Sample records for tau protein phosphorylation

  1. Computational Study of Pseudo-Phosphorylation and Phosphorylation of the Microtubule Associated Protein Tau

    NASA Astrophysics Data System (ADS)

    Prokopovich, Dmitriy; Larini, Luca

    This study focuses on the effect of pseudo-phosphorylation on the aggregation of protein tau, which is very often found interacting with microtubules in the neuron. Within the axon of the neuron, tau governs the assembly of microtubules that make up the cytoskeleton. This is important for stabilization of and transport across the microtubules. One of the indications of the Alzheimer's disease is the hyper-phosphorylation and aggregation of protein tau into neurofibrillary tangles that destroy the neurons. But even experts in the field do not know if hyper-phosphorylation directly causes the aggregation of tau. In some experiments, pseudo-phosphorylation mimics the effects of phosphorylation. It does so by mutating certain residues of the protein chain into charged residues. In this computational study, we will employ a fragment of tau called PHF43. This fragment belongs to the microtubule binding region and papers published by others have indicated that it readily aggregates. Replica exchange molecular dynamics simulations were performed on the pseudo-phosphorylated, phosphorylated, and dimerized PHF43. The program used to simulate and analyze PHF43 was AMBER14.

  2. Computational Study of Pseudo-phosphorylation of the Microtubule associated Protein Tau

    NASA Astrophysics Data System (ADS)

    Prokopovich, Dmitriy; Larini, Luca

    This computational study focuses on the effect of pseudo-phosphorylation on the aggregation of the microtubule associated protein tau. In the axon of the neuron, tau regulates the assembly of microtubules in the cytoskeleton. This is important for both stabilization of and transport across the microtubules. One of the hallmarks of the Alzheimer's disease is that tau is hyper-phosphorylated and aggregates into neurofibrillary tangles that lay waste to the neurons. It is not known if hyper-phosphorylation directly causes the aggregation of tau into tangles. Experimentally, pseudo-phosphorylation mimics the effects of phosphorylation by mutating certain residues of the protein chain into charged residues. In this study, we will consider the fragment called PHF43 that belongs to the microtubule binding region and has been shown to readily aggregate.

  3. Effects of antibodies to phosphorylated and non-phosphorylated tau on in vitro tau phosphorylation at Serine-199: Preliminary report.

    PubMed

    Loeffler, David A; Smith, Lynnae M; Klaver, Andrea C; Martić, Sanela

    2015-07-01

    Phosphorylation of multiple amino acids on tau protein ("hyperphosphorylation") is required for the development of tau pathology in Alzheimer's disease. Administration of anti-tau antibodies to transgenic "tauopathy mice" has been shown to reduce their tau pathology but the mechanisms responsible are unclear. To examine the effects of anti-tau antibodies on tau phosphorylation, we used western blots to study the effects of three antibodies to phosphorylated tau (pTau), namely anti-pTau S199, T231, and S396, and three antibodies to non-phosphorylated tau on in vitro phosphorylation of recombinant human tau-441 at S199. Inclusion of an anti-pTau T231 antibody in the phosphorylation reaction reduced the intensity of monomeric pTau S199 in western blots of denaturing gels, but the other antibodies had no apparent effects on this process. Surprisingly, including all three anti-phospho-tau antibodies in the reaction did not reduce the intensity of the monomer band, possibly due to steric hindrance between the antibodies. These preliminary findings suggest that anti-tau antibodies may have minimal direct effects on tau phosphorylation. Limitations of using western blots to examine the effects of anti-tau antibodies on this process were found to include between-experiment variability in pTau band densities and poor resolution of high molecular weight pTau oligomers. The presence of bands representing immunoglobulins as well as pTau may also complicate interpretation of the western blots. Further studies are indicated to examine the effects of anti-pTau antibodies on phosphorylation of other tau amino acids in addition to S199. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Nrf2 reduces levels of phosphorylated tau protein by inducing autophagy adaptor protein NDP52

    NASA Astrophysics Data System (ADS)

    Jo, Chulman; Gundemir, Soner; Pritchard, Susanne; Jin, Youngnam N.; Rahman, Irfan; Johnson, Gail V. W.

    2014-03-01

    Nuclear factor erythroid 2-related factor 2 (Nrf2) is a pivotal transcription factor in the defence against oxidative stress. Here we provide evidence that activation of the Nrf2 pathway reduces the levels of phosphorylated tau by induction of an autophagy adaptor protein NDP52 (also known as CALCOCO2) in neurons. The expression of NDP52, which we show has three antioxidant response elements (AREs) in its promoter region, is strongly induced by Nrf2, and its overexpression facilitates clearance of phosphorylated tau in the presence of an autophagy stimulator. In Nrf2-knockout mice, phosphorylated and sarkosyl-insoluble tau accumulates in the brains concurrent with decreased levels of NDP52. Moreover, NDP52 associates with phosphorylated tau from brain cortical samples of Alzheimer disease cases, and the amount of phosphorylated tau in sarkosyl-insoluble fractions is inversely proportional to that of NDP52. These results suggest that NDP52 plays a key role in autophagy-mediated degradation of phosphorylated tau in vivo.

  5. Altered phosphorylation of. tau. protein in heat-shocked rats and patients with Alzheimer disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Papasozomenos, S.C.; Yuan Su

    1991-05-15

    Six hours after heat shocking 2- to 3-month-old male and female Sprague-Dawley rats at 42C for 15 min, the authors analyzed {tau} protein immunoreactivity in SDS extracts of cerebrums and peripheral nerves by using immunoblot analysis and immunohistochemistry with the anti-{tau} monoclonal antibody Tau-1, which recognizes a phosphate-dependent nonphosphorylated epitope, and with {sup 125}I-labeled protein A. In the cerebal extracts, the authors found altered phosphorylation of {tau} in heat-shocked females, characterized by a marked reduction in the amount of nonphosphorylated {tau}, a doubling of the ratio of total (phosphorylated plus nonphosphorylated) {tau} to nonphosphorylated {tau}, and the appearance of themore » slowest moving phosphorylated {tau} polypeptide (68 kDa). Similar, but milder, changes were observed in male rats. Quantitative immunoblot analysis of cortex and the underlying white matter with Tau-1 and {sup 125}I-labeled protein A showed that the amount of phosphorylated {tau} progressively increased in the Alzheimer disease-affected cerebral cortex, while concurrently a proportionally lesser amount of {tau} entered the white matter axons. The similar findings for the rat heat-shock model and Alzheimer disease suggest that life stressors may play a role in the etiopathogenesis of Alzheimer's disease.« less

  6. Amyloid-β protein precursor regulates phosphorylation and cellular compartmentalization of microtubule associated protein tau.

    PubMed

    Nizzari, Mario; Barbieri, Federica; Gentile, Maria Teresa; Passarella, Daniela; Caorsi, Calentina; Diaspro, Alberto; Taglialatela, Maurizio; Pagano, Aldo; Colucci-D'Amato, Luca; Florio, Tullio; Russo, Claudio

    2012-01-01

    Tau is a multifunctional protein detected in different cellular compartments in neuronal and non-neuronal cells. When hyperphosphorylated and aggregated in atrophic neurons, tau is considered the culprit for neuronal death in familial and sporadic tauopathies. With regards to Alzheimer's disease (AD) pathogenesis, it is not yet established whether entangled tau represents a cause or a consequence of neurodegeneration. In fact, it is unquestionably accepted that amyloid-β protein precursor (AβPP) plays a pivotal role in the genesis of the disease, and it is postulated that the formation of toxic amyloid-β peptides from AβPP is the primary event that subsequently induces abnormal tau phosphorylation. In this work, we show that in the brain of AD patients there is an imbalance between the nuclear and the cytoskeletal pools of phospho-tau. We observed that in non-AD subjects, there is a stable pool of phospho-tau which remains strictly confined to neuronal nuclei, while nuclear localization of phospho-tau is significantly underrepresented in neurons of AD patients bearing neurofibrillary tangles. A specific phosphorylation of tau is required during mitosis in vitro and in vivo, likely via a Grb2-ERK1/2 signaling cascade. In differentiated neuronal A1 cells, the overexpression of AβPP modulates tau phosphorylation, altering the ratio between cytoskeletal and nuclear pools, and correlates with cell death. Altogether our data provide evidence that AβPP, in addition to amyloid formation, modulates the phosphorylation of tau and its subcellular compartmentalization, an event that may lead to the formation of neurofibrillary tangles and to neurodegeneration when occurring in postmitotic neurons.

  7. Changes in tau phosphorylation in hibernating rodents.

    PubMed

    León-Espinosa, Gonzalo; García, Esther; García-Escudero, Vega; Hernández, Félix; Defelipe, Javier; Avila, Jesús

    2013-07-01

    Tau is a cytoskeletal protein present mainly in the neurons of vertebrates. By comparing the sequence of tau molecule among different vertebrates, it was found that the variability of the N-terminal sequence in tau protein is higher than that of the C-terminal region. The N-terminal region is involved mainly in the binding of tau to cellular membranes, whereas the C-terminal region of the tau molecule contains the microtubule-binding sites. We have compared the sequence of Syrian hamster tau with the sequences of other hibernating and nonhibernating rodents and investigated how differences in the N-terminal region of tau could affect the phosphorylation level and tau binding to cell membranes. We also describe a change, in tau phosphorylation, on a casein kinase 1 (ck1)-dependent site that is found only in hibernating rodents. This ck1 site seems to play an important role in the regulation of tau binding to membranes. Copyright © 2013 Wiley Periodicals, Inc.

  8. Exaggerated phosphorylation of brain tau protein in CRH KO mice exposed to repeated immobilization stress.

    PubMed

    Kvetnansky, Richard; Novak, Petr; Vargovic, Peter; Lejavova, Katarina; Horvathova, Lubica; Ondicova, Katarina; Manz, George; Filipcik, Peter; Novak, Michal; Mravec, Boris

    2016-07-01

    Neuroendocrine and behavioral stress responses are orchestrated by corticotropin-releasing hormone (CRH) and norepinephrine (NE) synthesizing neurons. Recent findings indicate that stress may promote development of neurofibrillary pathology in Alzheimer's disease. Therefore, we investigated relationships among stress, tau protein phosphorylation, and brain NE using wild-type (WT) and CRH-knockout (CRH KO) mice. We assessed expression of phosphorylated tau (p-tau) at the PHF-1 epitope and NE concentrations in the locus coeruleus (LC), A1/C1 and A2/C2 catecholaminergic cell groups, hippocampus, amygdala, nucleus basalis magnocellularis, and frontal cortex of unstressed, singly stressed or repeatedly stressed mice. Moreover, gene expression and protein levels of tyrosine hydroxylase (TH) and CRH receptor mRNA were determined in the LC. Plasma corticosterone levels were also measured. Exposure to a single stress increases tau phosphorylation throughout the brain in WT mice when compared to singly stressed CRH KO animals. In contrast, repeatedly stressed CRH KO mice showed exaggerated tau phosphorylation relative to WT controls. We also observed differences in extent of tau phosphorylation between investigated structures, e.g. the LC and hippocampus. Moreover, CRH deficiency leads to different responses to stress in gene expression of TH, NE concentrations, CRH receptor mRNA, and plasma corticosterone levels. Our data indicate that CRH effects on tau phosphorylation are dependent on whether stress is single or repeated, and differs between brain regions. Our findings indicate that CRH attenuates mechanisms responsible for development of stress-induced tau neuropathology, particularly in conditions of chronic stress. However, the involvement of central catecholaminergic neurons in these mechanisms remains unclear and is in need of further investigation.

  9. Tau Phosphorylation by GSK3 in Different Conditions

    PubMed Central

    Avila, Jesús; León-Espinosa, Gonzalo; García, Esther; García-Escudero, Vega; Hernández, Félix; DeFelipe, Javier

    2012-01-01

    Almost a 20% of the residues of tau protein are phosphorylatable amino acids: serine, threonine, and tyrosine. In this paper we comment on the consequences for tau of being a phosphoprotein. We will focus on serine/threonine phosphorylation. It will be discussed that, depending on the modified residue in tau molecule, phosphorylation could be protective, in processes like hibernation, or toxic like in development of those diseases known as tauopathies, which are characterized by an hyperphosphorylation and aggregation of tau. PMID:22675648

  10. Loss of Axonal Mitochondria Promotes Tau-Mediated Neurodegeneration and Alzheimer's Disease–Related Tau Phosphorylation Via PAR-1

    PubMed Central

    Iijima-Ando, Kanae; Sekiya, Michiko; Suzuki, Emiko; Lu, Bingwei; Iijima, Koichi M.

