Sample records for tat-bmps-pamam conjugates enhance

  1. Development of Tat-Conjugated Dendrimer for Transdermal DNA Vaccine Delivery.

    PubMed

    Bahadoran, Azadeh; Moeini, Hassan; Bejo, Mohd Hair; Hussein, Mohd Zobir; Omar, Abdul Rahman

    In order to enhance cellular uptake and to facilitate transdermal delivery of DNA vaccine, polyamidoamine (PAMAM) dendrimers conjugated with HIV transactivator of transcription (TAT) was developed. First, the plasmid DNA (pIRES-H5/GFP) nanoparticle was formulated using PAMAM dendrimer and TAT peptide and then characterized for surface charge, particle size, DNA encapsulation and protection of the pIRES-H5/GFP DNA plasmid to enzymatic digestion. Subsequently, the potency of the TAT-conjugated dendrimer for gene delivery was evaluated through in vitro transfection into Vero cells followed by gene expression analysis including western blotting, fluorescent microscopy and PCR. The effect of the TAT peptide on cellular uptake of DNA vaccine was studied by qRT-PCR and flow cytometry. Finally, the ability of TAT-conjugated PAMAM dendrimer for transdermal delivery of the DNA plasmid was assessed through artificial membranes followed by qRT-PCR and flow cytometry. TAT-conjugated PAMAM dendrimer showed the ability to form a compact and nanometre-sized polyplexes with the plasmid DNA, having the size range of 105 to 115 nm and a positive charge of +42 to +45 mV over the N/P ratio of 6:1(+/-).  In vitro transfection analysis into Vero cells confirms the high potency of TAT-conjugated PAMAM dendrimer to enhance the cellular uptake of DNA vaccine.  The permeability value assay through artificial membranes reveals that TAT-conjugated PAMAM has more capacity for transdermal delivery of the DNA compared to unmodified PAMAM dendrimer (P<0.05). The findings of this study suggest that TAT-conjugated PAMAM dendrimer is a promising non-viral vector for transdermal use.This article is open to POST-PUBLICATION REVIEW. Registered readers (see "For Readers") may comment by clicking on ABSTRACT on the issue's contents page.

  2. PAMAM-RGD Conjugates Enhance siRNA Delivery Through a Multicellular Spheroid Model of Malignant Glioma

    PubMed Central

    Waite, Carolyn L.; Roth, Charles M.

    2011-01-01

    Generation 5 poly(amidoamine) (PAMAM) dendrimers were modified by the addition of cyclic RGD targeting peptides and were evaluated for their ability to associate with siRNA and mediate siRNA delivery to U87 malignant glioma cells. PAMAM-RGD conjugates were able to complex with siRNA to form complexes of approximately 200 nm in size. Modest siRNA delivery was observed in U87 cells using either PAMAM or PAMAM-RGD conjugates. PAMAM-RGD conjugates prevented the adhesion of U87 cells to fibrinogen coated plates, in a manner that depends on the number of RGD ligands per dendrimer. The delivery of siRNA through three-dimensional multicellular spheroids of U87 cells was enhanced using PAMAM-RGD conjugates compared to the native PAMAM dendrimers, presumably by interfering with integrin-ECM contacts present in a three-dimensional tumor model. PMID:19775120

  3. PEGylated PAMAM dendrimer-doxorubicin conjugate-hybridized gold nanorod for combined photothermal-chemotherapy.

    PubMed

    Li, Xiaojie; Takashima, Munenobu; Yuba, Eiji; Harada, Atsushi; Kono, Kenji

    2014-08-01

    We prepared pH-sensitive drug-dendrimer conjugate-hybridized gold nanorod as a promising platform for combined cancer photothermal-chemotherapy under in vitro and in vivo conditions. Poly(ethylene glycol)-attached PAMAM G4 dendrimers (PEG-PAMAM) were first covalently linked on the surface of mercaptohexadecanoic acid-functionalized gold nanorod (MHA-AuNR), with subsequent conjugation of anti-cancer drug doxorubicin (DOX) to dendrimer layer using an acid-labile-hydrazone linkage to afford PEG-DOX-PAMAM-AuNR particles. The particles with a high PEG-PAMAM dendrimer coverage density (0.28 per nm(2) AuNR) showed uniform sizes and excellent colloidal stability. In vitro drug release studies demonstrated that DOX released from PEG-DOX-PAMAM-AuNR was negligible under normal physiological pH, but it was enhanced significantly at a weak acidic pH value. The efficient intracellular acid-triggered DOX release inside of lysosomes was confirmed using confocal laser scanning microscopy analysis. Furthermore, the combined photothermal-chemo treatment of cancer cells using PEG-DOX-PAMAM-AuNR for synergistic hyperthermia ablation and chemotherapy was demonstrated both in vitro and in vivo to exhibit higher therapeutic efficacy than either single treatment alone, underscoring the great potential of PEG-DOX-PAMAM-AuNR particles for cancer therapy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Characterization of basic amino acids-conjugated PAMAM dendrimers as gene carriers for human adipose-derived mesenchymal stem cells.

    PubMed

    Bae, Yoonhee; Lee, Sunray; Green, Eric S; Park, Jung Hyun; Ko, Kyung Soo; Han, Jin; Choi, Joon Sig

    2016-03-30

    Since mesenchymal stem cells (MSCs) can self-renew and differentiate into multiple cell types, the delivery of genes to this type of cell can be an important tool in the emerging field of tissue regeneration and engineering. However, development of more efficient and safe nonviral vectors for gene delivery to stem cells in particular still remains a great challenge. In this study, we describe a group of nonviral gene delivery vectors, conjugated PAMAM derivatives (PAMAM-H-R, PAMAM-H-K, and PAMAM-H-O), displaying affinity toward human adipose-derived mesenchymal stem cells (AD-MSCs). Transfection efficiency using pDNA encoding for luciferase (Luc) and enhanced green fluorescent protein (EGFP), and cytotoxicity assays were performed in human AD-MSCs. The results show that transfection efficiencies of conjugated PAMAM derivatives are improved significantly compared to native PAMAM dendrimer, and that among PAMAM derivatives, cytotoxicity of PAMAM-H-K and PAMAM-H-O were very low. Also, treatment of human AD-MSCs to polyplex formation in conjugated PAMAM derivatives, their cellular uptake and localization were analyzed by flow cytometry and confocal microscopy. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Bendamustine-PAMAM Conjugates for Improved Apoptosis, Efficacy, and in Vivo Pharmacokinetics: A Sustainable Delivery Tactic.

    PubMed

    Gothwal, Avinash; Khan, Iliyas; Kumar, Pramod; Raza, Kaisar; Kaul, Ankur; Mishra, Anil Kumar; Gupta, Umesh

    2018-06-04

    Successful delivery of a chemotherapeutic agent like bendamustine still remains a challenge in clinical conditions like chronic lymphatic leukemia (CLL), non-Hodgkin lymphoma (NHL), and multiple myeloma. We have conjugated bendamustine to polyamidoamine (PAMAM) dendrimers after conjugating with N-(hydroxyethyl)maleimide (spacer) via an ester bond. The particle size of PAMAM-bendamustine conjugate was 49.8 ± 2.5 nm. In vitro drug release resulted in sustained release with improved solution stability of drug up to 72 h. In a 24 h cytotoxicity study by MTT assay against human monoblastic leukemia cells (THP-1), the IC50 value for PAMAM-bendamustine was 32.1 ± 4.8 μM compared to 50.42 ± 3.4 μM and 2303 ± 106.5 μM for bendamustine and PAMAM dendrimer, respectively. Significantly higher cell uptake and apoptosis were observed in THP-1 cells by PAMAM-bendamustine conjugate which was confirmed by flow cytometry and confocal laser scanning microscopy. Preliminary in vivo studies undertaken included pharmacokinetics studies, organ distribution studies, and tumor inhibition studies. In healthy Wistar rat model (1CBM IV push model), the pharmacokinetic studies revealed that bioavailability and t 1/2 increased significantly, i.e., almost 8.5-fold (193.8 ± 1.116 vs 22.8 ± 0.158 μg mL -1 /h) and 5.1-fold (0.75 ± 0.005 vs 3.85 ± 0.015 h), respectively, for PAMAM-bendamustine conjugate compared to pure bendamustine ( p < 0.05), however, clearance and volume of distribution were found to be decreased compared to those of free drug. The study suggests that PAMAM-bendamustine conjugate was not only stable for the longer period but also least toxic and highly taken up by THP-1 cells to exert an anticancer effect at the reduced dose. Tumor inhibition and biodistribution studies in tumor-bearing BALB/c mice revealed that PAMAM-bendamustine conjugate was more effective than the pure drug and showed higher accumulation in the tumor.

  6. Characterization of folic acid-PAMAM conjugates: drug loading efficacy and dendrimer morphology.

    PubMed

    Chanphai, P; Tajmir-Riahi, H A

    2018-05-01

    We report the loading efficacy of folic acid (FA) by polyamidoamine (PAMAM-G3 and PAMAM-G4) nanoparticles in aqueous solution at physiological pH. Thermodynamic parameters ΔH = -47.57 (kJ Mol -1 ), ΔS = -122.78 (J Mol -1 , K -1 ) and ΔG = -10.96 (kJ Mol -1 ) showed FA-PAMAM bindings occur via H-bonding and van der Waals contacts. The stability of acid-PAMAM conjugate increased as polymer size increased. The acid loading efficacy was 40 to 50%. TEM images exhibited major polymer morphological changes upon acid encapsulation. PAMAM dendrimers are capable of FA delivery in vitro.

  7. Transport of surface engineered polyamidoamine (PAMAM) dendrimers across IPEC-J2 cell monolayers.

    PubMed

    Pisal, Dipak S; Yellepeddi, Venkata K; Kumar, Ajay; Palakurthi, Srinath

    2008-11-01

    The aim of our study was to prepare arginine-and ornithine-conjugated Polyamidoamine (PAMAM) dendrimers and study their permeability across IPEC-J2 cell monolayers, a new intestinal cell line model for drug absorption studies. Arginine and ornithine were conjugated to the amine terminals of the PAMAM(G4) dendrimers by Fmoc synthesis. The apical-to-basolateral (AB) and basolateral-to-apical (BA) apparent permeability coefficients (P(app)) for the PAMAM dendrimers increased by conjugating the dendrimers with both of these polyamines. The enhancement in permeability was dependent on the dendrimer concentration and duration of incubation. Correlation between monolayer permeability and the decrease in transepithelial electrical resistance (TEER) with the PAMAM dendrimers and the polyamine-conjugated dendrimers suggests that paracellular transport is one of the mechanisms of transport across the epithelial cells. Cytotoxicity of these surface-modified dendrimers was evaluated in IPEC-J2 cells by MTT (methylthiazoletetrazolium) assay. Arginine-conjugated dendrimers were insignificantly more toxic than PAMAM dendrimer as well as ornithine-conjugated dendrimers. Though investigations on the possible involvement of other transport mechanisms are in progress, results of the present study suggest the potential of dendrimer-polyamine conjugates as the carriers for antigen/drug delivery through the oral mucosa.

  8. PEGylated PAMAM dendrimers: Enhancing efficacy and mitigating toxicity for effective anticancer drug and gene delivery.

    PubMed

    Luong, Duy; Kesharwani, Prashant; Deshmukh, Rahul; Mohd Amin, Mohd Cairul Iqbal; Gupta, Umesh; Greish, Khaled; Iyer, Arun K

    2016-10-01

    Poly(amidoamine) dendrimers (PAMAM) are well-defined, highly branched, nanoscale macromolecules with numerous active amine groups on the surface. PAMAM dendrimer can enhance the solubility of hydrophobic drugs, and with numerous reactive groups on the surface PAMAM dendrimer can be engineered with various functional groups for specific targeting ability. However, in physiological conditions, these amine groups are toxic to cells and limit the application of PAMAM. In the recent years, polyethylene glycol (PEG) conjugation has been the most widely used approach to reduce the toxicity of the active group on dendrimer surface. PEG molecules are known to be inert, non-immunogenic, and non-antigenic with a significant water solubility. PEGylated PAMAM-mediated delivery could not only overcome the limitations of dendrimer such as drug leakage, immunogenicity, hemolytic toxicity, systemic cytotoxicity but they also have the ability to enhance the solubilization of hydrophobic drugs and facilitates the potential for DNA transfection, siRNA delivery and tumor targeting. This review focuses on the recent developments on the application and influence of PEGylation on various biopharmaceutical properties of PAMAM dendrimers. It is well established that dendrimers have demonstrated promising potentials for drug delivery. However, the inherent toxicity poses challenges for its clinical translation. In this regard, PEGylation has helped mitigate some of the toxicity concerns of dendrimers and have paved the way forward for testing its translational potentials. The review is a collection of articles demonstrating the utility of PEGylation of the most studied PAMAM dendrimers. To our knowledge, this is a first such attempt to draw reader's attention, specifically, towards PEGylated PAMAM dendrimers. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  9. Synthetic PAMAM-RGD conjugates target and bind to odontoblast-like MDPC 23 cells and the predentin in tooth organ cultures.

    PubMed

    Hill, Elliott; Shukla, Rameshwer; Park, Steve S; Baker, James R

    2007-01-01

    Screening techniques now allow for the identification of small peptides that bind specifically to molecules like cells. However, despite the enthusiasm for this approach, single peptides often lack the binding affinity to target in vivo and regulate cell function. We took peptides containing the Arg-Gly Asp(RGD) motif that bind to the alpha Vbeta 3 integrin and have shown potential as therapeutics. To improve their binding affinity, we synthesized polyamidoamine (PAMAM) dendrimer-RGD conjugates that that contain 12-13 copies of the peptide. When cultured with human dermal microvessel endothelial cells (HDMEC), human vascular endothelial cells (HUVEC), or odontoblast-like MDPC-23 cells, the PAMAM dendrimer conjugate targets this receptor in a manner that is both time- and dose-dependent. Finally, this conjugate selectively targets RGD binding sites in the predentin of human tooth organ cultures. Taken together, these studies provide proof of principle that synthetic PAMAM-RGD conjugates could prove useful as carriers for the tissue-specific delivery of integrin-targeted therapeutics or imaging agents and could be used to engineer tissue regeneration.

  10. The effects of an RGD-PAMAM dendrimer conjugate in 3D spheroid culture on cell proliferation, expression and aggregation.

    PubMed

    Jiang, Li-Yang; Lv, Bing; Luo, Ying

    2013-04-01

    By presenting biomolecular ligands on the surface in high density, ligand-decorated dendrimers are capable of binding to membrane receptors and cells with specificity and avidity. Despite the various uses, fundamental investigations on ligand-dendrimer conjugates have mainly focused on their binding behavior with cells, whereas their potential bioactivity and applications in multicellular systems, especially in three-dimensional (3D) culture systems, remains untapped. In this study, a typical adhesive peptide ligand - RGD - was modified to generation 4 polyamidoamine (PAMAM), and the bioactivity of suspended RGD-PAMAM conjugates was investigated on cells cultured as multicellular spheroids. Our results demonstrate that the RGD-PAMAM conjugates, after being incorporated into the 3D spheroids, were able to promote cellular proliferation and aggregation, and affect the mRNA expression of extracellular factors by NIH 3T3 cells. These bioactive functions were multivalency-dependent, as none of similar effects was observed for monovalent RGD ligand. Our study suggests that multivalent ligand-dendrimer conjugates may act as a unique type of artificial factors to mediate the cellular microenvironment in 3D culture, a property attributable to the spatial organization of the ligands and possible "cell-gluing" function of multivalent conjugates. This new finding opens the door for further exploring multivalent ligand-dendrimer conjugates for applications in 3D cell culture and tissue engineering. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Cellular uptake of glucoheptoamidated poly(amidoamine) PAMAM G3 dendrimer with amide-conjugated biotin, a potential carrier of anticancer drugs.

    PubMed

    Uram, Łukasz; Szuster, Magdalena; Filipowicz, Aleksandra; Zaręba, Magdalena; Wałajtys-Rode, Elżbieta; Wołowiec, Stanisław

    2017-01-15

    In search for soluble derivatives of PAMAM dendrimers as potential carriers for hydrophobic drugs, the conjugates of PAMAM G3 with biotin, further converted into glycodendrimer with d-glucoheptono-1,4-lactone, were prepared. Polyamidoamine dendrimer (PAMAM) of third generation, G3 was functionalized with four biotin equivalents covalently attached to terminal amine nitrogens via amide bond G3 4B . The remaining 28 amine groups were blocked by glucoheptoamide substituents (gh) to give G3 4B28gh or with one fluorescein equivalent (attached by reaction of G3 4B with fluorescein isothiocyanate, FITC) via thiourea bond as FITC followed by exhaustive glucoheptoamidation to get G3 4B27gh1F . As a control the G3 substituted totally with 32 glucoheptoamide residues, G3 gh and its fluorescein labeled analogue G3 31gh1F were synthesized. The glucoheptoamidation of PAMAM G0 dendrimer with glucoheptono-1,4-lactone was performed in order to fully characterize the 1 H NMR spectra of glucoheptoamidated PAMAM dendrimers and to control the derivatization of G3 with glucoheptono-1,4-lactone. Another two derivatives of G3, namely G3 4B28gh1F' and G3 32ghF' , with ester bonded fluorescein were also obtained. Biological properties of obtained dendrimer conjugates were estimated in vitro with human cell lines: normal fibroblast (BJ) and two cancer glioblastoma (U-118 MG) and squamous carcinoma (SCC-15), including cytotoxicity by reduction of XTT and neutral red (NR) assays. Cellular uptake of dendrimer conjugates was evaluated with confocal microscopy. Obtained results confirmed, that biotinylated bioconjugates have always lower cytotoxicity and 3-4 times higher cellular uptake than non-biotinylated dendrimer conjugates in all cell lines. Comparison of various cell lines revealed different dose-dependent cell responses and the lower cytotoxicity of examined dendrimer conjugates for normal fibroblasts and squamous carcinoma, as compared with much higher cytotoxic effects seen in

  12. Cholesterol-conjugated supramolecular assemblies of low generations polyamidoamine dendrimers for enhanced EGFP plasmid DNA transfection

    NASA Astrophysics Data System (ADS)

    Golkar, Nasim; Samani, Soliman Mohammadi; Tamaddon, Ali Mohammad

    2016-05-01

    Aimed to prepare an enhanced gene delivery system with low cytotoxicity and high transfection efficiency, various cholesterol-conjugated derivates of low generation polyamidoamine (PAMAM) dendrimers were prepared. The conjugates were characterized by TNBS assay, FTIR, and 1H-NMR spectroscopy. Self-assembly of the dendrimer conjugates (G1-Chol, G2-Chol, and G3-Chol) was investigated by pyrene assay. Following formation of the complexes between enhanced green fluorescence protein plasmid and the dendrimer conjugates at various N (primary amine)/P (phosphate) mole ratios, plasmid condensation, biologic stability, cytotoxicity, and protein expression were investigated. The conjugates self-assembled into micellar dispersions with the critical micelle concentration values (<50 µg/ml) depending on the dendrimer generation and cholesterol/amine mole ratio. Cholesterol conjugation resulted in higher resistance of the condensed plasmid DNA in a competition assay with heparin sulfate. Also, the transfection efficiency was determined higher for the cholesterol conjugates than unmodified dendrimers in HepG2 cells, showing the highest for G2-Chol at 40 % degree of cholesterol modification (G2-Chol40 %) among various dendrimer generations. Interestingly, such conjugate showed a complete protection of plasmid against serum nucleases. Our results confirmed that the cholesterol conjugation to PAMAM dendrimers of low generations bearing little cytotoxicity improves their several physicochemical and biological characteristics required for an enhanced delivery of plasmid DNA into cells.

  13. Induction of a robust immune response against avian influenza virus following transdermal inoculation with H5-DNA vaccine formulated in modified dendrimer-based delivery system in mouse model.

    PubMed

    Bahadoran, Azadeh; Ebrahimi, Mehdi; Yeap, Swee Keong; Safi, Nikoo; Moeini, Hassan; Hair-Bejo, Mohd; Hussein, Mohd Zobir; Omar, Abdul Rahman

    2017-01-01

    This study was aimed to evaluate the immunogenicity of recombinant plasmid deoxyribonucleic acid (DNA), pBud-H5-green fluorescent protein (GFP)-interferon-regulatory factor (IRF)3 following delivery using polyamidoamine (PAMAM) dendrimer and transactivator of transcription (TAT)-conjugated PAMAM dendrimer as well as the effect of IRF3 as the genetic adjuvant. BALB/c mice were vaccinated transdermally with pBud-H5-GFP, PAMAM/pBud-H5-GFP, TAT-PAMAM/pBud-H5-GFP, and TAT-PAMAM/pBud-H5-GFP-IRF3. The expression analysis of H5 gene from the blood by using quantitative real-time reverse transcriptase polymerase chain reaction confirmed the ability of PAMAM dendrimer as a carrier for gene delivery, as well as the ability of TAT peptide to enhance the delivery efficiency of PAMAM dendrimer. Mice immunized with modified PAMAM by TAT peptide showed higher hemagglutination inhibition titer, and larger CD3 + /CD4 + T cells and CD3 + /CD8 + T cells population, as well as the production of cytokines, namely, interferon (IFN)-γ, interleukin (IL)-2, IL-15, IL-12, IL-6, and tumor necrosis factor-α compared with those immunized with native PAMAM. These results suggest that the function of TAT peptide as a cell-penetrating peptide is able to enhance the gene delivery, which results in rapid distribution of H5 in the tissues of the immunized mice. Furthermore, pBud-H5-GFP co-expressing IRF3 as a genetic adjuvant demonstrated the highest hemagglutination inhibition titer besides larger CD3 + /CD4 + and CD3 + /CD8 + T cells population, and strong Th1-like cytokine responses among all the systems tested. In conclusion, TAT-PAMAM dendrimer-based delivery system with IRF3 as a genetic adjuvant is an attractive transdermal DNA vaccine delivery system utilized to evaluate the efficacy of the developed DNA vaccine in inducing protection during challenge with virulent H5N1 virus.

  14. G3.5 PAMAM dendrimers enhance transepithelial transport of SN38 while minimizing gastrointestinal toxicity.

    PubMed

    Goldberg, Deborah S; Vijayalakshmi, Nirmalkumar; Swaan, Peter W; Ghandehari, Hamidreza

    2011-03-30

    Poly(amido amine) (PAMAM) dendrimers have shown promise in oral drug delivery. Conjugation of SN38 to PAMAM dendrimers has the potential to improve its oral absorption while minimizing gastrointestinal toxicity. In this work we evaluated G3.5 PAMAM dendrimer-SN38 conjugates with ester-linked glycine and β-alanine spacers for their suitability in oral therapy of hepatic colorectal cancer metastases. G3.5-βAlanine-SN38 was mostly stable while G3.5-Glycine-SN38 showed 10%, 20%, and 56% SN38 release in simulated gastric, intestinal and liver environments for up to 6, 24 and 48 hours, respectively. Short-term treatment of Caco-2 cells with G3.5-SN38 conjugates did not reduce cell viability, while comparable concentrations of SN38 caused significant cytotoxicity. G3.5-Glycine-SN38 and G3.5-βAlanine-SN38 showed IC₅₀ values of 0.60 and 3.59 μM, respectively, in HT-29 cells treated for 48 h, indicating the efficacy of the drug delivery system in colorectal cancer cells with longer incubation time. Both conjugates increased SN38 transepithelial transport compared to the free drug. Transport of G3.5-Glycine-SN38 was highly concentration-dependent whereas transport of G3.5-βAlanine-SN38 was concentration-independent, highlighting the influence of drug loading and spacer chemistry on transport mechanism. Together these results show that PAMAM dendrimers have the potential to improve the oral bioavailability of potent anti-cancer drugs. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. G3.5 PAMAM Dendrimers Enhance Transepithelial Transport of SN38 while minimizing Gastrointestinal Toxicity

    PubMed Central

    Goldberg, Deborah S.; Vijayalakshmi, Nirmalkumar; Swaan, Peter W.; Ghandehari, Hamidreza

    2011-01-01

    Poly(amido amine) (PAMAM) dendrimers have shown promise in oral drug delivery. Conjugation of SN38 to PAMAM dendrimers has the potential to improve its oral absorption while minimizing gastrointestinal toxicity. In this work we evaluated G3.5 PAMAM dendrimer-SN38 conjugates with ester-linked glycine and β-alanine spacers for their suitability in oral therapy of hepatic colorectal cancer metastases. G3.5-βAlanine-SN38 was mostly stable while G3.5-Glycine-SN38 showed 10%, 20%, and 56% SN38 release in simulated gastric, intestinal and liver environments for up to 6, 24 and 48 hours, respectively. Short-term treatment of Caco-2 cells with G3.5-SN38 conjugates did not reduce cell viability, while comparable concentrations of SN38 caused significant cytotoxicity. G3.5-Glycine-SN38 and G3.5-βAlanine-SN38 showed IC50 values of 0.60 and 3.59 μM, respectively, in HT-29 cells treated for 48 hours, indicating the efficacy of the drug delivery system in colorectal cancer cells with longer incubation time. Both conjugates increased SN38 transepithelial transport compared to the free drug. Transport of G3.5-Glycine-SN38 was highly concentration-dependent whereas transport of G3.5-βAlanine-SN38 was concentration-independent, highlighting the influence of drug loading and spacer chemistry on transport mechanism. Together these results show that PAMAM dendrimers have the potential to improve the oral bioavailability of potent anti-cancer drugs. PMID:21115079

  16. TRANSEPITHELIAL TRANSPORT AND TOXICITY OF PAMAM DENDRIMERS: IMPLICATIONS FOR ORAL DRUG DELIVERY

    PubMed Central

    Sadekar, S.; Ghandehari, H.

    2011-01-01

    This article summarizes efforts to evaluate poly(amido amine) (PAMAM) dendrimers as carriers for oral drug delivery. Specifically, the effect of PAMAM generation, surface charge and surface modification on toxicity, cellular uptake and transepithelial transport is discussed. Studies on Caco-2 monolayers, as models of intestinal epithelial barrier, show that by engineering surface chemistry of PAMAM dendrimers, it is possible to minimize toxicity while maximizing transepithelial transport. It has been demonstrated that PAMAM dendrimers are transported by a combination of paracellular and transcellular routes. Depending on surface chemistry, PAMAM dendrimers can open the tight junctions of epithelial barriers. This tight junction opening is in part mediated by internalization of the dendrimers. Transcellular transport of PAMAM dendrimers is mediated by a variety of endocytic mechanisms. Attachment or complexation of cytotoxic agents to PAMAM dendrimers enhances the transport of such drugs across epithelial barriers. A remaining challenge is the design and development of linker chemistries that are stable in the gastrointestinal tract (GIT) and the blood stream, but amenable to cleavage at the target site of action. Recent efforts have focused on the use of PAMAM dendrimers as penetration enhancers. Detailed in vivo oral bioavailability of PAMAM dendrimer – drug conjugates, as a function of physicochemical properties will further need to be assessed. PMID:21983078

  17. Dendrimer-conjugated peptide vaccine enhances clearance of Chlamydia trachomatis genital infection.

    PubMed

    Ganda, Ingrid S; Zhong, Qian; Hali, Mirabela; Albuquerque, Ricardo L C; Padilha, Francine F; da Rocha, Sandro R P; Whittum-Hudson, Judith A

    2017-07-15

    Peptide-based vaccines have emerged in recent years as promising candidates in the prevention of infectious diseases. However, there are many challenges to maintaining in vivo peptide stability and enhancement of peptide immunogenicity to generate protective immunity which enhances clearance of infections. Here, a dendrimer-based carrier system is proposed for peptide-based vaccine delivery, and shows its anti-microbial feasibility in a mouse model of Chlamydia trachomatis. Chlamydiae are the most prevalent sexually transmitted bacteria worldwide, and also the causal agent of trachoma, the leading cause of preventable infectious blindness. In spite of the prevalence of this infectious agent and the many previous vaccine-related studies, there is no vaccine commercially available. The carrier system proposed consists of generation 4, hydroxyl-terminated, polyamidoamine (PAMAM) dendrimers (G4OH), to which a peptide mimic of a chlamydial glycolipid antigen-Peptide 4 (Pep4, AFPQFRSATLLL) was conjugated through an ester bond. The ester bond between G4OH and Pep4 is expected to break down mainly in the intracellular environment for antigen presentation. Pep4 conjugated to dendrimer induced Chlamydia-specific serum antibodies after subcutaneous immunizations. Further, this new vaccine formulation significantly protected immunized animals from vaginal challenge with infectious Chlamydia trachomatis, and it reduced infectious loads and tissue (genital tract) damage. Pep4 conjugated to G4OH or only mixed with peptide provided enhanced protection compared to Pep4 and adjuvant (i.e. alum), suggesting a potential adjuvant effect of the PAMAM dendrimer. Combined, these results demonstrate that hydroxyl-terminated PAMAM dendrimer is a promising polymeric nanocarrier platform for the delivery of peptide vaccines and this approach has potential to be expanded to other infectious intracellular bacteria and viruses of public health significance. Copyright © 2017 Elsevier B.V. All

  18. Transepithelial transport and toxicity of PAMAM dendrimers: implications for oral drug delivery.

    PubMed

    Sadekar, S; Ghandehari, H

    2012-05-01

    This article summarizes efforts to evaluate poly(amido amine) (PAMAM) dendrimers as carriers for oral drug delivery. Specifically, the effect of PAMAM generation, surface charge and surface modification on toxicity, cellular uptake and transepithelial transport is discussed. Studies on Caco-2 monolayers, as models of intestinal epithelial barrier, show that by engineering surface chemistry of PAMAM dendrimers, it is possible to minimize toxicity while maximizing transepithelial transport. It has been demonstrated that PAMAM dendrimers are transported by a combination of paracellular and transcellular routes. Depending on surface chemistry, PAMAM dendrimers can open the tight junctions of epithelial barriers. This tight junction opening is in part mediated by internalization of the dendrimers. Transcellular transport of PAMAM dendrimers is mediated by a variety of endocytic mechanisms. Attachment or complexation of cytotoxic agents to PAMAM dendrimers enhances the transport of such drugs across epithelial barriers. A remaining challenge is the design and development of linker chemistries that are stable in the gastrointestinal tract (GIT) and the blood stream, but amenable to cleavage at the target site of action. Recent efforts have focused on the use of PAMAM dendrimers as penetration enhancers. Detailed in vivo oral bioavailability of PAMAM dendrimer-drug conjugates, as a function of physicochemical properties will further need to be assessed. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Development of Topical Treatment for Pseudomonas aeruginosa Wound Infections by Quorum-Sensing Inhibitors Mediated by Poly(amidoamine) (PAMAM) Dendrimers

    DTIC Science & Technology

    2013-01-01

    baicalein, baicalin ) and PAMAM dendrimers (G5-NH2, G4-NH2, G3- NH2, G5-COOH, G5-OH) from commercial sources. To synthesize QSI-PAMAM complexes by...of QSI and PAMAM in the complex was listed in Table 1. 4 Conjugation of baicalin was carried according the proposed synthesis scheme. In this...performance period, we synthesized baicalin complex with G5-Ac50 by conjugation. To generate covalently conjugated QSI-PAMAM complexes, the PAMAM

  20. Targeted PEG-based bioconjugates enhance the cellular uptake and transport of a HIV-1 TAT nonapeptide.

    PubMed

    Ramanathan, S; Qiu, B; Pooyan, S; Zhang, G; Stein, S; Leibowitz, M J; Sinko, P J

    2001-12-13

    We previously described the enhanced cell uptake and transport of R.I-K(biotin)-Tat9, a large ( approximately 1500 Da) peptidic inhibitor of HIV-1 Tat protein, via SMVT, the intestinal biotin transporter. The aim of the present study was to investigate the feasibility of targeting biotinylated PEG-based conjugates to SMVT in order to enhance cell uptake and transport of Tat9. The 29 kDa peptide-loaded bioconjugate (PEG:(R.I-Cys-K(biotin)-Tat9)8) used in these studies contained eight copies of R.I-K(biotin)-Tat9 appended to PEG by means of a cysteine linkage. The absorptive transport of biotin-PEG-3400 (0.6-100 microM) and the bioconjugate (0.1-30 microM) was studied using Caco-2 cell monolayers. Inhibition of biotin-PEG-3400 by positive controls (biotin, biocytin, and desthiobiotin) was also determined. Uptake of these two compounds was also determined in CHO cells transfected with human SMVT (CHO/hSMVT) and control cells (CHO/pSPORT) over the concentration ranges of 0.05-12.5 microM and 0.003-30 microM, respectively. Nonbiotinylated forms of these two compounds, PEG-3350 and PEG:(R.I-Cys-K-Tat9)8, were used in the control studies. Biotin-PEG-3400 transport was found to be concentration-dependent and saturable in Caco-2 cells (K(m)=6.61 microM) and CHO/hSMVT cells (K(m)=1.26 microM). Transport/uptake was significantly inhibited by positive control substrates of SMVT. PEG:(R.I-Cys-K(biotin)Tat9)8 also showed saturable transport kinetics in Caco-2 cells (K(m)=6.13 microM) and CHO/hSMVT cells (K(m)=8.19 microM). Maximal uptake in molar equivalents of R.I-Cys-K(biotin)Tat9 was 5.7 times greater using the conjugate versus the biotinylated peptide alone. Transport of the nonbiotinylated forms was significantly lower (P<0.001) in all cases. The present results demonstrate that biotin-PEG-3400 and PEG:(R.I-Cys-K(biotin)Tat9)8 interact with human SMVT to enhance the cellular uptake and transport of these larger molecules and that targeted bioconjugates may have potential

  1. Encapsulation of micronutrients resveratrol, genistein, and curcumin by folic acid-PAMAM nanoparticles.

    PubMed

    Chanphai, P; Tajmir-Riahi, H A

    2018-05-21

    It has been shown that encapsulation of dietary polyphenols leads to increased solubility and bioavailability of these micronutrients. The encapsulation of dietary polyphenols resveratrol, genistein, and curcumin by folic acid-PAMAM-G3 and folic acid-PAMAM-G4 nanoparticles was studied in aqueous solution at physiological conditions, using multiple spectroscopic methods, TEM images, and docking studies. The polyphenol bindings are via hydrophilic, hydrophobic, and H-bonding contacts with resveratrol forming more stable conjugates. As folic acid-PAMAM nanoparticle size increased, the loading efficacy and the stability of polyphenol-polymer conjugates were increased. Polyphenol encapsulation induced major alterations of dendrimer morphology. Folic acid-PAMAM nanoconjugates are capable of delivery of polyphenols in vitro.

  2. Multifunctional Triblock Nanocarrier (PAMAM-PEG-PLL) for the Efficient Intracellular siRNA Delivery and Gene Silencing

    PubMed Central

    2011-01-01

    A novel triblock poly(amido amine)-poly(ethylene glycol)-poly-l-lysine (PAMAM-PEG-PLL) nanocarrier was designed, synthesized, and evaluated for the delivery of siRNA. The design of the nanocarrier is unique and provides a solution to most of the common problems associated with the delivery and therapeutic applications of siRNA. Every component in the triblock nanocarrier plays a significant role and performs multiple functions: (1) tertiary amine groups in the PAMAM dendrimer work as a proton sponge and play a vital role in the endosomal escape and cytoplasmic delivery of siRNA; (2) PEG, a linker connecting PLL and PAMAM dendrimers renders nuclease stability and protects siRNA in human plasma; (3) PLL provides primary amines to form polyplexes with siRNA through electrostatic interaction and also acts as penetration enhancer; and (4) conjugation to PEG and PAMAM reduced toxicity of PLL and the entire triblock nanocarrier PAMAM-PEG-PLL. The data obtained show that the polyplexes resulted from the conjugation of siRNA, and the proposed nanocarriers were effectively taken up by cancer cells and induced the knock down of the target BCL2 gene. In addition, triblock nanocarrier/siRNA polyplexes showed excellent stability in human plasma. PMID:21322531

  3. Relevance of biophysical interactions of nanoparticles with a model membrane in predicting cellular uptake: study with TAT peptide-conjugated nanoparticles

    PubMed Central

    Peetla, Chiranjeevi; Rao, Kavitha S.; Labhasetwar, Vinod

    2009-01-01

    The aim of the study was to test the hypothesis that the biophysical interactions of the trans-activating transcriptor (TAT) peptide-conjugated nanoparticles (NPs) with a model cell membrane could predict the cellular uptake of the encapsulated therapeutic agent. To test the above hypothesis, the biophysical interactions of ritonavir-loaded poly (L-lactide) nanoparticles (RNPs), either conjugated to a TAT peptide (TAT-RNPs) or scrambled TAT peptide (sc-TAT-RNPs), were studied with an endothelial cell model membrane (EMM) using a Langmuir film balance, and the corresponding human vascular endothelial cells (HUVECs) were used to study the uptake of the encapsulated therapeutic. Biophysical interactions were determined from the changes in surface pressure (SP) of the EMM as a function of time following interaction with NPs, and the compression isotherm (π–A) of the EMM lipid mixture in the presence of NPs. In addition, the EMMs were transferred onto a silicon substrate following interactions with NPs using the Langmuir–Schaeffer (LS) technique. The transferred LS films were imaged by atomic force microscopy (AFM) to determine the changes in lipid morphology and to characterize the NP–membrane interactions. TAT-RNPs showed an increase in SP of the EMM, which was dependent upon the amount of the peptide bound to NPs and the concentration of NPs, whereas sc-TAT-RNPs and RNPs did not show any significant change in SP. The isotherm experiment showed a shift towards higher mean molecular area (mmA) in the presence of TAT-RNPs, indicating their interactions with the lipids of the EMM, whereas sc-TAT-RNPs and RNPs did not show any significant change. The AFM images showed condensation of the lipids following interaction with TAT-RNPs, indicating their penetration into the EMM, whereas RNPs did not cause any change. Surface analysis and 3-D AFM images of the EMM further confirmed penetration of TAT-RNPs into the EMM whereas RNPs were seen anchored loosely to the

  4. Preliminary study on the inhibition of nuclear internalization of Tat peptides by conjugation with a receptor-specific peptide and fluorescent dyes

    NASA Astrophysics Data System (ADS)

    Shen, Duanwen; Liang, Kexiang; Ye, Yunpeng; Tetteh, Elizabeth; Achilefu, Samuel

    2006-02-01

    Numerous studies have shown that basic Tat peptide (48-57) internalized non-specifically in cells and localized in the nucleus. However, localization of imaging agents in cellular nucleus is not desirable because of the potential mutagenesis. When conjugated to the peptides that undergo receptor-mediated endocytosis, Tat peptide could target specific cells or pathologic tissue. We tested this hypothesis by incorporating a somatostatin receptor-avid peptide (octreotate, Oct) and two different fluorescent dyes, Cypate 2 (Cy2) and fluorescein 5'-carboxlic acid (5-FAM), into the Tat-peptide sequence. In addition to the Cy2 or 5-FAM-labeled Oct conjugated to Tat peptide (Tat) to produce Tat-Oct-Cypate2 or Tat-Oct-5-FAM, we also labeled the Tat the Tat peptide with these dyes (Tat-Cy2 and Tat-5-FAM) to serve as positive control. A somatostatin receptor-positive pancreatic tumor cell line, AR42J, was used to assess cell internalization. The results show that Tat-5-FAM and Tat-Cypate2 localized in both nucleus and cytoplasm of the cells. In contrast to Tat-Oct-Cypate2, which localized in both the cytoplasm and nucleus, Tat-Oct-5-FAM internalized in the cytoplasm but not in the nucleus of AR42J cells. The internalizations were inhibited by adding non-labeled corresponding peptides, suggesting that the endocytoses of each group of labeled and the corresponding unlabeled compounds occurred through a common pathway. Thus, fluorescent probes and endocytosis complex between octreotate and somatostatin receptors in cytoplasm could control nuclear internalization of Tat peptides.

  5. Effects of the TAT peptide orientation and relative location on the protein transduction efficiency.

    PubMed

    Guo, Qingguo; Zhao, Guojie; Hao, Fengjin; Guan, Yifu

    2012-05-01

    To understand the protein transduction domain (PTD)-mediated protein transduction behavior and to explore its potential in delivering biopharmaceutic drugs, we prepared four TAT-EGFP conjugates: TAT(+)-EGFP, TAT(-)-EGFP, EGFP-TAT(+) and EGFP-TAT(-), where TAT(+) and TAT(-) represent the original and the reversed TAT sequence, respectively. These four TAT-EGFP conjugates were incubated with HeLa and PC12 cells for in vitro study as well as injected intraperitoneally to mice for in vivo study. Flow cytometric results showed that four TAT-EGFP conjugates were able to traverse HeLa and PC12 cells with almost equal transduction efficiency. The in vivo study showed that the TAT-EGFP conjugates could be delivered into different organs of mice with different transduction capabilities. Bioinformatic analyses and CD spectroscopic data revealed that the TAT peptide has no defined secondary structure, and conjugating the TAT peptide to the EGFP cargo protein would not alter the native structure and the function of the EGFP protein. These results conclude that the sequence orientation, the spatial structure, and the relative location of the TAT peptide have much less effect on the TAT-mediated protein transduction. Thus, the TAT-fused conjugates could be constructed in more convenient and flexible formats for a wide range of biopharmaceutical applications. © 2011 John Wiley & Sons A/S.

  6. Synergistic Enhancement of Antitumor Efficacy by PEGylated Multi-walled Carbon Nanotubes Modified with Cell-Penetrating Peptide TAT

    NASA Astrophysics Data System (ADS)

    Hu, Shanshan; Wang, Tong; Pei, Xibo; Cai, He; Chen, Junyu; Zhang, Xin; Wan, Qianbing; Wang, Jian

    2016-10-01

    In the present study, a cell-penetrating peptide, the transactivating transcriptional factor (TAT) domain from HIV, was linked to PEGylated multi-walled carbon nanotubes (MWCNTs) to develop a highly effective antitumor drug delivery system. FITC was conjugated on MWCNTs-polyethylene glycol (PEG) and MWCNTs-PEG-TAT to provide fluorescence signal for tracing the cellular uptake of the nanocarrier. After loaded with an anticancer agent, doxorubicin (DOX) via π - π stacking interaction, the physicochemical characteristics, release profile and biological evaluation of the obtained nano-sized drug carrier were investigated. The DOX loaded MWCNTs-PEG and MWCNTs-PEG-TAT drug carriers both displayed appropriate particle size, excellent stability, high drug loading, and pH-dependent drug release profile. Nevertheless, compared with DOX-MWCNTs-PEG, DOX-MWCNTs-PEG-TAT showed improved cell internalization, intracellular distribution and potentiated anticancer efficacy due to the TAT-mediated membrane translocation, endosomal escape and nuclear targeting. Furthermore, the therapeutic efficacy of DOX was not compromised after being conjugated with MWCNTs-PEG-TAT and the proposed nanocarrier was also confirmed to have a good biocompatibility. In conclusion, our results suggested that the unique combination of TAT and MWCNTs as a multifunctional drug delivery system might be a powerful tool for improved anticancer drug development.

  7. Design, Synthesis, and Biological Evaluations of Asymmetric Bow-Tie PAMAM Dendrimer-Based Conjugates for Tumor-Targeted Drug Delivery.

    PubMed

    Wang, Tao; Zhang, Yaozhong; Wei, Longfei; Teng, Yuhan G; Honda, Tadashi; Ojima, Iwao

    2018-04-30

    A unique asymmetric bow-tie poly(amidoamine) (PAMAM) dendrimer (ABTD) scaffold was designed and developed as a well-defined macromolecular carrier for tumor-targeted drug delivery. The ABTD scaffold in this study consists of a G3-half-dendron (G3-HD) unit and a G1-half-dendron (G1-HD) unit, bearing thiol moiety in each unit and a bis(maleimide) linker unit, which undergo sequential thiol-maleimide coupling to assemble the scaffold. This assembly methodology is applicable to all other combinations of different generations of PAMAM dendrimers. In the prototype ABTD in this study, 16 biotin moieties were tethered to the G3-HD unit and 4 payloads (new-generation taxoid) to the G1-HD via a self-immolative linker to form an ABTD-tumor-targeting conjugate (ABTD-TTC-1). Two other ABTD-TTCs were synthesized, wherein the G1-HD unit was tethered to a fluorescence-labeled taxoid or to a fluorescent probe. These three ABTD-TTCs were constructed by using a common key ABTD 6 bearing a terminal acetylene group in the G1-HD unit, which was fully characterized as a single molecule by high-resolution mass spectrometry and NMR despite its high molecular weight ( M w : 12 876). Then, the click reaction was employed to couple ABTD 6 with a small-molecule payload or fluorescence probe unit bearing a terminal azide moiety. ABTD-TTC-3, as a surrogate of ABTD-TTC-2, showed substantially enhanced internalization into two cancer cell lines via receptor-mediated endocytosis, attributed to multibinding effect. ABTD-TTC-1 exhibited a remarkable selectivity to cancer cells (1400-7500 times) compared to human normal cells, which demonstrates the salient feature and bright prospect of the ABTD-based tumor-targeted drug-delivery system.

  8. Smart AS1411-aptamer conjugated pegylated PAMAM dendrimer for the superior delivery of camptothecin to colon adenocarcinoma in vitro and in vivo.

    PubMed

    Alibolandi, Mona; Taghdisi, Seyed Mohammad; Ramezani, Pouria; Hosseini Shamili, Fazileh; Farzad, Sara Amel; Abnous, Khalil; Ramezani, Mohammad

    2017-03-15

    In the current study camptothecin-loaded pegylated PAMAM dendrimer were synthesized and were functionalized with AS1411 anti-nucleolin aptamers for site-specific targeting against colorectal cancer cells which over expresses nucleolin receptors. The morphological properties and size dispersity of the prepared nanoparticles were evaluated using transmission electron microscope (TEM) and DLS. The drug-loading content and encapsulation efficiency were obtained 8.1% and 93.67% respectively. The in vitro release of camptothecin from the formulation was provided the sustained release of encapsulated camptothecin during 4days. Comparative in vitro cytotoxicity experiments demonstrated that the targeted camptothecin loaded-pegylated dendrimers had higher antiproliferation activity, towards nucleolin-positive HT29 and C26 colorectal cancer cells than nucleolin-negative CHO cell line. Fluorscence microscopy and flow cytometry also confirmed the enhanced cellular uptake of AS1411 targeted pegylated-dendrimer. In vivo study in C26 tumor-bearing BALB/C mice revealed that the AS1411-functionalized camptothecin loaded pegylated dendrimers improved antitumor activity and survival rate of the encapsulated camptothecin. Conjugation of AS1411 aptamer to the camptothecin loaded-pegylated dendrimer surface provides site-specific delivery of camptothecin, inhibit C26 tumor growth in vivo and significantly decrease systemic toxicity. These results suggested that the new nucleolin-targeted pegylated PAMAM dendrimer as a delivery system for camptothecin have the potential for the treatment of nucleolin-overexpressed colorectal cancer. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Ligand Accessibility and Bioactivity of a Hormone-Dendrimer Conjugate Depend on pH and pH History

    PubMed Central

    Kim, Sung Hoon; Madak-Erdogan, Zeynep; Bae, Sung Chul; Carlson, Kathryn E.; Mayne, Christopher G.; Granick, Steve; Katzenellenbogen, Benita S.; Katzenellenbogen, John A.

    2016-01-01

    Estrogen conjugates with a polyamidoamine (PAMAM) dendrimer have shown remarkably selective regulation of the non-genomic actions of estrogens in target cells. In response to pH changes, however, these estrogen-dendrimer conjugates (EDCs) display a major morphological transition that alters the accessibility of the estrogen ligands that compromises the bioactivity of the EDC. A sharp break in dynamic behavior near pH 7 occurs for three different ligands on the surface of a PAMAM-G6 dendrimer: a fluorophore (tetramethylrhodamine, TMR) and two estrogens (17α-ethynylestradiol and diphenolic acid). Collisional quenching and time-resolved fluorescence anisotropy experiments with TMR-PAMAM reveal high ligand shielding above pH 7 and low shielding below pH 7. Furthermore, when pH was cycled from 8.5 (conditions of ligand-PAMAM conjugation) to 4.5 (e.g., endosome/lysosome) and through 6.5 (e.g., hypoxic environment) back to pH 8.5, the 17α-ethynylestradiol and diphenolic acid PAMAM conjugates experience a dramatic, irreversible loss in cell stimulatory activity; dynamic NMR studies indicate that the hormonal ligands had become occluded within the more hydrophobic core of the PAMAM dendrimer. Thus, the active state of these estrogen-dendrimer conjugates appears to be metastable. This pH-dependent irreversible masking of activity is of considerable relevance to the design of drug conjugates with amine-bearing PAMAM dendrimers. PMID:26186415

  10. Arginine-glycine-aspartic acid-polyethylene glycol-polyamidoamine dendrimer conjugate improves liver-cell aggregation and function in 3-D spheroid culture.

    PubMed

    Chen, Zhanfei; Lian, Fen; Wang, Xiaoqian; Chen, Yanling; Tang, Nanhong

    The polyamidoamine (PAMAM) dendrimer, a type of macromolecule material, has been used in spheroidal cell culture and drug delivery in recent years. However, PAMAM is not involved in the study of hepatic cell-spheroid culture or its biological activity, particularly in detoxification function. Here, we constructed a PAMAM-dendrimer conjugate decorated by an integrin ligand: arginine-glycine-aspartic acid (RGD) peptide. Our studies demonstrate that RGD-polyethylene glycol (PEG)-PAMAM conjugates can promote singly floating hepatic cells to aggregate together in a sphere-like growth with a weak reactive oxygen species. Moreover, RGD-PEG-PAMAM conjugates can activate the AKT-MAPK pathway in hepatic cells to promote cell proliferation and improve basic function and ammonia metabolism. Together, our data support the hepatocyte sphere treated by RGD-PEG-PAMAM conjugates as a potential source of hepatic cells for a biological artificial liver system.

  11. Preparation and characterization of conjugated polyamidoamine-MPEG-methotrexate for potential drug delivery system

    NASA Astrophysics Data System (ADS)

    Mohd Sabri, Siti Noorzidah bt; Abu, Norhidayah; Mastor, Azreena; Hisham, Siti Farhana; Noorsal, Kartini

    2012-07-01

    Star polymers have unique characteristics due to their well-defined size and tailor ability which makes these polymers attractive candidates as carriers in drug delivery system applications. This work focuses on attaching a drug to the star polymer (polyamidoamine). The conjugation of polyamidoamine (PAMAM, generation 4) with methotrexate (MTX) (model drug) was studied in which monomethyl polyethylene glycol (MPEG) was used as a linker to reduce the toxicity of dendrimer. Conjugation starts with attaching the drug to the linker and followed by further conjugation with the polyamidoamine (PAMAM) dendrimer. The conjugation of PAMAM-PEG-MTX was confirmed through UV-Vis, FTIR, 1H NMR and DSC. The loading capacities and release profile of this conjugate were determined using 1H NMR and UV spectrometer.

  12. Passage of Magnetic Tat-Conjugated Fe3O4@SiO2 Nanoparticles Across In Vitro Blood-Brain Barrier

    NASA Astrophysics Data System (ADS)

    Zhao, Xueqin; Shang, Ting; Zhang, Xiaodan; Ye, Ting; Wang, Dajin; Rei, Lei

    2016-10-01

    Delivery of diagnostic or therapeutic agents across the blood-brain barrier (BBB) remains a major challenge of brain disease treatment. Magnetic nanoparticles are actively being developed as drug carriers due to magnetic targeting and subsequently reduced off-target effects. In this paper, we developed a magnetic SiO2@Fe3O4 nanoparticle-based carrier bound to cell-penetrating peptide Tat (SiO2@Fe3O4 -Tat) and studied its fates in accessing BBB. SiO2@Fe3O4-Tat nanoparticles (NPs) exhibited suitable magnetism and good biocompatibility. NPs adding to the apical chamber of in vitro BBB model were found in the U251 glioma cells co-cultured at the bottom of the Transwell, indicating that particles passed through the barrier and taken up by glioma cells. Moreover, the synergistic effects of Tat and magnetic field could promote the efficient cellular internalization and the permeability across the barrier. Besides, functionalization with Tat peptide allowed particles to locate into the nucleus of U251 cells than the non-conjugated NPs. These results suggest that SiO2@Fe3O4-Tat NPs could penetrate the BBB through the transcytosis of brain endothelial cells and magnetically mediated dragging. Therefore, SiO2@Fe3O4-Tat NPs could be exploited as a potential drug delivery system for chemotherapy and gene therapy of brain disease.

  13. Ligand accessibility and bioactivity of a hormone–dendrimer conjugate depend on pH and pH history

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Sung Hoon; Madak-Erdogan, Zeynep; Bae, Sung Chul

    Estrogen conjugates with a polyamidoamine (PAMAM) dendrimer have shown remarkably selective regulation of the nongenomic actions of estrogens in target cells in this paper. In response to pH changes, however, these estrogen–dendrimer conjugates (EDCs) display a major morphological transition that alters the accessibility of the estrogen ligands that compromises the bioactivity of the EDC. A sharp break in dynamic behavior near pH 7 occurs for three different ligands on the surface of a PAMAM-G6 dendrimer: a fluorophore (tetramethylrhodamine [TMR]) and two estrogens (17α-ethynylestradiol and diphenolic acid). Collisional quenching and time-resolved fluorescence anisotropy experiments with TMR–PAMAM revealed high ligand shielding abovemore » pH 7 and low shielding below pH 7. Furthermore, when the pH was cycled from 8.5 (conditions of ligand–PAMAM conjugation) to 4.5 (e.g., endosome/lysosome) and through 6.5 (e.g., hypoxic environment) back to pH 8.5, the 17α-ethynylestradiol– and diphenolic acid–PAMAM conjugates experienced a dramatic, irreversible loss in cell stimulatory activity; dynamic NMR studies indicated that the hormonal ligands had become occluded within the more hydrophobic core of the PAMAM dendrimer. Thus, the active state of these estrogen–dendrimer conjugates appears to be metastable. Finally, this pH-dependent irreversible masking of activity is of considerable relevance to the design of drug conjugates with amine-bearing PAMAM dendrimers.« less

  14. Ligand accessibility and bioactivity of a hormone–dendrimer conjugate depend on pH and pH history

    DOE PAGES

    Kim, Sung Hoon; Madak-Erdogan, Zeynep; Bae, Sung Chul; ...

    2015-07-17

    Estrogen conjugates with a polyamidoamine (PAMAM) dendrimer have shown remarkably selective regulation of the nongenomic actions of estrogens in target cells in this paper. In response to pH changes, however, these estrogen–dendrimer conjugates (EDCs) display a major morphological transition that alters the accessibility of the estrogen ligands that compromises the bioactivity of the EDC. A sharp break in dynamic behavior near pH 7 occurs for three different ligands on the surface of a PAMAM-G6 dendrimer: a fluorophore (tetramethylrhodamine [TMR]) and two estrogens (17α-ethynylestradiol and diphenolic acid). Collisional quenching and time-resolved fluorescence anisotropy experiments with TMR–PAMAM revealed high ligand shielding abovemore » pH 7 and low shielding below pH 7. Furthermore, when the pH was cycled from 8.5 (conditions of ligand–PAMAM conjugation) to 4.5 (e.g., endosome/lysosome) and through 6.5 (e.g., hypoxic environment) back to pH 8.5, the 17α-ethynylestradiol– and diphenolic acid–PAMAM conjugates experienced a dramatic, irreversible loss in cell stimulatory activity; dynamic NMR studies indicated that the hormonal ligands had become occluded within the more hydrophobic core of the PAMAM dendrimer. Thus, the active state of these estrogen–dendrimer conjugates appears to be metastable. Finally, this pH-dependent irreversible masking of activity is of considerable relevance to the design of drug conjugates with amine-bearing PAMAM dendrimers.« less

  15. Enhancing a rainfall-runoff model to assess the impacts of BMPs and LID practices on storm runoff.

    PubMed

    Liu, Yaoze; Ahiablame, Laurent M; Bralts, Vincent F; Engel, Bernard A

    2015-01-01

    Best management practices (BMPs) and low impact development (LID) practices are increasingly being used as stormwater management techniques to reduce the impacts of urban development on hydrology and water quality. To assist planners and decision-makers at various stages of development projects (planning, implementation, and evaluation), user-friendly tools are needed to assess the effectiveness of BMPs and LID practices. This study describes a simple tool, the Long-Term Hydrologic Impact Assessment-LID (L-THIA-LID), which is enhanced with additional BMPs and LID practices, improved approaches to estimate hydrology and water quality, and representation of practices in series (meaning combined implementation). The tool was used to evaluate the performance of BMPs and LID practices individually and in series with 30 years of daily rainfall data in four types of idealized land use units and watersheds (low density residential, high density residential, industrial, and commercial). Simulation results were compared with the results of other published studies. The simulated results showed that reductions in runoff volume and pollutant loads after implementing BMPs and LID practices, both individually and in series, were comparable with the observed impacts of these practices. The L-THIA-LID 2.0 model is capable of assisting decision makers in evaluating environmental impacts of BMPs and LID practices, thereby improving the effectiveness of stormwater management decisions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Review on the targeted conjugation of anticancer drugs doxorubicin and tamoxifen with synthetic polymers for drug delivery.

    PubMed

    Sanyakamdhorn, S; Agudelo, D; Tajmir-Riahi, H A

    2017-08-01

    In this review, the binding and loading efficacy (LE) of anticancer drugs doxorubicin (DOX), tamoxifen (Tam) and its metabolites 4-hydroxytamoxifen (4-Hydroxytam) and endoxifen (Endox) with several synthetic polymers poly(ethylene glycol) (PEG), methoxypoly (ethylene glycol) polyamidoamine (mPEG-PAMAM-G3), and polyamidoamine (PAMAM-G4) dendrimers were compared in aqueous solution at pH 7.4. The results of multiple spectroscopic methods, transmission electron microscopy (TEM) and molecular modeling of conjugated drug-polymer were examined. Structural analysis showed that drug-polymer conjugation occurs mainly via H-bonding and hydrophobic contacts. The order of binding is PAMAM-G4 > mPEG-PAMAM-G3 > PEG-6000 with 4-hydroxttamoxifen forming more stable conjugate than tamoxifen and endoxifen. Doxorubicin shows stronger affinity for PAMAM-G4 than tamoxifen and its metabolites. The drug LE was 30-55%. TEM showed significant changes in the carrier morphology upon drug encapsulation. Modeling also showed that drug is located in the surface and in the internal cavities of PAMAM with DOX forming more stable polymer conjugates.

  17. Molecular dynamics study of the structure and interparticle interactions of polyethylene glycol-conjugated PAMAM dendrimers.

    PubMed

    Lee, Hwankyu; Larson, Ronald G

    2009-10-08

    We performed molecular dynamics (MD) simulations of one or two copies of polyethylene glycol of molecular weight 550 (PEG550) and 5000 (PEG5000) daltons, conjugated to generation 3 (G3) to 5 (G5) polyamidoamine (PAMAM) dendrimers with explicit water using a coarse-grained model. We found the radii of gyration of these dendrimer-PEG molecules to be close to those measured in experiments by Hedden and Bauer (Hedden , R. C. ; Bauer , B. J. Macromolecules 2003 , 36 , 1829.). Densely grafted PEG ligands (>50% of the dendrimer surface) extend like brushes, with layer thickness in agreement with theory for starlike polymers. Two dendrimer-PEG complexes in the box drift away from each other, indicating that no aggregation is induced by either short or long PEG chains, conflicting with a recent view that the cytotoxicity of some PEGylated particles might be due to particle aggregation for long PEG lengths.

  18. CREKA peptide-conjugated dendrimer nanoparticles for glioblastoma multiforme delivery.

    PubMed

    Zhao, Jingjing; Zhang, Bo; Shen, Shun; Chen, Jun; Zhang, Qizhi; Jiang, Xinguo; Pang, Zhiqing

    2015-07-15

    Glioblastoma multiforme (GBM) is the most aggressive central nervous system (CNS) tumor because of its fast development, poor prognosis, difficult control and terrible mortality. Poor penetration and retention in the glioblastoma parenchyma were crucial challenges in GBM nanomedicine therapy. Nanoparticle diameter can significantly influence the delivery efficiency in tumor tissue. Decreasing nanoparticle size can improve the nanoparticle penetration in tumor tissue but decrease the nanoparticle retention effect. Therefore, small nanoparticles with high retention effect in tumor are urgently needed for effective GBM drug delivery. In present study, a small nanoparticle drug delivery system was developed by conjugating fibrin-binding peptide CREKA to Polyamidoamine (PAMAM) dendrimer, where PEGylated PAMAM is used as drug carrier due to its small size and good penetration in tumor and CREKA is used to target the abundant fibrin in GBM for enhanced retention in tumor. In vitro binding ability tests demonstrated that CREKA can significantly enhanced nanoparticle binding with fibrin. In vivo fluorescence imaging of GBM bearing nude mice, ex vivo brain imaging and frozen slices fluorescence imaging further revealed that the CREKA-modified PAMAM achieved higher accumulation and deeper penetration in GBM tissue than unmodified one. These results indicated that the CREKA-modified PAMAM could penetrate the GBM tissue deeply and enhance the retention effect, which was a promising strategy for brain tumor therapy. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. The development of folate-PAMAM dendrimer conjugates for targeted delivery of anti-arthritic drugs and their pharmacokinetics and biodistribution in arthritic rats.

    PubMed

    Chandrasekar, Durairaj; Sistla, Ramakrishna; Ahmad, Farhan J; Khar, Roop K; Diwan, Prakash V

    2007-01-01

    The aim of this study was to synthesize folate-dendrimer conjugates as suitable vehicle for site specific delivery of anti-arthritic drug (indomethacin) to inflammatory regions and to determine its targeting efficiency, biodistribution in adjuvant induced arthritic rats. Folic acid was coupled to the surface amino groups of G4-PAMAM dendrimer (G4D) via a carbodiimide reaction and loaded with indomethacin. The conjugates were characterized by (1)H-NMR and IR spectroscopy. The drug content and percent encapsulation efficiency increased with increasing folate content for the dendrimer conjugates. The in vitro release rate was decreased for the folate conjugates when compared with unconjugated dendrimer (DNI). The plasma concentration profile showed a biphasic curve indicating rapid distribution followed by slow elimination. The AUC(0-infinity), half-life and residence time of indomethacin in inflamed paw was higher for folate-dendrimer conjugates. The time-averaged relative drug exposure (r(e)) of the drug in paw and overall drug targeting efficiency (T(e)) were higher for folate conjugate with 21 folate moieties (4.1 and 2.78, respectively) when compared with DNI (1.91 and 1.88, respectively). This study demonstrated the superiority of active targeting over dendrimer mediated passive targeting and also for the first time, folate-mediated targeting of an anti-arthritic drug to the inflammatory tissues.

  20. Design, synthesis, characterization and drug release kinetics of PAMAM dendrimer based drug formulations

    NASA Astrophysics Data System (ADS)

    Kurtoglu, Yunus Emre

    The drug release characteristics of G4-polyamidoamine (PAMAM) dendrimer-ibuprofen conjugates with ester, amide, and peptide linkers were investigated, in addition to a linear PEG-ibuprofen conjugate to understand the effect of architecture and linker on drug release. Ibuprofen was directly conjugated to NH2 -terminated dendrimer by an amide bond and OH-terminated dendrimer by an ester bond. A tetra-peptide linked dendrimer conjugate and a linear mPEG-ibuprofen conjugate were also studied for comparison to direct linked dendrimer conjugates. It is demonstrated that the 3-D nanoscale architecture of PAMAM dendrimer-drug conjugates, along with linking chemistry govern the drug release mechanisms as well as kinetics. Understanding these structural effects on their drug release characteristics is crucial for design of dendrimer conjugates with high efficacy such as poly(amidoamine) dendrimer-N-Acetylcysteine conjugates with disulfide linkages. N-Acetylcysteine (NAC) is an anti-inflammatory agent with significant potential for clinical use in the treatment of neuroinflammation, stroke and cerebral palsy. A poly(amidoamine) dendrimer-NAC conjugate that contains a disulfide linkage was synthesized and evaluated for its release kinetics in the presence of glutathione (GSH), Cysteine (Cys), and bovine serum albumin (BSA) at both physiological and lysosomal pH. FITC-labeled conjugates showed that they enter cells rapidly and localize in the cytoplasm of lipopolysaccharide (LPS)-activated microglial cells. The efficacy of the dendrimer-NAC conjugate was measured in activated microglial cells using reactive oxygen species (ROS) assays. The conjugates showed an order of magnitude increase in anti-oxidant activity compared to free drug. When combined with intrinsic and ligand-based targeting with dendrimers, these types of GSH sensitive nanodevices can lead to improved drug release profiles and in vivo efficacy.

  1. Transepithelial Transport of PAMAM Dendrimers across Isolated Rat Jejunal Mucosae in Ussing Chambers

    PubMed Central

    2015-01-01

    Oral delivery remains a challenge for poorly permeable hydrophilic macromolecules. Poly(amido amine) (PAMAM) dendrimers have shown potential for their possible oral delivery. Transepithelial transport of carboxyl-terminated G3.5 and amine-terminated G4 PAMAM dendrimers was assessed using isolated rat jejunal mucosae mounted in Ussing chambers. The 1 mM FITC-labeled dendrimers were added to the apical side of mucosae. Apparent permeability coefficients (Papp) from the apical to the basolateral side were significantly increased for FITC when conjugated to G3.5 PAMAM dendrimer compared to FITC alone. Minimal signs of toxicity were observed when mucosae were exposed to both dendrimers with respect to transepithelial electrical resistance changes, carbachol-induced short circuit current stimulation, and histological changes. [14C]-mannitol fluxes were not altered in the presence of 1 mM dendrimers, suggesting that the paracellular pathway was not affected at this concentration in this model. These results give insight into the mechanism of PAMAM dendrimer transepithelial rat jejunal transport, as well as toxicological considerations important for oral drug delivery. PMID:24992090

  2. Transepithelial transport of PAMAM dendrimers across isolated rat jejunal mucosae in ussing chambers.

    PubMed

    Hubbard, Dallin; Ghandehari, Hamidreza; Brayden, David J

    2014-08-11

    Oral delivery remains a challenge for poorly permeable hydrophilic macromolecules. Poly(amido amine) (PAMAM) dendrimers have shown potential for their possible oral delivery. Transepithelial transport of carboxyl-terminated G3.5 and amine-terminated G4 PAMAM dendrimers was assessed using isolated rat jejunal mucosae mounted in Ussing chambers. The 1 mM FITC-labeled dendrimers were added to the apical side of mucosae. Apparent permeability coefficients (Papp) from the apical to the basolateral side were significantly increased for FITC when conjugated to G3.5 PAMAM dendrimer compared to FITC alone. Minimal signs of toxicity were observed when mucosae were exposed to both dendrimers with respect to transepithelial electrical resistance changes, carbachol-induced short circuit current stimulation, and histological changes. [(14)C]-mannitol fluxes were not altered in the presence of 1 mM dendrimers, suggesting that the paracellular pathway was not affected at this concentration in this model. These results give insight into the mechanism of PAMAM dendrimer transepithelial rat jejunal transport, as well as toxicological considerations important for oral drug delivery.

  3. The grafting of universal T-helper epitopes enhances immunogenicity of HIV-1 Tat concurrently improving its safety profile.

    PubMed

    Kashi, Venkatesh P; Jacob, Rajesh A; Shamanna, Raghavendra A; Menon, Malini; Balasiddaiah, Anangi; Varghese, Rebu K; Bachu, Mahesh; Ranga, Udaykumar

    2014-01-01

    Extracellular Tat (eTat) plays an important role in HIV-1 pathogenesis. The presence of anti-Tat antibodies is negatively correlated with disease progression, hence making Tat a potential vaccine candidate. The cytotoxicity and moderate immunogenicity of Tat however remain impediments for developing Tat-based vaccines. Here, we report a novel strategy to concurrently enhance the immunogenicity and safety profile of Tat. The grafting of universal helper T-lymphocyte (HTL) epitopes, Pan DR Epitope (PADRE) and Pol711 into the cysteine rich domain (CRD) and the basic domain (BD) abolished the transactivation potential of the Tat protein. The HTL-Tat proteins elicited a significantly higher titer of antibodies as compared to the wild-type Tat in BALB/c mice. While the N-terminal epitope remained immunodominant in HTL-Tat immunizations, an additional epitope in exon-2 was recognized with comparable magnitude suggesting a broader immune recognition. Additionally, the HTL-Tat proteins induced cross-reactive antibodies of high avidity that efficiently neutralized exogenous Tat, thus blocking the activation of a Tat-defective provirus. With advantages such as presentation of multiple B-cell epitopes, enhanced antibody response and importantly, transactivation-deficient Tat protein, this approach has potential application for the generation of Tat-based HIV/AIDS vaccines.

  4. Size effect of Au/PAMAM contrast agent on CT imaging of reticuloendothelial system and tumor tissue

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Li, Jian; Liu, Ransheng; Zhang, Aixu; Yuan, Zhiyong

    2016-09-01

    Polyamidoamine (PAMAM)-entrapped Au nanoparticles were synthesized with distinct sizes to figure out the size effect of Au-based contrast agent on CT imaging of passively targeted tissues. Au/PAMAM nanoparticles were first synthesized with narrow distribution of particles size of 22.2 ± 3.1, 54.2 ± 3.7, and 104.9 ± 4.7 nm in diameters. Size effect leads no significant difference on X-ray attenuation when Au/PAMAM was ≤0.05 mol/L. For CT imaging of a tumor model, small Au/PAMAM were more easily internalized via endocytosis in the liver, leading to more obviously enhanced contrast. Similarly, contrast agents with small sizes were more effective in tumor imaging because of the enhanced permeability and retention effect. Overall, the particle size of Au/PAMAM heavily affected the efficiency of CT enhancement in imaging RES and tumors.

  5. Targeted conjugation of breast anticancer drug tamoxifen and its metabolites with synthetic polymers.

    PubMed

    Sanyakamdhorn, S; Agudelo, D; Bekale, L; Tajmir-Riahi, H A

    2016-09-01

    Conjugation of antitumor drug tamoxifen and its metabolites, 4-hydroxytamxifen and ednoxifen with synthetic polymers poly(ethylene glycol) (PEG), methoxypoly (ethylene glycol) polyamidoamine (mPEG-PAMAM-G3) and polyamidoamine (PAMAM-G4) dendrimers was studied in aqueous solution at pH 7.4. Multiple spectroscopic methods, transmission electron microscopy (TEM) and molecular modeling were used to characterize the drug binding process to synthetic polymers. Structural analysis showed that drug-polymer binding occurs via both H-bonding and hydrophobic contacts. The order of binding is PAMAM-G4>mPEG-PAMAM-G3>PEG-6000 with 4-hydroxttamoxifen forming more stable conjugate than tamoxifen and endoxifen. Transmission electron microscopy showed significant changes in carrier morphology with major changes in the shape of the polymer aggregate as drug encapsulation occurred. Modeling also showed that drug is located in the surface and in the internal cavities of PAMAM with the free binding energy of -3.79 for tamoxifen, -3.70 for 4-hydroxytamoxifen and -3.69kcal/mol for endoxifen, indicating of spontaneous drug-polymer interaction at room temperature. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. HIV-1 Tat protein enhances the intracellular growth of Leishmania amazonensis via the ds-RNA induced protein PKR.

    PubMed

    Vivarini, Áislan de Carvalho; Pereira, Renata de Meirelles Santos; Barreto-de-Souza, Victor; Temerozo, Jairo Ramos; Soares, Deivid C; Saraiva, Elvira M; Saliba, Alessandra Mattos; Bou-Habib, Dumith Chequer; Lopes, Ulisses Gazos

    2015-11-26

    HIV-1 co-infection with human parasitic diseases is a growing public health problem worldwide. Leishmania parasites infect and replicate inside macrophages, thereby subverting host signaling pathways, including the response mediated by PKR. The HIV-1 Tat protein interacts with PKR and plays a pivotal role in HIV-1 replication. This study shows that Tat increases both the expression and activation of PKR in Leishmania-infected macrophages. Importantly, the positive effect of Tat addition on parasite growth was dependent on PKR signaling, as demonstrated in PKR-deficient macrophages or macrophages treated with the PKR inhibitor. The effect of HIV-1 Tat on parasite growth was prevented when the supernatant of HIV-1-infected macrophages was treated with neutralizing anti-HIV-1 Tat prior to Leishmania infection. The addition of HIV-1 Tat to Leishmania-infected macrophages led to inhibition of iNOS expression, modulation of NF-kB activation and enhancement of IL-10 expression. Accordingly, the expression of a Tat construct containing mutations in the basic region (49-57aa), which is responsible for the interaction with PKR, favored neither parasite growth nor IL-10 expression in infected macrophages. In summary, we show that Tat enhances Leishmania growth through PKR signaling.

  7. Brain-Targeted Delivery of Trans-Activating Transcriptor-Conjugated Magnetic PLGA/Lipid Nanoparticles

    PubMed Central

    Zhang, Yifang; Sun, Tingting; Zhang, Fang; Wu, Jian; Fu, Yanyan; Du, Yang; Zhang, Lei; Sun, Ying; Liu, YongHai; Ma, Kai; Liu, Hongzhi; Song, Yuanjian

    2014-01-01

    Magnetic poly (D,L-lactide-co-glycolide) (PLGA)/lipid nanoparticles (MPLs) were fabricated from PLGA, L-α-phosphatidylethanolamine (DOPE), 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-amino (polyethylene glycol) (DSPE-PEG-NH2), and magnetic nanoparticles (NPs), and then conjugated to trans-activating transcriptor (TAT) peptide. The TAT-MPLs were designed to target the brain by magnetic guidance and TAT conjugation. The drugs hesperidin (HES), naringin (NAR), and glutathione (GSH) were encapsulated in MPLs with drug loading capacity (>10%) and drug encapsulation efficiency (>90%). The therapeutic efficacy of the drug-loaded TAT-MPLs in bEnd.3 cells was compared with that of drug-loaded MPLs. The cells accumulated higher levels of TAT-MPLs than MPLs. In addition, the accumulation of QD-loaded fluorescein isothiocyanate (FITC)-labeled TAT-MPLs in bEnd.3 cells was dose and time dependent. Our results show that TAT-conjugated MPLs may function as an effective drug delivery system that crosses the blood brain barrier to the brain. PMID:25187980

  8. Brain-targeted delivery of trans-activating transcriptor-conjugated magnetic PLGA/lipid nanoparticles.

    PubMed

    Wen, Xiangru; Wang, Kai; Zhao, Ziming; Zhang, Yifang; Sun, Tingting; Zhang, Fang; Wu, Jian; Fu, Yanyan; Du, Yang; Zhang, Lei; Sun, Ying; Liu, YongHai; Ma, Kai; Liu, Hongzhi; Song, Yuanjian

    2014-01-01

    Magnetic poly (D,L-lactide-co-glycolide) (PLGA)/lipid nanoparticles (MPLs) were fabricated from PLGA, L-α-phosphatidylethanolamine (DOPE), 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-amino (polyethylene glycol) (DSPE-PEG-NH2), and magnetic nanoparticles (NPs), and then conjugated to trans-activating transcriptor (TAT) peptide. The TAT-MPLs were designed to target the brain by magnetic guidance and TAT conjugation. The drugs hesperidin (HES), naringin (NAR), and glutathione (GSH) were encapsulated in MPLs with drug loading capacity (>10%) and drug encapsulation efficiency (>90%). The therapeutic efficacy of the drug-loaded TAT-MPLs in bEnd.3 cells was compared with that of drug-loaded MPLs. The cells accumulated higher levels of TAT-MPLs than MPLs. In addition, the accumulation of QD-loaded fluorescein isothiocyanate (FITC)-labeled TAT-MPLs in bEnd.3 cells was dose and time dependent. Our results show that TAT-conjugated MPLs may function as an effective drug delivery system that crosses the blood brain barrier to the brain.

  9. PEGylated Polyamidoamine dendrimer conjugated with tumor homing peptide as a potential targeted delivery system for glioma.

    PubMed

    Jiang, Yan; Lv, Lingyan; Shi, Huihui; Hua, Yabing; Lv, Wei; Wang, Xiuzhen; Xin, Hongliang; Xu, Qunwei

    2016-11-01

    Glioblastoma multiforme (GBM) is the most common and aggressive primary central nervous system (CNS) tumor with a short survival time. The failure of chemotherapy is ascribed to the low transport of chemotherapeutics across the Blood Brain Tumor Barrier (BBTB) and poor penetration into tumor tissue. In order to overcome the two barriers, small nanoparticles with active targeted capability are urgently needed for GBM drug delivery. In this study, we proposed PEGylated Polyamidoamine (PAMAM) dendrimer nanoparticles conjugated with glioma homing peptides (Pep-1) as potential glioma targeting delivery system (Pep-PEG-PAMAM), where PEGylated PAMAM dendrimer nanoparticle was utilized as carrier due to its small size and perfect penetration into tumor and Pep-1 was used to overcome BBTB via interleukin 13 receptor α2 (IL-13Rα2) mediated endocytosis. The preliminary availability and safety of Pep-PEG-PAMAM as a nanocarrier for glioma was evaluated. In vitro results indicated that a significantly higher amount of Pep-PEG-PAMAM was endocytosed by U87 MG cells. In vivo fluorescence imaging of U87MG tumor-bearing mice confirmed that the fluorescence intensity at glioma site of targeted group was 2.02 folds higher than that of untargeted group (**p<0.01), and glioma distribution experiment further revealed that Pep-PEG-PAMAM exhibited a significantly enhanced accumulation and improved penetration at tumor site. In conclusion, Pep-1 modified PAMAM was a promising nanocarrier for targeted delivery of brain glioma. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Synthesis of a novel polyamidoamine dendrimer conjugating with alkali blue as a lymphatic tracer and study on the lymphatic targeting in vivo.

    PubMed

    Yang, Rui; Xia, Suxia; Ye, Tiantian; Yao, Jianhua; Zhang, Ruizhi; Wang, Shujun; Wang, Siling

    2016-09-01

    In this study, a novel lymphatic tracer polyamidoamin-alkali blue (PAMAM-AB) was synthesized in order to evaluate the intra-lymphatic targeting ability and lymphatic tropism of PAMAM-AB after subcutaneous administration. UV-Vis, FT-IR, NMR and HPLC characterization were performed to prove the successful synthesis of PAMAM-AB. The calculated AB payload of PAMAM-AB conjugate was seven per dendrimer molecule (27.16% by weight). Hydrolysis stability of PAMAM-AB in vitro was evaluated, which was stable in PBS and human plasma. Lymphatic tracing were studied to determine the blue-stained intensity of PAMAM-AB in right popliteral lymph nodes (PLNs), iliac lymph nodes (ILNs) and para-aortic lymph nodes (PALNs) after subcutaneous administration. The pharmacokinetics and biodistribution of PAMAM-AB in mice were investigated. PLNs, ILNs and PALNs could be obviously blue-stained within 10 min after PAMAM-AB administration, and displayed a more rapid lymphatic absorption, a higher AUC value in lymph nodes and a longer lymph nodes residence time compared with methylene blue solution (MB-S), MB water-in-oil microemulsion (MB-ME), MB multiple microemulsion (MB-MME). Enhanced lymphatic drainage from the injection site and uptake into lymph of PAMAM-AB indicated that PAMAM-AB possesses the double function of lymphatic tracing and lymphatic targeting, and suggested the potential for the development of lymphatic targeting vectors or as a lymphatic tracer in its own right.

  11. C-peptide inhibitors of Ebola virus glycoprotein-mediated cell entry: effects of conjugation to cholesterol and side chain-side chain crosslinking.

    PubMed

    Higgins, Chelsea D; Koellhoffer, Jayne F; Chandran, Kartik; Lai, Jonathan R

    2013-10-01

    We previously described potent inhibition of Ebola virus entry by a 'C-peptide' based on the GP2 C-heptad repeat region (CHR) targeted to endosomes ('Tat-Ebo'). Here, we report the synthesis and evaluation of C-peptides conjugated to cholesterol, and Tat-Ebo analogs containing covalent side chain-side chain crosslinks to promote α-helical conformation. We found that the cholesterol-conjugated C-peptides were potent inhibitors of Ebola virus glycoprotein (GP)-mediated cell entry (~10(3)-fold reduction in infection at 40 μM). However, this mechanism of inhibition is somewhat non-specific because the cholesterol-conjugated peptides also inhibited cell entry mediated by vesicular stomatitis virus glycoprotein G. One side chain-side chain crosslinked peptide had moderately higher activity than the parent compound Tat-Ebo. Circular dichroism revealed that the cholesterol-conjugated peptides unexpectedly formed a strong α-helical conformation that was independent of concentration. Side chain-side chain crosslinking enhanced α-helical stability of the Tat-Ebo variants, but only at neutral pH. These result provide insight into mechanisms of C-peptide inhibiton of Ebola virus GP-mediated cell entry. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Folate coupled poly(ethyleneglycol) conjugates of anionic poly(amidoamine) dendrimer for inflammatory tissue specific drug delivery.

    PubMed

    Chandrasekar, Durairaj; Sistla, Ramakrishna; Ahmad, Farhan J; Khar, Roop K; Diwan, Prakash V

    2007-07-01

    Folate receptor is overexpressed on the activated (but not quiescent) macrophages in both animal models and human patients with naturally occurring rheumatoid arthritis. The aim of this study was to prepare folate targeted poly(ethylene glycol) (PEG) conjugates of anionic dendrimer (G3.5 PAMAM) as targeted drug delivery systems to inflammation and to investigate its biodistribution pattern in arthritic rats. Folate-PEG-PAMAM conjugates, with different degrees of substitution were synthesized by a two-step reaction through a carbodiimide-mediated coupling reaction and loaded with indomethacin. Folate-PEG conjugation increased the drug loading efficiency by 10- to 20-fold and the in vitro release profile indicated controlled release of drug. The plasma pharmacokinetic parameters indicated an increased AUC, circulatory half-life and mean residence time for the folate-PEG conjugates. The tissue distribution studies revealed significantly lesser uptake by stomach for the folate-PEG conjugates, thereby limiting gastric-related side effect. The time-averaged relative drug exposure (r(e)) of the drug in paw for the folate-PEG conjugates ranged from 1.81 to 2.37. The overall drug targeting efficiency (T(e)) was highest for folate-PEG conjugate (3.44) when compared to native dendrimer (1.72). The folate-PEG-PAMAM conjugates are the ideal choice for targeted delivery of antiarthritic drugs to inflammation with reduced side-effects and higher targeting efficiency. Copyright 2007 Wiley Periodicals, Inc.

  13. HIV-1 TAT protein enhances sensitization to methamphetamine by affecting dopaminergic function.

    PubMed

    Kesby, James P; Najera, Julia A; Romoli, Benedetto; Fang, Yiding; Basova, Liana; Birmingham, Amanda; Marcondes, Maria Cecilia G; Dulcis, Davide; Semenova, Svetlana

    2017-10-01

    Methamphetamine abuse is common among humans with immunodeficiency virus (HIV). The HIV-1 regulatory protein TAT induces dysfunction of mesolimbic dopaminergic systems which may result in impaired reward processes and contribute to methamphetamine abuse. These studies investigated the impact of TAT expression on methamphetamine-induced locomotor sensitization, underlying changes in dopamine function and adenosine receptors in mesolimbic brain areas and neuroinflammation (microgliosis). Transgenic mice with doxycycline-induced TAT protein expression in the brain were tested for locomotor activity in response to repeated methamphetamine injections and methamphetamine challenge after a 7-day abstinence period. Dopamine function in the nucleus accumbens (Acb) was determined using high performance liquid chromatography. Expression of dopamine and/or adenosine A receptors (ADORA) in the Acb and caudate putamen (CPu) was assessed using RT-PCR and immunohistochemistry analyses. Microarrays with pathway analyses assessed dopamine and adenosine signaling in the CPu. Activity-dependent neurotransmitter switching of a reserve pool of non-dopaminergic neurons to a dopaminergic phenotype in the ventral tegmental area (VTA) was determined by immunohistochemistry and quantified with stereology. TAT expression enhanced methamphetamine-induced sensitization. TAT expression alone decreased striatal dopamine (D1, D2, D4, D5) and ADORA1A receptor expression, while increasing ADORA2A receptors expression. Moreover, TAT expression combined with methamphetamine exposure was associated with increased adenosine A receptors (ADORA1A) expression and increased recruitment of dopamine neurons in the VTA. TAT expression and methamphetamine exposure induced microglia activation with the largest effect after combined exposure. Our findings suggest that dopamine-adenosine receptor interactions and reserve pool neuronal recruitment may represent potential targets to develop new treatments for

  14. BMPs for silvicultural chemicals

    Treesearch

    J. L. Michael

    2002-01-01

    Silvicultural chemicals include fertilizers and pesticides applied for forest management. All states East of the Rockies have at least some form of voluntary silvicultural chemical BMPs (SCBMPs) and it is widely accepted that these BMPs effect some protection of water quality. All SCBWs recommend a minimum width zone (streamside management zone or SMZ) on each side of...

  15. PPAR agonist-mediated protection against HIV Tat-induced cerebrovascular toxicity is enhanced in MMP-9-deficient mice

    PubMed Central

    Huang, Wen; Chen, Lei; Zhang, Bei; Park, Minseon; Toborek, Michal

    2014-01-01

    The strategies to protect against the disrupted blood–brain barrier (BBB) in HIV-1 infection are not well developed. Therefore, we investigated the potential of peroxisome proliferator-activated receptor (PPAR) agonists to prevent enhanced BBB permeability induced by HIV-1-specific protein Tat. Exposure to Tat via the internal carotid artery (ICA) disrupted permeability across the BBB; however, this effect was attenuated in mice treated with fenofibrate (PPARα agonist) or rosiglitazone (PPARγ agonist). In contrast, exposure to GW9662 (PPARγ antagonist) exacerbated Tat-induced disruption of the BBB integrity. Increased BBB permeability was associated with decreased tight junction (TJ) protein expression and activation of ERK1/2 and Akt in brain microvessels; these effects were attenuated by cotreatment with fenofibrate but not with rosiglitazone. Importantly, both PPAR agonists also protected against Tat-induced astrogliosis and neuronal loss. Because disruption of TJ integrity has been linked to matrix metalloproteinase (MMP) activity, we also evaluated Tat-induced effects in MMP-9-deficient mice. Tat-induced cerebrovascular toxicity, astrogliosis, and neuronal loss were less pronounced in MMP-9-deficient mice as compared with wild-type controls and were further attenuated by PPAR agonists. These results indicate that enhancing PPAR activity combined with targeting MMPs may provide effective therapeutic strategies in brain infection by HIV-1. PMID:24424383

  16. Targeting human liver cancer cells with lactobionic acid-G(4)-PAMAM-FITC sorafenib loaded dendrimers.

    PubMed

    Iacobazzi, Rosa Maria; Porcelli, Letizia; Lopedota, Angela Assunta; Laquintana, Valentino; Lopalco, Antonio; Cutrignelli, Annalisa; Altamura, Emiliano; Di Fonte, Roberta; Azzariti, Amalia; Franco, Massimo; Denora, Nunzio

    2017-08-07

    Reported here is the synthesis and biological evaluation of the asialoglycoprotein receptor (ASGP-R) targeted fourth generation poliamidoamine dendrimer (G(4)-PAMAM) loaded with sorafenib. The ASGP-R targeted dendrimer was obtained by conjugation of Lactobionic acid (La) to the G(4)-PAMAM dendrimer, followed by acetylation (Ac) of the free amino groups in order to reduce the non-specific interactions with the cell membrane. Moreover, by additionally grafting fluorescein (FITC), it was easy to characterize the internalization pathway and the intracellular fate of the targeted dendrimer Ac-La-G(4)-PAMAM-FITC. In vitro experiments performed on HepG-2 and HLE cell lines, allowed to study the ability of the dendrimers to affect the cell vitality. Confocal microscopy and cytofluorimetric analysis confirmed higher binding and uptake ability of the Ac-La-G(4)-PAMAM-FITC dendrimer in well differentiated and ASGP-R expressing human liver cancer cell line HepG-2 compared non-expressing HLE cells. Ac-La-G(4)-PAMAM-FITC dendrimer loaded with sorafenib was stable and showed sustained sorafenib release. As evidenced by the cytotoxicity studies, sorafenib included in the dendrimer maintained its effectiveness, and was able to produce a longer lasting effect over the time compared to molar equivalent doses of free sorafenib. This new targeted dendrimer appears to be a suitable carrier for the delivery of sorafenib to liver cancer cells expressing ASGP-R. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Activated Microglia Targeting Dendrimer-Minocycline Conjugate as Therapeutics for Neuroinflammation.

    PubMed

    Sharma, Rishi; Kim, Soo-Young; Sharma, Anjali; Zhang, Zhi; Kambhampati, Siva Pramodh; Kannan, Sujatha; Kannan, Rangaramanujam M

    2017-11-15

    Brain-related disorders have outmatched cancer and cardiovascular diseases worldwide as the leading cause of morbidity and mortality. The lack of effective therapies and the relatively dry central nervous system (CNS) drug pipeline pose formidable challenge. Superior, targeted delivery of current clinically approved drugs may offer significant potential. Minocycline has shown promise for the treatment of neurological diseases owing to its ability to penetrate the blood-brain barrier (BBB) and potency. Despite its potential in the clinic and in preclinical models, the high doses needed to affect a positive therapeutic response have led to side effects. Targeted delivery of minocycline to the injured site and injured cells in the brain can be highly beneficial. Systemically administered hydroxyl poly(amidoamine) (PAMAM) generation-6 (G6) dendrimers have a longer blood circulation time and have been shown to cross the impaired BBB. We have successfully prepared and characterized the in vitro efficacy and in vivo targeting ability of hydroxyl-G6 PAMAM dendrimer-9-amino-minocycline conjugate (D-mino). Minocycline is a challenging drug to carry out chemical transformations due to its inherent instability. We used a combination of a highly efficient and mild copper catalyzed azide-alkyne click reaction (CuAAC) along with microwave energy to conjugate 9-amino-minocycline (mino) to the dendrimer surface via enzyme responsive linkages. D-mino was further evaluated for anti-inflammatory and antioxidant activity in lipopolysaccharides-activated murine microglial cells. D-mino conjugates enhanced the intracellular availability of the drug due to their rapid uptake, suppressed inflammatory cytokine tumor necrosis factor α (TNF-α) production, and reduced oxidative stress by suppressing nitric oxide production, all significantly better than the free drug. Fluorescently labeled dendrimer conjugate (Cy5-D-mino) was systematically administered (intravenous, 55 mg/kg) on postnatal

  18. Gold nanoparticles mediated colorimetric assay for HIV-Tat protein detection

    NASA Astrophysics Data System (ADS)

    Hashwan, Saeed S. Ba; Ruslinda, A. Rahim; Fatin, M. F.; Gopinath, Subash C. B.; Thivina, V.; Tony, V. C. S.; Arshad, M. K. Md.; Hashim, U.

    2016-07-01

    Gold-nanoparticle (AuNP) based colorimetric assays have been formulated for different biomolecular interactions. With this assay the probe such as antibody immobilized on the Au surface and in the presence of appropriate binding partner (antigen), will interact with each other on the Au surface. By following this strategy, herein we formulated a detection system with two anti-HIV-Tat antibodies, Mono (McAb) - and polyclonal (PcAb) by immobilizing them independently with different AuNPs. Under this condition, these two antibodies are under dispersed condition, and in the presence of HIV-Tat antigen, these molecules will be connected and forms the aggregation of AuNPs. This strategy yield rapid results, can be monitored by the spectral changes in UV-Vis spectrophotometry. Experiments were performed with two different methods using two anti-HIV-Tats monoclonal and one Polyclonal antibody against the antigen HIV-Tat. Between these methods conjugation of HIV-Tat and McAb on the AuNP followed by addition of PcAb yielded better results.

