Sample records for tau neuropathology leads

  1. Invited review: Frontotemporal dementia caused by microtubule-associated protein tau gene (MAPT) mutations: a chameleon for neuropathology and neuroimaging.

    PubMed

    Ghetti, B; Oblak, A L; Boeve, B F; Johnson, K A; Dickerson, B C; Goedert, M

    2015-02-01

    Hereditary frontotemporal dementia associated with mutations in the microtubule-associated protein tau gene (MAPT) is a protean disorder. Three neuropathologic subtypes can be recognized, based on the presence of inclusions made of tau isoforms with three and four repeats, predominantly three repeats and mostly four repeats. This is relevant for establishing a correlation between structural magnetic resonance imaging and positron emission tomography using tracers specific for aggregated tau. Longitudinal studies will be essential to determine the evolution of anatomical alterations from the asymptomatic stage to the various phases of disease following the onset of symptoms. © 2014 The Authors. Neuropathology and Applied Neurobiology published by John Wiley & Sons Ltd on behalf of British Neuropathological Society.

  2. Increased Tau Phosphorylation and Tau Truncation, and Decreased Synaptophysin Levels in Mutant BRI2/Tau Transgenic Mice

    PubMed Central

    Garringer, Holly J.; Murrell, Jill; Sammeta, Neeraja; Gnezda, Anita; Ghetti, Bernardino; Vidal, Ruben

    2013-01-01

    Familial Danish dementia (FDD) is an autosomal dominant neurodegenerative disease caused by a 10-nucleotide duplication-insertion in the BRI2 gene. FDD is clinically characterized by loss of vision, hearing impairment, cerebellar ataxia and dementia. The main neuropathologic findings in FDD are the deposition of Danish amyloid (ADan) and the presence of neurofibrillary tangles (NFTs). Here we investigated tau accumulation and truncation in double transgenic (Tg-FDD-Tau) mice generated by crossing transgenic mice expressing human Danish mutant BRI2 (Tg-FDD) with mice expressing human 4-repeat mutant Tau-P301S (Tg-Tau). Compared to Tg-Tau mice, we observed a significant enhancement of tau deposition in Tg-FDD-Tau mice. In addition, a significant increase in tau cleaved at aspartic acid (Asp) 421 was observed in Tg-FDD-Tau mice. Tg-FDD-Tau mice also showed a significant decrease in synaptophysin levels, occurring before widespread deposition of fibrillar ADan and tau can be observed. Thus, the presence of soluble ADan/mutant BRI2 can lead to significant changes in tau metabolism and synaptic dysfunction. Our data provide new in vivo insights into the pathogenesis of FDD and the pathogenic pathway(s) by which amyloidogenic peptides, regardless of their primary amino acid sequence, can cause neurodegeneration. PMID:23418567

  3. Increased tau phosphorylation and tau truncation, and decreased synaptophysin levels in mutant BRI2/tau transgenic mice.

    PubMed

    Garringer, Holly J; Murrell, Jill; Sammeta, Neeraja; Gnezda, Anita; Ghetti, Bernardino; Vidal, Ruben

    2013-01-01

    Familial Danish dementia (FDD) is an autosomal dominant neurodegenerative disease caused by a 10-nucleotide duplication-insertion in the BRI(2) gene. FDD is clinically characterized by loss of vision, hearing impairment, cerebellar ataxia and dementia. The main neuropathologic findings in FDD are the deposition of Danish amyloid (ADan) and the presence of neurofibrillary tangles (NFTs). Here we investigated tau accumulation and truncation in double transgenic (Tg-FDD-Tau) mice generated by crossing transgenic mice expressing human Danish mutant BRI(2) (Tg-FDD) with mice expressing human 4-repeat mutant Tau-P301S (Tg-Tau). Compared to Tg-Tau mice, we observed a significant enhancement of tau deposition in Tg-FDD-Tau mice. In addition, a significant increase in tau cleaved at aspartic acid (Asp) 421 was observed in Tg-FDD-Tau mice. Tg-FDD-Tau mice also showed a significant decrease in synaptophysin levels, occurring before widespread deposition of fibrillar ADan and tau can be observed. Thus, the presence of soluble ADan/mutant BRI(2) can lead to significant changes in tau metabolism and synaptic dysfunction. Our data provide new in vivo insights into the pathogenesis of FDD and the pathogenic pathway(s) by which amyloidogenic peptides, regardless of their primary amino acid sequence, can cause neurodegeneration.

  4. Review: Tau in biofluids - relation to pathology, imaging and clinical features.

    PubMed

    Zetterberg, H

    2017-04-01

    Tau is a microtubule-binding protein that is important for the stability of neuronal axons. It is normally expressed within neurons and is also secreted into the brain interstitial fluid that communicates freely with cerebrospinal fluid (CSF) and, in a more restricted manner, blood via the glymphatic clearance system of the brain. In Alzheimer's disease (AD), neuroaxonal degeneration results in increased release of tau from neurons. Furthermore, tau is truncated and phosphorylated, which leads to aggregation of tau in neurofibrillary tangles of the proximal axoplasm. Neuroaxonal degeneration and tangle formation are reflected by increased concentrations of total tau (T-tau, measured using assays that detect most forms of tau) and phospho-tau (P-tau, measured using assays with antibodies specific to phosphorylated forms of tau). In AD CSF, both T-tau and P-tau concentrations are increased. In stroke and other CNS disorders with neuroaxonal injury but without tangles, T-tau is selectively increased, whereas P-tau concentration often stays normal. In tauopathies (diseases with both neurodegeneration and neurofibrillary tangles) other than AD, CSF T-tau and P-tau concentrations are typically unaltered, which is a puzzling result that warrants further investigation. In the current review, I discuss the association of T-tau and P-tau concentrations in body fluids with neuropathological changes, imaging findings and clinical features in AD and other CNS diseases. © 2017 British Neuropathological Society.

  5. Phosphorylation of Threonine 175 Tau in the Induction of Tau Pathology in Amyotrophic Lateral Sclerosis-Frontotemporal Spectrum Disorder (ALS-FTSD). A Review.

    PubMed

    Moszczynski, Alexander J; Hintermayer, Matthew A; Strong, Michael J

    2018-01-01

    Approximately 50-60% of all patients with amyotrophic lateral sclerosis (ALS) will develop a deficit of frontotemporal function, ranging from frontotemporal dementia (FTD) to one or more deficits of neuropsychological, speech or language function which are collectively known as the frontotemporal spectrum disorders of ALS (ALS-FTSD). While the neuropathology underlying these disorders is most consistent with a widespread alteration in the metabolism of transactive response DNA-binding protein 43 (TDP-43), in both ALS with cognitive impairment (ALSci) and ALS with FTD (ALS-FTD; also known as MND-FTD) there is evidence for alterations in the metabolism of the microtubule associated protein tau. This alteration in tau metabolism is characterized by pathological phosphorylation at residue Thr 175 (pThr 175 tau) which in vitro is associated with activation of GSK3β (pTyr 216 GSK3β), phosphorylation of Thr 231 tau, and the formation of cytoplasmic inclusions with increased rates of cell death. This putative pathway of pThr 175 induction of pThr 231 and the formation of pathogenic tau inclusions has been recently shown to span a broad range of tauopathies, including chronic traumatic encephalopathy (CTE) and CTE in association with ALS (CTE-ALS). This pathway can be experimentally triggered through a moderate traumatic brain injury, suggesting that it is a primary neuropathological event and not secondary to a more widespread neuronal dysfunction. In this review, we discuss the neuropathological underpinnings of the postulate that ALS is associated with a tauopathy which manifests as a FTSD, and examine possible mechanisms by which phosphorylation at Thr 175 tau is induced. We hypothesize that this might lead to an unfolding of the hairpin structure of tau, activation of GSK3β and pathological tau fibril formation through the induction of cis -Thr 231 tau conformers. A potential role of TDP-43 acting synergistically with pathological tau metabolism is proposed.

  6. Learning Impairments, Memory Deficits, and Neuropathology in Aged Tau Transgenic Mice Are Dependent on Leukotrienes Biosynthesis: Role of the cdk5 Kinase Pathway.

    PubMed

    Giannopoulos, Phillip F; Chiu, Jian; Praticò, Domenico

    2018-06-07

    Previous studies showed that the leukotrienes pathway is increased in human tauopathy and that its manipulation may modulate the onset and development of the pathological phenotype of tau transgenic mice. However, whether interfering with leukotrienes biosynthesis is beneficial after the behavioral deficits and the neuropathology have fully developed in these mice is not known. To test this hypothesis, aged tau transgenic mice were randomized to receive zileuton, a specific leukotriene biosynthesis inhibitor, or vehicle starting at 12 months of age for 16 weeks and then assessed in their functional and pathological phenotype. Compared with baseline, we observed that untreated tau mice had a worsening of their memory and spatial learning. By contrast, tau mice treated with zileuton had a reversal of these deficits and behaved in an undistinguishable manner from wild-type mice. Leukotriene-inhibited tau mice had an amelioration of synaptic integrity, lower levels of neuroinflammation, and a significant reduction in tau phosphorylation and pathology, which was secondary to an involvement of the cdk5 kinase pathway. Taken together, our findings represent the first demonstration that the leukotriene biosynthesis is functionally involved at the later stages of the tau pathological phenotype and represents an ideal target with viable therapeutic potential for treating human tauopathies.

  7. 18F-AV-1451 tau PET imaging correlates strongly with tau neuropathology in MAPT mutation carriers

    PubMed Central

    Puschmann, Andreas; Schöll, Michael; Ohlsson, Tomas; van Swieten, John; Honer, Michael; Englund, Elisabet

    2016-01-01

    Abstract Tau positron emission tomography ligands provide the novel possibility to image tau pathology in vivo. However, little is known about how in vivo brain uptake of tau positron emission tomography ligands relates to tau aggregates observed post-mortem. We performed tau positron emission tomography imaging with 18F-AV-1451 in three patients harbouring a p.R406W mutation in the MAPT gene, encoding tau. This mutation results in 3- and 4-repeat tau aggregates similar to those in Alzheimer’s disease, and many of the mutation carriers initially suffer from memory impairment and temporal lobe atrophy. Two patients with short disease duration and isolated memory impairment exhibited 18F-AV-1451 uptake mainly in the hippocampus and adjacent temporal lobe regions, correlating with glucose hypometabolism in corresponding regions. One patient died after 26 years of disease duration with dementia and behavioural deficits. Pre-mortem, there was 18F-AV-1451 uptake in the temporal and frontal lobes, as well as in the basal ganglia, which strongly correlated with the regional extent and amount of tau pathology in post-mortem brain sections. Amyloid-β (18F-flutemetamol) positron emission tomography scans were negative in all cases, as were stainings of brain sections for amyloid. This provides strong evidence that 18F-AV-1451 positron emission tomography can be used to accurately quantify in vivo the regional distribution of hyperphosphorylated tau protein. PMID:27357347

  8. GFP-Mutant Human Tau Transgenic Mice Develop Tauopathy Following CNS Injections of Alzheimer's Brain-Derived Pathological Tau or Synthetic Mutant Human Tau Fibrils

    PubMed Central

    Banks, Rachel A.; Kim, Bumjin; Xu, Hong; Changolkar, Lakshmi; Leight, Susan N.; Riddle, Dawn M.; Li, Chi; Brown, Hannah J.; Zhang, Bin

    2017-01-01

    Neurodegenerative proteinopathies characterized by intracellular aggregates of tau proteins, termed tauopathies, include Alzheimer's disease (AD), frontotemporal lobar degeneration (FTLD) with tau pathology (FTLD-tau), and related disorders. Pathological tau proteins derived from human AD brains (AD-tau) act as proteopathic seeds that initiate the templated aggregation of soluble tau upon intracerebral injection into tau transgenic (Tg) and wild-type mice, thereby modeling human tau pathology. In this study, we found that aged Tg mice of both sexes expressing human tau proteins harboring a pathogenic P301L MAPT mutation labeled with green fluorescent protein (T40PL-GFP Tg mouse line) exhibited hyperphosphorylated tau mislocalized to the somatodentritic domain of neurons, but these mice did not develop de novo insoluble tau aggregates, which are characteristic of human AD and related tauopathies. However, intracerebral injections of either T40PL preformed fibrils (PFFs) or AD-tau seeds into T40PL-GFP mice induced abundant intraneuronal pathological inclusions of hyperphosphorylated T40PL-GFP. These injections of pathological tau resulted in the propagation of tau pathology from the injection site to neuroanatomically connected brain regions, and these tau inclusions consisted of both T40PL-GFP and WT endogenous mouse tau. Primary neurons cultured from the brains of neonatal T40PL-GFP mice provided an informative in vitro model for examining the uptake and localization of tau PFFs. These findings demonstrate the seeded aggregation of T40PL-GFP in vivo by synthetic PFFs and human AD-tau and the utility of this system to study the neuropathological spread of tau aggregates. SIGNIFICANCE STATEMENT The stereotypical spread of pathological tau protein aggregates have recently been attributed to the transmission of proteopathic seeds. Despite the extensive use of transgenic mouse models to investigate the propagation of tau pathology in vivo, details of the aggregation

  9. The neuropathology of chronic traumatic encephalopathy.

    PubMed

    McKee, Ann C; Stein, Thor D; Kiernan, Patrick T; Alvarez, Victor E

    2015-05-01

    Repetitive brain trauma is associated with a progressive neurological deterioration, now termed as chronic traumatic encephalopathy (CTE). Most instances of CTE occur in association with the play of sports, but CTE has also been reported in association with blast injuries and other neurotrauma. Symptoms of CTE include behavioral and mood changes, memory loss, cognitive impairment and dementia. Like many other neurodegenerative diseases, CTE is diagnosed with certainty only by neuropathological examination of brain tissue. CTE is a tauopathy characterized by the deposition of hyperphosphorylated tau (p-tau) protein as neurofibrillary tangles, astrocytic tangles and neurites in striking clusters around small blood vessels of the cortex, typically at the sulcal depths. Severely affected cases show p-tau pathology throughout the brain. Abnormalities in phosphorylated 43 kDa TAR DNA-binding protein are found in most cases of CTE; beta-amyloid is identified in 43%, associated with age. Given the importance of sports participation and physical exercise to physical and psychological health as well as disease resilience, it is critical to identify the genetic risk factors for CTE as well as to understand how other variables, such as stress, age at exposure, gender, substance abuse and other exposures, contribute to the development of CTE. © 2015 International Society of Neuropathology.

  10. Molecular and Genetic Investigation of Tau in Chronic Traumatic Encephalopathy (Log No. 13267017)

    DTIC Science & Technology

    2017-10-01

    AWARD NUMBER: W81XWH-14-1-0399 TITLE: Molecular & Genetic Investigation of Tau in Chronic Traumatic Encephalopathy (Log No. 13267017) PRINCIPAL...neuropathological findings we are currently characterizing in individuals with CTE reflect molecular and genetic differences that will enable the...INTRODUCTION: Repetitive mild traumatic brain injury leads to neurological symptoms and chronic traumatic encephalopathy (CTE). The molecular changes

  11. GFP-Mutant Human Tau Transgenic Mice Develop Tauopathy Following CNS Injections of Alzheimer's Brain-Derived Pathological Tau or Synthetic Mutant Human Tau Fibrils.

    PubMed

    Gibbons, Garrett S; Banks, Rachel A; Kim, Bumjin; Xu, Hong; Changolkar, Lakshmi; Leight, Susan N; Riddle, Dawn M; Li, Chi; Gathagan, Ronald J; Brown, Hannah J; Zhang, Bin; Trojanowski, John Q; Lee, Virginia M-Y

    2017-11-22

    Neurodegenerative proteinopathies characterized by intracellular aggregates of tau proteins, termed tauopathies, include Alzheimer's disease (AD), frontotemporal lobar degeneration (FTLD) with tau pathology (FTLD-tau), and related disorders. Pathological tau proteins derived from human AD brains (AD-tau) act as proteopathic seeds that initiate the templated aggregation of soluble tau upon intracerebral injection into tau transgenic (Tg) and wild-type mice, thereby modeling human tau pathology. In this study, we found that aged Tg mice of both sexes expressing human tau proteins harboring a pathogenic P301L MAPT mutation labeled with green fluorescent protein (T40PL-GFP Tg mouse line) exhibited hyperphosphorylated tau mislocalized to the somatodentritic domain of neurons, but these mice did not develop de novo insoluble tau aggregates, which are characteristic of human AD and related tauopathies. However, intracerebral injections of either T40PL preformed fibrils (PFFs) or AD-tau seeds into T40PL-GFP mice induced abundant intraneuronal pathological inclusions of hyperphosphorylated T40PL-GFP. These injections of pathological tau resulted in the propagation of tau pathology from the injection site to neuroanatomically connected brain regions, and these tau inclusions consisted of both T40PL-GFP and WT endogenous mouse tau. Primary neurons cultured from the brains of neonatal T40PL-GFP mice provided an informative in vitro model for examining the uptake and localization of tau PFFs. These findings demonstrate the seeded aggregation of T40PL-GFP in vivo by synthetic PFFs and human AD-tau and the utility of this system to study the neuropathological spread of tau aggregates. SIGNIFICANCE STATEMENT The stereotypical spread of pathological tau protein aggregates have recently been attributed to the transmission of proteopathic seeds. Despite the extensive use of transgenic mouse models to investigate the propagation of tau pathology in vivo , details of the aggregation

  12. Neuropathology of supercentenarians - four autopsy case studies.

    PubMed

    Takao, Masaki; Hirose, Nobuyoshi; Arai, Yasumichi; Mihara, Ban; Mimura, Masaru

    2016-09-02

    Supercentenarians (aged 110 years old or more) are extremely rare in the world population (the number of living supercentenarians is estimated as 47 in the world), and details about their neuropathological information are limited. Based on previous studies, centenarians (aged 100-109 years old) exhibit several types of neuropathological changes, such as Alzheimer's disease and Lewy body disease pathology, primary age-related tauopathy, TDP-43 pathology, and hippocampal sclerosis. In the present study, we provide results from neuropathological analyses of four supercentenarian autopsy cases using conventional and immunohistochemical analysis for neurodegenerative disorders. In particular, we focused on the pathology of Alzheimer's disease and Lewy body disease, as well as the status of hippocampal sclerosis, TDP-43 pathology, aging-related tau astrogliopathy, and cerebrovascular diseases. Three cases were characterized as an "intermediate" level of Alzheimer's disease changes (NIA-AA guideline) and one was characterized as primary age-related tauopathy. TDP-43 deposits were present in the hippocampus in two cases. Neither Lewy body pathology nor hippocampal sclerosis was observed. Aging-related tau astrogliopathy was consistently observed, particularly in the basal forebrain. Small vessel diseases were also present, but they were relatively mild for cerebral amyloid-beta angiopathy and arteriolosclerosis. Although our study involved a small number of cases, the results provide a better understanding about human longevity. Neuropathological alterations associated with aging were mild to moderate in the supercentenarian brain, suggesting that these individuals might have some neuroprotective factors against aging. Future prospective studies and extensive molecular analyses are needed to determine the mechanisms of human longevity.

  13. [Clinical aspects, imaging and neuropathology of Kii ALS/PDC].

    PubMed

    Kokubo, Yasumasa

    2007-11-01

    During 1996 and 2006, we examined clinically 37 patients and neuropathologically 13 autopsy cases with amyotrophic lateral sclerosis/parkinsonism-dementia complex of the Kii peninsula (Kii ALS/PDC). The ages of onset were between 52 years and 74 years (mean age: 65.3 years). The male to female ratio was 1:1.85. The ratio of positive family history where ALS or PDC occurred within the fourth degree of the relatives was 78.4% in the patients with Kii ALS/PDC. The average duration of the illness was 6.47 years. Kii ALS/PDC was divided into five clinical subtypes, pure ALS form, ALS with dementia form, PDC with parkinsonism predominant form, PDC with dementia predominant form (that is called late-life dementia in Guam) and PDC with ALS features form. Unique pigmentary retinopathy was found in 33.3% of the patients with Kii ALS/PDC. CT/MRI images showed atrophy of the frontal and temporal lobes and SPECT images showed a decrease in the blood flow of the frontal and temporal lobes. The cardiac 123I-MIBG uptake was decreased in 4 out of 8 patients with ALS/PDC and the decrease in uptake correlated with the modified Hoehn-Yahr staging. The cardinal neuropathological features of Kii ALS/PDC were abundant neurofibrillary tangles (NFTs) associated with loss of nerve cells in the cerebral cortex and the brain stem, and findings of ALS neuropathology. Ultrastructurally, NFTs consisted of paired helical filaments. Tau protein, a main component of NFTs, was consisted of 3R and 4R tau isoforms, and phosphoryrated at 18 sites of tau phosphoryrated sites. The neurons of dentate gyrus of hippocampus and anterior horn cells were stained with anti-TDP-43 antibody. The clinical and neuropathological aspects of Kii ALS/PDC are regarded as being identical with those of Guam ALS/PDC.

  14. Insulin deprivation induces PP2A inhibition and tau hyperphosphorylation in hTau mice, a model of Alzheimer's disease-like tau pathology.

    PubMed

    Gratuze, Maud; Julien, Jacinthe; Petry, Franck R; Morin, Françoise; Planel, Emmanuel

    2017-04-12

    Abnormally hyperphosphorylated tau aggregated as intraneuronal neurofibrillary tangles is one of the two neuropathological hallmarks of Alzheimer's disease (AD). The majority of AD cases are sporadic with numerous environmental, biological and genetic risks factors. Interestingly, insulin dysfunction and hyperglycaemia are both risk factors for sporadic AD. However, how hyperglycaemia and insulin dysfunction affect tau pathology, is not well understood. In this study, we examined the effects of insulin deficiency on tau pathology in transgenic hTau mice by injecting different doses of streptozotocin (STZ), a toxin that destroys insulin-producing cells in the pancreas. One high dose of STZ resulted in marked diabetes, and five low doses led to a milder diabetes. Both groups exhibited brain tau hyperphosphorylation but no increased aggregation. Tau hyperphosphorylation correlated with inhibition of Protein Phosphatase 2A (PP2A), the main tau phosphatase. Interestingly, insulin injection 30 minutes before sacrifice partially restored tau phosphorylation to control levels in both STZ-injected groups. Our results confirm a link between insulin homeostasis and tau phosphorylation, which could explain, at least in part, a higher incidence of AD in diabetic patients.

  15. Paired Helical Filaments from Alzheimer Disease Brain Induce Intracellular Accumulation of Tau Protein in Aggresomes*

    PubMed Central

    Santa-Maria, Ismael; Varghese, Merina; Ksiȩżak-Reding, Hanna; Dzhun, Anastasiya; Wang, Jun; Pasinetti, Giulio M.

    2012-01-01

    Abnormal folding of tau protein leads to the generation of paired helical filaments (PHFs) and neurofibrillary tangles, a key neuropathological feature in Alzheimer disease and tauopathies. A specific anatomical pattern of pathological changes developing in the brain suggests that once tau pathology is initiated it propagates between neighboring neuronal cells, possibly spreading along the axonal network. We studied whether PHFs released from degenerating neurons could be taken up by surrounding cells and promote spreading of tau pathology. Neuronal and non-neuronal cells overexpressing green fluorescent protein-tagged tau (GFP-Tau) were treated with isolated fractions of human Alzheimer disease-derived PHFs for 24 h. We found that cells internalized PHFs through an endocytic mechanism and developed intracellular GFP-Tau aggregates with attributes of aggresomes. This was particularly evident by the perinuclear localization of aggregates and redistribution of the vimentin intermediate filament network and retrograde motor protein dynein. Furthermore, the content of Sarkosyl-insoluble tau, a measure of abnormal tau aggregation, increased 3-fold in PHF-treated cells. An exosome-related mechanism did not appear to be involved in the release of GFP-Tau from untreated cells. The evidence that cells can internalize PHFs, leading to formation of aggresome-like bodies, opens new therapeutic avenues to prevent propagation and spreading of tau pathology. PMID:22496370

  16. Insulin deprivation induces PP2A inhibition and tau hyperphosphorylation in hTau mice, a model of Alzheimer’s disease-like tau pathology

    PubMed Central

    Gratuze, Maud; Julien, Jacinthe; Petry, Franck R.; Morin, Françoise; Planel, Emmanuel

    2017-01-01

    Abnormally hyperphosphorylated tau aggregated as intraneuronal neurofibrillary tangles is one of the two neuropathological hallmarks of Alzheimer’s disease (AD). The majority of AD cases are sporadic with numerous environmental, biological and genetic risks factors. Interestingly, insulin dysfunction and hyperglycaemia are both risk factors for sporadic AD. However, how hyperglycaemia and insulin dysfunction affect tau pathology, is not well understood. In this study, we examined the effects of insulin deficiency on tau pathology in transgenic hTau mice by injecting different doses of streptozotocin (STZ), a toxin that destroys insulin-producing cells in the pancreas. One high dose of STZ resulted in marked diabetes, and five low doses led to a milder diabetes. Both groups exhibited brain tau hyperphosphorylation but no increased aggregation. Tau hyperphosphorylation correlated with inhibition of Protein Phosphatase 2A (PP2A), the main tau phosphatase. Interestingly, insulin injection 30 minutes before sacrifice partially restored tau phosphorylation to control levels in both STZ-injected groups. Our results confirm a link between insulin homeostasis and tau phosphorylation, which could explain, at least in part, a higher incidence of AD in diabetic patients. PMID:28402338

  17. The novel Tau mutation G335S: clinical, neuropathological and molecular characterization.

    PubMed

    Spina, Salvatore; Murrell, Jill R; Yoshida, Hirotaka; Ghetti, Bernardino; Bermingham, Niamh; Sweeney, Brian; Dlouhy, Stephen R; Crowther, R Anthony; Goedert, Michel; Keohane, Catherine

    2007-04-01

    Mutations in Tau cause the inherited neurodegenerative disease, frontotemporal dementia and Parkinsonism linked to chromosome 17 (FTDP-17). Known coding region mutations cluster in the microtubule-binding region, where they alter the ability of tau to promote microtubule assembly. Depending on the tau isoforms, this region consists of three or four imperfect repeats of 31 or 32 amino acids, each of which contains a characteristic and invariant PGGG motif. Here, we report the novel G335S mutation, which changes the PGGG motif of the third tau repeat to PGGS, in an individual who developed social withdrawal, emotional bluntness and stereotypic behavior at age 22, followed by disinhibition, hyperorality and ideomotor apraxia. Abundant tau-positive inclusions were present in neurons and glia in the frontotemporal cortex, hippocampus and brainstem. Sarkosyl-insoluble tau showed paired helical and straight filaments, as well as more irregular rope-like filaments. The pattern of pathological tau bands was like that of Alzheimer disease. Experimentally, the G335S mutation resulted in a greatly reduced ability of tau to promote microtubule assembly, while having no significant effect on heparin-induced assembly of recombinant tau into filaments.

  18. mTOR in Down syndrome: Role in Aß and tau neuropathology and transition to Alzheimer disease-like dementia.

    PubMed

    Di Domenico, Fabio; Tramutola, Antonella; Foppoli, Cesira; Head, Elizabeth; Perluigi, Marzia; Butterfield, D Allan

    2018-01-01

    The mammalian target of rapamycin (mTOR) is a serine/threonine protein kinase involved in the regulation of protein synthesis and degradation, longevity and cytoskeletal formation. The mTOR pathway represents a key growth and survival pathway involved in several diseases such as cancer, obesity, cardiovascular disease and neurodegenerative diseases. Numerous studies linked the alterations of mTOR pathway to age-dependent cognitive decline, pathogenesis of Alzheimer disease (AD) and AD-like dementia in Down syndrome (DS). DS is the most frequent chromosomal abnormality that causes intellectual disability. The neuropathology of AD in DS is complex and involves impaired mitochondrial function, defects in neurogenesis, increased oxidative stress, altered proteostasis and autophagy networks as a result of triplication of chromosome 21(chr 21). The chr21 gene products are considered a principal neuropathogenic moiety in DS. Several genes involved respectively in the formation of senile plaques and neurofibrillary tangles (NFT), two main pathological hallmarks of AD, are mapped on chr21. Further, in subjects with DS the activation of mTOR signaling contributes to Aβ generation and the formation of NFT. This review discusses recent research highlighting the complex role of mTOR associated with the presence of two hallmarks of AD pathology, senile plaques (composed mostly of fibrillar Aß peptides), and NFT (composed mostly of hyperphosphorylated tau protein). Oxidative stress, associated with chr21-related Aβ and mitochondrial alterations, may significantly contribute to this linkage of mTOR to AD-like neuropathology in DS. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Down but Not Out: The Consequences of Pretangle Tau in the Locus Coeruleus

    PubMed Central

    Chalermpalanupap, Termpanit; Weinshenker, David

    2017-01-01

    Degeneration of locus coeruleus (LC) is an underappreciated hallmark of Alzheimer's disease (AD). The LC is the main source of norepinephrine (NE) in the forebrain, and its degeneration is highly correlated with cognitive impairment and amyloid-beta (Aβ) and tangle pathology. Hyperphosphorylated tau in the LC is among the first detectable AD-like neuropathology in the brain, and while the LC/NE system impacts multiple aspects of AD (e.g., cognition, neuropathology, and neuroinflammation), the functional consequences of hyperphosphorylated tau accrual on LC neurons are not known. Recent evidence suggests that LC neurons accumulate aberrant tau species for decades before frank LC cell body degeneration occurs in AD, suggesting that a therapeutic window exists. In this review, we combine the literature on how pathogenic tau affects forebrain neurons with the known properties and degeneration patterns of LC neurons to synthesize hypotheses on hyperphosphorylated tau-induced dysfunction of LC neurons and the prion-like spread of pretangle tau from the LC to the forebrain. We also propose novel experiments using both in vitro and in vivo models to address the many questions surrounding the impact of hyperphosphorylated tau on LC neurons in AD and its role in disease progression. PMID:29038736

  20. Head injury does not alter disease progression or neuropathologic outcomes in ALS.

    PubMed

    Fournier, Christina N; Gearing, Marla; Upadhyayula, Saila R; Klein, Mitch; Glass, Jonathan D

    2015-04-28

    To study the effects of head injury on disease progression and on neuropathologic outcomes in amyotrophic lateral sclerosis (ALS). Patients with ALS were surveyed to obtain head injury history, and medical records were reviewed. Linear regression was performed to determine if head injury was a predictor for mean monthly decline of Amyotrophic Lateral Sclerosis Functional Rating Scale-revised (ALSFRS-R), while controlling for confounders. Head injury history was obtained from family members of ALS autopsy cases. The frequency of tau proteinopathy, brain TDP-43 inclusions, and pathologic findings of Alzheimer disease (AD) were examined in ALS cases with head injury compared to cases without. Logistic regression was performed with each neuropathologic diagnosis as an outcome measure and head injury as a predictor variable. No difference was seen in rate of decline of the ALSFRS-R between patients with head injury (n = 24) and without (n = 76), with mean monthly decline of -0.9 for both groups (p = 0.18). Of 47 ALS autopsy cases (n = 9 with head injury, n = 38 without), no significant differences were seen in the frequency of tau proteinopathy (11% with head injury; 24% without), TDP-43 in the brain (44% with head injury; 45% without), or AD pathology (33% with head injury; 26% without). Independent logistic regression models showed head injury was not a predictor of tau pathology (p = 0.42) or TDP-43 in the brain (p = 0.99). Head injury was not associated with faster disease progression in ALS and did not result in a specific neuropathologic phenotype. The tau pathology described with chronic traumatic encephalopathy was found in ALS autopsy cases both with and without head injury. © 2015 American Academy of Neurology.

  1. Postmortem 3-D brain hemisphere cortical tau and amyloid-β pathology mapping and quantification as a validation method of neuropathology imaging.

    PubMed

    Smid, Lojze M; Kepe, Vladimir; Vinters, Harry V; Bresjanac, Mara; Toyokuni, Tatsushi; Satyamurthy, Nagichettiar; Wong, Koon-Pong; Huang, Sung-Cheng; Silverman, Daniel H S; Miller, Karen; Small, Gary W; Barrio, Jorge R

    2013-01-01

    This work is aimed at correlating pre-mortem [18F]FDDNP positron emission tomography (PET) scan results in a patient with dementia with Lewy bodies (DLB), with cortical neuropathology distribution determined postmortem in three physical dimensions in whole brain coronal sections. Analysis of total amyloid-β (Aβ) distribution in frontal cortex and posterior cingulate gyrus confirmed its statistically significant correlation with cortical [18F]FDDNP PET binding values (distribution volume ratios, DVR) (p < 0.001, R = 0.97, R2 = 0.94). Neurofibrillary tangle (NFT) distribution correlated significantly with cortical [18F]FDDNP PET DVR in the temporal lobe (p < 0.001, R = 0.87, R2 = 0.76). Linear combination of Aβ and NFT densities was highly predictive of [18F]FDDNP PET DVR through all analyzed regions of interest (p < 0.0001, R = 0.92, R2 = 0.85), and both densities contributed significantly to the model. Lewy bodies were present at a much lower level than either Aβ or NFTs and did not significantly contribute to the in vivo signal. [18F]FDG PET scan results in this patient were consistent with the distinctive DLB pattern of hypometabolism. This work offers a mapping brain model applicable to all imaging probes for verification of imaging results with Aβ and/or tau neuropathology brain distribution using immunohistochemistry, fluorescence microscopy, and autoradiography.

  2. Entorhinal Tau Pathology, Episodic Memory Decline, and Neurodegeneration in Aging.

    PubMed

    Maass, Anne; Lockhart, Samuel N; Harrison, Theresa M; Bell, Rachel K; Mellinger, Taylor; Swinnerton, Kaitlin; Baker, Suzanne L; Rabinovici, Gil D; Jagust, William J

    2018-01-17

    The medial temporal lobe (MTL) is an early site of tau accumulation and MTL dysfunction may underlie episodic-memory decline in aging and dementia. Postmortem data indicate that tau pathology in the transentorhinal cortex is common by age 60, whereas spread to neocortical regions and worsening of cognition is associated with β-amyloid (Aβ). We used [ 18 F]AV-1451 and [ 11 C]PiB positron emission tomography, structural MRI, and neuropsychological assessment to investigate how in vivo tau accumulation in temporal lobe regions, Aβ, and MTL atrophy contribute to episodic memory in cognitively normal older adults ( n = 83; age, 77 ± 6 years; 58% female). Stepwise regressions identified tau in MTL regions known to be affected in old age as the best predictor of episodic-memory performance independent of Aβ status. There was no interactive effect of MTL tau with Aβ on memory. Higher MTL tau was related to higher age in the subjects without evidence of Aβ. Among temporal lobe subregions, episodic memory was most strongly related to tau-tracer uptake in the parahippocampal gyrus, particularly the posterior entorhinal cortex, which in our parcellation includes the transentorhinal cortex. In subjects with longitudinal MRI and cognitive data ( n = 57), entorhinal atrophy mirrored patterns of tau pathology and their relationship with memory decline. Our data are consistent with neuropathological studies and further suggest that entorhinal tau pathology underlies memory decline in old age even without Aβ. SIGNIFICANCE STATEMENT Tau tangles and β-amyloid (Aβ) plaques are key lesions in Alzheimer's disease (AD) but both pathologies also occur in cognitively normal older people. Neuropathological data indicate that tau tangles in the medial temporal lobe (MTL) underlie episodic-memory impairments in AD dementia. However, it remains unclear whether MTL tau pathology also accounts for memory impairments often seen in elderly people and how Aβ affects this relationship

  3. Monoaminergic Neuropathology in Alzheimer's disease

    PubMed Central

    Šimić, Goran; Leko, Mirjana Babić; Wray, Selina; Harrington, Charles; Delalle, Ivana; Jovanov-Milošević, Nataša; Bažadona, Danira; Buée, Luc; de Silva, Rohan; Di Giovanni, Giuseppe; Wischik, Claude; Hof, Patrick R.

    2016-01-01

    None of the proposed mechanisms of Alzheimer’s disease (AD) fully explains the distribution patterns of the neuropathological changes at the cellular and regional levels, and their clinical correlates. One aspect of this problem lies in the complex genetic, epigenetic, and environmental landscape of AD: early-onset AD is often familial with autosomal dominant inheritance, while the vast majority of AD cases are late-onset, with the ε4 variant of the gene encoding apolipoprotein E (APOE) known to confer a 5–20 fold increased risk with partial penetrance. Mechanisms by which genetic variants and environmental factors influence the development of AD pathological changes, especially neurofibrillary degeneration, are not yet known. Here we review current knowledge of the involvement of the monoaminergic systems in AD. The changes in the serotonergic, noradrenergic, dopaminergic, histaminergic, and melatonergic systems in AD are briefly described. We also summarize the possibilities for monoamine-based treatment in AD. Besides neuropathologic AD criteria that include the noradrenergic locus coeruleus (LC), special emphasis is given to the serotonergic dorsal raphe nucleus (DRN). Both of these brainstem nuclei are among the first to be affected by tau protein abnormalities in the course of sporadic AD, causing behavioral and cognitive symptoms of variable severity. The possibility that most of the tangle-bearing neurons of the LC and DRN may release amyloid β as well as soluble monomeric or oligomeric tau protein trans-synaptically by their diffuse projections to the cerebral cortex emphasizes their selective vulnerability and warrants further investigations of the monoaminergic systems in AD. PMID:27084356

  4. Tau Fibril Formation in Cultured Cells Compatible with a Mouse Model of Tauopathy.

    PubMed

    Matsumoto, Gen; Matsumoto, Kazuki; Kimura, Taeko; Suhara, Tetsuya; Higuchi, Makoto; Sahara, Naruhiko; Mori, Nozomu

    2018-05-17

    Neurofibrillary tangles composed of hyperphosphorylated tau protein are primarily neuropathological features of a number of neurodegenerative diseases collectively termed tauopathy. To understand the mechanisms underlying the cause of tauopathy, precise cellular and animal models are required. Recent data suggest that the transient introduction of exogenous tau can accelerate the development of tauopathy in the brains of non-transgenic and transgenic mice expressing wild-type human tau. However, the transmission mechanism leading to tauopathy is not fully understood. In this study, we developed cultured-cell models of tauopathy representing a human tauopathy. Neuro2a (N2a) cells containing propagative tau filaments were generated by introducing purified tau fibrils. These cell lines expressed full-length (2N4R) human tau and the green fluorescent protein (GFP)-fused repeat domain of tau with P301L mutation. Immunocytochemistry and super-resolution microscopic imaging revealed that tau inclusions exhibited filamentous morphology and were composed of both full-length and repeat domain fragment tau. Live-cell imaging analysis revealed that filamentous tau inclusions are transmitted to daughter cells, resulting in yeast-prion-like propagation. By a standard method of tau preparation, both full-length tau and repeat domain fragments were recovered in sarkosyl insoluble fraction. Hyperphosphorylation of full-length tau was confirmed by the immunoreactivity of phospho-Tau antibodies and mobility shifts by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). These properties were similar to the biochemical features of P301L mutated human tau in a mouse model of tauopathy. In addition, filamentous tau aggregates in cells barely co-localized with ubiquitins, suggesting that most tau aggregates were excluded from protein degradation systems, and thus propagated to daughter cells. The present cellular model of tauopathy will provide an advantage for dissecting

  5. Ultrastructural characteristics of tau filaments in tauopathies: immuno-electron microscopic demonstration of tau filaments in tauopathies.

    PubMed

    Arima, Kunimasa

    2006-10-01

    The microtubule-associated protein tau aggregates into filaments in the form of neurofibrillary tangles, neuropil threads and argyrophilic grains in neurons, in the form of variable astrocytic tangles in astrocytes and in the form of coiled bodies and argyrophilic threads in oligodendrocytes. These tau filaments may be classified into two types, straight filaments or tubules with 9-18 nm diameters and "twisted ribbons" composed of two parallel aligned components. In the same disease, the fine structure of tau filaments in glial cells roughly resembles that in neurons. In sporadic tauopathies, individual tau filaments show characteristic sizes, shapes and arrangements, and therefore contribute to neuropathologic differential diagnosis. In frontotemporal dementias caused by tau gene mutations, variable filamentous profiles were observed in association with mutation sites and insoluble tau isoforms, including straight filaments or tubules, paired helical filament-like filaments, and twisted ribbons. Pre-embedding immunoelectron microscopic studies were carried out using anti-3-repeat tau and anti-4-repeat tau specific antibodies, RD3 and RD4. Straight tubules in neuronal and astrocytic Pick bodies were immunolabeled by the anti-3-repeat tau antibody. The anti-4-repeat tau antibody recognized abnormal tubules comprising neurofibrillary tangles, coiled bodies and argyrophilic threads in progressive supranuclear palsy (PSP) and corticobasal degeneration. In the pre-embedding immunoelectron microscopic study using the phosphorylated tau AT8 antibody, tuft-shaped astrocytes of PSP were found to be composed of bundles of abnormal tubules in processes and perikarya of protoplasmic astrocytes. In this study, the 3-repeat tau or 4-repeat tau epitope was detected in situ at the ultrastructural level in abnormal tubules in representative pathological lesions in Pick's disease, PSP and corticobasal degeneration.

  6. Anesthesia and Tau Pathology

    PubMed Central

    Whittington, Robert A.; Bretteville, Alexis; Dickler, Maya F.; Planel, Emmanuel

    2013-01-01

    Alzheimer’s disease (AD) is the most common form of dementia and remains a growing worldwide health problem. As life expectancy continues to increase, the number of AD patients presenting for surgery and anesthesia will steadily rise. The etiology of sporadic AD is thought to be multifactorial, with environmental, biological and genetic factors interacting together to influence AD pathogenesis. Recent reports suggest that general anesthetics may be such a factor and may contribute to the development and exacerbation of this neurodegenerative disorder. Intra-neuronal neurofibrillary tangles (NFT), composed of hyperphosphorylated and aggregated tau protein are one of the main neuropathological hallmarks of AD. Tau pathology is important in AD as it correlates very well with cognitive dysfunction. Lately, several studies have begun to elucidate the mechanisms by which anesthetic exposure might affect the phosphorylation, aggregation and function of this microtubule-associated protein. Here, we specifically review the literature detailing the impact of anesthetic administration on aberrant tau hyperphosphorylation as well as the subsequent development of neurofibrillary pathology and degeneration. PMID:23535147

  7. Retarded axonal transport of R406W mutant tau in transgenic mice with a neurodegenerative tauopathy.

    PubMed

    Zhang, Bin; Higuchi, Makoto; Yoshiyama, Yasumasa; Ishihara, Takeshi; Forman, Mark S; Martinez, Dan; Joyce, Sonali; Trojanowski, John Q; Lee, Virginia M-Y

    2004-05-12

    Intracellular accumulations of filamentous tau inclusions are neuropathological hallmarks of neurodegenerative diseases known as tauopathies. The discovery of multiple pathogenic tau gene mutations in many kindreds with familial frontotemporal dementia with parkinsonism linked to chromosome 17 (FTDP-17) unequivocally confirmed the central role of tau abnormalities in the etiology of neurodegenerative disorders. To examine the effects of tau gene mutations and the role of tau abnormalities in neurodegenerative tauopathies, transgenic (Tg) mice were engineered to express the longest human tau isoform (T40) with or without the R406W mutation (RW and hWT Tg mice, respectively) that is pathogenic for FTDP-17 in several kindreds. RW but not hWT tau Tg mice developed an age-dependent accumulation of insoluble filamentous tau aggregates in neuronal perikarya of the cerebral cortex, hippocampus, cerebellum, and spinal cord. Significantly, CNS axons in RW mice contained reduced levels of tau when compared with hWT mice, and this was linked to retarded axonal transport and increased accumulation of an insoluble pool of RW but not hWT tau. Furthermore, RW but not hWT mice demonstrated neurodegeneration and a reduced lifespan. These data indicate that the R406W mutation causes reduced binding of this mutant tau to microtubules, resulting in slower axonal transport. This altered tau function caused by the RW mutation leads to increased accumulation and reduced solubility of RW tau in an age-dependent manner, culminating in the formation of filamentous intraneuronal tau aggregates similar to that observed in tauopathy patients.

  8. Digital pathology and image analysis for robust high-throughput quantitative assessment of Alzheimer disease neuropathologic changes.

    PubMed

    Neltner, Janna Hackett; Abner, Erin Lynn; Schmitt, Frederick A; Denison, Stephanie Kay; Anderson, Sonya; Patel, Ela; Nelson, Peter T

    2012-12-01

    Quantitative neuropathologic methods provide information that is important for both research and clinical applications. The technologic advancement of digital pathology and image analysis offers new solutions to enable valid quantification of pathologic severity that is reproducible between raters regardless of experience. Using an Aperio ScanScope XT and its accompanying image analysis software, we designed algorithms for quantitation of amyloid and tau pathologies on 65 β-amyloid (6F/3D antibody) and 48 phospho-tau (PHF-1)-immunostained sections of human temporal neocortex. Quantitative digital pathologic data were compared with manual pathology counts. There were excellent correlations between manually counted and digitally analyzed neuropathologic parameters (R² = 0.56-0.72). Data were highly reproducible among 3 participants with varying degrees of expertise in neuropathology (intraclass correlation coefficient values, >0.910). Digital quantification also provided additional parameters, including average plaque area, which shows statistically significant differences when samples are stratified according to apolipoprotein E allele status (average plaque area, 380.9 μm² in apolipoprotein E [Latin Small Letter Open E]4 carriers vs 274.4 μm² for noncarriers; p < 0.001). Thus, digital pathology offers a rigorous and reproducible method for quantifying Alzheimer disease neuropathologic changes and may provide additional insights into morphologic characteristics that were previously more challenging to assess because of technical limitations.

  9. Chronic Repetitive Mild Traumatic Brain Injury Results in Reduced Cerebral Blood Flow, Axonal Injury, Gliosis, and Increased T-Tau and Tau Oligomers

    PubMed Central

    Mouzon, Benoit; Algamal, Moustafa; Leary, Paige; Lynch, Cillian; Abdullah, Laila; Evans, James; Mullan, Michael; Bachmeier, Corbin; Stewart, William; Crawford, Fiona

    2016-01-01

    Exposure to repetitive mild traumatic brain injury (mTBI) is a risk factor for chronic traumatic encephalopathy, which is characterized by patchy deposition of hyperphosphorylated tau aggregates in neurons and astrocytes at the depths of cortical sulci. We developed an mTBI paradigm to explore effects of repetitive concussive-type injury over several months in mice with a human tau genetic background (hTau). Two injuries were induced in the hTau mice weekly over a period of 3 or 4 months and the effects were compared with those in noninjured sham animals. Behavioral and in vivo measures and detailed neuropathological assessments were conducted 6 months after the first injury. Our data confirm impairment in cerebral blood flow and white matter damage. This was accompanied by a 2-fold increase in total tau levels and mild increases in tau oligomers/conformers and pTau (Thr231) species in brain gray matter. There was no evidence of neurofibrillary/astroglial tangles, neuropil threads, or perivascular foci of tau immunoreactivity. There were neurobehavioral deficits (ie, disinhibition and impaired cognitive performance) in the mTBI animals. These data support the relevance of this new mTBI injury model for studying the consequences of chronic repetitive mTBI in humans, and the role of tau in TBI. PMID:27251042

  10. Alzheimer neuropathology without frontotemporal lobar degeneration hallmarks (TAR DNA-binding protein 43 inclusions) in missense progranulin mutation Cys139Arg.

    PubMed

    Redaelli, Veronica; Rossi, Giacomina; Maderna, Emanuela; Kovacs, Gabor G; Piccoli, Elena; Caroppo, Paola; Cacciatore, Francesca; Spinello, Sonia; Grisoli, Marina; Sozzi, Giuliano; Salmaggi, Andrea; Tagliavini, Fabrizio; Giaccone, Giorgio

    2018-01-01

    Null mutations in progranulin gene (GRN) reduce the progranulin production resulting in haploinsufficiency and are tightly associated with tau-negative frontotemporal lobar degeneration with TAR DNA-binding protein 43-positive inclusions (FTLD-TDP). Missense mutations of GRN were also identified, but their effects are not completely clear, in particular unanswered is the question of what neuropathology they elicit, also considering that their occurrence has been reported in patients with typical clinical features of Alzheimer disease. They describe two fraternal twins carrying the missense GRN Cys139Arg mutation affected by late-onset dementia and we report the neuropathological study of one of them. Both patients were examined by neuroimaging, neuropsychological assessment and genetic analysis of GRN and other genes associated with dementia. The brain of one was obtained at autopsy and examined neuropathologically. One sister presented clinical and MRI features leading to the diagnosis of Alzheimer disease. The other underwent autopsy and the brain showed neuropathological hallmarks of Alzheimer disease with abundant Aβ-amyloid deposition and Braak stage V of neurofibrillary pathology, in the absence of the hallmark lesions of FTLD-TDP. Their findings may contribute to better clarify the role of progranulin in neurodegenerative diseases indicating that some GRN mutations, in particular missense ones, may act as strong risk factor for Alzheimer disease rather than induce FTLD-TDP. © 2016 International Society of Neuropathology.

  11. The Neuropathology of Chronic Traumatic Encephalopathy

    PubMed Central

    McKee, Ann C.; Stein, Thor D.; Kiernan, Patrick T.; Alvarez, Victor E.

    2015-01-01

    Repetitive brain trauma is associated with a progressive neurological deterioration, now termed as chronic traumatic encephalopathy (CTE). Most instances of CTE occur in association with the play of sports, but CTE has also been reported in association with blast injuries and other neurotrauma. Symptoms of CTE include behavioral and mood changes, memory loss, cognitive impairment and dementia. Like many other neurodegenerative diseases, CTE is diagnosed with certainty only by neuropathological examination of brain tissue. CTE is a tauopathy characterized by the deposition of hyperphosphorylated tau (p-tau) protein as neurofibrillary tangles, astrocytic tangles and neurites in striking clusters around small blood vessels of the cortex, typically at the sulcal depths. Severely affected cases show p-tau pathology throughout the brain. Abnormalities in phosphorylated 43 kDa TAR DNA-binding protein are found in most cases of CTE; beta-amyloid is identified in 43%, associated with age. Given the importance of sports participation and physical exercise to physical and psychological health as well as disease resilience, it is critical to identify the genetic risk factors for CTE as well as to understand how other variables, such as stress, age at exposure, gender, substance abuse and other exposures, contribute to the development of CTE. PMID:25904048

  12. Chronic Repetitive Mild Traumatic Brain Injury Results in Reduced Cerebral Blood Flow, Axonal Injury, Gliosis, and Increased T-Tau and Tau Oligomers.

    PubMed

    Ojo, Joseph O; Mouzon, Benoit; Algamal, Moustafa; Leary, Paige; Lynch, Cillian; Abdullah, Laila; Evans, James; Mullan, Michael; Bachmeier, Corbin; Stewart, William; Crawford, Fiona

    2016-07-01

    Exposure to repetitive mild traumatic brain injury (mTBI) is a risk factor for chronic traumatic encephalopathy, which is characterized by patchy deposition of hyperphosphorylated tau aggregates in neurons and astrocytes at the depths of cortical sulci. We developed an mTBI paradigm to explore effects of repetitive concussive-type injury over several months in mice with a human tau genetic background (hTau). Two injuries were induced in the hTau mice weekly over a period of 3 or 4 months and the effects were compared with those in noninjured sham animals. Behavioral and in vivo measures and detailed neuropathological assessments were conducted 6 months after the first injury. Our data confirm impairment in cerebral blood flow and white matter damage. This was accompanied by a 2-fold increase in total tau levels and mild increases in tau oligomers/conformers and pTau (Thr231) species in brain gray matter. There was no evidence of neurofibrillary/astroglial tangles, neuropil threads, or perivascular foci of tau immunoreactivity. There were neurobehavioral deficits (ie, disinhibition and impaired cognitive performance) in the mTBI animals. These data support the relevance of this new mTBI injury model for studying the consequences of chronic repetitive mTBI in humans, and the role of tau in TBI. © 2016 American Association of Neuropathologists, Inc. All rights reserved.

  13. The neuropathology and neurobiology of traumatic brain injury.

    PubMed

    Blennow, Kaj; Hardy, John; Zetterberg, Henrik

    2012-12-06

    The acute and long-term consequences of traumatic brain injury (TBI) have received increased attention in recent years. In this Review, we discuss the neuropathology and neural mechanisms associated with TBI, drawing on findings from sports-induced TBI in athletes, in whom acute TBI damages axons and elicits both regenerative and degenerative tissue responses in the brain and in whom repeated concussions may initiate a long-term neurodegenerative process called dementia pugilistica or chronic traumatic encephalopathy (CTE). We also consider how the neuropathology and neurobiology of CTE in many ways resembles other neurodegenerative illnesses such as Alzheimer's disease, particularly with respect to mismetabolism and aggregation of tau, β-amyloid, and TDP-43. Finally, we explore how translational research in animal models of acceleration/deceleration types of injury relevant for concussion together with clinical studies employing imaging and biochemical markers may further elucidate the neurobiology of TBI and CTE. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Neuropathologic Associations of Learning and Memory in Primary Progressive Aphasia.

    PubMed

    Kielb, Stephanie; Cook, Amanda; Wieneke, Christina; Rademaker, Alfred; Bigio, Eileen H; Mesulam, Marek-Marsel; Rogalski, Emily; Weintraub, Sandra

    2016-07-01

    The dementia syndrome of primary progressive aphasia (PPA) can be caused by 1 of several neuropathologic entities, including forms of frontotemporal lobar degeneration (FTLD) or Alzheimer disease (AD). Although episodic memory is initially spared in this syndrome, the subtle learning and memory features of PPA and their neuropathologic associations have not been characterized. To detect subtle memory differences on the basis of autopsy-confirmed neuropathologic diagnoses in PPA. Retrospective analysis was conducted at the Northwestern Cognitive Neurology and Alzheimer's Disease Center in August 2015 using clinical and postmortem autopsy data that had been collected between August 1983 and June 2012. Thirteen patients who had the primary clinical diagnosis of PPA and an autopsy-confirmed diagnosis of either AD (PPA-AD) or a tau variant of FTLD (PPA-FTLD) and 6 patients who had the clinical diagnosis of amnestic dementia and autopsy-confirmed AD (AMN-AD) were included. Scores on the effortless learning, delayed retrieval, and retention conditions of the Three Words Three Shapes test, a specialized measure of verbal and nonverbal episodic memory. The PPA-FTLD (n = 6), PPA-AD (n = 7), and AMN-AD (n = 6) groups did not differ by demographic composition (all P > .05). The sample mean (SD) age was 64.1 (10.3) years at symptom onset and 67.9 (9.9) years at Three Words Three Shapes test administration. The PPA-FTLD group had normal (ie, near-ceiling) scores on all verbal and nonverbal test conditions. Both the PPA-AD and AMN-AD groups had deficits in verbal effortless learning (mean [SD] number of errors, 9.9 [4.6] and 14.2 [2.0], respectively) and verbal delayed retrieval (mean [SD] number of errors, 6.1 [5.9] and 12.0 [4.4], respectively). The AMN-AD group had additional deficits in nonverbal effortless learning (mean [SD] number of errors, 10.3 [4.0]) and verbal retention (mean [SD] number of errors, 8.33 [5.2]), which were not observed in the PPA-FTLD or

  15. Insulin dysfunction and Tau pathology.

    PubMed

    El Khoury, Noura B; Gratuze, Maud; Papon, Marie-Amélie; Bretteville, Alexis; Planel, Emmanuel

    2014-01-01

    The neuropathological hallmarks of Alzheimer's disease (AD) include senile plaques of β-amyloid (Aβ) peptides (a cleavage product of the Amyloid Precursor Protein, or APP) and neurofibrillary tangles (NFT) of hyperphosphorylated Tau protein assembled in paired helical filaments (PHF). NFT pathology is important since it correlates with the degree of cognitive impairment in AD. Only a small proportion of AD is due to genetic variants, whereas the large majority of cases (~99%) is late onset and sporadic in origin. The cause of sporadic AD is likely to be multifactorial, with external factors interacting with biological or genetic susceptibilities to accelerate the manifestation of the disease. Insulin dysfunction, manifested by diabetes mellitus (DM) might be such factor, as there is extensive data from epidemiological studies suggesting that DM is associated with an increased relative risk for AD. Type 1 diabetes (T1DM) and type 2 diabetes (T2DM) are known to affect multiple cognitive functions in patients. In this context, understanding the effects of diabetes on Tau pathogenesis is important since Tau pathology show a strong relationship to dementia in AD, and to memory loss in normal aging and mild cognitive impairment. Here, we reviewed preclinical studies that link insulin dysfunction to Tau protein pathogenesis, one of the major pathological hallmarks of AD. We found more than 30 studies reporting Tau phosphorylation in a mouse or rat model of insulin dysfunction. We also payed attention to potential sources of artifacts, such as hypothermia and anesthesia, that were demonstrated to results in Tau hyperphosphorylation and could major confounding experimental factors. We found that very few studies reported the temperature of the animals, and only a handful did not use anesthesia. Overall, most published studies showed that insulin dysfunction can promote Tau hyperphosphorylation and pathology, both directly and indirectly, through hypothermia.

  16. Insulin dysfunction and Tau pathology

    PubMed Central

    El Khoury, Noura B.; Gratuze, Maud; Papon, Marie-Amélie; Bretteville, Alexis; Planel, Emmanuel

    2013-01-01

    The neuropathological hallmarks of Alzheimer's disease (AD) include senile plaques of β-amyloid (Aβ) peptides (a cleavage product of the Amyloid Precursor Protein, or APP) and neurofibrillary tangles (NFT) of hyperphosphorylated Tau protein assembled in paired helical filaments (PHF). NFT pathology is important since it correlates with the degree of cognitive impairment in AD. Only a small proportion of AD is due to genetic variants, whereas the large majority of cases (~99%) is late onset and sporadic in origin. The cause of sporadic AD is likely to be multifactorial, with external factors interacting with biological or genetic susceptibilities to accelerate the manifestation of the disease. Insulin dysfunction, manifested by diabetes mellitus (DM) might be such factor, as there is extensive data from epidemiological studies suggesting that DM is associated with an increased relative risk for AD. Type 1 diabetes (T1DM) and type 2 diabetes (T2DM) are known to affect multiple cognitive functions in patients. In this context, understanding the effects of diabetes on Tau pathogenesis is important since Tau pathology show a strong relationship to dementia in AD, and to memory loss in normal aging and mild cognitive impairment. Here, we reviewed preclinical studies that link insulin dysfunction to Tau protein pathogenesis, one of the major pathological hallmarks of AD. We found more than 30 studies reporting Tau phosphorylation in a mouse or rat model of insulin dysfunction. We also payed attention to potential sources of artifacts, such as hypothermia and anesthesia, that were demonstrated to results in Tau hyperphosphorylation and could major confounding experimental factors. We found that very few studies reported the temperature of the animals, and only a handful did not use anesthesia. Overall, most published studies showed that insulin dysfunction can promote Tau hyperphosphorylation and pathology, both directly and indirectly, through hypothermia. PMID:24574966

  17. Frontotemporal dementia with Pick-type histology associated with Q336R mutation in the tau gene.

    PubMed

    Pickering-Brown, S M; Baker, M; Nonaka, T; Ikeda, K; Sharma, S; Mackenzie, J; Simpson, S A; Moore, J W; Snowden, J S; de Silva, R; Revesz, T; Hasegawa, M; Hutton, M; Mann, D M A

    2004-06-01

    In this report, we describe the clinical and neuropathological features of a case of familial frontotemporal dementia (FTD), with onset at 58 years of age and disease duration of 10 years, associated with a novel mutation, Q336R, in the tau gene (tau). In vitro studies concerning the properties of tau proteins bearing this mutation, with respect to microtubule assembly and tau filament aggregation, are reported. Clinically, the patient showed alterations in memory, language and executive functions and marked behavioural change consistent with FTD, although the extent of memory impairment was more than is characteristic of FTD. At autopsy, there was degeneration of the frontal and temporal lobes associated with the presence of hyperphosphorylated tau proteins in swollen (Pick) cells and intraneuronal inclusions (Pick bodies). By immunohistochemistry, the Pick bodies contained both 3-repeat and 4-repeat tau proteins although, because no fresh tissues were available for analysis, the exact isoform composition of the aggregated tau proteins could not be determined. Neurons within frontal cortex contained neurofibrillary tangle-like structures, comprising both straight and twisted tubules, or Pick bodies in which the filaments were short and randomly orientated. In vitro, and in common with other tau missense mutations, Q336R caused an increase in tau fibrillogenesis. However, in contrast to most other tau missense mutations, Q336R increased, not decreased, the ability of mutant tau to promote microtubule assembly. Nonetheless, this latter functional change may likewise be detrimental to neuronal function by inducing a compensatory phosphorylation that may yield increased intracellular hyperphosphorylated tau species that are also liable to fibrillize. We believe the mutation is indeed pathogenic and disease causing and not simply a coincidental rare and benign polymorphism. Since this mutation is segregating with the FTD clinical and neuropathological phenotype, it has

  18. Tau excess impairs mitosis and kinesin-5 function, leading to aneuploidy and cell death.

    PubMed

    Bougé, Anne-Laure; Parmentier, Marie-Laure

    2016-03-01

    In neurodegenerative diseases such as Alzheimer's disease (AD), cell cycle defects and associated aneuploidy have been described. However, the importance of these defects in the physiopathology of AD and the underlying mechanistic processes are largely unknown, in particular with respect to the microtubule (MT)-binding protein Tau, which is found in excess in the brain and cerebrospinal fluid of affected individuals. Although it has long been known that Tau is phosphorylated during mitosis to generate a lower affinity for MTs, there is, to our knowledge, no indication that an excess of this protein could affect mitosis. Here, we studied the effect of an excess of human Tau (hTau) protein on cell mitosis in vivo. Using the Drosophila developing wing disc epithelium as a model, we show that an excess of hTau induces a mitotic arrest, with the presence of monopolar spindles. This mitotic defect leads to aneuploidy and apoptotic cell death. We studied the mechanism of action of hTau and found that the MT-binding domain of hTau is responsible for these defects. We also demonstrate that the effects of hTau occur via the inhibition of the function of the kinesin Klp61F, the Drosophila homologue of kinesin-5 (also called Eg5 or KIF11). We finally show that this deleterious effect of hTau is also found in other Drosophila cell types (neuroblasts) and tissues (the developing eye disc), as well as in human HeLa cells. By demonstrating that MT-bound Tau inhibits the Eg5 kinesin and cell mitosis, our work provides a new framework to consider the role of Tau in neurodegenerative diseases. © 2016. Published by The Company of Biologists Ltd.

  19. Old age potentiates cold-induced tau phosphorylation: linking thermoregulatory deficit with Alzheimer's disease.

    PubMed

    Tournissac, Marine; Vandal, Milène; François, Arnaud; Planel, Emmanuel; Calon, Frédéric

    2017-02-01

    Thermoregulatory deficits coincide with a rise in the incidence of Alzheimer's disease (AD) in old age. Lower body temperature increases tau phosphorylation, a neuropathological hallmark of AD. To determine whether old age potentiates cold-induced tau phosphorylation, we compared the effects of cold exposure (4 °C, 24 hours) in 6- and 18-month-old mice. Cold-induced changes in body temperature, brown adipose tissue activity, and phosphorylation of tau at Ser202 were not different between 6- and 18-month-old mice. However, following cold exposure, only old mice displayed a significant rise in soluble tau pThr181 and pThr231, which was correlated with body temperature. Inactivation of glycogen synthase kinase 3β was more prominent in young mice, suggesting a protective mechanism against cold-induced tau phosphorylation. These results suggest that old age confers higher susceptibility to tau hyperphosphorylation following a change in body temperature, thereby contributing to an enhanced risk of developing AD. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Exaggerated phosphorylation of brain tau protein in CRH KO mice exposed to repeated immobilization stress.

    PubMed

    Kvetnansky, Richard; Novak, Petr; Vargovic, Peter; Lejavova, Katarina; Horvathova, Lubica; Ondicova, Katarina; Manz, George; Filipcik, Peter; Novak, Michal; Mravec, Boris

    2016-07-01

    Neuroendocrine and behavioral stress responses are orchestrated by corticotropin-releasing hormone (CRH) and norepinephrine (NE) synthesizing neurons. Recent findings indicate that stress may promote development of neurofibrillary pathology in Alzheimer's disease. Therefore, we investigated relationships among stress, tau protein phosphorylation, and brain NE using wild-type (WT) and CRH-knockout (CRH KO) mice. We assessed expression of phosphorylated tau (p-tau) at the PHF-1 epitope and NE concentrations in the locus coeruleus (LC), A1/C1 and A2/C2 catecholaminergic cell groups, hippocampus, amygdala, nucleus basalis magnocellularis, and frontal cortex of unstressed, singly stressed or repeatedly stressed mice. Moreover, gene expression and protein levels of tyrosine hydroxylase (TH) and CRH receptor mRNA were determined in the LC. Plasma corticosterone levels were also measured. Exposure to a single stress increases tau phosphorylation throughout the brain in WT mice when compared to singly stressed CRH KO animals. In contrast, repeatedly stressed CRH KO mice showed exaggerated tau phosphorylation relative to WT controls. We also observed differences in extent of tau phosphorylation between investigated structures, e.g. the LC and hippocampus. Moreover, CRH deficiency leads to different responses to stress in gene expression of TH, NE concentrations, CRH receptor mRNA, and plasma corticosterone levels. Our data indicate that CRH effects on tau phosphorylation are dependent on whether stress is single or repeated, and differs between brain regions. Our findings indicate that CRH attenuates mechanisms responsible for development of stress-induced tau neuropathology, particularly in conditions of chronic stress. However, the involvement of central catecholaminergic neurons in these mechanisms remains unclear and is in need of further investigation.

  1. Familial Prion Disease with Alzheimer Disease-Like Tau Pathology and Clinical Phenotype

    PubMed Central

    Jayadev, Suman; Nochlin, David; Poorkaj, Parvoneh; Steinbart, Ellen J.; Mastrianni, James A.; Montine, Thomas J.; Ghetti, Bernardino; Schellenberg, Gerard D.; Bird, Thomas D.; Leverenz, James B.

    2011-01-01

    Objective To describe the Alzheimer disease (AD)-like clinical and pathological features, including marked neurofibrillary tangle (NFT) pathology, of a familial prion disease due to a rare nonsense mutation of the prion gene (PRNP). Methods Longitudinal clinical assessments were available for the proband and her mother. After death, both underwent neuropathological evaluation. PRNP was sequenced after failure to find immunopositive Aβ deposits in the proband and the documentation of prion protein (PrP) immunopositive pathology. Results The proband presented at age 42 years with a 3-year history of progressive short-term memory impairment and depression. Neuropsychological testing found impaired memory performance, with relatively preserved attention and construction. She was diagnosed with AD and died at age 47 years. Neuropathologic evaluation revealed extensive limbic and neocortical NFT formation and neuritic plaques consistent with a Braak stage of VI. The NFTs were immunopositive, with multiple tau antibodies, and electron microscopy revealed paired helical filaments. However, the neuritic plaques were immunonegative for Aβ, whereas immunostaining for PrP was positive. The mother of the proband had a similar presentation, including depression, and had been diagnosed clinically and pathologically as AD. Reevaluation of her brain tissue confirmed similar tau and PrP immunostaining findings. Genetic analysis revealed that both the proband and her mother had a rare PRNP mutation (Q160X) that resulted in the production of truncated PrP. Interpretation We suggest that PRNP mutations that result in a truncation of PrP lead to a prolonged clinical course consistent with a clinical diagnosis of AD and severe AD-like NFTs. PMID:21416485

  2. PAK Inactivation Impairs Social Recognition in 3xTg-AD Mice without Increasing Brain Deposition of Tau and Aβ

    PubMed Central

    Arsenault, Dany; Dal-Pan, Alexandre; Tremblay, Cyntia; Bennett, David A.; Guitton, Matthieu J.; De Koninck, Yves; Tonegawa, Susumu

    2013-01-01

    Defects in p21-activated kinase (PAK) are suspected to play a role in cognitive symptoms of Alzheimer's disease (AD). Dysfunction in PAK leads to cofilin activation, drebrin displacement from its actin-binding site, actin depolymerization/severing, and, ultimately, defects in spine dynamics and cognitive impairment in mice. To determine the role of PAK in AD, we first quantified PAK by immunoblotting in homogenates from the parietal neocortex of subjects with a clinical diagnosis of no cognitive impairment (n = 12), mild cognitive impairment (n = 12), or AD (n = 12). A loss of total PAK, detected in the cortex of AD patients (−39% versus controls), was correlated with cognitive impairment (r2 = 0.148, p = 0.027) and deposition of total and phosphorylated tau (r2 = 0.235 and r2 = 0.206, respectively), but not with Aβ42 (r2 = 0.056). Accordingly, we found a decrease of total PAK in the cortex of 12- and 20-month-old 3xTg-AD mice, an animal model of AD-like Aβ and tau neuropathologies. To determine whether PAK dysfunction aggravates AD phenotype, 3xTg-AD mice were crossed with dominant-negative PAK mice. PAK inactivation led to obliteration of social recognition in old 3xTg-AD mice, which was associated with a decrease in cortical drebrin (−25%), but without enhancement of Aβ/tau pathology or any clear electrophysiological signature. Overall, our data suggest that PAK decrease is a consequence of AD neuropathology and that therapeutic activation of PAK may exert symptomatic benefits on high brain function. PMID:23804095

  3. Chronic neuropathologies of single and repetitive TBI: substrates of dementia?

    PubMed Central

    Smith, Douglas H.; Johnson, Victoria E.; Stewart, William

    2014-01-01

    Traumatic brain injury (TBI) has long been recognized to be a risk factor for dementia. This association has, however, only recently gained widespread attention through the increased awareness of ‘chronic traumatic encephalopathy’ (CTE) in athletes exposed to repetitive head injury. Originally termed ‘dementia pugilistica’ and linked to a career in boxing, descriptions of the neuropathological features of CTE include brain atrophy, cavum septum pellucidum, and amyloid-β, tau and TDP-43 pathologies, many of which might contribute to clinical syndromes of cognitive impairment. Similar chronic pathologies are also commonly found years after just a single moderate to severe TBI. However, little consensus currently exists on specific features of these post-TBI syndromes that might permit their confident clinical and/or pathological diagnosis. Moreover, the mechanisms contributing to neurodegeneration following TBI largely remain unknown. Here, we review the current literature and controversies in the study of chronic neuropathological changes after TBI. PMID:23458973

  4. Neuropathology of Alzheimer's disease.

    PubMed

    Perl, Daniel P

    2010-01-01

    Alois Alzheimer first pointed out that the disease which would later bear his name has a distinct and recognizable neuropathological substrate. Since then, much has been added to our understanding of the pathological lesions associated with the condition. The 2 primary cardinal lesions associated with Alzheimer's disease are the neurofibrillary tangle and the senile plaque. The neurofibrillary tangle consists of abnormal accumulations of abnormally phosphorylated tau within the perikaryal cytoplasm of certain neurons. The senile plaque consists of a central core of beta-amyloid, a 4-kD peptide, surrounded by abnormally configured neuronal processes or neurites. Other neuropathological lesions are encountered in cases of Alzheimer's disease, but the disease is defined and recognized by these 2 cardinal lesions. Other lesions include poorly understood changes such as granulovacuolar degeneration and eosinophilic rodlike bodies (Hirano bodies). The loss of synaptic components is a change that clearly has a significant impact on cognitive function and represents another important morphological alteration. It is important to recognize that distinguishing between Alzheimer's disease, especially in its early stages, and normal aging may be very difficult, particularly if one is examining the brains of patients who died at an advanced old age. It is also noted that instances of pure forms of Alzheimer's disease, in the absence of other coexistent brain disease processes, such as infarctions or Parkinson's disease-related lesions, are relatively uncommon, and this must be taken into account by researchers who employ postmortem brain tissues for research. (c) 2010 Mount Sinai School of Medicine.

  5. Caffeine Blocks HIV-1 Tat-Induced Amyloid Beta Production and Tau Phosphorylation.

    PubMed

    Soliman, Mahmoud L; Geiger, Jonathan D; Chen, Xuesong

    2017-03-01

    The increased life expectancy of people living with HIV-1 who are taking effective anti-retroviral therapeutics is now accompanied by increased Alzheimer's disease (AD)-like neurocognitive problems and neuropathological features such as increased levels of amyloid beta (Aβ) and phosphorylated tau proteins. Others and we have shown that HIV-1 Tat promotes the development of AD-like pathology. Indeed, HIV-1 Tat once endocytosed into neurons can alter morphological features and functions of endolysosomes as well as increase Aβ generation. Caffeine has been shown to have protective actions against AD and based on our recent findings that caffeine can inhibit endocytosis in neurons and can prevent neuronal Aβ generation, we tested the hypothesis that caffeine blocks HIV-1 Tat-induced Aβ generation and tau phosphorylation. In SH-SY5Y cells over-expressing wild-type amyloid beta precursor protein (AβPP), we demonstrated that HIV-1 Tat significantly increased secreted levels and intracellular levels of Aβ as well as cellular protein levels of phosphorylated tau. Caffeine significantly decreased levels of secreted and cellular levels of Aβ, and significantly blocked HIV-1 Tat-induced increases in secreted and cellular levels of Aβ. Caffeine also blocked HIV-1 Tat-induced increases in cellular levels of phosphorylated tau. Furthermore, caffeine blocked HIV-1 Tat-induced endolysosome dysfunction as indicated by decreased protein levels of vacuolar-ATPase and increased protein levels of cathepsin D. These results further implicate endolysosome dysfunction in the pathogenesis of AD and HAND, and by virtue of its ability to prevent and/or block neuropathological features associated with AD and HAND caffeine might find use as an effective adjunctive therapeutic agent.

  6. Azaphilones inhibit tau aggregation and dissolve tau aggregates in vitro.

    PubMed

    Paranjape, Smita R; Riley, Andrew P; Somoza, Amber D; Oakley, C Elizabeth; Wang, Clay C C; Prisinzano, Thomas E; Oakley, Berl R; Gamblin, T Chris

    2015-05-20

    The aggregation of the microtubule-associated protein tau is a seminal event in many neurodegenerative diseases, including Alzheimer's disease. The inhibition or reversal of tau aggregation is therefore a potential therapeutic strategy for these diseases. Fungal natural products have proven to be a rich source of useful compounds having wide varieties of biological activities. We have previously screened Aspergillus nidulans secondary metabolites for their ability to inhibit tau aggregation in vitro using an arachidonic acid polymerization protocol. One aggregation inhibitor identified was asperbenzaldehyde, an intermediate in azaphilone biosynthesis. We therefore tested 11 azaphilone derivatives to determine their tau assembly inhibition properties in vitro. All compounds tested inhibited tau filament assembly to some extent, and four of the 11 compounds had the advantageous property of disassembling preformed tau aggregates in a dose-dependent fashion. The addition of these compounds to the tau aggregates reduced both the total length and number of tau polymers. The most potent compounds were tested in in vitro reactions to determine whether they interfere with tau's normal function of stabilizing microtubules (MTs). We found that they did not completely inhibit MT assembly in the presence of tau. These derivatives are very promising lead compounds for tau aggregation inhibitors and, more excitingly, for compounds that can disassemble pre-existing tau filaments. They also represent a new class of anti-tau aggregation compounds with a novel structural scaffold.

  7. Lipopolysaccharide endotoxemia induces amyloid-β and p-tau formation in the rat brain.

    PubMed

    Wang, Li-Ming; Wu, Qi; Kirk, Ryan A; Horn, Kevin P; Ebada Salem, Ahmed H; Hoffman, John M; Yap, Jeffrey T; Sonnen, Joshua A; Towner, Rheal A; Bozza, Fernando A; Rodrigues, Rosana S; Morton, Kathryn A

    2018-01-01

    Amyloid beta (Aβ) plaques are not specific to Alzheimer's disease and occur with aging and neurodegenerative disorders. Soluble brain Aβ may be neuroprotective and increases in response to neuroinflammation. Sepsis is associated with neurocognitive compromise. The objective was to determine, in a rat endotoxemia model of sepsis, whether neuroinflammation and soluble Aβ production are associated with Aβ plaque and hyperphosphorylated tau deposition in the brain. Male Sprague Dawley rats received a single intraperitoneal injection of 10 mg/kg of lipopolysaccharide endotoxin (LPS). Brain and blood levels of IL-1β, IL-6, and TNFα and cortical microglial density were measured in LPS-injected and control animals. Soluble brain Aβ and p-tau were compared and Aβ plaques were quantified and characterized. Brain uptake of [ 18 F]flutemetamol was measured by phosphor imaging. LPS endotoxemia resulted in elevations of cytokines in blood and brain. Microglial density was increased in LPS-treated rats relative to controls. LPS resulted in increased soluble Aβ and in p-tau levels in whole brain. Progressive increases in morphologically-diffuse Aβ plaques occurred throughout the interval of observation (to 7-9 days post LPS). LPS endotoxemia resulted in increased [ 18 F]flutemetamol in the cortex and increased cortex: white matter ratios of activity. In conclusion, LPS endotoxemia causes neuroinflammation, increased soluble Aβ and Aβ diffuse plaques in the brain. Aβ PET tracers may inform this neuropathology. Increased p-tau in the brain of LPS treated animals suggests that downstream consequences of Aβ plaque formation may occur. Further mechanistic and neurocognitive studies to understand the causes and consequences of LPS-induced neuropathology are warranted.

  8. Tau Pathology is Present In Vivo and Develops In Vitro in Sensory Neurons from Human P301S Tau Transgenic Mice: A System for Screening Drugs against Tauopathies

    PubMed Central

    Mellone, Manuela; Kestoras, Dimitra; Andrews, Melissa R.; Dassie, Elisa; Crowther, R. Anthony; Stokin, Gorazd B.; Tinsley, Jon; Horne, Graeme; Goedert, Michel

    2013-01-01

    Intracellular tau aggregates are the neuropathological hallmark of several neurodegenerative diseases, including Alzheimer's disease, progressive supranuclear palsy, and cases of frontotemporal dementia, but the link between these aggregates and neurodegeneration remains unclear. Neuronal models recapitulating the main features of tau pathology are necessary to investigate the molecular mechanisms of tau malfunction, but current models show little and inconsistent spontaneous tau aggregation. We show that dorsal root ganglion (DRG) neurons in transgenic mice expressing human P301S tau (P301S-htau) develop tau pathology similar to that found in brain and spinal cord and a significant reduction in mechanosensation occurs before detectable fibrillar tau formation. DRG neuronal cultures established from adult P301S-htau mice at different ages retained the pattern of aberrant tau found in vivo. Moreover, htau became progressively hyperphosphorylated over 2 months in vitro beginning with nonsymptomatic neurons, while hyperphosphorylated P301S-htau-positive neurons from 5-month-old mice cultured for 2 months died preferentially. P301S-htau-positive neurons grew aberrant axons, including spheroids, typically found in human tauopathies. Neurons cultured at advanced stages of tau pathology showed a 60% decrease in the fraction of moving mitochondria. SEG28019, a novel O-GlcNAcase inhibitor, reduced steady-state pSer396/pSer404 phosphorylation over 7 weeks in a significant proportion of DRG neurons showing for the first time the possible beneficial effect of prolonged dosing of O-GlcNAcase inhibitor in vitro. Our system is unique in that fibrillar tau forms without external manipulation and provides an important new tool for understanding the mechanisms of tau dysfunction and for screening of compounds for treatment of tauopathies. PMID:24227726

  9. Tau burden and the functional connectome in Alzheimer's disease and progressive supranuclear palsy.

    PubMed

    Cope, Thomas E; Rittman, Timothy; Borchert, Robin J; Jones, P Simon; Vatansever, Deniz; Allinson, Kieren; Passamonti, Luca; Vazquez Rodriguez, Patricia; Bevan-Jones, W Richard; O'Brien, John T; Rowe, James B

    2018-02-01

    Alzheimer's disease and progressive supranuclear palsy (PSP) represent neurodegenerative tauopathies with predominantly cortical versus subcortical disease burden. In Alzheimer's disease, neuropathology and atrophy preferentially affect 'hub' brain regions that are densely connected. It was unclear whether hubs are differentially affected by neurodegeneration because they are more likely to receive pathological proteins that propagate trans-neuronally, in a prion-like manner, or whether they are selectively vulnerable due to a lack of local trophic factors, higher metabolic demands, or differential gene expression. We assessed the relationship between tau burden and brain functional connectivity, by combining in vivo PET imaging using the ligand AV-1451, and graph theoretic measures of resting state functional MRI in 17 patients with Alzheimer's disease, 17 patients with PSP, and 12 controls. Strongly connected nodes displayed more tau pathology in Alzheimer's disease, independently of intrinsic connectivity network, validating the predictions of theories of trans-neuronal spread but not supporting a role for metabolic demands or deficient trophic support in tau accumulation. This was not a compensatory phenomenon, as the functional consequence of increasing tau burden in Alzheimer's disease was a progressive weakening of the connectivity of these same nodes, reducing weighted degree and local efficiency and resulting in weaker 'small-world' properties. Conversely, in PSP, unlike in Alzheimer's disease, those nodes that accrued pathological tau were those that displayed graph metric properties associated with increased metabolic demand and a lack of trophic support rather than strong functional connectivity. Together, these findings go some way towards explaining why Alzheimer's disease affects large scale connectivity networks throughout cortex while neuropathology in PSP is concentrated in a small number of subcortical structures. Further, we demonstrate that in

  10. Tau hyperphosphorylation induces oligomeric insulin accumulation and insulin resistance in neurons.

    PubMed

    Rodriguez-Rodriguez, Patricia; Sandebring-Matton, Anna; Merino-Serrais, Paula; Parrado-Fernandez, Cristina; Rabano, Alberto; Winblad, Bengt; Ávila, Jesús; Ferrer, Isidre; Cedazo-Minguez, Angel

    2017-12-01

    Insulin signalling deficiencies and insulin resistance have been directly linked to the progression of neurodegenerative disorders like Alzheimer's disease. However, to date little is known about the underlying molecular mechanisms or insulin state and distribution in the brain under pathological conditions. Here, we report that insulin is accumulated and retained as oligomers in hyperphosphorylated tau-bearing neurons in Alzheimer's disease and in several of the most prevalent human tauopathies. The intraneuronal accumulation of insulin is directly dependent on tau hyperphosphorylation, and follows the tauopathy progression. Furthermore, cells accumulating insulin show signs of insulin resistance and decreased insulin receptor levels. These results suggest that insulin retention in hyperphosphorylated tau-bearing neurons is a causative factor for the insulin resistance observed in tauopathies, and describe a novel neuropathological concept with important therapeutic implications. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Neurodegeneration caused by expression of human truncated tau leads to progressive neurobehavioural impairment in transgenic rats.

    PubMed

    Hrnkova, Miroslava; Zilka, Norbert; Minichova, Zuzana; Koson, Peter; Novak, Michal

    2007-01-26

    Human truncated tau protein is an active constituent of the neurofibrillary degeneration in sporadic Alzheimer's disease. We have shown that modified tau protein, when expressed as a transgene in rats, induced AD characteristic tau cascade consisting of tau hyperphosphorylation, formation of argyrophilic tangles and sarcosyl-insoluble tau complexes. These pathological changes led to the functional impairment characterized by a variety of neurobehavioural symptoms. In the present study we have focused on the behavioural alterations induced by transgenic expression of human truncated tau. Transgenic rats underwent a battery of behavioural tests involving cognitive- and sensorimotor-dependent tasks accompanied with neurological assessment at the age of 4.5, 6 and 9 months. Behavioural examination of these rats showed altered spatial navigation in Morris water maze resulting in less time spent in target quadrant (p<0.05) and fewer crossings over previous platform position (p<0.05) during probe trial. Spontaneous locomotor activity and anxiety in open field was not influenced by transgene expression. However beam walking test revealed that transgenic rats developed progressive sensorimotor disturbances related to the age of tested animals. The disturbances were most pronounced at the age of 9 months (p<0.01). Neurological alterations indicating impaired reflex responses were other added features of behavioural phenotype of this novel transgenic rat. These results allow us to suggest that neurodegeneration, caused by the non-mutated human truncated tau derived from sporadic human AD, result in the neuronal dysfunction consequently leading to the progressive neurobehavioural impairment.

  12. "Boomerang Neuropathology" of Late-Onset Alzheimer's Disease is Shrouded in Harmful "BDDS": Breathing, Diet, Drinking, and Sleep During Aging.

    PubMed

    Daulatzai, Mak Adam

    2015-07-01

    Brain damage begins years before substantial neurodegeneration and Alzheimer's dementia. Crucial fundamental activities of life are breathing, eating, drinking, and sleeping. When these pivotal functions are maligned over a prolonged period, they impart escalating dyshomeostasis. The latter may lead to disastrous consequences including cognitive dysfunction and Alzheimer's disease (AD). The current theme here is that multiple pathophysiological derangements are promoted over a prolonged period by the very fundamental activities of life-when "rendered unhealthy." They may converge on several regulating/modulating factors (e.g., mitochondrial energy production, oxidative stress, innate immunity, and vascular function) and promote insidious neuropathology that culminates in cognitive decline in the aged. This is of course associated with the accumulation of amyloid beta and phosphorylated tau in the brain. Epidemiological, biomarker, and neuroimaging studies have provided significant copious evidence on the presence of indolent prodromal AD neuropathology many years prior to symptomatic onset. Progressive oxidative damage to specific gene promoters may result in gene silencing. A mechanistic link may possibly exist between epigenomic state, DNA damage, and chronically unhealthy/dysfunctional body systems. This paper, therefore, addresses and delineates the deleterious pathophysiological impact triggered by dysfunctional breathing, harmful diet, excess of alcohol consumption, and sleep deprivation; indeed, their impact may alter epigenetic state. It is mandatory, therefore, to abrogate cognitive decline and attenuate AD pathology through adoption of a healthy lifestyle, in conjunction with combination therapy with known moderators of cognitive decline. This strategy may thwart multiple concurrent and synergistic pathologies, including epigenetic dysfunction. A multi-factorial therapeutic intervention is required to overcome wide ranging neuropathology and multi

  13. Voluntary Running Attenuates Memory Loss, Decreases Neuropathological Changes and Induces Neurogenesis in a Mouse Model of Alzheimer's Disease.

    PubMed

    Tapia-Rojas, Cheril; Aranguiz, Florencia; Varela-Nallar, Lorena; Inestrosa, Nibaldo C

    2016-01-01

    Alzheimer's disease (AD) is a neurodegenerative disorder characterized by loss of memory and cognitive abilities, and the appearance of amyloid plaques composed of the amyloid-β peptide (Aβ) and neurofibrillary tangles formed of tau protein. It has been suggested that exercise might ameliorate the disease; here, we evaluated the effect of voluntary running on several aspects of AD including amyloid deposition, tau phosphorylation, inflammatory reaction, neurogenesis and spatial memory in the double transgenic APPswe/PS1ΔE9 mouse model of AD. We report that voluntary wheel running for 10 weeks decreased Aβ burden, Thioflavin-S-positive plaques and Aβ oligomers in the hippocampus. In addition, runner APPswe/PS1ΔE9 mice showed fewer phosphorylated tau protein and decreased astrogliosis evidenced by lower staining of GFAP. Further, runner APPswe/PS1ΔE9 mice showed increased number of neurons in the hippocampus and exhibited increased cell proliferation and generation of cells positive for the immature neuronal protein doublecortin, indicating that running increased neurogenesis. Finally, runner APPswe/PS1ΔE9 mice showed improved spatial memory performance in the Morris water maze. Altogether, our findings indicate that in APPswe/PS1ΔE9 mice, voluntary running reduced all the neuropathological hallmarks of AD studied, reduced neuronal loss, increased hippocampal neurogenesis and reduced spatial memory loss. These findings support that voluntary exercise might have therapeutic value on AD. © 2015 International Society of Neuropathology.

  14. Pericellular innervation of neurons expressing abnormally hyperphosphorylated tau in the hippocampal formation of Alzheimer's disease patients.

    PubMed

    Blazquez-Llorca, Lidia; Garcia-Marin, Virginia; Defelipe, Javier

    2010-01-01

    Neurofibrillary tangles (NFT) represent one of the main neuropathological features in the cerebral cortex associated with Alzheimer's disease (AD). This neurofibrillary lesion involves the accumulation of abnormally hyperphosphorylated or abnormally phosphorylated microtubule-associated protein tau into paired helical filaments (PHF-tau) within neurons. We have used immunocytochemical techniques and confocal microscopy reconstructions to examine the distribution of PHF-tau-immunoreactive (ir) cells, and their perisomatic GABAergic and glutamatergic innervations in the hippocampal formation and adjacent cortex of AD patients. Furthermore, correlative light and electron microscopy was employed to examine these neurons and the perisomatic synapses. We observed two patterns of staining in PHF-tau-ir neurons, pattern I (without NFT) and pattern II (with NFT), the distribution of which varies according to the cortical layer and area. Furthermore, the distribution of both GABAergic and glutamatergic terminals around the soma and proximal processes of PHF-tau-ir neurons does not seem to be altered as it is indistinguishable from both control cases and from adjacent neurons that did not contain PHF-tau. At the electron microscope level, a normal looking neuropil with typical symmetric and asymmetric synapses was observed around PHF-tau-ir neurons. These observations suggest that the synaptic connectivity around the perisomatic region of these PHF-tau-ir neurons was apparently unaltered.

  15. The neuropathology of sport.

    PubMed

    McKee, Ann C; Daneshvar, Daniel H; Alvarez, Victor E; Stein, Thor D

    2014-01-01

    The benefits of regular exercise, physical fitness and sports participation on cardiovascular and brain health are undeniable. Physical activity reduces the risk for cardiovascular disease, type 2 diabetes, hypertension, obesity, and stroke, and produces beneficial effects on cholesterol levels, antioxidant systems, inflammation, and vascular function. Exercise also enhances psychological health, reduces age-related loss of brain volume, improves cognition, reduces the risk of developing dementia, and impedes neurodegeneration. Nonetheless, the play of sports is associated with risks, including a risk for mild TBI (mTBI) and, rarely, catastrophic traumatic injury and death. There is also growing awareness that repetitive mTBIs, such as concussion and subconcussion, can occasionally produce persistent cognitive, behavioral, and psychiatric problems as well as lead to the development of a neurodegeneration, chronic traumatic encephalopathy (CTE). In this review, we summarize the beneficial aspects of sports participation on psychological, emotional, physical and cognitive health, and specifically analyze some of the less common adverse neuropathological outcomes, including concussion, second-impact syndrome, juvenile head trauma syndrome, catastrophic sudden death, and CTE. CTE is a latent neurodegeneration clinically associated with behavioral changes, executive dysfunction and cognitive impairments, and pathologically characterized by frontal and temporal lobe atrophy, neuronal and axonal loss, and abnormal deposits of paired helical filament (PHF)-tau and 43 kDa TAR deoxyribonucleic acid (DNA)-binding protein (TDP-43). CTE often occurs as a sole diagnosis, but may be associated with other neurodegenerative disorders, including motor neuron disease (CTE-MND). Although the incidence and prevalence of CTE are not known, CTE has been reported most frequently in American football players and boxers. Other sports associated with CTE include ice hockey, professional

  16. Hippocampal tau pathology is related to neuroanatomical connections: an ageing population-based study.

    PubMed

    Lace, G; Savva, G M; Forster, G; de Silva, R; Brayne, C; Matthews, F E; Barclay, J J; Dakin, L; Ince, P G; Wharton, S B

    2009-05-01

    Deposits of abnormally phosphorylated tau protein are found in numerous neurodegenerative disorders; the 'tauopathies', which include Alzheimer's and Pick's diseases, but tau pathology is also found in the ageing brain. Variation in tau pathology in brain ageing and its relationship to development of tauopathies and cognitive impairment remains unclear. We aimed to determine the extent and pattern of spread of tau pathology in the hippocampus, a susceptible region important in dementia and milder states of memory impairment, using hippocampal samples from the elderly population-based Medical Research Council Cognitive Function and Ageing Study neuropathology cohort. Tau deposition was assessed in hippocampal anatomical sub-regions using the AT8 antibody to phosphorylated tau and isoform-specific antibodies to 3 and 4-repeat tau (RD3 and RD4). Abeta pathology was also assessed. In this population sample, which includes the full ageing spectrum from individuals with no cognitive impairment to those with dementia satisfying clinico-pathology criteria for Alzheimer's disease, we have demonstrated a high prevalence at death of tau pathology. AT8, Abeta, RD3 and RD4 showed similar regional distribution and increased RD3 was noted in late-stage ghost tangles. Abeta was shown to be a poor explanatory variable for tau pathology. Tau deposition progressed in a hierarchical manner. Hippocampal input regions and projection zones (such as lateral entorhinal cortex, CA1/subiculum border and outer molecular layer of dentate) were initially affected, with anterograde progression though the hippocampal circuitry. Six hippocampal tau anatomical stages were defined, each linking projectionally to their adjacent stages, suggesting spread of tau malfunction through neuroanatomical pathways in hippocampal ageing. These stages were significantly associated with dementia, and may provide a clinically useful tool in the clinico-pathological assessment of dementia and mild cognitive

  17. Neuropathology Education Using Social Media.

    PubMed

    Nix, James S; Gardner, Jerad M; Costa, Felipe; Soares, Alexandre L; Rodriguez, Fausto J; Moore, Brian; Martinez-Lage, Maria; Ahlawat, Sunita; Gokden, Murat; Anthony, Douglas C

    2018-06-01

    Social media use continues to grow among pathologists. Discussions of current topics, posts of educational information, and images of pathological entities are commonly found and distributed on popular sites such as Facebook and Twitter. However, little is known about the presence of neuropathology content in social media and the audience for such content. We designed and distributed a survey to assess the demographics of users viewing neuropathology content and their opinions about neuropathology in social media. User posts on the Facebook group, Surgical Neuropathology, were also analyzed. The results show that there is a demand for neuropathology content of high quality, curated by experts, and that this demand is present among both specialists and nonspecialists. These findings suggest that social media may be useful for rapid dissemination of information in the field of neuropathology. This format also offers a unique opportunity to extend the reach of information to nonneuropathologists who may not receive neuropathology journals or have access to specialty-level neuropathology training, to build networks between professionals, and potentially to influence public opinion of neuropathology on an international scale.

  18. Axonal disruption in white matter underlying cortical sulcus tau pathology in chronic traumatic encephalopathy.

    PubMed

    Holleran, Laurena; Kim, Joong Hee; Gangolli, Mihika; Stein, Thor; Alvarez, Victor; McKee, Ann; Brody, David L

    2017-03-01

    Chronic traumatic encephalopathy (CTE) is a progressive degenerative disorder associated with repetitive traumatic brain injury. One of the primary defining neuropathological lesions in CTE, based on the first consensus conference, is the accumulation of hyperphosphorylated tau in gray matter sulcal depths. Post-mortem CTE studies have also reported myelin loss, axonal injury and white matter degeneration. Currently, the diagnosis of CTE is restricted to post-mortem neuropathological analysis. We hypothesized that high spatial resolution advanced diffusion MRI might be useful for detecting white matter microstructural changes directly adjacent to gray matter tau pathology. To test this hypothesis, formalin-fixed post-mortem tissue blocks from the superior frontal cortex of ten individuals with an established diagnosis of CTE were obtained from the Veterans Affairs-Boston University-Concussion Legacy Foundation brain bank. Advanced diffusion MRI data was acquired using an 11.74 T MRI scanner at Washington University with 250 × 250 × 500 µm 3 spatial resolution. Diffusion tensor imaging, diffusion kurtosis imaging and generalized q-sampling imaging analyses were performed in a blinded fashion. Following MRI acquisition, tissue sections were tested for phosphorylated tau immunoreactivity in gray matter sulcal depths. Axonal disruption in underlying white matter was assessed using two-dimensional Fourier transform analysis of myelin black gold staining. A robust image co-registration method was applied to accurately quantify the relationship between diffusion MRI parameters and histopathology. We found that white matter underlying sulci with high levels of tau pathology had substantially impaired myelin black gold Fourier transform power coherence, indicating axonal microstructural disruption (r = -0.55, p = 0.0015). Using diffusion tensor MRI, we found that fractional anisotropy (FA) was modestly (r = 0.53) but significantly (p = 0.0012) correlated

  19. Early Alzheimer's Disease Neuropathology Detected by Proton MR Spectroscopy

    PubMed Central

    Murray, Melissa E.; Przybelski, Scott A.; Lesnick, Timothy G.; Liesinger, Amanda M.; Spychalla, Anthony; Zhang, Bing; Gunter, Jeffrey L.; Parisi, Joseph E.; Boeve, Bradley F.; Knopman, David S.; Petersen, Ronald C.; Jack, Clifford R.; Dickson, Dennis W.

    2014-01-01

    Proton magnetic resonance spectroscopy (1H-MRS) is sensitive to early neurodegenerative processes associated with Alzheimer's disease (AD). Although 1H-MRS metabolite ratios of N-acetyl aspartate (NAA)/creatine (Cr), NAA/myoinositol (mI), and mI/Cr measured in the posterior cingulate gyrus reveal evidence of disease progression in AD, pathologic underpinnings of the 1H-MRS metabolite changes in AD are unknown. Pathologically diagnosed human cases ranging from no likelihood to high likelihood AD (n = 41, 16 females and 25 males) who underwent antemortem 1H-MRS of the posterior cingulate gyrus at 3 tesla were included in this study. Immunohistochemical evaluation was performed on the posterior cingulate gyrus using antibodies to synaptic vesicles, hyperphosphorylated tau (pTau), neurofibrillary tangle conformational-epitope (cNFT), amyloid-β, astrocytes, and microglia. The slides were digitally analyzed using Aperio software, which allows neuropathologic quantification in the posterior cingulate gray matter. MRS and pathology associations were adjusted for time from scan to death. Significant associations across AD and control subjects were found between reduced synaptic immunoreactivity and both NAA/Cr and NAA/mI in the posterior cingulate gyrus. Higher pTau burden was associated with lower NAA/Cr and NAA/mI. Higher amyloid-β burden was associated with elevated mI/Cr and lower NAA/mI ratios, but not with NAA/Cr. 1H-MRS metabolite levels reveal early neurodegenerative changes associated with AD pathology. Our findings support the hypothesis that a decrease in NAA/Cr is associated with loss of synapses and early pTau pathology, but not with amyloid-β or later accumulation of cNFT pathology in the posterior cingulate gyrus. In addition, elevation of mI/Cr is associated with the occurrence of amyloid-β plaques in AD. PMID:25471565

  20. A Novel Tau Mutation in Exon 12, p.Q336H, Causes Hereditary Pick Disease

    PubMed Central

    Tacik, Pawel; DeTure, Michael; Hinkle, Kelly M.; Lin, Wen-Lang; Sanchez-Contreras, Monica; Carlomagno, Yari; Pedraza, Otto; Rademakers, Rosa; Ross, Owen A.; Wszolek, Zbigniew K.; Dickson, Dennis W.