    2012-01-01

    Abnormal phosphorylation and toxicity of a microtubule-associated protein tau are involved in the pathogenesis of Alzheimer's disease (AD); however, what pathological conditions trigger tau abnormality in AD is not fully understood. A reduction in the number of mitochondria in the axon has been implicated in AD. In this study, we investigated whether and how loss of axonal mitochondria promotes tau phosphorylation and toxicity in vivo. Using transgenic Drosophila expressing human tau, we found that RNAi–mediated knockdown of milton or Miro, an adaptor protein essential for axonal transport of mitochondria, enhanced human tau-induced neurodegeneration. Tau phosphorylation at an AD–related site Ser262 increased with knockdown of milton or Miro; and partitioning defective-1 (PAR-1), the Drosophila homolog of mammalian microtubule affinity-regulating kinase, mediated this increase of tau phosphorylation. Tau phosphorylation at Ser262 has been reported to promote tau detachment from microtubules, and we found that the levels of microtubule-unbound free tau increased by milton knockdown. Blocking tau phosphorylation at Ser262 site by PAR-1 knockdown or by mutating the Ser262 site to unphosphorylatable alanine suppressed the enhancement of tau-induced neurodegeneration caused by milton knockdown. Furthermore, knockdown of milton or Miro increased the levels of active PAR-1. These results suggest that an increase in tau phosphorylation at Ser262 through PAR-1 contributes to tau-mediated neurodegeneration under a pathological condition in which axonal mitochondria is depleted. Intriguingly, we found that knockdown of milton or Miro alone caused late-onset neurodegeneration in the fly brain, and this neurodegeneration could be suppressed by knockdown of Drosophila tau or PAR-1. Our results suggest that loss of axonal mitochondria may play an important role in tau phosphorylation and toxicity in the pathogenesis of AD. PMID:22952452

  11. An Unbiased Approach to Identifying Tau Kinases That Phosphorylate Tau at Sites Associated with Alzheimer Disease

    PubMed Central

    Cavallini, Annalisa; Brewerton, Suzanne; Bell, Amanda; Sargent, Samantha; Glover, Sarah; Hardy, Clare; Moore, Roger; Calley, John; Ramachandran, Devaki; Poidinger, Michael; Karran, Eric; Davies, Peter; Hutton, Michael; Szekeres, Philip; Bose, Suchira

    2013-01-01

    Neurofibrillary tangles, one of the hallmarks of Alzheimer disease (AD), are composed of paired helical filaments of abnormally hyperphosphorylated tau. The accumulation of these proteinaceous aggregates in AD correlates with synaptic loss and severity of dementia. Identifying the kinases involved in the pathological phosphorylation of tau may identify novel targets for AD. We used an unbiased approach to study the effect of 352 human kinases on their ability to phosphorylate tau at epitopes associated with AD. The kinases were overexpressed together with the longest form of human tau in human neuroblastoma cells. Levels of total and phosphorylated tau (epitopes Ser(P)-202, Thr(P)-231, Ser(P)-235, and Ser(P)-396/404) were measured in cell lysates using AlphaScreen assays. GSK3α, GSK3β, and MAPK13 were found to be the most active tau kinases, phosphorylating tau at all four epitopes. We further dissected the effects of GSK3α and GSK3β using pharmacological and genetic tools in hTau primary cortical neurons. Pathway analysis of the kinases identified in the screen suggested mechanisms for regulation of total tau levels and tau phosphorylation; for example, kinases that affect total tau levels do so by inhibition or activation of translation. A network fishing approach with the kinase hits identified other key molecules putatively involved in tau phosphorylation pathways, including the G-protein signaling through the Ras family of GTPases (MAPK family) pathway. The findings identify novel tau kinases and novel pathways that may be relevant for AD and other tauopathies. PMID:23798682

  12. Tau-Induced Ca2+/Calmodulin-Dependent Protein Kinase-IV Activation Aggravates Nuclear Tau Hyperphosphorylation.

    PubMed

    Wei, Yu-Ping; Ye, Jin-Wang; Wang, Xiong; Zhu, Li-Ping; Hu, Qing-Hua; Wang, Qun; Ke, Dan; Tian, Qing; Wang, Jian-Zhi

    2018-04-01

    Hyperphosphorylated tau is the major protein component of neurofibrillary tangles in the brains of patients with Alzheimer's disease (AD). However, the mechanism underlying tau hyperphosphorylation is not fully understood. Here, we demonstrated that exogenously expressed wild-type human tau40 was detectable in the phosphorylated form at multiple AD-associated sites in cytoplasmic and nuclear fractions from HEK293 cells. Among these sites, tau phosphorylated at Thr205 and Ser214 was almost exclusively found in the nuclear fraction at the conditions used in the present study. With the intracellular tau accumulation, the Ca 2+ concentration was significantly increased in both cytoplasmic and nuclear fractions. Further studies using site-specific mutagenesis and pharmacological treatment demonstrated that phosphorylation of tau at Thr205 increased nuclear Ca 2+ concentration with a simultaneous increase in the phosphorylation of Ca 2+ /calmodulin-dependent protein kinase IV (CaMKIV) at Ser196. On the other hand, phosphorylation of tau at Ser214 did not significantly change the nuclear Ca 2+ /CaMKIV signaling. Finally, expressing calmodulin-binding protein-4 that disrupts formation of the Ca 2+ /calmodulin complex abolished the okadaic acid-induced tau hyperphosphorylation in the nuclear fraction. We conclude that the intracellular accumulation of phosphorylated tau, as detected in the brains of AD patients, can trigger nuclear Ca 2+ /CaMKIV signaling, which in turn aggravates tau hyperphosphorylation. Our findings provide new insights for tauopathies: hyperphosphorylation of intracellular tau and an increased Ca 2+ concentration may induce a self-perpetuating harmful loop to promote neurodegeneration.

  13. ELISA measurement of specific antibodies to phosphorylated tau in intravenous immunoglobulin products.

    PubMed

    Loeffler, David A; Klaver, Andrea C; Coffey, Mary P

    2015-10-01

    The therapeutic effects of intravenous immunoglobulin (IVIG) products were recently studied in Alzheimer's disease (AD) patients. Pilot studies produced encouraging results but phase II and III trials gave disappointing results; a further study is in progress. IVIG products contain antibodies to tau protein, the main component of neurofibrillary tangles (NFTs). The tau used to detect IVIG's anti-tau antibodies in previous studies was non-phosphorylated recombinant human tau-441, but NFT-associated tau is extensively phosphorylated. The objective of this study was to determine if various IVIG products contain specific antibodies to phosphorylated tau (anti-pTau antibodies). ELISAs were used to evaluate binding of six IVIG products to a 12 amino acid peptide, tau 196-207, which was phosphorylated ("pTau peptide") or non-phosphorylated ("non-pTau peptide") at Serine-199 and Serine-202. Both amino acid residues are phosphorylated in AD NFTs. Each IVIG's "anti-pTau antibody ratio" was calculated by dividing its binding to the pTau peptide by its binding to the non-pTau peptide. Seven experiments were performed and data were pooled, with each experiment contributing one data point from each IVIG product. Mean anti-pTau antibody ratios greater than 1.0, suggesting specific antibodies to phosphorylated tau, were found for three IVIG products. Because administration of antibodies to phosphorylated tau has been found to reduce tau-associated pathology in transgenic mouse models of tauopathy, increasing the levels of anti-pTau antibodies, together with other selected antibodies such as anti-Aβ, in IVIG might increase its ability to slow AD's progression. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Inhibition of GSK3 dependent tau phosphorylation by metals.

    PubMed

    Gómez-Ramos, Alberto; Domínguez, Jorge; Zafra, Delia; Corominola, Helena; Gomis, Ramon; Guinovart, Joan J; Avila, Jesús

    2006-04-01

    One of the main pathological characteristics of Alzheimer's disease is the presence in the brain of the patients of an aberrant structure, the paired helical filaments, composed of hyperphosphorylated tau. The level of tau phosphorylation has been correlated with the capacity for tau aggregation. Thus, the mechanism for tau phosphorylation could be important to clarify those pathological features in Alzheimer's disease. Tau protein could be modified by different kinases, being GSK3 the one that could modify more sites of that protein. GSK3 activity could be modulate by the presence of metals like magnesium that can be required for the proper function of the kinase, whereas, metals like manganesum or lithium inhibit the activity of the kinase. Many works have been done to study the inhibition of GSK3 by lithium, a specific inhibitor of that kinase. More recently, it has been indicated that sodium tungstate could also inhibit GSK3 through a different mechanism. In this review, we discuss the effect of these two metals, lithium and tungstate, on GSK3 (or tau I kinase) activity.

  15. Bacterial co-expression of human Tau protein with protein kinase A and 14-3-3 for studies of 14-3-3/phospho-Tau interaction

    PubMed Central

    Tugaeva, Kristina V.; Tsvetkov, Philipp O.

    2017-01-01

    Abundant regulatory 14-3-3 proteins have an extremely wide interactome and coordinate multiple cellular events via interaction with specifically phosphorylated partner proteins. Notwithstanding the key role of 14-3-3/phosphotarget interactions in many physiological and pathological processes, they are dramatically underexplored. Here, we focused on the 14-3-3 interaction with human Tau protein associated with the development of several neurodegenerative disorders, including Alzheimer’s and Parkinson’s diseases. Among many known phosphorylation sites within Tau, protein kinase A (PKA) phosphorylates several key residues of Tau and induces its tight interaction with 14-3-3 proteins. However, the stoichiometry and mechanism of 14-3-3 interaction with phosphorylated Tau (pTau) are not clearly elucidated. In this work, we describe a simple bacterial co-expression system aimed to facilitate biochemical and structural studies on the 14-3-3/pTau interaction. We show that dual co-expression of human fetal Tau with PKA in Escherichia coli results in multisite Tau phosphorylation including also naturally occurring sites which were not previously considered in the context of 14-3-3 binding. Tau protein co-expressed with PKA displays tight functional interaction with 14-3-3 isoforms of a different type. Upon triple co-expression with 14-3-3 and PKA, Tau protein could be co-purified with 14-3-3 and demonstrates complex which is similar to that formed in vitro between individual 14-3-3 and pTau obtained from dual co-expression. Although used in this study for the specific case of the previously known 14-3-3/pTau interaction, our co-expression system may be useful to study of other selected 14-3-3/phosphotarget interactions and for validations of 14-3-3 complexes identified by other methods. PMID:28575131

  16. Aluminum interaction with human brain tau protein phosphorylation by various kinases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    El-Sebae; Abou Zeid, M.M.; Saleh, M.A.

    1993-01-01

    Phosphorylation is an indispensable process for energy and signal transduction in biological systems. AlCl[sub 3] at 10 nM to 10 [mu]M range activated in-vitro [[gamma][sup [minus]32]P]ATP phosphorylation of the brain ([tau]) [Gamma] protein in both normal human or E.coli expressed [Gamma] forms; in the presence of the kinases P34,PKP, and PKC. However, higher concentrations of AlCl[sub 3] inhibited the [Gamma] phosphorylation with P34, PKP, and PKC to a maximum at 1 mM level. AlCl[sub 3] at 100 [mu]M to 500 [mu]M range induced non-enzymatic phosphorylation of [Gamma] with [gamma]-ATP, [gamma]-GTP, and [alpha]-GRP. AlCl[sub 3] activated histone phosphorylation by P34 inmore » a similar pattern. The hyperphosphorylation of [Gamma] by Al[sup 3+] was accompanied in molecular shift and mobility retardation in SDS-PAGE. This may demonstrate the mechanism of the long term neurological effect of Al[sub 3+] in human brain leading to the formation of the neutrofibrillary tangles related to Alzeheimer's disease.« less

  17. Intracerebroventricular administration of okadaic acid induces hippocampal glucose uptake dysfunction and tau phosphorylation.

    PubMed

    Broetto, Núbia; Hansen, Fernanda; Brolese, Giovana; Batassini, Cristiane; Lirio, Franciane; Galland, Fabiana; Dos Santos, João Paulo Almeida; Dutra, Márcio Ferreira; Gonçalves, Carlos-Alberto

    2016-06-01

    Intraneuronal aggregates of neurofibrillary tangles (NFTs), together with beta-amyloid plaques and astrogliosis, are histological markers of Alzheimer's disease (AD). The underlying mechanism of sporadic AD remains poorly understood, but abnormal hyperphosphorylation of tau protein is suggested to have a role in NFTs genesis, which leads to neuronal dysfunction and death. Okadaic acid (OKA), a strong inhibitor of protein phosphatase 2A, has been used to induce dementia similar to AD in rats. We herein investigated the effect of intracerebroventricular (ICV) infusion of OKA (100 and 200ng) on hippocampal tau phosphorylation at Ser396, which is considered an important fibrillogenic tau protein site, and on glucose uptake, which is reduced early in AD. ICV infusion of OKA (at 200ng) induced a spatial cognitive deficit, hippocampal astrogliosis (based on GFAP increment) and increase in tau phosphorylation at site 396 in this model. Moreover, we observed a decreased glucose uptake in the hippocampal slices of OKA-treated rats. In vitro exposure of hippocampal slices to OKA altered tau phosphorylation at site 396, without any associated change in glucose uptake activity. Taken together, these findings further our understanding of OKA neurotoxicity, in vivo and vitro, particularly with regard to the role of tau phosphorylation, and reinforce the importance of the OKA dementia model for studying the neurochemical alterations that may occur in AD, such as NFTs and glucose hypometabolism. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Tau phosphorylation and kinase activation in familial tauopathy linked to deln296 mutation.