  19. RESEARCH IN URBAN STORMWATER BMPS

    EPA Science Inventory

    The use of best management practices (BMPs) in an urban watershed can provide adequate degress of treatment at a relatively low cost. BMPs can range from being management operations (such as street sweeping or reducing the amount of pesticides used on urban lawns) to structural t...

  20. HPLC analysis of functionalized poly(amidoamine) dendrimers and the interaction between a folate-dendrimer conjugate and folate binding protein.

    PubMed

    Shi, Xiangyang; Bi, Xiangdong; Ganser, T Rose; Hong, Seungpyo; Myc, Lukasz A; Desai, Ankur; Holl, Mark M Banaszak; Baker, James R

    2006-07-01

    Poly(amidoamine) (PAMAM) dendrimers of different generations with carboxyl, acetyl, and hydroxyl terminal groups and a folic acid (FA)-dendrimer conjugate were separated and analyzed using reverse-phase high performance liquid chromatography (HPLC). Analysis of both the individual PAMAM derivatives and the separation of mixed generations can be achieved using a linear gradient 0-50% acetonitrile (ACN) (balance water) within 40 min. We also show that PAMAMs with defined acetylation and carboxylation degrees can be analyzed using HPLC. Furthermore, a generation 5 dendrimer-FA conjugate (G5.75Ac-FA4; Ac denotes acetyl) was analyzed and its specific binding with a bovine folic acid binding protein (FBP) was monitored. The HPLC and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) results indicate the formation of three complexes after the binding of G5.75Ac-FA4 with FBP. Dendrimers with FA moieties show much higher specific binding capability with FBP than those without FA moieties. Findings from this study indicate that HPLC is an effective technique not only for characterization and separation of functionalized PAMAM dendrimers and conjugates but also for investigation of the interaction between dendrimers and biomolecules.

  1. Cationic PAMAM dendrimers disrupt key platelet functions

    PubMed Central

    Jones, Clinton F.; Campbell, Robert A.; Franks, Zechariah; Gibson, Christopher C.; Thiagarajan, Giridhar; Vieira-de-Abreu, Adriana; Sukavaneshvar, Sivaprasad; Mohammad, S. Fazal; Li, Dean Y.; Ghandehari, Hamidreza; Weyrich, Andrew S.; Brooks, Benjamin D.; Grainger, David W.

    2012-01-01

    Poly(amidoamine) (PAMAM) dendrimers have been proposed for a variety of biomedical applications and are increasingly studied as model nanomaterials for such use. The dendritic structure features both modular synthetic control of molecular size and shape and presentation of multiple equivalent terminal groups. These properties make PAMAM dendrimers highly functionalizable, versatile single-molecule nanoparticles with a high degree of consistency and low polydispersity. Recent nanotoxicological studies showed that intravenous administration of amine-terminated PAMAM dendrimers to mice was lethal, causing a disseminated intravascular coagulation-like condition. To elucidate the mechanisms underlying this coagulopathy, in vitro assessments of platelet functions in contact with PAMAM dendrimers were undertaken. This study demonstrates that cationic G7 PAMAM dendrimers activate platelets and dramatically alter their morphology. These changes to platelet morphology and activation state substantially altered platelet function, including increased aggregation and adherence to surfaces. Surprisingly, dendrimer exposure also attenuated platelet-dependent thrombin generation, indicating that not all platelet functions remained intact. These findings provide additional insight into PAMAM dendrimer effects on blood components and underscore the necessity for further research on the effects and mechanisms of PAMAM-specific and general nanoparticle toxicity in blood. PMID:22497592

  2. PAMAM (generation 4) incorporated gelatin 3D matrix as an improved dermal substitute for skin tissue engineering.

    PubMed

    Maji, Somnath; Agarwal, Tarun; Maiti, Tapas Kumar

    2017-07-01

    The study explored the prospects of PAMAM (generation 4) applicability in gelatin based scaffolds for skin tissue engineering. The effect of PAMAM on physico-chemical and biological characteristics of gelatin scaffolds was evaluated. Gelatin scaffolds (with/without PAMAM) were prepared by lyophilization, chemically crosslinked by glutaraldehyde and characterized for their morphology (pore size), chemical features (bond nature), water adsorption, biodegradation and biological compatibility. The study demonstrated that addition of PAMAM did not significantly alter the pore size distribution or porosity of the scaffolds. However, water adsorption potential and collagenase mediated degradation significantly enhanced over period of the study. Both the scaffolds (with/without PAMAM) were highly biocompatible and hemocompatible. PAMAM (G4) blended scaffolds showed relatively higher cellular adhesion and proliferation of both keratinocytes and fibroblasts with an improved gene expression profile of native collagen type I of fibroblasts. Moreover, expression of angiogenesis inducing genes, HIF1α and VEGF were also higher in PAMAM blended gelatin matrix. Also, PAMAM incorporated gelatin matrix showed a slower rate of drug release which confirms its suitability for therapeutic delivery during wound healing. These results clearly suggest that blending PAMAM (G4) into the matrix could provide an additional support to scaffold assisted wound healing. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. A new fluorescence/PET probe for targeting intracellular human telomerase reverse transcriptase (hTERT) using Tat peptide-conjugated IgM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jung, Kyung oh; Biomedical Sciences, Seoul National University College of Medicine; Cancer Research Institute, Seoul National University College of Medicine

    Despite an increasing need for methods to visualize intracellular proteins in vivo, the majority of antibody-based imaging methods available can only detect membrane proteins. The human telomerase reverse transcriptase (hTERT) is an intracellular target of great interest because of its high expression in several types of cancer. In this study, we developed a new probe for hTERT using the Tat peptide. An hTERT antibody (IgG or IgM) was conjugated with the Tat peptide, a fluorescence dye and {sup 64}Cu. HT29 (hTERT+) and U2OS (hTERT−) were used to visualize the intracellular hTERT. The hTERT was detected by RT-PCR and western blot. Fluorescencemore » signals for hTERT were obtained by confocal microscopy, live cell imaging, and analyzed by Tissue-FAXS. In nude mice, tumors were visualized using the fluorescence imaging devices Maestro™ and PETBOX. In RT-PCR and western blot, the expression of hTERT was detected in HT29 cells, but not in U2OS cells. Fluorescence signals were clearly observed in HT29 cells and in U2OS cells after 1 h of treatment, but signals were only detected in HT29 cells after 24 h. Confocal microscopy showed that 9.65% of U2OS and 78.54% of HT29 cells had positive hTERT signals. 3D animation images showed that the probe could target intranuclear hTERT in the nucleus. In mice models, fluorescence and PET imaging showed that hTERT in HT29 tumors could be efficiently visualized. In summary, we developed a new method to visualize intracellular and intranuclear proteins both in vitro and in vivo. - Highlights: • We developed new probes for imaging hTERT using Tat-conjugated IgM antibodies labeled with a fluorescent dye and radioisotope. • This probes could be used to overcome limitation of conventional antibody imaging system in live cell imaging. • This system could be applicable to monitor intracellular and intranuclear proteins in vitro and in vivo.« less

  4. Phosphinic derivative of DTPA conjugated to a G5 PAMAM dendrimer: an 17O and 1H relaxation study of its Gd(III) complex.

    PubMed

    Lebdusková, Petra; Sour, Angélique; Helm, Lothar; Tóth, Eva; Kotek, Jan; Lukes, Ivan; Merbach, André E

    2006-07-28

    A DTPA-based chelate containing one phosphinate group was conjugated to a generation 5 polyamidoamine (PAMAM) dendrimer via a benzylthiourea linkage. The Gd(III) complex of this novel conjugate has potential as a contrast agent for magnetic resonance imaging (MRI). The chelates bind Gd3+via three nitrogen atoms, four carboxylates and one phosphinate oxygen, and one water molecule completes the inner coordination sphere. The monomer Gd(III) chelates bearing nitrobenzyl and aminobenzyl groups ([Gd(DTTAP-bz-NO2)(H2O)]2- and [Gd(DTTAP-bz-NH2)(H2O)]2-) as well as the dendrimeric Gd(III) complex G5-(Gd(DTTAP))63) were studied by multiple-field, variable temperature 17O and 1H NMR. The rate of water exchange is faster than that of [Gd(DTPA)(H2O)]2- and very similar on the two monomeric complexes (8.9 and 8.3 x 10(6) s-1 for [Gd(DTTAP-bz-NO2)(H2O)]2- and [Gd(DTTAP-bz-NH2)(H2O)]2-, respectively), while it is decreased on the dendrimeric conjugate (5.0 x 10(6) s-1). The Gd(III) complex of the dendrimer conjugate has a relaxivity of 26.8 mM-1 s-1 at 37 degrees C and 0.47 T (corresponding to 1H Larmor frequency of 20 MHz). Given the contribution of the second sphere water molecules to the overall relaxivity, this value is slightly higher than those reported for similar size dendrimers. The experimental 17O and 1H NMR data were fitted to the Solomon-Bloembergen-Morgan equations extended with a contribution from second coordination sphere water molecules. The rotational dynamics of the dendrimeric conjugate was described in terms of global and local motions with the Lipari-Szabo approach.

  5. Poly(amido)amine (PAMAM) dendrimer-cisplatin complexes for chemotherapy of cisplatin-resistant ovarian cancer cells

    NASA Astrophysics Data System (ADS)

    Yellepeddi, Venkata Kashyap; Vangara, Kiran Kumar; Palakurthi, Srinath

    2013-09-01

    Dendrimer-cisplatin complexes were prepared using PAMAM dendrimers with terminal -NH2 and -COOH groups as well as biotin-conjugated dendrimers. Preformulation parameters of dendrimer-cisplatin complexes were studied using differential scanning calorimetry (DSC) and inductively coupled plasma-mass spectrometry (ICP-MS). Cytotoxicity and mechanism of cytotoxicity of dendrimer-cisplatin complexes was investigated in OVCAR-3, SKOV, A2780 and cisplatin-resistant CP70 human ovarian cancer cell lines. The loading of cisplatin in dendrimers was 11 % (w/w). PAMAM G4 dendrimers with amine surface groups (biotinylated and native) have shown 2.5- to 3.0-fold reduction in IC50 values in ovarian cancer cells when compared with carboxylate surface dendrimers ( p < 0.05). A correlation was observed among cytotoxicity of the complexes, cellular uptake, and platinum-DNA adduct formation. Treatment with dendrimer-cisplatin complexes resulted in a 7.0-fold increase ( p < 0.05) in expression of apoptotic genes ( Bcl2, Bax, p53) and 13.2- to 27.1-fold increase ( p < 0.05) in the activity of caspases 3, 8, and 9 in vitro. Results suggest that PAMAM dendrimers can be used as potential carrier for cisplatin chemotherapy of ovarian cancer.

  6. THE COMPLICATIONS OF MONITORING TREATMENT BMPS.

    EPA Science Inventory

    The use of best management practices (BMPs) in an urban watershed can provide pollutant load reductions at a relatively low cost. BMPs can range from being management operations (such as street sweeping or reducing the amount of pesticides used on urban lawns) to structural trea...

  7. THE COMPLICATIONS OF MONITORING TREATMENT BMPS

    EPA Science Inventory

    The use of best management practices (BMPs) in an urban watershed can provide pollutant load reductions at a relatively low cost. BMPs can range from being management operations (such as street sweeping or reducing the amount of pesticides used on urban lawns) to structural trea...

  8. Transcorneal iontophoresis of dendrimers: PAMAM corneal penetration and dexamethasone delivery.

    PubMed

    Souza, Joel G; Dias, Karina; Silva, Silas A M; de Rezende, Lucas C D; Rocha, Eduardo M; Emery, Flavio S; Lopez, Renata F V

    2015-02-28

    Iontophoresis of nanocarriers in the eye has been proposed to sustain drug delivery and maintain therapeutic concentrations. Fourth generation polyamidoamine (PAMAM) dendrimers are semi-rigid nanoparticles with surface groups that are easily modified. These dendrimers are known to modulate tight junctions, increase paracellular transport of small molecules and be translocated across epithelial barriers, exhibiting high uptake by different cell lines. The first aim of this study was to investigate the effect of iontophoresis on PAMAM penetration and distribution into the cornea. The second aim was to evaluate, ex vivo and in vivo, the effect of these dendrimers in dexamethasone (Dex) transcorneal iontophoresis. Anionic (PAMAM G3.5) and cationic (PAMAM G4) dendrimers were labeled with fluorescein isothiocyanate (FITC), and their distribution in the cornea was investigated using confocal microscopy after ex vivo anodal and cathodal iontophoresis for various application times. The particle size distribution and zeta potential of the dendrimers in an isosmotic solution were determined using dynamic light scattering and Nanoparticle Tracking Analysis (NTA), where the movement of small particles and the formation of large aggregates, from 5 to 100 nm, could be observed. Transcorneal iontophoresis increased the intensity and depth of PAMAM-FITC fluorescence in the cornea, suggesting improved transport of the dendrimers across the epithelium toward the stroma. PAMAM complexes with Dex were characterized by (13)C-NMR, (1)H-NMR and DOSY. PAMAM G3.5 and PAMAM G4 increased the aqueous solubility of Dex by 10.3 and 3.9-fold, respectively; however, the particle size distribution and zeta potential remained unchanged. PAMAM G3.5 decreased the Dex diffusion coefficient 48-fold compared with PAMAM G4. The ex vivo studies showed that iontophoresis increased the amount of Dex that penetrated into the cornea by 2.9, 5.6 and 3.0-fold for Dex, Dex-PAMAM G4 and Dex-PAMAM G3

  9. Photoinduced Electron Transfer of PAMAM Dendrimer-Zinc(II) Porphyrin Associates at Polarized Liquid|Liquid Interfaces.

    PubMed

    Nagatani, Hirohisa; Sakae, Hiroki; Torikai, Taishi; Sagara, Takamasa; Imura, Hisanori

    2015-06-09

    The heterogeneous photoinduced electron-transfer reaction of the ion associates between NH2-terminated polyamidoamine (PAMAM) dendrimers and 5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrinato zinc(II) (ZnTPPS(4-)) was studied at the polarized water|1,2-dichloroethane (DCE) interface. The positive photocurrent arising from the photoreduction of ZnTPPS(4-) by a lipophilic quencher, decamethylferrocene, in the interfacial region was significantly enhanced by the ion association with the PAMAM dendrimers. The photocurrent response of the dendrimer-ZnTPPS(4-) associates was dependent on the pH condition and on the generation of dendrimer. A few cationic additives such as polyallylamine and n-octyltrimethyammonium were also examined as alternatives to the PAMAM dendrimer, but the magnitude of the photocurrent enhancement was rather small. The high photoreactivity of the dendrimer-ZnTPPS(4-) associates was interpreted mainly as a result of the high interfacial concentration of photoreactive porphyrin units associated stably with the dendrimer which was preferably adsorbed at the polarized water|DCE interface. The photochemical data observed in the second and fourth generation PAMAM dendrimer systems demonstrated that the higher generation dendrimer which can incorporate a porphyrin molecule more completely in the interior is less efficient for the photocurrent enhancement at the interface. These results indicated that the photoreactivity of ionic reactant at a polarized liquid|liquid interface can readily be modified via ion association with the charged dendrimer.

  10. Peptide conjugated magnetic nanoparticles for magnetically mediated energy delivery to lung cancer cells.

    PubMed

    Hauser, Anastasia K; Anderson, Kimberly W; Hilt, J Zach

    2016-07-01

    In the present study, we examine the effects of internalized peptide-conjugated iron oxide nanoparticles and their ability to locally convert alternating magnetic field (AMF) energy into other forms of energy (e.g., heat and rotational work). Dextran-coated iron oxide nanoparticles were functionalized with a cell penetrating peptide and after internalization by A549 and H358 cells were activated by an AMF. TAT-functionalized nanoparticles and AMF exposure increased reactive oxygen species generation compared with the nanoparticle system alone. The TAT-functionalized nanoparticles induced lysosomal membrane permeability and mitochondrial membrane depolarization, but these effects were not further enhanced by AMF treatment. Although not statistically significant, there are trends suggesting an increase in apoptosis via the Caspase 3/7 pathways when cells are exposed to TAT-functionalized nanoparticles combined with AMF. Our results indicate that internalized TAT-functionalized iron oxide nanoparticles activated by an AMF elicit cellular responses without a measurable temperature rise.

  11. Peptide conjugated magnetic nanoparticles for magnetically mediated energy delivery to lung cancer cells

    PubMed Central

    Hauser, Anastasia K; Anderson, Kimberly W; Hilt, J Zach

    2016-01-01

    Aim: In the present study, we examine the effects of internalized peptide-conjugated iron oxide nanoparticles and their ability to locally convert alternating magnetic field (AMF) energy into other forms of energy (e.g., heat and rotational work). Materials & methods: Dextran-coated iron oxide nanoparticles were functionalized with a cell penetrating peptide and after internalization by A549 and H358 cells were activated by an AMF. Results: TAT-functionalized nanoparticles and AMF exposure increased reactive oxygen species generation compared with the nanoparticle system alone. The TAT-functionalized nanoparticles induced lysosomal membrane permeability and mitochondrial membrane depolarization, but these effects were not further enhanced by AMF treatment. Although not statistically significant, there are trends suggesting an increase in apoptosis via the Caspase 3/7 pathways when cells are exposed to TAT-functionalized nanoparticles combined with AMF. Conclusion: Our results indicate that internalized TAT-functionalized iron oxide nanoparticles activated by an AMF elicit cellular responses without a measurable temperature rise. PMID:27388639

  12. Different patterns of nuclear and mitochondrial penetration by the G3 PAMAM dendrimer and its biotin–pyridoxal bioconjugate BC-PAMAM in normal and cancer cells in vitro

    PubMed Central

    Uram, Łukasz; Szuster, Magdalena; Filipowicz, Aleksandra; Gargasz, Krzysztof; Wołowiec, Stanisław; Wałajtys-Rode, Elżbieta

    2015-01-01

    The intracellular localization and colocalization of a fluorescently labeled G3 amine-terminated cationic polyamidoamine (PAMAM) dendrimer and its biotin–pyridoxal (BC-PAMAM) bioconjugate were investigated in a concentration-dependent manner in normal human fibroblast (BJ) and squamous epithelial carcinoma (SCC-15) cell lines. After 24 hours treatment, both cell lines revealed different patterns of intracellular dendrimer accumulation depending on their cytotoxic effects. Cancer cells exhibited much higher (20-fold) tolerance for native PAMAM treatment than fibroblasts, whereas BC-PAMAM was significantly toxic only for fibroblasts at 50 µM concentration. Fibroblasts accumulated the native and bioconjugated dendrimers in a concentration-dependent manner at nontoxic range of concentration, with significantly lower bioconjugate loading. After reaching the cytotoxicity level, fluorescein isothiocyanate-PAMAM accumulation remains at high, comparable level. In cancer cells, native PAMAM loading at higher, but not cytotoxic concentrations, was kept at constant level with a sharp increase at toxic concentration. Mander’s coefficient calculated for fibroblasts and cancer cells confirmed more efficient native PAMAM penetration as compared to BC-PAMAM. Significant differences in nuclear dendrimer penetration were observed for both cell lines. In cancer cells, PAMAM signals amounted to ~25%–35% of the total nuclei area at all investigated concentrations, with lower level (15%–25%) observed for BC-PAMAM. In fibroblasts, the dendrimer nuclear signal amounted to 15% at nontoxic and up to 70% at toxic concentrations, whereas BC-PAMAM remained at a lower concentration-dependent level (0.3%–20%). Mitochondrial localization of PAMAM and BC-PAMAM revealed similar patterns in both cell lines, depending on the extracellular dendrimer concentration, and presented significantly lower signals from BC-PAMAM, which correlated well with the cytotoxicity. PMID:26379435

  13. Highly lipophilic pluronics-conjugated polyamidoamine dendrimer nanocarriers as potential delivery system for hydrophobic drugs.

    PubMed

    Nguyen, Thi Tram Chau; Nguyen, Cuu Khoa; Nguyen, Thi Hiep; Tran, Ngoc Quyen

    2017-01-01

    In the study, four kinds of pluronics (P123, F68, F127 and F108) with varying hydrophilic-lipophilic balance (HLB) values were modified and conjugated on 4th generation of polyamidoamine dendrimer (PAMAM). The obtained results from FT-IR, 1 H NMR and GPC showed that the pluronics effectively conjugated on the dendrimer. The molecular weight of four PAMAM G4.0-Pluronics and its morphologies are in range of 200.15-377.14kDa and around 60-180nm in diameter by TEM, respectively. Loading efficiency and release of hydrophobic fluorouracil (5-FU) anticancer drug were evaluated by HPLC; Interesting that the dendrimer nanocarrier was conjugated with the highly lipophilic pluronic P123 (G4.0-P123) exhibiting a higher drug loading efficiency (up to 76.25%) in comparison with another pluronics. Live/dead fibroblast cell staining assay mentioned that all conjugated nanocarriers are highly biocompatible. The drug-loaded nanocarriers also indicated a highly anti-proliferative activity against MCF-7 breast cancer cell. The obtained results demonstrated a great potential of the highly lipophilic pluronics-conjugated nanocarriers in hydrophobic drugs delivery for biomedical applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. The early mature part of bacterial twin-arginine translocation (Tat) precursor proteins contributes to TatBC receptor binding.

    PubMed

    Ulfig, Agnes; Freudl, Roland

    2018-05-11

    The twin-arginine translocation (Tat) pathway transports folded proteins across bacterial membranes. Tat precursor proteins possess a conserved twin-arginine (RR) motif in their signal peptides that is involved in the binding of the proteins to the membrane-associated TatBC receptor complex. In addition, the hydrophobic region in the Tat signal peptides also contributes to TatBC binding, but whether regions beyond the signal-peptide cleavage site are involved in this process is unknown. Here, we analyzed the contribution of the early mature protein part of the Escherichia coli trimethylamine N -oxide reductase (TorA) to productive TatBC receptor binding. We identified substitutions in the 30 amino acids immediately following the TorA signal peptide (30aa-region) that restored export of a transport-defective TorA[KQ]-30aa-MalE precursor, in which the RR residues had been replaced by a lysine-glutamine pair. Some of these substitutions increased the hydrophobicity of the N-terminal part of the 30aa-region and thereby likely enhanced hydrophobic substrate-receptor interactions within the hydrophobic TatBC substrate-binding cavity. Another class of substitutions increased the positive net charge of the region's C-terminal part, presumably leading to strengthened electrostatic interactions between the mature substrate part and the cytoplasmic TatBC regions. Furthermore, we identified substitutions in the C-terminal domains of TatB following the transmembrane segment that restored transport of various transport-defective TorA-MalE derivatives. Some of these substitutions most likely affected the orientation or conformation of the flexible, carboxy-proximal helices of TatB. Therefore, we propose that a tight accommodation of the folded mature region by TatB contributes to productive binding of Tat substrates to TatBC. © 2018 Ulfig and Freudl.

  15. Radiolabeling optimization and characterization of (68)Ga labeled DOTA-polyamido-amine dendrimer conjugate - Animal biodistribution and PET imaging results.

    PubMed

    Ghai, Aanchal; Singh, Baljinder; Panwar Hazari, Puja; Schultz, Michael K; Parmar, Ambika; Kumar, Pardeep; Sharma, Sarika; Dhawan, Devinder; Kumar Mishra, Anil

    2015-11-01

    The present study describes the optimization of (68)Ga radiolabeling with PAMAM dendrimer-DOTA conjugate. A conjugate (PAMAM-DOTA) concentration of 11.69µM, provided best radiolabeling efficiency of more than 93.0% at pH 4.0, incubation time of 30.0min and reaction temperature ranging between 90 and 100°C. The decay corrected radiochemical yield was found to be 79.4±0.01%. The radiolabeled preparation ([(68)Ga]-DOTA-PAMAM-D) remained stable (radiolabeling efficiency of 96.0%) at room temperature and in serum for up to 4-h. The plasma protein binding was observed to be 21.0%. After intravenous administration, 50.0% of the tracer cleared from the blood circulation by 30-min and less than 1.0% of the injected activity remained in blood by 1.0h. The animal biodistribution studies demonstrated that the tracer excretes through the kidneys and about 0.33% of the %ID/g accumulated in the tumor at 1h post injection. The animal organ's biodistribution data was supported by animal PET imaging showing good 'non-specific' tracer uptake in tumor and excretion is primarily through kidneys. Additionally, DOTA-PAMAM-D conjugation with αVβ3 receptors targeting peptides and drug loading on the dendrimers may improve the specificity of the (68)Ga labeled product for imaging and treating angiogenesis respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Polyamidoamine Dendrimer Conjugates with Cyclodextrins as Novel Carriers for DNA, shRNA and siRNA

    PubMed Central

    Arima, Hidetoshi; Motoyama, Keiichi; Higashi, Taishi

    2012-01-01

    Gene, short hairpin RNA (shRNA) and small interfering RNA (siRNA) delivery can be particularly used for the treatment of diseases by the entry of genetic materials mammalian cells either to express new proteins or to suppress the expression of proteins, respectively. Polyamidoamine (PAMAM) StarburstTM dendrimers are used as non-viral vectors (carriers) for gene, shRNA and siRNA delivery. Recently, multifunctional PAMAM dendrimers can be used for the wide range of biomedical applications including intracellular delivery of genes and nucleic acid drugs. In this context, this review paper provides the recent findings on PAMAM dendrimer conjugates with cyclodextrins (CyDs) for gene, shRNA and siRNA delivery. PMID:24300184

  17. Charge-dependent conformations and dynamics of pamam dendrimers revealed by neutron scattering and molecular dynamics

    NASA Astrophysics Data System (ADS)

    Wu, Bin

    Neutron scattering and fully atomistic molecular dynamics (MD) are employed to investigate the structural and dynamical properties of polyamidoamine (PAMAM) dendrimers with ethylenediamine (EDA) core under various charge conditions. Regarding to the conformational characteristics, we focus on scrutinizing density profile evolution of PAMAM dendrimers as the molecular charge of dendrimer increases from neutral state to highly charged condition. It should be noted that within the context of small angle neutron scattering (SANS), the dendrimers are composed of hydrocarbon component (dry part) and the penetrating water molecules. Though there have been SANS experiments that studied the charge-dependent structural change of PAMAM dendrimers, their results were limited to the collective behavior of the aforementioned two parts. This study is devoted to deepen the understanding towards the structural responsiveness of intra-molecular polymeric and hydration parts separately through advanced contrast variation SANS data analysis scheme available recently and unravel the governing principles through coupling with MD simulations. Two kinds of acids, namely hydrochloric and sulfuric acids, are utilized to tune the pH condition and hence the molecular charge. As far as the dynamical properties, we target at understanding the underlying mechanism that leads to segmental dynamic enhancement observed from quasielstic neutron scattering (QENS) experiment previously. PAMAM dendrimers have a wealth of potential applications, such as drug delivery agency, energy harvesting medium, and light emitting diodes. More importantly, it is regarded as an ideal system to test many theoretical predictions since dendrimers conjugate both colloid-like globular shape and polymer-like flexible chains. This Ph.D. research addresses two main challenges in studying PAMAM dendrimers. Even though neutron scattering is an ideal tool to study this PAMAM dendrimer solution due to its matching temporal and

  18. Sensitive electrochemical immunosensor for α-synuclein based on dual signal amplification using PAMAM dendrimer-encapsulated Au and enhanced gold nanoparticle labels.

    PubMed

    An, Yarui; Jiang, Xiaoli; Bi, Wenji; Chen, Hua; Jin, Litong; Zhang, Shengping; Wang, Chuangui; Zhang, Wen

    2012-02-15

    A novel electrochemical immunosensor for sensitive detection of α-synuclein (α-SYN), a very important neuronal protein, has been developed based on dual signal amplification strategy. Herein, G4-polyamidoamine dendrimer-encapsulated Au nanoparticles (PAMAM-Au nanocomposites) were covalently bound on the poly-o-aminobenzoic acid (poly-o-ABA), which was initially electropolymerized on the electrode surface to perform abundant carboxyl groups. The formed immunosensor platform, PAMAM-Au, was proved to provide numerous amino groups to allow highly dense immobilization of antigen, and facilitate the improvement of electrochemical responses as well. Subsequently, the enhanced gold nanoparticle labels ({HRP-Ab(2)-GNPs}) were fabricated by immobilizing horseradish peroxidase-secondary antibody (HRP-Ab(2)) on the surface of gold nanoparticles (GNPs). After an immunoassay process, the {HRP-Ab(2)-GNPs} labels were introduced onto the electrode surface, and produced an electrocatalytic response by reduction of hydrogen peroxide (H(2)O(2)) in the presence of enzymatically oxidized thionine. On the basis of the dual signal amplification of PAMAM-Au and {HRP-Ab(2)-GNPs} labels, the designed immunosensor displayed an excellent analytical performance with high sensitivity and stability. This developed strategy was successfully proved as a simple, cost-effective method, and could be easily extended to other protein analysis schemes. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Intracellular Ca2+ release mediates cationic but not anionic poly(amidoamine) (PAMAM) dendrimer-induced tight junction modulation.

    PubMed

    Avaritt, Brittany R; Swaan, Peter W

    2014-09-01

    Poly(amidoamine) (PAMAM) dendrimers show great promise for utilization as oral drug delivery vehicles. These polymers are capable of traversing epithelial barriers, and have been shown to translocate by both transcellular and paracellular routes. While many proof-of-concept studies have shown that PAMAM dendrimers improve intestinal transport, little information exists on the mechanisms of paracellular transport, specifically dendrimer-induced tight junction modulation. Using anionic G3.5 and cationic G4 PAMAM dendrimers with known absorption enhancers, we investigated tight junction modulation in Caco-2 monolayers by visualization and mannitol permeability and compared dendrimer-mediated tight junction modulation to that of established permeation enhancers. [(14)C]-Mannitol permeability in the presence and absence of phospholipase C-dependent signaling pathway inhibitors was also examined and indicated that this pathway may mediate dendrimer-induced changes in permeability. Differences between G3.5 and G4 in tight junction protein staining and permeability with inhibitors were evident, suggesting divergent mechanisms were responsible for tight junction modulation. These dissimilarities are further intimated by the intracellular calcium release caused by G4 but not G3.5. Based on our results, it is apparent that the underlying mechanisms of dendrimer permeability are complex, and the complexities are likely a result of the density and sign of the surface charges of PAMAM dendrimers. The results of this study will have implications on the future use of PAMAM dendrimers for oral drug delivery.

  20. 40 CFR 430.28 - Best management practices (BMPs).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Best management practices (BMPs). 430.28 Section 430.28 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT... Soda Subcategory § 430.28 Best management practices (BMPs). The definitions and requirements set forth...

  1. Micro-zooplankton grazing as a means of fecal bacteria removal in stormwater BMPs.

    PubMed

    Burtchett, Jade M; Mallin, Michael A; Cahoon, Lawrence B

    2017-06-01

    A priority for environmental managers is control of stormwater runoff pollution, especially fecal microbial pollution. This research was designed to determine if fecal bacterial grazing by micro-zooplankton is a significant control on fecal bacteria in aquatic best management practices (BMPs); if grazing differs between a wet detention pond and a constructed wetland; and if environmental factors enhance grazing. Both 3-day grazing tests and 24-h dilution assays were used to determine grazing differences between the two types of BMP. Micro-zooplankton grazing was a stronger bacteria removal mechanism in stormwater wetlands rich in aquatic vegetation compared to a standard wet detention pond, although grazing was important in detention ponds as well. Our experiments indicated that the majority of grazers that fed on fecal bacteria were <20 μm in size. Grazing rates were positively correlated with fecal coliform abundance and increased water temperatures. Enumeration of grazers demonstrated that protozoans were significantly more abundant among wetland vegetation than in open water, and open wetland waters contained more flagellates and dinoflagellates than open wet detention pond waters. Grazing on fecal bacteria in BMPs is enhanced by aquatic vegetation, and grazing in aquatic BMPs in warmer climates should be greater than in cooler climates.

  2. 40 CFR 430.58 - Best management practices (BMPs).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Best management practices (BMPs). 430.58 Section 430.58 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT... § 430.58 Best management practices (BMPs). The definitions and requirements set forth in 40 CFR 430.03...

  3. Overcoming Multidrug Resistance through the GLUT1-Mediated and Enzyme-Triggered Mitochondrial Targeting Conjugate with Redox-Sensitive Paclitaxel Release.

    PubMed

    Ma, Pengkai; Chen, Jianhua; Bi, Xinning; Li, Zhihui; Gao, Xing; Li, Hongpin; Zhu, Hongyu; Huang, Yunfang; Qi, Jing; Zhang, Yujie

    2018-04-18

    Multidrug resistance (MDR) is thought to be the major obstacle leading to the failure of paclitaxel (PTX) chemotherapy. To solve this problem, a glucose transporter-mediated and matrix metalloproteinase 2 (MMP2)-triggered mitochondrion-targeting conjugate [glucose-polyethylene glycol (PEG)-peptide-triphenylphosponium-polyamidoamine (PAMAM)-PTX] composed of a PAMAM dendrimer and enzymatic detachable glucose-PEG was constructed for mitochondrial delivery of PTX. The conjugate was characterized by a 30 nm sphere particle, MMP2-sensitive PEG outer layer detachment from PAMAM, and glutathione (GSH)-sensitive PTX release. It showed higher cellular uptake both in glucose transporter 1 (GLUT1) overexpressing MCF-7/MDR monolayer cell (2D) and multicellular tumor spheroids (3D). The subcellular location study showed that it could specifically accumulate in the mitochondria. Moreover, it exhibited higher cytotoxicity against MCF-7/MDR cells, which significantly reverse the MDR of MCF-7/MDR cells. The MDR reverse might be caused by reducing the ATP content through destroying the mitochondrial membrane as well as by down-regulating P-gp expression. In vivo imaging and tissue distribution indicated more conjugate accumulated in the tumor of the tumor-bearing mice model. Consequently, the conjugate showed better tumor inhibition rate and lower body weight loss, which demonstrated that it possessed high efficiency and low toxicity. This study provides glucose-mediated GLUT targeting, MMP2-responsive PEG detachment, triphenylphosponium-mediated mitochondria targeting, and a GSH-sensitive intracellular drug release conjugate that has the potential to be exploited for overcoming MDR of PTX.

  4. Engineering of dendrimer surfaces to enhance transepithelial transport and reduce cytotoxicity.

    PubMed

    Jevprasesphant, Rachaneekorn; Penny, Jeffrey; Attwood, David; McKeown, Neil B; D'Emanuele, Antony

    2003-10-01

    To evaluate the cytotoxicity, permeation, and transport mechanisms of PAMAM dendrimers and surface-modified cationic PAMAM dendrimers using monolayers of the human colon adenocarcinoma cell line, Caco-2. Cytotoxicity was determined using the MTT assay. The effect of dendrimers on monolayer integrity was determined from measurements of transepithelial electrical resistance (TEER) and [14C]mannitol apparent permeability coefficient (Papp). The Papp of dendrimers through monolayers was measured in both the apical (A)-to-basolateral (B) and B --> A directions at 4 degrees C and 37 degrees C and also in the presence and absence of ethylenediamine tetraacetic acid (EDTA) and colchicine. The cytotoxicity and permeation of dendrimers increased with both concentration and generation. The cytotoxicity of cationic dendrimers (G2, G3, G4) was greater than that of anionic dendrimers (G2.5, G3.5) but was reduced by conjugation with lauroyl chloride: the least cytotoxic conjugates were those with six attached lauroyl chains. At 37 degrees C the Papp of cationic dendrimers was higher than that of anionic dendrimers and, in general, increased with the number of attached lipid chains. Cationic dendrimers decreased TEER and significantly increased the Papp of mannitol. Modified dendrimers also reduced TEER and caused a more marked increase in the Papp of mannitol. The Papp values of dendrimers and modified dendrimers were higher in the presence of EDTA, lower in the presence of colchicine, and lower at 4 degrees C than at 37 degrees C. The properties of dendrimers may be significantly modified by surface engineering. Conjugation of cationic PAMAM dendrimers with lauroyl chloride decreased their cytotoxicity and increased their permeation through Caco-2 cell monolayers. Both PAMAM dendrimers and lauroyl-PAMAM dendrimer conjugates can cross epithelial monolayers by paracellular and transcellular pathways.

  5. Heat Shock-Enhanced Conjugation Efficiency in Standard Campylobacter jejuni Strains

    PubMed Central

    Zeng, Ximin; Ardeshna, Devarshi

    2015-01-01

    Campylobacter jejuni, the leading bacterial cause of human gastroenteritis in the United States, displays significant strain diversity due to horizontal gene transfer. Conjugation is an important horizontal gene transfer mechanism contributing to the evolution of bacterial pathogenesis and antimicrobial resistance. It has been observed that heat shock could increase transformation efficiency in some bacteria. In this study, the effect of heat shock on C. jejuni conjugation efficiency and the underlying mechanisms were examined. With a modified Escherichia coli donor strain, different C. jejuni recipient strains displayed significant variation in conjugation efficiency ranging from 6.2 × 10−8 to 6.0 × 10−3 CFU per recipient cell. Despite reduced viability, heat shock of standard C. jejuni NCTC 11168 and 81-176 strains (e.g., 48 to 54°C for 30 to 60 min) could dramatically enhance C. jejuni conjugation efficiency up to 1,000-fold. The phenotype of the heat shock-enhanced conjugation in C. jejuni recipient cells could be sustained for at least 9 h. Filtered supernatant from the heat shock-treated C. jejuni cells could not enhance conjugation efficiency, which suggests that the enhanced conjugation efficiency is independent of secreted substances. Mutagenesis analysis indicated that the clustered regularly interspaced short palindromic repeats system and the selected restriction-modification systems (Cj0030/Cj0031, Cj0139/Cj0140, Cj0690c, and HsdR) were dispensable for heat shock-enhanced conjugation in C. jejuni. Taking all results together, this study demonstrated a heat shock-enhanced conjugation efficiency in standard C. jejuni strains, leading to an optimized conjugation protocol for molecular manipulation of this organism. The findings from this study also represent a significant step toward elucidation of the molecular mechanism of conjugative gene transfer in C. jejuni. PMID:25911489

  6. Heat Shock-Enhanced Conjugation Efficiency in Standard Campylobacter jejuni Strains.

    PubMed

    Zeng, Ximin; Ardeshna, Devarshi; Lin, Jun

    2015-07-01

    Campylobacter jejuni, the leading bacterial cause of human gastroenteritis in the United States, displays significant strain diversity due to horizontal gene transfer. Conjugation is an important horizontal gene transfer mechanism contributing to the evolution of bacterial pathogenesis and antimicrobial resistance. It has been observed that heat shock could increase transformation efficiency in some bacteria. In this study, the effect of heat shock on C. jejuni conjugation efficiency and the underlying mechanisms were examined. With a modified Escherichia coli donor strain, different C. jejuni recipient strains displayed significant variation in conjugation efficiency ranging from 6.2 × 10(-8) to 6.0 × 10(-3) CFU per recipient cell. Despite reduced viability, heat shock of standard C. jejuni NCTC 11168 and 81-176 strains (e.g., 48 to 54°C for 30 to 60 min) could dramatically enhance C. jejuni conjugation efficiency up to 1,000-fold. The phenotype of the heat shock-enhanced conjugation in C. jejuni recipient cells could be sustained for at least 9 h. Filtered supernatant from the heat shock-treated C. jejuni cells could not enhance conjugation efficiency, which suggests that the enhanced conjugation efficiency is independent of secreted substances. Mutagenesis analysis indicated that the clustered regularly interspaced short palindromic repeats system and the selected restriction-modification systems (Cj0030/Cj0031, Cj0139/Cj0140, Cj0690c, and HsdR) were dispensable for heat shock-enhanced conjugation in C. jejuni. Taking all results together, this study demonstrated a heat shock-enhanced conjugation efficiency in standard C. jejuni strains, leading to an optimized conjugation protocol for molecular manipulation of this organism. The findings from this study also represent a significant step toward elucidation of the molecular mechanism of conjugative gene transfer in C. jejuni. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  7. Mechanism of gene transfection by polyamidoamine (PAMAM) dendrimers modified with ornithine residues.

    PubMed

    Kumar, Ajay; Yellepeddi, Venkata K; Vangara, Kiran K; Strychar, Kevin B; Palakurthi, Srinath

    2011-11-01

    The aim of this study was to prepare and investigate the mechanism of uptake of the dendriplexes prepared with ornithine-conjugated polyamidoamine (PAMAM) G4 dendrimers. Ornithine-conjugated PAMAMG4 dendrimers were prepared by Fmoc synthesis. A comparative transfection study in NCI H157G cells and polyamine transport-deficient cell line NCI H157R was performed to confirm the role of the polyamine transporter system (PAT) in the dendriplex uptake. Transfection efficiency significantly increased with increase in generation number and extent of ornithine conjugation. Transfection efficiency of the PAMAMG4-ORN60 dendrimers significantly decreased in presence of excess of ornithine (P < 0.05) and paraquat (P < 0.01) but not of PAMAMG4 dendrimers. Transfection efficiency of PAMAMG4-ORN60 was significantly low in NCI H157R (31.66 ± 3.95%, RFU: 17.87 ± 1.34) as compared to NCI H157G cell line (63.07 ± 6.8%, relative fluorescence units (RFU): 23.28 ± 0.66). Results indicate the role of PAT in addition to charge-mediated endocytosis in the internalization of ornithine-conjugated PAMAMG4 dendrimers. Cytotoxicity analysis (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) assay) in human embryonic kidney cell line (HEK) 293T cells showed that the dendriplexes were non-toxic at N/P 10.

  8. Dentin remineralization in acid challenge environment via PAMAM and calcium phosphate composite.

    PubMed

    Liang, Kunneng; Weir, Michael D; Xie, Xianju; Wang, Lin; Reynolds, Mark A; Li, Jiyao; Xu, Hockin H K

    2016-11-01

    The objective of this study was to investigate the effects of poly (amido amine) (PAMAM), composite with nanoparticles of amorphous calcium phosphate (NACP), and the combined PAMAM+NACP nanocomposite treatment, on remineralization of demineralized dentin in a cyclic artificial saliva/lactic acid environment for the first time. Dentin specimens were prepared and demineralized with 37% phosphoric acid for 15s. Four groups were prepared: (1) dentin control, (2) dentin coated with PAMAM, (3) dentin with NACP composite, (4) dentin with PAMAM+NACP. Specimens were treated with a cyclic artificial saliva/lactic acid regimen for 21days. Acid neutralization and calcium (Ca) and phosphate (P) ion concentrations were measured. The remineralized dentin specimens were examined by scanning electron microscopy (SEM) and hardness testing. NACP nanocomposite had mechanical properties similar to commercial control composites (p>0.1). NACP composite had acid-neutralization and Ca and P ion release capability. PAMAM or NACP composite each alone achieved remineralization and increased the hardness of demineralized dentin (p<0.05). PAMAM+NACP nanocomposite achieved the greatest mineral regeneration in demineralized dentin and the greatest hardness increase in demineralized dentin, which approached the hardness of healthy dentin (p>0.1). The superior remineralization efficacy of PAMAM+NACP was demonstrated for the first time. PAMAM+NACP induced remineralization in demineralized dentin in an acid challenge environment, when conventional remineralization methods such as PAMAM did not work well. The novel PAMAM+NACP composite approach is promising for a wide range of dental applications to inhibit caries and protect tooth structures. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  9. Structure of TatA Paralog, TatE, Suggests a Structurally Homogeneous Form of Tat Protein Translocase That Transports Folded Proteins of Differing Diameter

    PubMed Central

    Baglieri, Jacopo; Beck, Daniel; Vasisht, Nishi; Smith, Corinne J.; Robinson, Colin

    2012-01-01

    The twin-arginine translocation (Tat) system transports folded proteins across bacterial and plant thylakoid membranes. Most current models for the translocation mechanism propose the coalescence of a substrate-binding TatABC complex with a separate TatA complex. In Escherichia coli, TatA complexes are widely believed to form the translocation pore, and the size variation of TatA has been linked to the transport of differently sized substrates. Here, we show that the TatA paralog TatE can substitute for TatA and support translocation of Tat substrates including AmiA, AmiC, and TorA. However, TatE is found as much smaller, discrete complexes. Gel filtration and blue native electrophoresis suggest sizes between ∼50 and 110 kDa, and single-particle processing of electron micrographs gives size estimates of 70–90 kDa. Three-dimensional models of the two principal TatE complexes show estimated diameters of 6–8 nm and potential clefts or channels of up to 2.5 nm diameter. The ability of TatE to support translocation of the 90-kDa TorA protein suggests alternative translocation models in which single TatA/E complexes do not contribute the bulk of the translocation channel. The homogeneity of both the TatABC and the TatE complexes further suggests that a discrete Tat translocase can translocate a variety of substrates, presumably through the use of a flexible channel. The presence and possible significance of double- or triple-ring TatE forms is discussed. PMID:22190680

  10. CONSIDERATIONS IN THE DESIGN OF TREATMENT BEST MANAGEMENT PRACTICES (BMPS) TO IMPROVE WATER QUALITY

    EPA Science Inventory


    Today, many municipalities are implementing low-cost best management practices (BMPs). The lowest cost BMPs, termed non-structural or source control BMPs, include practices such as limiting pesticide use in agricultural areas. There are a set of higher cost BMPs, which in...

  11. CONSIDERATION IN THE DESIGN OF TREATMENT BEST MANAGEMENT PRACTICES (BMPS) TO IMPROVE WATER QUALITY

    EPA Science Inventory

    Today, many municipalities are implementing low-cost best management practices (BMPs). The lowest cost BMPs, termed non-structural or source control BMPs, include practices such as limiting pesticide use in agricultural areas. There are a set of higher cost BMPs, which involve ...

  12. Combining Bioactive Multifunctional Dental Composite with PAMAM for Root Dentin Remineralization

    PubMed Central

    Xiao, Shimeng; Liang, Kunneng; Weir, Michael D.; Cheng, Lei; Liu, Huaibing; Zhou, Xuedong; Ding, Yi; Xu, Hockin H. K.

    2017-01-01

    Objectives. The objectives of this study were to: (1) develop a bioactive multifunctional composite (BMC) via nanoparticles of amorphous calcium phosphate (NACP), 2-methacryloyloxyethyl phosphorylcholine (MPC), dimethylaminohexadecyl methacrylate (DMAHDM) and nanoparticles of silver (NAg); and (2) investigate the effects of combined BMC + poly (amido amine) (PAMAM) on remineralization of demineralized root dentin in a cyclic artificial saliva/lactic acid environment for the first time. Methods. Root dentin specimens were prepared and demineralized with 37% phosphoric acid for 15 s. Four groups were prepared: (1) root dentin control; (2) root dentin with BMC; (3) root dentin with PAMAM; (4) root dentin with BMC + PAMAM. Specimens were treated with a cyclic artificial saliva/lactic acid regimen for 21 days. Calcium (Ca) and phosphate (P) ion concentrations and acid neutralization were determined. The remineralized root dentin specimens were examined via hardness testing and scanning electron microscopy (SEM). Results. Mechanical properties of BMC were similar to commercial control composites (p = 0.913). BMC had excellent Ca and P ion release and acid-neutralization capability. BMC or PAMAM alone each achieved slight mineral regeneration in demineralized root dentin. The combined BMC + PAMAM induced the greatest root dentin remineralization, and increased the hardness of pre-demineralized root dentin to match that of healthy root dentin (p = 0.521). Significance. The excellent root dentin remineralization effects of BMC + PAMAM were demonstrated for the first time. BMC + PAMAM induced effective and complete root dentin remineralization in an acid challenge environment. The novel BMC + PAMAM method is promising for Class V and other restorations to remineralize and protect tooth structures. PMID:28772450

  13. Combining Bioactive Multifunctional Dental Composite with PAMAM for Root Dentin Remineralization.

    PubMed

    Xiao, Shimeng; Liang, Kunneng; Weir, Michael D; Cheng, Lei; Liu, Huaibing; Zhou, Xuedong; Ding, Yi; Xu, Hockin H K

    2017-01-22

    Objectives . The objectives of this study were to: (1) develop a bioactive multifunctional composite (BMC) via nanoparticles of amorphous calcium phosphate (NACP), 2-methacryloyloxyethyl phosphorylcholine (MPC), dimethylaminohexadecyl methacrylate (DMAHDM) and nanoparticles of silver (NAg); and (2) investigate the effects of combined BMC + poly (amido amine) (PAMAM) on remineralization of demineralized root dentin in a cyclic artificial saliva/lactic acid environment for the first time. Methods . Root dentin specimens were prepared and demineralized with 37% phosphoric acid for 15 s. Four groups were prepared: (1) root dentin control; (2) root dentin with BMC; (3) root dentin with PAMAM; (4) root dentin with BMC + PAMAM. Specimens were treated with a cyclic artificial saliva/lactic acid regimen for 21 days. Calcium (Ca) and phosphate (P) ion concentrations and acid neutralization were determined. The remineralized root dentin specimens were examined via hardness testing and scanning electron microscopy (SEM). Results . Mechanical properties of BMC were similar to commercial control composites ( p = 0.913). BMC had excellent Ca and P ion release and acid-neutralization capability. BMC or PAMAM alone each achieved slight mineral regeneration in demineralized root dentin. The combined BMC + PAMAM induced the greatest root dentin remineralization, and increased the hardness of pre-demineralized root dentin to match that of healthy root dentin ( p = 0.521). Significance . The excellent root dentin remineralization effects of BMC + PAMAM were demonstrated for the first time. BMC + PAMAM induced effective and complete root dentin remineralization in an acid challenge environment. The novel BMC + PAMAM method is promising for Class V and other restorations to remineralize and protect tooth structures.

  14. Enhanced Optical Breakdown in KB Cells Labeled with Folate-Targeted Silver/Dendrimer Composite Nanodevices

    PubMed Central

    Tse, Christine; Zohdy, Marwa J.; Ye, Jing Yong; O'Donnell, Matthew; Lesniak, Wojciech; Balogh, Lajos

    2010-01-01

    Enhanced optical breakdown of KB cells (a human oral epidermoid cancer cell known to overexpress folate receptors) targeted with silver/dendrimer composite nanodevices (CNDs) is described. CNDs {(Ag0}25-PAMAM_E5.(NH2)42(NGly)74(NFA)2.7} were fabricated by reactive encapsulation, using a biocompatible template of dendrimer-folic acid (FA) conjugates. Preferential uptake of the folate-targeted CNDs (of various treatment concentrations and surface functionality) by KB cells was visualized with confocal microscopy and transmission electron microscopy (TEM). Intracellular laser-induced optical breakdown (LIOB) threshold and dynamics were detected and characterized by high-frequency ultrasonic monitoring of resulting transient bubble events. When irradiated with a near-infrared (NIR), femtosecond laser, the CND-targeted KB cells acted as well-confined activators of laser energy, enhancing nonlinear energy absorption, exhibiting a significant reduction in breakdown threshold, and thus selectively promoting intracellular LIOB. PMID:20883823

  15. Assembling the Tat protein translocase

    PubMed Central

    Alcock, Felicity; Stansfeld, Phillip J; Basit, Hajra; Habersetzer, Johann; Baker, Matthew AB; Palmer, Tracy; Wallace, Mark I; Berks, Ben C

    2016-01-01

    The twin-arginine protein translocation system (Tat) transports folded proteins across the bacterial cytoplasmic membrane and the thylakoid membranes of plant chloroplasts. The Tat transporter is assembled from multiple copies of the membrane proteins TatA, TatB, and TatC. We combine sequence co-evolution analysis, molecular simulations, and experimentation to define the interactions between the Tat proteins of Escherichia coli at molecular-level resolution. In the TatBC receptor complex the transmembrane helix of each TatB molecule is sandwiched between two TatC molecules, with one of the inter-subunit interfaces incorporating a functionally important cluster of interacting polar residues. Unexpectedly, we find that TatA also associates with TatC at the polar cluster site. Our data provide a structural model for assembly of the active Tat translocase in which substrate binding triggers replacement of TatB by TatA at the polar cluster site. Our work demonstrates the power of co-evolution analysis to predict protein interfaces in multi-subunit complexes. DOI: http://dx.doi.org/10.7554/eLife.20718.001 PMID:27914200

  16. Effect of mannose targeting of hydroxyl PAMAM dendrimers on cellular and organ biodistribution in a neonatal brain injury model.

    PubMed

    Sharma, Anjali; Porterfield, Joshua E; Smith, Elizabeth; Sharma, Rishi; Kannan, Sujatha; Kannan, Rangaramanujam M

    2018-06-05

    Neurotherapeutics for the treatment of central nervous system (CNS) disorders must overcome challenges relating to the blood-brain barrier (BBB), brain tissue penetration, and the targeting of specific cells. Neuroinflammation mediated by activated microglia is a major hallmark of several neurological disorders, making these cells a desirable therapeutic target. Building on the promise of hydroxyl-terminated generation four polyamidoamine (PAMAM) dendrimers (D4-OH) for penetrating the injured BBB and targeting activated glia, we explored if conjugation of targeting ligands would enhance and modify brain and organ uptake. Since mannose receptors [cluster of differentiation (CD) 206] are typically over-expressed on injured microglia, we conjugated mannose to the surface of multifunctional D4-OH using highly efficient, atom-economical, and orthogonal Cu(I)-catalyzed alkyne-azide cycloaddition (CuAAC) click chemistry and evaluated the effect of mannose conjugation on the specific cell uptake of targeted and non-targeted dendrimers both in vitro and in vivo. In vitro results indicate that the conjugation of mannose as a targeting ligand significantly changes the mechanism of dendrimer internalization, giving mannosylated dendrimer a preference for mannose receptor-mediated endocytosis as opposed to non-specific fluid phase endocytosis. We further investigated the brain uptake and biodistribution of targeted and non-targeted fluorescently labeled dendrimers in a maternal intrauterine inflammation-induced cerebral palsy (CP) rabbit model using quantification methods based on fluorescence spectroscopy and confocal microscopy. We found that the conjugation of mannose modified the distribution of D4-OH throughout the body in this neonatal rabbit CP model without lowering the amount of dendrimer delivered to injured glia in the brain, even though significantly higher glial uptake was not observed in this model. Mannose conjugation to the dendrimer modifies the dendrimer

  17. Blood-Brain Barrier Permeable Gold Nanoparticles: An Efficient Delivery Platform for Enhanced Malignant Glioma Therapy and Imaging

    PubMed Central

    Cheng, Yu; Dai, Qing; Morshed, Ramin; Fan, Xiaobing; Wegscheid, Michelle L.; Wainwright, Derek A.; Han, Yu; Zhang, Lingjiao; Auffinger, Brenda; Tobias, Alex L.; Rincón, Esther; Thaci, Bart; Ahmed, Atique U.; Warnke, Peter; He, Chuan

    2014-01-01

    The blood-brain barrier (BBB) remains a formidable obstacle in medicine, preventing efficient penetration of chemotherapeutic and diagnostic agents to malignant gliomas. Here, we demonstrate that a transactivator of transcription (TAT) peptide-modified gold nanoparticle platform (TAT-Au NP) with a 5 nm core size is capable of crossing the BBB efficiently and delivering cargoes such as the anticancer drug doxorubicin (Dox) and Gd3+ contrast agents to brain tumor tissues. Treatment of mice bearing intracranial glioma xenografts with pH-sensitive Dox-conjugated TAT-Au NPs via a single intravenous administration leads to significant survival benefit when compared to the free Dox. Furthermore, we demonstrate that TAT-Au NPs are capable of delivering Gd3+ chelates for enhanced brain tumor imaging with a prolonged retention time of Gd3+ when compared to the free Gd3+ chelates. Collectively, these results show promising applications of the TAT-Au NPs for enhanced malignant brain tumor therapy and non-invasive imaging. PMID:25104165

  18. Photosensitizer and peptide-conjugated PAMAM dendrimer for targeted in vivo photodynamic therapy.

    PubMed

    Narsireddy, Amreddy; Vijayashree, Kurra; Adimoolam, Mahesh G; Manorama, Sunkara V; Rao, Nalam M

    2015-01-01

    Challenges in photodynamic therapy (PDT) include development of efficient near infrared-sensitive photosensitizers (5,10,15,20-tetrakis(4-hydroxyphenyl)-21H,23H-porphine [PS]) and targeted delivery of PS to the tumor tissue. In this study, a dual functional dendrimer was synthesized for targeted PDT. For targeting, a poly(amidoamine) dendrimer (G4) was conjugated with a PS and a nitrilotriacetic acid (NTA) group. A peptide specific to human epidermal growth factor 2 was expressed in Escherichia coli with a His-tag and was specifically bound to the NTA group on the dendrimer. Reaction conditions were optimized to result in dendrimers with PS and the NTA at a fractional occupancy of 50% and 15%, respectively. The dendrimers were characterized by nuclear magnetic resonance, matrix-assisted laser desorption/ionization, absorbance, and fluorescence spectroscopy. Using PS fluorescence, cell uptake of these particles was confirmed by confocal microscopy and fluorescence-activated cell sorting. PS-dendrimers are more efficient than free PS in PDT-mediated cell death assays in HER2 positive cells, SK-OV-3. Similar effects were absent in HER2 negative cell line, MCF-7. Compared to free PS, the PS-dendrimers have shown significant tumor suppression in a xenograft animal tumor model. Conjugation of a PS with dendrimers and with a targeting agent has enhanced photodynamic therapeutic effects of the PS.

  19. Photosensitizer and peptide-conjugated PAMAM dendrimer for targeted in vivo photodynamic therapy

    PubMed Central

    Narsireddy, Amreddy; Vijayashree, Kurra; Adimoolam, Mahesh G; Manorama, Sunkara V; Rao, Nalam M

    2015-01-01

    Challenges in photodynamic therapy (PDT) include development of efficient near infrared-sensitive photosensitizers (5,10,15,20-tetrakis(4-hydroxyphenyl)-21H,23H-porphine [PS]) and targeted delivery of PS to the tumor tissue. In this study, a dual functional dendrimer was synthesized for targeted PDT. For targeting, a poly(amidoamine) dendrimer (G4) was conjugated with a PS and a nitrilotriacetic acid (NTA) group. A peptide specific to human epidermal growth factor 2 was expressed in Escherichia coli with a His-tag and was specifically bound to the NTA group on the dendrimer. Reaction conditions were optimized to result in dendrimers with PS and the NTA at a fractional occupancy of 50% and 15%, respectively. The dendrimers were characterized by nuclear magnetic resonance, matrix-assisted laser desorption/ionization, absorbance, and fluorescence spectroscopy. Using PS fluorescence, cell uptake of these particles was confirmed by confocal microscopy and fluorescence-activated cell sorting. PS-dendrimers are more efficient than free PS in PDT-mediated cell death assays in HER2 positive cells, SK-OV-3. Similar effects were absent in HER2 negative cell line, MCF-7. Compared to free PS, the PS-dendrimers have shown significant tumor suppression in a xenograft animal tumor model. Conjugation of a PS with dendrimers and with a targeting agent has enhanced photodynamic therapeutic effects of the PS. PMID:26604753

  20. Toxicity of PAMAM-coated gold nanoparticles in different unicellular models.

    PubMed

    Perreault, François; Melegari, Silvia Pedroso; Fuzinatto, Cristiane Funghetto; Bogdan, Nicoleta; Morin, Mario; Popovic, Radovan; Matias, William Gerson

    2014-03-01

    Polyamidoamine (PAMAM) dendrimers are used for many pharmaceutical and biomedical applications. However, the toxicological risks of several PAMAM-based compounds are still not fully evaluated, despite evidences of PAMAM deleterious effects on biological membranes, leading to toxicity. In this report, we investigated the toxicity of generation 0 PAMAM-coated gold nanoparticles (AuG0 NPs) in four different models to determine how different cellular systems are affected by PAMAM-coated NPs. Toxicity was evaluated in two mammalian cell lines, Neuro 2A and Vero, in the green alga Chlamydomonas reinhardtii and the bacteria Vibrio fischeri. AuG0 NP treatments reduced cell metabolic activity in algal and bacterial cells, measured by esterase enzymatic activity (C. reinhardtii) and luminescence emission (V. fischeri). EC50 value after 30 min of treatment was similar in both organisms, with 0.114 and 0.167 mg mL(-1) for C. reinhardtii and V. fischeri, respectively. On the other hand, AuG0 NPs induced no change of mitochondrial activity in mammalian cells after 24 h of treatment to up to 0.4 mg mL(-1) AuG0 NPs. Change in the absorption spectra of AuG0 NP in the mammalian cell culture media may indicate an alteration of NP properties that contributed to the low toxicity of AuG0 NPs in mammalian cells. For a safe development of PAMAM-based nanomaterials, the difference of sensitivity between mammalian and microbial cells, as well as the modulation of NPs toxicity by medium properties, should be taken into account when designing PAMAM NPs for applications that may lead to their introduction in the environment. Copyright © 2012 Wiley Periodicals, Inc.

  1. AN EVALUATION AND COST-OPTIMIZATION TOOL FOR PLACEMENT OF BMPS

    EPA Science Inventory

    To assist stormwater management professionals in planning for best management practices (BMPs) implementation, the U.S. Environmental Protection Agency (USEPA) is developing a decision-support system for placement of BMPs at strategic locations in urban watersheds. This tool wil...

  2. Poly (amidoamine) (PAMAM) dendrimer mediated delivery of drug and pDNA/siRNA for cancer therapy.

    PubMed

    Li, Jun; Liang, Huamin; Liu, Jing; Wang, Ziyuan

    2018-07-30

    Poly (amidoamine) (PAMAM) dendrimers are well-defined, highly branched macromolecules with numerous active amine groups on the surface. Because of their unique properties, PAMAM dendrimers have steadily grown in popularity in drug delivery, gene therapy, medical imaging and diagnostic application. This review focuses on the recent developments on the application in PAMAM dendrimers as effective carriers for drug and gene (pDNA, siRNA) delivery in cancer therapy, including: a) PAMAM for anticancer drug delivery; b) PAMAM and gene therapy; c) PAMAM used in overcoming tumor multidrug resistance; d) PAMAM used for hybrid nanoparticles; and e) PAMAM linked or loaded in other nanoparticles. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Cationic PAMAM dendrimers as pore-blocking binary toxin inhibitors.

    PubMed

    Förstner, Philip; Bayer, Fabienne; Kalu, Nnanya; Felsen, Susanne; Förtsch, Christina; Aloufi, Abrar; Ng, David Y W; Weil, Tanja; Nestorovich, Ekaterina M; Barth, Holger

    2014-07-14

    Dendrimers are unique highly branched macromolecules with numerous groundbreaking biomedical applications under development. Here we identified poly(amido amine) (PAMAM) dendrimers as novel blockers for the pore-forming B components of the binary anthrax toxin (PA63) and Clostridium botulinum C2 toxin (C2IIa). These pores are essential for delivery of the enzymatic A components of the internalized toxins from endosomes into the cytosol of target cells. We demonstrate that at low μM concentrations cationic PAMAM dendrimers block PA63 and C2IIa to inhibit channel-mediated transport of the A components, thereby protecting HeLa and Vero cells from intoxication. By channel reconstitution and high-resolution current recording, we show that the PAMAM dendrimers obstruct transmembrane PA63 and C2IIa pores in planar lipid bilayers at nM concentrations. These findings suggest a new potential role for the PAMAM dendrimers as effective polyvalent channel-blocking inhibitors, which can protect human target cells from intoxication with binary toxins from pathogenic bacteria.

  4. DECISION SUPPORT FRAMEWORK FOR PLACEMENT OF BMPS IN URBAN WATERSHEDS

    EPA Science Inventory

    To assist stormwater management professionals in planning for best management practices (BMPs) implementation, the U.S. Environmental Protection Agency (USEPA) initiated a research in 2003 to develop a decision support system for placement of BMPs at strategic locations in urban ...

  5. Genetic Evidence for a Tight Cooperation of TatB and TatC during Productive Recognition of Twin-Arginine (Tat) Signal Peptides in Escherichia coli

    PubMed Central

    Lausberg, Frank; Fleckenstein, Stefan; Kreutzenbeck, Peter; Fröbel, Julia; Rose, Patrick; Müller, Matthias; Freudl, Roland

    2012-01-01

    The twin arginine translocation (Tat) pathway transports folded proteins across the cytoplasmic membrane of bacteria. Tat signal peptides contain a consensus motif (S/T-R-R-X-F-L-K) that is thought to play a crucial role in substrate recognition by the Tat translocase. Replacement of the phenylalanine at the +2 consensus position in the signal peptide of a Tat-specific reporter protein (TorA-MalE) by aspartate blocked export of the corresponding TorA(D+2)-MalE precursor, indicating that this mutation prevents a productive binding of the TorA(D+2) signal peptide to the Tat translocase. Mutations were identified in the extreme amino-terminal regions of TatB and TatC that synergistically suppressed the export defect of TorA(D+2)-MalE when present in pairwise or triple combinations. The observed synergistic suppression activities were even more pronounced in the restoration of membrane translocation of another export-defective precursor, TorA(KQ)-MalE, in which the conserved twin arginine residues had been replaced by lysine-glutamine. Collectively, these findings indicate that the extreme amino-terminal regions of TatB and TatC cooperate tightly during recognition and productive binding of Tat-dependent precursor proteins and, furthermore, that TatB and TatC are both involved in the formation of a specific signal peptide binding site that reaches out as far as the end of the TatB transmembrane segment. PMID:22761916

  6. Genetic evidence for a tight cooperation of TatB and TatC during productive recognition of twin-arginine (Tat) signal peptides in Escherichia coli.

    PubMed

    Lausberg, Frank; Fleckenstein, Stefan; Kreutzenbeck, Peter; Fröbel, Julia; Rose, Patrick; Müller, Matthias; Freudl, Roland

    2012-01-01

    The twin arginine translocation (Tat) pathway transports folded proteins across the cytoplasmic membrane of bacteria. Tat signal peptides contain a consensus motif (S/T-R-R-X-F-L-K) that is thought to play a crucial role in substrate recognition by the Tat translocase. Replacement of the phenylalanine at the +2 consensus position in the signal peptide of a Tat-specific reporter protein (TorA-MalE) by aspartate blocked export of the corresponding TorA(D(+2))-MalE precursor, indicating that this mutation prevents a productive binding of the TorA(D(+2)) signal peptide to the Tat translocase. Mutations were identified in the extreme amino-terminal regions of TatB and TatC that synergistically suppressed the export defect of TorA(D(+2))-MalE when present in pairwise or triple combinations. The observed synergistic suppression activities were even more pronounced in the restoration of membrane translocation of another export-defective precursor, TorA(KQ)-MalE, in which the conserved twin arginine residues had been replaced by lysine-glutamine. Collectively, these findings indicate that the extreme amino-terminal regions of TatB and TatC cooperate tightly during recognition and productive binding of Tat-dependent precursor proteins and, furthermore, that TatB and TatC are both involved in the formation of a specific signal peptide binding site that reaches out as far as the end of the TatB transmembrane segment.

  7. Enhanced pulmonary absorption of a macromolecule through coupling to a sequence-specific phage display-derived peptide.

    PubMed

    Morris, Christopher J; Smith, Mathew W; Griffiths, Peter C; McKeown, Neil B; Gumbleton, Mark

    2011-04-10

    With the aim of identifying a peptide sequence that promotes pulmonary epithelial transport of macromolecule cargo we used a stringent peptide-phage display library screening protocol against rat lung alveolar epithelial primary cell cultures. We identified a peptide-phage clone (LTP-1) displaying the disulphide-constrained 7-mer peptide sequence, C-TSGTHPR-C, that showed significant pulmonary epithelial translocation across highly restrictive polarised cell monolayers. Cell biological data supported a differential alveolar epithelial cell interaction of the LTP-1 peptide-phage clone and the corresponding free synthetic LTP-1 peptide. Delivering select phage-clones to the intact pulmonary barrier of an isolated perfused rat lung (IPRL) resulted in 8.7% of lung deposited LTP-1 peptide-phage clone transported from the IPRL airways to the vasculature compared (p<0.05) to the cumulative transport of less than 0.004% for control phage-clone groups. To characterise phage-independent activity of LTP-1 peptide, the LTP-1 peptide was conjugated to a 53kDa anionic PAMAM dendrimer. Compared to respective peptide-dendrimer control conjugates, the LTP-1-PAMAM conjugate displayed a two-fold (bioavailability up to 31%) greater extent of absorption in the IPRL. The LTP-1 peptide-mediated enhancement of transport, when LTP-1 was either attached to the phage clone or conjugated to dendrimer, was sequence-dependent and could be competitively inhibited by co-instillation of excess synthetic free LTP-1 peptide. The specific nature of the target receptor or mechanism involved in LTP-1 lung transport remains unclear although the enhanced transport is enabled through a mechanism that is non-disruptive with respect to the pulmonary transport of hydrophilic permeability probes. This study shows proof-of principle that array technologies can be effectively exploited to identify peptides mediating enhanced transmucosal delivery of macromolecule therapeutics across an intact organ. Copyright

  8. Fluorescent quantum dot hydrophilization with PAMAM dendrimer

    NASA Astrophysics Data System (ADS)

    Potapkin, Dmitry V.; Geißler, Daniel; Resch-Genger, Ute; Goryacheva, Irina Yu.

    2016-05-01

    Polyamidoamine (PAMAM) dendrimers were used to produce CdSe core/multi-shell fluorescent quantum dots (QDs) which are colloidally stable in aqueous solutions. The size, charge, and optical properties of QDs functionalized with the 4th (G4) and 5th (G5) generation of PAMAM were compared with amphiphilic polymer-covered QDs and used as criteria for the evaluation of the suitability of both water solubilization methods. As revealed by dynamic and electrophoretic light scattering (DLS and ELS), the hydrodynamic sizes of the QDs varied from 30 to 65 nm depending on QD type and dendrimer generation, with all QDs displaying highly positive surface charges, i.e., zeta potentials of around +50 mV in water. PAMAM functionalization yielded stable core/multi-shell QDs with photoluminescence quantum yields ( Φ) of up to 45 %. These dendrimer-covered QDs showed a smaller decrease in their Φ upon phase transfer compared with QDs made water soluble via encapsulation with amphiphilic brush polymer bearing polyoxyethylene/polyoxypropylene chains.

  9. Dendrimer encapsulated and conjugated delivery of berberine: A novel approach mitigating toxicity and improving in vivo pharmacokinetics.

    PubMed

    Gupta, Lokesh; Sharma, Ashok Kumar; Gothwal, Avinash; Khan, Mohammed Shahid; Khinchi, Mahaveer Prasad; Qayum, Arem; Singh, Shashank Kumar; Gupta, Umesh

    2017-08-07

    Berberine (BBR) is a nitrogenous cyclic natural alkaloid with potential anticancer activity. However it has been less explored due to its poor pharmacokinetic profile. Dendrimers (e.g. PAMAM) have promising potential to deliver anticancer drugs/bio-actives because of their well-defined architecture, monodispersity and tailor-made surface functionality. In the present study it was attempted to deliver berberine through G4 PAMAM dendrimers by conjugation (BPC) as well as encapsulation (BPE) approach. The developed encapsulated and conjugated berberine formulations were found to have size in the approximate range of 100-200nm while zeta potential was almost same as PAMAM G4 dendrimer. The entrapment efficiency in BPE was found to be 29.9%, whereas, the percentage conjugation in BPC was found to be 37.49% indicating high drug payload in conjugation. The developed nano-formulations were characterized through 1 H NMR, FT-IR as well as electron microscopy (SEM and TEM). The in vitro release study in different media (water and PBS 7.4) showed sustained release pattern of BBR. Almost 72% and 98% drug was released within 24h respectively; whereas in PBS almost 80% and 98% release was observed within 24h, respectively. The formulations followed Higuchi release and first order release as best fit release kinetic model. MTT assay results showed significantly higher anticancer activity for the PAMAM-BBR (BPC) (p<0.01) against MCF-7 and MDA-MB-468 breast cancer cells. The time dependent ex vivo hemolytic toxicity of the BPC and BPE was significantly less (<5%) even after 24h, which indicated that the formulations can be regarded as significantly safe and biocompatible. Similarly, the in vivo hematological parameters were analyzed through auto-analyzer and the formulations were found to be safer and biocompatible with very least but insignificant (p>0.05) effects. The in vivo pharmacokinetic parameters were found to be impressively improved in albino rat model. The pharmacokinetic

  10. Passive stormwater samplers for sampling highway runoff from BMPS : feasibility studies.

    DOT National Transportation Integrated Search

    2013-12-01

    Pollution from highway stormwater runoff has been a concern within the environmental field. To reduce contamination within highway runoff, many structural Best Management Practices (BMPs) have been implemented. One challenge for BMPs is monitoring th...

  11. Cationic PAMAM Dendrimers as Pore-Blocking Binary Toxin Inhibitors

    PubMed Central

    2015-01-01

    Dendrimers are unique highly branched macromolecules with numerous groundbreaking biomedical applications under development. Here we identified poly(amido amine) (PAMAM) dendrimers as novel blockers for the pore-forming B components of the binary anthrax toxin (PA63) and Clostridium botulinum C2 toxin (C2IIa). These pores are essential for delivery of the enzymatic A components of the internalized toxins from endosomes into the cytosol of target cells. We demonstrate that at low μM concentrations cationic PAMAM dendrimers block PA63 and C2IIa to inhibit channel-mediated transport of the A components, thereby protecting HeLa and Vero cells from intoxication. By channel reconstitution and high-resolution current recording, we show that the PAMAM dendrimers obstruct transmembrane PA63 and C2IIa pores in planar lipid bilayers at nM concentrations. These findings suggest a new potential role for the PAMAM dendrimers as effective polyvalent channel-blocking inhibitors, which can protect human target cells from intoxication with binary toxins from pathogenic bacteria. PMID:24954629

  12. Targeting of follicle stimulating hormone peptide-conjugated dendrimers to ovarian cancer cells

    NASA Astrophysics Data System (ADS)

    Modi, Dimple A.; Sunoqrot, Suhair; Bugno, Jason; Lantvit, Daniel D.; Hong, Seungpyo; Burdette, Joanna E.

    2014-02-01

    Ovarian cancer is the most lethal gynecological malignancy. Current treatment modalities include a combination of surgery and chemotherapy, which often lead to loss of fertility in premenopausal women and a myriad of systemic side effects. To address these issues, we have designed poly(amidoamine) (PAMAM) dendrimers to selectively target the follicle stimulating hormone receptor (FSHR), which is overexpressed by tumorigenic ovarian cancer cells but not by immature primordial follicles and other non-tumorigenic cells. Fluorescein-labeled generation 5 (G5) PAMAM dendrimers were conjugated with the binding peptide domain of FSH (FSH33) that has a high affinity to FSHR. The targeted dendrimers exhibited high receptor selectivity to FSHR-expressing OVCAR-3 cells, resulting in significant uptake and downregulation of an anti-apoptotic protein survivin, while showing minimal interactions with SKOV-3 cells that do not express FSHR. The selectivity of the FSH33-targeted dendrimers was further validated in 3D organ cultures of normal mouse ovaries. Immunostaining of the conjugates revealed their selective binding and uptake by ovarian surface epithelium (OSE) cells that express FSHR, while sparing the immature primordial follicles. In addition, an in vivo study monitoring tissue accumulation following a single intraperitoneal (i.p.) injection of the conjugates showed significantly higher accumulation of FSH33-targeted dendrimers in the ovary and oviduct compared to the non-targeted conjugates. These proof-of-concept findings highlight the potential of these FSH33-targeted dendrimers to serve as a delivery platform for anti-ovarian cancer drugs, while reducing their systemic side effects by preventing nonspecific uptake by the primordial follicles.Ovarian cancer is the most lethal gynecological malignancy. Current treatment modalities include a combination of surgery and chemotherapy, which often lead to loss of fertility in premenopausal women and a myriad of systemic side

  13. Preparation and in vitro characterization of pluronic-attached polyamidoamine dendrimers for drug delivery.

    PubMed

    Gu, Zhuojun; Wang, Meng; Fang, Qiongyan; Zheng, Huaiyu; Wu, Feiyue; Lin, Dai; Xu, Ying; Jin, Yi

    2015-05-01

    Polyamidoamine (PAMAM) dendrimers have attracted lots of interest as drug carriers. And little study about whether pluronic-attached PAMAM dendrimers could be potential drug delivery systems has been carried on. Pluronic F127 (PF127) attached PAMAM dendrimers were designed as novel drug carriers. Two conjugation ratios of PF127-attached PAMAM dendrimers were synthesized. (1)H nuclear magnetic resonance ((1)H-NMR), Fourier transform infrared spectrum (FTIR), element analysis and ninhydrin assay were used to characterize the conjugates. Size, zeta potential and critical micelle concentrations (CMC) were also detected. And DOX was incorporated into the hydrophobic interior of the conjugates. Studies on their drug loading and drug release were carried on. Furthermore, hemolysis and cytotoxicity assay were used to evaluate the toxicity of the conjugates. PF127 was successfully conjugated to the fifth generation PAMAM dendrimer at two molar ratios of 19% and 57% (PF127 to surface amine per PAMAM dendrimer molecular). The conjugates showed an increased size and a reduced zeta potential. And higher CMC values were obtained than pure PF127. Compared with unconjugated PAMAM dendrimer, PF127 conjugation significantly reduced the hemolytic toxicity and cytotoxicity of PAMAM dendrimer in vitro. The encapsulation results showed that the ability to encapsulate DOX by the conjugate of 19% conjugation ratio was better than that of 57% conjugation ratio. And the maximum is ∼12.87 DOX molecules per conjugate molecule. Moreover, the complexes showed a sustained release behavior compared to pure DOX. Findings from the in vitro study show that the PF127-attached PAMAM dendrimers may be potential carriers for drug delivery.

  14. Transmembrane insertion of twin-arginine signal peptides is driven by TatC and regulated by TatB

    PubMed Central

    Fröbel, Julia; Rose, Patrick; Lausberg, Frank; Blümmel, Anne-Sophie; Freudl, Roland; Müller, Matthias

    2012-01-01

    The twin-arginine translocation (Tat) pathway of bacteria and plant chloroplasts mediates the transmembrane transport of folded proteins, which harbour signal sequences with a conserved twin-arginine motif. Many Tat translocases comprise the three membrane proteins TatA, TatB and TatC. TatC was previously shown to be involved in recognizing twin-arginine signal peptides. Here we show that beyond recognition, TatC mediates the transmembrane insertion of a twin-arginine signal sequence, thereby translocating the signal sequence cleavage site across the bilayer. In the absence of TatB, this can lead to the removal of the signal sequence even from a translocation-incompetent substrate. Hence interaction of twin-arginine signal peptides with TatB counteracts their premature cleavage uncoupled from translocation. This capacity of TatB is not shared by the homologous TatA protein. Collectively our results suggest that TatC is an insertase for twin-arginine signal peptides and that translocation-proficient signal sequence recognition requires the concerted action of TatC and TatB. PMID:23250441

  15. Transmembrane insertion of twin-arginine signal peptides is driven by TatC and regulated by TatB.

    PubMed

    Fröbel, Julia; Rose, Patrick; Lausberg, Frank; Blümmel, Anne-Sophie; Freudl, Roland; Müller, Matthias

    2012-01-01

    The twin-arginine translocation (Tat) pathway of bacteria and plant chloroplasts mediates the transmembrane transport of folded proteins, which harbour signal sequences with a conserved twin-arginine motif. Many Tat translocases comprise the three membrane proteins TatA, TatB and TatC. TatC was previously shown to be involved in recognizing twin-arginine signal peptides. Here we show that beyond recognition, TatC mediates the transmembrane insertion of a twin-arginine signal sequence, thereby translocating the signal sequence cleavage site across the bilayer. In the absence of TatB, this can lead to the removal of the signal sequence even from a translocation-incompetent substrate. Hence interaction of twin-arginine signal peptides with TatB counteracts their premature cleavage uncoupled from translocation. This capacity of TatB is not shared by the homologous TatA protein. Collectively our results suggest that TatC is an insertase for twin-arginine signal peptides and that translocation-proficient signal sequence recognition requires the concerted action of TatC and TatB.

  16. SUSTAIN -AN EVALUATION AND COST-OPTIMIZATION TOOL FOR PLACEMENT OF BMPS

    EPA Science Inventory

    Since 2003, the U.S. Environmental Protection Agency (USEPA) has been developing a decision support system for placement of best management practices (BMPs) to assist stormwater management professionals in planning for BMPs implementation at strategic locations in urban watershed...

  17. RGD/TAT-functionalized chitosan-graft-PEI-PEG gene nanovector for sustained delivery of NT-3 for potential application in neural regeneration.

    PubMed

    Wu, Dongni; Zhang, Yongnu; Xu, Xiaoting; Guo, Ting; Xie, Deming; Zhu, Rong; Chen, Shengfeng; Ramakrishna, Seeram; He, Liumin

    2018-05-01

    In this study, we prepared a multifunctional gene delivery nanovector containing a chitosan (CS) backbone and polyethylenimine (PEI) arms with arginine-glycine-aspartate (RGD)/twin-arginine translocation (TAT) conjugated via polyethylene glycol (PEG). Branched PEI, with a molecular weight of 2000 Da, was used to achieve a balance between biocompatibility and transfection efficiency, whereas RGD/TAT peptides were conjugated for enhanced targeting ability and cellular uptake. Synthesis of the copolymers was confirmed by characterizing the chemical structure with 1 H nuclear magnetic resonance and Fourier Transform Infrared Spectroscopy (FTIR). The nanovector was biocompatible with cells and showed excellent capability for DNA condensation; the resulting complexes with DNA were well-formed, and possessed small particle size and reasonable positive charge. Higher gene transfection efficiency, compared to that achieved with PEI (25 kDa), was confirmed in tumor (HeLa cells) and normal cells (293T and NIH 3T3 cells). More importantly, the cells transfected with the chitosan-graft-PEI-PEG/pCMV-EGFP-Ntf3 complex produced sustained neurotrophin-3 with a linear increase in cumulative concentration, which induced neuronal differentiation of neural stem cell and promoted neurite outgrowth. These findings suggested that our multifunctional copolymers might be ideal nanovectors for engineering cells via gene transfection, and could potentially be applied in tumor therapy and regenerative medicine. We successfully prepared a multifunctional gene delivery nanovector containing branched PEI with a molecular weight of 2000 Da to balance between biocompatibility and transfection efficiency, and RGD/TAT peptides for enhanced targeting ability and cellular uptake. The well-formed CPPP/DNA complexes of small particle size and reasonable positive charges potentially enhanced gene transfection in both tumor and normal cells. More importantly, the CPPP/pCMV-EGFP-Ntf3 complex

  18. Antibody-dendrimer conjugates: the number, not the size of the dendrimers, determines the immunoreactivity.

    PubMed

    Wängler, C; Moldenhauer, G; Eisenhut, M; Haberkorn, U; Mier, W

    2008-04-01

    Radioimmunotherapy using antibodies with favorable tumor targeting properties and high binding affinity is increasingly applied in cancer therapy. The potential of this valuable cancer treatment modality could be further improved by increasing the specific activity of the labeled proteins. This can be done either by coupling a large number of chelators which leads to a decreased immunoreactivity or by conjugating a small number of multimeric chelators. In order to systematically investigate the influence of conjugations on immunoreactivity with respect to size and number of the conjugates, the anti-EGFR antibody hMAb425 was reacted with PAMAM dendrimers of different size containing up to 128 chelating agents per conjugation site. An improved dendrimer synthesis protocol was established to obtain compounds of high homogeneity suitable for the formation of defined protein conjugates. The quantitative derivatization of the PAMAM dendrimers with DOTA moieties and the characterization of the products by isotopic dilution titration using (111)In/(nat)In are shown. The DOTA-containing dendrimers were conjugated with high efficiency to hMAb425 by applying Sulfo-SMCC as cross-linking agent and a 10- to 25-fold excess of the thiol-containing dendrimers. The determination of the immunoreactivities of the antibody-dendrimer conjugates by FACS analysis revealed a median retained immunoreactivity of 62.3% for 1.7 derivatization sites per antibody molecule, 55.4% for 2.8, 27.9% for 5.3, and 17.1% for 10.0 derivatization sites per antibody but no significant differences in immunoreactivity for different dendrimer sizes. These results show that the dendrimer size does not influence the immunoreactivity of the derivatized antibody significantly over a wide molecular weight range, whereas the number of derivatization sites has a crucial effect.

  19. Effect of spatial variability of storm on the optimal placement of best management practices (BMPs).

    PubMed

    Chang, C L; Chiueh, P T; Lo, S L

    2007-12-01

    It is significant to design best management practices (BMPs) and determine the proper BMPs placement for the purpose that can not only satisfy the water quantity and water quality standard, but also lower the total cost of BMPs. The spatial rainfall variability can have much effect on its relative runoff and non-point source pollution (NPSP). Meantime, the optimal design and placement of BMPs would be different as well. The objective of this study was to discuss the relationship between the spatial variability of rainfall and the optimal BMPs placements. Three synthetic rainfall storms with varied spatial distributions, including uniform rainfall, downstream rainfall and upstream rainfall, were designed. WinVAST model was applied to predict runoff and NPSP. Additionally, detention pond and swale were selected for being structural BMPs. Scatter search was applied to find the optimal BMPs placement. The results show that mostly the total cost of BMPs is higher in downstream rainfall than in upstream rainfall or uniform rainfall. Moreover, the cost of detention pond is much higher than swale. Thus, even though detention pond has larger efficiency for lowering peak flow and pollutant exports, it is not always the determined set in each subbasin.

  20. Association of the anti-tuberculosis drug rifampicin with a PAMAM dendrimer.

    PubMed

    Bellini, Reinaldo G; Guimarães, Ana P; Pacheco, Marco A C; Dias, Douglas M; Furtado, Vanessa R; de Alencastro, Ricardo B; Horta, Bruno A C

    2015-07-01

    The association of the anti-tuberculosis drug rifampicin (RIF) with a 4th-generation poly(amidoamine) (G4-PAMAM) dendrimer was investigated by means of molecular dynamics simulations. The RIF load capacity was estimated to be around 20 RIF per G4-PAMAM at neutral pH. The complex formed by 20 RIF molecules and the dendrimer (RIF20-PAMAM) was subjected to 100 ns molecular dynamics (MD) simulations at two different pH conditions (neutral and acidic). The complex was found to be significantly more stable in the simulation at neutral pH compared to the simulation at low pH in which the RIF molecules were rapidly and almost simultaneously expelled to the solvent bulk. The high stability of the RIF-PAMAM complex under physiological pH and the rapid release of RIF molecules under acidic medium provide an interesting switch for drug targeting since the Mycobacterium resides within acidic domains of the macrophage. Altogether, these results suggest that, at least in terms of stability and pH-dependent release, PAMAM-like dendrimers may be considered suitable drug delivery systems for RIF and derivatives. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. HIV-1 Tat protein induces glial cell autophagy through enhancement of BAG3 protein levels.

    PubMed

    Bruno, Anna Paola; De Simone, Francesca Isabella; Iorio, Vittoria; De Marco, Margot; Khalili, Kamel; Sariyer, Ilker Kudret; Capunzo, Mario; Nori, Stefania Lucia; Rosati, Alessandra

    2014-01-01

    BAG3 protein has been described as an anti-apoptotic and pro-autophagic factor in several neoplastic and normal cells. We previously demonstrated that BAG3 expression is elevated upon HIV-1 infection of glial and T lymphocyte cells. Among HIV-1 proteins, Tat is highly involved in regulating host cell response to viral infection. Therefore, we investigated the possible role of Tat protein in modulating BAG3 protein levels and the autophagic process itself. In this report, we show that transfection with Tat raises BAG3 levels in glioblastoma cells. Moreover, BAG3 silencing results in highly reducing Tat- induced levels of LC3-II and increasing the appearance of sub G0/G1 apoptotic cells, in keeping with the reported role of BAG3 in modulating the autophagy/apoptosis balance. These results demonstrate for the first time that Tat protein is able to stimulate autophagy through increasing BAG3 levels in human glial cells.

  2. Inhibition of bacterial growth and intramniotic infection in a guinea pig model of chorioamnionitis using PAMAM dendrimers.

    PubMed

    Wang, Bing; Navath, Raghavendra S; Menjoge, Anupa R; Balakrishnan, Bindu; Bellair, Robert; Dai, Hui; Romero, Roberto; Kannan, Sujatha; Kannan, Rangaramanujam M

    2010-08-16

    Dendrimers have emerged as topical microbicides to treat vaginal infections. This study explores the in vitro, in vivo antimicrobial activity of PAMAM dendrimers, and the associated mechanism. Interestingly, topical cervical application of 500 microg of generation-4 neutral dendrimer (G(4)-PAMAM-OH) showed potential to treat the Escherichia coli induced ascending uterine infection in guinea pig model of chorioamnionitis. Amniotic fluid collected from different gestational sacs of infected guinea pigs posttreatment showed absence of E. coli growth in the cultures plated with it. The cytokine level [tumor necrosis factor (TNFalpha) and interleukin (IL-6 and IL-1beta)] in placenta of the G(4)-PAMAM-OH treated animals were comparable to those in healthy animals while these were notably high in infected animals. Since, antibacterial activity of amine-terminated PAMAM dendrimers is known, the activity of hydroxyl and carboxylic acid terminated PAMAM dendrimers was compared with it. Though the G(4)-PAMAM-NH(2) shows superior antibacterial activity, it was found to be cytotoxic to human cervical epithelial cell line above 10 microg/mL, while the G(4)-PAMAM-OH was non-cytotoxic up to 1mg/mL concentration. Cell integrity, outer (OM) and inner (IM) membrane permeabilization assays showed that G(4)-PAMAM-OH dendrimer efficiently changed the OM permeability, while G(4)-PAMAM-NH(2) and G(3.5)-PAMAM-COOH damaged both OM and IM causing the bacterial lysis. The possible antibacterial mechanism are G(4)-PAMAM-NH(2) acts as polycation binding to the polyanionic lipopolysaccharide in E. coli, the G(4)-PAMAM-OH forms hydrogen bonds with the hydrophilic O-antigens in E. coli membrane and the G(3.5)-PAMAM-COOH acts as a polyanion, chelating the divalent ions in outer cell membrane of E. coli. This is the first study which shows that G(4)-PAMAM-OH dendrimer acts as an antibacterial agent. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  3. An electrospun nanofiber matrix based on organo-clay for biosensors: PVA/PAMAM-Montmorillonite

    NASA Astrophysics Data System (ADS)

    Unal, Betul; Yalcinkaya, Esra Evrim; Demirkol, Dilek Odaci; Timur, Suna

    2018-06-01

    Diagnostic techniques based on biomolecules have huge a potential to be applied in the application in various areas such as food/beverage industries, diseases diagnostics, monitoring of bio-processes and environmental pollutants. Immobilization of biomolecules on a transducer is the key parameter to being able to prepare a highly stable diagnostic tests. Electrospun nanofibers are a good alternative to immobilize biomolecules. Here, electrospun nanofibers based on an organoclay were used to design the first generation amperometric enzyme biosensor. PAMAM G2 dendrimers were used to intercalate montmorillonite clay (Mt) and then the modification of Mt by PAMAM was characterized using FTIR, XRD, TGA and zeta potential measurements. After that nanofibers were prepared by electrospinning Mt and PAMAM-Mt using poly(vinyl) alcohol (PVA) as an auxiliary polymer and the formed PVA/PAMAM-Mt electrospun nanofibers were proved by SEM, TEM and AFM techniques. Finally, pyranose oxidases (PyOx) were immobilized on a glassy carbon electrode surface, which was modified using the PVA/PAMAM-Mt electrospun nanofibers. Amperometric measurements were carried out using buffer solution at -0.7 V under stirring conditions. The linear response for glucose was from 0.005 mM to 0.25 mM using PVA/Mt/PyOx and PVA/PAMAM-Mt/PyOx biosensors. The limit of detection was 0.7 μM glucose with PVA/PAMAM-Mt/PyOx biosensor. To detect glucose in real sample, measurements were carried out using soft drink cola as a substrate instead of glucose.