    2015-01-01

    Pick disease (PiD) is a frontotemporal lobar degeneration with distinctive neuronal inclusions (Pick bodies) that are enriched in 3-repeat (3R) tau. Although mostly sporadic, mutations in the tau gene (MAPT) have been reported. We screened 24 cases of neuropathologically confirmed PiD for MAPT mutations and found a novel mutation (c.1008G>C, p.Q336H) in one patient. Pathogenicity was confirmed on microtubule assembly and tau filament formation assays. The patient was compared to sporadic PiD and PiD associated with MAPT mutations from a review of the literature. The patient had behavioral changes at 55 years of age, followed by reduced verbal fluency, parkinsonism and death at 63 years of age. His mother and maternal uncle had similar symptoms. Recombinant tau with p.Q336H mutation formed filaments faster than wild type tau, especially with 3R tau. It also promoted more microtubule assembly than wild type tau. We conclude that mutations in MAPT, including p.Q336H, can be associated with clinical, pathologic, and biochemical features that are similar to those in sporadic PiD. The pathomechanism of p.Q336H, and another previously reported variant at the same codon (p.Q336R), appears to be unique to MAPT mutations in that they not only predispose to abnormal tau filament formation but also facilitate microtubule assembly in a 3R tau-dependent manner. PMID:26426266

  1. Diagnostic value of cerebrospinal fluid tau, neurofilament, and progranulin in definite frontotemporal lobar degeneration.

    PubMed

    Goossens, Joery; Bjerke, Maria; Van Mossevelde, Sara; Van den Bossche, Tobi; Goeman, Johan; De Vil, Bart; Sieben, Anne; Martin, Jean-Jacques; Cras, Patrick; De Deyn, Peter Paul; Van Broeckhoven, Christine; van der Zee, Julie; Engelborghs, Sebastiaan

    2018-03-20

    We explored the diagnostic performance of cerebrospinal fluid (CSF) biomarkers in allowing differentiation between frontotemporal lobar degeneration (FTLD) and Alzheimer's disease (AD), as well as between FTLD pathological subtypes. CSF levels of routine AD biomarkers (phosphorylated tau (p-tau 181 ), total tau (t-tau), and amyloid-beta (Aβ) 1-42 ) and neurofilament proteins, as well as progranulin levels in both CSF and serum were quantified in definite FTLD (n = 46), clinical AD (n = 45), and cognitively healthy controls (n = 20). FTLD subgroups were defined by genetic carrier status and/or postmortem neuropathological confirmation (FTLD-TDP: n = 34, including FTLD-C9orf72: n = 19 and FTLD-GRN: n = 9; FTLD-tau: n = 10). GRN mutation carriers had significantly lower progranulin levels compared to other FTLD patients, AD, and controls. Both t-tau and p-tau 181 were normal in FTLD patients, even in FTLD-tau. Aβ 1-42 levels were very variable in FTLD. Neurofilament light chain (Nf-L) was significantly higher in FTLD compared with AD and controls. The reference logistic regression model based on the established AD biomarkers could be improved by the inclusion of CSF Nf-L, which was also important for the differentiation between FTLD and controls. Within the FTLD cohort, no significant differences were found between FTLD-TDP and FTLD-tau, but GRN mutation carriers had higher t-tau and Nf-L levels than C9orf72 mutation carriers and FTLD-tau patients. There is an added value for Nf-L in the differential diagnosis of FTLD. Progranulin levels in CSF depend on mutation status, and GRN mutation carriers seem to be affected by more severe neurodegeneration.

  2. A comparative study on pathological features of transgenic rat lines expressing either three or four repeat misfolded tau.

    PubMed

    Valachova, Bernadeta; Brezovakova, Veronika; Bugos, Ondrej; Jadhav, Santosh; Smolek, Tomas; Novak, Petr; Zilka, Norbert

    2018-08-01

    Human tauopathies represent a heterogeneous group of neurodegenerative disorders characterized by distinct clinical features, typical histopathological structures, and defined ratio(s) of three-repeat and four-repeat tau isoforms within pathological aggregates. How the optional microtubule-binding repeat of tau influences this differentiation of pathologies is understudied. We have previously generated and characterized transgenic rodent models expressing human truncated tau aa151-391 with either three (SHR24) or four microtubule-binding repeats (SHR72). Here, we compare the behavioral and neuropathological hallmarks of these two transgenic lines using a battery of tests for sensorimotor, cognitive, and neurological functions over the age range of 3.5-15 months. Progression of sensorimotor and neurological deficits was similar in both transgenic lines; however, the lifespan of transgenic line SHR72 expressing truncated four-repeat tau was markedly shorter than SHR24. Moreover, the expression of three or four-repeat tau induced distinct neurofibrillary pathology in these lines. Transgenic lines displayed different distribution of tau pathology and different type of neurofibrillary tangles. Our results suggest that three- and four-repeat isoforms of tau may display different modes of action in the diseased brain. © 2018 Wiley Periodicals, Inc.

  3. Seed-competent HMW tau species accumulates in the cerebrospinal fluid of Alzheimer's disease mouse model and human patients

    PubMed Central

    Takeda, Shuko; Commins, Caitlin; DeVos, Sarah L.; Nobuhara, Chloe K.; Wegmann, Susanne; Roe, Allyson D.; Costantino, Isabel; Fan, Zhanyun; Nicholls, Samantha B.; Sherman, Alexis E.; Trisini Lipsanopoulos, Ana T.; Scherzer, Clemens R.; Carlson, George A.; Pitstick, Rose; Peskind, Elaine R.; Raskind, Murray A.; Li, Ge; Montine, Thomas J.; Frosch, Matthew P.; Hyman, Bradley T.

    2016-01-01

    Objective Cerebrospinal fluid (CSF) tau is an excellent surrogate marker for assessing neuropathological changes that occur in Alzheimer's disease (AD) patients. However, whether the elevated tau in AD CSF is just a marker of neurodegeneration or in fact a part of the disease process is uncertain. Moreover, it is unknown how CSF tau relates to the recently described soluble high-molecular-weight (HMW) species that is found in postmortem AD brain and can be taken up by neurons and seed aggregates. Methods We have examined seeding and uptake properties of brain extracellular tau from various sources including: interstitial fluid (ISF) and CSF from an AD transgenic mouse model, and postmortem ventricular and antemortem lumbar CSF from AD patients. Results We found that brain ISF and CSF tau from the AD mouse model can be taken up by cells and induce intracellular aggregates. Ventricular CSF from AD patients contained a rare HMW tau species that exerted a higher seeding activity. Notably, the HMW tau species was also detected in lumbar CSF from AD patients and its levels were significantly elevated compared with control subjects. HMW tau derived from CSF of AD patients was seed-competent in vitro. Interpretation These findings suggest that CSF from an AD brain contains potentially bioactive HMW tau species giving new insights into the role of CSF tau and biomarker development for AD. PMID:27351289

  4. Increased Vulnerability of the Hippocampus in Transgenic Mice Overexpressing APP and Triple Repeat Tau.

    PubMed

    Arner, Andrew; Rockenstein, Edward; Mante, Michael; Florio, Jazmin; Masliah, Deborah; Salehi, Bahar; Adame, Anthony; Overk, Cassia; Masliah, Eliezer; Rissman, Robert A

    2018-01-01

     Alzheimer's disease (AD) is the most common tauopathy, characterized by progressive accumulation of amyloid-β (Aβ) and hyperphosphorylated tau. While pathology associated with the 4-repeat (4R) tau isoform is more abundant in corticobasal degeneration and progressive supranuclear palsy, both 3R and 4R tau isoforms accumulate in AD. Many studies have investigated interactions between Aβ and 4R tau in double transgenic mice, but few, if any, have examined the effects of Aβ with 3R tau. To examine this relationship, we crossed our APP751 mutant line with our recently characterized 3R tau mutant model to create a bigenic line (hAPP-3RTau) to model AD neuropathology. Mice were analyzed at 3 and 6 months of age for pathological and behavioral endpoints. While both the 3RTau and the hAPP-3RTau mice showed neuronal loss, increased tau aggregation, Aβ plaques and exhibited more behavioral deficits compared to the non-tg control, the bigenic mice often displaying relatively worsening levels. We found that even in young animals we found that the presence of APP/Aβ increased the accumulation of 3R tau in the neocortex and hippocampus. This observation was accompanied by activation of GSK3 and neurodegeneration in the neocortex and CA1 region. These results suggest that in addition to 4R tau, APP/Aβ may also enhance accumulation of 3R tau, a process which may be directly relevant to pathogenic pathways in AD. Our results demonstrate that this bigenic model closely parallels the pathological course of AD and may serve as a valuable model for testing new pharmacological interventions.

  5. Preliminary Study of Plasma Exosomal Tau as a Potential Biomarker for Chronic Traumatic Encephalopathy.

    PubMed

    Stern, Robert A; Tripodis, Yorghos; Baugh, Christine M; Fritts, Nathan G; Martin, Brett M; Chaisson, Christine; Cantu, Robert C; Joyce, James A; Shah, Sahil; Ikezu, Tsuneya; Zhang, Jing; Gercel-Taylor, Cicek; Taylor, Douglas D

    2016-01-01

    Chronic traumatic encephalopathy (CTE) is a tauopathy associated with prior exposure to repetitive head impacts, such as those incurred through American football and other collision sports. Diagnosis is made through neuropathological examination. Many of the clinical features of CTE are common in the general population, with and without a history of head impact exposure, making clinical diagnosis difficult. As is now common in the diagnosis of other neurodegenerative disorders, such as Alzheimer's disease, there is a need for methods to diagnose CTE during life through objective biomarkers. The aim of this study was to examine tau-positive exosomes in plasma as a potential CTE biomarker. Subjects were 78 former National Football League (NFL) players and 16 controls. Extracellular vesicles were isolated from plasma. Fluorescent nanoparticle tracking analysis was used to determine the number of vesicles staining positive for tau. The NFL group had higher exosomal tau than the control group (p <  0.0001). Exosomal tau discriminated between the groups, with 82% sensitivity, 100% specificity, 100% positive predictive value, and 53% negative predictive value. Within the NFL group, higher exosomal tau was associated with worse performance on tests of memory (p = 0.0126) and psychomotor speed (p = 0.0093). These preliminary findings suggest that exosomal tau in plasma may be an accurate, noninvasive CTE biomarker.

  6. Chronic traumatic encephalopathy-integration of canonical traumatic brain injury secondary injury mechanisms with tau pathology.

    PubMed

    Kulbe, Jacqueline R; Hall, Edward D

    2017-11-01

    In recent years, a new neurodegenerative tauopathy labeled Chronic Traumatic Encephalopathy (CTE), has been identified that is believed to be primarily a sequela of repeated mild traumatic brain injury (TBI), often referred to as concussion, that occurs in athletes participating in contact sports (e.g. boxing, American football, Australian football, rugby, soccer, ice hockey) or in military combatants, especially after blast-induced injuries. Since the identification of CTE, and its neuropathological finding of deposits of hyperphosphorylated tau protein, mechanistic attention has been on lumping the disorder together with various other non-traumatic neurodegenerative tauopathies. Indeed, brains from suspected CTE cases that have come to autopsy have been confirmed to have deposits of hyperphosphorylated tau in locations that make its anatomical distribution distinct for other tauopathies. The fact that these individuals experienced repetitive TBI episodes during their athletic or military careers suggests that the secondary injury mechanisms that have been extensively characterized in acute TBI preclinical models, and in TBI patients, including glutamate excitotoxicity, intracellular calcium overload, mitochondrial dysfunction, free radical-induced oxidative damage and neuroinflammation, may contribute to the brain damage associated with CTE. Thus, the current review begins with an in depth analysis of what is known about the tau protein and its functions and dysfunctions followed by a discussion of the major TBI secondary injury mechanisms, and how the latter have been shown to contribute to tau pathology. The value of this review is that it might lead to improved neuroprotective strategies for either prophylactically attenuating the development of CTE or slowing its progression. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Developmental exposure to lead (Pb) alters the expression of the human tau gene and its products in a transgenic animal model

    PubMed Central

    Dash, M.; Eid, A.; Subaiea, G.; Chang, J.; Deeb, R.; Masoud, A.; Renehan, W.E.; Adem, A.; Zawia, N.H.

    2016-01-01

    Tauopathies are a class of neurodegenerative diseases associated with the pathological aggregationof the tau protein in the human brain. The best known of these illnesses is Alzheimer's disease (AD); a disease where the microtubule associated protein tau (MAPT) becomes hyperphosphorylated (lowering its binding affinity to microtubules) and aggregates within neurons in the form of neurofibrillary tangles (NFTs). In this paper we examine whether environmental factors play a significant role in tau pathogenesis. Our studies were conducted in a double mutant mouse model that expressed the human tau gene and lacked the gene for murine tau. The human tau mouse model was tested for the transgene's ability to respond to an environmental toxicant. Pups were developmentally exposed to lead (Pb) from postnatal day (PND) 1-20 with 0.2% Pb acetate. Mice were then sacrificed at PND 20, 30, 40 and 60. Protein and mRNA levels for tau and CDK5 as well as tau phosphorylation at Ser396 were determined. In addition, the potential role of miRNA in tau expression was investigated by measuring levels of miR-34c, a miRNA that targets the mRNA for human tau, at PND20 and 50. The expression of the human tau transgene was altered by developmental exposure to Pb. This exposure also altered the expression of miR-34c. Our findings are the first of their kind to test the responsiveness of the human tau gene to an environmental toxicant and to examine an epigenetic mechanism that may be involved in the regulation of this gene's expression. PMID:27293183

  8. The neuropathology of sport

    PubMed Central

    Daneshvar, Daniel H.; Alvarez, Victor E.; Stein, Thor D.

    2014-01-01

    The benefits of regular exercise, physical fitness and sports participation on cardiovascular and brain health are undeniable. Physical activity reduces the risk for cardiovascular disease, type 2 diabetes, hypertension, obesity, and stroke, and produces beneficial effects on cholesterol levels, antioxidant systems, inflammation, and vascular function. Exercise also enhances psychological health, reduces age-related loss of brain volume, improves cognition, reduces the risk of developing dementia, and impedes neurodegeneration. Nonetheless, the play of sports is associated with risks, including a risk for mild TBI (mTBI) and, rarely, catastrophic traumatic injury and death. There is also growing awareness that repetitive mTBIs, such as concussion and subconcussion, can occasionally produce persistent cognitive, behavioral, and psychiatric problems as well as lead to the development of a neurodegeneration, chronic traumatic encephalopathy (CTE). In this review, we summarize the beneficial aspects of sports participation on psychological, emotional, physical and cognitive health, and specifically analyze some of the less common adverse neuropathological outcomes, including concussion, second-impact syndrome, juvenile head trauma syndrome, catastrophic sudden death, and CTE. CTE is a latent neurodegeneration clinically associated with behavioral changes, executive dysfunction and cognitive impairments, and pathologically characterized by frontal and temporal lobe atrophy, neuronal and axonal loss, and abnormal deposits of paired helical filament (PHF)-tau and 43 kDa TAR deoxyribonucleic acid (DNA)-binding protein (TDP-43). CTE often occurs as a sole diagnosis, but may be associated with other neurodegenerative disorders, including motor neuron disease (CTE-MND). Although the incidence and prevalence of CTE are not known, CTE has been reported most frequently in American football players and boxers. Other sports associated with CTE include ice hockey, professional

  9. Structure-based inhibitors of tau aggregation

    NASA Astrophysics Data System (ADS)

    Seidler, P. M.; Boyer, D. R.; Rodriguez, J. A.; Sawaya, M. R.; Cascio, D.; Murray, K.; Gonen, T.; Eisenberg, D. S.

    2018-02-01

    Aggregated tau protein is associated with over 20 neurological disorders, which include Alzheimer's disease. Previous work has shown that tau's sequence segments VQIINK and VQIVYK drive its aggregation, but inhibitors based on the structure of the VQIVYK segment only partially inhibit full-length tau aggregation and are ineffective at inhibiting seeding by full-length fibrils. Here we show that the VQIINK segment is the more powerful driver of tau aggregation. Two structures of this segment determined by the cryo-electron microscopy method micro-electron diffraction explain its dominant influence on tau aggregation. Of practical significance, the structures lead to the design of inhibitors that not only inhibit tau aggregation but also inhibit the ability of exogenous full-length tau fibrils to seed intracellular tau in HEK293 biosensor cells into amyloid. We also raise the possibility that the two VQIINK structures represent amyloid polymorphs of tau that may account for a subset of prion-like strains of tau.

  10. Neuropathologic assessment of dementia markers in identical and fraternal twins

    PubMed Central

    Iacono, Diego; Volkman, Inga; Nennesmo, Inger; Pedersen, Nancy L.; Fratiglioni, Laura; Johansson, Boo; Karlsson, David; Winblad, Bengt; Gatz, Margaret

    2014-01-01

    Twin studies are an incomparable source of investigation to shed light on genetic and non-genetic components of neurodegenerative diseases, as Alzheimer’s disease (AD). Detailed clinicopathologic correlations using twin longitudinal data and postmortem examinations are mostly missing. We describe clinical and pathologic findings of 7 monozygotic (MZ) and dizygotic (DZ) twin pairs. Our findings show good agreement between clinical and pathologic diagnoses in the majority of the twin pairs, with greater neuropathologic concordance in MZ than DZ twins. Greater neuropathologic concordance was found for β-amyloid than tau pathology within the pairs. ApoE4 was associated with higher β-amyloid and earlier dementia onset, and importantly, higher frequency of other co-occurring brain pathologies, regardless of the zygosity. Dementia onset, dementia duration, difference between twins in age at dementia onset and at death, did not correlate with AD pathology. These clinicopathologic correlations of older identical and fraternal twins support the relevance of genetic factors in AD, but not their sufficiency to determine the pathology, and consequently the disease, even in monozygotic twins. It is the interaction among genetic and non-genetic risks which plays a major role in influencing, or probably determining, the degeneration of those brain circuits associated with pathology and cognitive deficits in AD. PMID:24450926

  11. The accumulation of brain injury leads to severe neuropathological and neurobehavioral changes after repetitive mild traumatic brain injury.

    PubMed

    Gao, Huabin; Han, Zhaoli; Bai, Ruojing; Huang, Shan; Ge, Xintong; Chen, Fanglian; Lei, Ping

    2017-02-15

    Traumatic brain injury (TBI) is a major public health problem with long-term neurobehavioral sequela. The evidences have revealed that TBI is a risk factor for later development of neurodegenerative disease and both the single and repetitive brain injury can lead to the neurodegeneration. But whether the effects of accumulation play an important role in the neurodegenerative disease is still unknown. We utilized the Sprague Dawley (SD) rats to develop the animal models of repetitive mild TBI and single mild TBI in order to detect the neurobehavioral changes. The results of neurobehavioral test revealed that the repetitive mild TBI led to more severe behavioral injuries than the single TBI. There were more activated microglia cells and astrocytes in the repetitive mild TBI group than the single TBI group. In consistent with this, the levels of TNF-α and IL-6 were higher and the expression of IL-10 was lower in the repetitive mild TBI group compared with the single TBI group. The expression of amyloid precursor protein (APP) increased in the repetitive TBI group detected by ELISA and western blot. But the levels of total tau (Tau-5) and P-tau (ser202) seem no different between the two groups in most time point. In conclusion, repetitive mild TBI could lead to more severe neurobehavioral impairments and the effects of accumulation may be associated with the increased inflammation in the brain. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Mutual relationship between Tau and central insulin signalling: consequences for AD and Tauopathies ?

    PubMed

    Gratuze, Maud; Joly-Amado, Aurélie; Vieau, Didier; Buée, Luc; Blum, David

    2018-02-13


    Alzheimer's disease (AD) is a progressive neurodegenerative disorder mainly characterized by cognitive deficits and neuropathological changes such as Tau lesions and amyloid plaques, but also associated with non-cognitive symptomatology. Metabolic and neuroendocrine abnormalities, such as alterations in body weight, brain insulin impairments and lower brain glucose metabolism, that often precede clinical diagnosis, have been extensively reported in AD patients. However, the origin of these symptoms and their relation to pathology and cognitive impairments remain misunderstood. Insulin is a hormone involved in the control of energy homeostasis both peripherally and centrally, and insulin resistant state has been linked to increased risk of dementia. It is now well established that insulin resistance can exacerbate Tau lesions, mainly by disrupting the balance between Tau kinases and phosphatases. On the other hand, emerging literature indicates that Tau protein can also modulate insulin signalling in the brain, thus creating a detrimental vicious circle. The following review will highlight our current understanding on the role of insulin in the brain and its relation to Tau protein in the context of AD and Tauopathies. Considering that insulin signaling is prone to be pharmacologically targeted at multiple levels, it constitutes an appealing approach to improve both insulin brain sensitivity and mitigate brain pathology with expected positive outcome in term of cognition.
    . ©2018S. Karger AG, Basel.

  13. Phosphorylated human tau associates with mouse prion protein amyloid in scrapie-infected mice but does not increase progression of clinical disease.

    PubMed

    Race, Brent; Phillips, Katie; Kraus, Allison; Chesebro, Bruce

    2016-07-03

    Tauopathies are a family of neurodegenerative diseases in which fibrils of human hyperphosphorylated tau (P-tau) are believed to cause neuropathology. In Alzheimer disease, P-tau associates with A-beta amyloid and contributes to disease pathogenesis. In familial human prion diseases and variant CJD, P-tau often co-associates with prion protein amyloid, and might also accelerate disease progression. To test this latter possibility, here we compared progression of amyloid prion disease in vivo after scrapie infection of mice with and without expression of human tau. The mice used expressed both anchorless prion protein (PrP) and membrane-anchored PrP, that generate disease associated amyloid and non-amyloid PrP (PrPSc) after scrapie infection. Human P-tau induced by scrapie infection was only rarely associated with non-amyloid PrPSc, but abundant human P-tau was detected at extracellular, perivascular and axonal deposits associated with amyloid PrPSc. This pathology was quite similar to that seen in familial prion diseases. However, association of human and mouse P-tau with amyloid PrPSc did not diminish survival time following prion infection in these mice. By analogy, human P-tau may not affect prion disease progression in humans. Alternatively, these results might be due to other factors, including rapidity of disease, blocking effects by mouse tau, or low toxicity of human P-tau in this model.

  14. Sources of extracellular tau and its signaling.

    PubMed

    Avila, Jesús; Simón, Diana; Díaz-Hernández, Miguel; Pintor, Jesús; Hernández, Félix

    2014-01-01

    The pathology associated with tau protein, tauopathy, has been recently analyzed in different disorders, leading to the suggestion that intracellular and extracellular tau may itself be the principal agent in the transmission and spreading of tauopathies. Tau pathology is based on an increase in the amount of tau, an increase in phosphorylated tau, and/or an increase in aggregated tau. Indeed, phosphorylated tau protein is the main component of tau aggregates, such as the neurofibrillary tangles present in the brain of Alzheimer's disease patients. It has been suggested that intracellular tau could be toxic to neurons in its phosphorylated and/or aggregated form. However, extracellular tau could also damage neurons and since neuronal death is widespread in Alzheimer's disease, mainly among cholinergic neurons, these cells may represent a possible source of extracellular tau. However, other sources of extracellular tau have been proposed that are independent of cell death. In addition, several ways have been proposed for cells to interact with, transmit, and spread extracellular tau, and to transduce signals mediated by this tau. In this work, we will discuss the role of extracellular tau in the spreading of the tau pathology.

  15. The Significance of α-Synuclein, Amyloid-β and Tau Pathologies in Parkinson’s Disease Progression and Related Dementia

    PubMed Central

    Compta, Y.; Parkkinen, L.; Kempster, P.; Selikhova, M.; Lashley, T.; Holton, J.L.; Lees, A.J.; Revesz, T.

    2014-01-01

    Background Dementia is one of the milestones of advanced Parkinson’s disease (PD), with its neuropathological substrate still being a matter of debate, particularly regarding its potential mechanistic implications. Objective The aim of this study was to review the relative importance of Lewy-related α-synuclein and Alzheimer’s tau and amyloid-β (Aβ) pathologies in disease progression and dementia in PD. Methods We reviewed studies conducted at the Queen Square Brain Bank, Institute of Neurology, University College London, using large PD cohorts. Results Cortical Lewy- and Alzheimer-type pathologies are associated with milestones of poorer prognosis and with non-tremor predominance, which have been, in turn, linked to dementia. The combination of these pathologies is the most robust neuropathological substrate of PD-related dementia, with cortical Aβ burden determining a faster progression to dementia. Conclusion The shared relevance of these pathologies in PD progression and dementia is in line with experimental data suggesting synergism between α-synuclein, tau and Aβ and with studies testing these proteins as disease biomarkers, hence favouring the eventual testing of therapeutic strategies targeting these proteins in PD. PMID:24028925

  16. Tau phosphorylation and kinase activation in familial tauopathy linked to deln296 mutation.

    PubMed

    Ferrer, I; Pastor, P; Rey, M J; Muñoz, E; Puig, B; Pastor, E; Oliva, R; Tolosa, E

    2003-02-01

    Tau phosphorylation has been examined by immunohistochemistry in the brain of a patient affected with familial tauopathy with progressive supranuclear palsy-like phenotype linked to the delN296 mutation in the tau gene. Phospho-specific tau antibodies Thr181, Ser202, Ser214, Ser396 and Ser422, and antibodies to glycogen synthase kinase-3alpha/beta (GSK-3alpha/beta) and to phosphorylated (P) mitogen-activated protein kinase/extracellular signal-regulated kinases (MAPK/ERK), stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK), p38 kinase (p38) and GSK-3betaSer9 have been used to gain understanding of the identification of phosphorylation sites, as well as of the specific kinases that regulate tau phosphorylation at those specific sites, in a familial tauopathy. The neuropathological examination disclosed atrophy of the right precentral gyrus and the brainstem. Neurone loss and gliosis were observed in the substantia nigra, several nuclei of the brainstem and diencephalon. Hyper-phosphorylated tau accumulated in neurones with neurofibrillary tangles and in neurones with pretangles in the substantia nigra, locus ceruleus, peri-aqueductal grey matter, reticular formation, motor nuclei of the brainstem, and thalamus, amygdala and hippocampus. tau-immunoreactive astrocytes and, particularly, oligodendrocytes with coiled bodies were widespread in the brainstem, diencephalons, cerebral white matter and cerebral cortex. Increased expression of MAPK/ERK-P, SAPK/JNK-P, p-38-P and GSK-3beta-P was observed in select subpopulations of neurones with neurofibrillary tangles and in neurones with pretangles. MAPK/ERK-P, SAPK/JNK-P, p38-P and GSK-3beta-P were also expressed in tau-containing astrocytes and in oligodendrocytes with coiled bodies. These findings show, for the first time, activation of precise kinases that regulate tau phosphorylation at specific sites in familial tauopathy.

  17. Comparing Plasma Phospho Tau, Total Tau, and Phospho Tau-Total Tau Ratio as Acute and Chronic Traumatic Brain Injury Biomarkers.

    PubMed

    Rubenstein, Richard; Chang, Binggong; Yue, John K; Chiu, Allen; Winkler, Ethan A; Puccio, Ava M; Diaz-Arrastia, Ramon; Yuh, Esther L; Mukherjee, Pratik; Valadka, Alex B; Gordon, Wayne A; Okonkwo, David O; Davies, Peter; Agarwal, Sanjeev; Lin, Fan; Sarkis, George; Yadikar, Hamad; Yang, Zhihui; Manley, Geoffrey T; Wang, Kevin K W; Cooper, Shelly R; Dams-O'Connor, Kristen; Borrasso, Allison J; Inoue, Tomoo; Maas, Andrew I R; Menon, David K; Schnyer, David M; Vassar, Mary J

    2017-09-01

    Annually in the United States, at least 3.5 million people seek medical attention for traumatic brain injury (TBI). The development of therapies for TBI is limited by the absence of diagnostic and prognostic biomarkers. Microtubule-associated protein tau is an axonal phosphoprotein. To date, the presence of the hypophosphorylated tau protein (P-tau) in plasma from patients with acute TBI and chronic TBI has not been investigated. To examine the associations between plasma P-tau and total-tau (T-tau) levels and injury presence, severity, type of pathoanatomic lesion (neuroimaging), and patient outcomes in acute and chronic TBI. In the TRACK-TBI Pilot study, plasma was collected at a single time point from 196 patients with acute TBI admitted to 3 level I trauma centers (<24 hours after injury) and 21 patients with TBI admitted to inpatient rehabilitation units (mean [SD], 176.4 [44.5] days after injury). Control samples were purchased from a commercial vendor. The TRACK-TBI Pilot study was conducted from April 1, 2010, to June 30, 2012. Data analysis for the current investigation was performed from August 1, 2015, to March 13, 2017. Plasma samples were assayed for P-tau (using an antibody that specifically recognizes phosphothreonine-231) and T-tau using ultra-high sensitivity laser-based immunoassay multi-arrayed fiberoptics conjugated with rolling circle amplification. In the 217 patients with TBI, 161 (74.2%) were men; mean (SD) age was 42.5 (18.1) years. The P-tau and T-tau levels and P-tau-T-tau ratio in patients with acute TBI were higher than those in healthy controls. Receiver operating characteristic analysis for the 3 tau indices demonstrated accuracy with area under the curve (AUC) of 1.000, 0.916, and 1.000, respectively, for discriminating mild TBI (Glasgow Coma Scale [GCS] score, 13-15, n = 162) from healthy controls. The P-tau level and P-tau-T-tau ratio were higher in individuals with more severe TBI (GCS, ≤12 vs 13-15). The P-tau level and P-tau-T-tau

  18. Neuropathological diagnostic criteria for Alzheimer's disease.

    PubMed

    Murayama, Shigeo; Saito, Yuko

    2004-09-01

    Neuropathological diagnostic criteria for Alzheimer's disease (AD) are based on tau-related pathology: NFT or neuritic plaques (NP). The Consortium to Establish a Registry for Alzheimer's disease (CERAD) criterion evaluates the highest density of neocortical NP from 0 (none) to C (abundant). Clinical documentation of dementia and NP stage A in younger cases, B in young old cases and C in older cases fulfils the criterion of AD. The CERAD criterion is most frequently used in clinical outcome studies because of its inclusion of clinical information. Braak and Braak's criterion evaluates the density and distribution of NFT and classifies them into: I/II, entorhinal; III/IV, limbic; and V/VI, neocortical stage. These three stages correspond to normal cognition, cognitive impairment and dementia, respectively. As Braak's criterion is based on morphological evaluation of the brain alone, this criterion is usually adopted in the research setting. The National Institute for Aging and Ronald and Nancy Reagan Institute of the Alzheimer's Association criterion combines these two criteria and categorizes cases into NFT V/VI and NP C, NFT III/IV and NP B, and NFT I/II and NP A, corresponding to high, middle and low probability of AD, respectively. As most AD cases in the aged population are categorized into Braak tangle stage IV and CERAD stage C, the usefulness of this criterion has not yet been determined. The combination of Braak's NFT stage equal to or above IV and Braak's senile plaque Stage C provides, arguably, the highest sensitivity and specificity. In future, the criteria should include in vivo dynamic neuropathological data, including 3D MRI, PET scan and CSF biomarkers, as well as more sensitive and specific immunohistochemical and immunochemical grading of AD.

  19. Measurement of the $$\\mathrm{Z}\\gamma^{*} \\to \\tau\\tau$$ cross section in pp collisions at $$\\sqrt{s} = $$ 13 TeV and validation of $$\\tau$$ lepton analysis techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sirunyan, Albert M; et al.

    A measurement is presented of themore » $$\\mathrm{Z}/\\gamma^{*} \\to \\tau\\tau$$ cross section in pp collisions at $$\\sqrt{s} = $$ 13 TeV, using data recorded by the CMS experiment at the LHC, corresponding to an integrated luminosity of 2.3 fb$$^{-1}$$. The product of the inclusive cross section and branching fraction is measured to be $$\\sigma(\\mathrm{pp} \\to \\mathrm{Z}/\\gamma^{*}\\text{+X}) \\, \\mathcal{B}(\\mathrm{Z}/\\gamma^{*} \\to \\tau\\tau) = $$ 1848 $$\\pm$$ 12 (stat) $$\\pm$$ 67 (syst+lumi) pb, in agreement with the standard model expectation, computed at next-to-next-to-leading order accuracy in perturbative quantum chromodynamics. The measurement is used to validate new analysis techniques relevant for future measurements of $$\\tau$$ lepton production. The measurement also provides the reconstruction efficiency and energy scale for $$\\tau$$ decays to hadrons+$$\

  20. Selenomethionine ameliorates cognitive decline, reduces tau hyperphosphorylation, and reverses synaptic deficit in the triple transgenic mouse model of Alzheimer's disease.

    PubMed

    Song, Guoli; Zhang, Zhonghao; Wen, Lei; Chen, Chen; Shi, Qingxue; Zhang, Yu; Ni, Jiazuan; Liu, Qiong

    2014-01-01

    Disruption of the intracellular balance between free radicals and the antioxidant system is a prominent and early feature in the neuropathology of Alzheimer's disease (AD). Selenium, a vital trace element with known antioxidant potential, has been reported to provide neuroprotection through resisting oxidative damage but its therapeutic effect on AD remains to be investigated. The objective of our study was to investigate the potential of selenomethionine (Se-Met), an organic form of selenium, in the treatment of cognitive dysfunction and neuropathology of triple transgenic AD (3 × Tg-AD) mice. 3 × Tg-AD mice, which were four months old, were treated with Se-Met for 3 months and demonstrated significant improvements in cognitive deficit along with an increased selenium level compared with the untreated control mice. Se-Met treatment significantly reduced the level of total tau and phosphorylated tau, mitigated the decrease of synaptic proteins including synaptophysin and postsynaptic density protein 95 in the hippocampus and cortex of the 3 × Tg-AD mice. Meanwhile, glial activation in AD mice was inhibited and the level of reduced glutathione was increased in the treated mice compared with control mice. Additionally, the expression and activity of glycogen synthase kinase 3β and protein phosphatase 2A, two important enzymes involved in tau phosphorylation, were markedly decreased and increased respectively by Se-Met treatment. Thus Se-Met improves cognitive deficit in a murine model of AD, which is associated with reduction in tau expression and hyperphosphorylation, amelioration of inflammation, and restoration of synaptic proteins and antioxidants. This study provides a novel therapeutic approach for the prevention of AD.

  1. Molecules of the quinoline family block tau self-aggregation: implications toward a therapeutic approach for Alzheimer's disease.

    PubMed

    Navarrete, Leonardo P; Guzmán, Leonardo; San Martín, Aurelio; Astudillo-Saavedra, Luis; Maccioni, Ricardo B

    2012-01-01

    The neurofibrillary tangles (NFTs) generated by self-aggregation of anomalous forms of tau represent a neuropathological hallmark of Alzheimer's disease (AD). These lesions begin to form long before the clinical manifestation of AD, and its severity is correlated with cognitive impairment in patients. We focused on the search for molecules that interact with aggregated tau of the Alzheimer's type and that may block its aggregation before the formation of NFTs. We show that molecules from a family of quinolines interact specifically with oligomeric forms of tau, inhibiting their assembly into AD filaments. The quinolines 2-(4-methylphenyl)-6-methyl quinoline (THQ-4S) and 2-(4-aminophenyl)-6-methylquinoline (THQ-55) inhibited in vitro aggregation of heparin-induced polymers of purified brain tau and aggregates of human recombinant tau. They also interact with paired helical filaments (PHFs) purified from AD postmortem brains. In vitro studies indicated a significantly lower inhibitory effect of amyloid-β42 on the aggregation, suggesting that tau aggregates are specific targets for quinoline interactions. These compounds showed highly lipophilic properties as corroborated with the analysis of total polar surface areas, and evaluation of their molecular properties. Moreover, these quinolines exhibit physical chemical properties similar to drugs able to penetrate the human brain blood barrier. Docking studies based on tau modeling, as a structural approach to the analysis of the interaction of tau-binding ligands, indicated that a C-terminal tau moiety, involved in the formation of PHFs, seems to be a site for binding of quinolines. Studies suggest the potential clinical use of these quinolines and of their derivatives to inhibit tau aggregation and possible therapeutic routes for AD.

  2. Neuropathological and transcriptomic characteristics of the aged brain

    PubMed Central

    Miller, Jeremy A; Guillozet-Bongaarts, Angela; Gibbons, Laura E; Postupna, Nadia; Renz, Anne; Beller, Allison E; Sunkin, Susan M; Ng, Lydia; Rose, Shannon E; Smith, Kimberly A; Szafer, Aaron; Barber, Chris; Bertagnolli, Darren; Bickley, Kristopher; Brouner, Krissy; Caldejon, Shiella; Chapin, Mike; Chua, Mindy L; Coleman, Natalie M; Cudaback, Eiron; Cuhaciyan, Christine; Dalley, Rachel A; Dee, Nick; Desta, Tsega; Dolbeare, Tim A; Dotson, Nadezhda I; Fisher, Michael; Gaudreault, Nathalie; Gee, Garrett; Gilbert, Terri L; Goldy, Jeff; Griffin, Fiona; Habel, Caroline; Haradon, Zeb; Hejazinia, Nika; Hellstern, Leanne L; Horvath, Steve; Howard, Kim; Howard, Robert; Johal, Justin; Jorstad, Nikolas L; Josephsen, Samuel R; Kuan, Chihchau L; Lai, Florence; Lee, Eric; Lee, Felix; Lemon, Tracy; Li, Xianwu; Marshall, Desiree A; Melchor, Jose; Mukherjee, Shubhabrata; Nyhus, Julie; Pendergraft, Julie; Potekhina, Lydia; Rha, Elizabeth Y; Rice, Samantha; Rosen, David; Sapru, Abharika; Schantz, Aimee; Shen, Elaine; Sherfield, Emily; Shi, Shu; Sodt, Andy J; Thatra, Nivretta; Tieu, Michael; Wilson, Angela M; Montine, Thomas J; Larson, Eric B; Bernard, Amy; Crane, Paul K; Ellenbogen, Richard G

    2017-01-01

    As more people live longer, age-related neurodegenerative diseases are an increasingly important societal health issue. Treatments targeting specific pathologies such as amyloid beta in Alzheimer’s disease (AD) have not led to effective treatments, and there is increasing evidence of a disconnect between traditional pathology and cognitive abilities with advancing age, indicative of individual variation in resilience to pathology. Here, we generated a comprehensive neuropathological, molecular, and transcriptomic characterization of hippocampus and two regions cortex in 107 aged donors (median = 90) from the Adult Changes in Thought (ACT) study as a freely-available resource (http://aging.brain-map.org/). We confirm established associations between AD pathology and dementia, albeit with increased, presumably aging-related variability, and identify sets of co-expressed genes correlated with pathological tau and inflammation markers. Finally, we demonstrate a relationship between dementia and RNA quality, and find common gene signatures, highlighting the importance of properly controlling for RNA quality when studying dementia. PMID:29120328

  3. Applicability of digital analysis and imaging technology in neuropathology assessment.

    PubMed

    Dunn, William D; Gearing, Marla; Park, Yuna; Zhang, Lifan; Hanfelt, John; Glass, Jonathan D; Gutman, David A

    2016-06-01

    Alzheimer's disease (AD) is a progressive neurological disorder that affects more than 30 million people worldwide. While various dementia-related losses in cognitive functioning are its hallmark clinical symptoms, ultimate diagnosis is based on manual neuropathological assessments using various schemas, including Braak staging, CERAD (Consortium to Establish a Registry for Alzheimer's Disease) and Thal phase scoring. Since these scoring systems are based on subjective assessment, there is inevitably some degree of variation between readers, which could affect ultimate neuropathology diagnosis. Here, we report a pilot study investigating the applicability of computer-driven image analysis for characterizing neuropathological features, as well as its potential to supplement or even replace manually derived ratings commonly performed in medical settings. In this work, we quantitatively measured amyloid beta (Aβ) plaque in various brain regions from 34 patients using a robust digital quantification algorithm. We next verified these digitally derived measures to the manually derived pathology ratings using correlation and ordinal logistic regression methods, while also investigating the association with other AD-related neuropathology scoring schema commonly used at autopsy, such as Braak and CERAD. In addition to successfully verifying our digital measurements of Aβ plaques with respective categorical measurements, we found significant correlations with most AD-related scoring schemas. Our results demonstrate the potential for digital analysis to be adapted to more complex staining procedures commonly used in neuropathological diagnosis. As the efficiency of scanning and digital analysis of histology images increases, we believe that the basis of our semi-automatic approach may better standardize quantification of neuropathological changes and AD diagnosis, ultimately leading to a more comprehensive understanding of neurological disorders and more efficient patient

  4. Clinical Neuropathology Views - 2/2016: Digital networking in European neuropathology: An initiative to facilitate truly interactive consultations.

    PubMed

    Idoate, Miguel A; García-Rojo, Marcial

    2016-01-01

    Digital technology is progressively changing our vision of the practice of neuropathology. There are a number of facts that support the introduction of digital neuropathology. With the development of wholeslide imaging (WSI) systems the difficulties involved in implementing a neuropathology network have been solved. A relevant difficulty has been image standardization, but an open digital image communication protocol defined by the Digital Imaging and Communications in Medicine (DICOM) standard is already a reality. The neuropathology network should be established in Europe because it is the expected geographic context for relationships among European neuropathologists. There are several limitations in the implementation of a digital neuropathology consultancy network such as financial support, operational costs, legal issues, and technical assistance of clients. All of these items have been considered and should be solved before implementing the proposal. Finally, the authors conclude that a European digital neuropathology network should be created for patients' benefit.

  5. Near-atomic model of microtubule-tau interactions.

    PubMed

    Kellogg, Elizabeth H; Hejab, Nisreen M A; Poepsel, Simon; Downing, Kenneth H; DiMaio, Frank; Nogales, Eva

    2018-06-15

    Tau is a developmentally regulated axonal protein that stabilizes and bundles microtubules (MTs). Its hyperphosphorylation is thought to cause detachment from MTs and subsequent aggregation into fibrils implicated in Alzheimer's disease. It is unclear which tau residues are crucial for tau-MT interactions, where tau binds on MTs, and how it stabilizes them. We used cryo-electron microscopy to visualize different tau constructs on MTs and computational approaches to generate atomic models of tau-tubulin interactions. The conserved tubulin-binding repeats within tau adopt similar extended structures along the crest of the protofilament, stabilizing the interface between tubulin dimers. Our structures explain the effect of phosphorylation on MT affinity and lead to a model of tau repeats binding in tandem along protofilaments, tethering together tubulin dimers and stabilizing polymerization interfaces. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  6. The Neuropathology of Obesity: Insights from Human Disease

    PubMed Central

    Lee, Edward B.; Mattson, Mark P.

    2013-01-01

    Obesity, a pathologic state defined by excess adipose tissue, is a significant public health problem as it affects a large proportion of individuals and is linked with increased risk for numerous chronic diseases. Obesity is the result of fundamental changes associated with modern society including overnutrition and sedentary lifestyles. Proper energy homeostasis is dependent on normal brain function as the master metabolic regulator which integrates peripheral signals, modulates autonomic outflow and controls feeding behavior. Therefore, many human brain diseases are associated with obesity. This review explores the neuropathology of obesity by examining brain diseases which either cause or are influenced by obesity. First, several genetic and acquired brain diseases are discussed as a means to understand the central regulation of peripheral metabolism. These diseases range from monogenetic causes of obesity (leptin deficiency, MC4R deficiency, Bardet-Biedl syndrome and others) to complex neurodevelopmental disorders (Prader-Willi syndrome and Sim1 deficiency) and neurodegenerative conditions (frontotemporal dementia and Gourmand’s syndrome) and serve to highlight the central regulatory mechanisms which have evolved to maintain energy homeostasis. Next, to examine the effect of obesity on the brain, chronic neuropathologic conditions (epilepsy, multiple sclerosis and Alzheimer’s disease) are discussed as examples of obesity leading to maladaptive processes which exacerbate chronic disease. Thus obesity is associated with multiple pathways including abnormal metabolism, altered hormonal signaling and increased inflammation which act in concert to promote downstream neuropathology. Finally, the effect of anti-obesity interventions is discussed in terms of brain structure and function. Together, understanding human diseases and anti-obesity interventions leads to insights into the bidirectional interaction between peripheral metabolism and central brain function

  7. Tau pathology and neurodegeneration contribute to cognitive impairment in Alzheimer's disease.

    PubMed

    Bejanin, Alexandre; Schonhaut, Daniel R; La Joie, Renaud; Kramer, Joel H; Baker, Suzanne L; Sosa, Natasha; Ayakta, Nagehan; Cantwell, Averill; Janabi, Mustafa; Lauriola, Mariella; O'Neil, James P; Gorno-Tempini, Maria L; Miller, Zachary A; Rosen, Howard J; Miller, Bruce L; Jagust, William J; Rabinovici, Gil D

    2017-12-01

    Neuropathological and in vivo studies have revealed a tight relationship between tau pathology and cognitive impairment across the Alzheimer's disease spectrum. However, tau pathology is also intimately associated with neurodegeneration and amyloid pathology. The aim of the present study was therefore to assess whether grey matter atrophy and amyloid pathology contribute to the relationship between tau pathology, as measured with 18F-AV-1451-PET imaging, and cognitive deficits in Alzheimer's disease. We included 40 amyloid-positive patients meeting criteria for mild cognitive impairment due to Alzheimer's disease (n = 5) or probable Alzheimer's disease dementia (n = 35). Twelve patients additionally fulfilled the diagnostic criteria for posterior cortical atrophy and eight for logopenic variant primary progressive aphasia. All participants underwent 3 T magnetic resonance imaging, amyloid (11C-PiB) positron emission tomography and tau (18F-AV-1451) positron emission tomography, and episodic and semantic memory, language, executive and visuospatial functions assessment. Raw cognitive scores were converted to age-adjusted Z-scores (W-scores) and averaged to compute composite scores for each cognitive domain. Independent regressions were performed between 18F-AV-1451 binding and each cognitive domain, and we used the Biological Parametric Mapping toolbox to further control for local grey matter volumes, 11C-PiB uptake, or both. Partial correlations and causal mediation analyses (mediation R package) were then performed in brain regions showing an association between cognition and both 18F-AV-1451 uptake and grey matter volume. Our results showed that decreased cognitive performance in each domain was related to increased 18F-AV-1451 binding in specific brain regions conforming to established brain-behaviour relationships (i.e. episodic memory: medial temporal lobe and angular gyrus; semantic memory: left anterior temporal regions; language: left posterior superior

  8. Advanced imaging of tau pathology in Alzheimer Disease: New perspectives from super resolution microscopy and label-free nanoscopy.

    PubMed

    Schierle, Gabriele S Kaminski; Michel, Claire H; Gasparini, Laura

    2016-08-01

    Alzheimer's disease (AD) is the main cause of dementia in the elderly population. Over 30 million people worldwide are living with dementia and AD prevalence is projected to increase dramatically in the next two decades. In terms of neuropathology, AD is characterized by two major cerebral hallmarks: extracellular β-amyloid (Aβ) plaques and intracellular Tau inclusions, which start accumulating in the brain 15-20 years before the onset of symptoms. Within this context, the scientific community worldwide is undertaking a wide research effort to detect AD pathology at its earliest, before symptoms appear. Neuroimaging of Aβ by positron emission tomography (PET) is clinically available and is a promising modality for early detection of Aβ pathology and AD diagnosis. Substantive efforts are ongoing to develop advanced imaging techniques for early detection of Tau pathology. Here, we will briefly describe the key features of Tau pathology and its heterogeneity across various neurodegenerative diseases bearing cerebral Tau inclusions (i.e., tauopathies). We will outline the current status of research on Tau-specific PET tracers and their clinical development. Finally, we will discuss the potential application of novel super-resolution and label-free techniques for investigating Tau pathology at the experimental level and their potential application for AD diagnosis. Microsc. Res. Tech. 79:677-683, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  9. Tau Now

    NASA Astrophysics Data System (ADS)

    Fargion, D.; Oliva, P.

    2016-10-01

    Ultra High Energy Cosmic Rays and UHE neutrinos may lead to a new deep astronomy. However the most recent results on their correlations and clustering seem to most authors inconclusive. We briefly remind some UHECR models and past and recent results. Our reading and overlapping of IR-gamma-UHECR maps and their correlations seem to answer to several key puzzles, offering a first hope of the UHECR astronomy, mostly ruled by lightest nuclei from nearby Universe. Regarding the UHE neutrino we recently noted that the flavor ratio and the absence of double bang in IceCube within highest energetic ten events may suggest still a dominant noisy prompt component. However a first correlated UHE crossing muon with expected location (through going upward muon neutrino or horizontally) in IceCube is in our view a milestone in neutrino astronomy road map, possibly partially related, to galactic UHECR narrow clustering. The disturbing and persistent atmospheric neutrino noises, both conventional and prompt, call for a better filtered neutrino astronomy: the tau neutrino ones. There are no yet (at present, detectable) TeV-PeVs or more energetic tau neutrino of atmospheric, conventional or prompt nature; only astrophysical ones might soon shine. Double bangs in IceCube and in particular the tau air-showers in large array are the unique definitive expected signatures of astrophysical signals. In particular tau air-shower amplify in a huge way the otherwise single lepton track, once in decay in flight, into a richest three of secondaries (up to a million of billion Cherenkov photons for PeV tau energy) whose wide areas may extend up to nearly kilometer size. Such airshowers are very directional. PeVs energetic tau lepton penetrate hundreds meters inside the rock before its decay. Therefore horizontal tau air-shower in front of deep, wide valleys or mountain cliff [D. Fargion, A. Aiello, R. Conversano; 26th ICRC, He 6.1.09, 6 p. 396-398. (1999). Ed. D. Kieda, et al. arxiv

  10. CSF tau and β-amyloid predict cerebral synucleinopathy in autopsied Lewy body disorders.

    PubMed

    Irwin, David J; Xie, Sharon X; Coughlin, David; Nevler, Naomi; Akhtar, Rizwan S; McMillan, Corey T; Lee, Edward B; Wolk, David A; Weintraub, Daniel; Chen-Plotkin, Alice; Duda, John E; Spindler, Meredith; Siderowf, Andrew; Hurtig, Howard I; Shaw, Leslie M; Grossman, Murray; Trojanowski, John Q

    2018-03-20

    To test the association of antemortem CSF biomarkers with postmortem pathology in Lewy body disorders (LBD). Patients with autopsy-confirmed LBD (n = 24) and autopsy-confirmed Alzheimer disease (AD) (n = 23) and cognitively normal (n = 36) controls were studied. In LBD, neuropathologic criteria defined Lewy body α-synuclein (SYN) stages with medium/high AD copathology (SYN + AD = 10) and low/no AD copathology (SYN - AD = 14). Ordinal pathology scores for tau, β-amyloid (Aβ), and SYN pathology were averaged across 7 cortical regions to obtain a global cerebral score for each pathology. CSF total tau (t-tau), phosphorylated tau at threonine 181 , and Aβ 1-42 levels were compared between LBD and control groups and correlated with global cerebral pathology scores in LBD with linear regression. Diagnostic accuracy for postmortem categorization of LBD into SYN + AD vs SYN - AD or neocortical vs brainstem/limbic SYN stage was tested with receiver operating curves. SYN + AD had higher CSF t-tau (mean difference 27.0 ± 8.6 pg/mL) and lower Aβ 1-42 (mean difference -84.0 ± 22.9 g/mL) compared to SYN - AD ( p < 0.01, both). Increasing global cerebral tau and plaque scores were associated with higher CSF t-tau ( R 2 = 0.15-0.16, p < 0.05, both) and lower Aβ 1-42 ( R 2 = 0.43-0.49, p < 0.001, both), while increasing cerebral SYN scores were associated with lower CSF Aβ 1-42 ( R 2 = 0.31, p < 0.001) and higher CSF t-tau/Aβ 1-42 ratio ( R 2 = 0.27, p = 0.01). CSF t-tau/Aβ 1-42 ratio had 100% specificity and 90% sensitivity for SYN + AD, and CSF Aβ 1-42 had 77% specificity and 82% sensitivity for neocortical SYN stage. Higher antemortem CSF t-tau/Aβ 1-42 and lower Aβ 1-42 levels are predictive of increasing cerebral AD and SYN pathology. These biomarkers may identify patients with LBD vulnerable to cortical SYN pathology who may benefit from both SYN and AD-targeted disease-modifying therapies. © 2018 American Academy of Neurology.

  11. TBI-Induced Formation of Toxic Tau and Its Biochemical Similarities to Tau in AD Brains

    DTIC Science & Technology

    2016-10-01

    onto wild-type mice markedly reduces 1) memory including contextual fear memory and spatial memory, and 2) long-term potentiation, a type of...TERMS Tau, contextual fear memory, spatial memory, synaptic plasticity, traumatic brain injury, Alzheimer’s disease 16. SECURITY CLASSIFICATION OF: 17...mechanism leading to TBI and AD. 2 KEYWORDS Tau, contextual fear memory, spatial memory, synaptic plasticity, traumatic brain injury, Alzheimer’s

  12. HNE-modified proteins in Down syndrome: Involvement in development of Alzheimer disease neuropathology.

    PubMed

    Barone, Eugenio; Head, Elizabeth; Butterfield, D Allan; Perluigi, Marzia

    2017-10-01

    Down syndrome (DS), trisomy of chromosome 21, is the most common genetic form of intellectual disability. The neuropathology of DS involves multiple molecular mechanisms, similar to AD, including the deposition of beta-amyloid (Aβ) into senile plaques and tau hyperphosphorylationg in neurofibrillary tangles. Interestingly, many genes encoded by chromosome 21, in addition to being primarily linked to amyloid-beta peptide (Aβ) pathology, are responsible for increased oxidative stress (OS) conditions that also result as a consequence of reduced antioxidant system efficiency. However, redox homeostasis is disturbed by overproduction of Aβ, which accumulates into plaques across the lifespan in DS as well as in AD, thus generating a vicious cycle that amplifies OS-induced intracellular changes. The present review describes the current literature that demonstrates the accumulation of oxidative damage in DS with a focus on the lipid peroxidation by-product, 4-hydroxy-2-nonenal (HNE). HNE reacts with proteins and can irreversibly impair their functions. We suggest that among different post-translational modifications, HNE-adducts on proteins accumulate in DS brain and play a crucial role in causing the impairment of glucose metabolism, neuronal trafficking, protein quality control and antioxidant response. We hypothesize that dysfunction of these specific pathways contribute to accelerated neurodegeneration associated with AD neuropathology. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Applicability of digital analysis and imaging technology in neuropathology assessment

    PubMed Central

    Dunn, William D.; Gearing, Marla; Park, Yuna; Zhang, Lifan; Hanfelt, John; Glass, Jonathan D.; Gutman, David A.

    2017-01-01

    Alzheimer’s disease (AD) is a progressive neurological disorder that affects more than 30 million people worldwide. While various dementia-related losses in cognitive functioning are its hallmark clinical symptoms, ultimate diagnosis is based on manual neuropathological assessments using various schemas, including Braak staging, CERAD (Consortium to Establish a Registry for Alzheimer’s Disease) and Thal phase scoring. Since these scoring systems are based on subjective assessment, there is inevitably some degree of variation between readers, which could affect ultimate neuropathology diagnosis. Here, we report a pilot study investigating the applicability of computer-driven image analysis for characterizing neuropathological features, as well as its potential to supplement or even replace manually derived ratings commonly performed in medical settings. In this work, we quantitatively measured amyloid beta (Aβ) plaque in various brain regions from 34 patients using a robust digital quantification algorithm. We next verified these digitally derived measures to the manually derived pathology ratings using correlation and ordinal logistic regression methods, while also investigating the association with other AD-related neuropathology scoring schema commonly used at autopsy, such as Braak and CERAD. In addition to successfully verifying our digital measurements of Aβ plaques with respective categorical measurements, we found significant correlations with most AD-related scoring schemas. Our results demonstrate the potential for digital analysis to be adapted to more complex staining procedures commonly used in neuropathological diagnosis. As the efficiency of scanning and digital analysis of histology images increases, we believe that the basis of our semi-automatic approach may better standardize quantification of neuropathological changes and AD diagnosis, ultimately leading to a more comprehensive understanding of neurological disorders and more efficient

  14. Propagation of tau pathology: hypotheses, discoveries, and yet unresolved questions from experimental and human brain studies.

    PubMed

    Lewis, Jada; Dickson, Dennis W

    2016-01-01

    Tau is a microtubule-associated protein and a key regulator of microtubule stabilization as well as the main component of neurofibrillary tangles-a principle neuropathological hallmark of Alzheimer's disease (AD)-as well as pleomorphic neuronal and glial inclusions in neurodegenerative tauopathies. Cross-sectional studies of neurofibrillary pathology in AD reveal a stereotypic spatiotemporal pattern of neuronal vulnerability that correlates with disease severity; however, the relationship of this pattern to disease progression is less certain and exceptions to the typical pattern have been described in a subset of AD patients. The basis for the selective vulnerability of specific populations of neurons to tau pathology and cell death is largely unknown, although there have been a number of hypotheses based upon shared properties of vulnerable neurons (e.g., degree of axonal myelination or synaptic plasticity). A recent hypothesis for selective vulnerability takes into account the emerging science of functional connectivity based upon resting state functional magnetic resonance imaging, where subsets of neurons that fire synchronously define patterns of degeneration similar to specific neurodegenerative disorders, including various tauopathies. In the past 6 years, the concept of tau propagation has emerged from numerous studies in cell and animal models suggesting that tau moves from cell-to-cell and that this may trigger aggregation and region-to-region spread of tau pathology within the brain. How the spread of tau pathology relates to functional connectivity is an area of active investigation. Observations of templated folding and propagation of tau have prompted comparisons of tau to prions, the pathogenic proteins in transmissible spongiform encephalopathies. In this review, we discuss the most compelling studies in the field, discuss their shortcomings and consider their implications with respect to human tauopathies as well as the controversy that

  15. Susceptibility to neurofibrillary tangles: role of the PTPRD locus and limited pleiotropy with other neuropathologies.

    PubMed

    Chibnik, L B; White, C C; Mukherjee, S; Raj, T; Yu, L; Larson, E B; Montine, T J; Keene, C D; Sonnen, J; Schneider, J A; Crane, P K; Shulman, J M; Bennett, D A; De Jager, P L

    2017-03-21

    Tauopathies, including Alzheimer's disease (AD) and other neurodegenerative conditions, are defined by a pathological hallmark: neurofibrillary tangles (NFTs). NFT accumulation is thought to be closely linked to cognitive decline in AD. Here, we perform a genome-wide association study for NFT pathologic burden and report the association of the PTPRD locus (rs560380, P=3.8 × 10 -8 ) in 909 prospective autopsies. The association is replicated in an independent data set of 369 autopsies. The association of PTPRD with NFT is not dependent on the accumulation of amyloid pathology. In contrast, we found that the ZCWPW1 AD susceptibility variant influences NFT accumulation and that this effect is mediated by an accumulation of amyloid β plaques. We also performed complementary analyses to identify common pathways that influence multiple neuropathologies that coexist with NFT and found suggestive evidence that certain loci may influence multiple different neuropathological traits, including tau, amyloid β plaques, vascular injury and Lewy bodies. Overall, these analyses offer an evaluation of genetic susceptibility to NFT, a common end point for multiple different pathologic processes.Molecular Psychiatry advance online publication, 21 March 2017; doi:10.1038/mp.2017.20.

  16. A Novel MAPT Mutation, G55R, in a Frontotemporal Dementia Patient Leads to Altered Tau Function

    PubMed Central

    Guzman, Elmer; Barczak, Anna; Chodakowska-Żebrowska, Małgorzata; Barcikowska, Maria; Feinstein, Stuart

    2013-01-01

    Over two dozen mutations in the gene encoding the microtubule associated protein tau cause a variety of neurodegenerative dementias known as tauopathies, including frontotemporal dementia (FTD), PSP, CBD and Pick's disease. The vast majority of these mutations map to the C-terminal region of tau possessing microtubule assembly and microtubule dynamics regulatory activities as well as the ability to promote pathological tau aggregation. Here, we describe a novel and non-conservative tau mutation (G55R) mapping to an alternatively spliced exon encoding part of the N-terminal region of the protein in a patient with the behavioral variant of FTD. Although less well understood than the C-terminal region of tau, the N-terminal region can influence both MT mediated effects as well as tau aggregation. The mutation changes an uncharged glycine to a basic arginine in the midst of a highly conserved and very acidic region. In vitro, 4-repeat G55R tau nucleates microtubule assembly more effectively than wild-type 4-repeat tau; surprisingly, this effect is tau isoform specific and is not observed in a 3-repeat G55R tau versus 3-repeat wild-type tau comparison. In contrast, the G55R mutation has no effect upon the abilities of tau to regulate MT growing and shortening dynamics or to aggregate. Additionally, the mutation has no effect upon kinesin translocation in a microtubule gliding assay. Together, (i) we have identified a novel tau mutation mapping to a mutation deficient region of the protein in a bvFTD patient, and (ii) the G55R mutation affects the ability of tau to nucleate microtubule assembly in vitro in a 4-repeat tau isoform specific manner. This altered capability could markedly affect in vivo microtubule function and neuronal cell biology. We consider G55R to be a candidate mutation for bvFTD since additional criteria required to establish causality are not yet available for assessment. PMID:24086739

  17. Apolipoprotein E4 causes age- and Tau-dependent impairment of GABAergic interneurons, leading to learning and memory deficits in mice.

    PubMed

    Andrews-Zwilling, Yaisa; Bien-Ly, Nga; Xu, Qin; Li, Gang; Bernardo, Aubrey; Yoon, Seo Yeon; Zwilling, Daniel; Yan, Tonya Xue; Chen, Ligong; Huang, Yadong

    2010-10-13

    Apolipoprotein E4 (apoE4) is the major genetic risk factor for Alzheimer's disease. However, the underlying mechanisms are unclear. We found that female apoE4 knock-in (KI) mice had an age-dependent decrease in hilar GABAergic interneurons that correlated with the extent of learning and memory deficits, as determined in the Morris water maze, in aged mice. Treating apoE4-KI mice with daily peritoneal injections of the GABA(A) receptor potentiator pentobarbital at 20 mg/kg for 4 weeks rescued the learning and memory deficits. In neurotoxic apoE4 fragment transgenic mice, hilar GABAergic interneuron loss was even more pronounced and also correlated with the extent of learning and memory deficits. Neurodegeneration and tauopathy occurred earliest in hilar interneurons in apoE4 fragment transgenic mice; eliminating endogenous Tau prevented hilar GABAergic interneuron loss and the learning and memory deficits. The GABA(A) receptor antagonist picrotoxin abolished this rescue, while pentobarbital rescued learning deficits in the presence of endogenous Tau. Thus, apoE4 causes age- and Tau-dependent impairment of hilar GABAergic interneurons, leading to learning and memory deficits in mice. Consequently, reducing Tau and enhancing GABA signaling are potential strategies to treat or prevent apoE4-related Alzheimer's disease.

  18. The role of tau in the pathological process and clinical expression of Huntington’s disease

    PubMed Central

    Vuono, Romina; Winder-Rhodes, Sophie; de Silva, Rohan; Cisbani, Giulia; Drouin-Ouellet, Janelle; Spillantini, Maria G.; Cicchetti, Francesca

    2015-01-01

    Huntington’s disease is a neurodegenerative disorder caused by an abnormal CAG repeat expansion within exon 1 of the huntingtin gene HTT. While several genetic modifiers, distinct from the Huntington’s disease locus itself, have been identified as being linked to the clinical expression and progression of Huntington’s disease, the exact molecular mechanisms driving its pathogenic cascade and clinical features, especially the dementia, are not fully understood. Recently the microtubule associated protein tau, MAPT, which is associated with several neurodegenerative disorders, has been implicated in Huntington’s disease. We explored this association in more detail at the neuropathological, genetic and clinical level. We first investigated tau pathology by looking for the presence of hyperphosphorylated tau aggregates, co-localization of tau with mutant HTT and its oligomeric intermediates in post-mortem brain samples from patients with Huntington’s disease (n = 16) compared to cases with a known tauopathy and healthy controls. Next, we undertook a genotype–phenotype analysis of a large cohort of patients with Huntington’s disease (n = 960) with a particular focus on cognitive decline. We report not only on the tau pathology in the Huntington’s disease brain but also the association between genetic variation in tau gene and the clinical expression and progression of the disease. We found extensive pathological inclusions containing abnormally phosphorylated tau protein that co-localized in some instances with mutant HTT. We confirmed this related to the disease process rather than age, by showing it is also present in two patients with young-onset Huntington’s disease (26 and 40 years old at death). In addition we demonstrate that tau oligomers (suggested to be the most likely neurotoxic tau entity) are present in the Huntington’s disease brains. Finally we highlight the clinical significance of this pathology by demonstrating that the MAPT

  19. Intrinsic Tau Acetylation Is Coupled to Auto-Proteolytic Tau Fragmentation

    PubMed Central

    Cohen, Todd J.; Constance, Brian H.; Hwang, Andrew W.; James, Michael; Yuan, Chao-Xing

    2016-01-01

    Tau proteins are abnormally aggregated in a range of neurodegenerative tauopathies including Alzheimer’s disease (AD). Recently, tau has emerged as an extensively post-translationally modified protein, among which lysine acetylation is critical for normal tau function and its pathological aggregation. Here, we demonstrate that tau isoforms have different propensities to undergo lysine acetylation, with auto-acetylation occurring more prominently within the lysine-rich microtubule-binding repeats. Unexpectedly, we identified a unique intrinsic property of tau in which auto-acetylation induces proteolytic tau cleavage, thereby generating distinct N- and C-terminal tau fragments. Supporting a catalytic reaction-based mechanism, mapping and mutagenesis studies showed that tau cysteines, which are required for acetyl group transfer, are also essential for auto-proteolytic tau processing. Further mass spectrometry analysis identified the C-terminal 2nd and 4th microtubule binding repeats as potential sites of auto-cleavage. The identification of acetylation-mediated auto-proteolysis provides a new biochemical mechanism for tau self-regulation and warrants further investigation into whether auto-catalytic functions of tau are implicated in AD and other tauopathies. PMID:27383765

  20. Intrinsic Tau Acetylation Is Coupled to Auto-Proteolytic Tau Fragmentation.

    PubMed

    Cohen, Todd J; Constance, Brian H; Hwang, Andrew W; James, Michael; Yuan, Chao-Xing

    2016-01-01

    Tau proteins are abnormally aggregated in a range of neurodegenerative tauopathies including Alzheimer's disease (AD). Recently, tau has emerged as an extensively post-translationally modified protein, among which lysine acetylation is critical for normal tau function and its pathological aggregation. Here, we demonstrate that tau isoforms have different propensities to undergo lysine acetylation, with auto-acetylation occurring more prominently within the lysine-rich microtubule-binding repeats. Unexpectedly, we identified a unique intrinsic property of tau in which auto-acetylation induces proteolytic tau cleavage, thereby generating distinct N- and C-terminal tau fragments. Supporting a catalytic reaction-based mechanism, mapping and mutagenesis studies showed that tau cysteines, which are required for acetyl group transfer, are also essential for auto-proteolytic tau processing. Further mass spectrometry analysis identified the C-terminal 2nd and 4th microtubule binding repeats as potential sites of auto-cleavage. The identification of acetylation-mediated auto-proteolysis provides a new biochemical mechanism for tau self-regulation and warrants further investigation into whether auto-catalytic functions of tau are implicated in AD and other tauopathies.

  1. The ELISA-measured increase in cerebrospinal fluid tau that discriminates Alzheimer's disease from other neurodegenerative disorders is not attributable to differential recognition of tau assembly forms.

    PubMed

    O'Dowd, Seán T; Ardah, Mustafa T; Johansson, Per; Lomakin, Aleksey; Benedek, George B; Roberts, Kinley A; Cummins, Gemma; El Agnaf, Omar M; Svensson, Johan; Zetterberg, Henrik; Lynch, Timothy; Walsh, Dominic M

    2013-01-01

    Elevated cerebrospinal fluid concentrations of tau discriminate Alzheimer's disease from other neurodegenerative conditions. The reasons for this are unclear. While commercial assay kits are widely used to determine total-tau concentrations, little is known about their ability to detect different aggregation states of tau. We demonstrate that the leading commercial enzyme-linked immunosorbent assay reliably detects aggregated and monomeric tau and evinces good recovery of both species when added into cerebrospinal fluid. Hence, the disparity between total-tau levels encountered in Alzheimer's disease and other neurodegenerative conditions is not due to differential recognition of tau assembly forms or the extent of degeneration.

  2. Alzheimer brain-derived tau oligomers propagate pathology from endogenous tau.

    PubMed

    Lasagna-Reeves, Cristian A; Castillo-Carranza, Diana L; Sengupta, Urmi; Guerrero-Munoz, Marcos J; Kiritoshi, Takaki; Neugebauer, Volker; Jackson, George R; Kayed, Rakez

    2012-01-01

    Intracerebral injection of brain extracts containing amyloid or tau aggregates in transgenic animals can induce cerebral amyloidosis and tau pathology. We extracted pure populations of tau oligomers directly from the cerebral cortex of Alzheimer disease (AD) brain. These oligomers are potent inhibitors of long term potentiation (LTP) in hippocampal brain slices and disrupt memory in wild type mice. We observed for the first time that these authentic brain-derived tau oligomers propagate abnormal tau conformation of endogenous murine tau after prolonged incubation. The conformation and hydrophobicity of tau oligomers play a critical role in the initiation and spread of tau pathology in the naïve host in a manner reminiscent of sporadic AD.

  3. Molecular mechanism of tau aggregation induced by anionic and cationic dyes.

    PubMed

    Lira-De León, Karla I; García-Gutiérrez, Ponciano; Serratos, Iris N; Palomera-Cárdenas, Marianela; Figueroa-Corona, María Del P; Campos-Peña, Victoria; Meraz-Ríos, Marco A

    2013-01-01

    Abnormal tau filaments are a hallmark of Alzheimer's disease. Anionic dyes such as Congo Red, Thiazine Red, and Thioflavin S are able to induce tau fibrillization in vitro. SH-SY5Y cells were incubated with each dye for seven days leading to intracellular aggregates of tau protein, with different morphological characteristics. Interestingly, these tau aggregates were not observed when the Methylene Blue dye was added to the cell culture. In order to investigate the molecular mechanisms underlying this phenomenon, we developed a computational model for the interaction of the tau paired helical filament (PHF) core with every dye by docking analysis. The polar/electrostatic and nonpolar contribution to the free binding energy in the tau PHF core-anionic dye interaction was determined. We found that the tau PHF core can generate a positive net charge within the binding site localized at residuesLys311 and Lys340 (numbering according to the longest isoform hTau40). These residues are important for the binding affinity of the negative charges present in the anionic dyes causing an electrostatic environment that stabilizes the complex. Tau PHF core protofibril-Congo Red interaction has a stronger binding affinity compared to Thiazine Red or Thioflavin S. By contrast, the cationic dye Methylene Blue does not bind to nor stabilize the tau PHF core protofibrils. These results characterize the driving forces responsible for the binding of tau to anionic dyes leading to their self-aggregation and suggest that Methylene Blue may act as a destabilizing agent of tau aggregates.

  4. TBI-Induced Formation of Toxic Tau and Its Biochemical Similarities to Tau in AD Brains

    DTIC Science & Technology

    2017-10-01

    current study is to demonstrate that blast-induced traumatic brain injury (TBI) and Alzheimer’s disease (AD) lead to similar biochemical changes in tau...induced TBI leads to the production of a toxic form of tau that contributes to cognitive and electrophysiological impairments; 2) the formation of...3 4. Impact…………………………...…………………………………... 5 5. Changes/Problems...….……………………………………………… 6 6. Products …………………………………….……….….……………. 6 7

  5. Curcumin Inhibits Tau Aggregation and Disintegrates Preformed Tau Filaments in vitro.

    PubMed

    Rane, Jitendra Subhash; Bhaumik, Prasenjit; Panda, Dulal

    2017-01-01

    The pathological aggregation of tau is a common feature of most of the neuronal disorders including frontotemporal dementia, Parkinson's disease, and Alzheimer's disease. The inhibition of tau aggregation is considered to be one of the important strategies for treating these neurodegenerative diseases. Curcumin, a natural polyphenolic molecule, has been reported to have neuroprotective ability. In this work, curcumin was found to bind to adult tau and fetal tau with a dissociation constant of 3.3±0.4 and 8±1 μM, respectively. Molecular docking studies indicated a putative binding site of curcumin in the microtubule-binding region of tau. Using several complementary techniques, including dynamic light scattering, thioflavin S fluorescence, 90° light scattering, electron microscopy, and atomic force microscopy, curcumin was found to inhibit the aggregation of tau. The dynamic light scattering analysis and atomic force microscopic images revealed that curcumin inhibits the oligomerization of tau. Curcumin also disintegrated preformed tau oligomers. Using Far-UV circular dichroism, curcumin was found to inhibit the β-sheets formation in tau indicating that curcumin inhibits an initial step of tau aggregation. In addition, curcumin inhibited tau fibril formation. Furthermore, the effect of curcumin on the preformed tau filaments was analyzed by atomic force microscopy, transmission electron microscopy, and 90° light scattering. Curcumin treatment disintegrated preformed tau filaments. The results indicated that curcumin inhibited the oligomerization of tau and could disaggregate tau filaments.

  6. Evaluating the Patterns of Aging-Related Tau Astrogliopathy Unravels Novel Insights Into Brain Aging and Neurodegenerative Diseases.

    PubMed

    Kovacs, Gabor G; Robinson, John L; Xie, Sharon X; Lee, Edward B; Grossman, Murray; Wolk, David A; Irwin, David J; Weintraub, Dan; Kim, Christopher F; Schuck, Theresa; Yousef, Ahmed; Wagner, Stephanie T; Suh, Eunran; Van Deerlin, Vivianna M; Lee, Virginia M-Y; Trojanowski, John Q

    2017-04-01

    The term "aging-related tau astrogliopathy" (ARTAG) describes pathological accumulation of abnormally phosphorylated tau protein in astrocytes. We evaluated the correlates of ARTAG types (i.e., subpial, subependymal, white and gray matter, and perivascular) in different neuroanatomical regions. Clinical, neuropathological, and genetic (eg, APOE ε4 allele, MAPT H1/H2 haplotype) data from 628 postmortem brains from subjects were investigated; most of the patients had been longitudinally followed at the University of Pennsylvania. We found that (i) the amygdala is a hotspot for all ARTAG types; (ii) age at death, male sex, and presence of primary frontotemporal lobar degeneration (FTLD) tauopathy are significantly associated with ARTAG; (iii) age at death, greater degree of brain atrophy, ventricular enlargement, and Alzheimer disease (AD)-related variables are associated with subpial, white matter, and perivascular ARTAG types; (iv) AD-related variables are associated particularly with lobar white matter ARTAG; and (v) gray matter ARTAG in primary FTLD-tauopathies appears in areas without neuronal tau pathology. We provide a reference map of ARTAG types and propose at least 5 constellations of ARTAG. Furthermore, we propose a conceptual link between primary FTLD-tauopathy and ARTAG-related astrocytic tau pathologies. Our observations serve as a basis for etiological stratification and definition of progression patterns of ARTAG. © 2017 American Association of Neuropathologists, Inc. All rights reserved.

  7. Neuropathology of Cervical Dystonia

    PubMed Central

    Prudente, C.N.; Pardo, C.A.; Xiao, J.; Hanfelt, J.; Hess, E.J.; LeDoux, M.S.; Jinnah, H.A.

    2012-01-01

    The aim of this study was to search for neuropathological changes in postmortem brain tissue of individuals with cervical dystonia (CD). Multiple regions of formalin-preserved brains were collected from patients with CD and controls and examined with an extensive battery of histopathological stains in a two-stage study design. In stage one, 4 CD brains underwent a broad screening neuropathological examination. In stage two, these 4 CD brains were combined with 2 additional CD brains, and the subjective findings were quantified and compared to 16 age-matched controls. The initial subjective neuropathological assessment revealed only two regions with relatively consistent changes. The substantia nigra had frequent ubiquitin-positive intranuclear inclusions known as Marinesco bodies. Additionally, the cerebellum showed patchy loss of Purkinje cells, areas of focal gliosis and torpedo bodies. Other brain regions showed minor or inconsistent changes. In the second stage of the analysis, quantitative studies failed to reveal significant differences in the numbers of Marinesco bodies in CD versus controls, but confirmed a significantly lower Purkinje cell density in CD. Molecular investigations revealed 4 of the CD cases and 2 controls to harbor sequence variants in non-coding regions of THAP1, and these cases had lower Purkinje cell densities regardless of whether they had CD. The findings suggest that subtle neuropathological changes such as lower Purkinje cell density may be found in primary CD when relevant brain regions are investigated with appropriate methods. PMID:23195594

  8. Neuropathology of amyotrophic lateral sclerosis and its variants”

    PubMed Central

    Saberi, Shahram; Stauffer, Jennifer E.; Schulte, Derek J.; Ravits, John

    2015-01-01

    Summary Amyotrophic lateral sclerosis (ALS) is a clinical syndrome named for its neuropathological hallmark: degeneration of motor neurons in the spinal anterior horn and motor cortex and loss of axons in the lateral columns of the spinal cord. The signature neuropathological molecular signature common to almost all sporadic ALS and most familial ALS is TDP-43 immunoreactive neuronal cytoplasmic inclusions. The neuropathological and molecular neuropathological features of ALS variants primarly lateral sclerosis and progressive muscular atrophy are less certain, but also appear to share the primary features of ALS. A number of genetic causes including mutations in SOD1, FUS, and C9orf72 comprise a disease spectrum and all demonstrate distinctive molecular and neuropathological signatures. Neuropathology will continue to play to a key role in solving the puzzle of ALS pathogenesis. PMID:26515626

  9. Anti-tau antibody administration increases plasma tau in transgenic mice and patients with tauopathy

    PubMed Central

    Yanamandra, Kiran; Patel, Tirth K.; Jiang, Hong; Schindler, Suzanne; Ulrich, Jason D.; Boxer, Adam L.; Miller, Bruce L.; Kerwin, Diana R.; Gallardo, Gilbert; Stewart, Floy; Finn, Mary Beth; Cairns, Nigel J.; Verghese, Philip B.; Fogelman, Ilana; West, Tim; Braunstein, Joel; Robinson, Grace; Keyser, Jennifer; Roh, Joseph; Knapik, Stephanie S.; Hu, Yan; Holtzman, David M.

    2017-01-01

    Tauopathies are a group of disorders in which the cytosolic protein tau aggregates and accumulates in cells within the brain, resulting in neurodegeneration. A promising treatment being explored for tauopathies is passive immunization with anti-tau antibodies. We previously found that administration of an anti-tau antibody to human tau transgenic mice increased the concentration of plasma tau. We further explored the effects of administering an anti-tau antibody on plasma tau. After peripheral administration of an anti-tau antibody to human patients with tauopathy and to mice expressing human tau in the central nervous system, there was a dose-dependent increase in plasma tau. In mouse plasma, we found that tau had a short half-life of 8 min that increased to more than 3 hours after administration of anti-tau antibody. As tau transgenic mice accumulated insoluble tau in the brain, brain soluble and interstitial fluid tau decreased. Administration of anti-tau antibody to tau transgenic mice that had decreased brain soluble tau and interstitial fluid tau resulted in an increase in plasma tau, but this increase was less than that observed in tau transgenic mice without these brain changes. Tau transgenic mice subjected to acute neuronal injury using 3-nitropropionic acid showed increased interstitial fluid tau and plasma tau. These data suggest that peripheral administration of an anti-tau antibody results in increased plasma tau, which correlates with the concentration of extracellular and soluble tau in the brain. PMID:28424326

  10. cuTauLeaping: A GPU-Powered Tau-Leaping Stochastic Simulator for Massive Parallel Analyses of Biological Systems

    PubMed Central

    Besozzi, Daniela; Pescini, Dario; Mauri, Giancarlo

    2014-01-01

    Tau-leaping is a stochastic simulation algorithm that efficiently reconstructs the temporal evolution of biological systems, modeled according to the stochastic formulation of chemical kinetics. The analysis of dynamical properties of these systems in physiological and perturbed conditions usually requires the execution of a large number of simulations, leading to high computational costs. Since each simulation can be executed independently from the others, a massive parallelization of tau-leaping can bring to relevant reductions of the overall running time. The emerging field of General Purpose Graphic Processing Units (GPGPU) provides power-efficient high-performance computing at a relatively low cost. In this work we introduce cuTauLeaping, a stochastic simulator of biological systems that makes use of GPGPU computing to execute multiple parallel tau-leaping simulations, by fully exploiting the Nvidia's Fermi GPU architecture. We show how a considerable computational speedup is achieved on GPU by partitioning the execution of tau-leaping into multiple separated phases, and we describe how to avoid some implementation pitfalls related to the scarcity of memory resources on the GPU streaming multiprocessors. Our results show that cuTauLeaping largely outperforms the CPU-based tau-leaping implementation when the number of parallel simulations increases, with a break-even directly depending on the size of the biological system and on the complexity of its emergent dynamics. In particular, cuTauLeaping is exploited to investigate the probability distribution of bistable states in the Schlögl model, and to carry out a bidimensional parameter sweep analysis to study the oscillatory regimes in the Ras/cAMP/PKA pathway in S. cerevisiae. PMID:24663957

  11. Comparing Plasma Phospho Tau, Total Tau, and Phospho Tau–Total Tau Ratio as Acute and Chronic Traumatic Brain Injury Biomarkers

    PubMed Central

    Rubenstein, Richard; Chang, Binggong; Yue, John K.; Chiu, Allen; Winkler, Ethan A.; Puccio, Ava M.; Diaz-Arrastia, Ramon; Yuh, Esther L.; Mukherjee, Pratik; Valadka, Alex B.; Gordon, Wayne A.; Okonkwo, David O.; Davies, Peter; Agarwal, Sanjeev; Lin, Fan; Sarkis, George; Yadikar, Hamad; Yang, Zhihui; Manley, Geoffrey T.; Wang, Kevin K. W.

    2017-01-01

    IMPORTANCE Annually in the United States, at least 3.5 million people seek medical attention for traumatic brain injury (TBI). The development of therapies for TBI is limited by the absence of diagnostic and prognostic biomarkers. Microtubule-associated protein tau is an axonal phosphoprotein. To date, the presence of the hypophosphorylated tau protein (P-tau) in plasma from patients with acute TBI and chronic TBI has not been investigated. OBJECTIVE To examine the associations between plasma P-tau and total-tau (T-tau) levels and injury presence, severity, type of pathoanatomic lesion (neuroimaging), and patient outcomes in acute and chronic TBI. DESIGN, SETTING, AND PARTICIPANTS In the TRACK-TBI Pilot study, plasma was collected at a single time point from 196 patients with acute TBI admitted to 3 level I trauma centers (<24 hours after injury) and 21 patients with TBI admitted to inpatient rehabilitation units (mean [SD], 176.4 [44.5] days after injury). Control samples were purchased from a commercial vendor. The TRACK-TBI Pilot study was conducted from April 1, 2010, to June 30, 2012. Data analysis for the current investigation was performed from August 1, 2015, to March 13, 2017. MAIN OUTCOMES AND MEASURES Plasma samples were assayed for P-tau (using an antibody that specifically recognizes phosphothreonine-231) and T-tau using ultra-high sensitivity laser-based immunoassay multi-arrayed fiberoptics conjugated with rolling circle amplification. RESULTS In the 217 patients with TBI, 161 (74.2%) were men; mean (SD) age was 42.5 (18.1) years. The P-tau and T-tau levels and P-tau–T-tau ratio in patients with acute TBI were higher than those in healthy controls. Receiver operating characteristic analysis for the 3 tau indices demonstrated accuracy with area under the curve (AUC) of 1.000, 0.916, and 1.000, respectively, for discriminating mild TBI (Glasgow Coma Scale [GCS] score, 13–15, n = 162) from healthy controls. The P-tau level and P-tau–T-tau ratio

  12. Simulated Cytoskeletal Collapse via Tau Degradation

    PubMed Central

    Sendek, Austin; Fuller, Henry R.; Hayre, N. Robert; Singh, Rajiv R. P.; Cox, Daniel L.

    2014-01-01

    We present a coarse-grained two dimensional mechanical model for the microtubule-tau bundles in neuronal axons in which we remove taus, as can happen in various neurodegenerative conditions such as Alzheimers disease, tauopathies, and chronic traumatic encephalopathy. Our simplified model includes (i) taus modeled as entropic springs between microtubules, (ii) removal of taus from the bundles due to phosphorylation, and (iii) a possible depletion force between microtubules due to these dissociated phosphorylated taus. We equilibrate upon tau removal using steepest descent relaxation. In the absence of the depletion force, the transverse rigidity to radial compression of the bundles falls to zero at about 60% tau occupancy, in agreement with standard percolation theory results. However, with the attractive depletion force, spring removal leads to a first order collapse of the bundles over a wide range of tau occupancies for physiologically realizable conditions. While our simplest calculations assume a constant concentration of microtubule intercalants to mediate the depletion force, including a dependence that is linear in the detached taus yields the same collapse. Applying percolation theory to removal of taus at microtubule tips, which are likely to be the protective sites against dynamic instability, we argue that the microtubule instability can only obtain at low tau occupancy, from 0.06–0.30 depending upon the tau coordination at the microtubule tips. Hence, the collapse we discover is likely to be more robust over a wide range of tau occupancies than the dynamic instability. We suggest in vitro tests of our predicted collapse. PMID:25162587

  13. Reversal of memory and neuropsychiatric symptoms and reduced tau pathology by selenium in 3xTg-AD mice.

    PubMed

    Van der Jeugd, Ann; Parra-Damas, Arnaldo; Baeta-Corral, Raquel; Soto-Faguás, Carlos M; Ahmed, Tariq; LaFerla, Frank M; Giménez-Llort, Lydia; D'Hooge, Rudi; Saura, Carlos A

    2018-04-24

    Accumulation of amyloid-β plaques and tau contribute to the pathogenesis of Alzheimer's disease (AD), but it is unclear whether targeting tau pathology by antioxidants independently of amyloid-β causes beneficial effects on memory and neuropsychiatric symptoms. Selenium, an essential antioxidant element reduced in the aging brain, prevents development of neuropathology in AD transgenic mice at early disease stages. The therapeutic potential of selenium for ameliorating or reversing neuropsychiatric and cognitive behavioral symptoms at late AD stages is largely unknown. Here, we evaluated the effects of chronic dietary sodium selenate supplementation for 4 months in female 3xTg-AD mice at 12-14 months of age. Chronic sodium selenate treatment efficiently reversed hippocampal-dependent learning and memory impairments, and behavior- and neuropsychiatric-like symptoms in old female 3xTg-AD mice. Selenium significantly decreased the number of aggregated tau-positive neurons and astrogliosis, without globally affecting amyloid plaques, in the hippocampus of 3xTg-AD mice. These results indicate that selenium treatment reverses AD-like memory and neuropsychiatric symptoms by a mechanism involving reduction of aggregated tau and/or reactive astrocytes but not amyloid pathology. These results suggest that sodium selenate could be part of a combined therapeutic approach for the treatment of memory and neuropsychiatric symptoms in advanced AD stages.

  14. Neurodegenerative disorder FTDP-17-related tau intron 10 +16C → T mutation increases tau exon 10 splicing and causes tauopathy in transgenic mice.

    PubMed

    Umeda, Tomohiro; Yamashita, Takenari; Kimura, Tetsuya; Ohnishi, Kiyouhisa; Takuma, Hiroshi; Ozeki, Tomoko; Takashima, Akihiko; Tomiyama, Takami; Mori, Hiroshi

    2013-07-01

    Frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17) is a neurodegenerative disorder caused by mutations in the tau gene. Many mutations identified in FTDP-17 have been shown to affect tau exon 10 splicing in vitro, which presumably causes pathologic imbalances in exon 10(-) [3-repeat (3R)] and exon 10(+) [4-repeat (4R)] tau expression and leads to intracellular inclusions of hyperphosphorylated tau in patient brains. However, no reports have investigated this theory using model mice with a tau intronic mutation. Herein, we generated new transgenic mice harboring the tau intron 10 +16C → T mutation. We prepared a transgene construct containing intronic sequences required for exon 10 splicing in the longest tau isoform cDNA. Although mice bearing the construct without the intronic mutation showed normal developmental changes of the tau isoform from 3R tau to equal amounts of 3R and 4R tau, mice with the mutation showed much higher levels of 4R tau at the adult stage. 4R tau was selectively recovered in insoluble brain fractions in their old age. Furthermore, these mice displayed abnormal tau phosphorylation, synapse loss and dysfunction, memory impairment, glial activation, tangle formation, and neuronal loss in an age-dependent manner. These findings provide the first evidence in a mouse model that a tau intronic mutation-induced imbalance of 3R and 4R tau could be a cause of tauopathy. Copyright © 2013 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  15. Neuropathologic features associated with Alzheimer disease diagnosis

    PubMed Central

    Grinberg, L.T.; Miller, B.; Kawas, C.; Yaffe, K.

    2011-01-01

    Objective: To examine whether the association between clinical Alzheimer disease (AD) diagnosis and neuropathology and the precision by which neuropathology differentiates people with clinical AD from those with normal cognition varies by age. Methods: We conducted a cross-sectional analysis of 2,014 older adults (≥70 years at death) from the National Alzheimer's Coordinating Center database with clinical diagnosis of normal cognition (made ≤1 year before death, n = 419) or AD (at ≥65 years, n = 1,595) and a postmortem neuropathologic examination evaluating AD pathology (neurofibrillary tangles, neuritic plaques) and non-AD pathology (diffuse plaques, amyloid angiopathy, Lewy bodies, macrovascular disease, microvascular disease). We used adjusted logistic regression to analyze the relationship between clinical AD diagnosis and neuropathologic features, area under the receiver operating characteristic curve (c statistic) to evaluate how precisely neuropathology differentiates between cognitive diagnoses, and an interaction to identify effect modification by age group. Results: In a model controlling for coexisting neuropathologic features, the relationship between clinical AD diagnosis and neurofibrillary tangles was significantly weaker with increasing age (p < 0.001 for interaction). The aggregate of all neuropathologic features more strongly differentiated people with clinical AD from those without in younger age groups (70–74 years: c statistic, 95% confidence interval: 0.93, 0.89–0.96; 75–84 years: 0.95, 0.87–0.95; ≥85 years: 0.83, 0.80–0.87). Non-AD pathology significantly improved precision of differentiation across all age groups (p < 0.004). Conclusion: Clinical AD diagnosis was more weakly associated with neurofibrillary tangles among the oldest old compared to younger age groups, possibly due to less accurate clinical diagnosis, better neurocompensation, or unaccounted pathology among the oldest old. PMID:22031532

  16. Closing the tau loop: the missing tau mutation

    PubMed Central

    McCarthy, Allan; Lonergan, Roisin; Olszewska, Diana A.; O’Dowd, Sean; Cummins, Gemma; Magennis, Brian; Fallon, Emer M.; Pender, Niall; Huey, Edward D.; Cosentino, Stephanie; O’Rourke, Killian; Kelly, Brendan D.; O’Connell, Martin; Delon, Isabelle; Farrell, Michael; Spillantini, Maria Grazia; Rowland, Lewis P.; Fahn, Stanley; Craig, Peter; Hutton, Michael

    2015-01-01

    Frontotemporal lobar degeneration comprises a group of disorders characterized by behavioural, executive, language impairment and sometimes features of parkinsonism and motor neuron disease. In 1994 we described an Irish-American family with frontotemporal dementia linked to chromosome 17 associated with extensive tau pathology. We named this disinhibition-dementia-parkinsonism-amyotrophy complex. We subsequently identified mutations in the MAPT gene. Eleven MAPT gene splice site stem loop mutations were identified over time except for 5’ splice site of exon 10. We recently identified another Irish family with autosomal dominant early amnesia and behavioural change or parkinsonism associated with the ‘missing’ +15 mutation at the intronic boundary of exon 10. We performed a clinical, neuropsychological and neuroimaging study on the proband and four siblings, including two affected siblings. We sequenced MAPT and performed segregation analysis. We looked for a biological effect of the tau variant by performing real-time polymerase chain reaction analysis of RNA extracted from human embryonic kidney cells transfected with exon trapping constructs. We found a c.915+15A>C exon 10/intron 10 stem loop mutation in all affected subjects but not in the unaffected. The c.915+15A>C variant caused a shift in tau splicing pattern to a predominantly exon 10+ pattern presumably resulting in predominant 4 repeat tau and little 3 repeat tau. This strongly suggests that the c.915+15A>C variant is a mutation and that it causes frontotemporal dementia linked to chromosome 17 in this pedigree by shifting tau transcription and translation to +4 repeat tau. Tau (MAPT) screening should be considered in families where amnesia or atypical parkinsonism coexists with behavioural disturbance early in the disease process. We describe the final missing stem loop tau mutation predicted 15 years ago. Mutations have now been identified at all predicted sites within the ‘stem’ when the

  17. Focal expression of mutated tau in entorhinal cortex neurons of rats impairs spatial working memory.

    PubMed

    Ramirez, Julio J; Poulton, Winona E; Knelson, Erik; Barton, Cole; King, Michael A; Klein, Ronald L

    2011-01-01

    Entorhinal cortex neuropathology begins very early in Alzheimer's disease (AD), a disorder characterized by severe memory disruption. Indeed, loss of entorhinal volume is predictive of AD and two of the hallmark neuroanatomical markers of AD, amyloid plaques and neurofibrillary tangles (NFTs), are particularly prevalent in the entorhinal area of AD-afflicted brains. Gene transfer techniques were used to create a model neurofibrillary tauopathy by injecting a recombinant adeno-associated viral vector with a mutated human tau gene (P301L) into the entorhinal cortex of adult rats. The objective of the present investigation was to determine whether adult onset, spatially restricted tauopathy could be sufficient to reproduce progressive deficits in mnemonic function. Spatial memory on a Y-maze was tested for approximately 3 months post-surgery. Upon completion of behavioral testing the brains were assessed for expression of human tau and evidence of tauopathy. Rats injected with the tau vector became persistently impaired on the task after about 6 weeks of postoperative testing, whereas the control rats injected with a green fluorescent protein vector performed at criterion levels during that period. Histological analysis confirmed the presence of hyperphosphorylated tau and NFTs in the entorhinal cortex and neighboring retrohippocampal areas as well as limited synaptic degeneration of the perforant path. Thus, highly restricted vector-induced tauopathy in retrohippocampal areas is sufficient for producing progressive impairment in mnemonic ability in rats, successfully mimicking a key aspect of tauopathies such as AD. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. Detecting tau in serum of transgenic animal models after tau immunotherapy treatment.

    PubMed

    d'Abramo, Cristina; Acker, Christopher M; Schachter, Joel B; Terracina, Giuseppe; Wang, Xiaohai; Forest, Stefanie K; Davies, Peter

    2016-01-01

    In the attempt to elucidate if the "peripheral sink hypothesis" could be a potential mechanism of action for tau removal in passive immunotherapy experiments, we have examined tau levels in serum of chronically injected JNPL3 and Tg4510 transgenic animals. Measurement of tau in serum of mice treated with tau antibodies is challenging because of the antibody interference in sandwich enzyme-linked immunosorbent assays. To address this issue, we have developed a heat-treatment protocol at acidic pH to remove interfering molecules from serum, with excellent recovery of tau. The present data show that pan-tau and conformational antibodies do increase tau in mouse sera. However, these concentrations in serum do not consistently correlate with reductions of tau pathology in brain, suggesting that large elevations of tau species measured in serum are not predictive of efficacy. Here, we describe a reliable method to detect tau in serum of transgenic animals that have undergone tau immunotherapy. Levels of tau in human serum are less than the sensitivity of current assays, although artifactual signals are common. The method may be useful in similarly treated humans, a situation in which false positive signals are likely. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Hierarchical Distribution of the Tau Cytoskeletal Pathology in the Thalamus of Alzheimer's Disease Patients.

    PubMed

    Rüb, Udo; Stratmann, Katharina; Heinsen, Helmut; Del Turco, Domenico; Ghebremedhin, Estifanos; Seidel, Kay; den Dunnen, Wilfred; Korf, Horst-Werner

    2016-01-01

    In spite of considerable progress in neuropathological research on Alzheimer's disease (AD), knowledge regarding the exact pathoanatomical distribution of the tau cytoskeletal pathology in the thalamus of AD patients in the advanced Braak and Braak AD stages V or VI of the cortical cytoskeletal pathology is still fragmentary. Investigation of serial 100 μm-thick brain tissue sections through the thalamus of clinically diagnosed AD patients with Braak and Braak AD stage V or VI cytoskeletal pathologies immunostained with the anti-tau AT8 antibody, along with the affection of the extraterritorial reticular nucleus of the thalamus, reveals a consistent and severe tau immunoreactive cytoskeletal pathology in the limbic nuclei of the thalamus (e.g., paraventricular, anterodorsal and laterodorsal nuclei, limitans-suprageniculate complex). The thalamic nuclei integrated into the associative networks of the human brain (e.g., ventral anterior and mediodorsal nuclei) are only mildly affected, while its motor precerebellar (ventral lateral nucleus) and sensory nuclei (e.g., lateral and medial geniculate bodies, ventral posterior medial and lateral nuclei, parvocellular part of the ventral posterior medial nucleus) are more or less spared. The highly stereotypical and characteristic thalamic distribution pattern of the AD-related tau cytoskeletal pathology represents an anatomical mirror of the hierarchical topographic distribution of the cytoskeletal pathology in the interconnected regions of the cerebral cortex of AD patients. These pathoanatomical parallels support the pathophysiological concept of a transneuronal spread of the disease process of AD along anatomical pathways. The AD-related tau cytoskeletal pathology in the thalamus most likely contributes substantially to the neuropsychiatric disease symptoms (e.g., dementia), attention deficits, oculomotor dysfunctions, altered non-discriminative aspects of pain experience of AD patients, and the disruption of their

  20. Aminothienopyridazines and Methylene Blue Affect Tau Fibrillization via Cysteine Oxidation*

    PubMed Central

    Crowe, Alex; James, Michael J.; Lee, Virginia M.-Y.; Smith, Amos B.; Trojanowski, John Q.; Ballatore, Carlo; Brunden, Kurt R.

    2013-01-01

    Alzheimer disease and several other neurodegenerative disorders are characterized by the accumulation of intraneuronal fibrils comprised of the protein Tau. Tau is normally a soluble protein that stabilizes microtubules, with splice isoforms that contain either three (3-R) or four (4-R) microtubule binding repeats. The formation of Tau fibrils is thought to result in neuronal damage, and inhibitors of Tau fibrillization may hold promise as therapeutic agents. The process of Tau fibrillization can be replicated in vitro, and a number of small molecules have been identified that inhibit Tau fibril formation. However, little is known about how these molecules affect Tau fibrillization. Here, we examined the mechanism by which the previously described aminothieno pyridazine (ATPZ) series of compounds inhibit Tau fibrillization. Active ATPZs were found to promote the oxidation of the two cysteine residues within 4-R Tau by a redox cycling mechanism, resulting in the formation of a disulfide-containing compact monomer that was refractory to fibrillization. Moreover, the ATPZs facilitated intermolecular disulfide formation between 3-R Tau monomers, leading to dimers that were capable of fibrillization. The ATPZs also caused cysteine oxidation in molecules unrelated to Tau. Interestingly, methylene blue, an inhibitor of Tau fibrillization under evaluation in Alzheimer disease clinical trials, caused a similar oxidation of cysteines in Tau and other molecules. These findings reveal that the ATPZs and methylene blue act by a mechanism that may affect their viability as potential therapeutic agents. PMID:23443659

  1. Tau Phosphorylation Pathway Genes and Cerebrospinal Fluid Tau Levels in Alzheimer’s Disease

    PubMed Central

    Bekris, Lynn M.; Millard, Steve; Lutz, Franziska; Li, Gail; Galasko, Doug R.; Farlow, Martin R.; Quinn, Joseph F.; Kaye, Jeffrey A.; Leverenz, James B.; Tsuang, Debby W.; Yu, Chang-En; Peskind, Elaine R.