    PubMed

    Ferrer, I; Pastor, P; Rey, M J; Muñoz, E; Puig, B; Pastor, E; Oliva, R; Tolosa, E

    2003-02-01

    Tau phosphorylation has been examined by immunohistochemistry in the brain of a patient affected with familial tauopathy with progressive supranuclear palsy-like phenotype linked to the delN296 mutation in the tau gene. Phospho-specific tau antibodies Thr181, Ser202, Ser214, Ser396 and Ser422, and antibodies to glycogen synthase kinase-3alpha/beta (GSK-3alpha/beta) and to phosphorylated (P) mitogen-activated protein kinase/extracellular signal-regulated kinases (MAPK/ERK), stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK), p38 kinase (p38) and GSK-3betaSer9 have been used to gain understanding of the identification of phosphorylation sites, as well as of the specific kinases that regulate tau phosphorylation at those specific sites, in a familial tauopathy. The neuropathological examination disclosed atrophy of the right precentral gyrus and the brainstem. Neurone loss and gliosis were observed in the substantia nigra, several nuclei of the brainstem and diencephalon. Hyper-phosphorylated tau accumulated in neurones with neurofibrillary tangles and in neurones with pretangles in the substantia nigra, locus ceruleus, peri-aqueductal grey matter, reticular formation, motor nuclei of the brainstem, and thalamus, amygdala and hippocampus. tau-immunoreactive astrocytes and, particularly, oligodendrocytes with coiled bodies were widespread in the brainstem, diencephalons, cerebral white matter and cerebral cortex. Increased expression of MAPK/ERK-P, SAPK/JNK-P, p-38-P and GSK-3beta-P was observed in select subpopulations of neurones with neurofibrillary tangles and in neurones with pretangles. MAPK/ERK-P, SAPK/JNK-P, p38-P and GSK-3beta-P were also expressed in tau-containing astrocytes and in oligodendrocytes with coiled bodies. These findings show, for the first time, activation of precise kinases that regulate tau phosphorylation at specific sites in familial tauopathy.

  19. Functional genomic screen and network analysis reveal novel modifiers of tauopathy dissociated from tau phosphorylation

    PubMed Central

    Ambegaokar, Surendra S.; Jackson, George R.

    2011-01-01

    A functional genetic screen using loss-of-function and gain-of-function alleles was performed to identify modifiers of tau-induced neurotoxicity using the 2N/4R (full-length) isoform of wild-type human tau expressed in the fly retina. We previously reported eye pigment mutations, which create dysfunctional lysosomes, as potent modifiers; here, we report 37 additional genes identified from ∼1900 genes screened, including the kinases shaggy/GSK-3beta, par-1/MARK, CamKI and Mekk1. Tau acts synergistically with Mekk1 and p38 to down-regulate extracellular regulated kinase activity, with a corresponding decrease in AT8 immunoreactivity (pS202/T205), suggesting that tau can participate in signaling pathways to regulate its own kinases. Modifiers showed poor correlation with tau phosphorylation (using the AT8, 12E8 and AT270 epitopes); moreover, tested suppressors of wild-type tau were equally effective in suppressing toxicity of a phosphorylation-resistant S11A tau construct, demonstrating that changes in tau phosphorylation state are not required to suppress or enhance its toxicity. Genes related to autophagy, the cell cycle, RNA-associated proteins and chromatin-binding proteins constitute a large percentage of identified modifiers. Other functional categories identified include mitochondrial proteins, lipid trafficking, Golgi proteins, kinesins and dynein and the Hsp70/Hsp90-organizing protein (Hop). Network analysis uncovered several other genes highly associated with the functional modifiers, including genes related to the PI3K, Notch, BMP/TGF-β and Hedgehog pathways, and nuclear trafficking. Activity of GSK-3β is strongly upregulated due to TDP-43 expression, and reduced GSK-3β dosage is also a common suppressor of Aβ42 and TDP-43 toxicity. These findings suggest therapeutic targets other than mitigation of tau phosphorylation. PMID:21949350

  20. Cholinesterase inhibitors may increase phosphorylated tau in Alzheimer’s disease

    PubMed Central

    Wilcock, Gordon K.; Vinters, Harry V.; Perry, Elaine K.; Perry, Robert; Ballard, Clive G.; Love, Seth

    2014-01-01

    Cholinesterase inhibitors (ChEIs) are widely used for the symptomatic treatment of Alzheimer’s disease (AD). In vitro and in animal studies, ChEIs have been shown to influence the processing of Aβ and the phosphorylation of tau, proteins that are the principal constituents of the plaques and neurofibrillary tangles, respectively, in AD brain. However, little is known about the effects of these drugs on Aβ and tau pathology in AD. Using avidin-biotin immunohistochemistry and computer-assisted image analysis, we compared Aβ and tau loads in the frontal and temporal cortices of 72 brains from matched cohorts of AD patients who had or had not received ChEIs. Patients treated with ChEIs had accumulated significantly more phospho-tau in their cerebral cortex than had untreated patients (P = 0.004). Aβ accumulation was reduced but not significantly. These data raise the possibility that increased tau phosphorylation may influence long-term clinical responsiveness to ChEIs. PMID:19240967

  1. Tau Phosphorylation Pathway Genes and Cerebrospinal Fluid Tau Levels in Alzheimer’s Disease

    PubMed Central

    Bekris, Lynn M.; Millard, Steve; Lutz, Franziska; Li, Gail; Galasko, Doug R.; Farlow, Martin R.; Quinn, Joseph F.; Kaye, Jeffrey A.; Leverenz, James B.; Tsuang, Debby W.; Yu, Chang-En; Peskind, Elaine R.

    2013-01-01

    Alzheimer’s disease (AD) is characterized by the presence in the brain of amyloid plaques, consisting predominately of the amyloid β peptide (Aβ), and neurofibrillary tangles, consisting primarily of tau. Hyper-phosphorylated-tau (p-tau) contributes to neuronal damage, and both p-tau and total-tau (t-tau) levels are elevated in AD cerebrospinal fluid (CSF) compared to cognitively normal controls. Our hypothesis was that increased ratios of CSF phosphorylated-tau levels relative to total-tau levels correlate with regulatory region genetic variation of kinase or phosphatase genes biologically associated with the phosphorylation status of tau. Eighteen SNPs located within 5′ and 3′ regions of 5 kinase and 4 phosphatase genes, as well as two SNPs within regulatory regions of the MAPT gene were chosen for this analysis. The study sample consisted of 101 AD patients and 169 cognitively normal controls. Rs7768046 in the FYN kinase gene and rs913275 in the PPP2R4 phosphatase gene were both associated with CSF p-tau and t-tau levels in AD. These SNPs were also differentially associated with either CSF t-tau (rs7768046) or CSF p-tau (rs913275) relative to t-tau levels in AD compared to controls. These results suggest that rs7768046 and rs913275 both influence CSF tau levels in an AD-associated manner. PMID:22927204

  2. Caffeine Blocks HIV-1 Tat-Induced Amyloid Beta Production and Tau Phosphorylation.

    PubMed

    Soliman, Mahmoud L; Geiger, Jonathan D; Chen, Xuesong

    2017-03-01

    The increased life expectancy of people living with HIV-1 who are taking effective anti-retroviral therapeutics is now accompanied by increased Alzheimer's disease (AD)-like neurocognitive problems and neuropathological features such as increased levels of amyloid beta (Aβ) and phosphorylated tau proteins. Others and we have shown that HIV-1 Tat promotes the development of AD-like pathology. Indeed, HIV-1 Tat once endocytosed into neurons can alter morphological features and functions of endolysosomes as well as increase Aβ generation. Caffeine has been shown to have protective actions against AD and based on our recent findings that caffeine can inhibit endocytosis in neurons and can prevent neuronal Aβ generation, we tested the hypothesis that caffeine blocks HIV-1 Tat-induced Aβ generation and tau phosphorylation. In SH-SY5Y cells over-expressing wild-type amyloid beta precursor protein (AβPP), we demonstrated that HIV-1 Tat significantly increased secreted levels and intracellular levels of Aβ as well as cellular protein levels of phosphorylated tau. Caffeine significantly decreased levels of secreted and cellular levels of Aβ, and significantly blocked HIV-1 Tat-induced increases in secreted and cellular levels of Aβ. Caffeine also blocked HIV-1 Tat-induced increases in cellular levels of phosphorylated tau. Furthermore, caffeine blocked HIV-1 Tat-induced endolysosome dysfunction as indicated by decreased protein levels of vacuolar-ATPase and increased protein levels of cathepsin D. These results further implicate endolysosome dysfunction in the pathogenesis of AD and HAND, and by virtue of its ability to prevent and/or block neuropathological features associated with AD and HAND caffeine might find use as an effective adjunctive therapeutic agent.

  3. Hypothermia mediates age-dependent increase of tau phosphorylation in db/db mice.

    PubMed

    El Khoury, Noura B; Gratuze, Maud; Petry, Franck; Papon, Marie-Amélie; Julien, Carl; Marcouiller, François; Morin, Françoise; Nicholls, Samantha B; Calon, Frédéric; Hébert, Sébastien S; Marette, André; Planel, Emmanuel

    2016-04-01

    Accumulating evidence from epidemiological studies suggest that type 2 diabetes is linked to an increased risk of Alzheimer's disease (AD). However, the consequences of type 2 diabetes on AD pathologies, such as tau hyperphosphorylation, are not well understood. Here, we evaluated the impact of type 2 diabetes on tau phosphorylation in db/db diabetic mice aged 4 and 26weeks. We found increased tau phosphorylation at the CP13 epitope correlating with a deregulation of c-Jun. N-terminal kinase (JNK) and Protein Phosphatase 2A (PP2A) in 4-week-old db/db mice. 26-week-old db/db mice displayed tau hyperphosphorylation at multiple epitopes (CP13, AT8, PHF-1), but no obvious change in kinases or phosphatases, no cleavage of tau, and no deregulation of central insulin signaling pathways. In contrast to younger animals, 26-week-old db/db mice were hypothermic and restoration of normothermia rescued phosphorylation at most epitopes. Our results suggest that, at early stages of type 2 diabetes, changes in tau phosphorylation may be due to deregulation of JNK and PP2A, while at later stages hyperphosphorylation is mostly a consequence of hypothermia. These results provide a novel link between diabetes and tau pathology, and underlie the importance of recording body temperature to better understand the relationship between diabetes and AD. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. ERα36 gene silencing promotes tau protein phosphorylation, inhibits cell proliferation, and induces apoptosis in human neuroblastoma SH-SY5Y cells.

