of oral response to appetitive taste stimulation. PMID:19549546

  12. Taste and Smell Disorders

    MedlinePlus

    ... give us great pleasure. Taste helps us enjoy food and beverages. Smell lets us enjoy the scents and fragrances like roses or coffee. Taste and smell also protect us, letting us know when food has gone bad or when there is a ...

  13. Amiloride-Insensitive Salt Taste Is Mediated by Two Populations of Type III Taste Cells with Distinct Transduction Mechanisms

    PubMed Central

    Sukumaran, Sunil K.; Margolskee, Robert F.; Bachmanov, Alexander A.

    2016-01-01

    Responses in the amiloride-insensitive (AI) pathway, one of the two pathways mediating salty taste in mammals, are modulated by the size of the anion of a salt. This “anion effect” has been hypothesized to result from inhibitory transepithelial potentials (TPs) generated across the lingual epithelium as cations permeate through tight junctions and leave their larger and less permeable anions behind (Ye et al., 1991). We tested directly the necessity of TPs for the anion effect by measuring responses to NaCl and Na-gluconate (small and large anion sodium salts, respectively) in isolated taste cells from mouse circumvallate papillae. Using calcium imaging, we identified AI salt-responsive type III taste cells and demonstrated that they compose a subpopulation of acid-responsive taste cells. Even in the absence of TPs, many (66%) AI salt-responsive type III taste cells still exhibited the anion effect, demonstrating that some component of the transduction machinery for salty taste in type III cells is sensitive to anion size. We hypothesized that osmotic responses could explain why a minority of type III cells (34%) had AI salt responses but lacked anion sensitivity. All AI type III cells had osmotic responses to cellobiose, which were significantly modulated by extracellular sodium concentration, suggesting the presence of a sodium-conducting osmotically sensitive ion channel. However, these responses were significantly larger in AI type III cells that did not exhibit the anion effect. These findings indicate that multiple mechanisms could underlie AI salt responses in type III taste cells, one of which may contribute to the anion effect. SIGNIFICANCE STATEMENT Understanding the mechanisms underlying salty taste will help inform strategies to combat the health problems associated with NaCl overconsumption by humans. Of the two pathways underlying salty taste in mammals, the amiloride-insensitive (AI) pathway is the least understood. Using calcium imaging of

  14. Taste alteration in breast cancer patients treated with taxane chemotherapy: experience, effect, and coping strategies.

    PubMed

    Speck, Rebecca M; DeMichele, Angela; Farrar, John T; Hennessy, Sean; Mao, Jun J; Stineman, Margaret G; Barg, Frances K

    2013-02-01

    This study examined the experience and coping strategies for taste alteration in female breast cancer patients treated with docetaxel or paclitaxel. A purposive sample of 25 patients currently receiving docetaxel or paclitaxel or within 6 months of having completed treatment was recruited. Semi-structured interviews and patient-level data were utilized for this exploratory descriptive study. Interview data were analyzed with the constant comparative method; patient-level data were abstracted from the electronic medical record. Of all side effects reported from taxanes, the most common was taste alteration (8 of 10 docetaxel patients, 3 of 15 paclitaxel patients). Women that experience taste alteration chose not to eat as much, ate on an irregular schedule, and/or lost interest in preparing meals for themselves and/or their family. Women adopted a variety of new behaviors to deal with the taste alteration and its effects, including trying new recipes, eating strongly flavored foods, honoring specific food cravings, eating candy before meals, cutting food with lemon, drinking sweetened drinks, using plastic eating utensils, drinking from a straw, brushing their teeth and tongue before meals, and using baking soda and salt wash or antibacterial mouthwash. Taste alteration affects breast cancer patients' lives, and they develop management strategies to deal with the effect. While some self-management strategies can be seen as positively adaptive, the potential for increased caloric consumption and poor eating behaviors associated with some coping strategies may be a cause for concern given the observation of weight gain during breast cancer treatment and association of obesity with poor treatment outcomes in breast cancer patients. Further studies are warranted to determine the overall burden of this symptom and measurement of cancer and non-cancer-related consequences of these behavioral adaptations.

  15. The candidate sour taste receptor, PKD2L1, is expressed by type III taste cells in the mouse.

    PubMed

    Kataoka, Shinji; Yang, Ruibiao; Ishimaru, Yoshiro; Matsunami, Hiroaki; Sévigny, Jean; Kinnamon, John C; Finger, Thomas E

    2008-03-01

    The transient receptor potential channel, PKD2L1, is reported to be a candidate receptor for sour taste based on molecular biological and functional studies. Here, we investigated the expression pattern of PKD2L1-immunoreactivity (IR) in taste buds of the mouse. PKD2L1-IR is present in a few elongate cells in each taste bud as reported previously. The PKD2L1-expressing cells are different from those expressing PLCbeta2, a marker of Type II cells. Likewise PKD2L1-immunoreactive taste cells do not express ecto-ATPase which marks Type I cells. The PKD2L1-positive cells are immunoreactive for neural cell adhesion molecule, serotonin, PGP-9.5 (ubiquitin carboxy-terminal transferase), and chromogranin A, all of which are present in Type III taste cells. At the ultrastructural level, PKD2L1-immunoreactive cells form synapses onto afferent nerve fibers, another feature of Type III taste cells. These results are consistent with the idea that different taste cells in each taste bud perform distinct functions. We suggest that Type III cells are necessary for transduction and/or transmission of information about "sour", but have little or no role in transmission of taste information of other taste qualities.

  16. The candidate sour taste receptor, PKD2L1, is expressed by type III taste cells in the mouse

    PubMed Central

    Kataoka, Shinji; Yang, Ruibiao; Ishimaru, Yoshiro; Matsunami, Hiroaki; Kinnamon, John C.; Finger, Thomas E.

    2008-01-01

    The transient receptor potential (TRP) channel, PKD2L1, is reported to be a candidate receptor for sour taste based on molecular biological and functional studies. Here, we investigated the expression pattern of PKD2L1-immunoreactivity (IR) in taste buds of the mouse. PKD2L1-IR is present in a few elongate cells in each taste bud as reported previously. The PKD2L1-expressing cells are different from those expressing PLCβ2, a marker of Type II cells. Likewise PKD2L1-immunoreactive taste cells do not express ecto-ATPase which marks Type I cells. The PKD2L1 positive cells are immunoreactive for NCAM, serotonin, PGP-9.5 (ubiquitin carboxy terminal transferase) and chromogranin A, all of which are present in Type III taste cells. At the ultrastructural level, PKD2L1-immunoreactive cells form synapses onto afferent nerve fibers, another feature of Type III taste cells. These results are consistent with the idea that different taste cells in each taste bud perform distinct functions. We suggest that Type III cells are necessary for transduction and/or transmission of information about “sour”, but have little or no role in transmission of taste information of other taste qualities. PMID:18156604

  17. Genetics of Amino Acid Taste and Appetite.

    PubMed

    Bachmanov, Alexander A; Bosak, Natalia P; Glendinning, John I; Inoue, Masashi; Li, Xia; Manita, Satoshi; McCaughey, Stuart A; Murata, Yuko; Reed, Danielle R; Tordoff, Michael G; Beauchamp, Gary K

    2016-07-01

    The consumption of amino acids by animals is controlled by both oral and postoral mechanisms. We used a genetic approach to investigate these mechanisms. Our studies have shown that inbred mouse strains differ in voluntary amino acid consumption, and these differences depend on sensory and nutritive properties of amino acids. Like humans, mice perceive some amino acids as having a sweet (sucrose-like) taste and others as having an umami (glutamate-like) taste. Mouse strain differences in the consumption of some sweet-tasting amino acids (d-phenylalanine, d-tryptophan, and l-proline) are associated with polymorphisms of a taste receptor, type 1, member 3 gene (Tas1r3), and involve differential peripheral taste responsiveness. Strain differences in the consumption of some other sweet-tasting amino acids (glycine, l-alanine, l-glutamine, and l-threonine) do not depend on Tas1r3 polymorphisms and so must be due to allelic variation in other, as yet unknown, genes involved in sweet taste. Strain differences in the consumption of l-glutamate may depend on postingestive rather than taste mechanisms. Thus, genes and physiologic mechanisms responsible for strain differences in the consumption of each amino acid depend on the nature of its taste and postingestive properties. Overall, mouse strain differences in amino acid taste and appetite have a complex genetic architecture. In addition to the Tas1r3 gene, these differences depend on other genes likely involved in determining the taste and postingestive effects of amino acids. The identification of these genes may lead to the discovery of novel mechanisms that regulate amino acid taste and appetite. © 2016 American Society for Nutrition.

  18. Fabrication of taste sensor for education

    NASA Astrophysics Data System (ADS)

    Wu, Xiao; Tahara, Yusuke; Toko, Kiyoshi; Kuriyaki, Hisao

    2017-03-01

    In order to solve the unconcern to usefulness of learning science among high school students in Japan, we developed a simple fabricated taste sensor with sensitivity and selectivity to each taste quality, which can be applied in science class. A commercialized Teflon membrane was used as the polymer membrane holding lipids. In addition, a non-adhesive method is considered to combine the membrane and the sensor electrode using a plastic cap which is easily accessible. The taste sensor for education fabricated in this way showed a good selectivity and sensitivity. By adjusting the composition of trioctylmethylammonium chloride (TOMA) and phosphoric acid di(2-ethylhexyl) ester (PAEE) included in lipid solution, we improved the selectivity of this simple taste sensor to saltiness and sourness. To verify this taste sensor as a useful science teaching material for science class, we applied this taste sensor into a science class for university students. By comparing the results between the sensory test and the sensor response, humans taste showed the same tendency just as the sensor response, which proved the sensor as a useful teaching material for science class.

  19. Problem Behavior and Heart Rate Reactivity in Adopted Adolescents: Longitudinal and Concurrent Relations

    ERIC Educational Resources Information Center

    Bimmel, Nicole; van IJzendoorn, Marinus H.; Bakermans-Kranenburg, Marian J.; Juffer, Femmie; De Geus, Eco J. C.

    2008-01-01

    The present longitudinal study examined resting heart rate and heart rate variability and reactivity to a stressful gambling task in adopted adolescents with aggressive, delinquent, or internalizing behavior problems and adopted adolescents without behavior problems (total N=151). Early-onset delinquent adolescents showed heart rate…

  20. Intravital Microscopic Interrogation of Peripheral Taste Sensation

    NASA Astrophysics Data System (ADS)

    Choi, Myunghwan; Lee, Woei Ming; Yun, Seok Hyun

    2015-03-01

    Intravital microscopy is a powerful tool in neuroscience but has not been adapted to the taste sensory organ due to anatomical constraint. Here we developed an imaging window to facilitate microscopic access to the murine tongue in vivo. Real-time two-photon microscopy allowed the visualization of three-dimensional microanatomy of the intact tongue mucosa and functional activity of taste cells in response to topically administered tastants in live mice. Video microscopy also showed the calcium activity of taste cells elicited by small-sized tastants in the blood circulation. Molecular kinetic analysis suggested that intravascular taste sensation takes place at the microvilli on the apical side of taste cells after diffusion of the molecules through the pericellular capillaries and tight junctions in the taste bud. Our results demonstrate the capabilities and utilities of the new tool for taste research in vivo.

  1. Intravital microscopic interrogation of peripheral taste sensation.

    PubMed

    Choi, Myunghwan; Lee, Woei Ming; Yun, Seok Hyun

    2015-03-02

    Intravital microscopy is a powerful tool in neuroscience but has not been adapted to the taste sensory organ due to anatomical constraint. Here we developed an imaging window to facilitate microscopic access to the murine tongue in vivo. Real-time two-photon microscopy allowed the visualization of three-dimensional microanatomy of the intact tongue mucosa and functional activity of taste cells in response to topically administered tastants in live mice. Video microscopy also showed the calcium activity of taste cells elicited by small-sized tastants in the blood circulation. Molecular kinetic analysis suggested that intravascular taste sensation takes place at the microvilli on the apical side of taste cells after diffusion of the molecules through the pericellular capillaries and tight junctions in the taste bud. Our results demonstrate the capabilities and utilities of the new tool for taste research in vivo.

  2. Taste and acceptance of pyrophosphates by rats and mice.

    PubMed

    McCaughey, Stuart A; Giza, Barbara K; Tordoff, Michael G

    2007-06-01

    The palatability and taste quality of pyrophosphates were evaluated in a series of behavioral and electrophysiological experiments. In two-bottle choice tests with water, rats strongly preferred some concentrations of Na3HP2O7 and Na4P2O7, moderately preferred some concentrations of K4P2O7 and Fe4(P2O7)3, and were indifferent to or avoided all concentrations of Ca2P2O7 and Na2H2P2O7. The contribution of sodium to the preference for sodium pyrophosphates was ascertained: 1) Rats with a choice between Na4P2O7 and NaCl preferred 1 mM Na4P2O7 to 4 mM NaCl but preferred 40 or 150 mM NaCl to 10 mM Na4P2O7, 2) blocking salt taste transduction by mixing Na4P2O7 with amiloride reduced preferences but did not eliminate them, and 3) three mouse strains (FVB/J, C57BL/6J, and CBA/J) known to differ in sodium preference had the same rank order of preferences for Na3HP2O7 and NaCl, but peak preferences were higher for Na3HP2O7 than for NaCl. The taste qualities of pyrophosphates were determined by measuring taste-evoked responses of neurons in the nucleus of the solitary tract of rats. Across-neuron patterns of activity for sodium pyrophosphates were similar to that of NaCl but the pattern of Na3HP2O7 plus amiloride was unique from those of sweet, salty, sour, bitter, and umami stimuli. Taken together, the results indicate that the high palatability of some concentrations of Na3HP2O7 and Na4P2O7 is due partially to their salty taste, but there must also be another cause, which may include a novel orosensory component distinct from the five major taste qualities.

  3. Cross-modal Associations between Real Tastes and Colors.

    PubMed

    Saluja, Supreet; Stevenson, Richard J

    2018-06-02

    People make reliable and consistent matches between taste and color. However, in contrast to other cross-modal correspondences, all of the research to date has used only taste words (and often color words too), potentially limiting our understanding of how taste-color matches arise. Here, participants sampled the five basic tastes, at three concentration steps, and selected their best matching color from a color-wheel. This test was repeated, and in addition, participants evaluated the valence of the taste and their color choice, as well as the qualities/intensities of the taste stimuli. Participants were then presented with taste names and asked to generate the best matching color name, as well as reporting how they made their earlier choices. Color selections were reliable and consistent, and closely followed those based on taste word matches obtained in this and prior studies. Most participants reported basing their color choices on their associated taste-object (often foods). There was marked similarity in valence between taste and color choices, and the saturation of color choices was related to tastant concentration. We discuss what drives color-taste pairings, with learning suggested as one possible mechanism.

  4. Localization of phosphatidylinositol signaling components in rat taste cells: Role in bitter taste transduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hwang, P.M.; Verma, A.; Bredt, D.S.

    1990-10-01

    To assess the role of phosphatidylinositol turnover in taste transduction we have visualized, in rat tongue, ATP-dependent endoplasmic reticular accumulation of {sup 45}Ca{sup 2+}, inositol 1,4,5-trisphosphate receptor binding sites, and phosphatidylinositol turnover monitored by autoradiography of ({sup 3}H)cytidine diphosphate diacylglycerol formed from ({sup 3}H)cytidine. Accumulated {sup 45}Ca{sup 2+}, inositol 1,4,5-trisphosphate receptors, and phosphatidylinositol turnover are selectively localized to apical areas of the taste buds of circumvallate papillae, which are associated with bitter taste. Further evidence for a role of phosphatidylinositol turnover in bitter taste is our observation of a rapid, selective increase in mass levels of inositol 1,4,5-trisphosphate elicited bymore » low concentrations of denatonium, a potently bitter tastant.« less

  5. Calcium signaling in taste cells: regulation required.

    PubMed

    Medler, Kathryn F

    2010-11-01

    Peripheral taste receptor cells depend on distinct calcium signals to generate appropriate cellular responses that relay taste information to the central nervous system. Some taste cells have conventional chemical synapses and rely on calcium influx through voltage-gated calcium channels. Other taste cells lack these synapses and depend on calcium release from stores to formulate an output signal through a hemichannel. Despite the importance of calcium signaling in taste cells, little is known about how these signals are regulated. This review summarizes recent studies that have identified 2 calcium clearance mechanisms expressed in taste cells, including mitochondrial calcium uptake and sodium/calcium exchangers (NCXs). These studies identified a unique constitutive calcium influx that contributes to maintaining appropriate calcium homeostasis in taste cells and the role of the mitochondria and exchangers in this process. The additional role of NCXs in the regulation of evoked calcium responses is also discussed. Clearly, calcium signaling is a dynamic process in taste cells and appears to be more complex than has previously been appreciated.

  6. Light and electron microscopic observation of regenerated fungiform taste buds in patients with recovered taste function after severing chorda tympani nerve.

    PubMed

    Saito, Takehisa; Ito, Tetsufumi; Narita, Norihiko; Yamada, Takechiyo; Manabe, Yasuhiro

    2011-11-01

    The aim of this study was to evaluate the mean number of regenerated fungiform taste buds per papilla and perform light and electron microscopic observation of taste buds in patients with recovered taste function after severing the chorda tympani nerve during middle ear surgery. We performed a biopsy on the fungiform papillae (FP) in the midlateral region of the dorsal surface of the tongue from 5 control volunteers (33 total FP) and from 7 and 5 patients with and without taste recovery (34 and 29 FP, respectively) 3 years 6 months to 18 years after surgery. The specimens were observed by light and transmission electron microscopy. The taste function was evaluated by electrogustometry. The mean number of taste buds in the FP of patients with completely recovered taste function was significantly smaller (1.9 +/- 1.4 per papilla; p < 0.01) than that of the control subjects (3.8 +/- 2.2 per papilla). By transmission electron microscopy, 4 distinct types of cell (type I, II, III, and basal cells) were identified in the regenerated taste buds. Nerve fibers and nerve terminals were also found in the taste buds. It was clarified that taste buds containing taste cells and nerve endings do regenerate in the FP of patients with recovered taste function.

  7. CALHM1 Deletion in Mice Affects Glossopharyngeal Taste Responses, Food Intake, Body Weight, and Life Span

    PubMed Central

    Schmolling, Jared; Marambaud, Philippe; Rose-Hellekant, Teresa A.

    2015-01-01

    Stimulation of Type II taste receptor cells (TRCs) with T1R taste receptors causes sweet or umami taste, whereas T2Rs elicit bitter taste. Type II TRCs contain the calcium channel, calcium homeostasis modulator protein 1 (CALHM1), which releases adenosine triphosphate (ATP) transmitter to taste fibers. We have previously demonstrated with chorda tympani nerve recordings and two-bottle preference (TBP) tests that mice with genetically deleted Calhm1 (knockout [KO]) have severely impaired perception of sweet, bitter, and umami compounds, whereas their sour and salty tasting ability is unaltered. Here, we present data from KO mice of effects on glossopharyngeal (NG) nerve responses, TBP, food intake, body weight, and life span. KO mice have no NG response to sweet and a suppressed response to bitter compared with control (wild-type [WT]) mice. KO mice showed some NG response to umami, suggesting that umami taste involves both CALHM1- and non-CALHM1-modulated signals. NG responses to sour and salty were not significantly different between KO and WT mice. Behavioral data conformed in general with the NG data. Adult KO mice consumed less food, weighed significantly less, and lived almost a year longer than WT mice. Taken together, these data demonstrate that sweet taste majorly influences food intake, body weight, and life span. PMID:25855639

  8. Coevolutionary patterning of teeth and taste buds.

    PubMed

    Bloomquist, Ryan F; Parnell, Nicholas F; Phillips, Kristine A; Fowler, Teresa E; Yu, Tian Y; Sharpe, Paul T; Streelman, J Todd

    2015-11-03

    Teeth and taste buds are iteratively patterned structures that line the oro-pharynx of vertebrates. Biologists do not fully understand how teeth and taste buds develop from undifferentiated epithelium or how variation in organ density is regulated. These organs are typically studied independently because of their separate anatomical location in mammals: teeth on the jaw margin and taste buds on the tongue. However, in many aquatic animals like bony fishes, teeth and taste buds are colocalized one next to the other. Using genetic mapping in cichlid fishes, we identified shared loci controlling a positive correlation between tooth and taste bud densities. Genome intervals contained candidate genes expressed in tooth and taste bud fields. sfrp5 and bmper, notable for roles in Wingless (Wnt) and bone morphogenetic protein (BMP) signaling, were differentially expressed across cichlid species with divergent tooth and taste bud density, and were expressed in the development of both organs in mice. Synexpression analysis and chemical manipulation of Wnt, BMP, and Hedgehog (Hh) pathways suggest that a common cichlid oral lamina is competent to form teeth or taste buds. Wnt signaling couples tooth and taste bud density and BMP and Hh mediate distinct organ identity. Synthesizing data from fish and mouse, we suggest that the Wnt-BMP-Hh regulatory hierarchy that configures teeth and taste buds on mammalian jaws and tongues may be an evolutionary remnant inherited from ancestors wherein these organs were copatterned from common epithelium.

  9. Coevolutionary patterning of teeth and taste buds

    PubMed Central

    Bloomquist, Ryan F.; Parnell, Nicholas F.; Phillips, Kristine A.; Fowler, Teresa E.; Yu, Tian Y.; Sharpe, Paul T.; Streelman, J. Todd

    2015-01-01

    Teeth and taste buds are iteratively patterned structures that line the oro-pharynx of vertebrates. Biologists do not fully understand how teeth and taste buds develop from undifferentiated epithelium or how variation in organ density is regulated. These organs are typically studied independently because of their separate anatomical location in mammals: teeth on the jaw margin and taste buds on the tongue. However, in many aquatic animals like bony fishes, teeth and taste buds are colocalized one next to the other. Using genetic mapping in cichlid fishes, we identified shared loci controlling a positive correlation between tooth and taste bud densities. Genome intervals contained candidate genes expressed in tooth and taste bud fields. sfrp5 and bmper, notable for roles in Wingless (Wnt) and bone morphogenetic protein (BMP) signaling, were differentially expressed across cichlid species with divergent tooth and taste bud density, and were expressed in the development of both organs in mice. Synexpression analysis and chemical manipulation of Wnt, BMP, and Hedgehog (Hh) pathways suggest that a common cichlid oral lamina is competent to form teeth or taste buds. Wnt signaling couples tooth and taste bud density and BMP and Hh mediate distinct organ identity. Synthesizing data from fish and mouse, we suggest that the Wnt-BMP-Hh regulatory hierarchy that configures teeth and taste buds on mammalian jaws and tongues may be an evolutionary remnant inherited from ancestors wherein these organs were copatterned from common epithelium. PMID:26483492

  10. Testosterone reactivity to provocation mediates the effect of early intervention on aggressive behavior.

    PubMed

    Carré, Justin M; Iselin, Anne-Marie R; Welker, Keith M; Hariri, Ahmad R; Dodge, Kenneth A

    2014-05-01

    We tested the hypotheses that the Fast Track intervention program for high-risk children would reduce adult aggressive behavior and that this effect would be mediated by decreased testosterone responses to social provocation. Participants were a subsample of males from the full trial sample, who during kindergarten had been randomly assigned to the 10-year Fast Track intervention or to a control group. The Fast Track program attempted to develop children's social competencies through child social-cognitive and emotional-coping skills training, peer-relations coaching, academic tutoring, and classroom management, as well as training for parents to manage their child's behavior. At a mean age of 26 years, participants responded to laboratory provocations. Results indicated that, relative to control participants, men assigned to the intervention demonstrated reduced aggression and testosterone reactivity to social provocations. Moreover, reduced testosterone reactivity mediated the effect of intervention on aggressive behavior, which provides evidence for an enduring biological mechanism underlying the effect of early psychosocial intervention on aggressive behavior in adulthood.

  11. Assessment of the roles of reactive oxygen species in the UV and visible light photocatalytic degradation of cyanotoxins and water taste and odor compounds using C-TiO2.

    PubMed

    Fotiou, Theodora; Triantis, Theodoros M; Kaloudis, Triantafyllos; O'Shea, Kevin E; Dionysiou, Dionysios D; Hiskia, Anastasia

    2016-03-01

    Visible light (VIS) photocatalysis has large potential as a sustainable water treatment process, however the reaction pathways and degradation processes of organic pollutants are not yet clearly defined. The presence of cyanobacteria cause water quality problems since several genera can produce potent cyanotoxins, harmful to human health. In addition, cyanobacteria produce taste and odor compounds, which pose serious aesthetic problems in drinking water. Although photocatalytic degradation of cyanotoxins and taste and odor compounds have been reported under UV-A light in the presence of TiO2, limited studies have been reported on their degradation pathways by VIS photocatalysis of these problematic compounds. The main objectives of this work were to study the VIS photocatalytic degradation process, define the reactive oxygen species (ROS) involved and elucidate the reaction mechanisms. We report carbon doped TiO2 (C-TiO2) under VIS leads to the slow degradation of cyanotoxins, microcystin-LR (MC-LR) and cylindrospermopsin (CYN), while taste and odor compounds, geosmin and 2-methylisoborneol, were not appreciably degraded. Further studies were carried-out employing several specific radical scavengers (potassium bromide, isopropyl alcohol, sodium azide, superoxide dismutase and catalase) and probes (coumarin) to assess the role of different ROS (hydroxyl radical OH, singlet oxygen (1)O2, superoxide radical anion [Formula: see text] ) in the degradation processes. Reaction pathways of MC-LR and CYN were defined through identification and monitoring of intermediates using liquid chromatography tandem mass spectrometry (LC-MS/MS) for VIS in comparison with UV-A photocatalytic treatment. The effects of scavengers and probes on the degradation process under VIS, as well as the differences in product distributions under VIS and UV-A, suggested that the main species in VIS photocatalysis is [Formula: see text] , with OH and (1)O2 playing minor roles in the degradation

  12. Gut Microbiota and a Selectively Bred Taste Phenotype: A Novel Model of Microbiome-Behavior Relationships.

    PubMed

    Lyte, Mark; Fodor, Anthony A; Chapman, Clinton D; Martin, Gary G; Perez-Chanona, Ernesto; Jobin, Christian; Dess, Nancy K

    2016-06-01

    The microbiota-gut-brain axis is increasingly implicated in obesity, anxiety, stress, and other health-related processes. Researchers have proposed that gut microbiota may influence dietary habits, and pathways through the microbiota-gut-brain axis make such a relationship feasible; however, few data bear on the hypothesis. As a first step in the development of a model system, the gut microbiome was examined in rat lines selectively outbred on a taste phenotype with biobehavioral profiles that have diverged with respect to energy regulation, anxiety, and stress. Occidental low and high-saccharin-consuming rats were assessed for body mass and chow, water, and saccharin intake; littermate controls had shared cages with rats in the experimental group but were not assessed. Cecum and colon microbial communities were profiled using Illumina 16S rRNA sequencing and multivariate analysis of microbial diversity and composition. The saccharin phenotype was confirmed (low-saccharin-consuming rats, 0.7Δ% [0.9Δ%]; high-saccharin-consuming rats, 28.1Δ% [3.6Δ%]). Regardless of saccharin exposure, gut microbiota differed between lines in terms of overall community similarity and taxa at lower phylogenetic levels. Specifically, 16 genera in three phyla distinguished the lines at a 10% false discovery rate. The study demonstrates for the first time that rodent lines created through selective pressure on taste and differing on functionally related correlates host different microbial communities. Whether the microbiota are causally related to the taste phenotype or its correlates remains to be determined. These findings encourage further inquiry on the relationship of the microbiome to taste, dietary habits, emotion, and health.

  13. Molecular neurobiology of Drosophila taste

    PubMed Central

    Freeman, Erica Gene; Dahanukar, Anupama

    2015-01-01

    Drosophila is a powerful model in which to study the molecular and cellular basis of taste coding. Flies sense tastants via populations of taste neurons that are activated by compounds of distinct categories. The past few years have borne witness to studies that define the properties of taste neurons, identifying functionally distinct classes of sweet and bitter taste neurons that express unique subsets of gustatory receptor (Gr) genes, as well as water, salt, and pheromone sensing neurons that express members of the pickpocket (ppk) or ionotropic receptor (Ir) families. There has also been significant progress in terms of understanding how tastant information is processed and conveyed to higher brain centers, and modulated by prior dietary experience or starvation. PMID:26102453

  14. Expression and secretion of TNF-α in mouse taste buds: a novel function of a specific subset of type II taste cells.

    PubMed

    Feng, Pu; Zhao, Hang; Chai, Jinghua; Huang, Liquan; Wang, Hong

    2012-01-01

    Taste buds are chemosensory structures widely distributed on the surface of the oral cavity and larynx. Taste cells, exposed to the oral environment, face great challenges in defense against potential pathogens. While immune cells, such as T-cells and macrophages, are rarely found in taste buds, high levels of expression of some immune-response-associated molecules are observed in taste buds. Yet, the cellular origins of these immune molecules such as cytokines in taste buds remain to be determined. Here, we show that a specific subset of taste cells selectively expresses high levels of the inflammatory cytokine tumor necrosis factor-α (TNF-α). Based on immuno-colocalization experiments using taste-cell-type markers, the TNF-α-producing cells are predominantly type II taste cells expressing the taste receptor T1R3. These cells can rapidly increase TNF-α production and secretion upon inflammatory challenges, both in vivo and in vitro. The lipopolysaccharide (LPS)-induced TNF-α expression in taste cells was completely eliminated in TLR2(-/-)/TLR4(-/-) double-gene-knockout mice, which confirms that the induction of TNF-α in taste buds by LPS is mediated through TLR signaling pathways. The taste-cell-produced TNF-α may contribute to local immune surveillance, as well as regulate taste sensation under normal and pathological conditions.

  15. Insights on consciousness from taste memory research.

    PubMed

    Gallo, Milagros

    2016-01-01

    Taste research in rodents supports the relevance of memory in order to determine the content of consciousness by modifying both taste perception and later action. Associated with this issue is the fact that taste and visual modalities share anatomical circuits traditionally related to conscious memory. This challenges the view of taste memory as a type of non-declarative unconscious memory.