    2013-01-01

    Alzheimer’s disease (AD) is characterized by the presence in the brain of amyloid plaques, consisting predominately of the amyloid β peptide (Aβ), and neurofibrillary tangles, consisting primarily of tau. Hyper-phosphorylated-tau (p-tau) contributes to neuronal damage, and both p-tau and total-tau (t-tau) levels are elevated in AD cerebrospinal fluid (CSF) compared to cognitively normal controls. Our hypothesis was that increased ratios of CSF phosphorylated-tau levels relative to total-tau levels correlate with regulatory region genetic variation of kinase or phosphatase genes biologically associated with the phosphorylation status of tau. Eighteen SNPs located within 5′ and 3′ regions of 5 kinase and 4 phosphatase genes, as well as two SNPs within regulatory regions of the MAPT gene were chosen for this analysis. The study sample consisted of 101 AD patients and 169 cognitively normal controls. Rs7768046 in the FYN kinase gene and rs913275 in the PPP2R4 phosphatase gene were both associated with CSF p-tau and t-tau levels in AD. These SNPs were also differentially associated with either CSF t-tau (rs7768046) or CSF p-tau (rs913275) relative to t-tau levels in AD compared to controls. These results suggest that rs7768046 and rs913275 both influence CSF tau levels in an AD-associated manner. PMID:22927204

  2. Clinical characterization of bvFTD due to FUS neuropathology

    PubMed Central

    Lee, Suzee E.; Seeley, William W.; Poorzand, Pardis; Rademakers, Rosa; Karydas, Anna; Stanley, Christine M.; Miller, Bruce L.; Rankin, Katherine P.

    2011-01-01

    In 2009, inclusions containing the fused in sarcoma (FUS) protein were identified as a third major molecular class of pathology underlying the behavioral variant frontotemporal dementia (bvFTD) syndrome. Due to the low prevalence of FUS pathology, few clinical descriptions have been published and none provides information about specific social-emotional deficits despite evidence for severe behavioral manifestations in this disorder. We evaluated a patient with bvFTD due to FUS pathology using a comprehensive battery of cognitive and social-emotional tests. A structural MRI scan and genetic tests for tau, progranulin, and FUS mutations were also performed. The patient showed preserved general cognitive functioning and superior working memory, but severe deficits in emotion attribution, sensitivity to punishment, and the capacity for interpersonal warmth and empathy. The gray matter atrophy pattern corresponded to this focal deficit profile, with preservation of dorsolateral fronto-parietal regions associated with executive functioning but severe damage to right worse than left frontoinsula, temporal pole, subgenual anterior cingulate, medial orbitofrontal cortex, amygdala, and caudate. This patient demonstrates the striking focality associated with FUS neuropathology in patients with bvFTD. PMID:22060063

  3. Autopsy consent, brain collection, and standardized neuropathologic assessment of ADNI participants: The essential role of the Neuropathology Core

    PubMed Central

    Cairns, Nigel J.; Taylor-Reinwald, Lisa; Morris, John C.

    2010-01-01

    Background Our objectives are to facilitate autopsy consent, brain collection, and perform standardized neuropathologic assessments of all Alzheimer's Disease Neuroimaging Initiative (ADNI) participants who come to autopsy at the 58 ADNI sites in the USA and Canada. Methods Building on the expertise and resources of the existing Alzheimer's Disease Research Center (ADRC) at Washington University School of Medicine, St. Louis, MO, a Neuropathology Core (NPC) to serve ADNI was established with one new highly motivated research coordinator. The ADNI-NPC coordinator provides training materials and protocols to assist clinicians at ADNI sites in obtaining voluntary consent for brain autopsy in ADNI participants. Secondly, the ADNI-NPC maintains a central laboratory to provide uniform neuropathologic assessments using the operational criteria for the classification of AD and other pathologies defined by the National Alzheimer Coordinating Center (NACC). Thirdly, the ADNI-NPC maintains a state-of-the-art brain bank of ADNI-derived brain tissue to promote biomarker and multi-disciplinary clinicopathologic studies. Results During the initial year of funding of the ADNI Neuropathology Core, there was notable improvement in the autopsy rate to 44.4%. In the most recent year of funding (September 1st, 2008 to August 31st 2009), our autopsy rate improved to 71.5%. Although the overall numbers to date are small, these data demonstrate that the Neuropathology Core has established the administrative organization with the participating sites to harvest brains from ADNI participants who come to autopsy. Conclusions Within two years of operation, the Neuropathology Core has: (1) implemented a protocol to solicit permission for brain autopsy in ADNI participants at all 58 sites who die and (2) to send appropriate brain tissue from the decedents to the Neuropathology Core for a standardized, uniform, and state-of-the-art neuropathologic assessment. The benefit to ADNI of the

  4. cis p-tau: early driver of brain injury and tauopathy blocked by antibody

    PubMed Central

    Mannix, Rebekah; Qiu, Jianhua; Moncaster, Juliet; Chen, Chun-Hau; Yao, Yandan; Lin, Yu-Min; Driver, Jane A; Sun, Yan; Wei, Shuo; Luo, Man-Li; Albayram, Onder; Huang, Pengyu; Rotenberg, Alexander; Ryo, Akihide; Goldstein, Lee E; Pascual-Leone, Alvaro; McKee, Ann C.; Meehan, William; Zhou, Xiao Zhen; Lu, Kun Ping

    2015-01-01

    Traumatic brain injury (TBI), characterized by acute neurological dysfunction, is one of the best known environmental risk factors for chronic traumatic encephalopathy (CTE) and Alzheimer's disease (AD), whose defining pathologic features include tauopathy made of phosphorylated tau (p-tau). However, tauopathy has not been detected in early stages after TBI and how TBI leads to tauopathy is unknown. Here we find robust cis p-tau pathology after sport- and military-related TBI in humans and mice. Acutely after TBI in mice and stress in vitro, neurons prominently produce cis p-tau, which disrupts axonal microtubule network and mitochondrial transport, spreads to other neurons, and leads to apoptosis. This process, termed “cistauosis”, appears long before other tauopathy. Treating TBI mice with cis antibody blocks cistauosis, prevents tauopathy development and spread, and restores many TBI-related structural and functional sequelae. Thus, cis p-tau is a major early driver after TBI and leads to tauopathy in CTE and AD, and cis antibody may be further developed to detect and treat TBI, and prevent progressive neurodegeneration after injury. PMID:26176913

  5. Hsp90 activator Aha1 drives production of pathological tau aggregates

    PubMed Central

    Shelton, Lindsey B.; Baker, Jeremy D.; Zheng, Dali; Sullivan, Leia E.; Solanki, Parth K.; Webster, Jack M.; Sun, Zheying; Sabbagh, Jonathan J.; Nordhues, Bryce A.; Koren, John; Ghosh, Suman; Blagg, Brian S. J.; Dickey, Chad A.

    2017-01-01

    The microtubule-associated protein tau (MAPT, tau) forms neurotoxic aggregates that promote cognitive deficits in tauopathies, the most common of which is Alzheimer’s disease (AD). The 90-kDa heat shock protein (Hsp90) chaperone system affects the accumulation of these toxic tau species, which can be modulated with Hsp90 inhibitors. However, many Hsp90 inhibitors are not blood–brain barrier-permeable, and several present associated toxicities. Here, we find that the cochaperone, activator of Hsp90 ATPase homolog 1 (Aha1), dramatically increased the production of aggregated tau. Treatment with an Aha1 inhibitor, KU-177, dramatically reduced the accumulation of insoluble tau. Aha1 colocalized with tau pathology in human brain tissue, and this association positively correlated with AD progression. Aha1 overexpression in the rTg4510 tau transgenic mouse model promoted insoluble and oligomeric tau accumulation leading to a physiological deficit in cognitive function. Overall, these data demonstrate that Aha1 contributes to tau fibril formation and neurotoxicity through Hsp90. This suggests that therapeutics targeting Aha1 may reduce toxic tau oligomers and slow or prevent neurodegenerative disease progression. PMID:28827321

  6. Brain collection, standardized neuropathologic assessment, and comorbidity in ADNI participants

    PubMed Central

    Franklin, Erin E.; Perrin, Richard J.; Vincent, Benjamin; Baxter, Michael; Morris, John C.; Cairns, Nigel J.

    2015-01-01

    Introduction The Alzheimer’s Disease Neuroimaging Initiative Neuropathology Core (ADNI-NPC) facilitates brain donation, ensures standardized neuropathologic assessments, and maintains a tissue resource for research. Methods The ADNI-NPC coordinates with performance sites to promote autopsy consent, facilitate tissue collection and autopsy administration, and arrange sample delivery to the NPC, for assessment using NIA-AA neuropathologic diagnostic criteria. Results The ADNI-NPC has obtained 45 participant specimens and neuropathologic assessments have been completed in 36 to date. Challenges in obtaining consent at some sites have limited the voluntary autopsy rate to 58%. Among assessed cases, clinical diagnostic accuracy for Alzheimer disease (AD) is 97%; however, 58% show neuropathologic comorbidities. Discussion Challenges facing autopsy consent and coordination are largely resource-related. The neuropathologic assessments indicate that ADNI’s clinical diagnostic accuracy for AD is high; however, many AD cases have comorbidities that may impact the clinical presentation, course, and imaging and biomarker results. These neuropathologic data permit multimodal and genetic studies of these comorbidities to improve diagnosis and provide etiologic insights. PMID:26194314

  7. Neuropathology of the recessive A673V APP mutation: Alzheimer disease with distinctive features.

    PubMed

    Giaccone, Giorgio; Morbin, Michela; Moda, Fabio; Botta, Mario; Mazzoleni, Giulia; Uggetti, Andrea; Catania, Marcella; Moro, Maria Luisa; Redaelli, Veronica; Spagnoli, Alberto; Rossi, Roberta Simona; Salmona, Mario; Di Fede, Giuseppe; Tagliavini, Fabrizio

    2010-12-01

    Mutations of three different genes, encoding β-amyloid precursor protein (APP), presenilin 1 and presenilin 2 are associated with familial Alzheimer's disease (AD). Recently, the APP mutation A673V has been identified that stands out from all the genetic defects previously reported in these three genes, since it causes the disease only in the homozygous state (Di Fede et al. in Science 323:1473-1477, 2009). We here provide the detailed neuropathological picture of the proband of this family, who was homozygous for the APP A673V mutation and recently came to death. The brain has been studied by histological and immunohistochemical techniques, at the optical and ultrastructural levels. Cerebral Aβ accumulation and tau pathology were severe and extensive. Peculiar features were the configuration of the Aβ deposits that were of large size, mostly perivascular and exhibited a close correspondence between the pattern elicited by amyloid stainings and the labeling obtained with immunoreagents specific for Aβ40 or Aβ42. Moreover, Aβ deposition spared the neostriatum while deeply affecting the cerebellum, and therefore was not in compliance with the hierarchical topographical sequence of involvement documented in sporadic AD. Therefore, the neuropathological picture of familial AD caused by the APP recessive mutation A673V presents distinctive characteristics compared to sporadic AD or familial AD inherited as a dominant trait. Main peculiar features are the morphology, structural properties and composition of the Aβ deposits as well as their topographic distribution in the brain.

  8. Secretion of full-length Tau or Tau fragments in cell culture models. Propagation of Tau in vivo and in vitro.

    PubMed

    Pérez, Mar; Medina, Miguel; Hernández, Félix; Avila, Jesús

    2018-03-05

    The microtubule-associated protein Tau plays a crucial role in stabilizing neuronal microtubules. In Tauopathies, Tau loses its ability to bind microtubules, detach from them and forms intracellular aggregates. Increasing evidence in recent years supports the notion that Tau pathology spreading throughout the brain in AD and other Tauopathies is the consequence of the propagation of specific Tau species along neuroanatomically connected brain regions in a so-called "prion-like" manner. A number of steps are assumed to be involved in this process, including secretion, cellular uptake, transcellular transfer and/or seeding, although the precise mechanisms underlying propagation of Tau pathology are not fully understood yet. This review summarizes recent evidence on the nature of the specific Tau species that are propagated and the different mechanisms of Tau pathology spreading.

  9. Association of In Vivo [18F]AV-1451 Tau PET Imaging Results With Cortical Atrophy and Symptoms in Typical and Atypical Alzheimer Disease.

    PubMed

    Xia, Chenjie; Makaretz, Sara J; Caso, Christina; McGinnis, Scott; Gomperts, Stephen N; Sepulcre, Jorge; Gomez-Isla, Teresa; Hyman, Bradley T; Schultz, Aaron; Vasdev, Neil; Johnson, Keith A; Dickerson, Bradford C

    2017-04-01

    Previous postmortem studies have long demonstrated that neurofibrillary tangles made of hyperphosphorylated tau proteins are closely associated with Alzheimer disease clinical phenotype and neurodegeneration pattern. Validating these associations in vivo will lead to new diagnostic tools for Alzheimer disease and better understanding of its neurobiology. To examine whether topographical distribution and severity of hyperphosphorylated tau pathologic findings measured by fluorine 18-labeled AV-1451 ([18F]AV-1451) positron emission tomographic (PET) imaging are linked with clinical phenotype and cortical atrophy in patients with Alzheimer disease. This observational case series, conducted from July 1, 2012, to July 30, 2015, in an outpatient referral center for patients with neurodegenerative diseases, included 6 patients: 3 with typical amnesic Alzheimer disease and 3 with atypical variants (posterior cortical atrophy, logopenic variant primary progressive aphasia, and corticobasal syndrome). Patients underwent [18F]AV-1451 PET imaging to measure tau burden, carbon 11-labeled Pittsburgh Compound B ([11C]PiB) PET imaging to measure amyloid burden, and structural magnetic resonance imaging to measure cortical thickness. Seventy-seven age-matched controls with normal cognitive function also underwent structural magnetic resonance imaging but not tau or amyloid PET imaging. Tau burden, amyloid burden, and cortical thickness. In all 6 patients (3 women and 3 men; mean age 61.8 years), the underlying clinical phenotype was associated with the regional distribution of the [18F]AV-1451 signal. Furthermore, within 68 cortical regions of interest measured from each patient, the magnitude of cortical atrophy was strongly correlated with the magnitude of [18F]AV-1451 binding (3 patients with amnesic Alzheimer disease, r = -0.82; P < .001; r = -0.70; P < .001; r = -0.58; P < .001; and 3 patients with nonamnesic Alzheimer disease, r = -0.51; P

  10. Determination of the Michel Parameters and the tau Neutrino Helicity in tau Decay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jessop, Colin P.

    2003-05-07

    Using the CLEO II detector at the e{sup +}e{sup -} storage ring CESR, we have determined the Michel parameters {rho}, {zeta}, and {delta} in {tau}{sup {-+}}{nu}{bar {nu}} decay as well as the {tau} neutrino helicity parameter H{sub {nu}{sub {tau}}} in {tau}{sup {-+}}{pi}{sup 0}{nu} decay. From a data sample of 3.02 x 10{sup 6} {tau} pairs produced at {radical}s = 10.6 GeV, using events of the topology e{sup +}e{sup -} {yields} {tau}{sup +}{tau}{sup -} {yields} (l{sup {+-}}{nu}{bar {nu}})({pi}{sup {-+}}{pi}{sup 0}{nu}) and e{sup +}e{sup -} {yields} {tau}{sup +}{tau}{sup -} {yields} ({pi}{sup {+-}}{pi}{sup 0}{bar {nu}})({pi}{sup {-+}}{pi}{sup 0}{nu}), and the determined sign of h{submore » {nu}{sub {tau}}} [1,2], the combined result of the three samples is: {rho} = 0.747 {+-} 0.010 {+-} 0.006, {zeta} = 1.007 {+-} 0.040 {+-} 0.015, {zeta}{delta} = 0.745 {+-}0.026 {+-}0.009, and h{sub {nu}{sub {tau}}} = -0.995 {+-} 0.010 {+-} 0.003. The results are in agreement with the Standard Model V-A interaction.« less

  11. Oligomerization of the protein tau in the Alzheimer's disease

    NASA Astrophysics Data System (ADS)

    Larini, Luca

    The Alzheimer's disease is characterized by the formation of protein aggregates both within and outside of the brain's cells, the neurons. Within the neurons, the aggregation of the microtubule associated protein tau leads to the destruction of the microtubules in the axon of the neuron. Tau is extremely flexible and is classified as an intrinsically disordered protein due to its low propensity to form secondary structure. Tau promotes tubulin assembly into microtubules, which are an essential component of the cytoskeleton of the axon. The microtubule binding region of tau consists of 4 pseudo-repeats that are critical for aggregation as well. In this study, we focus on the aggregation propensity of different segments of the microtubule binding region as well as post-translational modifications that can alter tau dynamics and structure. We have performed replica exchange molecular dynamics simulations to characterize the ensemble of conformations of the monomer and small oligomers as well as how these structures are stabilized or destabilized by mutations and post-translational modifications.

  12. Vectored Intracerebral Immunization with the Anti-Tau Monoclonal Antibody PHF1 Markedly Reduces Tau Pathology in Mutant Tau Transgenic Mice.

    PubMed

    Liu, Wencheng; Zhao, Lingzhi; Blackman, Brittany; Parmar, Mayur; Wong, Man Ying; Woo, Thomas; Yu, Fangmin; Chiuchiolo, Maria J; Sondhi, Dolan; Kaminsky, Stephen M; Crystal, Ronald G; Paul, Steven M

    2016-12-07

    Passive immunization with anti-tau monoclonal antibodies has been shown by several laboratories to reduce age-dependent tau pathology and neurodegeneration in mutant tau transgenic mice. These studies have used repeated high weekly doses of various tau antibodies administered systemically for several months and have reported reduced tau pathology of ∼40-50% in various brain regions. Here we show that direct intrahippocampal administration of the adeno-associated virus (AAV)-vectored anti-phospho-tau antibody PHF1 to P301S tau transgenic mice results in high and durable antibody expression, primarily in neurons. Hippocampal antibody levels achieved after AAV delivery were ∼50-fold more than those reported following repeated systemic administration. In contrast to systemic passive immunization, we observed markedly reduced (≥80-90%) hippocampal insoluble pathological tau species and neurofibrillary tangles following a single dose of AAV-vectored PHF1 compared with mice treated with an AAV-IgG control vector. Moreover, the hippocampal atrophy observed in untreated P301S mice was fully rescued by treatment with the AAV-vectored PHF1 antibody. Vectored passive immunotherapy with an anti-tau monoclonal antibody may represent a viable therapeutic strategy for treating or preventing such tauopathies as frontotemporal dementia, progressive supranuclear palsy, or Alzheimer's disease. We have used an adeno-associated viral (AAV) vector to deliver the genes encoding an anti-phospho-tau monoclonal antibody, PHF1, directly to the brain of mice that develop neurodegeneration due to a tau mutation that causes frontotemporal dementia (FTD). When administered systemically, PHF1 has been shown to modestly reduce tau pathology and neurodegeneration. Since such antibodies do not readily cross the blood-brain barrier, we used an AAV vector to deliver antibody directly to the hippocampus and observed much higher antibody levels and a much greater reduction in tau pathology. Using

  13. The identification of raft-derived tau-associated vesicles that are incorporated into immature tangles and paired helical filaments.

    PubMed

    Nishikawa, T; Takahashi, T; Nakamori, M; Hosomi, N; Maruyama, H; Miyazaki, Y; Izumi, Y; Matsumoto, M

    2016-12-01

    Neurofibrillary tangles (NFTs), a cardinal pathological feature of neurodegenerative disorders, such as Alzheimer's disease (AD) are primarily composed of hyper-phosphorylated tau protein. Recently, several other molecules, including flotillin-1, phosphatidylinositol-4,5-bisphosphate [PtdIns(4,5)P2] and cyclin-dependent kinase 5 (CDK5), have also been revealed as constituents of NFTs. Flotillin-1 and PtdIns(4,5)P2 are considered markers of raft microdomains, whereas CDK5 is a tau kinase. Therefore, we hypothesized that NFTs have a relationship with raft domains and the tau phosphorylation that occurs within NFTs. We investigated six cases of AD, six cases of other neurodegenerative diseases with NFTs and three control cases. We analysed the PtdIns(4,5)P2-immunopositive material in detail, using super-resolution microscopy and electron microscopy to elucidate its pattern of expression. We also investigated the spatial relationship between the PtdIns(4,5)P2-immunopositive material and tau kinases through double immunofluorescence analysis. Pretangles contained either paired helical filaments (PHFs) or PtdIns(4,5)P2-immunopositive small vesicles (approximately 1 μm in diameter) with nearly identical topology to granulovacuolar degeneration (GVD) bodies. Various combinations of these vesicles and GVD bodies, the latter of which are pathological hallmarks observed within the neurons of AD patients, were found concurrently in neurons. These vesicles and GVD bodies were both immunopositive not only for PtdIns(4,5)P2, but also for several tau kinases such as glycogen synthase kinase-3β and spleen tyrosine kinase. These observations suggest that clusters of raft-derived vesicles that resemble GVD bodies are substructures of pretangles other than PHFs. These tau kinase-bearing vesicles are likely involved in the modification of tau protein and in NFT formation. © 2015 The Authors Neuropathology and Applied Neurobiology published by John Wiley & Sons Ltd on behalf of

  14. Ebselen ameliorates β-amyloid pathology, tau pathology, and cognitive impairment in triple-transgenic Alzheimer's disease mice.

    PubMed

    Xie, Yongli; Tan, Yibin; Zheng, Youbiao; Du, Xiubo; Liu, Qiong

    2017-08-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disease which is clinically characterized by memory loss and cognitive decline caused by protein misfolding and aggregation. Imbalance between free radicals and the antioxidant system is a prominent and early feature in the neuropathology of AD. Selenium (Se), a vital trace element with excellent antioxidant potential, is preferentially retained in the brain in Se-limited conditions and has been reported to provide neuroprotection through resisting oxidative damage. In this paper, we studied for the first time the potential of Ebselen, a lipid-soluble selenium compound with GPx-like activity, in the treatment of cognitive dysfunction and neuropathology of triple-transgenic AD (3 × Tg-AD) mice, AD model cell, and primary culture. We demonstrated that Ebselen inhibited oxidative stress in both AD model cells and mouse brains with increasing GPx and SOD activities and meanwhile reduced p38 mitogen-activated protein kinases activities. By decreasing the expression of amyloid precursor protein and β-secretase, Ebselen reduced the levels of Aβ in AD neurons and mouse brains, especially the most toxic oligomeric form. Besides, mislocation of phosphorylated tau in neurons and phosphorylation levels of tau protein at Thr231, Ser396, and Ser404 residues were also inhibited by Ebselen, probably by its regulatory roles in glycogen synthase kinase 3β and protein phosphatase 2A activity. In addition, Ebselen mitigated the decrease of synaptic proteins including synaptophysin and postsynaptic density protein 95 in AD model cells and neurons. Consequently, the spatial learning and memory of 3 × Tg-AD mice were significantly improved upon Ebselen treatment. This study provides a potential novel therapeutic approach for the prevention of AD.

  15. Loss of Prohibitin Membrane Scaffolds Impairs Mitochondrial Architecture and Leads to Tau Hyperphosphorylation and Neurodegeneration

    PubMed Central

    Merkwirth, Carsten; Morbin, Michela; Brönneke, Hella S.; Jordan, Sabine D.; Rugarli, Elena I.; Langer, Thomas

    2012-01-01

    Fusion and fission of mitochondria maintain the functional integrity of mitochondria and protect against neurodegeneration, but how mitochondrial dysfunctions trigger neuronal loss remains ill-defined. Prohibitins form large ring complexes in the inner membrane that are composed of PHB1 and PHB2 subunits and are thought to function as membrane scaffolds. In Caenorhabditis elegans, prohibitin genes affect aging by moderating fat metabolism and energy production. Knockdown experiments in mammalian cells link the function of prohibitins to membrane fusion, as they were found to stabilize the dynamin-like GTPase OPA1 (optic atrophy 1), which mediates mitochondrial inner membrane fusion and cristae morphogenesis. Mutations in OPA1 are associated with dominant optic atrophy characterized by the progressive loss of retinal ganglion cells, highlighting the importance of OPA1 function in neurons. Here, we show that neuron-specific inactivation of Phb2 in the mouse forebrain causes extensive neurodegeneration associated with behavioral impairments and cognitive deficiencies. We observe early onset tau hyperphosphorylation and filament formation in the hippocampus, demonstrating a direct link between mitochondrial defects and tau pathology. Loss of PHB2 impairs the stability of OPA1, affects mitochondrial ultrastructure, and induces the perinuclear clustering of mitochondria in hippocampal neurons. A destabilization of the mitochondrial genome and respiratory deficiencies manifest in aged neurons only, while the appearance of mitochondrial morphology defects correlates with tau hyperphosphorylation in the absence of PHB2. These results establish an essential role of prohibitin complexes for neuronal survival in vivo and demonstrate that OPA1 stability, mitochondrial fusion, and the maintenance of the mitochondrial genome in neurons depend on these scaffolding proteins. Moreover, our findings establish prohibitin-deficient mice as a novel genetic model for tau pathologies

  16. 18 F-flortaucipir tau positron emission tomography distinguishes established progressive supranuclear palsy from controls and Parkinson disease: A multicenter study.

    PubMed

    Schonhaut, Daniel R; McMillan, Corey T; Spina, Salvatore; Dickerson, Bradford C; Siderowf, Andrew; Devous, Michael D; Tsai, Richard; Winer, Joseph; Russell, David S; Litvan, Irene; Roberson, Erik D; Seeley, William W; Grinberg, Lea T; Kramer, Joel H; Miller, Bruce L; Pressman, Peter; Nasrallah, Ilya; Baker, Suzanne L; Gomperts, Stephen N; Johnson, Keith A; Grossman, Murray; Jagust, William J; Boxer, Adam L; Rabinovici, Gil D

    2017-10-01

    18 F-flortaucipir (formerly 18 F-AV1451 or 18 F-T807) binds to neurofibrillary tangles in Alzheimer disease, but tissue studies assessing binding to tau aggregates in progressive supranuclear palsy (PSP) have yielded mixed results. We compared in vivo 18 F-flortaucipir uptake in patients meeting clinical research criteria for PSP (n = 33) to normal controls (n = 46) and patients meeting criteria for Parkinson disease (PD; n = 26). Participants underwent magnetic resonance imaging and positron emission tomography for amyloid-β ( 11 C-PiB or 18 F-florbetapir) and tau ( 18 F-flortaucipir). 18 F-flortaucipir standardized uptake value ratios were calculated (t = 80-100 minutes, cerebellum gray matter reference). Voxelwise and region-of-interest group comparisons were performed in template space, with receiver operating characteristic curve analyses to assess single-subject discrimination. Qualitative comparisons with postmortem tau are reported in 1 patient who died 9 months after 18 F-flortaucipir. Clinical PSP patients showed bilaterally elevated 18 F-flortaucipir uptake in globus pallidus, putamen, subthalamic nucleus, midbrain, and dentate nucleus relative to controls and PD patients (voxelwise p < 0.05 family wise error corrected). Globus pallidus binding best distinguished PSP patients from controls and PD (area under the curve [AUC] = 0.872 vs controls, AUC = 0.893 vs PD). PSP clinical severity did not correlate with 18 F-flortaucipir in any region. A patient with clinical PSP and pathological diagnosis of corticobasal degeneration had severe tau pathology in PSP-related brain structures with good correspondence between in vivo 18 F-flortaucipir and postmortem tau neuropathology. 18 F-flortaucipir uptake was elevated in PSP versus controls and PD patients in a pattern consistent with the expected distribution of tau pathology. Ann Neurol 2017;82:622-634. © 2017 American Neurological Association.

  17. Neuropathologic findings after organ transplantation. An autopsy study.

    PubMed

    Schwechheimer, K; Hashemian, A

    1995-05-01

    Since 1972 organ transplantations of kidney, bone marrow, liver, heart and lung have been performed at the University Hospital of Essen, Germany. Out of 2535 transplantations until September 1993, autopsies were performed in 157 patients In 25 patients (15.9%) neuropathologic findings (n = 26) were found. In 97 autopsies after bone marrow transplantation, 9 patients (9.3%) exhibited a severe neuropathologic alteration. In six patients (6/9; 66.6%), necrotisizing toxoplasmose encephalitis was found. Other cases showed a septic-metastatic mycotic encephalitis with crypto-coccus neoformans and candida albicans (n = 2) and leucemia infiltrates (n = 1). Massive cerebral hemorrhage was the most frequent neuropathologic finding after liver (4/8) and kidney transplantation (3/6). In addition liver-transplanted patients exhibited septic-metastatic encephalitis (3/8) and embolic brain infarct (1/8) as well as cerebral metastases (2/6) and primary malignant cerebral lymphoma in kidney transplantation (1/6). CNS findings in five autopsies after heart-lung-transplantation were diverse. They comprised intracerebral hemorrhage, intravasal lymphoma and septic-metastatic encephalitis, respectively. In summary, neuropathologic autopsy findings after organ transplantation are diverse and preferentially comprise infections, cerebral hemorrhages, and malignant lymphomas. After bone marrow transplantation, the most frequent neuropathologic autopsy finding was toxoplasmose encephalitis and massive cerebral hemorrhages after liver and kidney transplantations.

  18. Neuropathological Developments in Sudden Infant Death Syndrome.

    PubMed

    Bright, Fiona M; Vink, Robert; Byard, Roger W

    2018-01-01

    A wide variety of neuropathological abnormalities have been investigated in infants who have died of sudden infant death syndrome (SIDS). Issues which detracted from early studies included failure to use uniform definitions of SIDS and lack of appropriately matched control populations. Development of the triple risk model focused attention on the concept of an inherent susceptibility to unexpected death in certain infants, with research demonstrating a role for the neurotransmitter serotonin within the brainstem. However, it now appears that neuropathological abnormalities in SIDS infants are more complex than a simple serotonergic deficiency in certain medullary nuclei but instead could involve failure of an integrated network of neurochemical transmitters in a variety of subcortical locations. The following overview examines recent research developments looking particularly at the potential role of the peptide neurotransmitter substance P and its neurokinin-1 receptor in multiple nuclei within the brainstem, asymmetry and microdysgenesis of the hippocampus, and decreased orexin levels within dorsomedial, perifornical, and lateral levels in the hypothalamus. Whether such research will lead to identifiable biomarker for infants at risk of SIDS is yet to be established. Use of standardized and consistent methods of classifying and categorizing infant deaths will be pivotal in generating reproducible research results.

  19. Interaction of tau protein with model lipid membranes induces tau structural compaction and membrane disruption

    PubMed Central

    Jones, Emmalee M.; Dubey, Manish; Camp, Phillip J.; Vernon, Briana C.; Biernat, Jacek; Mandelkow, Eckhard; Majewski, Jaroslaw; Chi, Eva Y.

    2012-01-01

    The misfolding and aggregation of the intrinsically disordered, microtubule-associated tau protein into neurofibrillary tangles is implicated in the pathogenesis of Alzheimer's disease. However, the mechanisms of tau aggregation and toxicity remain unknown. Recent work has shown that lipid membrane can induce tau aggregation and that membrane permeabilization may serve as a pathway by which protein aggregates exert toxicity, suggesting that the plasma membrane may play dual roles in tau pathology. This prompted our investigation to assess tau's propensity to interact with membranes and to elucidate the mutually disruptive structural perturbations the interactions induce in both tau and the membrane. We show that although highly charged and soluble, the full-length tau (hTau40) is also highly surface active, selectively inserts into anionic DMPG lipid monolayers and induces membrane morphological changes. To resolve molecular-scale structural details of hTau40 associated with lipid membranes, X-ray and neutron scattering techniques are utilized. X-ray reflectivity indicates hTau40's presence underneath a DMPG monolayer and penetration into the lipid headgroups and tailgroups, whereas grazing incidence X-ray diffraction shows that hTau40 insertion disrupts lipid packing. Moreover, both air/water and DMPG lipid membrane interfaces induce the disordered hTau40 to partially adopt a more compact conformation with density similar to that of a folded protein. Neutron reflectivity shows that tau completely disrupts supported DMPG bilayers while leaving the neutral DPPC bilayer intact. Our results show that hTau40's strong interaction with anionic lipids induces tau structural compaction and membrane disruption, suggesting possible membrane-based mechanisms of tau aggregation and toxicity in neurodegenerative diseases. PMID:22401494

  20. Aggregation propensity of critical regions of the protein Tau

    NASA Astrophysics Data System (ADS)

    Muthee, Micaiah; Ahmed, Azka; Larini, Luca

    The Alzheimer's disease is an irreversible, progressive brain disorder that slowly destroys memory and thinking skills, which eventually leads to the ability to not able to carry out the simplest tasks. The Alzheimer's disease is characterized by the formation of protein aggregates both within and outside of the brain's cells, the neurons. Within the neurons, the aggregation of the protein tau leads to the destruction of the microtubules in the axon of the neuron. Tau belongs to a group of proteins referred to as Microtubule-Associated Proteins. It is extremely flexible and is classified as an intrinsically unstructured protein due to its low propensity to form secondary structure. Tau promotes tubulin assembly into microtubules thereby stabilizing the cytoskeleton of the axon of the neurons. The microtubule binding region of tau consists of 4 pseudo-repeats. In this study, we will focus on the aggregation propensity of two fragments. In this study we will focus on the PHF43 fragment that contains the third pseudo-repeat and has been shown experimentally to aggregate readily. Another fragment that contains the second pseudo-repeat will be considered as well. Mutations in this region are associated with various form of dementia and for this reason we will consider the mutant P301L.

  1. Neuropathology and brain weight in traumatic-crush asphyxia.

    PubMed

    Al-Sarraj, Safa; Laxton, Ross; Swift, Ben; Kolar, Alexander J; Chapman, Rob C; Fegan-Earl, Ashley W; Cary, Nat R B

    2017-11-01

    Traumatic (crush) asphyxia is a rare condition caused by severe compression of the chest and trunk leading to often extreme so-called asphyxial signs, including cyanosis in head and neck regions, multiple petechiae, and subconjunctival haemorrhage as well as neurological manifestations. To investigate the neuropathology and brain weight in traumatic asphyxia caused by different accidents such as industrial accidents and road traffic collision. Post mortem records of 20 cases of traumatic asphyxia (TA) resulting from different causes of which four brains are available for comprehensive neuropathological examination. The expected brain weights for given body height and associated 95% confidence range were calculated according to the following formula: baseline brain weight (BBW) + body height x rate (g/cm). The 95% confidence range was calculated by adding and subtracting the standard error (SE) x 1.96 (7-8). There was a trend for higher brain weight in the TA cohort but it was not significant (1494 g vs 1404 g, p = 0.1). The upper limits of the brain weight of 95% confidence was 1680 g vs 1660 g, p = 0.9. The neuropathological examination of four available brains from the TA cohort showed severe congestion of blood vessels, perivascular haemorrhages and occasional βAPP deposits consistent with early axonal disruption. Brain examination is informative as part of investigation of TA. Developing ischaemic changes and an increase in brain weight are the most likely indicators of a prolonged period of patient's survival. Copyright © 2017 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  2. Audit of practice in sudden unexpected death in epilepsy (SUDEP) post mortems and neuropathological findings.

    PubMed

    Thom, Maria; Michalak, Zuzanna; Wright, Gabriella; Dawson, Timothy; Hilton, David; Joshi, Abhijit; Diehl, Beate; Koepp, Matthias; Lhatoo, Samden; Sander, Josemir W; Sisodiya, Sanjay M

    2016-08-01

    Sudden unexpected death in epilepsy (SUDEP) is one of the leading causes of death in people with epilepsy. For classification of definite SUDEP, a post mortem (PM), including anatomical and toxicological examination, is mandatory to exclude other causes of death. We audited PM practice as well as the value of brain examination in SUDEP. We reviewed 145 PM reports in SUDEP cases from four UK neuropathology centres. Data were extracted for clinical epilepsy details, circumstances of death and neuropathological findings. Macroscopic brain abnormalities were identified in 52% of cases. Mild brain swelling was present in 28%, and microscopic pathologies relevant to cause or effect of seizures were seen in 89%. Examination based on whole fixed brains (76.6% of all PMs), and systematic regional sampling was associated with higher detection rates of underlying pathology (P < 0.01). Information was more frequently recorded regarding circumstances of death and body position/location than clinical epilepsy history and investigations. Our findings support the contribution of examination of the whole fixed brain in SUDEP, with high rates of detection of relevant pathology. Availability of full clinical epilepsy-related information at the time of PM could potentially further improve detection through targeted tissue sampling. Apart from confirmation of SUDEP, complete neuropathological examination contributes to evaluation of risk factors as well as helping to direct future research into underlying causes. © 2015 The Authors. Neuropathology and Applied Neurobiology published by John Wiley & Sons Ltd on behalf of British Neuropathological Society.

  3. Chronic Traumatic Encephalopathy: The Neuropathological Legacy of Traumatic Brain Injury

    PubMed Central

    Hay, Jennifer; Johnson, Victoria E.; Smith, Douglas H.; Stewart, William

    2017-01-01

    Almost a century ago, the first clinical account of the punch-drunk syndrome emerged, describing chronic neurological and neuropsychiatric sequelae occurring in former boxers. Thereafter, throughout the twentieth century, further reports added to our understanding of the neuropathological consequences of a career in boxing, leading to descriptions of a distinct neurodegenerative pathology, termed dementia pugilistica. During the past decade, growing recognition of this pathology in autopsy studies of non-boxers who were exposed to repetitive, mild traumatic brain injury, or to a single, moderate or severe traumatic brain injury, has led to an awareness that it is exposure to traumatic brain injury that carries with it a risk of this neurodegenerative disease, not the sport or the circumstance in which the injury is sustained. Furthermore, the neuropathology of the neurodegeneration that occurs after traumatic brain injury, now termed chronic traumatic encephalopathy, is acknowledged as being a complex, mixed, but distinctive pathology, the detail of which is reviewed in this article. PMID:26772317

  4. Differential induction and spread of tau pathology in young PS19 tau transgenic mice following intracerebral injections of pathological tau from Alzheimer’s disease or corticobasal degeneration brains

    PubMed Central

    Boluda, Susana; Iba, Michiyo; Zhang, Bin; Raible, Kevin M.; Lee, Virginia M-Y.; Trojanowski, John Q.

    2015-01-01

    Filamentous tau pathologies are hallmark lesions of several neurodegenerative tauopathies including Alzheimer’s disease (AD) and corticobasal degeneration (CBD) which show cell type-specific and topographically distinct tau inclusions. Growing evidence supports templated transmission of tauopathies through functionally interconnected neuroanatomical pathways suggesting that different self-propagating strains of pathological tau could account for the diverse manifestations of neurodegenerative tauopathies. Here, we describe the rapid and distinct cell type-specific spread of pathological tau following intracerebral injections of CBD or AD brain extracts enriched in pathological tau (designated CBD-Tau and AD-Tau, respectively) in young human mutant P301S tau transgenic (Tg) mice (line PS19) ~6–9 months before they show onset of mutant tau transgene-induced tau pathology. At 1 month post-injection of CBD-Tau, tau inclusions developed predominantly in oligodendrocytes of the fimbria and white matter near the injection sites with infrequent intraneuronal tau aggregates. In contrast, injections of AD-Tau in young PS19 mice induced tau pathology predominantly in neuronal perikarya with little or no oligodendrocyte involvement 1 month post-injection. With longer post-injection survival intervals of up to 6 months, CBD-Tau- and AD-Tau-induced tau pathology spread to different brain regions distant from the injection sites while maintaining the cell type-specific pattern noted above. Finally, CA3 neuron loss was detected 3 months post-injection of AD-Tau but not CBD-Tau. Thus, AD-Tau and CBD-Tau represent specific pathological tau strains that spread differentially and may underlie distinct clinical and pathological features of these two tauopathies. Hence, these strains could become targets to develop disease-modifying therapies for CBD and AD. PMID:25534024

  5. Expression of Tau Pathology-Related Proteins in Different Brain Regions: A Molecular Basis of Tau Pathogenesis.

    PubMed

    Hu, Wen; Wu, Feng; Zhang, Yanchong; Gong, Cheng-Xin; Iqbal, Khalid; Liu, Fei

    2017-01-01

    Microtubule-associated protein tau is hyperphosphorylated and aggregated in affected neurons in Alzheimer disease (AD) brains. The tau pathology starts from the entorhinal cortex (EC), spreads to the hippocampus and frontal and temporal cortices, and finally to all isocortex areas, but the cerebellum is spared from tau lesions. The molecular basis of differential vulnerability of different brain regions to tau pathology is not understood. In the present study, we analyzed brain regional expressions of tau and tau pathology-related proteins. We found that tau was hyperphosphorylated at multiple sites in the frontal cortex (FC), but not in the cerebellum, from AD brain. The level of tau expression in the cerebellum was about 1/4 of that seen in the frontal and temporal cortices in human brain. In the rat brain, the expression level of tau with three microtubule-binding repeats (3R-tau) was comparable in the hippocampus, EC, FC, parietal-temporal cortex (PTC), occipital-temporal cortex (OTC), striatum, thalamus, olfactory bulb (OB) and cerebellum. However, the expression level of 4R-tau was the highest in the EC and the lowest in the cerebellum. Tau phosphatases, kinases, microtubule-related proteins and other tau pathology-related proteins were also expressed in a region-specific manner in the rat brain. These results suggest that higher levels of tau and tau kinases in the EC and low levels of these proteins in the cerebellum may accounts for the vulnerability and resistance of these representative brain regions to the development of tau pathology, respectively. The present study provides the regional expression profiles of tau and tau pathology-related proteins in the brain, which may help understand the brain regional vulnerability to tau pathology in neurodegenerative tauopathies.

  6. Tau Antibody Targeting Pathological Species Blocks Neuronal Uptake and Interneuron Propagation of Tau in Vitro.

    PubMed

    Nobuhara, Chloe K; DeVos, Sarah L; Commins, Caitlin; Wegmann, Susanne; Moore, Benjamin D; Roe, Allyson D; Costantino, Isabel; Frosch, Matthew P; Pitstick, Rose; Carlson, George A; Hock, Christoph; Nitsch, Roger M; Montrasio, Fabio; Grimm, Jan; Cheung, Anne E; Dunah, Anthone W; Wittmann, Marion; Bussiere, Thierry; Weinreb, Paul H; Hyman, Bradley T; Takeda, Shuko

    2017-06-01

    The clinical progression of Alzheimer disease (AD) is associated with the accumulation of tau neurofibrillary tangles, which may spread throughout the cortex by interneuronal tau transfer. If so, targeting extracellular tau species may slow the spreading of tau pathology and possibly cognitive decline. To identify suitable target epitopes, we tested the effects of a panel of tau antibodies on neuronal uptake and aggregation in vitro. Immunodepletion was performed on brain extract from tau-transgenic mice and postmortem AD brain and added to a sensitive fluorescence resonance energy transfer-based tau uptake assay to assess blocking efficacy. The antibodies reduced tau uptake in an epitope-dependent manner: N-terminal (Tau13) and middomain (6C5 and HT7) antibodies successfully prevented uptake of tau species, whereas the distal C-terminal-specific antibody (Tau46) had little effect. Phosphorylation-dependent (40E8 and p396) and C-terminal half (4E4) tau antibodies also reduced tau uptake despite removing less total tau by immunodepletion, suggesting specific interactions with species involved in uptake. Among the seven antibodies evaluated, 6C5 most efficiently blocked uptake and subsequent aggregation. More important, 6C5 also blocked neuron-to-neuron spreading of tau in a unique three-chamber microfluidic device. Furthermore, 6C5 slowed down the progression of tau aggregation even after uptake had begun. Our results imply that not all antibodies/epitopes are equally robust in terms of blocking tau uptake of human AD-derived tau species. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  7. The role of α-synuclein and tau hyperphosphorylation-mediated autophagy and apoptosis in lead-induced learning and memory injury.

    PubMed

    Zhang, Jianbin; Cai, Tongjian; Zhao, Fang; Yao, Ting; Chen, Yaoming; Liu, Xinqin; Luo, Wenjing; Chen, Jingyuan

    2012-01-01

    Lead (Pb) is a well-known heavy metal in nature. Pb can cause pathophysiological changes in several organ systems including central nervous system. Especially, Pb can affect intelligence development and the ability of learning and memory of children. However, the toxic effects and mechanisms of Pb on learning and memory are still unclear. To clarify the mechanisms of Pb-induced neurotoxicity in hippocampus, and its effect on learning and memory, we chose Sprague-Dawley rats (SD-rats) as experimental subjects. We used Morris water maze to verify the ability of learning and memory after Pb treatment. We used immunohistofluorescence and Western blotting to detect the level of tau phosphorylation, accumulation of α-synuclein, autophagy and related signaling molecules in hippocampus. We demonstrated that Pb can cause abnormally hyperphosphorylation of tau and accumulation of α-synuclein, and these can induce hippocampal injury and the ability of learning and memory damage. To provide the new insight into the underlying mechanisms, we showed that Grp78, ATF4, caspase-3, autophagy-related proteins were induced and highly expressed following Pb-exposure. But mTOR signaling pathway was suppressed in Pb-exposed groups. Our results showed that Pb could cause hyperphosphorylation of tau and accumulation of α-synuclein, which could induce ER stress and suppress mTOR signal pathway. These can enhance type II program death (autophgy) and type I program death (apoptosis) in hippocampus, and impair the ability of learning and memory of rats. This is the first evidence showing the novel role of autophagy in the neurotoxicity of Pb.

  8. Reactive microglia drive tau pathology and contribute to the spreading of pathological tau in the brain

    PubMed Central

    Maphis, Nicole; Xu, Guixiang; Kokiko-Cochran, Olga N.; Jiang, Shanya; Cardona, Astrid; Ransohoff, Richard M.; Lamb, Bruce T.

    2015-01-01

    Pathological aggregation of tau is a hallmark of Alzheimer’s disease and related tauopathies. We have previously shown that the deficiency of the microglial fractalkine receptor (CX3CR1) led to the acceleration of tau pathology and memory impairment in an hTau mouse model of tauopathy. Here, we show that microglia drive tau pathology in a cell-autonomous manner. First, tau hyperphosphorylation and aggregation occur as early as 2 months of age in hTauCx3cr1−/− mice. Second, CD45+ microglial activation correlates with the spatial memory deficit and spread of tau pathology in the anatomically connected regions of the hippocampus. Third, adoptive transfer of purified microglia derived from hTauCx3cr1−/− mice induces tau hyperphosphorylation within the brains of non-transgenic recipient mice. Finally, inclusion of interleukin 1 receptor antagonist (Kineret®) in the adoptive transfer inoculum significantly reduces microglia-induced tau pathology. Together, our results suggest that reactive microglia are sufficient to drive tau pathology and correlate with the spread of pathological tau in the brain. PMID:25833819

  9. Analysis of tau post-translational modifications in rTg4510 mice, a model of tau pathology.

    PubMed

    Song, Lixin; Lu, Sherry X; Ouyang, Xuesong; Melchor, Jerry; Lee, Julie; Terracina, Giuseppe; Wang, Xiaohai; Hyde, Lynn; Hess, J Fred; Parker, Eric M; Zhang, Lili

    2015-03-26

    Microtubule associated protein tau is the major component of the neurofibrillary tangles (NFTs) found in the brains of patients with Alzheimer's disease and several other neurodegenerative diseases. Tau mutations are associated with frontotemperal dementia with parkinsonism on chromosome 17 (FTDP-17). rTg4510 mice overexpress human tau carrying the P301L FTDP-17 mutation and develop robust NFT-like pathology at 4-5 months of age. The current study is aimed at characterizing the rTg4510 mice to better understand the genesis of tau pathology and to better enable the use of this model in drug discovery efforts targeting tau pathology. Using a panel of immunoassays, we analyzed the age-dependent formation of pathological tau in rTg4510 mice and our data revealed a steady age-dependent accumulation of pathological tau in the insoluble fraction of brain homogenates. The pathological tau was associated with multiple post-translational modifications including aggregation, phosphorylation at a wide variety of sites, acetylation, ubiquitination and nitration. The change of most tau species reached statistical significance at the age of 16 weeks. There was a strong correlation between the different post-translationally modified tau species in this heterogeneous pool of pathological tau. Total tau in the cerebrospinal fluid (CSF) displayed a multiphasic temporal profile distinct from the steady accumulation of pathological tau in the brain. Female rTg4510 mice displayed significantly more aggressive accumulation of pathological tau in the brain and elevation of total tau in CSF than their male littermates. The immunoassays described here were used to generate the most comprehensive description of the changes in various tau species across the lifespan of the rTg4510 mouse model. The data indicate that development of tauopathy in rTg4510 mice involves the accumulation of a pool of pathological tau that carries multiple post-translational modifications, a process that can be

  10. Determination of the Michel parameters and the {tau} neutrino helicity in {tau} decay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    CLEO Collaboration

    1997-11-01

    Using the CLEO II detector at the Cornell Electron Storage Ring operated at {radical} (s) =10.6GeV, we have determined the Michel parameters {rho}, {xi}, and {delta} in {tau}{sup {minus_plus}}{r_arrow}l{sup {minus_plus}}{nu}{bar {nu}} decay as well as the {tau} neutrino helicity parameter h{sub {nu}{sub {tau}}} in {tau}{sup {minus_plus}}{r_arrow}{pi}{sup {minus_plus}}{pi}{sup 0}{nu} decay. From a data sample of 3.02{times}10{sup 6} produced {tau} pairs we analyzed events of the topologies e{sup +}e{sup {minus}}{r_arrow}{tau}{sup +}{tau}{sup {minus}}{r_arrow}(l{sup {plus_minus}}{nu}{bar {nu}})({pi}{sup {minus_plus}}{pi}{sup 0}{nu}) and e{sup +}e{sup {minus}}{r_arrow}{tau}{sup +}{tau}{sup {minus}}{r_arrow}({pi}{sup {plus_minus}}{pi}{sup 0}{bar {nu}})({pi}{sup {minus_plus}}{pi}{sup 0}{nu}). We obtain {rho}=0.747{rho}=0.747{plus_minus}0.010{plus_minus}0.006, {xi}=1.007{plus_minus}0.040{plus_minus}0.015, {xi}{delta}=0.745{plus_minus}0.026{plus_minus}0.009, and h{sub {nu}{sub {tau}}}={minus}0.995{plus_minus}0.010{plus_minus}0.003, where we have used the previouslymore » determined sign of h{sub {nu}{sub {tau}}} [ARGUS Collaboration, H. Albrecht {ital et al.}, Z. Phys. C {bold 58}, 61 (1993); Phys. Lett. B {bold 349}, 576 (1995)]. We also present the Michel parameters as determined from the electron and muon samples separately. All results are in agreement with the standard model V{minus}A interaction. {copyright} {ital 1997} {ital The American Physical Society}« less

  11. Association of In Vivo [18F]AV-1451 Tau PET Imaging Results With Cortical Atrophy and Symptoms in Typical and Atypical Alzheimer Disease

    PubMed Central

    Xia, Chenjie; Makaretz, Sara J.; Caso, Christina; McGinnis, Scott; Gomperts, Stephen N.; Sepulcre, Jorge; Gomez-Isla, Teresa; Hyman, Bradley T.; Schultz, Aaron; Vasdev, Neil; Johnson, Keith A.

    2017-01-01

    Importance Previous postmortem studies have long demonstrated that neurofibrillary tangles made of hyperphosphorylated tau proteins are closely associated with Alzheimer disease clinical phenotype and neurodegeneration pattern. Validating these associations in vivo will lead to new diagnostic tools for Alzheimer disease and better understanding of its neurobiology. Objective To examine whether topographical distribution and severity of hyperphosphorylated tau pathologic findings measured by fluorine 18–labeled AV-1451 ([18F]AV-1451) positron emission tomographic (PET) imaging are linked with clinical phenotype and cortical atrophy in patients with Alzheimer disease. Design, Setting, and Participants This observational case series, conducted from July 1, 2012, to July 30, 2015, in an outpatient referral center for patients with neurodegenerative diseases, included 6 patients: 3 with typical amnesic Alzheimer disease and 3 with atypical variants (posterior cortical atrophy, logopenic variant primary progressive aphasia, and corticobasal syndrome). Patients underwent [18F]AV-1451 PET imaging to measure tau burden, carbon 11–labeled Pittsburgh Compound B ([11C]PiB) PET imaging to measure amyloid burden, and structural magnetic resonance imaging to measure cortical thickness. Seventy-seven age-matched controls with normal cognitive function also underwent structural magnetic resonance imaging but not tau or amyloid PET imaging. Main Outcomes and Measures Tau burden, amyloid burden, and cortical thickness. Results In all 6 patients (3 women and 3 men; mean age 61.8 years), the underlying clinical phenotype was associated with the regional distribution of the [18F]AV-1451 signal. Furthermore, within 68 cortical regions of interest measured from each patient, the magnitude of cortical atrophy was strongly correlated with the magnitude of [18F]AV-1451 binding (3 patients with amnesic Alzheimer disease, r = –0.82; P < .001; r = –0.70; P < .001; r

  12. DOPA Decarboxylase Modulates Tau Toxicity.

    PubMed

    Kow, Rebecca L; Sikkema, Carl; Wheeler, Jeanna M; Wilkinson, Charles W; Kraemer, Brian C

    2018-03-01

    The microtubule-associated protein tau accumulates into toxic aggregates in multiple neurodegenerative diseases. We found previously that loss of D 2 -family dopamine receptors ameliorated tauopathy in multiple models including a Caenorhabditis elegans model of tauopathy. To better understand how loss of D 2 -family dopamine receptors can ameliorate tau toxicity, we screened a collection of C. elegans mutations in dopamine-related genes (n = 45) for changes in tau transgene-induced behavioral defects. These included many genes responsible for dopamine synthesis, metabolism, and signaling downstream of the D 2 receptors. We identified one dopamine synthesis gene, DOPA decarboxylase (DDC), as a suppressor of tau toxicity in tau transgenic worms. Loss of the C. elegans DDC gene, bas-1, ameliorated the behavioral deficits of tau transgenic worms, reduced phosphorylated and detergent-insoluble tau accumulation, and reduced tau-mediated neuron loss. Loss of function in other genes in the dopamine and serotonin synthesis pathways did not alter tau-induced toxicity; however, their function is required for the suppression of tau toxicity by bas-1. Additional loss of D 2 -family dopamine receptors did not synergize with bas-1 suppression of tauopathy phenotypes. Loss of the DDC bas-1 reduced tau-induced toxicity in a C. elegans model of tauopathy, while loss of no other dopamine or serotonin synthesis genes tested had this effect. Because loss of activity upstream of DDC could reduce suppression of tau by DDC, this suggests the possibility that loss of DDC suppresses tau via the combined accumulation of dopamine precursor levodopa and serotonin precursor 5-hydroxytryptophan. Published by Elsevier Inc.

  13. Farnesyltransferase haplodeficiency reduces neuropathology and rescues cognitive function in a mouse model of Alzheimer disease.

    PubMed

    Cheng, Shaowu; Cao, Dongfeng; Hottman, David A; Yuan, LiLian; Bergo, Martin O; Li, Ling

    2013-12-13

    Isoprenoids and prenylated proteins have been implicated in the pathophysiology of Alzheimer disease (AD), including amyloid-β precursor protein metabolism, Tau phosphorylation, synaptic plasticity, and neuroinflammation. However, little is known about the relative importance of the two protein prenyltransferases, farnesyltransferase (FT) and geranylgeranyltransferase-1 (GGT), in the pathogenesis of AD. In this study, we defined the impact of deleting one copy of FT or GGT on the development of amyloid-β (Aβ)-associated neuropathology and learning/memory impairments in APPPS1 double transgenic mice, a well established model of AD. Heterozygous deletion of FT reduced Aβ deposition and neuroinflammation and rescued spatial learning and memory function in APPPS1 mice. Heterozygous deletion of GGT reduced the levels of Aβ and neuroinflammation but had no impact on learning and memory. These results document that farnesylation and geranylgeranylation play differential roles in AD pathogenesis and suggest that specific inhibition of protein farnesylation could be a potential strategy for effectively treating AD.

  14. Tau-Induced Ca2+/Calmodulin-Dependent Protein Kinase-IV Activation Aggravates Nuclear Tau Hyperphosphorylation.

    PubMed

    Wei, Yu-Ping; Ye, Jin-Wang; Wang, Xiong; Zhu, Li-Ping; Hu, Qing-Hua; Wang, Qun; Ke, Dan; Tian, Qing; Wang, Jian-Zhi

    2018-04-01

    Hyperphosphorylated tau is the major protein component of neurofibrillary tangles in the brains of patients with Alzheimer's disease (AD). However, the mechanism underlying tau hyperphosphorylation is not fully understood. Here, we demonstrated that exogenously expressed wild-type human tau40 was detectable in the phosphorylated form at multiple AD-associated sites in cytoplasmic and nuclear fractions from HEK293 cells. Among these sites, tau phosphorylated at Thr205 and Ser214 was almost exclusively found in the nuclear fraction at the conditions used in the present study. With the intracellular tau accumulation, the Ca 2+ concentration was significantly increased in both cytoplasmic and nuclear fractions. Further studies using site-specific mutagenesis and pharmacological treatment demonstrated that phosphorylation of tau at Thr205 increased nuclear Ca 2+ concentration with a simultaneous increase in the phosphorylation of Ca 2+ /calmodulin-dependent protein kinase IV (CaMKIV) at Ser196. On the other hand, phosphorylation of tau at Ser214 did not significantly change the nuclear Ca 2+ /CaMKIV signaling. Finally, expressing calmodulin-binding protein-4 that disrupts formation of the Ca 2+ /calmodulin complex abolished the okadaic acid-induced tau hyperphosphorylation in the nuclear fraction. We conclude that the intracellular accumulation of phosphorylated tau, as detected in the brains of AD patients, can trigger nuclear Ca 2+ /CaMKIV signaling, which in turn aggravates tau hyperphosphorylation. Our findings provide new insights for tauopathies: hyperphosphorylation of intracellular tau and an increased Ca 2+ concentration may induce a self-perpetuating harmful loop to promote neurodegeneration.

  15. Hypoglycemia induces tau hyperphosphorylation.

    PubMed

    Lee, Chu-Wan; Shih, Yao-Hsiang; Wu, Shih-Ying; Yang, Tingting; Lin, Chingju; Kuo, Yu-Min

    2013-03-01

    Cerebral hypoglycemia/hypometabolism is associated with Alzheimer's disease (AD) and is routinely used to assist clinical diagnosis of AD by brain imaging. However, whether cerebral hypoglycemia/hypometabolism contributes to the development of AD or is a response of reduced neuronal activity remains unclear. To investigate the causal relationship, we cultured the differentiated N2a neuroblastoma cells in glucose/pyruvate-deficient media (GDM). Shortly after the N2a cells cultured in the GDM, the mitochondria membrane potential was reduced and the AMP-activated-proteinkinase (AMPK), an energy sensor, was activated. Treatment of GDM not only increased the levels of tau phosphorylation at Ser(262) and Ser(396), but also increased the levels of active forms of GSK3α and GSK3β, two known kinases for tau phosphorylation, of the N2a cells. The levels of activated Akt, a mediator downstream to AMPK and upstream to GSK3α/β, were reduced by the GDM treatment. The effect of hypoglycemia was further examined in vivo by intracerebroventricular (icv) injection of streptozotocin (STZ) to the Wistar rats. STZ selectively injuries glucose transporter type 2-bearing cells which are primarily astrocytes in the rat brain, hence, interrupts glucose transportation from blood vessel to neuron. STZicv injection induced energy crisis in the brain regions surrounding the ventricles, as indicated by higher pAMPK levels in the hippocampus, but not cortex far away from the ventricles. STZ-icv treatment increased the levels of phosphorylated tau and activated GSK3β, but decreased the levels of activated Akt in the hippocampus. The hippocampus-dependent spatial learning and memory was impaired by the STZ-icv treatment. In conclusion, our works suggest that hypoglycemia enhances the AMPK-Akt-GSK3 pathway and leads to tau hyperphosphorylation.

  16. Regulation of Tau Pathology by the Microglial Fractalkine Receptor

    PubMed Central

    Bhaskar, Kiran; Konerth, Megan; Kokiko-Cochran, Olga N.; Cardona, Astrid; Ransohoff, Richard M.; Lamb, Bruce T.

    2010-01-01

    SUMMARY Aggregates of the hyperphosphorylated microtubule associated protein tau (MAPT) are an invariant neuropathological feature of tauopathies. Here we show that microglial neuroinflammation promotes MAPT phosphorylation and aggregation. First, lipopolysaccharide-induced microglial activation promotes hyperphosphorylation of endogenous mouse MAPT in non-transgenic mice that is further enhanced in mice lacking the microglial-specific fractalkine receptor (CX3CR1) and is dependent upon functional toll-like receptor 4 and interleukin 1 (IL1) receptors. Second, humanized MAPT transgenic mice lacking CX3CR1 exhibited enhanced MAPT phosphorylation and aggregation as well as behavioral impairments that correlated with increased levels of active p38 MAPK. Third, in vitro experiments demonstrate that microglial activation elevates the level of active p38 MAPK and enhances MAPT hyperphosphorylation within neurons that can be blocked by administration of an interleukin 1 receptor antagonist and a specific p38 MAPK inhibitor. Taken together, our results suggest that CX3CR1 and IL1/p38 MAPK may serve as novel therapeutic targets for human tauopathies. PMID:20920788

  17. Mutated tau, amyloid and neuroinflammation in Alzheimer disease-A brief review.

    PubMed

    Hung, A S M; Liang, Y; Chow, Tony C H; Tang, H C; Wu, Sharon L Y; Wai, M S M; Yew, D T

    2016-05-01

    This review discussed the importance of mutated tau, amyloid and neuroinflammatory factors and microglia in Alzheimer disease. In particular tau, CD4 and TNF alpha were included in the review and the colocalizations of these factors were highlighted. It is important to realize the Alzheimer disease may result from the interactions of these factors. Some of these factors may coexist at the same region and at the same time e.g. mutated tau and amyloid in plaques. A summary scheme of etiology leading to the disease was included. Copyright © 2016 Elsevier GmbH. All rights reserved.

  18. Progressive Pathological Changes in Neurochemical Profile of the Hippocampus and Early Changes in the Olfactory Bulbs of Tau Transgenic Mice (rTg4510).

    PubMed

    Kim, Jieun; Choi, In-Young; Duff, Karen E; Lee, Phil

    2017-06-01

    Tauopathies such as Alzheimer's disease and frontotemporal lobe degeneration (FTLD-tau) dementia, characterized by pathologic aggregation of the microtubule-associated tau protein and formation of neurofibrillary tangles, have been linked to neurodegeneration and cognitive decline. The early detection of cerebral abnormalities and the identification of biological contributors to the continuous pathologic processes of neurodegeneration in tauopathies critically hinge on sensitive and reliable measures of biomarkers in the living brain. In this study, we measured alterations in a number of key neurochemicals associated with tauopathy-induced neurodegeneration in the hippocampus and the olfactory bulbs of a transgenic mouse model of FTLD-tauopathy, line rTg4510, using in vivo 1 H magnetic resonance spectroscopy at 9.4 T. The rTg4510 line develops tauopathy at a young age (4-5 months), reaching a severe stage by 8-12 months of age. Longitudinal measurement of neurochemical concentrations in the hippocampus of mice from 5 to 12 months of age showed significant progressive changes with distinctive disease staging patterns including N-acetylaspartate, myo-inositol, γ-aminobutyric acid, glutathione and glutamine. The accompanying hippocampal volume loss measured using magnetic resonance imaging showed significant correlation (p < 0.01) with neurochemical measurements. Neurochemical alterations in the olfactory bulbs were more pronounced than those in the hippocampus in rTg4510 mice. These results demonstrate progressive neuropathology in the mouse model and provide potential biomarkers of early neuropathological events and effective noninvasive monitoring of the disease progression and treatment efficacy, which can be easily translated to clinical studies.

  19. Search for the lepton-flavor-violating leptonic B(0)-->mu(+/-)tau(-/+) and B(0)-->e(+/-)tau(-/+).

    PubMed

    Bornheim, A; Lipeles, E; Pappas, S P; Weinstein, A J; Briere, R A; Chen, G P; Ferguson, T; Tatishvili, G; Vogel, H; Watkins, M E; Adam, N E; Alexander, J P; Berkelman, K; Cassel, D G; Duboscq, J E; Ecklund, K M; Ehrlich, R; Fields, L; Galik, R S; Gibbons, L; Gittelman, B; Gray, R; Gray, S W; Hartill, D L; Heltsley, B K; Hertz, D; Hsu, L; Jones, C D; Kandaswamy, J; Kreinick, D L; Kuznetsov, V E; Mahlke-Krüger, H; Meyer, T O; Onyisi, P U E; Patterson, J R; Peterson, D; Pivarski, J; Riley, D; Rosner, J L; Ryd, A; Sadoff, A J; Schwarthoff, H; Shepherd, M R; Sun, W M; Thayer, J G; Urner, D; Wilksen, T; Weinberger, M; Athar, S B; Avery, P; Breva-Newell, L; Patel, R; Potlia, V; Stoeck, H; Yelton, J; Rubin, P; Cawlfield, C; Eisenstein, B I; Gollin, G D; Karliner, I; Kim, D; Lowrey, N; Naik, P; Sedlack, C; Selen, M; Thaler, J J; Williams, J; Wiss, J; Edwards, K W; Besson, D; Gao, K Y; Gong, D T; Kubota, Y; Li, S Z; Poling, R; Scott, A W; Smith, A; Stepaniak, C J; Urheim, J; Metreveli, Z; Seth, K K; Tomaradze, A; Zweber, P; Ernst, J; Arms, K; Gan, K K; Severini, H; Skubic, P; Asner, D M; Dytman, S A; Mehrabyan, S; Mueller, J A; Savinov, V; Li, Z; Lopez, A; Mendez, H; Ramirez, J; Huang, G S; Miller, D H; Pavlunin, V; Sanghi, B; Shibata, E I; Shipsey, I P J; Adams, G S; Chasse, M; Cummings, J P; Danko, I; Napolitano, J; Cronin-Hennessy, D; Park, C S; Park, W; Thayer, J B; Thorndike, E H; Coan, T E; Gao, Y S; Liu, F; Stroynowski, R; Artuso, M; Boulahouache, C; Blusk, S; Butt, J; Dambasuren, E; Dorjkhaidav, O; Menaa, N; Mountain, R; Muramatsu, H; Nandakumar, R; Redjimi, R; Sia, R; Skwarnicki, T; Stone, S; Wang, J C; Zhang, K; Mahmood, A H; Csorna, S E; Bonvicini, G; Cinabro, D; Dubrovin, M

    2004-12-10

    We have searched a sample of 9.6 x 10(6) BB events for the lepton-flavor-violating leptonic B decays, B(0)-->mu(+/-)tau(-/+) and B(0)-->e(+/-)tau(-/+). The tau lepton was detected through the decay modes tau-->lnunu(-) , where l=e, mu. There is no indication of a signal, and we obtain the 90% confidence level upper limits B(B(0)-->mu(+/-)tau(-/+))<3.8 x 10(-5) and B(B(0)-->e(+/-)tau(-/+))<1.3 x 10(-4).

  20. Tau Kung | NREL

    Science.gov Websites

    Tau Kung Photo of Feitau Kung Tau Kung Commercial Buildings Research Engineer Feitau.Kung@nrel.gov evaluating building system energy performance in commercial settings, such as office, healthcare, higher

  1. Prospect for measuring the CP phase in the $$h\\tau\\tau$$ coupling at the LHC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Askew, Andrew; Jaiswal, Prerit; Okui, Takemichi

    The search for a new source of CP violation is one of the most important endeavors in particle physics. A particularly interesting way to perform this search is to probe the CP phase in themore » $$h\\tau\\tau$$ coupling, as the phase is currently completely unconstrained by all existing data. Recently, a novel variable $$\\Theta$$ was proposed for measuring the CP phase in the $$h\\tau\\tau$$ coupling through the $$\\tau^\\pm \\to \\pi^\\pm \\pi^0 \

  2. Prospect for measuring the CP phase in the $$h\\tau\\tau$$ coupling at the LHC

    DOE PAGES

    Askew, Andrew; Jaiswal, Prerit; Okui, Takemichi; ...

    2015-04-01

    The search for a new source of CP violation is one of the most important endeavors in particle physics. A particularly interesting way to perform this search is to probe the CP phase in themore » $$h\\tau\\tau$$ coupling, as the phase is currently completely unconstrained by all existing data. Recently, a novel variable $$\\Theta$$ was proposed for measuring the CP phase in the $$h\\tau\\tau$$ coupling through the $$\\tau^\\pm \\to \\pi^\\pm \\pi^0 \

  3. An Unbiased Approach to Identifying Tau Kinases That Phosphorylate Tau at Sites Associated with Alzheimer Disease

    PubMed Central

    Cavallini, Annalisa; Brewerton, Suzanne; Bell, Amanda; Sargent, Samantha; Glover, Sarah; Hardy, Clare; Moore, Roger; Calley, John; Ramachandran, Devaki; Poidinger, Michael; Karran, Eric; Davies, Peter; Hutton, Michael; Szekeres, Philip; Bose, Suchira

    2013-01-01

    Neurofibrillary tangles, one of the hallmarks of Alzheimer disease (AD), are composed of paired helical filaments of abnormally hyperphosphorylated tau. The accumulation of these proteinaceous aggregates in AD correlates with synaptic loss and severity of dementia. Identifying the kinases involved in the pathological phosphorylation of tau may identify novel targets for AD. We used an unbiased approach to study the effect of 352 human kinases on their ability to phosphorylate tau at epitopes associated with AD. The kinases were overexpressed together with the longest form of human tau in human neuroblastoma cells. Levels of total and phosphorylated tau (epitopes Ser(P)-202, Thr(P)-231, Ser(P)-235, and Ser(P)-396/404) were measured in cell lysates using AlphaScreen assays. GSK3α, GSK3β, and MAPK13 were found to be the most active tau kinases, phosphorylating tau at all four epitopes. We further dissected the effects of GSK3α and GSK3β using pharmacological and genetic tools in hTau primary cortical neurons. Pathway analysis of the kinases identified in the screen suggested mechanisms for regulation of total tau levels and tau phosphorylation; for example, kinases that affect total tau levels do so by inhibition or activation of translation. A network fishing approach with the kinase hits identified other key molecules putatively involved in tau phosphorylation pathways, including the G-protein signaling through the Ras family of GTPases (MAPK family) pathway. The findings identify novel tau kinases and novel pathways that may be relevant for AD and other tauopathies. PMID:23798682

  4. Effects of antibodies to phosphorylated and non-phosphorylated tau on in vitro tau phosphorylation at Serine-199: Preliminary report.

    PubMed

    Loeffler, David A; Smith, Lynnae M; Klaver, Andrea C; Martić, Sanela

    2015-07-01

    Phosphorylation of multiple amino acids on tau protein ("hyperphosphorylation") is required for the development of tau pathology in Alzheimer's disease. Administration of anti-tau antibodies to transgenic "tauopathy mice" has been shown to reduce their tau pathology but the mechanisms responsible are unclear. To examine the effects of anti-tau antibodies on tau phosphorylation, we used western blots to study the effects of three antibodies to phosphorylated tau (pTau), namely anti-pTau S199, T231, and S396, and three antibodies to non-phosphorylated tau on in vitro phosphorylation of recombinant human tau-441 at S199. Inclusion of an anti-pTau T231 antibody in the phosphorylation reaction reduced the intensity of monomeric pTau S199 in western blots of denaturing gels, but the other antibodies had no apparent effects on this process. Surprisingly, including all three anti-phospho-tau antibodies in the reaction did not reduce the intensity of the monomer band, possibly due to steric hindrance between the antibodies. These preliminary findings suggest that anti-tau antibodies may have minimal direct effects on tau phosphorylation. Limitations of using western blots to examine the effects of anti-tau antibodies on this process were found to include between-experiment variability in pTau band densities and poor resolution of high molecular weight pTau oligomers. The presence of bands representing immunoglobulins as well as pTau may also complicate interpretation of the western blots. Further studies are indicated to examine the effects of anti-pTau antibodies on phosphorylation of other tau amino acids in addition to S199. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Plasma tau in Alzheimer disease.

    PubMed

    Mattsson, Niklas; Zetterberg, Henrik; Janelidze, Shorena; Insel, Philip S; Andreasson, Ulf; Stomrud, Erik; Palmqvist, Sebastian; Baker, David; Tan Hehir, Cristina A; Jeromin, Andreas; Hanlon, David; Song, Linan; Shaw, Leslie M; Trojanowski, John Q; Weiner, Michael W; Hansson, Oskar; Blennow, Kaj

    2016-10-25

    To test whether plasma tau is altered in Alzheimer disease (AD) and whether it is related to changes in cognition, CSF biomarkers of AD pathology (including β-amyloid [Aβ] and tau), brain atrophy, and brain metabolism. This was a study of plasma tau in prospectively followed patients with AD (n = 179), patients with mild cognitive impairment (n = 195), and cognitive healthy controls (n = 189) from the Alzheimer's Disease Neuroimaging Initiative (ADNI) and cross-sectionally studied patients with AD (n = 61), mild cognitive impairment (n = 212), and subjective cognitive decline (n = 174) and controls (n = 274) from the Biomarkers for Identifying Neurodegenerative Disorders Early and Reliably (BioFINDER) study at Lund University, Sweden. A total of 1284 participants were studied. Associations were tested between plasma tau and diagnosis, CSF biomarkers, MRI measures, 18 fluorodeoxyglucose-PET, and cognition. Higher plasma tau was associated with AD dementia, higher CSF tau, and lower CSF Aβ 42 , but the correlations were weak and differed between ADNI and BioFINDER. Longitudinal analysis in ADNI showed significant associations between plasma tau and worse cognition, more atrophy, and more hypometabolism during follow-up. Plasma tau partly reflects AD pathology, but the overlap between normal aging and AD is large, especially in patients without dementia. Despite group-level differences, these results do not support plasma tau as an AD biomarker in individual people. Future studies may test longitudinal plasma tau measurements in AD. © 2016 American Academy of Neurology.

  6. Loss of Axonal Mitochondria Promotes Tau-Mediated Neurodegeneration and Alzheimer's Disease–Related Tau Phosphorylation Via PAR-1

    PubMed Central

    Iijima-Ando, Kanae; Sekiya, Michiko; Suzuki, Emiko; Lu, Bingwei; Iijima, Koichi M.

    2012-01-01

    Abnormal phosphorylation and toxicity of a microtubule-associated protein tau are involved in the pathogenesis of Alzheimer's disease (AD); however, what pathological conditions trigger tau abnormality in AD is not fully understood. A reduction in the number of mitochondria in the axon has been implicated in AD. In this study, we investigated whether and how loss of axonal mitochondria promotes tau phosphorylation and toxicity in vivo. Using transgenic Drosophila expressing human tau, we found that RNAi–mediated knockdown of milton or Miro, an adaptor protein essential for axonal transport of mitochondria, enhanced human tau-induced neurodegeneration. Tau phosphorylation at an AD–related site Ser262 increased with knockdown of milton or Miro; and partitioning defective-1 (PAR-1), the Drosophila homolog of mammalian microtubule affinity-regulating kinase, mediated this increase of tau phosphorylation. Tau phosphorylation at Ser262 has been reported to promote tau detachment from microtubules, and we found that the levels of microtubule-unbound free tau increased by milton knockdown. Blocking tau phosphorylation at Ser262 site by PAR-1 knockdown or by mutating the Ser262 site to unphosphorylatable alanine suppressed the enhancement of tau-induced neurodegeneration caused by milton knockdown. Furthermore, knockdown of milton or Miro increased the levels of active PAR-1. These results suggest that an increase in tau phosphorylation at Ser262 through PAR-1 contributes to tau-mediated neurodegeneration under a pathological condition in which axonal mitochondria is depleted. Intriguingly, we found that knockdown of milton or Miro alone caused late-onset neurodegeneration in the fly brain, and this neurodegeneration could be suppressed by knockdown of Drosophila tau or PAR-1. Our results suggest that loss of axonal mitochondria may play an important role in tau phosphorylation and toxicity in the pathogenesis of AD. PMID:22952452

  7. Escitalopram Ameliorates Forskolin-Induced Tau Hyperphosphorylation in HEK239/tau441 Cells.

    PubMed

    Ren, Qing-Guo; Wang, Yan-Juan; Gong, Wei-Gang; Zhou, Qi-Da; Xu, Lin; Zhang, Zhi-Jun

    2015-06-01

    To investigate the effect of escitalopram (a widely used and highly efficacious antidepressant from the SSRI class) on tau hyperphosphorylation, HEK293/tau441 cells were pretreated with 4 μM of forskolin for 2 h. Then we treated the cells with different doses of escitalopram (0, 5, 10, 20, 40, 80 μM) for 22 h. We measured the phosphorylation level of tau by Western blotting. It was shown that escitalopram could protect tau from hyperphosphorylation induced by pharmacological activation of protein kinase A (PKA) at a dose of 20, 40, and 80 μM in vitro. Interestingly, the same dose of escitalopram could also increase the level of serine-9-phosphorylated GSK-3β (inactive form) and the phosphorylation level of Akt at Ser473 (active form) with no significant change in the level of total GSK-3β and Akt. Unexpectedly, 5-hydroxytryptamine 1A receptor (5-HT1A) agonist 8-OH-DPAT did not decrease forskolin-induced tau hyperphosphorylation. Our results suggest that escitalopram can ameliorate forskolin-induced tau hyperphosphorylation, which is not through the typical 5-HT1A pathway, and Akt/GSK-3β signaling pathway is involved. These findings may support an effective role of antidepressants in the prevention of dementia associated with depression in patients.

  8. Microglial internalization and degradation of pathological tau is enhanced by an anti-tau monoclonal antibody

    PubMed Central

    Luo, Wenjie; Liu, Wencheng; Hu, Xiaoyan; Hanna, Mary; Caravaca, April; Paul, Steven M.

    2015-01-01

    Microglia have been shown to contribute to the clearance of brain amyloid β peptides (Aβ), the major component of amyloid plaques, in Alzheimer’s disease (AD). However, it is not known whether microglia play a similar role in the clearance of tau, the major component of neurofibrillary tangles (NFTs). We now report that murine microglia rapidly internalize and degrade hyperphosphorylated pathological tau isolated from AD brain tissue in a time-dependent manner in vitro. We further demonstrate that microglia readily degrade human tau species released from AD brain sections and eliminate NFTs from brain sections of P301S tauopathy mice. The anti-tau monoclonal antibody MC1 enhances microglia-mediated tau degradation in an Fc-dependent manner. Our data identify a potential role for microglia in the degradation and clearance of pathological tau species in brain and provide a mechanism explaining the potential therapeutic actions of passively administered anti-tau monoclonal antibodies. PMID:26057852

  9. CSF tau and tau/Aβ42 predict cognitive decline in Parkinson's disease.

    PubMed

    Liu, Changqin; Cholerton, Brenna; Shi, Min; Ginghina, Carmen; Cain, Kevin C; Auinger, Peggy; Zhang, Jing

    2015-03-01

    A substantial proportion of patients with Parkinson's disease (PD) have concomitant cognitive dysfunction. Identification of biomarker profiles that predict which PD patients have a greater likelihood for progression of cognitive symptoms is pressingly needed for future treatment and prevention approaches. Subjects were drawn from the Deprenyl and Tocopherol Antioxidative Therapy of Parkinsonism (DATATOP) study, a large clinical trial that enrolled initially untreated PD patients. For the current study, Phase One encompassed trial baseline until just prior to levodopa administration (n = 403), and Phase Two spanned the initiation of levodopa treatment until the end of cognitive follow-up (n = 305). Correlations and linear mixed models were performed to determine cross-sectional and longitudinal associations between baseline amyloid β1-42 (Aβ42), total tau (t-tau), and phosphorylated tau (p-tau) in cerebrospinal fluid (CSF) and measures of memory and executive function. Analyses also considered APOE genotype and tremor- vs. rigidity-dominant phenotype. No association was found between baseline CSF biomarkers and cognitive test performance during Phase One. However, once levodopa treatment was initiated, higher p-tau and p-tau/Aβ42 predicted subsequent decline on cognitive tasks involving both memory and executive functions. The interactions between biomarkers and cognition decline did not appear to be influenced by levodopa dosage, APOE genotype or motor phenotype. The current study has, for the first time, demonstrated the possible involvement of tau species, whose gene (MAPT) has been consistently linked to the risk of PD by genome-wide association studies, in the progression of cognitive symptoms in PD. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Affinity of Tau antibodies for solubilized pathological Tau species but not their immunogen or insoluble Tau aggregates predicts in vivo and ex vivo efficacy.

    PubMed

    Congdon, Erin E; Lin, Yan; Rajamohamedsait, Hameetha B; Shamir, Dov B; Krishnaswamy, Senthilkumar; Rajamohamedsait, Wajitha J; Rasool, Suhail; Gonzalez, Veronica; Levenga, Josien; Gu, Jiaping; Hoeffer, Charles; Sigurdsson, Einar M

    2016-08-30

    A few tau immunotherapies are now in clinical trials with several more likely to be initiated in the near future. A priori, it can be anticipated that an antibody which broadly recognizes various pathological tau aggregates with high affinity would have the ideal therapeutic properties. Tau antibodies 4E6 and 6B2, raised against the same epitope region but of varying specificity and affinity, were tested for acutely improving cognition and reducing tau pathology in transgenic tauopathy mice and neuronal cultures. Surprisingly, we here show that one antibody, 4E6, which has low affinity for most forms of tau acutely improved cognition and reduced soluble phospho-tau, whereas another antibody, 6B2, which has high affinity for various tau species was ineffective. Concurrently, we confirmed and clarified these efficacy differences in an ex vivo model of tauopathy. Alzheimer's paired helical filaments (PHF) were toxic to the neurons and increased tau levels in remaining neurons. Both toxicity and tau seeding were prevented by 4E6 but not by 6B2. Furthermore, 4E6 reduced PHF spreading between neurons. Interestingly, 4E6's efficacy relates to its high affinity binding to solubilized PHF, whereas the ineffective 6B2 binds mainly to aggregated PHF. Blocking 4E6's uptake into neurons prevented its protective effects if the antibody was administered after PHF had been internalized. When 4E6 and PHF were administered at the same time, the antibody was protective extracellularly. Overall, these findings indicate that high antibody affinity for solubilized PHF predicts efficacy, and that acute antibody-mediated improvement in cognition relates to clearance of soluble phospho-tau. Importantly, both intra- and extracellular clearance pathways are in play. Together, these results have major implications for understanding the pathogenesis of tauopathies and for development of immunotherapies.

  11. Plasma phospho-tau181 increases with Alzheimer's disease clinical severity and is associated with tau- and amyloid-positron emission tomography.

    PubMed

    Mielke, Michelle M; Hagen, Clinton E; Xu, Jing; Chai, Xiyun; Vemuri, Prashanthi; Lowe, Val J; Airey, David C; Knopman, David S; Roberts, Rosebud O; Machulda, Mary M; Jack, Clifford R; Petersen, Ronald C; Dage, Jeffrey L

    2018-04-04

    We examined and compared plasma phospho-tau181 (pTau181) and total tau: (1) across the Alzheimer's disease (AD) clinical spectrum; (2) in relation to brain amyloid β (Aβ) positron emission tomography (PET), tau PET, and cortical thickness; and (3) as a screening tool for elevated brain Aβ. Participants included 172 cognitively unimpaired, 57 mild cognitively impaired, and 40 AD dementia patients with concurrent Aβ PET (Pittsburgh compound B), tau PET (AV1451), magnetic resonance imaging, plasma total tau, and pTau181. Plasma total tau and pTau181 levels were higher in AD dementia patients than those in cognitively unimpaired. Plasma pTau181 was more strongly associated with both Aβ and tau PET. Plasma pTau181 was a more sensitive and specific predictor of elevated brain Aβ than total tau and was as good as, or better than, the combination of age and apolipoprotein E (APOE). Plasma pTau181 may have utility as a biomarker of AD pathophysiology and as a noninvasive screener for elevated brain Aβ. Copyright © 2018. Published by Elsevier Inc.

  12. Protein restriction cycles reduce IGF-1 and phosphorylated Tau, and improve behavioral performance in an Alzheimer's disease mouse model.

    PubMed

    Parrella, Edoardo; Maxim, Tom; Maialetti, Francesca; Zhang, Lu; Wan, Junxiang; Wei, Min; Cohen, Pinchas; Fontana, Luigi; Longo, Valter D

    2013-04-01

    In laboratory animals, calorie restriction (CR) protects against aging, oxidative stress, and neurodegenerative pathologies. Reduced levels of growth hormone and IGF-1, which mediate some of the protective effects of CR, can also extend longevity and/or protect against age-related diseases in rodents and humans. However, severely restricted diets are difficult to maintain and are associated with chronically low weight and other major side effects. Here we show that 4 months of periodic protein restriction cycles (PRCs) with supplementation of nonessential amino acids in mice already displaying significant cognitive impairment and Alzheimer's disease (AD)-like pathology reduced circulating IGF-1 levels by 30-70% and caused an 8-fold increase in IGFBP-1. Whereas PRCs did not affect the levels of β amyloid (Aβ), they decreased tau phosphorylation in the hippocampus and alleviated the age-dependent impairment in cognitive performance. These results indicate that periodic protein restriction cycles without CR can promote changes in circulating growth factors and tau phosphorylation associated with protection against age-related neuropathologies. © 2013 The Authors Aging Cell © 2013 Blackwell Publishing Ltd/Anatomical Society of Great Britain and Ireland.

  13. Autism spectrum disorder: neuropathology and animal models.

    PubMed

    Varghese, Merina; Keshav, Neha; Jacot-Descombes, Sarah; Warda, Tahia; Wicinski, Bridget; Dickstein, Dara L; Harony-Nicolas, Hala; De Rubeis, Silvia; Drapeau, Elodie; Buxbaum, Joseph D; Hof, Patrick R

    2017-10-01

    Autism spectrum disorder (ASD) has a major impact on the development and social integration of affected individuals and is the most heritable of psychiatric disorders. An increase in the incidence of ASD cases has prompted a surge in research efforts on the underlying neuropathologic processes. We present an overview of current findings in neuropathology studies of ASD using two investigational approaches, postmortem human brains and ASD animal models, and discuss the overlap, limitations, and significance of each. Postmortem examination of ASD brains has revealed global changes including disorganized gray and white matter, increased number of neurons, decreased volume of neuronal soma, and increased neuropil, the last reflecting changes in densities of dendritic spines, cerebral vasculature and glia. Both cortical and non-cortical areas show region-specific abnormalities in neuronal morphology and cytoarchitectural organization, with consistent findings reported from the prefrontal cortex, fusiform gyrus, frontoinsular cortex, cingulate cortex, hippocampus, amygdala, cerebellum and brainstem. The paucity of postmortem human studies linking neuropathology to the underlying etiology has been partly addressed using animal models to explore the impact of genetic and non-genetic factors clinically relevant for the ASD phenotype. Genetically modified models include those based on well-studied monogenic ASD genes (NLGN3, NLGN4, NRXN1, CNTNAP2, SHANK3, MECP2, FMR1, TSC1/2), emerging risk genes (CHD8, SCN2A, SYNGAP1, ARID1B, GRIN2B, DSCAM, TBR1), and copy number variants (15q11-q13 deletion, 15q13.3 microdeletion, 15q11-13 duplication, 16p11.2 deletion and duplication, 22q11.2 deletion). Models of idiopathic ASD include inbred rodent strains that mimic ASD behaviors as well as models developed by environmental interventions such as prenatal exposure to sodium valproate, maternal autoantibodies, and maternal immune activation. In addition to replicating some of the

  14. Targeting Aβ and tau in Alzheimer's disease, an early interim report

    PubMed Central

    Golde, Todd E.; Petrucelli, Leonard; Lewis, Jada

    2009-01-01

    The amyloid β (Aβ) and tau proteins, which misfold, aggregate, and accumulate in the Alzheimer's disease (AD) brain, are implicated as central factors in a complex neurodegenerative cascade. Studies of mutations that cause early onset AD and promote Aβ accumulation in the brain strongly support the notion that inhibiting Aβ aggregation will prevent AD. Similarly, genetic studies of frontotemporal dementia with parkinsonism linked to chromosome 17 (FTDP-17 MAPT) showing that mutations in the MAPT gene encoding tau lead to abnormal tau accumulation and neurodegeneration. Such genetic studies clearly show that tau dysfunction and aggregation can be central to neurodegeneration, however, most likely in a secondary fashion in relation to AD. Additional pathologic, biochemical and modeling studies further support the concept that Aβ and tau are prime targets for disease modifying therapies in AD. Treatment strategies aimed at preventing the aggregation and accumulation of Aβ, tau, or both proteins should therefore be theoretically possible, assuming that treatment can be initiated before either irreversible damage is present or downstream, self-sustaining, pathological cascades have been initiated. Herein, we will review recent advances and also potential setbacks with respect to the myriad of therapeutic strategies that are designed to slow down, prevent, or clear the accumulation of either “pathological” Aβ or tau. We will also discuss the need for thoughtful prioritization with respect to clinical development of the pre-clinically validated modifiers of Aβ and tau pathology. The current number of candidate therapies targeting Aβ is becoming so large that a triage process is clearly needed to insure that resources are invested in a way such that the best candidates for disease modifying therapy are rapidly moved toward clinical trials. Finally, we will discuss the challenges for an appropriate “triage” after potential disease modifying therapies

  15. The future of neuropathology in childhood.

    PubMed

    Rorke, L B

    2000-11-01

    The current state of knowledge of pediatric neuropathology is based upon a rich historical heritage dating back many centuries and representing the genius of many people, although, relatively speaking, little specific attention was paid to the unique issues relating to infants and children. Aside from descriptions of morphological features of disease (including tumors), advances in understanding basic pathogenetic mechanisms have flowered only in the recent past. Most exciting has been the progress in molecular biology and genetics, which has yielded a phenomenal bank of information in a short time, uncovering details of genes involved in development of the nervous system and specifically associated with various types of tumors. The future of pediatric neuropathology requires partnership with molecular geneticists whose studies hold promise of defining morphology.

  16. Changes in tau phosphorylation in hibernating rodents.

    PubMed

    León-Espinosa, Gonzalo; García, Esther; García-Escudero, Vega; Hernández, Félix; Defelipe, Javier; Avila, Jesús

    2013-07-01

    Tau is a cytoskeletal protein present mainly in the neurons of vertebrates. By comparing the sequence of tau molecule among different vertebrates, it was found that the variability of the N-terminal sequence in tau protein is higher than that of the C-terminal region. The N-terminal region is involved mainly in the binding of tau to cellular membranes, whereas the C-terminal region of the tau molecule contains the microtubule-binding sites. We have compared the sequence of Syrian hamster tau with the sequences of other hibernating and nonhibernating rodents and investigated how differences in the N-terminal region of tau could affect the phosphorylation level and tau binding to cell membranes. We also describe a change, in tau phosphorylation, on a casein kinase 1 (ck1)-dependent site that is found only in hibernating rodents. This ck1 site seems to play an important role in the regulation of tau binding to membranes. Copyright © 2013 Wiley Periodicals, Inc.

  17. Curcumin Suppresses Soluble Tau Dimers and Corrects Molecular Chaperone, Synaptic, and Behavioral Deficits in Aged Human Tau Transgenic Mice*

    PubMed Central

    Ma, Qiu-Lan; Zuo, Xiaohong; Yang, Fusheng; Ubeda, Oliver J.; Gant, Dana J.; Alaverdyan, Mher; Teng, Edmond; Hu, Shuxin; Chen, Ping-Ping; Maiti, Panchanan; Teter, Bruce; Cole, Greg M.; Frautschy, Sally A.

    2013-01-01

    The mechanisms underlying Tau-related synaptic and cognitive deficits and the interrelationships between Tau species, their clearance pathways, and synaptic impairments remain poorly understood. To gain insight into these mechanisms, we examined these interrelationships in aged non-mutant genomic human Tau mice, with established Tau pathology and neuron loss. We also examined how these interrelationships changed with an intervention by feeding mice either a control diet or one containing the brain permeable beta-amyloid and Tau aggregate binding molecule curcumin. Transgene-dependent elevations in soluble and insoluble phospho-Tau monomer and soluble Tau dimers accompanied deficits in behavior, hippocampal excitatory synaptic markers, and molecular chaperones (heat shock proteins (HSPs)) involved in Tau degradation and microtubule stability. In human Tau mice but not control mice, HSP70, HSP70/HSP72, and HSP90 were reduced in membrane-enriched fractions but not in cytosolic fractions. The synaptic proteins PSD95 and NR2B were reduced in dendritic fields and redistributed into perikarya, corresponding to changes observed by immunoblot. Curcumin selectively suppressed levels of soluble Tau dimers, but not of insoluble and monomeric phospho-Tau, while correcting behavioral, synaptic, and HSP deficits. Treatment increased PSD95 co-immunoprecipitating with NR2B and, independent of transgene, increased HSPs implicated in Tau clearance. It elevated HSP90 and HSC70 without increasing HSP mRNAs; that is, without induction of the heat shock response. Instead curcumin differentially impacted HSP90 client kinases, reducing Fyn without reducing Akt. In summary, curcumin reduced soluble Tau and elevated HSPs involved in Tau clearance, showing that even after tangles have formed, Tau-dependent behavioral and synaptic deficits can be corrected. PMID:23264626

  18. Prolonged running, not fluoxetine treatment, increases neurogenesis, but does not alter neuropathology, in the 3xTg mouse model of Alzheimer's disease.

    PubMed

    Marlatt, Michael W; Potter, Michelle C; Bayer, Thomas A; van Praag, Henriette; Lucassen, Paul J

    2013-01-01

    Reductions in adult neurogenesis have been documented in the original 3xTg mouse model of Alzheimer's disease (AD), notably occurring at the same age when spatial memory deficits and amyloid plaque pathology appeared. As this suggested reduced neurogenesis was associated with behavioral deficits, we tested whether activity and pharmacological stimulation could prevent memory deficits and modify neurogenesis and/or neuropathology in the 3xTg model backcrossed to the C57Bl/6 strain. We chronically administered the antidepressant fluoxetine to one group of mice, allowed access to a running wheel in another, and combined both treatments in a third cohort. All treatments lasted for 11 months. The female 3xTg mice failed to exhibit any deficits in spatial learning and memory as measured in the Morris water maze, indicating that when backcrossed to the C57Bl/6 strain, the 3xTg mice lost the behavioral phenotype that was present in the original 3xTg mouse maintained on a hybrid background. Despite this, the backcrossed 3xTg mice expressed prominent intraneuronal amyloid beta (Aβ) levels in the cortex and amygdala, with lower levels in the CA1 area of the hippocampus. In the combined cohort, fluoxetine treatment interfered with exercise and reduced the total distance run. The extent of Aβ neuropathology, the tau accumulations, or BDNF levels, were not altered by prolonged exercise. Thus, neuropathology was present but not paralleled by spatial memory deficits in the backcrossed 3xTg mouse model of AD. Prolonged exercise for 11 months did improve the long-term survival of newborn neurons generated during middle-age, whereas fluoxetine had no effect. We further review and discuss the relevant literature in this respect.

  19. Associations between [18F]AV1451 tau PET and CSF measures of tau pathology in a clinical sample.

    PubMed

    La Joie, Renaud; Bejanin, Alexandre; Fagan, Anne M; Ayakta, Nagehan; Baker, Suzanne L; Bourakova, Viktoriya; Boxer, Adam L; Cha, Jungho; Karydas, Anna; Jerome, Gina; Maass, Anne; Mensing, Ashley; Miller, Zachary A; O'Neil, James P; Pham, Julie; Rosen, Howard J; Tsai, Richard; Visani, Adrienne V; Miller, Bruce L; Jagust, William J; Rabinovici, Gil D

    2018-01-23

    To assess the relationships between fluid and imaging biomarkers of tau pathology and compare their diagnostic utility in a clinically heterogeneous sample. Fifty-three patients (28 with clinical Alzheimer disease [AD] and 25 with non-AD clinical neurodegenerative diagnoses) underwent β-amyloid (Aβ) and tau ([ 18 F]AV1451) PET and lumbar puncture. CSF biomarkers (Aβ 42 , total tau [t-tau], and phosphorylated tau [p-tau]) were measured by multianalyte immunoassay (AlzBio3). Receiver operator characteristic analyses were performed to compare discrimination of Aβ-positive AD from non-AD conditions across biomarkers. Correlations between CSF biomarkers and PET standardized uptake value ratios (SUVR) were assessed using skipped Pearson correlation coefficients. Voxelwise analyses were run to assess regional CSF-PET associations. [ 18 F]AV1451-PET cortical SUVR and p-tau showed excellent discrimination between Aβ-positive AD and non-AD conditions (area under the curve 0.92-0.94; ≤0.83 for other CSF measures), and reached 83% classification agreement. In the full sample, cortical [ 18 F]AV1451 was associated with all CSF biomarkers, most strongly with p-tau ( r = 0.75 vs 0.57 for t-tau and -0.49 for Aβ 42 ). When restricted to Aβ-positive patients with AD, [ 18 F]AV1451 SUVR correlated modestly with p-tau and t-tau (both r = 0.46) but not Aβ 42 ( r = 0.02). On voxelwise analysis, [ 18 F]AV1451 correlated with CSF p-tau in temporoparietal cortices and with t-tau in medial prefrontal regions. Within AD, Mini-Mental State Examination scores were associated with [ 18 F]AV1451-PET, but not CSF biomarkers. [ 18 F]AV1451-PET and CSF p-tau had comparable value for differential diagnosis. Correlations were robust in a heterogeneous clinical group but attenuated (although significant) in AD, suggesting that fluid and imaging biomarkers capture different aspects of tau pathology. This study provides Class III evidence that, in a clinical sample of patients with a variety

  20. Neuropathological Alterations in Alzheimer Disease

    PubMed Central

    Serrano-Pozo, Alberto; Frosch, Matthew P.; Masliah, Eliezer; Hyman, Bradley T.