  4. Cationic PAMAM Dendrimers Aggressively Initiate Blood Clot Formation

    PubMed Central

    Jones, Clinton F.; Campbell, Robert A.; Brooks, Amanda E.; Assemi, Shoeleh; Tadjiki, Soheyl; Thiagarajan, Giridhar; Mulcock, Cheyanne; Weyrich, Andrew S.; Brooks, Benjamin D.; Ghandehari, Hamidreza; Grainger, David W.

    2012-01-01

    Poly(amidoamine) (PAMAM) dendrimers are increasingly studied as model nanoparticles for a variety of biomedical applications, notably in systemic administrations. However, with respect to blood contacting applications, amine-terminated dendrimers have recently been shown to activate platelets and cause a fatal, disseminated intravascular coagulation (DIC)-like condition in mice and rats. We here demonstrate that, upon addition to blood, cationic G7 PAMAM dendrimers induce fibrinogen aggregation, which may contribute to the in vivo DIC-like phenomenon. We demonstrate that amine-terminated dendrimers act directly on fibrinogen in a thrombin-independent manner to generate dense, high-molecular-weight fibrinogen aggregates with minimal fibrin fibril formation. In addition, we hypothesize this clot-like behavior is likely mediated through electrostatic interactions between the densely charged cationic dendrimer surface and negatively charged fibrinogen domains. Interestingly, cationic dendrimers also induced aggregation of albumin, suggesting that many negatively charged blood proteins may be affected by cationic dendrimers. To investigate this further, zebrafish embryos (ZFE) were employed to more specifically determine the speed of this phenomenon and the pathway- and dose-dependency of the resulting vascular occlusion phenotype. These novel findings show that G7 PAMAM dendrimers significantly and adversely impact many blood components to produce rapid coagulation and strongly suggest that these effects are independent of classic coagulation mechanisms. These results also strongly suggest the need to fully characterize amine-terminated PAMAM dendrimers in regards to their adverse effects on both coagulation and platelets, which may contribute to blood toxicity. PMID:23062017

  5. TAT peptide-based micelle system for potential active targeting of anti-cancer agents to acidic solid tumors.

    PubMed

    Sethuraman, Vijay A; Bae, You Han

    2007-04-02

    A novel drug targeting system for acidic solid tumors has been developed based on ultra pH-sensitive polymer and cell penetrating TAT. The delivery system consisted of two components: 1) A polymeric micelle that has a hydrophobic core made of poly(l-lactic acid) (PLLA) and a hydrophilic shell consisting of polyethylene glycol (PEG) conjugated to TAT (TAT micelle), 2) an ultra pH-sensitive diblock copolymer of poly(methacryloyl sulfadimethoxine) (PSD) and PEG (PSD-b-PEG). The anionic PSD is complexed with cationic TAT of the micelles to achieve the final carrier, which could systemically shield the micelles and expose them at slightly acidic tumor pH. TAT micelles had particle sizes between 20 and 45 nm and their critical micelle concentrations were 3.5 mg/l to 5.5 mg/l. The TAT micelles, upon mixing with pH-sensitive PSD-b-PEG, showed a slight increase in particle size between pH 8.0 and 6.8 (60-90 nm), indicating complexation. As the pH was decreased (pH 6.6 to 6.0) two populations were observed, one that of normal TAT micelles (45 nm) and the other of aggregated hydrophobic PSD-b-PEG. Zeta potential measurements showed similar trend substantiating the shielding/deshielding process. Flow cytometry and confocal microscopy showed significantly higher uptake of TAT micelles at pH 6.6 compared to pH 7.4 indicating shielding at normal pH and deshielding at tumor pH. The confocal microscopy indicated that the TAT not only translocates into the cells but is also seen on the surface of the nucleus. These results strongly indicate that the above micelles would be able to target any hydrophobic drug near the nucleus.

  6. Transepithelial Transport of PAMAM Dendrimers Across Isolated Human Intestinal Tissue.

    PubMed

    Hubbard, Dallin; Enda, Michael; Bond, Tanner; Moghaddam, Seyyed Pouya Hadipour; Conarton, Josh; Scaife, Courtney; Volckmann, Eric; Ghandehari, Hamidreza

    2015-11-02

    Poly(amido amine) (PAMAM) dendrimers have shown transepithelial transport across intestinal epithelial barrier in rats and across Caco-2 cell monolayers. Caco-2 models innately lack mucous barriers, and rat isolated intestinal tissue has been shown to overestimate human permeability. This study is the first report of transport of PAMAM dendrimers across isolated human intestinal epithelium. It was observed that FITC labeled G4-NH2 and G3.5-COOH PAMAM dendrimers at 1 mM concentration do not have a statistically higher permeability compared to free FITC controls in isolated human jejunum and colonic tissues. Mannitol permeability was increased at 10 mM concentrations of G3.5-COOH and G4-NH2 dendrimers. Significant histological changes in human colonic and jejunal tissues were observed at G3.5-COOH and G4-NH2 concentrations of 10 mM implying that dose limiting toxicity may occur at similar concentrations in vivo. The permeability through human isolated intestinal tissue in this study was compared to previous rat and Caco-2 permeability data. This study implicates that PAMAM dendrimer oral drug delivery may be feasible, but it may be limited to highly potent drugs.

  7. Interactions of PAMAM dendrimers with SDS at the solid-liquid interface.

    PubMed

    Arteta, Marianna Yanez; Eltes, Felix; Campbell, Richard A; Nylander, Tommy

    2013-05-14

    This work addresses structural and nonequilibrium effects of the interactions between well-defined cationic poly(amidoamine) PAMAM dendrimers of generations 4 and 8 and the anionic surfactant sodium dodecyl sulfate (SDS) at the hydrophilic silica-water interface. Neutron reflectometry and quartz crystal microbalance with dissipation monitoring were used to reveal the adsorption from premixed dendrimer/surfactant solutions as well as sequential addition of the surfactant to preadsorbed layers of dendrimers. PAMAM dendrimers of both generations adsorb to hydrophilic silica as a compact monolayer, and the adsorption is irreversible upon rinsing with salt solution. SDS adsorbs on the dendrimer layer and at low bulk concentrations causes the expansion of the dendrimer layers on the surface. When the bulk concentration of SDS is increased, the surfactant layer consists of aggregates or bilayer-like structures. The adsorption of surfactant is reversible upon rinsing, but slight changes of the structure of the preadsorbed PAMAM monolayer were observed. The adsorption from premixed solutions close to charge neutrality results in thick multilayers, but the surface excess is lower when the bulk complexes have a net negative charge. A critical examination of the pathway of adsorption for the interactions of SDS with preadsorbed PAMAM monolayers and premixed PAMAM/SDS solutions with hydrophilic silica revealed that nonequilibrium effects are important only in the latter case, and the application of a thermodynamic model to such experimental data would be inappropriate.

  8. PAMAM dendrimers and graphene: materials for removing aromatic contaminants from water.

    PubMed

    DeFever, Ryan S; Geitner, Nicholas K; Bhattacharya, Priyanka; Ding, Feng; Ke, Pu Chun; Sarupria, Sapna

    2015-04-07

    We present results from experiments and atomistic molecular dynamics simulations on the remediation of naphthalene by polyamidoamine (PAMAM) dendrimers and graphene oxide (GrO). Specifically, we investigate 3rd-6th generation (G3-G6) PAMAM dendrimers and GrO with different levels of oxidation. The work is motivated by the potential applications of these emerging nanomaterials in removing polycyclic aromatic hydrocarbon contaminants from water. Our experimental results indicate that GrO outperforms dendrimers in removing naphthalene from water. Molecular dynamics simulations suggest that the prominent factors driving naphthalene association to these seemingly disparate materials are similar. Interestingly, we find that cooperative interactions between the naphthalene molecules play a significant role in enhancing their association to the dendrimers and GrO. Our findings highlight that while selection of appropriate materials is important, the interactions between the contaminants themselves can also be important in governing the effectiveness of a given material. The combined use of experiments and molecular dynamics simulations allows us to comment on the possible factors resulting in better performance of GrO in removing polyaromatic contaminants from water.

  9. Mechanism of PAMAM Dendrimers Internalization in Hippocampal Neurons.

    PubMed

    Vidal, Felipe; Vásquez, Pilar; Díaz, Carola; Nova, Daniela; Alderete, Joel; Guzmán, Leonardo

    2016-10-03

    Polyamidoamine (PAMAM) dendrimers are hyperbranched macromolecules which have been described as one of the most promising drug nanocarrier systems. A key process to understand is their cellular internalization mechanism because of its direct influence on their intracellular distribution, association with organelles, entry kinetics, and cargo release. Despite that internalization mechanisms of dendrimers have been studied in different cell types, in the case of neurons they are not completely described. Considering the relevance of central nervous system (CNS) diseases and neuropharmacology, the aim of this report is to describe the molecular internalization mechanism of different PAMAM-based dendrimer systems in hippocampal neurons. Four dendrimers based on fourth generation PAMAM with different surface properties were studied: unmodified G4, with a positively charged surface; PP50, with a substitution of the 50% of amino surface groups with polyethylene glycol neutral groups; PAc, with a substitution of the 30% of amino surface groups with acrylate anionic groups; and PFO, decorated with folic acid groups in a 25% of total terminal groups. Confocal images show that both G4 and PFO are able to enter the neurons, but not PP50 and PAc. Colocalization study with specific endocytosis markers and specific endocytosis inhibitor assay demonstrate that clathrin-mediated endocytosis would be the main internalization mechanism for G4, whereas clathrin- and caveolae-mediated endocytosis would be implicated in PFO internalization. These results show the existence of different internalization mechanisms for PAMAM dendrimers in neurons and the possibility to control their internalization properties with specific chemical modifications.

  10. Synthesis and evaluation of a glutamic acid-modified hPAMAM complex as a promising versatile gene carrier.

    PubMed

    Hemmati, Mohammad; Kazemi, Bahram; Najafi, Farhood; Zarebkohan, Amir; Shirkoohi, Reza

    2016-01-01

    Hyperbranched poly(amidoamine) (HPAMAM), structurally analogous to polyamidoamine dendrimer (PAMAM) dendrimers, has been suggested to be an effective carrier for gene delivery. In the present study, glutamic acid-modified hPAMAM was developed as a novel non-viral gene carrier for the first time. The hPAMAM was synthesized by using a modified one-pot method. DNA was found to be bound to hPAMAM at different weight ratios (WhPAMAM/WDNA). The resulting HPAMAM-Glu20 was able to efficiently protect the encapsulated-DNA against degradation for over 2 h. In addition to low cytotoxicity, the transfection efficiency of hPAMAM-Glu20 represented much higher (p < 0.05) than that of Lipofectamine 2000 in both MCF7 and MDA-MB231 cells. Cellular uptake of the hPAMAM-Glu20 in MDA-MB231 cells, 173.56 ± 1.37%, was significantly higher than that of MCF7 cells, 65.00 ± 1.73% (p < 0.05). The results indicated that hPAMAM-Glu20-mediated gene delivery to breast cancer cells is a feasible and effective strategy that may provide a new therapeutic avenue as a non-viral gene delivery carrier. In addition, it was found that hPAMAM-glutamic amino acid (Glu)-based gene delivery is an economical, effective and biocompatible method.

  11. Hydroxyapatite-anchored dendrimer for in situ remineralization of human tooth enamel.

    PubMed

    Wu, Duo; Yang, Jiaojiao; Li, Jiyao; Chen, Liang; Tang, Bei; Chen, Xingyu; Wu, Wei; Li, Jianshu

    2013-07-01

    In situ remineralization of hydroxyapatite (HA) on human tooth enamel surface induced by organic matrices is of great interest in the fields of material science and stomatology. In order to mimic the organic matrices induced biomineralization process in developing enamel and enhance the binding strength at the remineralization interface, carboxyl-terminated poly(amido amine) (PAMAM-COOH)-alendronate (ALN) conjugate (ALN-PAMAM-COOH) was synthesized and characterized. PAMAM-COOH has a highly ordered architecture and is capable of promoting the HA crystallization process. ALN is conjugated on PAMAM-COOH due to its specific adsorption on HA (the main component of tooth enamel), resulting in increased binding strength which is tight enough to resist phosphate buffered saline (PBS) rinsing as compared with that of PAMAM-COOH alone. While incubated in artificial saliva, ALN-PAMAM-COOH could induce in situ remineralization of HA on acid-etched enamel, and the regenerated HA has the nanorod-like crystal structure similar to that of human tooth enamel. The hardness of acid-etched enamel samples treated by ALN-PAMAM-COOH can recover up to 95.5% of the original value with strong adhesion force. In vivo experiment also demonstrates that ALN-PAMAM-COOH is effective in repairing acid-etched enamel in the oral cavity. Overall, these results suggest that ALN-PAMAM-COOH is highly promising as a restorative biomaterial for in situ remineralization of human tooth enamel. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Eudragit S100-Coated Chitosan Nanoparticles Co-loading Tat for Enhanced Oral Colon Absorption of Insulin.

    PubMed

    Chen, Shuangxi; Guo, Feng; Deng, Tiantian; Zhu, Siqi; Liu, Wenyu; Zhong, Haijun; Yu, Hua; Luo, Rong; Deng, Zeyuan

    2017-05-01

    In order to improve oral absorption of insulin, especially the absorption at the colon, Eudragit S100® (ES)-coated chitosan nanoparticles loading insulin and a trans-activating transcriptional peptide (Tat) were employed as the vehicle. In vitro releases of insulin and Tat from ES-coated chitosan nanoparticles had a pH-dependant characteristic. A small amount of the contents was released from the coated nanoparticles at pH 1.2 simulated gastric fluid, while a fairly fast and complete release was observed in pH 7.4 medium. Caco-2 cell was used as the model of cellular transport and uptake studies. The results showed that the cellular transport and uptake of insulin for ES-coated chitosan nanoparticles co-loading insulin and Tat (ES-Tat-cNPs) were about 3-fold and 4-fold higher than those for the nanoparticles loading only insulin (ES-cNPs), respectively. The evaluations in vivo of ES-Tat-cNPs were conducted on diabetic rats and normal minipigs, respectively. The experimental results on rats revealed that the pharmacodynamical bioavailability of ES-Tat-cNPs had 2.16-fold increase compared with ES-cNPs. After oral administration of nanoparticle suspensions to the minipigs, insulin bioavailability of ES-Tat-cNPs was 1.73-fold higher than that of ES-cNPs, and the main absorption site of insulin was probably located in the colon for the two nanoparticles. In summary, this report provided an exploratory means for the improvement of oral absorption of insulin.

  13. Enhanced solubility and antioxidant activity of chlorogenic acid-chitosan conjugates due to the conjugation of chitosan with chlorogenic acid.

    PubMed

    Rui, Liyun; Xie, Minhao; Hu, Bing; Zhou, Li; Saeeduddin, Muhammad; Zeng, Xiaoxiong

    2017-08-15

    Chlorogenic acid-chitosan conjugate was synthesized by introducing of chlorogenic acid onto chitosan with the aid of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide and hydroxybenzotriazole. The data of UV-vis, FT-IR and NMR for chlorogenic acid-chitosan conjugates demonstrated the successful conjugation of chlorogenic acid with chitosan. Compared to chitosan, chlorogenic acid-chitosan conjugates exhibited increased solubility in distilled water, 1% acetic acid solution (v/v) or 50% ethanol solution (v/v) containing 0.5% acetic acid. Moreover, chlorogenic acid-chitosan conjugates showed dramatic enhancements in metal ion chelating activity, total antioxidant capacity, scavenging activities on 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulphonic acid) and superoxide radicals, inhibitory effects on lipid peroxidation and β-carotene-linoleic acid bleaching, and protective effect on H 2 O 2 -induced oxidative injury of PC12 cells. Particularly, chlorogenic acid-chitosan conjugate exhibited higher inhibitory effects on lipid peroxidation and β-carotene-linoleic acid bleaching than chlorogenic acid. The results suggested that chlorogenic acid-chitosan conjugates could serve as food supplements to enhance the function of foods in future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Gold Nanoparticle Conjugation Enhances the Antiacanthamoebic Effects of Chlorhexidine

    PubMed Central

    Aqeel, Yousuf; Siddiqui, Ruqaiyyah; Anwar, Ayaz; Shah, Muhammad Raza

    2015-01-01

    Acanthamoeba keratitis is a serious infection with blinding consequences and often associated with contact lens wear. Early diagnosis, followed by aggressive topical application of drugs, is a prerequisite in successful treatment, but even then prognosis remains poor. Several drugs have shown promise, including chlorhexidine gluconate; however, host cell toxicity at physiologically relevant concentrations remains a challenge. Nanoparticles, subcolloidal structures ranging in size from 10 to 100 nm, are effective drug carriers for enhancing drug potency. The overall aim of the present study was to determine whether conjugation with gold nanoparticles enhances the antiacanthamoebic potential of chlorhexidine. Gold-conjugated chlorhexidine nanoparticles were synthesized. Briefly, gold solution was mixed with chlorhexidine and reduced by adding sodium borohydride, resulting in an intense deep red color, indicative of colloidal gold-conjugated chlorhexidine nanoparticles. The synthesis was confirmed using UV-visible spectrophotometry that shows a plasmon resonance peak of 500 to 550 nm, indicative of gold nanoparticles. Further characterization using matrix-assisted laser desorption ionization-mass spectrometry showed a gold-conjugated chlorhexidine complex at m/z 699 ranging in size from 20 to 100 nm, as determined using atomic force microscopy. To determine the amoebicidal and amoebistatic effects, amoebae were incubated with gold-conjugated chlorhexidine nanoparticles. For controls, amoebae also were incubated with gold and silver nanoparticles alone, chlorhexidine alone, neomycin-conjugated nanoparticles, and neomycin alone. The findings showed that gold-conjugated chlorhexidine nanoparticles exhibited significant amoebicidal and amoebistatic effects at 5 μM. Amoebicidal effects were observed by parasite viability testing using a Trypan blue exclusion assay and flow-cytometric analysis using propidium iodide, while amoebistatic effects were observed using growth

  15. Intelligent tit-for-tat in the iterated prisoner's dilemma game

    NASA Astrophysics Data System (ADS)

    Baek, Seung Ki; Kim, Beom Jun

    2008-07-01

    We seek a route to the equilibrium where all the agents cooperate in the iterated prisoner’s dilemma game on a two-dimensional plane, focusing on the role of tit-for-tat strategy. When a time horizon, within which a strategy can recall the past, is one time step, an equilibrium can be achieved as cooperating strategies dominate the whole population via proliferation of tit-for-tat. Extending the time horizon, we filter out poor strategies by simplified replicator dynamics and observe a similar evolutionary pattern to reach the cooperating equilibrium. In particular, the rise of a modified tit-for-tat strategy plays a central role, which implies how a robust strategy is adopted when provided with an enhanced memory capacity.

  16. Molecules with enhanced electronic polarizabilities based on defect-like states in conjugated polymers

    NASA Technical Reports Server (NTRS)

    Beratan, David N. (Inventor)

    1991-01-01

    Highly conjugated organic polymers typically have large non-resonant electronic susceptibilities, which give the molecules unusual optical properties. To enhance these properties, defects are introduced into the polymer chain. Examples include light doping of the conjugated polymer and synthesis, conjugated polymers which incorporate either electron donating or accepting groups, and conjugated polymers which contain a photoexcitable species capable of reversibly transferring its electron to an acceptor. Such defects in the chain permit enhancement of the second hyperpolarizability by at least an order of magnitude.

  17. Endocytic Uptake, Transport and Macromolecular Interactions of Anionic PAMAM Dendrimers within Lung Tissue.

    PubMed

    Morris, Christopher J; Aljayyoussi, Ghaith; Mansour, Omar; Griffiths, Peter; Gumbleton, Mark

    2017-12-01

    Polyamidoamine (PAMAM) dendrimers are a promising class of nanocarrier with applications in both small and large molecule drug delivery. Here we report a comprehensive evaluation of the uptake and transport pathways that contribute to the lung disposition of dendrimers. Anionic PAMAM dendrimers and control dextran probes were applied to an isolated perfused rat lung (IPRL) model and lung epithelial monolayers. Endocytosis pathways were examined in primary alveolar epithelial cultures by confocal microscopy. Molecular interactions of dendrimers with protein and lipid lung fluid components were studied using small angle neutron scattering (SANS). Dendrimers were absorbed across the intact lung via a passive, size-dependent transport pathway at rates slower than dextrans of similar molecular sizes. SANS investigations of concentration-dependent PAMAM transport in the IPRL confirmed no aggregation of PAMAMs with either albumin or dipalmitoylphosphatidylcholine lung lining fluid components. Distinct endocytic compartments were identified within primary alveolar epithelial cells and their functionality in the rapid uptake of fluorescent dendrimers and model macromolecular probes was confirmed by co-localisation studies. PAMAM dendrimers display favourable lung biocompatibility but modest lung to blood absorption kinetics. These data support the investigation of dendrimer-based carriers for controlled-release drug delivery to the deep lung.

  18. In vitro and in vivo uptake studies of PAMAM G4.5 dendrimers in breast cancer.

    PubMed

    Oddone, Natalia; Lecot, Nicole; Fernández, Marcelo; Rodriguez-Haralambides, Alejandra; Cabral, Pablo; Cerecetto, Hugo; Benech, Juan Claudio

    2016-06-13

    Breast cancer is the second leading cause of cancer death worldwide. Nanotechnology approaches can overcome the side effects of chemotherapy as well as improve the efficacy of drugs. Dendrimers are nanometric size polymers which are suitable as drug delivery systems. To the best of our knowledge, studies on the application of PAMAM G4.5 (polyamidoamine half generation 4) dendrimers as potential drug delivery systems in breast cancer have not been reported. In this work we developed a PAMAM G4.5 dendrimer containing FITC (fluorescein isothiocyanate) dye to study their uptake by murine breast cancer cells and BALB/c mice breast tumors. We performed a reaction between FITC and PAMAM G4.5 dendrimers which were previously derivatized with piperazine (linker molecule), characterized them by (1)H NMR (proton nuclear magnetic resonance) spectroscopy and MALDI-TOF (matrix-assisted laser desorption/ionization- time-of-flight) mass spectrometry. The experimental data indicated that 2 FITC molecules could be bound covalently at the PAMAM G4.5 dendrimer surface, with 17 FITC molecules probably occluded in PAMAM dendrimers cavity. PAMAM-FITC dendrimer (PAMAM G4.5-piperazinyl-FITC dendrimer) size distribution was evaluated by DLS (dynamic light scattering) and TEM (transmission electron microscopy). The nanoparticle hydrodynamic size was 96.3 ± 1.4 nm with a PdI (polydispersion index) of 0.0296 ± 0.0171, and the size distribution measured by TEM was 44.2 ± 9.2 nm. PAMAM-FITC dendrimers were neither cytotoxic in 4T1 cells nor hemolytic up to 24 h of incubation. In addition, they were uptaken in vitro by 4T1 cells and in vivo by BALB/c mice breast tumors. PAMAM G4.5-piperazinyl-FITC dendrimer intracellular distribution was observed through histologic analysis of the tumor by laser confocal microscopy. These results indicate that PAMAM G4.5 dendrimers enter tumor tissue cells, being good candidates to be used as antitumor drug delivery systems for breast cancer treatment

  19. Polyamidoamine dendrimers as novel potential absorption enhancers for improving the small intestinal absorption of poorly absorbable drugs in rats.

    PubMed

    Lin, Yulian; Fujimori, Takeo; Kawaguchi, Naoko; Tsujimoto, Yuiko; Nishimi, Mariko; Dong, Zhengqi; Katsumi, Hidemasa; Sakane, Toshiyasu; Yamamoto, Akira

    2011-01-05

    Effects of polyamidoamine (PAMAM) dendrimers on the intestinal absorption of poorly absorbable drugs were examined by an in situ closed loop method in rats. 5(6)-Carboxyfluorescein (CF), fluorescein isothiocyanate-dextrans (FDs) with various molecular weights, calcitonin and insulin were used as model drugs of poorly absorbable drugs. The absorption of CF, FD4 and calcitonin from the rat small intestine was significantly enhanced in the presence of PAMAM dendrimers. The absorption-enhancing effects of PAMAM dendrimers for improving the small intestinal absorption of CF were concentration and generation dependent and a maximal absorption-enhancing effect was observed in the presence of 0.5% (w/v) G2 PAMAM dendrimer. However, G2 PAMAM dendrimer had almost no absorption-enhancing effect on the small intestinal absorption of macromolecular drugs including FD10 and insulin. Overall, the absorption-enhancing effects of G2 PAMAM dendrimer in the small intestine decreased as the molecular weights of drug increased. However, G2 PAMAM dendrimer did not enhance the intestinal absorption of these drugs with different molecular weights in the large intestine. Furthermore, we evaluated the intestinal membrane damage with or without G2 PAMAM dendrimer. G2 PAMAM dendrimer (0.5% (w/v)) significantly increased the activities of lactate dehydrogenase (LDH) and the amounts of protein released from the intestinal membranes, but the activities and amounts of these toxic markers were less than those in the presence of 3% Triton X-100 used as a positive control. Moreover, G2 PAMAM dendrimer at concentrations of 0.05% (w/v) and 0.1% (w/v) did not increase the activities and amounts of these toxic markers. These findings suggested that PAMAM dendrimers at lower concentrations might be potential and safe absorption enhancers for improving absorption of poorly absorbable drugs from the small intestine. Copyright © 2010 Elsevier B.V. All rights reserved.

  20. PAMAM dendrimers and graphene: Materials for removing aromatic contaminants from water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeFever, Ryan S.; Geitner, Nicholas K.; Bhattacharya, Priyanka

    2015-04-07

    We present results from experiments and atomistic molecular dynamics simulations on the association of naphthalene with polyamidoamine (PAMAM) dendrimers and graphene oxide (GrO). Specifically, we investigate 3rd-6th generation (G3-G6) PAMAM dendrimers and GrO with different levels of oxidation. The work is motivated by the potential applications of these materials in removing polycyclic aromatic hydrocarbon contaminants from water. Our experimental results indicate that graphene oxide outperforms dendrimers in removing naphthalene from water. Molecular dynamics simulations suggest that the prominent factors driving naphthalene association to these seemingly disparate materials are similar. Interestingly, we find that cooperative interactions between the naphthalene molecules playmore » a significant role in enhancing their association to the dendrimers and graphene oxide. Our findings highlight that while selection of appropriate materials is important, the interactions between the contaminants themselves can also be important in governing the effectiveness of a given material. The combined use of experiments and molecular dynamics simulations allows us to comment on the possible factors resulting in better performance of graphene oxide in removing naphthalene from water.« less

  1. The influence of PAMAM dendrimers surface groups on their interaction with porcine pepsin.

    PubMed

    Ciolkowski, Michal; Rozanek, Monika; Bryszewska, Maria; Klajnert, Barbara

    2013-10-01

    In this study the ability of three polyamidoamine (PAMAM) dendrimers with different surface charge (positive, neutral and negative) to interact with a negatively charged protein (porcine pepsin) was examined. It was shown that the dendrimer with a positively charged surface (G4 PAMAM-NH2), as well as the dendrimer with a neutral surface (G4 PAMAM-OH), were able to inhibit enzymatic activity of pepsin. It was also found that these dendrimers act as mixed partially non-competitive pepsin inhibitors. The negatively charged dendrimer (G3.5 PAMAM-COOH) was not able to inhibit the enzymatic activity of pepsin, probably due to the electrostatic repulsion between this dendrimer and the protein. No correlation between changes in enzymatic activity of pepsin and alterations in CD spectrum of the protein was observed. It indicates that the interactions between dendrimers and porcine pepsin are complex, multidirectional and not dependent only on disturbances of the secondary structure. © 2013.

  2. HIV-1 Tat reduces nephrin in human podocytes: a potential mechanism for enhanced glomerular permeability in HIV-associated nephropathy.

    PubMed

    Doublier, Sophie; Zennaro, Cristina; Spatola, Tiziana; Lupia, Enrico; Bottelli, Antonella; Deregibus, Maria Chiara; Carraro, Michele; Conaldi, Pier Giulio; Camussi, Giovanni

    2007-02-19

    To determine whether HIV-1 Tat may directly alter glomerular permeability in HIV-associated nephropathy (HIVAN). Heavy proteinuria is a hallmark of HIVAN. The slit diaphragm is the ultimate glomerular filtration barrier critical for maintaining the efficiency of the ultrafiltration unit of the kidney. In this study, we evaluated the direct effect of Tat protein on the permeability of isolated glomeruli and on the expression of nephrin, the main slit diaphragm component, by human cultured podocytes. Permeability was studied by measuring the permeability to albumin in isolated rat glomeruli. We also evaluated the expression of nephrin in human cultured podocytes by using immunofluorescence and Western blot. We found that Tat increased albumin permeability in isolated glomeruli, and rapidly induced the redistribution and loss of nephrin in cultured podocytes. Pretreatment of glomeruli and podocytes with blocking antibodies showed that Tat reduced nephrin expression by engaging vascular endothelial growth factor receptors types 2 and 3 and the integrin alphavbeta3. Pre-incubation of podocytes with two platelet-activating factor (PAF) receptor antagonists prevented the loss and redistribution of nephrin induced by Tat, suggesting that PAF is an intracellular mediator of Tat action. Tat induced a rapid PAF synthesis by podocytes. When podocytes transfected to overexpress PAF-acetylhydrolase, the main catabolic enzyme of PAF, were stimulated with Tat, the redistribution and loss of nephrin was abrogated. The present results define a mechanism by which Tat may reduce nephrin expression in podocytes, thus increasing glomerular permeability. This provides new insights in the understanding of HIVAN pathogenesis.

  3. Biofunctionalization of PAMAM-montmorillonite decorated poly (Ɛ-caprolactone)-chitosan electrospun nanofibers for cell adhesion and electrochemical cytosensing.

    PubMed

    Kirbay, Fatma Ozturk; Yalcinkaya, Esra Evrim; Atik, Gozde; Evren, Gizem; Unal, Betul; Demirkol, Dilek Odaci; Timur, Suna

    2018-06-30

    The construction and biofunctionalization of the poly (Ɛ-caprolactone) (PCL)-chitosan (CHIT) nanofibrous mats, which included Polyamidoamine (PAMAM) dendrimer modified montmorillonite (Mt), for the cell adhesion and electrochemical cytosensing were accomplished in this report. After the intercalation of the PAMAM generation zero dendrimer into the Mt, PAMAM-Mt decorated PCL-CHIT electrospun nanofibers were formed. The addition of PAMAM caused the decrease of contact angle of PCL-CHIT nanofibers. The covalent immobilization of a tripeptide namely Arginylglycylaspartate (RGD) on both the PCL-CHIT/Mt and PCL-CHIT/PAMAM-Mt surface was carried out. U87-MG and HaCaT (negative control) cell lines were incubated on the PCL-CHIT/Mt/RGD and PCL-CHIT/PAMAM-Mt/RGD. The proliferation studies and imaging of the cells were carried out on these fibers. Finally, electrochemical measurements were performed after each modification step by differential pulse/cyclic voltammetry and electrochemical impedance spectroscopy. U87-MG cells were grown better than HaCaT cells on the PCL-CHIT/PAMAM-Mt/RGD surfaces. To the best of our knowledge, there is no study that developed electrochemical cytosensor using electrospun nanofibers as a cell adhesion platform. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. In vitro evaluation of dendrimer prodrugs for oral drug delivery.

    PubMed

    Najlah, Mohammad; Freeman, Sally; Attwood, David; D'Emanuele, Antony

    2007-05-04

    Dendrimer-based prodrugs were used to enhance the transepithelial permeability of naproxen, a low solubility model drug. The stability of the dendrimer-naproxen link was assessed. Naproxen was conjugated to G0 polyamidoamine (PAMAM) dendrimers either by an amide bond or an ester bond. The stability of G0 prodrugs was evaluated in 80% human plasma and 50% rat liver homogenate. The cytotoxicity of conjugates towards Caco-2 cells was determined and the transport of the conjugates across Caco-2 monolayers (37 degrees C) was reported. In addition, one lauroyl chain (L) was attached to the surface group of G0 PAMAM dendrimer of the diethylene glycol ester conjugate (G0-deg-NAP) to enhance permeability. The lactic ester conjugate, G0-lact-NAP, hydrolyzed slowly in 80% human plasma and in 50% rat liver homogenate (t(1/2)=180 min). G0-deg-NAP was hydrolyzed more rapidly in 80% human plasma (t(1/2)=51 min) and was rapidly cleaved in 50% liver homogenate (t(1/2)=4.7 min). The conjugates were non-toxic when exposed to Caco-2 cells for 3h. Permeability studies showed a significant enhancement in the transport of naproxen when conjugated to dendrimers; L-G0-deg-NAP yielding the highest permeability. Dendrimer-based prodrugs with appropriate linkers have potential as carriers for the oral delivery of low solubility drugs such as naproxen.

  5. Comparative toxicological assessment of PAMAM and thiophosphoryl dendrimers using embryonic zebrafish

    PubMed Central

    Pryor, Joseph B; Harper, Bryan J; Harper, Stacey L

    2014-01-01

    Dendrimers are well-defined, polymeric nanomaterials currently being investigated for biomedical applications such as medical imaging, gene therapy, and tissue targeted therapy. Initially, higher generation (size) dendrimers were of interest because of their drug carrying capacity. However, increased generation was associated with increased toxicity. The majority of studies exploring dendrimer toxicity have focused on a small range of materials using cell culture methods, with few studies investigating the toxicity across a wide range of materials in vivo. The objective of the present study was to investigate the role of surface charge and generation in dendrimer toxicity using embryonic zebrafish (Danio rerio) as a model vertebrate. Due to the generational and charge effects observed at the cellular level, higher generation cationic dendrimers were hypothesized to be more toxic than lower generation anionic or neutral dendrimers with the same core composition. Polyamidoamine (PAMAM) dendrimers elicited significant morbidity and mortality as generation was decreased. No significant adverse effects were observed from the suite of thiophosphoryl dendrimers studied. Exposure to ≥50 ppm cationic PAMAM dendrimers G3-amine, G4-amine, G5-amine, and G6-amine caused 100% mortality by 24 hours post-fertilization. Cationic PAMAM G6-amine at 250 ppm was found to be statistically more toxic than both neutral PAMAM G6-amidoethanol and anionic PAMAM G6-succinamic acid at the same concentration. The toxicity observed within the suite of varying dendrimers provides evidence that surface charge may be the best indicator of dendrimer toxicity. Dendrimer class and generation are other potential contributors to the toxicity of dendrimers. Further studies are required to better understand the relative role each plays in driving the toxicity of dendrimers. To the best of our knowledge, this is the first in vivo study to address such a broad range of dendrimers. PMID:24790436

  6. FRAMEWORK FOR PLACEMENT OF BMPS IN URBAN WATERSHEDS

    EPA Science Inventory

    A number of stormwater control strategies, commonly known as best management practices (BMPs), are used to mitigate runoff volumes and associated nonpoint source pollution due to wet-weather flows (WWFs). BMP types include ponds, bioretention facilities, infiltration trenches, g...

  7. In vitro assessment of TAT — Ciliary Neurotrophic Factor therapeutic potential for peripheral nerve regeneration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barbon, Silvia, E-mail: silvia.barbon@yahoo.it

    In regenerative neurobiology, Ciliary Neurotrophic Factor (CNTF) is raising high interest as a multifunctional neurocytokine, playing a key role in the regeneration of injured peripheral nerves. Despite its promising trophic and regulatory activity, its clinical application is limited by the onset of severe side effects, due to the lack of efficient intracellular trafficking after administration. In this study, recombinant CNTF linked to the transactivator transduction domain (TAT) was investigated in vitro and found to be an optimized fusion protein which preserves neurotrophic activity, besides enhancing cellular uptake for therapeutic advantage. Moreover, a compelling protein delivery method was defined, in themore » future perspective of improving nerve regeneration strategies. Following determination of TAT-CNTF molecular weight and concentration, its specific effect on neural SH-SY5Y and PC12 cultures was assessed. Cell proliferation assay demonstrated that the fusion protein triggers PC12 cell growth within 6 h of stimulation. At the same time, the activation of signal transduction pathway and enhancement of cellular trafficking were found to be accomplished in both neural cell lines after specific treatment with TAT-CNTF. Finally, the recombinant growth factor was successfully loaded on oxidized polyvinyl alcohol (PVA) scaffolds, and more efficiently released when polymer oxidation rate increased. Taken together, our results highlight that the TAT domain addiction to the protein sequence preserves CNTF specific neurotrophic activity in vitro, besides improving cellular uptake. Moreover, oxidized PVA could represent an ideal biomaterial for the development of nerve conduits loaded with the fusion protein to be delivered to the site of nerve injury. - Highlights: • TAT-CNTF is an optimized fusion protein that preserves neurotrophic activity. • In neural cell lines, TAT-CNTF triggers the activation of signal transduction. • Fast cellular uptake of TAT

  8. TAT [Training and Technology.

    ERIC Educational Resources Information Center

    Oak Ridge Associated Universities, TN. Manpower Development Div.

    The Oak Ridge Associated Universities (ORAU) of Tennessee and the Nuclear Division of the Union Carbide Corporation established an industrial training program called Training and Technology (TAT) which was conducted at the Oak Ridge Y-12 plant. TAT instructors were provided by the regular work force of Union Carbide while ORAU provided the…

  9. Biomedical Applications of Organometal-Peptide Conjugates

    NASA Astrophysics Data System (ADS)

    Metzler-Nolte, Nils

    Peptides are well suited as targeting vectors for the directed delivery of metal-based drugs or probes for biomedical investigations. This chapter describes synthetic strategies for the preparation of conjugates of medically interesting peptides with covalently bound metal complexes. Peptides that were used include neuropeptides (enkephalin, neuropeptide Y, neurotensin), uptake peptides (TAT and poly-Arg), and intracellular localization sequences. To these peptides, a whole variety of transition metal complexes has been attached in recent years by solid-phase peptide synthesis (SPPS) techniques. The metal complex can be attached to the peptide on the resin as part of the SPPS scheme. Alternatively, the metal complex may be attached to the peptide as a postsynthetic modification. Advantages as well as disadvantages for either strategy are discussed. Biomedical applications include radiopharmaceutical applications, anticancer and antibacterial activity, metal-peptide conjugates as targeted CO-releasing molecules, and metal-peptide conjugates in biosensor applications.

  10. Conjugated Polymer with Intrinsic Alkyne Units for Synergistically Enhanced Raman Imaging in Living Cells.

    PubMed

    Li, Shengliang; Chen, Tao; Wang, Yunxia; Liu, Libing; Lv, Fengting; Li, Zhiliang; Huang, Yanyi; Schanze, Kirk S; Wang, Shu

    2017-10-16

    Development of Raman-active materials with enhanced and distinctive Raman vibrations in the Raman-silent region (1800-2800 cm -1 ) is highly required for specific molecular imaging of living cells with high spatial resolution. Herein, water-soluble cationic conjugated polymers (CCPs), poly(phenylene ethynylene) (PPE) derivatives, are explored for use as alkyne-state-dependent Raman probes for living cell imaging due to synergetic enhancement effect of alkyne vibrations in Raman-silent region compared to alkyne-containing small molecules. The enhanced alkyne signals result from the integration of alkyne groups into the rigid backbone and the delocalized π-conjugated structure. PPE-based conjugated polymer nanoparticles (CPNs) were also prepared as Raman-responsive nanomaterials for distinct imaging application. This work opens a new way into the development of conjugated polymer materials for enhanced Raman imaging. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Brain-Eating Amoebae: Silver Nanoparticle Conjugation Enhanced Efficacy of Anti-Amoebic Drugs against Naegleria fowleri.

    PubMed

    Rajendran, Kavitha; Anwar, Ayaz; Khan, Naveed Ahmed; Siddiqui, Ruqaiyyah

    2017-12-20

    The overall aim of this study was to determine whether conjugation with silver nanoparticles enhances effects of available drugs against primary amoebic meningoencephalitis due to Naegleria fowleri. Amphotericin B, Nystatin, and Fluconazole were conjugated with silver nanoparticles, and synthesis was confirmed using UV-visible spectrophotometry. Atomic force microscopy determined their size in range of 20-100 nm. To determine amoebicidal effects, N. fowleri were incubated with drugs-conjugated silver nanoparticles, silver nanoparticles alone, and drugs alone. The findings revealed that silver nanoparticles conjugation significantly enhanced antiamoebic effects of Nystatin and Amphotericin B but not Fluconazole at micromolar concentrations, compared with the drugs alone. For the first time, our findings showed that silver nanoparticle conjugation enhances efficacy of antiamoebic drugs against N. fowleri. Given the rarity of the disease and challenges in developing new drugs, it is hoped that modifying existing drugs to enhance their antiamoebic effects is a useful avenue that holds promise in improving the treatment of brain-eating amoebae infection due to N. fowleri.

  12. Polyamidoamine Dendrimers for Enhanced Solubility of Small Molecules and Other Desirable Properties for Site Specific Delivery: Insights from Experimental and Computational Studies.

    PubMed

    Shadrack, Daniel M; Swai, Hulda S; Munissi, Joan J E; Mubofu, Egid B; Nyandoro, Stephen S

    2018-06-12

    Clinical applications of many small molecules are limited due to poor solubility and lack of controlled release besides lack of other desirable properties. Experimental and computational studies have reported on the therapeutic potential of polyamidoamine (PAMAM) dendrimers as solubility enhancers in pre-clinical and clinical settings. Besides formulation strategies, factors such as pH, PAMAM dendrimer generation, PAMAM dendrimer concentration, nature of the PAMAM core, special ligand and surface modifications of PAMAM dendrimer have an influence on drug solubility and other recommendable pharmacological properties. This review, therefore, compiles the recently reported applications of PAMAM dendrimers in pre-clinical and clinical uses as enhancers of solubility and other desirable properties such as sustained and controlled release, bioavailability, bio-distribution, toxicity reduction or enhancement, and targeted delivery of small molecules with emphasis on cancer treatment.

  13. HIV-1 Tat binds to SH3 domains: cellular and viral outcome of Tat/Grb2 interaction

    PubMed Central

    Rom, Slava; Pacifici, Marco; Passiatore, Giovanni; Aprea, Susanna; Waligorska, Agnieszka; Valle, Luis Del; Peruzzi, Francesca

    2011-01-01

    The Src-homology 3 (SH3) domain is one of the most frequent protein recognition modules (PRMs), being represented in signal transduction pathways and in several pathologies such as cancer and AIDS. Grb2 (growth factor receptor-bound protein 2) is an adaptor protein that contains two SH3 domains and is involved in receptor tyrosine kinase (RTK) signal transduction pathways. The HIV-1 transactivator factor Tat is required for viral replication and it has been shown to bind directly or indirectly to several host proteins, deregulating their functions. In this study, we show interaction between the cellular factor Grb2 and the HIV-1 trans-activating protein Tat. The binding is mediated by the proline-rich sequence of Tat and the SH3 domain of Grb2. As the adaptor protein Grb2 participates in a wide variety of signaling pathways, we characterized at least one of the possible downstream effects of the Tat/Grb2 interaction on the well-known IGF-1R/Raf/MAPK cascade. We show that the binding of Tat to Grb2 impairs activation of the Raf/MAPK pathway, while potentiating the PKA/Raf inhibitory pathway. The Tat/Grb2 interaction affects also viral function by inhibiting the Tat-mediated transactivation of HIV-1 LTR and viral replication in infected primary microglia. PMID:21745501

  14. Effect of anionic and cationic polyamidoamine (PAMAM) dendrimers on a model lipid membrane.

    PubMed

    Lombardo, Domenico; Calandra, Pietro; Bellocco, Ersilia; Laganà, Giuseppina; Barreca, Davide; Magazù, Salvatore; Wanderlingh, Ulderico; Kiselev, Mikhail A

    2016-11-01

    In spite of the growing variety of biological applications of dendrimer-based nanocarriers, a major problem of their potential applications in bio-medicine is related to the disruption of lipid bilayers and the cytotoxicity caused by the aggregation processes involved onto cellular membranes. With the aim to study model dendrimer-biomembrane interaction, the self-assembly processes of a mixture of charged polyamidoamine (PAMAM) dendrimers and dipalmitoylphosphatidylcholine (DPPC) lipids were investigated by means of Zeta potential analysis, Raman and x-ray scattering. Zwitterionic DPPC liposomes showed substantially different behaviors during their interaction with negatively charged (generation G=2.5) sodium carboxylate terminated (COO - Na + ) dendrimers or positively charged (generation G=3.0) amino terminated (-NH 2 ) dendrimers. More specifically the obtained results evidence the sensitive interactions between dendrimer terminals and lipid molecules at the surface of the liposome, with an enhancement of the liposome surface zeta potential, as well as in the hydrophobic region of the bilayers, where dendrimer penetration produce a perturbation of the hydrophobic alkyl chains of the bilayers. Analysis of the SAXS structure factor with a suitable model for the inter-dendrimers electrostatic potential allows an estimation of an effective charge of 15 ǀeǀ for G=2.5 and 7.6 ǀeǀ for G=3.0 PAMAM dendrimers. Only a fraction (about 1/7) of this charge contributes to the linear increase of liposome zeta-potential with increasing PAMAM/DPPC molar fraction. The findings of our investigation may be applied to rationalize the effect of the nanoparticles electrostatic interaction in solution environments for the design of new drug carriers combining dendrimeric and liposomal technology. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. TAT peptide-based micelle system for potential active targeting of anti-cancer agents to acidic solid tumors

    PubMed Central

    Sethuraman, Vijay A; Bae, You Han

    2007-01-01

    A novel drug targeting system for acidic solid tumors has been developed based on ultra pH sensitive polymer and cell penetrating TAT. The delivery system consisted of two components: 1) A polymeric micelle that has a hydrophobic core made of Poly(L-lactic acid) (PLLA) and a hydrophilic shell consisting of Polyethylene Glycol (PEG) conjugated to TAT (TATmicelle), 2) An ultra pH sensitive diblock copolymer of poly(methacryloyl sulfadimethoxine) (PSD) and PEG (PSD-b-PEG). The anionic PSD is complexed with cationic TAT of the micelles to achieve the final carrier, which could systemically shield the micelles and expose them at slightly acidic tumor pH. TATmicelles had particle sizes between 20 to 45 nm and their critical micelle concentrations were 3.5 mg/L to 5.5 mg/L. The TATmicelles, upon mixing with pH sensitive PSD-b-PEG, showed slight increase in particle size between pH 8.0 and 6.8 (60–90 nm), indicating complexation. As the pH was decreased (pH 6.6 to 6.0) two populations were observed, one that of normal TAT micelles (45 nm) and the other of aggregated hydrophobic PSD-b-PEG. Zeta potential measurements showed similar trend substantiating the shielding/deshielding process. Flowcytometry and confocal microscopy showed significantly higher uptake of TAT micelles at pH 6.6 compared to pH 7.4 indicating shielding at normal pH and deshielding at tumor pH. The flowcytometry indicated that the TAT not only translocates into the cells but is also seen on the surface of the nucleus. These results strongly indicate that the above drug loaded micelles would be able to target any hydrophobic drug near the nucleus. PMID:17239466

  16. Didehydro-Cortistatin A inhibits HIV-1 Tat mediated neuroinflammation and prevents potentiation of cocaine reward in Tat transgenic mice

    PubMed Central

    Mediouni, Sonia; Jablonski, Joseph; Paris, Jason J.; Clementz, Mark A.; Thenin-Houssier, Suzie; McLaughlin, Jay P.; Valente, Susana T.

    2015-01-01

    HIV-1 Tat protein has been shown to have a crucial role in HIV-1-associated neurocognitive disorders (HAND), which includes a group of syndromes ranging from undetectable neurocognitive impairment to dementia. The abuse of psychostimulants, such as cocaine, by HIV infected individuals, may accelerate and intensify neurological damage. On the other hand, exposure to Tat potentiates cocaine-mediated reward mechanisms, which further promotes HAND. Here, we show that didehydro-Cortistatin A (dCA), an analog of a natural steroidal alkaloid, crosses the blood-brain barrier, cross-neutralizes Tat activity from several HIV-1 clades and decreases Tat uptake by glial cell lines. In addition, dCA potently inhibits Tat mediated dysregulation of IL-1β, TNF-α and MCP-1, key neuroinflammatory signaling proteins. Importantly, using a mouse model where doxycycline induces Tat expression, we demonstrate that dCA reverses the potentiation of cocaine-mediated reward. Our results suggest that adding a Tat inhibitor, such as dCA, to current antiretroviral therapy may reduce HIV-1-related neuropathogenesis. PMID:25613133

  17. Gold nano particle decorated graphene core first generation PAMAM dendrimer for label free electrochemical DNA hybridization sensing.

    PubMed

    Jayakumar, K; Rajesh, R; Dharuman, V; Venkatasan, R; Hahn, J H; Pandian, S Karutha

    2012-01-15

    A novel first generation (G1) poly(amidoamine) dendrimer (PAMAM) with graphene core (GG1PAMAM) was synthesized for the first time. Single layer of GG1PAMAM was immobilized covalently on mercaptopropionic acid (MPA) monolayer on Au transducer. This allows cost effective and easy deposition of single layer graphene on the Au transducer surface than the advanced vacuum techniques used in the literature. Au nano particles (17.5 nm) then decorated the GG1PAMAM and used for electrochemical DNA hybridization sensing. The sensor discriminates selectively and sensitively the complementary double stranded DNA (dsDNA, hybridized), non-complementary DNA (ssDNA, un-hybridized) and single nucleotide polymorphism (SNP) surfaces. Interactions of the MPA, GG1PAMAM and the Au nano particles were characterized by Ultra Violet (UV), Fourier Transform Infrared (FTIR), Raman spectroscopy (RS), Thermo gravimetric analysis (TGA), Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), Cyclic Voltmetric (CV), Impedance spectroscopy (IS) and Differntial Pulse Voltammetry (DPV) techniques. The sensor showed linear range 1×10(-6) to 1×10(-12) M with lowest detection limit 1 pM which is 1000 times lower than G1PAMAM without graphene core. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Evaluation of erosion control BMPs on ditched haul road stream crossing approaches following reconstruction

    Treesearch

    A.J. Lang; W.M. Aust; M.C. Bolding; E.B. Schilling

    2016-01-01

    Ditched forest roads leading to stream crossings and used for log transportation have recently been a topic of water quality concern and legal controversy. Best management practices (BMPs) can reduce potential water quality issues, yet few research studies have quantified BMP costs and reductions in sediment from implementing specific ditch BMPs. Researchers...

  19. Enhanced Induction of T Cell Immunity Using Dendritic Cells Pulsed with HIV Tat and HCMV-pp65 Fusion Protein In Vitro

    PubMed Central

    Park, Jung-Sun; Park, Soo-Young; Cho, Hyun-Il; Sohn, Hyun-Jung

    2011-01-01

    Background Cytotoxic T lymphocytes (CTLs) appear to play an important role in the control and prevention of human cytomegalovirus (HCMV) infection. The pp65 antigen is a structural protein, which has been defined as a potential target for effective immunity against HCMV infection. Incorporation of an 11 amino acid region of the HIV TAT protein transduction domain (Tat) into protein facilitates rapid, efficient entry into cells. Methods To establish a strategy for the generation of HCMV-specific CTLs in vitro, recombinant truncated N- and C-terminal pp65 protein (pp65 N&C) and N- and C-terminal pp65 protein fused with Tat (Tat/pp65 N&C) was produced in E.coli system. Peripheral blood mononuclear cells were stimulated with dendritic cells (DCs) pulsed with pp65 N&C or Tat/pp65 N&C protein and immune responses induced was examined using IFN-γ ELISPOT assay, cytotoxicity assay and tetramer staining. Results DCs pulsed with Tat/pp65N&C protein could induce higher T-cell responses in vitro compared with pp65N&C. Moreover, the DCs pulsed with Tat/pp65 N&C could stimulate both of CD8+ and CD4+ T-cell responses. The T cells induced by DCs pulsed with Tat/pp65 N&C showed higher cytotoxicity than that of pp65-pulsed DCs against autologous lymphoblastoid B-cell line (LCL) expressing the HCMV-pp65 antigen. Conclusion Our results suggest that DCs pulsed with Tat/pp65 N&C protein effectively induced pp65-specific CTL in vitro. Tat fusion recombinant protein may be useful for the development of adoptive T-cell immunotherapy and DC-based vaccines. PMID:21860612

  20. DFT investigation of the interaction of gold nanoclusters with poly(amidoamine) PAMAM G0 dendrimer

    NASA Astrophysics Data System (ADS)

    Camarada, M. B.

    2016-06-01

    The interaction between PAMAM G0 and gold nanoclusters Aun (n = 2, 4, 6, and 8) was studied theoretically at DFT level. Different coordination sites were explored, including internal and superficial coordination. All stable complexes exhibited external interaction with the amine or carbonyl site, while the core site coordination was not favored. The more stable binding of Aun was registered with the terminal amine group, while the binding at the amide site was relatively weaker. The vertical first ionization potential, electron affinity, Fermi level, and the HOMO-LUMO gap of PAMAM and Aun-PAMAM G0 complexes were also analyzed.

  1. Development and characterization of lysine-methotrexate conjugate for enhanced brain delivery.

    PubMed

    Singh, Vijay Kumar; Subudhi, Bharat Bhusan

    2016-09-01

    Methotrexate (MTX), an anticancer drug of choice, has poor permeability across blood-brain barrier (BBB) making it unsuitable for brain tumor application. Its brain availability and scope of application was improved by preparation of reversible conjugate with lysine by capitalizing the endogenous transport system of lysine at BBB. To enhance its delivery to brain, MTX was reversibly conjugated with l-Lysine by an amide linkage. It was characterized by advanced spectroscopy techniques including IR, NMR and MS. Furthermore, conjugate was assessed for stability, toxicity and drug release ability. In vivo distribution studies were done by radioscintigraphy study using 99m Tc radioisotope. The structure of prodrug was confirmed by 1 H-NMR, 13 C-NMR and Mass. The m/e (mass to charge ratio) fragment was found at [M + H] 711.32 in Mass spectra. Stability and metabolic studies suggested that conjugate was stable at physiological pH (in Phosphate buffer pH 7.4 t 1/2 is 70.25 ± 2.17 h and in plasma t 1/2 is 193.57 ± 2.03 min) and circulated adequately to release MTX slowly in brain. In vivo biodistribution study showed that prodrug significantly increased the level of MTX in brain when compared with pharmacokinetic parameter of parent drug. The brain permeability of MTX was enhanced significantly by this conjugate.

  2. Effectiveness and costs of overland skid trail BMPs

    Treesearch

    Clay Sawyers; W. Michael Aust; M. Chad Bolding; William A. Lakel III

    2012-01-01

    Forestry Best Management Practices (BMPs) are designed to protect water quality; however, little data exists comparing the efficacy and costs of different BMP options for skid trail closure. Study objectives were to evaluate erosion control effectiveness and implementation costs of five overland skid trail closure techniques. Closure techniques were: waterbar only (...

  3. Covalent immobilization of invertase on PAMAM-dendrimer modified superparamagnetic iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Uzun, K.; Çevik, E.; Şenel, M.; Sözeri, H.; Baykal, A.; Abasıyanık, M. F.; Toprak, M. S.

    2010-10-01

    In this study, polyamidoamine (PAMAM) dendrimer was synthesized on the surface of superparamagnetite nanoparticles to enhance invertase immobilization. The amount of immobilized enzyme on the surface-hyperbranched magnetite nanoparticle was up to 2.5 times (i.e., 250%) as much as that of magnetite nanoparticle modified with only amino silane. Maximum reaction rate ( V max) and Michaelis-Menten constant ( K m) were determined for the free and immobilized enzymes. Various characteristics of immobilized invertase such as; the temperature activity, thermal stability, operational stability, and storage stability were evaluated and results revealed that stability of the enzyme is improved upon immobilization.

  4. p-Hydroxy benzoic acid-conjugated dendrimer nanotherapeutics as potential carriers for targeted drug delivery to brain: an in vitro and in vivo evaluation

    NASA Astrophysics Data System (ADS)

    Swami, Rajan; Singh, Indu; Kulhari, Hitesh; Jeengar, Manish Kumar; Khan, Wahid; Sistla, Ramakrishna

    2015-06-01

    Dendrimers which are discrete nanostructures/nanoparticles are emerging as promising candidates for many nanomedicine applications. Ligand-conjugated dendrimer facilitate the delivery of therapeutics in a targeted manner. Small molecules such as p-hydroxyl benzoic acid (pHBA) were found to have high affinity for sigma receptors which are prominent in most parts of central nervous system and tumors. The aim of this study was to synthesize pHBA-dendrimer conjugates as colloidal carrier for site-specific delivery of practically water insoluble drug, docetaxel (DTX) to brain tumors and to determine its targeting efficiency. pHBA, a small molecule ligand was coupled to the surface amine groups of generation 4-PAMAM dendrimer via a carbodiimide reaction and loaded with DTX. The conjugation was confirmed by 1HNMR and FT-IR spectroscopy. In vitro release of drug from DTX-loaded pHBA-conjugated dendrimer was found to be less as compared to unconjugated dendrimers. The prepared drug delivery system exhibited good physico-chemical stability and decrease in hemolytic toxicity. Cell viability and cell uptake studies were performed against U87MG human glioblastoma cells and formulations exerted considerable anticancer effect than plain drug. Conjugation of dendrimer with pHBA significantly enhanced the brain uptake of DTX which was shown by the recovery of a higher percentage of the dose from the brain following administration of pHBA-conjugated dendrimers compared with unconjugated dendrimer or formulation in clinical use (Taxotere®). Therefore, pHBA conjugated dendrimers could be an efficient delivery vehicle for the targeting of anticancer drugs to brain tumors.

  5. Impact of Genetic Variations in HIV-1 Tat on LTR-Mediated Transcription via TAR RNA Interaction.

    PubMed

    Ronsard, Larance; Ganguli, Nilanjana; Singh, Vivek K; Mohankumar, Kumaravel; Rai, Tripti; Sridharan, Subhashree; Pajaniradje, Sankar; Kumar, Binod; Rai, Devesh; Chaudhuri, Suhnrita; Coumar, Mohane S; Ramachandran, Vishnampettai G; Banerjea, Akhil C

    2017-01-01

    HIV-1 evades host defense through mutations and recombination events, generating numerous variants in an infected patient. These variants with an undiminished virulence can multiply rapidly in order to progress to AIDS. One of the targets to intervene in HIV-1 replication is the trans -activator of transcription (Tat), a major regulatory protein that transactivates the long terminal repeat promoter through its interaction with trans -activation response (TAR) RNA. In this study, HIV-1 infected patients ( n = 120) from North India revealed Ser46Phe (20%) and Ser61Arg (2%) mutations in the Tat variants with a strong interaction toward TAR leading to enhanced transactivation activities. Molecular dynamics simulation data verified that the variants with this mutation had a higher binding affinity for TAR than both the wild-type Tat and other variants that lacked Ser46Phe and Ser61Arg. Other mutations in Tat conferred varying affinities for TAR interaction leading to differential transactivation abilities. This is the first report from North India with a clinical validation of CD4 counts to demonstrate the influence of Tat genetic variations affecting the stability of Tat and its interaction with TAR. This study highlights the co-evolution pattern of Tat and predominant nucleotides for Tat activity, facilitating the identification of genetic determinants for the attenuation of viral gene expression.

  6. Controlling Androgen receptor nuclear localization by dendrimer conjugates

    NASA Astrophysics Data System (ADS)

    Wang, Haoyu

    Androgen Receptor (AR) antagonists, such as bicalutamide and flutamide have been used widely in the treatment of prostate cancer. Although initial treatment is effective, prostate cancer cells often acquire antiandrogen resistance with prolonged treatment. AR over-expression and AR mutations contribute to the development of antiandrogen resistant cancer. Second generation antiandrogens such as enzalutamide are more effective and show reduced AR nuclear localization. In this study, derivatives of PAN52, a small molecule antiandrogen previously developed in our lab, were conjugated to the surface of generation 4 and generation 6 PAMAM dendrimers to obtain antiandrogen PAMAM dendrimer conjugates (APDC). APDCs readily enter cells and associate with AR in the cytoplasm. Due to their large size and positive charge, they can not enter the nucleus, thus retaining AR in the cytoplasm. In addition, APDCs are effective in decreasing AR mediated transcription and cell proliferation. APDC is the first AR antagonists that inhibit DHT-induced nuclear localization of AR. By inhibiting AR nuclear localization, APDC represents a new class of antiandrogens that offer an alternative approach to addressing antiandrogen-resistant prostate cancer. Lysine post-translational modification of AR Nuclear Localization Sequence (NLS) has great impact on AR cellular localization. It is of interest to understand which modifications modulate AR translocation into the nucleus. In this study, we prepared dendrimer-based acetyltransferase mimetic (DATM), DATM is able to catalytically acetylate AR in CWR22Rv1 cells, which will be a useful tool for studying AR modification effect on AR cellular localization. Derivatives of DATM, which transfer other chemical groups to AR, can be prepared similarly, and with more dendrimer based AR modification tools prepared in future, we will be able to understand and control AR cellular localization through AR modification.

  7. Protein-protein conjugate nanoparticles for malaria antigen delivery and enhanced immunogenicity

    PubMed Central

    Scaria, Puthupparampil V.; Jones, David S.; Barnafo, Emma; Fischer, Elizabeth R.; Anderson, Charles; MacDonald, Nicholas J.; Lambert, Lynn; Rausch, Kelly M.; Narum, David L.

    2017-01-01

    Chemical conjugation of polysaccharide to carrier proteins has been a successful strategy to generate potent vaccines against bacterial pathogens. We developed a similar approach for poorly immunogenic malaria protein antigens. Our lead candidates in clinical trials are the malaria transmission blocking vaccine antigens, Pfs25 and Pfs230D1, individually conjugated to the carrier protein Exoprotein A (EPA) through thioether chemistry. These conjugates form nanoparticles that show enhanced immunogenicity compared to unconjugated antigens. In this study, we examined the broad applicability of this technology as a vaccine development platform, by comparing the immunogenicity of conjugates prepared by four different chemistries using different malaria antigens (PfCSP, Pfs25 and Pfs230D1), and carriers such as EPA, TT and CRM197. Several conjugates were synthesized using thioether, amide, ADH and glutaraldehyde chemistries, characterized for average molecular weight and molecular weight distribution, and evaluated in mice for humoral immunogenicity. Conjugates made with the different chemistries, or with different carriers, showed no significant difference in immunogenicity towards the conjugated antigens. Since particle size can influence immunogenicity, we tested conjugates with different average size in the range of 16–73 nm diameter, and observed greater immunogenicity of smaller particles, with significant differences between 16 and 73 nm particles. These results demonstrate the multiple options with respect to carriers and chemistries that are available for protein-protein conjugate vaccine development. PMID:29281708

  8. The h-region of twin-arginine signal peptides supports productive binding of bacterial Tat precursor proteins to the TatBC receptor complex.

    PubMed

    Ulfig, Agnes; Fröbel, Julia; Lausberg, Frank; Blümmel, Anne-Sophie; Heide, Anna Katharina; Müller, Matthias; Freudl, Roland

    2017-06-30

    The twin-arginine translocation (Tat) pathway transports folded proteins across bacterial membranes. Tat precursor proteins possess a conserved twin-arginine (RR) motif in their signal peptides that is involved in their binding to the Tat translocase, but some facets of this interaction remain unclear. Here, we investigated the role of the hydrophobic (h-) region of the Escherichia coli trimethylamine N -oxide reductase (TorA) signal peptide in TatBC receptor binding in vivo and in vitro We show that besides the RR motif, a minimal, functional h-region in the signal peptide is required for Tat-dependent export in Escherichia coli Furthermore, we identified mutations in the h-region that synergistically suppressed the export defect of a TorA[KQ]-30aa-MalE Tat reporter protein in which the RR motif was replaced with a lysine-glutamine pair. Strikingly, all suppressor mutations increased the hydrophobicity of the h-region. By systematically replacing a neutral residue in the h-region with various amino acids, we detected a positive correlation between the hydrophobicity of the h-region and the translocation efficiency of the resulting reporter variants. In vitro cross-linking of residues located in the periplasmically-oriented part of the TatBC receptor to TorA[KQ]-30aa-MalE reporter variants harboring a more hydrophobic h-region in their signal peptides confirmed that unlike in TorA[KQ]-30aa-MalE with an unaltered h-region, the mutated reporters moved deep into the TatBC-binding cavity. Our results clearly indicate that, besides the Tat motif, the h-region of the Tat signal peptides is another important binding determinant that significantly contributes to the productive interaction of Tat precursor proteins with the TatBC receptor complex. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Extensive interactions between HIV TAT and TAF(II)250.

    PubMed

    Weissman, J D; Hwang, J R; Singer, D S

    2001-03-09

    The HIV transactivator, Tat, has been shown to be capable of potent repression of transcription initiation. Repression is mediated by the C-terminal segment of Tat, which binds the TFIID component, TAF(II)250, although the site(s) of interaction were not defined previously. We now report that the interaction between Tat and TAF(II)250 is extensive and involves multiple contacts between the Tat protein and TAF(II)250. The C-terminal domain of Tat, which is necessary for repression of transcription initiation, binds to a segment of TAF(II)250 that encompasses its acetyl transferase (AT) domain (885-1034 amino acids (aa)). Surprisingly, the N-terminal segment of Tat, which contains its activation domains, also binds to TAF(II)250 and interacts with two discontinuous segments of TAF(II)250 located between 885 and 984 aa and 1120 and 1279 aa. Binding of Tat to the 885-984 aa segment of TAF(II)250 requires the cysteine-rich domain of Tat, but not the acidic or glutamine-rich domains. Binding by the N-terminal domain of Tat to the 1120-1279 aa TAF(II)250 segment does not involve the acidic, cysteine- or glutamine-rich domains. Repression of transcription initiation by Tat requires functional TAF(II)250. We now demonstrate that transcription of the HIV LTR does not depend on TAF(II)250 which may account for its resistance to Tat mediated repression.

  10. Conjugation of curcumin onto hyaluronic acid enhances its aqueous solubility and stability.

    PubMed

    Manju, S; Sreenivasan, K

    2011-07-01

    Polymer-drug conjugates have gained much attention largely to circumvent lower drug solubility and to enhance drug stability. Curcumin is widely known for its medicinal properties including its anticancer efficacy. One of the serious drawbacks of curcumin is its poor water solubility which leads to reduced bioavailability. With a view to address these issues, we synthesized hyaluronic acid-curcumin (HA-Cur) conjugate. The drug conjugate was characterized using FT-IR, NMR, Dynamic light scattering and TEM techniques. The conjugates, interestingly found to assembles as micelles in aqueous phase. The formation of micelles seems to improve the stability of the drug in physiological pH. We also assessed cytotoxicity of the conjugate using L929 fibroblast cells and quantified by MTT assay. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Novel Curcumin Diclofenac Conjugate Enhanced Curcumin Bioavailability and Efficacy in Streptococcal Cell Wall-induced Arthritis.

    PubMed

    Jain, S K; Gill, M S; Pawar, H S; Suresh, Sarasija

    2014-09-01

    Curcumin-diclofenac conjugate as been synthesized by esterification of phenolic group of curcumin with the acid moiety of diclofenac, and characterized by mass spectrometry, NMR, FTIR, DSC, thermogravimetric analysis and X-ray diffraction analysis. The relative solubility of curcumin-diclofenac conjugate, curcumin and diclofenac; stability of curcumin-diclofenac conjugate in intestinal extract; permeability study of curcumin-diclofenac conjugate using the everted rat intestinal sac method; stability of curcumin-diclofenac conjugate in gastrointestinal fluids and in vitro efficacy have been evaluated. In vivo bioavailability of curcumin-diclofenac conjugate and curcumin in Sprague-Dawley rats, and antiarthritic activity of curcumin-diclofenac conjugate, curcumin and diclofenac in modified streptococcal cell wall-induced arthritis model in Balb/c mice to mimic rheumatoid arthritis in humans have also been studied. In all of the above studies, curcumin-diclofenac conjugate exhibited enhanced stability as compared to curcumin; its activity was twice that of diclofenac in inhibiting thermal protein denaturation taken as a measure of in vitro antiinflammatory activity; it enhanced the bioavailability of curcumin by more than five folds, and significantly (P<0.01) alleviated the symptoms of arthritis in streptococcal cell wall-induced arthritis model as compared to both diclofenac and curcumin.

  12. Sources of male chauvinism in the TAT.

    PubMed

    Potkay, C R; Merrens, M R

    1975-10-01

    Potential sources of antifemale bias in TAT stimuli were evaluated by having 358 undergraduate subjects rate 17 male and 17 female TAT figures on 7-point anchored scales. Data from the five independent rating conditions were examined by 2 x 2 ANOVA. Biases toward greater Mental Health and Intelligence for female figures were seen to be insufficient counterbalancers of biases toward greater Cultural Favorability and Identification for male figures. Achievement status was rated equivalently. TAT stimuli appeared to show a "built in" source of male chauvinism systematically "pulling" male-sex identification. Potential for unfavorable clinical evaluation was seen to be greater for female TAT subjects compared with male subjects.

  13. Fluorescent hydroxylamine derived from the fragmentation of PAMAM dendrimers for intracellular hypochlorite recognition.

    PubMed

    Wu, Te-Haw; Liu, Ching-Ping; Chien, Chih-Te; Lin, Shu-Yi

    2013-08-26

    Herein, a promising sensing approach based on the structure fragmentation of poly(amidoamine) (PAMAM) dendrimers for the selective detection of intracellular hypochlorite (OCl(-)) is reported. PAMAM dendrimers were easily disrupted by a cascade of oxidations in the tertiary amines of the dendritic core to produce an unsaturated hydroxylamine with blue fluorescence. Specially, the novel fluorophore was only sensitive to OCl(-), one of reactive oxygen species (ROS), resulting in an irreversible fluorescence turn-off. The fluorescent hydroxylamine was selectively oxidised by OCl(-) to form a labile oxoammonium cation that underwent further degradation. Without using any troublesomely synthetic steps, the novel sensing platform based on the fragmentation of PAMAM dendrimers, can be applied to detect OCl(-) in macrophage cells. The results suggest that the sensing approach may be useful for the detection of intracellular OCl(-) with minimal interference from biological matrixes. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Exosome-associated release, uptake, and neurotoxicity of HIV-1 Tat protein.

    PubMed

    Rahimian, Pejman; He, Johnny J

    2016-12-01

    HIV-1 Tat is an indispensible transactivator for HIV gene transcription and replication. It has been shown to exit cells as a free protein and enter neighboring cells or interact with surface receptors of neighboring cells to regulate gene expression and cell function. In this study, we report, for the first time, exosome-associated Tat release and uptake. Using a HIV-1 LTR-driven luciferase reporter-based cell assay and Western blotting or in combination with exosome inhibitor, OptiPrep gradient fractionation, and exosome depletion, we demonstrated significant presence of HIV-1 Tat in exosomes derived from Tat-expressing primary astrocytes, Tat-transfected U373.MG and 293T, and HIV-infected MT4. We further showed that exosome-associated Tat from Tat-expressing astrocytes was capable of causing neurite shortening and neuron death, further supporting that this new form of extracellular Tat is biologically active. Lastly, we constructed a Tat mutant deleted of its basic domain and determined the role of the basic domain in Tat trafficking into exosomes. Basic domain-deleted Tat exhibited no apparent effects on Tat trafficking into exosomes, while maintained its dominant-negative function in Tat-mediated LTR transactivation. Taken together, these results show a significant fraction of Tat is secreted and present in the form of exosomes and may contribute to the stability of extracellular Tat and broaden the spectrum of its target cells.

  15. Spectroscopic and calorimetric studies on the interaction between PAMAM G4-OH and 5-fluorouracil in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Buczkowski, Adam; Urbaniak, Pawel; Piekarski, Henryk; Palecz, Bartlomiej

    2017-01-01

    The results of spectroscopic measurements (an increase in solubility, equilibrium dialysis, 1H NMR titration) and calorimetric measurements (isothermal titration ITC) indicate spontaneous (ΔG < 0) binding of 5-fluorouracil molecules by PAMAM G4-OH dendrimer with terminal hydroxyl groups in an aqueous solution. PAMAM G4-OH dendrimer bonds about n = 8 ± 1 molecules of the drug with an equilibrium constant of K = 70 ± 10. The process of saturating the dendrimer active sites by the drug molecules is exothermal (ΔH < 0) and is accompanied by an advantageous change in entropy (ΔS > 0). The parameters of binding 5-fluorouracil by PAMAM G4-OH dendrimer were compared with those of binding this drug by the macromolecules of PAMAM G3-OH and G5-OH.

  16. The complex of PAMAM-OH dendrimer with Angiotensin (1-7) prevented the disuse-induced skeletal muscle atrophy in mice.

    PubMed

    Márquez-Miranda, Valeria; Abrigo, Johanna; Rivera, Juan Carlos; Araya-Durán, Ingrid; Aravena, Javier; Simon, Felipe; Pacheco, Nicolás; González-Nilo, Fernando Danilo; Cabello-Verrugio, Claudio

    2017-01-01

    Angiotensin (1-7) (Ang-(1-7)) is a bioactive heptapeptide with a short half-life and has beneficial effects in several tissues - among them, skeletal muscle - by preventing muscle atrophy. Dendrimers are promising vehicles for the protection and transport of numerous bioactive molecules. This work explored the use of a neutral, non-cytotoxic hydroxyl-terminated poly(amidoamine) (PAMAM-OH) dendrimer as an Ang-(1-7) carrier. Bioinformatics analysis showed that the Ang-(1-7)-binding capacity of the dendrimer presented a 2:1 molar ratio. Molecular dynamics simulation analysis revealed the capacity of neutral PAMAM-OH to protect Ang-(1-7) and form stable complexes. The peptide coverage ability of the dendrimer was between ~50% and 65%. Furthermore, an electrophoretic mobility shift assay demonstrated that neutral PAMAM-OH effectively bonded peptides. Experimental results showed that the Ang-(1-7)/PAMAM-OH complex, but not Ang-(1-7) alone, had an anti-atrophic effect when administered intraperitoneally, as evaluated by muscle strength, fiber diameter, myofibrillar protein levels, and atrogin-1 and MuRF-1 expressions. The results of the Ang-(1-7)/PAMAM-OH complex being intraperitoneally injected were similar to the results obtained when Ang-(1-7) was systemically administered through mini-osmotic pumps. Together, the results suggest that Ang-(1-7) can be protected for PAMAM-OH when this complex is intraperitoneally injected. Therefore, the Ang-(1-7)/PAMAM-OH complex is an efficient delivery method for Ang-(1-7), since it improves the anti-atrophic activity of this peptide in skeletal muscle.

  17. The effects of HIV-1 regulatory TAT protein expression on brain reward function, response to psychostimulants and delay-dependent memory in mice.

    PubMed

    Kesby, James P; Markou, Athina; Semenova, Svetlana

    2016-10-01

    Depression and psychostimulant abuse are common comorbidities among humans with immunodeficiency virus (HIV) disease. The HIV regulatory protein TAT is one of multiple HIV-related proteins associated with HIV-induced neurotoxicity. TAT-induced dysfunction of dopamine and serotonin systems in corticolimbic brain areas may result in impaired reward function, thus, contributing to depressive symptoms and psychostimulant abuse. Transgenic mice with doxycycline-induced TAT protein expression in the brain (TAT+, TAT- control) show neuropathology resembling brain abnormalities in HIV+ humans. We evaluated brain reward function in response to TAT expression, nicotine and methamphetamine administration in TAT+ and TAT- mice using the intracranial self-stimulation procedure. We evaluated the brain dopamine and serotonin systems with high-performance liquid chromatography. The effects of TAT expression on delay-dependent working memory in TAT+ and TAT- mice using the operant delayed nonmatch-to-position task were also assessed. During doxycycline administration, reward thresholds were elevated by 20% in TAT+ mice compared with TAT- mice. After the termination of doxycycline treatment, thresholds of TAT+ mice remained significantly higher than those of TAT- mice and this was associated with changes in mesolimbic serotonin and dopamine levels. TAT+ mice showed a greater methamphetamine-induced threshold lowering compared with TAT- mice. TAT expression did not alter delay-dependent working memory. These results indicate that TAT expression in mice leads to reward deficits, a core symptom of depression, and a greater sensitivity to methamphetamine-induced reward enhancement. Our findings suggest that the TAT protein may contribute to increased depressive-like symptoms and continued methamphetamine use in HIV-positive individuals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Conformational sensitivity of conjugated poly(ethylene oxide)-poly(amidoamine) molecules to cations adducted upon electrospray ionization - a mass spectrometry, ion mobility and molecular modeling study.

    PubMed

    Tintaru, Aura; Chendo, Christophe; Wang, Qi; Viel, Stéphane; Quéléver, Gilles; Peng, Ling; Posocco, Paola; Pricl, Sabrina; Charles, Laurence

    2014-01-15

    Tandem mass spectrometry and ion mobility spectrometry experiments were performed on multiply charged molecules formed upon conjugation of a poly(amidoamine) (PAMAM) dendrimer with a poly(ethylene oxide) (PEO) linear polymer to evidence any conformational modification as a function of their charge state (2+ to 4+) and of the adducted cation (H(+)vs Li(+)). Experimental findings were rationalized by molecular dynamics simulations. The G0 PAMAM head-group could accommodate up to three protons, with protonated terminal amine group enclosed in a pseudo 18-crown-6 ring formed by the PEO segment. This particular conformation enabled a hydrogen bond network which allowed long-range proton transfer to occur during collisionally activated dissociation. In contrast, lithium adduction was found to mainly occur onto oxygen atoms of the polyether, each Li(+) cation being coordinated by a 12-crown-4 pseudo structure. As a result, for the studied polymeric segment (Mn=1500gmol(-1)), PEO-PAMAM hybrid molecules exhibited a more expanded shape when adducted to lithium as compared to proton. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. In Vitro/In Vivo Evaluation of Dexamethasone--PAMAM Dendrimer Complexes for Retinal Drug Delivery.

    PubMed

    Yavuz, Burçin; Pehlivan, Sibel Bozdağ; Vural, İmran; Ünlü, Nurşen

    2015-11-01

    Current treatment options for diabetic retinopathy (DR) have side effects because of invasive application and topical application does not generally result in therapeutic levels in the target tissue. Therefore, improving the drug delivery to retina, following topical administration, might be a solution to DR treatment problems. The purpose of this study was to investigate the complexation effects of poly(amidoamine) (PAMAM) dendrimers on ocular absorption of dexamethasone (DEX). Using different PAMAM generations, complex formulations were prepared and characterized. Formulations were evaluated in terms of cytotoxicity and cell permeability, as well as ex vivo transport across ocular tissues. The ocular pharmacokinetic properties of DEX formulations were studied in Sprague-Dawley rats following topical and subconjunctival applications, to evaluate the effect of PAMAM on retinal delivery of DEX. Methyl-thiazol-tetrazolium (MTT) assay indicated that all groups resulted in cell viability comparable to DEX solution (87.5%), with the cell viability being the lowest for G3 complex at 73.5%. Transport study results showed that dendrimer complexation increases DEX transport across both cornea and sclera tissues. The results of in vivo studies were also indicated that especially anionic DEX-PAMAM complex formulations have reached higher DEX concentrations in ocular tissues compared with plain DEX suspension. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  20. Methyllithium-Doped Naphthyl-Containing Conjugated Microporous Polymer with Enhanced Hydrogen Storage Performance.

    PubMed

    Xu, Dan; Sun, Lei; Li, Gang; Shang, Jin; Yang, Rui-Xia; Deng, Wei-Qiao

    2016-06-01

    Hydrogen storage is a primary challenge for using hydrogen as a fuel. With ideal hydrogen storage kinetics, the weak binding strength of hydrogen to sorbents is the key barrier to obtain decent hydrogen storage performance. Here, we reported the rational synthesis of a methyllithium-doped naphthyl-containing conjugated microporous polymer with exceptional binding strength of hydrogen to the polymer guided by theoretical simulations. Meanwhile, the experimental results showed that isosteric heat can reach up to 8.4 kJ mol(-1) and the methyllithium-doped naphthyl-containing conjugated microporous polymer exhibited an enhanced hydrogen storage performance with 150 % enhancement compared with its counterpart naphthyl-containing conjugated microporous polymer. These results indicate that this strategy provides a direction for design and synthesis of new materials that meet the US Department of Energy (DOE) hydrogen storage target. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Study of Adsorption Mechanism of Congo Red on Graphene Oxide/PAMAM Nanocomposite

    PubMed Central

    Rafi, Mohammad; Samiey, Babak; Cheng, Chil-Hung

    2018-01-01

    Graphene oxide/poly(amidoamine) (GO/PAMAM) nanocomposite adsorbed high quantities of congo red (CR) anionic dye in 0.1 M NaCl solution, with the maximum adsorption capacity of 198 mg·g−1. The kinetics and thermodynamics of adsorption were investigated to elucidate the effects of pH, temperature, shaking rate, ionic strength, and contact time. Kinetic data were analyzed by the KASRA model and the KASRA, ISO, and pore-diffusion equations. Adsorption adsorption isotherms were studied by the ARIAN model and the Henry, Langmuir, and Temkin equations. It was shown that adsorption sites of GO/PAMAM at experimental conditions were phenolic hydroxyl groups of GO sheets and terminal amine groups of PAMAM dendrimer. Analysis of kinetic data indicated that amine sites were located on the surface, and that hydroxyl sites were placed in the pores of adsorbent. CR molecules interacted with the adsorption sites via hydrogen bonds. The molecules were adsorbed firstly on the amine sites, and then on the internal hydroxyl sites. Adsorption kinetic parameters indicated that the interaction of CR to the –NH3+ sites was the rate-controlling step of adsorption of CR on this site and adsorption activation energies calculated for different parts of this step. On the other hand, kinetic parameters showed that the intraparticle diffusion was the rate-controlling step during the interaction of CR molecules to –OH sites and activation energy of this step was not calculable. Finally, the used GO/PAMAM was completely regenerated by using ethylenediamine. PMID:29587463

  2. Enhanced autophagy in pulmonary endothelial cells on exposure to HIV-Tat and morphine: Role in HIV-related pulmonary arterial hypertension

    PubMed Central

    Dalvi, Pranjali; Sharma, Himanshu; Chinnappan, Mahendran; Sanderson, Miles; Allen, Julie; Zeng, Ruoxi; Choi, Augustine; O'Brien-Ladner, Amy; Dhillon, Navneet K.

    2016-01-01

    ABSTRACT Intravenous drug use is one of the major risk factors for HIV-infection in HIV-related pulmonary arterial hypertension patients. We previously demonstrated exaggerated pulmonary vascular remodeling with enhanced apoptosis followed by increased proliferation of pulmonary endothelial cells on simultaneous exposure to both opioids and HIV protein(s). Here we hypothesize that the exacerbation of autophagy may be involved in the switching of endothelial cells from an early apoptotic state to later hyper-proliferative state. Treatment of human pulmonary microvascular endothelial cells (HPMECs) with both the HIV-protein Tat and morphine resulted in an oxidative stress-dependent increase in the expression of various markers of autophagy and formation of autophagosomes when compared to either Tat or morphine monotreatments as demonstrated by western blot, transmission electron microscopy and immunofluorescence. Autophagy flux experiments suggested increased formation rather than decreased clearance of autolysosomes. Inhibition of autophagy resulted in a significant increase in apoptosis and reduction in proliferation of HPMECs with combined morphine and Tat (M+T) treatment compared to monotreatments whereas stimulation of autophagy resulted in opposite effects. Significant increases in the expression of autophagy markers as well as the number of autophagosomes and autolysosomes was observed in the lungs of SIV-infected macaques and HIV-infected humans exposed to opioids. Overall our findings indicate that morphine in combination with viral protein(s) results in the induction of autophagy in pulmonary endothelial cells that may lead to an increase in severity of angio-proliferative remodeling of the pulmonary vasculature on simian and human immunodeficiency virus infection in the presence of opioids. PMID:27723373

  3. Enhanced autophagy in pulmonary endothelial cells on exposure to HIV-Tat and morphine: Role in HIV-related pulmonary arterial hypertension.

    PubMed

    Dalvi, Pranjali; Sharma, Himanshu; Chinnappan, Mahendran; Sanderson, Miles; Allen, Julie; Zeng, Ruoxi; Choi, Augustine; O'Brien-Ladner, Amy; Dhillon, Navneet K

    2016-12-01

    Intravenous drug use is one of the major risk factors for HIV-infection in HIV-related pulmonary arterial hypertension patients. We previously demonstrated exaggerated pulmonary vascular remodeling with enhanced apoptosis followed by increased proliferation of pulmonary endothelial cells on simultaneous exposure to both opioids and HIV protein(s). Here we hypothesize that the exacerbation of autophagy may be involved in the switching of endothelial cells from an early apoptotic state to later hyper-proliferative state. Treatment of human pulmonary microvascular endothelial cells (HPMECs) with both the HIV-protein Tat and morphine resulted in an oxidative stress-dependent increase in the expression of various markers of autophagy and formation of autophagosomes when compared to either Tat or morphine monotreatments as demonstrated by western blot, transmission electron microscopy and immunofluorescence. Autophagy flux experiments suggested increased formation rather than decreased clearance of autolysosomes. Inhibition of autophagy resulted in a significant increase in apoptosis and reduction in proliferation of HPMECs with combined morphine and Tat (M+T) treatment compared to monotreatments whereas stimulation of autophagy resulted in opposite effects. Significant increases in the expression of autophagy markers as well as the number of autophagosomes and autolysosomes was observed in the lungs of SIV-infected macaques and HIV-infected humans exposed to opioids. Overall our findings indicate that morphine in combination with viral protein(s) results in the induction of autophagy in pulmonary endothelial cells that may lead to an increase in severity of angio-proliferative remodeling of the pulmonary vasculature on simian and human immunodeficiency virus infection in the presence of opioids.

  4. Reactive oxygen species (ROS) induced cytokine production and cytotoxicity of PAMAM dendrimers in J774A.1 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naha, Pratap C., E-mail: pratap.naha@dit.i; NanoLab, Focas Research Institute, Dublin Institute of Technology, Kevin Street, Dublin 8; Davoren, Maria

    2010-07-15

    The immunotoxicity of three generations of polyamidoamine (PAMAM) dendrimers (G-4, G-5 and G-6) was evaluated in mouse macrophage cells in vitro. Using the Alamar blue and MTT assays, a generation dependent cytotoxicity of the PAMAM dendrimers was found whereby G-6 > G-5 > G-4. The toxic response of the PAMAM dendrimers correlated well with the number of surface primary amino groups, with increasing number resulting in an increase in toxic response. An assessment of intracellular ROS generation by the PAMAM dendrimers was performed by measuring the increased fluorescence as a result of intracellular oxidation of Carboxy H{sub 2}DCFDA to DCFmore » both quantitatively using plate reader and qualitatively by confocal laser scanning microscopy. The inflammatory mediators macrophage inflammatory protein-2 (MIP-2), tumour necrosis factor-{alpha} (TNF-{alpha}) and interleukin-6, (IL-6) were measured by the enzyme linked immunosorbant assay (ELISA) following exposure of mouse macrophage cells to PAMAM dendrimers. A generation dependent ROS and cytokine production was found, which correlated well with the cytotoxicological response and therefore number of surface amino groups. A clear time sequence of increased ROS generation (maximum at {approx} 4 h), TNF-{alpha} and IL-6 secretion (maximum at {approx} 24 h), MIP-2 levels and cell death ({approx} 72 h) was observed. The intracellular ROS generation and cytokine production induced cytotoxicity point towards the mechanistic pathway of cell death upon exposure to PAMAM dendrimers.« less

  5. Modelling the metabolism of protein secretion through the Tat route in Streptomyces lividans.

    PubMed

    Valverde, José R; Gullón, Sonia; Mellado, Rafael P

    2018-06-14

    variability analysis predicts a large potential for protein overproduction. This work provides a detailed look to metabolic changes associated to Tat-dependent protein secretion reproducing experimental observations and identifying changes that are specific to each secretory route, presenting a novel, improved, more accurate and strain-independent model of S. lividans, thus opening the way for enhanced metabolic engineering of protein overproduction in S. lividans.

  6. Enhancing students’ cognitive skill in Nguyen Tat Thanh high school Hanoi Vietnam through scientific learning material of static electricity

    NASA Astrophysics Data System (ADS)

    Priyanto, A.; Linuwih, S.; Aji, M. P.; Bich, D. D.

    2018-03-01

    Scientific learning material is still needed by students at Nguyen Tat Thanh High School (NTT), Hanoi Vietnam in order to enhance the students’ cognitive skill. Cognitive skill represents the level of students’ understanding to the particular material. Students’ cognitive skill can be improved by applying the learning material based on scientific approach as a treatment. The enhancement of students’ cognitive skill can be measured by analyzing the students’ test result collected before and after treatment. The analysis is focused to measure the enhancement or the sifted of cognitive aspects including remembering aspect (C1), understanding aspect (C2), applying aspect (C3), analyzing aspect (C4), and evaluating aspect (C5). According to the analysis the enhancement of cognitive aspects are 8.26% of remembering, 3.26% of understanding, 32.94% of applying, 21.74% of analyzing, and 21.74% of evaluating. The major enhancements are occured at applying, analyzing, and evaluating aspects. Therefore it can be concluded that students’ cognitive skill is enhanced by applying scientific learning material of static electricity.

  7. "Green-friendly" best management practices (BMPs) for interstate rest areas.

    DOT National Transportation Integrated Search

    2011-06-01

    This report presents the findings of a research project to study and develop a list of green friendly Best : Management Practices (BMPs) for Illinois interstate rest areas. The objectives of this project are to (1) develop : energy and cost bas...

  8. Poly(amido amine) dendrimers as absorption enhancers for oral delivery of camptothecin.

    PubMed

    Sadekar, S; Thiagarajan, G; Bartlett, K; Hubbard, D; Ray, A; McGill, L D; Ghandehari, H

    2013-11-01

    Oral delivery of camptothecin has a treatment advantage but is limited by low bioavailability and gastrointestinal toxicity. Poly(amido amine) or PAMAM dendrimers have shown promise as intestinal penetration enhancers, drug solubilizers and drug carriers for oral delivery in vitro and in situ. There have been very limited studies in vivo to evaluate PAMAM dendrimers for oral drug delivery. In this study, camptothecin (5 mg/kg) was formulated and co-delivered with cationic, amine-terminated PAMAM dendrimer generation 4.0 (G4.0) (100 and 300 mg/kg) and anionic, carboxylate-terminated PAMAM generation 3.5 (G3.5) (300 and 1000 mg/kg) in CD-1 mice. Camptothecin associated to a higher extent with G4.0 than G3.5 in the formulation, attributed to an electrostatic interaction on the surface of G4.0. Both PAMAM G4.0 and G3.5 increased camptothecin solubilization in simulated gastric fluid and caused a 2-3 fold increase in oral absorption of camptothecin when delivered at 2 h. PAMAM G4.0 and G3.5 did not increase mannitol transport suggesting that the oral absorption of camptothecin was not due to tight junction modulation. Histologic observations of the epithelial layer of small intestinal segments of the gastrointestinal tract (GIT) at 4 h post dosing supported no evidence of toxicity at the evaluated doses of PAMAM dendrimers. This study demonstrates that both cationic (G.4) and anionic (G3.5) PAMAM dendrimers were effective in enhancing the oral absorption of camptothecin. Results suggest that drug inclusion in PAMAM interior controlled solubilization in simulated gastric and intestinal fluids, and increased oral bioavailability. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Development of a cell transducible RhoA inhibitor TAT-C3 transferase and its encapsulation in biocompatible microspheres to promote survival and enhance regeneration of severed neurons.