  16. Study of Odours and taste for Space Food

    NASA Astrophysics Data System (ADS)

    Katayama, Naomi; Space Agriculture Task Force; Nakata, Seiichi; Teranishi, Masaaki; Sone, Michihiko; Nakashima, Tsutomu; Hamajima, Nobuyuki; Ito, Yoshihiro

    2012-07-01

    The sense of taste and smell come under some kind of influences in the space environment. In the space, the astronaut was changed their food habits from light taste and smell food to like strong taste and smells food. When an astronaut live in the space comes to have weak bone like osteoporosis. It may become the physiologic condition like the old man on the earth. Therefore this study performed fact-finding of the smell and the taste in the old man on the earth as test bed of astronaut in space. Based on this finding, it was intended to predict the taste and the olfactory change of the astronaut in the space. The study included 179 males and 251 females aged 30-90 years in Yakumo Town, Hokkaido, Japan. Odours were tested using a ``standard odours by odour stick identification''method of organoleptic testing. Taste were tested using a ``standard taste by taste disc identification'' method of chemical testing. Correct answers for identification odours consisted of average 6.0±3.0 in male subjects and average 6.9±2.8 in female subjects. Correct answers for identification of sweet taste consisted of 81% males and 87% females, salty taste consisted of 86% males and 91%, sour taste consisted of 75% males and 78% females, bitter taste consisted of 76% males and 88% females. It became clear that overall approximately 20% were in some kind of abnormality in sense of smell and taste. I want to perform the investigation that continued more in future.

  17. The endocrinology of taste receptors

    PubMed Central

    Santa-Cruz Calvo, Sara; Egan, Josephine M.

    2016-01-01

    Levels of obesity have reached epidemic proportions on a global scale, which has led to considerable increases in health problems and increased risk of several diseases, including cardiovascular and pulmonary diseases, cancer and diabetes mellitus. People with obesity consume more food than is needed to maintain an ideal body weight, despite the discrimination that accompanies being overweight and the wealth of available information that overconsumption is detrimental to health. The relationship between energy expenditure and energy intake throughout an individual’s lifetime is far more complicated than previously thought. An improved comprehension of the relationships between taste, palatability, taste receptors and hedonic responses to food might lead to increased understanding of the biological underpinnings of energy acquisition, as well as why humans sometimes eat more than is needed and more than we know is healthy. This Review discusses the role of taste receptors in the tongue, gut, pancreas and brain and their hormonal involvement in taste perception, as well as the relationship between taste perception, overeating and the development of obesity. PMID:25707779

  18. The endocrinology of taste receptors.

    PubMed

    Calvo, Sara Santa-Cruz; Egan, Josephine M

    2015-04-01

    Levels of obesity have reached epidemic proportions on a global scale, which has led to considerable increases in health problems and increased risk of several diseases, including cardiovascular and pulmonary diseases, cancer and diabetes mellitus. People with obesity consume more food than is needed to maintain an ideal body weight, despite the discrimination that accompanies being overweight and the wealth of available information that overconsumption is detrimental to health. The relationship between energy expenditure and energy intake throughout an individual's lifetime is far more complicated than previously thought. An improved comprehension of the relationships between taste, palatability, taste receptors and hedonic responses to food might lead to increased understanding of the biological underpinnings of energy acquisition, as well as why humans sometimes eat more than is needed and more than we know is healthy. This Review discusses the role of taste receptors in the tongue, gut, pancreas and brain and their hormonal involvement in taste perception, as well as the relationship between taste perception, overeating and the development of obesity.

  19. The science and complexity of bitter taste.

    PubMed

    Drewnowski, A

    2001-06-01

    Food choices and eating habits are largely influenced by how foods taste. Without being the dominant taste sensation, bitter taste contributes to the complexity and enjoyment of beverages and foods. Compounds that are perceived as bitter do not share a similar chemical structure. In addition to peptides and salts, bitter compounds in foods may include plant-derived phenols and polyphenols, flavonoids, catechins, and caffeine. Recent studies have shown that humans possess a multitude of bitter taste receptors and that the transduction of bitter taste may differ between one compound and another. Studies of mixture interactions suggest further that bitter compounds suppress or enhance sweet and sour tastes and interact with volatile flavor molecules. Caffeine, a natural ingredient of tea, coffee, and chocolate, has a unique flavor profile. Used as a flavoring agent, it enhances the sensory appeal of beverages. Research developments on the genetics and perception of bitter taste add to our understanding of the role of bitterness in relation to food preference.

  20. Recent Advances in Molecular Mechanisms of Taste Signaling and Modifying.

    PubMed

    Shigemura, Noriatsu; Ninomiya, Yuzo

    2016-01-01

    The sense of taste conveys crucial information about the quality and nutritional value of foods before it is ingested. Taste signaling begins with taste cells via taste receptors in oral cavity. Activation of these receptors drives the transduction systems in taste receptor cells. Then particular transmitters are released from the taste cells and activate corresponding afferent gustatory nerve fibers. Recent studies have revealed that taste sensitivities are defined by distinct taste receptors and modulated by endogenous humoral factors in a specific group of taste cells. Such peripheral taste generations and modifications would directly influence intake of nutritive substances. This review will highlight current understanding of molecular mechanisms for taste reception, signal transduction in taste bud cells, transmission between taste cells and nerves, regeneration from taste stem cells, and modification by humoral factors at peripheral taste organs. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Exploring taste hyposensitivity in Japanese senior high school students.

    PubMed

    Ohnuki, Mari; Shinada, Kayoko; Ueno, Masayuki; Zaitsu, Takashi; Wright, Fredrick Allan Clive; Kawaguchi, Yoko

    2012-02-01

    The main objective of this study was to investigate the prevalence of taste hyposensitivity and the relationships between sex, oral health status, and eating habits with taste hyposensitivity in Japanese senior high school students. Oral examinations, sweet and salt whole-mouth taste tests, and a questionnaire about eating habits were conducted on 234 senior high school students. Factors affecting taste hyposensitivity were investigated using a multivariate analysis. Sweet-taste hyposensitivity was observed in 7.3% of the students, and salt-taste hyposensitivity in 22.2%. Approximately 3% of the students had both sweet- and salt-taste hyposensitivity, and 22.6% had either sweet- or salt-taste hyposensitivity. In total, 26% had a taste hyposensitivity. There were significant relationships between the intake of instant noodles with sweet-taste hyposensitivity, and the intake of vegetables or isotonic drinks with salt-taste hyposensitivity. There was a significant association between eating habits and taste hyposensitivity in Japanese senior high school students. Taste tests would be a helpful adjunct for students to recognize variations in taste sensitivity, and a questionnaire about their eating habits might provide an effective self-review of their eating habits, and therefore, provide motivation to change. © 2011 Blackwell Publishing Asia Pty Ltd.

  2. Taste bud cells of adult mice are responsive to Wnt/β-catenin signaling: implications for the renewal of mature taste cells

    PubMed Central

    Gaillard, Dany; Barlow, Linda A.

    2012-01-01

    Wnt/β-catenin signaling initiates taste papilla development in mouse embryos, however, its involvement in taste cell turnover in adult mice has not been explored. Here we used the BATGAL reporter mouse model, which carries an engineered allele in which the LacZ gene is expressed in the presence of activated β-catenin, to determine the responsiveness of adult taste bud cells to canonical Wnt signaling. Double immunostaining with markers of differentiated taste cells revealed that a subset of type I, II and III taste cells express β-galactosidase. Using in situ hybridization, we showed that β-catenin activates the transcription of the LacZ gene mainly in intragemmal basal cells that are immature taste cells, identified by their expression of Sonic Hedgehog (Shh). Finally, we showed that β-catenin activity is significantly reduced in taste buds of 25 week-old mice compared to 10 week-old animals. Our data suggest that Wnt/β-catenin signaling may influence taste cell turnover by regulating cell differentiation. Reduced canonical Wnt signaling in older mice could explain in part the loss of taste sensitivity with aging, implicating a possible deficiency in the rate of taste cell renewal. More investigations are now necessary to understand if and how Wnt signaling regulates adult taste cell turnover. PMID:21328519

  3. The Effect of Temperature on Umami Taste

    PubMed Central

    Alvarado, Cynthia; Andrew, Kendra; Nachtigal, Danielle

    2016-01-01

    The effect of temperature on umami taste has not been previously studied in humans. Reported here are 3 experiments in which umami taste was measured for monopotassium glutamate (MPG) and monosodium glutamate (MSG) at solution temperatures between 10 and 37 °C. Experiment 1 showed that for subjects sensitive to MPG on the tongue tip, 1) cooling reduced umami intensity whether sampled with the tongue tip or in the whole mouth, but 2) had no effect on the rate of umami adaptation on the tongue tip. Experiment 2 showed that temperature had similar effects on the umami taste of MSG and MPG on the tongue tip but not in the whole mouth, and that contrary to umami taste, cooling to 10 °C increased rather than decreased the salty taste of both stimuli. Experiment 3 was designed to investigate the contribution of the hT1R1–hT1R3 glutamate receptor to the cooling effect on umami taste by using the T1R3 inhibitor lactisole. However, lactisole failed to block the umami taste of MPG at any temperature, which supports prior evidence that lactisole does not block umami taste for all ligands of the hT1R1–hT1R3 receptor. We conclude that temperature can affect sensitivity to the umami and salty tastes of glutamates, but in opposite directions, and that the magnitude of these effects can vary across stimuli and modes of tasting (i.e., whole mouth vs. tongue tip exposures). PMID:27102813

  4. Extinction, Spontaneous Recovery and Renewal of Flavor Preferences Based on Taste-Taste Learning

    ERIC Educational Resources Information Center

    Diaz, Estrella; De la Casa, L. G.

    2011-01-01

    This paper presents evidence of extinction, spontaneous recovery and renewal in a conditioned preferences paradigm based on taste-taste associations. More specifically, in three experiments rats exposed to a simultaneous compound of citric acid-saccharin solution showed a preference for the citric solution when the preference was measured with a…

  5. Economic Constraints on Taste Formation and the True Cost of Healthy Eating

    PubMed Central

    Daniel, Caitlin

    2015-01-01

    This paper shows how an interaction between economic constraints and children’s taste preferences shapes low-income families’ food decisions. According to studies of eating behavior, children often refuse unfamiliar foods 8 to 15 times before accepting them. Using 80 interviews and 41 grocery-shopping observations with 73 primary caregivers in the Boston area in 2013–2015, I find that many low-income respondents minimize the risk of food waste by purchasing what their children like—often calorie-dense, nutrient-poor foods. High-income study participants, who have greater resources to withstand the cost of uneaten food, are more likely to repeatedly introduce foods that their children initially refuse. Several conditions moderate the relationship between children’s taste aversion and respondents’ risk aversion, including household-level food preferences, respondents’ conceptions of adult authority, and children’s experiences outside of the home. Low-income participants’ risk aversion may affect children’s taste acquisition and eating habits, with implications for socioeconomic disparities in diet quality. This paper proposes that the cost of providing children a healthy diet may include the possible cost of foods that children waste as they acquire new tastes. PMID:26650928

  6. Economic constraints on taste formation and the true cost of healthy eating.

    PubMed

    Daniel, Caitlin

    2016-01-01

    This article shows how an interaction between economic constraints and children's taste preferences shapes low-income families' food decisions. According to studies of eating behavior, children often refuse unfamiliar foods 8 to 15 times before accepting them. Using 80 interviews and 41 grocery-shopping observations with 73 primary caregivers in the Boston area in 2013-2015, I find that many low-income respondents minimize the risk of food waste by purchasing what their children like--often calorie-dense, nutrient-poor foods. High-income study participants, who have greater resources to withstand the cost of uneaten food, are more likely to repeatedly introduce foods that their children initially refuse. Several conditions moderate the relationship between children's taste aversion and respondents' risk aversion, including household-level food preferences, respondents' conceptions of adult authority, and children's experiences outside of the home. Low-income participants' risk aversion may affect children's taste acquisition and eating habits, with implications for socioeconomic disparities in diet quality. This article proposes that the cost of providing children a healthy diet may include the possible cost of foods that children waste as they acquire new tastes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. The formation of endoderm-derived taste sensory organs requires a Pax9-dependent expansion of embryonic taste bud progenitor cells.

    PubMed

    Kist, Ralf; Watson, Michelle; Crosier, Moira; Robinson, Max; Fuchs, Jennifer; Reichelt, Julia; Peters, Heiko

    2014-10-01

    In mammals, taste buds develop in different regions of the oral cavity. Small epithelial protrusions form fungiform papillae on the ectoderm-derived dorsum of the tongue and contain one or few taste buds, while taste buds in the soft palate develop without distinct papilla structures. In contrast, the endoderm-derived circumvallate and foliate papillae located at the back of the tongue contain a large number of taste buds. These taste buds cluster in deep epithelial trenches, which are generated by intercalating a period of epithelial growth between initial placode formation and conversion of epithelial cells into sensory cells. How epithelial trench formation is genetically regulated during development is largely unknown. Here we show that Pax9 acts upstream of Pax1 and Sox9 in the expanding taste progenitor field of the mouse circumvallate papilla. While a reduced number of taste buds develop in a growth-retarded circumvallate papilla of Pax1 mutant mice, its development arrests completely in Pax9-deficient mice. In addition, the Pax9 mutant circumvallate papilla trenches lack expression of K8 and Prox1 in the taste bud progenitor cells, and gradually differentiate into an epidermal-like epithelium. We also demonstrate that taste placodes of the soft palate develop through a Pax9-dependent induction. Unexpectedly, Pax9 is dispensable for patterning, morphogenesis and maintenance of taste buds that develop in ectoderm-derived fungiform papillae. Collectively, our data reveal an endoderm-specific developmental program for the formation of taste buds and their associated papilla structures. In this pathway, Pax9 is essential to generate a pool of taste bud progenitors and to maintain their competence towards prosensory cell fate induction.

  8. Expression and Secretion of TNF-α in Mouse Taste Buds: A Novel Function of a Specific Subset of Type II Taste Cells

    PubMed Central

    Feng, Pu; Zhao, Hang; Chai, Jinghua; Huang, Liquan; Wang, Hong

    2012-01-01

    Taste buds are chemosensory structures widely distributed on the surface of the oral cavity and larynx. Taste cells, exposed to the oral environment, face great challenges in defense against potential pathogens. While immune cells, such as T-cells and macrophages, are rarely found in taste buds, high levels of expression of some immune-response-associated molecules are observed in taste buds. Yet, the cellular origins of these immune molecules such as cytokines in taste buds remain to be determined. Here, we show that a specific subset of taste cells selectively expresses high levels of the inflammatory cytokine tumor necrosis factor-α (TNF-α). Based on immuno-colocalization experiments using taste-cell-type markers, the TNF-α-producing cells are predominantly type II taste cells expressing the taste receptor T1R3. These cells can rapidly increase TNF-α production and secretion upon inflammatory challenges, both in vivo and in vitro. The lipopolysaccharide (LPS)-induced TNF-α expression in taste cells was completely eliminated in TLR2−/−/TLR4−/− double-gene-knockout mice, which confirms that the induction of TNF-α in taste buds by LPS is mediated through TLR signaling pathways. The taste-cell-produced TNF-α may contribute to local immune surveillance, as well as regulate taste sensation under normal and pathological conditions. PMID:22905218

  9. “What’s Your Taste in Music?” A Comparison of the Effectiveness of Various Soundscapes in Evoking Specific Tastes

    PubMed Central

    Woods, Andy T.; Spence, Charles

    2015-01-01

    We report on the results of two online experiments designed to compare different soundtracks that had been composed (by various researchers and sound designers) in order to evoke/match different basic tastes. In Experiment 1, 100 participants listened to samples from 24 soundtracks and chose the taste (sweet, sour, salty, or bitter) that best matched each sample. Overall, the sweet soundtracks most effectively evoked the taste intended by the composer (participants chose sweet 56.9% of the time for the sweet soundtracks), whereas the bitter soundtracks were the least effective (participants chose bitter 31.4% of the time for the bitter soundtracks), compared with chance (choosing any specific taste 25% of the time). In Experiment 2, 50 participants rated their emotional responses (in terms of pleasantness and arousal) to the same 24 soundtrack samples and also to imaginary sweet/sour/salty/bitter-tasting foods. Associations between soundtracks and tastes were partly mediated by pleasantness for the sweet and bitter tastes and partly by arousal for the sour tastes. These results demonstrate how emotion mediation may be an additional mechanism behind sound-taste correspondences. PMID:27551365

  10. Harsh Parenting and Child Externalizing Behavior: Skin Conductance Level Reactivity as a Moderator

    ERIC Educational Resources Information Center

    Erath, Stephen A.; El-Sheikh, Mona; Cummings, E. Mark

    2009-01-01

    Skin conductance level reactivity (SCLR) was examined as a moderator of the association between harsh parenting and child externalizing behavior. Participants were 251 boys and girls (8-9 years). Mothers and fathers provided reports of harsh parenting and their children's externalizing behavior; children also provided reports of harsh parenting.…

  11. Neural networks distinguish between taste qualities based on receptor cell population responses.

    PubMed

    Varkevisser, B; Peterson, D; Ogura, T; Kinnamon, S C

    2001-06-01

    Response features of taste receptor cell action potentials were examined using an artificial neural network to determine whether they contain information about taste quality. Using the loose patch technique to record from hamster taste buds in vivo we recorded population responses of single fungiform papillae to NaCl (100 mM), sucrose (200 mM) and the synthetic sweetener NC-00274-01 (NC-01) (200 microM). Features of each response describing both burst and inter-burst characteristics were then presented to an artificial neural network for pairwise classification of taste stimuli. Responses to NaCl could be distinguished from those to both NC-01 and sucrose with accuracies of up to 86%. In contrast, pairwise comparisons between sucrose and NC-01 were not successful, scoring at chance (50%). Also, comparisons between two different concentrations of NaCl, 0.01 and 0.005 M, scored at chance. Pairwise comparisons using only those features that relate to the inter-burst behavior of the response (i.e. bursting rate) did not hinder the performance of the neural network as both sweeteners versus NaCl received scores of 75--85%. Comparisons using features corresponding to each individual burst scored poorly, receiving scores only slightly above chance. We then compared the sweeteners with varying concentrations of NaCl (0.1, 0.01, 0.005 and 0.001 M) using only those features corresponding to bursting rate within a 1 s time window. The neural network was capable of distinguishing between NaCl and NC-01 at all concentrations tested; while comparisons between NaCl and sucrose received high scores at all concentrations except 0.001 M. These results show that two different taste qualities can be distinguished from each other based solely on the bursting rates of action potentials in single taste buds and that this distinction is independent of stimulation intensity down to 0.001 M NaCl. These data suggest that action potentials in taste receptor cells may play a role in taste

  12. Behavioral Response Generation and Selection of Rejected-Reactive Aggressive, Rejected-Nonaggressive, and Average Status Children.

    ERIC Educational Resources Information Center

    Wood, C. Nannette; Gross, Alan M.

    2002-01-01

    Examines response decision processes of rejected-reactive aggressive, rejected-nonaggressive and average children in terms of the presence or absence of behavioral response alternatives. Congruent with previous research, rejected-reactive aggressive children made significantly more hostile attributions and generated a higher number of aggressive…

  13. Taste Receptor Cells That Discriminate Between Bitter Stimuli

    PubMed Central

    Caicedo, Alejandro; Roper, Stephen D.

    2013-01-01

    Recent studies showing that single taste bud cells express multiple bitter taste receptors have reignited a long-standing controversy over whether single gustatory receptor cells respond selectively or broadly to tastants. We examined calcium responses of rat taste receptor cells in situ to a panel of bitter compounds to determine whether individual cells distinguish between bitter stimuli. Most bitter-responsive taste cells were activated by only one out of five compounds tested. In taste cells that responded to multiple stimuli, there were no significant associations between any two stimuli. Bitter sensation does not appear to occur through the activation of a homogeneous population of broadly tuned bitter-sensitive taste cells. Instead, different bitter stimuli may activate different subpopulations of bitter-sensitive taste cells. PMID:11222863

  14. Taste bud cells of adult mice are responsive to Wnt/β-catenin signaling: implications for the renewal of mature taste cells.

    PubMed

    Gaillard, Dany; Barlow, Linda A

    2011-04-01

    Wnt/β-catenin signaling initiates taste papilla development in mouse embryos, however, its involvement in taste cell turnover in adult mice has not been explored. Here we used the BATGAL reporter mouse model, which carries an engineered allele in which the LacZ gene is expressed in the presence of activated β-catenin, to determine the responsiveness of adult taste bud cells to canonical Wnt signaling. Double immunostaining with markers of differentiated taste cells revealed that a subset of Type I, II, and III taste cells express β-galactosidase. Using in situ hybridization, we showed that β-catenin activates the transcription of the LacZ gene mainly in intragemmal basal cells that are immature taste cells, identified by their expression of Sonic Hedgehog (Shh). Finally, we showed that β-catenin activity is significantly reduced in taste buds of 25-week-old mice compared with 10-week-old animals. Our data suggest that Wnt/β-catenin signaling may influence taste cell turnover by regulating cell differentiation. Reduced canonical Wnt signaling in older mice could explain in part the loss of taste sensitivity with aging, implicating a possible deficiency in the rate of taste cell renewal. More investigations are now necessary to understand if and how Wnt signaling regulates adult taste cell turnover. Copyright © 2011 Wiley-Liss, Inc.

  15. CALHM1 Deletion in Mice Affects Glossopharyngeal Taste Responses, Food Intake, Body Weight, and Life Span.

    PubMed

    Hellekant, Göran; Schmolling, Jared; Marambaud, Philippe; Rose-Hellekant, Teresa A

    2015-07-01

    Stimulation of Type II taste receptor cells (TRCs) with T1R taste receptors causes sweet or umami taste, whereas T2Rs elicit bitter taste. Type II TRCs contain the calcium channel, calcium homeostasis modulator protein 1 (CALHM1), which releases adenosine triphosphate (ATP) transmitter to taste fibers. We have previously demonstrated with chorda tympani nerve recordings and two-bottle preference (TBP) tests that mice with genetically deleted Calhm1 (knockout [KO]) have severely impaired perception of sweet, bitter, and umami compounds, whereas their sour and salty tasting ability is unaltered. Here, we present data from KO mice of effects on glossopharyngeal (NG) nerve responses, TBP, food intake, body weight, and life span. KO mice have no NG response to sweet and a suppressed response to bitter compared with control (wild-type [WT]) mice. KO mice showed some NG response to umami, suggesting that umami taste involves both CALHM1- and non-CALHM1-modulated signals. NG responses to sour and salty were not significantly different between KO and WT mice. Behavioral data conformed in general with the NG data. Adult KO mice consumed less food, weighed significantly less, and lived almost a year longer than WT mice. Taken together, these data demonstrate that sweet taste majorly influences food intake, body weight, and life span. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Conditioned taste aversion dependent regulation of amygdala gene expression.

    PubMed

    Panguluri, Siva K; Kuwabara, Nobuyuki; Kang, Yi; Cooper, Nigel; Lundy, Robert F

    2012-02-28

    The present experiments investigated gene expression in the amygdala following contingent taste/LiCl treatment that supports development of conditioned taste aversion (CTA). The use of whole genome chips and stringent data set filtering led to the identification of 168 genes regulated by CTA compared to non-contingent LiCl treatment that does not support CTA learning. Seventy-six of these genes were eligible for network analysis. Such analysis identified "behavior" as the top biological function, which was represented by 15 of the 76 genes. These genes included several neuropeptides, G protein-coupled receptors, ion channels, kinases, and phosphatases. Subsequent qRT-PCR analyses confirmed changes in mRNA expression for 5 of 7 selected genes. We were able to demonstrate directionally consistent changes in protein level for 3 of these genes; insulin 1, oxytocin, and major histocompatibility complex class I-C. Behavioral analyses demonstrated that blockade of central insulin receptors produced a weaker CTA that was less resistant to extinction. Together, these results support the notion that we have identified downstream genes in the amygdala that contribute to CTA learning. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Interventions for the management of taste disturbances.

    PubMed

    Nagraj, Sumanth Kumbargere; Naresh, Shetty; Srinivas, Kandula; Renjith George, P; Shrestha, Ashish; Levenson, David; Ferraiolo, Debra M

    2014-11-26

    The sense of taste is very much essential to the overall health of the individual. It is a necessary component to enjoying one's food, which in turn provides nutrition to an individual. Any disturbance in taste perception can hamper the quality of life in such patients by influencing their appetite, body weight and psychological well-being. Taste disorders have been treated using different modalities of treatment and there is no consensus for the best intervention. Hence this Cochrane systematic review was undertaken. To assess the effects of interventions for the management of patients with taste disturbances. We searched the Cochrane Oral Health Group Trials Register (to 5 March 2014), the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library Issue 1, 2014), MEDLINE via OVID (1948 to 5 March 2014), EMBASE via OVID (1980 to 5 March 2014), CINAHL via EBSCO (1980 to 5 March 2014) and AMED via OVID (1985 to 5 March 2014). We also searched the relevant clinical trial registries and conference proceedings from the International Association of Dental Research/American Association of Dental Research (to 5 March 2014), Association for Research in Otolaryngology (to 5 March 2014), the US National Institutes of Health Trials Register (to 5 March 2014), metaRegister of Controlled Trials (mRCT) (to 5 March 2014), World Health Organization's International Clinical Trials Registry Platform (WHO ICTRP) (to 5 March 2014) and International Federation of Pharmaceutical Manufacturers and Associations (IFPMA) Clinical Trials Portal (to 5 March 2014). We included all randomised controlled trials (RCTs) comparing any pharmacological agent with a control intervention or any non-pharmacological agent with a control intervention. We also included cross-over trials in the review. Two authors independently, and in duplicate, assessed the quality of trials and extracted data. Wherever possible, we contacted study authors for additional information. We collected

  18. Taste changing in staggered quarks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quentin Mason et al.

    2004-01-05

    The authors present results from a systematic perturbative investigation of taste-changing in improved staggered quarks. They show one-loop taste-changing interactions can be removed perturbatively by an effective four-quark term and calculate the necessary coefficients.

  19. Differences in taste between two polyethylene glycol preparations.

    PubMed

    Szojda, Maria M; Mulder, Chris J J; Felt-Bersma, Richelle J F

    2007-12-01

    Polyethylene glycol preparations (PEG) are increasingly used for chronic constipation in both adults and children. There are some suggestions that PEG 4000 with orange flavour (Forlax) tastes better than PEG 3350 which contains salt (Movicolon). Poor taste is an important factor for non-compliance and is one of the leading causes of therapy failure. The aim of the study was to compare the taste of two commonly used PEG preparations, PEG 4000 and PEG 3350. A double-blind, cross over randomised trial. A hundred people were recruited by advertisement. All tasted both preparations without swallowing and after tasting each of the preparations, they rinsed their mouths. Then a score, on a 5-point scale, was given for both preparations. 100 volunteers were included (27 males and 73 females, mean age 36). The taste score for PEG 4000 (mean 3.9, SD 0.7) was significantly better than for PEG 3350 (mean 2.7, SD 0.7) (p<0.0001, Wilcoxon matched pairs test). No difference in gender or age was observed. The volunteers which tasted PEG 3350 liked it more, when they tasted it first rather than when they tasted it after PEG 4000 (p<0.0001). The order in which volunteers tested PEG 4000 had no influence on the taste results. PEG 4000 tastes better than PEG 3350. This may have implications for patient compliance and effectiveness of treatment in patients with chronic constipation.

  20. Voltage-gated sodium channels in taste bud cells.

    PubMed

    Gao, Na; Lu, Min; Echeverri, Fernando; Laita, Bianca; Kalabat, Dalia; Williams, Mark E; Hevezi, Peter; Zlotnik, Albert; Moyer, Bryan D

    2009-03-12

    Taste bud cells transmit information regarding the contents of food from taste receptors embedded in apical microvilli to gustatory nerve fibers innervating basolateral membranes. In particular, taste cells depolarize, activate voltage-gated sodium channels, and fire action potentials in response to tastants. Initial cell depolarization is attributable to sodium influx through TRPM5 in sweet, bitter, and umami cells and an undetermined cation influx through an ion channel in sour cells expressing PKD2L1, a candidate sour taste receptor. The molecular identity of the voltage-gated sodium channels that sense depolarizing signals and subsequently initiate action potentials coding taste information to gustatory nerve fibers is unknown. We describe the molecular and histological expression profiles of cation channels involved in electrical signal transmission from apical to basolateral membrane domains. TRPM5 was positioned immediately beneath tight junctions to receive calcium signals originating from sweet, bitter, and umami receptor activation, while PKD2L1 was positioned at the taste pore. Using mouse taste bud and lingual epithelial cells collected by laser capture microdissection, SCN2A, SCN3A, and SCN9A voltage-gated sodium channel transcripts were expressed in taste tissue. SCN2A, SCN3A, and SCN9A were expressed beneath tight junctions in subsets of taste cells. SCN3A and SCN9A were expressed in TRPM5 cells, while SCN2A was expressed in TRPM5 and PKD2L1 cells. HCN4, a gene previously implicated in sour taste, was expressed in PKD2L1 cells and localized to cell processes beneath the taste pore. SCN2A, SCN3A and SCN9A voltage-gated sodium channels are positioned to sense initial depolarizing signals stemming from taste receptor activation and initiate taste cell action potentials. SCN2A, SCN3A and SCN9A gene products likely account for the tetrodotoxin-sensitive sodium currents in taste receptor cells.

  1. The discovery and mechanism of sweet taste enhancers.

    PubMed

    Li, Xiaodong; Servant, Guy; Tachdjian, Catherine

    2011-08-01

    Excess sugar intake posts several health problems. Artificial sweeteners have been used for years to reduce dietary sugar content, but they are not ideal substitutes for sugar owing to their off-taste. A new strategy focused on allosteric modulation of the sweet taste receptor led to identification of sweet taste 'enhancers' for the first time. The enhancer molecules do not taste sweet, but greatly potentiate the sweet taste of sucrose and sucralose selectively. Following a similar mechanism as the natural umami taste enhancers, the sweet enhancer molecules cooperatively bind with the sweeteners to the Venus flytrap domain of the human sweet taste receptor and stabilize the active conformation. Now that the approach has proven successful, enhancers for other sweeteners and details of the molecular mechanism for the enhancement are being actively pursued.

  2. Relationship between umami taste acuity with sweet or bitter taste acuity and food selection in Japanese women university students.