    PubMed

    Wang, Hong-Bin; Li, Tao; Ma, Dong-Zhou; Zhi, Hua

    2018-06-22

    Neuroblastoma is the most common cancer in infants and the third most common cancer in children after leukemia and brain cancer. The purpose of our study was to investigate the effects of estrogen receptor (ER)-α36 gene silencing on tau protein phosphorylation, cell proliferation, and cell apoptosis in human neuroblastoma SH-SY5Y cells. SH-SY5Y cells were treated with estrogen or left untreated, to investigate the effects of estrogen stimulation on ERα36 and the ERK/protein B kinase (AKT) signaling pathway. ERα36 mRNA expressions were detected by quantitative RT-PCR. A phosphatase kit was used to test protein phosphatase (PP)-2A activity before and after treatment. Western blot analysis was conducted to detect protein expression of ERα36; tau protein; phosphorylated- tau (p-tau) at site Thr231 [p-tau (Thr231)]; glycogen synthase kinase (GSK)3β and its specificity sites (Tyr216 and Ser9); Cyclin Dl; proliferating cell nuclear antigen (PCNA); B-cell lymphoma (Bcl)-2; and Bcl-2-associated X protein (Bax). A cell-counting kit (CCK)-8 assay was used to determine cell viability. Cell apoptosis and rate of tumor growth and volume were determined by Annexin V-FITC/PI staining and a xenotransplanted tumor model in nude mice. Results show that without estrogen stimulation, ERα36 was inactivated. When stimulated by estrogen, expression of ERα36, PP2A, p-GSK3β (Ser9)/total protein ( t)-GSK3β, Cyclin Dl, PCNA, and Bcl-2 were up-regulated, and p-GSK3β (Tyr216)/ t-GSK3β expression was down-regulated, as was p-tau (Thr231) and Bax expression. The expression of p-ERK/ERK, p-AKT/AKT, p-methyl ethyl ketone (MEK)/MEK, and p-mammalian target of rapamycin (mTOR)/mTOR expression was up-regulated, suggesting that the ERK/AKT signaling pathway is activated. Cell proliferation was also accelerated, whereas apoptosis was inhibited with stimulation by estrogen. However, we found that the effects of silencing ERα36 on the expression of related intracellular factors had no

  5. Cotinine improves visual recognition memory and decreases cortical Tau phosphorylation in the Tg6799 mice.

    PubMed

    Grizzell, J Alex; Patel, Sagar; Barreto, George E; Echeverria, Valentina

    2017-08-01

    Alzheimer's disease (AD) is associated with the progressive aggregation of hyperphosphorylated forms of the microtubule associated protein Tau in the central nervous system. Cotinine, the main metabolite of nicotine, reduced working memory deficits, synaptic loss, and amyloid β peptide aggregation into oligomers and plaques as well as inhibited the cerebral Tau kinase, glycogen synthase 3β (GSK3β) in the transgenic (Tg)6799 (5XFAD) mice. In this study, the effect of cotinine on visual recognition memory and cortical Tau phosphorylation at the GSK3β sites Serine (Ser)-396/Ser-404 and phospho-CREB were investigated in the Tg6799 and non-transgenic (NT) littermate mice. Tg mice showed short-term visual recognition memory impairment in the novel object recognition test, and higher levels of Tau phosphorylation when compared to NT mice. Cotinine significantly improved visual recognition memory performance increased CREB phosphorylation and reduced cortical Tau phosphorylation. Potential mechanisms underlying theses beneficial effects are discussed. Copyright © 2017. Published by Elsevier Inc.

  6. Specific serum antibody binding to phosphorylated and non-phosphorylated tau in non-cognitively impaired, mildly cognitively impaired, and Alzheimer's disease subjects: an exploratory study.

    PubMed

    Klaver, Andrea C; Coffey, Mary P; Bennett, David A; Loeffler, David A

    2017-01-01

    cognitive status. Serum IgG to phosphorylated tau may be increased in individuals with MCI, but this unexpected finding requires confirmation. The approach used in this study to measure specific serum antibodies to phosphorylated tau should be useful for measuring antibodies to other post-translationally-modified proteins that are of relevance to neurodegenerative disorders.

  7. A new TAO kinase inhibitor reduces tau phosphorylation at sites associated with neurodegeneration in human tauopathies.

    PubMed

    Giacomini, Caterina; Koo, Chuay-Yeng; Yankova, Natalia; Tavares, Ignatius A; Wray, Selina; Noble, Wendy; Hanger, Diane P; Morris, Jonathan D H

    2018-05-07

    In Alzheimer's disease (AD) and related tauopathies, the microtubule-associated protein tau is highly phosphorylated and aggregates to form neurofibrillary tangles that are characteristic of these neurodegenerative diseases. Our previous work has demonstrated that the thousand-and-one amino acid kinases (TAOKs) 1 and 2 phosphorylate tau on more than 40 residues in vitro. Here we show that TAOKs are phosphorylated and active in AD brain sections displaying mild (Braak stage II), intermediate (Braak stage IV) and advanced (Braak stage VI) tau pathology and that active TAOKs co-localise with both pre-tangle and tangle structures. TAOK activity is also enriched in pathological tau containing sarkosyl-insoluble extracts prepared from AD brain. Two new phosphorylated tau residues (T123 and T427) were identified in AD brain, which appear to be targeted specifically by TAOKs. A new small molecule TAOK inhibitor (Compound 43) reduced tau phosphorylation on T123 and T427 and also on additional pathological sites (S262/S356 and S202/T205/S208) in vitro and in cell models. The TAOK inhibitor also decreased tau phosphorylation in differentiated primary cortical neurons without affecting markers of synapse and neuron health. Notably, TAOK activity also co-localised with tangles in post-mortem frontotemporal lobar degeneration (FTLD) brain tissue. Furthermore, the TAOK inhibitor decreased tau phosphorylation in induced pluripotent stem cell derived neurons from FTLD patients, as well as cortical neurons from a transgenic mouse model of tauopathy (Tau35 mice). Our results demonstrate that abnormal TAOK activity is present at pre-tangles and tangles in tauopathies and that TAOK inhibition effectively decreases tau phosphorylation on pathological sites. Thus, TAOKs may represent a novel target to reduce or prevent tau-associated neurodegeneration in tauopathies.

  8. Effect of Continuous Propofol Infusion in Rat on Tau Phosphorylation with or without Temperature Control.

    PubMed

    Huang, Chunxia; Ng, Olivia Tsz-Wa; Ho, Yuen-Shan; Irwin, Michael Garnet; Chang, Raymond Chuen-Chung; Wong, Gordon Tin-Chun

    2016-01-01

    Several studies suggest a relationship between anesthesia-induced tau hyperphosphorylation and the development of postoperative cognitive dysfunction. This study further characterized the effects of continuous propofol infusion on tau protein phosphorylation in rats, with or without temperature control. Propofol was administered intravenously to 8-10-week-old male Sprague-Dawley rats and infused to the loss of the righting reflex for 2 h continuously. Proteins from cortex and hippocampus were examined by western blot and immunohistochemistry. Rectal temperature was significantly decreased during propofol infusion. Propofol with hypothermia significantly increased phosphorylation of tau at AT8, AT180, Thr205, and Ser199 in cortex and hippocampus except Ser396. With temperature maintenance, propofol still induced significant elevation of AT8, Thr205, and Ser199 in cortex and hippocampus; however, increase of AT180 and Ser396 was only found in hippocampus and cortex, respectively. Differential effects of propofol with or without hypothermia on multiple tau related kinases, such as Akt/GSK3β, MAPK pathways, or phosphatase (PP2A), were demonstrated in region-specific manner. These findings indicated that propofol increased tau phosphorylation under both normothermic and hypothermic conditions, and temperature control could partially attenuate the hyperphosphorylation of tau. Further studies are warranted to determine the long-term impact of propofol on the tau pathology and cognitive functions.

  9. Caloric restriction mimetic 2-deoxyglucose maintains cytoarchitecture and reduces tau phosphorylation in primary culture of mouse hippocampal pyramidal neurons.

    PubMed

    Bele, M S; Gajare, K A; Deshmukh, A A

    2015-06-01

    Typical form of neurons is crucially important for their functions. This is maintained by microtubules and associated proteins like tau. Hyperphosphorylation of tau is a major concern in neurodegenerative diseases. Glycogen synthase kinase3β (GSK3β) and cyclin-dependent protein kinase 5 (Cdk5) are the enzymes that govern tau phosphorylation. Currently, efforts are being made to target GSK3β and Cdk5 as possible therapeutic avenues to control tau phosphorylation and treat neurodegenerative diseases related to taupathies. In a number of studies, caloric restriction mimetic 2-deoxyglucose (C6H12O5) was found to be beneficial in improving the brain functions. However, no reports are available on the effect of 2-deoxyglucose 2-DG on tau phosphorylation. In the present study, hippocampal pyramidal neurons from E17 mouse embryos were isolated and cultured on poly-L-lysine-coated coverslips. Neurons from the experimental group were treated with 10 mM 2-deoxyglucose. The treatment of 2-DG resulted in healthier neuronal morphology in terms of significantly lower number of cytoplasmic vacuoles, little or no membrane blebbings, maintained axon hillock and intact neurites. There were decreased immunofluorescence signals for GSK3β, pTau at Ser262, Cdk5 and pTau at Ser235 suggesting decreased tau phosphorylation, which was further confirmed by Western blotting. The results indicate the beneficial effects of 2-DG in controlling the tau phosphorylation and maintaining the healthy neuronal cytoarchitecture.

  10. Molecular Dynamics Simulation of Tau Peptides for the Investigation of Conformational Changes Induced by Specific Phosphorylation Patterns.

    PubMed

    Gandhi, Neha S; Kukic, Predrag; Lippens, Guy; Mancera, Ricardo L

    2017-01-01

    The Tau protein plays an important role due to its biomolecular interactions in neurodegenerative diseases. The lack of stable structure and various posttranslational modifications such as phosphorylation at various sites in the Tau protein pose a challenge for many experimental methods that are traditionally used to study protein folding and aggregation. Atomistic molecular dynamics (MD) simulations can help around deciphering relationship between phosphorylation and various intermediate and stable conformations of the Tau protein which occur on longer timescales. This chapter outlines protocols for the preparation, execution, and analysis of all-atom MD simulations of a 21-amino acid-long phosphorylated Tau peptide with the aim of generating biologically relevant structural and dynamic information. The simulations are done in explicit solvent and starting from nearly extended configurations of the peptide. The scaled MD method implemented in AMBER14 was chosen to achieve enhanced conformational sampling in addition to a conventional MD approach, thereby allowing the characterization of folding for such an intrinsically disordered peptide at 293 K. Emphasis is placed on the analysis of the simulation trajectories to establish correlations with NMR data (i.e., chemical shifts and NOEs). Finally, in-depth discussions are provided for commonly encountered problems.

  11. Abnormal tau phosphorylation in the thorny excrescences of CA3 hippocampal neurons in patients with Alzheimer's disease.

    PubMed

    Blazquez-Llorca, Lidia; Garcia-Marin, Virginia; Merino-Serrais, Paula; Ávila, Jesús; DeFelipe, Javier

    2011-01-01

    A key symptom in the early stages of Alzheimer's disease (AD) is the loss of declarative memory. The anatomical substrate that supports this kind of memory involves the neural circuits of the medial temporal lobe, and in particular, of the hippocampal formation and adjacent cortex. A main feature of AD is the abnormal phosphorylation of the tau protein and the presence of tangles. The sequence of cellular changes related to tau phosphorylation and tangle formation has been studied with an antibody that binds to diffuse phosphotau (AT8). Moreover, another tau antibody (PHF-1) has been used to follow the pathway of neurofibrillary (tau aggregation) degeneration in AD. We have used a variety of quantitative immunocytochemical techniques and confocal microscopy to visualize and characterize neurons labeled with AT8 and PHF-1 antibodies. We present here the rather unexpected discovery that in AD, there is conspicuous abnormal phosphorylation of the tau protein in a selective subset of dendritic spines. We identified these spines as the typical thorny excrescences of hippocampal CA3 neurons in a pre-tangle state. Since thorny excrescences represent a major synaptic target of granule cell axons (mossy fibers), such aberrant phosphorylation may play an essential role in the memory impairment typical of AD patients.

  12. Phosphorylation of Threonine 175 Tau in the Induction of Tau Pathology in Amyotrophic Lateral Sclerosis-Frontotemporal Spectrum Disorder (ALS-FTSD). A Review.

    PubMed

    Moszczynski, Alexander J; Hintermayer, Matthew A; Strong, Michael J

    2018-01-01

    Approximately 50-60% of all patients with amyotrophic lateral sclerosis (ALS) will develop a deficit of frontotemporal function, ranging from frontotemporal dementia (FTD) to one or more deficits of neuropsychological, speech or language function which are collectively known as the frontotemporal spectrum disorders of ALS (ALS-FTSD). While the neuropathology underlying these disorders is most consistent with a widespread alteration in the metabolism of transactive response DNA-binding protein 43 (TDP-43), in both ALS with cognitive impairment (ALSci) and ALS with FTD (ALS-FTD; also known as MND-FTD) there is evidence for alterations in the metabolism of the microtubule associated protein tau. This alteration in tau metabolism is characterized by pathological phosphorylation at residue Thr 175 (pThr 175 tau) which in vitro is associated with activation of GSK3β (pTyr 216 GSK3β), phosphorylation of Thr 231 tau, and the formation of cytoplasmic inclusions with increased rates of cell death. This putative pathway of pThr 175 induction of pThr 231 and the formation of pathogenic tau inclusions has been recently shown to span a broad range of tauopathies, including chronic traumatic encephalopathy (CTE) and CTE in association with ALS (CTE-ALS). This pathway can be experimentally triggered through a moderate traumatic brain injury, suggesting that it is a primary neuropathological event and not secondary to a more widespread neuronal dysfunction. In this review, we discuss the neuropathological underpinnings of the postulate that ALS is associated with a tauopathy which manifests as a FTSD, and examine possible mechanisms by which phosphorylation at Thr 175 tau is induced. We hypothesize that this might lead to an unfolding of the hairpin structure of tau, activation of GSK3β and pathological tau fibril formation through the induction of cis -Thr 231 tau conformers. A potential role of TDP-43 acting synergistically with pathological tau metabolism is proposed.

  13. Inhibition of glycogen synthase kinase-3beta downregulates total tau proteins in cultured neurons and its reversal by the blockade of protein phosphatase-2A.