    PubMed

    Tan, Elaine Y M; Law, Janice W S; Wang, Chi-Hwa; Lee, Alan Y W

    2007-12-01

    through RhoA inhibition. Characterization of TAT-C3 encapsulation in various blends of capped/uncapped PLGA polymer revealed the 30:70 formulation to be optimal in attaining a mild initial burst release of 25%, followed by a subsequent average daily release of 2.3% of encapsulated protein over one month, matching the change in RhoA level in severed brain and spinal cord. Importantly, TAT-C3 released from the microspheres remained active up to the first three weeks of incubation. Enhanced cell entry of TAT-C3 circumvents the need to administer high dose of the protein to site of injury. The encapsulation of TAT-C3 in different blends of capped/uncapped PLGA microspheres allows adjustment of protein release profile to suit the pattern of RhoA expression in injured CNS.

  10. A dual-targeting nanocarrier based on poly(amidoamine) dendrimers conjugated with transferrin and tamoxifen for treating brain gliomas.

    PubMed

    Li, Yan; He, Hai; Jia, Xinru; Lu, Wan-Liang; Lou, Jinning; Wei, Yen

    2012-05-01

    A pH-sensitive dual-targeting drug carrier (G4-DOX-PEG-Tf-TAM) was synthesized with transferrin (Tf) conjugated on the exterior and Tamoxifen (TAM) in the interior of the fourth generation PAMAM dendrimers for enhancing the blood-brain barrier (BBB) transportation and improving the drug accumulation in the glioma cells. It was found that, on average, 7 doxorubicine (DOX) molecules, over 30 PEG(1000) and PEG(2000) chains and one Tf group were bonded on the periphery of each G4 PAMAM dendrimer, while 29 TAM molecules were encapsulated into the interior of per dendrimer. The pH-triggered DOX release was 32% at pH 4.5 and 6% at pH 7.4, indicating a comparatively fast drug release at weak acidic condition and stable state of the carrier at physiological environment. The in vitro assay of the drug transport across the BBB model showed that G4-DOX-PEG-Tf-TAM exhibited higher BBB transportation ability with the transporting ratio of 6.06% in 3 h. The carrier was internalized into C6 glioma cells upon crossing the BBB model by the coactions of TfR-mediated endocytosis and the inhibition effect of TAM to the drug efflux transports. Moreover, it also displayed the in vitro accumulation of DOX in the avascular C6 glioma spheroids made the tumor volume effectively reduced. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Differences in toxicity of anionic and cationic PAMAM and PPI dendrimers in zebrafish embryos and cancer cell lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bodewein, Lambert

    Dendrimers are an emerging class of polymeric nanoparticles with beneficial biomedical applications like early diagnostics, in vitro gene transfection or controlled drug delivery. However, the potential toxic impact of exposure on human health or the environment is often inadequately defined. Thus, polyamidoamine (PAMAM) dendrimers of generations G3.0, 3.5, 4.0, 4.5 and 5.0 and polypropylenimine (PPI) dendrimers G3.0, 4.0 and 5.0 were tested in zebrafish embryos for 96 h and human cancer cell lines for 24 h, to assess and compare developmental in vivo toxicity with cytotoxicity. The zebrafish embryo toxicity of cationic PAMAM and PPI dendrimers increased over time, withmore » EC50 values ranging from 0.16 to just below 1.7 μM at 24 and 48 hpf. The predominant effects were mortality, plus reduced heartbeat and blood circulation for PPI dendrimers. Apoptosis in the embryos increased in line with the general toxicity concentration-dependently. Hatch and dechorionation of the embryos increased the toxicity, suggesting a protective role of the chorion. Lower generation dendrimers were more toxic in the embryos whereas the toxicity in the HepG2 and DU145 cell lines increased with increasing generation of cationic PAMAMs and PPI dendrimers. HepG2 were less sensitive than DU145 cells, with IC50 values ≥ 402 μM (PAMAMs) and ≤ 240 μM (PPIs) for HepG2 and ≤ 13.24 μM (PAMAMs) and ≤ 12.84 μM (PPIs) for DU145. Neither in fish embryos nor cells toxicity thresholds were determinable for anionic PAMAM G3.5 and G4.5. The study demonstrated that the cytotoxicity underestimated the in-vivo toxicity of the dendrimers in the fish embryos. - Highlights: • Zebrafish embryo toxicity of cationic PAMAM and PPI dendrimers increased over time. • Zebrafish embryo toxicity of cationic dendrimers did not increase with generation. • Cationic dendrimers induced apoptosis in zebrafish embryos. • Toxicity of cationic dendrimers was lower in HepG2 and DU145 than zebrafish

  12. Selective cytotoxicity of PAMAM G5 core–PAMAM G2.5 shell tecto-dendrimers on melanoma cells

    PubMed Central

    Schilrreff, Priscila; Mundiña-Weilenmann, Cecilia; Romero, Eder Lilia; Morilla, Maria Jose

    2012-01-01

    Background The controlled introduction of covalent linkages between dendrimer building blocks leads to polymers of higher architectural order known as tecto-dendrimers. Because of the few simple steps involved in their synthesis, tecto-dendrimers could expand the portfolio of structures beyond commercial dendrimers, due to the absence of synthetic drawbacks (large number of reaction steps, excessive monomer loading, and lengthy chromatographic separations) and structural constraints of high-generation dendrimers (reduction of good monodispersity and ideal dendritic construction due to de Gennes dense-packing phenomenon). However, the biomedical uses of tecto-dendrimers remain unexplored. In this work, after synthesizing saturated shell core–shell tecto-dendrimers using amine-terminated polyamidoamine (PAMAM) generation 5 (G5) as core and carboxyl-terminated PAMAM G2.5 as shell (G5G2.5 tecto-dendrimers), we surveyed for the first time the main features of their interaction with epithelial cells. Methods Structural characterization of G5G2.5 was performed by polyacrylamide gel electrophoresis, matrix-assisted laser desorption time-of-flight mass spectrometry, and microscopic techniques; their hydrodynamic size and Z-potential was also determined. Cellular uptake by human epidermal keratinocytes, colon adenocarcinoma, and epidermal melanoma (SK-Mel-28) cells was determined by flow cytometry. Cytotoxicity was determined by mitochondrial activity, lactate dehydrogenase release, glutathione depletion, and apoptosis/necrosis measurement. Results The resultant 60%–67% saturated shell, 87,000-dalton G5G2.5 (mean molecular weight) interacted with cells in a significantly different fashion in comparison to their building blocks and to its closest counterpart, PAMAM G6.5. After being actively taken up by epithelial cells, G5G2.5 caused cytotoxicity only on SK-Mel-28 cells, including depletion of intracellular glutathione and fast necrosis that was manifested above 5 μM G5

  13. Surface modification of PAMAM dendrimers modulates the mechanism of cellular internalization.

    PubMed

    Saovapakhiran, Angkana; D'Emanuele, Antony; Attwood, David; Penny, Jeffrey

    2009-04-01

    The aim of this study was to investigate the influence of dendrimer surface properties on cellular internalization and intracellular trafficking in the human colon adenocarcinoma HT-29 cell line. Third-generation (G3) polyamidoamine (PAMAM) dendrimers were modified to contain either two lauroyl chains (G3L2), two propranolol molecules (G3P2), or two lauroyl and two propranolol molecules (G3L2P2) at the dendrimer surface. Surface-modified and unmodified dendrimers were labeled with fluorescein isothiocyanate (FITC) at an average molar ratio of 1:1. The mechanisms of cellular internalization and intracellular trafficking of dendrimers were analyzed by confocal laser scanning microscopy and flow cytometry. The internalization of G3 and G3P2 dendrimers involved both caveolae-dependent endocytosis and macropinocytosis pathways; internalization of G3L2P2 dendrimer appeared to involve caveolae-dependent, and possibly clathrin-dependent, endocytosis pathways; and internalization of G3L2 dendrimer occurred via caveolae-dependent, clathrin-dependent, and macropinocytosis pathways. Subcellular colocalization data indicated that unmodified and all surface-modified G3 PAMAM dendrimers were internalized and trafficked to endosomes and lysosomes. It is therefore apparent that the initial mode of dendrimer internalization into HT-29 cells is influenced by the surface properties of G3 PAMAM dendrimer.

  14. Conjugation of curcumin onto alginate enhances aqueous solubility and stability of curcumin.

    PubMed

    Dey, Soma; Sreenivasan, K

    2014-01-01

    Curcumin is a potential drug for various diseases including cancer. Prime limitations associated with curcumin are low water solubility, rapid hydrolytic degradation and poor bioavailability. In order to redress these issues we developed Alginate-Curcumin (Alg-Ccm) conjugate which was characterized by FTIR and (1)H NMR spectroscopy. The conjugate self-assembled in aqueous solution forming micelles with an average hydrodynamic diameter of 459 ± 0.32 nm and negative zeta potential. The spherical micelles were visualized by TEM. The critical micelle concentration (CMC) of Alg-Ccm conjugate was determined. A significant enhancement in the aqueous solubility of curcumin was observed upon conjugation with alginate. Formation of micelles improved the stability of curcumin in water at physiological pH. The cytotoxic activity of Alg-Ccm was quantified by MTT assay using L-929 fibroblast cells and it was found to be potentially cytotoxic. Hence, Alg-Ccm could be a promising drug conjugate as well as a nanosized delivery vehicle. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Intracellular transduction of TAT-Hsp27 fusion protein enhancing cell survival and regeneration capacity of cardiac stem cells in acute myocardial infarction.

    PubMed

    Kim, Hye Jung; Kim, Myoung-Hun; Kim, Jong Tae; Lee, Won-Jin; Kim, Eunjung; Lim, Kwang Suk; Kim, Jang Kyoung; Yang, Young Il; Park, Ki Dong; Kim, Yong-Hee

    2015-10-10

    Myocardial infarction (MI) results in the substantial loss of functional cardiomyocytes, which frequently leads to intractable heart disorders. Cardiac stem cells (CSCs) that retain the capacity to replace all cardiac cells might be a promising strategy for providing a source of new functional cardiomyocytes; however, the poor survival and engraftment of transplanted CSCs in the hostile environment of MI critically mitigate their therapeutic benefits. To capitalize their therapeutic potential, an ex vivo strategy in which CSCs were introduced to the recombinant heat shock protein 27 (Hsp27) through a TAT protein transduction domain for increasing the viability and engraftment in the infarcted myocardium was designed. A recombinant TAT fused Hsp27 (TAT-Hsp27) was able to enter CSCs in a dose-dependent manner. CSCs transduced with TAT-Hsp27 expressed not only endogenous Hsp27 but externally introduced Hsp27, resulting in substantial increase of their anti-oxidative and anti-apoptotic properties via suppressing reactive oxygen species production, the MAPKs signaling pathway, and caspase activation. TAT-Hsp27 enabled CSCs to be protected from apoptotic- and hypoxic-induced cell death during in vitro cardiomyogenic differentiation. In vivo studies demonstrated that CSCs transduced TAT-Hsp27 significantly increased the survival and engraftment in the acutely infarcted myocardium, which is closely related to caspase activity suppression. Finally, CSCs transduced TAT-Hsp27 improved cardiac function and attenuated cardiac remodeling in comparison with non-transduced CSCs. Overall, our approach, which is based on the ex vivo intracellular transduction of TAT-Hsp27 into CSCs before myocardial delivery, might be effective in treating MI. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Influence of forest roads and BMPs on soil erosion

    Treesearch

    J. McFero Grace; William J. Elliot

    2011-01-01

    Mitigating sediment export from the forest road prism and potential delivery to forest streams will require a more complete prospective on forest road erosion and benefit of BMPs in reducing the risk of degrading environmental impacts. Sediment control systems have clearly been presented as effective in minimizing sediment travel distances downslope and are likely the...

  17. Construction of novel electrochemical immunosensor for detection of prostate specific antigen using ferrocene-PAMAM dendrimers.

    PubMed

    Çevik, Emre; Bahar, Özlem; Şenel, Mehmet; Abasıyanık, M Fatih

    2016-12-15

    In this study, an immunosensor was designed to utilize for the detection of prostate specific antigen (PSA) based on three different generations (G1, G2 and G3) of ferrocene (Fc) cored polyamidiamine dendrimers (Fc-PAMAM) gold (Au) electrode. The self-assembled monolayer principle (SAM) was used to fabricate the sensitive, selective and disposable immunosensor electrodes. In electrode fabrication cysteamine (Cys) was the first agent covalently linked on the Au electrode surface. Immobilized redox center (ferrocene) cored PAMAM dendrimers served as a layer for the further binding of biological components. The monoclonal antibody of PSA (anti-PSA) was covalently immobilized on dendrimers which were attached onto the modified Au surface (Au/Cys/Fc-PAMAMs/anti-PSA). PSA levels were quantitatively analyzed by using electrochemical differential pulse voltammetry (DPV) whose lowest detection limit was calculated as 0.001ngmL(-1). The Au/Cys/FcPAMAM/anti-PSA immunosensor showed excellent performance for PSA at the pulse amplitude; 50mV and the scan rate; 10mV/s in a wide linear concentration range of 0.01ng-100ngmL(-1). Analytical performance and specificity assays were carried out using human serum and different proteins. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. The complex of PAMAM-OH dendrimer with Angiotensin (1–7) prevented the disuse-induced skeletal muscle atrophy in mice

    PubMed Central

    Márquez-Miranda, Valeria; Abrigo, Johanna; Rivera, Juan Carlos; Araya-Durán, Ingrid; Aravena, Javier; Simon, Felipe; Pacheco, Nicolás; González-Nilo, Fernando Danilo; Cabello-Verrugio, Claudio

    2017-01-01

    Angiotensin (1–7) (Ang-(1–7)) is a bioactive heptapeptide with a short half-life and has beneficial effects in several tissues – among them, skeletal muscle – by preventing muscle atrophy. Dendrimers are promising vehicles for the protection and transport of numerous bioactive molecules. This work explored the use of a neutral, non-cytotoxic hydroxyl-terminated poly(amidoamine) (PAMAM-OH) dendrimer as an Ang-(1–7) carrier. Bioinformatics analysis showed that the Ang-(1–7)-binding capacity of the dendrimer presented a 2:1 molar ratio. Molecular dynamics simulation analysis revealed the capacity of neutral PAMAM-OH to protect Ang-(1–7) and form stable complexes. The peptide coverage ability of the dendrimer was between ~50% and 65%. Furthermore, an electrophoretic mobility shift assay demonstrated that neutral PAMAM-OH effectively bonded peptides. Experimental results showed that the Ang-(1–7)/PAMAM-OH complex, but not Ang-(1–7) alone, had an anti-atrophic effect when administered intraperitoneally, as evaluated by muscle strength, fiber diameter, myofibrillar protein levels, and atrogin-1 and MuRF-1 expressions. The results of the Ang-(1–7)/PAMAM-OH complex being intraperitoneally injected were similar to the results obtained when Ang-(1–7) was systemically administered through mini-osmotic pumps. Together, the results suggest that Ang-(1–7) can be protected for PAMAM-OH when this complex is intraperitoneally injected. Therefore, the Ang-(1–7)/PAMAM-OH complex is an efficient delivery method for Ang-(1–7), since it improves the anti-atrophic activity of this peptide in skeletal muscle. PMID:28331320

  19. Development of PEGylated carboxylic acid-modified polyamidoamine dendrimers as bone-targeting carriers for the treatment of bone diseases.

    PubMed

    Yamashita, Shugo; Katsumi, Hidemasa; Hibino, Nozomi; Isobe, Yugo; Yagi, Yumiko; Kusamori, Kosuke; Sakane, Toshiyasu; Yamamoto, Akira

    2017-09-28

    In this study, we aimed to develop a polyethylene glycol (PEG)-conjugated third generation polyamidoamine (PAMAM) dendrimer with multiple carboxylic acids as a bone-targeting carrier for the treatment of bone diseases. We conjugated PAMAM backbones to various carboxylic acids [aspartic acid (Asp), glutamic acid (Glu), succinic acid (Suc), or aconitic acid (Aco)] to obtain four different types of carboxylic acid-modified PAMAMs. PEG was covalently bound to carboxylic acid-modified PAMAMs to obtain PEGylated carboxylic acid-modified PAMAMs. In a tissue distribution study, the amount of 111 In-labeled unmodified PAMAM taken up by the bone after intravenous injection in mice was 11.3%. In contrast, the dose of 111 In-labeled PEG(5)-Asp-PAMAM, PEG(5)-Glu-PAMAM, PEG(5)-Suc-PAMAM, or PEG(5)-Aco-PAMAM that accumulated in the bone after injection was approximately 46.0, 15.6, 22.6, and 24.5%, respectively. The bone clearance rates of 111 In-labeled PEGylated carboxylic acid-modified PAMAMs were proportional to their affinities to hydroxyapatite and Ca 2+ . An intra-bone distribution study showed that fluorescein isothiocyanate-labeled PEG(5)-Asp-PAMAM predominantly accumulated on eroded and quiescent surfaces, a pattern associated with the pathogenesis of bone diseases, such as rheumatoid arthritis and osteoporosis. Our findings indicate that PEG(5)-Asp-PAMAM is a promising drug carrier for efficient drug targeting to the bones. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Transfer of PAMAM dendrimers across human placenta: prospects of its use as drug carrier during pregnancy.

    PubMed

    Menjoge, Anupa R; Rinderknecht, Amber L; Navath, Raghavendra S; Faridnia, Masoud; Kim, Chong J; Romero, Roberto; Miller, Richard K; Kannan, Rangaramanujam M

    2011-03-30

    Dendrimers offer significant potential as nanocarriers for targeted delivery of drugs and imaging agents. The objectives of this study were to evaluate the transplacental transport, kinetics and biodistribution of PAMAM dendrimers ex-vivo across the human placenta in comparison with antipyrine, a freely diffusible molecule, using dually perfused re-circulating term human placental lobules. The purpose of this study is to determine if dendrimers as drug carriers can be used to design drug delivery systems directed at selectively treating either the mother or the fetus. The transplacental transfers of fluorescently (Alexa 488) tagged PAMAM dendrimer (16 kDa) and antipyrine (188 Da) from maternal to fetal circulation were measured using HPLC/dual UV and fluorescent detector (sensitivity of 10 ng/mL for dendrimer and 100 ng/mL for antipyrine respectively). C(max) for the dendrimer-Alexa (DA) in maternal perfusate (T(max)=15 min) was 18 times higher than in the fetal perfusate and never equilibrated with the maternal perfusate during 5.5 h of perfusion (n=4). DA exhibited a measurable but low transplacental transport of 2.26±0.12 μg/mL during 5.5h, where the mean transplacental transfer was 0.84±0.11% of the total maternal concentration and the feto-maternal ratio as percent was 0.073%±0.02. The biochemical and physiological analysis of the placentae perfused with DA demonstrated normal function throughout the perfusion. The immunofluorescence histochemistry confirmed that the biodistribution of DA in perfused placenta was sparsely dispersed, and when noted was principally seen in the inter-villous spaces and outer rim of the villous branches. In a few cases, DA was found internalized and localized in nuclei and cytoplasm of syncytiotrophoblast and inside the villous core; however, DA was mostly absent from the villous capillaries. In conclusion, the PAMAM dendrimers exhibited a low rate of transfer from maternal to the fetal side across the perfused human placenta

  1. MD simulation of the Tat/Cyclin T1/CDK9 complex revealing the hidden catalytic cavity within the CDK9 molecule upon Tat binding.

    PubMed

    Asamitsu, Kaori; Hirokawa, Takatsugu; Okamoto, Takashi

    2017-01-01

    In this study, we applied molecular dynamics (MD) simulation to analyze the dynamic behavior of the Tat/CycT1/CDK9 tri-molecular complex and revealed the structural changes of P-TEFb upon Tat binding. We found that Tat could deliberately change the local flexibility of CycT1. Although the structural coordinates of the H1 and H2 helices did not substantially change, H1', H2', and H3' exhibited significant changes en masse. Consequently, the CycT1 residues involved in Tat binding, namely Tat-recognition residues (TRRs), lost their flexibility with the addition of Tat to P-TEFb. In addition, we clarified the structural variation of CDK9 in complex with CycT1 in the presence or absence of Tat. Interestingly, Tat addition significantly reduced the structural variability of the T-loop, thus consolidating the structural integrity of P-TEFb. Finally, we deciphered the formation of the hidden catalytic cavity of CDK9 upon Tat binding. MD simulation revealed that the PITALRE signature sequence of CDK9 flips the inactive kinase cavity of CDK9 into the active form by connecting with Thr186, which is crucial for its activity, thus presumably recruiting the substrate peptide such as the C-terminal domain of RNA pol II. These findings provide vital information for the development of effective novel anti-HIV drugs with CDK9 catalytic activity as the target.

  2. Polyamidoamine dendrimer conjugated chitosan nanoparticles for the delivery of methotrexate.

    PubMed

    Leng, Zhen-Hua; Zhuang, Qian-Fen; Li, Yan-Chao; He, Zeng; Chen, Zhao; Huang, Sai-Peng; Jia, Hong-Ying; Zhou, Jian-Wei; Liu, Yang; Du, Li-Bo

    2013-10-15

    Encapsulating anticancer drugs to synthetic polymer is a promising approach to improve the efficiency and reduce the side effects of anticancer drugs. In this study, novel chitosan derivatives with polyamidoamine moieties (CS-PAMAM) were synthesized and characterized by morphology, particle size, and zeta potential. Then the anticancer drug-methotrexate-encapsulated CS-PAMAM was prepared by hydrophobic-hydrophilic interactions. The drug release assay showed that the amount of the methotrexate release from CS-PAMAM was pH depended. Meanwhile, the cell viability assay illustrated that CS-PAMAM was suitable for the drug delivery because of its low cytotoxicity on cells. Moreover, our results showed that the CS-PAMAM could significantly improve the cytotoxicity of free methotrexate on A549 cells. These results demonstrate that CS-PAMAM may provide a suitable platform for the water-insoluble drug delivery. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. PML IV/ARF interaction enhances p53 SUMO-1 conjugation, activation, and senescence

    PubMed Central

    Ivanschitz, Lisa; Takahashi, Yuki; Jollivet, Florence; Ayrault, Olivier; Le Bras, Morgane; de Thé, Hugues

    2015-01-01

    Promyelocytic leukemia protein (PML) nuclear bodies (NBs) recruit multiple partners, including p53 and many of its regulators. NBs are believed to facilitate several posttranslational modifications and are key regulators of senescence. PML, the organizer of NBs, is expressed as a number of splice variants that all efficiently recruit p53 partners. However, overexpression of only one of them, PML IV, triggers p53-driven senescence. Here, we show that PML IV specifically binds ARF, a key p53 regulator. Similar to ARF, PML IV enhances global SUMO-1 conjugation, particularly that of p53, resulting in p53 stabilization and activation. ARF interacts with and stabilizes the NB-associated UBC9 SUMO-conjugating enzyme, possibly explaining PML IV-enhanced SUMOylation. These results unexpectedly link two key tumor suppressors, highlighting their convergence for global control of SUMO conjugation, p53 activation, and senescence induction. PMID:26578773

  4. PML IV/ARF interaction enhances p53 SUMO-1 conjugation, activation, and senescence.

    PubMed

    Ivanschitz, Lisa; Takahashi, Yuki; Jollivet, Florence; Ayrault, Olivier; Le Bras, Morgane; de Thé, Hugues

    2015-11-17

    Promyelocytic leukemia protein (PML) nuclear bodies (NBs) recruit multiple partners, including p53 and many of its regulators. NBs are believed to facilitate several posttranslational modifications and are key regulators of senescence. PML, the organizer of NBs, is expressed as a number of splice variants that all efficiently recruit p53 partners. However, overexpression of only one of them, PML IV, triggers p53-driven senescence. Here, we show that PML IV specifically binds ARF, a key p53 regulator. Similar to ARF, PML IV enhances global SUMO-1 conjugation, particularly that of p53, resulting in p53 stabilization and activation. ARF interacts with and stabilizes the NB-associated UBC9 SUMO-conjugating enzyme, possibly explaining PML IV-enhanced SUMOylation. These results unexpectedly link two key tumor suppressors, highlighting their convergence for global control of SUMO conjugation, p53 activation, and senescence induction.

  5. In vitro evaluation of the cytotoxicity and cellular uptake of CMCht/PAMAM dendrimer nanoparticles by glioblastoma cell models

    NASA Astrophysics Data System (ADS)

    Pojo, M.; Cerqueira, S. R.; Mota, T.; Xavier-Magalhães, A.; Ribeiro-Samy, S.; Mano, J. F.; Oliveira, J. M.; Reis, R. L.; Sousa, N.; Costa, B. M.; Salgado, A. J.

    2013-05-01

    Glioblastoma (GBM) is simultaneously the most common and most malignant subtype tumor of the central nervous system. These are particularly dramatic diseases ranking first among all human tumor types for tumor-related average years of life lost and for which curative therapies are not available. Recently, the use of nanoparticles as drug delivery systems (DDS) for tumor treatment has gained particular interest. In an attempt to evaluate the potential of carboxymethylchitosan/poly(amidoamine) (CMCht/PAMAM) dendrimer nanoparticles as a DDS, we aimed to evaluate its cytotoxicity and internalization efficiency in GBM cell models. CMCht/PAMAM-mediated cytotoxicity was evaluated in a GBM cell line (U87MG) and in human immortalized astrocytes (hTERT/E6/E7) by MTS and double-stranded DNA quantification. CMCht/PAMAM internalization was assessed by double fluorescence staining. Both cells lines present similar internalization kinetics when exposed to a high dose (400 μg/mL) of these nanoparticles. However, the internalization rate was higher in tumor GBM cells as compared to immortalized astrocytes when cells were exposed to lower doses (200 μg/mL) of CMCht/PAMAM for short periods (<24 h). After 48 h of exposure, both cell lines present 100 % of internalization efficiency for the tested concentrations. Importantly, short-term exposures (1, 6, 12, 24, and 48 h) did not show cytotoxicity, and long-term exposures (7 days) to CMCht/PAMAM induced only low levels of cytotoxicity in both cell lines ( 20 % of decrease in metabolic activity). The high efficiency and rate of internalization of CMCht/PAMAM we show here suggest that these nanoparticles may be an attractive DDS for brain tumor treatment in the future.

  6. Magnetic layering transitions in a polyamidoamine (PAMAM) dendrimer nano-structure: Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Ziti, S.; Aouini, S.; Labrim, H.; Bahmad, L.

    2017-02-01

    We study the magnetic layering transitions in a polyamidoamine (PAMAM) dendrimer nano-structure, under the effect of an external magnetic field. We examine the magnetic properties, of this model of the spin S=1 Ising ferromagnetic in real nanostructure used in several scientific domains. For T=0, we give and discuss the ground state phase diagrams. At non null temperatures, we applied the Monte Carlo simulations giving important results summarized in the form of the phase diagrams. We also analyzed the effect of varying the external magnetic field, and found the layering transitions in the polyamidoamine (PAMAM) dendrimer nano-structure.

  7. DNA assisted self-assembly of PAMAM dendrimers.

    PubMed

    Mandal, Taraknath; Kumar, Mattaparthi Venkata Satish; Maiti, Prabal K

    2014-10-09

    We report DNA assisted self-assembly of polyamidoamine (PAMAM) dendrimers using all atom Molecular Dynamics (MD) simulations and present a molecular level picture of a DNA-linked PAMAM dendrimer nanocluster, which was first experimentally reported by Choi et al. (Nano Lett., 2004, 4, 391-397). We have used single stranded DNA (ssDNA) to direct the self-assembly process. To explore the effect of pH on this mechanism, we have used both the protonated (low pH) and nonprotonated (high pH) dendrimers. In all cases studied here, we observe that the DNA strand on one dendrimer unit drives self-assembly as it binds to the complementary DNA strand present on the other dendrimer unit, leading to the formation of a DNA-linked dendrimer dimeric complex. However, this binding process strongly depends on the charge of the dendrimer and length of the ssDNA. We observe that the complex with a nonprotonated dendrimer can maintain a DNA length dependent inter-dendrimer distance. In contrast, for complexes with a protonated dendrimer, the inter-dendrimer distance is independent of the DNA length. We attribute this observation to the electrostatic complexation of a negatively charged DNA strand with the positively charged protonated dendrimer.

  8. Preferential and Increased Uptake of Hydroxyl-Terminated PAMAM Dendrimers by Activated Microglia in Rabbit Brain Mixed Glial Culture.

    PubMed

    Alnasser, Yossef; Kambhampati, Siva P; Nance, Elizabeth; Rajbhandari, Labchan; Shrestha, Shiva; Venkatesan, Arun; Kannan, Rangaramanujam M; Kannan, Sujatha

    2018-04-27

    Polyamidoamine (PAMAM) dendrimers are multifunctional nanoparticles with tunable physicochemical features, making them promising candidates for targeted drug delivery in the central nervous system (CNS). Systemically administered dendrimers have been shown to localize in activated glial cells, which mediate neuroinflammation in the CNS. These dendrimers delivered drugs specifically to activated microglia, producing significant neurological improvements in multiple brain injury models, including in a neonatal rabbit model of cerebral palsy. To gain further insight into the mechanism of dendrimer cell uptake, we utilized an in vitro model of primary glial cells isolated from newborn rabbits to assess the differences in hydroxyl-terminated generation 4 PAMAM dendrimer (D4-OH) uptake by activated and non-activated glial cells. We used fluorescently-labelled D4-OH (D-Cy5) as a tool for investigating the mechanism of dendrimer uptake. D4-OH PAMAM dendrimer uptake was determined by fluorescence quantification using confocal microscopy and flow cytometry. Our results indicate that although microglial cells in the mixed cell population demonstrate early uptake of dendrimers in this in vitro system, activated microglia take up more dendrimer compared to resting microglia. Astrocytes showed delayed and limited uptake. We also illustrated the differences in mechanism of uptake between resting and activated microglia using different pathway inhibitors. Both resting and activated microglia primarily employed endocytotic pathways, which are enhanced in activated microglial cells. Additionally, we demonstrated that hydroxyl terminated dendrimers are taken up by primary microglia using other mechanisms including pinocytosis, caveolae, and aquaporin channels for dendrimer uptake.

  9. Functional Substitution by TAT-Utrophin in Dystrophin-Deficient Mice

    PubMed Central

    Sonnemann, Kevin J.; Heun-Johnson, Hanke; Turner, Amy J.; Baltgalvis, Kristen A.; Lowe, Dawn A.; Ervasti, James M.

    2009-01-01

    Background The loss of dystrophin compromises muscle cell membrane stability and causes Duchenne muscular dystrophy and/or various forms of cardiomyopathy. Increased expression of the dystrophin homolog utrophin by gene delivery or pharmacologic up-regulation has been demonstrated to restore membrane integrity and improve the phenotype in the dystrophin-deficient mdx mouse. However, the lack of a viable therapy in humans predicates the need to explore alternative methods to combat dystrophin deficiency. We investigated whether systemic administration of recombinant full-length utrophin (Utr) or ΔR4-21 “micro” utrophin (μUtr) protein modified with the cell-penetrating TAT protein transduction domain could attenuate the phenotype of mdx mice. Methods and Findings Recombinant TAT-Utr and TAT-μUtr proteins were expressed using the baculovirus system and purified using FLAG-affinity chromatography. Age-matched mdx mice received six twice-weekly intraperitoneal injections of either recombinant protein or PBS. Three days after the final injection, mice were analyzed for several phenotypic parameters of dystrophin deficiency. Injected TAT-μUtr transduced all tissues examined, integrated with members of the dystrophin complex, reduced serum levels of creatine kinase (11,290±920 U versus 5,950±1,120 U; PBS versus TAT), the prevalence of muscle degeneration/regeneration (54%±5% versus 37%±4% of centrally nucleated fibers; PBS versus TAT), the susceptibility to eccentric contraction-induced force drop (72%±5% versus 40%±8% drop; PBS versus TAT), and increased specific force production (9.7±1.1 N/cm2 versus 12.8±0.9 N/cm2; PBS versus TAT). Conclusions These results are, to our knowledge, the first to establish the efficacy and feasibility of TAT-utrophin-based constructs as a novel direct protein-replacement therapy for the treatment of skeletal and cardiac muscle diseases caused by loss of dystrophin. PMID:19478831

  10. Implementation of retrofit BMPs in a suburban watershed via economic incentives

    EPA Science Inventory

    Urban stormwater is typically conveyed to centralized infrastructure, and there is great potential for reducing stormwater runoff quantity through decentralization. In this case we hypothesize that smaller-scale retrofit best management practices (BMPs) such as rain gardens and r...

  11. The HIV-1 viral protein Tat increases glutamate and decreases GABA exocytosis from human and mouse neocortical nerve endings.

    PubMed

    Musante, Veronica; Summa, Maria; Neri, Elisa; Puliti, Aldamaria; Godowicz, Tomasz T; Severi, Paolo; Battaglia, Giuseppe; Raiteri, Maurizio; Pittaluga, Anna

    2010-08-01

    Human immunodeficiency virus-1 (HIV-1)-encoded transactivator of transcription (Tat) potentiated the depolarization-evoked exocytosis of [(3)H]D-aspartate ([(3)H]D-ASP) from human neocortical terminals. The metabotropic glutamate (mGlu) 1 receptor antagonist 7-(hydroxyimino)cyclopropa[b]chromen-1a-carboxylate ethyl ester (CPCCOEt) prevented this effect, whereas the mGlu5 receptor antagonist 2-methyl-6-(phenylethynyl) pyridine hydrochloride (MPEP) was ineffective. Western blot analysis showed that human neocortex synaptosomes possess mGlu1 and mGlu5 receptors. Tat potentiated the K(+)-evoked release of [(3)H]D-ASP or of endogenous glutamate from mouse neocortical synaptosomes in a CPCCOEt-sensitive and MPEP-insensitive manner. Deletion of mGlu1 receptors (crv4/crv4 mice) or mGlu5 receptors (mGlu5(-/-)mouse) silenced Tat effects. Tat enhanced inositol 1,4,5-trisphosphate production in human and mouse neocortical synaptosomes, consistent with the involvement of group I mGlu receptors. Tat inhibited the K(+)-evoked release of [(3)H]gamma-aminobutyric acid ([(3)H]GABA) from human synaptosomes and that of endogenous GABA or [(3)H]GABA from mouse nerve terminals; the inhibition was insensitive to CPCCOEt or MPEP. Tat-induced effects were retained by Tat(37-72) but not by Tat(48-85). In mouse neocortical slices, Tat facilitated the K(+)- and the veratridine-induced release of [(3)H]D-ASP in a CPCCOEt-sensitive manner and was ineffective in crv4/crv4 mouse slices. These observations are relevant to the comprehension of the pathophysiological effects of Tat in central nervous system and may suggest new potential therapeutic approaches to the cure of HIV-1-associated dementia.

  12. Comparison of MRI properties between derivatized DTPA and DOTA gadolinium-dendrimer conjugates.

    PubMed

    Nwe, K; Bernardo, M; Regino, C A S; Williams, M; Brechbiel, M W

    2010-08-15

    In this report we directly compare the in vivo and in vitro MRI properties of gadolinium-dendrimer conjugates of derivatized acyclic diethylenetriamine-N,N',N',N'',N''-pentaacetic acid (1B4M-DTPA) and macrocyclic 1,4,7,10-tetraazacyclododecane-N,N',N'',N'''-tetraacetic acid (C-DOTA). The metal-ligand chelates were pre-formed in alcohol prior to conjugation to the generation 4 PAMAM dendrimer (G4D), and the dendrimer-based agents were purified by Sephadex(R) G-25 column. The analysis and SE-HPLC data indicated chelate to dendrimer ratios of 30:1 and 28:1, respectively. Molar relaxivity measured at pH 7.4, 22 degrees C, and 3T are comparable (29.5 vs 26.9 mM(-1)s(-1)), and both conjugates are equally viable as MRI contrast agents based on the images obtained. The macrocyclic agent however exhibits a faster rate of clearance in vivo (t(1/2)=16 vs 29 min). Our conclusion is that the macrocyclic-based agent is the more suitable agent for in vivo use for these reasons combined with kinetic inertness associated with the Gd(III) DOTA complex stability properties. Published by Elsevier Ltd.

  13. E-DNA sensor of Mycobacterium tuberculosis based on electrochemical assembly of nanomaterials (MWCNTs/PPy/PAMAM).

    PubMed

    Miodek, Anna; Mejri, Nawel; Gomgnimbou, Michel; Sola, Christophe; Korri-Youssoufi, Hafsa

    2015-09-15

    Two-step electrochemical patterning methods have been employed to elaborate composite nanomaterials formed with multiwalled carbon nanotubes (MWCNTs) coated with polypyrrole (PPy) and redox PAMAM dendrimers. The nanomaterial has been demonstrated as a molecular transducer for electrochemical DNA detection. The nanocomposite MWCNTs-PPy has been formed by wrapping the PPy film on MWCNTs during electrochemical polymerization of pyrrole on the gold electrode. The MWCNTs-PPy layer was modified with PAMAM dendrimers of fourth generation (PAMAM G4) with covalent bonding by electro-oxidation method. Ferrocenyl groups were then attached to the surface as a redox marker. The electrochemical properties of the nanomaterial (MWCNTs-PPy-PAMAM-Fc) were studied using both square wave voltammetry and cyclic voltammetry to demonstrate efficient electron transfer. The nanomaterial shows high performance in the electrochemical detection of DNA hybridization leading to a variation in the electrochemical signal of ferrocene with a detection limit of 0.3 fM. Furthermore, the biosensor demonstrates ability for sensing DNA of rpoB gene of Mycobacterium tuberculosis in real PCR samples. Developed biosensor was suitable for detection of sequences with a single nucleotide polymorphism (SNP) T (TCG/TTG), responsible for resistance of M. tuberculosis to rifampicin drug, and discriminating them from wild-type samples without such mutation. This shows potential of such systems for further application in pathogens diagnostic and therapeutic purpose.

  14. Tat peptide and hexadecylphosphocholine introduction into pegylated liposomal doxorubicin: An in vitro and in vivo study on drug cellular delivery, release, biodistribution and antitumor activity.

    PubMed

    Teymouri, Manouchehr; Badiee, Ali; Golmohammadzadeh, Shiva; Sadri, Kayvan; Akhtari, Javad; Mellat, Mostafa; Nikpoor, Amin Reza; Jaafari, Mahmoud Reza

    2016-09-10

    We have investigated the co-addition of hexadecylphosphocholine (HePC) and a Tat derived peptide (Tat), coupled to Maleimide-PEG2000-DSPE pegylated liposomal doxorubicin (PLD) in many respects, including drug and liposome cellular delivery, drug release, biodistribution, in vivo cell delivery and antitumor activity. The liposomes were HePC-free and -containing liposomes, from which liposomes with 25, 50, 100 and 200 numbers of Tat/liposome were prepared. Similarly, DiI-C18 (3)-model liposomes (DiI-L and DiI-HePC-L) were prepared. HePC and Tat increased cellular delivery of Dox and cytotoxicity in B16F0 melanoma and C26 colon carcinoma cells. Tat enhanced liposome-cell interaction and caused Dox burst release. HePC and Tat reduced the serum retention time of liposomal Dox, slightly and dramatically, respectively. In comparison, Tat-liposomes enhanced Dox delivery to liver and spleen cells 3h post-injection. Likewise, Dox content of these tissues and tumor was lower at 24h. The naïve liposomes retarded tumor growth more effectively and their related median survival time of the treated C26 bearing BALB/c mice was longer than those of Tat-liposomes (MST>45days versus MST<38days). Overall liposomes exhibiting sustained drug release and negligible cell interaction were more suitable delivery systems in targeting cancerous tumors and suppressing their growth. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Differences in toxicity of anionic and cationic PAMAM and PPI dendrimers in zebrafish embryos and cancer cell lines.

    PubMed

    Bodewein, Lambert; Schmelter, Frank; Di Fiore, Stefano; Hollert, Henner; Fischer, Rainer; Fenske, Martina

    2016-08-15

    Dendrimers are an emerging class of polymeric nanoparticles with beneficial biomedical applications like early diagnostics, in vitro gene transfection or controlled drug delivery. However, the potential toxic impact of exposure on human health or the environment is often inadequately defined. Thus, polyamidoamine (PAMAM) dendrimers of generations G3.0, 3.5, 4.0, 4.5 and 5.0 and polypropylenimine (PPI) dendrimers G3.0, 4.0 and 5.0 were tested in zebrafish embryos for 96h and human cancer cell lines for 24h, to assess and compare developmental in vivo toxicity with cytotoxicity. The zebrafish embryo toxicity of cationic PAMAM and PPI dendrimers increased over time, with EC50 values ranging from 0.16 to just below 1.7μM at 24 and 48hpf. The predominant effects were mortality, plus reduced heartbeat and blood circulation for PPI dendrimers. Apoptosis in the embryos increased in line with the general toxicity concentration-dependently. Hatch and dechorionation of the embryos increased the toxicity, suggesting a protective role of the chorion. Lower generation dendrimers were more toxic in the embryos whereas the toxicity in the HepG2 and DU145 cell lines increased with increasing generation of cationic PAMAMs and PPI dendrimers. HepG2 were less sensitive than DU145 cells, with IC50 values≥402μM (PAMAMs) and ≤240μM (PPIs) for HepG2 and ≤13.24μM (PAMAMs) and ≤12.84μM (PPIs) for DU145. Neither in fish embryos nor cells toxicity thresholds were determinable for anionic PAMAM G3.5 and G4.5. The study demonstrated that the cytotoxicity underestimated the in-vivo toxicity of the dendrimers in the fish embryos. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Fatty acid conjugation enhances the activities of antimicrobial peptides.

    PubMed

    Li, Zhining; Yuan, Penghui; Xing, Meng; He, Zhumei; Dong, Chuanfu; Cao, Yongchang; Liu, Qiuyun

    2013-04-01

    Antimicrobial peptides are small molecules that play a crucial role in innate immunity in multi-cellular organisms, and usually expressed and secreted constantly at basal levels to prevent infection, but local production can be augmented upon an infection. The clock is ticking as rising antibiotic abuse has led to the emergence of many drug resistance bacteria. Due to their broad spectrum antibiotic and antifungal activities as well as anti-viral and anti-tumor activities, efforts are being made to develop antimicrobial peptides into future microbial agents. This article describes some of the recent patents on antimicrobial peptides with fatty acid conjugation. Potency and selectivity of antimicrobial peptide can be modulated with fatty acid tails of variable length. Interaction between membranes and antimicrobial peptides was affected by fatty acid conjugation. At concentrations above the critical miscelle concentration (CMC), propensity of solution selfassembly hampered binding of the peptide to cell membranes. Overall, fatty acid conjugation has enhanced the activities of antimicrobial peptides, and occasionally it rendered inactive antimicrobial peptides to be bioactive. Antimicrobial peptides can not only be used as medicine but also as food additives.

  17. Novel mechanism and factor for regulation by HIV-1 Tat.

    PubMed Central

    Zhou, Q; Sharp, P A

    1995-01-01

    Tat regulation of human immunodeficiency virus (HIV) transcription is unique because of its specificity for an RNA target, TAR, and its ability to increase the efficiency of elongation by polymerase. A reconstituted reaction that is Tat-specific and TAR-dependent for activation of HIV transcription has been used to identify and partially purify a cellular activity that is required for trans-activation by Tat, but not by other activators. In the reaction, Tat stimulates the efficiency of elongation by polymerase, whereas Sp1 and other DNA sequence-specific transcription factors activate the rate of initiation. Furthermore, while TATA binding protein (TBP)-associated factors (TAFs) in the TFIID complex are required for activation by transcription factors, they are dispensable for Tat function. Thus, Tat acts through a novel mechanism, which is mediated by a specific host cellular factor, to stimulate HIV-1 gene expression. Images PMID:7835343

  18. Dendrimer-based Nanoparticle for Dye Sensitized Solar Cells with Improved Efficiency.

    PubMed

    Ghann, William; Kang, Hyeonggon; Uddin, Jamal; Gonawala, Sunalee J; Mahatabuddin, Sheikh; Ali, Meser M

    2018-01-01

    Dye sensitized solar cells were fabricated with DyLight680 (DL680) dye and its corresponding europium conjugated dendrimer, DL680-Eu-G5PAMAM, to study the effect of europium on the current and voltage characteristics of the DL680 dye sensitized solar cell. The dye samples were characterized by using Absorption Spectroscopy, Emission Spectroscopy, Fluorescence lifetime and Fourier Transform Infrared measurements. Transmission electron microscopy imaging was carried out on the DL680-Eu-G5PAMAM dye and DL680-Eu-G5PAMAM dye sensitized titanium dioxide nanoparticles to analyze the size of the dye molecules and examine the interaction of the dye with titanium dioxide nanoparticles. The DL680-Eu-G5PAMAM dye sensitized solar cells demonstrated an enhanced solar-to-electric energy conversion of 0.32% under full light illumination (100 mWcm -2 , AM 1.5 Global) in comparison with that of DL680 dye sensitized cells which recorded an average solar-to-electric energy conversion of only 0.19%. The improvement of the efficiency could be due to the presence of the europium that enhances the propensity of dye to absorb sunlight.

  19. Solid surface fluorescence immunosensor for ultrasensitive detection of hepatitis B virus surface antigen using PAMAM/CdTe@CdS QDs nanoclusters.

    PubMed

    Babamiri, Bahareh; Hallaj, Rahman; Salimi, Abdollah

    2018-06-20

    In the present study, we constructed an ultrasensitive solid surface fluorescence-immunosensor based on highly luminescent CdTe@CdS-PAMAM structures as nanoprobe for determination of HBsAg by monitoring fluorescence intensity. This strategy was achieved by using PAMAM as a signal amplifier; the PAMAM dendrimer with the many functional amine groups can amplify the fluorescence signal of QDs by covalent attachment of CdTe@CdS on PAMAM and hence, improve the sensitivity of the proposed method significantly. A sandwich type immunosensor was formed after the addition of HBsAg and the PAMAM-QD-Ab 2 , respectively. Under optimal conditions, the designed immunosensor demonstrates a good analytical performance for the HBsAg detection in an excellent linear range from 5 fg ml -1 to 0.15 ng ml -1 with the detection limit (LOD) of 0.6 fg ml -1 at a S/N ratio of 3. In addition, the analysis of human serum samples shows that the fluorescent immunoassay has the great potential for early diagnosis of hepatitis B and can be used for the detection of other tumor markers in clinical applications.

  20. FBI-1 can stimulate HIV-1 Tat activity and is targeted to a novel subnuclear domain that includes the Tat-P-TEFb-containing nuclear speckles.

    PubMed

    Pendergrast, P Shannon; Wang, Chen; Hernandez, Nouria; Huang, Sui

    2002-03-01

    FBI-1 is a cellular POZ-domain-containing protein that binds to the HIV-1 LTR and associates with the HIV-1 transactivator protein Tat. Here we show that elevated levels of FBI-1 specifically stimulate Tat activity and that this effect is dependent on the same domain of FBI-1 that mediates Tat-FBI-1 association in vivo. FBI-1 also partially colocalizes with Tat and Tat's cellular cofactor, P-TEFb (Cdk9 and cyclin T1), at the splicing-factor-rich nuclear speckle domain. Further, a less-soluble population of FBI-1 distributes in a novel peripheral-speckle pattern of localization as well as in other nuclear regions. This distribution pattern is dependent on the FBI-1 DNA binding domain, on the presence of cellular DNA, and on active transcription. Taken together, these results suggest that FBI-1 is a cellular factor that preferentially associates with active chromatin and that can specifically stimulate Tat-activated HIV-1 transcription.

  1. FBI-1 Can Stimulate HIV-1 Tat Activity and Is Targeted to a Novel Subnuclear Domain that Includes the Tat-P-TEFb—containing Nuclear Speckles

    PubMed Central

    Pendergrast, P. Shannon; Wang, Chen; Hernandez, Nouria; Huang, Sui

    2002-01-01

    FBI-1 is a cellular POZ-domain–containing protein that binds to the HIV-1 LTR and associates with the HIV-1 transactivator protein Tat. Here we show that elevated levels of FBI-1 specifically stimulate Tat activity and that this effect is dependent on the same domain of FBI-1 that mediates Tat-FBI-1 association in vivo. FBI-1 also partially colocalizes with Tat and Tat's cellular cofactor, P-TEFb (Cdk9 and cyclin T1), at the splicing-factor–rich nuclear speckle domain. Further, a less-soluble population of FBI-1 distributes in a novel peripheral-speckle pattern of localization as well as in other nuclear regions. This distribution pattern is dependent on the FBI-1 DNA binding domain, on the presence of cellular DNA, and on active transcription. Taken together, these results suggest that FBI-1 is a cellular factor that preferentially associates with active chromatin and that can specifically stimulate Tat-activated HIV-1 transcription. PMID:11907272

  2. High-yield nontoxic gene transfer through conjugation of the CM₁₈-Tat₁₁ chimeric peptide with nanosecond electric pulses.

    PubMed

    Salomone, Fabrizio; Breton, Marie; Leray, Isabelle; Cardarelli, Francesco; Boccardi, Claudia; Bonhenry, Daniel; Tarek, Mounir; Mir, Lluis M; Beltram, Fabio

    2014-07-07

    We report a novel nontoxic, high-yield, gene delivery system based on the synergistic use of nanosecond electric pulses (NPs) and nanomolar doses of the recently introduced CM18-Tat11 chimeric peptide (sequence of KWKLFKKIGAVLKVLTTGYGRKKRRQRRR, residues 1-7 of cecropin-A, 2-12 of melittin, and 47-57 of HIV-1 Tat protein). This combined use makes it possible to drastically reduce the required CM18-Tat11 concentration and confines stable nanopore formation to vesicle membranes followed by DNA release, while no detectable perturbation of the plasma membrane is observed. Two different experimental assays are exploited to quantitatively evaluate the details of NPs and CM18-Tat11 cooperation: (i) cytofluorimetric analysis of the integrity of synthetic 1,2-dioleoyl-sn-glycero-3-phosphocholine giant unilamellar vesicles exposed to CM18-Tat11 and NPs and (ii) the in vitro transfection efficiency of a green fluorescent protein-encoding plasmid conjugated to CM18-Tat11 in the presence of NPs. Data support a model in which NPs induce membrane perturbation in the form of transient pores on all cellular membranes, while the peptide stabilizes membrane defects selectively within endosomes. Interestingly, atomistic molecular dynamics simulations show that the latter activity can be specifically attributed to the CM18 module, while Tat11 remains essential for cargo binding and vector subcellular localization. We argue that this result represents a paradigmatic example that can open the way to other targeted delivery protocols.

  3. Gemcitabine-based polymer-drug conjugate for enhanced anticancer effect in colon cancer.

    PubMed

    Liang, Tie-Jun; Zhou, Zhong-Mei; Cao, Ying-Qing; Ma, Ming-Ze; Wang, Xiao-Jun; Jing, Kai

    2016-11-20

    In this study, we have demonstrated gemcitabine (GEM)-conjugated amphiphilic biodegradable polymeric drug carriers. Our aim was to increase the chemotherapeutic potential of GEM in colon cancer by forming a unique polymer-drug conjugates. The polymer-drug conjugate micelles were nanosized with a typical spherical shape. The GEM-conjugated methoxy poly(ethylene glycol)-poly(lactic acid) (GEM-PL) exhibited a controlled release of drug in both the pH conditions. The developed GEM-PL efficiently killed the HT29 cancers cells in a typical time dependent manner. The clonogenic assay further confirmed the superior anticancer effect of GEM-PL which showed least number of colonies. GEM-PL formulation exhibited a significantly higher apoptosis of cancer cells (∼25%) when stained using Annexin-V/PI kit. Conjugation of GEM to the mPEG-PLA significantly enhanced the blood circulation potential in animal model compared to that of free GEM. GEM-PL could prevent quick elimination of the drug and can provide sufficient time for the greater accumulation of GEM at the tumor sites. GEM-PL showed a remarkable tumor regression effect as evident from the lowest tumor volume in HT-29 containing tumor model. Overall, mPEG-PLA/GEM conjugates showed the potential of polymer-based drug targeting and might hold significant clinical potential in the treatment of colon cancers. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Non-Natural Linker Configuration in 2,6-Dipeptidyl-Anthraquinones Enhances the Inhibition of TAR RNA Binding/Annealing Activities by HIV-1 NC and Tat Proteins.

    PubMed

    Sosic, Alice; Saccone, Irene; Carraro, Caterina; Kenderdine, Thomas; Gamba, Elia; Caliendo, Giuseppe; Corvino, Angela; Di Vaio, Paola; Fiorino, Ferdinando; Magli, Elisa; Perissutti, Elisa; Santagada, Vincenzo; Severino, Beatrice; Spada, Valentina; Fabris, Dan; Frecentese, Francesco; Gatto, Barbara

    2018-06-12

    The HIV-1 nucleocapsid (NC) protein represents an excellent molecular target for the development of anti-retrovirals by virtue of its well-characterized chaperone activities, which play pivotal roles in essential steps of the viral life cycle. Our ongoing search for candidates able to impair NC binding/annealing activities led to the identification of peptidyl-anthraquinones as a promising class of nucleic acid ligands. Seeking to elucidate the inhibition determinants and increase the potency of this class of compounds, we have now explored the effects of chirality in the linker connecting the planar nucleus to the basic side chains. We show here that the non-natural linker configuration imparted unexpected TAR RNA targeting properties to the 2,6-peptidyl-anthraquinones and significantly enhanced their potency. Even if the new compounds were able to interact directly with the NC protein, they manifested a consistently higher affinity for the TAR RNA substrate and their TAR-binding properties mirrored their ability to interfere with NC-TAR interactions. Based on these findings, we propose that the viral Tat protein, sharing the same RNA substrate but acting in distinct phases of the viral life cycle, constitutes an additional druggable target for this class of peptidyl-anthraquinones. The inhibition of Tat-TAR interaction for the test compounds correlated again with their TAR-binding properties, while simultaneously failing to demonstrate any direct Tat-binding capabilities. These considerations highlighted the importance of TAR RNA in the elucidation of their inhibition mechanism, rather than direct protein inhibition. We have therefore identified anti-TAR compounds with dual in vitro inhibitory activity on different viral proteins, demonstrating that it is possible to develop multitarget compounds capable of interfering with processes mediated by the interactions of this essential RNA domain of HIV-1 genome with NC and Tat proteins.

  5. Nanodiamond-DGEA peptide conjugates for enhanced delivery of doxorubicin to prostate cancer

    PubMed Central

    Hwang, Patrick; McIntosh, Roberus; Green, Hadiyah N; Jun, Ho-Wook; Dean, Derrick

    2014-01-01

    Summary The field of nanomedicine has emerged as an approach to enhance the specificity and efficacy of cancer treatments as stand-alone therapies and in combination with standard chemotherapeutic treatment regimens. The current standard of care for metastatic cancer, doxorubicin (DOX), is presented with challenges, namely toxicity due to a lack of specificity and targeted delivery. Nano-enabled targeted drug delivery systems can provide an avenue to overcome these issues. Nanodiamonds (ND), in particular, have been researched over the past five years for use in various drug delivery systems but minimal work has been done that incorporates targeting capability. In this study, a novel targeted drug delivery system for bone metastatic prostate cancer was developed, characterized, and evaluated in vitro. NDs were conjugated with the Asp–Gly–Glu–Ala (DGEA) peptide to target α2β1 integrins over-expressed in prostate cancers during metastasis. To facilitate drug delivery, DOX was adsorbed to the surface of the ND-DGEA conjugates. Successful preparation of the ND-DGEA conjugates and the ND-DGEA+DOX system was confirmed with transmission electron microscopy, hydrodynamic size, and zeta potential measurements. Since traditional DOX treatment regimens lack specificity and increased toxicity to normal tissues, the ND-DGEA conjugates were designed to distinguish between cells that overexpress α2β1 integrin, bone metastatic prostate cancers cells (PC3), and cells that do not, human mesenchymal stem cells (hMSC). Utilizing the ND-DGEA+DOX system, the efficacy of 1 µg/mL and 2 µg/mL DOX doses increased from 2.5% to 12% cell death and 11% to 34% cell death, respectively. These studies confirmed that the delivery and efficacy of DOX were enhanced by ND-DGEA conjugates. Thus, the targeted ND-DGEA+DOX system provides a novel approach for decreasing toxicity and drug doses. PMID:25161829

  6. Oxidative Stress Is Associated with Neuroinflammation in Animal Models of HIV-1 Tat Neurotoxicity

    PubMed Central

    Louboutin, Jean-Pierre; Agrawal, Lokesh; Reyes, Beverly A. S.; Van Bockstaele, Elisabeth J.; Strayer, David S.

    2014-01-01

    HIV-1 trans-acting protein Tat, an essential protein for viral replication, is a key mediator of neurotoxicity. If Tat oxidant injury and neurotoxicity have been described, consequent neuroinflammation is less understood. Rat caudate-putamens (CPs) were challenged with Tat, with or without prior rSV40-delivered superoxide dismutase or glutathione peroxidase. Tat injection caused oxidative stress. Administration of Tat in the CP induced an increase in numbers of Iba-1- and CD68-positive cells, as well as an infiltration of astrocytes. We also tested the effect of more protracted Tat exposure on neuroinflammation using an experimental model of chronic Tat exposure. SV(Tat): a recombinant SV40-derived gene transfer vector was inoculated into the rat CP, leading to chronic expression of Tat, oxidative stress, and ongoing apoptosis, mainly located in neurons. Intra-CP SV(Tat) injection induced an increase in microglia and astrocytes, suggesting that protracted Tat production increased neuroinflammation. SV(SOD1) or SV(GPx1) significantly reduced neuroinflammation following Tat administration into the CP. Thus, Tat-induced oxidative stress, CNS injury, neuron loss and inflammation may be mitigated by antioxidant gene delivery. PMID:26784879

  7. Biological activity of Tat (47-58) peptide on human pathogenic fungi.

    PubMed

    Jung, Hyun Jun; Park, Yoonkyung; Hahm, Kyung-Soo; Lee, Dong Gun

    2006-06-23

    Tat (47-58) peptide, a positively charged Arginine-rich peptide derived from HIV-1 regulatory protein Tat, is known for a peptidic delivery factor as a cell-penetrating peptide on mammalian cells. In this study, antifungal effect and its mode of action of Tat peptide were investigated on fungal cells. The results indicate that Tat peptide exhibits antifungal activity against pathogenic fungal cells without hemolytic effect on human erythrocytes. To understand the mechanism(s) of Tat peptide, the cellular distribution of the peptide was investigated. Tat peptide internalized in the fungal cells without any damage to cell membrane when examined using an artificial liposome (PC/cholesterol; 10:1, w/w). Moreover, flow cytometry analysis exhibited the uptake of Tat peptide by energy- and salt-independent pathway, and confocal scanning microscopy displayed that this peptide accumulated in the nucleus of fungal cells rapidly without any impediment by time or temperature, which generally influence on the viral infections. After penetration into the nuclear, the peptide affected the process of cell cycle of Candida albicans through the arrest at G1 phase.

  8. Sequential delivery of TAT-HSP27 and VEGF using microsphere/hydrogel hybrid systems for therapeutic angiogenesis.

    PubMed

    Shin, Seung-Hwa; Lee, Jangwook; Lim, Kwang Suk; Rhim, Taiyoun; Lee, Sang Kyung; Kim, Yong-Hee; Lee, Kuen Yong

    2013-02-28

    Ischemic disease is associated with high mortality and morbidity rates, and therapeutic angiogenesis via systemic or local delivery of protein drugs is one potential approach to treat the disease. In this study, we hypothesized that combined delivery of TAT-HSP27 (HSP27 fused with transcriptional activator) and VEGF could enhance the therapeutic efficacy in an ischemic mouse model, and that sequential release could be critical in therapeutic angiogenesis. Alginate hydrogels containing TAT-HSP27 as an anti-apoptotic agent were prepared, and porous PLGA microspheres loaded with VEGF as an angiogenic agent were incorporated into the hydrogels to prepare microsphere/hydrogel hybrid delivery systems. Sequential in vitro release of TAT-HSP27 and VEGF was achieved by the hybrid systems. TAT-HSP27 was depleted from alginate gels in 7 days, while VEGF was continually released for 28 days. The release rate of VEGF was attenuated by varying the porous structures of PLGA microspheres. Sequential delivery of TAT-HSP27 and VEGF was critical to protect against muscle degeneration and fibrosis, as well as to promote new blood vessel formation in the ischemic site of a mouse model. This approach to controlling the sequential release behaviors of multiple drugs could be useful in the design of novel drug delivery systems for therapeutic angiogenesis. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Sensitivity-Enhancement of FRET Immunoassays by Multiple-Antibody Conjugation on Quantum Dots.

    PubMed

    Annio, Giacomo; Jennings, Travis; Tagit, Oya; Hildebrandt, Niko

    2018-05-23

    Quantum dots (QDs) are not only advantageous for color-tuning, improved brightness, and high stability, but their nanoparticle surfaces also allow for the attachment of many biomolecules. Because IgG antibodies (ABs) are in the same size range of biocompatible QDs and the AB orientation after conjugation to the QD is often random, it is difficult to predict if few or many ABs per QD will lead to an efficient AB-QD conjugate. This is particularly true for homogeneous Förster resonance energy transfer (FRET) sandwich immunoassays, for which the ABs on the QD must bind a biomarker that needs to bind a second AB-FRET-conjugate. Here, we investigate the performance of Tb-to-QD FRET immunoassays against total prostate specific antigen (TPSA) by changing the number of ABs per QD while leaving all the other assay components unchanged. We first characterize the AB-QD conjugation by various spectroscopic, microscopic, and chromatographic techniques and then quantify the TPSA immunoassay performance regarding sensitivity, limit of detection, and dynamic range. Our results show that an increasing conjugation ratio leads to significantly enhanced FRET immunoassays. These findings will be highly important for developing QD-based immunoassays in which the concentrations of both ABs and QDs can significantly influence the assay performance.

  10. Escherichia coli twin arginine (Tat) mutant translocases possessing relaxed signal peptide recognition specificities.

    PubMed

    Kreutzenbeck, Peter; Kröger, Carsten; Lausberg, Frank; Blaudeck, Natascha; Sprenger, Georg A; Freudl, Roland

    2007-03-16

    The twin arginine (Tat) secretion pathway allows the translocation of folded proteins across the cytoplasmic membrane of bacteria. Tat-specific signal peptides contain a characteristic amino acid motif ((S/T)RRXFLK) including two highly conserved consecutive arginine residues that are thought to be involved in the recognition of the signal peptides by the Tat translocase. Here, we have analyzed the specificity of Tat signal peptide recognition by using a genetic approach. Replacement of the two arginine residues in a Tat-specific precursor protein by lysine-glutamine resulted in an export-defective mutant precursor that was no longer accepted by the wild-type translocase. Selection for restored export allowed for the isolation of Tat translocases possessing single mutations in either the amino-terminal domain of TatB or the first cytosolic domain of TatC. The mutant Tat translocases still efficiently accepted the unaltered precursor protein, indicating that the substrate specificity of the translocases was not strictly changed; rather, the translocases showed an increased tolerance toward variations of the amino acids occupying the positions of the twin arginine residues in the consensus motif of a Tat signal peptide.

  11. Functional Tat transport of unstructured, small, hydrophilic proteins.

    PubMed

    Richter, Silke; Lindenstrauss, Ute; Lücke, Christian; Bayliss, Richard; Brüser, Thomas

    2007-11-16

    The twin-arginine translocation (Tat) system is a protein translocation system that is adapted to the translocation of folded proteins across biological membranes. An understanding of the folding requirements for Tat substrates is of fundamental importance for the elucidation of the transport mechanism. We now demonstrate for the first time Tat transport for fully unstructured proteins, using signal sequence fusions to naturally unfolded FG repeats from the yeast Nsp1p nuclear pore protein. The transport of unfolded proteins becomes less efficient with increasing size, consistent with only a single interaction between the system and the substrate. Strikingly, the introduction of six residues from the hydrophobic core of a globular protein completely blocked translocation. Physiological data suggest that hydrophobic surface patches abort transport at a late stage, most likely by membrane interactions during transport. This study thus explains the observed restriction of the Tat system to folded globular proteins on a molecular level.

  12. Coating of silicone with mannoside-PAMAM dendrimers to enhance formation of non-pathogenic Escherichia coli biofilms against colonization of uropathogens.

    PubMed

    Zhu, Zhiling; Yu, Fei; Chen, Haoqing; Wang, Jun; Lopez, Analette I; Chen, Quan; Li, Siheng; Long, Yuyu; Darouiche, Rabih O; Hull, Richard A; Zhang, Lijuan; Cai, Chengzhi

    2017-12-01

    Bacterial interference using non-pathogenic Escherichia coli 83972 is a novel strategy for preventing catheter-associated urinary tract infection (CAUTI). Crucial to the success of this strategy is to establish a high coverage and stable biofilm of the non-pathogenic bacteria on the catheter surface. However, this non-pathogenic strain is sluggish to form biofilms on silicone as the most widely used material for urinary catheters. We have addressed this issue by modifying the silicone catheter surfaces with mannosides that promote the biofilm formation, but the stability of the non-pathogenic biofilms challenged by uropathogens over long-term remains a concern. Herein, we report our study on the stability of the non-pathogenic biofilms grown on propynylphenyl mannoside-modified silicone. The result shows that 94% non-pathogenic bacteria were retained on the modified silicone under >0.5 Pa shear stress. After being challenged by three multidrug-resistant uropathogenic isolates in artificial urine for 11 days, large amounts (>4 × 10 6  CFU cm -2 ) of the non-pathogenic bacteria remained on the surfaces. These non-pathogenic biofilms reduced the colonization of the uropathogens by >3.2-log. In bacterial interference, the non-pathogenic Escherichia coli strains are sluggish to form biofilms on the catheter surfaces, due to rapid removal by urine flow. We have demonstrated a solution to this bottleneck by pre-functionalization of mannosides on the silicone surfaces to promote E. coli biofilm formation. A pre-conjugated high affinity propynylphenyl mannoside ligand tethered to the nanometric amino-terminated poly(amido amine) (PAMAM) dendrimer is used for binding to a major E. coli adhesin FimH. It greatly improves the efficiency for the catheter modification, the non-pathogenic biofilm coverage, as well as the (long-term) stability for prevention of uropathogen infections. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  13. HIV-1 Tat-based vaccines: from basic science to clinical trials.

    PubMed

    Fanales-Belasio, Emanuele; Cafaro, Aurelio; Cara, Andrea; Negri, Donatella R M; Fiorelli, Valeria; Butto, Stefano; Moretti, Sonia; Maggiorella, Maria Teresa; Baroncelli, Silvia; Michelini, Zuleika; Tripiciano, Antonella; Sernicola, Leonardo; Scoglio, Arianna; Borsetti, Alessandra; Ridolfi, Barbara; Bona, Roberta; Ten Haaft, Peter; Macchia, Iole; Leone, Pasqualina; Pavone-Cossut, Maria Rosaria; Nappi, Filomena; Vardas, Eftyhia; Magnani, Mauro; Laguardia, Elena; Caputo, Antonella; Titti, Fausto; Ensoli, Barbara

    2002-09-01

    Vaccination against human immunodeficiency virus (HIV)-1 infection requires candidate antigen(s) (Ag) capable of inducing an effective, broad, and long-lasting immune response against HIV-1 despite mutation events leading to differences in virus clades. The HIV-1 Tat protein is more conserved than envelope proteins, is essential in the virus life cycle and is expressed very early upon virus entry. In addition, both humoral and cellular responses to Tat have been reported to correlate with a delayed progression to disease in both humans and monkeys. This suggested that Tat is an optimal target for vaccine development aimed at controlling virus replication and blocking disease onset. Here are reviewed the results of our studies including the effects of the Tat protein on monocyte-derived dendritic cells (MDDCs) that are key antigen-presenting cells (APCs), and the results from vaccination trials with both the Tat protein or tat DNA in monkeys. We provide evidence that the HIV-1 Tat protein is very efficiently taken up by MDDCs and promotes T helper (Th)-1 type immune responses against itself as well as other Ag. In addition, a Tat-based vaccine elicits an immune response capable of controlling primary infection of monkeys with the pathogenic SHIV89.6P at its early stages allowing the containment of virus spread. Based on these results and on data of Tat conservation and immune cross-recognition in field isolates from different clades, phase I clinical trials are being initiated in Italy for both preventive and therapeutic vaccination.

  14. AN INTEGRATED DECISION SUPPORT FRAMEWORK FOR PLACEMENT OF BMPS IN URBAN-WATERSHEDS

    EPA Science Inventory

    This paper will present an on-going development of an integrated decision support framework (IDSF) for cost-effective placement of best management practices (BMPs) for managing wet weather flows (WWF) in urban watersheds. This decision tool will facilitate the selection and plac...

  15. Biological activity of Tat (47-58) peptide on human pathogenic fungi

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jung, Hyun Jun; Park, Yoonkyung; Department of Biotechnology, Chosun University, 375 Seosuk-dong, Kwangju 501-750

    2006-06-23

    Tat (47-58) peptide, a positively charged Arginine-rich peptide derived from HIV-1 regulatory protein Tat, is known for a peptidic delivery factor as a cell-penetrating peptide on mammalian cells. In this study, antifungal effect and its mode of action of Tat peptide were investigated on fungal cells. The results indicate that Tat peptide exhibits antifungal activity against pathogenic fungal cells without hemolytic effect on human erythrocytes. To understand the mechanism(s) of Tat peptide, the cellular distribution of the peptide was investigated. Tat peptide internalized in the fungal cells without any damage to cell membrane when examined using an artificial liposome (PC/cholesterol;more » 10:1, w/w). Moreover, flow cytometry analysis exhibited the uptake of Tat peptide by energy- and salt-independent pathway, and confocal scanning microscopy displayed that this peptide accumulated in the nucleus of fungal cells rapidly without any impediment by time or temperature, which generally influence on the viral infections. After penetration into the nuclear, the peptide affected the process of cell cycle of Candida albicans through the arrest at G1 phase.« less

  16. Comparison of MRI properties between derivatized DTPA and DOTA gadolinium-dendrimer conjugates

    PubMed Central

    Nwe, K.; Bernardo, M; Regino, C. A. S.; Williams, M; Brechbiel, M. W.

    2010-01-01

    In this report we directly compare the in vivo and in vitro MRI properties of gadolinium-dendrimer conjugates of derivatized acyclic diethylenetriamine-N,N’,N’,N’’, N’’-pentaacetic acid (1B4M-DTPA) and macrocyclic 1,4,7,10-tetraazacyclododecane-N,N’,N’’,N’’’-tetraacetic acid (C-DOTA). The metal-ligand chelates were pre-formed in alcohol prior to conjugation to the generation 4 PAMAM dendrimer (G4D), and the dendrimer-based agents were purified by Sephadex® G-25 column. The analysis and SE-HPLC data indicated chelate to dendrimer ratios of 30:1 and 28:1 respectively. Molar relaxivity measured at pH 7.4, 22°C, and 3T are comparable (29.5 vs. 26.9 mM−1s−1), and both conjugates are equally viable as MRI contrast agents based on the images obtained. The macrocyclic agent however exhibits a faster rate of clearance in vivo (t1/2 = 16 vs. 29 min.). Our conclusion is that the macrocyclic-based agent is the more suitable agent for in vivo use for these reasons combined with kinetic inertness associated with the Gd(III) DOTA complex stability properties. PMID:20663676

  17. Creatine protects against mitochondrial dysfunction associated with HIV-1 Tat-induced neuronal injury

    PubMed Central

    Stevens, Patrick R.; Gawryluk, Jeremy W.; Hui, Liang; Chen, Xuesong; Geiger, Jonathan D.

    2015-01-01

    HIV-1 infected individuals are living longer but experiencing a prevalence rate of over 50% for HIV-1 associated neurocognitive disorders (HAND) for which no effective treatment is available. Viral and cellular factors secreted by HIV-1 infected cells leads to neuronal injury and HIV-1 Tat continues to be implicated in the pathogenesis of HAND. Here we tested the hypothesis that creatine protected against HIV-1 Tat-induced neuronal injury by preventing mitochondrial bioenergetic crisis and/or redox catastrophe. Creatine blocked HIV-1 Tat1-72-induced increases in neuron cell death and synaptic area loss. Creatine protected against HIV-1 Tat-induced decreases in ATP. Creatine and creatine plus HIV-1 Tat increased cellular levels of creatine, and creatine plus HIV-1 Tat further decreased ratios of phosphocreatine to creatine observed with creatine or HIV-1 Tat treatments alone. Additionally, creatine protected against HIV-1 Tat-induced mitochondrial hypopolarization and HIV-1 Tat-induced mitochondrial permeability transition pore opening. Thus, creatine may be a useful adjunctive therapy against HAND. PMID:25613139

  18. Creatine protects against mitochondrial dysfunction associated with HIV-1 Tat-induced neuronal injury.

    PubMed

    Stevens, Patrick R; Gawryluk, Jeremy W; Hui, Liang; Chen, Xuesong; Geiger, Jonathan D

    2014-01-01

    HIV-1 infected individuals live longer but experience a prevalence rate of over 50% for HIV-1 associated neurocognitive disorders (HAND) for which no effective treatment is available. Viral and cellular factors secreted by HIV-1 infected cells lead to neuronal injury and HIV-1 Tat continues to be implicated in the pathogenesis of HAND. Here we tested the hypothesis that creatine protected against HIV-1 Tat-induced neuronal injury by preventing mitochondrial bioenergetic crisis and/or redox catastrophe. Creatine blocked HIV-1 Tat(1-72)-induced increases in neuron cell death and synaptic area loss. Creatine protected against HIV-1 Tat-induced decreases in ATP. Creatine and creatine plus HIV-1 Tat increased cellular levels of creatine, and creatine plus HIV-1 Tat further decreased ratios of phosphocreatine to creatine observed with creatine or HIV-1 Tat treatments alone. Additionally, creatine protected against HIV-1 Tat-induced mitochondrial hypopolarization and HIV-1 Tat-induced mitochondrial permeability transition pore opening. Thus, creatine may be a useful adjunctive therapy against HAND.

  19. Effective post-construction best management practices (BMPs) to infiltrate and retain stormwater runoff.

    DOT National Transportation Integrated Search

    2017-06-01

    Performance analyses of newly constructed linear BMPs in retaining stormwater run-off from 1 in. precipitation in : post-construction highway applications and urban areas were conducted using numerical simulations and field : observation. A series of...

  20. Protective effects of intraperitoneal injection of TAT-SOD against focal cerebral ischemia/reperfusion injury in rats.

    PubMed

    Ye, Nanhui; Liu, Shutao; Lin, Yanyun; Rao, Pingfan

    2011-12-05

    The intracellular superoxide anion has been shown to be involved in brain injury. TAT-Superoxide dismutase (TAT-SOD) can be transduced across the cell membrane to scavenge superoxide. This protein's unique properties make it a promising therapeutic candidate to attenuate cerebral damage. In this study, we sought further the understanding of the fusion protein's cerebral protective effects and the mechanism which is exerted in these effects. Male Sprague Dawley rats (n=100, 230±20 g) were divided randomly into five experimental groups: a sham group, a cerebral Ischemia/Reperfusion (I/R) group treated with saline (20 ml/Kg, i.p.), and three cerebral I/R groups treated with TAT-SOD (25 KU/ml/Kg, i.p.) at either 2h before I/R, 2h after I/R or 4h after I/R. Cerebral I/R injury was facilitated by inducing ischemia for two hours followed by 24h reperfusion. The levels of SOD, Malondialdehyde (MDA), and ATPase in cerebral tissues were determined. The apoptotic indexes were evaluated, and apoptosis genes were analyzed immunohistochemically. TAT-SOD treatment significantly increased cerebral SOD and ATPase activities, decreased MDA content, and remarkably reduced apoptosis indexes. TAT-SOD treatments 2h before or after I/R significantly reduced caspase-3 and bax proteins and boosted bcl-2 protein, while the treatment at 4h after I/R showed no influence on the three proteins. TAT-SOD treatment effectively enhanced cerebral antioxidant ability, reduced lipid peroxidation, preserved mitochondrial ATPase and thus inhibited nerve cell apoptosis. The effective treatment window extended from 2h before to 2h after I/R. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Development and evaluation of best management practices (BMPS) for highway runoff pollution control.

    DOT National Transportation Integrated Search

    2013-12-01

    Polluted storm water runoff is commonly transported through Municipal Separate Storm Sewer Systems (MS4s). Currently, : sufficient information is not available on development and evaluation of Best Management Practices (BMPs) within an MS4 : boundary...

  2. Impaired plant growth and development caused by human immunodeficiency virus type 1 Tat.

    PubMed

    Cueno, Marni E; Hibi, Yurina; Imai, Kenichi; Laurena, Antonio C; Okamoto, Takashi

    2010-10-01

    Previous attempts to express the human immunodeficiency virus 1 (HIV-1) Tat (trans-activator of transcription) protein in plants resulted in a number of physiological abnormalities, such as stunted growth and absence of seed formation, that could not be explained. In the study reported here, we expressed Tat in tomato and observed phenotypic abnormalities, including stunted growth, absence of root formation, chlorosis, and plant death, as a result of reduced cytokinin levels. These reduced levels were ascribed to a differentially expressed CKO35 in Tat-bombarded tomato. Of the two CKO isoforms that are naturally expressed in tomato, CKO43 and CKO37, only the expression of CKO37 was affected by Tat. Our analysis of the Tat confirmed that the Arg-rich and RGD motifs of Tat have functional relevance in tomato and that independent mutations at these motifs caused inhibition of the differentially expressed CKO isoform and the extracellular secretion of the Tat protein, respectively, in our Tat-bombarded tomato samples.

  3. Integrated agro-hydrological modelling and economic analysis of BMPs to support decision making and policy design

    NASA Astrophysics Data System (ADS)

    Maroy, E.; Rousseau, A. N.; Hallema, D. W.

    2012-12-01

    With recent efforts and increasing control over point source pollution of freshwater, agricultural non-point pollution sources have become responsible for most of sediment and nutrient loads in North American water systems. Environmental and agricultural agencies have recognised the need for reducing eutrophication and have developed various policies to compel or encourage producers to best management practices (BMPs). Addressing diffuse pollution is challenging considering the complex and cumulative nature of transport processes, high variability in space and time, and prohibitive costs of distributed water quality monitoring. Many policy options exist to push producers to adopt environmentally desirable behaviour while keeping their activity viable, and ensure equitable costs to consumers and tax payers. On the one hand, economic instruments (subsidies, taxes, water quality markets) are designed to maximize cost-effectiveness, so that farmers optimize their production for maximum profit while implementing BMPs. On the other hand, emission standards or regulation of inputs are often easier and less costly to implement. To study economic and environmental impacts of such policies, a distributed modelling approach is needed to deal with the complexity of the system and the large environmental and socio-economic data requirements. Our objective is to integrate agro-hydrological modelling and economic analysis to support decision and policy making processes of BMP implementation. The integrated modelling system GIBSI was developed in an earlier study within the Canadian WEBs project (Watershed Evaluation of BMPs) to evaluate the influence of BMPs on water quality. The case study involved 30 and 15 year records of discharge and water quality measurements respectively, in the Beaurivage River watershed (Quebec, Canada). GIBSI provided a risk-based overview of the impact of BMPs (including vegetated riparian buffer strips, precision slurry application, conversion to

  4. Purification of SUMO conjugating enzymes and kinetic analysis of substrate conjugation

    PubMed Central

    Yunus, Ali A.; Lima, Christopher D.

    2009-01-01

    SUMO conjugation to protein substrates requires the concerted action of a dedicated E2 ubiquitin conjugation enzyme (Ubc9) and associated E3 ligases. Although Ubc9 can directly recognize and modify substrate lysine residues that occur within a consensus site for SUMO modification, E3 ligases can redirect specificity and enhance conjugation rates during SUMO conjugation in vitro and in vivo. In this chapter, we will describe methods utilized to purify SUMO conjugating enzymes and model substrates which can be used for analysis of SUMO conjugation in vitro. We will also describe methods to extract kinetic parameters during E3-dependent or E3-independent substrate conjugation. PMID:19107417

  5. SjTat-TPI facilitates adaptive T-cell responses and reduces hepatic pathology during Schistosoma japonicum infection in BALB/c mice.

    PubMed

    Zhang, Wenyue; Luo, Xiaofeng; Zhang, Fan; Zhu, Yuxiao; Yang, Bingya; Hou, Min; Xu, Zhipeng; Yu, Chuanxin; Chen, Yingying; Chen, Lin; Ji, Minjun

    2015-12-30

    Schistosomiasis is a kind of parasitic zoonoses which causes serious damage to public health and social development. China is one of the countries most affected by Schistosoma japonicum and an effective vaccine is still needed. In this study, we adopted Tat-mediated protein transduction technology to investigate the impact of different antigen presented approaches on host's immune response and the potential protection against Schistosoma japonicum infection. We successfully constructed the recombinant S. japonicum triosephosphate isomerase, Tat-TPI, as a vaccine candidate. Whether injected with Tat-TPI in foot pad or vaccinated with Tat-TPI in the back subcutaneously for three times, the draining popliteal lymph nodes and spleen both developed a stronger CD8(+)T response (Tc1) in mice. Not only that, but it also helped CD4(+)T cells to produce more IFN-γ than TPI immunisation. In addition, it could boost IgG production, especially IgG1 subclass. Most importantly, Tat-TPI immunisation led to the significant smaller area of a single egg granuloma in the livers as compared with TPI-vaccinated or control groups. However, the anti-infection efficiency induced by Tat-TPI was still restricted. This study indicated that immunisation with Tat-fused TPI could contribute to enhance CD4(+)T-cell response and decrease hepatic egg granulomatous area after S. japonicum infection though it did not achieve our expected protection against Schistosoma japonicum infection. The optimal vaccine strategy warrants further research.

  6. [Estimation of nonpoint source pollutant loads and optimization of the best management practices (BMPs) in the Zhangweinan River basin].

    PubMed

    Xu, Hua-Shan; Xu, Zong-Xue; Liu, Pin

    2013-03-01

    One of the key techniques in establishing and implementing TMDL (total maximum daily load) is to utilize hydrological model to quantify non-point source pollutant loads, establish BMPs scenarios, reduce non-point source pollutant loads. Non-point source pollutant loads under different years (wet, normal and dry year) were estimated by using SWAT model in the Zhangweinan River basin, spatial distribution characteristics of non-point source pollutant loads were analyzed on the basis of the simulation result. During wet years, total nitrogen (TN) and total phosphorus (TP) accounted for 0.07% and 27.24% of the total non-point source pollutant loads, respectively. Spatially, agricultural and residential land with steep slope are the regions that contribute more non-point source pollutant loads in the basin. Compared to non-point source pollutant loads with those during the baseline period, 47 BMPs scenarios were set to simulate the reduction efficiency of different BMPs scenarios for 5 kinds of pollutants (organic nitrogen, organic phosphorus, nitrate nitrogen, dissolved phosphorus and mineral phosphorus) in 8 prior controlled subbasins. Constructing vegetation type ditch was optimized as the best measure to reduce TN and TP by comparing cost-effective relationship among different BMPs scenarios, and the costs of unit pollutant reduction are 16.11-151.28 yuan x kg(-1) for TN, and 100-862.77 yuan x kg(-1) for TP, which is the most cost-effective measure among the 47 BMPs scenarios. The results could provide a scientific basis and technical support for environmental protection and sustainable utilization of water resources in the Zhangweinan River basin.

  7. Electrospun Blends of Gelatin and Gelatin-dendrimer Conjugates as a Wound Dressing and Drug Delivery Platform

    PubMed Central

    Dongargaonkar, Alpana A.; Bowlin, Gary L.; Yang, Hu

    2013-01-01

    In this work, we report a new nanofiber construct based on electrospun blends of gelatin and gelatin-dendrimer conjugates. Highly branched star-shaped polyamidoamine (PAMAM) dendrimer G3.5 was covalently conjugated to gelatin via EDC/NHS chemistry. Blends of gelatin and gelatin-dendrimer conjugates mixed with various loading levels of silver acetate (0, 0.83, 1.65, and 3.30% w/w) were successfully electrospun into nanofiber constructs (NCs). The NCs were further converted into semi-interpenetrating networks (sIPNs) with photoreactive polyethylene glycol diacrylate (Mn=575 gmol-1) (PEG DA575). They were characterized in terms of fiber morphology, diameter, pore size, permeability, degradation, and mechanical properties. The resulting sIPN NCs retained nanofiber morphology, possessed similar fiber diameters to counterpart NCs, and gained improved structural stability. The sIPN NCs also showed good swelling capacity owing to porous structures and were permeable to aqueous solutions. Silvercontaining sIPN NCs allowed sustained silver release and showed antimicrobial activity against two common types of pathogens—Staphylococcus aureus and Pseudomonas aeruginosa. Incorporation of dendrimers into the gelatin nanofibers through covalent conjugation not only expands drug loading capacity of nanofiber constructs but provides tremendous flexibility for developing multifunctional electrospun dressing materials. PMID:24127747

  8. BMPs regulate msx gene expression in the dorsal neuroectoderm of Drosophila and vertebrates by distinct mechanisms.

    PubMed

    Esteves, Francisco F; Springhorn, Alexander; Kague, Erika; Taylor, Erika; Pyrowolakis, George; Fisher, Shannon; Bier, Ethan

    2014-09-01

    In a broad variety of bilaterian species the trunk central nervous system (CNS) derives from three primary rows of neuroblasts. The fates of these neural progenitor cells are determined in part by three conserved transcription factors: vnd/nkx2.2, ind/gsh and msh/msx in Drosophila melanogaster/vertebrates, which are expressed in corresponding non-overlapping patterns along the dorsal-ventral axis. While this conserved suite of "neural identity" gene expression strongly suggests a common ancestral origin for the patterning systems, it is unclear whether the original regulatory mechanisms establishing these patterns have been similarly conserved during evolution. In Drosophila, genetic evidence suggests that Bone Morphogenetic Proteins (BMPs) act in a dosage-dependent fashion to repress expression of neural identity genes. BMPs also play a dose-dependent role in patterning the dorsal and lateral regions of the vertebrate CNS, however, the mechanism by which they achieve such patterning has not yet been clearly established. In this report, we examine the mechanisms by which BMPs act on cis-regulatory modules (CRMs) that control localized expression of the Drosophila msh and zebrafish (Danio rerio) msxB in the dorsal central nervous system (CNS). Our analysis suggests that BMPs act differently in these organisms to regulate similar patterns of gene expression in the neuroectoderm: repressing msh expression in Drosophila, while activating msxB expression in the zebrafish. These findings suggest that the mechanisms by which the BMP gradient patterns the dorsal neuroectoderm have reversed since the divergence of these two ancient lineages.

  9. BMPs Regulate msx Gene Expression in the Dorsal Neuroectoderm of Drosophila and Vertebrates by Distinct Mechanisms

    PubMed Central

    Esteves, Francisco F.; Taylor, Erika; Pyrowolakis, George; Fisher, Shannon; Bier, Ethan

    2014-01-01

    In a broad variety of bilaterian species the trunk central nervous system (CNS) derives from three primary rows of neuroblasts. The fates of these neural progenitor cells are determined in part by three conserved transcription factors: vnd/nkx2.2, ind/gsh and msh/msx in Drosophila melanogaster/vertebrates, which are expressed in corresponding non-overlapping patterns along the dorsal-ventral axis. While this conserved suite of “neural identity” gene expression strongly suggests a common ancestral origin for the patterning systems, it is unclear whether the original regulatory mechanisms establishing these patterns have been similarly conserved during evolution. In Drosophila, genetic evidence suggests that Bone Morphogenetic Proteins (BMPs) act in a dosage-dependent fashion to repress expression of neural identity genes. BMPs also play a dose-dependent role in patterning the dorsal and lateral regions of the vertebrate CNS, however, the mechanism by which they achieve such patterning has not yet been clearly established. In this report, we examine the mechanisms by which BMPs act on cis-regulatory modules (CRMs) that control localized expression of the Drosophila msh and zebrafish (Danio rerio) msxB in the dorsal central nervous system (CNS). Our analysis suggests that BMPs act differently in these organisms to regulate similar patterns of gene expression in the neuroectoderm: repressing msh expression in Drosophila, while activating msxB expression in the zebrafish. These findings suggest that the mechanisms by which the BMP gradient patterns the dorsal neuroectoderm have reversed since the divergence of these two ancient lineages. PMID:25210771

  10. The evolution of subtype B HIV-1 tat in the Netherlands during 1985-2012.

    PubMed

    van der Kuyl, Antoinette C; Vink, Monique; Zorgdrager, Fokla; Bakker, Margreet; Wymant, Chris; Hall, Matthew; Gall, Astrid; Blanquart, François; Berkhout, Ben; Fraser, Christophe; Cornelissen, Marion

    2018-05-02

    For the production of viral genomic RNA, HIV-1 is dependent on an early viral protein, Tat, which is required for high-level transcription. The quantity of viral RNA detectable in blood of HIV-1 infected individuals varies dramatically, and a factor involved could be the efficiency of Tat protein variants to stimulate RNA transcription. HIV-1 virulence, measured by set-point viral load, has been observed to increase over time in the Netherlands and elsewhere. Investigation of tat gene evolution in clinical isolates could discover a role of Tat in this changing virulence. A dataset of 291 Dutch HIV-1 subtype B tat genes, derived from full-length HIV-1 genome sequences from samples obtained between 1985-2012, was used to analyse the evolution of Tat. Twenty-two patient-derived tat genes, and the control Tat HXB2 were analysed for their capacity to stimulate expression of an LTR-luciferase reporter gene construct in diverse cell lines, as well as for their ability to complement a tat-defective HIV-1 LAI clone. Analysis of 291 historical tat sequences from the Netherlands showed ample amino acid (aa) variation between isolates, although no specific mutations were selected for over time. Of note, however, the encoded protein varied its length over the years through the loss or gain of stop codons in the second exon. In transmission clusters, a selection against the shorter Tat86 ORF was apparent in favour of the more common Tat101 version, likely due to negative selection against Tat86 itself, although random drift, transmission bottlenecks, or linkage to other variants could also explain the observation. There was no correlation between Tat length and set-point viral load; however, the number of non-intermediate variants in our study was small. In addition, variation in the length of Tat did not significantly change its capacity to stimulate transcription. From 1985 till 2012, variation in the length of the HIV-1 subtype B tat gene is increasingly found in the Dutch

  11. Synthesis and evaluation of gadolinium complexes based on PAMAM as MRI contrast agents.

    PubMed

    Yan, Guo-Ping; Hu, Bin; Liu, Mai-Li; Li, Li-Yun

    2005-03-01

    Diethylenetriaminepentaacetic acid (DTPA) and pyridoxamine (PM) were incorporated into the amine groups on the surface of ammonia-core poly(amidoamine) dendrimers (PAMAM, Generation 2.0-5.0) to obtain dendritic ligands. These dendritic ligands were reacted with gadolinium chloride to yield the corresponding dendritic gadolinium (Gd) complexes. The dendritic ligands and their gadolinium complexes were characterized by(1)HNMR, IR, UV and elemental analysis. Relaxivity studies showed that the dendritic gadolinium complexes possessed higher relaxation effectiveness compared with the clinically used Gd-DTPA. After administration of the dendritic gadolinium complexes (0.09 mmol kg(-1) ) to rats, magnetic resonance imaging of the liver indicated that the dendritic gadolinium complexes containing pyridoxamine groups enhanced the contrast of the MR images of the liver, provided prolonged intravascular duration and produced highly contrasted visualization of blood vessels.