    PubMed

    Kubota, Masaru; Toda, Chikako; Nagai-Moriyama, Ayako

    2018-01-01

    Although there are many studies on the umami receptor and its signaling pathway, literature on the effect of umami taste acuity on dietary choices in healthy subjects is limited. The current study aims to clarify the relationship between umami taste acuity with sweet or bitter taste acuity, food preference and intake. Forty-two healthy Japanese female university students were enrolled. The acuity for umami, sweet, and bitter tastes was evaluated using the filter-paper disc method. The study population was divided into 32 umami normal tasters and 10 hypo-tasters based on the taste acuity at the posterior part of the tongue using monosodium glutamate. Umami hypo-tasters exhibited a significantly lower sensitivity to sweet tastes than normal tasters. However, the sensitivity to bitter taste was comparable between the two groups. Food preference was examined by the food preference checklist consisted of 81 food items. Among them, umami tasters preferred shellfish, tomato, carrot, milk, low fat milk, cheese, dried shiitake, and kombu significantly more than umami hypo-tasters did. A self-reported food frequency questionnaire revealed no significant differences in the intake of calories and three macronutrients between the two groups; however, umami tasters were found to eat more seaweeds and less sugar than umami hypo-tasters. These data together may indicate the possibility that umami taste acuity has an effect on a dietary life. Therefore, training umami taste acuity from early childhood is important for a healthy diet later in life.

  3. [Influence of a high-carbohydrate meal on taste perception].

    PubMed

    Suchecka, Wanda; Klimacka-Nawrot, Ewa; Gałazka, Andrzej; Hartman, Magdalena; Błońska-Fajfrowska, Barbara

    2011-01-01

    Taste sensitivity varies greatly in individuals and depends on many external and metabolic conditions. The studied group consisted of healthy, non-smoking 41 women and 40 men, aged 19-29. The volunteers were examined in fasting state and after a high-carbohydrate meal. Taste sensitivity to sweet, salty and sour as well as hedonic response to taste were examined by means of gustometry examination recommended by Polski Komitet Normalizacyjny (Polish Committee for Standardization). It has been shown that in women the meal did not influence the intensity of sweet taste perception of saccharose solutions or the hedonic response to taste, whereas in men it caused a statistically significant decrease in the intensity of taste perception and in the hedonic response to the sweet taste of suprathreshold saccharose solutions. The meal did not influence the salty taste perception in a statistically significant way, neither in men nor in women. After the meal, the women perceived the sour taste with more intensity than in fasting state, whereas in men such influence was not observed. 1. The consumption of a high-carbohydrate meal influences the sweet and sour taste perception and the effect is sex-dependent: - in men, both the taste sensitivity to saccharose and the hedonic response to sweet taste were decreased, whereas in women such influence was not observed; - in women, the taste sensitivity to citric acid increased and the hedonic response to sour taste decreased, whereas in men such influence was not observed. 2. There is negative correlation between the intensity of taste perception and the hedonic response to the sweet taste both in men and in women after a high-carbohydrate meal, whereas in fasting state such correlation was not observed.

  4. The sweet taste quality is linked to a cluster of taste fibers in primates: lactisole diminishes preference and responses to sweet in S fibers (sweet best) chorda tympani fibers of M. fascicularis monkey.

    PubMed

    Wang, Yiwen; Danilova, Vicktoria; Cragin, Tiffany; Roberts, Thomas W; Koposov, Alexey; Hellekant, Göran

    2009-02-18

    Psychophysically, sweet and bitter have long been considered separate taste qualities, evident already to the newborn human. The identification of different receptors for sweet and bitter located on separate cells of the taste buds substantiated this separation. However, this finding leads to the next question: is bitter and sweet also kept separated in the next link from the taste buds, the fibers of the taste nerves? Previous studies in non-human primates, P. troglodytes, C. aethiops, M. mulatta, M. fascicularis and C. jacchus, suggest that the sweet and bitter taste qualities are linked to specific groups of fibers called S and Q fibers. In this study we apply a new sweet taste modifier, lactisole, commercially available as a suppressor of the sweetness of sugars on the human tongue, to test our hypothesis that sweet taste is conveyed in S fibers. We first ascertained that lactisole exerted similar suppression of sweetness in M. fascicularis, as reported in humans, by recording their preference of sweeteners and non- sweeteners with and without lactisole in two-bottle tests. The addition of lactisole significantly diminished the preference for all sweeteners but had no effect on the intake of non-sweet compounds or the intake of water. We then recorded the response to the same taste stimuli in 40 single chorda tympani nerve fibers. Comparison between single fiber nerve responses to stimuli with and without lactisole showed that lactisole only suppressed the responses to sweeteners in S fibers. It had no effect on the responses to any other stimuli in all other taste fibers. In M. fascicularis, lactisole diminishes the attractiveness of compounds, which taste sweet to humans. This behavior is linked to activity of fibers in the S-cluster. Assuming that lactisole blocks the T1R3 monomer of the sweet taste receptor T1R2/R3, these results present further support for the hypothesis that S fibers convey taste from T1R2/R3 receptors, while the impulse activity in non

  5. Genetics of Amino Acid Taste and Appetite123

    PubMed Central

    Bosak, Natalia P; Glendinning, John I; Inoue, Masashi; Li, Xia; Manita, Satoshi; McCaughey, Stuart A; Murata, Yuko; Beauchamp, Gary K

    2016-01-01

    The consumption of amino acids by animals is controlled by both oral and postoral mechanisms. We used a genetic approach to investigate these mechanisms. Our studies have shown that inbred mouse strains differ in voluntary amino acid consumption, and these differences depend on sensory and nutritive properties of amino acids. Like humans, mice perceive some amino acids as having a sweet (sucrose-like) taste and others as having an umami (glutamate-like) taste. Mouse strain differences in the consumption of some sweet-tasting amino acids (d-phenylalanine, d-tryptophan, and l-proline) are associated with polymorphisms of a taste receptor, type 1, member 3 gene (Tas1r3), and involve differential peripheral taste responsiveness. Strain differences in the consumption of some other sweet-tasting amino acids (glycine, l-alanine, l-glutamine, and l-threonine) do not depend on Tas1r3 polymorphisms and so must be due to allelic variation in other, as yet unknown, genes involved in sweet taste. Strain differences in the consumption of l-glutamate may depend on postingestive rather than taste mechanisms. Thus, genes and physiologic mechanisms responsible for strain differences in the consumption of each amino acid depend on the nature of its taste and postingestive properties. Overall, mouse strain differences in amino acid taste and appetite have a complex genetic architecture. In addition to the Tas1r3 gene, these differences depend on other genes likely involved in determining the taste and postingestive effects of amino acids. The identification of these genes may lead to the discovery of novel mechanisms that regulate amino acid taste and appetite. PMID:27422518

  6. The importance of taste on dietary choice, behaviour and intake in a group of young adults.

    PubMed

    Kourouniotis, S; Keast, R S J; Riddell, L J; Lacy, K; Thorpe, M G; Cicerale, S

    2016-08-01

    The 'taste of food' plays an important role in food choice. Furthermore, foods high in fat, sugar and salt are highly palatable and associated with increased food consumption. Research exploring taste importance on dietary choice, behaviour and intake is limited, particularly in young adults. Therefore, in this study a total of 1306 Australian university students completed questionnaires assessing dietary behaviors (such as how important taste was on food choice) and frequency of food consumption over the prior month. Diet quality was also assessed using a dietary guideline index. Participants had a mean age of 20 ± 5 years, Body Mass Index (BMI) of 22 ± 3 kg/m(2), 79% were female and 84% Australian. Taste was rated as being a very or extremely important factor for food choice by 82% of participants. Participants who rated taste as highly important, had a poorer diet quality (p = 0.001) and were more likely to consume less fruit (p = 0.03) and vegetables (p = 0.05). Furthermore, they were significantly more likely to consume foods high in fat, sugar and salt, including chocolate and confectionary, cakes and puddings, sweet pastries, biscuits, meat pies, pizza, hot chips, potato chips, takeaway meals, soft drink, cordial and fruit juice (p = 0.001-0.02). They were also more likely to consider avoiding adding salt to cooking (p = 0.02) and adding sugar to tea or coffee (p = 0.01) as less important for health. These findings suggest that the importance individuals place on taste plays an important role in influencing food choice, dietary behaviors and intake. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. New frontiers in gut nutrient sensor research: nutrient sensors in the gastrointestinal tract: modulation of sweet taste sensitivity by leptin.

    PubMed

    Horio, Nao; Jyotaki, Masafumi; Yoshida, Ryusuke; Sanematsu, Keisuke; Shigemura, Noriatsu; Ninomiya, Yuzo

    2010-01-01

    The ability to perceive sweet compounds is important for animals to detect an external carbohydrate source of calories and has a critical role in the nutritional status of animals. In mice, a subset of sweet-sensitive taste cells possesses leptin receptors. Increase of plasma leptin with increasing internal energy storage in the adipose tissue suppresses sweet taste responses via this receptor. The data from recent studies indicate that leptin may also act as a modulator of sweet taste sensation in humans with a diurnal variation in sweet sensitivity. The plasma leptin level and sweet taste sensitivity are proposed to link with post-ingestive plasma glucose level. This leptin modulation of sweet taste sensitivity may influence an individual's preference, ingestive behavior, and absorption of nutrients, thereby playing important roles in regulation of energy homeostasis.

  8. PERCEPTION OF SWEET TASTE IS IMPORTANT FOR VOLUNTARY ALCOHOL CONSUMPTION IN MICE

    PubMed Central

    Blednov, Y.A.; Walker, D.; Martinez, M.; Levine, M.; Damak, S.; Margolskee, R.F.

    2012-01-01

    To directly evaluate the association between taste perception and alcohol intake, we used three different mutant mice, each lacking a gene expressed in taste buds and critical to taste transduction: α-gustducin (Gnat3), Tas1r3 or Trpm5. Null mutant mice lacking any of these three genes showed lower preference score for alcohol and consumed less alcohol in a two-bottle choice test, as compared with wild-type littermates. These null mice also showed lower preference score for saccharin solutions than did wild-type littermates. In contrast, avoidance of quinine solutions was less in Gnat3 or Trpm5 knockout mice than in wild type mice, whereas Tas1r3 null mice were not different from wild-type in their response to quinine solutions. There were no differences in null vs. wild-type mice in their consumption of sodium chloride solutions. To determine the cause for reduction of ethanol intake, we studied other ethanol-induced behaviors known to be related to alcohol consumption. There were no differences between null and wild-type mice in ethanol-induced loss of righting reflex, severity of acute ethanol withdrawal or conditioned place preference for ethanol. Weaker conditioned taste aversion to alcohol in null mice may have been caused by weaker rewarding value of the conditioned stimulus (saccharin). When saccharin was replaced by sodium chloride, no differences in conditioned taste aversion to alcohol between knockout and wild-type mice were seen. Thus, deletion of any one of three different genes involved in detection of sweet taste leads to a substantial reduction of alcohol intake without any changes in pharmacological actions of ethanol. PMID:17376151

  9. Emotional Reactivity, Regulation and Childhood Stuttering: A Behavioral and Electrophysiological Study

    ERIC Educational Resources Information Center

    Arnold, Hayley S.; Conture, Edward G.; Key, Alexandra P. F.; Walden, Tedra

    2011-01-01

    The purpose of this preliminary study was to assess whether behavioral and psychophysiological correlates of emotional reactivity and regulation are associated with developmental stuttering, as well as determine the feasibility of these methods in preschool-age children. Nine preschool-age children who stutter (CWS) and nine preschool-age children…

  10. Taste Changes in Vitamin A Deficiency

    PubMed Central

    Bernard, Rudy A.; Halpern, Bruce P.

    1968-01-01

    Taste preferences were studied in two groups of rats depleted of vitamin A by dietary restriction. One group received sufficient vitamin A acid supplement to maintain normal growth. The other group was repleted with vitamin A alcohol after the classical deficiency symptoms had appeared; this group gradually lost normal preferences for NaCl and aversion to quinine solutions during depletion. Vitamin A alcohol repletion tended to restore taste preferences to normal. In contrast, the group receiving vitamin A acid showed normal taste preferences throughout the depletion period. When the vitamin A acid supplement was removed taste preferences became abnormal and returned to normal when vitamin A acid was restored. Peripheral gustatory neural activity of depleted rats without any form of vitamin A was less than normal both at rest and when the tongue was stimulated with NaCl solutions. Histological examination showed keratin infiltrating the pores of the taste buds. Accessory glandular tissues were atrophied and debris filled the trenches of the papillae. It is concluded that vitamin A acid can provide the vitamin A required for normal taste, as contrasted with its inability to maintain visual function. It is suggested that the effect of vitamin A is exerted at the receptor level, as a result of its role in the biosynthesis of mucopolysaccharides, which have been recently identified in the pore area of taste buds, as well as being present in the various secretions of the oral cavity. PMID:4299794

  11. Changes in Gustatory Function and Taste Preference Following Weight Loss.

    PubMed

    Sauer, Helene; Ohla, Kathrin; Dammann, Dirk; Teufel, Martin; Zipfel, Stephan; Enck, Paul; Mack, Isabelle

    2017-03-01

    To investigate taste changes of obese children during an inpatient weight reduction treatment in comparison with normal weight children. Obese (n = 60) and normal weight (n = 27) children aged 9-17 years were assessed for gustatory functions using taste strips (taste identification test for the taste qualities sour, salty, sweet, and bitter), taste preferences, and experienced taste sensitivity. Obese children were examined upon admission (T1) and before discharge (T2). Normal weight children served as the control group. Irrespective of taste quality, obese children exhibited a lower ability to identify taste (total taste score) than normal weight children (P < .01); this overall score remained stable during inpatient treatment in obese children. Group and treatment effects were seen when evaluating individual taste qualities. In comparison with normal weight children, obese children exhibited poorer sour taste identification performance (P < .01). Obese children showed improvement in sour taste identification (P < .001) and deterioration in sweet taste identification (P < .001) following treatment. Subjective reports revealed a lower preference for sour taste in obese children compared with normal weight children (P < .05). The sweet and bitter taste ability at T1 predicted the body mass index z score at T2 (R 2  = .23, P < .01). We identified differences in the ability to discriminate tastes and in subjective taste perception between groups. Our findings of increased sour and reduced sweet taste discrimination after the intervention in obese children are indicative of an exposure-related effect on taste performance, possibly mediated by increased acid and reduced sugar consumption during the intervention. Because the sweet and bitter taste ability at T1 predicted weight loss, addressing gustatory function could be relevant in individualized obesity treatment approaches. Germanctr.de: DRKS00005122. Copyright © 2016 Elsevier Inc

  12. Influence of brewing conditions on taste components in Fuding white tea infusions.

    PubMed

    Zhang, Haihua; Li, Yulin; Lv, Yangjun; Jiang, Yulan; Pan, Junxian; Duan, Yuwei; Zhu, Yuejin; Zhang, Shikang

    2017-07-01

    White tea has received increasing attention of late as a result of its sweet taste and health benefits. During the brewing of white tea, many factors may affect the nutritional and sensory quality of the resulting infusions. The present study aimed to investigate the effect of various infusion conditions on the taste components of Fuding white tea, including infusion time, ratio of tea and water, number of brewing steps, and temperature. Brewing conditions had a strong effect on the taste compound profile and sensory characteristics. The catechin, caffeine, theanine and free amino acid contents generally increased with increasing infusion time and temperature. Conditions comprising an infusion time of 7 min, a brewing temperature of 100 °C, a tea and water ratio of 1:30 or 1:40, and a second brewing step, respectively, were shown to obtain the highest contents of most compounds. Regarding tea sensory evaluation, conditions comprising an infusion time of 3 min, a brewing temperature of 100 °C, a tea and water ratio of 1:50, and a first brewing step, resulted in the highest sensory score for comprehensive behavior of color, aroma and taste. The results of the present study reveal differences in the contents of various taste compounds, including catechins, caffeine, theanine and free amino acids, with respect to different brewing conditions, and sensory scores also varied with brewing conditions. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  13. Immunohistochemical Analysis of Human Vallate Taste Buds

    PubMed Central

    Tizzano, Marco; Grigereit, Laura; Shultz, Nicole; Clary, Matthew S.

    2015-01-01

    The morphology of the vallate papillae from postmortem human samples was investigated with immunohistochemistry. Microscopically, taste buds were present along the inner wall of the papilla, and in some cases in the outer wall as well. The typical taste cell markers PLCβ2, GNAT3 (gustducin) and the T1R3 receptor stain elongated cells in human taste buds consistent with the Type II cells in rodents. In the human tissue, taste bud cells that stain with Type II cell markers, PLCβ2 and GNAT3, also stain with villin antibody. Two typical immunochemical markers for Type III taste cells in rodents, PGP9.5 and SNAP25, fail to stain any taste bud cells in the human postmortem tissue, although these antibodies do stain numerous nerve fibers throughout the specimen. Car4, another Type III cell marker, reacted with only a few taste cells in our samples. Finally, human vallate papillae have a general network of innervation similar to rodents and antibodies directed against SNAP25, PGP9.5, acetylated tubulin and P2X3 all stain free perigemmal nerve endings as well as intragemmal taste fibers. We conclude that with the exception of certain molecular features of Type III cells, human vallate papillae share the structural, morphological, and molecular features observed in rodents. PMID:26400924

  14. Relationships Between Self-Injurious Behaviors, Pain Reactivity, and β-Endorphin in Children and Adolescents With Autism.

    PubMed

    Tordjman, Sylvie; Anderson, George M; Charrier, Annaëlle; Oriol, Cécile; Kermarrec, Solenn; Canitano, Roberto; Botbol, Michel; Coulon, Nathalie; Antoine, Corinne; Brailly-Tabard, Sylvie; Cohen, David; Haidar, Hazar; Trabado, Séverine; Carlier, Michèle; Bronsard, Guillaume; Mottron, Laurent

    Autism and certain associated behaviors including self-injurious behaviors (SIB) and atypical pain reactivity have been hypothesized to result from excessive opioid activity. The objective of this study was to examine the relationships between SIB, pain reactivity, and β-endorphin levels in autism. Study participants were recruited between 2007 and 2012 from day care centers and included 74 children and adolescents diagnosed with autism (according to DSM-IV-TR, ICD-10, and CFTMEA) and intellectual disability. Behavioral pain reactivity and SIB were assessed in 3 observational situations (parents at home, 2 caregivers at day care center, a nurse and child psychiatrist during blood drawing) using validated quantitative and qualitative scales. Plasma β-endorphin concentrations were measured in 57 participants using 2 different immunoassay methods. A high proportion of individuals with autism displayed SIB (50.0% and 70.3% according to parental and caregiver observation, respectively). The most frequent types of SIB were head banging and hand biting. An absence or decrease of overall behavioral pain reactivity was observed in 68.6% and 34.2% of individuals with autism according to parental and caregiver observation, respectively. Those individuals with hyporeactivity to daily life accidental painful stimuli displayed higher rates of self-biting (P < .01, parental evaluation). No significant correlations were observed between β-endorphin level and SIB or pain reactivity assessed in any of the 3 observational situations. The absence of any observed relationships between β-endorphin level and SIB or pain reactivity and the conflicting results of prior opioid studies in autism tend to undermine support for the opioid theory of autism. New perspectives are discussed regarding the relationships found in this study between SIB and hyporeactivity to pain. © Copyright 2018 Physicians Postgraduate Press, Inc.

  15. Positive allosteric modulators of the human sweet taste receptor enhance sweet taste

    PubMed Central

    Servant, Guy; Tachdjian, Catherine; Tang, Xiao-Qing; Werner, Sara; Zhang, Feng; Li, Xiaodong; Kamdar, Poonit; Petrovic, Goran; Ditschun, Tanya; Java, Antoniette; Brust, Paul; Brune, Nicole; DuBois, Grant E.; Zoller, Mark; Karanewsky, Donald S.

    2010-01-01

    To identify molecules that could enhance sweetness perception, we undertook the screening of a compound library using a cell-based assay for the human sweet taste receptor and a panel of selected sweeteners. In one of these screens we found a hit, SE-1, which significantly enhanced the activity of sucralose in the assay. At 50 μM, SE-1 increased the sucralose potency by >20-fold. On the other hand, SE-1 exhibited little or no agonist activity on its own. SE-1 effects were strikingly selective for sucralose. Other popular sweeteners such as aspartame, cyclamate, and saccharin were not enhanced by SE-1 whereas sucrose and neotame potency were increased only by 1.3- to 2.5-fold at 50 μM. Further assay-guided chemical optimization of the initial hit SE-1 led to the discovery of SE-2 and SE-3, selective enhancers of sucralose and sucrose, respectively. SE-2 (50 μM) and SE-3 (200 μM) increased sucralose and sucrose potencies in the assay by 24- and 4.7-fold, respectively. In human taste tests, 100 μM of SE-1 and SE-2 allowed for a reduction of 50% to >80% in the concentration of sucralose, respectively, while maintaining the sweetness intensity, and 100 μM SE-3 allowed for a reduction of 33% in the concentration of sucrose while maintaining the sweetness intensity. These enhancers did not exhibit any sweetness when tasted on their own. Positive allosteric modulators of the human sweet taste receptor could help reduce the caloric content in food and beverages while maintaining the desired taste. PMID:20173092

  16. Radiation effects on bovine taste bud membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shatzman, A.R.; Mossman, K.L.

    1982-11-01

    In order to investigate the mechanisms of radiation-induced taste loss, the effects of radiation on preparations of enriched bovine taste bud membranes were studied. Taste buds containing circumvallate papilae, and surrounding control epithelial tissues devoid of taste buds, were obtained from steers and given radiation doses of 0-7000 cGy (rad). Tissue fractions were isolated into membrane-enriched and heterogeneous components using differential and sucrose gradient centrifugation of tissue homogenates. The yield of membranes, as measured by protein content in the buoyant membrane-enriched fractions, was reduced in quantity with increasing radiation dose. The relation between radiation dose and membrane quantity in membrane-enrichedmore » fractions could be fit by a simple exponential model with taste bud-derived membranes twice as radiosensitive as membranes from control epithelial tissue. Binding of sucrose, sodium, and acetate and fluoride stimulation of adenylate cyclase were nearly identical in both irradiated and nonirradiated intact membranes. Radiation had no effect on fractions of heterogeneous components. While it is not clear what changes are occurring in enriched taste cell membranes, damage to membranes may play an important role in the taste loss observed in patients following radiotherapy.« less

  17. Taste Identification in Adults with Autism Spectrum Conditions

    ERIC Educational Resources Information Center

    Tavassoli, T.; Baron-Cohen, S.

    2012-01-01

    Sensory issues are widely reported in Autism Spectrum Conditions (ASC). Since taste perception is one of the least studied senses in ASC we explored taste identification in adults with ASC (12 males, 11 females) compared to control participants (14 males, 12 females). "Taste strips" were used to measure taste identification overall, as well as…

  18. Genomic evidence of bitter taste in snakes and phylogenetic analysis of bitter taste receptor genes in reptiles

    PubMed Central

    Zhong, Huaming; Shang, Shuai; Wu, Xiaoyang; Chen, Jun; Zhu, Wanchao; Yan, Jiakuo; Li, Haotian

    2017-01-01

    As nontraditional model organisms with extreme physiological and morphological phenotypes, snakes are believed to possess an inferior taste system. However, the bitter taste sensation is essential to distinguish the nutritious and poisonous food resources and the genomic evidence of bitter taste in snakes is largely scarce. To explore the genetic basis of the bitter taste of snakes and characterize the evolution of bitter taste receptor genes (Tas2rs) in reptiles, we identified Tas2r genes in 19 genomes (species) corresponding to three orders of non-avian reptiles. Our results indicated contractions of Tas2r gene repertoires in snakes, however dramatic gene expansions have occurred in lizards. Phylogenetic analysis of the Tas2rs with NJ and BI methods revealed that Tas2r genes of snake species formed two clades, whereas in lizards the Tas2r genes clustered into two monophyletic clades and four large clades. Evolutionary changes (birth and death) of intact Tas2r genes in reptiles were determined by reconciliation analysis. Additionally, the taste signaling pathway calcium homeostasis modulator 1 (Calhm1) gene of snakes was putatively functional, suggesting that snakes still possess bitter taste sensation. Furthermore, Phylogenetically Independent Contrasts (PIC) analyses reviewed a significant correlation between the number of Tas2r genes and the amount of potential toxins in reptilian diets, suggesting that insectivores such as some lizards may require more Tas2rs genes than omnivorous and carnivorous reptiles. PMID:28828281

  19. Glutamate: Tastant and Neuromodulator in Taste Buds.

    PubMed

    Vandenbeuch, Aurelie; Kinnamon, Sue C

    2016-07-01

    In taste buds, glutamate plays a double role as a gustatory stimulus and neuromodulator. The detection of glutamate as a tastant involves several G protein-coupled receptors, including the heterodimer taste receptor type 1, member 1 and 3 as well as metabotropic glutamate receptors (mGluR1 and mGluR4). Both receptor types participate in the detection of glutamate as shown with knockout animals and selective antagonists. At the basal part of taste buds, ionotropic glutamate receptors [N-methyl-d-aspartate (NMDA) and non-NMDA] are expressed and participate in the modulation of the taste signal before its transmission to the brain. Evidence suggests that glutamate has an efferent function on taste cells and modulates the release of other neurotransmitters such as serotonin and ATP. This short article reviews the recent developments in the field with regard to glutamate receptors involved in both functions as well as the influence of glutamate on the taste signal. © 2016 American Society for Nutrition.

  20. Evaluation of taste solutions by sensor fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kojima, Yohichiro; Sato, Eriko; Atobe, Masahiko

    In our previous studies, properties of taste solutions were discriminated based on sound velocity and amplitude of ultrasonic waves propagating through the solutions. However, to make this method applicable to beverages which contain many taste substances, further studies are required. In this study, the waveform of an ultrasonic wave with frequency of approximately 5 MHz propagating through a solution was measured and subjected to frequency analysis. Further, taste sensors require various techniques of sensor fusion to effectively obtain chemical and physical parameter of taste solutions. A sensor fusion method of ultrasonic wave sensor and various sensors, such as the surfacemore » plasmon resonance (SPR) sensor, to estimate tastes were proposed and examined in this report. As a result, differences among pure water and two basic taste solutions were clearly observed as differences in their properties. Furthermore, a self-organizing neural network was applied to obtained data which were used to clarify the differences among solutions.« less

  1. Modulation of sweet responses of taste receptor cells.

    PubMed

    Yoshida, Ryusuke; Niki, Mayu; Jyotaki, Masafumi; Sanematsu, Keisuke; Shigemura, Noriatsu; Ninomiya, Yuzo

    2013-03-01

    Taste receptor cells play a major role in detection of chemical compounds in the oral cavity. Information derived from taste receptor cells, such as sweet, bitter, salty, sour and umami is important for evaluating the quality of food components. Among five basic taste qualities, sweet taste is very attractive for animals and influences food intake. Recent studies have demonstrated that sweet taste sensitivity in taste receptor cells would be affected by leptin and endocannabinoids. Leptin is an anorexigenic mediator that reduces food intake by acting on leptin receptor Ob-Rb in the hypothalamus. Endocannabinoids such as anandamide [N-arachidonoylethanolamine (AEA)] and 2-arachidonoyl glycerol (2-AG) are known as orexigenic mediators that act via cannabinoid receptor 1 (CB1) in the hypothalamus and limbic forebrain to induce appetite and stimulate food intake. At the peripheral gustatory organs, leptin selectively suppresses and endocannabinoids selectively enhance sweet taste sensitivity via Ob-Rb and CB1 expressed in sweet sensitive taste cells. Thus leptin and endocannabinoids not only regulate food intake via central nervous systems but also modulate palatability of foods by altering peripheral sweet taste responses. Such reciprocal modulation of leptin and endocannabinoids on peripheral sweet sensitivity may play an important role in regulating energy homeostasis. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Music Influences Hedonic and Taste Ratings in Beer

    PubMed Central

    Reinoso Carvalho, Felipe; Velasco, Carlos; van Ee, Raymond; Leboeuf, Yves; Spence, Charles

    2016-01-01

    The research presented here focuses on the influence of background music on the beer-tasting experience. An experiment is reported in which different groups of customers tasted a beer under three different conditions (N = 231). The control group was presented with an unlabeled beer, the second group with a labeled beer, and the third group with a labeled beer together with a customized sonic cue (a short clip from an existing song). In general, the beer-tasting experience was rated as more enjoyable with music than when the tasting was conducted in silence. In particular, those who were familiar with the band that had composed the song, liked the beer more after having tasted it while listening to the song, than those who knew the band, but only saw the label while tasting. These results support the idea that customized sound-tasting experiences can complement the process of developing novel beverage (and presumably also food) events. We suggest that involving musicians and researchers alongside brewers in the process of beer development, offers an interesting model for future development. Finally, we discuss the role of attention in sound-tasting experiences, and the importance that a positive hedonic reaction toward a song can have for the ensuing tasting experience. PMID:27199862

  3. Norepinephrine is coreleased with serotonin in mouse taste buds.

    PubMed

    Huang, Yijen A; Maruyama, Yutaka; Roper, Stephen D

    2008-12-03

    ATP and serotonin (5-HT) are neurotransmitters secreted from taste bud receptor (type II) and presynaptic (type III) cells, respectively. Norepinephrine (NE) has also been proposed to be a neurotransmitter or paracrine hormone in taste buds. Yet, to date, the specific stimulus for NE release in taste buds is not well understood, and the identity of the taste cells that secrete NE is not known. Chinese hamster ovary cells were transfected with alpha(1A) adrenoceptors and loaded with fura-2 ("biosensors") to detect NE secreted from isolated mouse taste buds and taste cells. Biosensors responded to low concentrations of NE (>or=10 nm) with a reliable fura-2 signal. NE biosensors did not respond to stimulation with KCl or taste compounds. However, we recorded robust responses from NE biosensors when they were positioned against mouse circumvallate taste buds and the taste buds were stimulated with KCl (50 mm) or a mixture of taste compounds (cycloheximide, 10 microm; saccharin, 2 mm; denatonium, 1 mm; SC45647, 100 microm). NE biosensor responses evoked by stimulating taste buds were reversibly blocked by prazosin, an alpha(1A) receptor antagonist. Together, these findings indicate that taste bud cells secrete NE when they are stimulated. We isolated individual taste bud cells to identify the origin of NE release. NE was secreted only from presynaptic (type III) taste cells and not receptor (type II) cells. Stimulus-evoked NE release depended on Ca(2+) in the bathing medium. Using dual biosensors (sensitive to 5-HT and NE), we found all presynaptic cells secrete 5-HT and 33% corelease NE with 5-HT.