    PubMed

    Martin, Ludovic; Magnaudeix, Amandine; Esclaire, Françoise; Yardin, Catherine; Terro, Faraj

    2009-02-03

    In tauopathies such as Alzheimer's disease (AD), the molecular mechanisms of tau protein aggregation into neurofibrillary tangles (NFTs) and their contribution to neurodegeneration remain not understood. It was recently demonstrated that tau, regardless of its aggregation, might represent a key mediator of neurodegeneration. Therefore, reduction of tau levels might represent a mechanism of neuroprotection. Glycogen synthase kinase-3beta (GSK3beta) and protein phosphatase-2A (PP2A) are key enzymes involved in the regulation of tau phosphorylation, and have been suggested to be involved in the abnormal tau phosphorylation and aggregation in AD. Connections between PP2A and GSK3beta signaling have been reported. We have previously demonstrated that exposure of cultured cortical neurons to lithium decreased tau protein expression and provided neuroprotection against Abeta. Since lithium is not a specific inhibitor of GSK3beta (ID50=2.0 mM), whether or not the lithium-induced tau decrease involves GSK3beta remained to be determined. For that purpose, cultured cortical neurons were exposed to 6-bromo-indirubin-3'-oxime (6-BIO), a more selective and potent GSK3beta inhibitor (ID50=1.5 microM) or to lithium. Analysis of tau levels and phosphorylation by western-blot assays showed that lithium and 6-BIO dose-dependently decreased both tau protein levels and tau phosphorylation. Conversely, inhibition of cyclin-dependent kinase-5 (CDK5) by roscovitine decreased phosphorylated tau but failed to alter tau protein levels. These data indicate that GSK3beta might be selectively involved in the regulation of tau protein levels. Moreover, inhibition of PP2A by okadaic acid, but not that of PP2B (protein phosphatase-2B)/calcineurin by FK506, dose-dependently reversed lithium-induced tau decrease. These data indicate that GSK3beta regulates both tau phosphorylation and total tau levels through PP2A.

  14. Non-Aggregating Tau Phosphorylation by Cyclin-Dependent Kinase 5 Contributes to Motor Neuron Degeneration in Spinal Muscular Atrophy

    PubMed Central

    Miller, Nimrod; Feng, Zhihua; Edens, Brittany M.; Yang, Ben; Shi, Han; Sze, Christie C.; Hong, Benjamin Taige; Su, Susan C.; Cantu, Jorge A.; Topczewski, Jacek; Crawford, Thomas O.; Ko, Chien-Ping; Sumner, Charlotte J.; Ma, Long

    2015-01-01

    Mechanisms underlying motor neuron degeneration in spinal muscular atrophy (SMA), the leading inherited cause of infant mortality, remain largely unknown. Many studies have established the importance of hyperphosphorylation of the microtubule-associated protein tau in various neurodegenerative disorders, including Alzheimer's and Parkinson's diseases. However, tau phosphorylation in SMA pathogenesis has yet to be investigated. Here we show that tau phosphorylation on serine 202 (S202) and threonine 205 (T205) is increased significantly in SMA motor neurons using two SMA mouse models and human SMA patient spinal cord samples. Interestingly, phosphorylated tau does not form aggregates in motor neurons or neuromuscular junctions (NMJs), even at late stages of SMA disease, distinguishing it from other tauopathies. Hyperphosphorylation of tau on S202 and T205 is mediated by cyclin-dependent kinase 5 (Cdk5) in SMA disease condition, because tau phosphorylation at these sites is significantly reduced in Cdk5 knock-out mice; genetic knock-out of Cdk5 activating subunit p35 in an SMA mouse model also leads to reduced tau phosphorylation on S202 and T205 in the SMA;p35−/− compound mutant mice. In addition, expression of the phosphorylation-deficient tauS202A,T205A mutant alleviates motor neuron defects in a zebrafish SMA model in vivo and mouse motor neuron degeneration in culture, whereas expression of phosphorylation-mimetic tauS202E,T205E promotes motor neuron defects. More importantly, genetic knock-out of tau in SMA mice rescues synapse stripping on motor neurons, NMJ denervation, and motor neuron degeneration in vivo. Altogether, our findings suggest a novel mechanism for SMA pathogenesis in which hyperphosphorylation of non-aggregating tau by Cdk5 contributes to motor neuron degeneration. PMID:25878277

  15. Abnormally phosphorylated tau protein in senile dementia of Lewy body type and Alzheimer disease: evidence that the disorders are distinct.

    PubMed

    Strong, C; Anderton, B H; Perry, R H; Perry, E K; Ince, P G; Lovestone, S

    1995-01-01

    The relationship between Alzheimer disease (AD) and dementia with Lewy bodies (senile dementia Lewy body type, or SDLT) and dementia in Parkinson's disease is unclear. AD pathology is characterised by both amyloid deposition and abnormal phosphorylation of tau in paired helical filaments (PHF-tau). In AD, abnormally phosphorylated PHF-tau is present in neurofibrillary tangles, in neuritic processes of senile plaques, and also in neuropil threads dispersed throughout the cerebral cortex. Cortical homogenates from 12 cases each of AD and SDLT, 13 cases of Parkinson's disease, and 11 normal controls were examined by Western blot analysis with antibodies that detect PHF-tau. No PHF-tau was found in Parkinson's disease or control cortex. No PHF-tau was found in SDLT cases without histological evidence of tangles. PHF-tau was detectable in SDLT cases with a low density of tangles, and large amounts of PHF-tau were present in AD cases. This study demonstrates that abnormally phosphorylated PHF-tau is only present where tangles are found and not in SDLT cases without tangles or with only occasional tangles. It is concluded that Lewy body dementias are distinct at a molecular level from AD.

  16. Combination of PKCε Activation and PTP1B Inhibition Effectively Suppresses Aβ-Induced GSK-3β Activation and Tau Phosphorylation.

    PubMed

    Kanno, Takeshi; Tsuchiya, Ayako; Tanaka, Akito; Nishizaki, Tomoyuki

    2016-09-01

    Glycogen synthase kinase-3β (GSK-3β) is a key element to phosphorylate tau and form neurofibrillary tangles (NFTs) found in tauopathies including Alzheimer's disease (AD). A current topic for AD therapy is focused upon how to prevent tau phosphorylation. In the present study, PKCε activated Akt and inactivated GSK-3β by directly interacting with each protein. Inhibition of protein tyrosine phosphatase 1B (PTP1B), alternatively, caused an enhancement in the tyrosine phosphorylation of insulin receptor substrate 1 (IRS-1), allowing activation of Akt through a pathway along an IRS-1/phosphatidylinositol 3 kinase (PI3K)/3-phosphoinositide-dependent protein kinase-1 (PDK1)/Akt axis, to phosphorylate and inactivate GSK-3β. Combination of PKCε activation and PTP1B inhibition more sufficiently activated Akt and inactivated GSK-3β than each independent treatment, to suppress amyloid β (Aβ)-induced tau phosphorylation and ameliorate spatial learning and memory impairment in 5xFAD transgenic mice, an animal model of AD. This may represent an innovative strategy for AD therapy.

  17. Two novel kinases phosphorylate tau and the KSP site of heavy neurofilament subunits in high stoichiometric ratios.

    PubMed

    Roder, H M; Ingram, V M

    1991-11-01

    We have identified, purified, and characterized two neurofilament/tau kinases from bovine brain, PK36 and PK40, with apparent Mr of 36,000 and 40,000 and with novel biochemical properties. A specially designed immunoassay for phosphorylated epitopes in neurofilament (NF) proteins was used in the early stages of the purification. Neither kinase is closely associated with the cytoskeleton. Both kinases phosphorylate bovine intermediate (NF-M) and heavy (NF-H) NF subunits and also bovine tau at the expected KSP sequences, though other sites cannot be ruled out. In human paired helical filaments, tau, phosphorylated at these same KSP sites, is a major characterized constituent. Neither kinase is activated by the usual second messengers. Tau and the above NF subunits are phosphorylated in high stoichiometric ratios. In the intermediate NF subunit, all the expected sites appear to be phosphorylated, but in the heavy NF subunit only 7 out of the greater than 40 expected sites can be phosphorylated by our kinases. We demonstrate that both kinases can induce considerable shifts of apparent Mr with SDS-PAGE for tau and, for the first time in vitro, also for the intermediate NF subunit. Interestingly, PK36 and particularly PK40 are strongly inhibited by an excess of free ATP. We propose that during normal aging, and in Alzheimer's disease, age-related mitochondrial dysfunction would reduce ATP levels, which in turn might release the neurofilament/tau kinase from inhibition with consequent paired helical filament formation.

  18. Mammalian Target of Rapamycin (mTor) Mediates Tau Protein Dyshomeostasis

    PubMed Central

    Tang, Zhi; Bereczki, Erika; Zhang, Haiyan; Wang, Shan; Li, Chunxia; Ji, Xinying; Branca, Rui M.; Lehtiö, Janne; Guan, Zhizhong; Filipcik, Peter; Xu, Shaohua; Winblad, Bengt; Pei, Jin-Jing

    2013-01-01

    Previous evidence from post-mortem Alzheimer disease (AD) brains and drug (especially rapamycin)-oriented in vitro and in vivo models implicated an aberrant accumulation of the mammalian target of rapamycin (mTor) in tangle-bearing neurons in AD brains and its role in the formation of abnormally hyperphosphorylated tau. Compelling evidence indicated that the sequential molecular events such as the synthesis and phosphorylation of tau can be regulated through p70 S6 kinase, the well characterized immediate downstream target of mTor. In the present study, we further identified that the active form of mTor per se accumulates in tangle-bearing neurons, particularly those at early stages in AD brains. By using mass spectrometry and Western blotting, we identified three phosphoepitopes of tau directly phosphorylated by mTor. We have developed a variety of stable cell lines with genetic modification of mTor activity using SH-SY5Y neuroblastoma cells as background. In these cellular systems, we not only confirmed the tau phosphorylation sites found in vitro but also found that mTor mediates the synthesis and aggregation of tau, resulting in compromised microtubule stability. Changes of mTor activity cause fluctuation of the level of a battery of tau kinases such as protein kinase A, v-Akt murine thymoma viral oncogene homolog-1, glycogen synthase kinase 3β, cyclin-dependent kinase 5, and tau protein phosphatase 2A. These results implicate mTor in promoting an imbalance of tau homeostasis, a condition required for neurons to maintain physiological function. PMID:23585566

  19. Protein restriction cycles reduce IGF-1 and phosphorylated Tau, and improve behavioral performance in an Alzheimer's disease mouse model.

    PubMed

    Parrella, Edoardo; Maxim, Tom; Maialetti, Francesca; Zhang, Lu; Wan, Junxiang; Wei, Min; Cohen, Pinchas; Fontana, Luigi; Longo, Valter D

    2013-04-01

    In laboratory animals, calorie restriction (CR) protects against aging, oxidative stress, and neurodegenerative pathologies. Reduced levels of growth hormone and IGF-1, which mediate some of the protective effects of CR, can also extend longevity and/or protect against age-related diseases in rodents and humans. However, severely restricted diets are difficult to maintain and are associated with chronically low weight and other major side effects. Here we show that 4 months of periodic protein restriction cycles (PRCs) with supplementation of nonessential amino acids in mice already displaying significant cognitive impairment and Alzheimer's disease (AD)-like pathology reduced circulating IGF-1 levels by 30-70% and caused an 8-fold increase in IGFBP-1. Whereas PRCs did not affect the levels of β amyloid (Aβ), they decreased tau phosphorylation in the hippocampus and alleviated the age-dependent impairment in cognitive performance. These results indicate that periodic protein restriction cycles without CR can promote changes in circulating growth factors and tau phosphorylation associated with protection against age-related neuropathologies. © 2013 The Authors Aging Cell © 2013 Blackwell Publishing Ltd/Anatomical Society of Great Britain and Ireland.