  12. Novel Targeting Approach for Breast Cancer Gene Therapy

    DTIC Science & Technology

    2010-09-01

    haloperidol and ibogaine)- conjugated polyamidoamine (PAMAM) dendrimers Poly(amidoamine) (PAMAM) dendrimers of 3.5 generation with carboxylate surface...Mukherjee A, Prasad TK, Rao NM, Banerjee R. Haloperidol associated stealth liposomes. A potent carrier for delivering genes to human breast cancer cells

  13. Frequency-domain beamformers using conjugate gradient techniques for speech enhancement.

    PubMed

    Zhao, Shengkui; Jones, Douglas L; Khoo, Suiyang; Man, Zhihong

    2014-09-01

    A multiple-iteration constrained conjugate gradient (MICCG) algorithm and a single-iteration constrained conjugate gradient (SICCG) algorithm are proposed to realize the widely used frequency-domain minimum-variance-distortionless-response (MVDR) beamformers and the resulting algorithms are applied to speech enhancement. The algorithms are derived based on the Lagrange method and the conjugate gradient techniques. The implementations of the algorithms avoid any form of explicit or implicit autocorrelation matrix inversion. Theoretical analysis establishes formal convergence of the algorithms. Specifically, the MICCG algorithm is developed based on a block adaptation approach and it generates a finite sequence of estimates that converge to the MVDR solution. For limited data records, the estimates of the MICCG algorithm are better than the conventional estimators and equivalent to the auxiliary vector algorithms. The SICCG algorithm is developed based on a continuous adaptation approach with a sample-by-sample updating procedure and the estimates asymptotically converge to the MVDR solution. An illustrative example using synthetic data from a uniform linear array is studied and an evaluation on real data recorded by an acoustic vector sensor array is demonstrated. Performance of the MICCG algorithm and the SICCG algorithm are compared with the state-of-the-art approaches.

  14. PAMAM dendrimer-baculovirus nanocomplex for microencapsulated adipose stem cell-gene therapy: in vitro and in vivo functional assessment.

    PubMed

    Paul, Arghya; Shao, Wei; Abbasi, Sana; Shum-Tim, Dominique; Prakash, Satya

    2012-09-04

    The present study aims to develop a new stem cell based gene delivery system consisting of human adipose tissue derived stem cells (hASCs) genetically modified with self-assembled nanocomplex of recombinant baculovirus and PAMAM dendrimer (Bac-PAMAM) to overexpress the vascular endothelial growth factor (VEGF). Cells were enveloped into branched PEG surface functionalized polymeric microcapsules for efficient transplantation. In vitro analysis confirmed efficient transduction of hASCs expressing 7.65 ± 0.86 ng functionally active VEGF per 10(6) microencapsulated hASCs (ASC-VEGF). To determine the potential of the developed system, chronically infarcted rat hearts were treated with either empty microcapsules (MC), microencapsulated hASCs expressing MGFP reporter protein (MC+ASC-MGFP), or MC+ASC-VEGF, and analyzed for 10 weeks. Post-transplantation data confirmed higher myocardial VEGF expressions with significantly enhanced neovasculature in the MC+ASC-VEGF group. In addition, the cardiac performance, as measured by percentage ejection fraction, also improved significantly in the MC+ASC-VEGF group (48.6 ± 6.1%) compared to that in MC+ASC-MGFP (38.8 ± 5.3%) and MC groups (31.5 ± 3.3%). Collectively, these data demonstrate the feasibility of this system for improved stem cell therapy applications.

  15. Targeted iron oxide nanoparticles for the enhancement of radiation therapy.

    PubMed

    Hauser, Anastasia K; Mitov, Mihail I; Daley, Emily F; McGarry, Ronald C; Anderson, Kimberly W; Hilt, J Zach

    2016-10-01

    To increase the efficacy of radiation, iron oxide nanoparticles can be utilized for their ability to produce reactive oxygen species (ROS). Radiation therapy promotes leakage of electrons from the electron transport chain and leads to an increase in mitochondrial production of the superoxide anion which is converted to hydrogen peroxide by superoxide dismutase. Iron oxide nanoparticles can then catalyze the reaction from hydrogen peroxide to the highly reactive hydroxyl radical. Therefore, the overall aim of this project was to utilize iron oxide nanoparticles conjugated to a cell penetrating peptide, TAT, to escape lysosomal encapsulation after internalization by cancer cells and catalyze hydroxyl radical formation. It was determined that TAT functionalized iron oxide nanoparticles and uncoated iron oxide nanoparticles resulted in permeabilization of the lysosomal membranes. Additionally, mitochondrial integrity was compromised when A549 cells were treated with both TAT-functionalized nanoparticles and radiation. Pre-treatment with TAT-functionalized nanoparticles also significantly increased the ROS generation associated with radiation. A long term viability study showed that TAT-functionalized nanoparticles combined with radiation resulted in a synergistic combination treatment. This is likely due to the TAT-functionalized nanoparticles sensitizing the cells to subsequent radiation therapy, because the nanoparticles alone did not result in significant toxicities. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Targeted iron oxide nanoparticles for the enhancement of radiation therapy

    PubMed Central

    Hauser, Anastasia K.; Mitov, Mihail I.; Daley, Emily F.; McGarry, Ronald C.; Anderson, Kimberly W.; Hilt, J. Zach

    2017-01-01

    To increase the efficacy of radiation, iron oxide nanoparticles can be utilized for their ability to produce reactive oxygen species (ROS). Radiation therapy promotes leakage of electrons from the electron transport chain and leads to an increase in mitochondrial production of the superoxide anion which is converted to hydrogen peroxide by superoxide dismutase. Iron oxide nanoparticles can then catalyze the reaction from hydrogen peroxide to the highly reactive hydroxyl radical. Therefore, the overall aim of this project was to utilize iron oxide nanoparticles conjugated to a cell penetrating peptide, TAT, to escape lysosomal encapsulation after internalization by cancer cells and catalyze hydroxyl radical formation. It was determined that TAT functionalized iron oxide nanoparticles and uncoated iron oxide nanoparticles resulted in permeabilization of the lysosomal membranes. Additionally, mitochondrial integrity was compromised when A549 cells were treated with both TAT-functionalized nanoparticles and radiation. Pre-treatment with TAT-functionalized nanoparticles also significantly increased the ROS generation associated with radiation. A long term viability study showed that TAT-functionalized nanoparticles combined with radiation resulted in a synergistic combination treatment. This is likely due to the TAT-functionalized nanoparticles sensitizing the cells to subsequent radiation therapy, because the nanoparticles alone did not result in significant toxicities. PMID:27521615

  17. DETAILED SOIL SURVEYS AND DISTRIBUTED BMPS FOR STORMWATER QUANTITY CONTROL. MAKING THE CONNECTION

    EPA Science Inventory

    Best management practices (BMPs) that operate on the basis of infiltration can be used at the parcel-level to reduce the volume of stormwater runoff that would otherwise erode landscapes and disrupt stream ecosystems. Contemporary urban and ex-urban landscapes have a substantiall...

  18. DEVELOPMENT OF A DECISION SUPPORT FRAMEWORK FOR PLACEMENT OF BMPS IN URBAN-WATERSHEDS

    EPA Science Inventory

    This paper will present an on-going development of an integrated decision support framework (IDSF) for cost-effective placement of best management practices (BMPs) for managing wet weather flows (WWF) in urban watersheds. This decision tool will facilitate the selection and plac...

  19. The preventive phase I trial with the HIV-1 Tat-based vaccine.

    PubMed

    Ensoli, Barbara; Fiorelli, Valeria; Ensoli, Fabrizio; Lazzarin, Adriano; Visintini, Raffaele; Narciso, Pasquale; Di Carlo, Aldo; Tripiciano, Antonella; Longo, Olimpia; Bellino, Stefania; Francavilla, Vittorio; Paniccia, Giovanni; Arancio, Angela; Scoglio, Arianna; Collacchi, Barbara; Ruiz Alvarez, Maria Josè; Tambussi, Giuseppe; Tassan Din, Chiara; Palamara, Guido; Latini, Alessandra; Antinori, Andrea; D'Offizi, Gianpiero; Giuliani, Massimo; Giulianelli, Marina; Carta, Maria; Monini, Paolo; Magnani, Mauro; Garaci, Enrico

    2009-12-11

    The native HIV-1 Tat protein was chosen as vaccine candidate for phase I clinical trials based on its role in the natural infection and AIDS pathogenesis, on the association of Tat-specific immune response with the asymptomatic stage as well as on its sequence conservation among HIV clades. A randomized, double blind, placebo-controlled phase I study (ISS P-001) was conducted in healthy adult volunteers without identifiable risk of HIV infection. Tat was administered 5 times monthly, subcute in alum or intradermic alone at 7.5 microg, 15 microg or 30 microg, respectively (ClinicalTrials.gov identifier: NCT00529698). Vaccination with Tat resulted to be safe and well tolerated (primary endpoint) both locally and systemically. In addition, Tat induced both Th1 and Th2 type specific immune responses in all subjects (secondary endpoint) with a wide spectrum of functional antibodies that are rarely seen in natural infection, providing key information for further clinical development of the Tat vaccine candidate.

  20. Effectiveness of forestry BMPS for stream crossing sediment reduction using rainfall simulation

    Treesearch

    Brian C. Morris; M. Chad Bolding; W. Michael Aust

    2015-01-01

    Recent decisions by the United States Supreme Court and United States Environmental Protection Agency (EPA) have re-emphasized the importance of forestry best management practices (BMPs) at stream crossings. Stream crossings are potential major sources of sediment due to their direct connectivity between the potential erosion source and the stream, which eliminates...

  1. Multivalent conjugates of basic fibroblast growth factor enhance in vitro proliferation and migration of endothelial cells.

    PubMed

    Zbinden, Aline; Browne, Shane; Altiok, Eda I; Svedlund, Felicia L; Jackson, Wesley M; Healy, Kevin E

    2018-05-01

    Growth factors hold great promise for regenerative therapies. However, their clinical use has been halted by poor efficacy and rapid clearance from tissue, necessitating the delivery of extremely high doses to achieve clinical effectiveness which has raised safety concerns. Thus, strategies to either enhance growth factor activity at low doses or to increase their residence time within target tissues are necessary for clinical success. In this study, we generated multivalent conjugates (MVCs) of basic fibroblast growth factor (bFGF), a key growth factor involved in angiogenesis and wound healing, to hyaluronic acid (HyA) polymer chains. Multivalent bFGF conjugates (mvbFGF) were fabricated with minimal non-specific interaction observed between bFGF and the HyA chain. The hydrodynamic radii of mvbFGF ranged from ∼50 to ∼75 nm for conjugation ratios of bFGF to HyA chains at low (10 : 1) and high (30 : 1) feed ratios, respectively. The mvbFGF demonstrated enhanced bioactivity compared to unconjugated bFGF in assays of cell proliferation and migration, processes critical to angiogenesis and tissue regeneration. The 30 : 1 mvbFGF outperformed the 10 : 1 conjugate, which could be due to either FGF receptor clustering or interference with receptor mediated internalization and signal deactivation. This study simultaneously investigated the role of both protein to polymer ratio and multivalent conjugate size on their bioactivity, and determined that increasing the protein-to-polymer ratio and conjugate size resulted in greater cell bioactivity.

  2. Outer membrane protein complex of Meningococcus enhances the antipolysaccharide antibody response to pneumococcal polysaccharide-CRM₁₉₇ conjugate vaccine.

    PubMed

    Lai, Zengzu; Schreiber, John R

    2011-05-01

    Bacterial polysaccharides (PS) are T cell-independent antigens that do not induce immunologic memory and are poor immunogens in infants. Conjugate vaccines in which the PS is covalently linked to a carrier protein have enhanced immunogenicity that resembles that of T cell-dependent antigens. The Haemophilus influenzae type b (Hib) conjugate vaccine, which uses the outer membrane protein complex (OMPC) from meningococcus as a carrier protein, elicits protective levels of anti-capsular PS antibody (Ab) after a single dose, in contrast to other conjugate vaccines, which require multiple doses. We have previously shown that OMPC robustly engages Toll-like receptor 2 (TLR2) and enhances the early anti-Hib PS Ab titer associated with an increase in TLR2-mediated induction of cytokines. We now show that the addition of OMPC to the 7-valent pneumococcal PS-CRM₁₉₇ conjugate vaccine during immunization significantly increases the anti-PS IgG and IgM responses to most serotypes of pneumococcus contained in the vaccine. The addition of OMPC also increased the likelihood of anti-PS IgG3 production against serotypes 4, 6B, 9V, 18C, 19F, and 23F. Splenocytes from mice who had received OMPC with the pneumococcal conjugate vaccine produced significantly more interleukin-2 (IL-2), IL-4, IL-6, IL-10, tumor necrosis factor alpha (TNF-α), and gamma interferon (IFN-γ) than splenocytes from mice who received phosphate-buffered saline (PBS) plus the conjugate vaccine. We conclude that OMPC enhances the anti-PS Ab response to pneumococcal PS-CRM₁₉₇ conjugate vaccine, an effect associated with a distinct change in cytokine profile. It may be possible to reduce the number of conjugate vaccine doses required to achieve protective Ab levels by priming with adjuvants that are TLR2 ligands.

  3. Safety and immunogenicity of HIV-1 Tat toxoid in immunocompromised HIV-1-infected patients.

    PubMed

    Gringeri, A; Santagostino, E; Muça-Perja, M; Mannucci, P M; Zagury, J F; Bizzini, B; Lachgar, A; Carcagno, M; Rappaport, J; Criscuolo, M; Blattner, W; Burny, A; Gallo, R C; Zagury, D

    1998-01-01

    To antagonize the deleterious effects of the HIV-1 toxin extracellular Tat on uninfected immune cells, we developed a new strategy of anti-HIV-1 vaccine using an inactivated but immunogenic Tat (Tat toxoid). Tat toxoid has been assayed for safety and immunogenicity in seropositive patients. The phase I vaccine clinical trial testing Tat toxoid preparation in Seppic Isa 51 oil adjuvant was performed on 14 HIV-1-infected asymptomatic although biologically immunocompromised individuals (500-200 CD4+ cells/mm3). Following as many as 8 injections, no clinical defects were observed. All patients exhibited an antibody (Ab) response to Tat, and some had cell-mediated immunity (CMI) as evaluated by skin test in vivo and T-cell proliferation in vitro. These results provide initial evidence of safety and potency of Tat toxoid vaccination in HIV-1-infected individuals.

  4. Nucleolar protein trafficking in response to HIV-1 Tat: rewiring the nucleolus.

    PubMed

    Jarboui, Mohamed Ali; Bidoia, Carlo; Woods, Elena; Roe, Barbara; Wynne, Kieran; Elia, Giuliano; Hall, William W; Gautier, Virginie W

    2012-01-01

    The trans-activator Tat protein is a viral regulatory protein essential for HIV-1 replication. Tat trafficks to the nucleoplasm and the nucleolus. The nucleolus, a highly dynamic and structured membrane-less sub-nuclear compartment, is the site of rRNA and ribosome biogenesis and is involved in numerous cellular functions including transcriptional regulation, cell cycle control and viral infection. Importantly, transient nucleolar trafficking of both Tat and HIV-1 viral transcripts are critical in HIV-1 replication, however, the role(s) of the nucleolus in HIV-1 replication remains unclear. To better understand how the interaction of Tat with the nucleolar machinery contributes to HIV-1 pathogenesis, we investigated the quantitative changes in the composition of the nucleolar proteome of Jurkat T-cells stably expressing HIV-1 Tat fused to a TAP tag. Using an organellar proteomic approach based on mass spectrometry, coupled with Stable Isotope Labelling in Cell culture (SILAC), we quantified 520 proteins, including 49 proteins showing significant changes in abundance in Jurkat T-cell nucleolus upon Tat expression. Numerous proteins exhibiting a fold change were well characterised Tat interactors and/or known to be critical for HIV-1 replication. This suggests that the spatial control and subcellular compartimentaliation of these cellular cofactors by Tat provide an additional layer of control for regulating cellular machinery involved in HIV-1 pathogenesis. Pathway analysis and network reconstruction revealed that Tat expression specifically resulted in the nucleolar enrichment of proteins collectively participating in ribosomal biogenesis, protein homeostasis, metabolic pathways including glycolytic, pentose phosphate, nucleotides and amino acids biosynthetic pathways, stress response, T-cell signaling pathways and genome integrity. We present here the first differential profiling of the nucleolar proteome of T-cells expressing HIV-1 Tat. We discuss how these

  5. Nucleolar Protein Trafficking in Response to HIV-1 Tat: Rewiring the Nucleolus

    PubMed Central

    Jarboui, Mohamed Ali; Bidoia, Carlo; Woods, Elena; Roe, Barbara; Wynne, Kieran; Elia, Giuliano; Hall, William W.; Gautier, Virginie W.

    2012-01-01

    The trans-activator Tat protein is a viral regulatory protein essential for HIV-1 replication. Tat trafficks to the nucleoplasm and the nucleolus. The nucleolus, a highly dynamic and structured membrane-less sub-nuclear compartment, is the site of rRNA and ribosome biogenesis and is involved in numerous cellular functions including transcriptional regulation, cell cycle control and viral infection. Importantly, transient nucleolar trafficking of both Tat and HIV-1 viral transcripts are critical in HIV-1 replication, however, the role(s) of the nucleolus in HIV-1 replication remains unclear. To better understand how the interaction of Tat with the nucleolar machinery contributes to HIV-1 pathogenesis, we investigated the quantitative changes in the composition of the nucleolar proteome of Jurkat T-cells stably expressing HIV-1 Tat fused to a TAP tag. Using an organellar proteomic approach based on mass spectrometry, coupled with Stable Isotope Labelling in Cell culture (SILAC), we quantified 520 proteins, including 49 proteins showing significant changes in abundance in Jurkat T-cell nucleolus upon Tat expression. Numerous proteins exhibiting a fold change were well characterised Tat interactors and/or known to be critical for HIV-1 replication. This suggests that the spatial control and subcellular compartimentaliation of these cellular cofactors by Tat provide an additional layer of control for regulating cellular machinery involved in HIV-1 pathogenesis. Pathway analysis and network reconstruction revealed that Tat expression specifically resulted in the nucleolar enrichment of proteins collectively participating in ribosomal biogenesis, protein homeostasis, metabolic pathways including glycolytic, pentose phosphate, nucleotides and amino acids biosynthetic pathways, stress response, T-cell signaling pathways and genome integrity. We present here the first differential profiling of the nucleolar proteome of T-cells expressing HIV-1 Tat. We discuss how these

  6. Recombinant human Tat-Hsp70-2: A tool for neuroprotection.

    PubMed

    Cappelletti, Pamela; Binda, Elisa; Tunesi, Marta; Albani, Diego; Giordano, Carmen; Molla, Gianluca; Pollegioni, Loredano

    2017-10-01

    Human Hsp70-2 is a chaperone expressed mainly in the nervous system. Up to now, no study has reported on the recombinant expression of this important human chaperone. Herein, we describe the successful purification and characterization of recombinant human Hsp70-2 in Escherichia coli in both the full-length and the chimeric protein containing the protein transduction domain corresponding to the trans-activator of transcription (Tat) from HIV. Under optimized conditions, the Tat-Hsp70-2 was expressed in a soluble form and purified by two chromatographic steps (in a 3.6 mg/L fermentation broth yield): recombinant Tat-Hsp70-2 was folded and showed ATPase activity. In contrast, the full-length recombinant protein was only expressed in the form of inclusion bodies and thus was purified following a refolding procedure. The refolded Hsp70-2 protein was inactive and the protein conformation slightly altered as compared to the corresponding Tat-fused variant. The Tat-Hsp70-2 protein (100 nM), when added to human neuroblastoma SH-SY5Y cells subjected to hydrogen peroxide or 6-hydroxydopamine stress, partially protected from the deleterious effect of these treatments. This work describes an approach for the functional expression of human Tat-Hsp70-2 that provides sufficient material for detailed structure-function studies and for testing its ability to protect neuroblastoma cells from oxidative stress. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Recombinant TAT-BMI-1 fusion protein induces ex vivo expansion of human umbilical cord blood-derived hematopoietic stem cells.

    PubMed

    Codispoti, Bruna; Rinaldo, Nicola; Chiarella, Emanuela; Lupia, Michela; Spoleti, Cristina Barbara; Marafioti, Maria Grazia; Aloisio, Annamaria; Scicchitano, Stefania; Giordano, Marco; Nappo, Giovanna; Lucchino, Valeria; Moore, Malcolm A S; Zhou, Pengbo; Mesuraca, Maria; Bond, Heather Mandy; Morrone, Giovanni

    2017-07-04

    Transplantation of hematopoietic stem cells (HSCs) is a well-established therapeutic approach for numerous disorders. HSCs are typically derived from bone marrow or peripheral blood after cytokine-induced mobilization. Umbilical cord blood (CB) represents an appealing alternative HSC source, but the small amounts of the individual CB units have limited its applications. The availability of strategies for safe ex vivo expansion of CB-derived HSCs (CB-HSCs) may allow to extend the use of these cells in adult patients and to avoid the risk of insufficient engraftment or delayed hematopoietic recovery.Here we describe a system for the ex vivo expansion of CB-HSCs based on their transient exposure to a recombinant TAT-BMI-1 chimeric protein. BMI-1 belongs to the Polycomb family of epigenetic modifiers and is recognized as a central regulator of HSC self-renewal. Recombinant TAT-BMI-1 produced in bacteria was able to enter the target cells via the HIV TAT-derived protein transduction peptide covalently attached to BMI-1, and conserved its biological activity. Treatment of CB-CD34+ cells for 3 days with repeated addition of 10 nM purified TAT-BMI-1 significantly enhanced total cell expansion as well as that of primitive hematopoietic progenitors in culture. Importantly, TAT-BMI-1-treated CB-CD34+ cells displayed a consistently higher rate of multi-lineage long-term repopulating activity in primary and secondary xenotransplants in immunocompromised mice. Thus, recombinant TAT-BMI-1 may represent a novel, effective reagent for ex vivo expansion of CB-HSC for therapeutic purposes.

  8. Recombinant TAT-BMI-1 fusion protein induces ex vivo expansion of human umbilical cord blood-derived hematopoietic stem cells

    PubMed Central

    Codispoti, Bruna; Rinaldo, Nicola; Chiarella, Emanuela; Lupia, Michela; Spoleti, Cristina Barbara; Marafioti, Maria Grazia; Aloisio, Annamaria; Scicchitano, Stefania; Giordano, Marco; Nappo, Giovanna; Lucchino, Valeria; Moore, Malcolm A.S.; Zhou, Pengbo; Mesuraca, Maria

    2017-01-01

    Transplantation of hematopoietic stem cells (HSCs) is a well-established therapeutic approach for numerous disorders. HSCs are typically derived from bone marrow or peripheral blood after cytokine-induced mobilization. Umbilical cord blood (CB) represents an appealing alternative HSC source, but the small amounts of the individual CB units have limited its applications. The availability of strategies for safe ex vivo expansion of CB-derived HSCs (CB-HSCs) may allow to extend the use of these cells in adult patients and to avoid the risk of insufficient engraftment or delayed hematopoietic recovery. Here we describe a system for the ex vivo expansion of CB-HSCs based on their transient exposure to a recombinant TAT-BMI-1 chimeric protein. BMI-1 belongs to the Polycomb family of epigenetic modifiers and is recognized as a central regulator of HSC self-renewal. Recombinant TAT-BMI-1 produced in bacteria was able to enter the target cells via the HIV TAT-derived protein transduction peptide covalently attached to BMI-1, and conserved its biological activity. Treatment of CB-CD34+ cells for 3 days with repeated addition of 10 nM purified TAT-BMI-1 significantly enhanced total cell expansion as well as that of primitive hematopoietic progenitors in culture. Importantly, TAT-BMI-1-treated CB-CD34+ cells displayed a consistently higher rate of multi-lineage long-term repopulating activity in primary and secondary xenotransplants in immunocompromised mice. Thus, recombinant TAT-BMI-1 may represent a novel, effective reagent for ex vivo expansion of CB-HSC for therapeutic purposes. PMID:28187462

  9. Maleimide conjugation markedly enhances the immunogenicity of both human and murine idiotype-KLH vaccines

    PubMed Central

    Kafi, Kamran; Betting, David J.; Yamada, Reiko E.; Bacica, Michael; Steward, Kristopher K.; Timmerman, John M.

    2009-01-01

    The collection of epitopes present within the variable regions of the tumor-specific clonal immunoglobulin expressed by B cell lymphomas (idiotype, Id) can serve as a target for active immunotherapy. Traditionally, tumor-derived Id protein is chemically-conjugated to the immunogenic foreign carrier protein keyhole limpet hemocyanin (KLH) using glutaraldehyde to serve as a therapeutic vaccine. While this approach offered promising results for some patients treated in early clinical trials, glutaraldehyde Id-KLH vaccines have failed to induce immune and clinical responses in many vaccinated subjects. We recently described an alternative conjugation method employing maleimide-sulfhydryl chemistry that significantly increased the therapeutic efficacy of Id-KLH vaccines in three different murine B cell lymphoma models, with protection mediated by either CD8+ T cells or antibodies. We now define in detail the methods and parameters critical for enhancing the in vivo immunogenicity of human as well as murine Id-KLH conjugate vaccines. Optimal conditions for Id sulfhydryl pre-reduction were determined, and maleimide Id-KLH conjugates maintained stability and potency even after prolonged storage. Field flow fractionation analysis of Id-KLH particle size revealed that maleimide conjugates were far more uniform in size than glutaraldehyde conjugates. Under increasingly stringent conditions, maleimide Id-KLH vaccines maintained superior efficacy over glutaraldehyde Id-KLH in treating established, disseminated murine lymphoma. More importantly, human maleimide Id-KLH conjugates were consistently superior to glutaraldehyde Id-KLH conjugates in inducing Id-specific antibody and T cell responses. The described methods should be easily adaptable to the production of clinical grade vaccines for human trials in B cell malignancies. PMID:19046770

  10. Expression of HIV-Tat protein is associated with learning and memory deficits in the mouse

    PubMed Central

    Carey, Amanda N.; Sypek, Elizabeth I.; Singh, Harminder D.; Kaufman, Marc J.; McLaughlin, Jay P.

    2012-01-01

    HIV-Tat protein has been implicated in the pathogenesis of HIV-1 neurological complications (i.e., neuroAIDS), but direct demonstrations of the effects of Tat on behavior are limited. GT-tg mice with a doxycycline (Dox)-inducible and brain-selective tat gene coding for Tat protein were used to test the hypothesis that the activity of Tat in brain is sufficient to impair learning and memory processes. Western blot analysis of GT-tg mouse brains demonstrated an increase in Tat antibody labeling that seemed to be dependent on the dose and duration of Dox pretreatment. Dox-treated GT-tg mice tested in the Barnes maze demonstrated longer latencies to find an escape hole and displayed deficits in probe trial performance, versus uninduced GT-tg littermates, suggesting Tat-induced impairments of spatial learning and memory. Reversal learning was also impaired in Tat-induced mice. Tat-induced mice additionally demonstrated long-lasting (up to one month) deficiencies in novel object recognition learning and memory performance. Furthermore, novel object recognition impairment was dependent on the dose and duration of Dox exposure, suggesting that Tat exposure progressively mediated deficits. These experiments provide evidence that Tat protein expression is sufficient to mediate cognitive abnormalities seen in HIV-infected individuals. Moreover, the genetically engineered GT-tg mouse may be useful for improving our understanding of the neurological underpinnings of neuroAIDS-related behaviors. PMID:22197678

  11. [Preliminary study on transdermal characteristics and sunface anesthetic effects of lidocaine hydrochloride loaded trans-activator of transcription peptide conjugated nano-niosome in animals].

    PubMed

    Wang, Yue; Zhang, Lianyun; Li, Changyi; Wang, Hanjie; Li, Qin

    2015-07-01

    To prepare a new dental topical anesthetics, lidocaine hydrochloride loaded trans-activator of transcription peptide conjugated nano-niosome (LID-TAT-N), and to evaluate its transdermal properties and topical anesthesia effects. LID-TAT-N was prepared using reverse-phase evaporation method, and lidocaine loaded conventional liposome (LID-CL) was prepared in the same manner as positive control. The diameter, ζ potential and encapsulation efficiency of LID-TAT-N and LID-CL were measured. The skin permeation of LID-TAT-N was examined, and compared with LID-CL and lidocaine injection (LID-IJ, as negative control), using a Franz diffusion cell mounted with depilated mouse skin in vitro for 12 hours. Each experiment was repeated six times. The anesthetic effect of the new topical anesthetic was investigated on the cornea of rabbits. The mean diameter of LID-TAT-N was smaller than that of LID-CL [(152.7 ± 10.6) nm vs. (259.5 ± 15.5) nm, P < 0.01]. The 12 h cumulative permeation amount was significantly higher in LID-TAT-N group [(1 340.0 ± 97.5) µg · cm(-2)] than those of LID-CL and LID-IJ groups [(1 060.6 ± 80.2), (282.6 ± 65.1) µg · cm(-2), respectively, P < 0.05]. Rabbit corneal reflex results showed that LID-TAT-N had anesthetic effect and the duration of analgesia [(24.8 ± 2.8) min] was also longer than that of LID-IJ [(14.5 ± 2.3) min, P < 0.05]. LID-TAT-N had good transdermal ability, and the advanced skin penetration feature can improve its tropical anesthetic effect.

  12. Synthesis and characterization of tat-mediated O-CMC magnetic nanoparticles having anticancer function

    NASA Astrophysics Data System (ADS)

    Zhao, Aijie; Yao, Peng; Kang, Chunshang; Yuan, Xubo; Chang, Jin; Pu, Peiyu

    2005-08-01

    This paper describes a new formulation of magnetic nanoparticles coated by a novel polymer matrix—O-carboxylmethylated chitosan (O-CMC) as drug/gene carrier. The O-CMC magnetic nanoparticles were derivatized with a peptide sequence from the HIV-tat protein to improve the translocational property and cellar uptake of the nanoparticles. To evaluate the O-MNPs-tat as drug carriers, MTX was incorporated as a model drug and MTX-loaded O-MNPs-tat with an average diameter of 45-60 nm were prepared and characterized by TEM, AFM and VSM. The cytotoxicity of MTX-loaded O-MNPs-tat was investigated with U-937 tumor cells. The results showed that the MTX-loaded O-MNPs-tat retained significant antitumor toxicity; additionally, sustained release of MTX from O-CMC nanoparticles was observed in vitro, suggesting that the tat-O-MNPs could be a novel magnetic targeting carrier.

  13. Guanidinylated Neomycin Conjugation Enhances Intranasal Enzyme Replacement in the Brain.

    PubMed

    Tong, Wenyong; Dwyer, Chrissa A; Thacker, Bryan E; Glass, Charles A; Brown, Jillian R; Hamill, Kristina; Moremen, Kelley W; Sarrazin, Stéphane; Gordts, Philip L S M; Dozier, Lara E; Patrick, Gentry N; Tor, Yitzhak; Esko, Jeffrey D

    2017-12-06

    Iduronidase (IDUA)-deficient mice accumulate glycosaminoglycans in cells and tissues and exhibit many of the same neuropathological symptoms of patients suffering from Mucopolysaccharidosis I. Intravenous enzyme-replacement therapy for Mucopolysaccharidosis I ameliorates glycosaminoglycan storage and many of the somatic aspects of the disease but fails to treat neurological symptoms due to poor transport across the blood-brain barrier. In this study, we examined the delivery of IDUA conjugated to guanidinoneomycin (GNeo), a molecular transporter. GNeo-IDUA and IDUA injected intravenously resulted in reduced hepatic glycosaminoglycan accumulation but had no effect in the brain due to fast clearance from the circulation. In contrast, intranasally administered GNeo-IDUA entered the brain rapidly. Repetitive intranasal treatment with GNeo-IDUA reduced glycosaminoglycan storage, lysosome size and number, and neurodegenerative astrogliosis in the olfactory bulb and primary somatosensory cortex, whereas IDUA was less effective. The enhanced efficacy of GNeo-IDUA was not the result of increased nose-to-brain delivery or enzyme stability, but rather due to more efficient uptake into neurons and astrocytes. GNeo conjugation also enhanced glycosaminoglycan clearance by intranasally delivered sulfamidase to the brain of sulfamidase-deficient mice, a model of Mucopolysaccharidosis IIIA. These findings suggest the general utility of the guanidinoglycoside-based delivery system for restoring missing lysosomal enzymes in the brain. Copyright © 2017 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.

  14. Herpes Simplex Virus Type 2 Triggers Reactivation of Kaposi's Sarcoma-Associated Herpesvirus from Latency and Collaborates with HIV-1 Tat

    PubMed Central

    Zhu, Xiaolei; Ma, Xinting; Yan, Qin; Zeng, Yi; Guo, Yuanyuan; Feng, Ninghan; Lu, Chun

    2012-01-01

    Kaposi's sarcoma-associated herpesvirus (KSHV) infection was necessary but not sufficient for Kaposi's sarcoma (KS) development without other cofactors. Previously, we identified that both human immunodeficiency type 1 (HIV-1) Tat and herpes simplex virus 1 (HSV-1) were important cofactors reactivating KSHV from latency. Here, we further investigated the potential of herpes simplex virus 2 (HSV-2) to influence KSHV replication and examined the role of Tat in this procedure. We demonstrated that HSV-2 was a potentially important factor in the pathogenesis of KS, as determined by production of lytic phase mRNA transcripts, viral proteins and infectious viral particles in BCBL-1 cells. These results were further confirmed by an RNA interference experiment using small interfering RNA targeting KSHV Rta and a luciferase reporter assay testing Rta promoter-driven luciferase activity. Mechanistic studies showed that HSV-2 infection activated nuclear factor-kappa B (NF-κB) signaling pathway. Inhibition of NF-κB pathway enhanced HSV-2-mediated KSHV activation, whereas activation of NF-κB pathway suppressed KSHV replication in HSV-2-infected BCBL-1 cells. Additionally, ectopic expression of Tat enhanced HSV-2-induced KSHV replication. These novel findings suggest a role of HSV-2 in the pathogenesis of KS and provide the first laboratory evidence that Tat may participate HSV-2-mediated KSHV activation, implying the complicated pathogenesis of acquired immunodeficiency syndrome (AIDS)-related KS (AIDS-KS) patients. PMID:22347501

  15. Preferential expression and immunogenicity of HIV-1 Tat fusion protein expressed in tomato plant.

    PubMed

    Cueno, Marni E; Hibi, Yurina; Karamatsu, Katsuo; Yasutomi, Yasuhiro; Imai, Kenichi; Laurena, Antonio C; Okamoto, Takashi

    2010-10-01

    HIV-1 Tat plays a major role in viral replication and is essential for AIDS development making it an ideal vaccine target providing that both humoral and cellular immune responses are induced. Plant-based antigen production, due to its cheaper cost, appears ideal for vaccine production. In this study, we created a plant-optimized tat and mutant (Cys30Ala/Lys41Ala) tat (mtat) gene and ligated each into a pBI121 expression vector with a stop codon and a gusA gene positioned immediately downstream. The vector construct was bombarded into tomato leaf calli and allowed to develop. We thus generated recombinant tomato plants preferentially expressing a Tat-GUS fusion protein over a Tat-only protein. In addition, plants bombarded with either tat or mtat genes showed no phenotypic difference and produced 2-4 microg Tat-GUS fusion protein per milligram soluble plant protein. Furthermore, tomato extracts intradermally inoculated into mice were found to induce a humoral and, most importantly, cellular immunity.

  16. The HIV-1 transcriptional activator Tat has potent nucleic acid chaperoning activities in vitro.

    PubMed

    Kuciak, Monika; Gabus, Caroline; Ivanyi-Nagy, Roland; Semrad, Katharina; Storchak, Roman; Chaloin, Olivier; Muller, Sylviane; Mély, Yves; Darlix, Jean-Luc

    2008-06-01

    The human immunodeficiency virus type 1 (HIV-1) is a primate lentivirus that causes the acquired immunodeficiency syndrome (AIDS). In addition to the virion structural proteins and enzyme precursors, that are Gag, Env and Pol, HIV-1 encodes several regulatory proteins, notably a small nuclear transcriptional activator named Tat. The Tat protein is absolutely required for virus replication since it controls proviral DNA transcription to generate the full-length viral mRNA. Tat can also regulate mRNA capping and splicing and was recently found to interfere with the cellular mi- and siRNA machinery. Because of its extensive interplay with nucleic acids, and its basic and disordered nature we speculated that Tat had nucleic acid-chaperoning properties. This prompted us to examine in vitro the nucleic acid-chaperoning activities of Tat and Tat peptides made by chemical synthesis. Here we report that Tat has potent nucleic acid-chaperoning activities according to the standard DNA annealing, DNA and RNA strand exchange, RNA ribozyme cleavage and trans-splicing assays. The active Tat(44-61) peptide identified here corresponds to the smallest known sequence with DNA/RNA chaperoning properties.

  17. The HIV-1 transcriptional activator Tat has potent nucleic acid chaperoning activities in vitro

    PubMed Central

    Kuciak, Monika; Gabus, Caroline; Ivanyi-Nagy, Roland; Semrad, Katharina; Storchak, Roman; Chaloin, Olivier; Muller, Sylviane; Mély, Yves; Darlix, Jean-Luc

    2008-01-01

    The human immunodeficiency virus type 1 (HIV-1) is a primate lentivirus that causes the acquired immunodeficiency syndrome (AIDS). In addition to the virion structural proteins and enzyme precursors, that are Gag, Env and Pol, HIV-1 encodes several regulatory proteins, notably a small nuclear transcriptional activator named Tat. The Tat protein is absolutely required for virus replication since it controls proviral DNA transcription to generate the full-length viral mRNA. Tat can also regulate mRNA capping and splicing and was recently found to interfere with the cellular mi- and siRNA machinery. Because of its extensive interplay with nucleic acids, and its basic and disordered nature we speculated that Tat had nucleic acid-chaperoning properties. This prompted us to examine in vitro the nucleic acid-chaperoning activities of Tat and Tat peptides made by chemical synthesis. Here we report that Tat has potent nucleic acid-chaperoning activities according to the standard DNA annealing, DNA and RNA strand exchange, RNA ribozyme cleavage and trans-splicing assays. The active Tat(44–61) peptide identified here corresponds to the smallest known sequence with DNA/RNA chaperoning properties. PMID:18442994

  18. Carrier priming or suppression: understanding carrier priming enhancement of anti-polysaccharide antibody response to conjugate vaccines.

    PubMed

    Pobre, Karl; Tashani, Mohamed; Ridda, Iman; Rashid, Harunor; Wong, Melanie; Booy, Robert

    2014-03-14

    With the availability of newer conjugate vaccines, immunization schedules have become increasingly complex due to the potential for unpredictable immunologic interference such as 'carrier priming' and 'carrier induced epitopic suppression'. Carrier priming refers to an augmented antibody response to a carbohydrate portion of a glycoconjugate vaccine in an individual previously primed with the carrier protein. This review aims to provide a critical evaluation of the available data on carrier priming (and suppression) and conceptualize ways by which this phenomenon can be utilized to strengthen vaccination schedules. We conducted this literature review by searching well-known databases to date to identify relevant studies, then extracted and synthesized the data on carrier priming of widely used conjugate polysaccharide vaccines, such as, pneumococcal conjugate vaccine (PCV), meningococcal conjugate vaccine (MenCV) and Haemophilus influenzae type b conjugate vaccines (HibV). We found evidence of carrier priming with some conjugate vaccines, particularly HibV and PCV, in both animal and human models but controversy surrounds MenCV. This has implications for the immunogenicity of conjugate polysaccharide vaccines following the administration of tetanus-toxoid or diphtheria-toxoid containing vaccine (such as DTP). Available evidence supports a promising role for carrier priming in terms of maximizing the immunogenicity of conjugate vaccines and enhancing immunization schedule by making it more efficient and cost effective. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Tat-APE1/ref-1 protein inhibits TNF-{alpha}-induced endothelial cell activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Yun Jeong; Lee, Ji Young; Joo, Hee Kyoung

    2008-03-28

    Apurinic/apyrimidinic endonuclease 1/redox factor-1 (APE1/ref-1) is a multifunctional protein involved both in DNA base excision repair and redox regulation. In this study we evaluated the protective role of Tat-mediated APE1/ref-1 transduction on the tumor necrosis factor (TNF)-{alpha}-activated endothelial activation in cultured human umbilical vein endothelial cells. To construct Tat-APE1/ref-1 fusion protein, human full length of APE1/ref-1 was fused with Tat-protein transduction domain. Purified Tat-APE1/ref-1 fusion protein efficiently transduced cultured endothelial cells in a dose-dependent manner and reached maximum expression at 1 h after incubation. Transduced Tat-APE1/ref-1 showed inhibitory activity on the TNF-{alpha}-induced monocyte adhesion and vascular cell adhesion molecule-1 expressionmore » in cultured endothelial cells. These results suggest Tat-APE1/ref-1 might be useful to reduce vascular endothelial activation or vascular inflammatory disorders.« less

  20. Functional PEG-PAMAM-tetraphosphonate capped NaLnF₄ nanoparticles and their colloidal stability in phosphate buffer.

    PubMed

    Zhao, Guangyao; Tong, Lemuel; Cao, Pengpeng; Nitz, Mark; Winnik, Mitchell A

    2014-06-17

    Developing surface coatings for NaLnF4 nanoparticles (NPs) that provide long-term stability in solutions containing competitive ions such as phosphate remains challenging. An amine-functional polyamidoamine tetraphosphonate (NH2-PAMAM-4P) as a multidentate ligand for these NPs has been synthesized and characterized as a ligand for the surface of NaGdF4 and NaTbF4 nanoparticles. A two-step ligand exchange protocol was developed for introduction of the NH2-PAMAM-4P ligand on oleate-capped NaLnF4 NPs. The NPs were first treated with methoxy-poly(ethylene glycol)-monophosphoric acid (M(n) = 750) in tetrahydrofuran. The mPEG750-OPO3-capped NPs were stable colloidal solutions in water, where they could be ligand-exchanged with NH2-PAMAM-4P. The surface amine groups on the NPs were available for derivatization to attach methoxy-PEG (M(n) = 2000) and biotin-terminated PEG (M(n) = 2000) chains. The surface coverage of ligands on the NPs was examined by thermal gravimetric analysis, and by a HABA analysis for biotin-containing NPs. Colloidal stability of the NPs was examined by dynamic light scattering. NaGdF4 and NaTbF4 NPs capped with mPEG2000-PAMAM-4P showed colloidal stability in DI water and in phosphate buffer (10 mM, pH 7.4). A direct comparison with NaTbF4 NPs capped with a mPEG2000-lysine-based tetradentate ligand that we reported previously (Langmuir 2012, 28, 12861-12870) showed that both ligands provided long-term stability in phosphate buffer, but that the lysine-based ligand provided better stability in phosphate-buffered saline.

  1. Neuroimaging abnormalities in clade C HIV are independent of Tat genetic diversity.

    PubMed

    Paul, Robert H; Phillips, Sarah; Hoare, Jacqueline; Laidlaw, David H; Cabeen, Ryan; Olbricht, Gayla R; Su, Yuqing; Stein, Dan J; Engelbrecht, Susan; Seedat, Soraya; Salminen, Lauren E; Baker, Laurie M; Heaps, Jodi; Joska, John

    2017-04-01

    Controversy remains regarding the neurotoxicity of clade C human immunodeficiency virus (HIV-C). When examined in preclinical studies, a cysteine to serine substitution in the C31 dicysteine motif of the HIV-C Tat protein (C31S) results in less severe brain injury compared to other viral clades. By contrast, patient cohort studies identify significant neuropsychological impairment among HIV-C individuals independent of Tat variability. The present study clarified this discrepancy by examining neuroimaging markers of brain integrity among HIV-C individuals with and without the Tat substitution. Thirty-seven HIV-C individuals with the Tat C31S substitution, 109 HIV-C individuals without the Tat substitution (C31C), and 34 HIV- controls underwent 3T structural magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI). Volumes were determined for the caudate, putamen, thalamus, corpus callosum, total gray matter, and total white matter. DTI metrics included fractional anisotropy (FA), radial diffusivity (RD), and axial diffusivity (AD). Tracts of interest included the anterior thalamic radiation (ATR), cingulum bundle (CING), uncinate fasciculus (UNC), and corpus callosum (CC). HIV+ individuals exhibited smaller volumes in subcortical gray matter, total gray matter and total white matter compared to HIV- controls. HIV+ individuals also exhibited DTI abnormalities across multiple tracts compared to HIV- controls. By contrast, neither volumetric nor diffusion indices differed significantly between the Tat C31S and C31C groups. Tat C31S status is not a sufficient biomarker of HIV-related brain integrity in patient populations. Clinical attention directed at brain health is warranted for all HIV+ individuals, independent of Tat C31S or clade C status.

  2. Effect of Size, Surface Charge, and Hydrophobicity of Poly(amidoamine) Dendrimers on Their Skin Penetration

    PubMed Central

    Yang, Yang; Sunoqrot, Suhair; Stowell, Chelsea; Ji, Jingli; Lee, Chan-Woo; Kim, Jin Woong; Khan, Seema A.; Hong, Seungpyo

    2012-01-01

    The barrier functions of the stratum corneum (SC) and the epidermal layers present a tremendous challenge in achieving effective transdermal delivery of drug molecules. Although a few reports have shown that poly(amidoamine) (PAMAM) dendrimers are effective skin penetration enhancers, little is known regarding the fundamental mechanisms behind the dendrimer-skin interactions. In this paper, we have performed a systematic study to better elucidate how dendrimers interact with skin layers depending on their size and surface groups. Franz diffusion cells and confocal microscopy were employed to observe dendrimer interactions with full-thickness porcine skin samples. We have found that smaller PAMAM dendrimers (generation 2 (G2)) penetrate the skin layers more efficiently than the larger ones (G4). We have also found that G2 PAMAM dendrimers that are surface modified by either acetylation or carboxylation exhibit increased skin permeation and likely diffuse through an extracellular pathway. In contrast, amine-terminated dendrimers show enhanced cell internalization and skin retention but reduced skin permeation. In addition, conjugation of oleic acid (OA) to G2 dendrimers increases their 1-octanol/PBS partition coefficient, resulting in increased skin absorption and retention. Here we report that size, surface charge, and hydrophobicity directly dictate the permeation route and efficiency of dendrimer translocation across the skin layers, providing a design guideline for engineering PAMAM dendrimers as a potential transdermal delivery vector. PMID:22621160

  3. Enhanced and selective permeability of gold nanoparticles functionalized with cell penetrating peptide derived from maurocalcine animal toxin.

    PubMed

    Khamehchian, Sedigheh; Nikkhah, Maryam; Madani, Rasool; Hosseinkhani, Saman

    2016-11-01

    Functionalization of gold nanoparticles (GNPs) is suitable for many applications such as biomedical imaging, clinical diagnosis, and targeted delivery by conjugating cell-penetrating peptides (CPPs). Here, we investigated intracellular uptake of GNP conjugated to MCaUF1-9(Ala) , a CPP derived from maurocalcine (MCa) animal toxin, and compared it with TAT functionalized GNP. Peptide conjugated GNP was characterized using UV-Visible spectroscopy, dynamic light scattering, zeta potential, and transmission electron microscopy. Uptake of MCaUF1-9(Ala) and TAT functionalized GNPs was evaluated in three cell lines, HeLa, MDA-MB-231, and A431, using dark field imaging and atomic absorption spectroscopy. According to peptide sequences and type of cells different cell penetrating activity was observed. Peptide functionalized GNP had little effect on cell viability and respect to net charge difference between peptide, showed interesting selectivity against three cell types. Peptide conjugated to GNPs displayed higher uptake than bare GNPs in the all cell lines except HeLa cell with lowest internalization. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2693-2700, 2016. © 2016 Wiley Periodicals, Inc.

  4. Evaluation and implementation of BMPs for NCDOT's highway and industrial facilities : final report, May 2006.

    DOT National Transportation Integrated Search

    2006-05-01

    This research has provided NCDOT with (1) scientific observations to validate the pollutant removal : performance of selected structural BMPs, (2) a database management option for BMP monitoring and : non-monitoring sites, (3) pollution prevention pl...

  5. Mutations at Tyrosine 88, Lysine 92 and Tyrosine 470 of human dopamine transporter result in an attenuation of HIV-1 Tat-induced inhibition of dopamine transport

    PubMed Central

    Midde, Narasimha M.; Yuan, Yaxia; Quizon, Pamela M.; Sun, Wei-Lun; Huang, Xiaoqin; Zhan, Chang-Guo; Zhu, Jun

    2015-01-01

    HIV-1 transactivator of transcription (Tat) protein disrupts the dopamine (DA) neurotransmission by inhibiting DA transporter (DAT) function, leading to increased neurocognitive impairment in HIV-1 infected individuals. Through integrated computational modeling and pharmacological studies, we have demonstrated that mutation of tyrosine470 (Y470H) of human DAT (hDAT) attenuates Tat-induced inhibition of DA uptake by changing the transporter conformational transitions. The present study examined the functional influences of other substitutions at tyrosine470 (Y470F and Y470A) and tyrosine88 (Y88F) and lysine92 (K92M), two other relevant residues for Tat binding to hDAT, in Tat-induced inhibitory effects on DA transport. Y88F, K92M and Y470A attenuated Tat-induced inhibition of DA transport, implicating the functional relevance of these residues for Tat binding to hDAT. Compared to wild type hDAT, Y470A and K92M but not Y88F reduced the maximal velocity of [3H]DA uptake without changes in the Km. Y88F and K92M enhanced IC50 values for DA inhibition of [3H]DA uptake and [3H]WIN35,428 binding but decreased IC50 for cocaine and GBR12909 inhibition of [3H]DA uptake, suggesting that these residues are critical for substrate and these inhibitors. Y470F, Y470A, Y88F and K92M attenuated zinc-induced increase of [3H]WIN35,428 binding. Moreover, only Y470A and K92M enhanced DA efflux relative to wild type hDAT, suggesting mutations of these residues differentially modulate transporter conformational transitions. These results demonstrate Tyr88 and Lys92 along with Tyr470 as functional recognition residues in hDAT for Tat-induced inhibition of DA transport and provide mechanistic insights into identifying target residues on the DAT for Tat binding. PMID:25604666

  6. Quantitative assessment of surface functionality effects on microglial uptake and retention of PAMAM dendrimers

    NASA Astrophysics Data System (ADS)

    Liaw, Kevin; Gök, Ozgul; DeRidder, Louis B.; Kannan, Sujatha; Kannan, Rangaramanujam M.

    2018-04-01

    Dendrimers are a promising class of polymeric nanoparticles for delivery of therapeutics and diagnostics. Polyamidoamine (PAMAM) dendrimers have shown significant efficacy in many animal models, with performance dependent on surface functionalities. Understanding the effects of end groups on biological interactions is critical for rational design of dendrimer-mediated therapies. In this study, we quantify the cellular trafficking kinetics (endocytosis and exocytosis) of generation 4 neutral (D4-OH), cationic (D4-NH2), anionic (D3.5-COOH), and generation 6 neutral (D6-OH) PAMAM dendrimers to investigate the nanoscale effects of surface functionality and size on cellular interactions. Resting and LPS-activated microglia were studied due to their central roles in dendrimer therapies for central nervous system disorders. D4-OH exhibits greater cellular uptake and lower retention than the larger D6-OH. D4-OH and D3.5-COOH exhibit similar trafficking kinetics, while D4-NH2 exhibits significant membrane interactions, resulting in faster cell association but lower internalization. Cationic charge may also enhance vesicular escape for greater cellular retention and preferential partitioning to nuclei. LPS activation further improves uptake of dendrimers, with smaller and cationic dendrimers experiencing the greatest increases in uptake compared to resting microglia. These studies have implications for the dependence of trafficking pathway on dendrimer properties and inform the design of dendrimer constructs tailored to specific therapeutic needs. Cationic dendrimers are ideal for delivering genetic materials to nuclei, but toxicity may be a limiting factor. Smaller, neutral dendrimers are best suited for delivering high levels of therapeutics in acute neuroinflammation, while larger or cationic dendrimers provide robust retention for sustained release of therapeutics in longer-term diseases.

  7. RECOVERY ACT - Thylakoid Assembly and Folded Protein Transport by the Tat Pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dabney-Smith, Carole

    Assembly of functional photosystems complete with necessary intrinsic (membrane-bound) and extrinsic proteins requires the function of at least 3 protein transport pathways in thylakoid membranes. Our research focuses on one of those pathways, a unique and essential protein transport pathway found in the chloroplasts of plants, bacteria, and some archaebacteria, the Twin arginine translocation (Tat) system. The chloroplast Tat (cpTat) system is thought to be responsible for the proper location of ~50% of thylakoid lumen proteins, several of which are necessary for proper photosystem assembly, maintenance, and function. Specifically, cpTat systems are unique because they transport fully folded and assembledmore » proteins across ion tight membranes using only three membrane components, Tha4, Hcf106, and cpTatC, and the protonmotive force generated by photosynthesis. Despite the importance of the cpTat system in plants, the mechanism of transport of a folded precursor is not well known. Our long-term goal is to investigate the role protein transport systems have on organelle biogenesis, particularly the assembly of membrane protein complexes in thylakoids of chloroplasts. The objective of this proposal is to correlate structural changes in the membrane-bound cpTat component, Tha4, to the mechanism of translocation of folded-precursor substrates across the membrane bilayer by using a cysteine accessibility and crosslinking approach. Our central hypothesis is that the precursor passes through a proteinaceous pore of assembled Tha4 protomers that have undergone a conformational or topological change in response to transport. This research is predicated upon the observations that Tha4 exists in molar excess in the membrane relative to the other cpTat components; its regulated assembly to the precursor-bound receptor; and our data showing oligomerization of Tha4 into very large complexes in response to transport. Our rationale for these studies is that understanding cpTat

  8. Relaxed evolution in the tyrosine aminotransferase gene tat in old world fruit bats (Chiroptera: Pteropodidae).

    PubMed

    Shen, Bin; Fang, Tao; Yang, Tianxiao; Jones, Gareth; Irwin, David M; Zhang, Shuyi

    2014-01-01

    Frugivorous and nectarivorous bats fuel their metabolism mostly by using carbohydrates and allocate the restricted amounts of ingested proteins mainly for anabolic protein syntheses rather than for catabolic energy production. Thus, it is possible that genes involved in protein (amino acid) catabolism may have undergone relaxed evolution in these fruit- and nectar-eating bats. The tyrosine aminotransferase (TAT, encoded by the Tat gene) is the rate-limiting enzyme in the tyrosine catabolic pathway. To test whether the Tat gene has undergone relaxed evolution in the fruit- and nectar-eating bats, we obtained the Tat coding region from 20 bat species including four Old World fruit bats (Pteropodidae) and two New World fruit bats (Phyllostomidae). Phylogenetic reconstructions revealed a gene tree in which all echolocating bats (including the New World fruit bats) formed a monophyletic group. The phylogenetic conflict appears to stem from accelerated TAT protein sequence evolution in the Old World fruit bats. Our molecular evolutionary analyses confirmed a change in the selection pressure acting on Tat, which was likely caused by a relaxation of the evolutionary constraints on the Tat gene in the Old World fruit bats. Hepatic TAT activity assays showed that TAT activities in species of the Old World fruit bats are significantly lower than those of insectivorous bats and omnivorous mice, which was not caused by a change in TAT protein levels in the liver. Our study provides unambiguous evidence that the Tat gene has undergone relaxed evolution in the Old World fruit bats in response to changes in their metabolism due to the evolution of their special diet.

  9. TAR-independent transactivation by Tat in cells derived from the CNS: a novel mechanism of HIV-1 gene regulation.

    PubMed Central

    Taylor, J P; Pomerantz, R; Bagasra, O; Chowdhury, M; Rappaport, J; Khalili, K; Amini, S

    1992-01-01

    The Tat protein of human immunodeficiency virus type 1 (HIV-1) is essential for productive infection and is a potential target for antiviral therapy. Tat, a potent activator of HIV-1 gene expression, serves to greatly increase the rate of transcription directed by the viral promoter. This induction, which seems to be an important component in the progression of acquired immune deficiency syndrome (AIDS), may be due to increased transcriptional initiation, increased transcriptional elongation, or a combination of these processes. Much attention has been focused on the interaction of Tat with a specific RNA target termed TAR (transactivation responsive) which is present in the leader sequence of all HIV-1 mRNAs. This interaction is believed to be an important component of the mechanism of transactivation. In this report we demonstrate that in certain CNS-derived cells Tat is capable of activating HIV-1 through a TAR-independent pathway. A Tat-responsive element is found upstream within the viral promoter that in glial-derived cell lines allows transactivation in the absence of TAR. Deletion mapping and hybrid promoter constructs demonstrate that the newly identified Tat-responsive element corresponds to a sequence within the viral long terminal repeat (LTR) previously identified as the HIV-1 enhancer, or NF-kappa B domain. DNA band-shift analysis reveals NF-kappa B binding activity in glial cells that differs from that present in T lymphoid cells. Further, we observe that TAR-deleted mutants of HIV-1 demonstrate normal late gene expression in glial cells as evidenced by syncytia formation and production of viral p24 antigen.(ABSTRACT TRUNCATED AT 250 WORDS) Images PMID:1505523

  10. EZH2 phosphorylation regulates Tat-induced HIV-1 transactivation via ROS/Akt signaling pathway.

    PubMed

    Zhang, Hong-Sheng; Liu, Yang; Wu, Tong-Chao; Du, Guang-Yuan; Zhang, Feng-Juan

    2015-12-21

    EZH2 plays a major role in HIV-1 latency, however, the molecular linkage between Tat-induced HIV-1 transactivation and EZH2 activity is not fully understood. It was shown Tat induced HIV-1 transactivation through inhibiting EZH2 activity. Tat decreased the levels of H3K27me3 and EZH2 occupy at the long terminal repeat (LTR) of HIV-1. We further showed for the first time that transfected with Tat construct resulted in an increase in phosphorylated EZH2 (p-EZH2), mediated by active Akt. ROS/Akt-dependent p-EZH2 was correlated with Tat-induced transactivation. Our study reveals that novel mechanisms allow Tat-induced HIV-1 transactivation by ROS/Akt-dependent downregulating the EZH2 epigenetic silencing machinery. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  11. In vivo inhibition of circulating tumor cells by two apoptosis-promoting circular aptamers with enhanced specificity.

    PubMed

    Dong, Haiyan; Han, Longyu; Wang, Jie; Xie, Jingjing; Gao, Yu; Xie, Fangwei; Jia, Lee

    2018-05-07

    Circulating tumor cells (CTCs) are known as the root cause of cancer metastasis that accounts for 90% of cancer death. Owing to the rarity of blood CTCs and their microenvironmental complexity, the existing biotechnology could not precisely capture and apoptosize CTCs in vivo for cancer metastasis prevention. Here, we designed two double strand circular aptamers aimed to simultaneously target MUC1 and HER2 surface biomarkers on mesenchymal cancer cells. The circular aptamers are composed of a capture arm for binding and seizing CTCs and a circular body for resisting degradation by exonucleases. We conjugated the two circular aptamers onto dendrimer PAMAM G4.5 (dcAp1-G-dcAp2), and the conjugate entity showed both significantly-enhanced biostability in serum for days compared with their linear counterparts and capture specificity in RBC (1:10 8 ) compared with their single circular aptamers. dcAp1-G-dcAp2 apoptosized the targeted cells and inhibited their bioenergetic activities significantly by lowing △Ψm, ATP and lactate productions while increasing ROS production. dcAp1-G-dcAp2 captured CTCs in mice in vivo and in patient blood. This study lays the foundation for developing multiple biostable circular aptamers and conjugating them together to precisely capture and apoptosize mesenchymal CTCs in vivo. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Escherichia coli tatC mutations that suppress defective twin-arginine transporter signal peptides.

    PubMed

    Strauch, Eva-Maria; Georgiou, George

    2007-11-23

    In vitro studies have suggested that the TatBC complex serves as the receptor for signal peptides targeted for export via the twin-arginine translocation (Tat) pathway. Substitution of the hallmark twin-arginine dipeptide with two lysines abrogates export of physiological substrates in all organisms. We report the isolation and characterization of suppressor mutations that allow export of an ssTor(KK)-GFP-SsrA tripartite fusion. We identified two amino acid suppressor mutations in the first cytoplasmic loop of TatC. In addition, two other amino acids in the first cytoplasmic loop exhibit epistatic suppression. Surprisingly, we also identified a suppressor mutation predicted to lie within the second periplasmic loop of TatC, a region that is not expected to interact directly with the signal peptide. The suppressor mutations allowed export of the native Esherichia coli Tat substrate trimethylamine N-oxide reductase with a twin-lysine substitution in its signal sequence. The cytoplasmic suppressor mutations conferred SDS sensitivity and partial filamentation, indicating that Tat export of authentic substrates was impaired.

  13. Relaxed Evolution in the Tyrosine Aminotransferase Gene Tat in Old World Fruit Bats (Chiroptera: Pteropodidae)

    PubMed Central

    Shen, Bin; Fang, Tao; Yang, Tianxiao; Jones, Gareth; Irwin, David M.; Zhang, Shuyi

    2014-01-01

    Frugivorous and nectarivorous bats fuel their metabolism mostly by using carbohydrates and allocate the restricted amounts of ingested proteins mainly for anabolic protein syntheses rather than for catabolic energy production. Thus, it is possible that genes involved in protein (amino acid) catabolism may have undergone relaxed evolution in these fruit- and nectar-eating bats. The tyrosine aminotransferase (TAT, encoded by the Tat gene) is the rate-limiting enzyme in the tyrosine catabolic pathway. To test whether the Tat gene has undergone relaxed evolution in the fruit- and nectar-eating bats, we obtained the Tat coding region from 20 bat species including four Old World fruit bats (Pteropodidae) and two New World fruit bats (Phyllostomidae). Phylogenetic reconstructions revealed a gene tree in which all echolocating bats (including the New World fruit bats) formed a monophyletic group. The phylogenetic conflict appears to stem from accelerated TAT protein sequence evolution in the Old World fruit bats. Our molecular evolutionary analyses confirmed a change in the selection pressure acting on Tat, which was likely caused by a relaxation of the evolutionary constraints on the Tat gene in the Old World fruit bats. Hepatic TAT activity assays showed that TAT activities in species of the Old World fruit bats are significantly lower than those of insectivorous bats and omnivorous mice, which was not caused by a change in TAT protein levels in the liver. Our study provides unambiguous evidence that the Tat gene has undergone relaxed evolution in the Old World fruit bats in response to changes in their metabolism due to the evolution of their special diet. PMID:24824435

  14. WETLANDS AS BMPs AND THEIR USE IN TRADING OF NUTRIENT AND SEDIMENT REDUCTION CREDITS

    EPA Science Inventory

    WETLANDS AS BMPs AND THEIR USE IN TRADING OF NUTRIENT AND SEDIMENT REDUCTION CREDITS J. Schubauer-Berigan (NRMRL), D. Brown (NRMRL), D. Burden (NRMRL), T. Canfield (NRMRL), W. Franz (R5), J. Kressel (NRMRL), M. Heberling (NCEA), K. Hurld (OW), C. Lane (NERL), M. Morrison (NRMR...

  15. Morphine Tolerance and Physical Dependence Are Altered in Conditional HIV-1 Tat Transgenic Mice.

    PubMed

    Fitting, Sylvia; Stevens, David L; Khan, Fayez A; Scoggins, Krista L; Enga, Rachel M; Beardsley, Patrick M; Knapp, Pamela E; Dewey, William L; Hauser, Kurt F

    2016-01-01

    Despite considerable evidence that chronic opiate use selectively affects the pathophysiologic consequences of human immunodeficiency virus type 1 (HIV-1) infection in the nervous system, few studies have examined whether neuro-acquired immune deficiency syndrome (neuroAIDS) might intrinsically alter the pharmacologic responses to chronic opiate exposure. This is an important matter because HIV-1 and opiate abuse are interrelated epidemics, and HIV-1 patients are often prescribed opiates as a treatment of HIV-1-related neuropathic pain. Tolerance and physical dependence are inevitable consequences of frequent and repeated administration of morphine. In the present study, mice expressing HIV-1 Tat in a doxycycline (DOX)-inducible manner [Tat(+)], their Tat(-) controls, and control C57BL/6 mice were chronically exposed to placebo or 75-mg morphine pellets to explore the effects of Tat induction on morphine tolerance and dependence. Antinociceptive tolerance and locomotor activity tolerance were assessed using tail-flick and locomotor activity assays, respectively, and physical dependence was measured with the platform-jumping assay and recording of other withdrawal signs. We found that Tat(+) mice treated with DOX [Tat(+)/DOX] developed an increased tolerance in the tail-flick assay compared with control Tat(-)/DOX and/or C57/DOX mice. Equivalent tolerance was developed in all mice when assessed by locomotor activity. Further, Tat(+)/DOX mice expressed reduced levels of physical dependence to chronic morphine exposure after a 1-mg/kg naloxone challenge compared with control Tat(-)/DOX and/or C57/DOX mice. Assuming the results seen in Tat transgenic mice can be generalized to neuroAIDS, our findings suggest that HIV-1-infected individuals may display heightened analgesic tolerance to similar doses of opiates compared with uninfected individuals and show fewer symptoms of physical dependence. Copyright © 2015 by The American Society for Pharmacology and Experimental

  16. HIV-1 Tat targets Tip60 to impair the apoptotic cell response to genotoxic stresses

    PubMed Central

    Col, Edwige; Caron, Cécile; Chable-Bessia, Christine; Legube, Gaelle; Gazzeri, Sylvie; Komatsu, Yasuhiko; Yoshida, Minoru; Benkirane, Monsef; Trouche, Didier; Khochbin, Saadi

    2005-01-01

    HIV-1 transactivator Tat uses cellular acetylation signalling by targeting several cellular histone acetyltransferases (HAT) to optimize its various functions. Although Tip60 was the first HAT identified to interact with Tat, the biological significance of this interaction has remained obscure. We had previously shown that Tat represses Tip60 HAT activity. Here, a new mechanism of Tip60 neutralization by Tat is described, where Tip60 is identified as a substrate for the newly reported p300/CBP-associated E4-type ubiquitin-ligase activity, and Tat uses this mechanism to induce the polyubiquitination and degradation of Tip60. Tip60 targeting by Tat results in a dramatic impairment of the Tip60-dependent apoptotic cell response to DNA damage. These data reveal yet unknown strategies developed by HIV-1 to increase cell resistance to genotoxic stresses and show a role of Tat as a modulator of cellular protein ubiquitination. PMID:16001085

  17. Cost-effectiveness and cost-benefit analysis of BMPs in controlling agricultural nonpoint source pollution in China based on the SWAT model.

    PubMed

    Liu, Ruimin; Zhang, Peipei; Wang, Xiujuan; Wang, Jiawei; Yu, Wenwen; Shen, Zhenyao

    2014-12-01

    Best management practices (BMPs) have been widely used in managing agricultural nonpoint source pollution (ANSP) at the watershed level. Most BMPs are related to land use, tillage management, and fertilizer levels. In total, seven BMP scenarios (Reforest1, Reforest2, No Tillage, Contour tillage, and fertilizer level 1-4) that are related to these three factors were estimated in this study. The objectives were to investigate the effectiveness and cost-benefit of these BMPs on ANSP reduction in a large tributary of the Three Gorges Reservoir (TGR) in China, which are based on the simulation results of the Soil and Water Assessment Tool (SWAT) model. The results indicated that reforestation was the most economically efficient of all BMPs, and its net benefits were up to CNY 4.36×10(7) years(-1) (about USD 7.08×10(6) years(-1)). Regarding tillage practices, no tillage practice was more environmentally friendly than other tillage practices, and contour tillage was more economically efficient. Reducing the local fertilizer level to 0.8-fold less than that of 2010 can yield a satisfactory environmental and economic efficiency. Reforestation and fertilizer management were more effective in reducing total phosphorus (TP), whereas tillage management was more effective in reducing total nitrogen (TN). When CNY 10,000 (about USD 162) was applied to reforestation, no tillage, contour tillage, and an 0.8-fold reduction in the fertilizer level, then annual TN load can be reduced by 0.08, 0.16, 0.11, and 0.04 t and annual TP load can be reduced by 0.04, 0.02, 0.01 and 0.03 t, respectively. The cost-benefit (CB) ratios of the BMPs were as follows: reforestation (207 %) > contour tillage (129 %) > no tillage (114 %) > fertilizer management (96 and 89 %). The most economical and effective BMPs can be designated as follows: BMP1 (returning arable land with slopes greater than 25° to forests and those lands with slopes of 15-25° to orchards), BMP2 (implementing no tillage

  18. Enhancement of high-resolution photoacoustic imaging with indocyanine green-conjugated carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Phuc Nguyen, Van; Oh, Yunok; Ha, Kanglyeol; Oh, Junghwan; Kang, Hyun Wook

    2015-07-01

    The current study indicates the feasibility of photoacoustic imaging (PAI) enhanced with contrast agents. A single-element ultrasound transducer (20 MHz) was used to detect PA signals for image reconstruction. To improve PA sensitivity, single-walled carbon nanotubes (SWNTs) conjugated with indocyanine green (ICG) were injected into samples at various concentrations. PA signal amplitudes linearly increased with SWNT-ICG concentration owing to strong light absorption. Compared with SWNTs, SWNT-ICG augmented the signal intensity by approximately 2-fold (concentration: 300 nM). The enhanced optical absorption can allow the application of SWNT-ICG to enable PAI for specifically identifying tumors with high sensitivity.

  19. Aggregation control in natural brush-printed conjugated polymer films and implications for enhancing charge transport

    PubMed Central

    Wang, Gang; Huang, Wei; Eastham, Nicholas D.; Fabiano, Simone; Manley, Eric F.; Zeng, Li; Wang, Binghao; Zhang, Xinan; Chen, Zhihua; Li, Ran; Chang, Robert P. H.; Chen, Lin X.; Bedzyk, Michael J.; Melkonyan, Ferdinand S.; Facchetti, Antonio; Marks, Tobin J.

    2017-01-01

    Shear-printing is a promising processing technique in organic electronics for microstructure/charge transport modification and large-area film fabrication. Nevertheless, the mechanism by which shear-printing can enhance charge transport is not well-understood. In this study, a printing method using natural brushes is adopted as an informative tool to realize direct aggregation control of conjugated polymers and to investigate the interplay between printing parameters, macromolecule backbone alignment and aggregation, and charge transport anisotropy in a conjugated polymer series differing in architecture and electronic structure. This series includes (i) semicrystalline hole-transporting P3HT, (ii) semicrystalline electron-transporting N2200, (iii) low-crystallinity hole-transporting PBDTT-FTTE, and (iv) low-crystallinity conducting PEDOT:PSS. The (semi-)conducting films are characterized by a battery of morphology and microstructure analysis techniques and by charge transport measurements. We report that remarkably enhanced mobilities/conductivities, as high as 5.7×/3.9×, are achieved by controlled growth of nanofibril aggregates and by backbone alignment, with the adjusted R2 (R2adj) correlation between aggregation and charge transport as high as 95%. However, while shear-induced aggregation is important for enhancing charge transport, backbone alignment alone does not guarantee charge transport anisotropy. The correlations between efficient charge transport and aggregation are clearly shown, while mobility and degree of orientation are not always well-correlated. These observations provide insights into macroscopic charge transport mechanisms in conjugated polymers and suggest guidelines for optimization. PMID:29109282

  20. Functional PEG–PAMAM-Tetraphosphonate Capped NaLnF4 Nanoparticles and their Colloidal Stability in Phosphate Buffer

    PubMed Central

    2015-01-01

    Developing surface coatings for NaLnF4 nanoparticles (NPs) that provide long-term stability in solutions containing competitive ions such as phosphate remains challenging. An amine-functional polyamidoamine tetraphosphonate (NH2-PAMAM-4P) as a multidentate ligand for these NPs has been synthesized and characterized as a ligand for the surface of NaGdF4 and NaTbF4 nanoparticles. A two-step ligand exchange protocol was developed for introduction of the NH2-PAMAM-4P ligand on oleate-capped NaLnF4 NPs. The NPs were first treated with methoxy-poly(ethylene glycol)-monophosphoric acid (Mn = 750) in tetrahydrofuran. The mPEG750-OPO3-capped NPs were stable colloidal solutions in water, where they could be ligand-exchanged with NH2-PAMAM-4P. The surface amine groups on the NPs were available for derivatization to attach methoxy-PEG (Mn = 2000) and biotin-terminated PEG (Mn = 2000) chains. The surface coverage of ligands on the NPs was examined by thermal gravimetric analysis, and by a HABA analysis for biotin-containing NPs. Colloidal stability of the NPs was examined by dynamic light scattering. NaGdF4 and NaTbF4 NPs capped with mPEG2000–PAMAM-4P showed colloidal stability in DI water and in phosphate buffer (10 mM, pH 7.4). A direct comparison with NaTbF4 NPs capped with a mPEG2000-lysine-based tetradentate ligand that we reported previously (Langmuir2012, 28, 12861−1287022906305) showed that both ligands provided long-term stability in phosphate buffer, but that the lysine-based ligand provided better stability in phosphate-buffered saline. PMID:24898128

  1. Nanostructured glycan architecture is important in the inhibition of influenza A virus infection

    NASA Astrophysics Data System (ADS)

    Kwon, Seok-Joon; Na, Dong Hee; Kwak, Jong Hwan; Douaisi, Marc; Zhang, Fuming; Park, Eun Ji; Park, Jong-Hwan; Youn, Hana; Song, Chang-Seon; Kane, Ravi S.; Dordick, Jonathan S.; Lee, Kyung Bok; Linhardt, Robert J.

    2017-01-01

    Rapid change and zoonotic transmission to humans have enhanced the virulence of the influenza A virus (IAV). Neutralizing antibodies fail to provide lasting protection from seasonal epidemics. Furthermore, the effectiveness of anti-influenza neuraminidase inhibitors has declined because of drug resistance. Drugs that can block viral attachment and cell entry independent of antigenic evolution or drug resistance might address these problems. We show that multivalent 6‧-sialyllactose-polyamidoamine (6SL-PAMAM) conjugates, when designed to have well-defined ligand valencies and spacings, can effectively inhibit IAV infection. Generation 4 (G4) 6SL-PAMAM conjugates with a spacing of around 3 nm between 6SL ligands (S3-G4) showed the strongest binding to a hemagglutinin trimer (dissociation constant of 1.6 × 10-7 M) and afforded the best inhibition of H1N1 infection. S3-G4 conjugates were resistant to hydrolysis by H1N1 neuraminidase. These conjugates protected 75% of mice from a lethal challenge with H1N1 and prevented weight loss in infected animals. The structure-based design of multivalent nanomaterials, involving modulation of nanoscale backbone structures and number and spacing between ligands, resulted in optimal inhibition of IAV infection. This approach may be broadly applicable for designing effective and enduring therapeutic protection against human or avian influenza viruses.

  2. Enhanced photophysics of conjugated polymers

    DOEpatents

    Chen, Liaohai [Argonne, IL; Xu, Su [Santa Clara, CA; McBranch, Duncan [Santa Fe, NM; Whitten, David [Santa Fe, NM

    2003-05-27

    The addition of oppositely charged surfactant to fluorescent ionic conjugated polymer forms a polymer-surfactant complex that exhibits at least one improved photophysical property. The conjugated polymer is a fluorescent ionic polymer that typically has at least one ionic side chain or moiety that interacts with the specific surfactant selected. The photophysical property improvements may include increased fluorescence quantum efficiency, wavelength-independent emission and absorption spectra, and more stable fluorescence decay kinetics. The complexation typically occurs in a solution of a polar solvent in which the polymer and surfactant are soluble, but it may also occur in a mixture of solvents. The solution is commonly prepared with a surfactant molecule:monomer repeat unit of polymer ratio ranging from about 1:100 to about 1:1. A polymer-surfactant complex precipitate is formed as the ratio approaches 1:1. This precipitate is recoverable and usable in many forms.

  3. Deciphering structure-activity relationships in a series of Tat/TAR inhibitors.

    PubMed

    Pascale, Lise; González, Alejandro López; Di Giorgio, Audrey; Gaysinski, Marc; Teixido Closa, Jordi; Tejedor, Roger Estrada; Azoulay, Stéphane; Patino, Nadia

    2016-11-01

    A series of pentameric "Polyamide Amino Acids" (PAAs) compounds derived from the same trimeric precursor have been synthesized and investigated as HIV TAR RNA ligands, in the absence and in the presence of a Tat fragment. All PAAs bind TAR with similar sub-micromolar affinities but their ability to compete efficiently with the Tat fragment strongly differs, IC50 ranging from 35 nM to >2 μM. While NMR and CD studies reveal that all PAA interact with TAR at the same site and induce globally the same RNA conformational change upon binding, a comparative thermodynamic study of PAA/TAR equilibria highlights distinct TAR binding modes for Tat competitor and non-competitor PAAs. This led us to suggest two distinct interaction modes that have been further validated by molecular modeling studies. While the binding of Tat competitor PAAs induces a contraction at the TAR bulge region, the binding of non-competitor ones widens it. This could account for the distinct PAA ability to compete with Tat fragment. Our work illustrates how comparative thermodynamic studies of a series of RNA ligands of same chemical family are of value for understanding their binding modes and for rationalizing structure-activity relationships.

  4. DESIGN OF A DECISION SUPPORT SYSTEM FOR SELECTION AND PLACEMENT OF BMPS IN URBAN WATERSHEDS

    EPA Science Inventory

    The U.S. Environmental Protection Agency (USEPA) has funded the development of a decision support system for selection and placement of best management practices (BMPs) at strategic locations in urban watersheds. The primary objective of the system is to provide stormwater manag...

  5. Enhanced photophysics of conjugated polymers

    DOEpatents

    Chen, Liaohai [Darien, IL

    2007-06-12

    A particulate fluorescent conjugated polymer surfactant complex and method of making and using same. The particles are between about 15 and about 50 nm and when formed from a lipsome surfactant have a charge density similar to DNA and are strongly absorbed by cancer cells.

  6. Caffeine Blocks HIV-1 Tat-Induced Amyloid Beta Production and Tau Phosphorylation.

    PubMed

    Soliman, Mahmoud L; Geiger, Jonathan D; Chen, Xuesong

    2017-03-01

    The increased life expectancy of people living with HIV-1 who are taking effective anti-retroviral therapeutics is now accompanied by increased Alzheimer's disease (AD)-like neurocognitive problems and neuropathological features such as increased levels of amyloid beta (Aβ) and phosphorylated tau proteins. Others and we have shown that HIV-1 Tat promotes the development of AD-like pathology. Indeed, HIV-1 Tat once endocytosed into neurons can alter morphological features and functions of endolysosomes as well as increase Aβ generation. Caffeine has been shown to have protective actions against AD and based on our recent findings that caffeine can inhibit endocytosis in neurons and can prevent neuronal Aβ generation, we tested the hypothesis that caffeine blocks HIV-1 Tat-induced Aβ generation and tau phosphorylation. In SH-SY5Y cells over-expressing wild-type amyloid beta precursor protein (AβPP), we demonstrated that HIV-1 Tat significantly increased secreted levels and intracellular levels of Aβ as well as cellular protein levels of phosphorylated tau. Caffeine significantly decreased levels of secreted and cellular levels of Aβ, and significantly blocked HIV-1 Tat-induced increases in secreted and cellular levels of Aβ. Caffeine also blocked HIV-1 Tat-induced increases in cellular levels of phosphorylated tau. Furthermore, caffeine blocked HIV-1 Tat-induced endolysosome dysfunction as indicated by decreased protein levels of vacuolar-ATPase and increased protein levels of cathepsin D. These results further implicate endolysosome dysfunction in the pathogenesis of AD and HAND, and by virtue of its ability to prevent and/or block neuropathological features associated with AD and HAND caffeine might find use as an effective adjunctive therapeutic agent.

  7. Trade-Space Analysis Tool for Constellations (TAT-C)

    NASA Technical Reports Server (NTRS)

    Le Moigne, Jacqueline; Dabney, Philip; de Weck, Olivier; Foreman, Veronica; Grogan, Paul; Holland, Matthew; Hughes, Steven; Nag, Sreeja

    2016-01-01

    Traditionally, space missions have relied on relatively large and monolithic satellites, but in the past few years, under a changing technological and economic environment, including instrument and spacecraft miniaturization, scalable launchers, secondary launches as well as hosted payloads, there is growing interest in implementing future NASA missions as Distributed Spacecraft Missions (DSM). The objective of our project is to provide a framework that facilitates DSM Pre-Phase A investigations and optimizes DSM designs with respect to a-priori Science goals. In this first version of our Trade-space Analysis Tool for Constellations (TAT-C), we are investigating questions such as: How many spacecraft should be included in the constellation? Which design has the best costrisk value? The main goals of TAT-C are to: Handle multiple spacecraft sharing a mission objective, from SmallSats up through flagships, Explore the variables trade space for pre-defined science, cost and risk goals, and pre-defined metrics Optimize cost and performance across multiple instruments and platforms vs. one at a time.This paper describes the overall architecture of TAT-C including: a User Interface (UI) interacting with multiple users - scientists, missions designers or program managers; an Executive Driver gathering requirements from UI, then formulating Trade-space Search Requests for the Trade-space Search Iterator first with inputs from the Knowledge Base, then, in collaboration with the Orbit Coverage, Reduction Metrics, and Cost Risk modules, generating multiple potential architectures and their associated characteristics. TAT-C leverages the use of the Goddard Mission Analysis Tool (GMAT) to compute coverage and ancillary data, streamlining the computations by modeling orbits in a way that balances accuracy and performance.TAT-C current version includes uniform Walker constellations as well as Ad-Hoc constellations, and its cost model represents an aggregate model consisting of

  8. Methamphetamine and HIV-Tat alter murine cardiac DNA methylation and gene expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koczor, Christopher A., E-mail: ckoczor@emory.edu; Fields, Earl; Jedrzejczak, Mark J.

    This study addresses the individual and combined effects of HIV-1 and methamphetamine (N-methyl-1-phenylpropan-2-amine, METH) on cardiac dysfunction in a transgenic mouse model of HIV/AIDS. METH is abused epidemically and is frequently associated with acquisition of HIV-1 infection or AIDS. We employed microarrays to identify mRNA differences in cardiac left ventricle (LV) gene expression following METH administration (10 d, 3 mg/kg/d, subcutaneously) in C57Bl/6 wild-type littermates (WT) and Tat-expressing transgenic (TG) mice. Arrays identified 880 differentially expressed genes (expression fold change > 1.5, p < 0.05) following METH exposure, Tat expression, or both. Using pathway enrichment analysis, mRNAs encoding polypeptides formore » calcium signaling and contractility were altered in the LV samples. Correlative DNA methylation analysis revealed significant LV DNA methylation changes following METH exposure and Tat expression. By combining these data sets, 38 gene promoters (27 related to METH, 11 related to Tat) exhibited differences by both methods of analysis. Among those, only the promoter for CACNA1C that encodes L-type calcium channel Cav1.2 displayed DNA methylation changes concordant with its gene expression change. Quantitative PCR verified that Cav1.2 LV mRNA abundance doubled following METH. Correlative immunoblots specific for Cav1.2 revealed a 3.5-fold increase in protein abundance in METH LVs. Data implicate Cav1.2 in calcium dysregulation and hypercontractility in the murine LV exposed to METH. They suggest a pathogenetic role for METH exposure to promote LV dysfunction that outweighs Tat-induced effects. - Highlights: • HIV-1 Tat and methamphetamine (METH) alter cardiac gene expression and epigenetics. • METH impacts gene expression or epigenetics more significantly than Tat expression. • METH alters cardiac mitochondrial function and calcium signaling independent of Tat. • METH alters DNA methylation, expression, and protein

  9. Antibodies to the HIV-1 Tat protein correlated with nonprogression to AIDS: a rationale for the use of Tat toxoid as an HIV-1 vaccine.

    PubMed

    Zagury, J F; Sill, A; Blattner, W; Lachgar, A; Le Buanec, H; Richardson, M; Rappaport, J; Hendel, H; Bizzini, B; Gringeri, A; Carcagno, M; Criscuolo, M; Burny, A; Gallo, R C; Zagury, D

    1998-01-01

    To investigate which immune parameters, such as antibodies against HIV-1 specificities, or viral parameters, such as p24 antigenemia, are predictive of disease progression. We performed studies on serum collected from individuals exhibiting two extremes of disease evolution--67 fast progressors (FP) and 182 nonprogressors (NP)--at their enrollment. After a 1- to 2-year clinical follow-up of 104 nonprogressors after their enrollment, we could determine the best serologic predictors for disease progression. We investigated levels of antibodies to tetanus toxoid and to HIV antigens including Env, Gag, Nef, and Tat proteins, as well as p24 antigenemia, viremia, CD4 cell count, and interferon-alpha (IFN-alpha) titers in FPs and NPs, and we correlated these data with clinical and biologic signs of progression. p24 Antigenemia, a marker of viral replication, and anti-Tat antibodies were highly and inversely correlated in both groups (P < .001). Furthermore, anti-p24 antibodies and low serum IFN-alpha levels were correlated to the NP versus the FP cohort. Finally, among NPs, only antibodies to Tat and not to the other HIV specificities (Env, Nef, Gag) were significantly predictive of clinical stability during their follow-up. Antibodies toward HIV-1 Tat, which are inversely correlated to p24 antigenemia, appear as a critical marker for a lack of disease progression. This study strongly suggests that rising anti-Tat antibodies through active immunization may be beneficial in AIDS vaccine development to control viral replication.

  10. MECHANICAL PROPERTIES OF BLENDS OF PAMAM DENDRIMERS WITH POLY(VINYL CHLORIDE) AND POLY(VINYL ACETATE)

    EPA Science Inventory

    Hybrid blends of poly(amidoamine) PAMAM dendrimers with two linear high polymers, poly(vinyl chloride), PVC, and poly(vinyl acetate), PVAc, are reported. The interaction between the blend components was studied using dynamic mechanical analysis, xenon nuclear magnetic resonacne ...

  11. HIV-1 Tat protein promotes formation of more-processive elongation complexes.

    PubMed Central

    Marciniak, R A; Sharp, P A

    1991-01-01

    The Tat protein of HIV-1 trans-activates transcription in vitro in a cell-free extract of HeLa nuclei. Quantitative analysis of the efficiency of elongation revealed that a majority of the elongation complexes generated by the HIV-1 promoter were not highly processive and terminated within the first 500 nucleotides. Tat trans-activation of transcription from the HIV-1 promoter resulted from an increase in processive character of the elongation complexes. More specifically, the analysis suggests that there exist two classes of elongation complexes initiating from the HIV promoter: a less-processive form and a more-processive form. Addition of purified Tat protein was found to increase the abundance of the more-processive class of elongation complex. The purine nucleoside analog, 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB) inhibits transcription in this reaction by decreasing the efficiency of elongation. Surprisingly, stimulation of transcription elongation by Tat was preferentially inhibited by the addition of DRB. Images PMID:1756726

  12. Synergistically enhanced selective intracellular uptake of anticancer drug carrier comprising folic acid-conjugated hydrogels containing magnetite nanoparticles

    NASA Astrophysics Data System (ADS)

    Kim, Haneul; Jo, Ara; Baek, Seulgi; Lim, Daeun; Park, Soon-Yong; Cho, Soo Kyung; Chung, Jin Woong; Yoon, Jinhwan

    2017-01-01

    Targeted drug delivery has long been extensively researched since drug delivery and release at the diseased site with minimum dosage realizes the effective therapy without adverse side effects. In this work, to achieve enhanced intracellular uptake of anticancer drug carriers for efficient chemo-therapy, we have designed targeted multifunctional anticancer drug carrier hydrogels. Temperature-responsive poly(N-isopropylacrylamide) (PNIPAm) hydrogel core containing superparamagnetic magnetite nanoparticles (MNP) were prepared using precipitation polymerization, and further polymerized with amine-functionalized copolymer shell to facilitate the conjugation of targeting ligand. Then, folic acid, specific targeting ligand for cervical cancer cell line (HeLa), was conjugated on the hydrogel surface, yielding the ligand conjugated hybrid hydrogels. We revealed that enhanced intracellular uptake by HeLa cells in vitro was enabled by both magnetic attraction and receptor-mediated endocytosis, which were contributed by MNP and folic acid, respectively. Furthermore, site-specific uptake of the developed carrier was confirmed by incubating with several other cell lines. Based on synergistically enhanced intracellular uptake, efficient cytotoxicity and apoptotic activity of HeLa cells incubated with anticancer drug loaded hybrid hydrogels were successfully achieved. The developed dual-targeted hybrid hydrogels are expected to provide a platform for the next generation intelligent drug delivery systems.

  13. Redox-active triazatruxene-based conjugated microporous polymers for high-performance supercapacitors† †Electronic supplementary information (ESI) available: Synthetic procedures and characterization data for all new compounds; general experimental method; thermogravimetry curves; PXRD patterns; SEM and TEM images; XPS spectra. See DOI: 10.1039/c6sc05532j Click here for additional data file.

    PubMed Central

    Li, Xiang-Chun; Zhang, Yizhou; Wang, Chun-Yu; Wan, Yi

    2017-01-01

    Conjugated polymers (CPs) have been intensively explored for various optoelectronic applications in the last few decades. Nevertheless, CP based electrochemical energy storage devices such as supercapacitors remain largely unexplored. This is mainly owing to the low specific capacitance, poor structural/electrochemical stability, and low energy density of most existing CPs. In this contribution, a novel set of redox-active conjugated microporous polymers, TAT-CMP-1 and TAT-CMP-2, based on nitrogen-rich and highly conductive triazatruxene building blocks, were successfully designed and synthesized to explore their potential application as efficient and stable electrode materials for supercapacitors. Despite a moderate surface area of 88 m2 g–1 for TAT-CMP-1 and 106 m2 g–1 for TAT-CMP-2, exceptional specific capacitances of 141 F g–1 and 183 F g–1 were achieved at a current density of 1 A g–1. The resulting polymers exhibited unusually high areal specific capacitance (>160 μF cm–2), which is attributed to the pseudocapacitance resulting from redox-active structures with high nitrogen content. More importantly, the TAT-CMP-2 electrode exhibits excellent cycling stability: only 5% capacitance fading is observed after 10 000 cycles at a high current density of 10 A g–1, enabling the possible use of these materials as electrodes in electrochemical devices. PMID:28451362

  14. Detection of parathyroid hormone using an electrochemical impedance biosensor based on PAMAM dendrimers.

    PubMed

    Özcan, Hakkı Mevlüt; Sezgintürk, Mustafa Kemal

    2015-01-01

    This paper presents a novel hormone-based impedimetric biosensor to determine parathyroid hormone (PTH) level in serum for diagnosis and monitoring treatment of hyperparathyroidism, hypoparathyroidism and thyroid cancer. The interaction between PTH and the biosensor was investigated by an electrochemical method. The biosensor was based on the gold electrode modified by 12-mercapto dodecanoic (12MDDA). Antiparathyroid hormone (anti-PTH) was covalently immobilized on to poly amidoamine dendrimer (PAMAM) which was bound to a 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide/N-hydroxysuccinimide (EDC/NHS) couple, self-assembled monolayer structure from one of the other NH2 sites. The immobilization of anti-PTH was monitored by electrochemical impedance spectroscopy, cyclic voltammetry and scanning electron microscope techniques. After the optimization studies of immobilization materials such as 12MDDA, EDC-NHS, PAMAM, and glutaraldehyde, the performance of the biosensor was investigated in terms of linearity, sensitivity, repeatability, and reproducibility. PTH was detected within a linear range of 10-60 fg/mL. Finally the described biosensor was used to monitor PTH levels in artificial serum samples. © 2015 American Institute of Chemical Engineers.