  4. Perceptual variation in umami taste and polymorphisms in TAS1R taste receptor genes1234

    PubMed Central

    Chen, Qing-Ying; Alarcon, Suzanne; Tharp, Anilet; Ahmed, Osama M; Estrella, Nelsa L; Greene, Tiffani A; Rucker, Joseph; Breslin, Paul AS

    2009-01-01

    Background: The TAS1R1 and TAS1R3 G protein–coupled receptors are believed to function in combination as a heteromeric glutamate taste receptor in humans. Objective: We hypothesized that variations in the umami perception of glutamate would correlate with variations in the sequence of these 2 genes, if they contribute directly to umami taste. Design: In this study, we first characterized the general sensitivity to glutamate in a sample population of 242 subjects. We performed these experiments by sequencing the coding regions of the genomic TAS1R1 and TAS1R3 genes in a separate set of 87 individuals who were tested repeatedly with monopotassium glutamate (MPG) solutions. Last, we tested the role of the candidate umami taste receptor hTAS1R1-hTAS1R3 in a functional expression assay. Results: A subset of subjects displays extremes of sensitivity, and a battery of different psychophysical tests validated this observation. Statistical analysis showed that the rare T allele of single nucleotide polymorphism (SNP) R757C in TAS1R3 led to a doubling of umami ratings of 25 mmol MPG/L. Other suggestive SNPs of TAS1R3 include the A allele of A5T and the A allele of R247H, which both resulted in an approximate doubling of umami ratings of 200 mmol MPG/L. We confirmed the potential role of the human TAS1R1-TAS1R3 heteromer receptor in umami taste by recording responses, specifically to l-glutamate and inosine 5′-monophosphate (IMP) mixtures in a heterologous expression assay in HEK (human embryonic kidney) T cells. Conclusions: There is a reliable and valid variation in human umami taste of l-glutamate. Variations in perception of umami taste correlated with variations in the human TAS1R3 gene. The putative human taste receptor TAS1R1-TAS1R3 responds specifically to l-glutamate mixed with the ribonucleotide IMP. Thus, this receptor likely contributes to human umami taste perception. PMID:19587085

  5. Proactive and Reactive Aggressive Behavior in Bullying: The Role of Values

    ERIC Educational Resources Information Center

    Jara, Natalia; Casas, Jose A.; Ortega-Ruiz, Rosario

    2017-01-01

    The study of violence and bullying in schools is a line of scientific research that has contributed significantly to knowledge on human aggressiveness, especially in children and adolescents. This article shows that there are two patterns of aggressive behavior: proactive and reactive. Both are present in bullying, as are other psychological…

  6. The molecular basis for attractive salt-taste coding in Drosophila.

    PubMed

    Zhang, Yali V; Ni, Jinfei; Montell, Craig

    2013-06-14

    Below a certain level, table salt (NaCl) is beneficial for animals, whereas excessive salt is harmful. However, it remains unclear how low- and high-salt taste perceptions are differentially encoded. We identified a salt-taste coding mechanism in Drosophila melanogaster. Flies use distinct types of gustatory receptor neurons (GRNs) to respond to different concentrations of salt. We demonstrated that a member of the newly discovered ionotropic glutamate receptor (IR) family, IR76b, functioned in the detection of low salt and was a Na(+) channel. The loss of IR76b selectively impaired the attractive pathway, leaving salt-aversive GRNs unaffected. Consequently, low salt became aversive. Our work demonstrated that the opposing behavioral responses to low and high salt were determined largely by an elegant bimodal switch system operating in GRNs.

  7. Enhanced Positive Emotional Reactivity Undermines Empathy in Behavioral Variant Frontotemporal Dementia.

    PubMed

    Hua, Alice Y; Sible, Isabel J; Perry, David C; Rankin, Katherine P; Kramer, Joel H; Miller, Bruce L; Rosen, Howard J; Sturm, Virginia E

    2018-01-01

    Behavioral variant frontotemporal dementia (bvFTD) is a neurodegenerative disease characterized by profound changes in emotions and empathy. Although most patients with bvFTD become less sensitive to negative emotional cues, some patients become more sensitive to positive emotional stimuli. We investigated whether dysregulated positive emotions in bvFTD undermine empathy by making it difficult for patients to share (emotional empathy), recognize (cognitive empathy), and respond (real-world empathy) to emotions in others. Fifty-one participants (26 patients with bvFTD and 25 healthy controls) viewed photographs of neutral, positive, negative, and self-conscious emotional faces and then identified the emotions displayed in the photographs. We used facial electromyography to measure automatic, sub-visible activity in two facial muscles during the task: Zygomaticus major ( ZM ), which is active during positive emotional reactions (i.e., smiling), and Corrugator supercilii ( CS ), which is active during negative emotional reactions (i.e., frowning). Participants rated their baseline positive and negative emotional experience before the task, and informants rated participants' real-world empathic behavior on the Interpersonal Reactivity Index. The majority of participants also underwent structural magnetic resonance imaging. A mixed effects model found a significant diagnosis X trial interaction: patients with bvFTD showed greater ZM reactivity to neutral, negative (disgust and surprise), self-conscious (proud), and positive (happy) faces than healthy controls. There was no main effect of diagnosis or diagnosis X trial interaction on CS reactivity. Compared to healthy controls, patients with bvFTD had impaired emotion recognition. Multiple regression analyses revealed that greater ZM reactivity predicted worse negative emotion recognition and worse real-world empathy. At baseline, positive emotional experience was higher in bvFTD than healthy controls and also predicted

  8. The Addition of Saccharin to Taste Cues Affects Taste Preference Conditioning in Thirsty Rats

    ERIC Educational Resources Information Center

    Forestell, Catherine A.; LoLordo, Vincent M.

    2004-01-01

    Previous failures to condition preferences for the unacceptable taste cues sucrose octaacetate (SOA) and citric acid (CA) using a reverse-order, differential conditioning procedure (Forestell & LoLordo, 2000) may have been the result of low consumption of the taste cues in training or of their relatively low acceptability to rats that are thirsty…

  9. Modulation of sweet taste by umami compounds via sweet taste receptor subunit hT1R2.

    PubMed

    Shim, Jaewon; Son, Hee Jin; Kim, Yiseul; Kim, Ki Hwa; Kim, Jung Tae; Moon, Hana; Kim, Min Jung; Misaka, Takumi; Rhyu, Mee-Ra

    2015-01-01

    Although the five basic taste qualities-sweet, sour, bitter, salty and umami-can be recognized by the respective gustatory system, interactions between these taste qualities are often experienced when food is consumed. Specifically, the umami taste has been investigated in terms of whether it enhances or reduces the other taste modalities. These studies, however, are based on individual perception and not on a molecular level. In this study we investigated umami-sweet taste interactions using umami compounds including monosodium glutamate (MSG), 5'-mononucleotides and glutamyl-dipeptides, glutamate-glutamate (Glu-Glu) and glutamate-aspartic acid (Glu-Asp), in human sweet taste receptor hT1R2/hT1R3-expressing cells. The sensitivity of sucrose to hT1R2/hT1R3 was significantly attenuated by MSG and umami active peptides but not by umami active nucleotides. Inhibition of sweet receptor activation by MSG and glutamyl peptides is obvious when sweet receptors are activated by sweeteners that target the extracellular domain (ECD) of T1R2, such as sucrose and acesulfame K, but not by cyclamate, which interact with the T1R3 transmembrane domain (TMD). Application of umami compounds with lactisole, inhibitory drugs that target T1R3, exerted a more severe inhibitory effect. The inhibition was also observed with F778A sweet receptor mutant, which have the defect in function of T1R3 TMD. These results suggest that umami peptides affect sweet taste receptors and this interaction prevents sweet receptor agonists from binding to the T1R2 ECD in an allosteric manner, not to the T1R3. This is the first report to define the interaction between umami and sweet taste receptors.

  10. Reactive sites influence in PMMA oligomers reactivity: a DFT study

    NASA Astrophysics Data System (ADS)

    Paz, C. V.; Vásquez, S. R.; Flores, N.; García, L.; Rico, J. L.

    2018-01-01

    In this work, we present a theoretical study of methyl methacrylate (MMA) living anionic polymerization. The study was addressed to understanding two important experimental observations made for Michael Szwarc in 1956. The unexpected effect of reactive sites concentration in the propagation rate, and the self-killer behavior of MMA (deactivating of living anionic polymerization). The theoretical calculations were performed by density functional theory (DFT) to obtain the frontier molecular orbitals values. These values were used to calculate and analyze the chemical interaction descriptors in DFT-Koopmans’ theorem. As a result, it was observed that the longest chain-length species (related with low concentration of reactive sites) exhibit the highest reactivity (behavior associated with the increase of the propagation rate). The improvement in this reactivity was attributed to the crosslinking produced in the polymethyl methacrylate chains. Meanwhile, the self-killer behavior was associated with the intermolecular forces present in the reactive sites. This behavior was associated to an obstruction in solvation, since the active sites remained active through all propagation species. The theoretical results were in good agreement with the Szwarc experiments.

  11. Immunohistochemical Analysis of Human Vallate Taste Buds.

    PubMed

    Tizzano, Marco; Grigereit, Laura; Shultz, Nicole; Clary, Matthew S; Finger, Thomas E

    2015-11-01

    The morphology of the vallate papillae from postmortem human samples was investigated with immunohistochemistry. Microscopically, taste buds were present along the inner wall of the papilla, and in some cases in the outer wall as well. The typical taste cell markers PLCβ2, GNAT3 (gustducin) and the T1R3 receptor stain elongated cells in human taste buds consistent with the Type II cells in rodents. In the human tissue, taste bud cells that stain with Type II cell markers, PLCβ2 and GNAT3, also stain with villin antibody. Two typical immunochemical markers for Type III taste cells in rodents, PGP9.5 and SNAP25, fail to stain any taste bud cells in the human postmortem tissue, although these antibodies do stain numerous nerve fibers throughout the specimen. Car4, another Type III cell marker, reacted with only a few taste cells in our samples. Finally, human vallate papillae have a general network of innervation similar to rodents and antibodies directed against SNAP25, PGP9.5, acetylated tubulin and P2X3 all stain free perigemmal nerve endings as well as intragemmal taste fibers. We conclude that with the exception of certain molecular features of Type III cells, human vallate papillae share the structural, morphological, and molecular features observed in rodents. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. The Role of Cholecystokinin in Peripheral Taste Signaling in Mice

    PubMed Central

    Yoshida, Ryusuke; Shin, Misa; Yasumatsu, Keiko; Takai, Shingo; Inoue, Mayuko; Shigemura, Noriatsu; Takiguchi, Soichi; Nakamura, Seiji; Ninomiya, Yuzo

    2017-01-01

    Cholecystokinin (CCK) is a gut hormone released from enteroendocrine cells. CCK functions as an anorexigenic factor by acting on CCK receptors expressed on the vagal afferent nerve and hypothalamus with a synergistic interaction between leptin. In the gut, tastants such as amino acids and bitter compounds stimulate CCK release from enteroendocrine cells via activation of taste transduction pathways. CCK is also expressed in taste buds, suggesting potential roles of CCK in taste signaling in the peripheral taste organ. In the present study, we focused on the function of CCK in the initial responses to taste stimulation. CCK was coexpressed with type II taste cell markers such as Gα-gustducin, phospholipase Cβ2, and transient receptor potential channel M5. Furthermore, a small subset (~30%) of CCK-expressing taste cells expressed a sweet/umami taste receptor component, taste receptor type 1 member 3, in taste buds. Because type II taste cells are sweet, umami or bitter taste cells, the majority of CCK-expressing taste cells may be bitter taste cells. CCK-A and -B receptors were expressed in both taste cells and gustatory neurons. CCK receptor knockout mice showed reduced neural responses to bitter compounds compared with wild-type mice. Consistently, intravenous injection of CCK-Ar antagonist lorglumide selectively suppressed gustatory nerve responses to bitter compounds. Intravenous injection of CCK-8 transiently increased gustatory nerve activities in a dose-dependent manner whereas administration of CCK-8 did not affect activities of bitter-sensitive taste cells. Collectively, CCK may be a functionally important neurotransmitter or neuromodulator to activate bitter nerve fibers in peripheral taste tissues. PMID:29163209

  13. Innervation of single fungiform taste buds during development in rat.

    PubMed

    Krimm, R F; Hill, D L

    1998-08-17

    To determine whether the innervation of taste buds changes during postnatal development, the number of geniculate ganglion cells that innervated single fungiform taste buds were quantified in the tip- and midregions of the tongue of adult and developing rats. There was substantial variation in both the size of individual taste buds and number of geniculate ganglion cells that innervated them. Importantly, taste bud morphology and innervation were highly related. Namely, the number of labeled geniculate ganglion cells that innervated a taste bud was highly correlated with the size of the taste bud (r = 0.91, P < .0003): The larger the taste bud, the more geniculate ganglion cells that innervated it. The relationship between ganglion cell number and taste bud volume emerged during the first 40 days postnatal. Whereas there was no difference in the average number of ganglion cells that innervated individual taste buds in rats aged 10 days postnatal through adulthood, taste bud volumes increased progressively between 10 and 40 days postnatal, at which age taste bud volumes were similar to adults. The maturation of taste bud size was accompanied by the emergence of the relationship between taste bud volume and number of innervating neurons. Specifically, there was no correlation between taste bud size and number of innervating geniculate ganglion cells in 10-, 20-, or 30-day-old rats, whereas taste bud size and the number of innervating ganglion cells in 40-day-old rats were positively correlated (r = .80, P < .002). Therefore, the relationship between taste bud size and number of innervating ganglion cells develops over a prolonged postnatal period and is established when taste buds grow to their adult size.

  14. Interleukin-10 is produced by a specific subset of taste receptor cells and critical for maintaining structural integrity of mouse taste buds.

    PubMed

    Feng, Pu; Chai, Jinghua; Zhou, Minliang; Simon, Nirvine; Huang, Liquan; Wang, Hong

    2014-02-12

    Although inflammatory responses are a critical component in defense against pathogens, too much inflammation is harmful. Mechanisms have evolved to regulate inflammation, including modulation by the anti-inflammatory cytokine interleukin-10 (IL-10). Previously we have shown that taste buds express various molecules involved in innate immune responses, including the proinflammatory cytokine tumor necrosis factor (TNF). Here, using a reporter mouse strain, we show that taste cells also express the anti-inflammatory cytokine IL-10. Remarkably, IL-10 is produced by only a specific subset of taste cells, which are different from the TNF-producing cells in mouse circumvallate and foliate taste buds: IL-10 expression was found exclusively in the G-protein gustducin-expressing bitter receptor cells, while TNF was found in sweet and umami receptor cells as reported previously. In contrast, IL-10R1, the ligand-binding subunit of the IL-10 receptor, is predominantly expressed by TNF-producing cells, suggesting a novel cellular hierarchy for regulating TNF production and effects in taste buds. In response to inflammatory challenges, taste cells can increase IL-10 expression both in vivo and in vitro. These findings suggest that taste buds use separate populations of taste receptor cells that coincide with sweet/umami and bitter taste reception to modulate local inflammatory responses, a phenomenon that has not been previously reported. Furthermore, IL-10 deficiency in mice leads to significant reductions in the number and size of taste buds, as well as in the number of taste receptor cells per taste bud, suggesting that IL-10 plays critical roles in maintaining structural integrity of the peripheral gustatory system.

  15. Interleukin-10 Is Produced by a Specific Subset of Taste Receptor Cells and Critical for Maintaining Structural Integrity of Mouse Taste Buds

    PubMed Central

    Chai, Jinghua; Zhou, Minliang; Simon, Nirvine; Huang, Liquan

    2014-01-01

    Although inflammatory responses are a critical component in defense against pathogens, too much inflammation is harmful. Mechanisms have evolved to regulate inflammation, including modulation by the anti-inflammatory cytokine interleukin-10 (IL-10). Previously we have shown that taste buds express various molecules involved in innate immune responses, including the proinflammatory cytokine tumor necrosis factor (TNF). Here, using a reporter mouse strain, we show that taste cells also express the anti-inflammatory cytokine IL-10. Remarkably, IL-10 is produced by only a specific subset of taste cells, which are different from the TNF-producing cells in mouse circumvallate and foliate taste buds: IL-10 expression was found exclusively in the G-protein gustducin-expressing bitter receptor cells, while TNF was found in sweet and umami receptor cells as reported previously. In contrast, IL-10R1, the ligand-binding subunit of the IL-10 receptor, is predominantly expressed by TNF-producing cells, suggesting a novel cellular hierarchy for regulating TNF production and effects in taste buds. In response to inflammatory challenges, taste cells can increase IL-10 expression both in vivo and in vitro. These findings suggest that taste buds use separate populations of taste receptor cells that coincide with sweet/umami and bitter taste reception to modulate local inflammatory responses, a phenomenon that has not been previously reported. Furthermore, IL-10 deficiency in mice leads to significant reductions in the number and size of taste buds, as well as in the number of taste receptor cells per taste bud, suggesting that IL-10 plays critical roles in maintaining structural integrity of the peripheral gustatory system. PMID:24523558

  16. A comparison between taste avoidance and conditioned disgust reactions induced by ethanol and lithium chloride in preweanling rats.

    PubMed

    Arias, Carlos; Pautassi, Ricardo Marcos; Molina, Juan Carlos; Spear, Norman E

    2010-09-01

    Adult rats display taste avoidance and disgust reactions when stimulated with gustatory stimuli previously paired with aversive agents such as lithium chloride (LiCl). By the second postnatal week of life, preweanling rats also display specific behaviors in response to a tastant conditioned stimulus (CS) that predicts LiCl-induced malaise. The present study compared conditioned disgust reactions induced by LiCl or ethanol (EtOH) in preweanling rats. In Experiment 1 we determined doses of ethanol and LiCl that exert similar levels of conditioned taste avoidance. After having equated drug dosage in terms of conditioned taste avoidance, 13-day-old rats were given a single pairing of a novel taste (saccharin) and either LiCl or ethanol (2.5 g/kg; Experiment 2). Saccharin intake and emission of disgust reactions were assessed 24 and 48 hr after training. Pups given paired presentations of saccharin and the aversive agents (ethanol or LiCl) consumed less saccharin during the first testing day than controls. These pups also showed more aversive behavioral reactions to the gustatory CS than controls. Specifically, increased amounts of grooming, general activity, head shaking, and wall climbing as well as reduced mouthing were observed in response to the CS. Conditioned aversive reactions but not taste avoidance were still evident on the second testing day. In conclusion, a taste CS paired with postabsorptive effects of EtOH and LiCl elicited a similar pattern of conditioned rejection reactions in preweanling rats. These results suggest that similar mechanisms may be underlying CTAs induced by LiCl and a relatively high EtOH dose.

  17. Expression of NUCB2/nesfatin-1 in the taste buds of rats.

    PubMed

    Cao, Xun; Zhou, Xiao; Cao, Yang; Liu, Xiao-Min; Zhou, Li-Hong

    2016-01-01

    Nesfatin-1, an anorexigenic peptide derived from nucleobindin 2 (NUCB2), is closely involved in feeding behavior, glycometabolism, and satiety regulation. Some studies show that NUCB2/nesfatin-1 is highly expressed and interacts with many appetite-regulating peptides that are co-expressed in the gastrointestinal tract. However, it remains unclear whether nesfatin-1 is expressed and interacts similarly in taste buds. Glucagon-like peptide-1 (GLP-1), a well-known appetite down-regulating peptide, is associated with changes in the expression of nesfatin-1. Therefore, we measured the expression of the NUCB2 gene and the distribution of nesfatin-1-immunoreactive cells and investigated whether these variables change in taste buds of circumvallate papillae (CV) from rats with type 2 diabetes (T2DM) after treatment with liraglutide, a GLP-1 receptor agonist. The results showed that nesfatin-1 immunoreactive cells were localized in the taste buds of rat CV. Quantitative RT-PCR showed a significantly lower expression of NUCB2 mRNA in the taste buds of diabetic control rats (T2DM-C) than in those of the normal control group (NC) and a higher level of NUCB2 in the liraglutide treated group (T2DM + LIR) than either the T2DM-C or the NC groups. Changes in the expression of NUCB2 in the rat hypothalamus were opposite to those in CV taste buds. In summary, we found that rat CV taste buds express NUCB2/nesfatin-1, and that this expression decreases significantly in T2DM and increases after treatment with liraglutide in rat CV. This indicates that nesfatin-1 could be an important factor in the regulation of gustatory function, feeding and perhaps energy homeostasis.

  18. Reduced brain response to a sweet taste in Hispanic young adults.

    PubMed

    Szajer, Jacquelyn; Jacobson, Aaron; Green, Erin; Murphy, Claire

    2017-11-01

    Hispanics have an increased risk for metabolic disorders, which evidence suggests may be due to interactions between lifespan biological, genetic, and lifestyle factors. Studies show the diet of many U.S. Hispanic groups have high sugar consumption, which has been shown to influence future preference for and consumption of high-sugar foods, and is associated with increased risk for insulin-related disorders and obesity. Taste is a primary determinant of food preference and selection. Differences in neural response to taste have been associated with obesity. Understanding brain response to sweet taste stimuli in healthy Hispanic adults is an important first step in characterizing the potential neural mechanisms for this behavior. We used fMRI to examine brain activation during the hedonic evaluation of sucrose as a function of ethnicity in Hispanic and non-Hispanic young adults. Taste stimuli were administered orally while subjects were scanned at 3T. Data were analyzed with AFNI via 3dROIstats and 3dMEMA, a mixed effects multi-level analysis of whole brain activation. The Hispanic group had significantly lower ROI activation in the left amygdala and significantly lower whole brain activation in regions critical for reward processing, and hedonic evaluation (e.g. frontal, orbitofrontal, and anterior cingulate cortices) than the non-Hispanic group. Differences in processing of sweet tastes have important clinical and public health implications, especially considering increased risk of metabolic syndrome and cognitive decline in Hispanic populations. Future research to better understanding relationships between health risk and brain function in Hispanic populations is warranted to better conceptualize and develop interventions for these populations. Copyright © 2017. Published by Elsevier B.V.

  19. Volumetry of human taste buds using laser scanning microscopy.

    PubMed

    Just, T; Srur, E; Stachs, O; Pau, H W

    2009-10-01

    In vivo laser scanning confocal microscopy is a relatively new, non-invasive method for assessment of oral cavity epithelia. The penetration depth of approximately 200-400 microm allows visualisation of fungiform papillae and their taste buds. This paper describes the technique of in vivo volumetry of human taste buds. Confocal laser scanning microscopy used a diode laser at 670 nm for illumination. Digital laser scanning confocal microscopy equipment consisted of the Heidelberg Retina Tomograph HRTII and the Rostock Cornea Module. Volume scans of fungiform papillae were used for three-dimensional reconstruction of the taste bud. This technique supplied information on taste bud structure and enabled measurement and calculation of taste bud volume. Volumetric data from a 23-year-old man over a nine-day period showed only a small deviation in values. After three to four weeks, phenomenological changes in taste bud structures were found (i.e. a significant increase in volume, followed by disappearance of the taste bud and appearance of a new taste bud). The data obtained indicate the potential application of this non-invasive imaging modality: to evaluate variation of taste bud volume in human fungiform papillae with ageing; to study the effects of chorda tympani nerve transection on taste bud volume; and to demonstrate recovery of taste buds in patients with a severed chorda tympani nerve who show recovery of gustatory sensibility after surgery.

  20. The sweet taste of true synergy: positive allosteric modulation of the human sweet taste receptor.

    PubMed

    Servant, Guy; Tachdjian, Catherine; Li, Xiaodong; Karanewsky, Donald S

    2011-11-01

    A diet low in carbohydrates helps to reduce the amount of ingested calories and to maintain a healthy weight. With this in mind, food and beverage companies have reformulated a large number of their products, replacing sugar or high fructose corn syrup with several different types of zero-calorie sweeteners to decrease or even totally eliminate their caloric content. A challenge remains, however, with the level of acceptance of some of these products in the market-place. Many consumers believe that zero-calorie sweeteners simply do not taste like sugar. A recent breakthrough reveals that positive allosteric modulators of the human sweet taste receptor, small molecules that enhance the receptor activity and sweetness perception, could be more effective than other reported taste enhancers at reducing calories in consumer products without compromising on the true taste of sugar. A unique mechanism of action at the receptor level could explain the robust synergy achieved with these new modulators. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Accuracy of self-report in detecting taste dysfunction.

    PubMed

    Soter, Ana; Kim, John; Jackman, Alexis; Tourbier, Isabelle; Kaul, Arti; Doty, Richard L

    2008-04-01

    To determine the sensitivity, specificity, and positive and negative predictive value of responses to the following questionnaire statements in detecting taste loss: "I can detect salt in chips, pretzels, or salted nuts," "I can detect sourness in vinegar, pickles, or lemon," "I can detect sweetness in soda, cookies, or ice cream," and "I can detect bitterness, in coffee, beer, or tonic water." Responses to an additional item, "I can detect chocolate in cocoa, cake or candy," was examined to determine whether patients clearly differentiate between taste loss and flavor loss secondary to olfactory dysfunction. A total of 469 patients (207 men, mean age = 54 years, standard deviation = 15 years; and 262 women, mean age = 54 years, standard deviation = 14 years) were administered a questionnaire containing these questions with the response categories of "easily," "somewhat," and "not at all," followed by a comprehensive taste and smell test battery. The questionnaire items poorly detected bona fide taste problems. However, they were sensitive in detecting persons without such problems (i.e., they exhibited low positive but high negative predictive value). Dysfunction categories of the University of Pennsylvania Smell Identification Test (UPSIT) were not meaningfully related to subjects' responses to the questionnaire statements. Both sex and age influenced performance on most of the taste tests, with older persons performing more poorly than younger ones and women typically outperforming men. Although it is commonly assumed that straight-forward questions concerning taste may be useful in detecting taste disorders, this study suggests this is not the case. However, patients who specifically report having no problems with taste perception usually do not exhibit taste dysfunction. The difficulty in detecting true taste problems by focused questionnaire items likely reflects a combination of factors. These include the relatively low prevalence of taste deficits in the

  2. Hypoxanthine enhances the cured meat taste

    PubMed Central

    Nakamura, Yukinobu; Yoshida, Yuka; Hattori, Akihito

    2016-01-01

    Abstract We evaluated the enhancement of cured meat taste during maturation by sensory analysis. We focused on the heat‐stable sarcoplasmic fraction (HSSF) to identify the factors related to cured meat taste. Because the dry matter of HSSF contained more than 30% nitrogen, nitrogen compounds such as free amino acids, small peptides and adenosine triphosphate‐related compounds seemed to be the important components of HSSF. The samples cured with HSSF for 2 h exhibited the same taste profile as ones cured without HSSF for 168 h. Therefore, the changes in the amount and fractions of nitrogen compounds were examined in HSSF during incubation from 0 to 168 h. The concentration of hypoxanthine (Hx) gradually increased, while inosine‐5′‐monophosphate decreased during the incubation. The samples cured with pickles containing various concentrations of Hx were subjected to sensory analysis. The addition of Hx, in a dose‐dependent fashion, enhanced cured meat taste by maturation for 2 h. It was concluded that Hx is essential for the enhancement of cured meat taste. PMID:27169902

  3. [Smell and taste thresholds in older people].

    PubMed

    Thumfart, W; Plattig, K H; Schlicht, N

    1980-01-01

    The smell and taste ability of 105 persons at an age of 65 to 93 years was examined by adequate qualitative and semiquantitative chemical and electrogustometric methods. The basic levels of seniors were found above the levels of younger people. For the sense of smelling a significant connection of age and smell sensitivity could be measured. There was no difference between men and women using chemical test methods. With electrogustometry, however, women had a better taste sensitivity than men. At the age of 65 the taste levels are at a fix point. No higher levels could be realized in older persons. A significant reduction of smell ability was recognized in persons with reduction of cerebral blood flow and in smokers. The taste ability was disturbed in cases of diabetes, in persons using dental prostheses and selectively for "salty" in cases of hypertonia and "bitter" in smokers. Loss of taste was recognized in two women who used NaF-drugs, but also some other drugs were able to induce smell and taste alteration.

  4. Inflammation activates the interferon signaling pathways in taste bud cells.

    PubMed

    Wang, Hong; Zhou, Minliang; Brand, Joseph; Huang, Liquan

    2007-10-03

    Patients with viral and bacterial infections or other inflammatory illnesses often experience taste dysfunctions. The agents responsible for these taste disorders are thought to be related to infection-induced inflammation, but the mechanisms are not known. As a first step in characterizing the possible role of inflammation in taste disorders, we report here evidence for the presence of interferon (IFN)-mediated signaling pathways in taste bud cells. IFN receptors, particularly the IFN-gamma receptor IFNGR1, are coexpressed with the taste cell-type markers neuronal cell adhesion molecule and alpha-gustducin, suggesting that both the taste receptor cells and synapse-forming cells in the taste bud can be stimulated by IFN. Incubation of taste bud-containing lingual epithelia with recombinant IFN-alpha and IFN-gamma triggered the IFN-mediated signaling cascades, resulting in the phosphorylation of the downstream STAT1 (signal transducer and activator of transcription protein 1) transcription factor. Intraperitoneal injection of lipopolysaccharide or polyinosinic:polycytidylic acid into mice, mimicking bacterial and viral infections, respectively, altered gene expression patterns in taste bud cells. Furthermore, the systemic administration of either IFN-alpha or IFN-gamma significantly increased the number of taste bud cells undergoing programmed cell death. These findings suggest that bacterial and viral infection-induced IFNs can act directly on taste bud cells, affecting their cellular function in taste transduction, and that IFN-induced apoptosis in taste buds may cause abnormal cell turnover and skew the representation of different taste bud cell types, leading to the development of taste disorders. To our knowledge, this is the first study providing direct evidence that inflammation can affect taste buds through cytokine signaling pathways.

  5. A Preference Test for Sweet Taste That Uses Edible Strips

    PubMed Central

    Smutzer, Gregory; Patel, Janki Y.; Stull, Judith C.; Abarintos, Ray A.; Khan, Neiladri K.; Park, Kevin C.