    2011-01-01

    The neuropathological hallmarks of Alzheimer disease (AD) include “positive” lesions such as amyloid plaques and cerebral amyloid angiopathy, neurofibrillary tangles, and glial responses, and “negative” lesions such as neuronal and synaptic loss. Despite their inherently cross-sectional nature, postmortem studies have enabled the staging of the progression of both amyloid and tangle pathologies, and, consequently, the development of diagnostic criteria that are now used worldwide. In addition, clinicopathological correlation studies have been crucial to generate hypotheses about the pathophysiology of the disease, by establishing that there is a continuum between “normal” aging and AD dementia, and that the amyloid plaque build-up occurs primarily before the onset of cognitive deficits, while neurofibrillary tangles, neuron loss, and particularly synaptic loss, parallel the progression of cognitive decline. Importantly, these cross-sectional neuropathological data have been largely validated by longitudinal in vivo studies using modern imaging biomarkers such as amyloid PET and volumetric MRI. PMID:22229116

  1. Treatment-as-usual (TAU) is anything but usual: a meta-analysis of CBT versus TAU for anxiety and depression.

    PubMed

    Watts, Sarah E; Turnell, Adrienne; Kladnitski, Natalie; Newby, Jill M; Andrews, Gavin

    2015-04-01

    There were three aims of this study, the first was to examine the efficacy of CBT versus treatment-as-usual (TAU) in the treatment of anxiety and depressive disorders, the second was to examine how TAU is defined in TAU control groups for those disorders, and the third was to explore whether the type of TAU condition influences the estimate of effects of CBT. A systematic search of Cochrane Central Register of Controlled Trials, PsycINFO, and CINAHL was conducted. 48 studies of CBT for depressive or anxiety disorders (n=6926) that specified that their control group received TAU were identified. Most (n=45/48) provided an explanation of the TAU group however there was significant heterogeneity amongst TAU conditions. The meta-analysis showed medium effects favoring CBT over TAU for both anxiety (g=0.69, 95% CI 0.47-0.92, p<0.001, n=1318) and depression (g=0.70, 95% CI 0.49-0.90, p<0.001, n=5054), with differential effects observed across TAU conditions. CBT is superior to TAU and the size of the effect of CBT compared to TAU depends on the nature of the TAU condition. The term TAU is used in different ways and should be more precisely described. The four key details to be reported can be thought of as "who, what, how many, and any additional treatments?" Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Observation of Upsilon(3S)-->tau+tau- and tests of lepton universality in Upsilon decays.

    PubMed

    Besson, D; Pedlar, T K; Cronin-Hennessy, D; Gao, K Y; Gong, D T; Hietala, J; Kubota, Y; Klein, T; Lang, B W; Poling, R; Scott, A W; Smith, A; Zweber, P; Dobbs, S; Metreveli, Z; Seth, K K; Tomaradze, A; Ernst, J; Severini, H; Dytman, S A; Love, W; Savinov, V; Aquines, O; Li, Z; Lopez, A; Mehrabyan, S; Mendez, H; Ramirez, J; Huang, G S; Miller, D H; Pavlunin, V; Sanghi, B; Shipsey, I P J; Xin, B; Adams, G S; Anderson, M; Cummings, J P; Danko, I; Napolitano, J; He, Q; Insler, J; Muramatsu, H; Park, C S; Thorndike, E H; Yang, F; Coan, T E; Gao, Y S; Liu, F; Artuso, M; Blusk, S; Butt, J; Horwitz, N; Li, J; Menaa, N; Mountain, R; Nisar, S; Randrianarivony, K; Redjimi, R; Sia, R; Skwarnicki, T; Stone, S; Wang, J C; Zhang, K; Csorna, S E; Bonvicini, G; Cinabro, D; Dubrovin, M; Lincoln, A; Asner, D M; Edwards, K W; Briere, R A; Brock, I; Chen, J; Ferguson, T; Tatishvili, G; Vogel, H; Watkins, M E; Rosner, J L; Adam, N E; Alexander, J P; Berkelman, K; Cassel, D G; Duboscq, J E; Ecklund, K M; Ehrlich, R; Fields, L; Galik, R S; Gibbons, L; Gray, R; Gray, S W; Hartill, D L; Heltsley, B K; Hertz, D; Jones, C D; Kandaswamy, J; Kreinick, D L; Kuznetsov, V E; Mahlke-Krüger, H; Meyer, T O; Onyisi, P U E; Patterson, J R; Peterson, D; Pivarski, J; Riley, D; Ryd, A; Sadoff, A J; Schwarthoff, H; Shi, X; Stroiney, S; Sun, W M; Wilksen, T; Weinberger, M; Athar, S B; Patel, R; Potlia, V; Yelton, J; Rubin, P; Cawlfield, C; Eisenstein, B I; Karliner, I; Kim, D; Lowrey, N; Naik, P; Sedlack, C; Selen, M; White, E J; Wiss, J; Shepherd, M R

    2007-02-02

    Using data collected with the CLEO III detector at the CESR e+e- collider, we report on a first observation of the decay Upsilon(3S)-->tau+tau-, and precisely measure the ratio of branching fractions of Upsilon(nS), n=1, 2, 3, to tau+tau- and mu+mu- final states, finding agreement with expectations from lepton universality. We derive absolute branching fractions for these decays, and also set a limit on the influence of a low mass CP-odd Higgs boson in the decay of the Upsilon(1S).

  3. Neuropathologic Aspects of Psychosis in Children

    ERIC Educational Resources Information Center

    Darby, John K.

    1976-01-01

    On the basis of a search of the literature and extensive inquiries to clinicians, cases that contained any information concerning possible neuropathologic changes in cases of childhood autism or psychosis were catalogued. (Author/SBH)

  4. α-Synuclein Fibrils Exhibit Gain of Toxic Function, Promoting Tau Aggregation and Inhibiting Microtubule Assembly*

    PubMed Central

    Oikawa, Takayuki; Nonaka, Takashi; Terada, Makoto; Tamaoka, Akira; Hisanaga, Shin-ichi; Hasegawa, Masato

    2016-01-01

    α-Synuclein is the major component of Lewy bodies and Lewy neurites in Parkinson disease and dementia with Lewy bodies and of glial cytoplasmic inclusions in multiple system atrophy. It has been suggested that α-synuclein fibrils or intermediate protofibrils in the process of fibril formation may have a toxic effect on neuronal cells. In this study, we investigated the ability of soluble monomeric α-synuclein to promote microtubule assembly and the effects of conformational changes of α-synuclein on Tau-promoted microtubule assembly. In marked contrast to previous findings, monomeric α-synuclein had no effect on microtubule polymerization. However, both α-synuclein fibrils and protofibrils inhibited Tau-promoted microtubule assembly. The inhibitory effect of α-synuclein fibrils was greater than that of the protofibrils. Dot blot overlay assay and spin-down techniques revealed that α-synuclein fibrils bind to Tau and inhibit microtubule assembly by depleting the Tau available for microtubule polymerization. Using various deletion mutants of α-synuclein and Tau, the acidic C-terminal region of α-synuclein and the basic central region of Tau were identified as regions involved in the binding. Furthermore, introduction of α-synuclein fibrils into cultured cells overexpressing Tau protein induced Tau aggregation. These results raise the possibility that α-synuclein fibrils interact with Tau, inhibit its function to stabilize microtubules, and also promote Tau aggregation, leading to dysfunction of neuronal cells. PMID:27226637

  5. The co-occurrence of Alzheimer's disease and Huntington's disease: a neuropathological study of 15 elderly Huntington's disease subjects.

    PubMed

    Davis, Marie Y; Keene, C Dirk; Jayadev, Suman; Bird, Thomas

    2014-01-01

    Dementia is a common feature in both Huntington's disease (HD) and Alzheimer's disease (AD), as well as in the general elderly population. Few studies have examined elderly HD patients with dementia for neuropathologic evidence of both HD and AD. We present neuropathological findings in a retrospective case series of 15 elderly HD patients (ages 60-91 years), 11 of whom had prominent clinical dementia. Post-mortem brain tissue was examined and stained for evidence of both HD and AD including Vonsattel grading and Htt-repeat expansion, Bielskowsky, tau, β amyloid, and TDP43 immunostaining. Mean age at death was 76.8 years, mean disease duration was 18.6 years, and mean CAG repeat expansion was 42. Evidence of AD in addition to HD pathology was present in 9 of 11 (82%) patients with prominent dementia, suggesting that AD may be more commonly co-occurring with HD than previously appreciated. Two patients had only HD as the basis of dementia and four patients did not have prominent dementia. One patient with marked parkinsonian features was not L-dopa responsive and had no substantia nigra Lewy bodies at autopsy. Our study suggests that AD may frequently contribute to cognitive decline in elderly HD patients which complicates the assessment and management of such individuals. Further study is needed to determine if there is a higher incidence of AD in persons with HD compared to the general population. In addition, our series includes one HD patient whose clinical features masqueraded as Parkinson's disease but was not responsive to levodopa therapy.

  6. Non-Aggregating Tau Phosphorylation by Cyclin-Dependent Kinase 5 Contributes to Motor Neuron Degeneration in Spinal Muscular Atrophy

    PubMed Central

    Miller, Nimrod; Feng, Zhihua; Edens, Brittany M.; Yang, Ben; Shi, Han; Sze, Christie C.; Hong, Benjamin Taige; Su, Susan C.; Cantu, Jorge A.; Topczewski, Jacek; Crawford, Thomas O.; Ko, Chien-Ping; Sumner, Charlotte J.; Ma, Long

    2015-01-01

    Mechanisms underlying motor neuron degeneration in spinal muscular atrophy (SMA), the leading inherited cause of infant mortality, remain largely unknown. Many studies have established the importance of hyperphosphorylation of the microtubule-associated protein tau in various neurodegenerative disorders, including Alzheimer's and Parkinson's diseases. However, tau phosphorylation in SMA pathogenesis has yet to be investigated. Here we show that tau phosphorylation on serine 202 (S202) and threonine 205 (T205) is increased significantly in SMA motor neurons using two SMA mouse models and human SMA patient spinal cord samples. Interestingly, phosphorylated tau does not form aggregates in motor neurons or neuromuscular junctions (NMJs), even at late stages of SMA disease, distinguishing it from other tauopathies. Hyperphosphorylation of tau on S202 and T205 is mediated by cyclin-dependent kinase 5 (Cdk5) in SMA disease condition, because tau phosphorylation at these sites is significantly reduced in Cdk5 knock-out mice; genetic knock-out of Cdk5 activating subunit p35 in an SMA mouse model also leads to reduced tau phosphorylation on S202 and T205 in the SMA;p35−/− compound mutant mice. In addition, expression of the phosphorylation-deficient tauS202A,T205A mutant alleviates motor neuron defects in a zebrafish SMA model in vivo and mouse motor neuron degeneration in culture, whereas expression of phosphorylation-mimetic tauS202E,T205E promotes motor neuron defects. More importantly, genetic knock-out of tau in SMA mice rescues synapse stripping on motor neurons, NMJ denervation, and motor neuron degeneration in vivo. Altogether, our findings suggest a novel mechanism for SMA pathogenesis in which hyperphosphorylation of non-aggregating tau by Cdk5 contributes to motor neuron degeneration. PMID:25878277

  7. Senile dementia of Lewy body type and Alzheimer type are biochemically distinct in terms of paired helical filaments and hyperphosphorylated tau protein.

    PubMed

    Harrington, C R; Perry, R H; Perry, E K; Hurt, J; McKeith, I G; Roth, M; Wischik, C M

    1994-01-01

    We have used biochemical assays to examine cingulate and occipital cortices from age-matched cases of Alzheimer's disease (AD; n = 12), senile dementia of the Lewy body type (SDLT; n = 13), Parkinson's disease (PD; 5 non-demented cases and 7 cognitively impaired cases) and controls (n = 11) for paired helical filaments (PHFs), phosphorylated and normal tau protein and beta/A4-protein. Whereas cingulate cortex is characterised by relatively high densities of cortical Lewy bodies in the SDLT cases and lower numbers in PD, these inclusion bodies were absent in the cingulate cortex from AD and control cases. Protease-resistant PHFs and hyperphosphorylated tau protein were found in AD and, at low levels, in a minority of SDLT cases. Qualitatively, both of these preparations were indistinguishable in SDLT from those found in AD but levels of both parameters in SDLT were less than 5% of those in AD. SDLT, PD and control groups did not differ from each other in terms of the quantity of protease-resistant PHFs or the level of hyperphosphorylated tau. Furthermore, PHF accumulation did not distinguish between PD cases with or without dementia. The levels of normal tau protein did not differ between the four groups. beta/A4 protein levels did not distinguish between PD and control groups, between AD and SDLT groups, or between SDLT and control groups for either cingulate or occipital cortices. Thus extensive accumulation of PHFs in either neurofibrillary tangles or dystrophic neurites is not a feature of either SDLT or PD. Our findings provide molecular support for the neuropathological and clinical separation of SDLT as a form of dementia that is distinct from AD.

  8. Internet and World Wide Web-based tools for neuropathology practice and education.

    PubMed

    Fung, Kar-Ming; Tihan, Tarik

    2009-04-01

    The Internet and the World Wide Web (www) serve as a source of information and a communication network. Together they form a so-called web or network that allows for transmission and dissemination of information in unprecedented speed, volume and detail. This article presents an overview of the current status of neuropathology content on the www. As well as considering the Internet as a resource for neuropathology practice, education and research, we also address the issue of quality assurance when evaluating Internet and www content. Four major categories of websites (archival, broker, news and blog) are discussed and resources relevant to neuropathology of each type are highlighted. We believe that our report and similar attempts can provide an opportunity to discuss appropriate and effective use of the Internet by the neuropathology community.

  9. Flortaucipir tau PET imaging in semantic variant primary progressive aphasia.

    PubMed

    Makaretz, Sara J; Quimby, Megan; Collins, Jessica; Makris, Nikos; McGinnis, Scott; Schultz, Aaron; Vasdev, Neil; Johnson, Keith A; Dickerson, Bradford C

    2017-10-06

    The semantic variant of primary progressive aphasia (svPPA) is typically associated with frontotemporal lobar degeneration (FTLD) with longTAR DNA-binding protein (TDP)-43-positive neuropil threads and dystrophic neurites (type C), and is only rarely due to a primary tauopathy or Alzheimer's disease. We undertook this study to investigate the localisation and magnitude of the presumed tau Positron Emission Tomography (PET) tracer [ 18 F]Flortaucipir (FTP; also known as T807 or AV1451) in patients with svPPA, hypothesising that most patients would not show tracer uptake different from controls. FTP and [ 11 C]Pittsburgh compound B PET imaging as well as MRI were performed in seven patients with svPPA and in 20 controls. FTP signal was analysed by visual inspection and by quantitative comparison to controls, with and without partial volume correction. All seven patients showed elevated FTP uptake in the anterior temporal lobe with a leftward asymmetry that was not observed in healthy controls. This elevated FTP signal, largely co-localised with atrophy, was evident on both visual inspection and quantitative cortical surface-based analysis. Five patients were amyloid negative, one was amyloid positive and one has an unknown amyloid status. In this series of patients with clinical profiles, structural MRI and amyloid PET imaging typical for svPPA, FTP signal was unexpectedly elevated with a spatial pattern localised to areas of atrophy. This raises questions about the possible off-target binding of this tracer to non-tau molecules associated with neurodegeneration. Further investigation with autopsy analysis will help illuminate the binding target(s) of FTP in cases of suspected FTLD-TDP neuropathology. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  10. Modulation of Tau Isoforms Imbalance Precludes Tau Pathology and Cognitive Decline in a Mouse Model of Tauopathy.

    PubMed

    Espíndola, Sonia Lorena; Damianich, Ana; Alvarez, Rodrigo Javier; Sartor, Manuela; Belforte, Juan Emilio; Ferrario, Juan Esteban; Gallo, Jean-Marc; Avale, María Elena

    2018-04-17

    The microtubule-associated protein tau regulates myriad neuronal functions, such as microtubule dynamics, axonal transport and neurite outgrowth. Tauopathies are neurodegenerative disorders characterized by the abnormal metabolism of tau, which accumulates as insoluble neuronal deposits. The adult human brain contains equal amounts of tau isoforms with three (3R) or four (4R) repeats of microtubule-binding domains, derived from the alternative splicing of exon 10 (E10) in the tau transcript. Several tauopathies are associated with imbalances of tau isoforms, due to splicing deficits. Here, we used a trans-splicing strategy to shift the inclusion of E10 in a mouse model of tauopathy that produces abnormal excess of 3R tau. Modulating the 3R/4R ratio in the prefrontal cortex led to a significant reduction of pathological tau accumulation concomitant with improvement of neuronal firing and reduction of cognitive impairments. Our results suggest promising potential for the use of RNA reprogramming in human neurodegenerative diseases. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Neuronal exosomes reveal Alzheimer’s disease biomarkers in Down syndrome

    PubMed Central

    Hamlett, Eric D.; Goetzl, Edward J.; Ledreux, Aurélie; Vasilevko, Vitaly; Boger, Heather A.; LaRosa, Angela; Clark, David; Carroll, Steven L.; Iragui, Maria Carmona; Fortea, Juan; Mufson, Elliott J.; Sabbagh, Marwan; Mohammed, Abdul H.; Hartley, Dean; Doran, Eric; Lott, Ira T.; Granholm, Ann-Charlotte

    2018-01-01

    INTRODUCTION Individuals with Down syndrome (DS) exhibit Alzheimer’s disease (AD) neuropathology and dementia early in life. Blood biomarkers of AD neuropathology would be valuable, as non-AD intellectual disabilities of DS and AD dementia overlap clinically. We hypothesized that elevations of amyloid-beta (Aβ) peptides and phosphorylated-Tau (P-Tau) in neuronal exosomes may document preclinical AD. METHODS AD neuropathogenic proteins Aβ1-42, P-T181-Tau and P-S396-Tau were quantified by enzyme-linked immunosorbent assays in extracts of neuronal exosomes purified from blood of individuals with DS and age-matched controls. RESULTS Neuronal exosome levels of Aβ1-42, P-T181-Tau and P-S396-Tau were significantly elevated in individuals with DS compared to age-matched controls at an early age. No significant gender differences were observed. DISCUSSION These early increases in Aβ1-42, P-T181-Tau, and P-S396-Tau in individuals with DS may provide a basis for early intervention as targeted treatments become available. PMID:27755974

  12. Healthy ageing in the Nun Study: definition and neuropathologic correlates.

    PubMed

    Tyas, Suzanne L; Snowdon, David A; Desrosiers, Mark F; Riley, Kathryn P; Markesbery, William R

    2007-11-01

    Although the concept of healthy ageing has stimulated considerable interest, no generally accepted definition has been developed nor has its biological basis been determined. To develop a definition of healthy ageing and investigate its association with longevity and neuropathology. Analyses were based on cognitive, physical, and post-mortem assessments from 1991 to 1998 in the Nun Study, a longitudinal study of ageing in participants 75+ years at baseline. We defined three mutually exclusive levels of healthy ageing (excellent, very good, and good) based on measures of global cognitive function, short-term memory, basic and instrumental activities of daily living, and self-rated function. Mortality analyses were based on 636 participants; neuropathologic analyses were restricted to 221 who had died and were autopsied. Only 11% of those meeting criteria for the excellent level of healthy ageing at baseline subsequently died, compared with 24% for the very good, 39% for the good, and 60% for the remaining participants. Survival curves showed significantly greater longevity with higher levels of healthy ageing. The risk of not attaining healthy ageing, adjusted for age, increased two-fold in participants with brain infarcts alone, six-fold in those with Alzheimer neuropathology alone, and more than thirteen-fold in those with both brain infarcts and Alzheimer neuropathology. The biological validity of our definition of healthy ageing is supported by its strong association with mortality and longevity. Avoiding Alzheimer and stroke neuropathology is critical to the maintenance of healthy ageing, and the presence of both pathologies dramatically decreases the likelihood of healthy ageing.

  13. Healthy ageing in the Nun Study: definition and neuropathologic correlates

    PubMed Central

    Tyas, Suzanne L.; Snowdon, David A.; Desrosiers, Mark F.; Riley, Kathryn P.; Markesbery, William R.

    2008-01-01

    Background although the concept of healthy ageing has stimulated considerable interest, no generally accepted definition has been developed nor has its biological basis been determined. Objective to develop a definition of healthy ageing and investigate its association with longevity and neuropathology. Methods analyses were based on cognitive, physical, and post-mortem assessments from 1991 to 1998 in the Nun Study, a longitudinal study of ageing in participants 75+ years at baseline. We defined three mutually exclusive levels of healthy ageing (excellent, very good, and good) based on measures of global cognitive function, short-term memory, basic and instrumental activities of daily living, and self-rated function. Mortality analyses were based on 636 participants; neuropathologic analyses were restricted to 221 who had died and were autopsied. Results only 11% of those meeting criteria for the excellent level of healthy ageing at baseline subsequently died, compared with 24% for the very good, 39% for the good, and 60% for the remaining participants. Survival curves showed significantly greater longevity with higher levels of healthy ageing. The risk of not attaining healthy ageing, adjusted for age, increased two-fold in participants with brain infarcts alone, six-fold in those with Alzheimer neuropathology alone, and more than thirteen-fold in those with both brain infarcts and Alzheimer neuropathology. Conclusions the biological validity of our definition of healthy ageing is supported by its strong association with mortality and longevity. Avoiding Alzheimer and stroke neuropathology is critical to the maintenance of healthy ageing, and the presence of both pathologies dramatically decreases the likelihood of healthy ageing. PMID:17906306

  14. Association of Cancer History with Alzheimer's Disease Dementia and Neuropathology.

    PubMed

    Yarchoan, Mark; James, Bryan D; Shah, Raj C; Arvanitakis, Zoe; Wilson, Robert S; Schneider, Julie; Bennett, David A; Arnold, Steven E

    2017-01-01

    Cancer and Alzheimer's disease (AD) are common diseases of aging and share many risk factors. Surprisingly, however, epidemiologic data from several recent independent cohort studies suggest that there may be an inverse association between these diseases. To determine the relationship between history of cancer and odds of dementia proximate to death and neuropathological indices of AD. Using data from two separate clinical-pathologic cohort studies of aging and AD, the Religious Orders Study (ROS) and the Rush Memory and Aging Project (MAP), we compared odds of AD dementia proximate to death among participants with and without a history of cancer. We then examined the relation of history of cancer with measures of AD pathology at autopsy, i.e., paired helical filament tau (PHFtau) neurofibrillary tangles and amyloid-β load. Participants reporting a history of cancer had significantly lower odds of AD (OR 0.70 [0.55-0.89], p = 0.0040) proximate to death as compared to participants reporting no prior history of cancer. The results remained significant after adjusting for multiple risk factors including age, sex, race, education, and presence of an APOEɛ4 allele. At autopsy, participants with a history of cancer had significantly fewer PHFtau tangles (p < 0.001) than participants without a history of cancer, but similar levels of amyloid-β. Cancer survivors have reduced odds of developing AD and a lower burden of neurofibrillary tangle deposition.

  15. Genetic Comparison of Symptomatic and Asymptomatic Persons With Alzheimer Disease Neuropathology.

    PubMed

    Monsell, Sarah E; Mock, Charles; Fardo, David W; Bertelsen, Sarah; Cairns, Nigel J; Roe, Catherine M; Ellingson, Sally R; Morris, John C; Goate, Alison M; Kukull, Walter A

    2017-01-01

    The objective was to determine whether symptomatic and asymptomatic persons with Alzheimer disease (AD) neuropathology have different allele counts for single-nucleotide polymorphisms that have been associated with clinical late-onset AD. Data came from the National Alzheimer's Coordinating Center Uniform Data Set and Neuropathology Data Set, and the Alzheimer's Disease Genetics Consortium (ADGC). Participants had low to high AD neuropathologic change. The 22 known/suspected genes associated with late-onset AD were considered. "Symptomatic" was defined as Clinical Dementia Rating global score >0. Sixty-eight asymptomatic and 521 symptomatic participants met inclusion criteria. Single-nucleotide polymorphisms associated with ABCA7 [odds ratio (OR)=1.66; 95% confidence interval (CI), 1.03-2.85] and MAPT (OR=2.18; CI, 1.26-3.77) were associated with symptomatic status. In stratified analyses, loci containing CD2AP (OR=0.35; 95% CI, 0.16-0.74), ZCWPW1 (OR=2.98; 95% CI, 1.34-6.86), and MAPT (OR=3.73, 95% CI, 1.30-11.76) were associated with symptomatic status in APOE e4 carriers. These findings potentially explain some of the variation in whether a person with AD neuropathology expresses symptoms. Understanding why some people remain cognitively normal despite having AD neuropathology could identify pathways to disease heterogeneity and guide treatment trials.

  16. An Upper Limit on the Mass of the Circumplanetary Disk for DH Tau b

    NASA Astrophysics Data System (ADS)

    Wolff, Schuyler G.; Ménard, François; Caceres, Claudio; Lefèvre, Charlene; Bonnefoy, Mickael; Cánovas, Héctor; Maret, Sébastien; Pinte, Christophe; Schreiber, Matthias R.; van der Plas, Gerrit

    2017-07-01

    DH Tau is a young (˜1 Myr) classical T Tauri star. It is one of the few young PMS stars known to be associated with a planetary mass companion, DH Tau b, orbiting at large separation and detected by direct imaging. DH Tau b is thought to be accreting based on copious {{H}}α emission and exhibits variable Paschen Beta emission. NOEMA observations at 230 GHz allow us to place constraints on the disk dust mass for both DH Tau b and the primary in a regime where the disks will appear optically thin. We estimate a disk dust mass for the primary, DH Tau A of 17.2+/- 1.7 {M}\\oplus , which gives a disk to star mass ratio of 0.014 (assuming the usual gas to dust mass ratio of 100 in the disk). We find a conservative disk dust mass upper limit of 0.42 M ⊕ for DH Tau b, assuming that the disk temperature is dominated by irradiation from DH Tau b itself. Given the environment of the circumplanetary disk, variable illumination from the primary or the equilibrium temperature of the surrounding cloud would lead to even lower disk mass estimates. A MCFOST radiative transfer model, including heating of the circumplanetary disk by DH Tau b and DH Tau A, suggests that a mass-averaged disk temperature of 22 K is more realistic, resulting in a dust disk mass upper limit of 0.09 M ⊕ for DH Tau b. We place DH Tau b in context with similar objects and discuss the consequences for planet formation models. This work is based on observations carried out under project D15AC with the IRAM NOEMA Interferometer. IRAM is supported by INSU/CNRS (France), MPG (Germany), and IGN (Spain).

  17. Rapid changes in phospho-MAP/tau epitopes during neuronal stress: cofilin-actin rods primarily recruit microtubule binding domain epitopes.

    PubMed

    Whiteman, Ineka T; Minamide, Laurie S; Goh, De Lian; Bamburg, James R; Goldsbury, Claire

    2011-01-01

    Abnormal mitochondrial function is a widely reported contributor to neurodegenerative disease including Alzheimer's disease (AD), however, a mechanistic link between mitochondrial dysfunction and the initiation of neuropathology remains elusive. In AD, one of the earliest hallmark pathologies is neuropil threads comprising accumulated hyperphosphorylated microtubule-associated protein (MAP) tau in neurites. Rod-like aggregates of actin and its associated protein cofilin (AC rods) also occur in AD. Using a series of antibodies--AT270, AT8, AT100, S214, AT180, 12E8, S396, S404 and S422--raised against different phosphoepitopes on tau, we characterize the pattern of expression and re-distribution in neurites of these phosphoepitope labels during mitochondrial inhibition. Employing chick primary neuron cultures, we demonstrate that epitopes recognized by the monoclonal antibody 12E8, are the only species rapidly recruited into AC rods. These results were recapitulated with the actin depolymerizing drug Latrunculin B, which induces AC rods and a concomitant increase in the 12E8 signal measured on Western blot. This suggests that AC rods may be one way in which MAP redistribution and phosphorylation is influenced in neurons during mitochondrial stress and potentially in the early pathogenesis of AD.

  18. Amyloid-β protein precursor regulates phosphorylation and cellular compartmentalization of microtubule associated protein tau.

    PubMed

    Nizzari, Mario; Barbieri, Federica; Gentile, Maria Teresa; Passarella, Daniela; Caorsi, Calentina; Diaspro, Alberto; Taglialatela, Maurizio; Pagano, Aldo; Colucci-D'Amato, Luca; Florio, Tullio; Russo, Claudio

    2012-01-01

    Tau is a multifunctional protein detected in different cellular compartments in neuronal and non-neuronal cells. When hyperphosphorylated and aggregated in atrophic neurons, tau is considered the culprit for neuronal death in familial and sporadic tauopathies. With regards to Alzheimer's disease (AD) pathogenesis, it is not yet established whether entangled tau represents a cause or a consequence of neurodegeneration. In fact, it is unquestionably accepted that amyloid-β protein precursor (AβPP) plays a pivotal role in the genesis of the disease, and it is postulated that the formation of toxic amyloid-β peptides from AβPP is the primary event that subsequently induces abnormal tau phosphorylation. In this work, we show that in the brain of AD patients there is an imbalance between the nuclear and the cytoskeletal pools of phospho-tau. We observed that in non-AD subjects, there is a stable pool of phospho-tau which remains strictly confined to neuronal nuclei, while nuclear localization of phospho-tau is significantly underrepresented in neurons of AD patients bearing neurofibrillary tangles. A specific phosphorylation of tau is required during mitosis in vitro and in vivo, likely via a Grb2-ERK1/2 signaling cascade. In differentiated neuronal A1 cells, the overexpression of AβPP modulates tau phosphorylation, altering the ratio between cytoskeletal and nuclear pools, and correlates with cell death. Altogether our data provide evidence that AβPP, in addition to amyloid formation, modulates the phosphorylation of tau and its subcellular compartmentalization, an event that may lead to the formation of neurofibrillary tangles and to neurodegeneration when occurring in postmitotic neurons.

  19. Evidence for the 125 GeV Higgs boson decaying to a pair of $$\\tau$$ leptons

    DOE PAGES

    Chatrchyan, Serguei

    2014-01-20

    A search for a standard model Higgs boson decaying into a pair of tau leptons is performed using events recorded by the CMS experiment at the LHC in 2011 and 2012. The dataset corresponds to an integrated luminosity of 4.9 inverse femtobarns at a centre-of-mass energy of 7 TeV and 19.7 inverse femtobarns at 8 TeV. Each tau lepton decays hadronically or leptonically to an electron or a muon, leading to six different final states for the tau-lepton pair, all considered in this analysis. An excess of events is observed over the expected background contributions, with a local significance largermore » than 3 standard deviations for m[H] values between 115 and 130 GeV. The best fit of the observed H to tau tau signal cross section for m[H] = 125 GeV is 0.78 +- 0.27 times the standard model expectation. These observations constitute evidence for the 125 GeV Higgs boson decaying to a pair of tau leptons.« less

  20. Measuring B{sup {+-}}{yields}{tau}{sup {+-}}{nu} and B{sub c}{sup {+-}}{yields}{tau}{sup {+-}}{nu} at the Z peak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akeroyd, A. G.; Chen, C.H.; National Center for Theoretical Sciences, Taiwan

    2008-06-01

    The measurement of B{sup {+-}}{yields}{tau}{sup {+-}}{nu}{sub {tau}} at the B factories provides important constraints on the parameter tan{beta}/m{sub H{sup {+-}}} in the context of models with two Higgs doublets. Limits on this decay from e{sup +}e{sup -} collisions at the Z peak were sensitive to the sum of B{sup {+-}}{yields}{tau}{sup {+-}}{nu}{sub {tau}} and B{sub c}{sup {+-}}{yields}{tau}{sup {+-}}{nu}{sub {tau}}. Because of the possibly sizeable contribution from B{sub c}{sup {+-}}{yields}{tau}{sup {+-}}{nu}{sub {tau}} we suggest that a signal for this combination might be observed if the CERN LEP L3 Collaboration used its total data of {approx}3.6x10{sup 6} hadronic decays of the Z boson.more » Moreover, we point out that a future linear collider operating at the Z peak (Giga Z option) could constrain tan{beta}/m{sub H{sup {+-}}} from the sum of these processes with a precision comparable to that anticipated at proposed high luminosity B factories from B{sup {+-}}{yields}{tau}{sup {+-}}{nu}{sub {tau}} alone.« less

  1. Tau regulates the subcellular localization of calmodulin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barreda, Elena Gomez de; Avila, Jesus, E-mail: javila@cbm.uam.es; CIBER de Enfermedades Neurodegenerativas, 28031 Madrid

    Highlights: {yields} In this work we have tried to explain how a cytoplasmic protein could regulate a cell nuclear function. We have tested the role of a cytoplasmic protein (tau) in regulating the expression of calbindin gene. We found that calmodulin, a tau-binding protein with nuclear and cytoplasmic localization, increases its nuclear localization in the absence of tau. Since nuclear calmodulin regulates calbindin expression, a decrease in nuclear calmodulin, due to the presence of tau that retains it at the cytoplasm, results in a change in calbindin expression. -- Abstract: Lack of tau expression in neuronal cells results in amore » change in the expression of few genes. However, little is known about how tau regulates gene expression. Here we show that the presence of tau could alter the subcellular localization of calmodulin, a protein that could be located at the cytoplasm or in the nucleus. Nuclear calmodulin binds to co-transcription factors, regulating the expression of genes like calbindin. In this work, we have found that in neurons containing tau, a higher proportion of calmodulin is present in the cytoplasm compared with neurons lacking tau and that an increase in cytoplasmic calmodulin correlates with a higher expression of calbindin.« less

  2. Dystrophic (senescent) rather than activated microglial cells are associated with tau pathology and likely precede neurodegeneration in Alzheimer's disease.

    PubMed

    Streit, Wolfgang J; Braak, Heiko; Xue, Qing-Shan; Bechmann, Ingo

    2009-10-01

    The role of microglial cells in the pathogenesis of Alzheimer's disease (AD) neurodegeneration is unknown. Although several works suggest that chronic neuroinflammation caused by activated microglia contributes to neurofibrillary degeneration, anti-inflammatory drugs do not prevent or reverse neuronal tau pathology. This raises the question if indeed microglial activation occurs in the human brain at sites of neurofibrillary degeneration. In view of the recent work demonstrating presence of dystrophic (senescent) microglia in aged human brain, the purpose of this study was to investigate microglial cells in situ and at high resolution in the immediate vicinity of tau-positive structures in order to determine conclusively whether degenerating neuronal structures are associated with activated or with dystrophic microglia. We used a newly optimized immunohistochemical method for visualizing microglial cells in human archival brain together with Braak staging of neurofibrillary pathology to ascertain the morphology of microglia in the vicinity of tau-positive structures. We now report histopathological findings from 19 humans covering the spectrum from none to severe AD pathology, including patients with Down's syndrome, showing that degenerating neuronal structures positive for tau (neuropil threads, neurofibrillary tangles, neuritic plaques) are invariably colocalized with severely dystrophic (fragmented) rather than with activated microglial cells. Using Braak staging of Alzheimer neuropathology we demonstrate that microglial dystrophy precedes the spread of tau pathology. Deposits of amyloid-beta protein (Abeta) devoid of tau-positive structures were found to be colocalized with non-activated, ramified microglia, suggesting that Abeta does not trigger microglial activation. Our findings also indicate that when microglial activation does occur in the absence of an identifiable acute central nervous system insult, it is likely to be the result of systemic infectious

  3. Tau protein degradation is catalyzed by the ATP/ubiquitin-independent 20S proteasome under normal cell conditions

    PubMed Central

    Grune, Tilman; Botzen, Diana; Engels, Martina; Voss, Peter; Kaiser, Barbara; Jung, Tobias; Grimm, Stefanie; Ermak, Gennady; Davies, Kelvin J. A.

    2010-01-01

    Tau is the major protein exhibiting intracellular accumulation in Alzheimer disease. The mechanisms leading to its accumulation are not fully understood. It has been proposed that the proteasome is responsible for degrading tau but, since proteasomal inhibitors block both the ubiquitin-dependent 26S proteasome and the ubiqutin-independent 20S proteasome pathways, it is not clear which of these pathways is involved in tau degradation. Some involvement of the ubiquitin ligase, CHIP in tau degradation has also been postulated during stress. In the current studies, we utilized HT22 cells and tau-transfected E36 cells in order to test the relative importance or possible requirement of the ubiquitin-dependent 26S proteasomal system versus the ubiquitin-independent 20S proteasome, in tau degradation. By means of ATP-depletion, ubiquitinylation-deficient E36ts20 cells, a 19S proteasomal regulator subunit MSS1-siRNA approaches, and in vitro ubiquitinylation studies, we were able to demonstrate that ubiquitinylation is not required for normal tau degradation. PMID:20478262

  4. RNA stores tau reversibly in complex coacervates

    PubMed Central

    Lin, Yanxian; Eschmann, Neil A.; Zhou, Hongjun; Rauch, Jennifer N.; Hernandez, Israel; Guzman, Elmer; Kosik, Kenneth S.; Han, Songi

    2017-01-01

    Nonmembrane-bound organelles that behave like liquid droplets are widespread among eukaryotic cells. Their dysregulation appears to be a critical step in several neurodegenerative conditions. Here, we report that tau protein, the primary constituent of Alzheimer neurofibrillary tangles, can form liquid droplets and therefore has the necessary biophysical properties to undergo liquid-liquid phase separation (LLPS) in cells. Consonant with the factors that induce LLPS, tau is an intrinsically disordered protein that complexes with RNA to form droplets. Uniquely, the pool of RNAs to which tau binds in living cells are tRNAs. This phase state of tau is held in an approximately 1:1 charge balance across the protein and the nucleic acid constituents, and can thus be maximal at different RNA:tau mass ratios, depending on the biopolymer constituents involved. This feature is characteristic of complex coacervation. We furthermore show that the LLPS process is directly and sensitively tuned by salt concentration and temperature, implying it is modulated by both electrostatic interactions between the involved protein and nucleic acid constituents, as well as net changes in entropy. Despite the high protein concentration within the complex coacervate phase, tau is locally freely tumbling and capable of diffusing through the droplet interior. In fact, tau in the condensed phase state does not reveal any immediate changes in local protein packing, local conformations and local protein dynamics from that of tau in the dilute solution state. In contrast, the population of aggregation-prone tau as induced by the complexation with heparin is accompanied by large changes in local tau conformations and irreversible aggregation. However, prolonged residency within the droplet state eventually results in the emergence of detectable β-sheet structures according to thioflavin-T assay. These findings suggest that the droplet state can incubate tau and predispose the protein toward the

  5. Tau Oligomers as Potential Targets for Alzheimer’s Diagnosis and Novel Drugs

    PubMed Central

    Guzmán-Martinez, Leonardo; Farías, Gonzalo A.; Maccioni, Ricardo Benjamin

    2013-01-01

    A cumulative number of approaches have been carried out to elucidate the pathogenesis of Alzheimer’s disease (AD). Tangles formation has been identified as a major event involved in the neurodegenerative process, due to the conversion of either soluble peptides or oligomers into insoluble filaments. Most of recent studies share in common the observation that formation of tau oligomers and the subsequent pathological filaments arrays is a critical step in AD etiopathogenesis. Oligomeric tau species appear to be toxic for neuronal cells, and therefore appear as an appropriate target for the design of molecules that may control morphological and functional alterations leading to cognitive impairment. Thus, current therapeutic strategies are aimed at three major types of molecules: (1) inhibitors of protein kinases and phosphatases that modify tau and that may control neuronal degeneration, (2) methylene blue, and (3) natural phytocomplexes and polyphenolics compounds able to either inhibit the formation of tau filaments or disaggregate them. Only a few polyphenolic molecules have emerged to prevent tau aggregation. In this context, fulvic acid (FA), a humic substance, has potential protective activity cognitive impairment. In fact, formation of paired helical filaments in vitro, is inhibited by FA affecting the length of fibrils and their morphology. PMID:24191153

  6. Blast TBI Models, Neuropathology, and Implications for Seizure Risk

    PubMed Central

    Kovacs, S. Krisztian; Leonessa, Fabio; Ling, Geoffrey S. F.

    2014-01-01

    Traumatic brain injury (TBI) due to explosive blast exposure is a leading combat casualty. It is also implicated as a key contributor to war related mental health diseases. A clinically important consequence of all types of TBI is a high risk for development of seizures and epilepsy. Seizures have been reported in patients who have suffered blast injuries in the Global War on Terror but the exact prevalence is unknown. The occurrence of seizures supports the contention that explosive blast leads to both cellular and structural brain pathology. Unfortunately, the exact mechanism by which explosions cause brain injury is unclear, which complicates development of meaningful therapies and mitigation strategies. To help improve understanding, detailed neuropathological analysis is needed. For this, histopathological techniques are extremely valuable and indispensable. In the following we will review the pathological results, including those from immunohistochemical and special staining approaches, from recent preclinical explosive blast studies. PMID:24782820

  7. Audit of practice in sudden unexpected death in epilepsy (SUDEP) post mortems and neuropathological findings

    PubMed Central

    Michalak, Zuzanna; Wright, Gabriella; Dawson, Timothy; Hilton, David; Joshi, Abhijit; Diehl, Beate; Koepp, Matthias; Lhatoo, Samden; Sander, Josemir W.; Sisodiya, Sanjay M.

    2015-01-01

    Aims Sudden unexpected death in epilepsy (SUDEP) is one of the leading causes of death in people with epilepsy. For classification of definite SUDEP, a post mortem (PM), including anatomical and toxicological examination, is mandatory to exclude other causes of death. We audited PM practice as well as the value of brain examination in SUDEP. Methods We reviewed 145 PM reports in SUDEP cases from four UK neuropathology centres. Data were extracted for clinical epilepsy details, circumstances of death and neuropathological findings. Results Macroscopic brain abnormalities were identified in 52% of cases. Mild brain swelling was present in 28%, and microscopic pathologies relevant to cause or effect of seizures were seen in 89%. Examination based on whole fixed brains (76.6% of all PMs), and systematic regional sampling was associated with higher detection rates of underlying pathology (P < 0.01). Information was more frequently recorded regarding circumstances of death and body position/location than clinical epilepsy history and investigations. Conclusion Our findings support the contribution of examination of the whole fixed brain in SUDEP, with high rates of detection of relevant pathology. Availability of full clinical epilepsy‐related information at the time of PM could potentially further improve detection through targeted tissue sampling. Apart from confirmation of SUDEP, complete neuropathological examination contributes to evaluation of risk factors as well as helping to direct future research into underlying causes. PMID:26300477

  8. Palmitic and stearic fatty acids induce Alzheimer-like hyperphosphorylation of tau in primary rat cortical neurons.

    PubMed

    Patil, Sachin; Chan, Christina

    2005-08-26

    Epidemiological studies suggest that high fat diets significantly increase the risk of Alzheimer's disease (AD). In addition, the AD brain is characterized by high fatty acid content compared to that of healthy subjects. Nevertheless, the basic mechanism relating elevated fatty acids and the pathogenesis of AD remains unclear. The present study examines the role of fatty acids in causing hyperphosphorylation of the tau protein, one of the characteristic signatures of AD pathology. Hyperphosphorylation of tau disrupts the cell cytoskeleton and leads to neuronal degeneration. Here, primary rat cortical neurons and astrocytes were treated with saturated free fatty acids (FFAs), palmitic and stearic acids. There was no change in the levels of phosphorylated tau in rat cortical neurons treated directly with these FFAs. The conditioned media from FFA-treated astrocytes, however, caused hyperphosphorylation of tau in the cortical neurons at AD-specific phospho-epitopes. Co-treatment of neurons with N-acetyl cysteine, an antioxidant, reduced FFA-induced hyperphosphorylation of tau. The present results establish a central role of FFAs in causing hyperphosphorylation of tau through astroglia-mediated oxidative stress.

  9. An Improved Rank Correlation Effect Size Statistic for Single-Case Designs: Baseline Corrected Tau.

    PubMed

    Tarlow, Kevin R

    2017-07-01

    Measuring treatment effects when an individual's pretreatment performance is improving poses a challenge for single-case experimental designs. It may be difficult to determine whether improvement is due to the treatment or due to the preexisting baseline trend. Tau- U is a popular single-case effect size statistic that purports to control for baseline trend. However, despite its strengths, Tau- U has substantial limitations: Its values are inflated and not bound between -1 and +1, it cannot be visually graphed, and its relatively weak method of trend control leads to unacceptable levels of Type I error wherein ineffective treatments appear effective. An improved effect size statistic based on rank correlation and robust regression, Baseline Corrected Tau, is proposed and field-tested with both published and simulated single-case time series. A web-based calculator for Baseline Corrected Tau is also introduced for use by single-case investigators.

  10. Gene Profiling of Nucleus Basalis Tau Containing Neurons in Chronic Traumatic Encephalopathy: A Chronic Effects of Neurotrauma Consortium Study.

    PubMed

    Mufson, Elliott J; He, Bin; Ginsberg, Stephen D; Carper, Benjamin A; Bieler, Gayle S; Crawford, Fiona; Alvarez, Victor E; Huber, Bertrand R; Stein, Thor D; McKee, Ann C; Perez, Sylvia E

    2018-06-01

    Military personnel and athletes exposed to traumatic brain injury may develop chronic traumatic encephalopathy (CTE). Brain pathology in CTE includes intracellular accumulation of abnormally phosphorylated tau proteins (p-tau), the main constituent of neurofibrillary tangles (NFTs). Recently, we found that cholinergic basal forebrain (CBF) neurons within the nucleus basalis of Meynert (nbM), which provide the major cholinergic innervation to the cortex, display an increased number of NFTs across the pathological stages of CTE. However, molecular mechanisms underlying nbM neurodegeneration in the context of CTE pathology remain unknown. Here, we assessed the genetic signature of nbM neurons containing the p-tau pretangle maker pS422 from CTE subjects who came to autopsy and received a neuropathological CTE staging assessment (Stages II, III, and IV) using laser capture microdissection and custom-designed microarray analysis. Quantitative analysis revealed dysregulation of key genes in several gene ontology groups between CTE stages. Specifically, downregulation of the nicotinic cholinergic receptor subunit β-2 gene (CHRNB2), monoaminergic enzymes catechol-O-methyltransferase (COMT) and dopa decarboxylase (DDC), chloride channels CLCN4 and CLCN5, scaffolding protein caveolin 1 (CAV1), cortical development/cytoskeleton element lissencephaly 1 (LIS1), and intracellular signaling cascade member adenylate cyclase 3 (ADCY3) was observed in pS422-immunreactive nbM neurons in CTE patients. By contrast, upregulation of calpain 2 (CAPN2) and microtubule-associated protein 2 (MAP2) transcript levels was found in Stage IV CTE patients. These single-population data in vulnerable neurons indicate alterations in gene expression associated with neurotransmission, signal transduction, the cytoskeleton, cell survival/death signaling, and microtubule dynamics, suggesting novel molecular pathways to target for drug discovery in CTE.

  11. Brain Tocopherols Related to Alzheimer Disease Neuropathology in Humans

    PubMed Central

    Morris, Martha Clare; Schneider, Julie A; Li, Hong; Tangney, Christy C; Nag, Sukrit; Bennett, David A; Honer, William G.; Barnes, Lisa

    2014-01-01

    Randomized trials of α-tocopherol supplements on cognitive decline are negative whereas studies of dietary tocopherols show benefit. We investigated these inconsistencies by analyzing the relations of α- and γ-tocopherol brain concentrations to Alzheimer disease (AD) neuropathology among 115 deceased participants of the prospective Rush Memory and Aging Project. Associations of amyloid load and neurofibrillary tangle severity with brain tocopherol concentrations were examined in separate adjusted linear regression models. γ-tocopherol concentrations were associated with lower amyloid load (β= −2.10; p=.002) and lower neurofibrillary tangle severity (β= −1.16; p=0.02). Concentrations of α-tocopherol were not associated with AD neuropathology except as modified by γ-tocopherol: high α-tocopherol was associated with higher amyloid load when γ-tocopherol levels were low and with lower amyloid levels when γ-tocopherol levels were high (P for interaction=0.03). Brain concentrations of γ- and α-tocopherols may be associated with AD neuropathology in interrelated, complex ways. Randomized trials should consider the contribution of γ-tocopherol. PMID:24589434

  12. No support for premature central nervous system aging in HIV-1 when measured by cerebrospinal fluid phosphorylated tau (p-tau).

    PubMed

    Krut, Jan J; Price, Richard W; Zetterberg, Henrik; Fuchs, Dietmar; Hagberg, Lars; Yilmaz, Aylin; Cinque, Paola; Nilsson, Staffan; Gisslén, Magnus

    2017-07-04

    The prevalence of neurocognitive deficits are reported to be high in HIV-1 positive patients, even with suppressive antiretroviral treatment, and it has been suggested that HIV can cause accelerated aging of the brain. In this study we measured phosphorylated tau (p-tau) in cerebrospinal fluid (CSF) as a potential marker for premature central nervous system (CNS) aging. P-tau increases with normal aging but is not affected by HIV-associated neurocognitive disorders. With a cross-sectional retrospective design, p-tau, total tau (t-tau), neopterin and HIV-RNA were measured in CSF together with plasma HIV-RNA and blood CD4 + T-cells of 225 HIV-infected patients <50 y of age, subdivided into 3 groups: untreated neuroasymptomatic (NA) (n = 145), on suppressive antiretroviral treatment (cART) (n = 49), and HIV-associated dementia (HAD) (n = 31). HIV-negative healthy subjects served as controls (n = 79). P-tau was not significantly higher in any HIV-infected group compared to HIV-negative controls. Significant increases in t-tau were found as expected in patients with HAD compared to NA, cART, and control groups (p < 0.001 ). P-tau was not higher in HIV-infected patients compared to uninfected controls, thus failing to support a role for premature or accelerated brain aging in HIV infection.

  13. SAMP8 mice as a neuropathological model of accelerated brain aging and dementia: Toshio Takeda's legacy and future directions.

    PubMed

    Akiguchi, Ichiro; Pallàs, Mercè; Budka, Herbert; Akiyama, Haruhiko; Ueno, Masaki; Han, Jingxian; Yagi, Hideo; Nishikawa, Tomohumi; Chiba, Yoichi; Sugiyama, Hiroshi; Takahashi, Ryoya; Unno, Keiko; Higuchi, Keiichi; Hosokawa, Masanori

    2017-08-01

    Senescence accelerated mice P8 (SAMP8) show significant age-related deteriorations in memory and learning ability in accordance with early onset and rapid advancement of senescence. Brains of SAMP8 mice reveal an age-associated increase of PAS-positive granular structures in the hippocampal formation and astrogliosis in the brain stem and hippocampus. A spongy degeneration in the brain stem appears at 1 month of age and reaches a maximum at 4-8 months. In addition, clusters of activated microglia also appear around the vacuoles in the brain stem. β/A4(Aβ) protein-like immunoreactive granular structures are observed in various regions and increase in number markedly with age. Other age-associated histological changes include cortical atrophy, neuronal cell loss in locus coeruleus and lateral tegmental nuclei, intraneuronal accumulation of lipopigments in Purkinje cells and eosinophilic inclusion bodies in thalamic neurons. A blood-brain barrier dysfunction and astrogliosis are also prominent with advancing age in the hippocampus. These changes are generally similar to the pathomorphology of aging human brains and characterized by their association with some specific glioneuronal reactions. As for the hallmarks of Alzheimer brains, tau morphology has not yet been confirmed regardless of the age-related increase in phosphorylated tau in SAMP8 mice brains, but early age-related Aβ deposition in the hippocampus has recently been published. SAMP8 mice are, therefore, not only a senescence-accelerated model but also a promising model for Alzheimer's disease and other cognitive disorders. © 2017 Japanese Society of Neuropathology.

  14. Clinical validity of cerebrospinal fluid Aβ42, tau, and phospho-tau as biomarkers for Alzheimer's disease in the context of a structured 5-phase development framework.

    PubMed

    Mattsson, Niklas; Lönneborg, Anders; Boccardi, Marina; Blennow, Kaj; Hansson, Oskar

    2017-04-01

    Novel diagnostic criteria for Alzheimer's disease (AD) incorporate biomarkers, but their maturity for implementation in clinical practice at the prodromal stage (mild cognitive impairment [MCI]) is unclear. Here, we evaluate cerebrospinal fluid (CSF) β-amyloid 42 (Aβ42), total tau, and phosphorylated tau in the light of a 5-phase framework for biomarker development. Ample evidence is available for phase 1 (identifying useful leads) and phase 2 (assessing the accuracy for AD dementia versus controls) for CSF biomarkers. Phase 3 (utility in MCI) is partially achieved. In cohorts with long follow-up time, CSF Aβ42, total tau, and phosphorylated tau have high diagnostic accuracy for MCI due to AD. Phase 4 (performance in real world) is ongoing, and phase 5 studies (quantify impact and costs) are to come. Our results highlight priorities to pursue and to enable the proper use of CSF biomarkers in the clinic. Priorities are to reduce measurement variability by introduction of fully automated assay systems; to increase diagnostic specificity toward non-AD neurocognitive diseases at the MCI stage; and to clarify the role of CSF biomarkers versus other biomarker modalities in clinical practice and in design of clinical trials. These efforts are currently ongoing. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Direct force measurements reveal that protein Tau confers short-range attractions and isoform-dependent steric stabilization to microtubules

    PubMed Central

    Chung, Peter J.; Choi, Myung Chul; Miller, Herbert P.; Feinstein, H. Eric; Raviv, Uri; Li, Youli; Wilson, Leslie; Feinstein, Stuart C.; Safinya, Cyrus R.

    2015-01-01

    Microtubules (MTs) are hollow cytoskeletal filaments assembled from αβ-tubulin heterodimers. Tau, an unstructured protein found in neuronal axons, binds to MTs and regulates their dynamics. Aberrant Tau behavior is associated with neurodegenerative dementias, including Alzheimer’s. Here, we report on a direct force measurement between paclitaxel-stabilized MTs coated with distinct Tau isoforms by synchrotron small-angle X-ray scattering (SAXS) of MT-Tau mixtures under osmotic pressure (P). In going from bare MTs to MTs with Tau coverage near the physiological submonolayer regime (Tau/tubulin-dimer molar ratio; ΦTau = 1/10), isoforms with longer N-terminal tails (NTTs) sterically stabilized MTs, preventing bundling up to PB ∼ 10,000–20,000 Pa, an order of magnitude larger than bare MTs. Tau with short NTTs showed little additional effect in suppressing the bundling pressure (PB ∼ 1,000–2,000 Pa) over the same range. Remarkably, the abrupt increase in PB observed for longer isoforms suggests a mushroom to brush transition occurring at 1/13 < ΦTau < 1/10, which corresponds to MT-bound Tau with NTTs that are considerably more extended than SAXS data for Tau in solution indicate. Modeling of Tau-mediated MT–MT interactions supports the hypothesis that longer NTTs transition to a polyelectrolyte brush at higher coverages. Higher pressures resulted in isoform-independent irreversible bundling because the polyampholytic nature of Tau leads to short-range attractions. These findings suggest an isoform-dependent biological role for regulation by Tau, with longer isoforms conferring MT steric stabilization against aggregation either with other biomacromolecules or into tight bundles, preventing loss of function in the crowded axon environment. PMID:26542680

  16. Caspase-2 cleavage of tau reversibly impairs memory.

    PubMed

    Zhao, Xiaohui; Kotilinek, Linda A; Smith, Benjamin; Hlynialuk, Chris; Zahs, Kathleen; Ramsden, Martin; Cleary, James; Ashe, Karen H

    2016-11-01

    In Alzheimer's disease (AD) and other tauopathies, the tau protein forms fibrils, which are believed to be neurotoxic. However, fibrillar tau has been dissociated from neuron death and network dysfunction, suggesting the involvement of nonfibrillar species. Here we describe a novel pathological process in which caspase-2 cleavage of tau at Asp314 impairs cognitive and synaptic function in animal and cellular models of tauopathies by promoting the missorting of tau to dendritic spines. The truncation product, Δtau314, resists fibrillation and is present at higher levels in brains from cognitively impaired mice and humans with AD. The expression of tau mutants that resisted caspase-2 cleavage prevented tau from infiltrating spines, dislocating glutamate receptors and impairing synaptic function in cultured neurons, and it prevented memory deficits and neurodegeneration in mice. Decreasing the levels of caspase-2 restored long-term memory in mice that had existing deficits. Our results suggest an overall treatment strategy for re-establishing synaptic function and restoring memory in patients with AD by preventing tau from accumulating in dendritic spines.

  17. Quantifying the accretion of hyperphosphorylated tau in the locus coeruleus and dorsal raphe nucleus: the pathological building blocks of early Alzheimer's disease.

    PubMed

    Ehrenberg, A J; Nguy, A K; Theofilas, P; Dunlop, S; Suemoto, C K; Di Lorenzo Alho, A T; Leite, R P; Diehl Rodriguez, R; Mejia, M B; Rüb, U; Farfel, J M; de Lucena Ferretti-Rebustini, R E; Nascimento, C F; Nitrini, R; Pasquallucci, C A; Jacob-Filho, W; Miller, B; Seeley, W W; Heinsen, H; Grinberg, L T

    2017-08-01

    Hyperphosphorylated tau neuronal cytoplasmic inclusions (ht-NCI) are the best protein correlate of clinical decline in Alzheimer's disease (AD). Qualitative evidence identifies ht-NCI accumulating in the isodendritic core before the entorhinal cortex. Here, we used unbiased stereology to quantify ht-NCI burden in the locus coeruleus (LC) and dorsal raphe nucleus (DRN), aiming to characterize the impact of AD pathology in these nuclei with a focus on early stages. We utilized unbiased stereology in a sample of 48 well-characterized subjects enriched for controls and early AD stages. ht-NCI counts were estimated in 60-μm-thick sections immunostained for p-tau throughout LC and DRN. Data were integrated with unbiased estimates of LC and DRN neuronal population for a subset of cases. In Braak stage 0, 7.9% and 2.6% of neurons in LC and DRN, respectively, harbour ht-NCIs. Although the number of ht-NCI+ neurons significantly increased by about 1.9× between Braak stages 0 to I in LC (P = 0.02), we failed to detect any significant difference between Braak stage I and II. Also, the number of ht-NCI+ neurons remained stable in DRN between all stages 0 and II. Finally, the differential susceptibility to tau inclusions among nuclear subdivisions was more notable in LC than in DRN. LC and DRN neurons exhibited ht-NCI during AD precortical stages. The ht-NCI increases along AD progression on both nuclei, but quantitative changes in LC precede DRN changes. © 2017 British Neuropathological Society.

  18. Age- and Parkinson's disease-related evaluation of gait by General Tau Theory.

    PubMed

    Zhang, Shutao; Qian, Jinwu; Zhang, Zhen; Shen, Linyong; Wu, Xi; Hu, Xiaowu

    2016-10-01

    The degeneration of postural control in the elderly and patients with Parkinson's disease (PD) can be debilitating and may lead to increased fall risk. This study evaluated the changes in postural control during gait affected by PD and aging using a new method based on the General Tau Theory. Fifteen patients with PD, 11 healthy old adults (HOs), and 15 healthy young adults (HYs) were recruited. Foot trajectories of each participant were monitored during walking by a three-camera Optotrak Certus(®) motion capture system. The anteroposterior direction of foot movement during stepping was analyzed by tau-G and tau-J guidance strategies. Two linear regression analyses suggested that the tau of the step-gap was strongly coupled onto the tau-J guidance during walking. The regression slope K could estimate the coupling ratio in the tau-coupling equation which reflects the performance of postural control during gait. The mean K value for the PD group, which was highest among the three groups, was approximately 0.5. Therefore, participants in the PD group walked with the poorest postural control and exhibited a relatively hard contact with the endpoint during stepping when compared with those in the HO and HY groups. The HY and HO groups obtained mean K values significantly lower than 0.5, which indicated that the gait was well controlled and ended at low speed with low deceleration. However, the HO group showed a decreased tendency for postural control, in which the mean K value was significantly higher than that of the HY group. The K value was moderately positively correlated with the double support time and negatively correlated with the stride length and walking speed. The tau-J coupling ratio can provide additional insight into gait disturbances and may serve as a reliable, objective, and quantitative tool to evaluate dynamic postural control during walking.

  19. Argyrophilic Grain Disease: Demographics, Clinical, and Neuropathological Features From a Large Autopsy Study

    PubMed Central

    Rodriguez, Roberta Diehl; Suemoto, Claudia Kimie; Molina, Mariana; Nascimento, Camila Fernandes; Leite, Renata Elaine Paraizo; de Lucena Ferretti-Rebustini, Renata Eloah; Farfel, José Marcelo; Heinsen, Helmut; Nitrini, Ricardo; Ueda, Kenji; Pasqualucci, Carlos Augusto; Jacob-Filho, Wilson; Yaffe, Kristine

    2016-01-01

    Argyrophilic grain disease (AGD) is a frequent late-onset, 4-repeat tauopathy reported in Caucasians with high educational attainment. Little is known about AGD in non-Caucasians or in those with low educational attainment. We describe AGD demographics, clinical, and neuropathological features in a multiethnic cohort of 983 subjects ≥50 years of age from São Paulo, Brazil. Clinical data were collected through semistructured interviews with an informant and included in the Informant Questionnaire on Cognitive Decline in the Elderly, the Clinical Dementia Rating, and the Neuropsychiatric Inventory. Neuropathologic assessment relied on internationally accepted criteria. AGD was frequent (15.2%) and was the only neuropathological diagnosis in 8.9% of all cases (mean, 78.9 ± 9.4 years); it rarely occurred as an isolated neuropathological finding. AGD was associated with older age, lower socioeconomic status (SES), and appetite disorders. This is the first study of demographic, clinical, and neuropathological aspects of AGD in different ethnicities and subjects from all socioeconomic strata. The results suggest that prospective studies of AGD patients include levels of hormones related to appetite control as possible antemortem markers. Moreover, understanding the mechanisms behind higher susceptibility to AGD of low SES subjects may disclose novel environmental risk factors for AGD and other neurodegenerative diseases. PMID:27283329

  20. Intracerebroventricular administration of okadaic acid induces hippocampal glucose uptake dysfunction and tau phosphorylation.

    PubMed

    Broetto, Núbia; Hansen, Fernanda; Brolese, Giovana; Batassini, Cristiane; Lirio, Franciane; Galland, Fabiana; Dos Santos, João Paulo Almeida; Dutra, Márcio Ferreira; Gonçalves, Carlos-Alberto

    2016-06-01

    Intraneuronal aggregates of neurofibrillary tangles (NFTs), together with beta-amyloid plaques and astrogliosis, are histological markers of Alzheimer's disease (AD). The underlying mechanism of sporadic AD remains poorly understood, but abnormal hyperphosphorylation of tau protein is suggested to have a role in NFTs genesis, which leads to neuronal dysfunction and death. Okadaic acid (OKA), a strong inhibitor of protein phosphatase 2A, has been used to induce dementia similar to AD in rats. We herein investigated the effect of intracerebroventricular (ICV) infusion of OKA (100 and 200ng) on hippocampal tau phosphorylation at Ser396, which is considered an important fibrillogenic tau protein site, and on glucose uptake, which is reduced early in AD. ICV infusion of OKA (at 200ng) induced a spatial cognitive deficit, hippocampal astrogliosis (based on GFAP increment) and increase in tau phosphorylation at site 396 in this model. Moreover, we observed a decreased glucose uptake in the hippocampal slices of OKA-treated rats. In vitro exposure of hippocampal slices to OKA altered tau phosphorylation at site 396, without any associated change in glucose uptake activity. Taken together, these findings further our understanding of OKA neurotoxicity, in vivo and vitro, particularly with regard to the role of tau phosphorylation, and reinforce the importance of the OKA dementia model for studying the neurochemical alterations that may occur in AD, such as NFTs and glucose hypometabolism. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Updating neuropathology and neuropharmacology of monoaminergic systems.

    PubMed

    Ramsay, Rona R; De Deurwaerdère, Philippe; Di Giovanni, Giuseppe

    2016-07-01

    This article is part of a themed section on Updating Neuropathology and Neuropharmacology of Monoaminergic Systems. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v173.13/issuetoc. © 2016 The British Pharmacological Society.

  2. Clinical and neuropathologic variation in neuronal intermediate filament inclusion disease

    PubMed Central

    Cairns, N.J.; Grossman, M.; Arnold, S.E.; Burn, D.J.; Jaros, E.; Perry, R.H.; Duyckaerts, C.; Stankoff, B.; Pillon, B.; Skullerud, K.; Cruz-Sanchez, F.F.; Bigio, E.H.; Mackenzie, I.R.A.; Gearing, M.; Juncos, J.L.; Glass, J.D.; Yokoo, H.; Nakazato, Y.; Mosaheb, S.; Thorpe, J.R.; Uryu, K.; Lee, V.M.-Y.; Trojanowski, J.Q.

    2009-01-01

    Background Recently described neuronal intermediate filament inclusion disease (NIFID) shows considerable clinical heterogeneity. Objective To assess the spectrum of the clinical and neuropathological features in 10 NIFID cases. Methods Retrospective chart and comprehensive neuropathological review of these NIFID cases was conducted. Results The mean age at onset was 40.8 (range 23 to 56) years, mean disease duration was 4.5 (range 2.7 to 13) years, and mean age at death was 45.3 (range 28 to 61) years. The most common presenting symptoms were behavioral and personality changes in 7 of 10 cases and, less often, memory loss, cognitive impairment, language deficits, and motor weakness. Extrapyramidal features were present in 8 of 10 patients. Language impairment, perseveration, executive dysfunction, hyperreflexia, and primitive reflexes were frequent signs, whereas a minority had buccofacial apraxia, supranuclear ophthalmoplegia, upper motor neuron disease (MND), and limb dystonia. Frontotemporal and caudate atrophy were common. Histologic changes were extensive in many cortical areas, deep gray matter, cerebellum, and spinal cord. The hallmark lesions of NIFID were unique neuronal IF inclusions detected most robustly by antibodies to neurofilament triplet proteins and α-internexin. Conclusion NIFID is a neuropathologically distinct, clinically heterogeneous variant of frontotemporal dementia (FTD) that may include parkinsonism or MND. Neuronal IF inclusions are the neuropathological signatures of NIFID that distinguish it from all other FTD variants including FTD with MND and FTD tauopathies. PMID:15505152

  3. Tau-imaging in neurodegeneration.

    PubMed

    Bischof, Gérard N; Endepols, Heike; van Eimeren, Thilo; Drzezga, Alexander

    2017-11-01

    Pathological cerebral aggregations of proteins are suggested to play a crucial role in the development of neurodegenerative disorders. For example, aggregation of the protein ß-amyloid in form of extracellular amyloid-plaques as well as intraneuronal depositions of the protein tau in form of neurofibrillary tangles represent hallmarks of Alzheimer's disease (AD). Recently, novel tracers for in vivo molecular imaging of tau-aggregates in the brain have been introduced, complementing existing tracers for imaging amyloid-plaques. Available data on these novel tracers indicate that the subject of Tau-PET may be of considerable complexity. On the one hand this refers to the various forms of appearance of tau-pathology in different types of neurodegenerative disorders. On the other hand, a number of hurdles regarding validation of these tracers still need to be overcome with regard to comparability and standardization of the different tracers, observed off-target/non-specific binding and quantitative interpretation of the signal. These issues will have to be clarified before systematic clinical application of this exciting new methodological approach may become possible. Potential applications refer to early detection of neurodegeneration, differential diagnosis between tauopathies and non-tauopathies and specific patient selection and follow-up in therapy trials. Copyright © 2017. Published by Elsevier Inc.

  4. Comment on "chronic traumatic encephalopathy in blast-exposed military veterans and a blast neurotrauma mouse model".

    PubMed

    Tsao, Jack W

    2012-10-24

    In their recent paper, Goldstein et al. show murine brain tau neuropathology after explosive blast with head rotation but do not present additional evidence that would delineate whether this neuropathology was principally caused by blast exposure alone or by blast exposure plus head rotational injury.

  5. Evaluation of Neuropathological Effects of a High-Fat Diet in a Presymptomatic Alzheimer's Disease Stage in APP/PS1 Mice.

    PubMed

    Ettcheto, Miren; Petrov, Dmitry; Pedrós, Ignacio; Alva, Norma; Carbonell, Teresa; Beas-Zarate, Carlos; Pallas, Merce; Auladell, Carme; Folch, Jaume; Camins, Antoni

    2016-07-14

    Alzheimer's disease (AD) is currently an incurable aging-related neurodegenerative disorder. Recent studies give support to the hypotheses that AD should be considered as a metabolic disease. The present study aimed to explore the relationship between hippocampal neuropathological amyloid-β (Aβ) plaque formation and obesity at an early presymptomatic disease stage (3 months of age). For this purpose, we used APPswe/PS1dE9 (APP/PS1) transgenic mice, fed with a high-fat diet (HFD) in order to investigate the potential molecular mechanisms involved in both disorders. The results showed that the hippocampus from APP/PS1 mice fed with a HFD had an early significant decrease in Aβ signaling pathway specifically in the insulin degrading enzyme protein levels, an enzyme involved in (Aβ) metabolism, and α-secretase. These changes were accompanied by a significant increase in the occurrence of plaques in the hippocampus of these mice. Furthermore, APP/PS1 mice showed a significant hippocampal decrease in PGC-1α levels, a cofactor involved in mitochondrial biogenesis. However, HFD does not provoke changes in neither insulin receptors gene expression nor enzymes involved in the signaling pathway. Moreover, there are no changes in any enzymes (kinases) involved in tau phosphorylation, such as CDK5, and neither in brain oxidative stress production. These results suggest that early changes in brains of APP/PS1 mice fed with a HFD are mediated by an increase in Aβ1 ‒ 42, which induces a decrease in PKA levels and alterations in the p-CREB/ NMDA2B /PGC1-α pathway, favoring early AD neuropathology in mice.

  6. Neuropathologic comorbidity and cognitive impairment in the Nun and Honolulu-Asia Aging Studies

    PubMed Central

    Edland, Steven D.; Hemmy, Laura S.; Montine, Kathleen S.; Zarow, Chris; Sonnen, Joshua A.; Uyehara-Lock, Jane H.; Gelber, Rebecca P.; Ross, G. Webster; Petrovitch, Helen; Masaki, Kamal H.; Lim, Kelvin O.; Launer, Lenore J.; Montine, Thomas J.

    2016-01-01

    Objective: To examine frequencies and relationships of 5 common neuropathologic abnormalities identified at autopsy with late-life cognitive impairment and dementia in 2 different autopsy panels. Methods: The Nun Study (NS) and the Honolulu-Asia Aging Study (HAAS) are population-based investigations of brain aging that included repeated cognitive assessments and comprehensive brain autopsies. The neuropathologic abnormalities assessed were Alzheimer disease (AD) neuropathologic changes, neocortical Lewy bodies (LBs), hippocampal sclerosis, microinfarcts, and low brain weight. Associations with screening tests for cognitive impairment were examined. Results: Neuropathologic abnormalities occurred at levels ranging from 9.7% to 43%, and were independently associated with cognitive impairment in both studies. Neocortical LBs and AD changes were more frequent among the predominantly Caucasian NS women, while microinfarcts were more common in the Japanese American HAAS men. Comorbidity was usual and very strongly associated with cognitive impairment. Apparent cognitive resilience (no cognitive impairment despite Braak stage V) was strongly associated with minimal or no comorbid abnormalities, with fewer neocortical AD lesions, and weakly with longer interval between final testing and autopsy. Conclusions: Total burden of comorbid neuropathologic abnormalities, rather than any single lesion type, was the most relevant determinant of cognitive impairment in both cohorts, often despite clinical diagnosis of only AD. These findings emphasize challenges to dementia pathogenesis and intervention research and to accurate diagnoses during life. PMID:26888993

  7. Neuropathologic comorbidity and cognitive impairment in the Nun and Honolulu-Asia Aging Studies.

    PubMed

    White, Lon R; Edland, Steven D; Hemmy, Laura S; Montine, Kathleen S; Zarow, Chris; Sonnen, Joshua A; Uyehara-Lock, Jane H; Gelber, Rebecca P; Ross, G Webster; Petrovitch, Helen; Masaki, Kamal H; Lim, Kelvin O; Launer, Lenore J; Montine, Thomas J

    2016-03-15

    To examine frequencies and relationships of 5 common neuropathologic abnormalities identified at autopsy with late-life cognitive impairment and dementia in 2 different autopsy panels. The Nun Study (NS) and the Honolulu-Asia Aging Study (HAAS) are population-based investigations of brain aging that included repeated cognitive assessments and comprehensive brain autopsies. The neuropathologic abnormalities assessed were Alzheimer disease (AD) neuropathologic changes, neocortical Lewy bodies (LBs), hippocampal sclerosis, microinfarcts, and low brain weight. Associations with screening tests for cognitive impairment were examined. Neuropathologic abnormalities occurred at levels ranging from 9.7% to 43%, and were independently associated with cognitive impairment in both studies. Neocortical LBs and AD changes were more frequent among the predominantly Caucasian NS women, while microinfarcts were more common in the Japanese American HAAS men. Comorbidity was usual and very strongly associated with cognitive impairment. Apparent cognitive resilience (no cognitive impairment despite Braak stage V) was strongly associated with minimal or no comorbid abnormalities, with fewer neocortical AD lesions, and weakly with longer interval between final testing and autopsy. Total burden of comorbid neuropathologic abnormalities, rather than any single lesion type, was the most relevant determinant of cognitive impairment in both cohorts, often despite clinical diagnosis of only AD. These findings emphasize challenges to dementia pathogenesis and intervention research and to accurate diagnoses during life. © 2016 American Academy of Neurology.

  8. Argyrophilic Grain Disease: Demographics, Clinical, and Neuropathological Features From a Large Autopsy Study.

    PubMed

    Rodriguez, Roberta Diehl; Suemoto, Claudia Kimie; Molina, Mariana; Nascimento, Camila Fernandes; Leite, Renata Elaine Paraizo; de Lucena Ferretti-Rebustini, Renata Eloah; Farfel, José Marcelo; Heinsen, Helmut; Nitrini, Ricardo; Ueda, Kenji; Pasqualucci, Carlos Augusto; Jacob-Filho, Wilson; Yaffe, Kristine; Grinberg, Lea Tenenholz

    2016-07-01

    Argyrophilic grain disease (AGD) is a frequent late-onset, 4-repeat tauopathy reported in Caucasians with high educational attainment. Little is known about AGD in non-Caucasians or in those with low educational attainment. We describe AGD demographics, clinical, and neuropathological features in a multiethnic cohort of 983 subjects ≥50 years of age from São Paulo, Brazil. Clinical data were collected through semistructured interviews with an informant and included in the Informant Questionnaire on Cognitive Decline in the Elderly, the Clinical Dementia Rating, and the Neuropsychiatric Inventory. Neuropathologic assessment relied on internationally accepted criteria. AGD was frequent (15.2%) and was the only neuropathological diagnosis in 8.9% of all cases (mean, 78.9 ± 9.4 years); it rarely occurred as an isolated neuropathological finding. AGD was associated with older age, lower socioeconomic status (SES), and appetite disorders. This is the first study of demographic, clinical, and neuropathological aspects of AGD in different ethnicities and subjects from all socioeconomic strata. The results suggest that prospective studies of AGD patients include levels of hormones related to appetite control as possible antemortem markers. Moreover, understanding the mechanisms behind higher susceptibility to AGD of low SES subjects may disclose novel environmental risk factors for AGD and other neurodegenerative diseases. © 2016 American Association of Neuropathologists, Inc. All rights reserved.

  9. Evaluation of chromatic cues for trapping Bactrocera tau.

    PubMed

    Li, Lei; Ma, Huabo; Niu, Liming; Han, Dongyin; Zhang, Fangping; Chen, Junyu; Fu, Yueguan

    2017-01-01

    Trapping technology based on chromatic cues is an important strategy in controlling Tephritidae (fruit flies). The objectives of this present study were to evaluate the preference of Bactrocera tau for different chromatic cues, and to explore an easy method to print and reproduce coloured paper. Chromatic cues significantly affected the preference of adult B. tau. Wavelengths in the 515-604 nm range were the suitable wavelengths for trapping B. tau. Different-day-old B. tau had different colour preferences. Virtual wavelengths of 595 nm (yellow) and 568 nm (yellowish green) were the optimum wavelengths for trapping 5-7-day-old B. tau and 30-32-day-old B. tau respectively. The trap type and height significantly influenced B. tau attraction efficiency. The number of B. tau on coloured traps hung perpendicular to plant rows was not significantly higher than the number on traps hung parallel to plant rows. The quantisation of colour on the basis of Bruton's wavelength to RGB function can serve as an alternative method for printing and reproducing coloured paper, but a corrected equation should be established between the theoretical wavelength and actual wavelength of coloured paper. Results show that a compound paper coloured yellow (595 nm) and yellowish green (568 nm) installed at 60 and 90 cm above the ground shows the maximum effect for trapping B. tau. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  10. Tetrahydrohyperforin prevents cognitive deficit, Aβ deposition, tau phosphorylation and synaptotoxicity in the APPswe/PSEN1ΔE9 model of Alzheimer's disease: a possible effect on APP processing

    PubMed Central

    Inestrosa, N C; Tapia-Rojas, C; Griffith, T N; Carvajal, F J; Benito, M J; Rivera-Dictter, A; Alvarez, A R; Serrano, F G; Hancke, J L; Burgos, P V; Parodi, J; Varela-Nallar, L

    2011-01-01

    Alzheimer's disease (AD) is a neurodegenerative disorder characterized by a progressive deterioration of cognitive abilities, amyloid-β peptide (Aβ) accumulation and synaptic alterations. Previous studies indicated that hyperforin, a component of the St John's Wort, prevents Aβ neurotoxicity and some behavioral impairments in a rat model of AD. In this study we examined the ability of tetrahydrohyperforin (IDN5607), a stable hyperforin derivative, to prevent the cognitive deficit and synaptic impairment in an in vivo model of AD. In double transgenic APPswe/PSEN1ΔE9 mice, IDN5706 improves memory and prevents the impairment of synaptic plasticity in a dose-dependent manner, inducing a recovery of long-term potentiation. In agreement with these findings, IDN5706 prevented the decrease in synaptic proteins in hippocampus and cortex. In addition, decreased levels of tau hyperphosphorylation, astrogliosis, and total fibrillar and oligomeric forms of Aβ were determined in double transgenic mice treated with IDN5706. In cultured cells, IDN5706 decreased the proteolytic processing of the amyloid precursor protein that leads to Aβ peptide generation. These findings indicate that IDN5706 ameliorates AD neuropathology and could be considered of therapeutic relevance in AD treatment. PMID:22832522

  11. Methylglyoxal induces tau hyperphosphorylation via promoting AGEs formation.

    PubMed

    Li, Xiao-Hong; Xie, Jia-Zhao; Jiang, Xia; Lv, Bing-Ling; Cheng, Xiang-Shu; Du, Lai-Ling; Zhang, Jia-Yu; Wang, Jian-Zhi; Zhou, Xin-Wen

    2012-12-01

    The hyperphosphorylated tau is a major protein component of neurofibrillary tangle, which is one of hallmarks of Alzheimer's disease (AD). While the level of methylglyoxal (MG) is significantly increased in the AD brains, the role of MG in tau phosphorylation is still not reported. Here, we found that MG could induce tau hyperphosphorylation at multiple AD-related sites in neuroblastoma 2a cells under maintaining normal cell viability. MG treatment increased the level of advanced glycation end products (AGEs) and the receptor of AGEs (RAGE). Glycogen synthesis kinase-3β (GSK-3β) and p38 MAPK were activated, whereas the level and activity of JNK, Erk1/2, cdk5, and PP2A were not altered after MG treatment. Simultaneous inhibition of GSK-3β or p38 attenuated the MG-induced tau hyperphosphorylation. Aminoguanidine, a blocker of AGEs formation, could effectively reverse the MG-induced tau hyperphosphorylation. These data suggest that MG induces AD-like tau hyperphosphorylation through AGEs formation involving RAGE up-regulation and GSK-3β activation and p38 activation is also partially involved in MG-induced tau hyperphosphorylation. Thus, targeting MG may be a promising therapeutic strategy to prevent AD-like tau hyperphosphorylation.

  12. Proteopathic tau seeding predicts tauopathy in vivo

    PubMed Central

    Holmes, Brandon B.; Furman, Jennifer L.; Mahan, Thomas E.; Yamasaki, Tritia R.; Mirbaha, Hilda; Eades, William C.; Belaygorod, Larisa; Cairns, Nigel J.; Holtzman, David M.; Diamond, Marc I.

    2014-01-01

    Transcellular propagation of protein aggregates, or proteopathic seeds, may drive the progression of neurodegenerative diseases in a prion-like manner. In tauopathies such as Alzheimer’s disease, this model predicts that tau seeds propagate pathology through the brain via cell–cell transfer in neural networks. The critical role of tau seeding activity is untested, however. It is unknown whether seeding anticipates and correlates with subsequent development of pathology as predicted for a causal agent. One major limitation has been the lack of a robust assay to measure proteopathic seeding activity in biological specimens. We engineered an ultrasensitive, specific, and facile FRET-based flow cytometry biosensor assay based on expression of tau or synuclein fusions to CFP and YFP, and confirmed its sensitivity and specificity to tau (∼300 fM) and synuclein (∼300 pM) fibrils. This assay readily discriminates Alzheimer’s disease vs. Huntington's disease and aged control brains. We then carried out a detailed time-course study in P301S tauopathy mice, comparing seeding activity versus histological markers of tau pathology, including MC1, AT8, PG5, and Thioflavin S. We detected robust seeding activity at 1.5 mo, >1 mo before the earliest histopathological stain. Proteopathic tau seeding is thus an early and robust marker of tauopathy, suggesting a proximal role for tau seeds in neurodegeneration. PMID:25261551

  13. Synaptic Contacts Enhance Cell-to-Cell Tau Pathology Propagation.

    PubMed

    Calafate, Sara; Buist, Arjan; Miskiewicz, Katarzyna; Vijayan, Vinoy; Daneels, Guy; de Strooper, Bart; de Wit, Joris; Verstreken, Patrik; Moechars, Diederik

    2015-05-26

    Accumulation of insoluble Tau protein aggregates and stereotypical propagation of Tau pathology through the brain are common hallmarks of tauopathies, including Alzheimer's disease (AD). Propagation of Tau pathology appears to occur along connected neurons, but whether synaptic contacts between neurons are facilitating propagation has not been demonstrated. Using quantitative in vitro models, we demonstrate that, in parallel to non-synaptic mechanisms, synapses, but not merely the close distance between the cells, enhance the propagation of Tau pathology between acceptor hippocampal neurons and Tau donor cells. Similarly, in an artificial neuronal network using microfluidic devices, synapses and synaptic activity are promoting neuronal Tau pathology propagation in parallel to the non-synaptic mechanisms. Our work indicates that the physical presence of synaptic contacts between neurons facilitate Tau pathology propagation. These findings can have implications for synaptic repair therapies, which may turn out to have adverse effects by promoting propagation of Tau pathology. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Measurement of the absolute branching fraction of Ds+ --> tau+ nutau decay.

    PubMed

    Ecklund, K M; Love, W; Savinov, V; Lopez, A; Mendez, H; Ramirez, J; Ge, J Y; Miller, D H; Shipsey, I P J; Xin, B; Adams, G S; Anderson, M; Cummings, J P; Danko, I; Hu, D; Moziak, B; Napolitano, J; He, Q; Insler, J; Muramatsu, H; Park, C S; Thorndike, E H; Yang, F; Artuso, M; Blusk, S; Khalil, S; Li, J; Mountain, R; Nisar, S; Randrianarivony, K; Sultana, N; Skwarnicki, T; Stone, S; Wang, J C; Zhang, L M; Bonvicini, G; Cinabro, D; Dubrovin, M; Lincoln, A; Rademacker, J; Asner, D M; Edwards, K W; Naik, P; Reed, J; Briere, R A; Ferguson, T; Tatishvili, G; Vogel, H; Watkins, M E; Rosner, J L; Alexander, J P; Cassel, D G; Duboscq, J E; Ehrlich, R; Fields, L; Gibbons, L; Gray, R; Gray, S W; Hartill, D L; Heltsley, B K; Hertz, D; Jones, C D; Kandaswamy, J; Kreinick, D L; Kuznetsov, V E; Mahlke-Krüger, H; Mohapatra, D; Onyisi, P U E; Patterson, J R; Peterson, D; Riley, D; Ryd, A; Sadoff, A J; Shi, X; Stroiney, S; Sun, W M; Wilksen, T; Athar, S B; Patel, R; Yelton, J; Rubin, P; Eisenstein, B I; Karliner, I; Mehrabyan, S; Lowrey, N; Selen, M; White, E J; Wiss, J; Mitchell, R E; Shepherd, M R; Besson, D; Pedlar, T K; Cronin-Hennessy, D; Gao, K Y; Hietala, J; Kubota, Y; Klein, T; Lang, B W; Poling, R; Scott, A W; Zweber, P; Dobbs, S; Metreveli, Z; Seth, K K; Tomaradze, A; Libby, J; Powell, A; Wilkinson, G

    2008-04-25

    Using a sample of tagged D(s)(+) decays collected near the D(s)(*+/-)D(s)(-/+) peak production energy in e(+)e(-) collisions with the CLEO-c detector, we study the leptonic decay D(s)(+)-->tau(+)nu(tau) via the decay channel tau(+)-->e(+)nu(e)nu(tau). We measure B(D(s)(+)-->tau(+)nu(tau))=(6.17+/-0.71+/-0.34)%, where the first error is statistical and the second systematic. Combining this result with our measurements of D(s)(+)-->mu(+)nu(mu) and D(s)(+)-->tau(+)nu(tau) (via tau(+)-->pi(+)nu(tau)), we determine f(D(s))=(274+/-10+/-5) MeV.

  15. Neuropathology and Animal Models of Autism: Genetic and Environmental Factors

    PubMed Central

    Gadad, Bharathi S.; Young, Keith A.; German, Dwight C.

    2013-01-01

    Autism is a heterogeneous behaviorally defined neurodevelopmental disorder. It is defined by the presence of marked social deficits, specific language abnormalities, and stereotyped repetitive patterns of behavior. Because of the variability in the behavioral phenotype of the disorder among patients, the term autism spectrum disorder has been established. In the first part of this review, we provide an overview of neuropathological findings from studies of autism postmortem brains and identify the cerebellum as one of the key brain regions that can play a role in the autism phenotype. We review research findings that indicate possible links between the environment and autism including the role of mercury and immune-related factors. Because both genes and environment can alter the structure of the developing brain in different ways, it is not surprising that there is heterogeneity in the behavioral and neuropathological phenotypes of autism spectrum disorders. Finally, we describe animal models of autism that occur following insertion of different autism-related genes and exposure to environmental factors, highlighting those models which exhibit both autism-like behavior and neuropathology. PMID:24151553

  16. Potency of a tau fibrillization inhibitor is influenced by its aggregation state

    PubMed Central

    Congdon, Erin E.; Necula, Mihaela; Blackstone, Robert D.; Kuret, Jeff

    2007-01-01

    Tau fibrillization is a potential therapeutic target for Alzheimer’s and other neurodegenerative diseases. Several small molecule inhibitors of tau aggregation have been developed for this purpose. One of them, 3,3′-bis(β-hydroxyethyl)-9-ethyl-5,5′-dimethoxythiacarbocyanine iodide (N744), is a cationic thiacarbocyanine dye that inhibits recombinant tau filament formation when present at submicromolar concentrations. To prepare dosing regimens for testing N744 activity in biological models, its full concentration-effect relationship in the range 0.01 – 60 μM was examined in vitro by electron microscopy and laser light scattering methods. Results revealed that N744 concentration dependence was biphasic, with fibrillization inhibitory activity appearing at submicromolar concentration, but with relief of inhibition and increases in fibrillization apparent above 10 μM. Therefore, fibrillization was inhibited ≥50% only over a narrow concentration range, which was further reduced by filament stabilizing modifications such as tau pseudophosphorylation. N744 inhibitory activity also was paralleled by changes in its aggregation state, with dimer predominating at inhibitory concentrations and large dye aggregates appearing at high concentrations. Ligand dimerization was promoted by the presence of tau protein, which lowered the equilibrium dissociation constant for dimerization more than an order of magnitude relative to controls. The results suggest that ligand aggregation may play an important role in both inhibitory and disinhibitory phases of the concentration-effect curve, and may lead to complex dose response relationships in model systems. PMID:17559794

  17. Neuropathologic findings in an aged albino gorilla.

    PubMed

    Márquez, M; Serafin, A; Fernández-Bellon, H; Serrat, S; Ferrer-Admetlla, A; Bertranpetit, J; Ferrer, I; Pumarola, M

    2008-07-01

    Pallido-nigral spheroids associated with iron deposition have been observed in some aged clinically normal nonhuman primates. In humans, similar findings are observed in neurodegeneration with brain iron accumulation diseases, which, in some cases, show associated mutations in pantothenate kinase 2 gene (PANK2). Here we present an aged gorilla, 40 years old, suffering during the last 2 years of life from progressive tetraparesis, nystagmus, and dyskinesia of the arms, hands, and neck, with accompanying abnormal behavior. The postmortem neuropathologic examination revealed, in addition to aging-associated changes in the brain, numerous corpora amylacea in some brain areas, especially the substantia nigra, and large numbers of axonal spheroids associated with iron accumulation in the internal globus pallidus. Sequencing of the gorilla PANK2 gene failed to detect any mutation. The clinical, neuropathologic, and genetic findings in this gorilla point to an age-related pallido-nigral degeneration that presented PKAN-like neurologic deficits.

  18. Antisense reduction of tau in adult mice protects against seizures.

    PubMed

    DeVos, Sarah L; Goncharoff, Dustin K; Chen, Guo; Kebodeaux, Carey S; Yamada, Kaoru; Stewart, Floy R; Schuler, Dorothy R; Maloney, Susan E; Wozniak, David F; Rigo, Frank; Bennett, C Frank; Cirrito, John R; Holtzman, David M; Miller, Timothy M

    2013-07-31

    Tau, a microtubule-associated protein, is implicated in the pathogenesis of Alzheimer's Disease (AD) in regard to both neurofibrillary tangle formation and neuronal network hyperexcitability. The genetic ablation of tau substantially reduces hyperexcitability in AD mouse lines, induced seizure models, and genetic in vivo models of epilepsy. These data demonstrate that tau is an important regulator of network excitability. However, developmental compensation in the genetic tau knock-out line may account for the protective effect against seizures. To test the efficacy of a tau reducing therapy for disorders with a detrimental hyperexcitability profile in adult animals, we identified antisense oligonucleotides that selectively decrease endogenous tau expression throughout the entire mouse CNS--brain and spinal cord tissue, interstitial fluid, and CSF--while having no effect on baseline motor or cognitive behavior. In two chemically induced seizure models, mice with reduced tau protein had less severe seizures than control mice. Total tau protein levels and seizure severity were highly correlated, such that those mice with the most severe seizures also had the highest levels of tau. Our results demonstrate that endogenous tau is integral for regulating neuronal hyperexcitability in adult animals and suggest that an antisense oligonucleotide reduction of tau could benefit those with epilepsy and perhaps other disorders associated with tau-mediated neuronal hyperexcitability.

  19. High-fat, high-sugar, and high-cholesterol consumption does not impact tau pathogenesis in a mouse model of Alzheimer's disease-like tau pathology.

    PubMed

    Gratuze, Maud; Julien, Jacinthe; Morin, Françoise; Calon, Frédéric; Hébert, Sébastien S; Marette, André; Planel, Emmanuel

    2016-11-01

    Aggregates of hyperphosphorylated tau protein are a pathological hallmark of Alzheimer's disease (AD). The origin of AD is multifactorial, and many metabolic disorders originating from overconsumption of fat, cholesterol, and sugar are associated with higher risk of AD later in life. However, the effects of fat, cholesterol, and sugar overconsumption on tau pathology in AD remain controversial. Using the hTau mice, a model of AD-like tau pathology, we assessed the effects of high-fat, high-cholesterol, and/or high-sugar diets on tau pathogenesis. Surprisingly, we found no effects of these compounds, even combined, on tau phosphorylation, O-GlcNAcylation, splicing, cleavage, and aggregation, suggesting that their overconsumption does not seem to worsen tau pathology in these mice. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.

  20. Tau regulates the localization and function of End-binding proteins 1 and 3 in developing neuronal cells.

    PubMed

    Sayas, Carmen Laura; Tortosa, Elena; Bollati, Flavia; Ramírez-Ríos, Sacnicte; Arnal, Isabelle; Avila, Jesús

    2015-06-01

    The axonal microtubule-associated protein tau is a well-known regulator of microtubule stability in neurons. However, the putative interplay between tau and End-binding proteins 1 and 3 (EB1/3), the core microtubule plus-end tracking proteins, has not been elucidated yet. Here, we show that a cross-talk between tau and EB1/3 exists in developing neuronal cells. Tau and EBs partially colocalize at extending neurites of N1E-115 neuroblastoma cells and axons of primary hippocampal neurons, as shown by confocal immunofluorescence analyses. Tau down-regulation leads to a reduction of EB1/3 comet length, as observed in shRNA-stably depleted neuroblastoma cells and TAU-/- neurons. EB1/3 localization depends on the expression levels and localization of tau protein. Over-expression of tau at high levels induces EBs relocalization to microtubule bundles at extending neurites of N1E-115 cells. In differentiating primary neurons, tau is required for the proper accumulation of EBs at stretches of microtubule bundles at the medial and distal regions of the axon. Tau interacts with EB proteins, as shown by immunoprecipitation in different non-neuronal and neuronal cells and in whole brain lysates. A tau/EB1 direct interaction was corroborated by in vitro pull-down assays. Fluorescence recovery after photobleaching assays performed in neuroblastoma cells confirmed that tau modulates EB3 cellular mobility. In summary, we provide evidence of a new function of tau as a direct regulator of EB proteins in developing neuronal cells. This cross-talk between a classical microtubule-associated protein and a core microtubule plus-end tracking protein may contribute to the fine-tuned regulation of microtubule dynamics and stability during neuronal differentiation. We describe here a novel function for tau as a direct regulator of End binding (EB) proteins in differentiating neuronal cells. EB1/3 cellular mobility and localization in extending neurites and axons is modulated by tau levels and

  1. Two Novel Tau Antibodies Targeting the 396/404 Region Are Primarily Taken Up by Neurons and Reduce Tau Protein Pathology*

    PubMed Central

    Gu, Jiaping; Congdon, Erin E.; Sigurdsson, Einar M.

    2013-01-01

    Aggregated Tau proteins are hallmarks of Alzheimer disease and other tauopathies. Recent studies from our group and others have demonstrated that both active and passive immunizations reduce Tau pathology and prevent cognitive decline in transgenic mice. To determine the efficacy and safety of targeting the prominent 396/404 region, we developed two novel monoclonal antibodies (mAbs) with distinct binding profiles for phospho and non-phospho epitopes. The two mAbs significantly reduced hyperphosphorylated soluble Tau in long term brain slice cultures without apparent toxicity, suggesting the therapeutic importance of targeting the 396/404 region. In mechanistic studies, we found that neurons were the primary cell type that internalized the mAbs, whereas a small amount of mAbs was taken up by microglia cells. Within neurons, the two mAbs were highly colocalized with distinct pathological Tau markers, indicating their affinity toward different stages or forms of pathological Tau. Moreover, the mAbs were largely co-localized with endosomal/lysosomal markers, and partially co-localized with autophagy pathway markers. Additionally, the Fab fragments of the mAbs were able to enter neurons, but unlike the whole antibodies, the fragments were not specifically localized in pathological neurons. In summary, our Tau mAbs were safe and efficient to clear pathological Tau in a brain slice model. Fc-receptor-mediated endocytosis and the endosome/autophagosome/lysosome system are likely to have a critical role in antibody-mediated clearance of Tau pathology. PMID:24089520

  2. Contrasting Pathology of the Stress Granule Proteins TIA-1 and G3BP in Tauopathies

    PubMed Central

    Vanderweyde, Tara; Yu, Haung; Varnum, Megan; Liu-Yesucevitz, Liqun; Citro, Allison; Ikezu, Tsuneya; Duff, Karen; Wolozin, Benjamin

    2012-01-01

    Stress induces aggregation of RNA-binding proteins to form inclusions, termed stress granules (SGs). Recent evidence suggests that SG proteins also colocalize with neuropathological structures, but whether this occurs in Alzheimer’s disease is unknown. We examined the relationship between SG proteins and neuropathology in brain tissue from P301L Tau transgenic mice, as well as in cases of Alzheimer’s disease and FTDP-17. The pattern of SG pathology differs dramatically based on the RNA-binding protein examined. SGs positive for T-cell intracellular antigen-1 (TIA-1) or tristetraprolin (TTP) initially do not colocalize with tau pathology, but then merge with tau inclusions as disease severity increases. In contrast, G3BP (ras GAP-binding protein) identifies a novel type of molecular pathology that shows increasing accumulation in neurons with increasing disease severity, but often is not associated with classic markers of tau pathology. TIA-1 and TTP both bind phospho-tau, and TIA-1 overexpression induces formation of inclusions containing phospho-tau. These data suggest that SG formation might stimulate tau pathophysiology. Thus, study of RNA-binding proteins and SG biology highlights novel pathways interacting with the pathophysiology of AD, providing potentially new avenues for identifying diseased neurons and potentially novel mechanisms regulating tau biology. PMID:22699908

  3. INVESTIGATING PLANET FORMATION IN CIRCUMSTELLAR DISKS: CARMA OBSERVATIONS OF RY Tau AND DG Tau

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isella, Andrea; Carpenter, John M.; Sargent, Anneila I., E-mail: isella@astro.caltech.ed

    2010-05-10

    We present CARMA observations of the thermal dust emission from the circumstellar disks around the young stars RY Tau and DG Tau at wavelengths of 1.3 mm and 2.8 mm. The angular resolution of the maps is as high as 0.''15, or 20 AU at the distance of the Taurus cloud, which is a factor of 2 higher than has been achieved to date at these wavelengths. The unprecedented detail of the resulting disk images enables us to address three important questions related to the formation of planets. (1) What is the radial distribution of the circumstellar dust? (2) Doesmore » the dust emission show any indication of gaps that might signify the presence of (proto-)planets? (3) Do the dust properties depend on the orbital radius? We find that modeling the disk surface density in terms of either a classical power law or the similarity solution for viscous disk evolution reproduces the observations well. Both models constrain the surface density between 15 and 50 AU to within 30% for a given dust opacity. Outside this range, the densities inferred from the two models differ by almost an order of magnitude. The 1.3 mm image from RY Tau shows two peaks separated by 0.''2 with a decline in the dust emission toward the stellar position, which is significant at about 2{sigma}-4{sigma}. For both RY Tau and DG Tau, the dust emission at radii larger than 15 AU displays no significant deviation from an unperturbed viscous disk model. In particular, no radial gaps in the dust distribution are detected. Under reasonable assumptions, we exclude the presence of planets more massive than 5 M{sub J} orbiting either star at distances between about 10 and 60 AU, unless such a planet is so young that there has been insufficient time to open a gap in the disk surface density. The radial variation of the dust opacity slope, {beta}, was investigated by comparing the 1.3 mm and 2.8 mm observations. We find mean values of {beta} of 0.5 and 0.7 for DG Tau and RY Tau, respectively. Variations in {beta

  4. Multimodal PET Imaging of Amyloid and Tau Pathology in Alzheimer Disease and Non-Alzheimer Disease Dementias.

    PubMed

    Xia, Chenjie; Dickerson, Bradford C

    2017-07-01

    Biomarkers of the molecular pathology underpinning dementia syndromes are increasingly recognized as crucial for diagnosis and development of disease-modifying treatments. Amyloid PET imaging is an integral part of the diagnostic assessment of Alzheimer disease. Its use has also deepened understanding of the role of amyloid pathology in Lewy body disorders and aging. Tau PET imaging is an imaging biomarker that will likely play an important role in the diagnosis, monitoring, and treatment in dementias. Using tau PET imaging to examine how tau pathology relates to amyloid and other markers of neurodegeneration will serve to better understand the pathophysiologic cascade that leads to dementia. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Tau Phosphorylation by GSK3 in Different Conditions

    PubMed Central

    Avila, Jesús; León-Espinosa, Gonzalo; García, Esther; García-Escudero, Vega; Hernández, Félix; DeFelipe, Javier

    2012-01-01

    Almost a 20% of the residues of tau protein are phosphorylatable amino acids: serine, threonine, and tyrosine. In this paper we comment on the consequences for tau of being a phosphoprotein. We will focus on serine/threonine phosphorylation. It will be discussed that, depending on the modified residue in tau molecule, phosphorylation could be protective, in processes like hibernation, or toxic like in development of those diseases known as tauopathies, which are characterized by an hyperphosphorylation and aggregation of tau. PMID:22675648

  6. Using Human iPSC-Derived Neurons to Model TAU Aggregation

    PubMed Central

    Verheyen, An; Diels, Annick; Dijkmans, Joyce; Oyelami, Tutu; Meneghello, Giulia; Mertens, Liesbeth; Versweyveld, Sofie; Borgers, Marianne; Buist, Arjan; Peeters, Pieter; Cik, Miroslav

    2015-01-01

    Alzheimer’s disease and frontotemporal dementia are amongst the most common forms of dementia characterized by the formation and deposition of abnormal TAU in the brain. In order to develop a translational human TAU aggregation model suitable for screening, we transduced TAU harboring the pro-aggregating P301L mutation into control hiPSC-derived neural progenitor cells followed by differentiation into cortical neurons. TAU aggregation and phosphorylation was quantified using AlphaLISA technology. Although no spontaneous aggregation was observed upon expressing TAU-P301L in neurons, seeding with preformed aggregates consisting of the TAU-microtubule binding repeat domain triggered robust TAU aggregation and hyperphosphorylation already after 2 weeks, without affecting general cell health. To validate our model, activity of two autophagy inducers was tested. Both rapamycin and trehalose significantly reduced TAU aggregation levels suggesting that iPSC-derived neurons allow for the generation of a biologically relevant human Tauopathy model, highly suitable to screen for compounds that modulate TAU aggregation. PMID:26720731

  7. Hippocampal volume as an index of Alzheimer neuropathology: findings from the Nun Study.

    PubMed

    Gosche, K M; Mortimer, J A; Smith, C D; Markesbery, W R; Snowdon, D A

    2002-05-28

    To determine whether hippocampal volume is a sensitive and specific indicator of Alzheimer neuropathology, regardless of the presence or absence of cognitive and memory impairment. Postmortem MRI scans were obtained for the first 56 participants of the Nun Study who were scanned. The area under receiver operating characteristic curves, sensitivity, specificity, and positive and negative predictive values were used to assess the diagnostic accuracy of hippocampal volume in predicting fulfillment of Alzheimer neuropathologic criteria and differences in Braak staging. Hippocampal volume predicted fulfillment of neuropathologic criteria for AD for all 56 participants (p < 0.001): 24 sisters who were demented (p = 0.036); 32 sisters who remained nondemented (p < 0.001), 8 sisters who remained nondemented but had memory impairment (p < 0.001), and 24 sisters who were intact with regard to memory and cognition at the final examination prior to death (p = 0.003). In individuals who remained nondemented, hippocampal volume was a better indicator of AD neuropathology than a delayed memory measure. Among nondemented sisters, Braak stages III and VI were distinguishable from Braak stages II or lower (p = 0.001). Among cognitively intact individuals, those in Braak stage II could be distinguished from those in stage I or less (p = 0.025). Volumetric measures of the hippocampus may be useful in identifying nondemented individuals who satisfy neuropathologic criteria for AD as well as pathologic stages of AD that may be present decades before initial clinical expression.