  20. Folic Acid Reduces Tau Phosphorylation by Regulating PP2A Methylation in Streptozotocin-Induced Diabetic Mice

    PubMed Central

    Zheng, Miaoyan; Zou, Chen; Li, Mengyue; Huang, Guowei; Gao, Yuxia; Liu, Huan

    2017-01-01

    High incidence rate of Alzheimer’s disease (AD) is observed in patients with type 2 diabetes. Aggregated β-amyloid (Aβ) and hyperphosphorylated tau are the hallmarks of AD. Hyperphosphorylated tau has been detected in diabetic animals as well as in diabetic patients. Folates mediate the transfer of one carbon unit, required in various biochemical reactions. The effect of folate on tau phosphorylation in diabetic models still remains unknown. In this study, we investigated the effect and mechanism of folic acid on hyperphosphorylation of tau in streptozotocin (STZ)-induced diabetic mice. Diabetic mice induced by STZ, at the age of 10 weeks, were administered with three levels of folic acid: folic acid-deficient diet, diet with normal folic acid content, and 120 μg/kg folic acid diet for 8 weeks. Levels of serum folate and blood glucose were monitored. Tau phosphorylation, protein phosphatase 2A (PP2A) methylation, and Glycogen synthase kinase 3β (GSK-3β) phosphorylation were detected using Western blot. The S-adenosyl methionine:S-adenosyl homocysteine ratio (SAM:SAH) in brain tissues was also determined. DNA methyltransferase (DNMT) mRNA expression levels were detected using real-time PCR. Folic acid reduced tau hyperphosphorylation at Ser396 in the brain of diabetes mellitus (DM) mice. In addition, PP2A methylation and DNMT1 mRNA expression were significantly increased in DM mice post folic acid treatment. GSK-3β phosphorylation was not regulated by folic acid administration. Folic acid can reduce tau phosphorylation by regulating PP2A methylation in diabetic mice. These results support that folic acid can serve as a multitarget neuronal therapeutic agent for treating diabetes-associated cognitive dysfunction. PMID:28422052

  1. Characterization of Early Pathological Tau Conformations and Phosphorylation in Chronic Traumatic Encephalopathy

    PubMed Central

    Kanaan, Nicholas M.; Cox, Kristine; Alvarez, Victor E.; Stein, Thor D.; Poncil, Sharra; McKee, Ann C.

    2016-01-01

    Chronic traumatic encephalopathy (CTE) is a neurodegenerative tauopathy that develops after repetitive head injury. Several lines of evidence in other tauopathies suggest that tau oligomer formation induces neurotoxicity and that tau oligomer-mediated neurotoxicity involves induction of axonal dysfunction through exposure of an N-terminal motif in tau, the phosphatase-activating domain (PAD). Additionally, phosphorylation at serine 422 in tau occurs early and correlates with cognitive decline in patients with Alzheimer disease (AD). We performed immunohistochemistry and immunofluorescence on fixed brain sections and biochemical analysis of fresh brain extracts to characterize the presence of PAD-exposed tau (TNT1 antibody), tau oligomers (TOC1 antibody), tau phosphorylated at S422 (pS422 antibody), and tau truncated at D421 (TauC3 antibody) in the brains of 9-11 cases with CTE and cases of nondemented aged controls and AD (Braak VI) (n = 6, each). All 3 early tau markers (ie, TNT1, TOC1, and pS422) were present in CTE and displayed extensive colocalization in perivascular tau lesions that are considered diagnostic for CTE. Notably, the TauC3 epitope, which is abundant in AD, was relatively sparse in CTE. Together, these results provide the first description of PAD exposure, TOC1 reactive oligomers, phosphorylation of S422, and TauC3 truncation in the tau pathology of CTE. PMID:26671985

  2. Old age potentiates cold-induced tau phosphorylation: linking thermoregulatory deficit with Alzheimer's disease.

    PubMed

    Tournissac, Marine; Vandal, Milène; François, Arnaud; Planel, Emmanuel; Calon, Frédéric

    2017-02-01

    Thermoregulatory deficits coincide with a rise in the incidence of Alzheimer's disease (AD) in old age. Lower body temperature increases tau phosphorylation, a neuropathological hallmark of AD. To determine whether old age potentiates cold-induced tau phosphorylation, we compared the effects of cold exposure (4 °C, 24 hours) in 6- and 18-month-old mice. Cold-induced changes in body temperature, brown adipose tissue activity, and phosphorylation of tau at Ser202 were not different between 6- and 18-month-old mice. However, following cold exposure, only old mice displayed a significant rise in soluble tau pThr181 and pThr231, which was correlated with body temperature. Inactivation of glycogen synthase kinase 3β was more prominent in young mice, suggesting a protective mechanism against cold-induced tau phosphorylation. These results suggest that old age confers higher susceptibility to tau hyperphosphorylation following a change in body temperature, thereby contributing to an enhanced risk of developing AD. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. RNA Interference Silencing of Glycogen Synthase Kinase 3β Inhibites Tau Phosphorylation in Mice with Alzheimer Disease.

    PubMed

    Bian, Hong; Bian, Wei; Lin, Xiaoying; Ma, Zhaoyin; Chen, Wen; Pu, Ying

    2016-09-01

    To explore the effect of glycogen synthase kinase 3β (GSK-3β) silencing on Tau-5 phosphorylation in mice suffering Alzheimer disease (AD). GSK-3β was firstly silenced in human neuroblastoma SH-SY5Y cells using special lentivirus (LV) and the content of Tau (A-12), p-Tau (Ser396) and p-Tau (PHF-6) proteins. GSK-3β was also silenced in APP/PS1 mouse model of AD mice, which were divided into three groups (n = 10): AD, vehicle, and LV group. Ten C57 mice were used as control. The memory ability of mice was tested by square water maze, and the morphological changes of hippocampus and neuron death were analyzed by haematoxylin-eosin staining. Moreover, the levels of Tau and phosphorylated Tau (p-Tau) were detected by western blotting and immunohistochemistry, respectively. The lentivirus-mediated GSK-3β silencing system was successfully developed and silencing GSK-3β at the cellular level reduced Tau phosphorylation obviously. Moreover, GSK-3β silence significantly improved the memory ability of AD mice in LV group compared with AD group (P < 0.05) according to the latency periods and error numbers. As for the hippocampus morphology and neuron death, no significant change was observed between LV group and normal control. Immunohistochemical detection and western blotting revealed that the levels of Tau and p-Tau were significantly down-regulated after GSK-3β silence. Silencing GSK-3β may have a positive effect on inhibiting the pathologic progression of AD through down-regulating the level of p-Tau.

  4. Glucocorticoid-mediated activation of GSK3β promotes tau phosphorylation and impairs memory in type 2 diabetes.

    PubMed

    Dey, Aditi; Hao, Shuai; Wosiski-Kuhn, Marlena; Stranahan, Alexis M

    2017-09-01

    Type 2 diabetes is increasingly recognized as a risk factor for Alzheimer's disease, but the underlying mechanisms remain poorly understood. Hyperphosphorylation of the microtubule-associated protein tau has been reported in rodent models of diabetes, including db/db mice, which exhibit insulin resistance and chronically elevated glucocorticoids due to leptin receptor insufficiency. In this report, we investigated endocrine mechanisms for hippocampal tau phosphorylation in db/db and wild-type mice. By separately manipulating peripheral and intrahippocampal corticosterone levels, we determined that hippocampal corticosteroid exposure promotes tau phosphorylation and activates glycogen synthase kinase 3β (GSK3β). Subsequent experiments in hippocampal slice preparations revealed evidence for a nongenomic interaction between glucocorticoids and GSK3β. To examine whether GSK3β activation mediates tau phosphorylation and impairs memory in diabetes, db/db and wild-type mice received intrahippocampal infusions of TDZD-8, a non-ATP competitive thiadiazolidinone inhibitor of GSK3β. Intrahippocampal TDZD-8 blocked tau hyperphosphorylation and normalized hippocampus-dependent memory in db/db mice, suggesting that pathological synergy between diabetes and Alzheimer's disease may involve glucocorticoid-mediated activation of GSK3β. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Increased CDK5 expression in HIV encephalitis contributes to neurodegeneration via tau phosphorylation and is reversed with Roscovitine.

    PubMed

    Patrick, Christina; Crews, Leslie; Desplats, Paula; Dumaop, Wilmar; Rockenstein, Edward; Achim, Cristian L; Everall, Ian P; Masliah, Eliezer

    2011-04-01

    Recent treatments with highly active antiretroviral therapy (HAART) regimens have been shown to improve general clinical status in patients with human immunodeficiency virus (HIV) infection; however, the prevalence of cognitive alterations and neurodegeneration has remained the same or has increased. These deficits are more pronounced in the subset of HIV patients with the inflammatory condition known as HIV encephalitis (HIVE). Activation of signaling pathways such as GSK3β and CDK5 has been implicated in the mechanisms of HIV neurotoxicity; however, the downstream mediators of these effects are unclear. The present study investigated the involvement of CDK5 and tau phosphorylation in the mechanisms of neurodegeneration in HIVE. In the frontal cortex of patients with HIVE, increased levels of CDK5 and p35 expression were associated with abnormal tau phosphorylation. Similarly, transgenic mice engineered to express the HIV protein gp120 exhibited increased brain levels of CDK5 and p35, alterations in tau phosphorylation, and dendritic degeneration. In contrast, genetic knockdown of CDK5 or treatment with the CDK5 inhibitor roscovitine improved behavioral performance in the water maze test and reduced neurodegeneration, abnormal tau phosphorylation, and astrogliosis in gp120 transgenic mice. These findings indicate that abnormal CDK5 activation contributes to the neurodegenerative process in HIVE via abnormal tau phosphorylation; thus, reducing CDK5 might ameliorate the cognitive impairments associated with HIVE. Copyright © 2011 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  6. Dexmedetomidine Increases Tau Phosphorylation Under Normothermic Conditions In Vivo and In Vitro

    PubMed Central

    Whittington, Robert A.; Virág, László; Gratuze, Maud; Petry, Franck R.; Noël, Anastasia; Poitras, Isabelle; Truchetti, Geoffrey; Marcouiller, François; Papon, Marie-Amélie; Khoury, Noura El; Wong, Kevin; Bretteville, Alexis; Morin, Françoise; Planel, Emmanuel

    2015-01-01

    There is developing interest in the potential association between anesthesia and the onset and progression of Alzheimer's disease. Several anesthetics have thus been demonstrated to induce tau hyperphosphorylation, an effect mostly mediated by anesthesia-induced hypothermia. Here, we tested the hypothesis that acute normothermic administration of dexmedetomidine, an intravenous sedative used in intensive care units, would result in tau hyperphosphorylation in vivo and in vitro. When administered to non-transgenic mice, dexmedetomidine induced tau hyperphosphorylation persisting up to 6h in the hippocampus for the AT8 epitope. Pretreatment with atipamezole, a highly specific α2-adrenergic receptor (α2-AR) antagonist, blocked dexmedetomidine-induced tau hyperphosphorylation. Furthermore, dexmedetomidine dose-dependently increased tau phosphorylation at AT8 in SH-SY5Y cells, impaired mice spatial memory in the Barnes maze, and promoted tau hyperphosphorylation and aggregation in transgenic hTau mice. These findings suggest that dexmedetomidine: i) increases tau phosphorylation, in vivo and in vitro, in the absence of anesthetic-induced hypothermia and through α2-AR activation, ii) promotes tau aggregation in a mouse model of tauopathy, and iii) impacts spatial reference memory. PMID:26058840

  7. Differential interaction and aggregation of 3-repeat and 4-repeat tau isoforms with 14-3-3{zeta} protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadik, Golam; Tanaka, Toshihisa, E-mail: tanaka@psy.med.osaka-u.ac.jp; Kato, Kiyoko

    2009-05-22

    Tau isoforms, 3-repeat (3R) and 4-repeat tau (4R), are differentially involved in neuronal development and in several tauopathies. 14-3-3 protein binds to tau and 14-3-3/tau association has been found both in the development and in tauopathies. To understand the role of 14-3-3 in the differential regulation of tau isoforms, we have performed studies on the interaction and aggregation of 3R-tau and 4R-tau, either phosphorylated or unphosphorylated, with 14-3-3{zeta}. We show by surface plasmon resonance studies that the interaction between unphosphorylated 3R-tau and 14-3-3{zeta} is {approx}3-folds higher than that between unphosphorylated 4R-tau and 14-3-3{zeta}. Phosphorylation of tau by protein kinase Amore » (PKA) increases the affinity of both 3R- and 4R-tau for 14-3-3{zeta} to a similar level. An in vitro aggregation assay employing both transmission electron microscopy and fluorescence spectroscopy revealed the aggregation of unphosphorylated 4R-tau to be significantly higher than that of unphosphorylated 3R-tau following the induction of 14-3-3{zeta}. The filaments formed from 3R- and 4R-tau were almost similar in morphology. In contrast, the aggregation of both 3R- and 4R-tau was reduced to a similar low level after phosphorylation with PKA. Taken together, these results suggest that 14-3-3{zeta} exhibits a similar role for tau isoforms after PKA-phosphorylation, but a differential role for unphosphorylated tau. The significant aggregation of 4R-tau by 14-3-3{zeta} suggests that 14-3-3 may act as an inducer in the generation of 4R-tau-predominant neurofibrillary tangles in tauopathies.« less

  8. Sources of extracellular tau and its signaling.

    PubMed

    Avila, Jesús; Simón, Diana; Díaz-Hernández, Miguel; Pintor, Jesús; Hernández, Félix

    2014-01-01

    The pathology associated with tau protein, tauopathy, has been recently analyzed in different disorders, leading to the suggestion that intracellular and extracellular tau may itself be the principal agent in the transmission and spreading of tauopathies. Tau pathology is based on an increase in the amount of tau, an increase in phosphorylated tau, and/or an increase in aggregated tau. Indeed, phosphorylated tau protein is the main component of tau aggregates, such as the neurofibrillary tangles present in the brain of Alzheimer's disease patients. It has been suggested that intracellular tau could be toxic to neurons in its phosphorylated and/or aggregated form. However, extracellular tau could also damage neurons and since neuronal death is widespread in Alzheimer's disease, mainly among cholinergic neurons, these cells may represent a possible source of extracellular tau. However, other sources of extracellular tau have been proposed that are independent of cell death. In addition, several ways have been proposed for cells to interact with, transmit, and spread extracellular tau, and to transduce signals mediated by this tau. In this work, we will discuss the role of extracellular tau in the spreading of the tau pathology.