    2014-01-01

    A novel delivery method is described for the rapid determination of taste preferences for sweet taste in humans. This forced-choice paired comparison approach incorporates the non-caloric sweetener sucralose into a set of one-inch square edible strips for the rapid determination of sweet taste preferences. When compared to aqueous sucrose solutions, significantly lower amounts of sucralose were required to identify the preference for sweet taste. The validity of this approach was determined by comparing sweet taste preferences obtained with five different sucralose-containing edible strips to a set of five intensity-matched sucrose solutions. When compared to the solution test, edible strips required approximately the same number of steps to identify the preferred amount of sweet taste stimulus. Both approaches yielded similar distribution patterns for the preferred amount of sweet taste stimulus. In addition, taste intensity values for the preferred amount of sucralose in strips were similar to that of sucrose in solution. The hedonic values for the preferred amount of sucralose were lower than for sucrose, but the taste quality of the preferred sucralose strip was described as sweet. When taste intensity values between sucralose strips and sucralose solutions containing identical amounts of taste stimulus were compared, sucralose strips produced a greater taste intensity and more positive hedonic response. A preference test that uses edible strips for stimulus delivery should be useful for identifying preferences for sweet taste in young children, and in clinical populations. This test should also be useful for identifying sweet taste preferences outside of the lab or clinic. Finally, edible strips should be useful for developing preference tests for other primary taste stimuli and for taste mixtures. PMID:24225255

  6. Enhancement of Retronasal Odors by Taste

    PubMed Central

    Nachtigal, Danielle; Hammond, Samuel; Lim, Juyun

    2012-01-01

    Psychophysical studies of interactions between retronasal olfaction and taste have focused most often on the enhancement of tastes by odors, which has been attributed primarily to a response bias (i.e., halo dumping). Based upon preliminary evidence that retronasal odors could also be enhanced by taste, the present study measured both forms of enhancement using appropriate response categories. In the first experiment, subjects rated taste (“sweet,” “sour,” “salty,” and “bitter”) and odor (“other”) intensity for aqueous samples of 3 tastants (sucrose, NaCl, and citric acid) and 3 odorants (vanillin, citral, and furaneol), both alone and in taste–odor mixtures. The results showed that sucrose, but not the other taste stimuli, significantly increased the perceived intensity of all 3 odors. Enhancement of tastes by odors was inconsistent and generally weaker than enhancement of odors by sucrose. A second experiment used a flavored beverage and a custard dessert to test whether the findings from the first experiment would hold for the perception of actual foods. Adding sucrose significantly enhanced the intensity of “cherry” and “vanilla” flavors, whereas adding vanillin did not significantly enhance the intensity of sweetness. It is proposed that enhancement of retronasal odors by a sweet stimulus results from an adaptive sensory mechanism that serves to increase the salience of the flavor of nutritive foods. PMID:21798851

  7. Taste Receptor Signaling-- From Tongues to Lungs

    PubMed Central

    Kinnamon, Sue C.

    2013-01-01

    Taste buds are the transducing endorgans of gustation. Each taste bud comprises 50–100 elongated cells, which extend from the basal lamina to the surface of the tongue, where their apical microvilli encounter taste stimuli in the oral cavity. Salts and acids utilize apically located ion channels for transduction, while bitter, sweet and umami (glutamate) stimuli utilize G protein coupled receptors (GPCRs) and second messenger signaling mechanisms. This review will focus on GPCR signaling mechanisms. Two classes of taste GPCRs have been identified, the T1Rs for sweet and umami (glutamate) stimuli, and the T2Rs for bitter stimuli. These low affinity GPCRs all couple to the same downstream signaling effectors that include Gβγ activation of PLCβ2, IP3-mediated release of Ca2+ from intracellular stores, and Ca2+-dependent activation of the monovalent selective cation channel, TrpM5. These events lead to membrane depolarization, action potentials, and release of ATP as a transmitter to activate gustatory afferents. The Gα subunit, α-gustducin, activates a phosphodiesterase to decrease intracellular cAMP levels, although the precise targets of cAMP have not been identified. With the molecular identification of the taste GPCRs, it has become clear that taste signaling is not limited to taste buds, but occurs in many cell types of the airways. These include solitary chemosensory cells, ciliated epithelial cells, and smooth muscle cells. Bitter receptors are most abundantly expressed in the airways, where they respond to irritating chemicals and promote protective airway reflexes, utilizing the same downstream signaling effectors as taste cells. PMID:21481196

  8. Taste masking of ondansetron hydrochloride by polymer carrier system and formulation of rapid-disintegrating tablets.

    PubMed

    Khan, Shagufta; Kataria, Prashant; Nakhat, Premchand; Yeole, Pramod

    2007-06-22

    The purpose of this research was to mask the intensely bitter taste of ondansetron HCl and to formulate a rapid-disintegrating tablet (RDT) of the taste-masked drug. Taste masking was done by complexing ondansetron HCl with aminoalkyl methacrylate copolymer (Eudragit EPO) in different ratios by the precipitation method. Drug-polymer complexes (DPCs) were tested for drug content, in vitro taste in simulated salivary fluid (SSF) of pH 6.2, and molecular property. Complex that did not release drug in SSF was considered taste-masked and selected for formulation RDTs. The complex with drug-polymer ratio of 8:2 did not show drug release in SSF; therefore, it was selected. The properties of tablets such as tensile strength, wetting time, water absorption ratio, in vitro disintegration time, and disintegration in the oral cavity were investigated to elucidate the wetting and disintegration characteristics of tablets. Polyplasdone XL-10 7% wt/wt gave the minimum disintegration time. Tablets of batch F4 containing spray-dried mannitol and microcrystalline cellulose in the ratio 1:1 and 7% wt/wt Polyplasdone XL-10 showed faster disintegration, within 12.5 seconds, than the marketed tablet (112 seconds). Good correlation between in vitro disintegration behavior and in the oral cavity was recognized. Taste evaluation of RDT in human volunteers revealed considerable taste masking with the degree of bitterness below threshold value (0.5) ultimately reaching to 0 within 15 minutes, whereas ondansetron HCl was rated intensely bitter with a score of 3 for 10 minutes. Tablets of batch F4 also revealed rapid drug release (t(90), 60 seconds) in SGF compared with marketed formulation (t(90), 240 seconds; P < .01). Thus, results conclusively demonstrated successful masking of taste and rapid disintegration of the formulated tablets in the oral cavity.

  9. Infant negative reactivity defines the effects of parent-child synchrony on physiological and behavioral regulation of social stress.

    PubMed

    Pratt, Maayan; Singer, Magi; Kanat-Maymon, Yaniv; Feldman, Ruth

    2015-11-01

    How infants shape their own development has puzzled developmentalists for decades. Recent models suggest that infant dispositions, particularly negative reactivity and regulation, affect outcome by determining the extent of parental effects. Here, we used a microanalytic experimental approach and proposed that infants with varying levels of negative reactivity will be differentially impacted by parent-infant synchrony in predicting physiological and behavioral regulation of increasing social stress during an experimental paradigm. One hundred and twenty-two mother-infant dyads (4-6 months) were observed in the face-to-face still face (SF) paradigm and randomly assigned to three experimental conditions: SF with touch, standard SF, and SF with arms' restraint. Mother-infant synchrony and infant negative reactivity were observed at baseline, and three mechanisms of behavior regulation were microcoded; distress, disengagement, and social regulation. Respiratory sinus arrhythmia baseline, reactivity, and recovery were quantified. Structural equation modeling provided support for our hypothesis. For physiological regulation, infants high in negative reactivity receiving high mother-infant synchrony showed greater vagal withdrawal, which in turn predicted comparable levels of vagal recovery to that of nonreactive infants. In behavioral regulation, only infants low in negative reactivity who received high synchrony were able to regulate stress by employing social engagement cues during the SF phase. Distress was reduced only among calm infants to highly synchronous mothers, and disengagement was lowest among highly reactive infants experiencing high mother-infant synchrony. Findings chart two pathways by which synchrony may bolster regulation in infants of high and low reactivity. Among low reactive infants, synchrony builds a social repertoire for handling interpersonal stress, whereas in highly reactive infants, it constructs a platform for repeated reparation of

  10. Proceedings of the 2015 A.S.P.E.N. Research Workshop - Taste Signaling: Impact on Food Selection, Intake, and Health

    PubMed Central

    Spector, Alan C.; le Roux, Carel W; Munger, Steven D.; Travers, Susan P.; Sclafani, Anthony; Mennella, Julie A.

    2016-01-01

    This paper summarizes research findings from six experts in the field of taste and feeding that were presented at the 2015 ASPEN Research Workshop. The theme was focused on the interaction of taste signals with those of a postingestive origin and how this contributes to regulation of food intake through both physiological and learning processes. Gastric bypass results in exceptional loss of fat mass, increases in circulating levels of key gut peptides, some of which are also expressed along with their cognate receptors in taste buds. Changes in taste preference and food selection in both bariatric surgery patients and rodent models have been reported. Accordingly, the effects of this surgery on taste-related behavior were examined. The conservation of receptor and peptide signaling mechanisms in gustatory and extraoral tissues was discussed in the context of taste responsiveness and the regulation of metabolism. New findings detailing the features of neural circuits between the caudal nucleus of the solitary tract (NST), receiving visceral input from the vagus nerve, and the rostral NST, receiving taste input, were discussed, as was how early life experience with taste stimuli and learned associations between flavor and postoral consequences of nutrients can exert potent and long-lasting effects on feeding PMID:26598504

  11. The chemistry and physiology of sour taste--a review.

    PubMed

    Ramos Da Conceicao Neta, Edith Ramos; Johanningsmeier, Suzanne D; McFeeters, Roger F

    2007-03-01

    Sour taste is the key element in the flavor profile of food acidulants. Understanding the chemistry and physiology of sour taste is critical for efficient control of flavor in the formulation of acid and acidified foods. After a brief introduction to the main applications of food acidulants, several chemical parameters associated with sour taste are discussed. Special emphasis is given to hydrogen ions, protonated (undissociated) acid species, titratable acidity, anions, molar concentration, and physical and chemical properties of organic acids. This article also presents an overview of the physiology of sour taste and proposed theories for the transduction mechanisms for sour taste. The physiology of sour taste perception remains controversial and significant diversity exists among species with regard to cellular schemes used for detection of stimuli. The variety of mechanisms proposed, even within individual species, highlights the complexity of elucidating sour taste transduction. However, recent evidence suggests that at least one specific sour taste receptor protein has been identified.

  12. GWAS of human bitter taste perception identifies new loci and reveals additional complexity of bitter taste genetics.

    PubMed

    Ledda, Mirko; Kutalik, Zoltán; Souza Destito, Maria C; Souza, Milena M; Cirillo, Cintia A; Zamboni, Amabilene; Martin, Nathalie; Morya, Edgard; Sameshima, Koichi; Beckmann, Jacques S; le Coutre, Johannes; Bergmann, Sven; Genick, Ulrich K

    2014-01-01

    Human perception of bitterness displays pronounced interindividual variation. This phenotypic variation is mirrored by equally pronounced genetic variation in the family of bitter taste receptor genes. To better understand the effects of common genetic variations on human bitter taste perception, we conducted a genome-wide association study on a discovery panel of 504 subjects and a validation panel of 104 subjects from the general population of São Paulo in Brazil. Correction for general taste-sensitivity allowed us to identify a SNP in the cluster of bitter taste receptors on chr12 (10.88- 11.24 Mb, build 36.1) significantly associated (best SNP: rs2708377, P = 5.31 × 10(-13), r(2) = 8.9%, β = -0.12, s.e. = 0.016) with the perceived bitterness of caffeine. This association overlaps with-but is statistically distinct from-the previously identified SNP rs10772420 influencing the perception of quinine bitterness that falls in the same bitter taste cluster. We replicated this association to quinine perception (P = 4.97 × 10(-37), r(2) = 23.2%, β = 0.25, s.e. = 0.020) and additionally found the effect of this genetic locus to be concentration specific with a strong impact on the perception of low, but no impact on the perception of high concentrations of quinine. Our study, thus, furthers our understanding of the complex genetic architecture of bitter taste perception.

  13. A preference test for sweet taste that uses edible strips.

    PubMed

    Smutzer, Gregory; Patel, Janki Y; Stull, Judith C; Abarintos, Ray A; Khan, Neiladri K; Park, Kevin C

    2014-02-01

    A novel delivery method is described for the rapid determination of taste preferences for sweet taste in humans. This forced-choice paired comparison approach incorporates the non-caloric sweetener sucralose into a set of one-inch square edible strips for the rapid determination of sweet taste preferences. When compared to aqueous sucrose solutions, significantly lower amounts of sucralose were required to identify the preference for sweet taste. The validity of this approach was determined by comparing sweet taste preferences obtained with five different sucralose-containing edible strips to a set of five intensity-matched sucrose solutions. When compared to the solution test, edible strips required approximately the same number of steps to identify the preferred amount of sweet taste stimulus. Both approaches yielded similar distribution patterns for the preferred amount of sweet taste stimulus. In addition, taste intensity values for the preferred amount of sucralose in strips were similar to that of sucrose in solution. The hedonic values for the preferred amount of sucralose were lower than for sucrose, but the taste quality of the preferred sucralose strip was described as sweet. When taste intensity values between sucralose strips and sucralose solutions containing identical amounts of taste stimulus were compared, sucralose strips produced a greater taste intensity and more positive hedonic response. A preference test that uses edible strips for stimulus delivery should be useful for identifying preferences for sweet taste in young children, and in clinical populations. This test should also be useful for identifying sweet taste preferences outside of the lab or clinic. Finally, edible strips should be useful for developing preference tests for other primary taste stimuli and for taste mixtures. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Functional cell types in taste buds have distinct longevities.

    PubMed

    Perea-Martinez, Isabel; Nagai, Takatoshi; Chaudhari, Nirupa

    2013-01-01

    Taste buds are clusters of polarized sensory cells embedded in stratified oral epithelium. In adult mammals, taste buds turn over continuously and are replenished through the birth of new cells in the basal layer of the surrounding non-sensory epithelium. The half-life of cells in mammalian taste buds has been estimated as 8-12 days on average. Yet, earlier studies did not address whether the now well-defined functional taste bud cell types all exhibit the same lifetime. We employed a recently developed thymidine analog, 5-ethynil-2'-deoxyuridine (EdU) to re-evaluate the incorporation of newly born cells into circumvallate taste buds of adult mice. By combining EdU-labeling with immunostaining for selected markers, we tracked the differentiation and lifespan of the constituent cell types of taste buds. EdU was primarily incorporated into basal extragemmal cells, the principal source for replenishing taste bud cells. Undifferentiated EdU-labeled cells began migrating into circumvallate taste buds within 1 day of their birth. Type II (Receptor) taste cells began to differentiate from EdU-labeled precursors beginning 2 days after birth and then were eliminated with a half-life of 8 days. Type III (Presynaptic) taste cells began differentiating after a delay of 3 days after EdU-labeling, and they survived much longer, with a half-life of 22 days. We also scored taste bud cells that belong to neither Type II nor Type III, a heterogeneous group that includes mostly Type I cells, and also undifferentiated or immature cells. A non-linear decay fit described these cells as two sub-populations with half-lives of 8 and 24 days respectively. Our data suggest that many post-mitotic cells may remain quiescent within taste buds before differentiating into mature taste cells. A small number of slow-cycling cells may also exist within the perimeter of the taste bud. Based on their incidence, we hypothesize that these may be progenitors for Type III cells.

  15. Functional Cell Types in Taste Buds Have Distinct Longevities

    PubMed Central

    Perea-Martinez, Isabel; Nagai, Takatoshi; Chaudhari, Nirupa

    2013-01-01

    Taste buds are clusters of polarized sensory cells embedded in stratified oral epithelium. In adult mammals, taste buds turn over continuously and are replenished through the birth of new cells in the basal layer of the surrounding non-sensory epithelium. The half-life of cells in mammalian taste buds has been estimated as 8–12 days on average. Yet, earlier studies did not address whether the now well-defined functional taste bud cell types all exhibit the same lifetime. We employed a recently developed thymidine analog, 5-ethynil-2′-deoxyuridine (EdU) to re-evaluate the incorporation of newly born cells into circumvallate taste buds of adult mice. By combining EdU-labeling with immunostaining for selected markers, we tracked the differentiation and lifespan of the constituent cell types of taste buds. EdU was primarily incorporated into basal extragemmal cells, the principal source for replenishing taste bud cells. Undifferentiated EdU-labeled cells began migrating into circumvallate taste buds within 1 day of their birth. Type II (Receptor) taste cells began to differentiate from EdU-labeled precursors beginning 2 days after birth and then were eliminated with a half-life of 8 days. Type III (Presynaptic) taste cells began differentiating after a delay of 3 days after EdU-labeling, and they survived much longer, with a half-life of 22 days. We also scored taste bud cells that belong to neither Type II nor Type III, a heterogeneous group that includes mostly Type I cells, and also undifferentiated or immature cells. A non-linear decay fit described these cells as two sub-populations with half-lives of 8 and 24 days respectively. Our data suggest that many post-mitotic cells may remain quiescent within taste buds before differentiating into mature taste cells. A small number of slow-cycling cells may also exist within the perimeter of the taste bud. Based on their incidence, we hypothesize that these may be progenitors for Type III cells. PMID:23320081

  16. Effect of Magnitude Estimation of Pleasantness and Intensity on fMRI Activation to Taste

    PubMed Central

    Cerf-Ducastel, B.; Haase, L.; Murphy, C.

    2012-01-01

    The goal of the present study was to investigate whether the psychophysical evaluation of taste stimuli using magnitude estimation influences the pattern of cortical activation observed with neuroimaging. That is, whether different brain areas are involved in the magnitude estimation of pleasantness relative to the magnitude estimation of intensity. fMRI was utilized to examine the patterns of cortical activation involved in magnitude estimation of pleasantness and intensity during hunger in response to taste stimuli. During scanning, subjects were administered taste stimuli orally and were asked to evaluate the perceived pleasantness or intensity using the general Labeled Magnitude Scale (Green 1996, Bartoshuk et al. 2004). Image analysis was conducted using AFNI. Magnitude estimation of intensity and pleasantness shared common activations in the insula, rolandic operculum, and the medio dorsal nucleus of the thalamus. Globally, magnitude estimation of pleasantness produced significantly more activation than magnitude estimation of intensity. Areas differentially activated during magnitude estimation of pleasantness versus intensity included, e.g., the insula, the anterior cingulate gyrus, and putamen; suggesting that different brain areas were recruited when subjects made magnitude estimates of intensity and pleasantness. These findings demonstrate significant differences in brain activation during magnitude estimation of intensity and pleasantness to taste stimuli. An appreciation for the complexity of brain response to taste stimuli may facilitate a clearer understanding of the neural mechanisms underlying eating behavior and over consumption. PMID:23227271

  17. Loss or major reduction of umami taste sensation in pinnipeds

    NASA Astrophysics Data System (ADS)

    Sato, Jun J.; Wolsan, Mieczyslaw

    2012-08-01

    Umami is one of basic tastes that humans and other vertebrates can perceive. This taste is elicited by L-amino acids and thus has a special role of detecting nutritious, protein-rich food. The T1R1 + T1R3 heterodimer acts as the principal umami receptor. The T1R1 protein is encoded by the Tas1r1 gene. We report multiple inactivating (pseudogenizing) mutations in exon 3 of this gene from four phocid and two otariid species (Pinnipedia). Jiang et al. (Proc Natl Acad Sci U S A 109:4956-4961, 2012) reported two inactivating mutations in exons 2 and 6 of this gene from another otariid species. These findings suggest lost or greatly reduced umami sensory capabilities in these species. The widespread occurrence of a nonfunctional Tas1r1 pseudogene in this clade of strictly carnivorous mammals is surprising. We hypothesize that factors underlying the pseudogenization of Tas1r1 in pinnipeds may be driven by the marine environment to which these carnivorans (Carnivora) have adapted and may include: the evolutionary change in diet from tetrapod prey to fish and cephalopods (because cephalopods and living fish contain little or no synergistic inosine 5'-monophosphate that greatly enhances umami taste), the feeding behavior of swallowing food whole without mastication (because the T1R1 + T1R3 receptor is distributed on the tongue and palate), and the saltiness of sea water (because a high concentration of sodium chloride masks umami taste).

  18. Tasting calories differentially affects brain activation during hunger and satiety.

    PubMed

    van Rijn, Inge; de Graaf, Cees; Smeets, Paul A M

    2015-02-15

    An important function of eating is ingesting energy. Our objectives were to assess whether oral exposure to caloric and non-caloric stimuli elicits discriminable responses in the brain and to determine in how far these responses are modulated by hunger state and sweetness. Thirty women tasted three stimuli in two motivational states (hunger and satiety) while their brain responses were measured using functional magnetic resonance imaging in a randomized crossover design. Stimuli were solutions of sucralose (sweet, no energy), maltodextrin (non-sweet, energy) and sucralose+maltodextrin (sweet, energy). We found no main effect of energy content and no interaction between energy content and sweetness. However, there was an interaction between hunger state and energy content in the median cingulate (bilaterally), ventrolateral prefrontal cortex, anterior insula and thalamus. This indicates that the anterior insula and thalamus, areas in which hunger state and taste of a stimulus are integrated, also integrate hunger state with caloric content of a taste stimulus. Furthermore, in the median cingulate and ventrolateral prefrontal cortex, tasting energy resulted in more activation during satiety compared to hunger. This finding indicates that these areas, which are known to be involved in processes that require approach and avoidance, are also involved in guiding ingestive behavior. In conclusion, our results suggest that energy sensing is a hunger state dependent process, in which the median cingulate, ventrolateral prefrontal cortex, anterior insula and thalamus play a central role by integrating hunger state with stimulus relevance. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Taste - impaired

    MedlinePlus

    ... last slightly longer. Causes of impaired taste include: Bell's palsy Common cold Flu and other viral infections Nasal ... any medical emergency or for the diagnosis or treatment of any medical condition. A licensed physician should ...

  20. Tasting Wine: A Learning Experience

    ERIC Educational Resources Information Center

    King, Tanya J.; Donaldson, Jilleen A.; Harry, Emma

    2012-01-01

    This paper describes a field trip by senior undergraduate anthropology students to a local winery, where they participated in a wine-tasting class with winery staff. In response to explicit hints from a wine-tasting facilitator, and more subtle cues from the cultural capital embedded in their surroundings and the winery staff, the students…

  1. Advanced Taste Sensors Based on Artificial Lipids with Global Selectivity to Basic Taste Qualities and High Correlation to Sensory Scores

    PubMed Central

    Kobayashi, Yoshikazu; Habara, Masaaki; Ikezazki, Hidekazu; Chen, Ronggang; Naito, Yoshinobu; Toko, Kiyoshi

    2010-01-01

    Effective R&D and strict quality control of a broad range of foods, beverages, and pharmaceutical products require objective taste evaluation. Advanced taste sensors using artificial-lipid membranes have been developed based on concepts of global selectivity and high correlation with human sensory score. These sensors respond similarly to similar basic tastes, which they quantify with high correlations to sensory score. Using these unique properties, these sensors can quantify the basic tastes of saltiness, sourness, bitterness, umami, astringency and richness without multivariate analysis or artificial neural networks. This review describes all aspects of these taste sensors based on artificial lipid, ranging from the response principle and optimal design methods to applications in the food, beverage, and pharmaceutical markets. PMID:22319306

  2. Taste bud cell dynamics during normal and sodium-restricted development.

    PubMed

    Hendricks, Susan J; Brunjes, Peter C; Hill, David L

    2004-04-26

    Taste bud volume increases over the postnatal period to match the number of neurons providing innervation. To clarify age-related changes in fungiform taste bud volume, the current study investigated developmental changes in taste bud cell number, proliferation rate, and life span. Taste bud growth can largely be accounted for by addition of cytokeratin-19-positive taste bud cells. Examination of taste bud cell kinetics with 3H-thymidine autoradiography revealed that cell life span and turnover periods were not altered during normal development but that cells were produced more rapidly in young rats, a prominent modification that could lead to increased taste bud size. By comparison, dietary sodium restriction instituted during pre- and postnatal development results in small taste buds at adulthood as a result of fewer cytokeratin-19-positive cells. The dietary manipulation also had profound influences on taste bud growth kinetics, including an increased latency for cells to enter the taste bud and longer life span and turnover periods. These studies provide fundamental, new information about taste bud development under normal conditions and after environmental manipulations that impact nerve/target matching. Copyright 2004 Wiley-Liss, Inc.

  3. Transgenic labeling of higher order neuronal circuits linked to phospholipase C-β2-expressing taste bud cells in medaka fish.

    PubMed

    Ieki, Takashi; Okada, Shinji; Aihara, Yoshiko; Ohmoto, Makoto; Abe, Keiko; Yasuoka, Akihito; Misaka, Takumi

    2013-06-01

    The sense of taste plays a pivotal role in the food-selecting behaviors of vertebrates. We have shown that the fish ortholog of the phospholipase C gene (plc-β2) is expressed in a subpopulation of taste bud cells that transmit taste stimuli to the central nervous system to evoke favorable and aversive behaviors. We generated transgenic medaka expressing wheat germ agglutinin (WGA) under the control of a regulatory region of the medaka plc-β2 gene to analyze the neuronal circuit connected to these sensory cells. Immunohistochemical analysis of the transgenic fish 12 days post fertilization revealed that the WGA protein was transferred to cranial sensory ganglia and several nuclei in the hindbrain. WGA signals were also detected in the secondary gustatory nucleus in the hindbrain of 3-month-old transgenic fish. WGA signals were observed in several diencephalic and telencephalic regions in 9-month-old transgenic fish. The age-dependent increase in the labeled brain regions strongly suggests that labeling occurred at taste bud cells and progressively extended to cranial nerves and neurons in the central nervous system. These data are the first to demonstrate the tracing of higher order gustatory neuronal circuitry that is associated with a specific subpopulation of taste bud cells. These results provide insight into the basic neuronal architecture of gustatory information processing that is common among vertebrates. Copyright © 2012 Wiley Periodicals, Inc.

  4. Change of the human taste bud volume over time.

    PubMed

    Srur, Ehab; Stachs, Oliver; Guthoff, Rudolf; Witt, Martin; Pau, Hans Wilhelm; Just, Tino

    2010-08-01

    The specific aim of this study is to measure the taste volume in healthy human subjects over a 2.5-month period and to demonstrate morphological changes of the peripheral taste organs. Eighteen human taste buds in four fungiform papillae (fPap) were examined over a 10-week period. The fungiform papillae investigated were selected based on the form of the papillae or the arrangement of surface taste pores. Measurements were performed over 10 consecutive weeks, with five scans in a day once a week. The following parameters were measured: height and diameter of the taste bud, diameter of the fungiform papilla and diameter of the taste pore. The findings of this exploratory study indicated that (1) taste bud volumes changed over a 10-week period, (2) the interval between two volume maxima within the 10-week period was 3-5 weeks, and (3) the diameter of the fPap did not correlate with the volume of a single taste bud or with the volume of all taste buds in the fPap within the 10-week period. This exploratory in vivo study revealed changes in taste bud volumes in healthy humans with age-related gustatory sensitivity. These findings need to be considered when studying the effect of denervation of fungiform papillae in vivo using confocal microscopy. Crown Copyright 2009. Published by Elsevier Ireland Ltd. All rights reserved.

  5. Taste Disorders

    MedlinePlus

    ... have lost it. Scientists are gaining a better understanding of why the same receptor that helps your tongue detect sweet taste can also be found in the human gut. NIDCD-funded scientists have shown that the ...

  6. Adolescent delta-9-tetrahydrocannabinol (THC) exposure fails to affect THC-induced place and taste conditioning in adult male rats.

    PubMed

    Wakeford, Alison G P; Flax, Shaun M; Pomfrey, Rebecca L; Riley, Anthony L

    2016-01-01

    Adolescent initiation of drug use has been linked to problematic drug taking later in life and may represent an important variable that changes the balance of the rewarding and/or aversive effects of abused drugs which may contribute to abuse vulnerability. The current study examined the effects of adolescent THC exposure on THC-induced place preference (rewarding effects) and taste avoidance (aversive effects) conditioning in adulthood. Forty-six male Sprague-Dawley adolescent rats received eight injections of an intermediate dose of THC (3.2mg/kg) or vehicle. After these injections, animals were allowed to mature and then trained in a combined CTA/CPP procedure in adulthood (PND ~90). Animals were given four trials of conditioning with intervening water-recovery days, a final CPP test and then a one-bottle taste avoidance test. THC induced dose-dependent taste avoidance but did not produce place conditioning. None of these effects was impacted by adolescent THC exposure. Adolescent exposure to THC had no effect on THC taste and place conditioning in adulthood. The failure to see an effect of adolescent exposure was addressed in the context of other research that has assessed exposure of drugs of abuse during adolescence on drug reactivity in adulthood. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Metallic taste from electrical and chemical stimulation.

    PubMed

    Lawless, Harry T; Stevens, David A; Chapman, Kathryn W; Kurtz, Anne

    2005-03-01

    A series of three experiments investigated the nature of metallic taste reports after stimulation with solutions of metal salts and after stimulation with metals and electric currents. To stimulate with electricity, a device was fabricated consisting of a small battery affixed to a plastic handle with the anode side exposed for placement on the tongue or oral tissues. Intensity of taste from metals and batteries was dependent upon the voltage and was more robust in areas dense in fungiform papillae. Metallic taste was reported from stimulation with ferrous sulfate solutions, from metals and from electric stimuli. However, reports of metallic taste were more frequent when the word 'metallic' was presented embedded in a list of choices, as opposed to simple free-choice labeling. Intensity decreased for ferrous sulfate when the nose was occluded, consistent with a decrease in retronasal smell, as previously reported. Intensity of taste evoked by copper metal, bimetallic stimuli (zinc/copper) or small batteries (1.5-3 V) was not affected by nasal occlusion. This difference suggests two distinct mechanisms for evocation of metallic taste reports, one dependent upon retronasal smell and a second mediated by oral chemoreceptors.

  8. Common sense about taste: from mammals to insects.

    PubMed

    Yarmolinsky, David A; Zuker, Charles S; Ryba, Nicholas J P

    2009-10-16

    The sense of taste is a specialized chemosensory system dedicated to the evaluation of food and drink. Despite the fact that vertebrates and insects have independently evolved distinct anatomic and molecular pathways for taste sensation, there are clear parallels in the organization and coding logic between the two systems. There is now persuasive evidence that tastant quality is mediated by labeled lines, whereby distinct and strictly segregated populations of taste receptor cells encode each of the taste qualities.