  8. Mechanism of tau-induced neurodegeneration in Alzheimer disease and related tauopathies.

    PubMed

    Alonso, Alejandra del C; Li, Ben; Grundke-Iqbal, Inge; Iqbal, Khalid

    2008-08-01

    The accumulation of hyperphosphorylated tau is a common feature of several dementias. Tau is one of the brain microtubule-associated proteins. Here we discuss tau's function in microtubule assembly and stabilization and with regards to tau's interactions with other proteins, membranes, and DNA. We describe and analyze important posttranslational modifications: hyperphosphorylation, glycosylation, ubiquitination, glycation, polyamination, nitration, and truncation. We discuss how these post-translational modifications can alter tau's biological function and what is known about tau self-assembly, and we propose a mechanism of tau polymerization. We analyze the impact of natural mutations on tau that cause fronto-temporal dementia associated with chromosome 17 (FTDP-1 7). Finally, we consider whether tau accumulation or its conformational change is related to tau-induced neurodegeneration, and we propose a mechanism of neurodegeneration.

  9. Does neuroinflammation drive the relationship between tau hyperphosphorylation and dementia development following traumatic brain injury?

    PubMed

    Collins-Praino, Lyndsey E; Corrigan, Frances

    2017-02-01

    A history of traumatic brain injury (TBI) is linked to an increased risk for the later development of dementia. This encompasses a variety of neurodegenerative diseases including Alzheimer's Disease (AD) and chronic traumatic encephalopathy (CTE), with AD linked to history of moderate-severe TBI and CTE to a history of repeated concussion. Of note, both AD and CTE are characterized by the abnormal accumulation of hyperphosphorylated tau aggregates, which are thought to play an important role in the development of neurodegeneration. Hyperphosphorylation of tau leads to destabilization of microtubules, interrupting axonal transport, whilst tau aggregates are associated with synaptic dysfunction. The exact mechanisms via which TBI may promote the later tauopathy and its role in the later development of dementia are yet to be fully determined. Following TBI, it is proposed that axonal injury may provide the initial perturbation of tau, by promoting its dissociation from microtubules, facilitating its phosphorylation and aggregation. Altered tau dynamics may then be exacerbated by the chronic persistent inflammatory response that has been shown to persist for decades following the initial impact. Importantly, immune activation has been shown to play a role in accelerating disease progression in other tauopathies, with pro-inflammatory cytokines, like IL-1β, shown to activate kinases that promote tau hyperphosphorylation. Thus, targeting the inflammatory response in the sub-acute phase following TBI may represent a promising target to halt the alterations in tau dynamics that may precede overt neurodegeneration and later development of dementia. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Genome-wide association meta-analysis of neuropathologic features of Alzheimer's disease and related dementias.

    PubMed

    Beecham, Gary W; Hamilton, Kara; Naj, Adam C; Martin, Eden R; Huentelman, Matt; Myers, Amanda J; Corneveaux, Jason J; Hardy, John; Vonsattel, Jean-Paul; Younkin, Steven G; Bennett, David A; De Jager, Philip L; Larson, Eric B; Crane, Paul K; Kamboh, M Ilyas; Kofler, Julia K; Mash, Deborah C; Duque, Linda; Gilbert, John R; Gwirtsman, Harry; Buxbaum, Joseph D; Kramer, Patricia; Dickson, Dennis W; Farrer, Lindsay A; Frosch, Matthew P; Ghetti, Bernardino; Haines, Jonathan L; Hyman, Bradley T; Kukull, Walter A; Mayeux, Richard P; Pericak-Vance, Margaret A; Schneider, Julie A; Trojanowski, John Q; Reiman, Eric M; Schellenberg, Gerard D; Montine, Thomas J

    2014-09-01

    Alzheimer's disease (AD) and related dementias are a major public health challenge and present a therapeutic imperative for which we need additional insight into molecular pathogenesis. We performed a genome-wide association study and analysis of known genetic risk loci for AD dementia using neuropathologic data from 4,914 brain autopsies. Neuropathologic data were used to define clinico-pathologic AD dementia or controls, assess core neuropathologic features of AD (neuritic plaques, NPs; neurofibrillary tangles, NFTs), and evaluate commonly co-morbid neuropathologic changes: cerebral amyloid angiopathy (CAA), Lewy body disease (LBD), hippocampal sclerosis of the elderly (HS), and vascular brain injury (VBI). Genome-wide significance was observed for clinico-pathologic AD dementia, NPs, NFTs, CAA, and LBD with a number of variants in and around the apolipoprotein E gene (APOE). GalNAc transferase 7 (GALNT7), ATP-Binding Cassette, Sub-Family G (WHITE), Member 1 (ABCG1), and an intergenic region on chromosome 9 were associated with NP score; and Potassium Large Conductance Calcium-Activated Channel, Subfamily M, Beta Member 2 (KCNMB2) was strongly associated with HS. Twelve of the 21 non-APOE genetic risk loci for clinically-defined AD dementia were confirmed in our clinico-pathologic sample: CR1, BIN1, CLU, MS4A6A, PICALM, ABCA7, CD33, PTK2B, SORL1, MEF2C, ZCWPW1, and CASS4 with 9 of these 12 loci showing larger odds ratio in the clinico-pathologic sample. Correlation of effect sizes for risk of AD dementia with effect size for NFTs or NPs showed positive correlation, while those for risk of VBI showed a moderate negative correlation. The other co-morbid neuropathologic features showed only nominal association with the known AD loci. Our results discovered new genetic associations with specific neuropathologic features and aligned known genetic risk for AD dementia with specific neuropathologic changes in the largest brain autopsy study of AD and related dementias.

  11. Tau mislocalization to dendritic spines mediates synaptic dysfunction independently of neurodegeneration

    PubMed Central

    Hoover, Brian R.; Reed, Miranda N.; Su, Jianjun; Penrod, Rachel D.; Kotilinek, Linda A.; Grant, Marianne K.; Pitstick, Rose; Carlson, George A.; Lanier, Lorene M.; Yuan, Li-Lian; Ashe, Karen H.; Liao, Dezhi

    2010-01-01

    The microtubule-associated protein tau accumulates in Alzheimer’s and other fatal dementias, which manifest when forebrain neurons die. Recent advances in understanding these disorders indicate that brain dysfunction precedes neurodegeneration, but the role of tau is unclear. Here, we show that early tau-related deficits develop not from the loss of synapses or neurons, but rather as a result of synaptic abnormalities caused by the accumulation of hyperphosphorylated tau within intact dendritic spines, where it disrupts synaptic function by impairing glutamate receptor trafficking or synaptic anchoring. Mutagenesis of 14 disease-associated serine and threonine amino acid residues to create pseudohyperphosphorylated tau caused tau mislocalization while creation of phosphorylation-deficient tau blocked the mis-targeting of tau to dendritic spines. Thus, tau phosphorylation plays a critical role in mediating tau mislocalization and subsequent synaptic impairment. These data establish that the locus of early synaptic malfunction caused by tau resides in dendritic spines. PMID:21172610

  12. ApoE4 markedly exacerbates tau-mediated neurodegeneration in a mouse model of tauopathy.

    PubMed

    Shi, Yang; Yamada, Kaoru; Liddelow, Shane Antony; Smith, Scott T; Zhao, Lingzhi; Luo, Wenjie; Tsai, Richard M; Spina, Salvatore; Grinberg, Lea T; Rojas, Julio C; Gallardo, Gilbert; Wang, Kairuo; Roh, Joseph; Robinson, Grace; Finn, Mary Beth; Jiang, Hong; Sullivan, Patrick M; Baufeld, Caroline; Wood, Michael W; Sutphen, Courtney; McCue, Lena; Xiong, Chengjie; Del-Aguila, Jorge L; Morris, John C; Cruchaga, Carlos; Fagan, Anne M; Miller, Bruce L; Boxer, Adam L; Seeley, William W; Butovsky, Oleg; Barres, Ben A; Paul, Steven M; Holtzman, David M

    2017-09-28

    APOE4 is the strongest genetic risk factor for late-onset Alzheimer disease. ApoE4 increases brain amyloid-β pathology relative to other ApoE isoforms. However, whether APOE independently influences tau pathology, the other major proteinopathy of Alzheimer disease and other tauopathies, or tau-mediated neurodegeneration, is not clear. By generating P301S tau transgenic mice on either a human ApoE knock-in (KI) or ApoE knockout (KO) background, here we show that P301S/E4 mice have significantly higher tau levels in the brain and a greater extent of somatodendritic tau redistribution by three months of age compared with P301S/E2, P301S/E3, and P301S/EKO mice. By nine months of age, P301S mice with different ApoE genotypes display distinct phosphorylated tau protein (p-tau) staining patterns. P301S/E4 mice develop markedly more brain atrophy and neuroinflammation than P301S/E2 and P301S/E3 mice, whereas P301S/EKO mice are largely protected from these changes. In vitro, E4-expressing microglia exhibit higher innate immune reactivity after lipopolysaccharide treatment. Co-culturing P301S tau-expressing neurons with E4-expressing mixed glia results in a significantly higher level of tumour-necrosis factor-α (TNF-α) secretion and markedly reduced neuronal viability compared with neuron/E2 and neuron/E3 co-cultures. Neurons co-cultured with EKO glia showed the greatest viability with the lowest level of secreted TNF-α. Treatment of P301S neurons with recombinant ApoE (E2, E3, E4) also leads to some neuronal damage and death compared with the absence of ApoE, with ApoE4 exacerbating the effect. In individuals with a sporadic primary tauopathy, the presence of an ε4 allele is associated with more severe regional neurodegeneration. In individuals who are positive for amyloid-β pathology with symptomatic Alzheimer disease who usually have tau pathology, ε4-carriers demonstrate greater rates of disease progression. Our results demonstrate that ApoE affects tau

  13. Dimer model for Tau proteins bound in microtubule bundles

    NASA Astrophysics Data System (ADS)

    Hall, Natalie; Kluber, Alexander; Hayre, N. Robert; Singh, Rajiv; Cox, Daniel

    2013-03-01

    The microtubule associated protein tau is important in nucleating and maintaining microtubule spacing and structure in neuronal axons. Modification of tau is implicated as a later stage process in Alzheimer's disease, but little is known about the structure of tau in microtubule bundles. We present preliminary work on a proposed model for tau dimers in microtubule bundles (dimers are the minimal units since there is one microtubule binding domain per tau). First, a model of tau monomer was created and its characteristics explored using implicit solvent molecular dynamics simulation. Multiple simulations yield a partially collapsed form with separate positively/negatively charged clumps, but which are a factor of two smaller than required by observed microtubule spacing. We argue that this will elongate in dimer form to lower electrostatic energy at a cost of entropic ``spring'' energy. We will present preliminary results on steered molecular dynamics runs on tau dimers to estimate the actual force constant. Supported by US NSF Grant DMR 1207624.

  14. Brief report: life history and neuropathology of a gifted man with Asperger syndrome.

    PubMed

    Weidenheim, Karen M; Escobar, Alfonso; Rapin, Isabelle

    2012-03-01

    Despite recent interest in the pathogenesis of the autism spectrum disorders (pervasive developmental disorders), neuropathological descriptions of brains of individuals with well documented clinical information and without potentially confounding symptomatology are exceptionally rare. Asperger syndrome differs from classic autism by lack of cognitive impairment or delay in expressive language acquisition. We examined the 1,570 g brain of a 63 year old otherwise healthy mathematician with an Autistic Spectrum Disorder of Asperger subtype. Except for an atypical gyral pattern and megalencephaly, we detected no specific neuropathologic abnormality. Taken together, the behavioral data and pathological findings in this case are compatible with an early neurodevelopmental process affecting multiple neuroanatomic networks, but without a convincing morphologic signature detectable with routine neuropathologic technology.

  15. Chiqui-traca-ban-tau: Movements and Creativity Expression without Limits

    ERIC Educational Resources Information Center

    Volmar-Vega, Vilmarie; Kozub, Francis M.

    2016-01-01

    Chiqui-traca-ban-tau is a creative dance activity that can be enjoyed by a wide range of children. It is also a game that provides teachers with a physical activity option that promotes higher-order thinking and remembering skills necessary to support learning in the Common Core. The game involves each child taking a turn leading a four-beat…

  16. Fetal alcohol syndrome and secondary schizophrenia: a unique neuropathologic study.

    PubMed

    Stoos, Catherine; Nelsen, Laura; Schissler, Kathryn A; Elliott, Amy J; Kinney, Hannah C

    2015-04-01

    We report the unique neuropathologic study of an adult brain of a patient with fetal alcohol syndrome who developed the well-recognized complication of schizophrenia in adolescence. The major finding was asymmetric formation of the lateral temporal lobes, with marked enlargement of the right superior temporal gyrus, suggesting that alcohol is preferentially toxic to temporal lobe patterning during gestation. Critical maturational changes unique to adolescence can unmask psychotic symptomatology mediated by temporal lobe pathology that has been clinically dormant since birth. Elucidating the neuropathologic basis of the secondary psychiatric disorders in fetal alcohol syndrome can help provide insight into their putative developmental origins. © The Author(s) 2014.

  17. Tyrosine Nitration within the Proline-Rich Region of Tau in Alzheimer's Disease

    PubMed Central

    Reyes, Juan F.; Fu, Yifan; Vana, Laurel; Kanaan, Nicholas M.; Binder, Lester I.

    2011-01-01

    A substantial body of evidence suggests that nitrative injury contributes to neurodegeneration in Alzheimer's disease (AD) and other neurodegenerative disorders. Previously, we showed in vitro that within the tau protein the N-terminal tyrosine residues (Y18 and Y29) are more susceptible to nitrative modifications than other tyrosine sites (Y197 and Y394). Using site-specific antibodies to nitrated tau at Y18 and Y29, we identified tau nitrated in both glial (Y18) and neuronal (Y29) tau pathologies. In this study, we report the characterization of two novel monoclonal antibodies, Tau-nY197 and Tau-nY394, recognizing tau nitrated at Y197 and Y394, respectively. By Western blot analysis, Tau-nY197 labeled soluble tau and insoluble paired helical filament proteins (PHF-tau) nitrated at Y197 from control and AD brain samples. Tau-nY394 failed to label soluble tau isolated from control or severe AD samples, but labeled insoluble PHF-tau to a limited extent. Immunohistochemical analysis using Tau-nY197 revealed the hallmark tau pathology associated with AD; Tau-nY394 did not detect any pathological lesions characteristic of the disorder. These data suggest that a subset of the hallmark pathological inclusions of AD contain tau nitrated at Y197. However, nitration at Y197 was also identified in soluble tau from all control samples, including those at Braak stage 0, suggesting that nitration at this site in the proline-rich region of tau may have normal biological functions in the human brain. PMID:21514440

  18. Complete mitochondrial genome of Zeugodacus tau (Insecta: Tephritidae) and differentiation of Z. tau species complex by mitochondrial cytochrome c oxidase subunit I gene

    PubMed Central

    Yong, Hoi-Sen; Lim, Phaik-Eem; Eamsobhana, Praphathip

    2017-01-01

    The tephritid fruit fly Zeugodacus tau (Walker) is a polyphagous fruit pest of economic importance in Asia. Studies based on genetic markers indicate that it forms a species complex. We report here (1) the complete mitogenome of Z. tau from Malaysia and comparison with that of China as well as the mitogenome of other congeners, and (2) the relationship of Z. tau taxa from different geographical regions based on sequences of cytochrome c oxidase subunit I gene. The complete mitogenome of Z. tau had a total length of 15631 bp for the Malaysian specimen (ZT3) and 15835 bp for the China specimen (ZT1), with similar gene order comprising 37 genes (13 protein-coding genes—PCGs, 2 rRNA genes, and 22 tRNA genes) and a non-coding A + T-rich control region (D-loop). Based on 13 PCGs and 15 mt-genes, Z. tau NC_027290 (China) and Z. tau ZT1 (China) formed a sister group in the lineage containing also Z. tau ZT3 (Malaysia). Phylogenetic analysis based on partial sequences of cox1 gene indicates that the taxa from China, Japan, Laos, Malaysia, Bangladesh, India, Sri Lanka, and Z. tau sp. A from Thailand belong to Z. tau sensu stricto. A complete cox1 gene (or 13 PCGs or 15 mt-genes) instead of partial sequence is more appropriate for determining phylogenetic relationship. PMID:29216281

  19. Aging-related tau astrogliopathy (ARTAG): harmonized evaluation strategy.

    PubMed

    Kovacs, Gabor G; Ferrer, Isidro; Grinberg, Lea T; Alafuzoff, Irina; Attems, Johannes; Budka, Herbert; Cairns, Nigel J; Crary, John F; Duyckaerts, Charles; Ghetti, Bernardino; Halliday, Glenda M; Ironside, James W; Love, Seth; Mackenzie, Ian R; Munoz, David G; Murray, Melissa E; Nelson, Peter T; Takahashi, Hitoshi; Trojanowski, John Q; Ansorge, Olaf; Arzberger, Thomas; Baborie, Atik; Beach, Thomas G; Bieniek, Kevin F; Bigio, Eileen H; Bodi, Istvan; Dugger, Brittany N; Feany, Mel; Gelpi, Ellen; Gentleman, Stephen M; Giaccone, Giorgio; Hatanpaa, Kimmo J; Heale, Richard; Hof, Patrick R; Hofer, Monika; Hortobágyi, Tibor; Jellinger, Kurt; Jicha, Gregory A; Ince, Paul; Kofler, Julia; Kövari, Enikö; Kril, Jillian J; Mann, David M; Matej, Radoslav; McKee, Ann C; McLean, Catriona; Milenkovic, Ivan; Montine, Thomas J; Murayama, Shigeo; Lee, Edward B; Rahimi, Jasmin; Rodriguez, Roberta D; Rozemüller, Annemieke; Schneider, Julie A; Schultz, Christian; Seeley, William; Seilhean, Danielle; Smith, Colin; Tagliavini, Fabrizio; Takao, Masaki; Thal, Dietmar Rudolf; Toledo, Jon B; Tolnay, Markus; Troncoso, Juan C; Vinters, Harry V; Weis, Serge; Wharton, Stephen B; White, Charles L; Wisniewski, Thomas; Woulfe, John M; Yamada, Masahito; Dickson, Dennis W

    2016-01-01

    Pathological accumulation of abnormally phosphorylated tau protein in astrocytes is a frequent, but poorly characterized feature of the aging brain. Its etiology is uncertain, but its presence is sufficiently ubiquitous to merit further characterization and classification, which may stimulate clinicopathological studies and research into its pathobiology. This paper aims to harmonize evaluation and nomenclature of aging-related tau astrogliopathy (ARTAG), a term that refers to a morphological spectrum of astroglial pathology detected by tau immunohistochemistry, especially with phosphorylation-dependent and 4R isoform-specific antibodies. ARTAG occurs mainly, but not exclusively, in individuals over 60 years of age. Tau-immunoreactive astrocytes in ARTAG include thorn-shaped astrocytes at the glia limitans and in white matter, as well as solitary or clustered astrocytes with perinuclear cytoplasmic tau immunoreactivity that extends into the astroglial processes as fine fibrillar or granular immunopositivity, typically in gray matter. Various forms of ARTAG may coexist in the same brain and might reflect different pathogenic processes. Based on morphology and anatomical distribution, ARTAG can be distinguished from primary tauopathies, but may be concurrent with primary tauopathies or other disorders. We recommend four steps for evaluation of ARTAG: (1) identification of five types based on the location of either morphologies of tau astrogliopathy: subpial, subependymal, perivascular, white matter, gray matter; (2) documentation of the regional involvement: medial temporal lobe, lobar (frontal, parietal, occipital, lateral temporal), subcortical, brainstem; (3) documentation of the severity of tau astrogliopathy; and (4) description of subregional involvement. Some types of ARTAG may underlie neurological symptoms; however, the clinical significance of ARTAG is currently uncertain and awaits further studies. The goal of this proposal is to raise awareness of

  20. Aging-related tau astrogliopathy (ARTAG): harmonized evaluation strategy

    PubMed Central

    Ferrer, Isidro; Grinberg, Lea T.; Alafuzoff, Irina; Attems, Johannes; Budka, Herbert; Cairns, Nigel J.; Crary, John F.; Duyckaerts, Charles; Ghetti, Bernardino; Halliday, Glenda M.; Ironside, James W.; Love, Seth; Mackenzie, Ian R.; Munoz, David G.; Murray, Melissa E.; Nelson, Peter T.; Takahashi, Hitoshi; Trojanowski, John Q.; Ansorge, Olaf; Arzberger, Thomas; Baborie, Atik; Beach, Thomas G.; Bieniek, Kevin F.; Bigio, Eileen H.; Bodi, Istvan; Dugger, Brittany N.; Feany, Mel; Gelpi, Ellen; Gentleman, Stephen M.; Giaccone, Giorgio; Hatanpaa, Kimmo J.; Heale, Richard; Hof, Patrick R.; Hofer, Monika; Hortobágyi, Tibor; Jellinger, Kurt; Jicha, Gregory A.; Ince, Paul; Kofler, Julia; Kövari, Enikö; Kril, Jillian J.; Mann, David M.; Matej, Radoslav; McKee, Ann C.; McLean, Catriona; Milenkovic, Ivan; Montine, Thomas J.; Murayama, Shigeo; Lee, Edward B.; Rahimi, Jasmin; Rodriguez, Roberta D.; Rozemüller, Annemieke; Schneider, Julie A.; Schultz, Christian; Seeley, William; Seilhean, Danielle; Smith, Colin; Tagliavini, Fabrizio; Takao, Masaki; Thal, Dietmar Rudolf; Toledo, Jon B.; Tolnay, Markus; Troncoso, Juan C.; Vinters, Harry V.; Weis, Serge; Wharton, Stephen B.; White, Charles L.; Wisniewski, Thomas; Woulfe, John M.; Yamada, Masahito

    2016-01-01

    Pathological accumulation of abnormally phosphorylated tau protein in astrocytes is a frequent, but poorly characterized feature of the aging brain. Its etiology is uncertain, but its presence is sufficiently ubiquitous to merit further characterization and classification, which may stimulate clinicopathological studies and research into its pathobiology. This paper aims to harmonize evaluation and nomenclature of aging-related tau astrogliopathy (ARTAG), a term that refers to a morphological spectrum of astroglial pathology detected by tau immunohistochemistry, especially with phosphorylation-dependent and 4R isoform-specific antibodies. ARTAG occurs mainly, but not exclusively, in individuals over 60 years of age. Tau-immunoreactive astrocytes in ARTAG include thorn-shaped astrocytes at the glia limitans and in white matter, as well as solitary or clustered astrocytes with perinuclear cytoplasmic tau immunoreactivity that extends into the astroglial processes as fine fibrillar or granular immunopositivity, typically in gray matter. Various forms of ARTAG may coexist in the same brain and might reflect different pathogenic processes. Based on morphology and anatomical distribution, ARTAG can be distinguished from primary tauopathies, but may be concurrent with primary tauopathies or other disorders. We recommend four steps for evaluation of ARTAG: (1) identification of five types based on the location of either morphologies of tau astrogliopathy: subpial, subependymal, perivascular, white matter, gray matter; (2) documentation of the regional involvement: medial temporal lobe, lobar (frontal, parietal, occipital, lateral temporal), subcortical, brainstem; (3) documentation of the severity of tau astrogliopathy; and (4) description of subregional involvement. Some types of ARTAG may underlie neurological symptoms; however, the clinical significance of ARTAG is currently uncertain and awaits further studies. The goal of this proposal is to raise awareness of

  1. Bacterial co-expression of human Tau protein with protein kinase A and 14-3-3 for studies of 14-3-3/phospho-Tau interaction

    PubMed Central

    Tugaeva, Kristina V.; Tsvetkov, Philipp O.

    2017-01-01

    Abundant regulatory 14-3-3 proteins have an extremely wide interactome and coordinate multiple cellular events via interaction with specifically phosphorylated partner proteins. Notwithstanding the key role of 14-3-3/phosphotarget interactions in many physiological and pathological processes, they are dramatically underexplored. Here, we focused on the 14-3-3 interaction with human Tau protein associated with the development of several neurodegenerative disorders, including Alzheimer’s and Parkinson’s diseases. Among many known phosphorylation sites within Tau, protein kinase A (PKA) phosphorylates several key residues of Tau and induces its tight interaction with 14-3-3 proteins. However, the stoichiometry and mechanism of 14-3-3 interaction with phosphorylated Tau (pTau) are not clearly elucidated. In this work, we describe a simple bacterial co-expression system aimed to facilitate biochemical and structural studies on the 14-3-3/pTau interaction. We show that dual co-expression of human fetal Tau with PKA in Escherichia coli results in multisite Tau phosphorylation including also naturally occurring sites which were not previously considered in the context of 14-3-3 binding. Tau protein co-expressed with PKA displays tight functional interaction with 14-3-3 isoforms of a different type. Upon triple co-expression with 14-3-3 and PKA, Tau protein could be co-purified with 14-3-3 and demonstrates complex which is similar to that formed in vitro between individual 14-3-3 and pTau obtained from dual co-expression. Although used in this study for the specific case of the previously known 14-3-3/pTau interaction, our co-expression system may be useful to study of other selected 14-3-3/phosphotarget interactions and for validations of 14-3-3 complexes identified by other methods. PMID:28575131

  2. GENE-07. MOLECULAR NEUROPATHOLOGY 2.0 - INCREASING DIAGNOSTIC ACCURACY IN PEDIATRIC NEUROONCOLOGY

    PubMed Central

    Sturm, Dominik; Jones, David T.W.; Capper, David; Sahm, Felix; von Deimling, Andreas; Rutkoswki, Stefan; Warmuth-Metz, Monika; Bison, Brigitte; Gessi, Marco; Pietsch, Torsten; Pfister, Stefan M.

    2017-01-01

    Abstract The classification of central nervous system (CNS) tumors into clinically and biologically distinct entities and subgroups is challenging. Children and adolescents can be affected by >100 histological variants with very variable outcomes, some of which are exceedingly rare. The current WHO classification has introduced a number of novel molecular markers to aid routine neuropathological diagnostics, and DNA methylation profiling is emerging as a powerful tool to distinguish CNS tumor classes. The Molecular Neuropathology 2.0 study aims to integrate genome wide (epi-)genetic diagnostics with reference neuropathological assessment for all newly-diagnosed pediatric brain tumors in Germany. To date, >350 patients have been enrolled. A molecular diagnosis is established by epigenetic tumor classification through DNA methylation profiling and targeted panel sequencing of >130 genes to detect diagnostically and/or therapeutically useful DNA mutations, structural alterations, and fusion events. Results are aligned with the reference neuropathological diagnosis, and discrepant findings are discussed in a multi-disciplinary tumor board including reference neuroradiological evaluation. Ten FFPE sections as input material are sufficient to establish a molecular diagnosis in >95% of tumors. Alignment with reference pathology results in four broad categories: a) concordant classification (~77%), b) discrepant classification resolvable by tumor board discussion and/or additional data (~5%), c) discrepant classification without currently available options to resolve (~8%), and d) cases currently unclassifiable by molecular diagnostics (~10%). Discrepancies are enriched in certain histopathological entities, such as histological high grade gliomas with a molecularly low grade profile. Gene panel sequencing reveals predisposing germline events in ~10% of patients. Genome wide (epi-)genetic analyses add a valuable layer of information to routine neuropathological

  3. Tau Oligomers Associate with Inflammation in the Brain and Retina of Tauopathy Mice and in Neurodegenerative Diseases

    PubMed Central

    Nilson, Ashley N.; English, Kelsey C.; Gerson, Julia E.; Barton Whittle, T.; Nicolas Crain, C.; Xue, Judy; Sengupta, Urmi; Castillo-Carranza, Diana L.; Zhang, Wenbo; Gupta, Praveena; Kayed, Rakez

    2016-01-01

    It is well-established that inflammation plays an important role in Alzheimer’s disease (AD) and frontotemporal lobar dementia (FTLD). Inflammation and synapse loss occur in disease prior to the formation of larger aggregates, but the contribution of tau to inflammation has not yet been thoroughly investigated. Tau pathologically aggregates to form large fibrillar structures known as tangles. However, evidence suggests that smaller soluble aggregates, called oligomers, are the most toxic species and form prior to tangles. Furthermore, tau oligomers can spread to neighboring cells and between anatomically connected brain regions. In addition, recent evidence suggests that inspecting the retina may be a window to brain pathology. We hypothesized that there is a relationship between tau oligomers and inflammation, which are hallmarks of early disease. We conducted immunofluorescence and biochemical analyses on tauopathy mice, FTLD, and AD subjects. We showed that oligomers co-localize with astrocytes, microglia, and HMGB1, a pro-inflammatory cytokine. Additionally, we show that tau oligomers are present in the retina and are associated with inflammatory cells suggesting that the retina may be a valid non-invasive biomarker for brain pathology. These results suggest that there may be a toxic relationship between tau oligomers and inflammation. Therefore, the ability of tau oligomers to spread may initiate a feed-forward cycle in which tau oligomers induce inflammation, leading to neuronal damage, and thus more inflammation. Further mechanistic studies are warranted in order to understand this relationship, which may have critical implications for improving the treatment of tauopathies. PMID:27716675

  4. Tau Kinetics in Neurons and the Human Central Nervous System.

    PubMed

    Sato, Chihiro; Barthélemy, Nicolas R; Mawuenyega, Kwasi G; Patterson, Bruce W; Gordon, Brian A; Jockel-Balsarotti, Jennifer; Sullivan, Melissa; Crisp, Matthew J; Kasten, Tom; Kirmess, Kristopher M; Kanaan, Nicholas M; Yarasheski, Kevin E; Baker-Nigh, Alaina; Benzinger, Tammie L S; Miller, Timothy M; Karch, Celeste M; Bateman, Randall J

    2018-03-21

    We developed stable isotope labeling and mass spectrometry approaches to measure the kinetics of multiple isoforms and fragments of tau in the human central nervous system (CNS) and in human induced pluripotent stem cell (iPSC)-derived neurons. Newly synthesized tau is truncated and released from human neurons in 3 days. Although most tau proteins have similar turnover, 4R tau isoforms and phosphorylated forms of tau exhibit faster turnover rates, suggesting unique processing of these forms that may have independent biological activities. The half-life of tau in control human iPSC-derived neurons is 6.74 ± 0.45 days and in human CNS is 23 ± 6.4 days. In cognitively normal and Alzheimer's disease participants, the production rate of tau positively correlates with the amount of amyloid plaques, indicating a biological link between amyloid plaques and tau physiology. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Passive Immunization with Anti-Tau Antibodies in Two Transgenic Models

    PubMed Central

    Chai, Xiyun; Wu, Su; Murray, Tracey K.; Kinley, Robert; Cella, Claire V.; Sims, Helen; Buckner, Nicola; Hanmer, Jenna; Davies, Peter; O'Neill, Michael J.; Hutton, Michael L.; Citron, Martin

    2011-01-01

    The microtubule-associated protein Tau plays a critical role in the pathogenesis of Alzheimer disease and several related disorders (tauopathies). In the disease Tau aggregates and becomes hyperphosphorylated forming paired helical and straight filaments, which can further condense into higher order neurofibrillary tangles in neurons. The development of this pathology is consistently associated with progressive neuronal loss and cognitive decline. The identification of tractable therapeutic targets in this pathway has been challenging, and consequently very few clinical studies addressing Tau pathology are underway. Recent active immunization studies have raised the possibility of modulating Tau pathology by activating the immune system. Here we report for the first time on passive immunotherapy for Tau in two well established transgenic models of Tau pathogenesis. We show that peripheral administration of two antibodies against pathological Tau forms significantly reduces biochemical Tau pathology in the JNPL3 mouse model. We further demonstrate that peripheral administration of the same antibodies in the more rapidly progressive P301S tauopathy model not only reduces Tau pathology quantitated by biochemical assays and immunohistochemistry, but also significantly delays the onset of motor function decline and weight loss. This is accompanied by a reduction in neurospheroids, providing direct evidence of reduced neurodegeneration. Thus, passive immunotherapy is effective at preventing the buildup of intracellular Tau pathology, neurospheroids, and associated symptoms, although the exact mechanism remains uncertain. Tau immunotherapy should therefore be considered as a therapeutic approach for the treatment of Alzheimer disease and other tauopathies. PMID:21841002

  6. African ancestry protects against Alzheimer's disease-related neuropathology

    PubMed Central

    Schlesinger, D; Grinberg, L T; Alba, J G; Naslavsky, M S; Licinio, L; Farfel, J M; Suemoto, C K; de Lucena Ferretti, R E; Leite, R E P; de Andrade, M P; dos Santos, A C F; Brentani, H; Pasqualucci, C A; Nitrini, R; Jacob-Filho, W; Zatz, M

    2013-01-01

    Previous studies in dementia epidemiology have reported higher Alzheimer's disease rates in African-Americans when compared with White Americans. To determine whether genetically determined African ancestry is associated with neuropathological changes commonly associated with dementia, we analyzed a population-based brain bank in the highly admixed city of São Paulo, Brazil. African ancestry was estimated through the use of previously described ancestry-informative markers. Risk of presence of neuritic plaques, neurofibrillary tangles, small vessel disease, brain infarcts and Lewy bodies in subjects with significant African ancestry versus those without was determined. Results were adjusted for multiple environmental risk factors, demographic variables and apolipoprotein E genotype. African ancestry was inversely correlated with neuritic plaques (P=0.03). Subjects with significant African ancestry (n=112, 55.4%) showed lower prevalence of neuritic plaques in the univariate analysis (odds ratio (OR) 0.72, 95% confidence interval (CI) 0.55–0.95, P=0.01) and when adjusted for age, sex, APOE genotype and environmental risk factors (OR 0.43, 95% CI 0.21–0.89, P=0.02). There were no significant differences for the presence of other neuropathological alterations. We show for the first time, using genetically determined ancestry, that African ancestry may be highly protective of Alzheimer's disease neuropathology, functioning through either genetic variants or unknown environmental factors. Epidemiological studies correlating African-American race/ethnicity with increased Alzheimer's disease rates should not be interpreted as surrogates of genetic ancestry or considered to represent African-derived populations from the developing nations such as Brazil. PMID:22064377

  7. Tau-mediated synaptic and neuronal dysfunction in neurodegenerative disease.

    PubMed

    Tracy, Tara E; Gan, Li

    2018-05-09

    The accumulation of pathological tau in the brain is associated with neuronal deterioration and cognitive impairments in tauopathies including Alzheimer's disease. Tau, while primarily localized in the axons of healthy neurons, accumulates in the soma and dendrites of neurons under pathogenic conditions. Tau is found in both presynaptic and postsynaptic compartments of neurons in Alzheimer's disease. New research supports that soluble forms of tau trigger pathophysiology in the brain by altering properties of synaptic and neuronal function at the early stages of disease progression, before neurons die. Here we review the current understanding of how tau-mediated synaptic and neuronal dysfunction contributes to cognitive decline. Delineating the mechanisms by which pathogenic tau alters synapses, dendrites and axons will help lay the foundation for new strategies that can restore neuronal function in tauopathy. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Delayed recall, hippocampal volume and Alzheimer neuropathology: findings from the Nun Study.

    PubMed

    Mortimer, J A; Gosche, K M; Riley, K P; Markesbery, W R; Snowdon, D A

    2004-02-10

    To examine the associations of hippocampal volume and the severity of neurofibrillary lesions determined at autopsy with delayed verbal recall performance evaluated an average of 1 year prior to death. Hippocampal volumes were computed using postmortem brain MRI from the first 56 scanned participants of the Nun Study. Quantitative neuropathologic studies included lesion counts, Braak staging, and determination of whether neuropathologic criteria for Alzheimer disease (AD) were met. Multiple regression was used to assess the association of hippocampal volume and neuropathologic lesions with the number of words (out of 10) recalled on the Consortium to Establish a Registry for Alzheimer's Disease Delayed Word Recall Test administered an average of 1 year prior to death. When entered separately, hippocampal volume, Braak stage, and the mean neurofibrillary tangle counts in the CA-1 region of the hippocampus and the subiculum were strongly associated with the number of words recalled after a delay, adjusting for age and education. When hippocampal volume was entered together with each neuropathologic index, only hippocampal volume retained a significant association with the delayed recall measure. The association between hippocampal volume and the number of words recalled was present in both demented and nondemented individuals as well as in those with and without substantial AD neurofibrillary pathology. The association of neurofibrillary tangles with delayed verbal recall may reflect associated hippocampal atrophy.

  9. Passive immunization targeting the N-terminal projection domain of tau decreases tau pathology and improves cognition in a transgenic mouse model of Alzheimer disease and tauopathies.

    PubMed

    Dai, Chun-ling; Chen, Xia; Kazim, Syed Faraz; Liu, Fei; Gong, Cheng-Xin; Grundke-Iqbal, Inge; Iqbal, Khalid

    2015-04-01

    Intraneuronal accumulation of abnormally hyperphosphorylated tau in the brain is a histopathological hallmark of Alzheimer's disease and a family of related neurodegenerative disorders collectively called tauopathies. At present there is no effective treatment available for these progressive neurodegenerative diseases which are clinically characterized by dementia in mid to old-age. Here we report the treatment of 14-17-months-old 3xTg-AD mice with tau antibodies 43D (tau 6-18) and 77E9 (tau 184-195) to the N-terminal projection domain of tau or mouse IgG as a control by intraperitoneal injection once a week for 4 weeks, and the effects of the passive immunization on reduction of hyperphosphorylated tau, Aβ accumulation and cognitive performance in these animals. We found that treatment with tau antibodies 43D and 77E9 reduced total tau level, decreased tau hyperphosphorylated at Ser199, Ser202/Thr205 (AT8), Thr205, Ser262/356 (12E8), and Ser396/404 (PHF-1) sites, and a trend to reduce Aβ pathology. Most importantly, targeting N-terminal tau especially by 43D (tau 6-18) improved reference memory in the Morris water maze task in 3xTg-AD mice. We did not observe any abnormality in general physical characteristics of the treated animals with either of the two antibodies during the course of this study. Taken together, our studies demonstrate for the first time (1) that passive immunization targeting normal tau can effectively clear the hyperphosphorylated protein and possibly reduce Aβ pathology from the brain and (2) that targeting N-terminal projection domain of tau containing amino acid 6-18 is especially beneficial. Thus, targeting selective epitopes of N-terminal domain of tau may present a novel effective therapeutic opportunity for Alzheimer disease and other tauopathies.

  10. ELISA measurement of specific antibodies to phosphorylated tau in intravenous immunoglobulin products.

    PubMed

    Loeffler, David A; Klaver, Andrea C; Coffey, Mary P

    2015-10-01

    The therapeutic effects of intravenous immunoglobulin (IVIG) products were recently studied in Alzheimer's disease (AD) patients. Pilot studies produced encouraging results but phase II and III trials gave disappointing results; a further study is in progress. IVIG products contain antibodies to tau protein, the main component of neurofibrillary tangles (NFTs). The tau used to detect IVIG's anti-tau antibodies in previous studies was non-phosphorylated recombinant human tau-441, but NFT-associated tau is extensively phosphorylated. The objective of this study was to determine if various IVIG products contain specific antibodies to phosphorylated tau (anti-pTau antibodies). ELISAs were used to evaluate binding of six IVIG products to a 12 amino acid peptide, tau 196-207, which was phosphorylated ("pTau peptide") or non-phosphorylated ("non-pTau peptide") at Serine-199 and Serine-202. Both amino acid residues are phosphorylated in AD NFTs. Each IVIG's "anti-pTau antibody ratio" was calculated by dividing its binding to the pTau peptide by its binding to the non-pTau peptide. Seven experiments were performed and data were pooled, with each experiment contributing one data point from each IVIG product. Mean anti-pTau antibody ratios greater than 1.0, suggesting specific antibodies to phosphorylated tau, were found for three IVIG products. Because administration of antibodies to phosphorylated tau has been found to reduce tau-associated pathology in transgenic mouse models of tauopathy, increasing the levels of anti-pTau antibodies, together with other selected antibodies such as anti-Aβ, in IVIG might increase its ability to slow AD's progression. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Imbalance of Hsp70 family variants fosters tau accumulation.

    PubMed

    Jinwal, Umesh K; Akoury, Elias; Abisambra, Jose F; O'Leary, John C; Thompson, Andrea D; Blair, Laura J; Jin, Ying; Bacon, Justin; Nordhues, Bryce A; Cockman, Matthew; Zhang, Juan; Li, Pengfei; Zhang, Bo; Borysov, Sergiy; Uversky, Vladimir N; Biernat, Jacek; Mandelkow, Eckhard; Gestwicki, Jason E; Zweckstetter, Markus; Dickey, Chad A

    2013-04-01

    Dysfunctional tau accumulation is a major contributing factor in tauopathies, and the heat-shock protein 70 (Hsp70) seems to play an important role in this accumulation. Several reports suggest that Hsp70 proteins can cause tau degradation to be accelerated or slowed, but how these opposing activities are controlled is unclear. Here we demonstrate that highly homologous variants in the Hsp70 family can have opposing effects on tau clearance kinetics. When overexpressed in a tetracycline (Tet)-based protein chase model, constitutive heat shock cognate 70 (Hsc70) and inducible Hsp72 slowed or accelerated tau clearance, respectively. Tau synergized with Hsc70, but not Hsp72, to promote microtubule assembly at nearly twice the rate of either Hsp70 homologue in reconstituted, ATP-regenerating Xenopus extracts supplemented with rhodamine-labeled tubulin and human recombinant Hsp72 and Hsc70. Nuclear magnetic resonance spectroscopy with human recombinant protein revealed that Hsp72 had greater affinity for tau than Hsc70 (I/I0 ratio difference of 0.3), but Hsc70 was 30 times more abundant than Hsp72 in human and mouse brain tissue. This indicates that the predominant Hsp70 variant in the brain is Hsc70, suggesting that the brain environment primarily supports slower tau clearance. Despite its capacity to clear tau, Hsp72 was not induced in the Alzheimer's disease brain, suggesting a mechanism for age-associated onset of the disease. Through the use of chimeras that blended the domains of Hsp72 and Hsc70, we determined that the reason for these differences between Hsc70 and Hsp72 with regard to tau clearance kinetics lies within their C-terminal domains, which are essential for their interactions with substrates and cochaperones. Hsp72 but not Hsc70 in the presence of tau was able to recruit the cochaperone ubiquitin ligase CHIP, which is known to facilitate the ubiquitination of tau, describing a possible mechanism of how the C-termini of these homologous Hsp70 variants

  12. Amyloid and tau cerebrospinal fluid biomarkers in HIV infection.

    PubMed

    Gisslén, Magnus; Krut, Jan; Andreasson, Ulf; Blennow, Kaj; Cinque, Paola; Brew, Bruce J; Spudich, Serena; Hagberg, Lars; Rosengren, Lars; Price, Richard W; Zetterberg, Henrik

    2009-12-22

    Because of the emerging intersections of HIV infection and Alzheimer's disease, we examined cerebrospinal fluid (CSF) biomarkers related of amyloid and tau metabolism in HIV-infected patients. In this cross-sectional study we measured soluble amyloid precursor proteins alpha and beta (sAPPalpha and sAPPbeta), amyloid beta fragment 1-42 (Abeta1-42), and total and hyperphosphorylated tau (t-tau and p-tau) in CSF of 86 HIV-infected (HIV+) subjects, including 21 with AIDS dementia complex (ADC), 25 with central nervous system (CNS) opportunistic infections and 40 without neurological symptoms and signs. We also measured these CSF biomarkers in 64 uninfected (HIV-) subjects, including 21 with Alzheimer's disease, and both younger and older controls without neurological disease. CSF sAPPalpha and sAPPbeta concentrations were highly correlated and reduced in patients with ADC and opportunistic infections compared to the other groups. The opportunistic infection group but not the ADC patients had lower CSF Abeta1-42 in comparison to the other HIV+ subjects. CSF t-tau levels were high in some ADC patients, but did not differ significantly from the HIV+ neuroasymptomatic group, while CSF p-tau was not increased in any of the HIV+ groups. Together, CSF amyloid and tau markers segregated the ADC patients from both HIV+ and HIV- neuroasymptomatics and from Alzheimer's disease patients, but not from those with opportunistic infections. Parallel reductions of CSF sAPPalpha and sAPPbeta in ADC and CNS opportunistic infections suggest an effect of CNS immune activation or inflammation on neuronal amyloid synthesis or processing. Elevation of CSF t-tau in some ADC and CNS infection patients without concomitant increase in p-tau indicates neural injury without preferential accumulation of hyperphosphorylated tau as found in Alzheimer's disease. These biomarker changes define pathogenetic pathways to brain injury in ADC that differ from those of Alzheimer's disease.

  13. Harnessing the immune system for treatment and detection of tau pathology.

    PubMed

    Congdon, Erin E; Krishnaswamy, Senthilkumar; Sigurdsson, Einar M

    2014-01-01

    The tau protein is an attractive target for therapy and diagnosis. We started a tau immunotherapy program about 13 years ago and have since demonstrated that active and passive immunotherapies diminish tau pathology and improve function, including cognition, in different mouse models. These findings have been confirmed and extended by several groups. We routinely detect neuronal, and to a lesser extent microglial, antibody uptake correlating with tau pathology. Antibodies bind tau aggregates in the endosomal/lysosomal system, enhancing clearance presumably by promoting their disassembly. Extracellular clearance has recently been shown by others, using antibodies that apparently are not internalized. As most pathological tau is neuronal, intracellular targeting may be more efficacious. However, extracellular tau may be more accessible to antibodies, with tau-antibody complexes a target for microglial phagocytosis. The extent of involvement of each pathway may depend on numerous factors including antibody properties, degree of pathology, and experimental model. On the imaging front, multiple tau ligands derived from β-sheet dyes have been developed by several groups, some with promising results in clinical PET tests. Postmortem analysis should clarify their tau specificity, as in theory and based on histological staining, those are likely to have some affinity for various amyloids. We are developing antibody-derived tau probes that should be more specific, and have in mouse models shown in vivo detection and binding to pathological tau after peripheral injection. These are exciting times for research on tau therapies and diagnostic agents that hopefully can be applied to humans in the near future.

  14. BAG3 facilitates the clearance of endogenous tau in primary neurons.

    PubMed

    Lei, Zhinian; Brizzee, Corey; Johnson, Gail V W

    2015-01-01

    Tau is a microtubule associated protein that is found primarily in neurons, and in pathologic conditions, such as Alzheimer's disease (AD) it accumulates and contributes to the disease process. Because tau plays a fundamental role in the pathogenesis of AD and other tauopathies, and in AD mouse models reducing tau levels improves outcomes, approaches that facilitate tau clearance are being considered as therapeutic strategies. However, fundamental to the development of such interventions is a clearer understanding of the mechanisms that regulate tau clearance. Here, we report a novel mechanism of tau degradation mediated by the co-chaperone BAG3. BAG3 has been shown to be an essential component of a complex that targets substrates to the autophagy pathway for degradation. In rat primary neurons, activation of autophagy by inhibition of proteasome activity or treatment with trehalose resulted in significant decreases in tau and phospho-tau levels. These treatments also induced an upregulation of BAG3. Proteasome inhibition activated JNK, which was responsible for the upregulation of BAG3 and increased tau clearance. Inhibiting JNK or knocking down BAG3 blocked the proteasome inhibition-induced decreases in tau. Further, BAG3 overexpression alone resulted in significant decreases in tau and phospho-tau levels in neurons. These results indicate that BAG3 plays a critical role in regulating the levels of tau in neurons, and interventions that increase BAG3 levels could provide a therapeutic approach in the treatment of AD. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. UX Tau A

    NASA Technical Reports Server (NTRS)

    2007-01-01

    This is an artist's rendition of the one-million-year-old star system called UX Tau A, located approximately 450 light-years away. Observations from NASA's Spitzer Space Telescope showed a gap in the dusty planet-forming disk swirling around the system's central sun-like star.

    Spitzer saw a gap in UX Tau A's disk that extends from 0.2 to 56 astronomical units (an astronomical unit is the distance between the sun and Earth). The gap extends from the equivalent of Mercury to Pluto in our solar system, and is sandwiched between thick inner and outer disks on either side. Astronomers suspect that the gap was carved out by one or more forming planets.

    Such dusty disks are where planets are thought to be born. Dust grains clump together like snowballs to form larger rocks, and then the bigger rocks collide to form the cores of planets. When rocks revolve around their central star, they act like cosmic vacuum cleaners, picking up all the gas and dust in their path and creating gaps.

    Although gaps have been detected in disks swirling around young stars before, UX Tau A is special because the gap is sandwiched between two thick disks of dust. An inner thick dusty disk hugs the central star, then, moving outward, there is a gap, followed by another thick doughnut-shaped disk. Other systems with gaps contain very little to no dust near the central star. In other words, those gaps are more like big holes in the centers of disks.

    Some scientists suspect that these holes could have been carved out by a process called photoevaporation. Photoevaporation occurs when radiation from the central star heats up the gas and dust around it to the point where it evaporates away. The fact that there is thick disk swirling extremely close to UX Tau A's central star rules out the photoevaporation scenario. If photoevaporation from the star played a role, then large amounts of dust would not be floating so close to the star.

  16. CSF tau and the CSF tau/ABeta ratio for the diagnosis of Alzheimer's disease dementia and other dementias in people with mild cognitive impairment (MCI).

    PubMed

    Ritchie, Craig; Smailagic, Nadja; Noel-Storr, Anna H; Ukoumunne, Obioha; Ladds, Emma C; Martin, Steven

    2017-03-22

    . The sensitivities were between 80% and 96% while the specificities were between 33% and 95%. We did not conduct a meta-analysis because the studies were few and small. Only one study reported the accuracy of CSF t-tau/ABeta ratio.Our findings are based on studies with poor reporting. A significant number of studies had unclear risk of bias for the reference standard, participant selection and flow and timing domains. According to the assessment of index test domain, eight of 15 studies were of poor methodological quality.The accuracy of these CSF biomarkers for 'other dementias' had not been investigated in the included primary studies. Investigation of heterogeneity The main sources of heterogeneity were thought likely to be reference standards used for the target disorders, sources of recruitment, participant sampling, index test methodology and aspects of study quality (particularly, inadequate blinding).We were not able to formally assess the effect of each potential source of heterogeneity as planned, due to the small number of studies available to be included. The insufficiency and heterogeneity of research to date primarily leads to a state of uncertainty regarding the value of CSF testing of t-tau, p-tau or p-tau/ABeta ratio for the diagnosis of Alzheimer's disease in current clinical practice. Particular attention should be paid to the risk of misdiagnosis and overdiagnosis of dementia (and therefore over-treatment) in clinical practice. These tests, like other biomarker tests which have been subject to Cochrane DTA reviews, appear to have better sensitivity than specificity and therefore might have greater utility in ruling out Alzheimer's disease as the aetiology to the individual's evident cognitive impairment, as opposed to ruling it in. The heterogeneity observed in the few studies awaiting classification suggests our initial summary will remain valid. However, these tests may have limited clinical value until uncertainties have been addressed. Future

  17. Alzheimer Abeta peptide induces chromosome mis-segregation and aneuploidy, including trisomy 21: requirement for tau and APP.

    PubMed

    Granic, Antoneta; Padmanabhan, Jaya; Norden, Michelle; Potter, Huntington

    2010-02-15

    Both sporadic and familial Alzheimer's disease (AD) patients exhibit increased chromosome aneuploidy, particularly trisomy 21, in neurons and other cells. Significantly, trisomy 21/Down syndrome patients develop early onset AD pathology. We investigated the mechanism underlying mosaic chromosome aneuploidy in AD and report that FAD mutations in the Alzheimer Amyloid Precursor Protein gene, APP, induce chromosome mis-segregation and aneuploidy in transgenic mice and in transfected cells. Furthermore, adding synthetic Abeta peptide, the pathogenic product of APP, to cultured cells causes rapid and robust chromosome mis-segregation leading to aneuploid, including trisomy 21, daughters, which is prevented by LiCl addition or Ca(2+) chelation and is replicated in tau KO cells, implicating GSK-3beta, calpain, and Tau-dependent microtubule transport in the aneugenic activity of Abeta. Furthermore, APP KO cells are resistant to the aneugenic activity of Abeta, as they have been shown previously to be resistant to Abeta-induced tau phosphorylation and cell toxicity. These results indicate that Abeta-induced microtubule dysfunction leads to aneuploid neurons and may thereby contribute to the pathogenesis of AD.

  18. Interplay of pathogenic forms of human tau with different autophagic pathways.

    PubMed

    Caballero, Benjamin; Wang, Yipeng; Diaz, Antonio; Tasset, Inmaculada; Juste, Yves Robert; Stiller, Barbara; Mandelkow, Eva-Maria; Mandelkow, Eckhard; Cuervo, Ana Maria

    2018-02-01

    Loss of neuronal proteostasis, a common feature of the aging brain, is accelerated in neurodegenerative disorders, including different types of tauopathies. Aberrant turnover of tau, a microtubule-stabilizing protein, contributes to its accumulation and subsequent toxicity in tauopathy patients' brains. A direct toxic effect of pathogenic forms of tau on the proteolytic systems that normally contribute to their turnover has been proposed. In this study, we analyzed the contribution of three different types of autophagy, macroautophagy, chaperone-mediated autophagy, and endosomal microautophagy to the degradation of tau protein variants and tau mutations associated with this age-related disease. We have found that the pathogenic P301L mutation inhibits degradation of tau by any of the three autophagic pathways, whereas the risk-associated tau mutation A152T reroutes tau for degradation through a different autophagy pathway. We also found defective autophagic degradation of tau when using mutations that mimic common posttranslational modifications in tau or known to promote its aggregation. Interestingly, although most mutations markedly reduced degradation of tau through autophagy, the step of this process preferentially affected varies depending on the type of tau mutation. Overall, our studies unveil a complex interplay between the multiple modifications of tau and selective forms of autophagy that may determine its physiological degradation and its faulty clearance in the disease context. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  19. Characterization of Early Pathological Tau Conformations and Phosphorylation in Chronic Traumatic Encephalopathy

    PubMed Central

    Kanaan, Nicholas M.; Cox, Kristine; Alvarez, Victor E.; Stein, Thor D.; Poncil, Sharra; McKee, Ann C.

    2016-01-01

    Chronic traumatic encephalopathy (CTE) is a neurodegenerative tauopathy that develops after repetitive head injury. Several lines of evidence in other tauopathies suggest that tau oligomer formation induces neurotoxicity and that tau oligomer-mediated neurotoxicity involves induction of axonal dysfunction through exposure of an N-terminal motif in tau, the phosphatase-activating domain (PAD). Additionally, phosphorylation at serine 422 in tau occurs early and correlates with cognitive decline in patients with Alzheimer disease (AD). We performed immunohistochemistry and immunofluorescence on fixed brain sections and biochemical analysis of fresh brain extracts to characterize the presence of PAD-exposed tau (TNT1 antibody), tau oligomers (TOC1 antibody), tau phosphorylated at S422 (pS422 antibody), and tau truncated at D421 (TauC3 antibody) in the brains of 9-11 cases with CTE and cases of nondemented aged controls and AD (Braak VI) (n = 6, each). All 3 early tau markers (ie, TNT1, TOC1, and pS422) were present in CTE and displayed extensive colocalization in perivascular tau lesions that are considered diagnostic for CTE. Notably, the TauC3 epitope, which is abundant in AD, was relatively sparse in CTE. Together, these results provide the first description of PAD exposure, TOC1 reactive oligomers, phosphorylation of S422, and TauC3 truncation in the tau pathology of CTE. PMID:26671985

  20. Tau Ranging Revisited

    NASA Technical Reports Server (NTRS)

    Tausworthe, Robert C.

    1989-01-01

    Report reviews history of tau ranging and advocates use of advanced electronic circuitry to revive this composite-code-uplink spacecraft-ranging technique. Very-large-scale integration gives new life to abandoned distance-measuring technique.

  1. Corticobasal degeneration with olivopontocerebellar atrophy and TDP-43 pathology: an unusual clinicopathologic variant of CBD

    PubMed Central

    Kouri, Naomi; Oshima, Kenichi; Takahashi, Makio; Murray, Melissa E.; Ahmed, Zeshan; Parisi, Joseph E.; Yen, Shu-Hui C.; Dickson, Dennis W.

    2013-01-01

    CBD is a disorder affecting cognition and movement due to a progressive neurodegeneration associated with distinctive neuropathologic features, including abnormal phosphorylated tau protein in neurons and glia in cortex, basal ganglia, diencephalon and brainstem, as well as ballooned neurons and astrocytic plaques. We identified three cases of CBD with olivopontocerebellar atrophy (CBD-OPCA) that did not have α-synuclein-positive glial cytoplasmic inclusions of multiple system atrophy (MSA). Two patients had clinical features suggestive of progressive supranuclear palsy (PSP), and the third case had cerebellar ataxia thought to be due to idiopathic OPCA. Neuropathologic features of CBD-OPCA are compared to typical CBD, as well as MSA and PSP. CBD-OPCA and MSA had marked neuronal loss in pontine nuclei, inferior olivary nucleus, and Purkinje cell layer. Neuronal loss and grumose degeneration in the cerebellar dentate nucleus was comparable in CBD-OPCA and PSP. Image analysis of tau pathology showed greater infratentorial tau burden, especially in pontine base, in CBD-OPCA compared with typical CBD. Additionally, CBD-OPCA had TDP-43 immunoreactive neuronal and glial cytoplasmic inclusions and threads throughout the basal ganglia and in olivopontocerebellar system. CBD-OPCA met neuropathologic research diagnostic criteria for CBD and shared tau biochemical characteristics with typical CBD. These results suggest that CBD-OPCA is a distinct clinicopathologic variant of CBD with olivopontocerebellar TDP-43 pathology. PMID:23371366

  2. Corticobasal degeneration with olivopontocerebellar atrophy and TDP-43 pathology: an unusual clinicopathologic variant of CBD.

    PubMed

    Kouri, Naomi; Oshima, Kenichi; Takahashi, Makio; Murray, Melissa E; Ahmed, Zeshan; Parisi, Joseph E; Yen, Shu-Hui C; Dickson, Dennis W

    2013-05-01

    Corticobasal degeneration (CBD) is a disorder affecting cognition and movement due to a progressive neurodegeneration associated with distinctive neuropathologic features, including abnormal phosphorylated tau protein in neurons and glia in cortex, basal ganglia, diencephalon, and brainstem, as well as ballooned neurons and astrocytic plaques. We identified three cases of CBD with olivopontocerebellar atrophy (CBD-OPCA) that did not have α-synuclein-positive glial cytoplasmic inclusions of multiple system atrophy (MSA). Two patients had clinical features suggestive of progressive supranuclear palsy (PSP), and the third case had cerebellar ataxia thought to be due to idiopathic OPCA. Neuropathologic features of CBD-OPCA are compared to typical CBD, as well as MSA and PSP. CBD-OPCA and MSA had marked neuronal loss in pontine nuclei, inferior olivary nucleus, and Purkinje cell layer. Neuronal loss and grumose degeneration in the cerebellar dentate nucleus were comparable in CBD-OPCA and PSP. Image analysis of tau pathology showed greater infratentorial tau burden, especially in pontine base, in CBD-OPCA compared with typical CBD. In addition, CBD-OPCA had TDP-43 immunoreactive neuronal and glial cytoplasmic inclusions and threads throughout the basal ganglia and in olivopontocerebellar system. CBD-OPCA met neuropathologic research diagnostic criteria for CBD and shared tau biochemical characteristics with typical CBD. These results suggest that CBD-OPCA is a distinct clinicopathologic variant of CBD with olivopontocerebellar TDP-43 pathology.

  3. Depletion of microglia and inhibition of exosome synthesis halt tau propagation

    PubMed Central

    Asai, Hirohide; Ikezu, Seiko; Tsunoda, Satoshi; Medalla, Maria; Luebke, Jennifer; Haydar, Tarik; Wolozin, Benjamin; Butovsky, Oleg; Kügler, Sebastian; Ikezu, Tsuneya

    2015-01-01

    Accumulation of pathological tau protein is a major hallmark of Alzheimer’s disease. Tau protein spreads from the entorhinal cortex to the hippocampal region early in the disease. Microglia, the primary phagocytes in the brain, are positively correlated with tau pathology, but their involvement in tau propagation is unknown. We developed an adeno-associated virus–based model exhibiting rapid tau propagation from the entorhinal cortex to the dentate gyrus in 4 weeks. We found that depleting microglia dramatically suppressed the propagation of tau and reduced excitability in the dentate gyrus in this mouse model. Moreover, we demonstrate that microglia spread tau via exosome secretion, and inhibiting exosome synthesis significantly reduced tau propagation in vitro and in vivo. These data suggest that microglia and exosomes contribute to the progression of tauopathy and that the exosome secretion pathway may be a therapeutic target. PMID:26436904

  4. Temperature control can abolish anesthesia-induced tau hyperphosphorylation and partly reverse anesthesia-induced cognitive impairment in old mice.

    PubMed

    Xiao, Haibing; Run, Xiaoqin; Cao, Xu; Su, Ying; Sun, Zhou; Tian, Cheng; Sun, Shenggang; Liang, Zhihou

    2013-11-01

    Anesthesia is related to cognitive impairment and the risk for Alzheimer's disease. Hypothermia during anesthesia can lead to abnormal hyperphosphorylation of tau, which has been speculated to be involved in anesthesia-induced cognitive impairment. The aim of this study was to investigate whether maintenance of the tau phosphorylation level by body temperature control during anesthesia could reverse the cognitive dysfunction in C57BL/6 mice. Eighteen-month-old mice were repeatedly anesthetized during a 2-week period with or without maintenance of body temperature, control mice were treated with normal saline instead of anesthetics. Tau phosphorylation level in mice brain was detected on western blot, and cognitive performance was measured using the Morris water maze (MWM). After anesthesia-induced hypothermia in old mice, tau was hyperphosphorylated and the cognitive performance, measured on MWM, was impaired. When body temperature was controlled during anesthesia, however, the tau hyperphosphorylation was completely avoided, and there was partial recovery in cognitive impairment measured on the MWM. Hyperphosphorylation of tau in the brain after anesthesia is an important event, and it might be, although not solely, responsible for postoperative cognitive decline. © 2013 The Authors. Psychiatry and Clinical Neurosciences © 2013 Japanese Society of Psychiatry and Neurology.

  5. Tau and β-Amyloid Are Associated with Medial Temporal Lobe Structure, Function, and Memory Encoding in Normal Aging

    PubMed Central

    2017-01-01

    Normal aging is associated with a decline in episodic memory and also with aggregation of the β-amyloid (Aβ) and tau proteins and atrophy of medial temporal lobe (MTL) structures crucial to memory formation. Although some evidence suggests that Aβ is associated with aberrant neural activity, the relationships among these two aggregated proteins, neural function, and brain structure are poorly understood. Using in vivo human Aβ and tau imaging, we demonstrate that increased Aβ and tau are both associated with aberrant fMRI activity in the MTL during memory encoding in cognitively normal older adults. This pathological neural activity was in turn associated with worse memory performance and atrophy within the MTL. A mediation analysis revealed that the relationship with regional atrophy was explained by MTL tau. These findings broaden the concept of cognitive aging to include evidence of Alzheimer's disease-related protein aggregation as an underlying mechanism of age-related memory impairment. SIGNIFICANCE STATEMENT Alterations in episodic memory and the accumulation of Alzheimer's pathology are common in cognitively normal older adults. However, evidence of pathological effects on episodic memory has largely been limited to β-amyloid (Aβ). Because Aβ and tau often cooccur in older adults, previous research offers an incomplete understanding of the relationship between pathology and episodic memory. With the recent development of in vivo tau PET radiotracers, we show that Aβ and tau are associated with different aspects of memory encoding, leading to aberrant neural activity that is behaviorally detrimental. In addition, our results provide evidence linking Aβ- and tau-associated neural dysfunction to brain atrophy. PMID:28213439

  6. Longitudinal tau PET in ageing and Alzheimer’s disease

    PubMed Central

    Jack, Clifford R; Wiste, Heather J; Schwarz, Christopher G; Lowe, Val J; Senjem, Matthew L; Vemuri, Prashanthi; Weigand, Stephen D; Therneau, Terry M; Knopman, Dave S; Gunter, Jeffrey L; Jones, David T; Graff-Radford, Jonathan; Kantarci, Kejal; Roberts, Rosebud O; Mielke, Michelle M; Machulda, Mary M; Petersen, Ronald C

    2018-01-01

    Abstract See Hansson and Mormino (doi:10.1093/brain/awy065) for a scientific commentary on this article. Our objective was to compare different whole-brain and region-specific measurements of within-person change on serial tau PET and evaluate its utility for clinical trials. We studied 126 individuals: 59 cognitively unimpaired with normal amyloid, 37 cognitively unimpaired with abnormal amyloid, and 30 cognitively impaired with an amnestic phenotype and abnormal amyloid. All had baseline amyloid PET and two tau PET, MRI, and clinical assessments. We compared the topography across all cortical regions of interest of tau PET accumulation rates and the rates of four different whole-brain or region-specific meta-regions of interest among the three clinical groups. We computed sample size estimates for change in tau PET, cortical volume, and memory/mental status indices for use as outcome measures in clinical trials. The cognitively unimpaired normal amyloid group had no observable tau accumulation throughout the brain. Tau accumulation rates in cognitively unimpaired abnormal amyloid were low [0.006 standardized uptake value ratio (SUVR), 0.5%, per year] but greater than rates in the cognitively unimpaired normal amyloid group in the basal and mid-temporal, retrosplenial, posterior cingulate, and entorhinal regions of interest. Thus, the earliest elevation in accumulation rates was widespread and not confined to the entorhinal cortex. Tau accumulation rates in the cognitively impaired abnormal amyloid group were 0.053 SUVR (3%) per year and greater than rates in cognitively unimpaired abnormal amyloid in all cortical areas except medial temporal. Rates of accumulation in the four meta-regions of interest differed but only slightly from one another. Among all tau PET meta-regions of interest, sample size estimates were smallest for a temporal lobe composite within cognitively unimpaired abnormal amyloid and for the late Alzheimer’s disease meta-region of interest

  7. Structure-activity relationship of cyanine tau aggregation inhibitors

    PubMed Central

    Chang, Edward; Congdon, Erin E.; Honson, Nicolette S.; Duff, Karen E.; Kuret, Jeff

    2009-01-01

    A structure-activity relationship for symmetrical cyanine inhibitors of human tau aggregation was elaborated using a filter trap assay. Antagonist activity depended on cyanine heterocycle, polymethine bridge length, and the nature of meso- and N-substituents. One potent member of the series, 3,3’-diethyl-9-methylthiacarbocyanine iodide (compound 11), retained submicromolar potency and had calculated physical properties consistent with blood-brain barrier and cell membrane penetration. Exposure of organotypic slices prepared from JNPL3 transgenic mice (which express human tau harboring the aggregation prone P301L tauopathy mutation) to compound 11 for one week revealed a biphasic dose response relationship. Low nanomolar concentrations decreased insoluble tau aggregates to half those observed in slices treated with vehicle alone. In contrast, high concentrations (≥300 nM) augmented tau aggregation and produced abnormalities in tissue tubulin levels. These data suggest that certain symmetrical carbocyanine dyes can modulate tau aggregation in the slice biological model at concentrations well below those associated with toxicity. PMID:19432420

  8. APP metabolism regulates tau proteostasis in human cerebral cortex neurons.

    PubMed

    Moore, Steven; Evans, Lewis D B; Andersson, Therese; Portelius, Erik; Smith, James; Dias, Tatyana B; Saurat, Nathalie; McGlade, Amelia; Kirwan, Peter; Blennow, Kaj; Hardy, John; Zetterberg, Henrik; Livesey, Frederick J

    2015-05-05

    Accumulation of Aβ peptide fragments of the APP protein and neurofibrillary tangles of the microtubule-associated protein tau are the cellular hallmarks of Alzheimer's disease (AD). To investigate the relationship between APP metabolism and tau protein levels and phosphorylation, we studied human-stem-cell-derived forebrain neurons with genetic forms of AD, all of which increase the release of pathogenic Aβ peptides. We identified marked increases in intracellular tau in genetic forms of AD that either mutated APP or increased its dosage, suggesting that APP metabolism is coupled to changes in tau proteostasis. Manipulating APP metabolism by β-secretase and γ-secretase inhibition, as well as γ-secretase modulation, results in specific increases and decreases in tau protein levels. These data demonstrate that APP metabolism regulates tau proteostasis and suggest that the relationship between APP processing and tau is not mediated solely through extracellular Aβ signaling to neurons. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  9. NEUROPATHOLOGIC FINDINGS IN CETACEANS STRANDED IN ITALY (2002-14).

    PubMed

    Pintore, Maria Domenica; Mignone, Walter; Di Guardo, Giovanni; Mazzariol, Sandro; Ballardini, Marco; Florio, Caterina Lucia; Goria, Maria; Romano, Angelo; Caracappa, Santo; Giorda, Federica; Serracca, Laura; Pautasso, Alessandra; Tittarelli, Cristiana; Petrella, Antonio; Lucifora, Giuseppe; Di Nocera, Fabio; Uberti, Barbara Degli; Corona, Cristiano; Casalone, Cristina; Iulini, Barbara

    2018-04-01

      We summarized the neuropathologic findings in 60 cetaceans stranded along the Italian coastline from 2002 to 2014. The following neuropathologic changes were detected in 45% (27/60) of animals: nonsuppurative meningo-encephalitides (30%, 18/60), nonspecific lesions (12%, 7/60), suppurative encephalitis (2%, 1/60), and neoplasm (2%, 1/60). No histologic lesions were found in 47% (28/60) of the specimens. Five (8%, 5/60) samples were unsuitable for analysis. Analysis with PCR detected Brucella spp., morbillivirus, and Toxoplasma gondii infection in one, six, and seven individuals, respectively. Immunohistochemical analysis confirmed positivity for morbillivirus and for T. gondii infection in three cases each. No evidence of the scrapie-associated prion protein PrPSc was detected. Our findings underscore the importance of an adequate surveillance system for monitoring aquatic mammal pathologies and for protecting both animal and human health.

  10. A novel triple repeat mutant tau transgenic model that mimics aspects of pick's disease and fronto-temporal tauopathies.

    PubMed

    Rockenstein, Edward; Overk, Cassia R; Ubhi, Kiren; Mante, Michael; Patrick, Christina; Adame, Anthony; Bisquert, Alejandro; Trejo-Morales, Margarita; Spencer, Brian; Masliah, Eliezer

    2015-01-01

    Tauopathies are a group of disorders leading to cognitive and behavioral impairment in the aging population. While four-repeat (4R) Tau is more abundant in corticobasal degeneration, progressive supranuclear palsy, and Alzheimer's disease, three-repeat (3R) Tau is the most abundant splice, in Pick's disease. A number of transgenic models expressing wild-type and mutant forms of the 4R Tau have been developed. However, few models of three-repeat Tau are available. A transgenic mouse model expressing three-repeat Tau was developed bearing the mutations associated with familial forms of Pick's disease (L266V and G272V mutations). Two lines expressing high (Line 13) and low (Line 2) levels of the three-repeat mutant Tau were analyzed. By Western blot, using antibodies specific to three-repeat Tau, Line 13 expressed 5-times more Tau than Line 2. The Tau expressed by these mice was most abundant in the frontal-temporal cortex and limbic system and was phosphorylated at residues detected by the PHF-1, AT8, CP9 and CP13 antibodies. The higher-expressing mice displayed hyperactivity, memory deficits in the water maze and alterations in the round beam. The behavioral deficits started at 6-8 months of age and were associated with a progressive increase in the accumulation of 3R Tau. By immunocytochemistry, mice from Line 13 displayed extensive accumulation of 3R Tau in neuronal cells bodies in the pyramidal neurons of the neocortex, CA1-3 regions, and dentate gyrus of the hippocampus. Aggregates in the granular cells had a globus appearance and mimic Pick's-like inclusions. There were abundant dystrophic neurites, astrogliosis and synapto-dendritic damage in the neocortex and hippocampus of the higher expresser line. The hippocampal lesions were moderately argyrophilic and Thioflavin-S negative. By electron microscopy, discrete straight filament aggregates were detected in some neurons in the hippocampus. This model holds promise for better understanding the natural history

  11. Differential effects of voluntary treadmill exercise and caloric restriction on tau pathogenesis in a mouse model of Alzheimer's disease-like tau pathology fed with Western diet.

    PubMed

    Gratuze, Maud; Julien, Jacinthe; Morin, Françoise; Marette, André; Planel, Emmanuel

    2017-10-03

    Tau is a microtubule-associated protein that becomes pathological when it undergoes hyperphosphorylation and aggregation as seen in Alzheimer's disease (AD). AD is mostly sporadic, with environmental, biological and/or genetic risks factors, interacting together to promote the disease. In the past decade, reports have suggested that obesity in midlife could be one of these risk factors. On the other hand, caloric restriction and physical exercise have been reported to reduce the incidence and outcome of obesity as well as AD. We evaluated the impact of voluntary physical exercise and caloric restriction on tau pathology during 2months in hTau mice under high caloric diet in order to evaluate if these strategies could prevent AD-like pathology in obese conditions. We found no effects of obesity induced by Western diet on both Tau phosphorylation and aggregation compared to controls. However, exercise reduced tau phosphorylation while caloric restriction exacerbated its aggregation in the brains of obese hTau mice. We then examined the mechanisms underlying changes in tau phosphorylation and aggregation by exploring major tau kinases and phosphatases and key proteins involved in autophagy. However, there were no significant effects of voluntary exercise and caloric restriction on these proteins in hTau mice that could explain our results. In this study, we report differential effects of voluntary treadmill exercise and caloric restriction on tau pathogenesis in our obese mice, namely beneficial effect of exercise on tau phosphorylation and deleterious effect of caloric restriction on tau aggregation. Our results suggest that lifestyle strategies used to reduce metabolic disorders and AD must be selected and studied carefully to avoid exacerbation of pathologies. Copyright © 2017. Published by Elsevier Inc.

  12. Dimethyl Sulfoxide Induces Both Direct and Indirect Tau Hyperphosphorylation

    PubMed Central

    Julien, Carl; Marcouiller, François; Bretteville, Alexis; El Khoury, Noura B.; Baillargeon, Joanie; Hébert, Sébastien S.; Planel, Emmanuel

    2012-01-01

    Dimethyl sulfoxide (DMSO) is widely used as a solvent or vehicle for biological studies, and for treatment of specific disorders, including traumatic brain injury and several forms of amyloidosis. As Alzheimer’s disease (AD) brains are characterized by deposits of β-amyloid peptides, it has been suggested that DMSO could be used as a treatment for this devastating disease. AD brains are also characterized by aggregates of hyperphosphorylated tau protein, but the effect of DMSO on tau phosphorylation is unknown. We thus investigated the impact of DMSO on tau phosphorylation in vitro and in vivo. One hour following intraperitoneal administration of 1 or 2 ml/kg DMSO in mice, no change was observed in tau phosphorylation. However, at 4 ml/kg, tau was hyperphosphorylated at AT8 (Ser202/Thr205), PHF-1 (Ser396/Ser404) and AT180 (Thr231) epitopes. At this dose, we also noticed that the animals were hypothermic. When the mice were maintained normothermic, the effect of 4 ml/kg DMSO on tau hyperphosphorylation was prevented. On the other hand, in SH-SY5Y cells, 0.1% DMSO induced tau hyperphosphorylation at AT8 and AT180 phosphoepitopes in normothermic conditions. Globally, these findings demonstrate that DMSO can induce tau hyperphosphorylation indirectly via hypothermia in vivo, and directly in vitro. These data should caution researchers working with DMSO as it can induce artifactual results both in vivo and in vitro. PMID:22768202

  13. Tau Oligomers as Pathogenic Seeds: Preparation and Propagation In Vitro and In Vivo.

    PubMed

    Gerson, Julia E; Sengupta, Urmi; Kayed, Rakez

    2017-01-01

    Tau oligomers have been shown to be the main toxic tau species in a number of neurodegenerative disorders. In order to study tau oligomers both in vitro and in vivo, we have established methods for the reliable preparation, isolation, and detection of tau oligomers. Methods for the seeding of tau oligomers, isolation of tau oligomers from tissue, and detection of tau oligomers using tau oligomer-specific antibodies by biochemical and immunohistochemical methods are detailed below.

  14. Neuropathology of dementia with Lewy bodies in advanced age: a comparison with Alzheimer disease.

    PubMed

    Ubhi, Kiren; Peng, Kevin; Lessig, Stephanie; Estrella, Jennilyn; Adame, Anthony; Galasko, Douglas; Salmon, David P; Hansen, Lawrence A; Kawas, Claudia H; Masliah, Eliezer

    2010-11-26

    Dementia with Lewy Bodies (DLB) is a common neurodegenerative disorder of the aging population characterized by α-synuclein accumulation in cortical and subcortical regions. Although neuropathology in advanced age has been investigated in dementias such as Alzheimer Disease (AD), severity of the neuropathology in the oldest old with DLB remains uncharacterized. For this purpose we compared characteristics of DLB cases divided into three age groups 70-79, 80-89 and ≥ 90 years (oldest old). Neuropathological indicators and levels of synaptophysin were assessed and correlated with clinical measurements of cognition and dementia severity. These studies showed that frequency and severity of DLB was lower in 80-89 and ≥ 90 year cases compared to 70-79 year old group but cognitive impairment did not vary with age. The extent of AD neuropathology correlated with dementia severity only in the 70-79 year group, while synaptophysin immunoreactivity more strongly associated with dementia severity in the older age group in both DLB and AD. Taken together these results suggest that the oldest old with DLB might represent a distinct group. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  15. Bsrightarrowtau+tau- decay in the general two Higgs doublet

    NASA Astrophysics Data System (ADS)

    Iltan, Erhan Onur; Turan, Gursevil

    2002-11-01

    We study the exclusive decay Bsrightarrowtau+tau- in the general two Higgs doublet model. We analyse the dependencies of the branching ratio on the model parameters, including the leading order QCD corrections. We found that there is an enhancement in the branching ratio, especially for rtb = bar xiN,ttU/bar xiN,bbD > 1 case. Further, the neutral Higgs effects are detectable for large values of the parameter bar xiN,tautauD.

  16. Transcriptome analyses of chronic traumatic encephalopathy show alterations in protein phosphatase expression associated with tauopathy

    PubMed Central

    Seo, Jeong-Sun; Lee, Seungbok; Shin, Jong-Yeon; Hwang, Yu Jin; Cho, Hyesun; Yoo, Seong-Keun; Kim, Yunha; Lim, Sungsu; Kim, Yun Kyung; Hwang, Eun Mi; Kim, Su Hyun; Kim, Chong-Hyun; Hyeon, Seung Jae; Yun, Ji-Young; Kim, Jihye; Kim, Yona; Alvarez, Victor E; Stein, Thor D; Lee, Junghee; Kim, Dong Jin; Kim, Jong-Il; Kowall, Neil W; Ryu, Hoon; McKee, Ann C

    2017-01-01

    Chronic traumatic encephalopathy (CTE) is a progressive neurodegenerative disorder that is associated with repetitive head injury and has distinctive neuropathological features that differentiate this disease from other neurodegenerative diseases. Intraneuronal tau aggregates, although they occur in different patterns, are diagnostic neuropathological features of CTE, but the precise mechanism of tauopathy is not known in CTE. We performed whole RNA sequencing analysis of post-mortem brain tissue from patients with CTE and compared the results to normal controls to determine the transcriptome signature changes associated with CTE. The results showed that the genes related to the MAP kinase and calcium-signaling pathways were significantly downregulated in CTE. The altered expression of protein phosphatases (PPs) in these networks further suggested that the tauopathy observed in CTE involves common pathological mechanisms similar to Alzheimer's disease (AD). Using cell lines and animal models, we also showed that reduced PPP3CA/PP2B phosphatase activity is directly associated with increases in phosphorylated (p)-tau proteins. These findings provide important insights into PP-dependent neurodegeneration and may lead to novel therapeutic approaches to reduce the tauopathy associated with CTE. PMID:28524178

  17. Reduced miR-512 and the Elevated Expression of Its Targets cFLIP and MCL1 Localize to Neurons With Hyperphosphorylated Tau Protein in Alzheimer Disease.

    PubMed

    Mezache, Louisa; Mikhail, Madison; Garofalo, Michela; Nuovo, Gerard J

    2015-10-01

    The cause for the neurofibrillary tangles and plaques in Alzheimer disease likely relates to an abnormal accumulation of their key components, which include β-amyloid and hyperphosphorylated tau protein. We segregated Alzheimer brain sections from people with end-stage disease into those with abundant hyperphosphorylated tau protein and those without and compared each to normal brains for global microRNA patterns. A significant reduced expression of several microRNAs, including miR-512, was evident in the Alzheimer brain sections with abundant hyperphosphorylated tau. Immunohistochemistry documented that 2 known targets of microRNA-512, cFLIP and MCL1, were significantly over expressed and each colocalized to neurons with the abnormal tau protein. Analysis for apoptosis including activated caspase-3, increased caspase-4 and caspase-8, apoptosis initiating factor, APAF-1 activity, and the TUNEL assay was negative in the areas where neurons showed hyperphosphorylated tau. MCM2 expression, a marker of neuroprogenitor cells, was significantly reduced in the Alzheimer sections that contained the hyperphosphorylated tau. These results suggest that a basic defect in Alzheimer disease may be the reduced microRNA-driven increased expression of proteins that may alter the apoptotic/antiapoptotic balance of neurons. This, in turn, could lead to the accumulation of key Alzheimer proteins such as hyperphosphorylated tau that ultimately prevent normal neuronal function and lead to disease symptomatology.

  18. Wess-Zumino current and the structure of the decay tau- -->K- pi- K+ nu tau.

    PubMed

    Coan, T E; Gao, Y S; Liu, F; Stroynowski, R; Artuso, M; Boulahouache, C; Blusk, S; Butt, J; Dambasuren, E; Dorjkhaidav, O; Haynes, J; Menaa, N; Mountain, R; Muramatsu, H; Nandakumar, R; Redjimi, R; Sia, R; Skwarnicki, T; Stone, S; Wang, J C; Zhang, Kevin; Mahmood, A H; Csorna, S E; Bonvicini, G; Cinabro, D; Dubrovin, M; Bornheim, A; Lipeles, E; Pappas, S P; Shapiro, A; Weinstein, A J; Briere, R A; Chen, G P; Ferguson, T; Tatishvili, G; Vogel, H; Watkins, M E; Adam, N E; Alexander, J P; Berkelman, K; Boisvert, V; Cassel, D G; Duboscq, J E; Ecklund, K M; Ehrlich, R; Galik, R S; Gibbons, L; Gittelman, B; Gray, S W; Hartill, D L; Heltsley, B K; Hsu, L; Jones, C D; Kandaswamy, J; Kreinick, D L; Kuznetsov, V E; Magerkurth, A; Mahlke-Krüger, H; Meyer, T O; Patterson, J R; Pedlar, T K; Peterson, D; Pivarski, J; Riley, D; Sadoff, A J; Schwarthoff, H; Shepherd, M R; Sun, W M; Thayer, J G; Urner, D; Wilksen, T; Weinberger, M; Athar, S B; Avery, P; Breva-Newell, L; Potlia, V; Stoeck, H; Yelton, J; Eisenstein, B I; Gollin, G D; Karliner, I; Lowrey, N; Naik, P; Sedlack, C; Selen, M; Thaler, J J; Williams, J; Edwards, K W; Besson, D; Gao, K Y; Gong, D T; Kubota, Y; Li, S Z; Poling, R; Scott, A W; Smith, A; Stepaniak, C J; Urheim, J; Metreveli, Z; Seth, K K; Tomaradze, A; Zweber, P; Arms, K; Eckhart, E; Gan, K K; Gwon, C; Severini, H; Skubic, P; Asner, D M; Dytman, S A; Mehrabyan, S; Mueller, J A; Nam, S; Savinov, V; Huang, G S; Miller, D H; Pavlunin, V; Sanghi, B; Shibata, E I; Shipsey, I P J; Adams, G S; Chasse, M; Cummings, J P; Danko, I; Napolitano, J; Cronin-Hennessy, D; Park, C S; Park, W; Thayer, J B; Thorndike, E H

    2004-06-11

    We present the first study of the vector (Wess-Zumino) current in tau(-)-->K-pi-K+nu(tau) decay using data collected with the CLEO III detector at the Cornell Electron Storage Ring. We determine the quantitative contributions to the decay width from the vector and axial vector currents. Within the framework of a model by Kühn and Mirkes, we identify the quantitative contributions to the total decay rate from the intermediate states omegapi, rho(')pi, and K*K.

  19. Inhibition of GSK3 dependent tau phosphorylation by metals.

    PubMed

    Gómez-Ramos, Alberto; Domínguez, Jorge; Zafra, Delia; Corominola, Helena; Gomis, Ramon; Guinovart, Joan J; Avila, Jesús

    2006-04-01

    One of the main pathological characteristics of Alzheimer's disease is the presence in the brain of the patients of an aberrant structure, the paired helical filaments, composed of hyperphosphorylated tau. The level of tau phosphorylation has been correlated with the capacity for tau aggregation. Thus, the mechanism for tau phosphorylation could be important to clarify those pathological features in Alzheimer's disease. Tau protein could be modified by different kinases, being GSK3 the one that could modify more sites of that protein. GSK3 activity could be modulate by the presence of metals like magnesium that can be required for the proper function of the kinase, whereas, metals like manganesum or lithium inhibit the activity of the kinase. Many works have been done to study the inhibition of GSK3 by lithium, a specific inhibitor of that kinase. More recently, it has been indicated that sodium tungstate could also inhibit GSK3 through a different mechanism. In this review, we discuss the effect of these two metals, lithium and tungstate, on GSK3 (or tau I kinase) activity.

  20. Rapid Neurofibrillary Tangle Formation after Localized Gene Transfer of Mutated Tau

    PubMed Central

    Klein, Ronald L.; Lin, Wen-Lang; Dickson, Dennis W.; Lewis, Jada; Hutton, Michael; Duff, Karen; Meyer, Edwin M.; King, Michael A.

    2004-01-01

    Neurofibrillary pathology was produced in the brains of adult rats after localized gene transfer of human tau carrying the P301L mutation, which is associated with frontotemporal dementia with parkinsonism. Within 1 month of in situ transfection of the basal forebrain region of normal rats, tau-immunoreactive and argyrophilic neuronal lesions formed. The fibrillar lesions had features of neurofibrillary tangles and tau immunoreactivity at light and electron microscopic levels. In addition to neurofibrillary tangles, other tau pathology, including pretangles and neuropil threads, was abundant and widespread. Tau gene transfer to the hippocampal region of amyloid-depositing transgenic mice produced pretangles and threads, as well as intensely tau-immunoreactive neurites in amyloid plaques. The ability to produce neurofibrillary pathology in adult rodents makes this a useful method to study tau-related neurodegeneration. PMID:14695347

  1. The toxicity of tau in Alzheimer disease: turnover, targets and potential therapeutics.

    PubMed

    Pritchard, Susanne M; Dolan, Philip J; Vitkus, Alisa; Johnson, Gail V W

    2011-08-01

    It has been almost 25 years since the initial discovery that tau was the primary component of the neurofibrillary tangles (NFTs) in Alzheimer disease (AD) brain. Although AD is defined by both β-amyloid (Aβ) pathology (Aβ plaques) and tau pathology (NFTs), whether or not tau played a critical role in disease pathogenesis was a subject of discussion for many years. However, given the increasing evidence that pathological forms of tau can compromise neuronal function and that tau is likely an important mediator of Aβ toxicity, there is a growing awareness that tau is a central player in AD pathogenesis. In this review we begin with a brief history of tau, then provide an overview of pathological forms of tau, followed by a discussion of the differential degradation of tau by either the proteasome or autophagy and possible mechanisms by which pathological forms of tau may exert their toxicity. We conclude by discussing possible avenues for therapeutic intervention based on these emerging themes of tau's role in AD. © 2011 The Authors Journal compilation © 2011 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.

  2. Lipid raft disarrangement as a result of neuropathological progresses: a novel strategy for early diagnosis?

    PubMed

    Marin, R; Rojo, J A; Fabelo, N; Fernandez, C E; Diaz, M

    2013-08-15

    Lipid rafts are the preferential site of numerous membrane signaling proteins which are involved in neuronal functioning and survival. These proteins are organized in multiprotein complexes, or signalosomes, in close contact with lipid classes particularly represented in lipid rafts (i.e. cholesterol, sphingolipids and saturated fatty acids), which may contribute to physiological responses leading to neuroprotection. Increasing evidence indicates that alteration of lipid composition in raft structures as a consequence of neuropathologies, such as Alzheimer's disease (AD) and Parkinson's disease (PD), causes a dramatic increase in lipid raft order. These phenomena may correlate with perturbation of signalosome activities, likely contributing to neurodegenerative progression. Interestingly, significant disruption of stable raft microenvironments has been already observed in the first stages of either AD or PD, suggesting that these alterations may represent early events in the neuropathological development. In this regard, the search for biochemical markers, such as specific metabolic products altered in the brain at the first steps of the disease, presently represents an important challenge for early diagnostic strategies. Alterations of these biomarkers may be reflected in either plasma or cerebrospinal fluid, thus representing a potential strategy to predict an accurate diagnosis. We propose that pathologically-linked lipid raft markers may be interesting candidates to be explored at this level, although it has not been studied so far to what extent alteration of different signalosome components may be reflected in peripheral fluids. In this mini-review, we will discuss on relevant aspects of lipid rafts that contribute to the modulation of neuropathological events related to AD and PD. An interesting hypothesis is that anomalies on raft biomarkers measured at peripheral fluids might mirror the lipid raft pathology observed in early stages of AD and PD. Copyright

  3. Cognitive and Social Lifestyle: Links with Neuropathology and Cognition in Late Life

    PubMed Central

    Bennett, David A.; Arnold, Steven E.; Valenzuela, Michael J; Brayne, Carol; Schneider, Julie A.

    2014-01-01

    Many studies report an association of cognitive and social experiential factors and related traits with dementia risk. Further, many clinical-pathologic studies find a poor correspondence between levels of neuropathology and the presence of dementia and level of cognitive impairment. The poor correspondence suggests that other factors contribute to the maintenance or loss of cognitive function, with factors associated with the maintenance of function referred to as neural or cognitive reserve. This has led investigators to examine the associations of cognitive and social experiential factors with neuropathology as a first step in disentangling the complex associations between these experiential risk factors, neuropathology, and cognitive impairment. Despite the consistent associations of a range of cognitive and social lifestyle factors with cognitive decline and dementia risk, the extant clinical pathologic data finds only a single factor from one cohort, linguistic ability, related to AD pathology. Other factors, including education, harm avoidance, and emotional neglect, are associated with cerebrovascular disease. Overall, the associations are weak. Some factors, such as education, social networks, and purpose in life modify the relation of neuropathology to cognition. Finally, some factors such as cognitive activity appear to bypass known pathologies altogether suggesting a more direct association with biologic indices that promote person-specific differences in reserve and resilience. Future work will first need to replicate findings across more studies to ensure the veracity of the existing data. Second, effort is need to identify the molecular substrates of neural reserve as potential mediators of the association of lifestyle factors with cognition. PMID:24356982

  4. Cigarette Smoking Accelerated Brain Aging and Induced Pre-Alzheimer-Like Neuropathology in Rats

    PubMed Central

    Ho, Yuen-Shan; Yang, Xifei; Yeung, Sze-Chun; Chiu, Kin; Lau, Chi-Fai; Tsang, Andrea Wing-Ting; Mak, Judith Choi-Wo; Chang, Raymond Chuen-Chung

    2012-01-01

    Cigarette smoking has been proposed as a major risk factor for aging-related pathological changes and Alzheimer's disease (AD). To date, little is known for how smoking can predispose our brains to dementia or cognitive impairment. This study aimed to investigate the cigarette smoke-induced pathological changes in brains. Male Sprague-Dawley (SD) rats were exposed to either sham air or 4% cigarette smoke 1 hour per day for 8 weeks in a ventilated smoking chamber to mimic the situation of chronic passive smoking. We found that the levels of oxidative stress were significantly increased in the hippocampus of the smoking group. Smoking also affected the synapse through reducing the expression of pre-synaptic proteins including synaptophysin and synapsin-1, while there were no changes in the expression of postsynaptic protein PSD95. Decreased levels of acetylated-tubulin and increased levels of phosphorylated-tau at 231, 205 and 404 epitopes were also observed in the hippocampus of the smoking rats. These results suggested that axonal transport machinery might be impaired, and the stability of cytoskeleton might be affected by smoking. Moreover, smoking affected amyloid precursor protein (APP) processing by increasing the production of sAPPβ and accumulation of β–amyloid peptide in the CA3 and dentate gyrus region. In summary, our data suggested that chronic cigarette smoking could induce synaptic changes and other neuropathological alterations. These changes might serve as evidence of early phases of neurodegeneration and may explain why smoking can predispose brains to AD and dementia. PMID:22606286

  5. Is phosphorylated tau unique to chronic traumatic encephalopathy? Phosphorylated tau in epileptic brain and chronic traumatic encephalopathy.