  15. Poly(amido amine) dendrimers in oral delivery.

    PubMed

    Yellepeddi, Venkata K; Ghandehari, Hamidreza

    2016-01-01

    Poly(amidoamine) (PAMAM) dendrimers have been extensively investigated for oral delivery applications due to their ability to translocate across the gastrointestinal epithelium. In this Review, we highlight recent advances in the evaluation of PAMAM dendrimers as oral drug delivery carriers. Specifically, toxicity, mechanisms of transepithelial transport, models of the intestinal epithelial barrier including isolated human intestinal tissue model, detection of dendrimers, and surface modification are discussed. We also highlight evaluation of various PAMAM dendrimer-drug conjugates for their ability to transport across gastrointestinal epithelium for improved oral bioavailability. In addition, current challenges and future trends for clinical translation of PAMAM dendrimers as carriers for oral delivery are discussed.

  16. Poly(amido amine) dendrimers in oral delivery

    PubMed Central

    Yellepeddi, Venkata K.; Ghandehari, Hamidreza

    2016-01-01

    ABSTRACT Poly(amidoamine) (PAMAM) dendrimers have been extensively investigated for oral delivery applications due to their ability to translocate across the gastrointestinal epithelium. In this Review, we highlight recent advances in the evaluation of PAMAM dendrimers as oral drug delivery carriers. Specifically, toxicity, mechanisms of transepithelial transport, models of the intestinal epithelial barrier including isolated human intestinal tissue model, detection of dendrimers, and surface modification are discussed. We also highlight evaluation of various PAMAM dendrimer-drug conjugates for their ability to transport across gastrointestinal epithelium for improved oral bioavailability. In addition, current challenges and future trends for clinical translation of PAMAM dendrimers as carriers for oral delivery are discussed. PMID:27358755

  17. Human immunodeficiency virus type 1 Tat binds to Candida albicans, inducing hyphae but augmenting phagocytosis in vitro

    PubMed Central

    Gruber, Andreas; Lell, Claudia P; Speth, Cornelia; Stoiber, Heribert; Lass-Flörl, Cornelia; Sonneborn, Anja; Ernst, Joachim F; Dierich, Manfred P; Würzner, Reinhard

    2001-01-01

    Tat, the human immunodeficiency virus type 1 (HIV-1) transactivating protein, binds through its RGD-motif to human integrin receptors. Candida albicans, the commonest cause of mucosal candidiasis in subjects infected with HIV-1, also possesses RGD-binding capacity. The present study reveals that Tat binds to C. albicans but not to C. tropicalis. Tat binding was markedly reduced by laminin and to a lesser extent by a complement C3 peptide containing the RGD motif, but not by a control peptide. The outgrowth of C. albicans was accelerated following binding of Tat, but phagocytosis of opsonized C. albicans was also increased after Tat binding. Thus, Tat binding promotes fungal virulence by inducing hyphae but may also reduce it by augmenting phagocytosis. The net effect of Tat in vivo is difficult to judge but in view of the many disease-promoting effects of Tat we propose that accelerating the formation of hyphae dominates over the augmentation of phagocytosis. PMID:11899432

  18. [Biological characteristics of an enteroinvasive Escherichia coli strain with tatABC deletion].

    PubMed

    Gong, Zhaolong; Ye, Changyun; Liu, Xiaobing; Zhang, Min; Zhuo, Qin

    2013-05-04

    To study the relationship between twin-arginine translocation system (Tat) system with the biological characteristics of enteroinvasive Escherichia coli (EIEC). Through homologous recombination, we constructed EIEC's tatABC gene deletion strain and complementary strain, and explored their impact on bacterial form, substrate transport function as well as on HeLa cells and guinea pig's corneal invasion force. The tatABC gene deletion strain had apparent changes in bacterial form, loss of substrate transporter function, and significant weakened bacterial invasion force (the number of the deletion strain invading into HeLa cells was decreased significantly, and the ability of its corneal lesion capacity of the guinea pig was significantly weakened), while the complementary strain was similar to the wild strain in the above respects. EIEC's Tat protein transport system is closely related with the biological characteristics of EIEC.

  19. Homonuclear 1H NMR and circular dichroism study of the HIV-1 Tat Eli variant.

    PubMed

    Watkins, Jennifer D; Campbell, Grant R; Halimi, Hubert; Loret, Erwann P

    2008-09-22

    The HIV-1 Tat protein is a promising target to develop AIDS therapies, particularly vaccines, due to its extracellular role that protects HIV-1-infected cells from the immune system. Tat exists in two different lengths, 86 or 87 residues and 99 or 101 residues, with the long form being predominant in clinical isolates. We report here a structural study of the 99 residue Tat Eli variant using 2D liquid-state NMR, molecular modeling and circular dichroism. Tat Eli was obtained from solid-phase peptide synthesis and the purified protein was proven biologically active in a trans-activation assay. Circular dichroism spectra at different temperatures up to 70 degrees C showed that Tat Eli is not a random coil at 20 degrees C. Homonuclear 1H NMR spectra allowed us to identify 1639 NMR distance constraints out of which 264 were interresidual. Molecular modeling satisfying at least 1474 NMR constraints revealed the same folding for different model structures. The Tat Eli model has a core region composed of a part of the N-terminus including the highly conserved Trp 11. The extra residues in the Tat Eli C-terminus protrude from a groove between the basic region and the cysteine-rich region and are well exposed to the solvent. We show that active Tat variants share a similar folding pattern whatever their size, but mutations induce local structural changes.

  20. [Conjugated vaccines].

    PubMed

    Fritzell, Bernard

    2005-01-01

    Encapsulated bacterial pathogens (e.g. Haemophilus influenzae type b [Hib], Neisseria meningitidis, or Streptococcus pneumoniae) target infants and young children who have lost any protective anti-capsular antibodies supplied maternally and whose immune systems are ineffective against T-independent antigens such as the polysaccharides of the capsule. The polysaccharide-protein conjugate vaccines overcome this limitation by converting the polysaccharide to a T-dependent antigen, which allows a vaccinated infant to mount a protective immune response. Where conjugated vaccines have been introduced into paediatric vaccination schedules, the incidence of invasive diseases caused by Hib, the group C meningococcus, or the pneumococcus has plummeted by at least 80%, a major public health success. Furthermore, surveillance has demonstrated that the conjugate vaccines provide 'herd protection' through their beneficial impact on nasopharyngeal colonisation among vaccinated children. Promising future approaches include enhancement of the number of capsular serogroups targeted by the meningococcal or pneumococcal conjugate vaccines.

  1. TAT-MTS-MCM fusion proteins reduce MMA levels and improve mitochondrial activity and liver function in MCM-deficient cells.

    PubMed

    Erlich-Hadad, Tal; Hadad, Rita; Feldman, Anat; Greif, Hagar; Lictenstein, Michal; Lorberboum-Galski, Haya

    2018-03-01

    Methylmalonic aciduria (MMA) is a disorder of organic acid metabolism resulting from a functional defect of the mitochondrial enzyme, methylmalonyl-CoA mutase (MCM). The main treatments for MMA patients are dietary restriction of propiogenic amino acids and carnitine supplementation. Liver or combined liver/kidney transplantation has been used to treat those with the most severe clinical manifestations. Thus, therapies are necessary to help improve quality of life and prevent liver, renal and neurological complications. Previously, we successfully used the TAT-MTS-Protein approach for replacing a number of mitochondrial-mutated proteins. In this targeted system, TAT, an 11 a.a peptide, which rapidly and efficiently can cross biological membranes, is fused to a mitochondrial targeting sequence (MTS), followed by the mitochondrial mature protein which sends the protein into the mitochondria. In the mitochondria, the TAT-MTS is cleaved off and the native protein integrates into its natural complexes and is fully functional. In this study, we used heterologous MTSs of human, nuclear-encoded mitochondrial proteins, to target the human MCM protein into the mitochondria. All fusion proteins reached the mitochondria and successfully underwent processing. Treatment of MMA patient fibroblasts with these fusion proteins restored mitochondrial activity such as ATP production, mitochondrial membrane potential and oxygen consumption, indicating the importance of mitochondrial function in this disease. Treatment with the fusion proteins enhanced cell viability and most importantly reduced MMA levels. Treatment also enhanced albumin and urea secretion in a CRISPR/Cas9-engineered HepG2 MUT (-/-) liver cell line. Therefore, we suggest using this TAT-MTS-Protein approach for the treatment of MMA. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  2. The enhanced longevity and liver targetability of Paclitaxel by hybrid liposomes encapsulating Paclitaxel-conjugated gold nanoparticles.

    PubMed

    Bao, Quan-Ying; Zhang, Ning; Geng, Dong-Dong; Xue, Jing-Wei; Merritt, Mackenzie; Zhang, Can; Ding, Ya

    2014-12-30

    Organic and inorganic drug delivery systems both demonstrate their own advantages and challenges in practical applications. Combining these two drug delivery strategies in one system is expected to solve their current issues and achieve desirable functions. In this paper, gold nanoparticles (GNPs) and liposomes have been chosen as the model systems to construct a hybrid system and investigate its performance for the tumor therapy of Paclitaxel (PTX). The thiol-terminated polyethylene glycol (PEG400)-PTX derivative has been covalently modified on the surface of GNPs, followed by the encapsulation of PTX-conjugated GNPs (PTX-PEG400@GNPs) in liposomes. The hybrid liposomes solve the solubility and stability problems of gold conjugates and show high drug loading capacity. In vitro PTX release from the hybrid system maintains the similar sustained behavior demonstrated in its conjugates. Under the protection of a biocompatible liposome shell, encapsulated PTX shows enhanced circulation longevity and liver targetability compared to Taxol(®) and PTX-PEG400@GNPs suspension in the pharmacokinetic and biodistribution studies. These indicate that encapsulating drug-conjugated inorganic nanoparticles inside organic carriers maintains the superiority of both vehicles and improves the performance of hybrid systems. Although these attributes of hybrid liposomes lead to a better therapeutic capacity in a murine liver cancer model than that of the comparison groups, it shows no significant difference from Taxol(®) and conjugate suspension. This result could be due to the delayed and sustained drug release from the system. However, it indicates the promising potential for these hybrid liposomes will allow further construction of a compound preparation with improved performance that is based on their enhanced longevity and liver targetability of Paclitaxel. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Twin-arginine signal peptide of Bacillus subtilis YwbN can direct Tat-dependent secretion of methyl parathion hydrolase.

    PubMed

    Liu, Ruihua; Zuo, Zhenqiang; Xu, Yingming; Song, Cunjiang; Jiang, Hong; Qiao, Chuanling; Xu, Ping; Zhou, Qixing; Yang, Chao

    2014-04-02

    The twin-arginine translocation (Tat) pathway exports folded proteins across the cytoplasmic membranes of bacteria and archaea. Two parallel Tat pathways (TatAdCd and TatAyCy systems) with distinct substrate specificities have previously been discovered in Bacillus subtilis. In this study, to secrete methyl parathion hydrolase (MPH) into the growth medium, the twin-arginine signal peptide of B. subtilis YwbN was used to target MPH to the Tat pathway of B. subtilis. Western blot analysis and MPH assays demonstrated that active MPH was secreted into the culture supernatant of wild-type cells. No MPH secretion occurred in a total-tat2 mutant, indicating that the observed export in wild-type cells was mediated exclusively by the Tat pathway. Export was fully blocked in a tatAyCy mutant. In contrast, the tatAdCd mutant was still capable of secreting MPH. These results indicated that the MPH secretion directed by the YwbN signal peptide was specifically mediated by the TatAyCy system. The N-terminal sequence of secreted MPH was determined as AAPQVR, demonstrating that the YwbN signal peptide had been processed correctly. This is the first report of functional secretion of a heterologous protein via the B. subtilis TatAyCy system. This study highlights the potential of the TatAyCy system to be used for secretion of other heterologous proteins in B. subtilis.

  4. Facile synthesis of a conjugation-grafted-TiO2 nanohybrid with enhanced visible-light photocatalytic properties from nanotube titanic acid precursors

    NASA Astrophysics Data System (ADS)

    Guo, Yanru; Zhang, Min; Zhang, Zhihua; Li, Qiuye; Yang, Jianjun

    2016-08-01

    A conjugation-grafted-TiO2 nanohybrid was synthesized by chemically grafting conjugated structures on the surface of nanotube titanic acid (NTA) precursor-based TiO2 through the controlled thermal degradation of a coacervated polymer layer of polyvinyl alcohol (PVA). The interfacial interactions between the NTA precursor-based TiO2 and conjugated structures were characterized using Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. Moreover, the effects of the NTA's pretreatment temperature and the weight ratio of NTA to PVA on the photocatalytic degradation of methyl orange were also investigated. A higher NTA pretreatment temperature and a lower NTA to PVA weight ratio were found to enhance photogenerated electron-hole separation efficiency and photocatalytic activity. Moreover, the conjugation-grafted-TiO2 nanohybrid synthesized from the NTA precursor displayed a much higher visible-light photocatalytic activity than that of the sample obtained from the P25 precursor. The origin of the enhanced photocatalytic activity under visible-light irradiation is also discussed in detail.

  5. Protective Effect of Tat PTD-Hsp27 Fusion Protein on Tau Hyperphosphorylation Induced by Okadaic Acid in the Human Neuroblastoma Cell Line SH-SY5Y.

    PubMed

    Choi, Sunghyun; Oh, Jae Hoon; Kim, Hyeseon; Nam, So Hee; Shin, Jeehae; Park, Jong-Sang

    2015-10-01

    Alzheimer's disease (AD) is an age-related disorder that causes a loss of brain function. Hyperphosphorylation of tau and the subsequent formation of intracellular neurofibrillary tangles (NFTs) are implicated in the pathogenesis of AD. Hyperphosphorylated tau accumulates into insoluble paired helical filaments that aggregate into NFTs; therefore, regulation of tau phosphorylation represents an important treatment approach for AD. Heat shock protein 27 (Hsp27) plays a specific role in human neurodegenerative diseases; however, few studies have examined its therapeutic effect. In this study, we induced tau hyperphosphorylation using okadaic acid, which is a protein phosphatase inhibitor, and generated a fusion protein of Hsp27 and the protein transduction domain of the HIV Tat protein (Tat-Hsp27) to enhance the delivery of Hsp27. We treated Tat-Hsp27 to SH-SY5Y neuroblastoma cells for 2 h; the transduction level was proportional to the Tat-hsp27 concentration. Additionally, Tat-Hsp27 reduced the level of hyperphosphorylated tau and protected cells from apoptotic cell death caused by abnormal tau aggregates. These results reveal that Hsp27 represents a valuable protein therapeutic for AD.

  6. Covalent attachment of TAT peptides and thiolated alkyl molecules on GaAs surfaces.

    PubMed

    Cho, Youngnam; Ivanisevic, Albena

    2005-07-07

    Four TAT peptide fragments were used to functionalize GaAs surfaces by adsorption from solution. In addition, two well-studied alkylthiols, mercaptohexadecanoic acid (MHA) and 1-octadecanethiol (ODT) were utilized as references to understand the structure of the TAT peptide monolayer on GaAs. The different sequences of TAT peptides were employed in recognition experiments where a synthetic RNA sequence was tested to verify the specific interaction with the TAT peptide. The modified GaAs surfaces were characterized by atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared reflection absorption spectroscopy (FT-IRRAS). AFM studies were used to compare the surface roughness before and after functionalization. XPS allowed us to characterize the chemical composition of the GaAs surface and conclude that the monolayers composed of different sequences of peptides have similar surface chemistries. Finally, FT-IRRAS experiments enabled us to deduce that the TAT peptide monolayers have a fairly ordered and densely packed alkyl chain structure. The recognition experiments showed preferred interaction of the RNA sequence toward peptides with high arginine content.

  7. Homonuclear 1H NMR and circular dichroism study of the HIV-1 Tat Eli variant

    PubMed Central

    Watkins, Jennifer D; Campbell, Grant R; Halimi, Hubert; Loret, Erwann P

    2008-01-01

    Background The HIV-1 Tat protein is a promising target to develop AIDS therapies, particularly vaccines, due to its extracellular role that protects HIV-1-infected cells from the immune system. Tat exists in two different lengths, 86 or 87 residues and 99 or 101 residues, with the long form being predominant in clinical isolates. We report here a structural study of the 99 residue Tat Eli variant using 2D liquid-state NMR, molecular modeling and circular dichroism. Results Tat Eli was obtained from solid-phase peptide synthesis and the purified protein was proven biologically active in a trans-activation assay. Circular dichroism spectra at different temperatures up to 70°C showed that Tat Eli is not a random coil at 20°C. Homonuclear 1H NMR spectra allowed us to identify 1639 NMR distance constraints out of which 264 were interresidual. Molecular modeling satisfying at least 1474 NMR constraints revealed the same folding for different model structures. The Tat Eli model has a core region composed of a part of the N-terminus including the highly conserved Trp 11. The extra residues in the Tat Eli C-terminus protrude from a groove between the basic region and the cysteine-rich region and are well exposed to the solvent. Conclusion We show that active Tat variants share a similar folding pattern whatever their size, but mutations induce local structural changes. PMID:18808674

  8. Delivery of vincristine sulfate-conjugated gold nanoparticles using liposomes: a light-responsive nanocarrier with enhanced antitumor efficiency

    PubMed Central

    Liu, Ying; He, Man; Niu, Mengmeng; Zhao, Yiqing; Zhu, Yuanzhang; Li, Zhenhua; Feng, Nianping

    2015-01-01

    Rapid drug release at the specific site of action is still a challenge for antitumor therapy. Development of stimuli-responsive hybrid nanocarriers provides a promising strategy to enhance therapeutic effects by combining the unique features of each component. The present study explored the use of drug–gold nanoparticle conjugates incorporated into liposomes to enhance antitumor efficiency. A model drug, vincristine sulfate, was physically conjugated with gold nanoparticles and verified by UV-visible and fourier transform infrared spectroscopy, and differential scanning calorimetry. The conjugates were incorporated into liposomes by film dispersion to yield nanoparticles (113.4 nm) with light-responsive release properties, as shown by in vitro release studies. Intracellular uptake and distribution was studied in HeLa cells using transmission electron microscopy and confocal laser scanning microscopy. This demonstrated liposome internalization and localization in endosomal–lysosomal vesicles. Fluorescence intensity increased in cells exposed to UV light, indicating that this stimulated intracellular drug release; this finding was confirmed by quantitative analyses using flow cytometry. Antitumor efficacy was evaluated in HeLa cells, both in culture and in implants in vivo in nude mice. HeLa cell viability assays showed that light exposure enhanced liposome cytotoxicity and induction of apoptosis. Furthermore, treatment with the prepared liposomes coupled with UV light exposure produced greater antitumor effects in nude mice and reduced side effects, as compared with free vincristine sulfate. PMID:25960649

  9. Efficient mucosal delivery of the HIV-1 Tat protein using the synthetic lipopeptide MALP-2 as adjuvant.

    PubMed

    Borsutzky, Stefan; Fiorelli, Valeria; Ebensen, Thomas; Tripiciano, Antonella; Rharbaoui, Faiza; Scoglio, Arianna; Link, Claudia; Nappi, Filomena; Morr, Michael; Buttó, Stefano; Cafaro, Aurelio; Mühlradt, Peter F; Ensoli, Barbara; Guzmán, Carlos A

    2003-06-01

    A major requirement for HIV/AIDS research is the development of a mucosal vaccine that stimulates humoral and cell-mediated immune responses at systemic and mucosal levels, thereby blocking virus replication at the entry port. Thus, a vaccine prototype based on biologically active HIV-1 Tat protein as antigen and the synthetic lipopeptide, macrophage-activating lipopeptide-2 (MALP-2), asa mucosal adjuvant was developed. Intranasal administration to mice stimulated systemic and mucosal anti-Tat antibody responses, and Tat-specific T cell responses, that were more efficient than those observed after i.p. immunization with Tat plus incomplete Freund's adjuvant. Major linear B cell epitopes mapped within aa 1-20 and 46-60, whereas T cell epitopes were identified within aa 36-50 and 56-70. These epitopes have also been described in vaccinated primates and in HIV-1-infected individuals with better prognosis. Analysis of the anti-Tat IgG isotypes in serum, and the cytokine profile of spleen cells indicated that a dominant Th1 helper response was stimulated by Tat plus MALP-2, as opposed to the Th2 response observed with Tat plus incomplete Freund's adjuvant. Tat-specific IFN-gamma-producing cells were significantly increased only in response to Tat plus MALP-2. These data suggest that Malp-2 may represent an optimal mucosal adjuvant for candidate HIV vaccines based on Tat alone or in combination with other HIV antigens.

  10. Protective effects of transduced Tat-DJ-1 protein against oxidative stress and ischemic brain injury.

    PubMed

    Jeong, Hoon Jae; Kim, Dae Won; Kim, Mi Jin; Woo, Su Jung; Kim, Hye Ri; Kim, So Mi; Jo, Hyo Sang; Hwang, Hyun Sook; Kim, Duk Soo; Cho, Sung Woo; Won, Moo Ho; Han, Kyu Hyung; Park, Jin Seu; Eum, Won Sik; Choi, Soo Young

    2012-10-31

    Reactive oxygen species (ROS) contribute to the development of a number of neuronal diseases including ischemia. DJ-1, also known to PARK7, plays an important role in transcriptional regulation, acting as molecular chaperone and antioxidant. In the present study, we investigated whether DJ-1 protein shows a protective effect against oxidative stress-induced neuronal cell death in vitro and in ischemic animal models in vivo. To explore DJ-1 protein's potential role in protecting against ischemic cell death, we constructed cell permeable Tat-DJ-1 fusion proteins. Tat-DJ-1 protein efficiently transduced into neuronal cells in a doseand time-dependent manner. Transduced Tat-DJ-1 protein increased cell survival against hydrogen peroxide (H2O2) toxicity and also reduced intracellular ROS. In addition, Tat-DJ-1 protein inhibited DNA fragmentation induced by H2O2. Furthermore, in animal models, immunohistochemical analysis revealed that Tat-DJ-1 protein prevented neuronal cell death induced by transient forebrain ischemia in the CA1 region of the hippocampus. These results demonstrate that transduced Tat-DJ-1 protein protects against cell death in vitro and in vivo, suggesting that the transduction of Tat-DJ-1 may be useful as a therapeutic agent for ischemic injuries related to oxidative stress.

  11. Method for enhancing cell penetration of Gd3+-based MRI contrast agents by conjugation with hydrophobic fluorescent dyes.

    PubMed

    Yamane, Takehiro; Hanaoka, Kenjiro; Muramatsu, Yasuaki; Tamura, Keita; Adachi, Yusuke; Miyashita, Yasushi; Hirata, Yasunobu; Nagano, Tetsuo

    2011-11-16

    Gadolinium ion (Gd(3+)) complexes are commonly used as magnetic resonance imaging (MRI) contrast agents to enhance signals in T(1)-weighted MR images. Recently, several methods to achieve cell-permeation of Gd(3+) complexes have been reported, but more general and efficient methodology is needed. In this report, we describe a novel method to achieve cell permeation of Gd(3+) complexes by using hydrophobic fluorescent dyes as a cell-permeability-enhancing unit. We synthesized Gd(3+) complexes conjugated with boron dipyrromethene (BDP-Gd) and Cy7 dye (Cy7-Gd), and showed that these conjugates can be introduced efficiently into cells. To examine the relationship between cell permeability and dye structure, we further synthesized a series of Cy7-Gd derivatives. On the basis of MR imaging, flow cytometry, and ICP-MS analysis of cells loaded with Cy7-Gd derivatives, highly hydrophobic and nonanionic dyes were effective for enhancing cell permeation of Gd(3+) complexes. Furthermore, the behavior of these Cy7-Gd derivatives was examined in mice. Thus, conjugation of hydrophobic fluorescent dyes appears to be an effective approach to improve the cell permeability of Gd(3+) complexes, and should be applicable for further development of Gd(3+)-based MRI contrast agents.

  12. HIV Tat/P-TEFb Interaction: A Potential Target for Novel Anti-HIV Therapies.

    PubMed

    Asamitsu, Kaori; Fujinaga, Koh; Okamoto, Takashi

    2018-04-17

    Transcription is a crucial step in the life cycle of the human immunodeficiency virus type 1 (HIV 1) and is primarily involved in the maintenance of viral latency. Both viral and cellular transcription factors, including transcriptional activators, suppressor proteins and epigenetic factors, are involved in HIV transcription from the proviral DNA integrated within the host cell genome. Among them, the virus-encoded transcriptional activator Tat is the master regulator of HIV transcription. Interestingly, unlike other known transcriptional activators, Tat primarily activates transcriptional elongation and initiation by interacting with the cellular positive transcriptional elongation factor b (P-TEFb). In this review, we describe the molecular mechanism underlying how Tat activates viral transcription through interaction with P-TEFb. We propose a novel therapeutic strategy against HIV replication through blocking Tat action.

  13. A label-free electrochemical impedance immunosensor based on AuNPs/PAMAM-MWCNT-Chi nanocomposite modified glassy carbon electrode for detection of Salmonella typhimurium in milk.

    PubMed

    Dong, Jing; Zhao, Han; Xu, Minrong; Ma, Qiang; Ai, Shiyun

    2013-12-01

    A sensitive and stable label-free electrochemical impedance immunosensor for the detection of Salmonella typhimurium was developed by immobilising anti-Salmonella antibodies onto the gold nanoparticles and poly(amidoamine)-multiwalled carbon nanotubes-chitosan nanocomposite film modified glassy carbon electrode (AuNPs/PAMAM-MWCNT-Chi/GCE). Electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) were used to verify the stepwise assembly of the immunosensor. Co-addition of MWCNT, PAMAM and AuNPs greatly enhanced the sensitivity of the immunosensor. The immobilisation of antibodies and the binding of Salmonella cells to the modified electrode increased the electron-transfer resistance (Ret), which was directly measured with EIS using [Fe(CN)6](3-/4-) as a redox probe. A linear relationship of Ret and Salmonella concentration was obtained in the Salmonella concentration range of 1.0×10(3) to 1.0×10(7) CFU mL(-1) with a detection limit of 5.0×10(2) CFU mL(-1). Additionally, the proposed method was successfully applied to determine S. typhimurium content in milk samples with satisfactory results. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Water quality impact assessment of agricultural Beneficial Management Practices (BMPs) simulated for a regional catchment in Quebec, Eastern Canada

    NASA Astrophysics Data System (ADS)

    Rousseau, Alain N.; Hallema, Dennis W.; Gumiere, Silvio J.; Savary, Stéphane; Hould Gosselin, Gabriel

    2014-05-01

    Water quality has become a matter of increasing concern over the past four decades as a result of the intensification of agriculture, and more particularly so in Canada where agriculture has evolved into the largest non-point source of surface water pollution. The Canadian WEBs project (Watershed Evaluation of Beneficial Management Practices, BMPs) was initiated in order to determine the efficiency of BMPs in improving the surface water quality of rural catchments, and the economic aspects related to their implementation on the same scale. In this contribution we use the integrated watershed modelling platform GIBSI (Gestion Intégrée des Bassins versants à l'aide d'un Système Informatisé) to evaluate the effects of various BMPs on sediment and nutrient yields and, in close relation to this, the surface water quality for the Beaurivage River catchment (718 km2) in Quebec, eastern Canada. A base scenario of the catchment is developed by calibrating the different models of the GIBSI platform, namely HYDROTEL for hydrology, the Revised Universal Soil Loss Equation (RUSLE) for soil erosion, the Erosion-Productivity Impact Calculator (EPIC) of the Soil and Water Assessment Tool (SWAT) for contaminant transport and fate, and QUAL2E for stream water quality. Four BMPs were analysed: (1) vegetated riparian buffer strips, (2) precision slurry application, (3) transition of all cereal and corn fields to grassland (grassland conversion), and (4) no-tillage on corn fields. Simulations suggest that riparian buffer strips and grassland conversion are more effective in terms of phosphorus, nitrogen and sediment load reduction than precision slurry application and no-tillage on corn fields. The results furthermore indicate the need for a more profound understanding of sediment dynamics in streams and on riparian buffer strips.

  15. Enhanced immune response to inactivated porcine circovirus type 2 (PCV2) vaccine by conjugation of chitosan oligosaccharides.

    PubMed

    Zhang, Guiqiang; Jia, Peiyuan; Cheng, Gong; Jiao, Siming; Ren, Lishi; Ji, Shaoyang; Hu, Tao; Liu, Hongtao; Du, Yuguang

    2017-06-15

    This study aimed to investigate the effect of chitosan oligosaccharide (COS) conjugation on the immunogenicity of porcine circovirus type-2 (PCV2) vaccine. Two conjugates (PCV2-COS-1 and PCV2-COS-2) were designed by covalent conjugation of an inactivated PCV2 vaccine with COS, and administered to C57BL/6 mice three times at two-week intervals. The results indicate that, as compared to PCV2 alone group, the PCV2-COS conjugates remarkably enhanced both humoral and cellular immunity against PCV2 by promoting T lymphocyte proliferation and initiating a mixed Th1/Th2 response, including the elevated production of PCV-2 specific antibodies and up-regulated secretion of inflammatory cytokines. Noticeably, the immunization with PCV2-COS-1 conjugate displayed similar or even better immune-stimulating effects than that by PCV2/ISA206 (a commercialized adjuvant) and showed no infection or pathological signs at injection sites of the mice. Presumably, the covalent linkage of PCV2 vaccine to COS might be a viable strategy to increase the efficacy against PCV2-associated diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Role of PAMAM-OH dendrimers against the fibrillation pathway of biomolecules.

    PubMed

    Sekar, Gajalakshmi; Florance, Ida; Sivakumar, A; Mukherjee, Amitava; Chandrasekaran, Natarajan

    2016-12-01

    The binding behavior of nanoparticle with proteins determines its biocompatibility. This study reports the interaction of ten different biomolecules (proteins-BSA, HSA, haemoglobin, gamma globulin, transferrin and enzymes-hog and bacillus amylase, lysozyme from chicken and human and laccases from Tramates versicolor) with a surface group hydroxylated Poly AMido AMide dendrimer (PAMAM) of generation 5. The study has utilized various spectroscopic methods like UV-vis spectroscopy, Fluorescence emission, Synchronous, 3-D spectroscopy and Circular Dichroism to detect the binding induced structural changes in biomolecules that occur upon interaction with mounting concentration of the dendrimers. Aggregation of proteins results in the formation of amyloid fibrils causing several human diseases. In this study, fibrillar samples of all ten biomolecules formed in the absence and the presence of dendrimers were investigated with Congo Red absorbance and ThT Assay to detect fibril formation, Trp Emission and 3-D scan to evaluate the effect of fibrillation on aromatic environment of biomolecules, and CD spectroscopy to measure the conformational changes in a quantitative manner. These assays have generated useful information on the role of dendrimers in amyloid fibril formation of biomolecules. The outcomes of the study remain valuable in evaluating the biological safety of PAMAM-OH dendrimers for their biomedical application in vivo. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Empty Turnip yellow mosaic virus capsids as delivery vehicles to mammalian cells.

    PubMed

    Kim, Doyeong; Lee, Younghee; Dreher, Theo W; Cho, Tae-Ju

    2018-05-03

    Turnip yellow mosaic virus (TYMV) was able to enter animal cells when the spherical plant virus was conjugated with Tat, a cell penetrating peptide (CPP). Tat was chemically attached to the surface lysine residues of TYMV using hydrazone chemistry. Baby hamster kidney (BHK) cells were incubated with either unmodified or Tat-conjugated TYMV and examined by flow cytometry and confocal microscopic analyses. Tat conjugation was shown to be more efficient than Lipofectamine in allowing TYMV to enter the mammalian cells. Tat-assisted-transfection was also associated with less loss of cell viability than lipofection. Among the CPPs tested (Tat, R8, Pep-1 and Pen), it was observed that R8 and Pen were also effective while Pep-1 was not. We also examined if the internal space of TYMV can be used to load fluorescein dye as a model cargo. When TYMV is treated by freezing and thawing, the virus is known to convert into a structure with a 6-8 nm hole and release viral RNA. When the resultant pot-like particles were reacted with fluorescein-5-maleimide using interior sulfhydryl groups as conjugation sites, about 145 fluorescein molecules were added per particle. The fluorescein-loaded TYMV particles were conjugated with Tat and introduced into BHK cells, again with higher transfection efficiency compared to lipofection. Our studies demonstrate the potential of modified TYMV as an efficient system for therapeutic cargo delivery to mammalian cells. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Facilitated extinction of morphine conditioned place preference with Tat-GluA2(3Y) interference peptide.

    PubMed

    Dias, C; Wang, Y T; Phillips, A G

    2012-08-01

    Neuroplasticity including long-term depression (LTD) has been implicated in both learning processes and addiction. LTD can be blocked by intravenous administration of the interference peptide Tat-GluA2(3Y) that prevents regulated endocytosis of the alpha-amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid (AMPA) receptor. In this study, Tat-GluA2(3Y) was used to assess the role of LTD in the induction, expression, extinction and reinstatement of morphine-induced conditioned place preference (CPP). CPP was established in rats by pairing morphine (5 mg/kg, i.p.) or saline with a specific environmental context using a balanced protocol. Tat-GluA2(3Y) (0; 1.5; 2.25 nmol/g; i.v.), scrambled peptide (Tat-GluA2(Sc)), or vehicle was administered during the acquisition phase or prior to the test for CPP. Tat-GluA2(3Y) had no effect on the induction or initial expression of morphine-induced CPP. Rats that received Tat-GluA2(3Y) or Tat-GluA2(Sc) during acquisition were subsequently tested for 11 consecutive days in order to extinguish morphine CPP. CPP was then reinstated by an injection of morphine (5 mg/kg, i.p.). Co-administration of morphine and Tat-GluA2(3Y) during acquisition greatly facilitated extinction of CPP without affecting morphine-induced reinstatement of CPP. Using an intermittent retest schedule with bi-weekly tests to measure the maintenance of CPP, Tat-GluA2(3Y) during the acquisition phase had no effect on the maintenance of CPP. We propose that co-administration of Tat-GluA2(3Y) with morphine during acquisition of CPP weakens the association between morphine and contextual cues leading to rapid extinction of morphine CPP with repeated daily testing. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Enquête internationale sur l'état de l'art et l'état de la pratique en géotechnique

    NASA Astrophysics Data System (ADS)

    Acosta-Martinez, Hugo; Delage, Pierre; Nicks, Jennifer; Day, Peter

    2018-05-01

    Cet article présente une synthèse des résultats de l'enquête internationale sur l'état de l'art et l'état de la pratique en ingénierie géotechnique lancée par le Groupe présidentiel des entreprises associées et le Comité de supervision technique de la Société internationale de mécanique des sols et de géotechnique en mars 2017. Il résume également les discussions qui ont eu lieu sur le sujet durant le 19e CIMSG à Séoul, le 20 septembre 2017.

  20. Molecular Dynamics Simulation and Experimental Verification of the Interaction between Cyclin T1 and HIV-1 Tat Proteins

    PubMed Central

    Asamitsu, Kaori; Hibi, Yurina

    2015-01-01

    The viral encoded Tat protein is essential for the transcriptional activation of HIV proviral DNA. Interaction of Tat with a cellular transcription elongation factor P-TEFb containing CycT1 is critically required for its action. In this study, we performed MD simulation using the 3D data for wild-type and 4CycT1mutants3D data. We found that the dynamic structural change of CycT1 H2’ helix is indispensable for its activity for the Tat action. Moreover, we detected flexible structural changes of the Tat-recognition cavity in the WT CycT1 comprising of ten AAs that are in contact with Tat. These structural fluctuations in WT were lost in the CycT1 mutants. We also found the critical importance of the hydrogen bond network involving H1, H1’ and H2 helices of CycT1. Since similar AA substitutions of the Tat-CycT1 chimera retained the Tat-supporting activity, these interactions are considered primarily involved in interaction with Tat. These findings described in this paper should provide vital information for the development of effective anti-Tat compound. PMID:25781978

  1. Interaction between HIV-1 Tat and DNA-PKcs modulates HIV transcription and class switch recombination.

    PubMed

    Zhang, Shi-Meng; Zhang, He; Yang, Tian-Yi; Ying, Tian-Yi; Yang, Pei-Xiang; Liu, Xiao-Dan; Tang, Sheng-Jian; Zhou, Ping-Kun

    2014-01-01

    HIV-1 tat targets a variety of host cell proteins to facilitate viral transcription and disrupts host cellular immunity by inducing lymphocyte apoptosis, but whether it influences humoral immunity remains unclear. Previously, our group demonstrated that tat depresses expression of DNA-PKcs, a critical component of the non-homologous end joining pathway (NHEJ) of DNA double-strand breaks repair, immunoglobulin class switch recombination (CSR) and V(D)J recombination, and sensitizes cells to ionizing radiation. In this study, we demonstrated that HIV-1 Tat down-regulates DNA-PKcs expression by directly binding to the core promoter sequence. In addition, Tat interacts with and activates the kinase activity of DNA-PKcs in a dose-dependent and DNA independent manner. Furthermore, Tat inhibits class switch recombination (CSR) at low concentrations (≤ 4 µg/ml) and stimulates CSR at high concentrations (≥ 8 µg/ml). On the other hand, low protein level and high kinase activity of DNA-PKcs promotes HIV-1 transcription, while high protein level and low kinase activity inhibit HIV-1 transcription. Co-immunoprecipitation results revealed that DNA-PKcs forms a large complex comprised of Cyclin T1, CDK9 and Tat via direct interacting with CDK9 and Tat but not Cyclin T1. Taken together, our results provide new clues that Tat regulates host humoral immunity via both transcriptional depression and kinase activation of DNA-PKcs. We also raise the possibility that inhibitors and interventions directed towards DNA-PKcs may inhibit HIV-1 transcription in AIDS patients.

  2. Human immunodeficiency virus-1 protein Tat induces excitotoxic loss of presynaptic terminals in hippocampal cultures.

    PubMed

    Shin, Angela H; Thayer, Stanley A

    2013-05-01

    Human immunodeficiency virus (HIV) infection of the CNS produces dendritic damage that correlates with cognitive decline in patients with HIV-associated neurocognitive disorders (HAND). HIV-induced neurotoxicity results in part from viral proteins shed from infected cells, including the HIV transactivator of transcription (Tat). We previously showed that Tat binds to the low density lipoprotein receptor-related protein (LRP), resulting in overactivation of NMDA receptors, activation of the ubiquitin-proteasome pathway, and subsequent loss of postsynaptic densities. Here, we show that Tat also induces a loss of presynaptic terminals. The number of presynaptic terminals was quantified using confocal imaging of synaptophysin fused to green fluorescent protein (Syn-GFP). Tat-induced loss of presynaptic terminals was secondary to excitatory postsynaptic mechanisms because treatment with an LRP antagonist or an NMDA receptor antagonist inhibited this loss. Treatment with nutlin-3, an E3 ligase inhibitor, prevented Tat-induced loss of presynaptic terminals. These data suggest that Tat-induced loss of presynaptic terminals is a consequence of excitotoxic postsynaptic activity. We previously found that ifenprodil, an NR2B subunit-selective NMDA receptor antagonist, induced recovery of postsynaptic densities. Here we show that Tat-induced loss of presynaptic terminals was reversed by ifenprodil treatment. Thus, Tat-induced loss of presynaptic terminals is reversible, and this recovery can be initiated by inhibiting a subset of postsynaptic NMDA receptors. Understanding the dynamics of synaptic changes in response to HIV infection of the CNS may lead to the design of improved pharmacotherapies for HAND patients. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Effects of human chromosome 12 on interactions between Tat and TAR of human immunodeficiency virus type 1.

    PubMed Central

    Alonso, A; Cujec, T P; Peterlin, B M

    1994-01-01

    Rates of transcriptions of the human immunodeficiency virus are greatly increased by the viral trans activator Tat. In vitro, Tat binds to the 5' bulge of the trans-activation response (TAR) RNA stem-loop, which is present in all viral transcripts. In human cells, the central loop in TAR and its cellular RNA-binding proteins are also critical for the function of Tat. Previously, we demonstrated that in rodent cells (CHO cells), but not in those which contain the human chromosome 12 (CHO12 cells), Tat-TAR interactions are compromised. In this study, we examined the roles of the bulge and loop in TAR in Tat trans activation in these cells. Whereas low levels of trans activation depended solely on interactions between Tat and the bulge in CHO cells, high levels of trans activation depended also on interactions between Tat and the loop in CHO12 cells. Since the TAR loop binding proteins in these two cell lines were identical and different from their human counterpart, the human chromosome 12 does not encode TAR loop binding proteins. In vivo binding competition studies with TAR decoys confirmed that the binding of Tat to TAR is more efficient in CHO12 cells. Thus, the protein(s) encoded on human chromosome 12 helps to tether Tat to TAR via its loop, which results in high levels of trans activation. Images PMID:8083988

  4. Large PAMAM Dendron Induces Formation of Unusual P4332 Mesophase in Monoolein/Water system.

    PubMed

    Kumar, Manoj; Patil, Naganath G; Ambade, Ashootosh V; Kumaraswamy, Guruswamy

    2018-05-18

    Compact macromolecular dendrons have been shown to induce the formation of discontinuous inverse micellar assemblies with Fd3m symmetry in monoolein/water systems. Here, we demonstrate that a large PAMAM dendron (G5: fifth generation) induces the formation a very unusual mesophase with P4332 symmetry. This mesophase had previously been observed in monoolein/water systems only on addition of cytochrome C. The P4332 mesophase can be considered an intermediate phase between the bicontinuous Ia3d and discontinuous micellar mesophases. In this unusual phase, every third rod junction of the Ia3d mesophase is replaced with a spherical micelle. We present a detailed investigation of the phase behaviour of monoolein/water as a function of G5 concentration and temperature. Addition of 1% G5 in 85/15 monoolein/water system induces a transition from the L to Ia3d phase. Further increase in G5 concentration to above 2% induces the formation of the P4332 phase. Thus, incorporation of G5 yields a qualitatively different phase diagram when compared with incorporation of lower generation PAMAM dendrons (G2 - G4) in monoolein/water, where the reverse micellar Fd3m phase forms. PAMAM dendrons of all generations, G2 - G5, bear terminal amine groups that interact with the monoolein head group. The compact molecular architecture of the dendrons and these attractive interactions induce bending of the monoolein bilayer structure. For smaller dendrons, G2 - G4, this results in the formation of the Fd3m phase. However, the large size of the G5 dendron precludes this and a rare intermediate phase between the Ia3d and discontinuous micellar phase, the P4332 mesophase forms instead.

  5. Drug resistance reversal in ovarian cancer cells of paclitaxel and borneol combination therapy mediated by PEG-PAMAM nanoparticles.

    PubMed

    Zou, Liang; Wang, Di; Hu, Yichen; Fu, Chaomei; Li, Wei; Dai, Liping; Yang, Lin; Zhang, Jinming

    2017-09-01

    Paclitaxel (PTX) is frequently suffered from multidrug resistance (MDR), resulting in lower chemotherapeutic efficacy and even chemotherapy failure. To combine the P-glycolprotein (P-gp) inhibitor would be a useful strategy to overcome MDR. However, what is needed now is an efficient vehicle to deliver multiple drugs into tumor simultaneously. In this study, PTX and Borneol (BNL), a natural compound with P-gp inhibition effect confirmed in intestinal absorption, were co-loaded in the fabricated PEG-PAMAM nanoparticle (NPs) by a one-step nano-precipitation method with high drug loading efficiency, narrow size distribution and low hemolysis rate. Based on P-gp inhibition activity of BNL, confirmed by drug efflux test and molecular docking model, the combination of PTX and BNL could improve intracellular concentration of PTX in A2780/PTX cells. Furthermore, compared to both free PTX and PTX+BNL, PB/NPs and P/NPs plus BNL exhibited higher cellular uptake and cytotoxicity in A2780/PTX cells, as well as the decreased MMP and enhanced apoptosis rate. More importantly, although PB/NPs and P/NPs+B showed similar tumor accumulation in tumor-bearing mice, PB/NPs could significantly decrease tumor growth of A2780/PTX tumor-bearing mice, in comparison to P/NPs+B. These results indicated the advantage of PTX and BNL co-delivery NPs for MDR reversal. These findings demonstrate that the co-delivery nano-sized system comprised by PEG-PAMAM polymer with PTX and BNL co-loaded would be a promising candidate for MDR treatment.

  6. Drug resistance reversal in ovarian cancer cells of paclitaxel and borneol combination therapy mediated by PEG-PAMAM nanoparticles

    PubMed Central

    Zou, Liang; Wang, Di; Hu, Yichen; Fu, Chaomei; Li, Wei; Dai, Liping; Yang, Lin; Zhang, Jinming

    2017-01-01

    Paclitaxel (PTX) is frequently suffered from multidrug resistance (MDR), resulting in lower chemotherapeutic efficacy and even chemotherapy failure. To combine the P-glycolprotein (P-gp) inhibitor would be a useful strategy to overcome MDR. However, what is needed now is an efficient vehicle to deliver multiple drugs into tumor simultaneously. In this study, PTX and Borneol (BNL), a natural compound with P-gp inhibition effect confirmed in intestinal absorption, were co-loaded in the fabricated PEG-PAMAM nanoparticle (NPs) by a one-step nano-precipitation method with high drug loading efficiency, narrow size distribution and low hemolysis rate. Based on P-gp inhibition activity of BNL, confirmed by drug efflux test and molecular docking model, the combination of PTX and BNL could improve intracellular concentration of PTX in A2780/PTX cells. Furthermore, compared to both free PTX and PTX+BNL, PB/NPs and P/NPs plus BNL exhibited higher cellular uptake and cytotoxicity in A2780/PTX cells, as well as the decreased MMP and enhanced apoptosis rate. More importantly, although PB/NPs and P/NPs+B showed similar tumor accumulation in tumor-bearing mice, PB/NPs could significantly decrease tumor growth of A2780/PTX tumor-bearing mice, in comparison to P/NPs+B. These results indicated the advantage of PTX and BNL co-delivery NPs for MDR reversal. These findings demonstrate that the co-delivery nano-sized system comprised by PEG-PAMAM polymer with PTX and BNL co-loaded would be a promising candidate for MDR treatment. PMID:28947984

  7. Imaging, biodistribution and in vitro study of smart 99mTc-PAMAM G4 dendrimer as novel nano-complex.

    PubMed

    Narmani, Asghar; Yavari, Kamal; Mohammadnejad, Javad

    2017-11-01

    Overexpression of folic acid receptor in various human tumors cells makes it as good candidate for targeting delivery of chemotherapeutic and radiopharmaceutical agents. In this research, FA used for functionalization of PEG modified PAMAM G4 dendrimer as a smart delivery of 5-FU and 99m Tc for the breast carcinoma in order to chemotherapeutic and imaging goals. One aim of this research was assess the FA-mediated cell viability assay of PEG-PAMAM G4-FA-5FU- 99m Tc and in vitro uptake of PEG-PAMAM G4-FA- 99m Tc as the novel nano-complex determined on C2Cl2 (normal cell) and MCF-7 (breast cancer cell) cell lines. Other main goals were studied. Morover, an investigation in to in vivo imaging and biodistribution was carried out via a novel radio tracer by which tumor accumulation and site were obviously detected. The targeted tumor images taken by tail intravenous injection demonstrated that nano-complex can be smartly used in imaging study of the clinical practices. Also, the biodistribution of this nano-complex was investigated and the organ predestination of 99m Tc labeled nano-complex (%ID/g) was ascertained. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Phosphorylation of Tat-interactive protein 60 kDa by protein kinase C epsilon is important for its subcellular localisation.

    PubMed

    Sapountzi, Vasileia; Logan, Ian R; Nelson, Glyn; Cook, Susan; Robson, Craig N

    2008-01-01

    Tat-interactive protein 60 kDa is a nuclear acetyltransferase that both coactivates and corepresses transcription factors and has a definitive function in the DNA damage response. Here, we provide evidence that Tat-interactive protein 60 kDa is phosphorylated by protein kinase C epsilon. In vitro, protein kinase C epsilon phosphorylates Tat-interactive protein 60 kDa on at least two sites within the acetyltransferase domain. In whole cells, activation of protein kinase C increases the levels of phosphorylated Tat-interactive protein 60 kDa and the interaction of Tat-interactive protein 60 kDa with protein kinase C epsilon. A phosphomimetic mutant Tat-interactive protein 60 kDa has distinct subcellular localisation compared to the wild-type protein in whole cells. Taken together, these findings suggest that the protein kinase C epsilon phosphorylation sites on Tat-interactive protein 60 kDa are important for its subcellular localisation. Regulation of the subcellular localisation of Tat-interactive protein 60 kDa via phosphorylation provides a novel means of controlling Tat-interactive protein 60 kDa function.

  9. Defining the Pathway for Tat-mediated Delivery of β-Glucuronidase in Cultured Cells and MPS VII Mice

    PubMed Central

    Orii, Koji O.; Grubb, Jeffrey H.; Vogler, Carole; Levy, Beth; Tan, Yun; Markova, Kamelia; Davidson, Beverly L.; Mao, Q.; Orii, Tadao; Kondo, Naomi; Sly, William S.

    2008-01-01

    We used recombinant forms of human β-glucuronidase (GUS) purified from secretions from stably transfected CHO cells to compare the native enzyme to a GUS-Tat C-terminal fusion protein containing the 11-amino-acid HIV Tat protein transduction domain for: (1) susceptibility to endocytosis by cultured cells, (2) rate of clearance following intravenous infusion, and (3) tissue distribution and effectiveness in clearing lysosomal storage following infusion in the MPS VII mouse. We found: (1) Native GUS was more efficiently taken up by cultured human fibroblasts and its endocytosis was exclusively mediated by the M6P receptor. The GUS-Tat fusion protein showed only 30-50% as much M6P-receptor-mediated uptake, but also was taken up by adsorptive endocytosis through binding of the positively charged Tat peptide to cell surface proteoglycans. (2) GUS-Tat was less rapidly cleared from the circulation in the rat (t1/2 = 13 min vs 7 min). (3) Delivery to most tissues of the MPS VII mouse was similar, but GUS-Tat was more efficiently delivered to kidney. Histology showed that GUS-Tat more efficiently reduced storage in renal tubules, retina, and bone. These studies demonstrate that Tat modification can extend the range of tissues corrected by infused enzyme. PMID:16043103

  10. Application of Bacillus sp. TAT105 to reduce ammonia emissions during pilot-scale composting of swine manure.

    PubMed

    Kuroda, Kazutaka; Tanaka, Akihiro; Furuhashi, Kenich; Nakasaki, Kiyohiko

    2017-12-01

    Thermophilic ammonium-tolerant bacterium Bacillus sp. TAT105 grows and reduces ammonia (NH 3 ) emissions by assimilating ammonium nitrogen during composting of swine feces. To evaluate the efficacy of a biological additive containing TAT105 at reducing NH 3 emissions, composting tests of swine manure on a pilot scale (1.8 m 3 ) were conducted. In the TAT105-added treatment, NH 3 emissions and nitrogen loss were lower than those in the control treatment without TAT105. No significant difference was detected in losses in the weight and volatile solids between the treatments. Concentration of thermophilic ammonium-tolerant bacteria in the compost increased in both treatments at the initial stage of composting. In the TAT105-added treatment, bacterial concentration reached ~10 9 colony-forming units per gram of dry matter, several-fold higher than that in the control and stayed at the same level until the end. These results suggest that TAT105 grows during composting and reduces NH 3 emissions in TAT105-added treatment.

  11. Phase I therapeutic trial of the HIV-1 Tat protein and long term follow-up.

    PubMed

    Longo, Olimpia; Tripiciano, Antonella; Fiorelli, Valeria; Bellino, Stefania; Scoglio, Arianna; Collacchi, Barbara; Alvarez, Maria Josè Ruiz; Francavilla, Vittorio; Arancio, Angela; Paniccia, Giovanni; Lazzarin, Adriano; Tambussi, Giuseppe; Din, Chiara Tassan; Visintini, Raffaele; Narciso, Pasquale; Antinori, Andrea; D'Offizi, Gianpiero; Giulianelli, Marina; Carta, Maria; Di Carlo, Aldo; Palamara, Guido; Giuliani, Massimo; Laguardia, Maria Elena; Monini, Paolo; Magnani, Mauro; Ensoli, Fabrizio; Ensoli, Barbara

    2009-05-26

    A randomized, double blind, placebo-controlled phase I vaccine trial based on the native Tat protein was conducted in HIV-infected asymptomatic individuals. The vaccine was administered five times subcute with alum or intradermally without adjuvant at 7.5microg, 15microg or 30microg doses, respectively. The Tat vaccine was well tolerated both locally and systemically and induced and/or maintained Tat-specific T helper (Th)-1 T-cell responses and Th-2 responses in all subjects with a wide spectrum of functional anti-Tat antibodies, rarely seen in HIV-infected subjects. The data indicate the achievement of both the primary (safety) and secondary (immunogenicity) endpoints of the study.

  12. Tat-functionalized liposomes for the treatment of meningitis: an in vitro study

    PubMed Central

    Bartomeu Garcia, Caterina; Shi, Di; Webster, Thomas J

    2017-01-01

    Bacterial meningitis has become a global concern, because of the emergence of antibiotic-resistant bacteria. It has been demonstrated that liposomes can enter bacteria, thus providing a possible treatment for numerous infections, including meningitis. Fusogenic liposomes are pH-sensitive with a high capacity to fuse with the bacteria membrane and promote intracellular drug release. Moreover, this ability can be improved by using cell-penetrating peptides (such as Tat47–57, which is a peptide derived from the Tat protein of HIV). The purpose of this in vitro study was to demonstrate for the first time the ability of the presently prepared fusogenic liposomes, which were spherical particles with a diameter of 100 nm loaded with antibiotics and functionalized with-cell penetrating peptides (Tat47–57), to fight the main bacteria that cause meningitis. For this, vancomycin, methicillin, and ampicillin antibiotics were loaded inside fusogenic liposomes to fight Streptococcus pneumoniae, methicillin-resistant Staphylococcus aureus, and Escherichia coli. Antibacterial activity of Tat-functionalized and nonfunctionalized liposomes loaded with antibiotics was tested by determining bacteria colony-forming units and growth-curve assays coupled with live/dead assays using fluorescence microscopy. Results showed a remarkable decrease in antibiotic minimum inhibitory concentration when all of the bacteria were treated with these novel liposomes, especially for the functionalized liposomes loaded with methicillin. With antibiotic concentrations of 1.7–3 µg/mL for Tat-functionalized liposomes loaded with methicillin, the bacteria population was totally eradicated. Cytotoxicity tests with astrocytes and endothelial cells, major cellular components of the blood–brain barrier, were also performed for all of the liposomes, including free antibiotic and the Tat peptide. Results showed much promise for the further study of the presently formulated liposomes to treat meningitis

  13. Synthesis and Characterisation of Biocompatible Polymer-Conjugated Magnetic Beads for Enhancement Stability of Urease.

    PubMed

    Doğaç, Yasemin Ispirli; Teke, Mustafa

    2016-04-01

    We reported natural polymer-conjugated magnetic featured urease systems for removal of urea effectively. The optimum temperature (20-60 °C), optimum pH (3.0-10.0), kinetic parameters, thermal stability (4-70 °C), pH stability (4.0-9.0), operational stability (0-250 min), reusability (18 times) and storage stability (24 weeks) were studied for characterisation of the urease-encapsulated biocompatible polymer-conjugated magnetic beads. Also, the surface groups and chemical structure of the magnetic beads were determined by using attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR). The all urease-encapsulated magnetic beads protected their stability of 30-45 % relative activity at 70 °C. A significant increase was observed at their pH stability compared with the free urease for both acidic and alkaline medium. Besides this, their repeatability activity were approximately 100 % during 4(th) run. They showed residual activity of 50 % after 16 weeks. The importance of this work is enhancement stability of immobilised urease by biocompatible polymer-conjugated magnetic beads for the industrial application based on removal of urea.

  14. Parallel conduction of the phase I preventive and therapeutic trials based on the Tat vaccine candidate.

    PubMed

    Bellino, S; Francavilla, V; Longo, O; Tripiciano, A; Paniccia, G; Arancio, A; Fiorelli, V; Scoglio, A; Collacchi, B; Campagna, M; Lazzarin, A; Tambussi, G; Din, C Tassan; Visintini, R; Narciso, P; Antinori, A; D'Offizi, G; Giulianelli, M; Carta, M; Di Carlo, A; Palamara, G; Giuliani, M; Laguardia, M E; Monini, P; Magnani, M; Ensoli, F; Ensoli, B

    2009-09-01

    The native HIV-1 Tat protein was chosen as vaccine candidate for phase I clinical trials in both uninfected (ClinicalTrials.gov identifier: NCT00529698) and infected volunteers (ClinicalTrials.gov identifier: NCT00505401). The rationale was based on the role of Tat in the natural infection and AIDS pathogenesis, on the association of Tat-specific immune responses with the asymptomatic stage and slow-progression rate as well as on its sequence conservation among HIV clades (http://www.hiv1tat-vaccines.info/). The parallel conduction in the same clinical centers of randomized, double blind, placebo-controlled phase I studies both in healthy, immunologically competent adults and in HIV-infected, clinically asymptomatic, individuals represents a unique occasion to compare the vaccine-induced immune response in both the preventive and therapeutic setting. In both studies, the same lot of the native Tat protein was administered 5 times, every four weeks, subcute (SC) with alum adjuvant or intradermic (ID), in the absence of adjuvant, at 7.5 microg, 15 microg or 30 microg doses, respectively. The primary and secondary endpoints of these studies were the safety and immunogenicity of the vaccine candidate, respectively. The study lasted 52 weeks and monitoring was conducted for on additional 3 years. The results of both studies indicated that the Tat vaccine is safe and well tolerated both locally and systemically and it is highly immunogenic at all the dosages and by both routes of administration. Vaccination with Tat induced a balanced immune response in uninfected and infected individuals. In particular, therapeutic immunization induced functional antibodies and partially reverted the marked Th1 polarization of anti-Tat immunity seen in natural infection, and elicited a more balanced Th1/Th2 immune response. Further, the number of CD4 T cells correlated positively with anti-Tat antibody titers. Based on these results, a phase II study is ongoing in infected drug

  15. The Tat Inhibitor Didehydro-Cortistatin A Prevents HIV-1 Reactivation from Latency

    PubMed Central

    Mousseau, Guillaume; Kessing, Cari F.; Fromentin, Rémi; Trautmann, Lydie; Chomont, Nicolas

    2015-01-01

    ABSTRACT Antiretroviral therapy (ART) inhibits HIV-1 replication, but the virus persists in latently infected resting memory CD4+ T cells susceptible to viral reactivation. The virus-encoded early gene product Tat activates transcription of the viral genome and promotes exponential viral production. Here we show that the Tat inhibitor didehydro-cortistatin A (dCA), unlike other antiretrovirals, reduces residual levels of viral transcription in several models of HIV latency, breaks the Tat-mediated transcriptional feedback loop, and establishes a nearly permanent state of latency, which greatly diminishes the capacity for virus reactivation. Importantly, treatment with dCA induces inactivation of viral transcription even after its removal, suggesting that the HIV promoter is epigenetically repressed. Critically, dCA inhibits viral reactivation upon CD3/CD28 or prostratin stimulation of latently infected CD4+ T cells from HIV-infected subjects receiving suppressive ART. Our results suggest that inclusion of a Tat inhibitor in current ART regimens may contribute to a functional HIV-1 cure by reducing low-level viremia and preventing viral reactivation from latent reservoirs. PMID:26152583

  16. Not Your Same Old Story: New Rules for Thematic Apperceptive Techniques (TATs).

    PubMed

    Jenkins, Sharon Rae

    2017-01-01

    Stories told about pictures have been used for both research and clinical practice since the beginning of modern personality assessment. However, with the growing science-practice gap, these thematic apperceptive techniques (TATs) have been used differently in those 2 venues. Scientific validation is presumptively general, but clinical application is idiographic and situation-specific. A bridge is needed. The manualized human-scored narrative analysis systems discussed here are valuable scientist-practitioner tools, but they require a validation literature to support further research publication, maintain their role in clinical training, and justify clinicians' reimbursement by third-party payers. To facilitate wider understanding of manualized TAT methodologies, this article addresses long-standing criticisms of TAT reliability and proposes some strategic solutions to the measurement error problem for both researchers and clinicians, including analyzing person-situation interactions, purposeful situation sampling for within-storyteller comparisons, and uses of small samples. The new rules for TATs include conceptual and methodological standards that researchers should aim to meet and report, reviewers should apply to manuscripts, and clinical assessors can use to analyze their own data and justify third-party payment.

  17. Substrate-Triggered Exosite Binding: Synergistic Dendrimer/Folic Acid Action for Achieving Specific, Tight-Binding to Folate Binding Protein.

    PubMed

    Chen, Junjie; van Dongen, Mallory A; Merzel, Rachel L; Dougherty, Casey A; Orr, Bradford G; Kanduluru, Ananda Kumar; Low, Philip S; Marsh, E Neil G; Banaszak Holl, Mark M

    2016-03-14

    Polymer-ligand conjugates are designed to bind proteins for applications as drugs, imaging agents, and transport scaffolds. In this work, we demonstrate a folic acid (FA)-triggered exosite binding of a generation five poly(amidoamine) (G5 PAMAM) dendrimer scaffold to bovine folate binding protein (bFBP). The protein exosite is a secondary binding site on the protein surface, separate from the FA binding pocket, to which the dendrimer binds. Exosite binding is required to achieve the greatly enhanced binding constants and protein structural change observed in this study. The G5Ac-COG-FA1.0 conjugate bound tightly to bFBP, was not displaced by a 28-fold excess of FA, and quenched roughly 80% of the initial fluorescence. Two-step binding kinetics were measured using the intrinsic fluorescence of the FBP tryptophan residues to give a KD in the low nanomolar range for formation of the initial G5Ac-COG-FA1.0/FBP* complex, and a slow conversion to the tight complex formed between the dendrimer and the FBP exosite. The extent of quenching was sensitive to the choice of FA-dendrimer linker chemistry. Direct amide conjugation of FA to G5-PAMAM resulted in roughly 50% fluorescence quenching of the FBP. The G5Ac-COG-FA, which has a longer linker containing a 1,2,3-triazole ring, exhibited an ∼80% fluorescence quenching. The binding of the G5Ac-COG-FA1.0 conjugate was compared to poly(ethylene glycol) (PEG) conjugates of FA (PEGn-FA). PEG2k-FA had a binding strength similar to that of FA, whereas other PEG conjugates with higher molecular weight showed weaker binding. However, no PEG conjugates gave an increased degree of total fluorescence quenching.

  18. THE ECOLOGICAL EFFECTIVENESS OF PONDS AND WETLANDS AS "BEST MANAGEMENT PRACTICES (BMPS)" FOR STREAMS IN DEVELOPING LANDSCAPES

    EPA Science Inventory

    Ponds and constructed wetlands, also referred to as detention/retention basins, have a long history as best management practices (BMPs) used to mitigate the impacts of stormwater runoff from developed lands on receiving waters. Initially designed for flood control by peak flow at...

  19. 40 CFR 430.03 - Best management practices (BMPs) for spent pulping liquor, soap, and turpentine management, spill...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... spent pulping liquor, soap, and turpentine management, spill prevention, and control. 430.03 Section 430... management practices (BMPs) for spent pulping liquor, soap, and turpentine management, spill prevention, and... Liquor, Soap, and Turpentine Service: Any process vessel, storage tank, pumping system, evaporator, heat...

  20. 40 CFR 430.03 - Best management practices (BMPs) for spent pulping liquor, soap, and turpentine management, spill...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... spent pulping liquor, soap, and turpentine management, spill prevention, and control. 430.03 Section 430... management practices (BMPs) for spent pulping liquor, soap, and turpentine management, spill prevention, and... Liquor, Soap, and Turpentine Service: Any process vessel, storage tank, pumping system, evaporator, heat...

  1. TIT FOR TAT in sticklebacks and the evolution of cooperation

    NASA Astrophysics Data System (ADS)

    Milinski, Manfred

    1987-01-01

    The problems of achieving mutual cooperation can be formalized in a game called the Prisoner's Dilemma in which selfish defection is always more rewarding than cooperation1. If the two protagonists have a certain minimum probability of meeting again a strategy called TIT FOR TAT is very successful2. In TIT FOR TAT the player cooperates on the first move and thereafter does whatever the opponent did on the previous move. I have studied the behaviour of fish when confronting a potential predator, because conflicts can arise within pairs of fish in these circumstances which I argue resemble a series of games of Prisoner's Dilemma. Using a system of mirrors, single three-spined sticklebacks (Gasterosteus aculeatus) approaching a live predator were provided with either a simulated cooperating companion or a simulated defecting one. In both cases the test fish behaved according to TIT FOR TAT supporting the hypothesis that cooperation can evolve among egoists.

  2. G5 PAMAM dendrimer versus liposome: a comparison study on the in vitro transepithelial transport and in vivo oral absorption of simvastatin.

    PubMed

    Qi, Rong; Zhang, Heran; Xu, Lu; Shen, Wenwen; Chen, Cong; Wang, Chao; Cao, Yini; Wang, Yunan; van Dongen, Mallory A; He, Bing; Wang, Siling; Liu, George; Banaszak Holl, Mark M; Zhang, Qiang

    2015-07-01

    This study compared formulation effects of a dendrimer and a liposome preparation on the water solubility, transepithelial transport, and oral bioavailability of simvastatin (SMV). Amine-terminated G5 PAMAM dendrimer (G5-NH2) was chosen to form SMV/G5-NH2 molecular complexes, and SMV-liposomes were prepared by using a thin film dispersion method. The effects of these preparations on the transepithelial transport were investigated in vitro using Caco-2 cell monolayers. Results indicated that the solubility and transepithelial transport of SMV were significantly improved by both formulations. Pharmacokinetic studies in rats also revealed that both the SMV/G5-NH2 molecular complexes and the SMV-liposomes significantly improved the oral bioavailability of SMV with the liposomes being more effective than the G5-NH2. The overall better oral absorption of SMV-liposomes as compared to SMV/G5-NH2 molecular complexes appeared to arise from better liposomal solubilization and encapsulation of SMV and more efficient intracellular SMV delivery. Various carrier systems have been designed to enhance drug delivery via the oral route. In this study, the authors compared G5 PAMAM dendrimers to liposome preparations in terms of solubility, transepithelial transport, and oral bioavailability of this poorly water-soluble drug. This understanding has improved our knowledge in the further development of drug carrier systems. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Diversity and Evolution of Bacterial Twin Arginine Translocase Protein, TatC, Reveals a Protein Secretion System That Is Evolving to Fit Its Environmental Niche

    PubMed Central

    Simone, Domenico; Bay, Denice C.; Leach, Thorin; Turner, Raymond J.

    2013-01-01

    Background The twin-arginine translocation (Tat) protein export system enables the transport of fully folded proteins across a membrane. This system is composed of two integral membrane proteins belonging to TatA and TatC protein families and in some systems a third component, TatB, a homolog of TatA. TatC participates in substrate protein recognition through its interaction with a twin arginine leader peptide sequence. Methodology/Principal Findings The aim of this study was to explore TatC diversity, evolution and sequence conservation in bacteria to identify how TatC is evolving and diversifying in various bacterial phyla. Surveying bacterial genomes revealed that 77% of all species possess one or more tatC loci and half of these classes possessed only tatC and tatA genes. Phylogenetic analysis of diverse TatC homologues showed that they were primarily inherited but identified a small subset of taxonomically unrelated bacteria that exhibited evidence supporting lateral gene transfer within an ecological niche. Examination of bacilli tatCd/tatCy isoform operons identified a number of known and potentially new Tat substrate genes based on their frequent association to tatC loci. Evolutionary analysis of these Bacilli isoforms determined that TatCy was the progenitor of TatCd. A bacterial TatC consensus sequence was determined and highlighted conserved and variable regions within a three dimensional model of the Escherichia coli TatC protein. Comparative analysis between the TatC consensus sequence and Bacilli TatCd/y isoform consensus sequences revealed unique sites that may contribute to isoform substrate specificity or make TatA specific contacts. Synonymous to non-synonymous nucleotide substitution analyses of bacterial tatC homologues determined that tatC sequence variation differs dramatically between various classes and suggests TatC specialization in these species. Conclusions/Significance TatC proteins appear to be diversifying within particular bacterial

  4. Immune Responses of HIV-1 Tat Transgenic Mice to Mycobacterium Tuberculosis W-Beijing SA161

    PubMed Central

    Honda, Jennifer R; Shang, Shaobin; Shanley, Crystal A; Caraway, Megan L; Henao-Tamayo, Marcela; Chan, Edward D; Basaraba, Randall J; Orme, Ian M; Ordway, Diane J; Flores, Sonia C

    2011-01-01

    Background: Mycobacterium tuberculosis remains among the leading causes of death from an infectious agent in the world and exacerbates disease caused by the human immunodeficiency virus (HIV). HIV infected individuals are prone to lung infections by a variety of microbial pathogens, including M. tuberculosis. While the destruction of the adaptive immune response by HIV is well understood, the actual pathogenesis of tuberculosis in co-infected individuals remains unclear. Tat is an HIV protein essential for efficient viral gene transcription, is secreted from infected cells, and is known to influence a variety of host inflammatory responses. We hypothesize Tat contributes to pathophysiological changes in the lung microenvironment, resulting in impaired host immune responses to infection by M. tuberculosis. Results: Herein, we show transgenic mice that express Tat by lung alveolar cells are more susceptible than non-transgenic control littermates to a low-dose aerosol infection of M. tuberculosis W-Beijing SA161. Survival assays demonstrate accelerated mortality rates of the Tat transgenic mice compared to non-transgenics. Tat transgenic mice also showed poorly organized lung granulomata-like lesions. Analysis of the host immune response using quantitative RT-PCR, flow cytometry for surface markers, and intracellular cytokine staining showed increased expression of pro-inflammatory cytokines in the lungs, increased numbers of cells expressing ICAM1, increased numbers of CD4+CD25+Foxp3+ T regulatory cells, and IL-4 producing CD4+ T cells in the Tat transgenics compared to infected non-tg mice. Conclusions: Our data show quantitative differences in the inflammatory response to the SA161 clinical isolate of M. tuberculosis W-Beijing between Tat transgenic and non-transgenic mice, suggesting Tat contributes to the pathogenesis of tuberculosis. PMID:22046211

  5. Assessment of the Effectiveness of Green Infrastructure Stormwater Best Management Practices (BMPs) at the Small Watershed Scale

    EPA Science Inventory

    There have been numerous studies of the water quantity and quality functions of stormwater BMPs at the site scale, but relatively few assessments at the watershed scale. This presentation will present an overview and initial results of projects to evaluate the effectiveness of g...

  6. Regulation of the Human Endogenous Retrovirus K (HML-2) Transcriptome by the HIV-1 Tat Protein

    PubMed Central

    Gonzalez-Hernandez, Marta J.; Cavalcoli, James D.; Sartor, Maureen A.; Contreras-Galindo, Rafael; Meng, Fan; Dai, Manhong; Dube, Derek; Saha, Anjan K.; Gitlin, Scott D.; Omenn, Gilbert S.; Kaplan, Mark H.

    2014-01-01

    ABSTRACT Approximately 8% of the human genome is made up of endogenous retroviral sequences. As the HIV-1 Tat protein activates the overall expression of the human endogenous retrovirus type K (HERV-K) (HML-2), we used next-generation sequencing to determine which of the 91 currently annotated HERV-K (HML-2) proviruses are regulated by Tat. Transcriptome sequencing of total RNA isolated from Tat- and vehicle-treated peripheral blood lymphocytes from a healthy donor showed that Tat significantly activates expression of 26 unique HERV-K (HML-2) proviruses, silences 12, and does not significantly alter the expression of the remaining proviruses. Quantitative reverse transcription-PCR validation of the sequencing data was performed on Tat-treated PBLs of seven donors using provirus-specific primers and corroborated the results with a substantial degree of quantitative similarity. IMPORTANCE The expression of HERV-K (HML-2) is tightly regulated but becomes markedly increased following infection with HIV-1, in part due to the HIV-1 Tat protein. The findings reported here demonstrate the complexity of the genome-wide regulation of HERV-K (HML-2) expression by Tat. This work also demonstrates that although HERV-K (HML-2) proviruses in the human genome are highly similar in terms of DNA sequence, modulation of the expression of specific proviruses in a given biological situation can be ascertained using next-generation sequencing and bioinformatics analysis. PMID:24872592

  7. Synthesis, characterization and target protein binding of drug-conjugated quantum dots in vitro and in living cells

    NASA Astrophysics Data System (ADS)

    Choi, Youngseon; Kim, Minjung; Cho, Yoojin; Yun, Eunsuk; Song, Rita

    2013-02-01

    Elucidation of unknown target proteins of a drug is of great importance in understanding cell biology and drug discovery. There have been extensive studies to discover and identify target proteins in the cell. Visualization of targets using drug-conjugated probes has been an important approach to gathering mechanistic information of drug action at the cellular level. As quantum dot (QD) nanocrystals have attracted much attention as a fluorescent probe in the bioimaging area, we prepared drug-conjugated QD to explore the potential of target discovery. As a model drug, we selected a well-known anticancer drug, methotrexate (MTX), which has been known to target dihydrofolate reductase (DHFR) with high affinity binding (Kd = 0.54 nM). MTX molecules were covalently attached to amino-PEG-polymer-coated QDs. Specific interactions of MTX-conjugated QDs with DHFR were identified using agarose gel electrophoresis and fluorescence microscopy. Cellular uptake of the MTX-conjugated QDs in living CHO cells was investigated with regard to their localization and distribution pattern. MTX-QD was found to be internalized into the cells via caveolae-medicated endocytosis without significant sequestration in endosomes. A colocalization experiment of the MTX-QD conjugate with antiDHFR-TAT-QD also confirmed that MTX-QD binds to the target DHFR. This study showed the potential of the drug-QD conjugate to identify or visualize drug-target interactions in the cell, which is currently of great importance in the area of drug discovery and chemical biology.

  8. The Relationship Between Behavioral Indices of Aggression and Hostile Content on the TAT

    ERIC Educational Resources Information Center

    Matranga, James T.

    1976-01-01

    Adolescent male delinquents were administered the Thematic Apperception Test (TAT) to examine the relationship between behavioral indices of aggression and hostility. The results of this investigation supported the hypothesis that an inverse relationship exists between hostility on the TAT and ratings of aggressive behavior in adolescent males.…

  9. TAT-Mediated Delivery of Tousled Protein to Salivary Glands Protects Against Radiation-Induced Hypofunction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sunavala-Dossabhoy, Gulshan, E-mail: gsunav@lsuhsc.edu; Palaniyandi, Senthilnathan; Richardson, Charles

    2012-09-01

    Purpose: Patients treated with radiotherapy for head-and-neck cancer invariably suffer its deleterious side effect, xerostomia. Salivary hypofunction ensuing from the irreversible destruction of glands is the most common and debilitating oral complication affecting patients undergoing regional radiotherapy. Given that the current management of xerostomia is palliative and ineffective, efforts are now directed toward preventive measures to preserve gland function. The human homolog of Tousled protein, TLK1B, facilitates chromatin remodeling at DNA repair sites and improves cell survival against ionizing radiation (IR). Therefore, we wanted to determine whether a direct transfer of TLK1B protein to rat salivary glands could protect againstmore » IR-induced salivary hypofunction. Methods: The cell-permeable TAT-TLK1B fusion protein was generated. Rat acinar cell line and rat salivary glands were pretreated with TAT peptide or TAT-TLK1B before IR. The acinar cell survival in vitro and salivary function in vivo were assessed after radiation. Results: We demonstrated that rat acinar cells transduced with TAT-TLK1B were more resistant to radiation (D{sub 0} = 4.13 {+-} 1.0 Gy; {alpha}/{beta} = 0 Gy) compared with cells transduced with the TAT peptide (D{sub 0} = 4.91 {+-} 1.0 Gy; {alpha}/{beta} = 20.2 Gy). Correspondingly, retroductal instillation of TAT-TLK1B in rat submandibular glands better preserved salivary flow after IR (89%) compared with animals pretreated with Opti-MEM or TAT peptide (31% and 39%, respectively; p < 0.01). Conclusions: The results demonstrate that a direct transfer of TLK1B protein to the salivary glands effectively attenuates radiation-mediated gland dysfunction. Prophylactic TLK1B-protein therapy could benefit patients undergoing radiotherapy for head-and-neck cancer.« less

  10. Business Case Analysis: Continuous Integrated Logistics Support-Targeted Allowance Technique (CILS-TAT)

    DTIC Science & Technology

    2013-06-01

    In this research, we examine the Naval Sea Logistics Command s Continuous Integrated Logistics Support Targeted Allowancing Technique (CILS TAT) and... the feasibility of program re-implementation. We conduct an analysis of this allowancing method s effectiveness onboard U.S. Navy Ballistic Missile...Defense (BMD) ships, measure the costs associated with performing a CILS TAT, and provide recommendations concerning possible improvements to the

  11. Regional Morphology and Transport of PAMAM Dendrimers Across Isolated Rat Intestinal Tissue.

    PubMed

    Hubbard, Dallin; Bond, Tanner; Ghandehari, Hamidreza

    2015-12-01

    Intestinal permeability of PAMAM dendrimers has been observed, giving rationale for their use in oral drug delivery as potential carriers of associated molecules. This study assessed the apparent permeability coefficients (Papp) of dendrimers across isolated rat intestinal regional mucosae, along with estimation of the maximum non-toxic concentration. Caco-2 monolayers were also used to assess the comparative Papp values between isolated mucosae and cell culture models. Concentrations from 0.1 to 10 mM of anionic and cationic dendrimers were tested in mucosae to assess their Papp, membrane TEER, [(14)C]-mannitol Papp, and histology. 0.1 mM concentrations of dendrimers were assessed over 120 min in Caco-2 cell monolayers as concentrations above that were cytotoxic. Jejunal transport of dendrimers was higher than transport in colonic epithelium. Monolayer Papp values of dendrimers were comparable to those of jejunal mucosae. Mucosae exposed to dendrimer concentrations of 10 mM for 120 min caused significant reduction in TEER and changes in tissue morphology; however, G3.5 was the only analogue that caused significant TEER reduction and morphological changes at 1 mM concentrations. Transport in jejunal mucosae appears to be the greatest indicating that the small intestinal will be the most likely region to target for oral drug delivery using PAMAM dendrimers. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Self-enhanced electrochemiluminescence immunosensor based on nanowires obtained by a green approach.

    PubMed

    Wang, Haijun; Yuan, Yali; Chai, Yaqin; Yuan, Ruo

    2015-06-15

    Co-reactant electrochemiluminescence (ECL) is a simple and effective method for sensitive detection with amplified ECL signals. However, the intermolecular interaction between the luminescent reagents and their corresponding co-reactants, which is widely applied, has disadvantages in poor stability, low efficiency of electron transfer and relatively high loss of energy. In this work, an intramolecular self-enhanced ECL is proposed to settle this problem. Firstly, palladium nanowires (PdNWs) are synthesized with a green procedure in which Lentinan (LNT), one of β-glucans with a triple helical conformation (t-LNT) in aqueous solution and single chains (s-LNT) at a temperature higher than 130°C, is used as stabilizer and reducing agent. The abtined PdNWs are applied to immobilize polyamidoamine (PAMAM) dendrimer which further reacts with tris (4, 4'-dicarboxylicacid-2, 2'-bipyridyl) ruthenium (II) dichloride to form a new electrochemiluminescent derivative (PdNWs-PAMAM-Ru). In this way, the Ru (II) luminophore and its co-reactive groups (amine groups in PAMAM) exist in the same complex, by which the electronic transmission distance is shortened and the luminous properties including stability and efficiency are enhanced. Moreover, due to the high specific surface areas and good electro-catalytic ability of PdNWs, the obtained PdNWs-PAMAM-Ru can be also applied to immobilize detection antibody (Ab2). Then, a sandwiched and sensitive ECL immunosensor is fabricated for the detection of carcinoembryonic antigen (CEA) with a wide linear ranged from 0.001 ng mL(-1) to 80 ng mL(-1) and a low detection limit of 0.3 pg mL(-1). Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Poly(amido)amine dendrimers generation 4.0 (PAMAM G4) reduce blood hyperglycaemia and restore impaired blood-brain barrier permeability in streptozotocin diabetes in rats.

    PubMed

    Karolczak, Kamil; Rozalska, Sylwia; Wieczorek, Marek; Labieniec-Watala, Magdalena; Watala, Cezary

    2012-10-15

    We hypothesized that BBB is impaired in rat model of streptozotocin-induced diabetes and can be sealed by poly(amido)amine dendrimers G4.0 (PAMAM G4), which reveal anti-glycation activity. The BBB permeabilization was monitored in rats with the 60-day streptozotocin-diabetes and non-diabetic animals, using three fluorescent dyes (given intraperitoneally) differing in molecular weight: fluorescein, fluorescein isothiocyanate (FITC)-dextran and Evans blue. All animals were administered for 2 months with either PAMAM G4 dendrimer or placebo. The fluorescence intensities of the injected fluorescent markers were recorded in the homogenates of selected brain regions. The highest accumulations of the used fluorescent dyes were observed for fluorescein, predominantly in thalamus, hippocampus, frontal cortex, striatum and cerebellum. FITC-dextran leaked to much smaller extent, however, higher permeabilization for FITC-dextran was revealed in pons-medulla oblongata, frontal and parietal cortex of diabetic compared to control animals. Evans blue leaked very slowly into striatum and pons-medulla oblongata in diabetic rats. The treatment of diabetic animals with PAMAM G4 significantly reduced blood glucose concentration and hallmarks of late diabetic complications, compared to non-treated diabetic animals. PAMAM G4 significantly reduced diabetes-induced permeabilization of BBB, which remained in line with the reduced blood glucose and the amelioration of the biochemical hallmarks of severe hyperglycaemia. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Dendrimer-based targeted intravitreal therapy for sustained attenuation of neuroinflammation in retinal degeneration.

    PubMed

    Iezzi, Raymond; Guru, Bharath R; Glybina, Inna V; Mishra, Manoj K; Kennedy, Alexander; Kannan, Rangaramanujam M

    2012-01-01

    Retinal neuroinflammation, mediated by activated microglia, plays a key role in the pathogenesis of photoreceptor and retinal pigment epithelial cell loss in age-related macular degeneration and retinitis pigmentosa. Targeted drug therapy for attenuation of neuroinflammation in the retina was explored using hydroxyl-terminated polyamidoamine (PAMAM) dendrimer-drug conjugate nanodevices. We show that, upon intravitreal administration, PAMAM dendrimers selectively localize within activated outer retinal microglia in two rat models of retinal degeneration, but not in the retina of healthy controls. This pathology-dependent biodistribution was exploited for drug delivery, by covalently conjugating fluocinolone acetonide to the dendrimer. The conjugate released the drug in a sustained manner over 90 days. In vivo efficacy was assessed using the Royal College of Surgeons (RCS) rat retinal degeneration model over a four-week period when peak retinal degeneration occurs. One intravitreal injection of 1 μg of FA conjugated to 7 μg of the dendrimer was able to arrest retinal degeneration, preserve photoreceptor outer nuclear cell counts, and attenuate activated microglia, for an entire month. These studies suggest that PAMAM dendrimers (with no targeting ligands) have an intrinsic ability to selectively localize in activated microglia, and can deliver drugs inside these cells for a sustained period for the treatment of retinal neuroinflammation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Fate and transformation products of amine-terminated PAMAM dendrimers under ozonation and irradiation.

    PubMed

    Santiago-Morales, Javier; Rosal, Roberto; Hernando, María D; Ulaszewska, Maria M; García-Calvo, Eloy; Fernández-Alba, Amadeo R

    2014-02-15

    This article deals with the degradation of a third-generation (G3) poly(amidoamine) (PAMAM) dendrimer under ozonation and irradiation. The identification and quantification of G3 PAMAM dendrimer and its transformation products has been performed by liquid chromatography-electrospray ionization-hybrid quadrupole time-of-flight-mass spectrometry. The dendrimer was completely depleted by ozone in less than 1 min. The effect of ultraviolet irradiation was attributed to hydroxyl-mediated oxidation. The transformation products were attributed to the oxidation of amines, which resulted in highly oxidized structures with abundance of carboxylic acids, which started from the formation of amine oxide and the scission of the CN bond of the amide group. We studied the toxicity of treated mixtures for six different organisms: the acute toxicity for the bacterium Vibrio fischeri and the microcrustacean Daphnia magna, the multigenerational growth inhibition of the alga Pseudokirchneriella subcapitata, and the seed germination phytotoxicity of Licopersicon esculentum, Lactuca sativa and Lolium perenne. Ozonation and irradiation originated transformation products are more toxic than the parent dendrimer. The toxicity of the dendrimer for the green alga was linked to a strong increase of intracellular reactive oxygen species with intense lipid peroxidation. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Co-administration of a charge-conversional dendrimer enhances antitumor efficacy of conventional chemotherapy.

    PubMed

    Cao, Jun; Wang, Chenhong; Guo, Leijia; Xiao, Zhiyong; Liu, Keliang; Yan, Husheng

    2018-06-01

    Despite extensive investigations, the clinical translation of nanocarrier-based drug delivery systems (NDDS) for cancer therapy is hindered by inefficient delivery and poor tumor penetration. Conventional chemotherapy by administration of free small molecule anticancer drugs remains the standard of care for many cancers. Herein, other than for carrying and releasing drugs, small nanoparticles were used as a potentiator of conventional chemotherapy by co-administration with free chemotherapeutic agents. This strategy avoided the problems associated with drug loading and controlled release encountered in NDDS, and was also much simpler than NDDS. Negatively charged poly(amido amine)-2,3-dimethylmaleic monoamide (PAMAM-DMA) dendrimers were prepared, which possessed low toxicity and can be converted to positively charged PAMAM dendrimers responsive to tumor acidic pH. The in situ formed PAMAM in tumor tissue promoted cellular uptake of co-administered doxorubicin by increasing the cell membrane permeability, and subsequently enhanced the cytotoxicity of doxorubicin. The small size of the dendrimers was favorable for deep penetration in tumor. Co-injection of PAMAM-DMA with doxorubicin into nude mice bearing human tumors almost completely inhibited tumor growth, with a mean tumor weight reducing by 55.9% after the treatment compared with the treatment with doxorubicin alone. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Enhanced cellular transport and drug targeting using dendritic nanostructures

    NASA Astrophysics Data System (ADS)

    Kannan, R. M.; Kolhe, Parag; Kannan, Sujatha; Lieh-Lai, Mary

    2003-03-01

    Dendrimers and hyperbranched polymers possess highly branched architectures, with a large number of controllable, tailorable, peripheral' functionalities. Since the surface chemistry of these materials can be modified with relative ease, these materials have tremendous potential in targeted drug delivery. The large density of end groups can also be tailored to create enhanced affinity to targeted cells, and can also encapsulate drugs and deliver them in a controlled manner. We are developing tailor-modified dendritic systems for drug delivery. Synthesis, drug/ligand conjugation, in vitro cellular and in vivo drug delivery, and the targeting efficiency to the cell are being studied systematically using a wide variety of experimental tools. Results on PAMAM dendrimers and polyol hyperbranched polymers suggest that: (1) These materials complex/encapsulate a large number of drug molecules and release them at tailorable rates; (2) The drug-dendrimer complex is transported very rapidly through a A549 lung epithelial cancel cell line, compared to free drug, perhaps by endocytosis. The ability of the drug-dendrimer-ligand complexes to target specific asthma and cancer cells is currently being explored using in vitro and in vivo animal models.

  18. Poly(amidoamine) (PAMAM) dendrimers: from biomimicry to drug delivery and biomedical applications.

    PubMed

    Esfand, R; Tomalia, D A.

    2001-04-01

    Poly(amidoamine) (PAMAM) dendrimers are the first complete dendrimer family to be synthesized, characterized and commercialized. Based on this extensive activity, they are recognized as a unique new class of synthetic nanostructures. Dendrimers allow the precise control of size, shape and placement of functional groups that is desirable for many life science applications. From this perspective, this review focuses on crucial properties of biomimetic dendrimers that will broaden the potential for their use as macromolecular vectors in novel drug delivery and biomedical applications.

  19. Endocytosis and interaction of poly (amidoamine) dendrimers with Caco-2 cells.

    PubMed

    Kitchens, Kelly M; Foraker, Amy B; Kolhatkar, Rohit B; Swaan, Peter W; Ghandehari, Hamidreza

    2007-11-01

    To investigate the internalization and subcellular trafficking of fluorescently labeled poly (amidoamine) (PAMAM) dendrimers in intestinal cell monolayers. PAMAM dendrimers with positive or negative surface charge were conjugated to fluorescein isothiocyanate (FITC) and visualized for colocalization with endocytosis markers using confocal microscopy. Effect of concentration, generation and charge on the morphology of microvilli was observed using transmission electron microscopy. Both cationic and anionic PAMAM dendrimers internalized within 20 min, and differentially colocalized with endocytosis markers clathrin, EEA-1, and LAMP-1. Transmission electron microscopy analysis showed a concentration-, generation- and surface charge-dependent effect on microvilli morphology. These studies provide visual evidence that endocytic mechanism(s) contribute to the internalization and subcellular trafficking of PAMAM dendrimers across the intestinal cells, and that appropriate selection of PAMAM dendrimers based on surface charge, concentration and generation number allows the application of these polymers for oral drug delivery.

  20. The Narrative Arc of TATs: Introduction to the JPA Special Section on Thematic Apperceptive Techniques.

    PubMed

    Jenkins, Sharon Rae

    2017-01-01

    The past decade has seen important developments in thematic apperceptive techniques (TATs), with the creation of new card sets having alternate pictures representing different cultures, new scoring systems becoming available, and increasing international communication of these achievements. However, continuing impediments to the development of a validational literature include lingering mistaken assumptions about the nature of story data, ongoing debates about appropriate psychometric evaluation, and continuing questions about how stimuli and scoring systems should be conceptualized and interpreted. Negotiating the publication system can impede some potential authors. Excellent work on TATs with children is not well known in the adult-focused journals. The labor burden of meeting increasingly sophisticated publication standards might be a barrier to assessors focused on clinical practice. Accumulating a focused evidence base is challenging given the diversity of criterion variables for which TATs have been used. Research on TATs by clinicians can span the science-practice gap, but the narrative arc can be a dramatic one. The articles in this special section on TATs represent important conceptual, methodological, and substantive innovations.

  1. Human Immunodeficiency Virus Tat-Activated Expression of Poliovirus Protein 2A Inhibits mRNA Translation

    NASA Astrophysics Data System (ADS)

    Sun, Xiao-Hong; Baltimore, David

    1989-04-01

    To study the effect of poliovirus protein 2A on cellular RNA translation, the tat control system of human immunodeficiency virus (HIV) was used. Protein 2A was expressed from a plasmid construct (pHIV/2A) incorporating the HIV long terminal repeat. Protein synthesis was measured by using chloramphenicol acetyltransferase as a reporter gene driven by the Rous sarcoma virus long terminal repeat. When HIV/2A was contransfected with the reporter, addition of a tat-producing plasmid caused at least a 50-fold drop in chloramphenicol acetyltransferase synthesis. A HeLa cell line carrying HIV/2A was established. In it, tat expression caused more than a 10-fold drop in chloramphenicol acetyltransferase synthesis from the reporter plasmid. Furthermore, 2A induction by tat caused cleavage of the cellular translation factor P220, a part of eukaryotic translation initiation factor 4F. Thus protein 2A can, by itself, carry out the inhibition of cellular protein synthesis characteristic of a poliovirus infection. Also, the HIV tat activation provides a very effective method to control gene expression in mammalian cells.