  9. Tachykinins Stimulate a Subset of Mouse Taste Cells

    PubMed Central

    Grant, Jeff

    2012-01-01

    The tachykinins substance P (SP) and neurokinin A (NKA) are present in nociceptive sensory fibers expressing transient receptor potential cation channel, subfamily V, member 1 (TRPV1). These fibers are found extensively in and around the taste buds of several species. Tachykinins are released from nociceptive fibers by irritants such as capsaicin, the active compound found in chili peppers commonly associated with the sensation of spiciness. Using real-time Ca2+-imaging on isolated taste cells, it was observed that SP induces Ca2+ -responses in a subset of taste cells at concentrations in the low nanomolar range. These responses were reversibly inhibited by blocking the SP receptor NK-1R. NKA also induced Ca2+-responses in a subset of taste cells, but only at concentrations in the high nanomolar range. These responses were only partially inhibited by blocking the NKA receptor NK-2R, and were also inhibited by blocking NK-1R indicating that NKA is only active in taste cells at concentrations that activate both receptors. In addition, it was determined that tachykinin signaling in taste cells requires Ca2+-release from endoplasmic reticulum stores. RT-PCR analysis further confirmed that mouse taste buds express NK-1R and NK-2R. Using Ca2+-imaging and single cell RT-PCR, it was determined that the majority of tachykinin-responsive taste cells were Type I (Glial-like) and umami-responsive Type II (Receptor) cells. Importantly, stimulating NK-1R had an additive effect on Ca2+ responses evoked by umami stimuli in Type II (Receptor) cells. This data indicates that tachykinin release from nociceptive sensory fibers in and around taste buds may enhance umami and other taste modalities, providing a possible mechanism for the increased palatability of spicy foods. PMID:22363709

  10. [A Rare Case of Cerebellar Hemangioblastoma Causing Taste Disorder].

    PubMed

    Nakashiro, Hiroko; Kawashima, Masatou; Yoshioka, Fumitaka; Nakahara, Yukiko; Takase, Yukinori; Ogata, Atsushi; Shimokawa, Shoko; Masuoka, Jun; Abe, Tatsuya; Matsushima, Toshio

    2017-03-01

    Taste(gustation)is one of the five senses, and comprises the types: sweet, bitter, salty, sour, and umami. Taste disorders, such as dysgeusia and parageusia, are classified into 2 types: those with peripheral origin and those with central origin. The peripheral origin-type taste disorder is caused by zinc deficiency, mouth dryness, a side effect of radiotherapy or complication of systemic diseases such as, diabetes, hepatopathy, and nephropathy. The central origin-type taste disorder is reported to be caused due to demyelinating disease, pontine hemorrhage, pontine infarction, and thalamic infarction; it is very rarely caused by a brain tumor. We surgically treated a 69-year-old man with cerebellar hemangioblastoma who had developed taste disorder. The tumor compressed the solitary nucleus, which includes the taste tract in the central nervous system. On removal of the tumor, the taste disorder gradually improved.

  11. [Molecular logic of alcohol and taste].

    PubMed

    Matsumoto, Ichiro; Abe, Keiko; Arai, Soichi

    2006-10-01

    Ethanol, a main constituent of every alcohol beverage, has long been calling our attention to its gustatory effect. Recent molecular dynamics studies have suggested that ethanol as well as other tastants in foods, when taken in the oral cavity, gives rise to a taste signal which is expressed via reception at taste cells in the taste bud, intracellular signal transduction in collaboration with G proteins and effecters, and signal transmission to synapsed taste neurons, and/or simultaneous reception at and signal transduction in somatosensory neurons. The taste of ethanol and its acceptability are then recognized and judged at the higher center, with generation of various physiological phenomena in the body. We have tried to make an all-inclusive DNA microarray analysis, demonstrating that when a rat tongue is stimulated with a drop of aqueous ethanol in vivo, several particular genes are specifically up- or down-regulated in trigeminal ganglions. These initial gene expression changes at peripheral neurocytes might in whole or in part trigger some of the ethanol-associated gustatory and bodily response. The importance of defining a related molecular logic is emphasized to understand academic and industrial significances of this unique food constituent, ethanol.

  12. Hypoxanthine enhances the cured meat taste.

    PubMed

    Ichimura, Sayaka; Nakamura, Yukinobu; Yoshida, Yuka; Hattori, Akihito

    2017-02-01

    We evaluated the enhancement of cured meat taste during maturation by sensory analysis. We focused on the heat-stable sarcoplasmic fraction (HSSF) to identify the factors related to cured meat taste. Because the dry matter of HSSF contained more than 30% nitrogen, nitrogen compounds such as free amino acids, small peptides and adenosine triphosphate-related compounds seemed to be the important components of HSSF. The samples cured with HSSF for 2 h exhibited the same taste profile as ones cured without HSSF for 168 h. Therefore, the changes in the amount and fractions of nitrogen compounds were examined in HSSF during incubation from 0 to 168 h. The concentration of hypoxanthine (Hx) gradually increased, while inosine-5'-monophosphate decreased during the incubation. The samples cured with pickles containing various concentrations of Hx were subjected to sensory analysis. The addition of Hx, in a dose-dependent fashion, enhanced cured meat taste by maturation for 2 h. It was concluded that Hx is essential for the enhancement of cured meat taste. © 2016 The Authors. Animal Science Journal published by John Wiley & Sons Australia, Ltd on behalf of Japanese Society of Animal Science.

  13. Taste avoidance induced by wheel running: effects of backward pairings and robustness of conditioned taste aversion.

    PubMed

    Salvy, Sarah-Jeanne; Pierce, W David; Heth, Donald C; Russell, James C

    2004-09-15

    Rats repeatedly exposed to a distinctive novel solution (conditioned stimulus, CS) followed by the opportunity to run in a wheel subsequently drink less of this solution. Investigations on this phenomenon indicate that wheel running is an effective unconditioned stimulus (US) for establishing conditioned taste aversion (CTA) when using a forward conditioning procedure (i.e., the US-wheel running follows the CS-taste). However, other studies show that wheel running produces reliable preference for a distinctive place when pairings are backward (i.e., the CS-location follows the US-wheel running). One possibility to account for these results is that rewarding aftereffects of wheel running conditioned preference to the CS. The main objective of the present study was to assess the effects of backward conditioning using wheel running as the US and a distinctive taste as the CS. In a between-groups design, two experimental groups [i.e., forward (FC) and backward conditioning (BC)] and two control groups [CS-taste alone (TA) and CS-US unpaired (UNP)] were compared. Results from this experiment indicated that there is less suppression of drinking when a CS-taste followed a bout of wheel running. In fact, rats in the BC group drank more of the paired solution than all the other groups.

  14. Metallic taste in cancer patients treated with chemotherapy.

    PubMed

    IJpma, I; Renken, R J; Ter Horst, G J; Reyners, A K L

    2015-02-01

    Metallic taste is a taste alteration frequently reported by cancer patients treated with chemotherapy. Attention to this side effect of chemotherapy is limited. This review addresses the definition, assessment methods, prevalence, duration, etiology, and management strategies of metallic taste in chemotherapy treated cancer patients. Literature search for metallic taste and chemotherapy was performed in PubMed up to September 2014, resulting in 184 articles of which 13 articles fulfilled the inclusion criteria: English publications addressing metallic taste in cancer patients treated with FDA-approved chemotherapy. An additional search in Google Scholar, in related articles of both search engines, and subsequent in the reference lists, resulted in 13 additional articles included in this review. Cancer patient forums were visited to explore management strategies. Prevalence of metallic taste ranged from 9.7% to 78% among patients with various cancers, chemotherapy treatments, and treatment phases. No studies have been performed to investigate the influence of metallic taste on dietary intake, body weight, and quality of life. Several management strategies can be recommended for cancer patients: using plastic utensils, eating cold or frozen foods, adding strong herbs, spices, sweetener or acid to foods, eating sweet and sour foods, using 'miracle fruit' supplements, and rinsing with chelating agents. Although metallic taste is a frequent side effect of chemotherapy and a much discussed topic on cancer patient forums, literature regarding metallic taste among chemotherapy treated cancer patients is scarce. More awareness for this side effect can improve the support for these patients. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Conditioned taste aversion, drugs of abuse and palatability

    PubMed Central

    Lin, Jian-You; Arthurs, Joe; Reilly, Steve

    2014-01-01

    LIN, J.-Y., J. Arthurs and S. Reilly. Conditioned taste aversion: Palatability and drugs of abuse. NEUROSCI BIOBEHAV REV XX(x) XXX-XXX, 2014. – We consider conditioned taste aversion to involve a learned reduction in the palatability of a taste (and hence in amount consumed) based on the association that develops when a taste experience is followed by gastrointestinal malaise. The present article evaluates the well-established finding that drugs of abuse, at doses that are otherwise considered rewarding and self-administered, cause intake suppression. Our recent work using lick pattern analysis shows that drugs of abuse also cause a palatability downshift and, therefore, support conditioned taste aversion learning. PMID:24813806

  16. Interactions between radiation and amphetamine in taste-aversion learning and the role of the area postrema in amphetamine-induced conditioned taste aversions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rabin, B.M.; Hunt, W.A.; Lee, J.

    1987-01-01

    Three experiments were run to assess the role of the area postrema in taste-aversion learning resulting from combined treatment with subthreshold unconditioned stimuli and in the acquisition of an amphetamine-induced taste aversion. In the first experiment, it was shown that combined treatment with subthreshold radiation (15 rad) and subthreshold amphetamine (0.5 mg/kg, IP) resulted in the acquisition of a taste aversion. The second experiment showed that lesions of the area postrema blocked taste aversion learning produced by two subthreshold doses of amphetamine. In the third experiment, which looked at the dose-response curve for amphetamine-induced taste aversion learning to intact ratsmore » and rats with area postrema lesions, it was shown that both groups of rats acquired taste aversions following injection of amphetamine, although the rats with lesions showed a less-severe aversion than the intact rats. The results are interpreted as indicating that amphetamine-induced taste-aversion learning may involve area post-remamediated mechanisms, particularly at the lower doses, but an intact area postrema is not a necessary condition of the acquisition of an amphetamine-induced taste aversion.« less

  17. Interactions between radiation and amphetamine in taste aversion learning and the role of the area postrema in amphetamine-induced conditioned taste aversions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rabin, B.M.; Hunt, W.A.; Lee, J.

    1987-08-01

    Three experiments were run to assess the role of the area postrema in taste aversion learning resulting from combined treatment with subthreshold unconditioned stimuli and in the acquisition of an amphetamine-induced taste aversion. In the first experiment, it was shown that combined treatment with subthreshold radiation (15 rad) and subthreshold amphetamine (0.5 mg/kg, IP) resulted in the acquisition of a taste aversion. The second experiment showed that lesions of the area postrema blocked taste aversion learning produced by two subthreshold doses of amphetamine. In the third experiment, which looked at the dose-response curve for amphetamine-induced taste aversion learning in intactmore » rats and rats with area postrema lesions, it was shown that both groups of rats acquired taste aversions following injection of amphetamine, although the rats with lesions showed a less severe aversion than the intact rats. The results are interpreted as indicating that amphetamine-induced taste aversion learning may involve area postrema-mediated mechanisms, particularly at the lower doses, but that an intact area postrema is not a necessary condition for the acquisition of an amphetamine-induced taste aversion.« less

  18. Evolution: a study in bad taste?

    PubMed

    Wooding, Stephen

    2005-10-11

    Bitter tastes are among the most salient of life's experiences--who can forget one's first encounter with dandelion milk or a stout beer? Studies of the genes underlying these tastes are providing new perspectives on human origins and health.

  19. “Turn Up the Taste”: Assessing the Role of Taste Intensity and Emotion in Mediating Crossmodal Correspondences between Basic Tastes and Pitch

    PubMed Central

    Wang, Sheila; Spence, Charles

    2016-01-01

    People intuitively match basic tastes to sounds of different pitches, and the matches that they make tend to be consistent across individuals. It is, though, not altogether clear what governs such crossmodal mappings between taste and auditory pitch. Here, we assess whether variations in taste intensity influence the matching of taste to pitch as well as the role of emotion in mediating such crossmodal correspondences. Participants were presented with 5 basic tastants at 3 concentrations. In Experiment 1, the participants rated the tastants in terms of their emotional arousal and valence/pleasantness, and selected a musical note (from 19 possible pitches ranging from C2 to C8) and loudness that best matched each tastant. In Experiment 2, the participants made emotion ratings and note matches in separate blocks of trials, then made emotion ratings for all 19 notes. Overall, the results of the 2 experiments revealed that both taste quality and concentration exerted a significant effect on participants’ loudness selection, taste intensity rating, and valence and arousal ratings. Taste quality, not concentration levels, had a significant effect on participants’ choice of pitch, but a significant positive correlation was observed between individual perceived taste intensity and pitch choice. A significant and strong correlation was also demonstrated between participants’ valence assessments of tastants and their valence assessments of the best-matching musical notes. These results therefore provide evidence that: 1) pitch–taste correspondences are primarily influenced by taste quality, and to a lesser extent, by perceived intensity; and 2) such correspondences may be mediated by valence/pleasantness. PMID:26873934

  20. Common Sense about Taste: From Mammals to Insects

    PubMed Central

    Yarmolinsky, David A.; Zuker, Charles S.; Ryba, Nicholas J.P.

    2013-01-01

    The sense of taste is a specialized chemosensory system dedicated to the evaluation of food and drink. Despite the fact that vertebrates and insects have independently evolved distinct anatomic and molecular pathways for taste sensation, there are clear parallels in the organization and coding logic between the two systems. There is now persuasive evidence that tastant quality is mediated by labeled lines, whereby distinct and strictly segregated populations of taste receptor cells encode each of the taste qualities. PMID:19837029

  1. GWAS of human bitter taste perception identifies new loci and reveals additional complexity of bitter taste genetics

    PubMed Central

    Ledda, Mirko; Kutalik, Zoltán; Souza Destito, Maria C.; Souza, Milena M.; Cirillo, Cintia A.; Zamboni, Amabilene; Martin, Nathalie; Morya, Edgard; Sameshima, Koichi; Beckmann, Jacques S.; le Coutre, Johannes; Bergmann, Sven; Genick, Ulrich K.

    2014-01-01

    Human perception of bitterness displays pronounced interindividual variation. This phenotypic variation is mirrored by equally pronounced genetic variation in the family of bitter taste receptor genes. To better understand the effects of common genetic variations on human bitter taste perception, we conducted a genome-wide association study on a discovery panel of 504 subjects and a validation panel of 104 subjects from the general population of São Paulo in Brazil. Correction for general taste-sensitivity allowed us to identify a SNP in the cluster of bitter taste receptors on chr12 (10.88– 11.24 Mb, build 36.1) significantly associated (best SNP: rs2708377, P = 5.31 × 10−13, r2 = 8.9%, β = −0.12, s.e. = 0.016) with the perceived bitterness of caffeine. This association overlaps with—but is statistically distinct from—the previously identified SNP rs10772420 influencing the perception of quinine bitterness that falls in the same bitter taste cluster. We replicated this association to quinine perception (P = 4.97 × 10−37, r2 = 23.2%, β = 0.25, s.e. = 0.020) and additionally found the effect of this genetic locus to be concentration specific with a strong impact on the perception of low, but no impact on the perception of high concentrations of quinine. Our study, thus, furthers our understanding of the complex genetic architecture of bitter taste perception. PMID:23966204

  2. Unified Behavior Framework for Reactive Robot Control in Real-Time Systems

    DTIC Science & Technology

    2007-03-01

    maintain coherent operation in concurrent programs by employing standard communication and synchronization patterns. Some typical ones are: semaphores ...through the semaphore . Signals, whether persistent or transient, are used to communicate between threads as a means of synchronizing their progress...tasks to be decomposed into collections of low-level primitive behaviors, Figure 2.b. This approach takes on the self- contradictory term, reactive

  3. Learning context modulates aversive taste strength in honey bees.

    PubMed

    de Brito Sanchez, Maria Gabriela; Serre, Marion; Avarguès-Weber, Aurore; Dyer, Adrian G; Giurfa, Martin

    2015-03-01

    The capacity of honey bees (Apis mellifera) to detect bitter substances is controversial because they ingest without reluctance different kinds of bitter solutions in the laboratory, whereas free-flying bees avoid them in visual discrimination tasks. Here, we asked whether the gustatory perception of bees changes with the behavioral context so that tastes that are less effective as negative reinforcements in a given context become more effective in a different context. We trained bees to discriminate an odorant paired with 1 mol l(-1) sucrose solution from another odorant paired with either distilled water, 3 mol l(-1) NaCl or 60 mmol l(-1) quinine. Training was either Pavlovian [olfactory conditioning of the proboscis extension reflex (PER) in harnessed bees], or mainly operant (olfactory conditioning of free-walking bees in a Y-maze). PER-trained and maze-trained bees were subsequently tested both in their original context and in the alternative context. Whereas PER-trained bees transferred their choice to the Y-maze situation, Y-maze-trained bees did not respond with a PER to odors when subsequently harnessed. In both conditioning protocols, NaCl and distilled water were the strongest and the weakest aversive reinforcement, respectively. A significant variation was found for quinine, which had an intermediate aversive effect in PER conditioning but a more powerful effect in the Y-maze, similar to that of NaCl. These results thus show that the aversive strength of quinine varies with the learning context, and reveal the plasticity of the bee's gustatory system. We discuss the experimental constraints of both learning contexts and focus on stress as a key modulator of taste in the honey bee. Further explorations of bee taste are proposed to understand the physiology of taste modulation in bees. © 2015. Published by The Company of Biologists Ltd.

  4. Perception of sweet taste is important for voluntary alcohol consumption in mice.

    PubMed

    Blednov, Y A; Walker, D; Martinez, M; Levine, M; Damak, S; Margolskee, R F

    2008-02-01

    To directly evaluate the association between taste perception and alcohol intake, we used three different mutant mice, each lacking a gene expressed in taste buds and critical to taste transduction: alpha-gustducin (Gnat3), Tas1r3 or Trpm5. Null mutant mice lacking any of these three genes showed lower preference score for alcohol and consumed less alcohol in a two-bottle choice test, as compared with wild-type littermates. These null mice also showed lower preference score for saccharin solutions than did wild-type littermates. In contrast, avoidance of quinine solutions was less in Gnat3 or Trpm5 knockout mice than in wild-type mice, whereas Tas1r3 null mice were not different from wild type in their response to quinine solutions. There were no differences in null vs. wild-type mice in their consumption of sodium chloride solutions. To determine the cause for reduction of ethanol intake, we studied other ethanol-induced behaviors known to be related to alcohol consumption. There were no differences between null and wild-type mice in ethanol-induced loss of righting reflex, severity of acute ethanol withdrawal or conditioned place preference for ethanol. Weaker conditioned taste aversion (CTA) to alcohol in null mice may have been caused by weaker rewarding value of the conditioned stimulus (saccharin). When saccharin was replaced by sodium chloride, no differences in CTA to alcohol between knockout and wild-type mice were seen. Thus, deletion of any one of three different genes involved in detection of sweet taste leads to a substantial reduction of alcohol intake without any changes in pharmacological actions of ethanol.

  5. Glucose transporters and ATP-gated K+ (KATP) metabolic sensors are present in type 1 taste receptor 3 (T1r3)-expressing taste cells.

    PubMed

    Yee, Karen K; Sukumaran, Sunil K; Kotha, Ramana; Gilbertson, Timothy A; Margolskee, Robert F

    2011-03-29

    Although the heteromeric combination of type 1 taste receptors 2 and 3 (T1r2 + T1r3) is well established as the major receptor for sugars and noncaloric sweeteners, there is also evidence of T1r-independent sweet taste in mice, particularly so for sugars. Before the molecular cloning of the T1rs, it had been proposed that sweet taste detection depended on (a) activation of sugar-gated cation channels and/or (b) sugar binding to G protein-coupled receptors to initiate second-messenger cascades. By either mechanism, sugars would elicit depolarization of sweet-responsive taste cells, which would transmit their signal to gustatory afferents. We examined the nature of T1r-independent sweet taste; our starting point was to determine if taste cells express glucose transporters (GLUTs) and metabolic sensors that serve as sugar sensors in other tissues. Using RT-PCR, quantitative PCR, in situ hybridization, and immunohistochemistry, we determined that several GLUTs (GLUT2, GLUT4, GLUT8, and GLUT9), a sodium-glucose cotransporter (SGLT1), and two components of the ATP-gated K(+) (K(ATP)) metabolic sensor [sulfonylurea receptor (SUR) 1 and potassium inwardly rectifying channel (Kir) 6.1] were expressed selectively in taste cells. Consistent with a role in sweet taste, GLUT4, SGLT1, and SUR1 were expressed preferentially in T1r3-positive taste cells. Electrophysiological recording determined that nearly 20% of the total outward current of mouse fungiform taste cells was composed of K(ATP) channels. Because the overwhelming majority of T1r3-expressing taste cells also express SUR1, and vice versa, it is likely that K(ATP) channels constitute a major portion of K(+) channels in the T1r3 subset of taste cells. Taste cell-expressed glucose sensors and K(ATP) may serve as mediators of the T1r-independent sweet taste of sugars.

  6. Taste and Hypertension in Humans: Targeting Cardiovascular Disease.

    PubMed

    Roura, Eugeni; Foster, Simon; Winklebach, Anja; Navarro, Marta; Thomas, Walter; Campbell, Katrina; Stowasser, Michael

    2016-01-01

    The association between salty taste and NaCl intake with hypertension is well-established, although it is far from completely understood. Other taste types such as sweet, umami or bitter have also been related to alterations in blood pressure. Here, we review the mutual relationship between taste and hypertension to identify potential avenues to better control blood pressure. This review focuses on published data involving humans, with the exception of a section on molecular mechanisms. There is compelling evidence to suggest that changes in salty taste sensitivity can be used to predict the onset of hypertension. This goes hand in hand with the medical concept of sodium sensitivity, which also increases with age, particularly in hypertensive patients. The association of hypertension with the loss of taste acuity less definitive with some data/conclusions masked by the use of anti-hypertensive drugs. In fact, this group of therapeutic agents can reduce food taste perception resulting in mild to severe hypogeusia and dysgeusia. In the elderly, antihypertensive drugs may lead to a loss of appetite, thus, selecting treatments with low or no impact on taste perception should be advised. Pharmacological approaches to mitigate cardiovascular disease (CVD) could well take a different spin in the future following the discovery of taste receptors (TAS1R and TAS2R) in the cardiovascular system. Finally, long-term dietary strategies to minimize the risk of development of hypertension and CVD are discussed identifying several nutrients and public health policies with relevant potential.

  7. Role of the ectonucleotidase NTPDase2 in taste bud function

    PubMed Central

    Vandenbeuch, Aurelie; Anderson, Catherine B.; Parnes, Jason; Enjyoji, Keiichi; Robson, Simon C.; Finger, Thomas E.; Kinnamon, Sue C.

    2013-01-01

    Taste buds are unusual in requiring ATP as a transmitter to activate sensory nerve fibers. In response to taste stimuli, taste cells release ATP, activating purinergic receptors containing the P2X2 and P2X3 subunits on taste nerves. In turn, the released ATP is hydrolyzed to ADP by a plasma membrane nucleoside triphosphate previously identified as nucleoside triphosphate diphosphohydrolase-2 (NTPDase2). In this paper we investigate the role of this ectonucleotidase in the function of taste buds by examining gene-targeted Entpd2-null mice globally lacking NTPDase2. RT-PCR confirmed the absence of NTPDase2, and ATPase enzyme histochemistry reveals no reaction product in taste buds of knockout mice, suggesting that NTPDase2 is the dominant form in taste buds. RT-PCR and immunocytochemistry demonstrated that in knockout mice all cell types are present in taste buds, even those cells normally expressing NTPDase2. In addition, the overall number and size of taste buds are normal in Entpd2-null mice. Luciferin/luciferase assays of circumvallate tissue of knockout mice detected elevated levels of extracellular ATP. Electrophysiological recordings from two taste nerves, the chorda tympani and glossopharyngeal, revealed depressed responses to all taste stimuli in Entpd2-null mice. Responses were more depressed in the glossopharyngeal nerve than in the chorda tympani nerve and involved all taste qualities; responses in the chorda tympani were more depressed to sweet and umami stimuli than to other qualities. We suggest that the excessive levels of extracellular ATP in the Entpd2-knockout animals desensitize the P2X receptors associated with nerve fibers, thereby depressing taste responses. PMID:23959882

  8. Role of the ectonucleotidase NTPDase2 in taste bud function.

    PubMed

    Vandenbeuch, Aurelie; Anderson, Catherine B; Parnes, Jason; Enjyoji, Keiichi; Robson, Simon C; Finger, Thomas E; Kinnamon, Sue C

    2013-09-03

    Taste buds are unusual in requiring ATP as a transmitter to activate sensory nerve fibers. In response to taste stimuli, taste cells release ATP, activating purinergic receptors containing the P2X2 and P2X3 subunits on taste nerves. In turn, the released ATP is hydrolyzed to ADP by a plasma membrane nucleoside triphosphate previously identified as nucleoside triphosphate diphosphohydrolase-2 (NTPDase2). In this paper we investigate the role of this ectonucleotidase in the function of taste buds by examining gene-targeted Entpd2-null mice globally lacking NTPDase2. RT-PCR confirmed the absence of NTPDase2, and ATPase enzyme histochemistry reveals no reaction product in taste buds of knockout mice, suggesting that NTPDase2 is the dominant form in taste buds. RT-PCR and immunocytochemistry demonstrated that in knockout mice all cell types are present in taste buds, even those cells normally expressing NTPDase2. In addition, the overall number and size of taste buds are normal in Entpd2-null mice. Luciferin/luciferase assays of circumvallate tissue of knockout mice detected elevated levels of extracellular ATP. Electrophysiological recordings from two taste nerves, the chorda tympani and glossopharyngeal, revealed depressed responses to all taste stimuli in Entpd2-null mice. Responses were more depressed in the glossopharyngeal nerve than in the chorda tympani nerve and involved all taste qualities; responses in the chorda tympani were more depressed to sweet and umami stimuli than to other qualities. We suggest that the excessive levels of extracellular ATP in the Entpd2-knockout animals desensitize the P2X receptors associated with nerve fibers, thereby depressing taste responses.

  9. Zizyphin modulates calcium signalling in human taste bud cells and fat taste perception in the mouse.

    PubMed

    Murtaza, Babar; Berrichi, Meryem; Bennamar, Chahid; Tordjmann, Thierry; Djeziri, Fatima Z; Hichami, Aziz; Leemput, Julia; Belarbi, Meriem; Ozdener, Hakan; Khan, Naim A

    2017-10-01

    Zizyphin, isolated from Zizyphus sps. leaf extracts, has been shown to modulate sugar taste perception, and the palatability of a sweet solution is increased by the addition of fatty acids. We, therefore, studied whether zizyphin also modulates fat taste perception. Zizyphin was purified from edible fruit of Zizyphus lotus L. Zizyphin-induced increases in [Ca 2+ ]i in human taste bud cells (hTBC). Zizyphin shared the endoplasmic reticulum Ca 2+ pool and also recruited, in part, Ca 2+ from extracellular environment via the opening of store-operated Ca 2+ channels. Zizyphin exerted additive actions on linoleic acid (LA)-induced increases in [Ca 2+ ]i in these cells, indicating that zizyphin does not exert its action via fatty acid receptors. However, zizyphin seemed to exert, at least in part, its action via bile acid receptor Takeda-G-protein-receptor-5 in hTBC. In behavioural tests, mice exhibited preference for both LA and zizyphin. Interestingly, zizyphin increased the preference for a solution containing-LA. This study is the first evidence of the modulation of fat taste perception by zizyphin at the cellular level in hTBC. Our study might be helpful for considering the synthesis of zizyphin analogues as 'taste modifiers' with a potential in the management of obesity and lipid-mediated disorders. © 2017 Société Française de Pharmacologie et de Thérapeutique.

  10. The Role of Reactive Aggression in the Link Between Hyperactive-Impulsive Behaviors and Peer Rejection in Adolescents.

    PubMed

    Evans, Spencer C; Fite, Paula J; Hendrickson, Michelle L; Rubens, Sonia L; Mages, Anna K

    2015-12-01

    Attention-deficit/hyperactivity disorder (ADHD) symptoms and aggressive behaviors are both associated with peer rejection, but little is known the nature of this association with respect to the two symptom dimensions of hyperactivity-impulsivity and inattention and different types of aggression. The present study examines the relations between dimensions of ADHD symptomatology, proactive and reactive aggression, and peer rejection in adolescence. Teacher-reported data were obtained for 200 high school students (grades 9-12; 48% female; predominately Latino). In structural equation modeling path analyses, the indirect effects of reactive aggression accounted for the link between hyperactivity-impulsivity and peer rejection. Within the same model, neither inattention nor proactive aggression were associated with peer rejection. These findings suggest that reactive aggression may be a key mechanism through which hyperactive-impulsive behavior is associated with peer rejection. Future research and intervention efforts should address the role of reactive aggression among youth with ADHD symptomatology.

  11. Taste education reduces food neophobia and increases willingness to try novel foods in school children

    PubMed Central

    Park, Bo-Kyung

    2016-01-01

    BACKGROUND/OBJECTIVES This study measured the effects of a taste education program developed in Korea on food neophobia and willingness to try novel foods in school children. SUBJECTS/METHODS One-hundred and twenty school children (aged 7-9 years) residing in Seoul participated in 12 sessions of a taste education program for 3 months. The Korean taste education program was adapted from "Les classes du goût" by J. Puisais and modified to suit a Korean education environment. The study subjected school children to pre- and post-programs on food neophobia and willingness to try novel foods (WTNF), in addition to children's food neophobia in their parents. A total of 101 survey data were analyzed using SPSS 18.0. RESULTS Regarding the effects of taste education, scores of food neophobia significantly decreased (P < 0.01) in the posttest, mean (m) score (4.10 ± 1.19) decreased compared to the pretest (4.39 ± 1.00), and WTNF significantly increased (P < 0.001) in the pretest (m) score (0.48 ± 0.33) compared to the pretest (0.32 ± 0.34). This result indicates verification of the study hypothesis. CONCLUSIONS Food neophobia scale (FNS), an index that measures personal food preference [12], showed a very weak correlation with behavioral willingness to taste novel foods (WTNF). Therefore, it is expected that the two scales measure different things. However, considering that the traits of food neophobia are not easily changed, the taste education program was administered in a remarkably effective manner. PMID:27087907

  12. Expression of aquaporin water channels in rat taste buds.

    PubMed

    Watson, Kristina J; Kim, Insook; Baquero, Arian F; Burks, Catherine A; Liu, Lidong; Gilbertson, Timothy A

    2007-06-01

    In order to gain insight into the molecular mechanisms that allow taste cells to respond to changes in their osmotic environment, we have used primarily immunocytochemical and molecular approaches to look for evidence of the presence of aquaporin-like water channels in taste cells. Labeling of isolated taste buds from the fungiform, foliate, and vallate papillae in rat tongue with antibodies against several of the aquaporins (AQPs) revealed the presence of AQP1, AQP2, and AQP5 in taste cells from these areas. AQP3 antibodies failed to label isolated taste buds from any of the papillae. There was an apparent difference in the regional localization of AQP labeling within the taste bud. Antibodies against AQP1 and AQP2 labeled predominantly the basolateral membrane, whereas the AQP5 label was clearly evident on both the apical and basolateral membranes of cells within the taste bud. Double labeling revealed that AQP1 and AQP2 labeled many, but not all, of the same taste cells. Similar double-labeling experiments with anti-AQP2 and anti-AQP5 clearly showed that AQP5 was expressed on or near the apical membranes whereas AQP2 was absent from this area. The presence of these 3 types of AQPs in taste buds but not in non-taste bud-containing epithelia was confirmed using reverse transcription-polymerase chain reaction. Experiments using patch clamp recording showed that the AQP inhibitor, tetraethylammonium, significantly reduced hypoosmotic-induced currents in rat taste cells. We hypothesize that the AQPs may play roles both in the water movement underlying compensatory mechanisms for changes in extracellular osmolarity and, in the case of AQP5 in particular, in the gustatory response to water.