  9. Beta-amyloid and phosphorylated tau metabolism changes in narcolepsy over time.

    PubMed

    Liguori, Claudio; Placidi, Fabio; Izzi, Francesca; Nuccetelli, Marzia; Bernardini, Sergio; Sarpa, Maria Giovanna; Cum, Fabrizio; Marciani, Maria Grazia; Mercuri, Nicola Biagio; Romigi, Andrea

    2016-03-01

    The aim od this study is to test whether metabolism of beta-amyloid and tau proteins changes in narcolepsy along with the disease course. We analyzed a population of narcoleptic drug-naïve patients compared to a sample of healthy controls. Patients and controls underwent lumbar puncture for assessment of cerebrospinal fluid (CSF) beta-amyloid1-42 (Aβ42), total tau (t-tau), and phosphorylated tau (p-tau) levels. Moreover, based on the median disease duration of the whole narcolepsy group, the patients were divided into two subgroups: patients with a short disease duration (SdN, <5 years) and patients with a long disease duration (LdN, >5 years). We found significantly lower CSF Aβ42 levels in the whole narcolepsy group with respect to controls. Taking into account the patient subgroups, we documented reduced CSF Aβ42 levels in SdN compared to both LdN and controls. Even LdN patients showed lower CSF Aβ42 levels with respect to controls. Moreover, we documented higher CSF p-tau levels in LdN patients compared to both SdN and controls. Finally, a significant positive correlation between CSF Aβ42 levels and disease duration was evident. We hypothesize that beta-amyloid metabolism and cascade may be impaired in narcolepsy not only at the onset but also along with the disease course, although they show a compensatory profile over time. Concurrently, also CSF biomarkers indicative of neural structure (p-tau) appear to be altered in narcolepsy patients with a long disease duration. However, the mechanism underlying beta-amyloid and tau metabolism impairment in narcolepsy remains still unclear and deserves to be better elucidated.

  10. Levels of Nonphosphorylated and Phosphorylated Tau in Cerebrospinal Fluid of Alzheimer’s Disease Patients

    PubMed Central

    Hu, Yuan Yuan; He, Shan Shu; Wang, Xiaochuan; Duan, Qiu Hong; Grundke-Iqbal, Inge; Iqbal, Khalid; Wang, Jianzhi

    2002-01-01

    We have developed an ultrasensitive bienzyme-substrate-recycle enzyme-linked immunosorbent assay for the measurement of Alzheimer’s disease (AD) abnormally hyperphosphorylated tau in cerebrospinal fluid (CSF). The assay, which recognizes attomolar amounts of tau, is ∼400 and ∼1300 times more sensitive than conventional enzyme-linked immunosorbent assay in determining the hyperphosphorylated tau and total tau, respectively. With this method, we measured both total tau and tau phosphorylated at Ser-396/Ser-404 in lumbar CSFs from AD and control patients. We found that the total tau was 215 ± 77 pg/ml in cognitively normal control (n = 56), 234 ± 92 pg/ml in non-AD neurological (n = 37), 304 ± 126 pg/ml in vascular dementia (n = 46), and 486 ± 168 pg/ml (n = 52) in AD patients, respectively. However, a remarkably elevated level in phosphorylated tau was only found in AD (187 ± 84 pg/ml), as compared with normal controls (54 ± 33 pg/ml), non-AD (63 ± 34 pg/ml), and vascular dementia (72 ± 33 pg/ml) groups. If we used the ratio of hyperphosphorylated tau to total tau of ≥0.33 as cutoff for AD diagnosis, we could confirm the diagnosis in 96% of the clinically diagnosed patients with a specificity of 95%, 86%, 100%, and 94% against nonneurological, non-AD neurological, vascular dementia, and all of the three control groups combined, respectively. It is suggested that the CSF level of tau phosphorylated at Ser-396/Ser-404 is a promising diagnostic marker of AD. PMID:11943712

  11. A novel DYRK1A (dual specificity tyrosine phosphorylation-regulated kinase 1A) inhibitor for the treatment of Alzheimer's disease: effect on Tau and amyloid pathologies in vitro.

    PubMed

    Coutadeur, Séverine; Benyamine, Hélène; Delalonde, Laurence; de Oliveira, Catherine; Leblond, Bertrand; Foucourt, Alicia; Besson, Thierry; Casagrande, Anne-Sophie; Taverne, Thierry; Girard, Angélique; Pando, Matthew P; Désiré, Laurent

    2015-05-01

    The dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) gene is located within the Down Syndrome (DS) critical region on chromosome 21 and is implicated in the generation of Tau and amyloid pathologies that are associated with the early onset Alzheimer's Disease (AD) observed in DS. DYRK1A is also found associated with neurofibrillary tangles in sporadic AD and phosphorylates key AD players (Tau, amyloid precursor, protein, etc). Thus, DYRK1A may be an important therapeutic target to modify the course of Tau and amyloid beta (Aβ) pathologies. Here, we describe EHT 5372 (methyl 9-(2,4-dichlorophenylamino) thiazolo[5,4-f]quinazoline-2-carbimidate), a novel, highly potent (IC50 = 0.22 nM) DYRK1A inhibitor with a high degree of selectivity over 339 kinases. Models in which inhibition of DYRK1A by siRNA reduced and DYRK1A over-expression induced Tau phosphorylation or Aβ production were used. EHT 5372 inhibits DYRK1A-induced Tau phosphorylation at multiple AD-relevant sites in biochemical and cellular assays. EHT 5372 also normalizes both Aβ-induced Tau phosphorylation and DYRK1A-stimulated Aβ production. DYRK1A is thus as a key element of Aβ-mediated Tau hyperphosphorylation, which links Tau and amyloid pathologies. EHT 5372 and other compounds in its class warrant in vivo investigation as a novel, high-potential therapy for AD and other Tau opathies. Inhibition of the dual specificity tyrosine-phosphorylation-regulated kinase 1A (DYRK1A) is a new high-potential therapeutic approach for Alzheimer disease. Here we describe EHT 5372, a novel potent and selective DYRK1A inhibitor. EHT 5372 inhibits DYRK1A-induced Tau phosphorylation, Aβ production and Aβ effects on phospho-Tau, including Tau aggregation. © 2014 International Society for Neurochemistry.

  12. Intracellular and extracellular microtubule associated protein tau as a therapeutic target in Alzheimer disease and other tauopathies.

    PubMed

    Avila, Jesús; Pallas, Noemí; Bolós, Marta; Sayas, C Laura; Hernandez, Felix

    2016-06-01

    Microtubule associated protein tau, a protein mainly expressed in neurons, plays an important role in several diseases related to dementia, named tauopathies. Alzheimer disease is the most relevant tauopathy. The role of tau protein in dementia is now a topic under discussion, and is the focus of this review. We have covered two major areas: tau pathology and tau as a therapeutic target. Tau pathology is mainly related to a gain of toxic function due to an abnormal accumulation, aberrant modifications (such as hyperphosphorylation and truncation, among others) and self-aggregation of tau into oligomers or larger structures. Also, tau can be found extracellularly in a toxic form. Tau-based therapy is mainly centered on avoiding the gain of these toxic functions of tau. Tau therapies are focused on lowering tau levels, mainly of modified tau species that could be toxic for neurons (phosphorylated, truncated or aggregated tau), in intracellular or extracellular form. Decreasing the levels of those toxic species is a possible therapeutic strategy.

  13. Dexmedetomidine increases tau phosphorylation under normothermic conditions in vivo and in vitro.

    PubMed

    Whittington, Robert A; Virág, László; Gratuze, Maud; Petry, Franck R; Noël, Anastasia; Poitras, Isabelle; Truchetti, Geoffrey; Marcouiller, François; Papon, Marie-Amélie; El Khoury, Noura; Wong, Kevin; Bretteville, Alexis; Morin, Françoise; Planel, Emmanuel

    2015-08-01

    There is developing interest in the potential association between anesthesia and the onset and progression of Alzheimer's disease. Several anesthetics have, thus, been demonstrated to induce tau hyperphosphorylation, an effect mostly mediated by anesthesia-induced hypothermia. Here, we tested the hypothesis that acute normothermic administration of dexmedetomidine (Dex), an intravenous sedative used in intensive care units, would result in tau hyperphosphorylation in vivo and in vitro. When administered to nontransgenic mice, Dex-induced tau hyperphosphorylation persisting up to 6 hours in the hippocampus for the AT8 epitope. Pretreatment with atipamezole, a highly specific α2-adrenergic receptor antagonist, blocked Dex-induced tau hyperphosphorylation. Furthermore, Dex dose-dependently increased tau phosphorylation at AT8 in SH-SY5Y cells, impaired mice spatial memory in the Barnes maze and promoted tau hyperphosphorylation and aggregation in transgenic hTau mice. These findings suggest that Dex: (1) increases tau phosphorylation, in vivo and in vitro, in the absence of anesthetic-induced hypothermia and through α2-adrenergic receptor activation, (2) promotes tau aggregation in a mouse model of tauopathy, and (3) impacts spatial reference memory. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Lysine-Directed Post-translational Modifications of Tau Protein in Alzheimer's Disease and Related Tauopathies

    PubMed Central

    Kontaxi, Christiana; Piccardo, Pedro; Gill, Andrew C.

    2017-01-01

    Tau is a microtubule-associated protein responsible mainly for stabilizing the neuronal microtubule network in the brain. Under normal conditions, tau is highly soluble and adopts an “unfolded” conformation. However, it undergoes conformational changes resulting in a less soluble form with weakened microtubule stabilizing properties. Altered tau forms characteristic pathogenic inclusions in Alzheimer's disease and related tauopathies. Although, tau hyperphosphorylation is widely considered to be the major trigger of tau malfunction, tau undergoes several post-translational modifications at lysine residues including acetylation, methylation, ubiquitylation, SUMOylation, and glycation. We are only beginning to define the site-specific impact of each type of lysine modification on tau biology as well as the possible interplay between them, but, like phosphorylation, these modifications are likely to play critical roles in tau's normal and pathobiology. This review summarizes the latest findings focusing on lysine post-translational modifications that occur at both endogenous tau protein and pathological tau forms in AD and other tauopathies. In addition, it highlights the significance of a site-dependent approach of studying tau post-translational modifications under normal and pathological conditions. PMID:28848737

  15. Is phosphorylated tau unique to chronic traumatic encephalopathy? Phosphorylated tau in epileptic brain and chronic traumatic encephalopathy.