  2. Business Case Analysis: Continuous Integrated Logistics Support-Targeted Allowance Technique (CILS-TAT)

    DTIC Science & Technology

    2013-05-30

    In this research, we examine the Naval Sea Logistics Command’s Continuous Integrated Logistics Support-Targeted Allowancing Technique (CILS-TAT) and... the feasibility of program re-implementation. We conduct an analysis of this allowancing method’s effectiveness onboard U.S. Navy Ballistic Missile...Defense (BMD) ships, measure the costs associated with performing a CILS-TAT, and provide recommendations concerning possible improvements to the

  3. PATHOPHYSIOLOGICAL CONSEQUENCES OF TAT-HKII PEPTIDE ADMINISTRATION ARE INDEPENDENT OF IMPAIRED VASCULAR FUNCTION AND ENSUING ISCHEMIA

    PubMed Central

    Nederlof, Rianne; Xie, Chaoqin; Eerbeek, Otto; Koeman, Anneke; Milstein, Dan MJ; Hollmann, Markus W; Mik, Egbert G; Warley, Alice; Southworth, Richard; Akar, Fadi G.; Zuurbier, Coert J

    2013-01-01

    Rationale We have shown that partial dissociation of HKII from mitochondria in the intact heart using low dose (200 nM) TAT-HKII prevents the cardioprotective effects of ischemic preconditioning (IPC) whereas high-dose (10 μM) TAT-HKII administration results in rapid myocardial dysfunction, mitochondrial depolarization and disintegration. In this issue of Circulation Research, Pasdois et al argue that the deleterious effects of TAT-HKII administration on cardiac function are likely due to vasoconstriction and ensuing ischemia. Objective To investigate whether altered vascular function and ensuing ischemia recapitulate the deleterious effects of TAT-HKII in intact myocardium. Methods and Results Using a variety of complementary techniques, including mitochondrial membrane potential (ΔΨm) imaging, high-resolution optical action potential (AP) mapping, analysis of lactate production, NADH epifluorescence, lactate dehydrogenase (LDH) release, and electron microscopy, we provide direct evidence that refutes the notion that acute myocardial dysfunction by high-dose TAT-HKII peptide administration is a consequence of impaired vascular function. Moreover, we demonstrate that low-dose TAT-HKII treatment, which abrogates the protective effects of IPC, is not associated with ischemia or ischemic-injury. Conclusions Our findings challenge the notion that the effects of TAT-HKII are attributable to impaired vascular function and ensuing ischemia; thereby, lending further credence to the role of mitochondria bound HKII as a critical regulator of cardiac function, ischemia-reperfusion (IR) injury, and cardioprotection by IPC. PMID:23329797

  4. Assisted annotation of medical free text using RapTAT

    PubMed Central

    Gobbel, Glenn T; Garvin, Jennifer; Reeves, Ruth; Cronin, Robert M; Heavirland, Julia; Williams, Jenifer; Weaver, Allison; Jayaramaraja, Shrimalini; Giuse, Dario; Speroff, Theodore; Brown, Steven H; Xu, Hua; Matheny, Michael E

    2014-01-01

    Objective To determine whether assisted annotation using interactive training can reduce the time required to annotate a clinical document corpus without introducing bias. Materials and methods A tool, RapTAT, was designed to assist annotation by iteratively pre-annotating probable phrases of interest within a document, presenting the annotations to a reviewer for correction, and then using the corrected annotations for further machine learning-based training before pre-annotating subsequent documents. Annotators reviewed 404 clinical notes either manually or using RapTAT assistance for concepts related to quality of care during heart failure treatment. Notes were divided into 20 batches of 19–21 documents for iterative annotation and training. Results The number of correct RapTAT pre-annotations increased significantly and annotation time per batch decreased by ∼50% over the course of annotation. Annotation rate increased from batch to batch for assisted but not manual reviewers. Pre-annotation F-measure increased from 0.5 to 0.6 to >0.80 (relative to both assisted reviewer and reference annotations) over the first three batches and more slowly thereafter. Overall inter-annotator agreement was significantly higher between RapTAT-assisted reviewers (0.89) than between manual reviewers (0.85). Discussion The tool reduced workload by decreasing the number of annotations needing to be added and helping reviewers to annotate at an increased rate. Agreement between the pre-annotations and reference standard, and agreement between the pre-annotations and assisted annotations, were similar throughout the annotation process, which suggests that pre-annotation did not introduce bias. Conclusions Pre-annotations generated by a tool capable of interactive training can reduce the time required to create an annotated document corpus by up to 50%. PMID:24431336

  5. Synthesis of Polyamidoamine Dendrimer for Encapsulating Tetramethylscutellarein for Potential Bioactivity Enhancement.

    PubMed

    Shadrack, Daniel M; Mubofu, Egid B; Nyandoro, Stephen S

    2015-11-04

    The biomedical potential of flavonoids is normally restricted by their low water solubility. However, little has been reported on their encapsulation into polyamidoamine (PAMAM) dendrimers to improve their biomedical applications. Generation four (G4) PAMAM dendrimer containing ethylenediaminetetraacetic acid core with acrylic acid and ethylenediamine as repeating units was synthesized by divergent approach and used to encapsulate a flavonoid tetramethylscutellarein (TMScu, 1) to study its solubility and in vitro release for potential bioactivity enhancement. The as-synthesized dendrimer and the dendrimer-TMScu complex were characterized by spectroscopic and spectrometric techniques. The encapsulation of 1 into dendrimer was achieved by a co-precipitation method with the encapsulation efficiency of 77.8% ± 0.69% and a loading capacity of 6.2% ± 0.06%. A phase solubility diagram indicated an increased water solubility of 1 as a function of dendrimer concentration at pH 4.0 and 7.2. In vitro release of 1 from its dendrimer complex indicated high percentage release at pH 4.0. The stability study of the TMScu-dendrimer at 0, 27 and 40 °C showed the formulations to be stable when stored in cool and dark conditions compared to those stored in light and warmer temperatures. Overall, PAMAM dendrimer-G4 is capable of encapsulating 1, increasing its solubility and thus could enhance its bioactivity.

  6. Remarkable enhancement of charge carrier mobility of conjugated polymer field-effect transistors upon incorporating an ionic additive

    PubMed Central

    Luo, Hewei; Yu, Chenmin; Liu, Zitong; Zhang, Guanxin; Geng, Hua; Yi, Yuanping; Broch, Katharina; Hu, Yuanyuan; Sadhanala, Aditya; Jiang, Lang; Qi, Penglin; Cai, Zhengxu; Sirringhaus, Henning; Zhang, Deqing

    2016-01-01

    Organic semiconductors with high charge carrier mobilities are crucial for flexible electronic applications. Apart from designing new conjugated frameworks, different strategies have been explored to increase charge carrier mobilities. We report a new and simple approach to enhancing the charge carrier mobility of DPP-thieno[3,2-b]thiophene–conjugated polymer by incorporating an ionic additive, tetramethylammonium iodide, without extra treatments into the polymer. The resulting thin films exhibit a very high hole mobility, which is higher by a factor of 24 than that of thin films without the ionic additive under the same conditions. On the basis of spectroscopic grazing incidence wide-angle x-ray scattering and atomic force microscopy studies as well as theoretical calculations, the remarkable enhancement of charge mobility upon addition of tetramethylammonium iodide is attributed primarily to an inhibition of the torsion of the alkyl side chains by the presence of the ionic species, facilitating a more ordered lamellar packing of the alkyl side chains and interchain π-π interactions. PMID:27386541

  7. Cetuximab-conjugated nanodiamonds drug delivery system for enhanced targeting therapy and 3D Raman imaging.

    PubMed

    Li, Dandan; Chen, Xin; Wang, Hong; Liu, Jie; Zheng, Meiling; Fu, Yang; Yu, Yuan; Zhi, Jinfang

    2017-12-01

    In this study, a multicomponent nanodiamonds (NDs)-based targeting drug delivery system, cetuximab-NDs-cisplatin bioconjugate, combining both specific targeting and enhanced therapeutic efficacy capabilities, is developed and characterized. The specific targeting ability of cetuximab-NDs-cisplatin system on human liver hepatocellular carcinoma (HepG2) cells is evaluated through epidermal growth factor receptor (EGFR) blocking experiments, since EGFR is over-expressed on HepG2 cell membrane. Besides, cytotoxic evaluation confirms that cetuximab-NDs-cisplatin system could significantly inhibit the growth of HepG2 cells, and the therapeutic activity of this system is proven to be better than that of both nonspecific NDs-cisplatin conjugate and specific EGF-NDs-cisplatin conjugate. Furthermore, a 3-dimensional (3D) Raman imaging technique is utilized to visualize the targeting efficacy and enhanced internalization of cetuximab-NDs-cisplatin system in HepG2 cells, using the NDs existing in the bioconjugate as Raman probes, based on the characteristic Raman signal of NDs at 1332 cm -1 . These advantageous properties of cetuximab-NDs-cisplatin system propose a prospective imaging and treatment tool for further diagnostic and therapeutic purposes. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Directed Evolution of RecA Variants with Enhanced Capacity for Conjugational Recombination

    PubMed Central

    Kim, Taejin; Chitteni-Pattu, Sindhu; Cox, Benjamin L.; Wood, Elizabeth A.; Sandler, Steven J.; Cox, Michael M.

    2015-01-01

    The recombination activity of Escherichia coli (E. coli) RecA protein reflects an evolutionary balance between the positive and potentially deleterious effects of recombination. We have perturbed that balance, generating RecA variants exhibiting improved recombination functionality via random mutagenesis followed by directed evolution for enhanced function in conjugation. A recA gene segment encoding a 59 residue segment of the protein (Val79-Ala137), encompassing an extensive subunit-subunit interface region, was subjected to degenerate oligonucleotide-mediated mutagenesis. An iterative selection process generated at least 18 recA gene variants capable of producing a higher yield of transconjugants. Three of the variant proteins, RecA I102L, RecA V79L and RecA E86G/C90G were characterized based on their prominence. Relative to wild type RecA, the selected RecA variants exhibited faster rates of ATP hydrolysis, more rapid displacement of SSB, decreased inhibition by the RecX regulator protein, and in general displayed a greater persistence on DNA. The enhancement in conjugational function comes at the price of a measurable RecA-mediated cellular growth deficiency. Persistent DNA binding represents a barrier to other processes of DNA metabolism in vivo. The growth deficiency is alleviated by expression of the functionally robust RecX protein from Neisseria gonorrhoeae. RecA filaments can be a barrier to processes like replication and transcription. RecA regulation by RecX protein is important in maintaining an optimal balance between recombination and other aspects of DNA metabolism. PMID:26047498

  9. Nanoparticle conjugation enhances the immunomodulatory effects of intranasally delivered CpG in house dust mite-allergic mice

    DOE PAGES

    Ballester, Marie; Jeanbart, Laura; de Titta, Alexandre; ...

    2015-09-21

    An emerging strategy in preventing and treating airway allergy consists of modulating the immune response induced against allergens in the lungs. CpG oligodeoxynucleotides have been investigated in airway allergy studies, but even if promising, efficacy requires further substantiation. We investigated the effect of pulmonary delivery of nanoparticle (NP)-conjugated CpG on lung immunity and found that NP-CpG led to enhanced recruitment of activated dendritic cells and to Th1 immunity compared to free CpG. We then evaluated if pulmonary delivery of NP-CpG could prevent and treat house dust mite-induced allergy by modulating immunity directly in lungs. When CpG was administered as immunomodulatorymore » therapy prior to allergen sensitization, we found that NP-CpG significantly reduced eosinophilia, IgE levels, mucus production and Th2 cytokines, while free CpG had only a moderate effect on these parameters. In a therapeutic setting where CpG was administered after allergen sensitization, we found that although both free CpG and NP-CpG reduced eosinophilia and IgE levels to the same extent, NP conjugation of CpG significantly enhanced reduction of Th2 cytokines in lungs of allergic mice. Taken together, these data highlight benefits of NP conjugation and the relevance of NP-CpG as allergen-free therapy to modulate lung immunity and treat airway allergy.« less

  10. BMP-non-responsive Sca1+ CD73+ CD44+ mouse bone marrow derived osteoprogenitor cells respond to combination of VEGF and BMP-6 to display enhanced osteoblastic differentiation and ectopic bone formation.

    PubMed

    Madhu, Vedavathi; Li, Ching-Ju; Dighe, Abhijit S; Balian, Gary; Cui, Quanjun

    2014-01-01

    Clinical trials on fracture repair have challenged the effectiveness of bone morphogenetic proteins (BMPs) but suggest that delivery of mesenchymal stem cells (MSCs) might be beneficial. It has also been reported that BMPs could not increase mineralization in several MSCs populations, which adds ambiguity to the use of BMPs. However, an exogenous supply of MSCs combined with vascular endothelial growth factor (VEGF) and BMPs is reported to synergistically enhance fracture repair in animal models. To elucidate the mechanism of this synergy, we investigated the osteoblastic differentiation of cloned mouse bone marrow derived MSCs (D1 cells) in vitro in response to human recombinant proteins of VEGF, BMPs (-2, -4, -6, -9) and the combination of VEGF with BMP-6 (most potent BMP). We further investigated ectopic bone formation induced by MSCs pre-conditioned with VEGF, BMP-6 or both. No significant increase in mineralization, phosphorylation of Smads 1/5/8 and expression of the ALP, COL1A1 and osterix genes was observed upon addition of VEGF or BMPs alone to the cells in culture. The lack of CD105, Alk1 and Alk6 expression in D1 cells correlated with poor response to BMPs indicating that a greater care in the selection of MSCs is necessary. Interestingly, the combination of VEGF and BMP-6 significantly increased the expression of ALP, COL1A1 and osterix genes and D1 cells pre-conditioned with VEGF and BMP-6 induced greater bone formation in vivo than the non-conditioned control cells or the cells pre-conditioned with either VEGF or BMP-6 alone. This enhanced bone formation by MSCs correlated with higher CADM1 expression and OPG/RANKL ratio in the implants. Thus, combined action of VEGF and BMP on MSCs enhances osteoblastic differentiation of MSCs and increases their bone forming ability, which cannot be achieved through use of BMPs alone. This strategy can be effectively used for bone repair.

  11. Ketone bodies protection against HIV-1 Tat-induced neurotoxicity.

    PubMed

    Hui, Liang; Chen, Xuesong; Bhatt, Dhaval; Geiger, Nicholas H; Rosenberger, Thad A; Haughey, Norman J; Masino, Susan A; Geiger, Jonathan D

    2012-07-01

    HIV-1-associated neurocognitive disorder (HAND) is a syndrome that ranges clinically from subtle neuropsychological impairments to profoundly disabling HIV-associated dementia. Not only is the pathogenesis of HAND unclear, but also effective treatments are unavailable. The HIV-1 transactivator of transcription protein (HIV-1 Tat) is strongly implicated in the pathogenesis of HAND, in part, because of its well-characterized ability to directly excite neurons and cause neurotoxicity. Consistent with previous findings from others, we demonstrate here that HIV-1 Tat induced neurotoxicity, increased intracellular calcium, and disrupted a variety of mitochondria functions, such as reducing mitochondrial membrane potential, increasing levels of reactive oxygen species, and decreasing bioenergetic efficiency. Of therapeutic importance, we show that treatment of cultured neurons with ketone bodies normalized HIV-1 Tat induced changes in levels of intracellular calcium, mitochondrial function, and neuronal cell death. Ketone bodies are normally produced in the body and serve as alternative energy substrates in tissues including brain and can cross the blood-brain barrier. Ketogenic strategies have been used clinically for treatment of neurological disorders and our current results suggest that similar strategies may also provide clinical benefits in the treatment of HAND. © 2012 The Authors. Journal of Neurochemistry © 2012 International Society for Neurochemistry.

  12. Single Quantum Dot Tracking Reveals that an Individual Multivalent HIV-1 Tat Protein Transduction Domain Can Activate Machinery for Lateral Transport and Endocytosis

    PubMed Central

    Roy, Chandra Nath; Promjunyakul, Warunya; Hatakeyama, Hiroyasu; Gonda, Kohsuke; Imamura, Junji; Vasudevanpillai, Biju; Ohuchi, Noriaki; Kanzaki, Makoto; Higuchi, Hideo; Kaku, Mitsuo

    2013-01-01

    The mechanisms underlying the cellular entry of the HIV-1 Tat protein transduction domain (TatP) and the molecular information necessary to improve the transduction efficiency of TatP remain unclear due to the technical limitations for direct visualization of TatP's behavior in cells. Using confocal microscopy, total internal reflection fluorescence microscopy, and four-dimensional microscopy, we developed a single-molecule tracking assay for TatP labeled with quantum dots (QDs) to examine the kinetics of TatP initially and immediately before, at the beginning of, and immediately after entry into living cells. We report that even when the number of multivalent TatP (mTatP)-QDs bound to a cell was low, each single mTatP-QD first locally induced the cell's lateral transport machinery to move the mTatP-QD toward the center of the cell body upon cross-linking of heparan sulfate proteoglycans. The centripetal and lateral movements were linked to the integrity and flow of actomyosin and microtubules. Individual mTatP underwent lipid raft-mediated temporal confinement, followed by complete immobilization, which ultimately led to endocytotic internalization. However, bivalent TatP did not sufficiently promote either cell surface movement or internalization. Together, these findings provide clues regarding the mechanisms of TatP cell entry and indicate that increasing the valence of TatP on nanoparticles allows them to behave as cargo delivery nanomachines. PMID:23732912

  13. HIV-1 tat protein recruits CIS to the cytoplasmic tail of CD127 to induce receptor ubiquitination and proteasomal degradation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sugden, Scott, E-mail: scott.sugden@ircm.qc.ca

    HIV-1 Tat protein down regulates expression of the IL-7 receptor alpha-chain (CD127) from the surface of CD8 T cells resulting in impaired T cell proliferation and cytolytic capacity. We have previously shown that soluble Tat protein is taken up by CD8 T cells and interacts with the cytoplasmic tail of CD127 to induce receptor degradation. The N-terminal domain of Tat interacts with CD127 while the basic domain directs CD127 to the proteasome. We have also shown that upon IL-7 binding to its receptor, CD127 is phosphorylated resulting in CIS-mediated proteasomal degradation. Here, we show that Tat mimics this process bymore » recruiting CIS to CD127 in the absence of IL-7 and receptor phosphorylation, leading to CD127 ubiquitination and degradation. Tat therefore acts as an adapter to induce cellular responses under conditions where they may not otherwise occur. Thusly, Tat reduces IL-7 signaling and impairs CD8 T cell survival and function. -- Highlights: •Soluble HIV-1 Tat decreases CD127 expression on CD8 T cells, causing dysfunction. •Tat induces CD127 ubiquitination without activating IL-7 signaling. •Tat binds CD127 and recruits the E3 ubiquitin ligase CIS via its basic domain. •Tat hijacks a normal cellular mechanism to degrade CD127 without IL-7 signaling.« less

  14. The effect of static magnetic fields and tat peptides on cellular and nuclear uptake of magnetic nanoparticles.

    PubMed

    Smith, Carol-Anne M; de la Fuente, Jesus; Pelaz, Beatriz; Furlani, Edward P; Mullin, Margaret; Berry, Catherine C

    2010-05-01

    Magnetic nanoparticles are widely used in bioapplications such as imaging (MRI), targeted delivery (drugs/genes) and cell transfection (magnetofection). Historically, the impermeable nature of both the plasma and nuclear membranes hinder potential. Researchers combat this by developing techniques to enhance cellular and nuclear uptake. Two current popular methods are using external magnetic fields to remotely control particle direction or functionalising the nanoparticles with a cell penetrating peptide (e.g. tat); both of which facilitate cell entry. This paper compares the success of both methods in terms of nanoparticle uptake, analysing the type of magnetic forces the particles experience, and determines gross cell response in terms of morphology and structure and changes at the gene level via microarray analysis. Results indicated that both methods enhanced uptake via a caveolin dependent manner, with tat peptide being the more efficient and achieving nuclear uptake. On comparison to control cells, many groups of gene changes were observed in response to the particles. Importantly, the magnetic field also caused many change in gene expression, regardless of the nanoparticles, and appeared to cause F-actin alignment in the cells. Results suggest that static fields should be modelled and analysed prior to application in culture as cells clearly respond appropriately. Furthermore, the use of cell penetrating peptides may prove more beneficial in terms of enhancing uptake and maintaining cell homeostasis than a magnetic field. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  15. Atomistic computer simulations on multi-loaded PAMAM dendrimers: a comparison of amine- and hydroxyl-terminated dendrimers

    NASA Astrophysics Data System (ADS)

    Badalkhani-Khamseh, Farideh; Ebrahim-Habibi, Azadeh; Hadipour, Nasser L.

    2017-12-01

    Poly(amidoamine) (PAMAM) dendrimers have been extensively studied as delivery vectors in biomedical applications. A limited number of molecular dynamics (MD) simulation studies have investigated the effect of surface chemistry on therapeutic molecules loading, with the aim of providing insights for biocompatibility improvement and increase in drug loading capacity of PAMAM dendrimers. In this work, fully atomistic MD simulations were employed to study the association of 5-Fluorouracil (5-FU) with amine (NH2)- and hydroxyl (OH)-terminated PAMAM dendrimers of generations 3 and 4 (G3 and G4). MD results show a 1:12, 1:1, 1:27, and 1:4 stoichiometry, respectively, for G3NH2-FU, G3OH-FU, G4NH2-FU, and G4OH-FU complexes, which is in good agreement with the isothermal titration calorimetry results. The results obtained showed that NH2-terminated dendrimers assume segmented open structures with large cavities and more drug molecules can encapsulate inside the dendritic cavities of amine terminated dendrimers. However, OH-terminated have a densely packed structure and therefore, 5-FU drug molecules are more stable to locate close to the surface of the dendrimers. Intermolecular hydrogen bonding analysis showed that 5-FU drug molecules have more tendency to form hydrogen bonds with terminal monomers of OH-terminated dendrimers, while in NH2-terminated these occur both in the inner region and the surface. Furthermore, MM-PBSA analysis revealed that van der Waals and electrostatic energies are both important to stabilize the complexes. We found that drug molecules are distributed uniformly inside the amine and hydroxyl terminated dendrimers and therefore, both dendrimers are promising candidates as drug delivery systems for 5-FU drug molecules.

  16. Oral Administration of TAT-PTD-Diapause Hormone Fusion Protein Interferes With Helicoverpa armigera (Lepidoptera: Noctuidae) Development.

    PubMed

    Zhou, Zhou; Li, Yongli; Yuan, Chunyan; Zhang, Yongan; Qu, Liangjian

    2015-01-01

    Diapause hormone (DH), which can terminate diapause in Helicoverpa armigera Hübner (Lepidoptera: Noctuidae), has shown promise as a pest control method. However, the main challenge in using DH as an insecticide lies in achieving effective oral delivery, since the peptide may be degraded by digestive enzymes in the gut. To improve the efficacy of oral DH application, the Clostera anastomosis (L.) (Lepidoptera: Notodontidae) diapause hormone (caDH) was fused to the Protein Transduction Domain (PTD) of the human immunodeficiency virus-1 transactivator of transcription (TAT). Cellular transduction of TAT-caDH was verified with the use of a green fluorescent protein fusion, and its ability to terminate diapause was verified by injection into diapausing H. armigera pupae. Orally administered TAT-caDH resulted in larval growth inhibition. In TAT-caDH-treated insects, larval duration was delayed and the pupation rates were decreased at both development promoting conditions [27 °C, a photoperiod of 14:10(L:D) h] and diapause inducing conditions [20 °C, a photoperiod of 10:14(L:D) h]. No significant difference in diapause rate was observed between the TAT-caDH-treated and caDH-treated or control pupae maintained at diapause inducing conditions. Our results show that treatment with a recombinant TAT-caDH protein can affect larval development in H. armigera, and it suggest that TAT-DH treatment may be useful for controlling pests. This study is the first record of oral DH application in insect. © The Author 2015. Published by Oxford University Press on behalf of the Entomological Society of America.

  17. Chimeric Peptide Tat-HA-NR2B9c Improves Regenerative Repair after Transient Global Ischemia.

    PubMed

    Zhou, Hai-Hui; Zhang, Li; Zhang, Hai-Xia; Zhang, Jin-Ping; Ge, Wei-Hong

    2017-01-01

    Transient global ischemia (TGI) is a major public health problem, and it heightens the need of effective treatments. The present study was undertaken to investigate whether recombinant polypeptide Tat-HA-NR2B9c improves spatial learning and memory deficits in rats after TGI. Rats were subjected to 20-min ischemia induced by four-vessel occlusion (4-VO) method and daily injected with Tat-HA-NR2B9c (1.12 mg/kg) for 1 week. Tat-HA-NR2B9c increased CREB activity, upregulated B-cell lymphoma-2 (Bcl-2) expression after treated for 24 h. There was a significant increase in dendrite spine density in hippocampal CA1 region and BrdU-positive cells and BrdU/NeuN-positive cells in the dentate gyrus after Tat-HA-NR2B9c treatment, compared with ischemia group at postischemic day 28. Inhibition of the CREB activation by recombinant lentivirus, LV-CREB133-GFP, abolished the upregulation effects of Tat-HA-NR2B9c on Bcl-2 expression. Moreover, Tat-HA-NR2B9c improved the impaired spatial learning and memory ability in Morris water maze. These results suggest that Tat-HA-NR2B9c substantially ameliorated the TGI-induced loss of dendrite spine in hippocampal CA1, increased neurogenesis in dentate gyrus, and significantly improved cognitive abilities by the CREB pathway in rats after transient global cerebral ischemia. It may be served as a treatment for TGI.

  18. Tumor acidity-activatable TAT targeted nanomedicine for enlarged fluorescence/magnetic resonance imaging-guided photodynamic therapy.

    PubMed

    Gao, Meng; Fan, Feng; Li, Dongdong; Yu, Yue; Mao, Kuirong; Sun, Tianmeng; Qian, Haisheng; Tao, Wei; Yang, Xianzhu

    2017-07-01

    Nanoparticles simultaneously integrated the photosensitizers and diagnostic agents represent an emerging approach for imaging-guided photodynamic therapy (PDT). However, the diagnostic sensitivity and therapeutic efficacy of nanoparticles as well as the heterogeneity of tumors pose tremendous challenges for clinical imaging-guided PDT treatment. Herein, a polymeric nanoparticle with tumor acidity (pH e )-activatable TAT targeting ligand that encapsulates the photosensitizer chlorin e6 (Ce6) and chelates contrast agent Gd 3+ is successfully developed for fluorescence/magnetic resonance (MR) dual-model imaging-guided precision PDT. We show clear evidence that the resulting nanoparticle DA TAT-NP [its TAT lysine residues' amines was modified by 2,3-dimethylmaleic anhydride (DA)] efficiently avoids the rapid clearance by reticuloendothelial system (RES) by masking of the TAT peptide, resulting in the significantly prolonged circulation time in the blood. Once accumulating in the tumor tissues, DA TAT-NP is reactivated by tumor acidity to promote cellular uptake, resulting in enlarged fluorescence/MR imaging signal intensity and elevated in vivo PDT therapeutic effect. This concept provides new avenues to design tumor acidity-activatable targeted nanoparticles for imaging-guided cancer therapy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Synthesis and characterization of a multifunctional gold-doxorubicin nanoparticle system for pH triggered intracellular anticancer drug release.

    PubMed

    Khutale, Ganesh V; Casey, Alan

    2017-10-01

    A nanoparticle drug carrier system has been developed to alter the cellular uptake and chemotherapeutic performance of an available chemotherapeutic drug. The system comprises of a multifunctional gold nanoparticle based drug delivery system (Au-PEG-PAMAM-DOX) as a novel platform for intracellular delivery of doxorubicin (DOX). Spherical gold nanoparticles were synthesized by a gold chloride reduction, stabilized with thiolated polyethylene glycol (PEG) and then covalently coupled with a polyamidoamine (PAMAM) G4 dendrimer. Further, conjugation of an anti-cancer drug doxorubicin to the dendrimer via amide bond resulted in Au-PEG-PAMAM-DOX drug delivery system. Acellular drug release studies proved that DOX released from Au-PEG-PAMAM-DOX at physiological pH was negligible but it was significantly increased at a weak acidic milieu. The intracellular drug release was monitored with confocal laser scanning microscopy analysis. In vitro viability studies showed an increase in the associated doxorubicin cytotoxicity not attributed to carrier components indicating the efficiency of the doxorubicin was improved, upon conjugation to the nano system. As such it is postulated that the developed pH triggered multifunctional doxorubicin-gold nanoparticle system, could lead to a promising platform for intracellular delivery of variety of anticancer drugs. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Oriented Polyaniline Nanowire Arrays Grown on Dendrimer (PAMAM) Functionalized Multiwalled Carbon Nanotubes as Supercapacitor Electrode Materials.

    PubMed

    Jin, Lin; Jiang, Yu; Zhang, Mengjie; Li, Honglong; Xiao, Linghan; Li, Ming; Ao, Yuhui

    2018-04-19

    At present, PANI/MWNT composites have been paid more attention as promising electrode materials in supercapacitors. Yet some shortcomings still limit the widely application of PANI/MWNT electrolytes. In this work, in order to improve capacitance ability and long-term stability of electrode, a multi-amino dendrimer (PAMAM) had been covalently linked onto multi-walled carbon nanotubes (MWNT) as a bridge to facilitating covalent graft of polyaniline (PANI), affording P-MWNT/PANI electrode composites for supercapacitor. Surprisingly, ordered arrays of PANI nanowires on MWNT (setaria-like morphology) had been observed by scanning electron microscopy (SEM). Electrochemical properties of P-MWNT/PANI electrode had been characterized by cyclic voltammetry (CV) and galvanostatic charge-discharge technique. The specific capacitance and long cycle life of P-MWNT-PANI electrode material were both much higher than MWNT/PANI. These interesting results indicate that multi-amino dendrimer, PAMAM, covalently linked on MWNT provides more reaction sites for in-situ polymerization of ordered PANI, which could efficiently shorten the ion diffusion length in electrolytes and lead to making fully use of conducting materials.

  1. Ozone-Induced Dissociation of Conjugated Lipids Reveals Significant Reaction Rate Enhancements and Characteristic Odd-Electron Product Ions

    NASA Astrophysics Data System (ADS)

    Pham, Huong T.; Maccarone, Alan T.; Campbell, J. Larry; Mitchell, Todd W.; Blanksby, Stephen J.

    2013-02-01

    Ozone-induced dissociation (OzID) is an alternative ion activation method that relies on the gas phase ion-molecule reaction between a mass-selected target ion and ozone in an ion trap mass spectrometer. Herein, we evaluated the performance of OzID for both the structural elucidation and selective detection of conjugated carbon-carbon double bond motifs within lipids. The relative reactivity trends for [M + X]+ ions (where X = Li, Na, K) formed via electrospray ionization (ESI) of conjugated versus nonconjugated fatty acid methyl esters (FAMEs) were examined using two different OzID-enabled linear ion-trap mass spectrometers. Compared with nonconjugated analogues, FAMEs derived from conjugated linoleic acids were found to react up to 200 times faster and to yield characteristic radical cations. The significantly enhanced reactivity of conjugated isomers means that OzID product ions can be observed without invoking a reaction delay in the experimental sequence (i.e., trapping of ions in the presence of ozone is not required). This possibility has been exploited to undertake neutral-loss scans on a triple quadrupole mass spectrometer targeting characteristic OzID transitions. Such analyses reveal the presence of conjugated double bonds in lipids extracted from selected foodstuffs. Finally, by benchmarking of the absolute ozone concentration inside the ion trap, second order rate constants for the gas phase reactions between unsaturated organic ions and ozone were obtained. These results demonstrate a significant influence of the adducting metal on reaction rate constants in the fashion Li > Na > K.

  2. Synthesis of silica-PAMAM dendrimer nanoparticles as promising carriers in Neuro blastoma cells.

    PubMed

    Yesil-Celiktas, Ozlem; Pala, Cansu; Cetin-Uyanikgil, E Oyku; Sevimli-Gur, Canan

    2017-02-15

    Mesoporous silica carriers are emerging as therapeutic drug delivery systems. The objective of this study was to develop a formulation for synthesizing silica-PAMAM dendrimer hybrid nanoparticles with sol-gel technique. Subsequently, black carrot anthocyanins were encapsulated and investigated for their capability in terms of inhibiting the proliferative effects of neuroblastoma (Neuro 2A). In this context, particle size distributions were ascertained followed by thermal analysis (DSC), scanning electron microscopy and encapsulation efficiency. Subsequently, in vitro release kinetics was determined along with cytotoxicity of empty and anthocyanin doped hybrid nanoparticles. The lowest particle size was 134.8 nm with a zeta potential of +19.78 mV which enhanced electrostatic interaction with the cell membrane in the cytotoxicity analyses. As the anthocyanin content was totally released at the end of 6 days, the cytotoxicity was observed for 134 h, reaching an inhibition of 87.9%. On the other hand, Neuro 2A cells incubated with empty nanoparticles exhibited a high proliferation indicating that hybrid nanoparticles were not toxic to the cells and the inhibitory effect was associated with the anthocyanins. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. The Positive Correlation of the Enhanced Immune Response to PCV2 Subunit Vaccine by Conjugation of Chitosan Oligosaccharide with the Deacetylation Degree

    PubMed Central

    Zhang, Guiqiang; Cheng, Gong; Jia, Peiyuan; Jiao, Siming; Feng, Cui; Hu, Tao; Liu, Hongtao; Du, Yuguang

    2017-01-01

    Chitosan oligosaccharides (COS), the degraded products of chitosan, have been demonstrated to have versatile biological functions. In primary studies, it has displayed significant adjuvant effects when mixed with other vaccines. In this study, chitosan oligosaccharides with different deacetylation degrees were prepared and conjugated to porcine circovirus type 2 (PCV2) subunit vaccine to enhance its immunogenicity. The vaccine conjugates were designed by the covalent linkage of COSs to PCV2 molecules and administered to BALB/c mice three times at two-week intervals. The results indicate that, as compared to the PCV2 group, COS–PCV2 conjugates remarkably enhanced both humoral and cellular immunity against PCV2 by promoting lymphocyte proliferation and initiating a mixed T-helper 1 (Th1)/T-helper 2 (Th2) response, including raised levels of PCV2-specific antibodies and an increased production of inflammatory cytokines. Noticeably, with the increasing deacetylation degree, the stronger immune responses to PCV2 were observed in the groups with COS-PCV2 vaccination. In comparison with NACOS (chitin oligosaccharides)–PCV2 and LCOS (chitosan oligosaccharides with low deacetylation degree)–PCV2, HCOS (chitosan oligosaccharides with high deacetylation degree)–PCV2 showed the highest adjuvant effect, even comparable to that of PCV2/ISA206 (a commercialized adjuvant) group. In summary, COS conjugation might be a viable strategy to enhance the immune response to PCV2 subunit vaccine, and the adjuvant effect was positively correlated with the deacetylation degree of COS. PMID:28933754

  4. The Positive Correlation of the Enhanced Immune Response to PCV2 Subunit Vaccine by Conjugation of Chitosan Oligosaccharide with the Deacetylation Degree.

    PubMed

    Zhang, Guiqiang; Cheng, Gong; Jia, Peiyuan; Jiao, Siming; Feng, Cui; Hu, Tao; Liu, Hongtao; Du, Yuguang

    2017-07-26

    Chitosan oligosaccharides (COS), the degraded products of chitosan, have been demonstrated to have versatile biological functions. In primary studies, it has displayed significant adjuvant effects when mixed with other vaccines. In this study, chitosan oligosaccharides with different deacetylation degrees were prepared and conjugated to porcine circovirus type 2 (PCV2) subunit vaccine to enhance its immunogenicity. The vaccine conjugates were designed by the covalent linkage of COSs to PCV2 molecules and administered to BALB/c mice three times at two-week intervals. The results indicate that, as compared to the PCV2 group, COS-PCV2 conjugates remarkably enhanced both humoral and cellular immunity against PCV2 by promoting lymphocyte proliferation and initiating a mixed T-helper 1 (Th1)/T-helper 2 (Th2) response, including raised levels of PCV2-specific antibodies and an increased production of inflammatory cytokines. Noticeably, with the increasing deacetylation degree, the stronger immune responses to PCV2 were observed in the groups with COS-PCV2 vaccination. In comparison with NACOS (chitin oligosaccharides)-PCV2 and LCOS (chitosan oligosaccharides with low deacetylation degree)-PCV2, HCOS (chitosan oligosaccharides with high deacetylation degree)-PCV2 showed the highest adjuvant effect, even comparable to that of PCV2/ISA206 (a commercialized adjuvant) group. In summary, COS conjugation might be a viable strategy to enhance the immune response to PCV2 subunit vaccine, and the adjuvant effect was positively correlated with the deacetylation degree of COS.

  5. Long-term protection against SHIV89.6P replication in HIV-1 Tat vaccinated cynomolgus monkeys.

    PubMed

    Maggiorella, Maria Teresa; Baroncelli, Silvia; Michelini, Zuleika; Fanales-Belasio, Emanuele; Moretti, Sonia; Sernicola, Leonardo; Cara, Andrea; Negri, Donatella R M; Buttò, Stefano; Fiorelli, Valeria; Tripiciano, Antonella; Scoglio, Arianna; Caputo, Antonella; Borsetti, Alessandra; Ridolfi, Barbara; Bona, Roberta; ten Haaft, Peter; Macchia, Iole; Leone, Pasqualina; Pavone-Cossut, Maria Rosaria; Nappi, Filomena; Ciccozzi, Massimo; Heeney, Jonathan; Titti, Fausto; Cafaro, Aurelio; Ensoli, Barbara

    2004-09-03

    Vaccination with a biologically active Tat protein or tat DNA contained infection with the highly pathogenic SHIV89.6P virus, preventing CD4 T-cell decline and disease onset. Here we show that protection was prolonged, since neither CD4 T-cell decline nor active virus replication was observed in all vaccinated animals that controlled virus replication up to week 104 after the challenge. In contrast, virus persisted and replicated in peripheral blood mononuclear cells and lymph nodes of infected animals, two of which died. Tat-specific antibody, CD4 and CD8 T-cell responses were high and stable only in the animals controlling the infection. In contrast, Gag-specific antibody production and CD4 and CD8 T-cell responses were consistently and persistently positive only in the monkeys that did not control primary virus replication. These results indicate that vaccination with Tat protein or DNA induced long-term memory Tat-specific immune responses and controlled primary infection at its early stages allowing a long-term containment of virus replication and spread in blood and tissues.

  6. Improving ED specimen TAT using Lean Six Sigma.

    PubMed

    Sanders, Janet H; Karr, Tedd

    2015-01-01

    Lean and Six Sigma are continuous improvement methodologies that have garnered international fame for improving manufacturing and service processes. Increasingly these methodologies are demonstrating their power to also improve healthcare processes. The purpose of this paper is to discuss a case study for the application of Lean and Six Sigma tools in the reduction of turnaround time (TAT) for Emergency Department (ED) specimens. This application of the scientific methodologies uncovered opportunities to improve the entire ED to lab system for the specimens. This case study provides details on the completion of a Lean Six Sigma project in a 1,000 bed tertiary care teaching hospital. Six Sigma's Define, Measure, Analyze, Improve, and Control methodology is very similar to good medical practice: first, relevant information is obtained and assembled; second, a careful and thorough diagnosis is completed; third, a treatment is proposed and implemented; and fourth, checks are made to determine if the treatment was effective. Lean's primary goal is to do more with less work and waste. The Lean methodology was used to identify and eliminate waste through rapid implementation of change. The initial focus of this project was the reduction of turn-around-times for ED specimens. However, the results led to better processes for both the internal and external customers of this and other processes. The project results included: a 50 percent decrease in vials used for testing, a 50 percent decrease in unused or extra specimens, a 90 percent decrease in ED specimens without orders, a 30 percent decrease in complete blood count analysis (CBCA) Median TAT, a 50 percent decrease in CBCA TAT Variation, a 10 percent decrease in Troponin TAT Variation, a 18.2 percent decrease in URPN TAT Variation, and a 2-5 minute decrease in ED registered nurses rainbow draw time. This case study demonstrated how the quantitative power of Six Sigma and the speed of Lean worked in harmony to improve

  7. Anti-inflammatory effects of Tat-Annexin protein on ovalbumin-induced airway inflammation in a mouse model of asthma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Sun Hwa; Kim, Dae Won; Kim, Hye Ri

    Highlights: Black-Right-Pointing-Pointer We construct a cell permeable Tat-ANX1 fusion protein. Black-Right-Pointing-Pointer We examined the protective effects of Tat-ANX1 protein on OVA-induced asthma in animal models. Black-Right-Pointing-Pointer Transduced Tat-ANX1 protein protects from the OVA-induced production of cytokines and eosinophils in BAL fluid. Black-Right-Pointing-Pointer Tat-ANX1 protein markedly reduced OVA-induced MAPK in lung tissues. Black-Right-Pointing-Pointer Tat-ANX1 protein could be useful as a therapeutic agent for lung disorders including asthma. -- Abstract: Chronic airway inflammation is a key feature of bronchial asthma. Annexin-1 (ANX1) is an anti-inflammatory protein that is an important modulator and plays a key role in inflammation. Although the precise actionmore » of ANX1 remains unclear, it has emerged as a potential drug target for inflammatory diseases such as asthma. To examine the protective effects of ANX1 protein on ovalbumin (OVA)-induced asthma in animal models, we used a cell-permeable Tat-ANX1 protein. Mice sensitized and challenged with OVA antigen had an increased amount of cytokines and eosinophils in their bronchoalveolar lavage (BAL) fluid. However, administration of Tat-ANX1 protein before OVA challenge significantly decreased the levels of cytokines (interleukin (IL)-4, IL-5, and IL-13) and BAL fluid in lung tissues. Furthermore, OVA significantly increased the activation of mitogen-activated protein kinase (MAPK) in lung tissues, whereas Tat-ANX1 protein markedly reduced phosphorylation of MAPKs such as extracellular signal-regulated protein kinase, p38, and stress-activated protein kinase/c-Jun N-terminal kinase. These results suggest that transduced Tat-ANX1 protein may be a potential protein therapeutic agent for the treatment of lung disorders including asthma.« less

  8. 123I-labeled HIV-1 tat peptide radioimmunoconjugates are imported into the nucleus of human breast cancer cells and functionally interact in vitro and in vivo with the cyclin-dependent kinase inhibitor, p21(WAF-1/Cip-1).

    PubMed

    Hu, Meiduo; Chen, Paul; Wang, Judy; Scollard, Deborah A; Vallis, Katherine A; Reilly, Raymond M

    2007-03-01

    To evaluate the internalization and nuclear translocation of (123)I-tat-peptide radioimmunoconjugates in MDA-MB-468 breast cancer cells and their ability to interact with the cyclin-dependent kinase inhibitor, p21(WAF-1/Cip-1). Peptides [GRKKRRQRRRPPQGYGC] harboring the nuclear-localizing sequence from HIV tat domain were conjugated to anti-p21(WAF-1/Cip-1) antibodies. Immunoreactivity was assessed by Western blot using lysate from MDA-MB-468 cells exposed to EGF to induce p21(WAF-1/Cip-1). Internalization and nuclear translocation were measured. The ability of tat-anti-p21(WAF-1/Cip-1) to block G(1)-S phase arrest in MDA-MB-468 cells caused by EGF-induced p21(WAF-1/Cip-1) was evaluated. Tumor and normal tissue uptake were determined at 48 h p.i. in athymic mice implanted s.c. with MDA-MB-468 xenografts injected intratumorally with EGF. There was 13.4+/-0.2% of radioactivity internalized by MDA-MB-468 cells incubated with (123)I-tat-anti-p21(WAF-1/Cip-1) and 34.6+/-3.1% imported into the nucleus. Tat-anti-p21(WAF-1/Cip-1)(8 muM) decreased the proportion of EGF-treated cells in G(1) phase from 81.9+/-0.7% to 46.1+/-0.7% (p<0.001), almost restoring the G(1) phase fraction to that of unexposed cells (25.8+/-0.2%). Non-specific tat-mouse IgG did not block EGF-induced G(1)-S phase arrest. Tumor uptake of radioactivity was higher in mice injected with EGF to induce p21(WAF-1/Cip-1) than in mice not receiving EGF (3.1+/-0.4% versus 1.8+/-0.2% ID/g; p=0.04). Western blot analysis of tumors revealed a threefold increase in the p21(WAF-1/Cip-1)/beta-actin ratio. We conclude that intracellular and nuclear epitopes in cancer cells can be functionally targeted with tat-radioimmunoconjugates to exploit many more epitopes for imaging and radiotherapeutic applications than have previously been accessible.

  9. TAT improves in vitro transportation of fortilin through midgut and into hemocytes of white shrimp Litopenaeus vannamei

    NASA Astrophysics Data System (ADS)

    Zhou, Yi; Zhang, Wenbing; Mai, Kangsen; Xu, Wei; Zhang, Yanjiao; Ai, Qinghui; Wang, Xiaojie

    2012-06-01

    Fortilin is a multifunctional protein implicated in many important cellular processes. Since injection of Pm-fortilin reduces shrimp mortality caused by white spot syndrome virus (WSSV), there is potential application of fortilin in shrimp culture. In the present study, in order to improve trans-membrane transportation efficiency, the protein transduction domain of the transactivator of transcription (TAT) peptide was fused to fortilin. The Pichia pastoris yeast expression system, which is widely accepted in animal feeds, was used for production of recombinant fusion protein. Green fluorescence protein (GFP) was selected as a reporter because of its intrinsic visible fluorescence. The fortilin, TAT and GFP fusion protein were constructed. Their trans-membrane transportation efficiency and effects on immune response of shrimp were analyzed in vitro. Results showed that TAT peptide improved in vitro uptake of fortilin into the hemocytes and midgut of Litopenaeus vannamei. The phenoloxidase (PO) activity of hemocytes incubated with GFP-Fortilin or GFP-Fortilin-TAT was significantly increased compared with that in the control without expressed fortilin. The PO activity of hemocytes incubated with 200 μg mL-1 GFP-Fortilin-TAT was significantly higher than that in the group with the same concentration of GFP-Fortilin. Hemocytes incubated with GFP-Fortilin-TAT at all concentrations showed significantly higher nitric oxide synthase (NOS) activity than those in the control or in the GFP-Fortilin treatment. The present in vitro study indicated that TAT fusion protein improved the immune effect of fortilin.

  10. Cyclodextrin-PEG conjugate-wrapped magnetic ferrite nanoparticles for enhanced drug loading and release

    NASA Astrophysics Data System (ADS)

    Enoch, Israel V. M. V.; Ramasamy, Sivaraj; Mohiyuddin, Shanid; Gopinath, Packirisamy; Manoharan, R.

    2018-05-01

    Magnetic nanoparticles are envisaged to overcome the impediments in the methods of targeted drug delivery and hence cure cancer effectively. We report herein, manganese ferrite nanoparticles, coated with β-cyclodextrin-modified polyethylene glycol as a carrier for the drug, camptothecin. The particles are of the size of 100 nm and they show superparamagnetic behaviour. The saturation magnetization does not get diminished on polymer coverage of the nanoparticles. The β-cyclodextrin-polyethylene glycol conjugates are characterized using NMR and mass spectrometric techniques. By coating the magnetic nanoparticles with the cyclodextrin-tethered polymer, the drug-loading capacity is enhanced and the observed release of the drug is slow and sustained. The cell viability of HEK293 and HCT15 cells is evaluated and the cytotoxicity is enhanced when the drug is loaded in the polymer-coated magnetic nanoparticles. The noncovalent-binding based and enhanced drug loading on the nanoparticles and the sustained release make the nanocarrier a promising agent for carrying the payload to the target.

  11. Intratumoral delivery of CpG-conjugated anti-MUC1 antibody enhances NK cell anti-tumor activity.

    PubMed

    Schettini, Jorge; Kidiyoor, Amritha; Besmer, Dahlia M; Tinder, Teresa L; Roy, Lopamudra Das; Lustgarten, Joseph; Gendler, Sandra J; Mukherjee, Pinku

    2012-11-01

    Monoclonal antibodies (mAbs) against tumor-associated antigens are useful anticancer agents. Antibody-dependent cellular cytotoxicity (ADCC) is one of the major mechanisms responsible for initiating natural killer cell (NK)-mediated killing of tumors. However, the regulation of ADCC via NK cells is poorly understood. We have investigated the cytolytic activity of NK cells against pancreatic cancer cells that were coated with an antibody directed against the human tumor antigen, Mucin-1 designated HMFG-2, either alone or conjugated to CpG oligodeoxynucleotide (CpG ODN). Conjugated antibodies were tested for their ability to elicit ADCC in vitro and in vivo against pancreatic cancer cells. NK cells cultured in the presence of immobilized CpG ODN, HMFG-2 Ab, or CpG ODN-conjugated HMFG-2 Ab were able to up-regulate perforin similarly. Interestingly, a significant higher ADCC was observed when CpG ODN-conjugated HMFG-2-coated tumor cells were co-cultured with NK cells compared to unconjugated HMFG-2 Ab or CpG ODN alone. Moreover, MyD88-deficient NK cells can perform ADCC in vitro. Furthermore, intratumoral injections of CpG ODN-conjugated HMFG-2 induced a significant reduction in tumor burden in vivo in an established model of pancreatic tumor in nude mice compared to CpG ODN or the HMFG-2 alone. Depletion of macrophages or NK cells before treatment confirmed that both cells were required for the anti-tumor response in vivo. Results also suggest that CpG ODN and HMFG-2 Ab could be sensed by NK cells on the mAb-coated tumor cells triggering enhanced ADCC in vitro and in vivo.

  12. Intratumoral delivery of CpG-conjugated anti-MUC1 antibody enhances NK cell anti-tumor activity

    PubMed Central

    Schettini, Jorge; Kidiyoor, Amritha; Besmer, Dahlia M.; Tinder, Teresa L.; Roy, Lopamudra Das; Lustgarten, Joseph; Gendler, Sandra J.

    2013-01-01

    Monoclonal antibodies (mAbs) against tumor-associated antigens are useful anticancer agents. Antibody-dependent cellular cytotoxicity (ADCC) is one of the major mechanisms responsible for initiating natural killer cell (NK)-mediated killing of tumors. However, the regulation of ADCC via NK cells is poorly understood. We have investigated the cytolytic activity of NK cells against pancreatic cancer cells that were coated with an antibody directed against the human tumor antigen, Mucin-1 designated HMFG-2, either alone or conjugated to CpG oligodeoxynucleotide (CpG ODN). Conjugated antibodies were tested for their ability to elicit ADCC in vitro and in vivo against pancreatic cancer cells. NK cells cultured in the presence of immobilized CpG ODN, HMFG-2 Ab, or CpG ODN-conjugated HMFG-2 Ab were able to up-regulate perforin similarly. Interestingly, a significant higher ADCC was observed when CpG ODN-conjugated HMFG-2-coated tumor cells were co-cultured with NK cells compared to unconjugated HMFG-2 Ab or CpG ODN alone. Moreover, MyD88-deficient NK cells can perform ADCC in vitro. Furthermore, intratumoral injections of CpG ODN-conjugated HMFG-2 induced a significant reduction in tumor burden in vivo in an established model of pancreatic tumor in nude mice compared to CpG ODN or the HMFG-2 alone. Depletion of macrophages or NK cells before treatment confirmed that both cells were required for the anti-tumor response in vivo. Results also suggest that CpG ODN and HMFG-2 Ab could be sensed by NK cells on the mAb-coated tumor cells triggering enhanced ADCC in vitro and in vivo. PMID:22543528

  13. Identification of amino acids that promote specific and rigid TAR RNA-tat protein complex formation.

    PubMed

    Edwards, Thomas E; Robinson, Bruce H; Sigurdsson, Snorri Th

    2005-03-01

    The Tat protein and the transactivation responsive (TAR) RNA form an essential complex in the HIV lifecycle, and mutations in the basic region of the Tat protein alter this RNA-protein molecular recognition. Here, EPR spectroscopy was used to identify amino acids, flanking an essential arginine of the Tat protein, which contribute to specific and rigid TAR-Tat complex formation by monitoring changes in the mobility of nitroxide spin-labeled TAR RNA nucleotides upon binding. Arginine to lysine N-terminal mutations did not affect TAR RNA interfacial dynamics. In contrast, C-terminal point mutations, R56 in particular, affected the mobility of nucleotides U23 and U38, which are involved in a base-triple interaction in the complex. This report highlights the role of dynamics in specific molecular complex formation and demonstrates the ability of EPR spectroscopy to study interfacial dynamics of macromolecular complexes.

  14. Enhancing the efficiency of bortezomib conjugated to pegylated gold nanoparticles: an in vitro study on human pancreatic cancer cells and adenocarcinoma human lung alveolar basal epithelial cells.

    PubMed

    Coelho, Sílvia Castro; Almeida, Gabriela M; Santos-Silva, Filipe; Pereira, Maria Carmo; Coelho, Manuel A N

    2016-08-01

    Gold nanoparticles have become promising vectors for cancer diagnosis and treatment. The present study investigates the effect of bortezomib (BTZ), a proteasome inhibitor, conjugated with pegylated gold nanoparticles (PEGAuNPs) in pancreatic and lung cancer cells. Synthesized gold nanoparticles (PEGAuNPs) were conjugated with bortezomib antitumor drug. We investigated the cytotoxicity induced by BTZ conjugated with functionalized gold nanoparticles in vitro, in the human pancreatic (S2-013) and lung (A549) cancer cell lines. We found an efficient of conjugation of BTZ with PEGAuNPs. In vitro assays showed that after 72 h' incubation with PEGAuNPs-BTZ cancer cells revealed alterations in morphology; also for S2-013 and A549 cancer cells, the IC50 value of free BTZ is respectively 1.5 and 4.3 times higher than the IC50 value of PEGAuNPs-BTZ. Furthermore, for TERT-HPNE, the IC50 value is around 63 times lower for free BTZ than the conjugated nanovehicle. Cell growth inhibition results showed a remarkable enhancement in the effect of BTZ when conjugated with AuNPs. Our findings showed that conjugation with PEGAuNPs enhance the BTZ growth-inhibition effect on human cancer cells (S2-013 and A549) and decreases its toxicity against normal cells (TERT-HPNE).

  15. Transcriptional transactivator peptide modified lidocaine-loaded nanoparticulate drug delivery system for topical anesthetic therapy.

    PubMed

    Wang, Yan; Wang, Shenhui; Shi, Pengcai

    2016-11-01

    For the topical anesthetic, transcriptional transactivator peptide (TAT) modified lidocaine (LID) loaded nanostructured lipid carriers (TAT-NLCs-LID) were prepared and then used for improving transdermal delivery of local anesthetic drug. In this study, TAT was conjugated with Distearoyl phosphatidylethanolamine-(polyethylene glycol) 2000 -maleimide (DSPE-PEG 2000 -Mal) to obtain TAT-PEG 2000 -DSPE. TAT-NLCs-LID were successfully prepared and characterized by determination of their particle size, morphology, drug encapsulation efficiency and in vitro drug release behavior. The skin permeation of LID-LNPs was examined using a Franz diffusion cell mounted with depilated mouse skin in vitro and in vivo anesthesia effect was evaluated on mice. The results showed that TAT-NLCs-LID have substantially small mean diameter (157.9 nm) and high encapsulation efficiency (81.8%). From the in vitro skin permeation results, transdermal flux of TAT-NLCs-LID was about several times higher than that of LID solution and NLCs-LID. In vivo anesthesia effect evaluation illustrated that TAT-NLCs-LID can enhance the transdermal delivery of LID by reducing the pain threshold in mice. These results indicate that the novel TAT containing drug delivery system is very useful for overcoming the barrier function of the skin and could deliver anesthetic through the skin. TAT-NLCs-LID could function as promising topical anesthetic system.

  16. Urban Runoff and Nutrients Loading Control from Sustainable BMPs (Invited)

    NASA Astrophysics Data System (ADS)

    Xiao, Q.

    2009-12-01

    construction of runoff retention basins and treatment facilities to meet TMDL (Total Maximum Daily Load) regulations are not cost-effective or practical. An alternative approach is to control runoff and nutrients on-site through installation of decentralized BMPs that detain and infiltrate runoff before it reaches storm drains. Recent developed green-infrastructure which integrating engineered soil and trees to reduce runoff and nutrients loading is a self-sustained best management practice (BMP). This BMP has been testing and used in urban runoff control. In Davis, CA this type of BMPs were installed in a parking lot and a residential property to evaluate the system’s effectiveness on reducing storm runoff and pollutant loading from the parking lot and irrigated landscape. Storm runoff and pollutant loading were measured and monitored during February 2007 thru May 2009 from the parking lot. The BMP reduced surface runoff and nutrients by 88.8% and 95.3%, respectively. In the residential irrigated landscape, the dry-weather runoff was monitored during 2007 irrigation season, the BMP captured almost all dry weather runoff. The performance of these BMPs demonstrated their potential use for reducing runoff and nutrients loading. Control urban runoff from these 23% landscape (i.e., parking lot and irrigated turf grass) could largely alter the runoff and nutrients transport and their dynamic in our water system.

  17. Transport and biodistribution of dendrimers across human fetal membranes: implications for intravaginal administration of dendrimer-drug conjugates.

    PubMed

    Menjoge, Anupa R; Navath, Raghavendra S; Asad, Abbas; Kannan, Sujatha; Kim, Chong J; Romero, Roberto; Kannan, Rangaramanujam M

    2010-06-01

    Dendrimers are emerging as promising topical antimicrobial agents, and as targeted nanoscale drug delivery vehicles. Topical intravaginal antimicrobial agents are prescribed to treat the ascending genital infections in pregnant women. The fetal membranes separate the extra-amniotic space and fetus. The purpose of the study is to determine if the dendrimers can be selectively used for local intravaginal application to pregnant women without crossing the membranes into the fetus. In the present study, the transport and permeability of PAMAM (poly (amidoamine)) dendrimers, across human fetal membrane (using a side by side diffusion chamber), and its biodistribution (using immunofluorescence) are evaluated ex-vivo. Transport across human fetal membranes (from the maternal side) was evaluated using Fluorescein (FITC), an established transplacental marker (positive control, size approximately 400 Da) and fluorophore-tagged G(4)-PAMAM dendrimers (approximately 16 kDa). The fluorophore-tagged G(4)-PAMAM dendrimers were synthesized and characterized using (1)H NMR, MALDI TOF MS and HPLC analysis. Transfer was measured across the intact fetal membrane (chorioamnion), and the separated chorion and amnion layers. Over a 5 h period, the dendrimer transport across all the three membranes was less than <3%, whereas the transport of FITC was relatively fast with as much as 49% transport across the amnion. The permeability of FITC (7.9 x 10(-7) cm(2)/s) through the chorioamnion was 7-fold higher than that of the dendrimer (5.8 x 10(-8) cm(2)/s). The biodistribution showed that the dendrimers were largely present in interstitial spaces in the decidual stromal cells and the chorionic trophoblast cells (in 2.5-4 h) and surprisingly, to a smaller extent internalized in nuclei of trophoblast cells and nuclei and cytoplasm of stromal cells. Passive diffusion and paracellular transport appear to be the major route for dendrimer transport. The overall findings further suggest that entry of

  18. Dendrimer-conjugated iron oxide nanoparticles as stimuli-responsive drug carriers for thermally-activated chemotherapy of cancer.

    PubMed

    Nigam, Saumya; Bahadur, Dhirendra

    2017-07-01

    In recent years, functional nanomaterials have found an appreciable place in the understanding and treatment of cancer. This work demonstrates the fabrication and characterization of a new class of cationic, biocompatible, peptide dendrimers, which were then used for stabilizing and functionalizing magnetite nanoparticles for combinatorial therapy of cancer. The synthesized peptide dendrimers have an edge over the widely used PAMAM dendrimers due to better biocompatibility and negligible cytotoxicity of their degradation products. The surface engineering efficacy of the peptide dendrimers and their potential use as drug carriers were compared with their PAMAM counterparts. The peptide dendrimer was found to be as efficient as PAMAM dendrimers in its drug-carrying capacity, while its drug release profiles substantially exceeded those of PAMAM's. A dose-dependent study was carried out to assess their half maximal inhibitory concentration (IC 50 ) in vitro with various cancer cell lines. A cervical cancer cell line that was incubated with these dendritic nanoparticles was exposed to alternating current magnetic field (ACMF) to investigate the effect of elevated temperatures on the live cell population. The DOX-loaded formulations, in combination with the ACMF, were also assessed for their synergistic effects on the cancer cells for combinatorial therapy. The results established the peptide dendrimer as an efficient alternative to PAMAM, which can be used successfully in biomedical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. The Taming of the Cell Penetrating Domain of the HIV Tat: Myths and Realities

    PubMed Central

    Chauhan, Ashok; Tikoo, Akshay; Kapur, Arvinder K.; Singh, Mahavir

    2007-01-01

    Protein transduction with cell penetrating peptides over the past several years has been shown to be an effective way of delivering proteins in vitro and now several reports have also shown valuable in vivo applications in correcting disease states. An impressive bioinspired phenomenon of crossing biological barriers came from HIV transactivator Tat protein. Specifically, the protein transduction domain of HIV-Tat has been shown to be a potent pleiotropic peptide in protein delivery. Various approaches such as molecular modeling, arginine guanidinium head group structural strategy, multimerization of PTD sequence and phage display system have been applied for taming of the PTD. This has resulted in identification of PTD variants which are efficient in cell membrane penetration and cytoplasmic delivery. Inspite of these state of the art technologies, the dilemma of low protein transduction efficiency and target specific delivery of PTD fusion proteins remains unsolved. Moreover, some misconceptions about PTD of Tat in the literature require considerations. We have assembled critical information on secretory, plasma membrane penetration and transcellular properties of Tat and PTD using molecular analysis and available experimental evidences. PMID:17196289

  20. Morphological, Histochemical, Immunohistochemical, and Ultrastructural Characterization of Tumors and Dysplastic and Non-Neoplastic Lesions Arising in BK Virus/tat Transgenic Mice

    PubMed Central

    Altavilla, Giuseppe; Trabanelli, Cecilia; Merlin, Michela; Caputo, Antonella; Lanfredi, Massimo; Barbanti-Brodano, Giuseppe; Corallini, Alfredo

    1999-01-01

    To study the role in AIDS pathogenesis of the human immunodeficiency virus type 1 (HIV-1) Tat protein, a transactivator of viral and cellular genes, we generated transgenic mice with a recombinant DNA containing BK virus (BKV) early region and the HIV-1 tat gene, directed by its own promoter-enhancer. DNA hybridization revealed that the transgene is stably maintained in all organs of transgenic mice as a tandem insertion in a number of copies ranging from 5 to 20 per cell. In addition, tat and BKV RNA were expressed in all tissues. Transgenic mice developed three types of lesions: 1) tumors, 2) hyperplastic and dysplastic lesions, and 3) non-neoplastic lesions. Tumors of different histotypes, such as lymphomas, adenocarcinomas of skin glands, leiomyosarcomas, skin squamous cell carcinomas, hepatomas, hepatocarcinomas, and cavernous liver hemangiomas, developed in 29% of transgenic animals. The majority of tumors were malignant, invasive, and producing metastases. Conversely, tumors of only two histotypes (lymphomas and adenocarcinomas of skin glands) appeared in control mice. Hyperplastic and dysplastic lesions were more frequent in transgenic than in control mice and involved the skin or its adnexes, the liver and the rectum, indicating multiple targets for the activity of the transgene. Pyelonephritis, frequently complicated with hydronephrosis, inflammatory eye lesions, and amyloid depositions represented the most frequent non-neoplastic lesions detected in transgenic mice. Many of the pathological findings observed in this animal model are comparable to similar lesions appearing in AIDS patients, suggesting a relevant role for Tat in the pathogenesis of such lesions during the course of AIDS. PMID:10233861

  1. A novel dendritic nanocarrier of polyamidoamine-polyethylene glycol-cyclic RGD for “smart” small interfering RNA delivery and in vitro antitumor effects by human ether-à-go-go-related gene silencing in anaplastic thyroid carcinoma cells

    PubMed Central

    Li, Guanhua; Hu, Zuojun; Yin, Henghui; Zhang, Yunjian; Huang, Xueling; Wang, Shenming; Li, Wen

    2013-01-01

    The application of RNA interference techniques is promising in gene therapeutic approaches, especially for cancers. To improve safety and efficiency of small interfering RNA (siRNA) delivery, a triblock dendritic nanocarrier, polyamidoamine-polyethylene glycol-cyclic RGD (PAMAM-PEG-cRGD), was developed and studied as an siRNA vector targeting the human ether-à-go-go-related gene (hERG) in human anaplastic thyroid carcinoma cells. Structure characterization, particle size, zeta potential, and gel retardation assay confirmed that complete triblock components were successfully synthesized with effective binding capacity of siRNA in this triblock nanocarrier. Cytotoxicity data indicated that conjugation of PEG significantly alleviated cytotoxicity when compared with unmodified PAMAM. PAMAM-PEG-cRGD exerted potent siRNA cellular internalization in which transfection efficiency measured by flow cytometry was up to 68% when the charge ratio (N/P ratio) was 3.5. Ligand-receptor affinity together with electrostatic interaction should be involved in the nano-siRNA endocytosis mechanism and we then proved that attachment of cRGD enhanced cellular uptake via RGD-integrin recognition. Gene silencing was evaluated by reverse transcription polymerase chain reaction and PAMAM-PEG-cRGD-siRNA complex downregulated the expression of hERG to 26.3% of the control value. Furthermore, gene knockdown of hERG elicited growth suppression as well as activated apoptosis by means of abolishing vascular endothelial growth factor secretion and triggering caspase-3 cascade in anaplastic thyroid carcinoma cells. Our study demonstrates that this novel triblock polymer, PAMAM-PEG-cRGD, exhibits negligible cytotoxicity, effective transfection, “smart” cancer targeting, and therefore is a promising siRNA nanocarrier. PMID:23569377

  2. Non-covalent conjugation of cutinase from Fusarium sp. ICT SAC1 with pectin for enhanced stability: Process minutiae, kinetics, thermodynamics and structural study.

    PubMed

    Muley, Abhijeet B; Chaudhari, Sandeep A; Singhal, Rekha S

    2017-09-01

    Cutinase, a member of α/β-fold hydrolase family possess potentially diverse applications in several industrial processes and products. The present work aims towards thermo-stabilization of cutinase from novel source Fusarium sp. ICT SAC1 via non-covalent interaction with polysaccharides. Although all six polysaccharides chosen for study enhanced the thermal stability, pectin was found to be most promising. The interaction protocol for cutinase with pectin was optimized sequentially with respect to the ratio of enzyme to pectin, solution pH, and buffer strength. Cutinase-pectin conjugate under optimized conditions (1:12, pH-6.5, 50mM) showed enhanced thermal stability as evident from lower inactivation rate constant, higher half-life and D-value within the 40-55°C. A slender rise in K m and V max values and enhanced thermodynamic parameters of cutinase-pectin conjugate were observed after non-covalent interaction. Entropy values were 1.5-fold higher for cutinase-pectin conjugate at each temperature suggesting an upsurge in number of protein molecules in a transition activated state. Positive values of entropy for both forms of cutinase suggested a rise in disordered conformation. Noticeable conformational changes in cutinase after conjugation with pectin were confirmed by FTIR as well as fluorescence emission spectra. An increment in helix to turn conversion was observed in complexed cutinase vis-à-vis free cutinase. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. A HIV-Tat/C4-binding protein chimera encoded by a DNA vaccine is highly immunogenic and contains acute EcoHIV infection in mice.

    PubMed

    Tomusange, Khamis; Wijesundara, Danushka; Gummow, Jason; Garrod, Tamsin; Li, Yanrui; Gray, Lachlan; Churchill, Melissa; Grubor-Bauk, Branka; Gowans, Eric J

    2016-06-30

    DNA vaccines are cost-effective to manufacture on a global scale and Tat-based DNA vaccines have yielded protective outcomes in preclinical and clinical models of human immunodeficiency virus (HIV), highlighting the potential of such vaccines. However, Tat-based DNA vaccines have been poorly immunogenic, and despite the administration of multiple doses and/or the addition of adjuvants, these vaccines are not in general use. In this study, we improved Tat immunogenicity by fusing it with the oligomerisation domain of a chimeric C4-binding protein (C4b-p), termed IMX313, resulting in Tat heptamerisation and linked Tat to the leader sequence of tissue plasminogen activator (TPA) to ensure that the bulk of heptamerised Tat is secreted. Mice vaccinated with secreted Tat fused to IMX313 (pVAX-sTat-IMX313) developed higher titres of Tat-specific serum IgG, mucosal sIgA and cell-mediated immune (CMI) responses, and showed superior control of EcoHIV infection, a surrogate murine HIV challenge model, compared with animals vaccinated with other test vaccines. Given the crucial contribution of Tat to HIV-1 pathogenesis and the precedent of Tat-based DNA vaccines in conferring some level of protection in animal models, we believe that the virologic control demonstrated with this novel multimerised Tat vaccine highlights the promise of this vaccine candidate for humans.

  4. Effect of arginine methylation on the RNA recognition and cellular uptake of Tat-derived peptides.

    PubMed

    Li, Jhe-Hao; Chiu, Wen-Chieh; Yao, Yun-Chiao; Cheng, Richard P

    2015-05-01

    Arginine (Arg) methylation is a common post-translational modification that regulates gene expression and viral infection. The HIV-1 Tat protein is an essential regulatory protein for HIV proliferation, and is methylated in the cell. The basic region (residues 47-57) of the Tat protein contains six Arg residues, and is responsible for two biological functions: RNA recognition and cellular uptake. In this study, we explore the effect of three different methylation states at each Arg residue in Tat-derived peptides on the two biological functions. The Tat-derived peptides were synthesized by solid phase peptide synthesis. TAR RNA binding of the peptides was assessed by electrophoresis mobility shift assays. The cellular uptake of the peptides into Jurkat cells was determined by flow cytometry. Our results showed that RNA recognition was affected by both methylation state and position. In particular, asymmetric dimethylation at position 53 decreased TAR RNA binding affinity significantly, but unexpectedly less so upon asymmetric dimethylation at position 52. The RNA binding affinity even slightly increased upon methylation at some of the flanking Arg residues. Upon Arg methylation, the cellular uptake of Tat-derived peptides mostly decreased. Interestingly, cellular uptake of Tat-derived peptides with a single asymmetrically dimethylated Arg residue was similar to the native all Arg peptide (at 120 μM). Based on our results, TAR RNA binding apparently required both guanidinium terminal NH groups on Arg53, whereas cellular uptake apparently required guanidinium terminal NH₂ groups instead. These results should provide insight into how nature uses arginine methylation to regulate different biological functions, and should be useful for the development of functional molecules with methylated arginines. Copyright © 2015. Published by Elsevier Ltd.

  5. Effects of thunderstorm-driven runaway electrons in the conjugate hemisphere: Purple sprites, ionization enhancements, and gamma rays

    NASA Astrophysics Data System (ADS)

    Lehtinen, N. G.; Inan, U. S.; Bell, T. F.

    2001-12-01

    The presence of energetic runaway electron beams above thunderstorms is suggested by observations of terrestrial gamma ray flashes [Fishman et al., 1994], as well as by theoretical work [Roussel-Dupré and Gurevich, 1996; Lehtinen et al., 1999], although such beams have not been directly measured. In this paper we consider possible measurable effects of such beams in the conjugate hemisphere as a means to confirm their existence and quantify their properties. High-density relativistic runaway electron beams, driven upward by intense lightning-generated mesospheric quasi-static electric fields, have been predicted [Lehtinen et al., 2000] to be isotropized and thermalized during their interhemispherical traverse along the Earth's magnetic field lines so that only ~10% of the electrons which are below the loss cone should arrive at the geomagnetically conjugate ionosphere. As they encounter the Earth's atmosphere, the energetic electrons would be scattered and produce light and ionization, much like a beam of precipitating auroral electrons. A Monte Carlo approach is used to model the interaction of the downgoing electrons with the conjugate atmosphere, including the backscattering of electrons, as well as production of optical and gamma ray emissions and enhanced secondary ionization. Results indicate that these conjugate ionospheric effects of the runaway electron beam are detectable and thus may be used to quantify the runaway electron mechanism.

  6. Low Concentrations of Cationic PAMAM Dendrimers Affect Lymphocyte Respiration in In vitro Studies.

    PubMed

    Labieniec-Watala, Magdalena; Szwed, Marzena; Hertel, Joanna; Wisnik, Ewelina

    2017-01-01

    In this study, the effect of low concentrations of poly(amido)amine dendrimers (G2-G4) on human lymphocytes was studied. Some works revealed that PAMAMs can adversely affect the morphology of blood components and mitochondria functions. In this context, the present report aimed to investigate the in vitro cationic dendrimers' effect on mitochondrial respiration and cell morphology in lymphocytes isolated from human blood. To monitor the mitochondrial changes, the high-resolution respirometer was used, whereas the cell morphology was analyzed using a flow cytometer and fluorescence microscopy. The concentration-dependent dendrimers' influence on lymphocytes morphology was shown. Changes in mitochondrial respiration revealed the concentration- and generation-dependent differences between dendrimer activity. There were no alterations in the routine respiration and in the state of the inner mitochondrial membrane (L/E), but decreased ADP- and FCCP-stimulated respirations were detected after treatment with G3 and G4 dendrimers. The markers of mitochondrial membrane integrity (RCR) and OXPHOS efficiency (P/E) significantly decreased regardless of the dendrimer generation used. Based on these in vitro evaluations, we state that cationic PAMAM dendrimers can impair both the morphology and the bioenergetics of human lymphocytes, even when used at low concentrations and in a short time (up to 1 h). However, these results do not imply that similar findings could be possible for in vivo observations. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. pH and generation dependent morphologies of PAMAM dendrimers on a graphene substrate.

    PubMed

    Gosika, Mounika; Maiti, Prabal K

    2018-03-07

    The adsorption of PAMAM dendrimers at solid/water interfaces has been extensively studied, and is mainly driven by electrostatic and van der Waals interactions between the substrate and the dendrimers. However, the pH dependence of the adsorption driven predominantly by the van der Waals interactions is poorly explored, although it is crucial for investigating the potentiality of these dendrimers in supercapacitors and surface patterning. Motivated by this aspect, we have studied the adsorption behavior of PAMAM dendrimers of generations 2 (G2) to 5 (G5) with pH and salt concentration variation, on a charge neutral graphene substrate, using fully atomistic molecular dynamics simulations. The instantaneous snapshots from our simulations illustrate that the dendrimers deform significantly from their bulk structures. Based on various structural property calculations, we classify the adsorbed dendrimer morphologies into five categories and map them to a phase diagram. Interestingly, the morphologies we report here have striking analogies with those reported in star-polymer adsorption studies. From the fractional contacts and other structural property analyses we find that the deformations are more pronounced at neutral pH as compared to high and low pH. Higher generation dendrimers resist deformation following the deformation trend, G2 > G3 > G4 > G5 at any given pH level. As the adsorption here is mainly driven by van der Waals interactions, we observe no desorption of the dendrimers as the salt molarity is increased, unlike that reported in the electrostatically driven adsorption studies.

  8. Antibody Conjugation Approach Enhances Breadth and Potency of Neutralization of Anti-HIV-1 Antibodies and CD4-IgG

    PubMed Central

    Gavrilyuk, Julia; Ban, Hitoshi; Uehara, Hisatoshi; Sirk, Shannon J.; Saye-Francisco, Karen; Cuevas, Angelica; Zablowsky, Elise; Oza, Avinash; Seaman, Michael S.; Burton, Dennis R.

    2013-01-01

    Broadly neutralizing antibodies PG9 and PG16 effectively neutralize 70 to 80% of circulating HIV-1 isolates. In this study, the neutralization abilities of PG9 and PG16 were further enhanced by bioconjugation with aplaviroc, a small-molecule inhibitor of virus entry into host cells. A novel air-stable diazonium hexafluorophosphate reagent that allows for rapid, tyrosine-selective functionalization of proteins and antibodies under mild conditions was used to prepare a series of aplaviroc-conjugated antibodies, including b12, 2G12, PG9, PG16, and CD4-IgG. The conjugated antibodies blocked HIV-1 entry through two mechanisms: by binding to the virus itself and by blocking the CCR5 receptor on host cells. Chemical modification did not significantly alter the potency of the parent antibodies against nonresistant HIV-1 strains. Conjugation did not alter the pharmacokinetics of a model IgG in blood. The PG9-aplaviroc conjugate was tested against a panel of 117 HIV-1 strains and was found to neutralize 100% of the viruses. PG9-aplaviroc conjugate IC50s were lower than those of PG9 in neutralization studies of 36 of the 117 HIV-1 strains. These results support this new approach to bispecific antibodies and offer a potential new strategy for combining HIV-1 therapies. PMID:23427154

  9. Neuroprotective Effect of TAT-14-3-3ε Fusion Protein against Cerebral Ischemia/Reperfusion Injury in Rats

    PubMed Central

    Liu, Xiaoyan; Hu, Wenhui; Wang, Yinye

    2014-01-01

    Stroke is the major cause of death and disability worldwide, and the thrombolytic therapy currently available was unsatisfactory. 14-3-3ε is a well characterized member of 14-3-3 family, and has been reported to protect neurons against apoptosis in cerebral ischemia. However, it cannot transverse blood brain barrier (BBB) due to its large size. A protein transduction domain (PTD) of HIV TAT protein, is capable of delivering a large variety of proteins into the brain. In this study, we generated a fusion protein TAT-14-3-3ε, and evaluated its potential neuroprotective effect in rat focal ischemia/reperfusion (I/R) model. Western blot analysis validated the efficient transduction of TAT-14-3-3ε fusion protein into brain via a route of intravenous injection. TAT-14-3-3ε pre-treatment 2 h before ischemia significantly reduced cerebral infarction volume and improved neurologic score, while post-treatment 2 h after ischemia was less effective. Importantly, pre- or post-ischemic treatment with TAT-14-3-3ε significantly increased the number of surviving neurons as determined by Nissl staining, and attenuated I/R-induced neuronal apoptosis as showed by the decrease in apoptotic cell numbers and the inhibition of caspase-3 activity. Moreover, the introduction of 14-3-3ε into brain by TAT-mediated delivering reduced the formation of autophagosome, attenuated LC3B-II upregulation and reversed p62 downregulation induced by ischemic injury. Such inhibition of autophagy was reversed by treatment with an autophagy inducer rapamycin (RAP), which also attenuated the neuroprotective effect of TAT-14-3-3ε. Conversely, autophagy inhibitor 3-methyladenine (3-MA) inhibited I/R-induced the increase in autophagic activity, and attenuated I/R-induced brain infarct. These results suggest that TAT-14-3-3ε can be efficiently transduced into brain and exert significantly protective effect against brain ischemic injury through inhibiting neuronal apoptosis and autophagic activation. PMID

  10. Enhanced cellular uptake of LHRH-conjugated PEG-coated magnetite nanoparticles for specific targeting of triple negative breast cancer cells.

    PubMed

    Hu, J; Obayemi, J D; Malatesta, K; Košmrlj, A; Soboyejo, W O

    2018-07-01

    Targeted therapy is an emerging technique in cancer detection and treatment. This paper presents the results of a combined experimental and theoretical study of the specific targeting and entry of luteinizing hormone releasing hormone (LHRH)-conjugated PEG-coated magnetite nanoparticles into triple negative breast cancer (TNBC) cells and normal breast cells. The conjugated nanoparticles structures, cellular uptake of PEG-coated magnetite nanoparticles (MNPs) and LHRH-conjugated PEG-coated magnetite nanoparticles (LHRH-MNPs) into breast cancer cells and normal breast cells were investigated using a combination of transmission electron microscope, optical and confocal fluorescence microscopy techniques. The results show that the presence of LHRH enhances the uptake of LHRH-MNPs into TNBC cells. Nanoparticle entry into breast cancer cells is also studied using a combination of thermodynamics and kinetics models. The trends in the predicted nanoparticle entry times (into TNBC cells) and the size ranges of the engulfed nanoparticles (within the TNBC cells) are shown to be consistent with experimental observations. The implications of the results are then discussed for the specific targeting of TNBCs with LHRH-conjugated PEG-coated magnetite nanoparticles for the early detection and treatment of TNBC. Copyright © 2018. Published by Elsevier B.V.

  11. Activation of HIV Transcription by the Viral Tat Protein Requires a Demethylation Step Mediated by Lysine-specific Demethylase 1 (LSD1/KDM1)

    PubMed Central

    Sakane, Naoki; Kwon, Hye-Sook; Pagans, Sara; Kaehlcke, Katrin; Mizusawa, Yasuhiro; Kamada, Masafumi; Lassen, Kara G.; Chan, Jonathan; Greene, Warner C.; Schnoelzer, Martina; Ott, Melanie

    2011-01-01

    The essential transactivator function of the HIV Tat protein is regulated by multiple posttranslational modifications. Although individual modifications are well characterized, their crosstalk and dynamics of occurrence during the HIV transcription cycle remain unclear. We examine interactions between two critical modifications within the RNA-binding domain of Tat: monomethylation of lysine 51 (K51) mediated by Set7/9/KMT7, an early event in the Tat transactivation cycle that strengthens the interaction of Tat with TAR RNA, and acetylation of lysine 50 (K50) mediated by p300/KAT3B, a later process that dissociates the complex formed by Tat, TAR RNA and the cyclin T1 subunit of the positive transcription elongation factor b (P-TEFb). We find K51 monomethylation inhibited in synthetic Tat peptides carrying an acetyl group at K50 while acetylation can occur in methylated peptides, albeit at a reduced rate. To examine whether Tat is subject to sequential monomethylation and acetylation in cells, we performed mass spectrometry on immunoprecipitated Tat proteins and generated new modification-specific Tat antibodies against monomethylated/acetylated Tat. No bimodified Tat protein was detected in cells pointing to a demethylation step during the Tat transactivation cycle. We identify lysine-specific demethylase 1 (LSD1/KDM1) as a Tat K51-specific demethylase, which is required for the activation of HIV transcription in latently infected T cells. LSD1/KDM1 and its cofactor CoREST associates with the HIV promoter in vivo and activate Tat transcriptional activity in a K51-dependent manner. In addition, small hairpin RNAs directed against LSD1/KDM1 or inhibition of its activity with the monoamine oxidase inhibitor phenelzine suppresses the activation of HIV transcription in latently infected T cells. Our data support the model that a LSD1/KDM1/CoREST complex, normally known as a transcriptional suppressor, acts as a novel activator of HIV transcription through demethylation

  12. Force spectroscopy of multivalent binding of riboflavin-conjugated dendrimers to riboflavin binding protein.

    PubMed

    Leistra, Abigail N; Han, Jong Hyun; Tang, Shengzhuang; Orr, Bradford G; Banaszak Holl, Mark M; Choi, Seok Ki; Sinniah, Kumar

    2015-05-07

    Putative riboflavin receptors are considered as biomarkers due to their overexpression in breast and prostate cancers. Hence, these receptors can be potentially exploited for use in targeted drug delivery systems where dendrimer nanoparticles with multivalent ligand attachments can lead to greater specificity in cellular interactions. In this study, the single molecule force spectroscopy technique was used to assess the physical strength of multivalent interactions by employing a riboflavin (RF)-conjugated generation 5 PAMAM dendrimer G5(RF)n nanoparticle. By varying the average RF ligand valency (n = 0, 3, 5), the rupture force was measured between G5(RF)n and the riboflavin binding protein (RFBP). The rupture force increased when the valency of RF increased. We observed at the higher valency (n = 5) three binding events that increased in rupture force with increasing loading rate. Assuming a single energy barrier, the Bell-Evans model was used to determine the kinetic off-rate and barrier width for all binding interactions. The analysis of our results appears to indicate that multivalent interactions are resulting in changes to rupture force and kinetic off-rates.

  13. Is the Achievement Motive Gender-Biased? The Validity of TAT/PSE in Women and Men

    PubMed Central

    Gruber, Nicole

    2017-01-01

    In picture story exercises like the Thematic Apperception Test (TAT; Heckhausen, 1963), different pictures are presented to a person with the instruction to create a story using the scenes portrayed in the image. It is assumed, that people identify themselves with the people in the images and project their unconscious motives (e.g., achievement motive) onto them. As the TAT shows only men in the pictures, critics claimed the test is gender-biased; assuming women cannot identify with men in pictures. However, it was not assessed, whether female protagonists of the picture really trigger the same achievement motive as men. Therefore, two studies were conducted to address the gender difference and validity of the TAT using a version with only men in the pictures (study 1) or only women in the pictures (study 2). The results shows that the original TAT of Heckhausen is a valid instrument for women and men, but the modified version with only women in the pictures cannot validly measure the achievement motive in the male sample. PMID:28261126

  14. Inhibition of Tat-mediated HIV-1 replication and neurotoxicity by novel GSK3-beta inhibitors

    PubMed Central

    Kehn-Hall, Kylene; Guendel, Irene; Carpio, Lawrence; Skaltsounis, Leandros; Meijer, Laurent; Al-Harthi, Lena; Steiner, Joseph P.; Nath, Avindra; Kutsch, Olaf; Kashanchi, Fatah

    2013-01-01

    The HIV-1 protein Tat is a critical regulator of viral transcription and has also been implicated as a mediator of HIV-1 induced neurotoxicity. Here using a high throughput screening assay, we identified the GSK-3 inhibitor 6BIO, as a Tat-dependent HIV-1 transcriptional inhibitor. Its ability to inhibit HIV-1 transcription was confirmed in TZM-bl cells, with an IC50 of 40 nM. Through screening 6BIO derivatives, we identified 6BIOder, which has a lower IC50 of 4 nM in primary macrophages and 0.5 nM in astrocytes infected with HIV-1. 6BIOder displayed an IC50 value of 0.03 nM through in vitro GSK-3β kinase inhibition assays. Finally, we demonstrated 6BIO and 6BIOder have neuroprotective effects on Tat induced cell death in rat mixed hippocampal cultures. Therefore 6BIO and its derivatives are unique compounds which, due to their complex mechanisms of action, are able to inhibit HIV-1 transcription as well as to protect against Tat induced neurotoxicity. PMID:21514616

  15. Iron(II) supramolecular helicates interfere with the HIV-1 Tat-TAR RNA interaction critical for viral replication.

    PubMed

    Malina, Jaroslav; Hannon, Michael J; Brabec, Viktor

    2016-07-12

    The interaction between the HIV-1 transactivator protein Tat and TAR (transactivation responsive region) RNA, plays a critical role in HIV-1 transcription. Iron(II) supramolecular helicates were evaluated for their in vitro activity to inhibit Tat-TAR RNA interaction using UV melting studies, electrophoretic mobility shift assay, and RNase A footprinting. The results demonstrate that iron(II) supramolecular helicates inhibit Tat-TAR interaction at nanomolar concentrations by binding to TAR RNA. These studies provide a new insight into the biological potential of metallosupramolecular helicates.

  16. Celastrol ameliorates HIV-1 Tat-induced inflammatory responses via NF-kappaB and AP-1 inhibition and heme oxygenase-1 induction in astrocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Youn, Gi Soo; Kwon, Dong-Joo; Ju, Sung Mi

    HIV-1 Tat causes extensive neuroinflammation that may progress to AIDS-related encephalitis and dementia. Celastrol possesses various biological activities such as anti-oxidant, anti-tumor, and anti-inflammatory activities. In this study, we investigated the modulatory effects of celastrol on HIV-1 Tat-induced inflammatory responses and the molecular mechanisms underlying its action in astrocytes. Pre-treatment of CRT-MG human astroglioma cells with celastrol significantly inhibited HIV-1 Tat-induced expression of ICAM-1/VCAM-1 and subsequent monocyte adhesiveness in CRT-MG cells. In addition, celastrol suppressed HIV-1 Tat-induced expression of pro-inflammatory chemokines, such as CXCL10, IL-8, and MCP-1. Celastrol decreased HIV-1 Tat-induced activation of JNK MAPK, AP-1, and NF-κB. Furthermore, celastrolmore » induced mRNA and protein expression of HO-1 as well as Nrf2 activation. Blockage of HO-1 expression using siRNA reversed the inhibitory effect of celastrol on HIV-1 Tat-induced inflammatory responses. These results suggest that celastrol has regulatory effects on HIV-1 Tat-induced inflammatory responses by blocking the JNK MAPK-AP-1/NF-κB signaling pathways and inducing HO-1 expression in astrocytes. - Highlights: • Celastrol suppressed HIV-1 Tat-induced expression of pro-inflammatory genes. • Celastrol inhibited HIV-1 Tat -induced activation of JNK MAPK. • Celastrol inhibited HIV-1 Tat-induced activation of both NF-κB and AP-1. • Celastrol inhibited HIV-1 Tat-induced inflammatory responses via HO-1 induction.« less

  17. HIV-1 Tat addresses dendritic cells to induce a predominant Th1-type adaptive immune response that appears prevalent in the asymptomatic stage of infection.

    PubMed

    Fanales-Belasio, Emanuele; Moretti, Sonia; Fiorelli, Valeria; Tripiciano, Antonella; Pavone Cossut, Maria R; Scoglio, Arianna; Collacchi, Barbara; Nappi, Filomena; Macchia, Iole; Bellino, Stefania; Francavilla, Vittorio; Caputo, Antonella; Barillari, Giovanni; Magnani, Mauro; Laguardia, Maria Elena; Cafaro, Aurelio; Titti, Fausto; Monini, Paolo; Ensoli, Fabrizio; Ensoli, Barbara

    2009-03-01

    Tat is an early regulatory protein that plays a major role in human HIV-1 replication and AIDS pathogenesis, and therefore, it represents a key target for the host immune response. In natural infection, however, Abs against Tat are produced only by a small fraction (approximately 20%) of asymptomatic individuals and are rarely seen in progressors, suggesting that Tat may possess properties diverting the adaptive immunity from generating humoral responses. Here we show that a Th1-type T cell response against Tat is predominant over a Th2-type B cell response in natural HIV-1 infection. This is likely due to the capability of Tat to selectively target and very efficiently enter CD1a-expressing monocyte-derived dendritic cells (MDDC), which represent a primary target for the recognition and response to virus Ag. Upon cellular uptake, Tat induces MDDC maturation and Th1-associated cytokines and beta-chemokines production and polarizes the immune response in vitro to the Th1 pattern through the transcriptional activation of TNF-alpha gene expression. This requires the full conservation of Tat transactivation activity since neither MDDC maturation nor TNF-alpha production are found with either an oxidized Tat, which does not enter MDDC, or with a Tat protein mutated in the cysteine-rich region (cys22 Tat), which enters MDDC as the wild-type Tat but is transactivation silent. Consistently with these data, inoculation of monkeys with the native wild-type Tat induced a predominant Th1 response, whereas cys22 Tat generated mostly Th2 responses, therefore providing evidence that Tat induces a predominant Th1 polarized adaptive immune response in the host.

  18. KE108-conjugated unimolecular micelles loaded with a novel HDAC inhibitor thailandepsin-A for targeted neuroendocrine cancer therapy.