  13. β-Catenin signaling regulates temporally discrete phases of anterior taste bud development

    PubMed Central

    Thirumangalathu, Shoba; Barlow, Linda A.

    2015-01-01

    The sense of taste is mediated by multicellular taste buds located within taste papillae on the tongue. In mice, individual taste buds reside in fungiform papillae, which develop at mid-gestation as epithelial placodes in the anterior tongue. Taste placodes comprise taste bud precursor cells, which express the secreted factor sonic hedgehog (Shh) and give rise to taste bud cells that differentiate around birth. We showed previously that epithelial activation of β-catenin is the primary inductive signal for taste placode formation, followed by taste papilla morphogenesis and taste bud differentiation, but the degree to which these later elements were direct or indirect consequences of β-catenin signaling was not explored. Here, we define discrete spatiotemporal functions of β-catenin in fungiform taste bud development. Specifically, we show that early epithelial activation of β-catenin, before taste placodes form, diverts lingual epithelial cells from a taste bud fate. By contrast, β-catenin activation a day later within Shh+ placodes, expands taste bud precursors directly, but enlarges papillae indirectly. Further, placodal activation of β-catenin drives precocious differentiation of Type I glial-like taste cells, but not other taste cell types. Later activation of β-catenin within Shh+ precursors during papilla morphogenesis also expands taste bud precursors and accelerates Type I cell differentiation, but papilla size is no longer enhanced. Finally, although Shh regulates taste placode patterning, we find that it is dispensable for the accelerated Type I cell differentiation induced by β-catenin. PMID:26525674

  14. Molecular mechanism of the sweet taste enhancers.

    PubMed

    Zhang, Feng; Klebansky, Boris; Fine, Richard M; Liu, Haitian; Xu, Hong; Servant, Guy; Zoller, Mark; Tachdjian, Catherine; Li, Xiaodong

    2010-03-09

    Positive allosteric modulators of the human sweet taste receptor have been developed as a new way of reducing dietary sugar intake. Besides their potential health benefit, the sweet taste enhancers are also valuable tool molecules to study the general mechanism of positive allosteric modulations of T1R taste receptors. Using chimeric receptors, mutagenesis, and molecular modeling, we reveal how these sweet enhancers work at the molecular level. Our data argue that the sweet enhancers follow a similar mechanism as the natural umami taste enhancer molecules. Whereas the sweeteners bind to the hinge region and induce the closure of the Venus flytrap domain of T1R2, the enhancers bind close to the opening and further stabilize the closed and active conformation of the receptor.

  15. Effect of Maillard Reacted Peptides on Human Salt Taste and the Amiloride-Insensitive Salt Taste Receptor (TRPV1t)

    PubMed Central

    Katsumata, Tadayoshi; Nakakuki, Hiroko; Tokunaga, Chikara; Fujii, Noboru; Egi, Makoto; Phan, Tam-Hao T.; Mummalaneni, Shobha; DeSimone, John A.

    2008-01-01

    Maillard reacted peptides (MRPs) were synthesized by conjugating a peptide fraction (1000–5000 Da) purified from soy protein hydrolyzate with galacturonic acid, glucosamine, xylose, fructose, or glucose. The effect of MRPs was investigated on human salt taste and on the chorda tympani (CT) taste nerve responses to NaCl in Sprague–Dawley rats, wild-type, and transient receptor potential vanilloid 1 (TRPV1) knockout mice. MRPs produced a biphasic effect on human salt taste perception and on the CT responses in rats and wild-type mice in the presence of NaCl + benzamil (Bz, a blocker of epithelial Na+ channels), enhancing the NaCl response at low concentrations and suppressing it at high concentrations. The effectiveness of MRPs as salt taste enhancers varied with the conjugated sugar moiety: galacturonic acid = glucosamine > xylose > fructose > glucose. The concentrations at which MRPs enhanced human salt taste were significantly lower than the concentrations of MRPs that produced increase in the NaCl CT response. Elevated temperature, resiniferatoxin, capsaicin, and ethanol produced additive effects on the NaCl CT responses in the presence of MRPs. Elevated temperature and ethanol also enhanced human salt taste perception. N-(3-methoxyphenyl)-4-chlorocinnamid (a blocker of TRPV1t) inhibited the Bz-insensitive NaCl CT responses in the absence and presence of MRPs. TRPV1 knockout mice demonstrated no Bz-insensitive NaCl CT response in the absence or presence of MRPs. The results suggest that MRPs modulate human salt taste and the NaCl + Bz CT responses by interacting with TRPV1t. PMID:18603652

  16. From Cell to Beak: In-Vitro and In-Vivo Characterization of Chicken Bitter Taste Thresholds.

    PubMed

    Cheled-Shoval, Shira; Behrens, Maik; Korb, Ayelet; Di Pizio, Antonella; Meyerhof, Wolfgang; Uni, Zehava; Niv, Masha Y

    2017-05-17

    Bitter taste elicits an aversive reaction, and is believed to protect against consuming poisons. Bitter molecules are detected by the Tas2r family of G-protein-coupled receptors, with a species-dependent number of subtypes. Chickens demonstrate bitter taste sensitivity despite having only three bitter taste receptors-ggTas2r1, ggTas2r2 and ggTas2r7. This minimalistic bitter taste system in chickens was used to determine relationships between in-vitro (measured in heterologous systems) and in-vivo (behavioral) detection thresholds. ggTas2r-selective ligands, nicotine (ggTas2r1), caffeine (ggTas2r2), erythromycin and (+)-catechin (ggTas2r7), and the Tas2r-promiscuous ligand quinine (all three ggTas2rs) were studied. Ligands of the same receptor had different in-vivo:in-vitro ratios, and the ggTas2r-promiscuous ligand did not exhibit lower in-vivo:in-vitro ratios than ggTas2r-selective ligands. In-vivo thresholds were similar or up to two orders of magnitude higher than the in-vitro ones.

  17. AP1 transcription factors are required to maintain the peripheral taste system.

    PubMed

    Shandilya, Jayasha; Gao, Yankun; Nayak, Tapan K; Roberts, Stefan G E; Medler, Kathryn F

    2016-10-27

    The sense of taste is used by organisms to achieve the optimal nutritional requirement and avoid potentially toxic compounds. In the oral cavity, taste receptor cells are grouped together in taste buds that are present in specialized taste papillae in the tongue. Taste receptor cells are the cells that detect chemicals in potential food items and transmit that information to gustatory nerves that convey the taste information to the brain. As taste cells are in contact with the external environment, they can be damaged and are routinely replaced throughout an organism's lifetime to maintain functionality. However, this taste cell turnover loses efficiency over time resulting in a reduction in taste ability. Currently, very little is known about the mechanisms that regulate the renewal and maintenance of taste cells. We therefore performed RNA-sequencing analysis on isolated taste cells from 2 and 6-month-old mice to determine how alterations in the taste cell-transcriptome regulate taste cell maintenance and function in adults. We found that the activator protein-1 (AP1) transcription factors (c-Fos, Fosb and c-Jun) and genes associated with this pathway were significantly downregulated in taste cells by 6 months and further declined at 12 months. We generated conditional c-Fos-knockout mice to target K14-expressing cells, including differentiating taste cells. c-Fos deletion caused a severe perturbation in taste bud structure and resulted in a significant reduction in the taste bud size. c-Fos deletion also affected taste cell turnover as evident by a decrease in proliferative marker, and upregulation of the apoptotic marker cleaved-PARP. Thus, AP1 factors are important regulators of adult taste cell renewal and their downregulation negatively impacts taste maintenance.

  18. AP1 transcription factors are required to maintain the peripheral taste system

    PubMed Central

    Shandilya, Jayasha; Gao, Yankun; Nayak, Tapan K; Roberts, Stefan G E; Medler, Kathryn F

    2016-01-01

    The sense of taste is used by organisms to achieve the optimal nutritional requirement and avoid potentially toxic compounds. In the oral cavity, taste receptor cells are grouped together in taste buds that are present in specialized taste papillae in the tongue. Taste receptor cells are the cells that detect chemicals in potential food items and transmit that information to gustatory nerves that convey the taste information to the brain. As taste cells are in contact with the external environment, they can be damaged and are routinely replaced throughout an organism's lifetime to maintain functionality. However, this taste cell turnover loses efficiency over time resulting in a reduction in taste ability. Currently, very little is known about the mechanisms that regulate the renewal and maintenance of taste cells. We therefore performed RNA-sequencing analysis on isolated taste cells from 2 and 6-month-old mice to determine how alterations in the taste cell-transcriptome regulate taste cell maintenance and function in adults. We found that the activator protein-1 (AP1) transcription factors (c-Fos, Fosb and c-Jun) and genes associated with this pathway were significantly downregulated in taste cells by 6 months and further declined at 12 months. We generated conditional c-Fos-knockout mice to target K14-expressing cells, including differentiating taste cells. c-Fos deletion caused a severe perturbation in taste bud structure and resulted in a significant reduction in the taste bud size. c-Fos deletion also affected taste cell turnover as evident by a decrease in proliferative marker, and upregulation of the apoptotic marker cleaved-PARP. Thus, AP1 factors are important regulators of adult taste cell renewal and their downregulation negatively impacts taste maintenance. PMID:27787515

  19. β-Catenin signaling regulates temporally discrete phases of anterior taste bud development.

    PubMed

    Thirumangalathu, Shoba; Barlow, Linda A

    2015-12-15

    The sense of taste is mediated by multicellular taste buds located within taste papillae on the tongue. In mice, individual taste buds reside in fungiform papillae, which develop at mid-gestation as epithelial placodes in the anterior tongue. Taste placodes comprise taste bud precursor cells, which express the secreted factor sonic hedgehog (Shh) and give rise to taste bud cells that differentiate around birth. We showed previously that epithelial activation of β-catenin is the primary inductive signal for taste placode formation, followed by taste papilla morphogenesis and taste bud differentiation, but the degree to which these later elements were direct or indirect consequences of β-catenin signaling was not explored. Here, we define discrete spatiotemporal functions of β-catenin in fungiform taste bud development. Specifically, we show that early epithelial activation of β-catenin, before taste placodes form, diverts lingual epithelial cells from a taste bud fate. By contrast, β-catenin activation a day later within Shh(+) placodes, expands taste bud precursors directly, but enlarges papillae indirectly. Further, placodal activation of β-catenin drives precocious differentiation of Type I glial-like taste cells, but not other taste cell types. Later activation of β-catenin within Shh(+) precursors during papilla morphogenesis also expands taste bud precursors and accelerates Type I cell differentiation, but papilla size is no longer enhanced. Finally, although Shh regulates taste placode patterning, we find that it is dispensable for the accelerated Type I cell differentiation induced by β-catenin. © 2015. Published by The Company of Biologists Ltd.

  20. Taste detection ability of elderly nursing home residents.

    PubMed

    Ogawa, T; Uota, M; Ikebe, K; Notomi, Y; Iwamoto, Y; Shirobayashi, I; Kibi, M; Masayasu, S; Sasaki, S; Maeda, Y

    2016-07-01

    Due to the rapid rise of aged populations throughout the world, it is essential to elucidate the cause of taste dysfunction, because it may reduce appetite, leading to inadequate dietary intake. We aimed to compare taste detection ability between dependently and independently living geriatric individuals of nearly the same age with oral status. Forty-three elderly individuals considered to be cognitively eligible and residing in nursing homes in Japan were enrolled (n = 43, 82·3 ± 8·5 years) and were compared with an independently living elderly group (n = 949, 79·9 ± 0·8 years), aiming to compare taste detection ability between dependently and independently living elders of nearly the same age. Information regarding comorbidity and medication was obtained as general health status, and oral status including number of present teeth, denture usage and maximal occlusal force was also noted. In the dependently living group, 69·4%, 14·3%, 16·3% and 8·2% of participants could detect sweet, sour, salty and bitter tastes, respectively, which was significantly lower than the independently living group for each taste (97·9%, 70·8%, 89·6% and 43·8% for sweet, sour, salty and bitter tastes, respectively). The multivariate logistic regression analysis revealed that residing in nursing homes was associated with reduced sensitivity for four different tastes. The diseases and the situation of dependent elders were more likely the cause of the decreased taste sensitivity. © 2016 John Wiley & Sons Ltd.

  1. Child fear reactivity and sex as moderators of links between parenting and preschool behavior problems.

    PubMed

    Barnett, Melissa A; Scaramella, Laura V

    2015-11-01

    Reduced supportive parenting and elevated negative parenting behaviors increase risks for maladaptive social adjustment during early childhood (e.g., Campbell, Shaw, & Gilliom, 2000). However, the magnitude of these risks may vary according to children's individual characteristics, such as sex and temperament. The current study examines whether children's sex and fear reactivity moderate the associations between mothers' observed parenting and children's behavior problems 1 year later. The sample consists of 151 predominantly African American, low-income families with one sibling who is approximately 2 years old and the closest aged older sibling who is approximately 4 years old. Results from fixed-effects within-family models indicate that fear distress (i.e., fearfulness) moderated associations between mothers' observed negative parenting and children's increased behavior problems, such that only those children with mean or higher observed fear distress scores showed increased behavior problems when exposed to mother's negative parenting. Child sex moderated associations between fear approach reactivity (i.e., fearlessness) and mothers' observed supportive parenting. Specifically, low fear approach combined with supportive parenting was associated with fewer behavior problems for boys only. Implications of these findings for preventive intervention are discussed.

  2. Using Single Colors and Color Pairs to Communicate Basic Tastes

    PubMed Central

    Spence, Charles

    2016-01-01

    Recently, it has been demonstrated that people associate each of the basic tastes (e.g., sweet, sour, bitter, and salty) with specific colors (e.g., red, green, black, and white). In the present study, we investigated whether pairs of colors (both associated with a particular taste or taste word) would give rise to stronger associations relative to pairs of colors that were associated with different tastes. We replicate the findings of previous studies highlighting the existence of a robust crossmodal correspondence between individual colors and basic tastes. However, while there was evidence that pairs of colors could indeed communicate taste information more consistently than single colors, our participants took more than twice as long to match the color pairs with tastes than the single colors. Possible reasons for these results are discussed. PMID:27698979

  3. Using Single Colors and Color Pairs to Communicate Basic Tastes.

    PubMed

    Woods, Andy T; Spence, Charles

    2016-01-01

    Recently, it has been demonstrated that people associate each of the basic tastes (e.g., sweet, sour, bitter, and salty) with specific colors (e.g., red, green, black, and white). In the present study, we investigated whether pairs of colors (both associated with a particular taste or taste word) would give rise to stronger associations relative to pairs of colors that were associated with different tastes. We replicate the findings of previous studies highlighting the existence of a robust crossmodal correspondence between individual colors and basic tastes. However, while there was evidence that pairs of colors could indeed communicate taste information more consistently than single colors, our participants took more than twice as long to match the color pairs with tastes than the single colors. Possible reasons for these results are discussed.

  4. Whole transcriptome profiling of taste bud cells.

    PubMed

    Sukumaran, Sunil K; Lewandowski, Brian C; Qin, Yumei; Kotha, Ramana; Bachmanov, Alexander A; Margolskee, Robert F

    2017-08-08

    Analysis of single-cell RNA-Seq data can provide insights into the specific functions of individual cell types that compose complex tissues. Here, we examined gene expression in two distinct subpopulations of mouse taste cells: Tas1r3-expressing type II cells and physiologically identified type III cells. Our RNA-Seq libraries met high quality control standards and accurately captured differential expression of marker genes for type II (e.g. the Tas1r genes, Plcb2, Trpm5) and type III (e.g. Pkd2l1, Ncam, Snap25) taste cells. Bioinformatics analysis showed that genes regulating responses to stimuli were up-regulated in type II cells, while pathways related to neuronal function were up-regulated in type III cells. We also identified highly expressed genes and pathways associated with chemotaxis and axon guidance, providing new insights into the mechanisms underlying integration of new taste cells into the taste bud. We validated our results by immunohistochemically confirming expression of selected genes encoding synaptic (Cplx2 and Pclo) and semaphorin signalling pathway (Crmp2, PlexinB1, Fes and Sema4a) components. The approach described here could provide a comprehensive map of gene expression for all taste cell subpopulations and will be particularly relevant for cell types in taste buds and other tissues that can be identified only by physiological methods.

  5. [The sense of taste in a clinical setting].

    PubMed

    Fjaeldstad, Alexander; Fernandes, Henrique; Nyengaard, Jens Randel; Ovesen, Therese

    2018-04-30

    As a gatekeeper, taste buds forage chemicals to identify both nutrition and toxins. This can be the decisive difference between initiating the swallow reflex or spitting out the oral contents. In addition to this simple function the sense of taste takes part in more complex relations such as reflexes vs learning, perception vs expectation, and pleasure vs disgust. All relations, which can be perturbed into unbalance, create great discomfort in patients suffering from a dysfunctional sense of taste. This review discusses the most important mechanisms of taste function and dysfunction as well as the possible avenues for treatment of the disorders.

  6. Involvement of the Calcium-sensing Receptor in Human Taste Perception

    PubMed Central

    Ohsu, Takeaki; Amino, Yusuke; Nagasaki, Hiroaki; Yamanaka, Tomohiko; Takeshita, Sen; Hatanaka, Toshihiro; Maruyama, Yutaka; Miyamura, Naohiro; Eto, Yuzuru

    2010-01-01

    By human sensory analyses, we found that various extracellular calcium-sensing receptor (CaSR) agonists enhance sweet, salty, and umami tastes, although they have no taste themselves. These characteristics are known as “kokumi taste” and often appear in traditional Japanese cuisine. Although GSH is a typical kokumi taste substance (taste enhancer), its mode of action is poorly understood. Here, we demonstrate how the kokumi taste is enhanced by the CaSR, a close relative of the class C G-protein-coupled receptors T1R1, T1R2, and T1R3 (sweet and umami receptors). We identified a large number of CaSR agonist γ-glutamyl peptides, including GSH (γ-Glu-Cys-Gly) and γ-Glu-Val-Gly, and showed that these peptides elicit the kokumi taste. Further analyses revealed that some known CaSR agonists such as Ca2+, protamine, polylysine, l-histidine, and cinacalcet (a calcium-mimetic drug) also elicit the kokumi taste and that the CaSR-specific antagonist, NPS-2143, significantly suppresses the kokumi taste. This is the first report indicating a distinct function of the CaSR in human taste perception. PMID:19892707

  7. Astringent compounds suppress taste responses in gerbil.

    PubMed

    Schiffman, S S; Suggs, M S; Simon, S A

    1992-11-06

    Astringent tastes are generally considered those that induce long-lasting puckering and drying sensations on the tongue and membranes of the oral cavity. Electrophysiological recordings were made here from the whole chorda tympani nerve in gerbil to understand the interactive effect of astringent-tasting molecules with a broad spectrum of tastants including mono- and divalent salts, bitter compounds, acids, and sweeteners. The astringent tasting compounds were tannic acid (24 mM at pH's 2.9 and 5.5), aluminum ammonium sulfate (30 mM), aluminum potassium sulfate (10 mM) and gallic acid (30 mM). Hydrochloric acid (1 mM, pH 2.9) was also tested to control for acidity, since aqueous solutions of astringent-tasting compounds are acidic. Adaptation of the tongue to tannic acid (24 mM) at both pH 2.9 and 5.5 markedly inhibited responses elicited by salts, acids, sweeteners, and bitter-tasting compounds. The degree of the inhibition at these two pH values is about the same which suggests that tannic acid itself (as opposed to acidity) may produce this inhibition. Chorda tympani responses to sweeteners were completely suppressed by tannic acid; responses to KCl, NH4Cl, and urea were the least suppressed. The aluminum salts also inhibited the chorda tympani responses to all stimuli tested. Gallic acid, which is weakly astringent, had minimal effects on the chorda tympani responses to the test compounds. These data suggest that both tannic acid and the aluminum salts inhibit a variety of transport pathways and receptors in taste cells for a broad spectrum of tastants. The inhibition of some of these pathways may contribute to the astringent taste sensation.

  8. Exploring the musical taste of expert listeners: musicology students reveal tendency toward omnivorous taste

    PubMed Central

    Elvers, Paul; Omigie, Diana; Fuhrmann, Wolfgang; Fischinger, Timo

    2015-01-01

    Musicology students are engaged with music on an academic level and usually have an extensive musical background. They have a considerable knowledge of music history and theory and listening to music may be regarded as one of their primary occupations. Taken together, these factors qualify them as ≫expert listeners≪, who may be expected to exhibit a specific profile of musical taste: interest in a broad range of musical styles combined with a greater appreciation of ≫sophisticated≪ styles. The current study examined the musical taste of musicology students as compared to a control student group. Participants (n = 1003) completed an online survey regarding the frequency with which they listened to 22 musical styles. A factor analysis revealed six underlying dimensions of musical taste. A hierarchical cluster analysis then grouped all participants, regardless of their status, according to their similarity on these dimensions. The employed exploratory approach was expected to reveal potential differences between musicology students and controls. A three-cluster solution was obtained. Comparisons of the clusters in terms of musical taste revealed differences in the listening frequency and variety of appreciated music styles: the first cluster (51% musicology students/27% controls) showed the greatest musical engagement across all dimensions although with a tendency toward ≫sophisticated≪ musical styles. The second cluster (36% musicology students/46% controls) exhibited an interest in ≫conventional≪ music, while the third cluster (13% musicology students/27% controls) showed a strong liking of rock music. The results provide some support for the notion of specific tendencies in the musical taste of musicology students and the contribution of familiarity and knowledge toward musical omnivorousness. Further differences between the clusters in terms of social, personality, and sociodemographic factors are discussed. PMID:26347702

  9. Exploring the musical taste of expert listeners: musicology students reveal tendency toward omnivorous taste.

    PubMed

    Elvers, Paul; Omigie, Diana; Fuhrmann, Wolfgang; Fischinger, Timo

    2015-01-01

    Musicology students are engaged with music on an academic level and usually have an extensive musical background. They have a considerable knowledge of music history and theory and listening to music may be regarded as one of their primary occupations. Taken together, these factors qualify them as ≫expert listeners≪, who may be expected to exhibit a specific profile of musical taste: interest in a broad range of musical styles combined with a greater appreciation of ≫sophisticated≪ styles. The current study examined the musical taste of musicology students as compared to a control student group. Participants (n = 1003) completed an online survey regarding the frequency with which they listened to 22 musical styles. A factor analysis revealed six underlying dimensions of musical taste. A hierarchical cluster analysis then grouped all participants, regardless of their status, according to their similarity on these dimensions. The employed exploratory approach was expected to reveal potential differences between musicology students and controls. A three-cluster solution was obtained. Comparisons of the clusters in terms of musical taste revealed differences in the listening frequency and variety of appreciated music styles: the first cluster (51% musicology students/27% controls) showed the greatest musical engagement across all dimensions although with a tendency toward ≫sophisticated≪ musical styles. The second cluster (36% musicology students/46% controls) exhibited an interest in ≫conventional≪ music, while the third cluster (13% musicology students/27% controls) showed a strong liking of rock music. The results provide some support for the notion of specific tendencies in the musical taste of musicology students and the contribution of familiarity and knowledge toward musical omnivorousness. Further differences between the clusters in terms of social, personality, and sociodemographic factors are discussed.

  10. Water Treatment Technology - Taste, Odor & Color.

    ERIC Educational Resources Information Center

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on taste, odor, and color provides instructional materials for three competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: taste and odor determination, control of…

  11. Analysis of Facial Expression by Taste Stimulation

    NASA Astrophysics Data System (ADS)

    Tobitani, Kensuke; Kato, Kunihito; Yamamoto, Kazuhiko

    In this study, we focused on the basic taste stimulation for the analysis of real facial expressions. We considered that the expressions caused by taste stimulation were unaffected by individuality or emotion, that is, such expressions were involuntary. We analyzed the movement of facial muscles by taste stimulation and compared real expressions with artificial expressions. From the result, we identified an obvious difference between real and artificial expressions. Thus, our method would be a new approach for facial expression recognition.

  12. Cross-modal tactile-taste interactions in food evaluations

    PubMed Central

    Slocombe, B. G.; Carmichael, D.A.; Simner, J.

    2016-01-01

    Detecting the taste components within a flavoured substance relies on exposing chemoreceptors within the mouth to the chemical components of ingested food. In our paper, we show that the evaluation of taste components can also be influenced by the tactile quality of the food. We first discuss how multisensory factors might influence taste, flavour and smell for both typical and atypical (synaesthetic) populations and we then present two empirical studies showing tactile-taste interactions in the general population. We asked a group of average adults to evaluate the taste components of flavoured food substances, whilst we presented simultaneous cross-sensory visuo-tactile cues within the eating environment. Specifically, we presented foodstuffs between subjects that were otherwise identical but had a rough versus smooth surface, or were served on a rough versus smooth serving-plate. We found no effect of the serving-plate, but we found the rough/smoothness of the foodstuff itself significantly influenced perception: food was rated as significantly more sour if it had a rough (vs. smooth) surface. In modifying taste perception via ostensibly unrelated dimensions, we demonstrate that the detection of tastes within flavours may be influenced by higher level cross-sensory cues. Finally, we suggest that the direction of our cross-sensory associations may speak to the types of hedonic mapping found both in normal multisensory integration, and in the unusual condition of synaesthesia. PMID:26169315

  13. A crossmodal role for audition in taste perception.

    PubMed

    Yan, Kimberly S; Dando, Robin

    2015-06-01

    Our sense of taste can be influenced by our other senses, with several groups having explored the effects of olfactory, visual, or tactile stimulation on what we perceive as taste. Research into multisensory, or crossmodal perception has rarely linked our sense of taste with that of audition. In our study, 48 participants in a crossover experiment sampled multiple concentrations of solutions of 5 prototypic tastants, during conditions with or without broad spectrum auditory stimulation, simulating that of airline cabin noise. Airline cabins are an unusual environment, in which food is consumed routinely under extreme noise conditions, often over 85 dB, and in which the perceived quality of food is often criticized. Participants rated the intensity of solutions representing varying concentrations of the 5 basic tastes on the general Labeled Magnitude Scale. No difference in intensity ratings was evident between the control and sound condition for salty, sour, or bitter tastes. Likewise, panelists did not perform differently during sound conditions when rating tactile, visual, or auditory stimulation, or in reaction time tests. Interestingly, sweet taste intensity was rated progressively lower, whereas the perception of umami taste was augmented during the experimental sound condition, to a progressively greater degree with increasing concentration. We postulate that this effect arises from mechanostimulation of the chorda tympani nerve, which transits directly across the tympanic membrane of the middle ear. (c) 2015 APA, all rights reserved).

  14. Recalled taste intensity, liking and habitual intake of commonly consumed foods.

    PubMed

    Cornelis, Marilyn C; Tordoff, Michael G; El-Sohemy, Ahmed; van Dam, Rob M

    2017-02-01

    Taste intensity and quality affect the liking of foods, and determine food choice and consumption. We aimed to 1) classify commonly consumed foods based on recalled taste intensity for bitter, sweet, salty, sour, and fatty taste, and 2) examine the associations among recalled taste intensity, liking, and habitual consumption of foods. In Stage 1, 62 Canadian adults recalled the taste intensity of 120 common foods. Their responses were used to identify sets of 20-25 foods classified as strongly bitter, sweet, salty, sour or fatty-tasting. In Stage 2, 287 U.S. adults validated these selections, and let us reduce them to sets of 11-13 foods. Ratings of recalled taste intensity were consistent across age, sex and overweight status, with the exceptions that sweet, bitter and fatty-tasting foods were rated as more intense by women than by men. The recalled intensity ratings of the most bitter, salty and fatty foods (but not sour or sweet foods) were inversely correlated with liking and intake. The negative correlation between fatty taste intensity and fatty food liking was stronger among normal weight than among overweight participants. Our results suggest that the recalled taste intensity of foods is associated with food liking and habitual consumption, but the strength of these relationships varies by taste. The food lists based on taste intensity ratings provide a resource to efficiently calculate indices of exposure to the different tastes in future studies. Copyright © 2016. Published by Elsevier Ltd.

  15. Recalled taste intensity, liking and habitual intake of commonly consumed foods

    PubMed Central

    Cornelis, Marilyn C.; Tordoff, Michael G.; El-Sohemy, Ahmed; van Dam, Rob M.

    2016-01-01

    Taste intensity and quality affect the liking of foods, and determine food choice and consumption. We aimed to 1) classify commonly consumed foods based on recalled taste intensity for bitter, sweet, salty, sour, and fatty taste, and 2) examine the associations among recalled taste intensity, liking, and habitual consumption of foods. In Stage 1, 62 Canadian adults recalled the taste intensity of 120 common foods. Their responses were used to identify sets of 20–25 foods classified as strongly bitter, sweet, salty, sour or fatty-tasting. In Stage 2, 287 U.S. adults validated these selections, and let us reduce them to sets of 11–13 foods. Ratings of recalled taste intensity were consistent across age, sex and overweight status, with the exceptions that sweet, bitter and fatty-tasting foods were rated as more intense by women than by men. The recalled intensity ratings of the most bitter, salty and fatty foods (but not sour or sweet foods) were inversely correlated with liking and intake. The negative correlation between fatty taste intensity and fatty food liking was stronger among normal weight than among overweight participants. Our results suggest that the recalled taste intensity of foods is associated with food liking and habitual consumption, but the strength of these relationships varies by taste. The food lists based on taste intensity ratings provide a resource to efficiently calculate indices of exposure to the different tastes in future studies. PMID:27915079

  16. [Gustometry usefulness for the evaluation of taste sense efficiency. Part I. The range of taste substances concentrations and the result of gustometry examination].