    PubMed

    Puvenna, Vikram; Engeler, Madeline; Banjara, Manoj; Brennan, Chanda; Schreiber, Peter; Dadas, Aaron; Bahrami, Ashkon; Solanki, Jesal; Bandyopadhyay, Anasua; Morris, Jacqueline K; Bernick, Charles; Ghosh, Chaitali; Rapp, Edward; Bazarian, Jeffrey J; Janigro, Damir

    2016-01-01

    Repetitive traumatic brain injury (rTBI) is one of the major risk factors for the abnormal deposition of phosphorylated tau (PT) in the brain and chronic traumatic encephalopathy (CTE). CTE and temporal lobe epilepsy (TLE) affect the limbic system, but no comparative studies on PT distribution in TLE and CTE are available. It is also unclear whether PT pathology results from repeated head hits (rTBI). These gaps prevent a thorough understanding of the pathogenesis and clinical significance of PT, limiting our ability to develop preventative and therapeutic interventions. We quantified PT in TLE and CTE to unveil whether a history of rTBI is a prerequisite for PT accumulation in the brain. Six postmortem CTE (mean 73.3 years) and age matched control samples were compared to 19 surgically resected TLE brain specimens (4 months-58 years; mean 27.6 years). No history of TBI was present in TLE or control; all CTE patients had a history of rTBI. TLE and CTE brain displayed increased levels of PT as revealed by immunohistochemistry. No age-dependent changes were noted, as PT was present as early as 4 months after birth. In TLE and CTE, cortical neurons, perivascular regions around penetrating pial vessels and meninges were immunopositive for PT; white matter tracts also displayed robust expression of extracellular PT organized in bundles parallel to venules. Microscopically, there were extensive tau-immunoreactive neuronal, astrocytic and degenerating neurites throughout the brain. In CTE perivascular tangles were most prominent. Overall, significant differences in staining intensities were found between CTE and control (P<0.01) but not between CTE and TLE (P=0.08). pS199 tau analysis showed that CTE had the most high molecular weight tangle-associated tau, whereas epileptic brain contained low molecular weight tau. Tau deposition may not be specific to rTBI since TLE recapitulated most of the pathological features of CTE. Copyright © 2015 Elsevier B.V. All rights

  6. Is phosphorylated tau unique to chronic traumatic encephalopathy? Phosphorylated tau in epileptic brain and chronic traumatic encephalopathy

    PubMed Central

    Puvenna, Vikram; Engeler, Madeline; Banjara, Manoj; Brennan, Chanda; Schreiber, Peter; Dadas, Aaron; Bahrami, Ashkon; Solanki, Jesal; Bandyopadhyay, Anasua; Morris, Jacqueline K.; Bernick, Charles; Ghosh, Chaitali; Bazarian, Jeffrey J.; Janigro, Damir

    2016-01-01

    Repetitive traumatic brain injury (rTBI) is one of the major risk factors for the abnormal deposition of phosphorylated tau (PT) in the brain and chronic traumatic encephalopathy (CTE). CTE and temporal lobe epilepsy (TLE) affect the limbic system, but no comparative studies on PT distribution in TLE and CTE are available. It is also unclear whether PT pathology results from repeated head hits (rTBI). These gaps prevent a thorough understanding of the pathogenesis and clinical significance of PT, limiting our ability to develop preventative and therapeutic interventions. We quantified PT in TLE and CTE to unveil whether a history of rTBI is a prerequisite for PT accumulation in the brain. Six post mortem CTE (mean 73.3 years) and age matched control samples were compared to 19 surgically resected TLE brain specimens (4 months-58 years; mean 27.6 years). No history of TBI was present in TLE or control; all CTE patients had a history of rTBI. TLE and CTE brain displayed increased levels of PT as revealed by immunohistochemistry. No age-dependent changes were noted, as PT was present as early as 4 months after birth. In TLE and CTE, cortical neurons, perivascular regions around penetrating pial vessels and meninges were immunopositive for PT; white matter tracts also displayed robust expression of extracellular PT organized in bundles parallel to venules. Microscopically, there were extensive tau-immunoreactive neuronal, astrocytic and degenerating neurites throughout the brain. In CTE perivascular tangles were most prominent. Overall, significant differences in staining intensities were found between CTE and control (P<0.01) but not between CTE and TLE (P=0.08). pS199 tau analysis showed that CTE had the most high molecular weight tangle-associated tau, whereas epileptic brain contained low molecular weight tau. Tau deposition may not be specific to rTBI since TLE recapitulated most of the pathological features of CTE. PMID:26556772

  7. Relation of genomic variants for Alzheimer disease dementia to common neuropathologies

    PubMed Central

    Yu, Lei; Buchman, Aron S.; Schneider, Julie A.; De Jager, Philip L.; Bennett, David A.

    2016-01-01

    Objective: To investigate the associations of previously reported Alzheimer disease (AD) dementia genomic variants with common neuropathologies. Methods: This is a postmortem study including 1,017 autopsied participants from 2 clinicopathologic cohorts. Analyses focused on 22 genomic variants associated with AD dementia in large-scale case-control genome-wide association study (GWAS) meta-analyses. The neuropathologic traits of interest were a pathologic diagnosis of AD according to NIA-Reagan criteria, macroscopic and microscopic infarcts, Lewy bodies (LB), and hippocampal sclerosis. For each variant, multiple logistic regression was used to investigate its association with neuropathologic traits, adjusting for age, sex, and subpopulation structure. We also conducted power analyses to estimate the sample sizes required to detect genome-wide significance (p < 5 × 10−8) for pathologic AD for all variants. Results: APOE ε4 allele was associated with greater odds of pathologic AD (odds ratio [OR] 3.82, 95% confidence interval [CI] 2.67–5.46, p = 1.9 × 10−13), while ε2 allele was associated with lower odds of pathologic AD (OR 0.42, 95% CI 0.30–0.61, p = 3.1 × 10−6). Four additional genomic variants including rs6656401 (CR1), rs1476679 (ZCWPW1), rs35349669 (INPP5D), and rs17125944 (FERMT2) had p values less than 0.05. Remarkably, half of the previously reported AD dementia variants are not likely to be detected for association with pathologic AD with a sample size in excess of the largest GWAS meta-analyses of AD dementia. Conclusions: Many recently discovered genomic variants for AD dementia are not associated with the pathology of AD. Some genomic variants for AD dementia appear to be associated with other common neuropathologies. PMID:27371493

  8. Relation of genomic variants for Alzheimer disease dementia to common neuropathologies.

    PubMed

    Farfel, Jose M; Yu, Lei; Buchman, Aron S; Schneider, Julie A; De Jager, Philip L; Bennett, David A

    2016-08-02

    To investigate the associations of previously reported Alzheimer disease (AD) dementia genomic variants with common neuropathologies. This is a postmortem study including 1,017 autopsied participants from 2 clinicopathologic cohorts. Analyses focused on 22 genomic variants associated with AD dementia in large-scale case-control genome-wide association study (GWAS) meta-analyses. The neuropathologic traits of interest were a pathologic diagnosis of AD according to NIA-Reagan criteria, macroscopic and microscopic infarcts, Lewy bodies (LB), and hippocampal sclerosis. For each variant, multiple logistic regression was used to investigate its association with neuropathologic traits, adjusting for age, sex, and subpopulation structure. We also conducted power analyses to estimate the sample sizes required to detect genome-wide significance (p < 5 × 10(-8)) for pathologic AD for all variants. APOE ε4 allele was associated with greater odds of pathologic AD (odds ratio [OR] 3.82, 95% confidence interval [CI] 2.67-5.46, p = 1.9 × 10(-13)), while ε2 allele was associated with lower odds of pathologic AD (OR 0.42, 95% CI 0.30-0.61, p = 3.1 × 10(-6)). Four additional genomic variants including rs6656401 (CR1), rs1476679 (ZCWPW1), rs35349669 (INPP5D), and rs17125944 (FERMT2) had p values less than 0.05. Remarkably, half of the previously reported AD dementia variants are not likely to be detected for association with pathologic AD with a sample size in excess of the largest GWAS meta-analyses of AD dementia. Many recently discovered genomic variants for AD dementia are not associated with the pathology of AD. Some genomic variants for AD dementia appear to be associated with other common neuropathologies. © 2016 American Academy of Neurology.

  9. PET Imaging of Tau Deposition in the Aging Human Brain

    PubMed Central

    Schonhaut, Daniel R.; O’Neil, James P.; Janabi, Mustafa; Ossenkoppele, Rik; Baker, Suzanne L.; Vogel, Jacob W.; Faria, Jamie; Schwimmer, Henry D.; Rabinovici, Gil D.; Jagust, William J.

    2016-01-01

    SUMMARY Tau pathology is a hallmark of Alzheimer’s disease (AD) but also occurs in normal cognitive aging. Using the tau PET agent 18F-AV-1451, we examined retention patterns in cognitively normal older people in relation to young controls and AD patients. Age and β-amyloid (measured using PiB PET) were differentially associated with tau tracer retention in healthy aging. Older age was related to increased tracer retention in regions of the medial temporal lobe, which predicted worse episodic memory performance. PET detection of tau in other isocortical regions required the presence of cortical β-amyloid, and was associated with decline in global cognition. Furthermore, patterns of tracer retention corresponded well with Braak staging of neurofibrillary tau pathology. The present study defined patterns of tau tracer retention in normal aging in relation to age, cognition, and β-amyloid deposition. PMID:26938442

  10. PET Imaging of Tau Deposition in the Aging Human Brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schöll, Michael; Lockhart, Samuel N.; Schonhaut, Daniel R.

    Tau pathology is a hallmark of Alzheimer’s disease (AD) but also occurs in normal cognitive aging. In this study, using the tau PET agent 18F-AV-1451, we examined retention patterns in cognitively normal older people in relation to young controls and AD patients. Age and β-amyloid (measured using PiB PET) were differentially associated with tau tracer retention in healthy aging. Older age was related to increased tracer retention in regions of the medial temporal lobe, which predicted worse episodic memory performance. PET detection of tau in other isocortical regions required the presence of cortical β-amyloid and was associated with decline inmore » global cognition. Furthermore, patterns of tracer retention corresponded well with Braak staging of neurofibrillary tau pathology. In conclusion, the present study defined patterns of tau tracer retention in normal aging in relation to age, cognition, and β-amyloid deposition.« less

  11. PET Imaging of Tau Deposition in the Aging Human Brain

    DOE PAGES

    Schöll, Michael; Lockhart, Samuel N.; Schonhaut, Daniel R.; ...

    2016-03-02

    Tau pathology is a hallmark of Alzheimer’s disease (AD) but also occurs in normal cognitive aging. In this study, using the tau PET agent 18F-AV-1451, we examined retention patterns in cognitively normal older people in relation to young controls and AD patients. Age and β-amyloid (measured using PiB PET) were differentially associated with tau tracer retention in healthy aging. Older age was related to increased tracer retention in regions of the medial temporal lobe, which predicted worse episodic memory performance. PET detection of tau in other isocortical regions required the presence of cortical β-amyloid and was associated with decline inmore » global cognition. Furthermore, patterns of tracer retention corresponded well with Braak staging of neurofibrillary tau pathology. In conclusion, the present study defined patterns of tau tracer retention in normal aging in relation to age, cognition, and β-amyloid deposition.« less

  12. The core of tau-paired helical filaments studied by scanning transmission electron microscopy and limited proteolysis.

    PubMed

    von Bergen, Martin; Barghorn, Stefan; Müller, Shirley A; Pickhardt, Marcus; Biernat, Jacek; Mandelkow, Eva-Maria; Davies, Peter; Aebi, Ueli; Mandelkow, Eckhard

    2006-05-23

    In Alzheimer's disease and frontotemporal dementias the microtubule-associated protein tau forms intracellular paired helical filaments (PHFs). The filaments formed in vivo consist mainly of full-length molecules of the six different isoforms present in adult brain. The substructure of the PHF core is still elusive. Here we applied scanning transmission electron microscopy (STEM) and limited proteolysis to probe the mass distribution of PHFs and their surface exposure. Tau filaments assembled from the three repeat domain have a mass per length (MPL) of approximately 60 kDa/nm and filaments from full-length tau (htau40DeltaK280 mutant) have approximately 160 kDa/nm, compared with approximately 130 kDa/nm for PHFs from Alzheimer's brain. Polyanionic cofactors such as heparin accelerate assembly but are not incorporated into PHFs. Limited proteolysis combined with N-terminal sequencing and mass spectrometry of fragments reveals a protease-sensitive N-terminal half and semiresistant PHF core starting in the first repeat and reaching to the C-terminus of tau. Continued proteolysis leads to a fragment starting at the end of the first repeat and ending in the fourth repeat. PHFs from tau isoforms with four repeats revealed an additional cleavage site within the middle of the second repeat. Probing the PHFs with antibodies detecting epitopes either over longer stretches in the C-terminal half of tau or in the fourth repeat revealed that they grow in a polar manner. These data describe the physical parameters of the PHFs and enabled us to build a model of the molecular arrangement within the filamentous structures.

  13. Human alcohol-related neuropathology

    PubMed Central

    Kril, Jillian J.

    2015-01-01

    Alcohol-related diseases of the nervous system are caused by excessive exposures to alcohol, with or without co-existing nutritional or vitamin deficiencies. Toxic and metabolic effects of alcohol (ethanol) vary with brain region, age/developmental stage, dose, and duration of exposures. In the mature brain, heavy chronic or binge alcohol exposures can cause severe debilitating diseases of the central and peripheral nervous systems, and skeletal muscle. Most commonly, long-standing heavy alcohol abuse leads to disproportionate loss of cerebral white matter and impairments in executive function. The cerebellum (especially the vermis), cortical-limbic circuits, skeletal muscle, and peripheral nerves are also important targets of chronic alcohol-related metabolic injury and degeneration. Although all cell types within the nervous system are vulnerable to the toxic, metabolic, and degenerative effects of alcohol, astrocytes, oligodendrocytes, and synaptic terminals are major targets, accounting for the white matter atrophy, neural inflammation and toxicity, and impairments in synaptogenesis. Besides chronic degenerative neuropathology, alcoholics are predisposed to develop severe potentially life-threatening acute or subacute symmetrical hemorrhagic injury in the diencephalon and brainstem due to thiamine deficiency, which exerts toxic/metabolic effects on glia, myelin, and the microvasculature. Alcohol also has devastating neurotoxic and teratogenic effects on the developing brain in association with fetal alcohol spectrum disorder/fetal alcohol syndrome. Alcohol impairs function of neurons and glia, disrupting a broad array of functions including neuronal survival, cell migration, and glial cell (astrocytes and oligodendrocytes) differentiation. Further progress is needed to better understand the pathophysiology of this exposure-related constellation of nervous system diseases and better correlate the underlying pathology with in vivo imaging and biochemical lesions

  14. Chronic traumatic encephalopathy: historical origins and current perspective.

    PubMed

    Montenigro, Philip H; Corp, Daniel T; Stein, Thor D; Cantu, Robert C; Stern, Robert A

    2015-01-01

    Chronic traumatic encephalopathy (CTE) is a neurodegenerative disease that is most often identified in postmortem autopsies of individuals exposed to repetitive head impacts, such as boxers and football players. The neuropathology of CTE is characterized by the accumulation of hyperphosphorylated tau protein in a pattern that is unique from that of other neurodegenerative diseases, including Alzheimer's disease. The clinical features of CTE are often progressive, leading to dramatic changes in mood, behavior, and cognition, frequently resulting in debilitating dementia. In some cases, motor features, including parkinsonism, can also be present. In this review, the historical origins of CTE are revealed and an overview of the current state of knowledge of CTE is provided, including the neuropathology, clinical features, proposed clinical and pathological diagnostic criteria, potential in vivo biomarkers, known risk factors, and treatment options.

  15. Association of Cerebrospinal Fluid β-Amyloid 1-42, T-tau, P-tau181, and α-Synuclein Levels With Clinical Features of Drug-Naive Patients With Early Parkinson Disease

    PubMed Central

    Kang, Ju-Hee; Irwin, David J.; Chen-Plotkin, Alice S.; Siderowf, Andrew; Caspell, Chelsea; Coffey, Christopher S.; Waligórska, Teresa; Taylor, Peggy; Pan, Sarah; Frasier, Mark; Marek, Kenneth; Kieburtz, Karl; Jennings, Danna; Simuni, Tanya; Tanner, Caroline M.; Singleton, Andrew; Toga, Arthur W.; Chowdhury, Sohini; Mollenhauer, Brit; Trojanowski, John Q.; Shaw, Leslie M.

    2014-01-01

    Importance We observed a significant correlation between cerebrospinal fluid (CSF) levels of tau proteins and α-synuclein, but not β-amyloid 1–42 (Aβ1–42), and lower concentration of CSF biomarkers, as compared with healthy controls, in a cohort of entirely untreated patients with Parkinson disease (PD) at the earliest stage of the disease studied so far. Objective To evaluate the baseline characteristics and relationship to clinical features of CSF biomarkers (Aβ1–42, total tau [T-tau], tau phosphorylated at threonine 181 [P-tau181], and α-synuclein) in drug-naive patients with early PD and demographically matched healthy controls enrolled in the Parkinson’s Progression Markers Initiative (PPMI) study. Design, Setting, and Participants Cross-sectional study of the initial 102 research volunteers (63 patients with PD and 39 healthy controls) of the PPMI cohort. Main Outcomes and Measures The CSF biomarkers were measured by INNO-BIA AlzBio3 immunoassay (Aβ1–42, T-tau, and P-tau181; Innogenetics Inc) or by enzyme-linked immunosorbent assay (α-synuclein). Clinical features including diagnosis, demographic characteristics, motor, neuropsychiatric, and cognitive assessments, and DaTscan were systematically assessed according to the PPMI study protocol. Results Slightly, but significantly, lower levels of Aβ1–42, T-tau, P-tau181, α-synuclein, and T-tau/Aβ1–42 were seen in subjects with PD compared with healthy controls but with a marked overlap between groups. Using multivariate regression analysis, we found that lower Aβ1–42 and P-tau181 levels were associated with PD diagnosis and that decreased CSF T-tau and α-synuclein were associated with increased motor severity. Notably, when we classified patients with PD by their motor phenotypes, lower CSF Aβ1–42 and P-tau181 concentrations were associated with the postural instability–gait disturbance–dominant phenotype but not with the tremor-dominant or intermediate phenotype. Finally, we

  16. Alzheimer disease therapy--moving from amyloid-β to tau.

    PubMed

    Giacobini, Ezio; Gold, Gabriel

    2013-12-01

    Disease-modifying treatments for Alzheimer disease (AD) have focused mainly on reducing levels of amyloid-β (Aβ) in the brain. Some compounds have achieved this goal, but none has produced clinically meaningful results. Several methodological issues relating to clinical trials of these agents might explain this failure; an additional consideration is that the amyloid cascade hypothesis--which places amyloid plaques at the heart of AD pathogenesis--does not fully integrate a large body of data relevant to the emergence of clinical AD. Importantly, amyloid deposition is not strongly correlated with cognition in multivariate analyses, unlike hyperphosphorylated tau, neurofibrillary tangles, and synaptic and neuronal loss, which are closely associated with memory deficits. Targeting tau pathology, therefore, might be more clinically effective than Aβ-directed therapies. Furthermore, numerous immunization studies in animal models indicate that reduction of intracellular levels of tau and phosphorylated tau is possible, and is associated with improved cognitive performance. Several tau-related vaccines are in advanced preclinical stages and will soon enter clinical trials. In this article, we present a critical analysis of the failure of Aβ-directed therapies, discuss limitations of the amyloid cascade hypothesis, and suggest the potential value of tau-targeted therapy for AD.

  17. A measurement of the tau Michel parameters at SLD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quigley, James A.

    1997-05-01

    This thesis presents a measurement of the tau Michel parameters. This measurement utilizes the highly polarized SLC electron beam to extract these quantities directly from the measured tau decay spectra using the 1993--95 SLD sample of 4,528 tau pair events. The results are ρ e = 0.71 ± 0.14 ± 0.05, ζ e = 1.16 ± 0.52 ± 0.06, and (ζδ) e = 0.85 ± 0.43 ± 0.08 for tau decays to electrons and ρ μ = 0.54 ± 0.28 μ 0.14, η μ = -0.59 ± 0.82 ± 0.45, ζsup>μ = 0.75 ± 0.50 ± 0.14, and (ζδ) μmore » = 0.82 ± 0.32 ± 0.07 for tau decays to muons. Combining all leptonic tau decays gives ρ = 0.72 ± 0.09 ± 0.03, ζ = 1.05 ± 0.35 ± 0.04, and ζδ = 0.88 ± 0.27 ± 0.04. These results agree well with the current world average and the Standard Model.« less

  18. Tau proteins in the cerebrospinal fluid of patients with subacute sclerosing panencephalitis.

    PubMed

    Yuksel, Deniz; Yilmaz, Deniz; Uyar, Neval Y; Senbil, Nesrin; Gurer, Yavuz; Anlar, Banu

    2010-06-01

    Neurodegenerative diseases characterized by cytoskeletal deformation and neurofibrillary tangles are associated with altered levels of tau and related proteins in cerebrospinal fluid (CSF). Neuronal or glial fibrillary tangles have been shown in 20% of subacute sclerosing panencephalitis (SSPE) patients. We therefore investigated CSF samples from 60 newly diagnosed SSPE and 31 neurological control patients for total tau (t-tau), phosphorylated tau (p-tau), and S100-B levels by ELISA. There was no difference between patient and control groups in t-tau and S100-B levels. p-Tau was lower in the SSPE group (p=0.009). Past history of measles infection, measles immunization status, latent period between measles and onset of SSPE, duration of symptoms, frequency of myoclonia, neurological deficit index, stage and progression rate of the disease, CSF glucose levels and cell counts, CSF and serum measles IgG titer, distribution of lesions on brain magnetic resonance imaging were not related to t-tau, p-tau and S100-B levels. Mental status and age were negatively correlated with t-tau, and male gender and EEG abnormalities were associated with higher t-tau levels. The levels of tau proteins in our patients suggest there is no, or only scarce and immature, neurofibrillary tangle formation in SSPE. Autopsy studies showing neurofibrillary tangles might have examined older patients with longer disease and more parenchymal involvement. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  19. CDK5-mediated tau accumulation triggers methamphetamine-induced neuronal apoptosis via endoplasmic reticulum-associated degradation pathway.

    PubMed

    Xiao, Ning; Zhang, Fu; Zhu, Bofeng; Liu, Chao; Lin, Zhoumeng; Wang, Huijun; Xie, Wei-Bing

    2018-08-01

    Overexposure to methamphetamine (METH) causes apoptosis in a number of cell types, particularly neuronal cells. However, the underlying mechanisms of METH-induced neuronal apoptosis remain to be elucidated. Accumulation of microtubule-associated protein Tau can lead to activation of multiple neurotoxic pathways, which is closely correlated with neuronal apoptosis. The aim of this study was to determine the role of Tau in METH-induced neuronal apoptosis. We determined the expression of two phosphorylated Tau proteins (serine 396 and threonine 231) in the human neuroblastoma SH-SY5Y cells and in the hippocampus of Sprague-Dawley rats treated with vehicle or METH using western blotting, immunohistochemical staining and immunofluorescence staining. We also measured the expression levels of the phosphorylated Tau protein, ubiquitination proteins, the intermediate products of proteasome degradation pathway, CD3-δ (a substrate of proteasome degradation pathway), endoplasmic reticulum stress signal molecule phosphorylated PERK (pPERK), and endoplasmic reticulum stress-specific apoptotic signal molecule caspase-12 in SH-SY5Y cells and in rats after inhibiting the expression of an upstream regulatory factor of phosphorylated Tau protein (CDK5) using siRNA or virus transfection. The results showed that exposure to METH significantly up-regulated the expression of phosphorylated Tau protein in vivo and in vitro and silencing the expression of CDK5 inhibited the up-regulation of phosphorylated Tau induced by METH exposure. METH exposure also significantly increased the expression of ubiquitination protein and CD3-δ and these effects were blocked by CDK5 silencing. In addition, METH exposure significantly elevated the levels of phosphorylated PERK and caspase-12 and these effects were suppressed after CDK5 silencing, which indicates that blockade of CDK5 expression can mitigate METH-induced neuronal apoptosis. These results suggest that METH can impair the endoplasmic

  20. Molecular & Genetic Investigation of Tau in Chronic Traumatic Encephalopathy

    DTIC Science & Technology

    2015-10-01

    available, work will commence. Tau, genetics , susceptibility, MAPT, chronic traumatic encephalopathy, Alzheimer disease U U U U 1 USAMRMC Table of...AWARD NUMBER: W81XWH-14-1-0399 TITLE: Molecular & Genetic Investigation of Tau in Chronic Traumatic Encephalopathy PRINCIPAL INVESTIGATOR: John F...Include area code) October 2015 Annual Report 30 Sep 2014 - 29 Sep 2015 Molecular & Genetic Investigation of Tau in Chronic Traumatic Encephalopathy John

  1. Combining nonoverlap and trend for single-case research: Tau-U.

    PubMed

    Parker, Richard I; Vannest, Kimberly J; Davis, John L; Sauber, Stephanie B

    2011-06-01

    A new index for analysis of single-case research data was proposed, Tau-U, which combines nonoverlap between phases with trend from within the intervention phase. In addition, it provides the option of controlling undesirable Phase A trend. The derivation of Tau-U from Kendall's Rank Correlation and the Mann-Whitney U test between groups is demonstrated. The equivalence of trend and nonoverlap is also shown, with supportive citations from field leaders. Tau-U calculations are demonstrated for simple AB and ABA designs. Tau-U is then field tested on a sample of 382 published data series. Controlling undesirable Phase A trend caused only a modest change from nonoverlap. The inclusion of Phase B trend yielded more modest results than simple nonoverlap. The Tau-U score distribution did not show the artificial ceiling shown by all other nonoverlap techniques. It performed reasonably well with autocorrelated data. Tau-U shows promise for single-case applications, but further study is desirable. Copyright © 2011. Published by Elsevier Ltd.

  2. The ε3 and ε4 alleles of human APOE differentially affect tau phosphorylation in hyperinsulinemic and pioglitazone treated mice.

    PubMed

    To, Alvina W M; Ribe, Elena M; Chuang, Tsu Tshen; Schroeder, Joern E; Lovestone, Simon

    2011-02-10

    Impaired insulin signalling is increasingly thought to contribute to Alzheimer's disease (AD). The ε4 isoform of the APOE gene is the greatest genetic risk factor for sporadic, late onset AD, and is also associated with risk for type 2 diabetes mellitus (T2DM). Neuropathological studies reported the highest number of AD lesions in brain tissue of ε4 diabetic patients. However other studies assessing AD pathology amongst the diabetic population have produced conflicting reports and have failed to show an increase in AD-related pathology in diabetic brain. The thiazolidinediones (TZDs), peroxisome proliferator-activated receptor gamma agonists, are peripheral insulin sensitisers used to treat T2DM. The TZD, pioglitazone, improved memory and cognitive functions in mild to moderate AD patients. Since it is not yet clear how apoE isoforms influence the development of T2DM and its progression to AD, we investigated amyloid beta and tau pathology in APOE knockout mice, carrying human APOEε3 or ε4 transgenes after diet-induced insulin resistance with and without pioglitazone treatment. Male APOE knockout, APOEε3-transgenic and APOEε4-transgenic mice, together with background strain C57BL6 mice were kept on a high fat diet (HFD) or low fat diet (LFD) for 32 weeks, or were all fed HFD for 32 weeks and during the final 3 weeks animals were treated with pioglitazone or vehicle. All HFD animals developed hyperglycaemia with elevated plasma insulin. Tau phosphorylation was reduced at 3 epitopes (Ser396, Ser202/Thr205 and Thr231) in all HFD, compared to LFD, animals independent of APOE genotype. The introduction of pioglitazone to HFD animals led to a significant reduction in tau phosphorylation at the Ser202/Thr205 epitope in APOEε3 animals only. We found no changes in APP processing however the levels of soluble amyloid beta 40 was reduced in APOE knockout animals treated with pioglitazone.

  3. Cerebrospinal Fluid Amyloid-β 42, Total Tau and Phosphorylated Tau are Low in Patients with Normal Pressure Hydrocephalus: Analogies and Differences with Alzheimer's Disease.

    PubMed

    Santangelo, Roberto; Cecchetti, Giordano; Bernasconi, Maria Paola; Cardamone, Rosalinda; Barbieri, Alessandra; Pinto, Patrizia; Passerini, Gabriella; Scomazzoni, Francesco; Comi, Giancarlo; Magnani, Giuseppe

    2017-01-01

    Co-existence of Alzheimer's disease (AD) in normal pressure hydrocephalus (NPH) is a frequent finding, thus a common pathophysiological basis between AD and NPH has been postulated. We measured CSF amyloid-β 42 (Aβ42), total tau (t-tau), and phosphorylated tau (p-tau) concentrations in a sample of 294 patients with different types of dementia and 32 subjects without dementia. We then compared scores on neuropsychological tests of NPH patients with pathological and normal CSF Aβ42 values. Aβ42 levels were significantly lower in NPH than in control patients, with no significant differences between AD and NPH. On the contrary, t-tau and p-tau levels were significantly lower in NPH than in AD, with no differences between NPH and controls. NPH patients with pathological Aβ42 levels did not perform worse than NPH patients with normal Aβ42 levels in any cognitive domains. Our data seem to support the hypothesis of amyloid accumulation in brains of NPH patients. Nevertheless, amyloid does not seem to play a pathogenetic role in the development of cognitive deficits in NPH.

  4. Ex vivo T2 relaxation: Associations with age-related neuropathology and cognition

    PubMed Central

    Dawe, Robert J.; Bennett, David A.; Schneider, Julie A.; Leurgans, Sue E.; Kotrotsou, Aikaterini; Boyle, Patricia A.; Arfanakis, Konstantinos

    2014-01-01

    The transverse relaxation time constant, T2, is sensitive to brain tissue’s free water content and the presence of paramagnetic materials such as iron. In this study, ex vivo MRI was employed to investigate alterations in T2 related to Alzheimer’s disease (AD) pathology and other types of neuropathology common in old age, as well as the relationship between T2 alterations and cognition. Cerebral hemispheres were obtained from 371 deceased older adults. Using fast spin-echo imaging with multiple echo times, T2 maps were produced and warped to a study-specific template. Hemispheres underwent neuropathologic examination for identification of AD pathology and other common age-related neuropathologies. Voxelwise linear regression was carried out to detect regions of pathology-related T2 alterations and, in separate analyses, regions in which T2 alterations were linked to antemortem cognitive performance. AD pathology was associated with T2 prolongation in white matter of all lobes and T2 shortening in the basal ganglia and insula. Gross infarcts were associated with T2 prolongation in white matter of all lobes, and in the thalamus and basal ganglia. Hippocampal sclerosis was associated with T2 prolongation in the hippocampus and white matter of the temporal lobe. After controlling for neuropathology, T2 prolongation in the frontal lobe white matter was associated with lower performance in the episodic, semantic, and working memory domains. In addition, voxelwise analysis of in vivo and ex vivo T2 values indicated a positive relationship between the two, though further investigation is necessary to accurately translate findings of the current study to the in vivo case. PMID:24582637

  5. Olympic boxing is associated with elevated levels of the neuronal protein tau in plasma.

    PubMed

    Neselius, Sanna; Zetterberg, Henrik; Blennow, Kaj; Randall, Jeffrey; Wilson, David; Marcusson, Jan; Brisby, Helena

    2013-01-01

    The aim of this study was to investigate if olympic (amateur) boxing is associated with elevation of brain injury biomarkers in peripheral blood compared to controls. Thirty olympic boxers competing in at least 47 bouts were compared to 25 controls. Blood was collected from the controls at one occasion and from the boxers within 1-6 days after a bout and after a rest period of at least 14 days. Tau concentration in plasma was determined using a novel single molecule ELISA assay and S-100B, glial fibrillary acidic protein, brain-derived neurotrophic factor and amyloid β 1-42 were determined using standard immunoassays. None of the boxers had been knocked-out during the bout. Plasma-tau was significantly increased in the boxers after a bout compared to controls (mean ± SD, 2.46 ± 5.10 vs. 0.79 ± 0.961 ng L(-1), p = 0.038). The other brain injury markers did not differ between the groups. Plasma-tau decreased significantly in the boxers after a resting period compared to after a bout (p = 0.030). Olympic boxing is associated with elevation of tau in plasma. The repetitive minimal head injury in boxing may lead to axonal injuries that can be diagnosed with a blood test.

  6. Tau Positive Neurons Show Marked Mitochondrial Loss and Nuclear Degradation in Alzheimer's Disease.

    PubMed

    Wee, Melissa; Chegini, Fariba; Power, John H T; Majd, Shohreh

    2018-06-12

    Alzheimer's disease (AD) pathology consists of intraneuronal neurofibrillary tangles, made of hyperphosphorylated tau and extracellular accumulation of beta amyloid (Aβ) in Aβ plaques. There is an extensive debate as to which pathology initiates and responsible for cellular loss in AD. Using confocal and light microscopy, post mortem brains from control and AD cases, an antibody to SOD2 as a marker for mitochondria and an antibody to all forms of tau, we analyzed mitochondrial density in tau positive neurons along with nuclear degradation by calculating the raw integrative density. Our findings showed an extensive staining of aggregated tau in cell bodies, dystrophic neurites and neurofilaments in AD with minimal staining in control tissue, along with a marked decrease in mitochondria in tau positive (tau+) neurons. The control or tau negative (tau-) neurons in AD contained an even distribution of mitochondria, which was greatly diminished in tau+ neurons by 40%. There were no significant differences between control and tau- neurons in AD. Tau+ neurons showed marked nuclear degradation which appeared to progress with the extent of tau aggregation. The aggregated tau infiltrated and appeared to break the nuclear envelope with progressively more DNA exiting the nucleus and associating with accumulating of intracellular tau. We report mitochondrial decrease is likely due to a decrease in protein synthesis rather than a redistribution of mitochondria because of decreased axonal transport. We suggest that the decrease in mitochondria and nuclear degradation are key mechanisms for the neuronal loss seen in AD. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. Cognitive Impairment, Neuroimaging, and Alzheimer Neuropathology in Mouse Models of Down Syndrome

    PubMed Central

    Hamlett, Eric D.; Boger, Heather A.; Ledreux, Aurélie; Kelley, Christy M.; Mufson, Elliott J.; Falangola, Maria F.; Guilfoyle, David N.; Nixon, Ralph A.; Patterson, David; Duval, Nathan; Granholm, Ann-Charlotte E.

    2016-01-01

    Down syndrome (DS) is the most common non-lethal genetic condition that affects approximately 1 in 700 births in the United States of America. DS is characterized by complete or segmental chromosome 21 trisomy, which leads to variable intellectual disabilities, progressive memory loss, and accelerated neurodegeneration with age. During the last three decades, people with DS have experienced a doubling of life expectancy due to progress in treatment of medical comorbidities, which has allowed this population to reach the age when they develop early onset Alzheimer’s disease (AD). Individuals with DS develop cognitive and pathological hallmarks of AD in their fourth or fifth decade, and are currently lacking successful prevention or treatment options for dementia. The profound memory deficits associated with DS-related AD (DS-AD) have been associated with degeneration of several neuronal populations, but mechanisms of neurodegeneration are largely unexplored. The most successful animal model for DS is the Ts65Dn mouse, but several new models have also been developed. In the current review, we discuss recent findings and potential treatment options for the management of memory loss and AD neuropathology in DS mouse models. We also review age-related neuropathology, and recent findings from neuroimaging studies. The validation of appropriate DS mouse models that mimic neurodegeneration and memory loss in humans with DS can be valuable in the study of novel preventative and treatment interventions, and may be helpful in pinpointing gene-gene interactions as well as specific gene segments involved in neurodegeneration. PMID:26391050

  8. Observation of tau neutrino appearance in the CNGS beam with the OPERA experiment

    NASA Astrophysics Data System (ADS)

    Opera Collaboration; Agafonova, N.; Aleksandrov, A.; Anokhina, A.; Aoki, S.; Ariga, A.; Ariga, T.; Asada, T.; Bender, D.; Bertolin, A.; Bozza, C.; Brugnera, R.; Buonaura, A.; Buontempo, S.; Büttner, B.; Chernyavsky, M.; Chukanov, A.; Consiglio, L.; D'Ambrosio, N.; de Lellis, G.; de Serio, M.; Del Amo Sanchez, P.; di Crescenzo, A.; di Ferdinando, D.; di Marco, N.; Dmitrievski, S.; Dracos, M.; Duchesneau, D.; Dusini, S.; Dzhatdoev, T.; Ebert, J.; Ereditato, A.; Fini, R. A.; Fukuda, T.; Galati, G.; Garfagnini, A.; Giacomelli, G.; Goellnitz, C.; Goldberg, J.; Gornushkin, Y.; Grella, G.; Guler, M.; Gustavino, C.; Hagner, C.; Hara, T.; Hayakawa, T.; Hollnagel, A.; Hosseini, B.; Ishida, H.; Ishiguro, K.; Jakovcic, K.; Jollet, C.; Kamiscioglu, C.; Kamiscioglu, M.; Katsuragawa, T.; Kawada, J.; Kawahara, H.; Kim, J. H.; Kim, S. H.; Kitagawa, N.; Klicek, B.; Kodama, K.; Komatsu, M.; Kose, U.; Kreslo, I.; Lauria, A.; Lenkeit, J.; Ljubicic, A.; Longhin, A.; Loverre, P.; Malenica, M.; Malgin, A.; Mandrioli, G.; Matsuo, T.; Matveev, V.; Mauri, N.; Medinaceli, E.; Meregaglia, A.; Meyer, M.; Mikado, S.; Miyanishi, M.; Monacelli, P.; Montesi, M. C.; Morishima, K.; Muciaccia, M. T.; Naganawa, N.; Naka, T.; Nakamura, M.; Nakano, T.; Nakatsuka, Y.; Niwa, K.; Ogawa, S.; Okateva, N.; Olshevsky, A.; Omura, T.; Ozaki, K.; Paoloni, A.; Park, B. D.; Park, I. G.; Pasqualini, L.; Pastore, A.; Patrizii, L.; Pessard, H.; Pistillo, C.; Podgrudkov, D.; Polukhina, N.; Pozzato, M.; Pupilli, F.; Roda, M.; Roganova, T.; Rokujo, H.; Rosa, G.; Ryazhskaya, O.; Sato, O.; Schembri, A.; Shakiryanova, I.; Shchedrina, T.; Sheshukov, A.; Shibuya, H.; Shiraishi, T.; Shoziyoev, G.; Simone, S.; Sioli, M.; Sirignano, C.; Sirri, G.; Spinetti, M.; Stanco, L.; Starkov, N.; Stellacci, S. M.; Stipcevic, M.; Strolin, P.; Takahashi, S.; Tenti, M.; Terranova, F.; Tioukov, V.; Tufanli, S.; Umemoto, A.; Vilain, P.; Vladimirov, M.; Votano, L.; Vuilleumier, J. L.; Wilquet, G.; Wonsak, B.; Yoon, C. S.; Yaguchi, I.; Yoshimoto, M.; Zemskova, S.; Zghiche, A.

    2014-10-01

    The OPERA experiment is searching for ν _μ rArr ν _tau oscillations in appearance mode, i.e., via the direct detection of tau leptons in ν _tau charged-current interactions. The evidence of ν _μ rArr ν _tau appearance has been previously reported with three ν _tau candidate events using a sub-sample of data from the 2008-2012 runs. We report here a fourth ν _tau candidate event, with the tau decaying into a hadron, found after adding the 2012 run events without any muon in the final state to the data sample. Given the number of analyzed events and the low background, ν _μ rArr ν _tau oscillations are established with a significance of 4.2σ.

  9. Dexmedetomidine Increases Tau Phosphorylation Under Normothermic Conditions In Vivo and In Vitro

    PubMed Central

    Whittington, Robert A.; Virág, László; Gratuze, Maud; Petry, Franck R.; Noël, Anastasia; Poitras, Isabelle; Truchetti, Geoffrey; Marcouiller, François; Papon, Marie-Amélie; Khoury, Noura El; Wong, Kevin; Bretteville, Alexis; Morin, Françoise; Planel, Emmanuel

    2015-01-01

    There is developing interest in the potential association between anesthesia and the onset and progression of Alzheimer's disease. Several anesthetics have thus been demonstrated to induce tau hyperphosphorylation, an effect mostly mediated by anesthesia-induced hypothermia. Here, we tested the hypothesis that acute normothermic administration of dexmedetomidine, an intravenous sedative used in intensive care units, would result in tau hyperphosphorylation in vivo and in vitro. When administered to non-transgenic mice, dexmedetomidine induced tau hyperphosphorylation persisting up to 6h in the hippocampus for the AT8 epitope. Pretreatment with atipamezole, a highly specific α2-adrenergic receptor (α2-AR) antagonist, blocked dexmedetomidine-induced tau hyperphosphorylation. Furthermore, dexmedetomidine dose-dependently increased tau phosphorylation at AT8 in SH-SY5Y cells, impaired mice spatial memory in the Barnes maze, and promoted tau hyperphosphorylation and aggregation in transgenic hTau mice. These findings suggest that dexmedetomidine: i) increases tau phosphorylation, in vivo and in vitro, in the absence of anesthetic-induced hypothermia and through α2-AR activation, ii) promotes tau aggregation in a mouse model of tauopathy, and iii) impacts spatial reference memory. PMID:26058840

  10. S-nitrosoglutathione reduces tau hyper-phosphorylation and provides neuroprotection in rat model of chronic cerebral hypoperfusion.

    PubMed

    Won, Je-Seong; Annamalai, Balasubramaniam; Choi, Seungho; Singh, Inderjit; Singh, Avtar K

    2015-10-22

    We have previously reported that treatment of rats subjected to permanent bilateral common carotid artery occlusion (pBCCAO), a model of chronic cerebral hypoperfusion (CCH), with S-nitrosoglutathione (GSNO), an endogenous nitric oxide carrier, improved cognitive functions and decreased amyloid-β accumulation in the brains. Since CCH has been implicated in tau hyperphosphorylation induced neurodegeneration, we investigated the role of GSNO in regulation of tau hyperphosphorylation in rat pBCCAO model. The rats subjected to pBCCAO had a significant increase in tau hyperphosphorylation with increased neuronal loss in hippocampal/cortical areas. GSNO treatment attenuated not only the tau hyperphosphorylation, but also the neurodegeneration in pBCCAO rat brains. The pBCCAO rat brains also showed increased activities of GSK-3β and Cdk5 (major tau kinases) and GSNO treatment significantly attenuated their activities. GSNO attenuated the increased calpain activities and calpain-mediated cleavage of p35 leading to production of p25 and aberrant Cdk5 activation. In in vitro studies using purified calpain protein, GSNO treatment inhibited calpain activities while 3-morpholinosydnonimine (a donor of peroxynitrite) treatment increased its activities, suggesting the opposing role of GSNO vs. peroxynitrite in regulation of calpain activities. In pBCCAO rat brains, GSNO treatment attenuated the expression of inducible nitric oxide synthase (iNOS) expression and also reduced the brain levels of nitro-tyrosine formation, thereby indicating the protective role of GSNO in iNOS/nitrosative-stress mediated calpain/tau pathologies under CCH conditions. Taken together with our previous report, these data support the therapeutic potential of GSNO, a biological NO carrier, as a neuro- and cognitive-protective agent under conditions of CCH. Published by Elsevier B.V.

  11. Huntington's disease (HD): the neuropathology of a multisystem neurodegenerative disorder of the human brain.

    PubMed

    Rüb, U; Seidel, K; Heinsen, H; Vonsattel, J P; den Dunnen, W F; Korf, H W

    2016-11-01

    Huntington's disease (HD) is an autosomal dominantly inherited, and currently untreatable, neuropsychiatric disorder. This progressive and ultimately fatal disease is named after the American physician George Huntington and according to the underlying molecular biological mechanisms is assigned to the human polyglutamine or CAG-repeat diseases. In the present article we give an overview of the currently known neurodegenerative hallmarks of the brains of HD patients. Subsequent to recent pathoanatomical studies the prevailing reductionistic concept of HD as a human neurodegenerative disease, which is primarily and more or less exclusively confined to the striatum (ie, caudate nucleus and putamen) has been abandoned. Many recent studies have improved our neuropathological knowledge of HD; many of the early groundbreaking findings of neuropathological HD research have been rediscovered and confirmed. The results of this investigation have led to the stepwise revision of the simplified pathoanatomical and pathophysiological HD concept and culminated in the implementation of the current concept of HD as a multisystem degenerative disease of the human brain. The multisystem character of the neuropathology of HD is emphasized by a brain distribution pattern of neurodegeneration (i) which apart from the striatum includes the cerebral neo-and allocortex, thalamus, pallidum, brainstem and cerebellum, and which (ii) therefore, shares more similarities with polyglutamine spinocerebellar ataxias than previously thought. © 2016 International Society of Neuropathology.

  12. Loss of Bin1 Promotes the Propagation of Tau Pathology.

    PubMed

    Calafate, Sara; Flavin, William; Verstreken, Patrik; Moechars, Diederik

    2016-10-18

    Tau pathology propagates within synaptically connected neuronal circuits, but the underlying mechanisms are unclear. BIN1-amphiphysin2 is the second most prevalent genetic risk factor for late-onset Alzheimer's disease. In diseased brains, the BIN1-amphiphysin2 neuronal isoform is downregulated. Here, we show that lowering BIN1-amphiphysin2 levels in neurons promotes Tau pathology propagation whereas overexpression of neuronal BIN1-amphiphysin2 inhibits the process in two in vitro models. Increased Tau propagation is caused by increased endocytosis, given our finding that BIN1-amphiphysin2 negatively regulates endocytic flux. Furthermore, blocking endocytosis by inhibiting dynamin also reduces Tau pathology propagation. Using a galectin-3-binding assay, we show that internalized Tau aggregates damage the endosomal membrane, allowing internalized aggregates to leak into the cytoplasm to propagate pathology. Our work indicates that lower BIN1 levels promote the propagation of Tau pathology by efficiently increasing aggregate internalization by endocytosis and endosomal trafficking. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  13. DEVELOPMENTAL NEUROTOXICITY TESTING GUIDELINES: VARIABILITY IN MORPHOMETRIC ASSESSMENTS OF NEUROPATHOLOGY.

    EPA Science Inventory

    The USEPA Developmental Neurotoxicity (DNT) Study Test Guideline (OPPTS 870.6300) calls for neuropathological and morphometric assessments of rat pups on postnatal day (PND) 11 and at study termination (after PND 60). In recent discussions about conducting these studies on pesti...

  14. Mammalian Target of Rapamycin (mTor) Mediates Tau Protein Dyshomeostasis

    PubMed Central

    Tang, Zhi; Bereczki, Erika; Zhang, Haiyan; Wang, Shan; Li, Chunxia; Ji, Xinying; Branca, Rui M.; Lehtiö, Janne; Guan, Zhizhong; Filipcik, Peter; Xu, Shaohua; Winblad, Bengt; Pei, Jin-Jing

    2013-01-01

    Previous evidence from post-mortem Alzheimer disease (AD) brains and drug (especially rapamycin)-oriented in vitro and in vivo models implicated an aberrant accumulation of the mammalian target of rapamycin (mTor) in tangle-bearing neurons in AD brains and its role in the formation of abnormally hyperphosphorylated tau. Compelling evidence indicated that the sequential molecular events such as the synthesis and phosphorylation of tau can be regulated through p70 S6 kinase, the well characterized immediate downstream target of mTor. In the present study, we further identified that the active form of mTor per se accumulates in tangle-bearing neurons, particularly those at early stages in AD brains. By using mass spectrometry and Western blotting, we identified three phosphoepitopes of tau directly phosphorylated by mTor. We have developed a variety of stable cell lines with genetic modification of mTor activity using SH-SY5Y neuroblastoma cells as background. In these cellular systems, we not only confirmed the tau phosphorylation sites found in vitro but also found that mTor mediates the synthesis and aggregation of tau, resulting in compromised microtubule stability. Changes of mTor activity cause fluctuation of the level of a battery of tau kinases such as protein kinase A, v-Akt murine thymoma viral oncogene homolog-1, glycogen synthase kinase 3β, cyclin-dependent kinase 5, and tau protein phosphatase 2A. These results implicate mTor in promoting an imbalance of tau homeostasis, a condition required for neurons to maintain physiological function. PMID:23585566

  15. A double-labeling immunohistochemical study of tau exon 10 in Alzheimer's disease, progressive supranuclear palsy and Pick's disease.

    PubMed

    Ishizawa, K; Ksiezak-Reding, H; Davies, P; Delacourte, A; Tiseo, P; Yen, S H; Dickson, D W

    2000-09-01

    Neurofibrillary tangles (NFT), one of the histopathological hallmarks of Alzheimer's disease (AD) and progressive supranuclear palsy (PSP), and Pick bodies in Pick's disease (PiD) are composed of microtubule-associated protein tau, which is the product of alternative splicing of a gene on chromosome 17. Alternative expression of exon 10 leads to formation of three- or four-repeat tau isoforms. To study the differential expression of exon 10, we performed double-labeling immunohistochemistry of the hippocampal formation in nine AD, four PSP and three PiD cases. Cryostat sections were processed with and without formic acid (FA) treatment, and double-stained with anti-tau (Alz-50 or PHF-1) or anti-amyloid P component antibodies and one of two specific anti-exon 10 antibodies (E-10). The effect of proteinase-K treatment was also evaluated. The results suggest the following. First, in AD, E-10 immunoreactivity is present in most intracellular NFT, but not in most dystrophic neurites and neuropil threads, suggesting differential expression of tau isoforms in specific cellular domains. Second, in AD, E-10 immunoreactivity is lost or blocked in most extracellular NFT, possibly due to proteolysis. Third, in PSP, E-10 immunoreactivity is hidden or blocked in NFT and tau-positive glial inclusions, but FA treatment exposes the epitope consistent with the hypothesis that PSP inclusions contain four-repeat tau. Fourth, E-10 immunoreactivity is present in dentate fascia NFT in AD and PSP, but not in Pick bodies in the dentate fascia or other areas. The results suggest that expression of exon 10 in tau is specific for cellular domains in a disease-specific manner.

  16. Tau hyperphosphorylation and deregulation of calcineurin in mouse models of Huntington's disease.

    PubMed

    Gratuze, Maud; Noël, Anastasia; Julien, Carl; Cisbani, Giulia; Milot-Rousseau, Philippe; Morin, Françoise; Dickler, Maya; Goupil, Claudia; Bezeau, François; Poitras, Isabelle; Bissonnette, Stéphanie; Whittington, Robert A; Hébert, Sébastien S; Cicchetti, Francesca; Parker, J Alex; Samadi, Pershia; Planel, Emmanuel

    2015-01-01

    Huntington's disease (HD) is an autosomal-dominant neurodegenerative disorder caused by polyglutamine expansions in the amino-terminal region of the huntingtin (Htt) protein. At the cellular level, neuronal death is accompanied by the proteolytic cleavage, misfolding and aggregation of huntingtin. Abnormal hyperphosphorylation of tau protein is a characteristic feature of a class of neurodegenerative diseases called tauopathies. As a number of studies have reported tau pathology in HD patients, we investigated whether HD pathology may promote tau hyperphosphorylation and if so tackle some of its underlying mechanisms. For that purpose, we used the R6/2 mouse, a well-characterized model of HD, and analyzed tau phosphorylation before and after the onset of HD-like symptoms. We found a significant increase in tau hyperphosphorylation at the PHF-1 epitope in pre-symptomatic R6/2 mice, whereas symptomatic mice displayed tau hyperphosphorylation at multiple tau phosphoepitopes (AT8, CP13, PT205 and PHF-1). There was no activation of major tau kinases that could explain this observation. However, when we examined tau phosphatases, we found that calcineurin/PP2B was downregulated by 30% in pre-symptomatic and 50% in symptomatic R6/2 mice, respectively. We observed similar changes in tau phosphorylation and calcineurin expression in Q175 mice, another HD model. Calcineurin was also reduced in Q111 compared with Q7 cells. Finally, pharmacological or genetic inhibition of endogenous calcineurin was sufficient to promote tau hyperphosphorylation in neuronal cells. Taken together, our data suggest that mutant huntingtin can induce abnormal tau hyperphosphorylation in vivo, via the deregulation of calcineurin. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Tau, amyloid, and cascading network failure across the Alzheimer's disease spectrum.

    PubMed

    Jones, David T; Graff-Radford, Jonathan; Lowe, Val J; Wiste, Heather J; Gunter, Jeffrey L; Senjem, Matthew L; Botha, Hugo; Kantarci, Kejal; Boeve, Bradley F; Knopman, David S; Petersen, Ronald C; Jack, Clifford R

    2017-12-01

    Functionally related brain regions are selectively vulnerable to Alzheimer's disease pathophysiology. However, molecular markers of this pathophysiology (i.e., beta-amyloid and tau aggregates) have discrepant spatial and temporal patterns of progression within these selectively vulnerable brain regions. Existing reductionist pathophysiologic models cannot account for these large-scale spatiotemporal inconsistencies. Within the framework of the recently proposed cascading network failure model of Alzheimer's disease, however, these large-scale patterns are to be expected. This model postulates the following: 1) a tau-associated, circumscribed network disruption occurs in brain regions specific to a given phenotype in clinically normal individuals; 2) this disruption can trigger phenotype independent, stereotypic, and amyloid-associated compensatory brain network changes indexed by changes in the default mode network; 3) amyloid deposition marks a saturation of functional compensation and portends an acceleration of the inciting phenotype specific, and tau-associated, network failure. With the advent of in vivo molecular imaging of tau pathology, combined with amyloid and functional network imaging, it is now possible to investigate the relationship between functional brain networks, tau, and amyloid across the disease spectrum within these selectively vulnerable brain regions. In a large cohort (n = 218) spanning the Alzheimer's disease spectrum from young, amyloid negative, cognitively normal subjects to Alzheimer's disease dementia, we found several distinct spatial patterns of tau deposition, including 'Braak-like' and 'non-Braak-like', across functionally related brain regions. Rather than arising focally and spreading sequentially, elevated tau signal seems to occur system-wide based on inferences made from multiple cross-sectional analyses we conducted looking at regional patterns of tau signal. Younger age-of-disease-onset was associated with 'non

  18. Signature of an aggregation-prone conformation of tau

    NASA Astrophysics Data System (ADS)

    Eschmann, Neil A.; Georgieva, Elka R.; Ganguly, Pritam; Borbat, Peter P.; Rappaport, Maxime D.; Akdogan, Yasar; Freed, Jack H.; Shea, Joan-Emma; Han, Songi

    2017-03-01

    The self-assembly of the microtubule associated tau protein into fibrillar cell inclusions is linked to a number of devastating neurodegenerative disorders collectively known as tauopathies. The mechanism by which tau self-assembles into pathological entities is a matter of much debate, largely due to the lack of direct experimental insights into the earliest stages of aggregation. We present pulsed double electron-electron resonance measurements of two key fibril-forming regions of tau, PHF6 and PHF6*, in transient as aggregation happens. By monitoring the end-to-end distance distribution of these segments as a function of aggregation time, we show that the PHF6(*) regions dramatically extend to distances commensurate with extended β-strand structures within the earliest stages of aggregation, well before fibril formation. Combined with simulations, our experiments show that the extended β-strand conformational state of PHF6(*) is readily populated under aggregating conditions, constituting a defining signature of aggregation-prone tau, and as such, a possible target for therapeutic interventions.

  19. Comparison of multiple tau-PET measures as biomarkers in aging and Alzheimer's disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maass, Anne; Landau, Susan; Baker, Suzanne L.

    The recent development of tau-specific positron emission tomography (PET) tracers enables in vivo quantification of regional tau pathology, one of the key lesions in Alzheimer's disease (AD). Tau PET imaging may become a useful biomarker for clinical diagnosis and tracking of disease progression but there is no consensus yet on how tau PET signal is best quantified. The goal of the current paper was to evaluate multiple whole-brain and region-specific approaches to detect clinically relevant tau PET signal. Two independent cohorts of cognitively normal adults and amyloid-positive (Aβ +) patients with mild cognitive impairment (MCI) or AD-dementia underwent [ 18F]AV-1451more » PET. Methods for tau tracer quantification included: (i) in vivo Braak staging, (ii) regional uptake in Braak composite regions, (iii) several whole-brain measures of tracer uptake, (iv) regional uptake in AD-vulnerable voxels, and (v) uptake in a priori defined regions. Receiver operating curves characterized accuracy in distinguishing Aβ - controls from AD/MCI patients and yielded tau positivity cutoffs. Clinical relevance of tau PET measures was assessed by regressions against cognition and MR imaging measures. Key tracer uptake patterns were identified by a factor analysis and voxel-wise contrasts. Braak staging, global and region-specific tau measures yielded similar diagnostic accuracies, which differed between cohorts. While all tau measures were related to amyloid and global cognition, memory and hippocampal/entorhinal volume/thickness were associated with regional tracer retention in the medial temporal lobe. Key regions of tau accumulation included medial temporal and inferior/middle temporal regions, retrosplenial cortex, and banks of the superior temporal sulcus. Finally, our data indicate that whole-brain tau PET measures might be adequate biomarkers to detect AD-related tau pathology. However, regional measures covering AD-vulnerable regions may increase sensitivity to early

  20. Behind the curtain of tauopathy: a show of multiple players orchestrating tau toxicity.

    PubMed

    Huang, Yunpeng; Wu, Zhihao; Zhou, Bing

    2016-01-01

    tau, a microtubule-associated protein, directly binds with microtubules to dynamically regulate the organization of cellular cytoskeletons, and is especially abundant in neurons of the central nervous system. Under disease conditions such as Pick's disease, progressive supranuclear palsy, frontotemporal dementia, parkinsonism linked to chromosome 17 and Alzheimer's disease, tau proteins can self-assemble to paired helical filaments progressing to neurofibrillary tangles. In these diseases, collectively referred to as "tauopathies", alterations of diverse tau modifications including phosphorylation, metal ion binding, glycosylation, as well as structural changes of tau proteins have all been observed, indicating the complexity and variability of factors in the regulation of tau toxicity. Here, we review our current knowledge and hypotheses from relevant studies on tau toxicity, emphasizing the roles of phosphorylations, metal ions, folding and clearance control underlining tau etiology and their regulations. A summary of clinical efforts and associated findings of drug candidates under development is also presented. It is hoped that a more comprehensive understanding of tau regulation will provide us with a better blueprint of tau networking in neuronal cells and offer hints for the design of more efficient strategies to tackle tau-related diseases in the future.

  1. The tau positron-emission tomography tracer AV-1451 binds with similar affinities to tau fibrils and monoamine oxidases.

    PubMed

    Vermeiren, Céline; Motte, Philippe; Viot, Delphine; Mairet-Coello, Georges; Courade, Jean-Philippe; Citron, Martin; Mercier, Joël; Hannestad, Jonas; Gillard, Michel

    2018-02-01

    Lilly/Avid's AV-1451 is one of the most advanced tau PET tracers in the clinic. Although results obtained in Alzheimer's disease patients are compelling, discrimination of tracer uptake in healthy individuals and patients with supranuclear palsy (PSP) is less clear as there is substantial overlap of signal in multiple brain regions. Moreover, accurate quantification of [ 18 F]AV-1451 uptake in Alzheimer's disease may not be possible. The aim of the present study was to characterize the in vitro binding of AV-1451 to understand and identify potential off-target binding that could explain the poor discrimination observed in PSP patients. [ 3 H]AV-1451 and AV-1451 were characterized in in vitro binding assays using recombinant and native proteins/tissues from postmortem samples of controls and Alzheimer's disease and PSP patients. [ 3 H]AV-1451 binds to multiple sites with nanomolar affinities in brain homogenates and to tau fibrils isolated from Alzheimer's disease or PSP patients. [ 3 H]AV-1451 also binds with similarly high affinities in brain homogenates devoid of tau pathology. This unexpected binding was demonstrated to be because of nanomolar affinities of [ 3 H]AV-1451 for monoamine oxidase A and B enzymes. High affinity of AV-1451 for monoamine oxidase proteins may limit its utility as a tau PET tracer in PSP and Alzheimer's disease because of high levels of monoamine oxidase expression in brain regions also affected by tau deposition, especially if monoamine oxidase levels change over time or with a treatment intervention. © 2017 International Parkinson and Movement Disorder Society. © 2017 International Parkinson and Movement Disorder Society.

  2. The Role of Tau in Neurodegenerative Diseases and Its Potential as a Therapeutic Target

    PubMed Central

    2012-01-01

    The abnormal deposition of proteins in and around neurons is a common pathological feature of many neurodegenerative diseases. Among these pathological proteins, the microtubule-associated protein tau forms intraneuronal filaments in a spectrum of neurological disorders. The discovery that dominant mutations in the MAPT gene encoding tau are associated with familial frontotemporal dementia strongly supports abnormal tau protein as directly involved in disease pathogenesis. This and other evidence suggest that tau is a worthwhile target for the prevention or treatment of tau-associated neurodegenerative diseases, collectively called tauopathies. However, it is critical to understand the normal biological roles of tau, the specific molecular events that induce tau to become neurotoxic, the biochemical nature of pathogenic tau, the means by which pathogenic tau exerts neurotoxicity, and how tau pathology propagates. Based on known differences between normal and abnormal tau, a number of approaches have been taken toward the discovery of potential therapeutics. Key questions still remain open, such as the nature of the connection between the amyloid-β protein of Alzheimer's disease and tau pathology. Answers to these questions should help better understand the nature of tauopathies and may also reveal new therapeutic targets and strategies. PMID:24278740

  3. Chronic Effects of Mild Neurotrauma: Putting the Cart Before the Horse?

    PubMed Central

    Castellani, Rudy J.; Perry, George; Iverson, Grant L.

    2015-01-01

    Accumulation of phosphorylated tau (p-tau) is accepted by many as a long-term consequence of repetitive mild neurotrauma, based largely on brain findings in boxers (dementia pugilistica) and, more recently, former professional athletes, military service members, and others exposed to repetitive head trauma. The pathogenic construct is also largely accepted and suggests that repetitive head trauma (typically concussions or subconcussive forces) acts on brain parenchyma to produce a deleterious neuroinflammatory cascade, encompassing p-tau templating, trans-synaptic neurotoxicity, progressive neurodegenerative disease, and associated clinical features. Some caution before accepting these concepts and assumptions is warranted, however. The association between history of concussion and findings of p-tau at autopsy is unclear. Concussions and subconcussive head trauma exposure are poorly defined in available cases and the clinical features reported in CTE are not at present distinguishable from other disorders. Because control groups are limited, the idea that p-tau drives the disease process via protein templating or some other mechanism is preliminary. Much additional research in CTE is needed to determine if it has unique neuropathology and clinical features, the extent to which the neuropathologic alterations cause the clinical features, and whether it can be identified accurately in a living person. PMID:25933385

  4. Lysine-Directed Post-translational Modifications of Tau Protein in Alzheimer's Disease and Related Tauopathies

    PubMed Central

    Kontaxi, Christiana; Piccardo, Pedro; Gill, Andrew C.

    2017-01-01

    Tau is a microtubule-associated protein responsible mainly for stabilizing the neuronal microtubule network in the brain. Under normal conditions, tau is highly soluble and adopts an “unfolded” conformation. However, it undergoes conformational changes resulting in a less soluble form with weakened microtubule stabilizing properties. Altered tau forms characteristic pathogenic inclusions in Alzheimer's disease and related tauopathies. Although, tau hyperphosphorylation is widely considered to be the major trigger of tau malfunction, tau undergoes several post-translational modifications at lysine residues including acetylation, methylation, ubiquitylation, SUMOylation, and glycation. We are only beginning to define the site-specific impact of each type of lysine modification on tau biology as well as the possible interplay between them, but, like phosphorylation, these modifications are likely to play critical roles in tau's normal and pathobiology. This review summarizes the latest findings focusing on lysine post-translational modifications that occur at both endogenous tau protein and pathological tau forms in AD and other tauopathies. In addition, it highlights the significance of a site-dependent approach of studying tau post-translational modifications under normal and pathological conditions. PMID:28848737

  5. Tau Pathology Induces Excitatory Neuron Loss, Grid Cell Dysfunction and Spatial Memory Deficits Reminiscent of Early Alzheimer's Disease

    PubMed Central

    Fu, Hongjun; Rodriguez, Gustavo A.; Herman, Mathieu; Emrani, Sheina; Nahmani, Eden; Barrett, Geoffrey; Figueroa, Helen Y.; Goldberg, Eliana

    2017-01-01

    Summary The earliest stages of Alzheimer's disease (AD) are characterized by the formation of mature tangles in the entorhinal cortex and disorientation and confusion navigating familiar places. The medial entorhinal cortex (MEC) contains specialized neurons called grid cells that form part of the spatial navigation system. Here we show in a transgenic mouse model expressing mutant human tau predominantly in the EC that the formation of mature tangles in old mice was associated with excitatory cell loss and deficits in grid cell function, including destabilized grid fields and reduced firing rates, as well as altered network activity. Overt tau pathology in the aged mice was accompanied by spatial memory deficits. Therefore, tau pathology initiated in the entorhinal cortex could lead to deficits in grid cell firing and underlie the deterioration of spatial cognition seen in human AD. PMID:28111080

  6. Neuropathology of Nondemented Aging: Presumptive Evidence for Preclinical Alzheimer Disease

    PubMed Central

    Price, Joseph L.; McKeel, Daniel W.; Buckles, Virginia D.; Roe, Catherine M.; Xiong, Chengjie; Grundman, Michael; Hansen, Lawrence A.; Petersen, Ronald C.; Parisi, Joseph E.; Dickson, Dennis W.; Smith, Charles D.; Davis, Daron G.; Schmitt, Frederick A.; Markesbery, William R.; Kaye, Jeffrey; Kurlan, Roger; Hulette, Christine; Kurland, Brenda F.; Higdon, Roger; Kukull, Walter; Morris, John C.

    2009-01-01

    Objective To determine the frequency and possible cognitive effect of histological Alzheimer’s disease (AD) in autopsied older nondemented individuals. Design Senile plaques (SPs) and neurofibrillary tangles (NFTs) were assessed quantitatively in 97 cases from 7 Alzheimer’s Disease Centers (ADCs). Neuropathological diagnoses of AD (npAD) were also made with four sets of criteria. Adjusted linear mixed models tested differences between participants with and without npAD on the quantitative neuropathology measures and psychometric test scores prior to death. Spearman rank-order correlations between AD lesions and psychometric scores at last assessment were calculated for cases with pathology in particular regions. Setting Washington University Alzheimer’s Disease Research Center. Participants Ninety-seven nondemented participants who were age 60 years or older at death (mean = 84 years). Results About 40% of nondemented individuals met at least some level of criteria for npAD; when strict criteria were used, about 20% of cases had npAD. Substantial overlap of Braak neurofibrillary stages occurred between npAD and no-npAD cases. Although there was no measurable cognitive impairment prior to death for either the no-npAD or npAD groups, cognitive function in nondemented aging appears to be degraded by the presence of NFTs and SPs. Conclusions Neuropathological processes related to AD in persons without dementia appear to be associated with subtle cognitive dysfunction and may represent a preclinical stage of the illness. By age 80–85 years, many nondemented older adults have substantial AD pathology. PMID:19376612

  7. Small Molecule p75NTR Ligands Reduce Pathological Phosphorylation and Misfolding of Tau, Inflammatory Changes, Cholinergic Degeneration, and Cognitive Deficits in AβPPL/S Transgenic Mice

    PubMed Central

    Nguyen, Thuy-Vi V.; Shen, Lin; Griend, Lilith Vander; Quach, Lisa N.; Belichenko, Nadia P.; Saw, Nay; Yang, Tao; Shamloo, Mehrdad; Wyss-Coray, Tony; Massa, Stephen M.; Longo, Frank M.

    2014-01-01

    The p75 neurotrophin receptor (p75NTR ) is involved in degenerative mechanisms related to Alzheimer’s disease (AD). In addition, p75NTR levels are increased in AD and the receptor is expressed by neurons that are particularly vulnerable in the disease. Therefore, modulating p75NTR function may be a significant disease-modifying treatment approach. Prior studies indicated that the non-peptide, small molecule p75NTR ligands LM11A-31, and chemically unrelated LM11A-24, could block amyloid-β-induced deleterious signaling and neurodegeneration in vitro, and LM11A-31 was found to mitigate neuritic degeneration and behavioral deficits in a mouse model of AD. In this study, we determined whether these in vivo findings represent class effects of p75NTR ligands by examining LM11A-24 effects. In addition, the range of compound effects was further examined by evaluating tau pathology and neuroinflammation. Following oral administration, both ligands reached brain concentrations known to provide neuroprotection in vitro. Compound induction of p75NTR cleavage provided evidence for CNS target engagement. LM11A-31 and LM11A-24 reduced excessive phosphorylation of tau, and LM11A-31 also inhibited its aberrant folding. Both ligands decreased activation of microglia, while LM11A-31 attenuated reactive astrocytes. Along with decreased inflammatory responses, both ligands reduced cholinergic neurite degeneration. In addition to the amelioration of neuropathology in AD model mice, LM11A-31, but not LM11A-24, prevented impairments in water maze performance, while both ligands prevented deficits in fear conditioning. These findings support a role for p75NTR ligands in preventing fundamental tau-related pathologic mechanisms in AD, and further validate the development of these small molecules as a new class of therapeutic compounds. PMID:24898660

  8. Nature of Tau-Associated Neurodegeneration and the Molecular Mechanisms

    PubMed Central

    Yang, Ying; Wang, Jian-Zhi

    2018-01-01

    Neurodegeneration is defined as the progressive loss of structure or function of the neurons. As the nature of degenerative cell loss is currently not clear, there is no specific molecular marker to measure neurodegeneration. Therefore, researchers have been using apoptotic markers to measure neurodegeneration. However, neurodegeneration is completely different from apoptosis by morphology and time course. Lacking specific molecular marker has been the major hindrance in research of neurodegenerative disorders. Alzheimer’s disease (AD) is the most common neurodegenerative disorder, and tau accumulation forming neurofibrillary tangles is a hallmark pathology in the AD brains, suggesting that tau must play a critical role in AD neurodegeneration. Here we review part of our published papers on tau-related studies, and share our thoughts on the nature of tau-associated neurodegeneration in AD. PMID:29562535

  9. Impact of N-tau on adult hippocampal neurogenesis, anxiety, and memory.

    PubMed

    Pristerà, Andrea; Saraulli, Daniele; Farioli-Vecchioli, Stefano; Strimpakos, Georgios; Costanzi, Marco; di Certo, Maria Grazia; Cannas, Sara; Ciotti, Maria Teresa; Tirone, Felice; Mattei, Elisabetta; Cestari, Vincenzo; Canu, Nadia

    2013-11-01

    Different pathological tau species are involved in memory loss in Alzheimer's disease, the most common cause of dementia among older people. However, little is known about how tau pathology directly affects adult hippocampal neurogenesis, a unique form of structural plasticity implicated in hippocampus-dependent spatial learning and mood-related behavior. To this aim, we generated a transgenic mouse model conditionally expressing a pathological tau fragment (26-230 aa of the longest human tau isoform, or N-tau) in nestin-positive stem/progenitor cells. We found that N-tau reduced the proliferation of progenitor cells in the adult dentate gyrus, reduced cell survival and increased cell death by a caspase-3-independent mechanism, and recruited microglia. Although the number of terminally differentiated neurons was reduced, these showed an increased dendritic arborization and spine density. This resulted in an increase of anxiety-related behavior and an impairment of episodic-like memory, whereas less complex forms of spatial learning remained unaltered. Understanding how pathological tau species directly affect neurogenesis is important for developing potential therapeutic strategies to direct neurogenic instructive cues for hippocampal function repair. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Neuropathology of alcoholism.

    PubMed

    Sutherland, Greg T; Sheedy, Donna; Kril, Jillian J

    2014-01-01

    Chronic alcohol consumption results in structural changes to the brain. In alcoholics without coexisting thiamine deficiency or liver disease this is largely restricted to a loss of white-matter volume. When it occurs, neuronal loss is limited in anatomic distribution and only detected with quantitative techniques. This relative paucity of neurodegeneration is reflected in studies of gene and protein expression in postmortem brain where findings are subtle and discordant between studies. In alcoholics with coexisting pathologies, neuronal loss is more marked and affects a wider range of anatomic regions, especially subcortical nuclei. Although this more widespread damage may reflect a more severe drinking history, there is evidence linking thiamine deficiency and the consequences of liver disease to the pathogenesis of alcohol-related brain damage. Furthermore, a range of other factors, such as cigarette smoking and mood disorders, that are common in alcoholics, have the potential to influence studies of brain pathology and should be considered in further studies of the neuropathology of alcoholism. © 2014 Elsevier B.V. All rights reserved.

  11. Tau-REx: A new look at the retrieval of exoplanetary atmospheres

    NASA Astrophysics Data System (ADS)

    Waldmann, Ingo

    2014-11-01

    The field of exoplanetary spectroscopy is as fast moving as it is new. With an increasing amount of space and ground based instruments obtaining data on a large set of extrasolar planets we are indeed entering the era of exoplanetary characterisation. Permanently at the edge of instrument feasibility, it is as important as it is difficult to find the most optimal and objective methodologies to analysing and interpreting current data. This is particularly true for smaller and fainter Earth and Super-Earth type planets.For low to mid signal to noise (SNR) observations, we are prone to two sources of biases: 1) Prior selection in the data reduction and analysis; 2) Prior constraints on the spectral retrieval. In Waldmann et al. (2013), Morello et al. (2014) and Waldmann (2012, 2014) we have shown a prior-free approach to data analysis based on non-parametric machine learning techniques. Following these approaches we will present a new take on the spectral retrieval of extrasolar planets. Tau-REx (tau-retrieval of exoplanets) is a new line-by-line, atmospheric retrieval framework. In the past the decision on what opacity sources go into an atmospheric model were usually user defined. Manual input can lead to model biases and poor convergence of the atmospheric model to the data. In Tau-REx we have set out to solve this. Through custom built pattern recognition software, Tau-REx is able to rapidly identify the most likely atmospheric opacities from a large number of possible absorbers/emitters (ExoMol or HiTran data bases) and non-parametrically constrain the prior space for the Bayesian retrieval. Unlike other (MCMC based) techniques, Tau-REx is able to fully integrate high-dimensional log-likelihood spaces and to calculate the full Bayesian Evidence of the atmospheric models. We achieve this through a combination of Nested Sampling and a high degree of code parallelisation. This allows for an exact and unbiased Bayesian model selection and a fully mapping of potential

  12. Genome-wide association study of CSF biomarkers Abeta1-42, t-tau, and p-tau181p in the ADNI cohort.

    PubMed

    Kim, S; Swaminathan, S; Shen, L; Risacher, S L; Nho, K; Foroud, T; Shaw, L M; Trojanowski, J Q; Potkin, S G; Huentelman, M J; Craig, D W; DeChairo, B M; Aisen, P S; Petersen, R C; Weiner, M W; Saykin, A J

    2011-01-04

    CSF levels of Aβ1-42, t-tau, and p-tau181p are potential early diagnostic markers for probable Alzheimer disease (AD). The influence of genetic variation on these markers has been investigated for candidate genes but not on a genome-wide basis. We report a genome-wide association study (GWAS) of CSF biomarkers (Aβ1-42, t-tau, p-tau181p, p-tau181p/Aβ1-42, and t-tau/Aβ1-42). A total of 374 non-Hispanic Caucasian participants in the Alzheimer's Disease Neuroimaging Initiative cohort with quality-controlled CSF and genotype data were included in this analysis. The main effect of single nucleotide polymorphisms (SNPs) under an additive genetic model was assessed on each of 5 CSF biomarkers. The p values of all SNPs for each CSF biomarker were adjusted for multiple comparisons by the Bonferroni method. We focused on SNPs with corrected p<0.01 (uncorrected p<3.10×10(-8)) and secondarily examined SNPs with uncorrected p values less than 10(-5) to identify potential candidates. Four SNPs in the regions of the APOE, LOC100129500, TOMM40, and EPC2 genes reached genome-wide significance for associations with one or more CSF biomarkers. SNPs in CCDC134, ABCG2, SREBF2, and NFATC4, although not reaching genome-wide significance, were identified as potential candidates. In addition to known candidate genes, APOE, TOMM40, and one hypothetical gene LOC100129500 partially overlapping APOE; one novel gene, EPC2, and several other interesting genes were associated with CSF biomarkers that are related to AD. These findings, especially the new EPC2 results, require replication in independent cohorts.

  13. Antibody uptake into neurons occurs primarily via clathrin-dependent Fcγ receptor endocytosis and is a prerequisite for acute tau protein clearance.

    PubMed

    Congdon, Erin E; Gu, Jiaping; Sait, Hameetha B R; Sigurdsson, Einar M

    2013-12-06

    Tau immunotherapy is effective in transgenic mice, but the mechanisms of Tau clearance are not well known. To this end, Tau antibody uptake was analyzed in brain slice cultures and primary neurons. Internalization was rapid (<1 h), saturable, and substantial compared with control mouse IgG. Furthermore, temperature reduction to 4 °C, an excess of unlabeled mouse IgG, or an excess of Tau antibodies reduced uptake in slices by 63, 41, and 62%, respectively (p = 0.002, 0.04, and 0.005). Uptake strongly correlated with total and insoluble Tau levels (r(2) = 0.77 and 0.87 and p = 0.002 and 0.0002), suggesting that Tau aggregates influence antibody internalization and/or retention within neurons. Inhibiting phagocytosis did not reduce uptake in slices or neuronal cultures, indicating limited microglial involvement. In contrast, clathrin-specific inhibitors reduced uptake in neurons (≤ 78%, p < 0.0001) and slices (≤ 35%, p = 0.03), demonstrating receptor-mediated endocytosis as the primary uptake pathway. Fluid phase endocytosis accounted for the remainder of antibody uptake in primary neurons, based on co-staining with internalized dextran. The receptor-mediated uptake is to a large extent via low affinity FcγII/III receptors and can be blocked in slices (43%, p = 0.04) and neurons (53%, p = 0.008) with an antibody against these receptors. Importantly, antibody internalization appears to be necessary for Tau reduction in primary neurons. Overall, these findings clarify that Tau antibody uptake is primarily receptor-mediated, that these antibodies are mainly found in neurons with Tau aggregates, and that their intracellular interaction leads to clearance of Tau pathology, all of which have major implications for therapeutic development of this approach.

  14. Isoprenoids and tau pathology in sporadic Alzheimer's disease.

    PubMed

    Pelleieux, Sandra; Picard, Cynthia; Lamarre-Théroux, Louise; Dea, Doris; Leduc, Valérie; Tsantrizos, Youla S; Poirier, Judes

    2018-05-01

    The mevalonate pathway has been described to play a key role in Alzheimer's disease (AD) physiopathology. Farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP) are nonsterol isoprenoids derived from mevalonate, which serve as precursors to numerous human metabolites. They facilitate protein prenylation; hFPP and hGGPP synthases act as gateway enzymes to the prenylation of the small guanosine triphosphate (GTP)ase proteins such as RhoA and cdc42 that have been shown to facilitate phospho-tau (p-Tau, i.e., protein tau phosphorylated) production in the brain. In this study, a significant positive correlation was observed between the synthases mRNA prevalence and disease status (FPPS, p < 0.001, n = 123; GGPPS, p < 0.001, n = 122). The levels of mRNA for hFPPS and hGGPPS were found to significantly correlate with the amount of p-Tau protein levels (p < 0.05, n = 34) and neurofibrillary tangle density (p < 0.05, n = 39) in the frontal cortex. Interestingly, high levels of hFPPS and hGGPPS mRNA prevalence are associated with earlier age of onset in AD (p < 0.05, n = 58). Together, these results suggest that accumulation of p-Tau in the AD brain is related, at least in part, to increased levels of neuronal isoprenoids. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Evidence for an intermediate in tau filament formation.

    PubMed

    Chirita, Carmen N; Kuret, Jeff

    2004-02-17

    Alzheimer's disease is defined in part by the intraneuronal accumulation of filaments comprised of the microtubule-associated protein tau. In vitro, fibrillization of full-length, unphosphorylated recombinant tau can be induced under near-physiological conditions by treatment with various agents, including anionic surfactants. Here we examine the pathway through which anionic surfactants promote tau fibrillization using a combination of electron microscopy and fluorescence spectroscopy. Protein and surfactant first interacted in solution to form micelles, which then provided negatively charged surfaces that accumulated tau aggregates. Surface aggregation of tau protein was followed by the time-dependent appearance of a thioflavin S reactive intermediate that accumulated over a period of hours. The intermediate was unstable in the absence of anionic surfaces, suggesting it was not filamentous. Fibrillization proceeded after intermediate formation with classic nucleation-dependent kinetics, consisting of lag phase followed by the exponential increase in filament lengths, followed by an equilibrium phase reached in approximately 24 h. The pathway did not require protein insertion into the micelle hydrophobic core or conformational change arising from mixed micelle formation, because anionic microspheres constructed from impermeable polystyrene were capable of qualitatively reproducing all aspects of the fibrillization reaction. It is proposed that the progression from amorphous aggregation through intermediate formation and fibrillization may underlie the activity of other inducers such as hyperphosphorylation and may be operative in vivo.

  16. Precortical phase of Alzheimer’s disease (AD)-related tau cytoskeletal pathology

    PubMed Central

    Stratmann, Katharina; Heinsen, Helmut; Korf, Horst-Werner; Del Turco, Domenico; Ghebremedhin, Estifanos; Seidel, Kay; Bouzrou, Mohamed; Grinberg, Lea T.; Bohl, Jürgen; Wharton, Stephen B; den Dunnen, Wilfred; Rüb, Udo

    2015-01-01

    Alzheimer’s disease (AD) represents the most frequent progressive neuropsychiatric disorder worldwide leading to dementia and accounts for 60 to 70% of demented individuals. In view of the early appearance of neuronal deposits of the hyperphosphorylated cytoskeletal protein tau in the transentorhinal and entorhinal regions of the allocortex (i.e. in Braak and Braak AD stage I in the evolution of the AD-related cortical tau cytoskeletal pathology) it has been believed for a long time that these allocortical regions represent the first brain targets of the AD-related tau cytoskeletal pathology. However, recent pathoanatomical studies suggested that the subcortical brain nuclei that send efferent projections to the transentorhinal and entorhinal regions may also comprise AD-related cytoskeletal changes already at very early Braak and Braak AD stages. In order to corroborate these initial results we systematically investigated the presence and extent of the AD-related cytoskeletal pathology in serial thick tissue sections through all the subcortical nuclei known to send efferent projections to these vulnerable allocortical regions of three individuals with Braak and Braak AD stage 0 and fourteen individuals with Braak and Braak AD stage I by means of immunostainings with the anti-tau antibody AT8. These investigations revealed consistent AT8 immunoreactive neuronal tau cytoskeletal pathology in a subset of these subcortical nuclei (i.e. medial septal nucleus, nuclei of the vertical and horizontal limbs of the diagonal band of Broca, basal nucleus of Meynert; claustrum; hypothalamic ventromedial, tuberomamillary and supramamillary nuclei, perifornical region and lateral area; thalamic central medial, laterodorsal, subparafascicular, and central lateral nuclei, medial pulvinar and limitans-suprageniculate complex; peripeduncular nucleus, dopaminergic substantia nigra and ventral tegmental area, periaqueductal gray, midbrain and pontine dorsal raphe nuclei, locus

  17. Quantitative neurohistological features of frontotemporal degeneration.

    PubMed

    Arnold, S E; Han, L Y; Clark, C M; Grossman, M; Trojanowski, J Q

    2000-01-01

    Frontotemporal degeneration (FTD) is a neurodegenerative condition that has been principally associated with frontal lobe dementia. In this study, we compared neuropathological abnormalities in frontal, hippocampal, and calcarine cortices from patients assigned a diagnosis of FTD, normal elderly and Alzheimer's disease (AD). Densities of Nissl-stained neurons and lesions which were immunolabeled for tau, beta-amyloid (Abeta), alpha- and beta-synuclein, ubiquitin, glial fibrillary acidic protein (GFAP) and CD68 antigen were determined using computer-assisted, non-biased quantitative microscopy. We found that FTD frontal and hippocampal regions exhibited marked neuron loss, abundant ubiquitin-immunoreactive (ir) dystrophic neurites, GFAP-ir astrocytes, and CD68-ir microglia, while calcarine cortex was spared. No alpha- or beta-synuclein-ir lesions were observed, and neither the density of tau-ir neurofibrillary tangles nor that of Abeta-ir plaques in FTD exceeded normal controls. In addition, there were no neuropathological differences between FTD subjects who presented clinically with a frontal lobe dementia versus an AD-like dementia. These findings indicate that FTD is a category of neurodegnerative dementias with varying clinical presentations that is characterized by the progressive degeneration of select populations of cortical neurons. The molecular neurodegenerative mechanisms that lead to FTD remain to be elucidated.

  18. α-Synuclein Aggregated with Tau and β-Amyloid in Human Platelets from Healthy Subjects: Correlation with Physical Exercise

    PubMed Central

    Daniele, Simona; Pietrobono, Deborah; Fusi, Jonathan; Lo Gerfo, Annalisa; Cerri, Eugenio; Chico, Lucia; Iofrida, Caterina; Petrozzi, Lucia; Baldacci, Filippo; Giacomelli, Chiara; Galetta, Fabio; Siciliano, Gabriele; Bonuccelli, Ubaldo; Trincavelli, Maria L.; Franzoni, Ferdinando; Martini, Claudia

    2018-01-01

    The loss of protein homeostasis that has been associated with aging leads to altered levels and conformational instability of proteins, which tend to form toxic aggregates. In particular, brain aging presents characteristic patterns of misfolded oligomers, primarily constituted of β-amyloid (Aβ), tau, and α-synuclein (α-syn), which can accumulate in neuronal membranes or extracellular compartments. Such aging-related proteins can also reach peripheral compartments, thus suggesting the possibility to monitor their accumulation in more accessible fluids. In this respect, we have demonstrated that α-syn forms detectable hetero-aggregates with Aβ or tau in red blood cells (RBCs) of healthy subjects. In particular, α-syn levels and its heteromeric interactions are modulated by plasma antioxidant capability (AOC), which increases in turn with physical activity. In order to understand if a specific distribution of misfolded proteins can occur in other blood cells, a cohort of human subjects was enrolled to establish a correlation among AOC, the level of physical exercise and the concentrations of aging-related proteins in platelets. The healthy subjects were divided depending on their level of physical exercise (i.e., athletes and sedentary subjects) and their age (young and older subjects). Herein, aging-related proteins (i.e., α-syn, tau and Aβ) were confirmed to be present in human platelets. Among such proteins, platelet tau concentration was demonstrated to decrease in athletes, while α-syn and Aβ did not correlate with physical exercise. For the first time, α-syn was shown to directly interact with Aβ and tau in platelets, forming detectable hetero-complexes. Interestingly, α-syn interaction with tau was inversely related to plasma AOC and to the level of physical activity. These results suggested that α-syn heterocomplexes, particularly with tau, could represent novel indicators to monitor aging-related proteins in platelets. PMID:29441013

  19. TauG-guidance of transients in expressive musical performance.

    PubMed

    Schogler, Benjaman; Pepping, Gert-Jan; Lee, David N

    2008-08-01

    The sounds in expressive musical performance, and the movements that produce them, offer insight into temporal patterns in the brain that generate expression. To gain understanding of these brain patterns, we analyzed two types of transient sounds, and the movements that produced them, during a vocal duet and a bass solo. The transient sounds studied were inter-tone f (0)(t)-glides (the continuous change in fundamental frequency, f (0)(t), when gliding from one tone to the next), and attack intensity-glides (the continuous rise in sound intensity when attacking, or initiating, a tone). The temporal patterns of the inter-tone f (0)(t)-glides and attack intensity-glides, and of the movements producing them, all conformed to the mathematical function, tau (G)(t) (called tauG), predicted by General Tau Theory, and assumed to be generated in the brain. The values of the parameters of the tau (G)(t) function were modulated by the performers when they modulated musical expression. Thus the tau (G)(t) function appears to be a fundamental of brain activity entailed in the generation of expressive temporal patterns of movement and sound.

  20. Cholinesterase inhibitors may increase phosphorylated tau in Alzheimer’s disease

    PubMed Central

    Wilcock, Gordon K.; Vinters, Harry V.; Perry, Elaine K.; Perry, Robert; Ballard, Clive G.; Love, Seth

    2014-01-01

    Cholinesterase inhibitors (ChEIs) are widely used for the symptomatic treatment of Alzheimer’s disease (AD). In vitro and in animal studies, ChEIs have been shown to influence the processing of Aβ and the phosphorylation of tau, proteins that are the principal constituents of the plaques and neurofibrillary tangles, respectively, in AD brain. However, little is known about the effects of these drugs on Aβ and tau pathology in AD. Using avidin-biotin immunohistochemistry and computer-assisted image analysis, we compared Aβ and tau loads in the frontal and temporal cortices of 72 brains from matched cohorts of AD patients who had or had not received ChEIs. Patients treated with ChEIs had accumulated significantly more phospho-tau in their cerebral cortex than had untreated patients (P = 0.004). Aβ accumulation was reduced but not significantly. These data raise the possibility that increased tau phosphorylation may influence long-term clinical responsiveness to ChEIs. PMID:19240967

  1. Cerebral Dysfunctions Related to Perinatal Organic Damage: Clinical-Neuropathologic Correlations.

    ERIC Educational Resources Information Center

    Towbin, Abraham

    1978-01-01

    Recent neuropathology studies identify hypoxia as the main cause of perinatal cerebral damage. Cerebral lesions present at birth, with transition to chronic scar lesions, are correlated to mental retardation, cerebral palsy, epilepsy, and minimal brain dysfunction. Gestation age and severity of hypoxic exposure essentially determine the cerebral…

  2. Regulation of brain insulin signaling: A new function for tau

    PubMed Central

    Gratuze, Maud; Planel, Emmanuel

    2017-01-01

    In this issue of JEM, Marciniak et al. (https://doi.org/10.1084/jem.20161731) identify a putative novel function of tau protein as a regulator of insulin signaling in the brain. They find that tau deletion impairs hippocampal response to insulin through IRS-1 and PTEN dysregulation and suggest that, in Alzheimer’s disease, impairment of brain insulin signaling might occur via tau loss of function. PMID:28652305

  3. Regulation of brain insulin signaling: A new function for tau.

    PubMed

    Gratuze, Maud; Planel, Emmanuel

    2017-08-07

    In this issue of JEM, Marciniak et al. (https://doi.org/10.1084/jem.20161731) identify a putative novel function of tau protein as a regulator of insulin signaling in the brain. They find that tau deletion impairs hippocampal response to insulin through IRS-1 and PTEN dysregulation and suggest that, in Alzheimer's disease, impairment of brain insulin signaling might occur via tau loss of function. © 2017 Gratuze and Planel.

  4. Evaluation of the tau-omega model for passive microwave soil moisture retrieval using SMAPEx data sets

    USDA-ARS?s Scientific Manuscript database

    The parameters used for passive soil moisture retrieval algorithms reported in the literature encompass a wide range, leading to a large uncertainty in the applicability of those values. This paper presents an evaluation of the proposed parameterizations of the tau-omega model from 1) SMAP ATBD for ...

  5. Neuropathological biomarker candidates in brain tumors: key issues for translational efficiency.

    PubMed

    Hainfellner, J A; Heinzl, H

    2010-01-01

    Brain tumors comprise a large spectrum of rare malignancies in children and adults that are often associated with severe neurological symptoms and fatal outcome. Neuropathological tumor typing provides both prognostic and predictive tissue information which is the basis for optimal postoperative patient management and therapy. Molecular biomarkers may extend and refine prognostic and predictive information in a brain tumor case, providing more individualized and optimized treatment options. In the recent past a few neuropathological brain tumor biomarkers have translated smoothly into clinical use whereas many candidates show protracted translation. We investigated the causes of protracted translation of candidate brain tumor biomarkers. Considering the research environment from personal, social and systemic perspectives we identified eight determinants of translational success: methodology, funding, statistics, organization, phases of research, cooperation, self-reflection, and scientific progeny. Smoothly translating biomarkers are associated with low degrees of translational complexity whereas biomarkers with protracted translation are associated with high degrees. Key issues for translational efficiency of neuropathological brain tumor biomarker research seem to be related to (i) the strict orientation to the mission of medical research, that is the improval of medical practice as primordial purpose of research, (ii) definition of research priorities according to clinical needs, and (iii) absorption of translational complexities by means of operatively beneficial standards. To this end, concrete actions should comprise adequate scientific education of young investigators, and shaping of integrative diagnostics and therapy research both on the local level and the level of influential international brain tumor research platforms.

  6. Clinical Neuropathology practice news 2-2014: ATRX, a new candidate biomarker in gliomas.

    PubMed

    Haberler, Christine; Wöhrer, Adelheid

    2014-01-01

    Genome-wide molecular approaches have substantially elucidated molecular alterations and pathways involved in the oncogenesis of brain tumors. In gliomas, several molecular biomarkers including IDH mutation, 1p/19q co-deletion, and MGMT promotor methylation status have been introduced into neuropathological practice. Recently, mutations of the ATRX gene have been found in various subtypes and grades of gliomas and were shown to refine the prognosis of malignant gliomas in combination with IDH and 1p/19q status. Mutations of ATRX are associated with loss of nuclear ATRX protein expression, detectable by a commercially available antibody, thus turning ATRX into a promising prognostic candidate biomarker in the routine neuropathological setting.

  7. FDG metabolism associated with tau-amyloid interaction predicts memory decline

    PubMed Central

    Hanseeuw, Bernard J.; Betensky, Rebecca A.; Schultz, Aaron P.; Papp, Kate V.; Mormino, Elizabeth C.; Sepulcre, Jorge; Bark, John S.; Cosio, Danielle M.; LaPoint, Molly; Chhatwal, Jasmeer P.; Rentz, Dorene M.; Sperling, Reisa A.; Johnson, Keith

    2017-01-01

    Objective To evaluate in normal older adults and preclinical Alzheimer’s disease (AD) the impact of amyloid and regional tauopathy on cerebral glucose metabolism and subsequent memory decline. Methods We acquired positron emission tomography using F18 Flortaucipir (tau), C11 Pittsburgh Compound B (amyloid) and F18 Fluorodeoxyglucose in 90 clinically normal elderly of the Harvard Aging Brain Study. Results Posterior cingulate metabolism decreased when both amyloid and neocortical tau were high and predicted subsequent memory decline in a larger sample of normal elderly. In contrast, frontal hypometabolism related to the common age-related entorhinal tauopathy, but this dysfunction was independent of amyloid, and did not predict significant memory decline. Neocortical tauopathy was positively associated with metabolism in individuals with sub-threshold amyloid, suggesting that glucose metabolism increases before decreasing in the course of preclinical AD. Interpretation Our study identified a synergistic effect of amyloid and tau deposits and demonstrated for the first time in normal elderly its link to AD-like hypometabolism and to AD-like memory decline. The amyloid effect was seen with tau in neocortex, but not with tau in entorhinal cortex, which is the common site of age-related tauopathy. Entorhinal tau was associated with frontal hypometabolism, but this dysfunction was not associated with memory loss. PMID:28253546

  8. [Neuropathology in the neurosciences. A system in transition].

    PubMed

    Seitelberger, F

    1993-08-01

    Neuropathology (Np) is a full member of the neurosciences. As a basic neuroscience it is directed to the behaviour of nervous tissues under pathogenic conditions. The theoretical and methodical core of Np concerns the morphological features of pathological disorders and processes of the nervous system. The goal of Np data presentation is an objective description of the structural changes; their time course as processes, and if possible their causal constellations. Complementary to this analytical task is that of reconstructing the pathological process and at a higher level the conception of pathomorphological entities, e.g. as syndromes. Clinical Np is an alliance of Np with neurology, psychiatry and neurosurgery for representing the structural basis of diseases and the role of morphology in diagnosis and clinical management. Prerequisite for the proper functioning of Np is an integration with these other specialist fields. The clinical neuropathologist therefore has to be in certain respects also a neurologist. The same is true of the alliances of Np with other neurosciences, which is already reflected in recent neuropathological methodology. Detailed training programs are necessary for clinical Np, covering all aspects of its medical and social implications. Enough options should be offered for horizontal flexibility of curricula, futherance of secondary special training and support of good unconventional approaches by junior scientists.

  9. Probing Conformational Dynamics of Tau Protein by Hydrogen/Deuterium Exchange Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Huang, Richard Y.-C.; Iacob, Roxana E.; Sankaranarayanan, Sethu; Yang, Ling; Ahlijanian, Michael; Tao, Li; Tymiak, Adrienne A.; Chen, Guodong

    2018-01-01

    Fibrillization of the microtubule-associated protein tau has been recognized as one of the signature pathologies of the nervous system in Alzheimer's disease, progressive supranuclear palsy, and other tauopathies. The conformational transition of tau in the fibrillization process, tau monomer to soluble aggregates to fibrils in particular, remains unclear. Here we report on the use of hydrogen/deuterium exchange mass spectrometry (HDX-MS) in combination with other biochemical approaches, including Thioflavin S fluorescence measurements, enzyme-linked immunosorbent assay (ELISA), and Western blotting to understand the heparin-induced tau's fibrillization. HDX-MS studies including anti-tau antibody epitope mapping experiments provided molecular level details of the full-length tau's conformational dynamics and its regional solvent accessibility upon soluble aggregates formation. The results demonstrate that R3 region in the full-length tau's microtubule binding repeat region (MTBR) is stabilized in the aggregation process, leaving both N and C terminal regions to be solvent exposed in the soluble aggregates and fibrils. The findings also illustrate the practical utility of orthogonal analytical methodologies for the characterization of protein higher order structure. [Figure not available: see fulltext.

  10. The Importance of Brain Banks for Molecular Neuropathological Research: The New South Wales Tissue Resource Centre Experience

    PubMed Central

    Dedova, Irina; Harding, Antony; Sheedy, Donna; Garrick, Therese; Sundqvist, Nina; Hunt, Clare; Gillies, Juliette; Harper, Clive G.

    2009-01-01

    New developments in molecular neuropathology have evoked increased demands for postmortem human brain tissue. The New South Wales Tissue Resource Centre (TRC) at The University of Sydney has grown from a small tissue collection into one of the leading international brain banking facilities, which operates with best practice and quality control protocols. The focus of this tissue collection is on schizophrenia and allied disorders, alcohol use disorders and controls. This review highlights changes in TRC operational procedures dictated by modern neuroscience, and provides examples of applications of modern molecular techniques to study the neuropathogenesis of many different brain disorders. PMID:19333451

  11. Altered phosphorylation of. tau. protein in heat-shocked rats and patients with Alzheimer disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Papasozomenos, S.C.; Yuan Su

    1991-05-15

    Six hours after heat shocking 2- to 3-month-old male and female Sprague-Dawley rats at 42C for 15 min, the authors analyzed {tau} protein immunoreactivity in SDS extracts of cerebrums and peripheral nerves by using immunoblot analysis and immunohistochemistry with the anti-{tau} monoclonal antibody Tau-1, which recognizes a phosphate-dependent nonphosphorylated epitope, and with {sup 125}I-labeled protein A. In the cerebal extracts, the authors found altered phosphorylation of {tau} in heat-shocked females, characterized by a marked reduction in the amount of nonphosphorylated {tau}, a doubling of the ratio of total (phosphorylated plus nonphosphorylated) {tau} to nonphosphorylated {tau}, and the appearance of themore » slowest moving phosphorylated {tau} polypeptide (68 kDa). Similar, but milder, changes were observed in male rats. Quantitative immunoblot analysis of cortex and the underlying white matter with Tau-1 and {sup 125}I-labeled protein A showed that the amount of phosphorylated {tau} progressively increased in the Alzheimer disease-affected cerebral cortex, while concurrently a proportionally lesser amount of {tau} entered the white matter axons. The similar findings for the rat heat-shock model and Alzheimer disease suggest that life stressors may play a role in the etiopathogenesis of Alzheimer's disease.« less

  12. Tau truncation is a productive posttranslational modification of neurofibrillary degeneration in Alzheimer's disease.

    PubMed

    Kovacech, B; Novak, M

    2010-12-01

    Deposits of the misfolded neuronal protein tau are major hallmarks of neurodegeneration in Alzheimer's disease (AD) and other tauopathies. The etiology of the transformation process of the intrinsically disordered soluble protein tau into the insoluble misordered aggregate has attracted much attention. Tau undergoes multiple modifications in AD, most notably hyperphosphorylation and truncation. Hyperphosphorylation is widely regarded as the hottest candidate for the inducer of the neurofibrillary pathology. However, the true nature of the impetus that initiates the whole process in the human brains remains unknown. In AD, several site-specific tau cleavages were identified and became connected to the progression of the disease. In addition, western blot analyses of tau species in AD brains reveal multitudes of various truncated forms. In this review we summarize evidence showing that tau truncation alone is sufficient to induce the complete cascade of neurofibrillary pathology, including hyperphosphorylation and accumulation of misfolded insoluble forms of tau. Therefore, proteolytical abnormalities in the stressed neurons and production of aberrant tau cleavage products deserve closer attention and should be considered as early therapeutic targets for Alzheimer's disease.