    PubMed

    Chen, Guojun; Jaskula-Sztul, Renata; Harrison, April; Dammalapati, Ajitha; Xu, Wenjin; Cheng, Yiqiang; Chen, Herbert; Gong, Shaoqin

    2016-08-01

    Neuroendocrine (NE) cancers can cause significant patient morbidity. Besides surgery, there are no curative treatments for NE cancers and their metastases, emphasizing the need for the development of other forms of therapy. In this study, multifunctional unimolecular micelles were developed for targeted NE cancer therapy. The unimolecular micelles were formed by multi-arm star amphiphilic block copolymer poly(amidoamine)-poly(valerolactone)-poly(ethylene glycol) conjugated with KE108 peptide and Cy5 dye (abbreviated as PAMAM-PVL-PEG-KE108/Cy5). The unimolecular micelles with a spherical core-shell structure exhibited a uniform size distribution and excellent stability. The hydrophobic drug thailandepsin-A (TDP-A), a recently discovered HDAC inhibitor, was physically encapsulated into the hydrophobic core of the micelles. KE108 peptide, a somatostatin analog possessing high affinity for all five subtypes of somatostatin receptors (SSTR 1-5), commonly overexpressed in NE cancer cells, was used for the first time as an NE cancer targeting ligand. KE108 exhibited superior targeting abilities compared to other common somatostatin analogs, such as octreotide, in NE cancer cell lines. The in vitro assays demonstrated that the TDP-A-loaded, KE108-targeted micelles exhibited the best capabilities in suppressing NE cancer cell growth. Moreover, the in vivo near-infrared fluorescence imaging on NE-tumor-bearing nude mice showed that KE108-conjugated micelles exhibited the greatest tumor accumulation due to their passive targeting and active targeting capabilities. Finally, TDP-A-loaded and KE108-conjugated micelles possessed the best anticancer efficacy without detectable systemic toxicity. Thus, these novel TDP-A-loaded and KE108-conjugated unimolecular micelles offer a promising approach for targeted NE cancer therapy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Doxorubicin conjugated functionalizable carbon dots for nucleus targeted delivery and enhanced therapeutic efficacy

    NASA Astrophysics Data System (ADS)

    Yang, Lei; Wang, Zheran; Wang, Ju; Jiang, Weihua; Jiang, Xuewei; Bai, Zhaoshi; He, Yunpeng; Jiang, Jianqi; Wang, Dongkai; Yang, Li

    2016-03-01

    Carbon dots (CDs) have shown great potential in imaging and drug/gene delivery applications. In this work, CDs functionalized with a nuclear localization signal peptide (NLS-CDs) were employed to transport doxorubicin (DOX) into cancer cells for enhanced antitumor activity. DOX was coupled to NLS-CDs (DOX-CDs) through an acid-labile hydrazone bond, which was cleavable in the weakly acidic intracellular compartments. The cytotoxicity of DOX-CD complexes was evaluated by the MTT assay and the cellular uptake was monitored using flow cytometry and confocal laser scanning microscopy. Cell imaging confirmed that DOX-CDs were mainly located in the nucleus. Furthermore, the complexes could efficiently induce apoptosis in human lung adenocarcinoma A549 cells. The in vivo therapeutic efficacy of DOX-CDs was investigated in an A549 xenograft nude mice model and the complexes exhibited an enhanced ability to inhibit tumor growth compared with free DOX. Thus, the DOX-CD conjugates may be exploited as promising drug delivery vehicles in cancer therapy.Carbon dots (CDs) have shown great potential in imaging and drug/gene delivery applications. In this work, CDs functionalized with a nuclear localization signal peptide (NLS-CDs) were employed to transport doxorubicin (DOX) into cancer cells for enhanced antitumor activity. DOX was coupled to NLS-CDs (DOX-CDs) through an acid-labile hydrazone bond, which was cleavable in the weakly acidic intracellular compartments. The cytotoxicity of DOX-CD complexes was evaluated by the MTT assay and the cellular uptake was monitored using flow cytometry and confocal laser scanning microscopy. Cell imaging confirmed that DOX-CDs were mainly located in the nucleus. Furthermore, the complexes could efficiently induce apoptosis in human lung adenocarcinoma A549 cells. The in vivo therapeutic efficacy of DOX-CDs was investigated in an A549 xenograft nude mice model and the complexes exhibited an enhanced ability to inhibit tumor growth compared

  20. Ultrasensitive cardiac troponin I antibody based nanohybrid sensor for rapid detection of human heart attack.

    PubMed

    Bhatnagar, Deepika; Kaur, Inderpreet; Kumar, Ashok

    2017-02-01

    An ultrasensitive cardiac troponin I antibody conjugated with graphene quantum dots (GQD) and polyamidoamine (PAMAM) nanohybrid modified gold electrode based sensor was developed for the rapid detection of heart attack (myocardial infarction) in human. Screen printed gold (Au) electrode was decorated with 4-aminothiophenol for amine functionalization of the Au surface. These amino groups were further coupled with carboxyl functionalities of GQD with EDC-NHS reaction. In order to enhance the sensitivity of the sensor, PAMAM dendrimer was successively embedded on GQD through carbodiimide coupling to provide ultra-high surface area for antibody immobilization. The activated cardiac troponin I (cTnI) monoclonal antibody was immobilized on PAMAM to form nanoprobe for sensing specific heart attack marker cTnI. Various concentrations of cardiac marker, cTnI were electrochemically measured using cyclic voltammetry (CV) and differential pulse voltammetry (DPV) in human blood serum. The modifications on sensor surface were characterized by FTIR and AFM techniques. The sensor is highly specific to cTnI and showed negligible response to non-specific antigens. The sensitivity of the sensor was 109.23μAcm -2 μg -1 and lower limit of detection of cTnI was found 20fgmL -1 . Copyright © 2016 Elsevier B.V. All rights reserved.

  1. SHMT2 and the BRCC36/BRISC deubiquitinase regulate HIV-1 Tat K63-ubiquitylation and destruction by autophagy.

    PubMed

    Xu, Muyu; Moresco, James J; Chang, Max; Mukim, Amey; Smith, Davey; Diedrich, Jolene K; Yates, John R; Jones, Katherine A

    2018-05-23

    HIV-1 Tat is a key regulator of viral transcription, however little is known about the mechanisms that control its turnover in T cells. Here we use a novel proteomics technique, called DiffPOP, to identify the molecular target of JIB-04, a small molecule compound that potently and selectively blocks HIV-1 Tat expression, transactivation, and virus replication in T cell lines. Mass-spectrometry analysis of whole-cell extracts from 2D10 Jurkat T cells revealed that JIB-04 targets Serine Hydroxymethyltransferase 2 (SHMT2), a regulator of glycine biosynthesis and an adaptor for the BRCC36 K63Ub-specific deubiquitinase in the BRISC complex. Importantly, knockdown of SHMT1,2 or BRCC36, or exposure of cells to JIB-04, strongly increased Tat K63Ub-dependent destruction via autophagy. Moreover, point mutation of multiple lysines in Tat, or knockdown of BRCC36 or SHMT1,2, was sufficient to prevent destruction of Tat by JIB-04. We conclude that HIV-1 Tat levels are regulated through K63Ub-selective autophagy mediated through SHMT1,2 and the BRCC36 deubiquitinase.

  2. The presence of anti-Tat antibodies is predictive of long-term nonprogression to AIDS or severe immunodeficiency: findings in a cohort of HIV-1 seroconverters.

    PubMed

    Rezza, Giovanni; Fiorelli, Valeria; Dorrucci, Maria; Ciccozzi, Massimo; Tripiciano, Antonella; Scoglio, Arianna; Collacchi, Barbara; Ruiz-Alvarez, Maria; Giannetto, Concettina; Caputo, Antonella; Tomasoni, Lina; Castelli, Francesco; Sciandra, Mauro; Sinicco, Alessandro; Ensoli, Fabrizio; Buttò, Stefano; Ensoli, Barbara

    2005-04-15

    The human immunodeficiency virus (HIV) type 1 Tat protein plays a key role in the life cycle of the virus and in pathogenesis and is highly conserved among HIV subtypes. On the basis of this and of safety, immunogenicity, and efficacy findings in monkeys, Tat is being tested as a vaccine in phase 1 trials. Here, we evaluated the incidence and risk of progression to advanced HIV disease by anti-Tat serostatus in a cohort of 252 HIV-1 seroconverters. The risk of progression was lower in the anti-Tat-positive subjects than in the anti-Tat-negative subjects. Progression was faster in the persistently anti-Tat-negative subjects than in the transiently anti-Tat-positive subjects, and no progression was observed in the persistently anti-Tat-positive subjects.

  3. Benefit-Cost Analysis of TAT Phase I Worker Training. Training and Technology Project. Special Report.

    ERIC Educational Resources Information Center

    Kirby, Frederick C.; Castagna, Paul A.

    The purpose of this study is to estimate costs and benefits and to compute alternative benefit-cost ratios for both the individuals and the Federal Government as a result of investing time and resources in the Training and Technology (TAT) Project. TAT is a continuing experimental program in training skilled workers for private industry. The five…

  4. Preparation of TiO2/Ag/TiO2 (TAT) multilayer films with optical and electrical properties enhanced by using Cr-added Ag film

    NASA Astrophysics Data System (ADS)

    Loka, Chadrasekhar; Lee, Kee-Sun

    2017-09-01

    The dielectric-metal-dielectric tri-layer films have attracted much attention by virtue of their low-cost and high quality device performance as a transparent conductive electrode. Here, we report the deposition of Cr doped Ag films sandwiched between thin TiO2 layers and investigation on the surface microstructure, optical and electrical properties depending on the thickness of the Ag(Cr). The activation energy (1.18 eV) for grain growth of Ag was calculated from the Arrhenius plot using the law Dn -D0n = kt , which was comparable to the bulk diffusion of Ag. This result indicated the grain growth of Ag was effectively retarded by the Cr addition, which was presumed to related with blocking the surface and grain boundary diffusion due to Cr segregation. Based on thermal stability of Cr added Ag film, we deposited TiO2/Ag(Cr)/TiO2 (TAT) multilayer thin films and with a 10 nm thick Ag(Cr), the TAT films showed high optical transmittance in the visible region (94.2%), low electrical resistivity (8.66 × 10-5 Ω cm), and hence the high figure of merit 57.15 × 10-3 Ω-1 was achieved. The high transmittance of the TAT film was believed to be attributed to the low optical loss due to a reduction in the Ag layer thickness, the surface plasmon effect, and the electron scattering reduced by the Ag layer with a low electrical resistivity.

  5. Guanidinylated polyethyleneimine-polyoxypropylene-polyoxyethylene conjugates as gene transfection agents.

    PubMed

    Bromberg, Lev; Raduyk, Svetlana; Hatton, T Alan; Concheiro, Angel; Rodriguez-Valencia, Cosme; Silva, Maite; Alvarez-Lorenzo, Carmen

    2009-05-20

    Conjugates of linear and branched polyethyleneimine (PEI) and monoamine polyether Jeffamine M-2070 (PO/EO mol ratio 10/31, 2000 Da) were synthesized through polyether activation by cyanuric chloride followed by attachment to PEI and guanidinylation by 1H-pyrazole-carboxamidine hydrochloride. The resulting guanidinylated PEI-polyether conjugates (termed gPEI-Jeffamine) efficiently complexed plasmid DNA, and their polyplexes possessed enhanced colloidal stability in the presence of serum proteins. In vitro studies with mammalian CHO-1, 3T3, and Cos-7 cell lines demonstrated improved transfection efficiency of the pCMVbeta-gal plasmid/gPEI-Jeffamine polyplexes. The guanidinylation of the amino groups of PEI and the conjugation of PEI with the Jeffamine polyether enhanced the conjugates' interaction with genetic material and reduced the cytotoxicity of the polyplexes in experiments with the L929 cell line.

  6. HIV-1 Tat protein induces DNA damage in human peripheral blood B-lymphocytes via mitochondrial ROS production.

    PubMed

    El-Amine, Rawan; Germini, Diego; Zakharova, Vlada V; Tsfasman, Tatyana; Sheval, Eugene V; Louzada, Ruy A N; Dupuy, Corinne; Bilhou-Nabera, Chrystèle; Hamade, Aline; Najjar, Fadia; Oksenhendler, Eric; Lipinski, Marс; Chernyak, Boris V; Vassetzky, Yegor S

    2018-05-01

    Human immunodeficiency virus (HIV) infection is associated with B-cell malignancies in patients though HIV-1 is not able to infect B-cells. The rate of B-cell lymphomas in HIV-infected individuals remains high even under the combined antiretroviral therapy (cART) that reconstitutes the immune function. Thus, the contribution of HIV-1 to B-cell oncogenesis remains enigmatic. HIV-1 induces oxidative stress and DNA damage in infected cells via multiple mechanisms, including viral Tat protein. We have detected elevated levels of reactive oxygen species (ROS) and DNA damage in B-cells of HIV-infected individuals. As Tat is present in blood of infected individuals and is able to transduce cells, we hypothesized that it could induce oxidative DNA damage in B-cells promoting genetic instability and malignant transformation. Indeed, incubation of B-cells isolated from healthy donors with purified Tat protein led to oxidative stress, a decrease in the glutathione (GSH) levels, DNA damage and appearance of chromosomal aberrations. The effects of Tat relied on its transcriptional activity and were mediated by NF-κB activation. Tat stimulated oxidative stress in B-cells mostly via mitochondrial ROS production which depended on the reverse electron flow in Complex I of respiratory chain. We propose that Tat-induced oxidative stress, DNA damage and chromosomal aberrations are novel oncogenic factors favoring B-cell lymphomas in HIV-1 infected individuals. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  7. DESIGN OF THE DECISION SUPPORT SYSTEM FOR PLACEMENT AND SELECTION OF BEST MANAGEMENT PRACTICES (BMPS) FOR STORMWATER CONTROL IN URBAN WATERSHEDS

    EPA Science Inventory

    A decision support system for selection and placement of best management practices (BMPs) at strategic locations in urban watersheds is being developed. The primary objective of the system is to assist stormwater management practioners and decision makers in developing effective...

  8. Gold nanocage-photosensitizer conjugates for dual-modal image-guided enhanced photodynamic therapy.

    PubMed

    Srivatsan, Avinash; Jenkins, Samir V; Jeon, Mansik; Wu, Zhijin; Kim, Chulhong; Chen, Jingyi; Pandey, Ravindra K

    2014-01-01

    We have demonstrated that gold nanocage-photosensitizer conjugates can enable dual image-guided delivery of photosensitizer and significantly improve the efficacy of photodynamic therapy in a murine model. The photosensitizer, 3-devinyl-3-(1'-hexyloxyethyl)pyropheophorbide (HPPH), was noncovalently entrapped in the poly(ethylene glycol) monolayer coated on the surface of gold nanocages. The conjugate is stable in saline solutions, while incubation in protein rich solutions leads to gradual unloading of the HPPH, which can be monitored optically by fluorescence and photoacoustic imaging. The slow nature of the release in turn results in an increase in accumulation of the drug within implanted tumors due to the passive delivery of gold nanocages. Furthermore, the conjugate is found to generate more therapeutic singlet oxygen and have a lower IC50 value than the free drug alone. Thus the conjugate shows significant suppression of tumor growth as compared to the free drug in vivo. Short-term study showed neither toxicity nor phenotypical changes in mice at therapeutic dose of the conjugates or even at 100-fold higher than therapeutic dose of gold nanocages.

  9. Protein carriers of conjugate vaccines

    PubMed Central

    Pichichero, Michael E

    2013-01-01

    The immunogenicity of polysaccharides as human vaccines was enhanced by coupling to protein carriers. Conjugation transformed the T cell-independent polysaccharide vaccines of the past to T cell-dependent antigenic vaccines that were much more immunogenic and launched a renaissance in vaccinology. This review discusses the conjugate vaccines for prevention of infections caused by Hemophilus influenzae type b, Streptococcus pneumoniae, and Neisseria meningitidis. Specifically, the characteristics of the proteins used in the construction of the vaccines including CRM, tetanus toxoid, diphtheria toxoid, Neisseria meningitidis outer membrane complex, and Hemophilus influenzae protein D are discussed. The studies that established differences among and key features of conjugate vaccines including immunologic memory induction, reduction of nasopharyngeal colonization and herd immunity, and antibody avidity and avidity maturation are presented. Studies of dose, schedule, response to boosters, of single protein carriers with single and multiple polysaccharides, of multiple protein carriers with multiple polysaccharides and conjugate vaccines administered concurrently with other vaccines are discussed along with undesirable consequences of conjugate vaccines. The clear benefits of conjugate vaccines in improving the protective responses of the immature immune systems of young infants and the senescent immune systems of the elderly have been made clear and opened the way to development of additional vaccines using this technology for future vaccine products. PMID:23955057

  10. Cooperation of Antiporter LAT2/CD98hc with Uniporter TAT1 for Renal Reabsorption of Neutral Amino Acids.

    PubMed

    Vilches, Clara; Boiadjieva-Knöpfel, Emilia; Bodoy, Susanna; Camargo, Simone; López de Heredia, Miguel; Prat, Esther; Ormazabal, Aida; Artuch, Rafael; Zorzano, Antonio; Verrey, François; Nunes, Virginia; Palacín, Manuel

    2018-04-02

    Background Reabsorption of amino acids (AAs) across the renal proximal tubule is crucial for intracellular and whole organism AA homeostasis. Although the luminal transport step is well understood, with several diseases caused by dysregulation of this process, the basolateral transport step is not understood. In humans, only cationic aminoaciduria due to malfunction of the basolateral transporter y + LAT1/CD98hc (SLC7A7/SLC3A2), which mediates the export of cationic AAs, has been described. Thus, the physiologic roles of basolateral transporters of neutral AAs, such as the antiporter LAT2/CD98hc (SLC7A8/SLC3A2), a heterodimer that exports most neutral AAs, and the uniporter TAT1 (SLC16A10), which exports only aromatic AAs, remain unclear. Functional cooperation between TAT1 and LAT2/CD98hc has been suggested by in vitro studies but has not been evaluated in vivo Methods To study the functional relationship of TAT1 and LAT2/CD98hc in vivo , we generated a double-knockout mouse model lacking TAT1 and LAT2, the catalytic subunit of LAT2/CD98hc (dKO LAT2-TAT1 mice). Results Compared with mice lacking only TAT1 or LAT2, dKO LAT2-TAT1 mice lost larger amounts of aromatic and other neutral AAs in their urine due to a tubular reabsorption defect. Notably, dKO mice also displayed decreased tubular reabsorption of cationic AAs and increased expression of y + LAT1/CD98hc. Conclusions The LAT2/CD98hc and TAT1 transporters functionally cooperate in vivo , and y + LAT1/CD98hc may compensate for the loss of LAT2/CD98hc and TAT1, functioning as a neutral AA exporter at the expense of some urinary loss of cationic AAs. Cooperative and compensatory mechanisms of AA transporters may explain the lack of basolateral neutral aminoacidurias in humans. Copyright © 2018 by the American Society of Nephrology.

  11. A Comparative Study on the Photophysics and Photochemistry of Xanthene Dyes in the Presence of Polyamidoamine (PAMAM) Dendrimers.

    PubMed

    Arbeloa, Ernesto Maximiliano; Previtali, Carlos Mario; Bertolotti, Sonia Graciela

    2018-04-17

    The photophysical and photochemical properties of the xanthene dyes Eosin Y, Erythrosin B, and Rose Bengal are evaluated in the presence of amino-terminated polyamidoamine (PAMAM) dendrimers of relatively high generation (G3-G5) in alkaline aqueous solution. UV/Vis absorption and fluorescence spectra of the dyes show bathochromic shifts, which correlate with the size of the dendrimer. Binding constants (K bind ) are calculated from absorption data. The resulting high K bind values indicate strong interactions between both molecules. Triplet-triplet absorption spectra of the dyes are recorded by laser flash photolysis, and a decrease in the triplet lifetimes is observed in the presence of dendrimers. At the same time, an increase in the absorption of the semireduced form of the dyes is observed. Rate constants for triplet quenching ( 3 k q ) and radical quantum yields (Φ R ) are obtained. The results are explained by a very efficient electron-transfer process from PAMAM to xanthene dyes for all of the dye/dendrimer couples that are evaluated. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. A Sensitive Electrochemical Immunosensor Based on PAMAM Dendrimer-Encapsulated Au for Detection of Norfloxacin in Animal-Derived Foods.

    PubMed

    Liu, Bing; Li, Min; Zhao, Yaoshuai; Pan, Mingfei; Gu, Ying; Sheng, Wei; Fang, Guozhen; Wang, Shuo

    2018-06-15

    In this work, a sensitive electrochemical immunosensor has been reported for the determination of norfloxacin in animal-derived foods. The poly (amidoamine) dendrimer encapsulated gold nanoparticles (PAMAM-Au) played dual roles in the proposed sensing platform which not only accelerated the electron transfer process of sensing, but also increased the efficiency of the immobilized antibody. The HRP-labeled antigen, as the signal labels in the immunosensor, was introduced to catalyze the following reaction of the substrate hydroquinone with the aid of H₂O₂ in the competitive reaction. On the basis of the signal amplification of PAMAM-Au, the signal intensity was linearly related to the concentration of norfloxacin in the range of 1 μg·L −1 ⁻10 mg·L −1 . All the results showed that the proposed strategy with low LOD (0.3837 μg·L −1 ) and favorable recovery (91.6⁻106.1%) in the practical sample, and it could provide a suitable protocol for norfloxacin detection in animal-derived foods with high sensitivity, good accuracy, and stability.

  13. Utilization of Bacillus sp. strain TAT105 as a biological additive to reduce ammonia emissions during composting of swine feces.

    PubMed

    Kuroda, Kazutaka; Waki, Miyoko; Yasuda, Tomoko; Fukumoto, Yasuyuki; Tanaka, Akihiro; Nakasaki, Kiyohiko

    2015-01-01

    Bacillus sp. strain TAT105 is a thermophilic, ammonium-tolerant bacterium that grows assimilating ammonium nitrogen and reduces ammonia emission during composting of swine feces. To develop a practical use of TAT105, a dried solid culture of TAT105 (5.3 × 10(9) CFU/g of dry matter) was prepared as an additive. It could be stored for one year without significant reduction of TAT105. Laboratory-scale composting of swine feces was conducted by mixing the additive. When the additive, mixed with an equal weight of water one day before use, was added to obtain a TAT105 concentration of above 10(7) CFU/g of dry matter in the initial material, the ammonia concentration emitted was lower and nitrogen loss was approximately 22% lower in the treatment with the additive than in the control treatment without the additive. The colony formation on an agar medium containing high ammonium could be used for enumeration of TAT105 in the composted materials.

  14. Neonatal hippocampal Tat injections: developmental effects on prepulse inhibition (PPI) of the auditory startle response

    PubMed Central

    Fitting, Sylvia; Booze, Rosemarie M.; Mactutus, Charles F.

    2013-01-01

    The current estimate of children (<15 years) living with HIV and AIDS is 2.2 million [UNAIDS/WHO, 2005. AIDS Epidemic Update. UNAIDS, Geneva]. The major source of infection occurs through vertical transmission of the virus from mother to child during delivery [UNAIDS/ WHO, 2005. AIDS Epidemic Update. UNAIDS, Geneva]. Recent studies have shown that timing of HIV-1 infection might be related to the onset and rate of progression of CNS disease [Blanche, S., Mayaux, M.-J., Rouziox, C., Teglas, J.-P., Firtion, G., Monpoux, F., Cicaru-Vigneron, N., Meier, F., Tricoire, J., Courpotin, C., Vilmer, E., Griscelli, C., Delfraissy, J.-F., 1994. Relation of the course of HIV infection in children to the severity of the disease in their mothers at delivery. N. Engl. J. Med. 330 (5), 308–312]. The effects of HIV on the brain are thought to be mediated indirectly through the viral toxins Tat and gp120. This study characterized developmental effects on PPI following intrahippocampal administration of Tat. On postnatal day (P)1, one male and one female pup from each of eight Sprague–Dawley litters were bilaterally injected with 50 µg Tat or saline (1 µl volume). Animals were tested for PPI of the auditory startle response (ASR) (ISIs of 0, 8,40, 80, 120, and 4000 ms, six trial blocks, Latin-square design) on days 30, 60 and 90. Tat altered PPI and the pattern of alterations was different for males and females. For males, a leftward shift was evident in the ISI for maximal inhibition of the response on day 30 and on day 60 (χ2(1) = 4.7,p ≤ .03, and χ2(1) = 5.3, p ≤ .02, respectively), but not on day 90. For females, Tat altered peak ASR latency across PPI trials (8–120 ms) at all days of testing (30, 60, and 90 days of age), as indexed by orthogonal component analyses, indicating less modulation of PPI by ISI. Data collected from a second group that were tested only once at 90 days of age, suggested that the observed adverse Tat effects for males and females early in

  15. Surface Ligand Density of Antibiotic-Nanoparticle Conjugates Enhances Target Avidity and Membrane Permeabilization of Vancomycin-Resistant Bacteria.

    PubMed

    Hassan, Marwa M; Ranzoni, Andrea; Phetsang, Wanida; Blaskovich, Mark A T; Cooper, Matthew A

    2017-02-15

    Many bacterial pathogens have now acquired resistance toward commonly used antibiotics, such as the glycopeptide antibiotic vancomycin. In this study, we show that immobilization of vancomycin onto a nanometer-scale solid surface with controlled local density can potentiate antibiotic action and increase target affinity of the drug. Magnetic nanoparticles were conjugated with vancomycin and used as a model system to investigate the relationship between surface density and drug potency. We showed remarkable improvement in minimum inhibitory concentration against vancomycin-resistant strains with values of 13-28 μg/mL for conjugated vancomycin compared to 250-4000 μg/mL for unconjugated vancomycin. Higher surface densities resulted in enhanced affinity toward the bacterial target compared to that of unconjugated vancomycin, as measured by a competition experiment using a surrogate ligand for bacterial Lipid II, N-Acetyl-l-Lys-d-Ala-d-Ala. High density vancomycin nanoparticles required >64 times molar excess of ligand (relative to the vancomycin surface density) to abrogate antibacterial activity compared to only 2 molar excess for unconjugated vancomycin. Further, the drug-nanoparticle conjugates caused rapid permeabilization of the bacterial cell wall within 2 h, whereas no effect was seen with unconjugated vancomycin, suggesting additional modes of action for the nanoparticle-conjugated drug. Hence, immobilization of readily available antibiotics on nanocarriers may present a general strategy for repotentiating drugs that act on bacterial membranes or membrane-bound targets but have lost effectiveness against resistant bacterial strains.

  16. Characterization of free radical defense system in high glucose cultured HeLa-tat cells: consequences for glucose-induced cytotoxicity.

    PubMed

    Bouvard, Sophie; Faure, Patrice; Roucard, Corinne; Favier, Alain; Halimi, Serge

    2002-09-01

    HeLa cell line stably transfected with the tat gene from human immunodeficiency virus type 1 has a decreased antioxidant potential. In this work, we used this model to investigate the effect of a high glucose level (20 mM) on the glucose induced cytotoxicity and on the antioxidant system. In comparison to cell culture under control medium, HeLa-wild cell cultured under 20 mM glucose did not exhibit necrosis or apoptosis, contrary to HeLa-tat cell presenting a significant increase in necrotic or apoptotic state. Moreover after 48 h culture under high glucose level the HeLa-tat proliferation rate was not higher than the one of HeLa-wild cells. In HeLa-wild cell high glucose level resulted in an induction of glutathione reductase activity in opposition to HeLa-tat cells where no change was observed. High glucose level resulted in 20% increase in GSSG/GSH ratio in HeLa-wild cells and 38% increase in HeLa-tat cells. Moreover, high glucose level resulted in a dramatic cytosolic thiol decrease and an important lipid peroxidation in HeLa-tat cells. No significant change of these two parameters was observed in HeLa-wild cells. In both cell lines, high glucose resulted in an increase of total SOD activity, as a consequence of the increase in Cu,Zn-SOD activity. High glucose did not result in an increase of Mn-SOD activity in both cell lines. As a consequence of tat tranfection Mn-SOD activity was 50% lower in HeLa-tat cells in comparison to HeLa-wild cells. This work emphasizes the importance of the antioxidant system in the glucose induced cytotoxicity.

  17. The anti-cancer drug Sunitinib promotes autophagy and protects from neurotoxicity in an HIV-1 Tat model of neurodegeneration

    PubMed Central

    Fields, Jerel A.; Metcalf, Jeff; Overk, Cassia; Adame, Anthony; Spencer, Brian; Wrasidlo, Wolfgang; Florio, Jazmin; Rockenstein, Edward; He, Johnny J.; Masliah, Eliezer

    2017-01-01

    Despite the success of antiretroviral therapies to control systemic HIV-1 infection, the prevalence of HIV-associated neurocognitive disorders (HAND) has not decreased among aging patients with HIV. Autophagy pathway alterations, triggered by HIV-1 proteins including gp120, Tat, and Nef, might contribute to the neurodegenerative process in aging patients with HAND. Although no treatments are currently available to manage HAND, we have previously shown that Sunitinib, an anti-cancer drug that blocks receptor tyrosine-kinase and cyclin kinase pathways, might be of interest. Studies in cancer models suggest that sunitinib might also modulate autophagy, which is dysregulated in our models of Tat-induced neurotoxicity. We evaluated the efficacy of sunitinib to promote autophagy in the CNS and ameliorate neurodegeneration using LC3-GFP expressing neuronal cells challenged with low concentrations of Tat and using inducible Tat transgenic mice. In neuronal cultures challenged with low levels of Tat, sunitinib increased markers of autophagy such as LC3-II and reduced p62 accumulation in a dose-dependent manner. In vivo, sunitinib treatment restored LC3-II, p62, and Endophilin B1 (EndoB1) levels in doxycycline-induced Tat transgenic mice. Moreover, in these animals sunitinib reduced the hyperactivation of CDK5, tau hyper-phosphorylation and p35 cleavage to p25. Restoration of CDK5 and autophagy were associated with reduced neurodegeneration and behavioral alterations. Alterations in autophagy in the Tat tg mice were associated with reduced levels of a CDK5 substrate, EndoB1, and levels of total EndoB1 were normalized by sunitinib treatment. We conclude that sunitinib might ameliorate Tat-mediated autophagy alterations and may decrease neurodegeneration in aging patients with HAND. PMID:28105557

  18. Fruit-specific expression of the human immunodeficiency virus type 1 tat gene in tomato plants and its immunogenic potential in mice.

    PubMed

    Ramírez, Yuri Jorge Peña; Tasciotti, Ennio; Gutierrez-Ortega, Abel; Donayre Torres, Alberto J; Olivera Flores, María Teresa; Giacca, Mauro; Gómez Lim, Miguel Angel

    2007-06-01

    The human immunodeficiency virus type 1 (HIV-1) Tat protein is considered a potential candidate vaccine antigen. In an effort to design a strategy for noninvasive vaccination against HIV-1, we developed transgenic tomatoes expressing the Tat protein. Two independent plants testing positive in transgene detection analysis were selected and grown to maturity. Monoclonal antibodies against Tat recognized a protein of the expected size. Interestingly, expression of Tat seemed to be toxic to the plant, as in all cases the fruit exhibited underdeveloped reproductive structures and no seeds. Nine groups of 10 pathogen-free BALB/c male mice were primed either orally, intraperitoneally, or intramuscularly with 10 mg of tomato fruit extract derived from transgenic or wild-type plants and with 10 microg of Tat86 recombinant protein. Mice were immunized at days 0, 14, and 28, and given boosters after 15 weeks; sera were drawn 7 days after each booster, and the antibody titer was determined by enzyme-linked immunosorbent assay. All three immunization approaches induced the development of a strong anti-Tat immunological response, which increased over time. Isotype subclass determination showed the presence of mucosal (immunoglobulin A) immunity soon after the beginning of the oral immunization protocol, and the data were confirmed by the presence of anti-Tat antibodies in fecal pellets and in vaginal washes. We also demonstrated that sera from immunized mice inhibited with high efficiency recombinant Tat-dependent transactivation of the HIV-1 long terminal repeat promoter. This neutralization activity might be relevant for the suppression of extracellular Tat activities, which play an important role in HIV disease development.

  19. Quantification of BMPs Selection and Spatial Placement Impact on Water Quality Controlling Plans in Lower Bear River Watershed, Utah

    NASA Astrophysics Data System (ADS)

    Salha, A. A.; Stevens, D. K.

    2016-12-01

    The aim of the watershed-management program in Box Elder County, Utah set by Utah Division of Water Quality (UDEQ) is to evaluate the effectiveness and spatial placement of the implemented best-management practices (BMP) for controlling nonpoint-source contamination at watershed scale. The need to evaluate the performance of BMPs would help future policy and program decisions making as desired end results. The environmental and costs benefits of BMPs in Lower Bear River watershed have seldom been measured beyond field experiments. Yet, implemented practices have rarely been evaluated at the watershed scale where the combined effects of variable soils, climatic conditions, topography and land use/covers and management conditions may significantly change anticipated results and reductions loads. Such evaluation requires distributed watershed models that are necessary for quantifying and reproducing the movement of water, sediments and nutrients. Soil and Water Assessment Tool (SWAT) model is selected as a watershed level tool to identify contaminant nonpoint sources (critical zones) and areas of high pollution risks. Water quality concerns have been documented and are primarily attributed to high phosphorus and total suspended sediment concentrations caused by agricultural and farming practices (required load is 460 kg/day of total phosphorus based on 0.075 mg/l and an average of total suspended solids of 90 mg/l). Input data such as digital elevation model (DEM), land use/Land cover (LULC), soils, and climate data for 10 years (2000-2010) is utilized along with observed water quality at the watershed outlet (USGS) and some discrete monitoring points within the watershed. Statistical and spatial analysis of scenarios of management practices (BMP's) are not implemented (before implementation), during implementation, and after BMP's have been studied to determine whether water quality of the two main water bodies has improved as required by the LBMR watershed's TMDL

  20. Modification of Side Chains of Conjugated Molecules and Polymers for Charge Mobility Enhancement and Sensing Functionality.

    PubMed

    Liu, Zitong; Zhang, Guanxin; Zhang, Deqing

    2018-06-19

    Organic semiconductors have received increasing attentions in recent years because of their promising applications in various optoelectronic devices. The key performance metric for organic semiconductors is charge carrier mobility, which is governed by the electronic structures of conjugated backbones and intermolecular/interchain π-π interactions and packing in both microscopic and macroscopic levels. For this reason, more efforts have been paid to the design and synthesis of conjugated frameworks for organic semiconductors with high charge mobilities. However, recent studies manifest that appropriate modifications of side chains that are linked to conjugated frameworks can improve the intermolecular/interchain packing order and boost charge mobilities. In this Account, we discuss our research results in context of modification of side chains in organic semiconductors for charge mobility enhancement. These include the following: (i) The lengths of alkyl chains in sulfur-rich thiepin-fused heteroacences can dramatically influence the intermolecular arrangements and orbital overlaps, ushering in different hole mobilities. Inversely, the lamellar stacking modes of alkyl chains in naphthalene diimide (NDI) derivatives with tetrathiafulvalene (TTF) units are affected by the structures of conjugated cores. (ii) The steric hindrances owing to the bulky branching chains can be weakened by partial replacement of the branching alkyl chains with linear ones for diketopyrrolopyrrole (DPP)-based D (donor)-A (acceptor) conjugated polymers. Such modification of side chains makes the polymer backbones more planar and thus interchain packing order and charge mobilities are improved. The incorporation of hydrophilic tri(ethylene glycol) (TEG) chains into the polymers also leads to improved interchain packing order. In particular, the polymer in which TEG side chains are distributed uniformly exhibits relatively high charge mobility without thermal annealing. (iii) The

  1. Nanohybrid conjugated polyelectrolytes: highly photostable and ultrabright nanoparticles

    NASA Astrophysics Data System (ADS)

    Darwish, Ghinwa H.; Karam, Pierre

    2015-09-01

    We present a general and straightforward one-step approach to enhance the photophysical properties of conjugated polyelectrolytes. Upon complexation with an amphiphilic polymer (polyvinylpyrrolidone), an anionic conjugated polyelectrolyte (poly[5-methoxy-2-(3-sulfopropoxy)-1,4-phenylenevinylene]) was prepared into small nanoparticles with exceptional photostability and brightness. The polymer fluorescence intensity was enhanced by 23 -fold and could be easily tuned by changing the order of addition. Single molecule experiments revealed a complete suppression of blinking. In addition, after only losing 18% of the original intensity, a remarkable amount of photons were emitted per particle (~109, on average). This number is many folds greater than popular organic fluorescent dyes. We believe that an intimate contact between the two polymers is shielding the conjugated polyelectrolyte from the destructive photooxidation. The prepared nanohybrid particles will prove instrumental in single particle based fluorescent assays and can serve as a probe for the current state-of-the-art bioimaging fluorescence techniques.We present a general and straightforward one-step approach to enhance the photophysical properties of conjugated polyelectrolytes. Upon complexation with an amphiphilic polymer (polyvinylpyrrolidone), an anionic conjugated polyelectrolyte (poly[5-methoxy-2-(3-sulfopropoxy)-1,4-phenylenevinylene]) was prepared into small nanoparticles with exceptional photostability and brightness. The polymer fluorescence intensity was enhanced by 23 -fold and could be easily tuned by changing the order of addition. Single molecule experiments revealed a complete suppression of blinking. In addition, after only losing 18% of the original intensity, a remarkable amount of photons were emitted per particle (~109, on average). This number is many folds greater than popular organic fluorescent dyes. We believe that an intimate contact between the two polymers is shielding the

  2. Target binding improves relaxivity in aptamer-gadolinium conjugates.

    PubMed

    Bernard, Elyse D; Beking, Michael A; Rajamanickam, Karunanithi; Tsai, Eve C; Derosa, Maria C

    2012-12-01

    MRI contrast agents (CA) have been heavily used over the past several decades to enhance the diagnostic value of the obtained images. From a design perspective, two avenues to improve the efficacy of contrast agents are readily evident: optimization of magnetic properties of the CA, and optimization of the pharmacokinetics and distribution of the CA in the patient. Contrast agents consisting of DNA aptamer-gadolinium(III) conjugates provide a single system in which these factors can be addressed simultaneously. In this proof-of-concept study, the 15mer thrombin aptamer was conjugated to diethylenetriaminepentaacetic (DTPA) dianhydride to form a monoamide derivative of the linear open-chain chelate present in the commonly used contrast agent Magnevist(®). The stability of the conjugated DNA aptamer-DTPA-Gd(III) chelate in a transmetallation study using Zn(II) was found to be similar to that reported for DTPA-Gd(III). Relaxivity enhancements of 35 ± 4 and 20 ± 1 % were observed in the presence of thrombin compared to a control protein at fields of 9.4 and 1.5 T, respectively. The inclusion of spacers between the aptamer and the DTPA to eliminate possible steric effects was also investigated but not found to improve the relaxation enhancement achieved in comparison to the unaltered aptamer conjugate.

  3. The interaction of the excited states of safranine-O with low generation carboxyl terminated PAMAM dendrimers in an aqueous medium.

    PubMed

    Militello, M Paula; Altamirano, Marcela S; Bertolotti, Sonia G; Previtali, Carlos M

    2018-05-16

    The interaction of the singlet and triplet excited states of the synthetic dye safranine-O with carboxyl-terminated poly(amidoamine) (PAMAM) dendrimers was investigated in a buffer solution at pH 8. Low half-generation PAMAM dendrimers (G -0.5; G +0.5: G 1.5) were employed. The UV-vis absorption spectrum of the dye presents only a very small red shift in the presence of dendrimers. Fluorescence quenching was detected and it was interpreted by a static mechanism in terms of the association of the dye with the dendrimer. Laser flash photolysis experiments were carried out and transient absorption spectra of the triplet and radicals were obtained. The triplet state is quenched by the dendrimers with rate constants well below the diffusional limit. The quenching process was characterized as an electron transfer process and the quantum yield of radicals was estimated. It was found that radicals are formed with a high efficiency in the triplet quenching reaction.

  4. HIV-1-Tat excites cardiac parasympathetic neurons of nucleus ambiguus and triggers prolonged bradycardia in conscious rats

    PubMed Central

    Brailoiu, Eugen; Deliu, Elena; Sporici, Romeo A.; Benamar, Khalid

    2014-01-01

    The mechanisms of autonomic imbalance and subsequent cardiovascular manifestations in HIV-1-infected patients are poorly understood. We report here that HIV-1 transactivator of transcription (Tat, fragment 1–86) produced a concentration-dependent increase in cytosolic Ca2+ in cardiac-projecting parasympathetic neurons of nucleus ambiguus retrogradely labeled with rhodamine. Using store-specific pharmacological agents, we identified several mechanisms of the Tat-induced Ca2+ elevation: 1) lysosomal Ca2+ mobilization, 2) Ca2+ release via inositol 1,4,5-trisphosphate-sensitive endoplasmic reticulum pools, and 3) Ca2+ influx via transient receptor potential vanilloid type 2 (TRPV2) channels. Activation of TRPV2, nonselective cation channels, induced a robust and prolonged neuronal membrane depolarization, thus triggering an additional P/Q-mediated Ca2+ entry. In vivo microinjection studies indicate a dose-dependent, prolonged bradycardic effect of Tat administration into the nucleus ambiguus of conscious rats, in which neuronal TRPV2 played a major role. Our results support previous studies, indicating that Tat promotes bradycardia and, consequently, may be involved in the QT interval prolongation reported in HIV-infected patients. In the context of an overall HIV-dependent autonomic dysfunction, these Tat-mediated mechanisms may account for the higher prevalence of sudden cardiac death in HIV-1-infected patients compared with general population with similar risk factors. Our results may be particularly relevant in view of the recent findings that significant Tat levels can still be identified in the cerebrospinal fluid of HIV-infected patients with viral load suppression due to efficient antiretroviral therapy. PMID:24694382

  5. Carbon dots on based folic acid coated with PAMAM dendrimer as platform for Pt(IV) detection.

    PubMed

    Campos, Bruno B; Oliva, María Moreno; Contreras-Cáceres, Rafael; Rodriguez-Castellón, Enrique; Jiménez-Jiménez, José; da Silva, Joaquim C G Esteves; Algarra, Manuel

    2016-03-01

    Carbon quantum dots (CQDs) coated with poly(amidoamine) (PAMAM-NH2) dendrimer are prepared from folic acid and phosphoric acid under a hydrothermal procedure. The obtained nanoparticles are successfully used as fluorescent sensor for Pt(IV) (in the form of chloroplatinate ion). CQDs possess many attractive features including uniform dispersion with average size about 13nm for unmodified particles and, ∼30nm when they are coated with PAMAM-NH2 dendrimer. The synthesized nanoparticles have been characterized by elemental analysis, attenuated total reflectance (ATR), X-ray photoelectron (XPS) and Raman spectroscopies, transmission electron microscopy (TEM), dynamic light scattering (DLS), and steady-state and life-time fluorescence. CQDs are used as fluorescent sensor of Pt(IV) ion in aqueous media showing linear quenching effect of their fluorescence. The results obtained demonstrated a limit of detection of 657nM with an accuracy of the method of 0.13% (as RSD, n=10) and sensitivity of 78nM. Moreover, with the presence of other interference species, good results are obtained when applied in real samples from platinum nanoparticles synthesis. The dissolved platinum ions can be quantified in the range 6-96μM with an accuracy of 2.5%. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Progesterone protects normative anxiety-like responding among ovariectomized female mice that conditionally express the HIV-1 regulatory protein, Tat, in the CNS.

    PubMed

    Paris, Jason J; Fenwick, Jason; McLaughlin, Jay P

    2014-05-01

    Increased anxiety is co-morbid with human immunodeficiency virus (HIV) infection. Actions of the neurotoxic HIV-1 regulatory protein, Tat, may contribute to affective dysfunction. We hypothesized that Tat expression would increase anxiety-like behavior of female GT-tg bigenic mice that express HIV-1 Tat protein in the brain in a doxycycline-dependent manner. Furthermore, given reports that HIV-induced anxiety may occur at lower rates among women, and that the neurotoxic effects of Tat are ameliorated by sex steroids in vitro, we hypothesized that 17β-estradiol and/or progesterone would ameliorate Tat-induced anxiety-like effects. Among naturally-cycling proestrous and diestrous mice, Tat-induction via 7days of doxycycline treatment significantly increased anxiety-like responding in an open field, elevated plus maze and a marble-burying task, compared to treatment with saline. Proestrous mice demonstrated less anxiety-like behavior than diestrous mice in the open field and elevated plus maze, but these effects did not significantly interact with Tat-induction. Among ovariectomized mice, doxycycline-induced Tat protein significantly increased anxiety-like behavior in an elevated plus maze and a marble burying task compared to saline-treated mice, but not an open field (where anxiety-like responding was already maximal). Co-administration of progesterone (4mg/kg), but not 17β-estradiol (0.09mg/kg), with doxycycline significantly ameliorated anxiety-like responding in the elevated plus maze and marble burying tasks. When administered together, 17β-estradiol partially antagonized the protective effects of progesterone on Tat-induced anxiety-like behavior. These findings support evidence of steroid-protection over HIV-1 proteins, and extend them by demonstrating the protective capacity of progesterone on Tat-induced anxiety-like behavior of ovariectomized female mice. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. A mini-review of TAT-MyoD fused proteins: state of the art and problems to solve.

    PubMed

    Patruno, Marco; Melotti, Luca; Gomiero, Chiara; Sacchetto, Roberta; Topel, Ohad; Martinello, Tiziana

    2017-12-05

    The transcriptional activator TAT is a small peptide essential for viral replication and possesses the property of entering the cells from the extracellular milieu, acting as a membrane shuttle. In order to safely differentiate cells an innovative methodology, based on the fusion of transcription factors and the TAT sequence, is discussed in this short review. In several studies, it has been demonstrated that TAT protein can be observed in the cell nucleus after few hours from the inoculation although its way of action is not fully understood. However, further studies will be necessary to develop this methodology for clinical purposes.

  8. CAVEOLIN-1 REGULATES HIV-1 TAT-INDUCED ALTERATIONS OF TIGHT JUNCTION PROTEIN EXPRESSION VIA MODULATION OF THE RAS SIGNALING

    PubMed Central

    Zhong, Yu; Smart, Eric J.; Weksler, Babette; Couraud, Pierre-Olivier; Hennig, Bernhard; Toborek, Michal

    2009-01-01

    The blood-brain barrier (BBB) is the critical structure for preventing HIV trafficking into the brain. Specific HIV proteins, such as Tat protein, can contribute to the dysfunction of tight junctions at the BBB and HIV entry into the brain. Tat is released by HIV-1 infected cells and can interact with a variety of cell surface receptors activating several signal transduction pathways, including those localized in caveolae. The present study focused on the mechanisms of Tat-induced caveolae-associated Ras signaling at the level of the BBB. Treatment with Tat activated the Ras pathway in human brain microvascular endothelial cells (HBMEC). However, caveolin-1 silencing markedly attenuated these effects. Because the integrity of the brain endothelium is regulated by intercellular tight junctions, these structural elements of the BBB were also evaluated in the present study. Exposure to Tat diminished the expression of several tight junction proteins, namely, occludin, zonula occludens (ZO)-1, and ZO-2 in the caveolar fraction of HBMEC. These effects were effectively protected by pharmacological inhibition of the Ras signaling and by silencing of caveolin-1. The present data indicate the importance of caveolae-associated signaling in the disruption of tight junctions upon Tat exposure. They also demonstrate that caveolin-1 may constitute an early and critical modulator that controls signaling pathways leading to the disruption of tight junction proteins. Thus, caveolin-1 may provide an effective target to protect against Tat-induced HBMEC dysfunction and the disruption of the BBB in HIV-1-infected patients. PMID:18667611

  9. One single method to produce native and Tat-fused recombinant human α-synuclein in Escherichia coli.

    PubMed

    Caldinelli, Laura; Albani, Diego; Pollegioni, Loredano

    2013-04-04

    Human α-synuclein is a small-sized, natively unfolded protein that in fibrillar form is the primary component of Lewy bodies, the pathological hallmark of Parkinson's disease. Experimental evidence suggests that α-synuclein aggregation is the key event that triggers neurotoxicity although additional findings have proposed a protective role of α-synuclein against oxidative stress. One way to address the mechanism of this protective action is to evaluate α-synuclein-mediated protection by delivering this protein inside cells using a chimeric protein fused with the Tat-transduction domain of HIV Tat, named TAT-α-synuclein. A reliable protocol was designed to efficiently express and purify two different forms of human α-synuclein. The synthetic cDNAs encoding for the native α-synuclein and the fusion protein with the transduction domain of Tat protein from HIV were overexpressed in a BL21(DE3) E. coli strain as His-tagged proteins. The recombinant proteins largely localized (≥ 85%) to the periplasmic space. By using a quick purification protocol, based on recovery of periplasmic space content and metal-chelating chromatography, the recombinant α-synuclein protein forms could be purified in a single step to ≥ 95% purity. Both α-synuclein recombinant proteins form fibrils and the TAT-α-synuclein is also cytotoxic in the micromolar concentration range. To further characterize the molecular mechanisms of α-synuclein neurotoxicity both in vitro and in vivo and to evaluate the relevance of extracellular α-synuclein for the pathogenesis and progression of Parkinson's disease, a suitable method to produce different high-quality forms of this pathological protein is required. Our optimized expression and purification procedure offers an easier and faster means of producing different forms (i.e., both the native and the TAT-fusion form) of soluble recombinant α-synuclein than previously described procedures.

  10. Conjugated linoleic acid enhanced the immune function in broiler chicks.

    PubMed

    Zhang, Haijun; Guo, Yuming; Yuan, Jianmin

    2005-11-01

    This study was undertaken to investigate the growth performance and immune responses of broiler chicks fed diets supplemented with conjugated linoleic acid (CLA). Two hundred and forty day-old Arbor Acre male broiler chicks were randomly allotted into four dietary treatments with different inclusion levels of CLA (0, 2.5, 5.0 or 10.0 g pure CLA/kg) for 6 weeks. Growth performance, lysozyme activity, peripheral blood mononuclear cell (PBMC) proliferation, prostaglandin E2 (PGE2) synthesis and antibody production were investigated. There were no significant differences in growth performance among treatments (P>0.05). Chicks fed 10.0 g CLA/kg diet produced 40 % and 49 % more lysozyme activity in serum and spleen than the control group at 21 d of age (P<0.05). Dietary CLA enhanced the PBMC proliferation in response to concanavalin A at the age of 21 and 42 d (P<0.05). Systemic and peripheral blood lymphocytic synthesis of PGE2 in chicks fed 10.0 g CLA/kg diet was significantly decreased by 57 % and 42 % compared to chicks fed control diet (P<0.05). Antibody production to sheep red blood cell and bovine serum albumin were elevated in either 2.5 or 10.0 g CLA/kg dietary treatments (P<0.05). The results indicated dietary CLA could enhance the immune response in broiler chicks, but did not alter the growth performance.

  11. Surface Engineering of PAMAM-SDB Chelating Resin with Diglycolamic Acid (DGA) Functional Group for Efficient Sorption of U(VI) and Th(IV) from Aqueous Medium.

    PubMed

    Ilaiyaraja, P; Deb, A K Singha; Ponraju, D; Ali, Sk Musharaf; Venkatraman, B

    2017-04-15

    A novel chelating resin obtained via growth of PAMAM dendron on surface of styrene divinyl benzene resin beads, followed by diglycolamic acid functionalization of the dendrimer terminal. Batch experiments were conducted to study the effects of pH, nitric acid concentration, amount of adsorbent, shaking time, initial metal ion concentration and temperature on U(VI) and Th(IV) adsorption efficiency. Diglycolamic acid terminated PAMAM dendrimer functionalized styrene divinylbenzene chelating resin (DGA-PAMAM-SDB) is found to be an efficient candidate for the removal of U(VI) and Th(IV) ions from aqueous (pH >4) and nitric acid media (>3M). The sorption equilibrium could be reached within 60min, and the experimental data fits with pseudo-second-order model. Langmuir sorption isotherm model correlates well with sorption equilibrium data. The maximum U(VI) and Th(IV) sorption capacity onto DGA-PAMAMG 5 -SDB was estimated to be about 682 and 544.2mgg -1 respectively at 25°C. The interaction of actinides and chelating resin is reversible and hence, the resin can be regenerated and reused. DFT calculation on the interaction of U(VI) and Th(IV) ions with chelating resin validates the experimental findings. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Assessing and Predicting the Effectiveness of Stormwater BMPs on Water Quality, Flow, Thermal Regime, and Substrate Integrity in the Delaware River Basin

    EPA Science Inventory

    Assessments of the effectiveness of stormwater best management practices (BMPs) have focused on measurement of load or concentration reductions, which can be translated to predict biological impacts based on chemical water quality criteria. However, many of the impacts of develo...

  13. Conjugative DNA Transfer Is Enhanced by Plasmid R1 Partitioning Proteins

    PubMed Central

    Gruber, Christian J.; Lang, Silvia; Rajendra, Vinod K. H.; Nuk, Monika; Raffl, Sandra; Schildbach, Joel F.; Zechner, Ellen L.

    2016-01-01

    Bacterial conjugation is a form of type IV secretion used to transport protein and DNA directly to recipient bacteria. The process is cell contact-dependent, yet the mechanisms enabling extracellular events to trigger plasmid transfer to begin inside the cell remain obscure. In this study of plasmid R1 we investigated the role of plasmid proteins in the initiation of gene transfer. We find that TraI, the central regulator of conjugative DNA processing, interacts physically, and functionally with the plasmid partitioning proteins ParM and ParR. These interactions stimulate TraI catalyzed relaxation of plasmid DNA in vivo and in vitro and increase ParM ATPase activity. ParM also binds the coupling protein TraD and VirB4-like channel ATPase TraC. Together, these protein-protein interactions probably act to co-localize the transfer components intracellularly and promote assembly of the conjugation machinery. Importantly these data also indicate that the continued association of ParM and ParR at the conjugative pore is necessary for plasmid transfer to start efficiently. Moreover, the conjugative pilus and underlying secretion machinery assembled in the absence of Par proteins mediate poor biofilm formation and are completely dysfunctional for pilus specific R17 bacteriophage uptake. Thus, functional integration of Par components at the interface of relaxosome, coupling protein, and channel ATPases appears important for an optimal conformation and effective activation of the transfer machinery. We conclude that low copy plasmid R1 has evolved an active segregation system that optimizes both its vertical and lateral modes of dissemination. PMID:27486582

  14. Human Immunodeficiency Virus Type 1 Tat Protein Inhibits the SIRT1 Deacetylase and Induces T-Cell Hyperactivation

    PubMed Central

    Kwon, Hye-Sook; Brent, Michael M.; Getachew, Ruth; Jayakumar, Prerana; Chen, Lin-Feng; Schnolzer, Martina; McBurney, Michael W.; Marmorstein, Ronen; Greene, Warner C.; Ott, Melanie

    2009-01-01

    Summary Symptoms of T-cell hyperactivation shape the course and outcome of HIV-1 infection, but the mechanism(s) underlying this chronic immune activation are not well understood. We find that the viral transactivator Tat promotes hyperactivation of T cells by blocking the nicotinamide adenine dinucleotide (NAD+)-dependent deacetylase SIRT1. Tat directly interacts with the deacetylase domain of SIRT1 and blocks the ability of SIRT1 to deacetylate lysine 310 in the p65 subunit of NF-κB. Because acetylated p65 is more active as a transcription factor, Tat hyperactivates the expression of NF-κB-responsive genes, a function lost in SIRT1−/− cells. These results support a model where the normal function of SIRT1 as a negative regulator of T-cell activation is suppressed by Tat during HIV infection. These events likely contribute to the state of immune cell hyperactivation found in HIV-infected individuals. PMID:18329615

  15. Optimization of multi-epitopic HIV-1 recombinant protein expression in prokaryote system and conjugation to mouse DEC-205 monoclonal antibody: implication for in-vivo targeted delivery of dendritic cells

    PubMed Central

    Rahimi, Roghayeh; Ebtekar, Massoumeh; Moazzeni, Seyed Mohammad; Mostafaie, Ali; Mahdavi, Mehdi

    2015-01-01

    Objective(s): Multi-epitopic protein vaccines and direction of vaccine delivery to dendritic cells (DCs) are promising approaches for enhancing immune responses against mutable pathogens. Escherichia coli is current host for expression of recombinant proteins, and it is important to optimize expression condition. The aim of this study was the optimization of multi-epitopic HIV-1 tat/pol/gag/env recombinant protein (HIVtop4) expression by E. coli and conjugation of purified protein to anti DEC-205 monoclonal antibody as candidate vaccine. Materials and Methods: In this study, expression was induced in BL21 (DE3) E. coli cells by optimization of induction condition, post induction incubation time, temperature and culture medium formula. Some culture mediums were used for cell culture, and isopropyl-beta-D-thiogalactopyranoside was used for induction of expression. Protein was purified by Ni-NTA column chromatography and confirmed against anti-His antibody in western-blotting. To exploit DCs properties for immunization purposes, recombinant protein chemically coupled to αDEC-205 monoclonal antibody and confirmed against anti-His antibody in western-blotting. Results: The optimum condition for expression was 1 mM IPTG during 4 hr cultures in 2XYT medium, and final protein produced in soluble form. Conjugation of purified protein to αDEC-205 antibody resulted in smears of protein: antibodies conjugate in different molecular weights. Conclusion: The best cultivation condition for production of HIVtop4 protein is induction by 1 mM IPTG during 4 hr in 2XYT medium. The final concentration of purified protein was 500 µg/ml. PMID:25810888

  16. Dielectric Properties of Generation 3 Pamam Dendrimer Nanocomposites

    NASA Astrophysics Data System (ADS)

    Ristić, Sanja; Mijović, Jovan

    2008-08-01

    Broadband dielectric relaxation spectroscopy (DRS) was employed to study molecular dynamics of blends composed of generation 3 poly(amidoamine) (PAMAM) dendrimers with ethylenediamine core and amino surface groups and four linear polymers: poly(propylene oxide)—PPO, two block copolymers, poly(propylene oxide)/poly(ethylene oxide)—PPO/PEO with different mol ratios (29/6 and 10/31) and poly(ethylene oxide)—PEO. The results were generated over a broad range of frequency. Dielectric spectra of dendrimers in PPO matrix reveal slight shift of normal and segmental processes to higher frequency with increasing concentration of dendrimers. In the 29PPO/6PEO matrix, no effect of concentration on the average relaxation time for normal and segmental processes was observed. In the 10PPO/31PEO matrix the relaxation time of the segmental process increases with increasing dendrimer concentration, while in the PEO matrix, local processes in dendrimers slow down. A detailed analysis of the effect of concentration of dendrimers and morphology of polymer matrix on the dielectric properties of dendrimer nanocomposites will be presented.

  17. Synthesis, characterization and biological activity of Rhein-cyclodextrin conjugate

    NASA Astrophysics Data System (ADS)

    Liu, Manshuo; Lv, Pin; Liao, Rongqiang; Zhao, Yulin; Yang, Bo

    2017-01-01

    Cyclodextrin conjugate complexation is a useful method to enhance the solubility and absorption of poorly soluble drugs. A series of new Rhein-β-cyclodextrin conjugates (Rh-CD conjugates) have been synthesized and examined. Rhein is covalently linked with the β-CD by amido linkage in a 1:1 molar ratio. The conjugates were characterized by 1H NMR, 13C NMR, HRMS, powder X-ray diffraction (powder XRD) as well as thermogravimetric analysis (TGA). The results reveal that incorporation of β-CD could improve the aqueous solubility of Rhein and the cytotoxicity against hepatocellular carcinoma (HepG2) cell line as well as antibacterial activity against three organisms. The improved biological activity and the satisfactory water solubility of the conjugates will be potentially useful for developing novel drug-cyclodextrin conjugates, such as herbal medicine.

  18. Reductive nanocomplex encapsulation of cRGD-siRNA conjugates for enhanced targeting to cancer cells

    PubMed Central

    Zhang, Yanfen; Yang, Xiantao; Ma, Yuan; Guan, Zhu; Wu, Yun; Zhang, Lihe; Yang, Zhenjun

    2017-01-01

    In this study, through covalent conjugation and lipid material entrapment, a combined modification strategy was established for effective delivery of small interfering RNA (siRNA). Single strands of siRNA targeting to BRAFV600E gene (siMB3) conjugated with cRGD peptide at 3′-terminus or 5′-terminus via cleavable disulfide bond was synthesized and then annealed with corresponding strands to obtain single and bis-cRGD-siRNA conjugates. A cationic lipid material (CLD) developed by our laboratory was mixed with the conjugates to generate nanocomplexes; their uniformity and electrical property were revealed by particle size and zeta potential measurement. Compared with CLD/siBraf, CLD/cRGD-siBraf achieved higher cell uptake and more excellent tumor-targeting ability, especially 21 (sense-5′/antisense-3″-cRGD-congjugate) nanocomplex. Moreover, they can regulate multiple pathways to varying degree and reduce acidification of endosome. Compared with the gene silencing of different conjugates, single or bis-cRGD-conjugated siRNA showed little differences except 22 (5/5) which cRGD was conjugated at 5′-terminus of antisense strand and sense strand. However bis-cRGD conjugate 21 nanocomplex exhibited better specific target gene silencing at multiple time points. Furthermore, the serum stabilities of the bis-cRGD conjugates were higher than those of the single-cRGD conjugates. In conclusion, all these data suggested that CLD/bis-conjugates, especially CLD/21, can be an effective system for delivery of siRNA to target BRAFV600E gene for therapy of melanoma. PMID:29042774

  19. Effect of HIV-1 Tat on the formation of the mitotic spindle by interaction with ribosomal protein S3.

    PubMed

    Kim, Jiyoung; Kim, Yeon-Soo

    2018-06-06

    Human immunodeficiency virus type 1 (HIV-1) Tat, an important regulator of viral transcription, interacts with diverse cellular proteins and promotes or inhibits cell proliferation. Here, we show that ribosomal protein S3 (RPS3) plays an important role in mitosis through an interaction with α-tubulin and that Tat binds to and inhibits the localization of RPS3 in the mitotic spindle during mitosis. RPS3 colocalized with α-tubulin around chromosomes in the mitotic spindle. Depletion of RPS3 promoted α-tubulin assembly, while overexpression of RPS3 impaired α-tubulin assembly. Depletion of RPS3 resulted in aberrant mitotic spindle formation, segregation failure, and defective abscission. Moreover, ectopic expression of RPS3 rescued the cell proliferation defect in RPS3-knockdown cells. HIV-1 Tat interacted with RPS3 through its basic domain and increased the level of RPS3 in the nucleus. Expression of Tat caused defects in mitotic spindle formation and chromosome assembly in mitosis. Moreover, the localization of RPS3 in the mitotic spindle was disrupted when HIV-1 Tat was expressed in HeLa and Jurkat cells. These results suggest that Tat inhibits cell proliferation via an interaction with RPS3 and thereby disrupts mitotic spindle formation during HIV-1 infection. These results might provide insight into the mechanism underlying lymphocyte pathogenesis during HIV-1 infection.

  20. Genetic disruption of tubulin acetyltransferase, αTAT1, inhibits proliferation and invasion of colon cancer cells through decreases in Wnt1/β-catenin signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oh, Somi; You, Eunae; Ko, Panseon

    Microtubules are required for diverse cellular processes, and abnormal regulation of microtubule dynamics is closely associated with severe diseases including malignant tumors. In this study, we report that α-tubulin N-acetyltransferase (αTAT1), a regulator of α-tubulin acetylation, is required for colon cancer proliferation and invasion via regulation of Wnt1 and its downstream genes expression. Public transcriptome analysis showed that expression of ATAT1 is specifically upregulated in colon cancer tissue. A knockout (KO) of ATAT1 in the HCT116 colon cancer cell line, using the CRISPR/Cas9 system showed profound inhibition of proliferative and invasive activities of these cancer cells. Overexpression of αTAT1 ormore » the acetyl-mimic K40Q α-tubulin mutant in αTAT1 KO cells restored the invasiveness, indicating that microtubule acetylation induced by αTAT1 is critical for HCT116 cell invasion. Analysis of colon cancer-related gene expression in αTAT1 KO cells revealed that the loss of αTAT1 decreased the expression of WNT1. Mechanistically, abrogation of tubulin acetylation by αTAT1 knockout inhibited localization of β-catenin to the plasma membrane and nucleus, thereby resulting in the downregulation of Wnt1 and of its downstream genes including CCND1, MMP-2, and MMP-9. These results suggest that αTAT1-mediated Wnt1 expression via microtubule acetylation is important for colon cancer progression. - Highlights: • Ablation of αTAT1 inhibits HCT116 colon cancer cell invasion. • αTAT1/acetylated microtubules regulate expression of Wnt1/β-catenin target genes. • Acetylated microtubules regulate cellular localization of β-catenin. • Loss of αTAT1 prevents Wnt1 from inducing β-catenin-dependent and -independent pathways.« less

  1. Screening of Osteogenic-Enhancing Short Peptides from BMPs for Biomimetic Material Applications

    PubMed Central

    Kanie, Kei; Kurimoto, Rio; Tian, Jing; Ebisawa, Katsumi; Narita, Yuji; Honda, Hiroyuki; Kato, Ryuji

    2016-01-01

    Bone regeneration is an important issue in many situations, such as bone fracture and surgery. Umbilical cord mesenchymal stem cells (UC-MSCs) are promising cell sources for bone regeneration. Bone morphogenetic proteins and their bioactive peptides are biomolecules known to enhance the osteogenic differentiation of MSCs. However, fibrosis can arise during the development of implantable biomaterials. Therefore, it is important to control cell organization by enhancing osteogenic proliferation and differentiation and inhibiting fibroblast proliferation. Thus, we focused on the screening of such osteogenic-enhancing peptides. In the present study, we developed new peptide array screening platforms to evaluate cell proliferation and alkaline phosphatase activity in osteoblasts, UC-MSCs and fibroblasts. The conditions for the screening platform were first defined using UC-MSCs and an osteogenic differentiation peptide known as W9. Next, in silico screening to define the candidate peptides was carried out to evaluate the homology of 19 bone morphogenetic proteins. Twenty-five candidate 9-mer peptides were selected for screening. Finally, the screening of osteogenic-enhancing (osteogenic cell-selective proliferation and osteogenic differentiation) short peptide was carried out using the peptide array method, and three osteogenic-enhancing peptides were identified, confirming the validity of this screening. PMID:28773850

  2. Sequence conservation and antibody cross-recognition of clade B human immunodeficiency virus (HIV) type 1 Tat protein in HIV-1-infected Italians, Ugandans, and South Africans.

    PubMed

    Buttò, Stefano; Fiorelli, Valeria; Tripiciano, Antonella; Ruiz-Alvarez, Maria J; Scoglio, Arianna; Ensoli, Fabrizio; Ciccozzi, Massimo; Collacchi, Barbara; Sabbatucci, Michela; Cafaro, Aurelio; Guzmán, Carlos A; Borsetti, Alessandra; Caputo, Antonella; Vardas, Eftyhia; Colvin, Mark; Lukwiya, Matthew; Rezza, Giovanni; Ensoli, Barbara

    2003-10-15

    We determined immune cross-recognition and the degree of Tat conservation in patients infected by local human immunodeficiency virus (HIV) type 1 strains. The data indicated a similar prevalence of total and epitope-specific anti-Tat IgG in 578 serum samples from HIV-infected Italian (n=302), Ugandan (n=139), and South African (n=137) subjects, using the same B clade Tat protein that is being used in vaccine trials. In particular, anti-Tat antibodies were detected in 13.2%, 10.8%, and 13.9% of HIV-1-infected individuals from Italy, Uganda, and South Africa, respectively. Sequence analysis results indicated a high similarity of Tat from the different circulating viruses with BH-10 Tat, particularly in the 1-58 amino acid region, which contains most of the immunogenic epitopes. These data indicate an effective cross-recognition of a B-clade laboratory strain-derived Tat protein vaccine by individuals infected with different local viruses, owing to the high similarity of Tat epitopes.

  3. Peptide-conjugated micelles as a targeting nanocarrier for gene delivery

    NASA Astrophysics Data System (ADS)

    Lin, Wen Jen; Chien, Wei Hsuan

    2015-09-01

    The aim of this study was to develop peptide-conjugated micelles possessing epidermal growth factor receptor (EGFR) targeting ability for gene delivery. A sequence-modified dodecylpeptide, GE11(2R), with enhancing EGF receptor binding affinity, was applied in this study as a targeting ligand. The active targeting micelles were composed of poly( d,l-lactide- co-glycolide)-poly(ethylene glycol) (PLGA-PEG) copolymer conjugated with GE11(2R)-peptide. The particle sizes of peptide-free and peptide-conjugated micelles were 277.0 ± 5.1 and 308.7 ± 14.5 nm, respectively. The peptide-conjugated micelles demonstrated the cellular uptake significantly higher than peptide-free micelles in EGFR high-expressed MDA-MB-231 and MDA-MB-468 cells due to GE11(2R)-peptide specificity. Furthermore, the peptide-conjugated micelles were able to encapsulate plasmid DNA and expressed cellular transfection higher than peptide-free micelles in EGFR high-expressed cells. The EGFR-targeting delivery micelles enhanced DNA internalized into cells and achieved higher cellular transfection in EGFR high-expressed cells.

  4. Bio-stimuli-responsive multi-scale hyaluronic acid nanoparticles for deepened tumor penetration and enhanced therapy.

    PubMed

    Huo, Mengmeng; Li, Wenyan; Chaudhuri, Arka Sen; Fan, Yuchao; Han, Xiu; Yang, Chen; Wu, Zhenghong; Qi, Xiaole

    2017-09-01

    In this study, we developed bio-stimuli-responsive multi-scale hyaluronic acid (HA) nanoparticles encapsulated with polyamidoamine (PAMAM) dendrimers as the subunits. These HA/PAMAM nanoparticles of large scale (197.10±3.00nm) were stable during systematic circulation then enriched at the tumor sites; however, they were prone to be degraded by the high expressed hyaluronidase (HAase) to release inner PAMAM dendrimers and regained a small scale (5.77±0.25nm) with positive charge. After employing tumor spheroids penetration assay on A549 3D tumor spheroids for 8h, the fluorescein isothiocyanate (FITC) labeled multi-scale HA/PAMAM-FITC nanoparticles could penetrate deeply into these tumor spheroids with the degradation of HAase. Moreover, small animal imaging technology in male nude mice bearing H22 tumor showed HA/PAMAM-FITC nanoparticles possess higher prolonged systematic circulation compared with both PAMAM-FITC nanoparticles and free FITC. In addition, after intravenous administration in mice bearing H22 tumors, methotrexate (MTX) loaded multi-scale HA/PAMAM-MTX nanoparticles exhibited a 2.68-fold greater antitumor activity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Magnetic catechin-dextran conjugate as targeted therapeutic for pancreatic tumour cells.

    PubMed

    Vittorio, Orazio; Voliani, Valerio; Faraci, Paolo; Karmakar, Biswajit; Iemma, Francesca; Hampel, Silke; Kavallaris, Maria; Cirillo, Giuseppe

    2014-06-01

    Catechin-dextran conjugates have recently attracted a lot of attention due to their anticancer activity against a range of cancer cells. Magnetic nanoparticles have the ability to concentrate therapeutically important drugs due to their magnetic-spatial control and provide opportunities for targeted drug delivery. Enhancement of the anticancer efficiency of catechin-dextran conjugate by functionalisation with magnetic iron oxide nanoparticles. Modification of the coating shell of commercial magnetic nanoparticles (Endorem) composed of dextran with the catechin-dextran conjugate. Catechin-dextran conjugated with Endorem (Endo-Cat) increased the intracellular concentration of the drug and it induced apoptosis in 98% of pancreatic tumour cells placed under magnetic field. The conjugation of catechin-dextran with Endorem enhances the anticancer activity of this drug and provides a new strategy for targeted drug delivery on tumour cells driven by magnetic field. The ability to spatially control the delivery of the catechin-dextran by magnetic field makes it a promising agent for further application in cancer therapy.

  6. Tat-CBR1 inhibits inflammatory responses through the suppressions of NF-κB and MAPK activation in macrophages and TPA-induced ear edema in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Young Nam; Kim, Dae Won; Jo, Hyo Sang

    Human carbonyl reductase 1 (CBR1) plays a crucial role in cell survival and protects against oxidative stress response. However, its anti-inflammatory effects are not yet clearly understood. In this study, we examined whether CBR1 protects against inflammatory responses in macrophages and mice using a Tat-CBR1 protein which is able to penetrate into cells. The results revealed that purified Tat-CBR1 protein efficiently transduced into Raw 264.7 cells and inhibited lipopolysaccharide (LPS)-induced cyclooxygenase-2 (COX-2), nitric oxide (NO) and prostaglandin E{sub 2} (PGE{sub 2}) expression levels. In addition, Tat-CBR1 protein leads to decreased pro-inflammatory cytokine expression through suppression of nuclear transcription factor-kappaB (NF-κB)more » and mitogen activated protein kinase (MAPK) activation. Furthermore, Tat-CBR1 protein inhibited inflammatory responses in 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced skin inflammation when applied topically. These findings indicate that Tat-CBR1 protein has anti-inflammatory properties in vitro and in vivo through inhibition of NF-κB and MAPK activation, suggesting that Tat-CBR1 protein may have potential as a therapeutic agent against inflammatory diseases. - Highlights: • Transduced Tat-CBR1 reduces LPS-induced inflammatory mediators and cytokines. • Tat-CBR1 inhibits MAPK and NF-κB activation. • Tat-CBR1 ameliorates inflammation response in vitro and in vivo. • Tat-CBR1 may be useful as potential therapeutic agent for inflammation.« less

  7. Lactobionic acid-conjugated TPGS nanoparticles for enhancing therapeutic efficacy of etoposide against hepatocellular carcinoma

    NASA Astrophysics Data System (ADS)

    Tsend-Ayush, Altansukh; Zhu, Xiumei; Ding, Yu; Yao, Jianxu; Yin, Lifang; Zhou, Jianping; Yao, Jing

    2017-05-01

    Many effective anti-cancer drugs have limited use in hepatocellular carcinoma (HCC) therapy due to the drug resistance mechanisms in liver cells. In recent years, tumor-targeted drug delivery and the inhibition of drug-resistance-related mechanisms has become an integrated strategy for effectively combating chemo-resistant cancer. Herein, lactobionic acid-conjugated d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS-LA conjugate) has been developed as a potential asialoglycoprotein receptor (ASGPR)-targeted nanocarrier and an efficient inhibitor of P-glycoprotein (P-gp) to enhance etoposide (ETO) efficacy against HCC. The main properties of ETO-loaded TPGS-LA nanoparticles (NPs) were tested through in vitro and in vivo studies after being prepared using the nanoprecipitation method and characterized by dynamic light scattering (DLS). According to the results, smaller (˜141.43 nm), positively charged ETO-loaded TPGS-LA NPs were more suitable for providing efficient delivery to hepatoma cells by avoiding the clearance mechanisms. It was found that ETO-loaded TPGS-LA NPs were noticeably able to enhance the cytotoxicity of ETO in HepG2 cells. Besides this, markedly higher internalization by the ASGPR-overexpressed HepG2 cells and efficient accumulation at the tumor site in vivo were revealed in the TPGS-LA NP group. More importantly, animal studies confirmed that ETO-loaded TPGS-LA NPs achieved the highest therapeutic efficacy against HCC. Interestingly, ETO-loaded TPGS-LA NPs also exhibited a great inhibitory effect on P-gp compared to the ETO-loaded TPGS NPs. These results suggest that TPGS-LA NPs could be used as a potential ETO delivery system against HCC.

  8. Galactosylated pullulan-curcumin conjugate micelles for site specific anticancer activity to hepatocarcinoma cells.

    PubMed

    Sarika, P R; James, Nirmala Rachel; Nishna, N; Anil Kumar, P R; Raj, Deepa K

    2015-09-01

    Galactosylated pullulan-curcumin conjugate (LANH2-Pu Ald-Cur SA) is developed for target specific delivery of curcumin to hepatocarcinoma cells by five step synthetic strategy, which includes oxidation of pullulan (Pu Ald), introduction of amino group to the targeting ligand (LANH2), grafting of the LANH2 to Pu Ald, modification of curcumin (Cur SA) and conjugation of Cur SA to pullulan. Nongalactosylated pullulan-curcumin conjugate (Pu-Cur SA) is also prepared to compare the enhancement in cytotoxicity offered by the targeting group. Both LANH2-Pu Ald-Cur SA and Pu-Cur SA conjugates could self assemble to micelle in water with hydrodynamic diameters of 355±9nm and 363±10nm, respectively. Both conjugates show spherical morphology and enhance stability of curcumin in physiological pH. Compared to Pu-Cur SA, LANH2-Pu Ald-Cur SA exhibits higher toxicity and internalization towards HepG2 cells. This indicates the enhanced uptake of LANH2-Pu Ald-Cur SA conjugate via ASGPR (asialoglycoprotein receptor) mediated endocytosis into HepG2 cells. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. PAMAM dendrimer hydrogel film—biocompatible material to an efficient dermal delivery of drugs

    NASA Astrophysics Data System (ADS)

    Magalhães, Thamiris Machado; Guerra, Rodrigo Cinti; San Gil, Rosane Aguiar da Silva; Valente, Ana Paula; Simão, Renata Antoun; Soares, Bluma Guenther; Mendes, Thamara de Carvalho; Pyrrho, Alexandre dos Santos; Sousa, Valeria Pereira de; Rodrigues-Furtado, Vanessa Lúcia

    2017-08-01

    We report the preparation, characterization, and drug release kinetics of a pH-responsive hydrogel film from a dendrimer megamer. The megamer (GP32) is a three-dimensional reticulated structure with a mean diameter of 71.16 nm (PDI 0.150) and was prepared by the reaction between Poly(amidoamine) generation4 (PAMAM G4) dendrimer and glutaraldehyde (G:P molar ratio 32). The crosslinking units in the megamer are provided mainly by the bicyclic dimer 2-hydroxy-3,4,4a,7,8,8a-hexahydro-2 H-chromene-6-carbaldehyde as determined by high-resolution (800 MHz) 1H NMR and FTIR. The hydrogel film (F[GP32]) is formed upon evaporation of a methanolic solution of the megamer and has a high degree of organization and homogeneity. Further crosslinking with glutaraldehyde (CLF[GP32]) enhanced the mechanical properties of the hydrogel film. The chemical constitution and unique megamer architecture enable the hydrogel film to carry both lipophilic and hydrophilic substances. The film did not cause any dermal irritation or clinical signs of toxicity in tests on rabbits, allowed for a sustained release of ketoprofen and played an important role in the process of drug delivery into the receptor medium. This performance taken together with the absence of toxicity makes this hydrogel film a good choice for dermal sustained drug release. [Figure not available: see fulltext.

  10. Protein/oligonucleotide conjugates as a cell specific PNA carrier.

    PubMed

    Obara, K; Ishihara, T; Akaike, T; Maruyama, A

    2001-01-01

    We have focused on proteineus ligand conjugate with oligonucleotides (ODNs) as a cell-specific delivery vector for peptide nucleic acids (PNAs). Asialofetuin (AF), a hepatocyte-specific proteineus ligand, was conjugated with ODNs that served as binding sites for PNAs. Succinimidyl-transe-4(N-maleimidylmethyl)-cyclohexane-1-carboxylate (SMCC) modified AF was coupled with 5'-thiolated oligodeoxynucleotide (HS-ODN). The resulting conjugate held PNAs with sequence-specific manner. The PNA/DNA conjugate complex has resistance against nucleases in serum. The efficient release of PNA from the complex was observed when the complex was made in contact with a target nucleotide. PNA uptake to hepatocytes was greatly enhanced when hepatocytes was incubated with PNA/conjugate complex. Free AF thoroughly inhibited PNA uptake with the conjugate, evidencing asialoglycoprotein receptor (ASGP-R) mediated endocytosis to be a major-route for the cellular uptake.

  11. Detection of human immunodeficiency virus type 1 (HIV-1) Tat protein by aptamer-based biosensors

    NASA Astrophysics Data System (ADS)

    Hashim, Uda; Fatin, M. F.; Ruslinda, A. R.; Gopinath, Subash C. B.; Uda, M. N. A.

    2017-03-01

    A study was conducted to detect the human immunodeficiency virus (HIV-1) Tat protein using interdigitated electrodes. The measurements and images of the IDEs' finger gaps and the images of chitosan-carbon nanotubes deposited on top of the interdigitated electrodes were taken using the Scanning Electron Microscope. The detection of HIV-1 Tat protein was done using split aptamers and aptamer tail. Biosensors were chosen as diagnostic equipment due to their rapid diagnostic capabilities.

  12. HIV-1 Tat and opiate-induced changes in astrocytes promote chemotaxis of microglia through the expression of MCP-1 and alternative chemokines.

    PubMed

    El-Hage, Nazira; Wu, Guanghan; Wang, Juan; Ambati, Jayakrishna; Knapp, Pamela E; Reed, Janelle L; Bruce-Keller, Annadora J; Hauser, Kurt F

    2006-01-15

    Opiates exacerbate human immunodeficiency virus type 1 (HIV-1) Tat(1-72)-induced release of key proinflammatory cytokines by astrocytes, which may accelerate HIV neuropathogenesis in opiate abusers. The release of monocyte chemoattractant protein-1 (MCP-1, also known as CCL2), in particular, is potentiated by opiate-HIV Tat interactions in vitro. Although MCP-1 draws monocytes/macrophages to sites of CNS infection, and activated monocytes/microglia release factors that can damage bystander neurons, the role of MCP-1 in neuro-acquired immunodeficiency syndrome (neuroAIDS) progression in opiate abusers, or nonabusers, is uncertain. Using a chemotaxis assay, N9 microglial cell migration was found to be significantly greater in conditioned medium from mouse striatal astrocytes exposed to morphine and/or Tat(1-72) than in vehicle-, mu-opioid receptor (MOR) antagonist-, or inactive, mutant Tat(delta31-61)-treated controls. Conditioned medium from astrocytes treated with morphine and Tat caused the greatest increase in motility. The response was attenuated using conditioned medium immunoneutralized with MCP-1 antibodies, or medium from MCP-1(-/-) astrocytes. In the presence of morphine (time-release, subcutaneous implant), intrastriatal Tat increased the proportion of neural cells that were astroglia and F4/80+ macrophages at 7 days post-injection. This was not seen after treatment with Tat alone, or with morphine plus inactive Tat(delta31-61) or naltrexone. Glia displayed increased MOR and MCP-1 immunoreactivity after morphine and/or Tat exposure. The findings indicate that MCP-1 underlies most of the response of microglia, suggesting that one way in which opiates exacerbate neuroAIDS is by increasing astroglial-derived proinflammatory chemokines at focal sites of CNS infection and promoting macrophage entry and local microglial activation. Importantly, increased glial expression of MOR can trigger an opiate-driven amplification/positive feedback of MCP-1 production and

  13. Novel Targeting Approach for Breast Cancer Gene Therapy

    DTIC Science & Technology

    2009-09-30

    specificity of sigma receptor ligands ( haloperidol and ibogaine)- conjugated polyamidoamine (PAMAM) dendrimers 1. Synthesis, purification and...Heparanase promoter. Cancer Lett., 2006, 240, 114-122. 5. Mukherjee A, Prasad TK, Rao NM, Banerjee R. Haloperidol associated stealth liposomes: A

  14. Human immunodeficiency virus type 1 Tat does not transactivate mature trans-acting responsive region RNA species in the nucleus or cytoplasm of primate cells.

    PubMed Central

    Chin, D J; Selby, M J; Peterlin, B M

    1991-01-01

    Human immunodeficiency virus (HIV)-encoded transactivator Tat is essential for viral gene expression and replication. By interacting with a nascent RNA stem-loop called the trans-acting responsive region (TAR). Tat increases rates of initiation and/or elongation of HIV transcription. Several reports have also suggested that Tat has additional effects on mature HIV RNA species including modification of primary transcripts in the nucleus and their increased translation in the cytoplasm. These posttranscriptional effects are most pronounced in the Xenopus oocyte. To investigate directly whether Tat has similar effects on viral transcripts in cells that are permissive for HIV replication, we cotransfected and microinjected human and monkey cells with Tat and TAR in the form of DNA or RNA. Whereas Tat transactivated TAR DNA targets, it did not transactivate TAR RNA targets in the nucleus of microinjected cells or in the cytoplasm of transfected cells. We conclude that in cells permissive for viral replication, Tat exerts its effect primarily at the level of HIV transcription. Images PMID:1900539

  15. Stabilization of water in oil in water (W/O/W) emulsion using whey protein isolate-conjugated durian seed gum: enhancement of interfacial activity through conjugation process.

    PubMed

    Tabatabaee Amid, Bahareh; Mirhosseini, Hamed

    2014-01-01

    The present work was conducted to investigate the effect of purification and conjugation processes on functional properties of durian seed gum (DSG) used for stabilization of water in oil in water (W/O/W) emulsion. Whey protein isolate (WPI) was conjugated to durian seed gum through the covalent linkage. In order to prepare WPI-DSG conjugate, covalent linkage of whey protein isolate to durian seed gum was obtained by Maillard reaction induced by heating at 60 °C and 80% (±1%) relative humidity. SDS-polyacrylamide gel electrophoresis was used to test the formation of the covalent linkage between whey protein isolate and durian seed gum after conjugation process. In this study, W/O/W stabilized by WPI-conjugated DSG A showed the highest interface activity and lowest creaming layer among all prepared emulsions. This indicated that the partial conjugation of WPI to DSG significantly improved its functional characteristics in W/O/W emulsion. The addition of WPI-conjugated DSG to W/O/W emulsion increased the viscosity more than non-conjugated durian seed gum (or control). This might be due to possible increment of the molecular weight after linking the protein fraction to the structure of durian seed gum through the conjugation process. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. A strategy of win-stay, lose-shift that outperforms tit-for-tat in the Prisoner's Dilemma game

    NASA Astrophysics Data System (ADS)

    Nowak, Martin; Sigmund, Karl

    1993-07-01

    THE Prisoner's Dilemma is the leading metaphor for the evolution of cooperative behaviour in populations of selfish agents, especially since the well-known computer tournaments of Axelrod1 and their application to biological communities2,3. In Axelrod's simulations, the simple strategy tit-for-tat did outstandingly well and subsequently became the major paradigm for reciprocal altruism4 12. Here we present extended evolutionary simulations of heterogeneous ensembles of probabilistic strategies including mutation and selection, and report the unexpected success of another protagonist: Pavlov. This strategy is as simple as tit-for-tat and embodies the fundamental behavioural mechanism win-stay, lose-shift, which seems to be a widespread rule13. Pavlov's success is based on two important advantages over tit-for-tat: it can correct occasional mistakes and exploit unconditional cooperators. This second feature prevents Pavlov populations from being undermined by unconditional cooperators, which in turn invite defectors. Pavlov seems to be more robust than tit-for-tat, suggesting that cooperative behaviour in natural situations may often be based on win-stay, lose-shift.

  17. All-atomistic molecular dynamics (AA-MD) studies and pharmacokinetic performance of PAMAM-dendrimer-furosemide delivery systems.

    PubMed

    Otto, Daniel P; de Villiers, Melgardt M

    2018-06-13

    Improvement of problematic dissolution and solubility properties of a model drug, furosemide, was investigated for poly(amidoamine) (PAMAM) dendrimer complexes of the drug. Full and half generation dendrimers with amino and ester terminals respectively, were studied. In vitro release performance of these complexes was investigated at drug loads ranging 5-60% using simulated gastric fluids. Full generation dendrimers accommodated higher drug loads, outperformed half-generation complexes, and free drug. Pharmacokinetic studies in rats indicated that the dendrimer complexes markedly improved in the bioavailability of the drug compared to the unformulated drug. The G3.0-PAMAM dendrimer complex showed a two-fold increase in C max and a 1.75-fold increase in AUC over the free drug. Additionally, T max was shortened from approximately 25 to 20 min. One of the first all-atomistic molecular dynamics (AA-MD) simulation studies was performed to evaluate low-generation dendrimer-drug complexes as well as its pharmacokinetic performance. AA-MD provided insight into the intermolecular interactions that take place between the dendrimer and drug. It is suggested that the dendrimer not only encapsulates the drug, but can also orientate the drug in stabilized dispersion to prevent drug clustering which could impact release and bioavailability negatively. AA-MD can be a useful tool to develop dendrimer-based drug delivery systems. Copyright © 2018. Published by Elsevier B.V.

  18. Statistics for stochastic modeling of volume reduction, hydrograph extension, and water-quality treatment by structural stormwater runoff best management practices (BMPs)

    USGS Publications Warehouse

    Granato, Gregory E.

    2014-01-01

    The U.S. Geological Survey (USGS) developed the Stochastic Empirical Loading and Dilution Model (SELDM) in cooperation with the Federal Highway Administration (FHWA) to indicate the risk for stormwater concentrations, flows, and loads to be above user-selected water-quality goals and the potential effectiveness of mitigation measures to reduce such risks. SELDM models the potential effect of mitigation measures by using Monte Carlo methods with statistics that approximate the net effects of structural and nonstructural best management practices (BMPs). In this report, structural BMPs are defined as the components of the drainage pathway between the source of runoff and a stormwater discharge location that affect the volume, timing, or quality of runoff. SELDM uses a simple stochastic statistical model of BMP performance to develop planning-level estimates of runoff-event characteristics. This statistical approach can be used to represent a single BMP or an assemblage of BMPs. The SELDM BMP-treatment module has provisions for stochastic modeling of three stormwater treatments: volume reduction, hydrograph extension, and water-quality treatment. In SELDM, these three treatment variables are modeled by using the trapezoidal distribution and the rank correlation with the associated highway-runoff variables. This report describes methods for calculating the trapezoidal-distribution statistics and rank correlation coefficients for stochastic modeling of volume reduction, hydrograph extension, and water-quality treatment by structural stormwater BMPs and provides the calculated values for these variables. This report also provides robust methods for estimating the minimum irreducible concentration (MIC), which is the lowest expected effluent concentration from a particular BMP site or a class of BMPs. These statistics are different from the statistics commonly used to characterize or compare BMPs. They are designed to provide a stochastic transfer function to approximate

  19. PDGF-mediated protection of SH-SY5Y cells against Tat toxin involves regulation of extracellular glutamate and intracellular calcium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu Xuhui; Department of Laboratory Medicine, Tongji Hospital and Tongji Medical College of Huazhong University of Science and Technology, Wuhan; Yao Honghong

    2009-10-15

    The human immunodeficiency virus (HIV-1) protein Tat has been implicated in mediating neuronal apoptosis, one of the hallmark features of HIV-associated dementia (HAD). Mitigation of the toxic effects of Tat could thus be a potential mechanism for reducing HIV toxicity in the brain. In this study we demonstrated that Tat-induced neurotoxicity was abolished by NMDA antagonist-MK801, suggesting the role of glutamate in this process. Furthermore, we also found that pretreatment of SH-SY5Y cells with PDGF exerted protection against Tat toxicity by decreasing extracellular glutamate levels. We also demonstrated that extracellular calcium chelator EGTA was able to abolish PDGF-mediated neuroprotection, therebymore » underscoring the role of calcium signaling in PDGF-mediated neuroprotection. We also showed that Erk signaling pathway was critical for PDGF-mediated protection of cells. Additionally, blocking calcium entry with EGTA resulted in suppression of PDGF-induced Erk activation. These findings thus underscore the role of PDGF-mediated calcium signaling and Erk phosphorylation in the protection of cells against HIV Tat toxicity.« less

  20. Statistical Techniques for Assessing water‐quality effects of BMPs

    USGS Publications Warehouse

    Walker, John F.

    1994-01-01

    Little has been published on the effectiveness of various management practices in small rural lakes and streams at the watershed scale. In this study, statistical techniques were used to test for changes in water‐quality data from watersheds where best management practices (BMPs) were implemented. Reductions in data variability due to climate and seasonality were accomplished through the use of regression methods. This study discusses the merits of using storm‐mass‐transport data as a means of improving the ability to detect BMP effects on stream‐water quality. Statistical techniques were applied to suspended‐sediment records from three rural watersheds in Illinois for the period 1981–84. None of the techniques identified changes in suspended sediment, primarily because of the small degree of BMP implementation and because of potential errors introduced through the estimation of storm‐mass transport. A Monte Carlo sensitivity analysis was used to determine the level of discrete change that could be detected for each watershed. In all cases, the use of regressions improved the ability to detect trends.Read More: http://ascelibrary.org/doi/abs/10.1061/(ASCE)0733-9437(1994)120:2(334)