    PubMed

    Klimacka-Nawrot, Ewa; Suchecka, Wanda; Błońska-Fajfrowska, Barbara

    2007-01-01

    There are various methods of taste substances application in gustometry examination. The Polish Committee of Standards (Polski Komitet Normalizacyjny--PKN) recommends the performance of sensitivity taste examinations with the use of method based on rinsing out the mouth with water solutions of taste substances (sip-and-spit method) at their growing concentrations. The aim of the present research was to assess the usefulness of taste substances dilutions, whose concentrations were consistent with guidelines of the PKN for the evaluation of the results of examination of sweet, salty and sour taste sensitivity. 795 volunteers, i.e. 473 women and 322 men, aged 18-66, were the subject of study. The range of concentrations in sucrose solutions (0.34-12.00 g/l) as well as in sodium chloride solutions (0.16-2.00 g/l) were proper for examination in order to recognize taste threshold with the most volunteers. However, the use of concentrations in citric acid solutions (in the range 0.13-0.60 g/l) did not enable to investigate the taste sensitivity by reason of the large percentage of persons (85.2%) who correctly recognized the sour taste of the solution with the lowest citric acid concentration. The range of citric acid concentration (0.0036-0.2000 g/l) appeared to be more proper for examination of the sour taste sensitivity. The concentrations of sucrose and sodium chloride solutions recommended by PKN are proper for the examination of sweet and salty taste sensitivity with the use of sip-and-spit method however concentrations of citric acid solutions should be lower than recommended.

  17. The mechanisms of plastic strain accommodation and post critical behavior of heterogeneous reactive composites subject to dynamic loading

    NASA Astrophysics Data System (ADS)

    Olney, Karl L.

    The dynamic behavior of granular/porous and laminate reactive materials is of interest due to their practical applications; reactive structural components, reactive fragments, etc. The mesostructural properties control meso- and macro-scale dynamic behavior of these heterogeneous composites including the behavior during the post-critical stage of deformation. They heavily influence mechanisms of fragment generation and the in situ development of local hot spots, which act as sites of ignition in these materials. This dissertation concentrates on understanding the mechanisms of plastic strain accommodation in two representative reactive material systems with different heterogeneous mesostructrues: Aluminum-Tungsten granular/porous and Nickel-Aluminum laminate composites. The main focus is on the interpretation of results of the following dynamic experiments conducted at different strain and strain rates: drop weight tests, explosively expanded ring experiments, and explosively collapsed thick walled cylinder experiments. Due to the natural limitations in the evaluation of the mesoscale behavior of these materials experimentally and the large variation in the size scales between the mesostructural level and the sample, it is extremely difficult, if not impossible, to examine the mesoscale behavior in situ. Therefore, numerical simulations of the corresponding experiments are used as the main tool to explore material behavior at the mesoscale. Numerical models were developed to elucidate the mechanisms of plastic strain accommodation and post critical behavior in these heterogeneous composites subjected to dynamic loading. These simulations were able to reproduce the qualitative and quantitative features that were observable in the experiments and provided insight into the evolution of the mechanisms of plastic strain accommodation and post critical behavior in these materials with complex mesotructure. Additionally, these simulations provided a framework to examine

  18. Musical taste, employment, education, and global region.

    PubMed

    North, Adrian C; Davidson, Jane W

    2013-10-01

    Sociologists have argued that musical taste should vary between social groups, but have not considered whether the effect extends beyond taste into uses of music and also emotional reactions to music. Moreover, previous research has ignored the culture in which participants are located. The present research employed a large sample from five post-industrial global regions and showed that musical taste differed between regions but not according to education and employment; and that there were three-way interactions between education, employment, and region in the uses to which participants put music and also their typical emotional reactions. In addition to providing partial support for existing sociological theory, the findings highlight the potential of culture as a variable in future quantitative research on taste. © 2013 The Scandinavian Psychological Associations.

  19. Pleiotropic functions of embryonic sonic hedgehog expression link jaw and taste bud amplification with eye loss during cavefish evolution.

    PubMed

    Yamamoto, Yoshiyuki; Byerly, Mardi S; Jackman, William R; Jeffery, William R

    2009-06-01

    This study addresses the role of sonic hedgehog (shh) in increasing oral-pharyngeal constructive traits (jaws and taste buds) at the expense of eyes in the blind cavefish Astyanax mexicanus. In cavefish embryos, eye primordia degenerate under the influence of hyperactive Shh signaling. In concert, cavefish show amplified jaw size and taste bud numbers as part of a change in feeding behavior. To determine whether pleiotropic effects of hyperactive Shh signaling link these regressive and constructive traits, shh expression was compared during late development of the surface-dwelling (surface fish) and cave-dwelling (cavefish) forms of Astyanax. After an initial expansion along the midline of early embryos, shh was elevated in the oral-pharyngeal region in cavefish and later was confined to taste buds. The results of shh inhibition and overexpression experiments indicate that Shh signaling has an important role in oral and taste bud development. Conditional overexpression of an injected shh transgene at specific times in development showed that taste bud amplification and eye degeneration are sensitive to shh overexpression during the same early developmental period, although taste buds are not formed until much later. Genetic crosses between cavefish and surface fish revealed an inverse relationship between eye size and jaw size/taste bud number, supporting a link between oral-pharyngeal constructive traits and eye degeneration. The results suggest that hyperactive Shh signaling increases oral and taste bud amplification in cavefish at the expense of eyes. Therefore, selection for constructive oral-pharyngeal traits may be responsible for eye loss during cavefish evolution via pleiotropic function of the Shh signaling pathway.

  20. Research progress of the bitter taste receptor genes in primates.

    PubMed

    Feng, Ping; Luo, Rui-Jian

    2018-02-20

    Among the five basic tastes (umami, sweet, bitter, salty and sour), the perception of bitterness is believed to protect animals from digesting toxic and harmful substances, thus it is vital for animal survival. The taste of bitterness is triggered by the interaction between bitter substances and bitter taste receptors, which are encoded by Tas2rs. The gene numbers vary largely across species to meet different demands. So far, several ligands of bitter receptors have been identified in primates. They also discovered that the selective pressure of certain bitter taste receptor genes vary across taxa, genes or even different functional regions of the gene. In this review, we summarize the research progress of bitter taste receptor genes in primates by introducing the functional diversity of bitter receptors, the specific interaction between bitter taste receptors and ligands, the relationship between the evolutionary pattern of bitter taste receptors and diets, and the adaptive evolution of bitter taste receptor genes. We aim to provide a reference for further research on bitter receptor genes in primates.

  1. Taste preferences of the common vampire bat (Desmodus rotundus).

    PubMed

    Thompson, R D; Elias, D J; Shumake, S A; Gaddis, S E

    1982-04-01

    Taste preference tests, with simultaneous presentation of treated and untreated food, were administered to 24 common vampire bats (Desmodus rotundus). The bats received brief exposures to four different stimuli representing sweet, salty, sour, and bitter tastes, each at four different concentrations. Despite a strong location bias, the bats significantly (P < 0.01) avoided the highest concentrations of the salty, sour, and bitter tastes. Consumption of the sweet stimulus at all concentrations was similar to that of the untreated standard. Vampires evidently can discriminate based on taste, although their ability is apparently poorly developed when compared with some euryphagous species such as the rat. Hence, taste is probably not a factor in host selection by the vampire.

  2. Food branding and young children's taste preferences: a reassessment.

    PubMed

    Elliott, Charlene D; Carruthers Den Hoed, Rebecca; Conlon, Martin J

    2013-08-20

    This study examines the effects of branding and packaging on young children's taste preferences. Preschool children aged 3 to 5 (n=65) tasted five pairs of identical foods in packaging from McDonald's and in matched packaging that was either plain, Starbucks-branded, or colourful (but unbranded). Children were asked if the foods tasted the same or if one tasted better. Children preferred the taste of foods wrapped in decorative wrappings, relying more on aesthetics than on familiar branding when making their choices. The findings suggest the need to explore questions beyond commercial advertising (and brand promotion) on television and other media platforms. More attention should be directed at the important role of packaging in directing children's food preferences.

  3. Tongue and Taste Organ Biology and Function: Homeostasis Maintained by Hedgehog Signaling.

    PubMed

    Mistretta, Charlotte M; Kumari, Archana

    2017-02-10

    The tongue is an elaborate complex of heterogeneous tissues with taste organs of diverse embryonic origins. The lingual taste organs are papillae, composed of an epithelium that includes specialized taste buds, the basal lamina, and a lamina propria core with matrix molecules, fibroblasts, nerves, and vessels. Because taste organs are dynamic in cell biology and sensory function, homeostasis requires tight regulation in specific compartments or niches. Recently, the Hedgehog (Hh) pathway has emerged as an essential regulator that maintains lingual taste papillae, taste bud and progenitor cell proliferation and differentiation, and neurophysiological function. Activating or suppressing Hh signaling, with genetic models or pharmacological agents used in cancer treatments, disrupts taste papilla and taste bud integrity and can eliminate responses from taste nerves to chemical stimuli but not to touch or temperature. Understanding Hh regulation of taste organ homeostasis contributes knowledge about the basic biology underlying taste disruptions in patients treated with Hh pathway inhibitors.

  4. The taste cell-related diffuse chemosensory system.

    PubMed

    Sbarbati, A; Osculati, F

    2005-03-01

    Elements expressing the molecular mechanisms of gustatory transduction have been described in several organs in the digestive and respiratory apparatuses. These taste cell-related elements are isolated cells, which are not grouped in buds, and they have been interpreted as chemoreceptors. Their presence in epithelia of endodermal origin suggests the existence of a diffuse chemosensory system (DCS) sharing common signaling mechanisms with the "classic" taste organs. The elements of this taste cell-related DCS display a site-related morphologic polymorphism, and in the past they have been indicated with various names (e.g., brush, tuft, caveolated, fibrillo-vesicular or solitary chemosensory cells). It may be that the taste cell-related DCS is like an iceberg: the taste buds are probably only the most visible portion, with most of the iceberg more caudally located in the form of solitary chemosensory cells or chemosensory clusters. Comparative anatomical studies in lower vertebrates suggest that this 'submerged' portion may represent the most phylogenetically ancient component of the system, which is probably involved in defensive or digestive mechanisms. In the taste buds, the presence of several cell subtypes and of a wide range of molecular mechanisms permits precise food analysis. The larger, 'submerged' portion of the iceberg is composed of a polymorphic population of isolated elements or cell clusters in which the molecular cascade of cell signaling needs to be explored in detail. The little data we have strongly suggests a close relationship with taste cells. Morphological and biochemical considerations suggest that the DCS is a potential new drug target. Modulation of the respiratory and digestive apparatuses through substances, which act on the molecular receptors of this chemoreceptive system, could be a new frontier in drug discovery.

  5. Disentangling taste and toxicity in aposematic prey

    PubMed Central

    Holen, Øistein Haugsten

    2013-01-01

    Many predators quickly learn to avoid attacking aposematic prey. If the prey vary in toxicity, the predators may alternatively learn to capture and taste-sample prey carefully before ingesting or rejecting them (go-slow behaviour). An increase in prey toxicity is generally thought to decrease predation on prey populations. However, while prey with a higher toxin load are more harmful to ingest, they may also be easier to recognize and reject owing to greater distastefulness, which can facilitate a taste-sampling foraging strategy. Here, the classic diet model is used to study the separate effects of taste and toxicity on predator preferences. The taste-sampling process is modelled using signal detection theory. The model is applicable to automimicry and Batesian mimicry. It shows that when the defensive toxin is sufficiently distasteful, a mimicry complex may be less profitable to the predator and better protected against predation if the models are moderately toxic than if they are highly toxic. Moreover, taste mimicry can reduce the profitability of the mimicry complex and increase protection against predation. The results are discussed in relation to the selection pressures acting on prey defences and the evolution of mimicry. PMID:23256198

  6. Disentangling taste and toxicity in aposematic prey.

    PubMed

    Holen, Øistein Haugsten

    2013-02-22

    Many predators quickly learn to avoid attacking aposematic prey. If the prey vary in toxicity, the predators may alternatively learn to capture and taste-sample prey carefully before ingesting or rejecting them (go-slow behaviour). An increase in prey toxicity is generally thought to decrease predation on prey populations. However, while prey with a higher toxin load are more harmful to ingest, they may also be easier to recognize and reject owing to greater distastefulness, which can facilitate a taste-sampling foraging strategy. Here, the classic diet model is used to study the separate effects of taste and toxicity on predator preferences. The taste-sampling process is modelled using signal detection theory. The model is applicable to automimicry and batesian mimicry. It shows that when the defensive toxin is sufficiently distasteful, a mimicry complex may be less profitable to the predator and better protected against predation if the models are moderately toxic than if they are highly toxic. Moreover, taste mimicry can reduce the profitability of the mimicry complex and increase protection against predation. The results are discussed in relation to the selection pressures acting on prey defences and the evolution of mimicry.

  7. Mechanisms of taste bud cell loss after head and neck irradiation.

    PubMed

    Nguyen, Ha M; Reyland, Mary E; Barlow, Linda A

    2012-03-07

    Taste loss in human patients following radiotherapy for head and neck cancer is a common and significant problem, but the cellular mechanisms underlying this loss are not understood. Taste stimuli are transduced by receptor cells within taste buds, and like epidermal cells, taste cells are regularly replaced throughout adult life. This renewal relies on progenitor cells adjacent to taste buds, which continually supply new cells to each bud. Here we treated adult mice with a single 8 Gy dose of x-ray irradiation to the head and neck, and analyzed taste epithelium at 1-21 d postirradiation (dpi). We found irradiation targets the taste progenitor cells, which undergo cell cycle arrest (1-3 dpi) and apoptosis (within 1 dpi). Taste progenitors resume proliferation at 5-7 dpi, with the proportion of cells in S and M phase exceeding control levels at 5-6 and 6 dpi, respectively, suggesting that proliferation is accelerated and/or synchronized following radiation damage. Using 5-bromo-2-deoxyuridine birthdating to identify newborn cells, we found that the decreased proliferation following irradiation reduces the influx of cells at 1-2 dpi, while the robust proliferation detected at 6 dpi accelerates entry of new cells into taste buds. In contrast, the number of differentiated taste cells was not significantly reduced until 7 dpi. These data suggest a model where continued natural taste cell death, paired with temporary interruption of cell replacement, underlies taste loss after irradiation.

  8. Mechanisms of taste bud cell loss after head and neck irradiation

    PubMed Central

    Nguyen, Ha M.; Reyland, Mary E.; Barlow, Linda A.

    2012-01-01

    Taste loss in human patients following radiotherapy for head and neck cancer is a common and significant problem, but the cellular mechanisms underlying this loss are not understood. Taste stimuli are transduced by receptor cells within taste buds, and like epidermal cells, taste cells are regularly replaced throughout adult life. This renewal relies on a progenitor cells adjacent to taste buds, which continually supply new cells to each bud. Here we treated adult mice with a single 8 Gy dose of X-ray irradiation to the head and neck, and analyzed taste epithelium at 1–21 days post-irradiation (dpi). We found irradiation targets the taste progenitor cells, which undergo cell cycle arrest (1–3 dpi) and apoptosis (within 1 dpi). Taste progenitors resume proliferation at 5–7 dpi, with the proportion of cells in S and M phase exceeding control levels at 5–6 and 6 dpi, respectively, suggesting that proliferation is accelerated and/or synchronized following radiation damage. Using BrdU birthdating to identify newborn cells, we found that the decreased proliferation following irradiation reduces the influx of cells at 1–2 dpi, while the robust proliferation detected at 6 dpi accelerates entry of new cells into taste buds. By contrast, the number of differentiated taste cells was not significantly reduced until 7 dpi. These data suggest a model where continued natural taste cell death, paired with temporary interruption of cell replacement underlies taste loss after irradiation. PMID:22399770

  9. Bioelectronic tongue of taste buds on microelectrode array for salt sensing.

    PubMed

    Liu, Qingjun; Zhang, Fenni; Zhang, Diming; Hu, Ning; Wang, Hua; Hsia, K Jimmy; Wang, Ping

    2013-02-15

    Taste has received great attention for its potential applications. In this work, we combine the biological tissue with micro-chips to establish a novel bioelectronic tongue system for salt taste detection. Before experiment, we established a computational model of action potential in salt taste receptor cell, simulating the responsive results to natural salt stimuli of NaCl solution with various concentrations. Then 36-channel microelectrode arrays (MEA) with the diameter of 30 μm were fabricated on the glass substrate, and taste epithelium was stripped from rat and fixed on MEA. When stimulated by the salt stimuli, electrophysiological activities of taste receptor cells in taste buds were measured through a multi-channel recording system. Both simulation and experiment results showed a dose-dependent increase in NaCl-induced potentials of taste receptor cells, which indicated good applications in salt measurements. The multi-channel analysis demonstrated that different groups of MEA channels were activated during stimulations, indicating non-overlapping populations of receptor cells in taste buds involved in salt taste perception. The study provides an effective and reliable biosensor platform to help recognize and distinguish salt taste components. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. The salt-taste threshold in untreated hypertensive patients.

    PubMed

    Kim, Chang-Yeon; Ye, Mi-Kyung; Lee, Young Soo

    2017-01-01

    The salt-taste threshold can influence the salt appetite, and is thought to be another marker of sodium intake. Many studies have mentioned the relationship between the sodium intake and blood pressure (BP). The aim of this study was to evaluate the relationship between the salt-taste threshold and urinary sodium excretion in normotensive and hypertensive groups. We analyzed 199 patients (mean age 52 years, male 47.3%) who underwent 24-h ambulatory BP monitoring (ABPM). Hypertension was diagnosed as an average daytime systolic BP of ≥135 mmHg or diastolic BP of ≥85 mmHg by the ABPM. We assessed the salt-taste threshold using graded saline solutions. The salt-taste threshold, 24-h urinary sodium and potassium excretion, and echocardiographic data were compared between the control and hypertensive groups. The detection and recognition threshold of the salt taste did not significantly differ between the control and hypertensive groups. The 24-h urinary sodium excretion of hypertensive patients was significantly higher than that of the control group (140.9 ± 59.8 vs. 117.9 ± 57.2 mEq/day, respectively, p  = 0.011). Also, the urinary sodium-potassium ratio was significantly higher in the hypertensive patients. There was no correlation between the salt-taste threshold and 24-h urinary sodium excretion. The salt-taste threshold might not be related to the BP status as well as the 24-h urinary sodium excretion.

  11. Molecular and Cellular Designs of Insect Taste Receptor System

    PubMed Central

    Isono, Kunio; Morita, Hiromi

    2010-01-01

    The insect gustatory receptors (GRs) are members of a large G-protein coupled receptor family distantly related to the insect olfactory receptors. They are phylogenetically different from taste receptors of most other animals. GRs are often coexpressed with other GRs in single receptor neurons. Taste receptors other than GRs are also expressed in some neurons. Recent molecular studies in the fruitfly Drosophila revealed that the insect taste receptor system not only covers a wide ligand spectrum of sugars, bitter substances or salts that are common to mammals but also includes reception of pheromone and somatosensory stimulants. However, the central mechanism to perceive and discriminate taste information is not yet elucidated. Analysis of the primary projection of taste neurons to the brain shows that the projection profiles depend basically on the peripheral locations of the neurons as well as the GRs that they express. These results suggest that both peripheral and central design principles of insect taste perception are different from those of olfactory perception. PMID:20617187

  12. Taste Responses to Linoleic Acid: A Crowdsourced Population Study.

    PubMed

    Garneau, Nicole L; Nuessle, Tiffany M; Tucker, Robin M; Yao, Mengjie; Santorico, Stephanie A; Mattes, Richard D

    2017-10-31

    Dietary fats serve multiple essential roles in human health but may also contribute to acute and chronic health complications. Thus, understanding mechanisms that influence fat ingestion are critical. All sensory systems may contribute relevant cues to fat detection, with the most recent evidence supporting a role for the sense of taste. Taste detection thresholds for fat vary markedly between individuals and responses are not normally distributed. Genetics may contribute to these observations. Using crowdsourced data obtained from families visiting the Denver Museum of Nature & Science, our objective was to estimate the heritability of fat taste (oleogustus). A pedigree analysis was conducted with 106 families (643 individuals) who rated the fat taste intensity of graded concentrations of linoleic acid (LA) embedded in taste strips. The findings estimate that 19% (P = 0.043) of the variability of taste response to LA relative to baseline is heritable at the highest concentration tested. © The Author 2017. Published by Oxford University Press.

  13. Extraoral Taste Receptor Discovery: New Light on Ayurvedic Pharmacology

    PubMed Central

    2017-01-01

    More and more research studies are revealing unexpectedly important roles of taste for health and pathogenesis of various diseases. Only recently it has been shown that taste receptors have many extraoral locations (e.g., stomach, intestines, liver, pancreas, respiratory system, heart, brain, kidney, urinary bladder, pancreas, adipose tissue, testis, and ovary), being part of a large diffuse chemosensory system. The functional implications of these taste receptors widely dispersed in various organs or tissues shed a new light on several concepts used in ayurvedic pharmacology (dravyaguna vijnana), such as taste (rasa), postdigestive effect (vipaka), qualities (guna), and energetic nature (virya). This review summarizes the significance of extraoral taste receptors and transient receptor potential (TRP) channels for ayurvedic pharmacology, as well as the biological activities of various types of phytochemical tastants from an ayurvedic perspective. The relative importance of taste (rasa), postdigestive effect (vipaka), and energetic nature (virya) as ethnopharmacological descriptors within Ayurveda boundaries will also be discussed. PMID:28642799

  14. Taste Responses to Linoleic Acid: A Crowdsourced Population Study

    PubMed Central

    Nuessle, Tiffany M; Tucker, Robin M; Yao, Mengjie; Santorico, Stephanie A; Mattes, Richard D

    2017-01-01

    Abstract Dietary fats serve multiple essential roles in human health but may also contribute to acute and chronic health complications. Thus, understanding mechanisms that influence fat ingestion are critical. All sensory systems may contribute relevant cues to fat detection, with the most recent evidence supporting a role for the sense of taste. Taste detection thresholds for fat vary markedly between individuals and responses are not normally distributed. Genetics may contribute to these observations. Using crowdsourced data obtained from families visiting the Denver Museum of Nature & Science, our objective was to estimate the heritability of fat taste (oleogustus). A pedigree analysis was conducted with 106 families (643 individuals) who rated the fat taste intensity of graded concentrations of linoleic acid (LA) embedded in taste strips. The findings estimate that 19% (P = 0.043) of the variability of taste response to LA relative to baseline is heritable at the highest concentration tested. PMID:28968903

  15. Progress and renewal in gustation: new insights into taste bud development

    PubMed Central

    Barlow, Linda A.

    2015-01-01

    The sense of taste, or gustation, is mediated by taste buds, which are housed in specialized taste papillae found in a stereotyped pattern on the surface of the tongue. Each bud, regardless of its location, is a collection of ∼100 cells that belong to at least five different functional classes, which transduce sweet, bitter, salt, sour and umami (the taste of glutamate) signals. Taste receptor cells harbor functional similarities to neurons but, like epithelial cells, are rapidly and continuously renewed throughout adult life. Here, I review recent advances in our understanding of how the pattern of taste buds is established in embryos and discuss the cellular and molecular mechanisms governing taste cell turnover. I also highlight how these findings aid our understanding of how and why many cancer therapies result in taste dysfunction. PMID:26534983

  16. Progress and renewal in gustation: new insights into taste bud development.

    PubMed

    Barlow, Linda A

    2015-11-01

    The sense of taste, or gustation, is mediated by taste buds, which are housed in specialized taste papillae found in a stereotyped pattern on the surface of the tongue. Each bud, regardless of its location, is a collection of ∼100 cells that belong to at least five different functional classes, which transduce sweet, bitter, salt, sour and umami (the taste of glutamate) signals. Taste receptor cells harbor functional similarities to neurons but, like epithelial cells, are rapidly and continuously renewed throughout adult life. Here, I review recent advances in our understanding of how the pattern of taste buds is established in embryos and discuss the cellular and molecular mechanisms governing taste cell turnover. I also highlight how these findings aid our understanding of how and why many cancer therapies result in taste dysfunction. © 2015. Published by The Company of Biologists Ltd.

  17. Recognition by Rats of Binary Taste Solutions and Their Components.

    PubMed

    Katagawa, Yoshihisa; Yasuo, Toshiaki; Suwabe, Takeshi; Yamamura, Tomoki; Gen, Keika; Sako, Noritaka

    2016-09-13

    This behavioral study investigated how rats conditioned to binary mixtures of preferred and aversive taste stimuli, respectively, responded to the individual components in a conditioned taste aversion (CTA) paradigm. The preference of stimuli was determined based on the initial results of 2 bottle preference test. The preferred stimuli included 5mM sodium saccharin (Sacc), 0.03M NaCl (Na), 0.1M Na, 5mM Sacc + 0.03M Na, and 5mM Sacc + 0.2mM quinine hydrochloride (Q), whereas the aversive stimuli tested were 1.0M Na, 0.2mM Q, 0.3mM Q, 5mM Sacc + 1.0M Na, and 5mM Sacc + 0.3mM Q. In CTA tests where LiCl was the unconditioned stimulus, the number of licks to the preferred binary mixtures and to all tested preferred components were significantly less than in control rats. No significant difference resulted between the number of licks to the aversive binary mixtures or to all tested aversive components. However, when rats pre-exposed to the aversive components contained of the aversive binary mixtures were conditioned to these mixtures, the number of licks to all the tested stimuli was significantly less than in controls. Rats conditioned to components of the aversive binary mixtures generalized to the binary mixtures containing those components. These results suggest that rats recognize and remember preferred and aversive taste mixtures as well as the preferred and aversive components of the binary mixtures, and that pre-exposure before CTA is an available method to study the recognition of aversive taste stimuli. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Espin cytoskeletal proteins in the sensory cells of rodent taste buds

    PubMed Central

    Sekerková, Gabriella; Freeman, David; Mugnaini, Enrico; Bartles, James R.

    2010-01-01

    Espins are multifunctional actin-bundling proteins that are highly enriched in the microvilli of certain chemosensory and mechanosensory cells, where they are believed to regulate the integrity and/or dimensions of the parallel-actin-bundle cytoskeletal scaffold. We have determined that, in rats and mice, affinity purified espin antibody intensely labels the lingual and palatal taste buds of the oral cavity and taste buds in the pharyngo-laryngeal region. Intense immunolabeling was observed in the apical, microvillar region of taste buds, while the level of cytoplasmic labeling in taste bud cells was considerably lower. Taste bud cells contain tightly packed collections of sensory cells (light, or type II plus type III) and supporting cells (dark, or type I), which can be distinguished by microscopic features and cell type-specific markers. On the basis of results obtained using an antigen-retrieval method in conjunction with double immunofluorescence for espin and sensory taste cell-specific markers, we propose that espins are expressed predominantly in the sensory cells of rat circumvallate taste buds. In confocal images, we counted 21.5±0.3 espin-positive cells/taste bud, in agreement with a previous report showing 20.7±1.3 light cells/taste bud when counted at the ultrastructural level. The espin antibody labeled spindle-shaped cells with round nuclei and showed 100% colocalization with cell-specific markers recognizing all type II [inositol 1,4,5-trisphosphate receptor type III (IP3R3),α-gustducin, protein-specific gene product 9.5 (PGP9.5)] and a subpopulation of type III (IP3R3, PGP9.5) taste cells. On average, 72%, 50%, and 32% of the espin-positive taste cells were labeled with antibodies to IP3R3, α-gustducin, and PGP9.5, respectively. Upon sectional analysis, the taste buds of rat circumvallate papillae commonly revealed a multi-tiered, espin-positive apical cytoskeletal apparatus. One espin-positive zone, a collection of ~3 μm-long microvilli

  19. Sweet taste transduction in hamster: sweeteners and cyclic nucleotides depolarize taste cells by reducing a K+ current.

    PubMed

    Cummings, T A; Daniels, C; Kinnamon, S C

    1996-03-01

    1. The gigaseal voltage-clamp technique was used to record responses of hamster taste receptor cells to synthetic sweeteners and cyclic nucleotides. Voltage-dependent currents and steady-state currents were monitored during bath exchanges of saccharin, two high-potency sweeteners, 8-chlorophenylthio-adenosine 3',5'-cyclic monophosphate (8cpt-cAMP), and dibutyryl-guanosine 3',5'-cyclic monophosphate (db-cGMP). 2. Of the 237 fungiform taste cells studied, only one in eight was sweet responsive. Outward currents, both voltage-dependent and resting, were reduced by all of the sweeteners tested in sweet-responsive taste cells, whereas these currents were unaffected by sweeteners in sweet-unresponsive taste cells. 3. In every sweet-responsive cell tested, 8cpt-cAMP and db-cGMP mimicked the response to the sweeteners, but neither nucleotide elicited responses in sweet-unresponsive cells. Thus there was a one-to-one correlation between sweet responsivity and cyclic nucleotide responsivity. 4. Sweet responses showed cross adaptation with cyclic nucleotide responses. This indicates that the same ion channel is modulated by sweeteners and cyclic nucleotides. 5. The sweetener- and cyclic nucleotide-blocked current had an apparent reversal potential of -50 mV, which was close to the potassium reversal potential in these experiments. In addition, there was no effect of sweeteners and cyclic nucleotides in the presence of the K+ channel blocker tetraethylammonium bromide (TEA). These data suggest that block of a resting, TEA-sensitive K+ current is the final common step leading to taste cell depolarization during sweet transduction. 6. These data, together with data from a previous study (Cummings et al. 1993), suggest that both synthetic sweeteners and sucrose utilize second-messenger pathways that block a resting K+ conductance to depolarize the taste cell membrane.

  20. Food-Experience Induced Taste Desensitization Modulated by the Drosophila TRPL Channel

    PubMed Central

    Zhang, Yali V.; Raghuwanshi, Rakesh P.; Shen, Wei L.; Montell, Craig

    2013-01-01

    Animals tend to reject bitter foods. However, long-term exposure to some unpalatable tastants increases acceptance of the foods. Here, we showed that dietary exposure to the unappealing food but safe additive, camphor, caused the fruit fly, Drosophila melanogaster, to decrease camphor rejection. The TRPL cation channel was a direct target for camphor in gustatory receptor neurons (GRNs), and long-term feeding on a camphor diet led to reversible down-regulation of TRPL protein levels. The turnover of TRPL was controlled by an E3 ubiquitin ligase, Ube3a. The decline in TRPL levels and increased acceptance of camphor reversed after returning the flies long-term to a camphor-free diet. We propose that dynamic regulation of taste receptor levels by ubiquitin-mediated protein degradation comprises an important molecular mechanism that allows an animal to alter taste behavior in response to a changing food environment. PMID:24013593