  13. Early life linguistic ability, late life cognitive function, and neuropathology: findings from the Nun Study.

    PubMed

    Riley, Kathryn P; Snowdon, David A; Desrosiers, Mark F; Markesbery, William R

    2005-03-01

    The relationships between early life variables, cognitive function, and neuropathology were examined in participants in the Nun Study who were between the ages of 75 and 95. Our early life variable was idea density, which is a measure of linguistic ability, derived from autobiographies written at a mean age of 22 years. Six discrete categories of cognitive function, including mild cognitive impairments, were evaluated, using the Consortium to Establish a Registry for Alzheimer's Disease (CERAD) battery of cognitive tests. Neuropathologic data included Braak staging, neurofibrillary tangle and senile plaque counts, brain weight, degree of cerebral atrophy, severity of atherosclerosis, and the presence of brain infarcts. Early-life idea density was significantly related to the categories of late-life cognitive function, including mild cognitive impairments: low idea density was associated with greater impairment. Low idea density also was significantly associated with lower brain weight, higher degree of cerebral atrophy, more severe neurofibrillary pathology, and the likelihood of meeting neuropathologic criteria for Alzheimer's disease.

  14. A High-throughput Screening Assay for Determining Cellular Levels of Total Tau Protein

    PubMed Central

    Dehdashti, Seameen J.; Zheng, Wei; Gever, Joel R.; Wilhelm, Robert; Nguyen, Dac-Trung; Sittampalam, Gurusingham; McKew, John C.; Austin, Christopher P.; Prusiner, Stanley B.

    2014-01-01

    The microtubule-associated protein (MAP) tau has been implicated in the pathology of numerous neurodegenerative diseases. In the past decade, the hyperphosphorylated and aggregated states of tau protein have been important targets in the drug discovery field for the potential treatment of Alzheimer’s disease. Although several compounds have been reported to reduce the hyperphosphorylated state of tau or impact the stabilization of tau, their therapeutic activities are still to be validated. Recently, reduction of total cellular tau protein has emerged as an alternate intervention point for drug development and a potential treatment of tauopathies. We have developed and optimized a homogenous assay, using the AlphaLISA and HTRF assay technologies, for the quantification of total cellular tau protein levels in the SH-SY5Y neuroblastoma cell line. The signal-to-basal ratios were 375 and 5.3, and the Z’ factors were 0.67 and 0.60 for the AlphaLISA and HTRF tau assays, respectively. The clear advantages of this homogeneous tau assay over conventional total tau assays, such as ELISA and Western blot, are the elimination of plate wash steps and miniaturization of the assay into 1536-well plate format for the ultra–high-throughput screening of large compound libraries. PMID:23905996

  15. Effects of interferon-tau on cattle persistently infected with bovine viral diarrhea virus.

    PubMed

    Kohara, Junko; Nishikura, Yumiko; Konnai, Satoru; Tajima, Motoshi; Onuma, Misao

    2012-08-01

    In this study, the antiviral effects of bovine interferon-tau (boIFN-tau) on bovine viral diarrhea virus (BVDV) were examined in vitro and in vivo. In the in vitro experiments, the replication of cytopathic and non-cytopathic BVDV was inhibited in the bovine cells treated with boIFN-tau. The replication of BVDV was completely suppressed by boIFN-tau at a concentration higher than 10(2) U/ml. In order to examine the effect of boIFN-tau on virus propagation in cattle persistently infected (PI) with non-cytopathic BVDV, boIFN-tau was subcutaneously administered to PI cattle at 10(5) U/kg or 10(6) U/kg body weight 5 times per week for 2 weeks. No physical abnormality such as depression was observed in the cattle during the experiment. The mean BVDV titers in the serum of the PI cattle decreased slightly during the boIFN-tau administration period with the dose of 10(6) U/kg. However, the BVDV titers in the serum returned to the pre-administration level after the final boIFN-tau administration. These results suggest that boIFN-tau demonstrates an anti-BVDV effect, reducing the BVDV level in serum transiently when injected into PI cattle.

  16. Proteolytic cleavage of polymeric tau protein by caspase-3: implications for Alzheimer disease.

    PubMed

    Jarero-Basulto, Jose J; Luna-Muñoz, Jose; Mena, Raul; Kristofikova, Zdena; Ripova, Daniela; Perry, George; Binder, Lester I; Garcia-Sierra, Francisco

    2013-12-01

    Truncated tau protein at Asp(421) is associated with neurofibrillary pathology in Alzheimer disease (AD); however, little is known about its presence in the form of nonfibrillary aggregates. Here, we report immunohistochemical staining of the Tau-C3 antibody, which recognizes Asp(421)-truncated tau, in a group of AD cases with different extents of cognitive impairment. In the hippocampus, we found distinct nonfibrillary aggregates of Asp(421)-truncated tau. Unlike Asp(421)-composed neurofibrillary tangles, however, these nonfibrillary pathologies did not increase significantly with respect to the Braak staging and, therefore, make no significant contribution to cognitive impairment. On the other hand, despite in vitro evidence that caspase-3 cleaves monomeric tau at Asp(421), to date, this truncation has not been demonstrated to be executed by this protease in polymeric tau entities. We determined that Asp(421) truncation can be produced by caspase-3 in oligomeric and multimeric complexes of recombinant full-length tau in isolated native tau filaments in vitro and in situ in neurofibrillary tangles analyzed in fresh brain slices from AD cases. Our data suggest that generation of this pathologic Asp(421) truncation of tau in long-lasting fibrillary structures may produce further permanent toxicity for neurons in the brains of patients with AD.

  17. PICALM modulates autophagy activity and tau accumulation

    PubMed Central

    Moreau, Kevin; Fleming, Angeleen; Imarisio, Sara; Lopez Ramirez, Ana; Mercer, Jacob L.; Jimenez-Sanchez, Maria; Bento, Carla F.; Puri, Claudia; Zavodszky, Eszter; Siddiqi, Farah; Lavau, Catherine P.; Betton, Maureen; O’Kane, Cahir J.; Wechsler, Daniel S.; Rubinsztein, David C.

    2014-01-01

    Genome-wide association studies have identified several loci associated with Alzheimer’s disease (AD), including proteins involved in endocytic trafficking such as PICALM/CALM (phosphatidylinositol binding clathrin assembly protein). It is unclear how these loci may contribute to AD pathology. Here we show that CALM modulates autophagy and alters clearance of tau, a protein which is a known autophagy substrate and which is causatively linked to AD, both in vitro and in vivo. Furthermore, altered CALM expression exacerbates tau-mediated toxicity in zebrafish transgenic models. CALM influences autophagy by regulating the endocytosis of SNAREs, such as VAMP2, VAMP3 and VAMP8, which have diverse effects on different stages of the autophagy pathway, from autophagosome formation to autophagosome degradation. This study suggests that the AD genetic risk factor CALM modulates autophagy, and this may affect disease in a number of ways including modulation of tau turnover. PMID:25241929

  18. The role of neuropathological markers in the interpretation of neuropsychiatric disorders: Focus on fetal and perinatal programming.

    PubMed

    Fanni, Daniela; Gerosa, Clara; Rais, Monica; Ravarino, Alberto; Van Eyken, Peter; Fanos, Vassilios; Faa, Gavino

    2018-03-16

    The study of neuropathological markers in patients affected by mental/psychiatric disorders is relevant for the comprehension of the pathogenesis and the correlation with the clinical symptomatology. The neuropathology of Alzheimer's disease (AD) recognizes intraneuronal and extracellular neurofibrillary formation responsible for neuronal degeneration. Immunohistochemical studies discovered many interesting results for a better interpretation of the AD pathogenesis, while the "metal hypothesis" supports that metal ions might differentially influence the formation of amyloid aggregates. The most relevant pathological findings reported in schizophrenia originate from computer assisted tomography (CT), Magnetic Resonance Imaging (MRI) studies and Diffusion Tensor Imaging (DTI), suggesting the brain abnormalities involved in the pathophysiology of schizophrenia. The theory of fetal programming illustrates the epigenetic factors that may act during the intrauterine life on brain development, with relevant consequences on the susceptibility to develop AD or schizophrenia later in life. The neuropathological interpretation of AD and schizophrenia shows that the presence of severe neuropathological changes is not always associated with severe cognitive impairment. A better dialogue between psychiatrics and pathologists might help to halt insurgence and progression of neurodegenerative diseases. Copyright © 2016. Published by Elsevier B.V.

  19. Anti-tau oligomers passive vaccination for the treatment of Alzheimer disease.

    PubMed

    Kayed, Rakez

    2010-11-01

    The aggregation and accumulation of the microtubule-associated protein (Tau) is a pathological hallmark of Alzheimer's disease (AD) and many neurodegenerative diseases. Despite the poor correlation between neurofirillary tangles (NFTs) and disease progression, and evidence showing, that neuronal loss in AD actually precedes NFTs formation research until recently focused on them and other large meta-stable inclusions composed of aggregated hyperphosphorylated tau protein. Lately, the significance and toxicity of NFTs has been challenged and new aggregated tau entity has emerged as the true pathogenic species in tauopathies and a possible mediator of Aβ toxicity in AD. Tau intermediate aggregate (tau oligomers; aggregates of an intermediate that is between monomers and NFTs in size) can cause neurodegeneration and memory impairment in the absence of Aβ. This exciting body of evidence includes results from human brain samples, transgenic mouse and cell-based studies. Despite extensive efforts to develop a safe and efficacious vaccine for AD using Aβ peptide as an immunogen in active vaccination approaches or anti Aβ antibodies for passive vaccination, success has been modest. Nonetheless, these studies have produced a wealth of fundamental knowledge that has potential to application to the development of a tau-based immunotherapy. Herein, I discuss the evidence supporting the critical role of tau oligomers in AD, the potential and challenges for targeting them by immunotherapy as a novel approach for AD treatment.

  20. CNS tau efflux via exosomes is likely increased in Parkinson disease but not in Alzheimer disease

    PubMed Central

    Shi, Min; Kovac, Andrej; Korff, Ane; Cook, Travis J.; Ginghina, Carmen; Bullock, Kristin M.; Yang, Li; Stewart, Tessandra; Zheng, Danfeng; Aro, Patrick; Atik, Anzari; Kerr, Kathleen F.; Zabetian, Cyrus P.; Peskind, Elaine R.; Hu, Shu-Ching; Quinn, Joseph F.; Galasko, Douglas R.; Montine, Thomas J.; Banks, William A.; Zhang, Jing

    2016-01-01

    Background Alzheimer disease (AD) and Parkinson disease (PD) involve tau pathology. Tau is detectable in blood, but its clearance from neuronal cells and the brain is poorly understood. Methods Tau efflux from the brain to the blood was evaluated by administering radioactively labeled and unlabeled tau intracerebroventricularly in wild-type and tau knock-out mice, respectively. Central nervous system (CNS)-derived tau in L1CAM-containing exosomes was further characterized extensively in human plasma, including by Single Molecule Array technology with 303 subjects. Results The efflux of Tau, including a fraction via CNS-derived L1CAM exosomes, was observed in mice. In human plasma, tau was explicitly identified within L1CAM exosomes. In contrast to AD patients, L1CAM exosomal tau was significantly higher in PD patients than controls, and correlated with cerebrospinal fluid tau. Conclusions Tau is readily transported from the brain to the blood. The mechanisms of CNS tau efflux are likely different between AD and PD. PMID:27234211

  1. Goodman and Kruskal's TAU-B Statistics: A Fortran-77 Subroutine.

    ERIC Educational Resources Information Center

    Berry, Kenneth J.; Mielke, Paul W., Jr.

    1986-01-01

    An algorithm and associated FORTRAN-77 computer subroutine are described for computing Goodman and Kruskal's tau-b statistic along with the associated nonasymptotic probability value under the null hypothesis tau=O. (Author)

  2. Ecological-floristic analysis of soil algae and cyanobacteria on the Tra-Tau and Yurak-Tau Mounts, Bashkiria

    NASA Astrophysics Data System (ADS)

    Bakieva, G. R.; Khaibullina, L. S.; Gaisina, L. A.; Kabirov, R. R.

    2012-09-01

    The species composition of the soil algae and cyanobacteria in the Tra-Tau and Yurak-Tau mountains is represented by 136 species belonging to five phyla: Cyanobacteria (56 species), Chlorophyta (52 species), Xanthophyta (13 species), Bacillariophyta (12 species), and Eustigmatophyta (3 species). Hantzschia amphioxys var. amphioxys, Hantzschia amphioxys var. constricta, Klebsormidium flaccidum, Leptolyngbya foveolarum, Luticola mutica, Navicula minima var. minima, Nostoc punctiforme, Phormidium jadinianum, Phormidium autumnale, and Pinnularia borealis were identified more often than other species. The composition of the algal flora depended on the soil properties; the higher plants also had a significant influence on the species composition of the soil algae.

  3. Far-Infrared and Millimeter Continuum Studies of K-Giants: Alpha Boo and Alpha Tau

    NASA Technical Reports Server (NTRS)

    Cohen, Martin; Carbon, Duane F.; Welch, William J.; Lim, Tanya; Forster, James R.; Goorvitch, David; Thigpen, William (Technical Monitor)

    2002-01-01

    We have imaged two normal, non-coronal, infrared-bright K-giants, alpha Boo and alpha Tau, in the 1.4-millimeter and 2.8-millimeter continuum using BIMA. These stars have been used as important absolute calibrators for several infrared satellites. Our goals are: (1) to probe the structure of their upper photospheres; (2) to establish whether these stars radiate as simple photospheres or possess long-wavelength chromospheres; and (3) to make a connection between millimeter-wave and far-infrared absolute flux calibrations. To accomplish these goals we also present ISO Long Wavelength Spectrometer (LWS) measurements of both these K-giants. The far-infrared and millimeter continuum radiation is produced in the vicinity of the temperature minimum in a Boo and a Tau, offering a direct test of the model photospheres and chromospheres for these two cool giants. We find that current photospheric models predict fluxes in reasonable agreement with those observed for those wavelengths which sample the upper photosphere, namely less than or equal to 170 micrometers in alpha Tau and less than or equal to 125 micrometers in alpha Boo. It is possible that alpha Tau is still radiative as far as 0.9 - 1.4 millimeters. We detect chromospheric radiation from both stars by 2.8 millimeters (by 1.4 millimeters in alpha Boo), and are able to establish useful bounds on the location of the temperature minimum. An attempt to interpret the chromospheric fluxes using the two-component "bifurcation model" proposed by Wiedemann et al. (1994) appears to lead to a significant contradiction.

  4. Beta-amyloid and phosphorylated tau metabolism changes in narcolepsy over time.

    PubMed

    Liguori, Claudio; Placidi, Fabio; Izzi, Francesca; Nuccetelli, Marzia; Bernardini, Sergio; Sarpa, Maria Giovanna; Cum, Fabrizio; Marciani, Maria Grazia; Mercuri, Nicola Biagio; Romigi, Andrea

    2016-03-01

    The aim od this study is to test whether metabolism of beta-amyloid and tau proteins changes in narcolepsy along with the disease course. We analyzed a population of narcoleptic drug-naïve patients compared to a sample of healthy controls. Patients and controls underwent lumbar puncture for assessment of cerebrospinal fluid (CSF) beta-amyloid1-42 (Aβ42), total tau (t-tau), and phosphorylated tau (p-tau) levels. Moreover, based on the median disease duration of the whole narcolepsy group, the patients were divided into two subgroups: patients with a short disease duration (SdN, <5 years) and patients with a long disease duration (LdN, >5 years). We found significantly lower CSF Aβ42 levels in the whole narcolepsy group with respect to controls. Taking into account the patient subgroups, we documented reduced CSF Aβ42 levels in SdN compared to both LdN and controls. Even LdN patients showed lower CSF Aβ42 levels with respect to controls. Moreover, we documented higher CSF p-tau levels in LdN patients compared to both SdN and controls. Finally, a significant positive correlation between CSF Aβ42 levels and disease duration was evident. We hypothesize that beta-amyloid metabolism and cascade may be impaired in narcolepsy not only at the onset but also along with the disease course, although they show a compensatory profile over time. Concurrently, also CSF biomarkers indicative of neural structure (p-tau) appear to be altered in narcolepsy patients with a long disease duration. However, the mechanism underlying beta-amyloid and tau metabolism impairment in narcolepsy remains still unclear and deserves to be better elucidated.

  5. Gene knockout of tau expression does not contribute to the pathogenesis of prion disease.

    PubMed

    Lawson, Victoria A; Klemm, Helen M; Welton, Jeremy M; Masters, Colin L; Crouch, Peter; Cappai, Roberto; Ciccotosto, Giuseppe D

    2011-11-01

    Prion diseases or transmissible spongiform encephalopathies are a group of fatal and transmissible disorders affecting the central nervous system of humans and animals. The principal agent of prion disease transmission and pathogenesis is proposed to be an abnormal protease-resistant isoform of the normal cellular prion protein. The microtubule-associated protein tau is elevated in patients with Creutzfeldt-Jakob disease. To determine whether tau expression contributes to prion disease pathogenesis, tau knockout and control wild-type mice were infected with the M1000 strain of mouse-adapted human prions. Immunohistochemical analysis for total tau expression in prion-infected wild-type mice indicated tau aggregation in the cytoplasm of a subpopulation of neurons in regions associated with spongiform change. Western immunoblot analysis of brain homogenates revealed a decrease in total tau immunoreactivity and epitope-specific changes in tau phosphorylation. No significant difference in incubation period or other disease features were observed between tau knockout and wild-type mice with clinical prion disease. These results demonstrate that, in this model of prion disease, tau does not contribute to the pathogenesis of prion disease and that changes in the tau protein profile observed in mice with clinical prion disease occurs as a consequence of the prion-induced pathogenesis.

  6. Predicted sequence of cortical tau and amyloid-β deposition in Alzheimer disease spectrum.

    PubMed

    Cho, Hanna; Lee, Hye Sun; Choi, Jae Yong; Lee, Jae Hoon; Ryu, Young Hoon; Lee, Myung Sik; Lyoo, Chul Hyoung

    2018-04-17

    We investigated sequential order between tau and amyloid-β (Aβ) deposition in Alzheimer disease spectrum using a conditional probability method. Two hundred twenty participants underwent 18 F-flortaucipir and 18 F-florbetaben positron emission tomography scans and neuropsychological tests. The presence of tau and Aβ in each region and impairment in each cognitive domain were determined by Z-score cutoffs. By comparing pairs of conditional probabilities, the sequential order of tau and Aβ deposition were determined. Probability for the presence of tau in the entorhinal cortex was higher than that of Aβ in all cortical regions, and in the medial temporal cortices, probability for the presence of tau was higher than that of Aβ. Conversely, in the remaining neocortex above the inferior temporal cortex, probability for the presence of Aβ was always higher than that of tau. Tau pathology in the entorhinal cortex may appear earlier than neocortical Aβ and may spread in the absence of Aβ within the neighboring medial temporal regions. However, Aβ may be required for massive tau deposition in the distant cortical areas. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Acute tau knockdown in the hippocampus of adult mice causes learning and memory deficits.

    PubMed

    Velazquez, Ramon; Ferreira, Eric; Tran, An; Turner, Emily C; Belfiore, Ramona; Branca, Caterina; Oddo, Salvatore

    2018-05-10

    Misfolded and hyperphosphorylated tau accumulates in several neurodegenerative disorders including Alzheimer's disease, frontotemporal dementia with Parkinsonism, corticobasal degeneration, progressive supranuclear palsy, Down syndrome, and Pick's disease. Tau is a microtubule-binding protein, and its role in microtubule stabilization is well defined. In contrast, while growing evidence suggests that tau is also involved in synaptic physiology, a complete assessment of tau function in the adult brain has been hampered by robust developmental compensation of other microtubule-binding proteins in tau knockout mice. To circumvent these developmental compensations and assess the role of tau in the adult brain, we generated an adeno-associated virus (AAV) expressing a doxycycline-inducible short-hairpin (Sh) RNA targeted to tau, herein referred to as AAV-ShRNATau. We performed bilateral stereotaxic injections in 7-month-old C57Bl6/SJL wild-type mice with either the AAV-ShRNATau or a control AAV. We found that acute knockdown of tau in the adult hippocampus significantly impaired motor coordination and spatial memory. Blocking the expression of the AAV-ShRNATau, thereby allowing tau levels to return to control levels, restored motor coordination and spatial memory. Mechanistically, the reduced tau levels were associated with lower BDNF levels, reduced levels of synaptic proteins associated with learning, and decreased spine density. We provide compelling evidence that tau is necessary for motor and cognitive function in the adult brain, thereby firmly supporting that tau loss-of-function may contribute to the clinical manifestations of many tauopathies. These findings have profound clinical implications given that anti-tau therapies are in clinical trials for Alzheimer's disease. © 2018 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  8. Search for the standard model Higgs boson in tau final states.

    PubMed

    Abazov, V M; Abbott, B; Abolins, M; Acharya, B S; Adams, M; Adams, T; Aguilo, E; Ahsan, M; Alexeev, G D; Alkhazov, G; Alton, A; Alverson, G; Alves, G A; Ancu, L S; Andeen, T; Anzelc, M S; Aoki, M; Arnoud, Y; Arov, M; Arthaud, M; Askew, A; Asman, B; Atramentov, O; Avila, C; Backusmayes, J; Badaud, F; Bagby, L; Baldin, B; Bandurin, D V; Banerjee, S; Barberis, E; Barfuss, A-F; Bargassa, P; Baringer, P; Barreto, J; Bartlett, J F; Bassler, U; Bauer, D; Beale, S; Bean, A; Begalli, M; Begel, M; Belanger-Champagne, C; Bellantoni, L; Bellavance, A; Benitez, J A; Beri, S B; Bernardi, G; Bernhard, R; Bertram, I; Besançon, M; Beuselinck, R; Bezzubov, V A; Bhat, P C; Bhatnagar, V; Blazey, G; Blessing, S; Bloom, K; Boehnlein, A; Boline, D; Bolton, T A; Boos, E E; Borissov, G; Bose, T; Brandt, A; Brock, R; Brooijmans, G; Bross, A; Brown, D; Bu, X B; Buchholz, D; Buehler, M; Buescher, V; Bunichev, V; Burdin, S; Burnett, T H; Buszello, C P; Calfayan, P; Calpas, B; Calvet, S; Cammin, J; Carrasco-Lizarraga, M A; Carrera, E; Carvalho, W; Casey, B C K; Castilla-Valdez, H; Chakrabarti, S; Chakraborty, D; Chan, K M; Chandra, A; Cheu, E; Cho, D K; Choi, S; Choudhary, B; Christoudias, T; Cihangir, S; Claes, D; Clutter, J; Cooke, M; Cooper, W E; Corcoran, M; Couderc, F; Cousinou, M-C; Crépé-Renaudin, S; Cuplov, V; Cutts, D; Cwiok, M; Das, A; Davies, G; De, K; de Jong, S J; De La Cruz-Burelo, E; DeVaughan, K; Déliot, F; Demarteau, M; Demina, R; Denisov, D; Denisov, S P; Desai, S; Diehl, H T; Diesburg, M; Dominguez, A; Dorland, T; Dubey, A; Dudko, L V; Duflot, L; Duggan, D; Duperrin, A; Dutt, S; Dyshkant, A; Eads, M; Edmunds, D; Ellison, J; Elvira, V D; Enari, Y; Eno, S; Ermolov, P; Escalier, M; Evans, H; Evdokimov, A; Evdokimov, V N; Facini, G; Ferapontov, A V; Ferbel, T; Fiedler, F; Filthaut, F; Fisher, W; Fisk, H E; Fortner, M; Fox, H; Fu, S; Fuess, S; Gadfort, T; Galea, C F; Garcia-Bellido, A; Gavrilov, V; Gay, P; Geist, W; Geng, W; Gerber, C E; Gershtein, Y; Gillberg, D; Ginther, G; Gómez, B; Goussiou, A; Grannis, P D; Greder, S; Greenlee, H; Greenwood, Z D; Gregores, E M; Grenier, G; Gris, Ph; Grivaz, J-F; Grohsjean, A; Grünendahl, S; Grünewald, M W; Guo, F; Guo, J; Gutierrez, G; Gutierrez, P; Haas, A; Hadley, N J; Haefner, P; Hagopian, S; Haley, J; Hall, I; Hall, R E; Han, L; Harder, K; Harel, A; Hauptman, J M; Hays, J; Hebbeker, T; Hedin, D; Hegeman, J G; Heinson, A P; Heintz, U; Hensel, C; Heredia-De La Cruz, I; Herner, K; Hesketh, G; Hildreth, M D; Hirosky, R; Hoang, T; Hobbs, J D; Hoeneisen, B; Hohlfeld, M; Hossain, S; Houben, P; Hu, Y; Hubacek, Z; Huske, N; Hynek, V; Iashvili, I; Illingworth, R; Ito, A S; Jabeen, S; Jaffré, M; Jain, S; Jakobs, K; Jamin, D; Jarvis, C; Jesik, R; Johns, K; Johnson, C; Johnson, M; Johnston, D; Jonckheere, A; Jonsson, P; Juste, A; Kajfasz, E; Karmanov, D; Kasper, P A; Katsanos, I; Kaushik, V; Kehoe, R; Kermiche, S; Khalatyan, N; Khanov, A; Kharchilava, A; Kharzheev, Y N; Khatidze, D; Kim, T J; Kirby, M H; Kirsch, M; Klima, B; Kohli, J M; Konrath, J-P; Kozelov, A V; Kraus, J; Kuhl, T; Kumar, A; Kupco, A; Kurca, T; Kuzmin, V A; Kvita, J; Lacroix, F; Lam, D; Lammers, S; Landsberg, G; Lebrun, P; Lee, W M; Leflat, A; Lellouch, J; Li, J; Li, L; Li, Q Z; Lietti, S M; Lim, J K; Lincoln, D; Linnemann, J; Lipaev, V V; Lipton, R; Liu, Y; Liu, Z; Lobodenko, A; Lokajicek, M; Love, P; Lubatti, H J; Luna-Garcia, R; Lyon, A L; Maciel, A K A; Mackin, D; Mättig, P; Magerkurth, A; Mal, P K; Malbouisson, H B; Malik, S; Malyshev, V L; Maravin, Y; Martin, B; McCarthy, R; McGivern, C L; Meijer, M M; Melnitchouk, A; Mendoza, L; Menezes, D; Mercadante, P G; Merkin, M; Merritt, K W; Meyer, A; Meyer, J; Mitrevski, J; Mommsen, R K; Mondal, N K; Moore, R W; Moulik, T; Muanza, G S; Mulhearn, M; Mundal, O; Mundim, L; Nagy, E; Naimuddin, M; Narain, M; Neal, H A; Negret, J P; Neustroev, P; Nilsen, H; Nogima, H; Novaes, S F; Nunnemann, T; Obrant, G; Ochando, C; Onoprienko, D; Orduna, J; Oshima, N; Osman, N; Osta, J; Otec, R; Otero Y Garzón, G J; Owen, M; Padilla, M; Padley, P; Pangilinan, M; Parashar, N; Park, S-J; Park, S K; Parsons, J; Partridge, R; Parua, N; Patwa, A; Pawloski, G; Penning, B; Perfilov, M; Peters, K; Peters, Y; Pétroff, P; Piegaia, R; Piper, J; Pleier, M-A; Podesta-Lerma, P L M; Podstavkov, V M; Pogorelov, Y; Pol, M-E; Polozov, P; Popov, A V; Potter, C; Prado da Silva, W L; Protopopescu, S; Qian, J; Quadt, A; Quinn, B; Rakitine, A; Rangel, M S; Ranjan, K; Ratoff, P N; Renkel, P; Rich, P; Rijssenbeek, M; Ripp-Baudot, I; Rizatdinova, F; Robinson, S; Rodrigues, R F; Rominsky, M; Royon, C; Rubinov, P; Ruchti, R; Safronov, G; Sajot, G; Sánchez-Hernández, A; Sanders, M P; Sanghi, B; Savage, G; Sawyer, L; Scanlon, T; Schaile, D; Schamberger, R D; Scheglov, Y; Schellman, H; Schliephake, T; Schlobohm, S; Schwanenberger, C; Schwienhorst, R; Sekaric, J; Severini, H; Shabalina, E; Shamim, M; Shary, V; Shchukin, A A; Shivpuri, R K; Siccardi, V; Simak, V; Sirotenko, V; Skubic, P; Slattery, P; Smirnov, D; Snow, G R; Snow, J; Snyder, S; Söldner-Rembold, S; Sonnenschein, L; Sopczak, A; Sosebee, M; Soustruznik, K; Spurlock, B; Stark, J; Stolin, V; Stoyanova, D A; Strandberg, J; Strandberg, S; Strang, M A; Strauss, E; Strauss, M; Ströhmer, R; Strom, D; Stutte, L; Sumowidagdo, S; Svoisky, P; Takahashi, M; Tanasijczuk, A; Taylor, W; Tiller, B; Tissandier, F; Titov, M; Tokmenin, V V; Torchiani, I; Tsybychev, D; Tuchming, B; Tully, C; Tuts, P M; Unalan, R; Uvarov, L; Uvarov, S; Uzunyan, S; Vachon, B; van den Berg, P J; Van Kooten, R; van Leeuwen, W M; Varelas, N; Varnes, E W; Vasilyev, I A; Verdier, P; Vertogradov, L S; Verzocchi, M; Vilanova, D; Vint, P; Vokac, P; Voutilainen, M; Wagner, R; Wahl, H D; Wang, M H L S; Warchol, J; Watts, G; Wayne, M; Weber, G; Weber, M; Welty-Rieger, L; Wenger, A; Wetstein, M; White, A; Wicke, D; Williams, M R J; Wilson, G W; Wimpenny, S J; Wobisch, M; Wood, D R; Wyatt, T R; Xie, Y; Xu, C; Yacoob, S; Yamada, R; Yang, W-C; Yasuda, T; Yatsunenko, Y A; Ye, Z; Yin, H; Yip, K; Yoo, H D; Youn, S W; Yu, J; Zeitnitz, C; Zelitch, S; Zhao, T; Zhou, B; Zhu, J; Zielinski, M; Zieminska, D; Zivkovic, L; Zutshi, V; Zverev, E G

    2009-06-26

    We present a search for the standard model Higgs boson using hadronically decaying tau leptons, in 1 fb(-1) of data collected with the D0 detector at the Fermilab Tevatron pp collider. We select two final states: tau+/- plus missing transverse energy and b jets, and tau+ tau- plus jets. These final states are sensitive to a combination of associated W/Z boson plus Higgs boson, vector boson fusion, and gluon-gluon fusion production processes. The observed ratio of the combined limit on the Higgs production cross section at the 95% C.L. to the standard model expectation is 29 for a Higgs boson mass of 115 GeV.

  9. A Clinicopathological Investigation of White Matter Hyperintensities and Alzheimer's Disease Neuropathology.

    PubMed

    Alosco, Michael L; Sugarman, Michael A; Besser, Lilah M; Tripodis, Yorghos; Martin, Brett; Palmisano, Joseph N; Kowall, Neil W; Au, Rhoda; Mez, Jesse; DeCarli, Charles; Stein, Thor D; McKee, Ann C; Killiany, Ronald J; Stern, Robert A

    2018-01-01

    White matter hyperintensities (WMH) on magnetic resonance imaging (MRI) have been postulated to be a core feature of Alzheimer's disease. Clinicopathological studies are needed to elucidate and confirm this possibility. This study examined: 1) the association between antemortem WMH and autopsy-confirmed Alzheimer's disease neuropathology (ADNP), 2) the relationship between WMH and dementia in participants with ADNP, and 3) the relationships among cerebrovascular disease, WMH, and ADNP. The sample included 82 participants from the National Alzheimer's Coordinating Center's Data Sets who had quantitated volume of WMH from antemortem FLAIR MRI and available neuropathological data. The Clinical Dementia Rating (CDR) scale (from MRI visit) operationalized dementia status. ADNP+ was defined by moderate to frequent neuritic plaques and Braak stage III-VI at autopsy. Cerebrovascular disease neuropathology included infarcts or lacunes, microinfarcts, arteriolosclerosis, atherosclerosis, and cerebral amyloid angiopathy. 60/82 participants were ADNP+. Greater volume of WMH predicted increased odds for ADNP (p = 0.037). In ADNP+ participants, greater WMH corresponded with increased odds for dementia (CDR≥1; p = 0.038). WMH predicted cerebral amyloid angiopathy, microinfarcts, infarcts, and lacunes (ps < 0.04). ADNP+ participants were more likely to have moderate-severe arteriolosclerosis and cerebral amyloid angiopathy compared to ADNP-participants (ps < 0.04). This study found a direct association between total volume of WMH and increased odds for having ADNP. In patients with Alzheimer's disease, FLAIR MRI WMH may be able to provide key insight into disease severity and progression. The association between WMH and ADNP may be explained by underlying cerebrovascular disease.

  10. Learning and Memory Deficits upon TAU Accumulation in "Drosophila" Mushroom Body Neurons

    ERIC Educational Resources Information Center

    Mershin, Andreas; Pavlopoulos, Elias; Fitch, Olivia; Braden, Brittany C.; Nanopoulos, Dimitri V.; Skoulakis, Efthimios M. C.

    2004-01-01

    Mutations in the neuronal-specific microtubule-binding protein TAU are associated with several dementias and neurodegenerative diseases. However, the effects of elevated TAU accumulation on behavioral plasticity are unknown. We report that directed expression of wild-type vertebrate and "Drosophila" TAU in adult mushroom body neurons, centers for…

  11. Hippocampal neuropathology of domoic acid-induced epilepsy in California sea lions (Zalophus californianus)

    PubMed Central

    Buckmaster, Paul S.; Wen, Xiling; Toyoda, Izumi; Gulland, Frances M. D.; Van Bonn, William

    2014-01-01

    California sea lions (Zalophus californianus) are abundant human-sized carnivores with large gyrencephalic brains. They develop epilepsy after experiencing status epilepticus when naturally exposed to domoic acid. We tested whether sea lions previously exposed to DA (chronic DA sea lions) display hippocampal neuropathology similar to that of human patients with temporal lobe epilepsy. Hippocampi were obtained from control and chronic DA sea lions. Stereology was used to estimate numbers of Nissl-stained neurons per hippocampus in the granule cell layer, hilus, and the pyramidal cell layer of CA3, CA2, and CA1 subfields. Adjacent sections were processed for somatostatin-immunoreactivity or Timm-stained, and the extent of mossy fiber sprouting was measured stereologically. Chronic DA sea lions displayed hippocampal neuron loss in patterns and extents similar but not identical to those reported previously for human patients with temporal lobe epilepsy. Similar to human patients, hippocampal sclerosis in sea lions was unilateral in 79% of cases, mossy fiber sprouting was a common neuropathological abnormality, and somatostatin-immunoreactive axons were exuberant in the dentate gyrus despite loss of immunopositive hilar neurons. Thus, hippocampal neuropathology of chronic DA sea lions is similar to that of human patients with temporal lobe epilepsy. PMID:24638960

  12. Hippocampal neuropathology of domoic acid-induced epilepsy in California sea lions (Zalophus californianus).

    PubMed

    Buckmaster, Paul S; Wen, Xiling; Toyoda, Izumi; Gulland, Frances M D; Van Bonn, William

    2014-05-01

    California sea lions (Zalophus californianus) are abundant human-sized carnivores with large gyrencephalic brains. They develop epilepsy after experiencing status epilepticus when naturally exposed to domoic acid. We tested whether sea lions previously exposed to DA (chronic DA sea lions) display hippocampal neuropathology similar to that of human patients with temporal lobe epilepsy. Hippocampi were obtained from control and chronic DA sea lions. Stereology was used to estimate numbers of Nissl-stained neurons per hippocampus in the granule cell layer, hilus, and pyramidal cell layer of CA3, CA2, and CA1 subfields. Adjacent sections were processed for somatostatin immunoreactivity or Timm-stained, and the extent of mossy fiber sprouting was measured stereologically. Chronic DA sea lions displayed hippocampal neuron loss in patterns and extents similar but not identical to those reported previously for human patients with temporal lobe epilepsy. Similar to human patients, hippocampal sclerosis in sea lions was unilateral in 79% of cases, mossy fiber sprouting was a common neuropathological abnormality, and somatostatin-immunoreactive axons were exuberant in the dentate gyrus despite loss of immunopositive hilar neurons. Thus, hippocampal neuropathology of chronic DA sea lions is similar to that of human patients with temporal lobe epilepsy. Copyright © 2013 Wiley Periodicals, Inc.

  13. GSK-3β-induced Tau pathology drives hippocampal neuronal cell death in Huntington's disease: involvement of astrocyte-neuron interactions.

    PubMed

    L'Episcopo, F; Drouin-Ouellet, J; Tirolo, C; Pulvirenti, A; Giugno, R; Testa, N; Caniglia, S; Serapide, M F; Cisbani, G; Barker, R A; Cicchetti, F; Marchetti, B

    2016-04-28

    Glycogen synthase kinase-3β (GSK-3β) has emerged as a critical factor in several pathways involved in hippocampal neuronal maintenance and function. In Huntington's disease (HD), there are early hippocampal deficits both in patients and transgenic mouse models, which prompted us to investigate whether disease-specific changes in GSK-3β expression may underlie these abnormalities. Thirty-three postmortem hippocampal samples from HD patients (neuropathological grades 2-4) and age- and sex-matched normal control cases were analyzed using real-time quantitative reverse transcription PCRs (qPCRs) and immunohistochemistry. In vitro and in vivo studies looking at hippocampal pathology and GSK-3β were also undertaken in transgenic R6/2 and wild-type mice. We identified a disease and stage-dependent upregulation of GSK-3β mRNA and protein levels in the HD hippocampus, with the active isoform pGSK-3β-Tyr(216) being strongly expressed in dentate gyrus (DG) neurons and astrocytes at a time when phosphorylation of Tau at the AT8 epitope was also present in these same neurons. This upregulation of pGSK-3β-Tyr(216) was also found in the R6/2 hippocampus in vivo and linked to the increased vulnerability of primary hippocampal neurons in vitro. In addition, the increased expression of GSK-3β in the astrocytes of R6/2 mice appeared to be the main driver of Tau phosphorylation and caspase3 activation-induced neuronal death, at least in part via an exacerbated production of major proinflammatory mediators. This stage-dependent overactivation of GSK-3β in HD-affected hippocampal neurons and astrocytes therefore points to GSK-3β as being a critical factor in the pathological development of this condition. As such, therapeutic targeting of this pathway may help ameliorate neuronal dysfunction in HD.

  14. GSK-3β-induced Tau pathology drives hippocampal neuronal cell death in Huntington's disease: involvement of astrocyte–neuron interactions

    PubMed Central

    L'Episcopo, F; Drouin-Ouellet, J; Tirolo, C; Pulvirenti, A; Giugno, R; Testa, N; Caniglia, S; Serapide, M F; Cisbani, G; Barker, R A; Cicchetti, F; Marchetti, B

    2016-01-01

    Glycogen synthase kinase-3β (GSK-3β) has emerged as a critical factor in several pathways involved in hippocampal neuronal maintenance and function. In Huntington's disease (HD), there are early hippocampal deficits both in patients and transgenic mouse models, which prompted us to investigate whether disease-specific changes in GSK-3β expression may underlie these abnormalities. Thirty-three postmortem hippocampal samples from HD patients (neuropathological grades 2–4) and age- and sex-matched normal control cases were analyzed using real-time quantitative reverse transcription PCRs (qPCRs) and immunohistochemistry. In vitro and in vivo studies looking at hippocampal pathology and GSK-3β were also undertaken in transgenic R6/2 and wild-type mice. We identified a disease and stage-dependent upregulation of GSK-3β mRNA and protein levels in the HD hippocampus, with the active isoform pGSK-3β-Tyr216 being strongly expressed in dentate gyrus (DG) neurons and astrocytes at a time when phosphorylation of Tau at the AT8 epitope was also present in these same neurons. This upregulation of pGSK-3β-Tyr216 was also found in the R6/2 hippocampus in vivo and linked to the increased vulnerability of primary hippocampal neurons in vitro. In addition, the increased expression of GSK-3β in the astrocytes of R6/2 mice appeared to be the main driver of Tau phosphorylation and caspase3 activation-induced neuronal death, at least in part via an exacerbated production of major proinflammatory mediators. This stage-dependent overactivation of GSK-3β in HD-affected hippocampal neurons and astrocytes therefore points to GSK-3β as being a critical factor in the pathological development of this condition. As such, therapeutic targeting of this pathway may help ameliorate neuronal dysfunction in HD. PMID:27124580

  15. Current Practices and Future Trends in Neuropathology Assessment for Developmental Neurotoxicity Testing

    EPA Science Inventory

    The continuing education course on "Developmental Neurotoxicity Testing" (DNT) was designed to communicate current practices for DNT neuropathology, describe promising innovations in quantitative analysis and non-invasive imaging, and facilitate a discussion among experienced neu...

  16. Dexmedetomidine increases tau phosphorylation under normothermic conditions in vivo and in vitro.

    PubMed

    Whittington, Robert A; Virág, László; Gratuze, Maud; Petry, Franck R; Noël, Anastasia; Poitras, Isabelle; Truchetti, Geoffrey; Marcouiller, François; Papon, Marie-Amélie; El Khoury, Noura; Wong, Kevin; Bretteville, Alexis; Morin, Françoise; Planel, Emmanuel

    2015-08-01

    There is developing interest in the potential association between anesthesia and the onset and progression of Alzheimer's disease. Several anesthetics have, thus, been demonstrated to induce tau hyperphosphorylation, an effect mostly mediated by anesthesia-induced hypothermia. Here, we tested the hypothesis that acute normothermic administration of dexmedetomidine (Dex), an intravenous sedative used in intensive care units, would result in tau hyperphosphorylation in vivo and in vitro. When administered to nontransgenic mice, Dex-induced tau hyperphosphorylation persisting up to 6 hours in the hippocampus for the AT8 epitope. Pretreatment with atipamezole, a highly specific α2-adrenergic receptor antagonist, blocked Dex-induced tau hyperphosphorylation. Furthermore, Dex dose-dependently increased tau phosphorylation at AT8 in SH-SY5Y cells, impaired mice spatial memory in the Barnes maze and promoted tau hyperphosphorylation and aggregation in transgenic hTau mice. These findings suggest that Dex: (1) increases tau phosphorylation, in vivo and in vitro, in the absence of anesthetic-induced hypothermia and through α2-adrenergic receptor activation, (2) promotes tau aggregation in a mouse model of tauopathy, and (3) impacts spatial reference memory. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Intracellular and extracellular microtubule associated protein tau as a therapeutic target in Alzheimer disease and other tauopathies.

    PubMed

    Avila, Jesús; Pallas, Noemí; Bolós, Marta; Sayas, C Laura; Hernandez, Felix

    2016-06-01

    Microtubule associated protein tau, a protein mainly expressed in neurons, plays an important role in several diseases related to dementia, named tauopathies. Alzheimer disease is the most relevant tauopathy. The role of tau protein in dementia is now a topic under discussion, and is the focus of this review. We have covered two major areas: tau pathology and tau as a therapeutic target. Tau pathology is mainly related to a gain of toxic function due to an abnormal accumulation, aberrant modifications (such as hyperphosphorylation and truncation, among others) and self-aggregation of tau into oligomers or larger structures. Also, tau can be found extracellularly in a toxic form. Tau-based therapy is mainly centered on avoiding the gain of these toxic functions of tau. Tau therapies are focused on lowering tau levels, mainly of modified tau species that could be toxic for neurons (phosphorylated, truncated or aggregated tau), in intracellular or extracellular form. Decreasing the levels of those toxic species is a possible therapeutic strategy.

  18. Structural elucidation of the interaction between neurodegenerative disease-related tau protein with model lipid membranes

    NASA Astrophysics Data System (ADS)

    Jones, Emmalee M.

    A protein's sequence of amino acids determines how it folds. That folded structure is linked to protein function, and misfolding to dysfunction. Protein misfolding and aggregation into beta-sheet rich fibrillar aggregates is connected with over 20 neurodegenerative diseases, including Alzheimer's disease (AD). AD is characterized in part by misfolding, aggregation and deposition of the microtubule associated tau protein into neurofibrillary tangles (NFTs). However, two questions remain: What is tau's fibrillization mechanism, and what is tau's cytotoxicity mechanism? Tau is prone to heterogeneous interactions, including with lipid membranes. Lipids have been found in NFTs, anionic lipid vesicles induced aggregation of the microtubule binding domain of tau, and other protein aggregates induced ion permeability in cells. This evidence prompted our investigation of tau's interaction with model lipid membranes to elucidate the structural perturbations those interactions induced in tau protein and in the membrane. We show that although tau is highly charged and soluble, it is highly surface active and preferentially interacts with anionic membranes. To resolve molecular-scale structural details of tau and model membranes, we utilized X-ray and neutron scattering techniques. X-ray reflectivity indicated tau aggregated at air/water and anionic lipid membrane interfaces and penetrated into membranes. More significantly, membrane interfaces induced tau protein to partially adopt a more compact conformation with density similar to folded protein and ordered structure characteristic of beta-sheet formation. This suggests possible membrane-based mechanisms of tau aggregation. Membrane morphological changes were seen using fluorescence microscopy, and X-ray scattering techniques showed tau completely disrupts anionic membranes, suggesting an aggregate-based cytotoxicity mechanism. Further investigation of protein constructs and a "hyperphosphorylation" disease mimic helped

  19. Deciphering amyotrophic lateral sclerosis: what phenotype, neuropathology and genetics are telling us about pathogenesis.

    PubMed

    Ravits, John; Appel, Stanley; Baloh, Robert H; Barohn, Richard; Brooks, Benjamin Rix; Elman, Lauren; Floeter, Mary Kay; Henderson, Christopher; Lomen-Hoerth, Catherine; Macklis, Jeffrey D; McCluskey, Leo; Mitsumoto, Hiroshi; Przedborski, Serge; Rothstein, Jeffrey; Trojanowski, John Q; van den Berg, Leonard H; Ringel, Steven

    2013-05-01

    Amyotrophic lateral sclerosis (ALS) is characterized phenotypically by progressive weakness and neuropathologically by loss of motor neurons. Phenotypically, there is marked heterogeneity. Typical ALS has mixed upper motor neuron (UMN) and lower motor neuron (LMN) involvement. Primary lateral sclerosis has predominant UMN involvement. Progressive muscular atrophy has predominant LMN involvement. Bulbar and limb ALS have predominant regional involvement. Frontotemporal dementia has significant cognitive and behavioral involvement. These phenotypes can be so distinctive that they would seem to have differing biology. However, they cannot be distinguished, at least neuropathologically or genetically. In sporadic ALS (SALS), they are mostly characterized by ubiquitinated cytoplasmic inclusions of TDP-43. In familial ALS (FALS), where phenotypes are indistinguishable from SALS and similarly heterogeneous, each mutated gene has its own genetic and molecular signature. Overall, since the same phenotypes can have multiple causes including different gene mutations, there must be multiple molecular mechanisms causing ALS - and ALS is a syndrome. Since, however, multiple phenotypes can be caused by one single gene mutation, a single molecular mechanism can cause heterogeneity. What the mechanisms are remain unknown, but active propagation of the pathology neuroanatomically seems to be a principal component. Leading candidate mechanisms include RNA processing, cell-cell interactions between neurons and non-neuronal neighbors, focal seeding from a misfolded protein that has prion-like propagation, and fatal errors introduced during neurodevelopment of the motor system. If fundamental mechanisms could be identified and understood, ALS therapy could rationally target progression and stop the disease - a goal that seems increasingly achievable.

  20. National Institute on Aging–Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease

    PubMed Central

    Hyman, Bradley T.; Phelps, Creighton H.; Beach, Thomas G.; Bigio, Eileen H.; Cairns, Nigel J.; Carrillo, Maria C.; Dickson, Dennis W.; Duyckaerts, Charles; Frosch, Matthew P.; Masliah, Eliezer; Mirra, Suzanne S.; Nelson, Peter T.; Schneider, Julie A.; Thal, Dietmar Rudolf; Thies, Bill; Trojanowski, John Q.; Vinters, Harry V.; Montine, Thomas J.

    2011-01-01

    The current consensus criteria for the neuropathologic diagnosis of Alzheimer’s disease (AD), known as the National Institute on Aging/Reagan Institute of the Alzheimer Association Consensus Recommendations for the Postmortem Diagnosis of AD or NIA-Reagan Criteria [1], were published in 1997 (hereafter referred to as “1997 Criteria”). Knowledge of AD and the tools used for clinical investigation of cognitive impairment and dementia have advanced substantially since then and have prompted this update on the neuropathologic assessment of AD. PMID:22265587

  1. Anti-amyloid beta to tau - based immunization: Developments in immunotherapy for Alzheimer disease.

    PubMed

    Lambracht-Washington, Doris; Rosenberg, Roger N

    2013-08-01

    Immunotherapy might provide an effective treatment for Alzheimer disease (AD). A unique feature of AD immunotherapies is that an immune response against a self antigen needs to be elicited without causing adverse autoimmune reactions. Current research is focussed on two possible targets in this regard: One is the inhibition of accumulation and deposition of Amyloid beta 1-42 (Aβ42), which is one of the major peptides found in senile plaques and the second target is hyperphosphorylated tau, which forms neurofibrillary tangles inside the nerve cell and shows association with the progression of dementia. Mouse models have shown that immunotherapy targeting Aβ42 as well as tau with the respective anti-Aβ or anti-tau antibodies can provide significant improvements in these mice. While anti-Aβ immunotherapy (active and passive immunizations) is already in several stages of clinical trials, tau based immunizations have been analyzed only in mouse models. Recently, as a significant correlation of progression of dementia and levels of phoshorylated tau was found, high interest has again focussed on further development of tau based therapies. While Aβ immunotherapy might delay the onset of AD, immunotherapy targeting tau might provide benefits in later stages of this disease. And last but not least, targeting Aβ and tau simultaneously with immunotherapy might provide additional therapeutic effects as these two pathologies are likely synergistic; an approach which has not been tested yet. In this review, we will summarize animal models used to test possible therapies for AD, some of the facts about Aβ42 and tau biology, present on overview on halted, ongoing and upcoming clinical trials together with ongoing preclinical studies targeting tau or Aβ42.

  2. CSF neurofilament light chain and phosphorylated tau 181 predict disease progression in PSP.

    PubMed

    Rojas, Julio C; Bang, Jee; Lobach, Iryna V; Tsai, Richard M; Rabinovici, Gil D; Miller, Bruce L; Boxer, Adam L

    2018-01-23

    To determine the ability of CSF biomarkers to predict disease progression in progressive supranuclear palsy (PSP). We compared the ability of baseline CSF β-amyloid 1-42 , tau, phosphorylated tau 181 (p-tau), and neurofilament light chain (NfL) concentrations, measured by INNO-BIA AlzBio3 or ELISA, to predict 52-week changes in clinical (PSP Rating Scale [PSPRS] and Schwab and England Activities of Daily Living [SEADL]), neuropsychological, and regional brain volumes on MRI using linear mixed effects models controlled for age, sex, and baseline disease severity, and Fisher F density curves to compare effect sizes in 50 patients with PSP. Similar analyses were done using plasma NfL measured by single molecule arrays in 141 patients. Higher CSF NfL concentration predicted more rapid decline (biomarker × time interaction) over 52 weeks in PSPRS ( p = 0.004, false discovery rate-corrected) and SEADL ( p = 0.008), whereas lower baseline CSF p-tau predicted faster decline on PSPRS ( p = 0.004). Higher CSF tau concentrations predicted faster decline by SEADL ( p = 0.004). The CSF NfL/p-tau ratio was superior for predicting change in PSPRS, compared to p-tau ( p = 0.003) or NfL ( p = 0.001) alone. Higher NfL concentrations in CSF or blood were associated with greater superior cerebellar peduncle atrophy (fixed effect, p ≤ 0.029 and 0.008, respectively). Both CSF p-tau and NfL correlate with disease severity and rate of disease progression in PSP. The inverse correlation of p-tau with disease severity suggests a potentially different mechanism of tau pathology in PSP as compared to Alzheimer disease. Copyright © 2017 American Academy of Neurology.

  3. Levels of Nonphosphorylated and Phosphorylated Tau in Cerebrospinal Fluid of Alzheimer’s Disease Patients

    PubMed Central

    Hu, Yuan Yuan; He, Shan Shu; Wang, Xiaochuan; Duan, Qiu Hong; Grundke-Iqbal, Inge; Iqbal, Khalid; Wang, Jianzhi

    2002-01-01

    We have developed an ultrasensitive bienzyme-substrate-recycle enzyme-linked immunosorbent assay for the measurement of Alzheimer’s disease (AD) abnormally hyperphosphorylated tau in cerebrospinal fluid (CSF). The assay, which recognizes attomolar amounts of tau, is ∼400 and ∼1300 times more sensitive than conventional enzyme-linked immunosorbent assay in determining the hyperphosphorylated tau and total tau, respectively. With this method, we measured both total tau and tau phosphorylated at Ser-396/Ser-404 in lumbar CSFs from AD and control patients. We found that the total tau was 215 ± 77 pg/ml in cognitively normal control (n = 56), 234 ± 92 pg/ml in non-AD neurological (n = 37), 304 ± 126 pg/ml in vascular dementia (n = 46), and 486 ± 168 pg/ml (n = 52) in AD patients, respectively. However, a remarkably elevated level in phosphorylated tau was only found in AD (187 ± 84 pg/ml), as compared with normal controls (54 ± 33 pg/ml), non-AD (63 ± 34 pg/ml), and vascular dementia (72 ± 33 pg/ml) groups. If we used the ratio of hyperphosphorylated tau to total tau of ≥0.33 as cutoff for AD diagnosis, we could confirm the diagnosis in 96% of the clinically diagnosed patients with a specificity of 95%, 86%, 100%, and 94% against nonneurological, non-AD neurological, vascular dementia, and all of the three control groups combined, respectively. It is suggested that the CSF level of tau phosphorylated at Ser-396/Ser-404 is a promising diagnostic marker of AD. PMID:11943712

  4. JNK signaling pathway regulates sorbitol-induced Tau proteolysis and apoptosis in SH-SY5Y cells by targeting caspase-3.

    PubMed

    Olivera Santa-Catalina, Marta; Caballero Bermejo, Montaña; Argent, Ricardo; Alonso, Juan C; Centeno, Francisco; Lorenzo, María J

    2017-12-15

    Growing evidence suggests that Diabetes Mellitus increases the risk of developing Alzheimer's disease. It is well known that hyperglycemia, a key feature of Diabetes Mellitus, may induce plasma osmolarity disturbances. Both hyperglycemia and hyperosmolarity promote the altered post-translational regulation of microtubule-associated protein Tau. Interestingly, abnormal hyperphosphorylation and cleavage of Tau have been proven to lead to the genesis of filamentous structures referred to as neurofibrillary tangles, the main pathological hallmark of Alzheimer's disease. We have previously described that hyperosmotic stress induced by sorbitol promotes Tau proteolysis and apoptosis in SH-SY5Y cells via caspase-3 activation. In order to gain insights into the regulatory mechanisms of such processes, in this work we explored the intracellular signaling pathways that regulate these events. We found that sorbitol treatment significantly enhanced the activation of conventional families of MAPK in SH-SY5Y cells. Tau proteolysis was completely prevented by JNK inhibition but not affected by either ERK1/2 or p38 MAPK blockade. Moreover, inhibition of JNK, but not ERK1/2 or p38 MAPK, efficiently prevented sorbitol-induced apoptosis and caspase-3 activation. In summary, we provide evidence that JNK signaling pathway is an upstream regulator of hyperosmotic stress-induced Tau cleavage and apoptosis in SH-SY5Y through the control of caspase-3 activation. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Professor Camillo Negro's Neuropathological Films.

    PubMed

    Chiò, Adriano; Gianetto, Claudia; Dagna, Stella

    2016-01-01

    Camillo Negro, Professor in Neurology at the University of Torino, was a pioneer of scientific film. From 1906 to 1908, with the help of his assistant Giuseppe Roasenda and in collaboration with Roberto Omegna, one of the most experienced cinematographers in Italy, he filmed some of his patients for scientific and educational purposes. During the war years, he continued his scientific film project at the Military Hospital in Torino, filming shell-shocked soldiers. In autumn 2011, the Museo Nazionale del Cinema, in partnership with the Faculty of Neurosciences of the University of Torino, presented a new critical edition of the neuropathological films directed by Negro. The Museum's collection also includes 16 mm footage probably filmed in 1930 by Doctor Fedele Negro, Camillo's son. One of these films is devoted to celebrating the effects of the so-called "Bulgarian cure" on Parkinson's disease.

  6. VARIATIONS OF THE 10 mum SILICATE FEATURES IN THE ACTIVELY ACCRETING T TAURI STARS: DG Tau AND XZ Tau

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bary, Jeffrey S.; Leisenring, Jarron M.; Skrutskie, Michael F., E-mail: jbary@colgate.ed, E-mail: jml2u@virginia.ed, E-mail: mfs4n@virginia.ed

    2009-11-20

    Using the Infrared Spectrograph aboard the Spitzer Space Telescope, we observed multiple epochs of 11 actively accreting T Tauri stars in the nearby Taurus-Auriga star-forming region. In total, 88 low-resolution mid-infrared spectra were collected over 1.5 years in Cycles 2 and 3. The results of this multi-epoch survey show that the 10 mum silicate complex in the spectra of two sources-DG Tau and XZ Tau-undergoes significant variations with the silicate feature growing both weaker and stronger over month- and year-long timescales. Shorter timescale variations on day- to week-long timescales were not detected within the measured flux errors. The time resolutionmore » coverage of this data set is inadequate for determining if the variations are periodic. Pure emission compositional models of the silicate complex in each epoch of the DG Tau and XZ Tau spectra provide poor fits to the observed silicate features. These results agree with those of previous groups that attempted to fit only single-epoch observations of these sources. Simple two-temperature, two-slab models with similar compositions successfully reproduce the observed variations in the silicate features. These models hint at a self-absorption origin of the diminution of the silicate complex instead of a compositional change in the population of emitting dust grains. We discuss several scenarios for producing such variability including disk shadowing, vertical mixing, variations in disk heating, and disk wind events associated with accretion outbursts.« less

  7. Alzheimer Disease Pathology in Cognitively Healthy Elderly:A Genome-wide Study

    PubMed Central

    Kramer, Patricia L; Xu, Haiyan; Woltjer, Randall L; Westaway, Shawn K; Clark, David; Erten-Lyons, Deniz; Kaye, Jeffrey A; Welsh-Bohmer, Kathleen A; Troncoso, Juan C; Markesbery, William R; Petersen, Ronald C; Turner, R Scott; Kukull, Walter A; Bennett, David A; DouglasGalasko; Morris, John C; Ott, Jurg

    2010-01-01

    Many elderly individuals remain dementia-free throughout their life. However, some of these individuals exhibit Alzheimer disease neuropathology on autopsy, evidenced by neurofibrillary tangles (NFTs) in AD-specific brain regions. We conducted a genome-wide association study to identify genetic mechanisms that distinguish non-demented elderly with a heavy NFT burden from those with a low NFT burden. The study included 344 non-demented subjects with autopsy (201 subjects with low and 143 with high NFT levels). Both a genotype test, using logistic regression, and an allele test provided genome-wide significant evidence that variants in the RELNgene are associated with neuropathology in the context of cognitive health. Immunohistochemical data for reelin expression in AD-related brain regions added support for these findings. Reelin signaling pathways modulate phosphorylation of tau, the major component of NFTs, either directly or through β-amyloid pathways that influence tau phosphorylation. Our findings suggest that up-regulation of reelin may be a compensatory response to tau-related or beta-amyloid stress associated with AD even prior to the onset of dementia. PMID:20452100

  8. Neuroinflammation, hyperphosphorylated tau, diffuse amyloid plaques, and down-regulation of the cellular prion protein in air pollution exposed children and young adults.

    PubMed

    Calderón-Garcidueñas, Lilian; Kavanaugh, Michael; Block, Michelle; D'Angiulli, Amedeo; Delgado-Chávez, Ricardo; Torres-Jardón, Ricardo; González-Maciel, Angelica; Reynoso-Robles, Rafael; Osnaya, Norma; Villarreal-Calderon, Rodolfo; Guo, Ruixin; Hua, Zhaowei; Zhu, Hongtu; Perry, George; Diaz, Philippe

    2012-01-01

    Air pollution exposures have been linked to neuroinflammation and neuropathology. Autopsy samples of the frontal cortex from control (n = 8) and pollution-exposed (n = 35) children and young adults were analyzed by RT-PCR (n = 43) and microarray analysis (n = 12) for gene expression changes in oxidative stress, DNA damage signaling, NFκB signaling, inflammation, and neurodegeneration pathways. The effect of apolipoprotein E (APOE) genotype on the presence of protein aggregates associated with Alzheimer's disease (AD) pathology was also explored. Exposed urbanites displayed differential (>2-fold) regulation of 134 genes. Forty percent exhibited tau hyperphosphorylation with pre-tangle material and 51% had amyloid-β (Aβ) diffuse plaques compared with 0% in controls. APOE4 carriers had greater hyperphosphorylated tau and diffuse Aβ plaques versus E3 carriers (Q = 7.82, p = 0.005). Upregulated gene network clusters included IL1, NFκB, TNF, IFN, and TLRs. A 15-fold frontal down-regulation of the prion-related protein (PrP(C)) was seen in highly exposed subjects. The down-regulation of the PrP(C) is critical given its important roles for neuroprotection, neurodegeneration, and mood disorder states. Elevation of indices of neuroinflammation and oxidative stress, down-regulation of the PrP(C) and AD-associated pathology are present in young megacity residents. The inducible regulation of gene expression suggests they are evolving different mechanisms in an attempt to cope with the constant state of inflammation and oxidative stress related to their environmental exposures. Together, these data support a role for air pollution in CNS damage and its impact upon the developing brain and the potential etiology of AD and mood disorders.

  9. Search for the appearance of atmospheric tau neutrinos in Super-Kamiokande

    NASA Astrophysics Data System (ADS)

    Li, Zepeng; Super-Kamiokande Collaboration

    2016-03-01

    Super-K is a 50 kiloton Water Cherenkov detector with 22.5 kiloton of fiducial volume located at a depth of 2700 meters water equivalent. The large target mass in the fiducial volume offers an opportunity to search for rare tau neutrino appearance from oscillations of atmospheric neutrinos. Events after reduction are classified by a particle identification, based on a neural network (Multilayer Perceptrons), that is optimized to distinguish tau leptons produced by charged-current tau neutrino interactions from electron and muon neutrino interactions in the detector. Super-K atmospheric neutrino data are fit with an unbinned maximum likelihood method to search for tau neutrino appearance. The talk presented results with data taken between 1996 and 2014, comprising 4582 days of live time.

  10. Hypothermia mediates age-dependent increase of tau phosphorylation in db/db mice.

    PubMed

    El Khoury, Noura B; Gratuze, Maud; Petry, Franck; Papon, Marie-Amélie; Julien, Carl; Marcouiller, François; Morin, Françoise; Nicholls, Samantha B; Calon, Frédéric; Hébert, Sébastien S; Marette, André; Planel, Emmanuel

    2016-04-01

    Accumulating evidence from epidemiological studies suggest that type 2 diabetes is linked to an increased risk of Alzheimer's disease (AD). However, the consequences of type 2 diabetes on AD pathologies, such as tau hyperphosphorylation, are not well understood. Here, we evaluated the impact of type 2 diabetes on tau phosphorylation in db/db diabetic mice aged 4 and 26weeks. We found increased tau phosphorylation at the CP13 epitope correlating with a deregulation of c-Jun. N-terminal kinase (JNK) and Protein Phosphatase 2A (PP2A) in 4-week-old db/db mice. 26-week-old db/db mice displayed tau hyperphosphorylation at multiple epitopes (CP13, AT8, PHF-1), but no obvious change in kinases or phosphatases, no cleavage of tau, and no deregulation of central insulin signaling pathways. In contrast to younger animals, 26-week-old db/db mice were hypothermic and restoration of normothermia rescued phosphorylation at most epitopes. Our results suggest that, at early stages of type 2 diabetes, changes in tau phosphorylation may be due to deregulation of JNK and PP2A, while at later stages hyperphosphorylation is mostly a consequence of hypothermia. These results provide a novel link between diabetes and tau pathology, and underlie the importance of recording body temperature to better understand the relationship between diabetes and AD. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Overexpression of mutant ataxin-3 in mouse cerebellum induces ataxia and cerebellar neuropathology.

    PubMed

    Nóbrega, Clévio; Nascimento-Ferreira, Isabel; Onofre, Isabel; Albuquerque, David; Conceição, Mariana; Déglon, Nicole; de Almeida, Luís Pereira

    2013-08-01

    Machado-Joseph disease (MJD), also known as spinocerebellar ataxia type 3 (SCA3), is a fatal, dominant neurodegenerative disorder caused by the polyglutamine-expanded protein ataxin-3. Clinical manifestations include cerebellar ataxia and pyramidal signs culminating in severe neuronal degeneration. Currently, there is no therapy able to modify disease progression. In the present study, we aimed at investigating one of the most severely affected brain regions in the disorder--the cerebellum--and the behavioral defects associated with the neuropathology in this region. For this purpose, we injected lentiviral vectors encoding full-length human mutant ataxin-3 in the mouse cerebellum of 3-week-old C57/BL6 mice. We show that circumscribed expression of human mutant ataxin-3 in the cerebellum mediates within a short time frame--6 weeks, the development of a behavioral phenotype including reduced motor coordination, wide-based ataxic gait, and hyperactivity. Furthermore, the expression of mutant ataxin-3 resulted in the accumulation of intranuclear inclusions, neuropathological abnormalities, and neuronal death. These data show that lentiviral-based expression of mutant ataxin-3 in the mouse cerebellum induces localized neuropathology, which is sufficient to generate a behavioral ataxic phenotype. Moreover, this approach provides a physiologically relevant, cost-effective and time-effective animal model to gain further insights into the pathogenesis of MJD and for the evaluation of experimental therapeutics of MJD.

  12. Core neuropathological abnormalities in progranulin-deficient mice are penetrant on multiple genetic backgrounds.

    PubMed

    Petkau, T L; Hill, A; Leavitt, B R

    2016-02-19

    Loss-of-function mutations in the progranulin gene (GRN) are a common cause of familial frontotemporal lobar degeneration (FTLD). A high degree of heterogeneity in the age-of-onset, duration of disease, and clinical presentation of FTLD, even among families carrying the same GRN mutation, suggests that additional modifying genes may be important to pathogenesis. Progranulin-knockout mice display subtle behavioral abnormalities and progressive neuropathological changes, as well as altered dendritic morphology and synaptic deficits in the hippocampus. In this study we evaluated multiple neuropathological endpoints in aged progranulin knockout mice and their wild-type littermates on two different genetic backgrounds: C57Bl/6 and 129/SvImJ. We find that in most brain regions, both strains are susceptible to progranulin-mediated neuropathological phenotypes, including astrogliosis, microgliosis, and highly accelerated deposition of the aging pigment lipofuscin. Neuroinflammation due to progranulin deficiency is exaggerated in the B6 strain and present, but less pronounced, in the 129 strain. Differences between the strains in hippocampal neuron counts and neuronal morphology suggest a complex role for progranulin in the hippocampus. We conclude that core progranulin-mediated neurodegenerative phenotypes are penetrant on multiple inbred mouse strains, but that genetic background modulates progranulin's role in neuroinflammation and hippocampal biology. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  13. N'-benzylidene-benzohydrazides as novel and selective tau-PHF ligands.

    PubMed

    Taghavi, Ali; Nasir, Samir; Pickhardt, Marcus; Heyny-von Haussen, Roland; Mall, Gerhard; Mandelkow, Eckhard; Mandelkow, Eva-Maria; Schmidt, Boris

    2011-01-01

    The structure activity relationship of N'-benzylidene-benzohydrazide (NBB) binding to tau and paired helical filament (PHF) proteins as well as amyloid-β₁₋₄₂ fibrils indicate differential selectivity for these protein aggregates. The ability of the compounds to stain neurofibrillary tangles and senile plaques isolated from human AD brain was investigated histochemically. These studies resulted in several tau-PHF and amyloid-β₁₋₄₂ fibril selective ligands respectively. Supported by these results, we rationalized a model for the design of selective ligands for tau, PHF, and amyloid-β₁₋₄₂ fibrils.

  14. The CD8 T cell in multiple sclerosis: suppressor cell or mediator of neuropathology?

    PubMed

    Johnson, Aaron J; Suidan, Georgette L; McDole, Jeremiah; Pirko, Istvan

    2007-01-01

    Multiple sclerosis (MS) is the most common human demyelinating disease of the central nervous system. It is universally accepted that the immune system plays a major role in the pathogenesis of MS. For decades, CD4 T cells have been considered the predominant mediator of neuropathology in MS. This perception was largely due to the similarity between MS and CD4 T-cell-driven experimental allergic encephalomyelitis, the most commonly studied murine model of MS. Over the last decade, several new observations in MS research imply an emerging role for CD8 T cells in neuropathogenesis. In certain experimental autoimmune encephalomyelitis (EAE) models, CD8 T cells are considered suppressors of pathology, whereas in other EAE models, neuropathology can be exacerbated by adoptive transfer of CD8 T cells. Studies using the Theiler's murine encephalomyelitis virus (TMEV) model have demonstrated preservation of motor function and axonal integrity in animals deficient in CD8 T cells or their effector molecules. CD8 T cells have also been demonstrated to be important regulators of blood-brain barrier permeability. There is also an emerging role for CD8 T cells in human MS. Human genetic studies reveal an important role for HLA class I molecules in MS susceptibility. In addition, neuropathologic studies demonstrate that CD8 T cells are the most numerous inflammatory infiltrate in MS lesions at all stages of lesion development. CD8 T cells are also capable of damaging neurons and axons in vitro. In this chapter, we discuss the neuropathologic, genetic, and experimental evidence for a critical role of CD8 T cells in the pathogenesis of MS and its most frequently studied animal models. We also highlight important new avenues for future research.

  15. Beneficial effects of exercise in a transgenic mouse model of Alzheimer's disease-like Tau pathology.

    PubMed

    Belarbi, Karim; Burnouf, Sylvie; Fernandez-Gomez, Francisco-Jose; Laurent, Cyril; Lestavel, Sophie; Figeac, Martin; Sultan, Audrey; Troquier, Laetitia; Leboucher, Antoine; Caillierez, Raphaëlle; Grosjean, Marie-Eve; Demeyer, Dominique; Obriot, Hélène; Brion, Ingrid; Barbot, Bérangère; Galas, Marie-Christine; Staels, Bart; Humez, Sandrine; Sergeant, Nicolas; Schraen-Maschke, Susanna; Muhr-Tailleux, Anne; Hamdane, Malika; Buée, Luc; Blum, David

    2011-08-01

    Tau pathology is encountered in many neurodegenerative disorders known as tauopathies, including Alzheimer's disease. Physical activity is a lifestyle factor affecting processes crucial for memory and synaptic plasticity. Whether long-term voluntary exercise has an impact on Tau pathology and its pathophysiological consequences is currently unknown. To address this question, we investigated the effects of long-term voluntary exercise in the THY-Tau22 transgenic model of Alzheimer's disease-like Tau pathology, characterized by the progressive development of Tau pathology, cholinergic alterations and subsequent memory impairments. Three-month-old THY-Tau22 mice and wild-type littermates were assigned to standard housing or housing supplemented with a running wheel. After 9 months of exercise, mice were evaluated for memory performance and examined for hippocampal Tau pathology, cholinergic defects, inflammation and genes related to cholesterol metabolism. Exercise prevented memory alterations in THY-Tau22 mice. This was accompanied by a decrease in hippocampal Tau pathology and a prevention of the loss of expression of choline acetyltransferase within the medial septum. Whereas the expression of most cholesterol-related genes remained unchanged in the hippocampus of running THY-Tau22 mice, we observed a significant upregulation in mRNA levels of NPC1 and NPC2, genes involved in cholesterol trafficking from the lysosomes. Our data support the view that long-term voluntary physical exercise is an effective strategy capable of mitigating Tau pathology and its pathophysiological consequences. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Tunneling nanotube (TNT)-mediated neuron-to neuron transfer of pathological Tau protein assemblies.

    PubMed

    Tardivel, Meryem; Bégard, Séverine; Bousset, Luc; Dujardin, Simon; Coens, Audrey; Melki, Ronald; Buée, Luc; Colin, Morvane

    2016-11-04

    A given cell makes exchanges with its neighbors through a variety of means ranging from diffusible factors to vesicles. Cells use also tunneling nanotubes (TNTs), filamentous-actin-containing membranous structures that bridge and connect cells. First described in immune cells, TNTs facilitate HIV-1 transfer and are found in various cell types, including neurons. We show that the microtubule-associated protein Tau, a key player in Alzheimer's disease, is a bona fide constituent of TNTs. This is important because Tau appears beside filamentous actin and myosin 10 as a specific marker of these fine protrusions of membranes and cytosol that are difficult to visualize. Furthermore, we observed that exogenous Tau species increase the number of TNTs established between primary neurons, thereby facilitating the intercellular transfer of Tau fibrils. In conclusion, Tau may contribute to the formation and function of the highly dynamic TNTs that may be involved in the prion-like propagation of Tau assemblies.

  17. Hyperphosphorylation of tau protein in the ipsilateral thalamus after focal cortical infarction in rats.

    PubMed

    Dong, Da-Wei; Zhang, Yu-Sheng; Yang, Wan-Yong; Wang-Qin, Run-Qi; Xu, An-Ding; Ruan, Yi-Wen

    2014-01-16

    Hyperphosphorylation of tau has been considered as an important risk factor for neurodegenerative diseases. It has been found also in the cortex after focal cerebral ischemia. The present study is aimed at investigating changes of tau protein expression in the ipsilateral thalamus remote from the primary ischemic lesion site after distal middle cerebral artery occlusion (MCAO). The number of neurons in the ventroposterior thalamic nucleus (VPN) was evaluated using Nissl staining and neuronal nuclei (NeuN) immunostaining. Total tau and phosphorylated tau at threonine 231 (p-T231-tau) and serine 199 (p-S199-tau) levels, respectively, in the thalamus were measured using immunostaining and immunoblotting. Moreover, apoptosis was detected with terminal deoxynucleotidyl transferase-mediated digoxigenin-dUTP-biotin nick-end labeling (TUNEL) assay. It was found that the numbers of intact neurons and NeuN(+) cells within the ipsilateral VPN were reduced significantly compared with the sham-operated group, but the levels of p-T231-tau and p-S199-tau in the ipsilateral thalamus were increased significantly in rats subjected to ischemia for 3 days, 7 days and 28 days. Furthermore, the number of TUNEL-positive cells was increased in the ipsilateral VPN at 7 days and 28 days after MCAO. Thus, hyperphosphorylated tau protein is observed in ipsilateral thalamus after focal cerebral infarction in this study. Our findings suggest that the expression of hyperphosphorylated tau protein induced by ischemia may be associated with the secondary thalamic damage after focal cortical infarction via an apoptotic pathway. © 2013 Published by Elsevier B.V.

  18. Role of the Neuropathology of Alzheimer Disease in Dementia in the Oldest-Old

    PubMed Central

    Haroutunian, Vahram; Schnaider-Beeri, Michal; Schmeidler, James; Wysocki, Michael; Purohit, Dushyant P.; Perl, Daniel P.; Libow, Leslie S.; Lesser, Gerson T.; Maroukian, Maria; Grossman, Hillel T.

    2011-01-01

    Background Neuritic plaques (NPs) and neurofibrillary tangles (NFTs) in the brain, especially in the hippocampus, entorhinal cortex, and isocortex, are hallmark lesions of Alzheimer disease and dementia in the elderly. However, this association has not been extensively studied in the rapidly growing population of the very old. Objective To assess the relationship between estimates of cognitive function and NP and NFT pathologic conditions in 317 autopsied persons aged 60 to 107 years. Design We studied the relationship between severity of dementia and the density of these characteristic lesions of Alzheimer disease in young-old, middle-old, and oldest-old persons. The relationship of the severity of dementia as measured by the Clinical Dementia Rating scale to the density of NPs and NFTs was then assessed in each age group. Participants Three hundred seventeen brains of persons aged 60 years and older were selected to have either no remarkable neuropathological lesions or only NP and NFT lesions. Brains with any other neuropathological conditions, either alone or in addition to Alzheimer disease findings, were excluded. The study cohort was then stratified into the youngest quartile (aged 60–80 years), middle 2 quartiles (aged 81–89 years), and oldest quartile (aged 90–107 years). Results While the density of NPs and NFTs rose significantly by more than 10-fold as a function of the severity of dementia in the youngest-old group, significant increases in the densities of NPs and NFTs were absent in the brains of the oldest-old. This lack of difference in the densities of NPs and NFTs was due to reduced lesion densities in the brains of oldest-old persons with dementia rather than to increased density of these lesions in the brains of nondemented oldest-old persons. Conclusions These findings suggest that the neuropathological features of dementia in the oldest-old are not the same as those of cognitively impaired younger-old persons and compel a vigorous

  19. Alzheimer's amyloid-β oligomers rescue cellular prion protein induced tau reduction via the Fyn pathway.

    PubMed

    Chen, Rong-Jie; Chang, Wei-Wei; Lin, Yu-Chun; Cheng, Pei-Lin; Chen, Yun-Ru

    2013-09-18

    Amyloid-β (Aβ) and tau are the pathogenic hallmarks in Alzheimer's disease (AD). Aβ oligomers are considered the actual toxic entities, and the toxicity relies on the presence of tau. Recently, Aβ oligomers have been shown to specifically interact with cellular prion protein (PrP(C)) where the role of PrP(C) in AD is still not fully understood. To investigate the downstream mechanism of PrP(C) and Aβ oligomer interaction and their possible relationships to tau, we examined tau expression in human neuroblastoma BE(2)-C cells transfected with murine PrP(C) and studied the effect under Aβ oligomer treatment. By Western blotting, we found that PrP(C) overexpression down-regulated tau protein and Aβ oligomer binding alleviated the tau reduction induced by wild type but not M128V PrP(C), the high AD risk polymorphic allele in human prion gene. PrP(C) lacking the Aβ oligomer binding site was incapable of rescuing the level of tau reduction. Quantitative RT-PCR showed the PrP(C) effect was attributed to tau reduction at the transcription level. Treatment with Fyn pathway inhibitors, Fyn kinase inhibitor PP2 and MEK inhibitor U0126, reversed the PrP(C)-induced tau reduction and Aβ oligomer treatment modulated Fyn kinase activity. The results suggested Fyn pathway regulated Aβ-PrP(C)-tau signaling. Overall, our results demonstrated that PrP(C) down-regulated tau via the Fyn pathway and the effect can be regulated by Aβ oligomers. Our study facilitated the understanding of molecular mechanisms among PrP(C), tau, and Aβ oligomers.

  20. Single-molecule tracking of tau reveals fast kiss-and-hop interaction with microtubules in living neurons

    PubMed Central

    Janning, Dennis; Igaev, Maxim; Sündermann, Frederik; Brühmann, Jörg; Beutel, Oliver; Heinisch, Jürgen J.; Bakota, Lidia; Piehler, Jacob; Junge, Wolfgang; Brandt, Roland

    2014-01-01

    The microtubule-associated phosphoprotein tau regulates microtubule dynamics and is involved in neurodegenerative diseases collectively called tauopathies. It is generally believed that the vast majority of tau molecules decorate axonal microtubules, thereby stabilizing them. However, it is an open question how tau can regulate microtubule dynamics without impeding microtubule-dependent transport and how tau is also available for interactions other than those with microtubules. Here we address this apparent paradox by fast single-molecule tracking of tau in living neurons and Monte Carlo simulations of tau dynamics. We find that tau dwells on a single microtubule for an unexpectedly short time of ∼40 ms before it hops to the next. This dwell time is 100-fold shorter than previously reported by ensemble measurements. Furthermore, we observed by quantitative imaging using fluorescence decay after photoactivation recordings of photoactivatable GFP–tagged tubulin that, despite this rapid dynamics, tau is capable of regulating the tubulin–microtubule balance. This indicates that tau's dwell time on microtubules is sufficiently long to influence the lifetime of a tubulin subunit in a GTP cap. Our data imply a novel kiss-and-hop mechanism by which tau promotes neuronal microtubule assembly. The rapid kiss-and-hop interaction explains why tau, although binding to microtubules, does not interfere with axonal transport. PMID:25165145

  1. Computational Study of Pseudo-phosphorylation of the Microtubule associated Protein Tau

    NASA Astrophysics Data System (ADS)

    Prokopovich, Dmitriy; Larini, Luca

    This computational study focuses on the effect of pseudo-phosphorylation on the aggregation of the microtubule associated protein tau. In the axon of the neuron, tau regulates the assembly of microtubules in the cytoskeleton. This is important for both stabilization of and transport across the microtubules. One of the hallmarks of the Alzheimer's disease is that tau is hyper-phosphorylated and aggregates into neurofibrillary tangles that lay waste to the neurons. It is not known if hyper-phosphorylation directly causes the aggregation of tau into tangles. Experimentally, pseudo-phosphorylation mimics the effects of phosphorylation by mutating certain residues of the protein chain into charged residues. In this study, we will consider the fragment called PHF43 that belongs to the microtubule binding region and has been shown to readily aggregate.

  2. UX Tau A Artist Concept

    NASA Image and Video Library

    2007-11-28

    This artist concept is of the one-million-year-old star system called UX Tau A, approximately 450 light-years away. NASA Spitzer Space Telescope showed a gap in the dusty planet-forming disk swirling around the system central sun-like star.

  3. Multisite Assessment of Aging-Related Tau Astrogliopathy (ARTAG).

    PubMed

    Kovacs, Gabor G; Xie, Sharon X; Lee, Edward B; Robinson, John L; Caswell, Carrie; Irwin, David J; Toledo, Jon B; Johnson, Victoria E; Smith, Douglas H; Alafuzoff, Irina; Attems, Johannes; Bencze, Janos; Bieniek, Kevin F; Bigio, Eileen H; Bodi, Istvan; Budka, Herbert; Dickson, Dennis W; Dugger, Brittany N; Duyckaerts, Charles; Ferrer, Isidro; Forrest, Shelley L; Gelpi, Ellen; Gentleman, Stephen M; Giaccone, Giorgio; Grinberg, Lea T; Halliday, Glenda M; Hatanpaa, Kimmo J; Hof, Patrick R; Hofer, Monika; Hortobágyi, Tibor; Ironside, James W; King, Andrew; Kofler, Julia; Kövari, Enikö; Kril, Jillian J; Love, Seth; Mackenzie, Ian R; Mao, Qinwen; Matej, Radoslav; McLean, Catriona; Munoz, David G; Murray, Melissa E; Neltner, Janna; Nelson, Peter T; Ritchie, Diane; Rodriguez, Roberta D; Rohan, Zdenek; Rozemuller, Annemieke; Sakai, Kenji; Schultz, Christian; Seilhean, Danielle; Smith, Vanessa; Tacik, Pawel; Takahashi, Hitoshi; Takao, Masaki; Rudolf Thal, Dietmar; Weis, Serge; Wharton, Stephen B; White, Charles L; Woulfe, John M; Yamada, Masahito; Trojanowski, John Q

    2017-07-01

    Aging-related tau astrogliopathy (ARTAG) is a recently introduced terminology. To facilitate the consistent identification of ARTAG and to distinguish it from astroglial tau pathologies observed in the primary frontotemporal lobar degeneration tauopathies we evaluated how consistently neuropathologists recognize (1) different astroglial tau immunoreactivities, including those of ARTAG and those associated with primary tauopathies (Study 1); (2) ARTAG types (Study 2A); and (3) ARTAG severity (Study 2B). Microphotographs and scanned sections immunostained for phosphorylated tau (AT8) were made available for download and preview. Percentage of agreement and kappa values with 95% confidence interval (CI) were calculated for each evaluation. The overall agreement for Study 1 was >60% with a kappa value of 0.55 (95% CI 0.433-0.645). Moderate agreement (>90%, kappa 0.48, 95% CI 0.457-0.900) was reached in Study 2A for the identification of ARTAG pathology for each ARTAG subtype (kappa 0.37-0.72), whereas fair agreement (kappa 0.40, 95% CI 0.341-0.445) was reached for the evaluation of ARTAG severity. The overall assessment of ARTAG showed moderate agreement (kappa 0.60, 95% CI 0.534-0.653) among raters. Our study supports the application of the current harmonized evaluation strategy for ARTAG with a slight modification of the evaluation of its severity. © 2017 American Association of Neuropathologists, Inc. All rights reserved.

  4. Resistance to Alzheimer Disease Neuropathologic Changes and Apparent Cognitive Resilience in the Nun and Honolulu-Asia Aging Studies.

    PubMed

    Latimer, Caitlin S; Keene, C Dirk; Flanagan, Margaret E; Hemmy, Laura S; Lim, Kelvin O; White, Lon R; Montine, Kathleen S; Montine, Thomas J

    2017-06-01

    Two population-based studies key to advancing knowledge of brain aging are the Honolulu-Asia Aging Study (HAAS) and the Nun Study. Harmonization of their neuropathologic data allows cross comparison, with findings common to both studies likely generalizable, while distinct observations may point to aging brain changes that are dependent on sex, ethnicity, environment, or lifestyle factors. Here, we expanded the neuropathologic evaluation of these 2 studies using revised NIA-Alzheimer's Association guidelines and compared directly the neuropathologic features of resistance and apparent cognitive resilience. There were significant differences in prevalence of Alzheimer disease neuropathologic change, small vessel vascular brain injury, and Lewy body disease between these 2 studies, suggesting that sex, ethnicity, and lifestyle factors may significantly influence resistance to developing brain injury with age. In contrast, hippocampal sclerosis prevalence was very similar, but skewed to poorer cognitive performance, suggesting that hippocampal sclerosis could act sequentially with other diseases to impair cognitive function. Strikingly, despite these observed differences, the proportion of individuals resistant to all 4 diseases of brain or displaying apparent cognitive resilience was virtually identical between HAAS and Nun Study participants. Future in vivo validation of these results awaits comprehensive biomarkers of these 4 brain diseases. © 2017 American Association of Neuropathologists, Inc. All rights reserved.

  5. Tau Deletion Prevents Stress-Induced Dendritic Atrophy in Prefrontal Cortex: Role of Synaptic Mitochondria.

    PubMed

    Lopes, Sofia; Teplytska, Larysa; Vaz-Silva, Joao; Dioli, Chrysoula; Trindade, Rita; Morais, Monica; Webhofer, Christian; Maccarrone, Giuseppina; Almeida, Osborne F X; Turck, Christoph W; Sousa, Nuno; Sotiropoulos, Ioannis; Filiou, Michaela D

    2017-04-01

    Tau protein in dendrites and synapses has been recently implicated in synaptic degeneration and neuronal malfunction. Chronic stress, a well-known inducer of neuronal/synaptic atrophy, triggers hyperphosphorylation of Tau protein and cognitive deficits. However, the cause-effect relationship between these events remains to be established. To test the involvement of Tau in stress-induced impairments of cognition, we investigated the impact of stress on cognitive behavior, neuronal structure, and the synaptic proteome in the prefrontal cortex (PFC) of Tau knock-out (Tau-KO) and wild-type (WT) mice. Whereas exposure to chronic stress resulted in atrophy of apical dendrites and spine loss in PFC neurons as well as significant impairments in working memory in WT mice, such changes were absent in Tau-KO animals. Quantitative proteomic analysis of PFC synaptosomal fractions, combined with transmission electron microscopy analysis, suggested a prominent role for mitochondria in the regulation of the effects of stress. Specifically, chronically stressed animals exhibit Tau-dependent alterations in the levels of proteins involved in mitochondrial transport and oxidative phosphorylation as well as in the synaptic localization of mitochondria in PFC. These findings provide evidence for a causal role of Tau in mediating stress-elicited neuronal atrophy and cognitive impairment and indicate that Tau may exert its effects through synaptic mitochondria. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  6. Initial CSF total tau correlates with 1-year outcome in patients with traumatic brain injury.

    PubMed

    Ost, M; Nylén, K; Csajbok, L; Ohrfelt, A Olsson; Tullberg, M; Wikkelsö, C; Nellgård, P; Rosengren, L; Blennow, K; Nellgård, B

    2006-11-14

    We investigated if tau, microtubular binding protein, in serum and ventricular CSF (vCSF) in patients with severe traumatic brain injury (TBI) during the initial posttraumatic days correlated to 1-year outcome. Patients with severe TBI (n = 39, Glasgow Coma Scale score tau on days 0 to 14, using ELISA. vCSF total tau correlated to 1-year Extended Glasgow Outcome Scale (GOSE), the NIH Stroke Scale (NIHSS) neurologic status, and the Bartel Daily Living Index. Patients (n = 20) with normal pressure hydrocephalus (NPH) served as reference. Higher levels of tau were found in TBI patients vs patients with NPH. A correlation was found between initial vCSF total tau and GOSE levels (R = 0.42, p < 0.001) but not between vCSF total tau and NIHSS or Bartel scores at 1 year. A vCSF total tau level of >2,126 pg/mL on days 2 to 3 discriminated between dead and alive (sensitivity of 100% and a specificity of 81%). A vCSF total tau level of >702 pg/mL on days 2 to 3 discriminated between bad (GOSE 1 to 4) and good (GOSE 5 to 8) outcome (sensitivity of 83% and a specificity of 69%). Patients with GOSE 1 (dead) had higher vCSF total tau levels on days 2 to 3 (p < 0.001) vs both surviving patients (GOSE 2 to 8) and those with NPH. Total tau was not detected in serum throughout the study. The increase in ventricular CSF (vCSF) total tau probably reflects axonal damage, known to be a central pathologic mechanism in traumatic brain injury (TBI). These results suggest that vCSF total tau may be an important early biochemical neuromarker for predicting long-term outcome in patients with a severe TBI.

  7. Differential interaction and aggregation of 3-repeat and 4-repeat tau isoforms with 14-3-3{zeta} protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadik, Golam; Tanaka, Toshihisa, E-mail: tanaka@psy.med.osaka-u.ac.jp; Kato, Kiyoko

    2009-05-22

    Tau isoforms, 3-repeat (3R) and 4-repeat tau (4R), are differentially involved in neuronal development and in several tauopathies. 14-3-3 protein binds to tau and 14-3-3/tau association has been found both in the development and in tauopathies. To understand the role of 14-3-3 in the differential regulation of tau isoforms, we have performed studies on the interaction and aggregation of 3R-tau and 4R-tau, either phosphorylated or unphosphorylated, with 14-3-3{zeta}. We show by surface plasmon resonance studies that the interaction between unphosphorylated 3R-tau and 14-3-3{zeta} is {approx}3-folds higher than that between unphosphorylated 4R-tau and 14-3-3{zeta}. Phosphorylation of tau by protein kinase Amore » (PKA) increases the affinity of both 3R- and 4R-tau for 14-3-3{zeta} to a similar level. An in vitro aggregation assay employing both transmission electron microscopy and fluorescence spectroscopy revealed the aggregation of unphosphorylated 4R-tau to be significantly higher than that of unphosphorylated 3R-tau following the induction of 14-3-3{zeta}. The filaments formed from 3R- and 4R-tau were almost similar in morphology. In contrast, the aggregation of both 3R- and 4R-tau was reduced to a similar low level after phosphorylation with PKA. Taken together, these results suggest that 14-3-3{zeta} exhibits a similar role for tau isoforms after PKA-phosphorylation, but a differential role for unphosphorylated tau. The significant aggregation of 4R-tau by 14-3-3{zeta} suggests that 14-3-3 may act as an inducer in the generation of 4R-tau-predominant neurofibrillary tangles in tauopathies.« less

  8. In Vivo Imaging of Tau Pathology Using Magnetic Resonance Imaging Textural Analysis

    PubMed Central

    Colgan, Niall; Ganeshan, Balaji; Harrison, Ian F.; Ismail, Ozama; Holmes, Holly E.; Wells, Jack A.; Powell, Nick M.; O'Callaghan, James M.; O'Neill, Michael J.; Murray, Tracey K.; Ahmed, Zeshan; Collins, Emily C.; Johnson, Ross A.; Groves, Ashley; Lythgoe, Mark F.

    2017-01-01

    Background: Non-invasive characterization of the pathological features of Alzheimer's disease (AD) could enhance patient management and the development of therapeutic strategies. Magnetic resonance imaging texture analysis (MRTA) has been used previously to extract texture descriptors from structural clinical scans in AD to determine cerebral tissue heterogeneity. In this study, we examined the potential of MRTA to specifically identify tau pathology in an AD mouse model and compared the MRTA metrics to histological measures of tau burden. Methods: MRTA was applied to T2 weighted high-resolution MR images of nine 8.5-month-old rTg4510 tau pathology (TG) mice and 16 litter matched wild-type (WT) mice. MRTA comprised of the filtration-histogram technique, where the filtration step extracted and enhanced features of different sizes (fine, medium, and coarse texture scales), followed by quantification of texture using histogram analysis (mean gray level intensity, mean intensity, entropy, uniformity, skewness, standard-deviation, and kurtosis). MRTA was applied to manually segmented regions of interest (ROI) drawn within the cortex, hippocampus, and thalamus regions and the level of tau burden was assessed in equivalent regions using histology. Results: Texture parameters were markedly different between WT and TG in the cortex (E, p < 0.01, K, p < 0.01), the hippocampus (K, p < 0.05) and in the thalamus (K, p < 0.01). In addition, we observed significant correlations between histological measurements of tau burden and kurtosis in the cortex, hippocampus and thalamus. Conclusions: MRTA successfully differentiated WT and TG in brain regions with varying degrees of tau pathology (cortex, hippocampus, and thalamus) based on T2 weighted MR images. Furthermore, the kurtosis measurement correlated with histological measures of tau burden. This initial study indicates that MRTA may have a role in the early diagnosis of AD and the assessment of tau pathology using routinely

  9. Compilation of International Regulatory Guidance Documents for Neuropathology Assessment during Nonclinical Toxicity Studies

    EPA Science Inventory

    Neuropathology analysis as an endpoint during nonclinical efficacy and toxicity studies is a challenging prospect that requires trained personnel and particular equipment to achieve optimal results. Accordingly, many regulatory agencies have produced explicit guidelines for desig...

  10. Dietary Lycopene Supplementation Improves Cognitive Performances in Tau Transgenic Mice Expressing P301L Mutation via Inhibiting Oxidative Stress and Tau Hyperphosphorylation.

    PubMed

    Yu, Lixia; Wang, Weiguang; Pang, Wei; Xiao, Zhonghai; Jiang, Yugang; Hong, Yan

    2017-01-01

    Oxidative stress is implicated in the pathogenesis of Alzheimer's disease (AD) and other tauopathies and participates in their development by promoting hyperphosphorylation of microtubule-associated protein tau. Lycopene, as an effective antioxidant, combined with vitamin E seemed to be additive against oxidative stress. The present study was undertaken to examine whether lycopene or lycopene/vitamin E could exert protective effects on memory deficit and oxidative stress in tau transgenic mice expressing P301L mutation. P301L transgenic mice were assigned to three groups: P301L group (P301L), P301L+lycopene (Lyc), and P301L+lycopene/vitamin E (Lyc+VE). Age-matched C57BL/6J mice as wild type controls (Con) were used in the present study. Spatial memory was assessed by radial arm while passive memories were evaluated by step-down and step-through tests. Levels of tau phosphorylation were detected by western blot. Oxidative stress biomarkers were measured in the serum using biochemical assay kits. Compared with the control group, P301L mice displayed significant spatial and passive memory impairments, elevated malondialdehyde (MDA) levels and decreased glutathione peroxidase (GSH-Px) activities in serum, and increased tau phosphorylation at Thr231/Ser235, Ser262, and Ser396 in brain. Supplementations of lycopene or lycopene/vitamin E could significantly ameliorate the memory deficits, observably decreased MDA concentrations and increased GSH-Px activities, and markedly attenuated tau hyperphosphorylation at multiple AD-related sites. Our findings indicated that the combination of lycopene and vitamin E antioxidants acted in a synergistic fashion to bring significant effects against oxidative stress in tauopathies.

  11. Large Sample Confidence Limits for Goodman and Kruskal's Proportional Prediction Measure TAU-b

    ERIC Educational Resources Information Center

    Berry, Kenneth J.; Mielke, Paul W.

    1976-01-01

    A Fortran Extended program which computes Goodman and Kruskal's Tau-b, its asymmetrical counterpart, Tau-a, and three sets of confidence limits for each coefficient under full multinomial and proportional stratified sampling is presented. A correction of an error in the calculation of the large sample standard error of Tau-b is discussed.…

  12. Frontotemporal dementia with the C9ORF72 hexanucleotide repeat expansion: clinical, neuroanatomical and neuropathological features

    PubMed Central

    Mahoney, Colin J.; Beck, Jon; Rohrer, Jonathan D.; Lashley, Tammaryn; Mok, Kin; Shakespeare, Tim; Yeatman, Tom; Warrington, Elizabeth K.; Schott, Jonathan M.; Fox, Nick C.; Rossor, Martin N.; Hardy, John; Collinge, John; Revesz, Tamas; Mead, Simon

    2012-01-01

    An expanded hexanucleotide repeat in the C9ORF72 gene has recently been identified as a major cause of familial frontotemporal lobar degeneration and motor neuron disease, including cases previously identified as linked to chromosome 9. Here we present a detailed retrospective clinical, neuroimaging and histopathological analysis of a C9ORF72 mutation case series in relation to other forms of genetically determined frontotemporal lobar degeneration ascertained at a specialist centre. Eighteen probands (19 cases in total) were identified, representing 35% of frontotemporal lobar degeneration cases with identified mutations, 36% of cases with clinical evidence of motor neuron disease and 7% of the entire cohort. Thirty-three per cent of these C9ORF72 cases had no identified relevant family history. Families showed wide variation in clinical onset (43–68 years) and duration (1.7–22 years). The most common presenting syndrome (comprising a half of cases) was behavioural variant frontotemporal dementia, however, there was substantial clinical heterogeneity across the C9ORF72 mutation cohort. Sixty per cent of cases developed clinical features consistent with motor neuron disease during the period of follow-up. Anxiety and agitation and memory impairment were prominent features (between a half to two-thirds of cases), and dominant parietal dysfunction was also frequent. Affected individuals showed variable magnetic resonance imaging findings; however, relative to healthy controls, the group as a whole showed extensive thinning of frontal, temporal and parietal cortices, subcortical grey matter atrophy including thalamus and cerebellum and involvement of long intrahemispheric, commissural and corticospinal tracts. The neuroimaging profile of the C9ORF72 expansion was significantly more symmetrical than progranulin mutations with significantly less temporal lobe involvement than microtubule-associated protein tau mutations. Neuropathological examination in six cases

  13. CNS Injury: Posttranslational Modification of the Tau Protein as a Biomarker.

    PubMed

    Caprelli, Mitchell T; Mothe, Andrea J; Tator, Charles H

    2017-11-01

    The ideal biomarker for central nervous system (CNS) trauma in patients would be a molecular marker specific for injured nervous tissue that would provide a consistent and reliable assessment of the presence and severity of injury and the prognosis for recovery. One candidate biomarker is the protein tau, a microtubule-associated protein abundant in the axonal compartment of CNS neurons. Following axonal injury, tau becomes modified primarily by hyperphosphorylation of its various amino acid residues and cleavage into smaller fragments. These posttrauma products can leak into the cerebrospinal fluid or bloodstream and become candidate biomarkers of CNS injury. This review examines the primary molecular changes that tau undergoes following traumatic brain injury and spinal cord injury, and reviews the current literature in traumatic CNS biomarker research with a focus on the potential for hyperphosphorylated and cleaved tau as sensitive biomarkers of injury.

  14. Neuronal uptake and propagation of a rare phosphorylated high-molecular-weight tau derived from Alzheimer's disease brain

    PubMed Central

    Takeda, Shuko; Wegmann, Susanne; Cho, Hansang; DeVos, Sarah L.; Commins, Caitlin; Roe, Allyson D.; Nicholls, Samantha B.; Carlson, George A.; Pitstick, Rose; Nobuhara, Chloe K.; Costantino, Isabel; Frosch, Matthew P.; Müller, Daniel J.; Irimia, Daniel; Hyman, Bradley T.

    2015-01-01

    Tau pathology is known to spread in a hierarchical pattern in Alzheimer's disease (AD) brain during disease progression, likely by trans-synaptic tau transfer between neurons. However, the tau species involved in inter-neuron propagation remains unclear. To identify tau species responsible for propagation, we examined uptake and propagation properties of different tau species derived from postmortem cortical extracts and brain interstitial fluid of tau-transgenic mice, as well as human AD cortices. Here we show that PBS-soluble phosphorylated high-molecular-weight (HMW) tau, though very low in abundance, is taken up, axonally transported, and passed on to synaptically connected neurons. Our findings suggest that a rare species of soluble phosphorylated HMW tau is the endogenous form of tau involved in propagation and could be a target for therapeutic intervention and biomarker development. PMID:26458742

  15. GWAS of cerebrospinal fluid tau levels identifies risk variants for Alzheimer's disease.

    PubMed

    Cruchaga, Carlos; Kauwe, John S K; Harari, Oscar; Jin, Sheng Chih; Cai, Yefei; Karch, Celeste M; Benitez, Bruno A; Jeng, Amanda T; Skorupa, Tara; Carrell, David; Bertelsen, Sarah; Bailey, Matthew; McKean, David; Shulman, Joshua M; De Jager, Philip L; Chibnik, Lori; Bennett, David A; Arnold, Steve E; Harold, Denise; Sims, Rebecca; Gerrish, Amy; Williams, Julie; Van Deerlin, Vivianna M; Lee, Virginia M-Y; Shaw, Leslie M; Trojanowski, John Q; Haines, Jonathan L; Mayeux, Richard; Pericak-Vance, Margaret A; Farrer, Lindsay A; Schellenberg, Gerard D; Peskind, Elaine R; Galasko, Douglas; Fagan, Anne M; Holtzman, David M; Morris, John C; Goate, Alison M

    2013-04-24

    Cerebrospinal fluid (CSF) tau, tau phosphorylated at threonine 181 (ptau), and Aβ₄₂ are established biomarkers for Alzheimer's disease (AD) and have been used as quantitative traits for genetic analyses. We performed the largest genome-wide association study for cerebrospinal fluid (CSF) tau/ptau levels published to date (n = 1,269), identifying three genome-wide significant loci for CSF tau and ptau: rs9877502 (p = 4.89 × 10⁻⁹ for tau) located at 3q28 between GEMC1 and OSTN, rs514716 (p = 1.07 × 10⁻⁸ and p = 3.22 × 10⁻⁹ for tau and ptau, respectively), located at 9p24.2 within GLIS3 and rs6922617 (p = 3.58 × 10⁻⁸ for CSF ptau) at 6p21.1 within the TREM gene cluster, a region recently reported to harbor rare variants that increase AD risk. In independent data sets, rs9877502 showed a strong association with risk for AD, tangle pathology, and global cognitive decline (p = 2.67 × 10⁻⁴, 0.039, 4.86 × 10⁻⁵, respectively) illustrating how this endophenotype-based approach can be used to identify new AD risk loci. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Neuropathological findings processed by artificial neural networks (ANNs) can perfectly distinguish Alzheimer's patients from controls in the Nun Study.

    PubMed

    Grossi, Enzo; Buscema, Massimo P; Snowdon, David; Antuono, Piero

    2007-06-21

    Many reports have described that there are fewer differences in AD brain neuropathologic lesions between AD patients and control subjects aged 80 years and older, as compared with the considerable differences between younger persons with AD and controls. In fact some investigators have suggested that since neurofibrillary tangles (NFT) can be identified in the brains of non-demented elderly subjects they should be considered as a consequence of the aging process. At present, there are no universally accepted neuropathological criteria which can mathematically differentiate AD from healthy brain in the oldest old. The aim of this study is to discover the hidden and non-linear associations among AD pathognomonic brain lesions and the clinical diagnosis of AD in participants in the Nun Study through Artificial Neural Networks (ANNs) analysis The analyses were based on 26 clinically- and pathologically-confirmed AD cases and 36 controls who had normal cognitive function. The inputs used for the analyses were just NFT and neuritic plaques counts in neocortex and hippocampus, for which, despite substantial differences in mean lesions counts between AD cases and controls, there was a substantial overlap in the range of lesion counts. By taking into account the above four neuropathological features, the overall predictive capability of ANNs in sorting out AD cases from normal controls reached 100%. The corresponding accuracy obtained with Linear Discriminant Analysis was 92.30%. These results were consistently obtained in ten independent experiments. The same experiments were carried out with ANNs on a subgroup of 13 non severe AD patients and on the same 36 controls. The results obtained in terms of prediction accuracy with ANNs were exactly the same. Input relevance analysis confirmed the relative dominance of NFT in neocortex in discriminating between AD patients and controls and indicated the lesser importance played by NP in the hippocampus. The results of this study

  17. Calculation of Left Ventricular Diastolic Time Constant (TAU) in Dogs with Mitral Regurgitation Using Continuous-Wave Doppler.

    PubMed

    Wen, Chaoyang; Sun, Jing; Fan, Chunzhi; Dou, Jianping

    2018-05-04

    The left ventricular diastolic time constant (Tau) cannot be practically measured non-invasively. Thus, the aim of this study was to investigate a new method for the evaluation of Tau using continuous-wave (CW) Doppler in dogs with mitral regurgitation. Guided by ultrasound, we created 12 beagle models of mitral regurgitation and acute ischemic left ventricular diastolic dysfunction. Raw audio signals of the CW Doppler spectra were collected, and new mitral regurgitation Doppler spectra were observed after computer re-processing. The new Doppler spectra contour line was constructed using MATLAB (Version R2009), and two time intervals, t1-t2 and t1-t3, were measured on the descending branch of the mitral regurgitation Doppler spectrum and were substituted into Bai's equation group. The Doppler-derived Tau (Tau-d) was resolved and compared with the simultaneous catheter-derived Tau (Tau-c). No significant difference (p > 0.05) between Tau-d (49.33 ± 18.79 ms) and Tau-c (48.76 ± 17.60 ms) was found. A correlation analysis between Tau-d and Tau-c suggested a strong positive relationship (r = 0.85, p = 0.000). Bland-Altman plots of Tau-d and Tau-c revealed fair agreement. Compared with previous non-invasive approaches, this method is simpler and more accurate. There is a strong positive relationship and fair agreement between Tau-d and Tau-c. Copyright © 2018 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.

  18. Dissecting Endoplasmic Reticulum Unfolded Protein Response (UPRER) in Managing Clandestine Modus Operandi of Alzheimer’s Disease

    PubMed Central

    Rahman, Safikur; Archana, Ayyagari; Jan, Arif Tasleem; Minakshi, Rinki

    2018-01-01

    Alzheimer’s disease (AD), a neurodegenerative disorder, is most common cause of dementia witnessed among aged people. The pathophysiology of AD develops as a consequence of neurofibrillary tangle formation which consists of hyperphosphorylated microtubule associated tau protein and senile plaques of amyloid-β (Aβ) peptide in specific brain regions that result in synaptic loss and neuronal death. The feeble buffering capacity of endoplasmic reticulum (ER) proteostasis in AD is evident through alteration in unfolded protein response (UPR), where UPR markers express invariably in AD patient’s brain samples. Aging weakens UPRER causing neuropathology and memory loss in AD. This review highlights molecular signatures of UPRER and its key molecular alliance that are affected in aging leading to the development of intriguing neuropathologies in AD. We present a summary of recent studies reporting usage of small molecules as inhibitors or activators of UPRER sensors/effectors in AD that showcase avenues for therapeutic interventions. PMID:29467648

  19. Peripheral Total Tau in Military Personnel Who Sustain Traumatic Brain Injuries During Deployment.

    PubMed

    Olivera, Anlys; Lejbman, Natasha; Jeromin, Andreas; French, Louis M; Kim, Hyung-Suk; Cashion, Ann; Mysliwiec, Vincent; Diaz-Arrastia, Ramon; Gill, Jessica

    2015-10-01

    Approximately one-third of military personnel who deploy for combat operations sustain 1 or more traumatic brain injuries (TBIs), which increases the risk for chronic symptoms of postconcussive disorder, posttraumatic stress disorder, and depression and for the development of chronic traumatic encephalopathy. Elevated concentrations of tau are observed in blood shortly following a TBI, but, to our knowledge, the role of tau elevations in blood in the onset and maintenance of chronic symptoms after TBI has not been investigated. To assess peripheral tau levels in military personnel exposed to TBI and to examine the relationship between chronic neurological symptoms and tau elevations. Observational assessment from September 2012 to August 2014 of US military personnel at the Madigan Army Medical Center who had been deployed within the previous 18 months. Plasma total tau concentrations were measured using a novel ultrasensitive single-molecule enzyme-linked immunosorbent assay. Classification of participants with and without self-reported TBI was made using the Warrior Administered Retrospective Casualty Assessment Tool. Self-reported symptoms of postconcussive disorder, posttraumatic stress disorder, and depression were determined by the Neurobehavioral Symptom Inventory, the Posttraumatic Stress Disorder Checklist Military Version, and the Quick Inventory of Depressive Symptomatology, respectively. Group differences in tau concentrations were determined through analysis of variance models, and area under the receiver operating characteristic curve determined the sensitivity and specificity of tau concentrations in predicting TBI and chronic symptoms. Seventy participants with self-reported TBI on the Warrior Administered Retrospective Casualty Assessment Tool and 28 control participants with no TBI exposure were included. Concentration of total tau in peripheral blood. Concentrations of plasma tau were significantly elevated in the 70 participants with self

  20. Association of Seafood Consumption, Brain Mercury Level, and APOE ε4 Status With Brain Neuropathology in Older Adults

    PubMed Central

    Morris, Martha Clare; Brockman, John; Schneider, Julie A.; Wang, Yamin; Bennett, David A.; Tangney, Christy C.; van de Rest, Ondine

    2017-01-01

    IMPORTANCE Seafood consumption is promoted for its many health benefits even though its contamination by mercury, a known neurotoxin, is a growing concern. OBJECTIVE To determine whether seafood consumption is correlated with increased brain mercury levels and also whether seafood consumption or brain mercury levels are correlated with brain neuropathologies. DESIGN, SETTING, AND PARTICIPANTS Cross-sectional analyses of deceased participants in the Memory and Aging Project clinical neuropathological cohort study, 2004–2013. Participants resided in Chicago retirement communities and subsidized housing. The study included 286 autopsied brains of 554 deceased participants (51.6%). The mean (SD) age at death was 89.9 (6.1) years, 67% (193) were women, and the mean (SD) educational attainment was 14.6 (2.7) years. EXPOSURES Seafood intake was first measured by a food frequency questionnaire at a mean of 4.5 years before death. MAIN OUTCOMES AND MEASURES Dementia-related pathologies assessed were Alzheimer disease, Lewy bodies, and the number of macroinfarcts and microinfarcts. Dietary consumption of seafood and n-3 fatty acids was annually assessed by a food frequency questionnaire in the years before death. Tissue concentrations of mercury and selenium were measured using instrumental neutron activation analyses. RESULTS Among the 286 autopsied brains of 544 participants, brain mercury levels were positively correlated with the number of seafood meals consumed per week (ρ = 0.16; P = .02). In models adjusted for age, sex, education, and total energy intake, seafood consumption (≥1 meal[s]/week) was significantly correlated with less Alzheimer disease pathology including lower density of neuritic plaques (β = −0.69 score units [95% CI, −1.34 to −0.04]), less severe and widespread neurofibrillary tangles (β = −0.77 score units [95% CI, −1.52 to −0.02]), and lower neuropathologically defined Alzheimer disease (β = −0.53 score units [95% CI, −0

  1. Tau depletion prevents progressive blood-brain barrier damage in a mouse model of tauopathy.

    PubMed

    Blair, Laura J; Frauen, Haley D; Zhang, Bo; Nordhues, Bryce A; Bijan, Sara; Lin, Yen-Chi; Zamudio, Frank; Hernandez, Lidice D; Sabbagh, Jonathan J; Selenica, Maj-Linda B; Dickey, Chad A

    2015-01-31

    The blood-brain barrier (BBB) is damaged in tauopathies, including progressive supranuclear palsy (PSP) and Alzheimer's disease (AD), which is thought to contribute to pathogenesis later in the disease course. In AD, BBB dysfunction has been associated with amyloid beta (Aß) pathology, but the role of tau in this process is not well characterized. Since increased BBB permeability is found in tauopathies without Aß pathology, like PSP, we suspected that tau accumulation alone could not only be sufficient, but even more important than Aß for BBB damage. Longitudinal evaluation of brain tissue from the tetracycline-regulatable rTg4510 tau transgenic mouse model showed progressive IgG, T cell and red blood cell infiltration. The Evans blue (EB) dye that is excluded from the brain when the BBB is intact also permeated the brains of rTg4510 mice following peripheral administration, indicative of a bonafide BBB defect, but this was only evident later in life. Thus, despite the marked brain atrophy and inflammation that occurs earlier in this model, BBB integrity is maintained. Interestingly, BBB dysfunction emerged at the same time that perivascular tau emerged around major hippocampal blood vessels. However, when tau expression was suppressed using doxycycline, BBB integrity was preserved, suggesting that the BBB can be stabilized in a tauopathic brain by reducing tau levels. For the first time, these data demonstrate that tau alone can initiate breakdown of the BBB, but the BBB is remarkably resilient, maintaining its integrity in the face of marked brain atrophy, neuroinflammation and toxic tau accumulation. Moreover, the BBB can recover integrity when tau levels are reduced. Thus, late stage interventions targeting tau may slow the vascular contributions to cognitive impairment and dementia that occur in tauopathies.

  2. GESTATIONAL EXPOSURE TO CHLORPYRIFOS: QUALITATIVE AND QUANTITATIVE NEUROPATHOLOGICAL CHANGES IN THE FETAL NEOCORTEX.

    EPA Science Inventory

    This study investigated the qualitative and quantitative neuropathological changes that occur in the fetal brain following gestational exposure to chlorpyrifos [(O,O'diethyl O-3,5,6-trichloro-2-pyridyl) phosphorothionate], a commonly used organophosphorus insecticide. Two cohort...

  3. Relationship Among Tau Antigens Isolated from Various Lines of Simian Virus 40-Transformed Cells

    PubMed Central

    Simmons, Daniel T.; Martin, Malcolm A.; Mora, Peter T.; Chang, Chungming

    1980-01-01

    In addition to the virus-specified tumor antigens, simian virus 40-transformed cells contain at least one other protein which can be immunoprecipitated with serum from animals bearing simian virus 40-induced tumors. This protein, which is designated Tau antigen, has an apparent molecular weight of 56,000 as determined by electrophoresis on acrylamide gels. The relationship among Tau antigens isolated from different lines of simian virus 40-transformed cells was examined by comparing the methionine-labeled tryptic peptides of these proteins by two-dimensional fingerprinting on thin-layer cellulose plates. In this fashion, we initially determined that the Tau antigens isolated from three different lines of transformed mouse cells were very similar. Second, we found that Tau antigen isolated from a line of rat transformants was closely related, but not identical, to the mouse cell Tau antigens. Approximately 70% of their methionine peptides comigrated in two dimensions. Finally, we showed that Tau antigen isolated from a line of transformed human cells was only partially related to the mouse and rat proteins. About 40% of the methionine peptides of the human protein were also contained in the Tau antigens from the other two species. These results strongly indicate that the Tau antigens isolated from these various simian virus 40-transformed cell lines contain common amino acid sequences. Images PMID:6247503

  4. Alzheimer disease-like clinical phenotype in a family with FTDP-17 caused by a MAPT R406W mutation.

    PubMed

    Lindquist, S G; Holm, I E; Schwartz, M; Law, I; Stokholm, J; Batbayli, M; Waldemar, G; Nielsen, J E

    2008-04-01

    We report clinical, molecular, neuroimaging and neuropathological features of a Danish family with autosomal dominant inherited dementia, a clinical phenotype resembling Alzheimer's disease and a pathogenic mutation (R406W) in the microtubule associated protein tau (MAPT) gene. Pre-symptomatic and affected family members underwent multidisciplinary (clinical, molecular, neuroimaging and neuropathological) examinations. Treatment with memantine in a family member with early symptoms, based on the clinical phenotype and the lack of specific treatment, appears to stabilize the disease course and increase the glucose metabolism in cortical and subcortical areas, as determined by serial [F(18)]FDG-PET scanning before and after initiation of treatment. Neuropathological examination of a second affected and mutation-positive family member showed moderate atrophy of the temporal lobes including the hippocampi. Microscopy revealed abundant numbers of tau-positive neurofibrillary tangles in all cortical areas and in some brainstem nuclei corresponding to a diagnosis of frontotemporal lobe degeneration on the basis of a MAPT mutation. The clinical and genetic heterogeneity of autosomal dominant inherited dementia must be taken into account in the genetic counselling and genetic testing of families with autosomal dominantly inherited dementia in general.

  5. Lithium suppression of tau induces brain iron accumulation and neurodegeneration.

    PubMed

    Lei, P; Ayton, S; Appukuttan, A T; Moon, S; Duce, J A; Volitakis, I; Cherny, R; Wood, S J; Greenough, M; Berger, G; Pantelis, C; McGorry, P; Yung, A; Finkelstein, D I; Bush, A I

    2017-03-01

    Lithium is a first-line therapy for bipolar affective disorder. However, various adverse effects, including a Parkinson-like hand tremor, often limit its use. The understanding of the neurobiological basis of these side effects is still very limited. Nigral iron elevation is also a feature of Parkinsonian degeneration that may be related to soluble tau reduction. We found that magnetic resonance imaging T 2 relaxation time changes in subjects commenced on lithium therapy were consistent with iron elevation. In mice, lithium treatment lowers brain tau levels and increases nigral and cortical iron elevation that is closely associated with neurodegeneration, cognitive loss and parkinsonian features. In neuronal cultures lithium attenuates iron efflux by lowering tau protein that traffics amyloid precursor protein to facilitate iron efflux. Thus, tau- and amyloid protein precursor-knockout mice were protected against lithium-induced iron elevation and neurotoxicity. These findings challenge the appropriateness of lithium as a potential treatment for disorders where brain iron is elevated (for example, Alzheimer's disease), and may explain lithium-associated motor symptoms in susceptible patients.

  6. Reproducibility of Alzheimer’s Disease Cerebrospinal Fluid-Biomarker Measurements under Clinical Routine Conditions

    PubMed Central

    Vogelgsang, Jonathan; Wedekind, Dirk; Bouter, Caroline; Klafki, Hans-W.; Wiltfang, Jens

    2018-01-01

    Analysis of cerebrospinal fluid (CSF) is one of the key tools for the state-of-the-art differential diagnosis of dementias. Dementia due to Alzheimer’s disease (AD) is characterized by elevated CSF levels of total Tau (tTau) and phospho-181-Tau (pTau) and low CSF amyloid-β42 (Aβ42). Discrepancies in the laboratory analysis of human materials are well known and much effort has been put into harmonization procedures. In this study, we measured CSF biomarkers of more than 100 patients obtained under clinical routine conditions in two different clinical laboratories. The CSF biomarker levels obtained from the two different sites were significantly correlated: R2 = 0.7129 (tTau, p < 0.001), 0.7914 (pTau, p < 0.001), 0.5078 (Aβ42, p < 0.001), 0.5739 (Aβ40, p < 0.001), and 0.4308 (Aβ42/40, p < 0.001). However, the diagnostic classifications of the Aβ42, tTau, and pTau levels of identical subjects into normal versus pathological range made by the two different sites showed substantial discrepancies (31.5%, 29.6%, and 25.0% discordant cases, respectively). Applying Aβ42/40, instead of CSF Aβ42 alone, lead to a reduction of the discordant cases to 16.8%. Our findings suggest that CSF Aβ42/40 can outperform Aβ42 as a biomarker for AD neuropathology, not only under well-controlled study conditions but also in real life clinical routine. Thus, we recommend the inclusion of Aβ42/40 as a CSF biomarker in the diagnostic procedure. PMID:29439341

  7. [Lafora and neuropathology].

    PubMed

    Fernández-Armayor, V; Moreno, J M; Martín, A; García, M L; Revilla, B; Moreno, J L

    1997-12-01

    This article wants to be a memory to the figure and neuro-pathologic work of D. Gonzalo Rodríguez-Lafora. The tediousness of its neurological work allows to divide it in its slopes neurophatologic, neurophysiologic, clinic and therapy. Also, it embraces other topics outside of the field of the neurology, centered fundamentally in the psychiatry. It is without a doubt the facet neuro-histopathologic the one that provides him bigger national and international prestige and it contributes to deepen in the histopathology of the senility, picking up in a definitive way in their work critical valuation of the discoveries histopathological in the senility (1952) their thought in this respect. Mention separated deserves its more important discovery: The inclusions amylaceous in cells ganglionars, in a certain type of epilepsy myoclonic that today takes its name. Other entities like the illness of Wernicke, the hemorrhages hipofisarias, the Parkinson (for scarce months he is not early to Levy in an important discovery), or the alterations of the malaria in the cerebral fabric plows object of their attention, of the work of Lafora highlights its anatomo-pathologics works next to figures as Kraepelin, Alzheimer, Vogt, Openheim or Brodmann. Professor Lafora's figure is known internationally as neuropathologist, recognizing its contribution, collection in the world literature, to the study of the myoclonic epilepsy: 'Lafora disease. A form of progressive myoclonus epilepsy.

  8. Tau PET in Alzheimer disease and mild cognitive impairment.

    PubMed

    Cho, Hanna; Choi, Jae Yong; Hwang, Mi Song; Lee, Jae Hoon; Kim, You Jin; Lee, Hye Mi; Lyoo, Chul Hyoung; Ryu, Young Hoon; Lee, Myung Sik

    2016-07-26

    To investigate the topographical distribution of tau pathology and its effect on functional and structural changes in patients with Alzheimer disease (AD) and mild cognitive impairment (MCI) by using (18)F-AV-1451 PET. We included 20 patients with AD, 15 patients with MCI, and 20 healthy controls, and performed neuropsychological function tests, MRI, as well as (18)F-florbetaben (for amyloid) and (18)F-AV-1451 (for tau) PET scans. By using the regional volume-of-interest masks extracted from MRIs, regional binding values of standardized uptake value ratios and volumes were measured. We compared regional binding values among 3 diagnostic groups and identified correlations among the regional binding values, performance in each cognitive function test, and regional atrophy. (18)F-AV-1451 binding was increased only in the entorhinal cortex in patients with MCI, while patients with AD exhibited greater binding in most cortical regions. In the 35 patients with MCI and AD, (18)F-AV-1451 binding in most of the neocortex increased with a worsening of global cognitive function. The visual and verbal memory functions were associated with the extent of (18)F-AV-1451 binding, especially in the medial temporal regions. The (18)F-AV-1451 binding also correlated with the severity of regional atrophy of the cerebral cortex. Tau PET imaging with (18)F-AV-1451 could serve as an in vivo biomarker for the evaluation of AD-related tau pathology and monitoring disease progression. The accumulation of pathologic tau is more closely related to functional and structural deterioration in the AD spectrum than β-amyloid. © 2016 American Academy of Neurology.

  9. Detection of tau neutrinos by imaging air Cherenkov telescopes

    NASA Astrophysics Data System (ADS)

    Góra, D.; Bernardini, E.

    2016-09-01

    This paper investigates the potential to detect tau neutrinos in the energy range of 1-1000 PeV searching for very inclined showers with imaging Cherenkov telescopes. A neutrino induced tau lepton escaping from the Earth may decay and initiate an air shower which can be detected by a fluorescence or Cherenkov telescope. We present here a study of the detection potential of Earth-skimming neutrinos taking into account neutrino interactions in the Earth crust, local matter distributions at various detector sites, the development of tau-induced showers in air and the detection of Cherenkov photons with IACTs. We analyzed simulated shower images on the camera focal plane and implemented generic reconstruction chains based on Hillas parameters. We find that present IACTs can distinguish air showers induced by tau neutrinos from the background of hadronic showers in the PeV-EeV energy range. We present the neutrino trigger efficiency obtained for a few configurations being considered for the next-generation Cherenkov telescopes, i.e. the Cherenkov Telescope Array. Finally, for a few representative neutrino spectra expected from astrophysical sources, we compare the expected event rates at running IACTs to what is expected for the dedicated IceCube neutrino telescope.

  10. Reduction of Nuak1 Decreases Tau and Reverses Phenotypes in a Tauopathy Mouse Model.

    PubMed

    Lasagna-Reeves, Cristian A; de Haro, Maria; Hao, Shuang; Park, Jeehye; Rousseaux, Maxime W C; Al-Ramahi, Ismael; Jafar-Nejad, Paymaan; Vilanova-Velez, Luis; See, Lauren; De Maio, Antonia; Nitschke, Larissa; Wu, Zhenyu; Troncoso, Juan C; Westbrook, Thomas F; Tang, Jianrong; Botas, Juan; Zoghbi, Huda Y

    2016-10-19

    Many neurodegenerative proteinopathies share a common pathogenic mechanism: the abnormal accumulation of disease-related proteins. As growing evidence indicates that reducing the steady-state levels of disease-causing proteins mitigates neurodegeneration in animal models, we developed a strategy to screen for genes that decrease the levels of tau, whose accumulation contributes to the pathology of both Alzheimer disease (AD) and progressive supranuclear palsy (PSP). Integrating parallel cell-based and Drosophila genetic screens, we discovered that tau levels are regulated by Nuak1, an AMPK-related kinase. Nuak1 stabilizes tau by phosphorylation specifically at Ser356. Inhibition of Nuak1 in fruit flies suppressed neurodegeneration in tau-expressing Drosophila, and Nuak1 haploinsufficiency rescued the phenotypes of a tauopathy mouse model. These results demonstrate that decreasing total tau levels is a valid strategy for mitigating tau-related neurodegeneration and reveal Nuak1 to be a novel therapeutic entry point for tauopathies. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Neuropathologic features in the hippocampus and cerebellum of three older men with fragile X syndrome

    PubMed Central

    2011-01-01

    Background Fragile X syndrome (FXS) is the most common inherited form of intellectual disability, and is the most common single-gene disorder known to be associated with autism. Despite recent advances in functional neuroimaging and our understanding of the molecular pathogenesis, only limited neuropathologic information on FXS is available. Methods Neuropathologic examinations were performed on post-mortem brain tissue from three older men (aged 57, 64 and 78 years) who had received a clinical or genetic diagnosis of FXS. In each case, physical and cognitive features were typical of FXS, and one man was also diagnosed with autism. Guided by reports of clinical and neuroimaging abnormalities of the limbic system and cerebellum of individuals with FXS, the current analysis focused on neuropathologic features present in the hippocampus and the cerebellar vermis. Results Histologic and immunologic staining revealed abnormalities in both the hippocampus and cerebellar vermis. Focal thickening of hippocampal CA1 and irregularities in the appearance of the dentate gyrus were identified. All lobules of the cerebellar vermis and the lateral cortex of the posterior lobe of the cerebellum had decreased numbers of Purkinje cells, which were occasionally misplaced, and often lacked proper orientation. There were mild, albeit excessive, undulations of the internal granular cell layer, with patchy foliar white matter axonal and astrocytic abnormalities. Quantitative analysis documented panfoliar atrophy of both the anterior and posterior lobes of the vermis, with preferential atrophy of the posterior lobule (VI to VII) compared with age-matched normal controls. Conclusions Significant morphologic changes in the hippocampus and cerebellum in three adult men with FXS were identified. This pattern of pathologic features supports the idea that primary defects in neuronal migration, neurogenesis and aging may underlie the neuropathology reported in FXS. PMID:21303513

  12. The Microjet of AA Tau

    NASA Astrophysics Data System (ADS)

    Cox, A. W.; Hilton, G. M.; Williger, G. M.; Grady, C. A.; Woodgate, B.

    2005-12-01

    The microjet of AA Tau A.W. Cox (Atholton High School, Columbia MD), G.M. Hilton (SSAI and GSFC), G.M. Williger (JHU and U. Louisville), C.A. Grady (Eureka Scientific and GSFC) B.Woodgate (NASA's GSFC) AA Tau is a classical T Tauri star with a spatially resolved disk viewed at approximately 70 degrees from pole-on. Photo-polarimetric variability of the star has been interpreted as being caused by the stellar magnetic field being inclined at 30 degrees with respect to the stellar rotation axis, producing a warp in the inner disk. Under these conditions, any jet should be less collimated than typical of T Tauri microjets, and should show signs of the jet axis precessing around the stellar rotation axis. When compared with the microjets imaged in the HST/STIS coronagraphic imaging survey, the AA Tau jet has an opening half-angle of approximately 10-15 degrees rather than the 3-5 degrees typical of the other T Tauri stars which have been coronagraphically imaged by HST/STIS. Using the HST data with ultra-narrowband imagery and long slit spectroscopy obtained with the Goddard Fabry-Perot and the Dual Imaging Spectrograph at the Apache Point Observatory 3.5m telescope, we derive the jet inclination, knot ejection epochs, and ejection frequency. We also compare the jet opening angle with model predictions. Apache Point Observatory observations with the Goddard Fabry-Perot were made through a grant of Director's Discretionary Time. Apache Point Observatory is operated by the Astrophysical Research Consortium. The GFP was supported under NASA RTOP 51-188-01-22 to GSFC. Grady is supported under NASA contract NNH05CD30C to Eureka Scientific.

  13. Beta amyloid and hyperphosphorylated tau deposits in the pancreas in type 2 diabetes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miklossy, J.; Miller, L.; Qing, H.

    2008-08-25

    Strong epidemiologic evidence suggests an association between Alzheimer disease (AD) and type 2 diabetes. To determine if amyloid beta (A{beta}) and hyperphosphorylated tau occurs in type 2 diabetes, pancreas tissues from 21 autopsy cases (10 type 2 diabetes and 11 controls) were analyzed. APP and tau mRNAs were identified in human pancreas and in cultured insulinoma beta cells (INS-1) by RT-PCR. Prominent APP and tau bands were detected by Western blotting in pancreatic extracts. Aggregated A{beta}, hyperphosphorylated tau, ubiquitin, apolipoprotein E, apolipoprotein(a), IB1/JIP-1 and JNK1 were detected in Langerhans islets in type 2 diabetic patients. A{beta} was co-localized with amylinmore » in islet amyloid deposits. In situ beta sheet formation of islet amyloid deposits was shown by infrared microspectroscopy (SIRMS). LPS increased APP in non-neuronal cells as well. We conclude that A{beta} deposits and hyperphosphorylated tau are also associated with type 2 diabetes, highlighting common pathogenetic features in neurodegenerative disorders, including AD and type 2 diabetes and suggesting that A{beta} deposits and hyperphosphorylated tau may also occur in other organs than the brain.« less

  14. Tau Processing by Mural Cells in Traumatic Brain Injury and Alzheimer’s Disease

    DTIC Science & Technology

    2017-10-01

    Cerebrovessels were treated with recombinant human tau (5ng/ml) for 1 hour at 37oC and total tau uptake was assessed in the lysates via ELISA . We observed a...to 5ng/ml recombinant human tau (rhtau-441) for 1 hour at 37oC. Lysates were analyzed for total tau content by ELISA and normalized to total protein...and 6 months post-last injury). Brain vessels were analyzed for PDGFRβ and α-SMC-actin content by ELISA and normalized to total protein using the

  15. Neuropathological Comparison of Adult Onset and Juvenile Huntington's Disease with Cerebellar Atrophy: A Report of a Father and Son.

    PubMed

    Latimer, Caitlin S; Flanagan, Margaret E; Cimino, Patrick J; Jayadev, Suman; Davis, Marie; Hoffer, Zachary S; Montine, Thomas J; Gonzalez-Cuyar, Luis F; Bird, Thomas D; Keene, C Dirk

    2017-01-01

    Huntington's disease (HD) is an autosomal dominant neurodegenerative disease caused by a trinucleotide (CAG) repeat expansion in huntingtin (HTT) on chromosome 4. Anticipation can cause longer repeat expansions in children of HD patients. Juvenile Huntington's disease (JHD), defined as HD arising before age 20, accounts for 5-10% of HD cases, with cases arising in the first decade accounting for approximately 1%. Clinically, JHD differs from the predominately choreiform adult onset Huntington's disease (AOHD) with variable presentations, including symptoms such as myoclonus, seizures, Parkinsonism, and cognitive decline. The neuropathologic changes of AOHD are well characterized, but there are fewer reports that describe the neuropathology of JHD. Here we report a case of a six-year-old boy with paternally-inherited JHD caused by 169 CAG trinucleotide repeats who presented at age four with developmental delay, dysarthria, and seizures before dying at age 6. The boy's clinical presentation and neuropathological findings are directly compared to those of his father, who presented with AOHD and 54 repeats. A full autopsy was performed for the JHD case and a brain-only autopsy was performed for the AOHD case. Histochemically- and immunohistochemically-stained slides were prepared from formalin-fixed, paraffin-embedded tissue sections. Both cases had neuropathology corresponding to Vonsattel grade 3. The boy also had cerebellar atrophy with huntingtin-positive inclusions in the cerebellum, findings not present in the father. Autopsies of father and son provide a unique opportunity to compare and contrast the neuropathologic findings of juvenile and adult onset HD while also providing the first immunohistochemical evidence of cerebellar involvement in JHD. Additionally this is the first known report to include findings from peripheral tissue in a case of JHD.

  16. HIV, prospective memory, and cerebrospinal fluid concentrations of quinolinic acid and phosphorylated Tau.

    PubMed

    Anderson, Albert M; Croteau, David; Ellis, Ronald J; Rosario, Debra; Potter, Michael; Guillemin, Gilles J; Brew, Bruce J; Woods, Steven Paul; Letendre, Scott L

    2018-06-15

    There is mounting evidence that prospective memory (PM) is impaired during HIV infection despite treatment. In this prospective study, 66 adults (43 HIV+ and 23 HIV negative) underwent PM assessment and cerebrospinal fluid (CSF) examination. HIV+ participants had significantly lower PM but significantly higher CSF concentrations of CXCL10 and quinolinic acid (QUIN). Higher CSF phosphorylated Tau (pTau) was associated with worse PM. In a secondary analysis excluding outliers, higher QUIN correlated with higher pTau. CSF QUIN is thus elevated during HIV infection despite antiretroviral therapy and could indirectly contribute to impaired PM by influencing the formation of pTau. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Effects of Sex and Mild Intrainsult Hypothermia on Neuropathology and Neural Reorganization following Neonatal Hypoxic Ischemic Brain Injury in Rats

    PubMed Central

    Smith, Amanda L.; Rosenkrantz, Ted S.; Fitch, R. Holly

    2016-01-01

    Hypoxia ischemia (HI) is a recognized risk factor among late-preterm infants, with HI events leading to varied neuropathology and cognitive/behavioral deficits. Studies suggest a sex difference in the incidence of HI and in the severity of subsequent behavioral deficits (with better outcomes in females). Mechanisms of a female advantage remain unknown but could involve sex-specific patterns of compensation to injury. Neuroprotective hypothermia is also used to ameliorate HI damage and attenuate behavioral deficits. Though currently prescribed only for HI in term infants, cooling has potential intrainsult applications to high-risk late-preterm infants as well. To address this important clinical issue, we conducted a study using male and female rats with a postnatal (P) day 7 HI injury induced under normothermic and hypothermic conditions. The current study reports patterns of neuropathology evident in postmortem tissue. Results showed a potent benefit of intrainsult hypothermia that was comparable for both sexes. Findings also show surprisingly different patterns of compensation in the contralateral hemisphere, with increases in hippocampal thickness in HI females contrasting reduced thickness in HI males. Findings provide a framework for future research to compare and contrast mechanisms of neuroprotection and postinjury plasticity in both sexes following a late-preterm HI insult. PMID:27042359

  18. Dravet syndrome as epileptic encephalopathy: evidence from long-term course and neuropathology

    PubMed Central

    Catarino, Claudia B.; Liu, Joan Y.W.; Liagkouras, Ioannis; Gibbons, Vaneesha S.; Labrum, Robyn W.; Ellis, Rachael; Woodward, Cathy; Davis, Mary B.; Smith, Shelagh J.; Cross, J. Helen; Appleton, Richard E.; Yendle, Simone C.; McMahon, Jacinta M.; Bellows, Susannah T.; Jacques, Thomas S.; Zuberi, Sameer M.; Koepp, Matthias J.; Martinian, Lillian; Scheffer, Ingrid E.; Thom, Maria

    2011-01-01

    Dravet syndrome is an epilepsy syndrome of infantile onset, frequently caused by SCN1A mutations or deletions. Its prevalence, long-term evolution in adults and neuropathology are not well known. We identified a series of 22 adult patients, including three adult post-mortem cases with Dravet syndrome. For all patients, we reviewed the clinical history, seizure types and frequency, antiepileptic drugs, cognitive, social and functional outcome and results of investigations. A systematic neuropathology study was performed, with post-mortem material from three adult cases with Dravet syndrome, in comparison with controls and a range of relevant paediatric tissue. Twenty-two adults with Dravet syndrome, 10 female, were included, median age 39 years (range 20–66). SCN1A structural variation was found in 60% of the adult Dravet patients tested, including one post-mortem case with DNA extracted from brain tissue. Novel mutations were described for 11 adult patients; one patient had three SCN1A mutations. Features of Dravet syndrome in adulthood include multiple seizure types despite polytherapy, and age-dependent evolution in seizure semiology and electroencephalographic pattern. Fever sensitivity persisted through adulthood in 11 cases. Neurological decline occurred in adulthood with cognitive and motor deterioration. Dysphagia may develop in or after the fourth decade of life, leading to significant morbidity, or death. The correct diagnosis at an older age made an impact at several levels. Treatment changes improved seizure control even after years of drug resistance in all three cases with sufficient follow-up after drug changes were instituted; better control led to significant improvement in cognitive performance and quality of life in adulthood in two cases. There was no histopathological hallmark feature of Dravet syndrome in this series. Strikingly, there was remarkable preservation of neurons and interneurons in the neocortex and hippocampi of Dravet adult post

  19. Neuropathologic Studies of the Baltimore Longitudinal Study of Aging (BLSA)

    PubMed Central

    O’Brien, Richard J.; Resnick, Susan M.; Zonderman, Alan B.; Ferrucci, Luigi; Crain, Barbara J.; Pletnikova, Olga; Rudow, Gay; Iacono, Diego; Riudavets, Miguel A.; Driscoll, Ira; Price, Donald L.; Martin, Lee J.; Troncoso, Juan C.

    2010-01-01

    The Baltimore Longitudinal Study of Aging (BLSA) was established in 1958 and is one the oldest prospective studies of aging in the USA and the world. The BLSA is supported by the National Institute of Aging (NIA) and its mission is to learn what happens to people as they get old and how to sort out changes due to aging and from those due to disease or other causes. In 1986, an autopsy program combined with comprehensive neurologic and cognitive evaluations was established in collaboration with the Johns Hopkins University Alzheimer’s Disease Research Center (ADRC). Since then, 211 subjects have undergone autopsy. Here we review the key clinical neuropathological correlations from this autopsy series. The focus is on the morphological and biochemical changes that occur in normal aging, and the early neuropathological changes of neurodegenerative diseases, especially Alzheimer’s disease (AD). We highlight the combined clinical, pathologic, morphometric, and biochemical evidence of asymptomatic AD, a state characterized by normal clinical evaluations in subjects with abundant AD pathology. We conclude that in some individuals, successful cognitive aging results from compensatory mechanisms that occur at the neuronal level (i.e., neuronal hypertrophy and synaptic plasticity) whereas a failure of compensation may culminate in disease. PMID:19661626

  20. Brief Report: Life History and Neuropathology of a Gifted Man with Asperger Syndrome

    ERIC Educational Resources Information Center

    Weidenheim, Karen, M.; Escobar, Alfonso; Rapin, Isabelle

    2012-01-01

    Despite recent interest in the pathogenesis of the autism spectrum disorders (pervasive developmental disorders), neuropathological descriptions of brains of individuals with well documented clinical information and without potentially confounding symptomatology are exceptionally rare. Asperger syndrome differs from classic autism by lack of…

  1. Administration of thimerosal-containing vaccines to infant rhesus macaques does not result in autism-like behavior or neuropathology.

    PubMed

    Gadad, Bharathi S; Li, Wenhao; Yazdani, Umar; Grady, Stephen; Johnson, Trevor; Hammond, Jacob; Gunn, Howard; Curtis, Britni; English, Chris; Yutuc, Vernon; Ferrier, Clayton; Sackett, Gene P; Marti, C Nathan; Young, Keith; Hewitson, Laura; German, Dwight C

    2015-10-06

    Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder. Some anecdotal reports suggest that ASD is related to exposure to ethyl mercury, in the form of the vaccine preservative, thimerosal, and/or receiving the measles, mumps, rubella (MMR) vaccine. Using infant rhesus macaques receiving thimerosal-containing vaccines (TCVs) following the recommended pediatric vaccine schedules from the 1990s and 2008, we examined behavior, and neuropathology in three brain regions found to exhibit neuropathology in postmortem ASD brains. No neuronal cellular or protein changes in the cerebellum, hippocampus, or amygdala were observed in animals following the 1990s or 2008 vaccine schedules. Analysis of social behavior in juvenile animals indicated that there were no significant differences in negative behaviors between animals in the control and experimental groups. These data indicate that administration of TCVs and/or the MMR vaccine to rhesus macaques does not result in neuropathological abnormalities, or aberrant behaviors, like those observed in ASD.

  2. Administration of thimerosal-containing vaccines to infant rhesus macaques does not result in autism-like behavior or neuropathology

    PubMed Central

    Gadad, Bharathi S.; Li, Wenhao; Yazdani, Umar; Grady, Stephen; Johnson, Trevor; Hammond, Jacob; Gunn, Howard; Curtis, Britni; English, Chris; Yutuc, Vernon; Ferrier, Clayton; Sackett, Gene P.; Marti, C. Nathan; Young, Keith; Hewitson, Laura; German, Dwight C.

    2015-01-01

    Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder. Some anecdotal reports suggest that ASD is related to exposure to ethyl mercury, in the form of the vaccine preservative, thimerosal, and/or receiving the measles, mumps, rubella (MMR) vaccine. Using infant rhesus macaques receiving thimerosal-containing vaccines (TCVs) following the recommended pediatric vaccine schedules from the 1990s and 2008, we examined behavior, and neuropathology in three brain regions found to exhibit neuropathology in postmortem ASD brains. No neuronal cellular or protein changes in the cerebellum, hippocampus, or amygdala were observed in animals following the 1990s or 2008 vaccine schedules. Analysis of social behavior in juvenile animals indicated that there were no significant differences in negative behaviors between animals in the control and experimental groups. These data indicate that administration of TCVs and/or the MMR vaccine to rhesus macaques does not result in neuropathological abnormalities, or aberrant behaviors, like those observed in ASD. PMID:26417083

  3. Expression of a truncated human tau protein induces aqueous-phase free radicals in a rat model of tauopathy: implications for targeted antioxidative therapy.

    PubMed

    Cente, Martin; Filipcik, Peter; Mandakova, Stanislava; Zilka, Norbert; Krajciova, Gabriela; Novak, Michal

    2009-01-01

    Oxidative stress has been implicated in the pathogenesis of many neurodegenerative diseases including Alzheimer's disease (AD). We investigated the effect of a truncated form of the human tau protein in the neurons of transgenic rats. Using electron paramagnetic resonance we observed significantly increased accumulation of ascorbyl free radicals in brains of transgenic animals (up to 1.5-fold increase; P < 0.01). Examination of an in vitro model of cultured rat corticohippocampal neurons revealed that even relatively low level expression of human truncated tau protein (equal to 50% of endogenous tau) induced oxidative stress that resulted in increased depolarization of mitochondria (approximately 1.2-fold above control, P < 0.01) and increases in reactive oxygen species (approximately 1.3-fold above control, P < 0.001). We show that mitochondrial damage-associated oxidative stress is an early event in neurodegeneration. Furthermore, using two common antioxidants (vitamin C and E), we were able significantly eliminate tau-induced elevation of reactive oxygen species. Interestingly, vitamin C was found to be selective in the scavenging activity, suggesting that expression of truncated tau protein preferentially leads to increases in aqueous phase oxidants and free radicals such as hydrogen peroxide and hydroxyl and superoxide radicals. Our results suggest that antioxidant strategies designed to treat AD should focus on elimination of aqueous phase oxidants and free radicals.

  4. A 31-residue peptide induces aggregation of tau's microtubule-binding region in cells

    NASA Astrophysics Data System (ADS)

    Stöhr, Jan; Wu, Haifan; Nick, Mimi; Wu, Yibing; Bhate, Manasi; Condello, Carlo; Johnson, Noah; Rodgers, Jeffrey; Lemmin, Thomas; Acharya, Srabasti; Becker, Julia; Robinson, Kathleen; Kelly, Mark J. S.; Gai, Feng; Stubbs, Gerald; Prusiner, Stanley B.; Degrado, William F.

    2017-09-01

    The self-propagation of misfolded conformations of tau underlies neurodegenerative diseases, including Alzheimer's. There is considerable interest in discovering the minimal sequence and active conformational nucleus that defines this self-propagating event. The microtubule-binding region, spanning residues 244-372, reproduces much of the aggregation behaviour of tau in cells and animal models. Further dissection of the amyloid-forming region to a hexapeptide from the third microtubule-binding repeat resulted in a peptide that rapidly forms fibrils in vitro. We show that this peptide lacks the ability to seed aggregation of tau244-372 in cells. However, as the hexapeptide is gradually extended to 31 residues, the peptides aggregate more slowly and gain potent activity to induce aggregation of tau244-372 in cells. X-ray fibre diffraction, hydrogen-deuterium exchange and solid-state NMR studies map the beta-forming region to a 25-residue sequence. Thus, the nucleus for self-propagating aggregation of tau244-372 in cells is packaged in a remarkably small peptide.

  5. Acetylated tau destabilizes the cytoskeleton in the axon initial segment and is mislocalized to the somatodendritic compartment.

    PubMed

    Sohn, Peter Dongmin; Tracy, Tara E; Son, Hye-In; Zhou, Yungui; Leite, Renata E P; Miller, Bruce L; Seeley, William W; Grinberg, Lea T; Gan, Li

    2016-06-29

    Neurons are highly polarized cells in which asymmetric axonal-dendritic distribution of proteins is crucial for neuronal function. Loss of polarized distribution of the axonal protein tau is an early sign of Alzheimer's disease (AD) and other neurodegenerative disorders. The cytoskeletal network in the axon initial segment (AIS) forms a barrier between the axon and the somatodentritic compartment, contributing to axonal retention of tau. Although perturbation of the AIS cytoskeleton has been implicated in neurological disorders, the molecular triggers and functional consequence of AIS perturbation are incompletely understood. Here we report that tau acetylation and consequent destabilization of the AIS cytoskeleton promote the somatodendritic mislocalization of tau. AIS cytoskeletal proteins, including ankyrin G and βIV-spectrin, were downregulated in AD brains and negatively correlated with an increase in tau acetylated at K274 and K281. AIS proteins were also diminished in transgenic mice expressing tauK274/281Q, a tau mutant that mimics K274 and K281 acetylation. In primary neuronal cultures, the tauK274/281Q mutant caused hyperdynamic microtubules (MTs) in the AIS, shown by live-imaging of MT mobility and fluorescence recovery after photobleaching. Using photoconvertible tau constructs, we found that axonal tauK274/281Q was missorted into the somatodendritic compartment. Stabilizing MTs with epothilone D to restore the cytoskeletal barrier in the AIS prevented tau mislocalization in primary neuronal cultures. Together, these findings demonstrate that tau acetylation contributes to the pathogenesis of neurodegenerative disease by compromising the cytoskeletal sorting machinery in the AIS.

  6. Neuropathological Basis of Non-Motor Manifestations of Parkinson’s Disease

    PubMed Central

    Adler, Charles H.; Beach, Thomas G.

    2016-01-01

    Non-motor manifestations of Parkinson’s disease (PD) can begin well before motor PD begins. It is now clear, from clinical and autopsy studies, that there is significant Lewy type alpha-synucleinopathy present outside the nigro-striatal pathway, and that this may underlie these non-motor manifestations. This review will discuss neuropathological findings that may underlie non-motor symptoms that either predate motor findings or occur as the disease progresses. PMID:27030013

  7. Hyperforin attenuates aluminum-induced Aβ production and Tau phosphorylation via regulating Akt/GSK-3β signaling pathway in PC12 cells.

    PubMed

    Huang, Wanyue; Cheng, Ping; Yu, Kaiyuan; Han, Yanfei; Song, Miao; Li, Yanfei

    2017-12-01

    Aluminum (Al) is a neurotoxicant and cause β-amyloid (Aβ) peptides aggregation and tau hyperphosphorylation. Hyperforin (HF) is one of the major active constituents of the extracts of St. John's Wort (Hypericum perforatum), can treat Alzheimer's disease (AD) and other diseases involving peptide accumulation and cognition impairment. To determine the effects of HF on Al-induced Aβ formation and tau hyperphosphorylation, PC12 cells were cultured and treated with Al-malt (500μM) and/or HF (1μM). The results showed that HF treatment significantly attenuated Al-malt-induced Aβ 1-42 production by reducing the expressions of APP, BACE1 and PS1, while increasing the expressions of sAPPα, ADAM9/10/17, and tau phosphorylation in PC12 cells. In addition, HF treatment also increased phosphorylation of AKT (Ser473) and inhibited GSK-3β activity by increasing phosphorylation of GSK-3β (Ser9). These results indicated that HF may exert the protection via regulating the AKT/GSK-3β signaling to reduce Aβ production and tau phosphorylation in PC12 cells. Furthermore, these results could lead a possible therapeutics for the management of Al neurotoxicity. Copyright © 2017. Published by Elsevier Masson SAS.

  8. Analysis of spectra of V471 Tau and HD 115404

    NASA Astrophysics Data System (ADS)

    Shimansky, V. V.; Bikmaev, I. F.; Shimanskaya, N. N.

    2011-10-01

    We analyze the chemical composition of the atmospheres of a single K-type star HD 115404 and the secondary component of the V471 Tau variable. We use the technique of modeling of synthetic spectra to analyze the high-resolution spectra of these stars, taken with the RTT 150 Russian-Turkish telescope and find the abundances of 23 and 17 elements in the atmospheres of HD 115404 and V471 Tau, respectively. We demonstrate the lack of composition anomalies in the HD 115404 and show it to be consistent with the published data, inferred from equivalent widths of spectral lines. We find the abundances of 15 elements from Na to Ba to be consistent with the metallicity of the atmosphere of V471 Tau ([Fe/H] = -0.22 ± 0.12dex), which differs significantly from the average metallicity of the Hyades cluster. We show the existence of strong carbon and oxygen overabundances (by more than 1dex) due to the enrichment of the secondary by the nucleosynthesis products during the common-envelope stage of the system. On the whole, we demonstrate that V471 Tau and the other precataclysmic variables share similar composition anomalies.

  9. Proteinase-activated receptor 2 and disease biomarkers in cerebrospinal fluid in cases with autopsy-confirmed prion diseases and other neurodegenerative diseases.

    PubMed

    Rohan, Zdenek; Smetakova, Magdalena; Kukal, Jaromir; Rusina, Robert; Matej, Radoslav

    2015-03-31

    Proteinase-activated receptor 2 (PAR-2) has been shown to promote both neurotoxic and neuroprotective effects. Similarly, other routinely used nonspecific markers of neuronal damage can be found in cerebrospinal fluid (CSF) and can be used as biomarkers for different neurodegenerative disorders. Using enzyme-linked immunosorbent assays and western blotting we assessed PAR-2, total-tau, phospho-tau, beta-amyloid levels, and protein 14-3-3 in the CSF of former patients who had undergone a neuropathological autopsy after death and who had been definitively diagnosed with a prion or other neurodegenerative disease. We did not find any significant correlation between levels of PAR-2 and other biomarkers, nor did we find any differences in PAR-2 levels between prion diseases and other neurodegenerative conditions. However, we confirmed that very high total-tau levels were significantly associated with definitive prion diagnoses and exhibited greater sensitivity and specificity than protein 14-3-3, which is routinely used as a marker. Our study showed that PAR-2, in CSF, was not specifically altered in prion diseases compared to other neurodegenerative conditions. Our results also confirmed that very high total-tau protein CSF levels were significantly associated with a definitive Creutzfeldt-Jakob disease (CJD) diagnosis and should be routinely tested as a diagnostic marker. Observed individual variability in CSF biomarkers provide invaluable feedback from neuropathological examinations even in "clinically certain" cases.

  10. Blocking Effects of Human Tau on Squid Giant Synapse Transmission and Its Prevention by T-817 MA

    PubMed Central

    Moreno, Herman; Choi, Soonwook; Yu, Eunah; Brusco, Janaina; Avila, Jesus; Moreira, Jorge E.; Sugimori, Mutsuyuki; Llinás, Rodolfo R.

    2011-01-01

    Filamentous tau inclusions are hallmarks of Alzheimer's disease and related neurodegenerative tauopathies, but the molecular mechanisms involved in tau-mediated changes in neuronal function and their possible effects on synaptic transmission are unknown. We have evaluated the effects of human tau protein injected directly into the presynaptic terminal axon of the squid giant synapse, which affords functional, structural, and biochemical analysis of its action on the synaptic release process. Indeed, we have found that at physiological concentration recombinant human tau (h-tau42) becomes phosphorylated, produces a rapid synaptic transmission block, and induces the formation of clusters of aggregated synaptic vesicles in the vicinity of the active zone. Presynaptic voltage clamp recordings demonstrate that h-tau42 does not modify the presynaptic calcium current amplitude or kinetics. Analysis of synaptic noise at the post-synaptic axon following presynaptic h-tau42 microinjection revealed an initial phase of increase spontaneous transmitter release followed by a marked reduction in noise. Finally, systemic administration of T-817MA, a proposed neuro-protective agent, rescued tau-induced synaptic abnormalities. Our results show novel mechanisms of h-tau42 mediated synaptic transmission failure and identify a potential therapeutic agent to treat tau-related neurotoxicity. PMID:21629767

  11. Neuropathological findings processed by artificial neural networks (ANNs) can perfectly distinguish Alzheimer's patients from controls in the Nun Study

    PubMed Central

    Grossi, Enzo; Buscema, Massimo P; Snowdon, David; Antuono, Piero

    2007-01-01

    Background Many reports have described that there are fewer differences in AD brain neuropathologic lesions between AD patients and control subjects aged 80 years and older, as compared with the considerable differences between younger persons with AD and controls. In fact some investigators have suggested that since neurofibrillary tangles (NFT) can be identified in the brains of non-demented elderly subjects they should be considered as a consequence of the aging process. At present, there are no universally accepted neuropathological criteria which can mathematically differentiate AD from healthy brain in the oldest old. The aim of this study is to discover the hidden and non-linear associations among AD pathognomonic brain lesions and the clinical diagnosis of AD in participants in the Nun Study through Artificial Neural Networks (ANNs) analysis Methods The analyses were based on 26 clinically- and pathologically-confirmed AD cases and 36 controls who had normal cognitive function. The inputs used for the analyses were just NFT and neuritic plaques counts in neocortex and hippocampus, for which, despite substantial differences in mean lesions counts between AD cases and controls, there was a substantial overlap in the range of lesion counts. Results By taking into account the above four neuropathological features, the overall predictive capability of ANNs in sorting out AD cases from normal controls reached 100%. The corresponding accuracy obtained with Linear Discriminant Analysis was 92.30%. These results were consistently obtained in ten independent experiments. The same experiments were carried out with ANNs on a subgroup of 13 non severe AD patients and on the same 36 controls. The results obtained in terms of prediction accuracy with ANNs were exactly the same. Input relevance analysis confirmed the relative dominance of NFT in neocortex in discriminating between AD patients and controls and indicated the lesser importance played by NP in the hippocampus

  12. Microtubules (tau) as an emerging therapeutic target: NAP (davunetide).

    PubMed

    Gozes, Illana

    2011-01-01

    This review focuses on the discovery of activity-dependent neuroprotective protein (ADNP) and the ensuing discovery of NAP (davunetide) toward clinical development with emphasis on microtubule protection. ADNP immunoreactivity was shown to occasionally decorate microtubules and ADNP silencing inhibited neurite outgrowth as measured by microtubule associated protein 2 (MAP2) labeling. ADNP knockout is lethal, while 50% reduction in ADNP (ADNP haploinsufficiency) resulted in the microtubule associated protein tau pathology coupled to cognitive dysfunction and neurodegeneration. NAP (davunetide), an eight amino acid peptide derived from ADNP partly ameliorated deficits associated with ADNP deficiency. NAP (davunetide) interacted with microtubules, protected against microtubule toxicity associated with zinc, nocodazole and oxidative stress in vitro and against tau pathology and MAP6 (stable tubuleonly polypeptide - STOP) pathology in vivo. NAP (davunetide) provided neurotrophic functions promoting neurite outgrowth as measured by increases in MAP2 immunoreactivity and synapse formation by increasing synaptophysin expression. NAP (davunetide) protection against neurodegeneration has recently been shown to extend to katanin-related microtubule disruption under conditions of tau deficiencies. In conclusion, NAP (davunetide) provided potent neuroprotection in a broad range of neurodegenerative models, protecting the neuroglial cytoskeleton in vitro and inhibiting tau pathology (tauopathy) in vivo. Based on these extensive preclinical results, davunetide (NAP) is now being evaluated in a Phase II/III study of the tauopathy, progressive supranuclear palsy (PSP); (Allon Therapeutics Inc.).

  13. The hippocampal longitudinal axis-relevance for underlying tau and TDP-43 pathology.

    PubMed

    Lladó, Albert; Tort-Merino, Adrià; Sánchez-Valle, Raquel; Falgàs, Neus; Balasa, Mircea; Bosch, Beatriz; Castellví, Magda; Olives, Jaume; Antonell, Anna; Hornberger, Michael

    2018-06-01

    Recent studies suggest that hippocampus has different cortical connectivity and functionality along its longitudinal axis. We sought to elucidate the possible different pattern of atrophy in longitudinal axis of hippocampus between Amyloid/Tau pathology and TDP-43-pathies. Seventy-three presenile subjects were included: Amyloid/Tau group (33 Alzheimer's disease with confirmed cerebrospinal fluid [CSF] biomarkers), probable TDP-43 group (7 semantic variant progressive primary aphasia, 5 GRN and 2 C9orf72 mutation carriers) and 26 healthy controls. We conducted a region-of-interest voxel-based morphometry analysis on the hippocampal longitudinal axis, by contrasting the groups, covarying with CSF biomarkers (Aβ 42 , total tau, p-tau) and covarying with episodic memory scores. Amyloid/Tau pathology affected mainly posterior hippocampus while anterior left hippocampus was more atrophied in probable TDP-43-pathies. We also observed a significant correlation of posterior hippocampal atrophy with Alzheimer's disease CSF biomarkers and visual memory scores. Taken together, these data suggest that there is a potential differentiation along the hippocampal longitudinal axis based on the underlying pathology, which could be used as a potential biomarker to identify the underlying pathology in different neurodegenerative diseases. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Tauopathy induced by low level expression of a human brain-derived tau fragment in mice is rescued by phenylbutyrate.

    PubMed

    Bondulich, Marie K; Guo, Tong; Meehan, Christopher; Manion, John; Rodriguez Martin, Teresa; Mitchell, Jacqueline C; Hortobagyi, Tibor; Yankova, Natalia; Stygelbout, Virginie; Brion, Jean-Pierre; Noble, Wendy; Hanger, Diane P

    2016-08-01

    Human neurodegenerative tauopathies exhibit pathological tau aggregates in the brain along with diverse clinical features including cognitive and motor dysfunction. Post-translational modifications including phosphorylation, ubiquitination and truncation, are characteristic features of tau present in the brain in human tauopathy. We have previously reported an N-terminally truncated form of tau in human brain that is associated with the development of tauopathy and is highly phosphorylated. We have generated a new mouse model of tauopathy in which this human brain-derived, 35 kDa tau fragment (Tau35) is expressed in the absence of any mutation and under the control of the human tau promoter. Most existing mouse models of tauopathy overexpress mutant tau at levels that do not occur in human neurodegenerative disease, whereas Tau35 transgene expression is equivalent to less than 10% of that of endogenous mouse tau. Tau35 mice recapitulate key features of human tauopathies, including aggregated and abnormally phosphorylated tau, progressive cognitive and motor deficits, autophagic/lysosomal dysfunction, loss of synaptic protein, and reduced life-span. Importantly, we found that sodium 4-phenylbutyrate (Buphenyl®), a drug used to treat urea cycle disorders and currently in clinical trials for a range of neurodegenerative diseases, reverses the observed abnormalities in tau and autophagy, behavioural deficits, and loss of synapsin 1 in Tau35 mice. Our results show for the first time that, unlike other tau transgenic mouse models, minimal expression of a human disease-associated tau fragment in Tau35 mice causes a profound and progressive tauopathy and cognitive changes, which are rescued by pharmacological intervention using a clinically approved drug. These novel Tau35 mice therefore represent a highly disease-relevant animal model in which to investigate molecular mechanisms and to develop novel treatments for human tauopathies. © The Author (2016). Published by

  15. Tauopathy induced by low level expression of a human brain-derived tau fragment in mice is rescued by phenylbutyrate

    PubMed Central

    Bondulich, Marie K.; Guo, Tong; Meehan, Christopher; Manion, John; Rodriguez Martin, Teresa; Mitchell, Jacqueline C.; Hortobagyi, Tibor; Yankova, Natalia; Stygelbout, Virginie; Brion, Jean-Pierre; Noble, Wendy

    2016-01-01

    Abstract Human neurodegenerative tauopathies exhibit pathological tau aggregates in the brain along with diverse clinical features including cognitive and motor dysfunction. Post-translational modifications including phosphorylation, ubiquitination and truncation, are characteristic features of tau present in the brain in human tauopathy. We have previously reported an N-terminally truncated form of tau in human brain that is associated with the development of tauopathy and is highly phosphorylated. We have generated a new mouse model of tauopathy in which this human brain-derived, 35 kDa tau fragment (Tau35) is expressed in the absence of any mutation and under the control of the human tau promoter. Most existing mouse models of tauopathy overexpress mutant tau at levels that do not occur in human neurodegenerative disease, whereas Tau35 transgene expression is equivalent to less than 10% of that of endogenous mouse tau. Tau35 mice recapitulate key features of human tauopathies, including aggregated and abnormally phosphorylated tau, progressive cognitive and motor deficits, autophagic/lysosomal dysfunction, loss of synaptic protein, and reduced life-span. Importantly, we found that sodium 4-phenylbutyrate (Buphenyl®), a drug used to treat urea cycle disorders and currently in clinical trials for a range of neurodegenerative diseases, reverses the observed abnormalities in tau and autophagy, behavioural deficits, and loss of synapsin 1 in Tau35 mice. Our results show for the first time that, unlike other tau transgenic mouse models, minimal expression of a human disease-associated tau fragment in Tau35 mice causes a profound and progressive tauopathy and cognitive changes, which are rescued by pharmacological intervention using a clinically approved drug. These novel Tau35 mice therefore represent a highly disease-relevant animal model in which to investigate molecular mechanisms and to develop novel treatments for human tauopathies. PMID:27297240

  16. Connecting the Kontsevich-Witten and Hodge Tau-functions by the {widehat{GL(∞)}} Operators

    NASA Astrophysics Data System (ADS)

    Liu, Xiaobo; Wang, Gehao

    2016-08-01

    In this paper, we present an explicit formula that connects the Kontsevich-Witten tau-function and the Hodge tau-function by differential operators belonging to the {widehat{GL(∞)}} group. Indeed, we show that the two tau-functions can be connected using Virasoro operators. This proves a conjecture posted by Alexandrov in (From Hurwitz numbers to Kontsevich-Witten tau-function: a connection by Virasoro operators, Letters in Mathematical physics, doi: 10.1007/s11005-013-0655-0 , 2014).

  17. Tau prions from Alzheimer’s disease and chronic traumatic encephalopathy patients propagate in cultured cells

    PubMed Central

    Woerman, Amanda L.; Aoyagi, Atsushi; Patel, Smita; Kazmi, Sabeen A.; Lobach, Iryna; Grinberg, Lea T.; McKee, Ann C.; Seeley, William W.; Olson, Steven H.; Prusiner, Stanley B.

    2016-01-01

    Tau prions are thought to aggregate in the central nervous system, resulting in neurodegeneration. Among the tauopathies, Alzheimer’s disease (AD) is the most common, whereas argyrophilic grain disease (AGD), corticobasal degeneration (CBD), chronic traumatic encephalopathy (CTE), Pick’s disease (PiD), and progressive supranuclear palsy (PSP) are less prevalent. Brain extracts from deceased individuals with PiD, a neurodegenerative disorder characterized by three-repeat (3R) tau prions, were used to infect HEK293T cells expressing 3R tau fused to yellow fluorescent protein (YFP). Extracts from AGD, CBD, and PSP patient samples, which contain four-repeat (4R) tau prions, were transmitted to HEK293 cells expressing 4R tau fused to YFP. These studies demonstrated that prion propagation in HEK cells requires isoform pairing between the infecting prion and the recipient substrate. Interestingly, tau aggregates in AD and CTE, containing both 3R and 4R isoforms, were unable to robustly infect either 3R- or 4R-expressing cells. However, AD and CTE prions were able to replicate in HEK293T cells expressing both 3R and 4R tau. Unexpectedly, increasing the level of 4R isoform expression alone supported the propagation of both AD and CTE prions. These results allowed us to determine the levels of tau prions in AD and CTE brain extracts. PMID:27911827

  18. Anthraquinones inhibit tau aggregation and dissolve Alzheimer's paired helical filaments in vitro and in cells.

    PubMed

    Pickhardt, Marcus; Gazova, Zuzana; von Bergen, Martin; Khlistunova, Inna; Wang, Yipeng; Hascher, Antje; Mandelkow, Eva-Maria; Biernat, Jacek; Mandelkow, Eckhard

    2005-02-04

    The abnormal aggregation of tau protein into paired helical filaments (PHFs) is one of the hallmarks of Alzheimer's disease. Aggregation takes place in the cytoplasm and could therefore be cytotoxic for neurons. To find inhibitors of PHF aggregation we screened a library of 200,000 compounds. The hits found in the PHF inhibition assay were also tested for their ability to dissolve preformed PHFs. The results were obtained using a thioflavin S fluorescence assay for the detection and quantification of tau aggregation in solution, a tryptophan fluorescence assay using tryptophan-containing mutants of tau, and confirmed by a pelleting assay and electron microscopy of the products. Here we demonstrate the feasibility of the approach with several compounds from the family of anthraquinones, including emodin, daunorubicin, adriamycin, and others. They were able to inhibit PHF formation with IC50 values of 1-5 microm and to disassemble preformed PHFs at DC50 values of 2-4 microm. The compounds had a similar activity for PHFs made from different tau isoforms and constructs. The compounds did not interfere with the stabilization of microtubules by tau. Tau-inducible neuroblastoma cells showed the formation of tau aggregates and concomitant cytotoxicity, which could be prevented by inhibitors. Thus, small molecule inhibitors could provide a basis for the development of tools for the treatment of tau pathology in AD and other tauopathies.

  19. Liraglutide Improves Water Maze Learning and Memory Performance While Reduces Hyperphosphorylation of Tau and Neurofilaments in APP/PS1/Tau Triple Transgenic Mice.

    PubMed

    Chen, Shuyi; Sun, Jie; Zhao, Gang; Guo, Ai; Chen, Yanlin; Fu, Rongxia; Deng, Yanqiu

    2017-08-01

    The purpose of this study was to explore how liraglutide affects AD-like pathology and cognitive function in APP/PS1/Tau triple transgenic (3 × Tg) Alzheimer disease (AD) model mice. Male 3 × Tg mice and C57BL/6 J mice were treated for 8 weeks with liraglutide (300 μg/kg/day, subcutaneous injection) or saline. Levels of phosphorylated tau, neurofilaments (NFs), extracellular signal-regulated kinase (ERK), and c-Jun N-terminal kinase (JNK) in brain tissues were assessed with western blots. Fluoro-Jade-B labeling were applied to detect pathological changes. The Morris water maze (MWM) was used to assess the spatial learning and memory. Liraglutide decreased levels of hyperphosphorylated tau and NFs in 3 × Tg liraglutide-treated (Tg + LIR) mice, increased ERK phosphorylation, and decreased JNK phosphorylation. Liraglutide also decreased the number of degenerative neurons in the hippocampus and cortex of Tg + LIR mice, and shortened their escape latencies and increased their hidden platform crossings in the MWM task. Liraglutide did not significantly affect the animals' body weight (BW) or fasting blood glucose. Liraglutide can reduce hyperphosphorylation of tau and NFs and reduce neuronal degeneration, apparently through alterations in JNK and ERK signaling, which may be related to its positive effects on AD-like learning and memory impairment.

  20. A new TAO kinase inhibitor reduces tau phosphorylation at sites associated with neurodegeneration in human tauopathies.

    PubMed

    Giacomini, Caterina; Koo, Chuay-Yeng; Yankova, Natalia; Tavares, Ignatius A; Wray, Selina; Noble, Wendy; Hanger, Diane P; Morris, Jonathan D H

    2018-05-07

    In Alzheimer's disease (AD) and related tauopathies, the microtubule-associated protein tau is highly phosphorylated and aggregates to form neurofibrillary tangles that are characteristic of these neurodegenerative diseases. Our previous work has demonstrated that the thousand-and-one amino acid kinases (TAOKs) 1 and 2 phosphorylate tau on more than 40 residues in vitro. Here we show that TAOKs are phosphorylated and active in AD brain sections displaying mild (Braak stage II), intermediate (Braak stage IV) and advanced (Braak stage VI) tau pathology and that active TAOKs co-localise with both pre-tangle and tangle structures. TAOK activity is also enriched in pathological tau containing sarkosyl-insoluble extracts prepared from AD brain. Two new phosphorylated tau residues (T123 and T427) were identified in AD brain, which appear to be targeted specifically by TAOKs. A new small molecule TAOK inhibitor (Compound 43) reduced tau phosphorylation on T123 and T427 and also on additional pathological sites (S262/S356 and S202/T205/S208) in vitro and in cell models. The TAOK inhibitor also decreased tau phosphorylation in differentiated primary cortical neurons without affecting markers of synapse and neuron health. Notably, TAOK activity also co-localised with tangles in post-mortem frontotemporal lobar degeneration (FTLD) brain tissue. Furthermore, the TAOK inhibitor decreased tau phosphorylation in induced pluripotent stem cell derived neurons from FTLD patients, as well as cortical neurons from a transgenic mouse model of tauopathy (Tau35 mice). Our results demonstrate that abnormal TAOK activity is present at pre-tangles and tangles in tauopathies and that TAOK inhibition effectively decreases tau phosphorylation on pathological sites. Thus, TAOKs may represent a novel target to reduce or prevent tau-associated neurodegeneration in tauopathies.

  1. Measurement of the {ital {tau}} Neutrino Helicity and Michel Parameters in Polarized {ital e}{sup +}{ital e}{sup -} Collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steiner, R.; Benvenuti, A.C.; Coller, J.A.

    1997-06-01

    We present a new measurement of the {tau} neutrino helicity h{sub {nu}{sub {tau}}} and the {tau} Michel parameters {rho} , {eta} , {xi} , and the product {delta}{xi} . The analysis exploits the highly polarized SLC electron beam to extract these quantities directly from a measurement of the {tau} decay spectra, using the 1993{endash}1995 SLD data sample of 4328 e{sup +}e{sup -}{r_arrow}Z{sup 0}{r_arrow}{tau}{sup +}{tau}{sup -} events. From the decays {tau}{r_arrow}{pi}{nu}{sub {tau}} and {tau}{r_arrow}{rho}{nu}{sub {tau}} we obtain a combined value h{sub {nu}{sub {tau}}}=-0.93{plus_minus}0.10{plus_minus} 0.04 . The leptonic decay channels yield combined values of {rho}=0.72{plus_minus}0.09{plus_minus}0.03 , {xi}=1.05{plus_minus}0.35{plus_minus}0.04 , and {delta}{xi}=0.88{plus_minus}0.27{plus_minus}0.04 . {copyright}more » {ital 1997} {ital The American Physical Society}« less

  2. Nrf2 reduces levels of phosphorylated tau protein by inducing autophagy adaptor protein NDP52

    NASA Astrophysics Data System (ADS)

    Jo, Chulman; Gundemir, Soner; Pritchard, Susanne; Jin, Youngnam N.; Rahman, Irfan; Johnson, Gail V. W.

    2014-03-01

    Nuclear factor erythroid 2-related factor 2 (Nrf2) is a pivotal transcription factor in the defence against oxidative stress. Here we provide evidence that activation of the Nrf2 pathway reduces the levels of phosphorylated tau by induction of an autophagy adaptor protein NDP52 (also known as CALCOCO2) in neurons. The expression of NDP52, which we show has three antioxidant response elements (AREs) in its promoter region, is strongly induced by Nrf2, and its overexpression facilitates clearance of phosphorylated tau in the presence of an autophagy stimulator. In Nrf2-knockout mice, phosphorylated and sarkosyl-insoluble tau accumulates in the brains concurrent with decreased levels of NDP52. Moreover, NDP52 associates with phosphorylated tau from brain cortical samples of Alzheimer disease cases, and the amount of phosphorylated tau in sarkosyl-insoluble fractions is inversely proportional to that of NDP52. These results suggest that NDP52 plays a key role in autophagy-mediated degradation of phosphorylated tau in vivo.

  3. Tau pathology does not affect experience-driven single-neuron and network-wide Arc/Arg3.1 responses.

    PubMed

    Rudinskiy, Nikita; Hawkes, Jonathan M; Wegmann, Susanne; Kuchibhotla, Kishore V; Muzikansky, Alona; Betensky, Rebecca A; Spires-Jones, Tara L; Hyman, Bradley T

    2014-06-10

    Intraneuronal neurofibrillary tangles (NFTs) - a characteristic pathological feature of Alzheimer's and several other neurodegenerative diseases - are considered a major target for drug development. Tangle load correlates well with the severity of cognitive symptoms and mouse models of tauopathy are behaviorally impaired. However, there is little evidence that NFTs directly impact physiological properties of host neurons. Here we used a transgenic mouse model of tauopathy to study how advanced tau pathology in different brain regions affects activity-driven expression of immediate-early gene Arc required for experience-dependent consolidation of long-term memories. We demonstrate in vivo that visual cortex neurons with tangles are as likely to express comparable amounts of Arc in response to structured visual stimulation as their neighbors without tangles. Probability of experience-dependent Arc response was not affected by tau tangles in both visual cortex and hippocampal pyramidal neurons as determined postmortem. Moreover, whole brain analysis showed that network-wide activity-driven Arc expression was not affected by tau pathology in any of the brain regions, including brain areas with the highest tangle load. Our findings suggest that intraneuronal NFTs do not affect signaling cascades leading to experience-dependent gene expression required for long-term synaptic plasticity.

  4. Clinical and neuropathological features of ALS/FTD with TIA1 mutations.

    PubMed

    Hirsch-Reinshagen, Veronica; Pottier, Cyril; Nicholson, Alexandra M; Baker, Matt; Hsiung, Ging-Yuek R; Krieger, Charles; Sengdy, Pheth; Boylan, Kevin B; Dickson, Dennis W; Mesulam, Marsel; Weintraub, Sandra; Bigio, Eileen; Zinman, Lorne; Keith, Julia; Rogaeva, Ekaterina; Zivkovic, Sasha A; Lacomis, David; Taylor, J Paul; Rademakers, Rosa; Mackenzie, Ian R A

    2017-12-07

    Mutations in the stress granule protein T-cell restricted intracellular antigen 1 (TIA1) were recently shown to cause amyotrophic lateral sclerosis (ALS) with or without frontotemporal dementia (FTD). Here, we provide detailed clinical and neuropathological descriptions of nine cases with TIA1 mutations, together with comparisons to sporadic ALS (sALS) and ALS due to repeat expansions in C9orf72 (C9orf72+). All nine patients with confirmed mutations in TIA1 were female. The clinical phenotype was heterogeneous with a range in the age at onset from late twenties to the eighth decade (mean = 60 years) and disease duration from one to 6 years (mean = 3 years). Initial presentation was either focal weakness or language impairment. All affected individuals received a final diagnosis of ALS with or without FTD. No psychosis or parkinsonism was described. Neuropathological examination on five patients found typical features of ALS and frontotemporal lobar degeneration (FTLD-TDP, type B) with anatomically widespread TDP-43 proteinopathy. In contrast to C9orf72+ cases, caudate atrophy and hippocampal sclerosis were not prominent. Detailed evaluation of the pyramidal motor system found a similar degree of neurodegeneration and TDP-43 pathology as in sALS and C9orf72+ cases; however, cases with TIA1 mutations had increased numbers of lower motor neurons containing round eosinophilic and Lewy body-like inclusions on HE stain and round compact cytoplasmic inclusions with TDP-43 immunohistochemistry. Immunohistochemistry and immunofluorescence failed to demonstrate any labeling of inclusions with antibodies against TIA1. In summary, our TIA1 mutation carriers developed ALS with or without FTD, with a wide range in age at onset, but without other neurological or psychiatric features. The neuropathology was characterized by widespread TDP-43 pathology, but a more restricted pattern of neurodegeneration than C9orf72+ cases. Increased numbers of round eosinophilic and Lewy

  5. Enhanced tau neutrino appearance through invisible decay

    NASA Astrophysics Data System (ADS)

    Pagliaroli, Giulia; Di Marco, Natalia; Mannarelli, Massimo

    2016-06-01

    The decay of neutrino mass eigenstates leads to a change of the conversion and survival probability of neutrino flavor eigenstates. Exploiting the recent results released by the long-baseline OPERA experiment we perform the statistical investigation of the neutrino invisible decay hypothesis in the νμ→ντ appearance channel. We find that the neutrino decay provides an enhancement of the expected tau appearance signal with respect to the standard oscillation scenario for the long-baseline OPERA experiment. The increase of the νμ→ντ conversion probability by the decay of one of the mass eigenstates is due to a reduction of the "destructive interference" among the different massive neutrino components. Despite data showing a very mild preference for invisible decays with respect to the oscillations only hypothesis, we provide an upper limit for the neutrino decay lifetime in this channel of τ3/m3≳1.3 ×10-13 s /eV at the 90% confidence level.

  6. RNA Interference Silencing of Glycogen Synthase Kinase 3β Inhibites Tau Phosphorylation in Mice with Alzheimer Disease.

    PubMed

    Bian, Hong; Bian, Wei; Lin, Xiaoying; Ma, Zhaoyin; Chen, Wen; Pu, Ying

    2016-09-01

    To explore the effect of glycogen synthase kinase 3β (GSK-3β) silencing on Tau-5 phosphorylation in mice suffering Alzheimer disease (AD). GSK-3β was firstly silenced in human neuroblastoma SH-SY5Y cells using special lentivirus (LV) and the content of Tau (A-12), p-Tau (Ser396) and p-Tau (PHF-6) proteins. GSK-3β was also silenced in APP/PS1 mouse model of AD mice, which were divided into three groups (n = 10): AD, vehicle, and LV group. Ten C57 mice were used as control. The memory ability of mice was tested by square water maze, and the morphological changes of hippocampus and neuron death were analyzed by haematoxylin-eosin staining. Moreover, the levels of Tau and phosphorylated Tau (p-Tau) were detected by western blotting and immunohistochemistry, respectively. The lentivirus-mediated GSK-3β silencing system was successfully developed and silencing GSK-3β at the cellular level reduced Tau phosphorylation obviously. Moreover, GSK-3β silence significantly improved the memory ability of AD mice in LV group compared with AD group (P < 0.05) according to the latency periods and error numbers. As for the hippocampus morphology and neuron death, no significant change was observed between LV group and normal control. Immunohistochemical detection and western blotting revealed that the levels of Tau and p-Tau were significantly down-regulated after GSK-3β silence. Silencing GSK-3β may have a positive effect on inhibiting the pathologic progression of AD through down-regulating the level of p-Tau.

  7. Analysis of the Central X-ray Source in DG Tau

    NASA Astrophysics Data System (ADS)

    Schneider, P. Christian; Schmitt, Jürgen H. M. M.

    As a stellar X-ray source DG Tau shows two rather unusual features: A resolved X-ray jet [2] and an X-ray spectrum best described by two thermal components with different absorbing column densities, a so called "two-absorber X-ray (TAX)" morphology [1, 2]. In an effort to understand the properties of the central X-ray source in DG Tau a detailed position analysis was carried out.

  8. Computational Study of Pseudo-Phosphorylation and Phosphorylation of the Microtubule Associated Protein Tau

    NASA Astrophysics Data System (ADS)

    Prokopovich, Dmitriy; Larini, Luca

    This study focuses on the effect of pseudo-phosphorylation on the aggregation of protein tau, which is very often found interacting with microtubules in the neuron. Within the axon of the neuron, tau governs the assembly of microtubules that make up the cytoskeleton. This is important for stabilization of and transport across the microtubules. One of the indications of the Alzheimer's disease is the hyper-phosphorylation and aggregation of protein tau into neurofibrillary tangles that destroy the neurons. But even experts in the field do not know if hyper-phosphorylation directly causes the aggregation of tau. In some experiments, pseudo-phosphorylation mimics the effects of phosphorylation. It does so by mutating certain residues of the protein chain into charged residues. In this computational study, we will employ a fragment of tau called PHF43. This fragment belongs to the microtubule binding region and papers published by others have indicated that it readily aggregates. Replica exchange molecular dynamics simulations were performed on the pseudo-phosphorylated, phosphorylated, and dimerized PHF43. The program used to simulate and analyze PHF43 was AMBER14.

  9. Real-Time Tau Protein Detection by Sandwich-Based Piezoelectric Biosensing: Exploring Tubulin as a Mass Enhancer.

    PubMed

    Li, Dujuan; Scarano, Simona; Lisi, Samuele; Palladino, Pasquale; Minunni, Maria

    2018-03-22

    Human tau protein is one of the most advanced and accepted biomarkers for AD and tauopathies diagnosis in general. In this work, a quartz crystal balance (QCM) immunosensor was developed for the detection of human tau protein in buffer and artificial cerebrospinal fluid (aCSF), through both direct and sandwich assays. Starting from a conventional immuno-based sandwich strategy, two monoclonal antibodies recognizing different epitopes of tau protein were used, achieving a detection limit for the direct assay in nanomolar range both in HBES-EP and aCSF. Afterward, for exploring alternative specific receptors as secondary recognition elements for tau protein biosensing, we tested tubulin and compared its behavior to a conventional secondary antibody in the sandwich assay. Tau-tubulin binding has shown an extended working range coupled to a signal improvement in comparison with the conventional secondary antibody-based approach, showing a dose-response trend at lower tau concentration than is usually investigated and closer to the physiological levels in the reference matrix for protein tau biomarker. Our results open up new and encouraging perspectives for the use of tubulin as an alternative receptor for tau protein with interesting features due to the possibility of taking advantage of its polymerization and reversible binding to this key hallmark of Alzheimer's disease.

  10. The Neuropathology of Autism

    PubMed Central

    Blatt, Gene J.

    2012-01-01

    Autism is a behaviorally defined neurodevelopmental disorder that affects over 1% of new births in the United States and about 2% of boys. The etiologies are unknown and they are genetically complex. There may be epigenetic effects, environmental influences, and other factors that contribute to the mechanisms and affected neural pathway(s). The underlying neuropathology of the disorder has been evolving in the literature to include specific brain areas in the cerebellum, limbic system, and cortex. Part(s) of structures appear to be affected most rather than the entire structure, for example, select nuclei of the amygdala, the fusiform face area, and so forth. Altered cortical organization characterized by more frequent and narrower minicolumns and early overgrowth of the frontal portion of the brain, affects connectivity. Abnormalities include cytoarchitectonic laminar differences, excess white matter neurons, decreased numbers of GABAergic cerebellar Purkinje cells, and other events that can be traced developmentally and cause anomalies in circuitry. Problems with neurotransmission are evident by recent receptor and binding site studies especially in the inhibitory GABA system likely contributing to an imbalance of excitatory/inhibitory transmission. As postmortem findings are related to core behavior symptoms, and technology improves, researchers are gaining a much better perspective of contributing factors to the disorder. PMID:24278731

  11. Electron, Muon, and Tau Heavy Lepton--Are These the Truly Elementary Particles?

    ERIC Educational Resources Information Center

    Perl, Martin L.

    1980-01-01

    Discussed is the present concept of the ultimate nature of matter--the elementary particle. An explanation is given for why the lepton family of particles--the electron, muon, and tau--may be truly elementary. The tau lepton is described in more detail. (Author/DS)

  12. Biology, taxonomy, and IPM strategies of Bactrocera tau Walker and complex species (Diptera; Tephritidae) in Asia: a comprehensive review.

    PubMed

    Jaleel, Waqar; Lu, Lihua; He, Yurong

    2018-06-02

    Bactrocera flies are the serious pests of fruit, vegetables, and nuts over the world. Bactrocera tau Walker is an economically important pest of agricultural crops. In Asia, approximately 30-40% losses of agricultural products are caused by B. tau infestation every year. In Asia, the B. tau contains a complex of sibling species that called the tau complex. However, the basic studies of B. tau and complex species are very important for integrated management. A comprehensive review of the B. tau and complex species has not been provided elsewhere. So, considering the importance of B. tau and complex species, this study provides the published information on ecology, nomenclature, identification tools, geographical distribution, potential invasion, and IPM tactics of B. tau and complex species, which would be more informative for publication facilitating related to integrated pest management (IPM) strategies of B. tau and complex species. In IPM of B. tau and complex species, the phytochemical and biological controls have not been applied successfully in Asia; there is an urgent need to study and applications of these two mentioned control techniques against the B. tau and complex species in Asia.

  13. Search for a singly produced third-generation scalar leptoquark decaying to a $$\\tau$$ lepton and a bottom quark in proton-proton collisions at $$\\sqrt{s} =$$ 13 TeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sirunyan, Albert M; et al.

    A search is presented for a singly produced third-generation scalar leptoquark decaying to amore » $$\\tau$$ lepton and a bottom quark. Associated production of a leptoquark and a $$\\tau$$ lepton is considered, leading to a final state with a bottom quark and two $$\\tau$$ leptons. The search uses proton-proton collision data at a center-of-mass energy of 13 TeV recorded with the CMS detector, corresponding to an integrated luminosity of 35.9 fb$$^{-1}$$. Upper limits are set at 95% confidence level on the production cross section of the third-generation scalar leptoquarks as a function of their mass. From a comparison of the results with the theoretical predictions, a third-generation scalar leptoquark decaying to a $$\\tau$$ lepton and a bottom quark, assuming unit Yukawa coupling ($$\\lambda$$), is excluded for masses below 740 GeV. Limits are also set on $$\\lambda$$ of the hypothesized leptoquark as a function of its mass. Above $$\\lambda =$$ 1.4, this result provides the best upper limit on the mass of a third-generation scalar leptoquark decaying to a $$\\tau$$ lepton and a bottom quark.« less

  14. Evaluation of an imputed pitch velocity model of the auditory tau effect.

    PubMed

    Henry, Molly J; McAuley, J Devin; Zaleha, Marta

    2009-08-01

    This article extends an imputed pitch velocity model of the auditory kappa effect proposed by Henry and McAuley (2009a) to the auditory tau effect. Two experiments were conducted using an AXB design in which listeners judged the relative pitch of a middle target tone (X) in ascending and descending three-tone sequences. In Experiment 1, sequences were isochronous, establishing constant fast, medium, and slow velocity conditions. No systematic distortions in perceived target pitch were observed, and thresholds were similar across velocity conditions. Experiment 2 introduced to-be-ignored variations in target timing. Variations in target timing that deviated from constant velocity conditions introduced systematic distortions in perceived target pitch, indicative of a robust auditory tau effect. Consistent with an auditory motion hypothesis, the magnitude of the tau effect was larger at faster velocities. In addition, the tau effect was generally stronger for descending sequences than for ascending sequences. Combined with previous work on the auditory kappa effect, the imputed velocity model and associated auditory motion hypothesis provide a unified quantitative account of both auditory tau and kappa effects. In broader terms, these findings add support to the view that pitch and time relations in auditory patterns are fundamentally interdependent.

  15. Cinnamon extract inhibits tau aggregation associated with Alzheimer’s Disease in vitro

    USDA-ARS?s Scientific Manuscript database

    An aqueous extract of Ceylon cinnamon (C. zeylanicum) was found to inhibit tau aggregation and filament formation, hallmarks of Alzheimer’s disease (AD) in vitro using brain cells taken from patients who died with AD. The extract also promoted complete disassembly of recombinant tau filaments, and ...

  16. Tau and spectraplakins promote synapse formation and maintenance through Jun kinase and neuronal trafficking

    PubMed Central

    Voelzmann, Andre; Okenve-Ramos, Pilar; Qu, Yue; Chojnowska-Monga, Monika; del Caño-Espinel, Manuela; Prokop, Andreas; Sanchez-Soriano, Natalia

    2016-01-01

    The mechanisms regulating synapse numbers during development and ageing are essential for normal brain function and closely linked to brain disorders including dementias. Using Drosophila, we demonstrate roles of the microtubule-associated protein Tau in regulating synapse numbers, thus unravelling an important cellular requirement of normal Tau. In this context, we find that Tau displays a strong functional overlap with microtubule-binding spectraplakins, establishing new links between two different neurodegenerative factors. Tau and the spectraplakin Short Stop act upstream of a three-step regulatory cascade ensuring adequate delivery of synaptic proteins. This cascade involves microtubule stability as the initial trigger, JNK signalling as the central mediator, and kinesin-3 mediated axonal transport as the key effector. This cascade acts during development (synapse formation) and ageing (synapse maintenance) alike. Therefore, our findings suggest novel explanations for intellectual disability in Tau deficient individuals, as well as early synapse loss in dementias including Alzheimer’s disease. DOI: http://dx.doi.org/10.7554/eLife.14694.001 PMID:27501441

  17. Functional genomic screen and network analysis reveal novel modifiers of tauopathy dissociated from tau phosphorylation

    PubMed Central

    Ambegaokar, Surendra S.; Jackson, George R.

    2011-01-01

    A functional genetic screen using loss-of-function and gain-of-function alleles was performed to identify modifiers of tau-induced neurotoxicity using the 2N/4R (full-length) isoform of wild-type human tau expressed in the fly retina. We previously reported eye pigment mutations, which create dysfunctional lysosomes, as potent modifiers; here, we report 37 additional genes identified from ∼1900 genes screened, including the kinases shaggy/GSK-3beta, par-1/MARK, CamKI and Mekk1. Tau acts synergistically with Mekk1 and p38 to down-regulate extracellular regulated kinase activity, with a corresponding decrease in AT8 immunoreactivity (pS202/T205), suggesting that tau can participate in signaling pathways to regulate its own kinases. Modifiers showed poor correlation with tau phosphorylation (using the AT8, 12E8 and AT270 epitopes); moreover, tested suppressors of wild-type tau were equally effective in suppressing toxicity of a phosphorylation-resistant S11A tau construct, demonstrating that changes in tau phosphorylation state are not required to suppress or enhance its toxicity. Genes related to autophagy, the cell cycle, RNA-associated proteins and chromatin-binding proteins constitute a large percentage of identified modifiers. Other functional categories identified include mitochondrial proteins, lipid trafficking, Golgi proteins, kinesins and dynein and the Hsp70/Hsp90-organizing protein (Hop). Network analysis uncovered several other genes highly associated with the functional modifiers, including genes related to the PI3K, Notch, BMP/TGF-β and Hedgehog pathways, and nuclear trafficking. Activity of GSK-3β is strongly upregulated due to TDP-43 expression, and reduced GSK-3β dosage is also a common suppressor of Aβ42 and TDP-43 toxicity. These findings suggest therapeutic targets other than mitigation of tau phosphorylation. PMID:21949350

  18. Evaluation of prognostic and predictive value of microtubule associated protein tau in two independent cohorts.

    PubMed

    Baquero, Maria T; Lostritto, Karen; Gustavson, Mark D; Bassi, Kimberly A; Appia, Franck; Camp, Robert L; Molinaro, Annette M; Harris, Lyndsay N; Rimm, David L

    2011-11-02

    Microtubule associated proteins (MAPs) endogenously regulate microtubule stabilization and have been reported as prognostic and predictive markers for taxane response. The microtubule stabilizer, MAP-tau, has shown conflicting results. We quantitatively assessed MAP-tau expression in two independent breast cancer cohorts to determine prognostic and predictive value of this biomarker. MAP-tau expression was evaluated in the retrospective Yale University breast cancer cohort (n = 651) using tissue microarrays and also in the TAX 307 cohort, a clinical trial randomized for TAC versus FAC chemotherapy (n = 140), using conventional whole tissue sections. Expression was measured using the AQUA method for quantitative immunofluorescence. Scores were correlated with clinicopathologic variables, survival, and response to therapy. Assessment of the Yale cohort using Cox univariate analysis indicated an improved overall survival (OS) in tumors with a positive correlation between high MAP-tau expression and overall survival (OS) (HR = 0.691, 95% CI = 0.489-0.974; P = 0.004). Kaplan Meier analysis showed 10-year survival for 65% of patients with high MAP-tau expression compared to 52% with low expression (P = .006). In TAX 307, high expression was associated with significantly longer median time to tumor progression (TTP) regardless of treatment arm (33.0 versus 23.4 months, P = 0.010) with mean TTP of 31.2 months. Response rates did not differ by MAP-tau expression (P = 0.518) or by treatment arm (P = 0.584). Quantitative measurement of MAP-tau expression has prognostic value in both cohorts, with high expression associated with longer TTP and OS. Differences by treatment arm or response rate in low versus high MAP-tau groups were not observed, indicating that MAP-tau is not associated with response to taxanes and is not a useful predictive marker for taxane-based chemotherapy.

  19. Rational Design of in Vivo Tau Tangle-Selective Near-Infrared Fluorophores: Expanding the BODIPY Universe.

    PubMed

    Verwilst, Peter; Kim, Hye-Ri; Seo, Jinho; Sohn, Nak-Won; Cha, Seung-Yun; Kim, Yeongmin; Maeng, Sungho; Shin, Jung-Won; Kwak, Jong Hwan; Kang, Chulhun; Kim, Jong Seung

    2017-09-27

    The elucidation of the cause of Alzheimer's disease remains one of the greatest questions in neurodegenerative research. The lack of highly reliable low-cost sensors to study the structural changes in key proteins during the progression of the disease is a contributing factor to this lack of insight. In the current work, we describe the rational design and synthesis of two fluorescent BODIPY-based probes, named Tau 1 and Tau 2. The probes were evaluated on the molecular surface formed by a fibril of the PHF6 ( 306 VQIVYK 311 ) tau fragment using molecular docking studies to provide a potential molecular model to rationalize the selectivity of the new probes as compared to a homologous Aβ-selective probe. The probes were synthesized in a few steps from commercially available starting products and could thus prove to be highly cost-effective. We demonstrated the excellent photophysical properties of the dyes, such as a large Stokes shift and emission in the near-infrared window of the electromagnetic spectrum. The probes demonstrated a high selectivity for self-assembled microtubule-associated protein tau (Tau protein), in both solution and cell-based experiments. Moreover, the administration to an acute murine model of tauopathy clearly revealed the staining of self-assembled hyperphosphorylated tau protein in pathologically relevant hippocampal brain regions. Tau 1 demonstrated efficient blood-brain barrier penetrability and demonstrated a clear selectivity for tau tangles over Aβ plaques, as well as the capacity for in vivo imaging in a transgenic mouse model. The current work could open up avenues for the cost-effective monitoring of the tau protein aggregation state in animal models as well as tissue staining. Furthermore, these fluorophores could serve as the basis for the development of clinically relevant sensors, for example based on PET imaging.

  20. Evaluation of prognostic and predictive value of microtubule associated protein tau in two independent cohorts

    PubMed Central

    2011-01-01

    Introduction Microtubule associated proteins (MAPs) endogenously regulate microtubule stabilization and have been reported as prognostic and predictive markers for taxane response. The microtubule stabilizer, MAP-tau, has shown conflicting results. We quantitatively assessed MAP-tau expression in two independent breast cancer cohorts to determine prognostic and predictive value of this biomarker. Methods MAP-tau expression was evaluated in the retrospective Yale University breast cancer cohort (n = 651) using tissue microarrays and also in the TAX 307 cohort, a clinical trial randomized for TAC versus FAC chemotherapy (n = 140), using conventional whole tissue sections. Expression was measured using the AQUA method for quantitative immunofluorescence. Scores were correlated with clinicopathologic variables, survival, and response to therapy. Results Assessment of the Yale cohort using Cox univariate analysis indicated an improved overall survival (OS) in tumors with a positive correlation between high MAP-tau expression and overall survival (OS) (HR = 0.691, 95% CI = 0.489-0.974; P = 0.004). Kaplan Meier analysis showed 10-year survival for 65% of patients with high MAP-tau expression compared to 52% with low expression (P = .006). In TAX 307, high expression was associated with significantly longer median time to tumor progression (TTP) regardless of treatment arm (33.0 versus 23.4 months, P = 0.010) with mean TTP of 31.2 months. Response rates did not differ by MAP-tau expression (P = 0.518) or by treatment arm (P = 0.584). Conclusions Quantitative measurement of MAP-tau expression has prognostic value in both cohorts, with high expression associated with longer TTP and OS. Differences by treatment arm or response rate in low versus high MAP-tau groups were not observed, indicating that MAP-tau is not associated with response to taxanes and is not a useful predictive marker for taxane-based chemotherapy. PMID:21888627