    PubMed

    Puvenna, Vikram; Engeler, Madeline; Banjara, Manoj; Brennan, Chanda; Schreiber, Peter; Dadas, Aaron; Bahrami, Ashkon; Solanki, Jesal; Bandyopadhyay, Anasua; Morris, Jacqueline K; Bernick, Charles; Ghosh, Chaitali; Rapp, Edward; Bazarian, Jeffrey J; Janigro, Damir

    2016-01-01

    Repetitive traumatic brain injury (rTBI) is one of the major risk factors for the abnormal deposition of phosphorylated tau (PT) in the brain and chronic traumatic encephalopathy (CTE). CTE and temporal lobe epilepsy (TLE) affect the limbic system, but no comparative studies on PT distribution in TLE and CTE are available. It is also unclear whether PT pathology results from repeated head hits (rTBI). These gaps prevent a thorough understanding of the pathogenesis and clinical significance of PT, limiting our ability to develop preventative and therapeutic interventions. We quantified PT in TLE and CTE to unveil whether a history of rTBI is a prerequisite for PT accumulation in the brain. Six postmortem CTE (mean 73.3 years) and age matched control samples were compared to 19 surgically resected TLE brain specimens (4 months-58 years; mean 27.6 years). No history of TBI was present in TLE or control; all CTE patients had a history of rTBI. TLE and CTE brain displayed increased levels of PT as revealed by immunohistochemistry. No age-dependent changes were noted, as PT was present as early as 4 months after birth. In TLE and CTE, cortical neurons, perivascular regions around penetrating pial vessels and meninges were immunopositive for PT; white matter tracts also displayed robust expression of extracellular PT organized in bundles parallel to venules. Microscopically, there were extensive tau-immunoreactive neuronal, astrocytic and degenerating neurites throughout the brain. In CTE perivascular tangles were most prominent. Overall, significant differences in staining intensities were found between CTE and control (P<0.01) but not between CTE and TLE (P=0.08). pS199 tau analysis showed that CTE had the most high molecular weight tangle-associated tau, whereas epileptic brain contained low molecular weight tau. Tau deposition may not be specific to rTBI since TLE recapitulated most of the pathological features of CTE. Copyright © 2015 Elsevier B.V. All rights

  16. Is phosphorylated tau unique to chronic traumatic encephalopathy? Phosphorylated tau in epileptic brain and chronic traumatic encephalopathy

    PubMed Central

    Puvenna, Vikram; Engeler, Madeline; Banjara, Manoj; Brennan, Chanda; Schreiber, Peter; Dadas, Aaron; Bahrami, Ashkon; Solanki, Jesal; Bandyopadhyay, Anasua; Morris, Jacqueline K.; Bernick, Charles; Ghosh, Chaitali; Bazarian, Jeffrey J.; Janigro, Damir

    2016-01-01

    Repetitive traumatic brain injury (rTBI) is one of the major risk factors for the abnormal deposition of phosphorylated tau (PT) in the brain and chronic traumatic encephalopathy (CTE). CTE and temporal lobe epilepsy (TLE) affect the limbic system, but no comparative studies on PT distribution in TLE and CTE are available. It is also unclear whether PT pathology results from repeated head hits (rTBI). These gaps prevent a thorough understanding of the pathogenesis and clinical significance of PT, limiting our ability to develop preventative and therapeutic interventions. We quantified PT in TLE and CTE to unveil whether a history of rTBI is a prerequisite for PT accumulation in the brain. Six post mortem CTE (mean 73.3 years) and age matched control samples were compared to 19 surgically resected TLE brain specimens (4 months-58 years; mean 27.6 years). No history of TBI was present in TLE or control; all CTE patients had a history of rTBI. TLE and CTE brain displayed increased levels of PT as revealed by immunohistochemistry. No age-dependent changes were noted, as PT was present as early as 4 months after birth. In TLE and CTE, cortical neurons, perivascular regions around penetrating pial vessels and meninges were immunopositive for PT; white matter tracts also displayed robust expression of extracellular PT organized in bundles parallel to venules. Microscopically, there were extensive tau-immunoreactive neuronal, astrocytic and degenerating neurites throughout the brain. In CTE perivascular tangles were most prominent. Overall, significant differences in staining intensities were found between CTE and control (P<0.01) but not between CTE and TLE (P=0.08). pS199 tau analysis showed that CTE had the most high molecular weight tangle-associated tau, whereas epileptic brain contained low molecular weight tau. Tau deposition may not be specific to rTBI since TLE recapitulated most of the pathological features of CTE. PMID:26556772

  17. Neuronal uptake and propagation of a rare phosphorylated high-molecular-weight tau derived from Alzheimer's disease brain

    PubMed Central

    Takeda, Shuko; Wegmann, Susanne; Cho, Hansang; DeVos, Sarah L.; Commins, Caitlin; Roe, Allyson D.; Nicholls, Samantha B.; Carlson, George A.; Pitstick, Rose; Nobuhara, Chloe K.; Costantino, Isabel; Frosch, Matthew P.; Müller, Daniel J.; Irimia, Daniel; Hyman, Bradley T.

    2015-01-01

    Tau pathology is known to spread in a hierarchical pattern in Alzheimer's disease (AD) brain during disease progression, likely by trans-synaptic tau transfer between neurons. However, the tau species involved in inter-neuron propagation remains unclear. To identify tau species responsible for propagation, we examined uptake and propagation properties of different tau species derived from postmortem cortical extracts and brain interstitial fluid of tau-transgenic mice, as well as human AD cortices. Here we show that PBS-soluble phosphorylated high-molecular-weight (HMW) tau, though very low in abundance, is taken up, axonally transported, and passed on to synaptically connected neurons. Our findings suggest that a rare species of soluble phosphorylated HMW tau is the endogenous form of tau involved in propagation and could be a target for therapeutic intervention and biomarker development. PMID:26458742

  18. The new indirubin derivative inhibitors of glycogen synthase kinase-3, 6-BIDECO and 6-BIMYEO, prevent tau phosphorylation and apoptosis induced by the inhibition of protein phosphatase-2A by okadaic acid in cultured neurons.

    PubMed

    Martin, Ludovic; Magnaudeix, Amandine; Wilson, Cornelia M; Yardin, Catherine; Terro, Faraj

    2011-11-01

    Alterations in glycogen synthase kinase-3β (GSK3β) and protein phosphatase-2A (PP2A) have been proposed to be involved in the abnormal tau phosphorylation and aggregation linked to Alzheimer's disease (AD). Interconnections between GSK3β and PP2A signaling pathways are well established. Targeting tau kinases was proposed to represent a therapeutic strategy for AD. However, which tau kinases should be blocked and to what extent, keeping in mind that kinases have physiological roles? Because most kinase inhibitors are relatively specific and many of them interfere with the cell cycle, it is necessary to develop more specific tau kinase inhibitors devoid of cell toxicity. Here, we used the PP2A inhibition by okadaic acid (OKA) in primary cultured cortical neurons as an in vitro model of increased tau phosphorylation and apoptosis. We tested the effects of two newly characterized indirubin derivative inhibitors of GSK3, 6-BIDECO (6-bromoindirubin-3'-[O-(N,N-diethylcarbamyl)-oxime] and 6-BIMYEO (6-bromoindirubin-3'-[O-(2-morpholin-1-ylethyl)-oxime] hydrochloride) on OKA-induced tau phosphorylation and neuronal apoptosis. Both compounds exhibit higher selectivity toward GSK3 compared with other tau kinases (for 6-BIDECO, IC50 is 0.03 μM for GSK3, >10 μM for CDK1, and 10 μM for CDK5; for 6-BIMYEO, IC50 is 0.11 μM for GSK3, 1.8 μM for CDK1, and 0.9 μM for CDK5). We show that 6-BIDECO and 6-BIMYEO used at micromolar concentrations are not neurotoxic and potently reversed tau phosphorylation and apoptosis induced by OKA. The neuroprotection by these compounds should be further validated in animal models of AD. Copyright © 2011 Wiley-Liss, Inc.

  19. Neuronal plasticity in hibernation and the proposed role of the microtubule-associated protein tau as a "master switch" regulating synaptic gain in neuronal networks.

    PubMed

    Arendt, Thomas; Bullmann, Torsten

    2013-09-01

    The present paper provides an overview of adaptive changes in brain structure and learning abilities during hibernation as a behavioral strategy used by several mammalian species to minimize energy expenditure under current or anticipated inhospitable environmental conditions. One cellular mechanism that contributes to the regulated suppression of metabolism and thermogenesis during hibernation is reversible phosphorylation of enzymes and proteins, which limits rates of flux through metabolic pathways. Reversible phosphorylation during hibernation also affects synaptic membrane proteins, a process known to be involved in synaptic plasticity. This mechanism of reversible protein phosphorylation also affects the microtubule-associated protein tau, thereby generating a condition that in the adult human brain is associated with aggregation of tau protein to paired helical filaments (PHFs), as observed in Alzheimer's disease. Here, we put forward the concept that phosphorylation of tau is a neuroprotective mechanism to escape NMDA-mediated hyperexcitability of neurons that would otherwise occur during slow gradual cooling of the brain. Phosphorylation of tau and its subsequent targeting to subsynaptic sites might, thus, work as a kind of "master switch," regulating NMDA receptor-mediated synaptic gain in a wide array of neuronal networks, thereby enabling entry into torpor. If this condition lasts too long, however, it may eventually turn into a pathological trigger, driving a cascade of events leading to neurodegeneration, as in Alzheimer's disease or other "tauopathies".

  20. Tau proteins in the cerebrospinal fluid of patients with subacute sclerosing panencephalitis.

    PubMed

    Yuksel, Deniz; Yilmaz, Deniz; Uyar, Neval Y; Senbil, Nesrin; Gurer, Yavuz; Anlar, Banu

    2010-06-01

    Neurodegenerative diseases characterized by cytoskeletal deformation and neurofibrillary tangles are associated with altered levels of tau and related proteins in cerebrospinal fluid (CSF). Neuronal or glial fibrillary tangles have been shown in 20% of subacute sclerosing panencephalitis (SSPE) patients. We therefore investigated CSF samples from 60 newly diagnosed SSPE and 31 neurological control patients for total tau (t-tau), phosphorylated tau (p-tau), and S100-B levels by ELISA. There was no difference between patient and control groups in t-tau and S100-B levels. p-Tau was lower in the SSPE group (p=0.009). Past history of measles infection, measles immunization status, latent period between measles and onset of SSPE, duration of symptoms, frequency of myoclonia, neurological deficit index, stage and progression rate of the disease, CSF glucose levels and cell counts, CSF and serum measles IgG titer, distribution of lesions on brain magnetic resonance imaging were not related to t-tau, p-tau and S100-B levels. Mental status and age were negatively correlated with t-tau, and male gender and EEG abnormalities were associated with higher t-tau levels. The levels of tau proteins in our patients suggest there is no, or only scarce and immature, neurofibrillary tangle formation in SSPE. Autopsy studies showing neurofibrillary tangles might have examined older patients with longer disease and more parenchymal involvement. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  1. A physically-modified saline suppresses neuronal apoptosis, attenuates tau phosphorylation and protects memory in an animal model of Alzheimer's disease.

    PubMed

    Modi, Khushbu K; Jana, Arundhati; Ghosh, Supurna; Watson, Richard; Pahan, Kalipada

    2014-01-01

    Alzheimer's disease (AD), the leading cause of dementia in the aging population, is characterized by the presence of neuritic plaques, neurofibrillary tangles and extensive neuronal apoptosis. Neuritic plaques are mainly composed of aggregates of amyloid-β (Aβ) protein while neurofibrillary tangles are composed of the hyperphosphorylated tau protein. Despite intense investigations, no effective therapy is currently available to halt the progression of this disease. Here, we have undertaken a novel approach to attenuate apoptosis and tau phosphorylation in cultured neuronal cells and in a transgenic animal model of AD. RNS60 is a 0.9% saline solution containing oxygenated nanobubbles that is generated by subjecting normal saline to Taylor-Couette-Poiseuille (TCP) flow under elevated oxygen pressure. In our experiments, fibrillar Aβ1-42, but not the reverse peptide Aβ42-1, induced apoptosis and cell death in human SHSY5Y neuronal cells. RNS60, but not NS (normal saline), RNS10.3 (TCP-modified saline without excess oxygen) or PNS60 (saline containing excess oxygen without TCP modification), attenuated Aβ(1-42)-induced cell death. RNS60 inhibited neuronal cell death via activation of the type 1A phosphatidylinositol-3 (PI-3) kinase-Akt-BAD pathway. Furthermore, RNS60 also decreased Aβ(1-42)-induced tau phosphorylation via (PI-3 kinase-Akt)-mediated inhibition of GSK-3β. Similarly, RNS60 treatment suppressed neuronal apoptosis, attenuated Tau phosphorylation, inhibited glial activation, and reduced the burden of Aβ in the hippocampus and protected memory and learning in 5XFAD transgenic mouse model of AD. Therefore, RNS60 may be a promising pharmaceutical candidate in halting or delaying the progression of AD.

  2. Escitalopram Ameliorates Forskolin-Induced Tau Hyperphosphorylation in HEK239/tau441 Cells.

    PubMed

    Ren, Qing-Guo; Wang, Yan-Juan; Gong, Wei-Gang; Zhou, Qi-Da; Xu, Lin; Zhang, Zhi-Jun

    2015-06-01

    To investigate the effect of escitalopram (a widely used and highly efficacious antidepressant from the SSRI class) on tau hyperphosphorylation, HEK293/tau441 cells were pretreated with 4 μM of forskolin for 2 h. Then we treated the cells with different doses of escitalopram (0, 5, 10, 20, 40, 80 μM) for 22 h. We measured the phosphorylation level of tau by Western blotting. It was shown that escitalopram could protect tau from hyperphosphorylation induced by pharmacological activation of protein kinase A (PKA) at a dose of 20, 40, and 80 μM in vitro. Interestingly, the same dose of escitalopram could also increase the level of serine-9-phosphorylated GSK-3β (inactive form) and the phosphorylation level of Akt at Ser473 (active form) with no significant change in the level of total GSK-3β and Akt. Unexpectedly, 5-hydroxytryptamine 1A receptor (5-HT1A) agonist 8-OH-DPAT did not decrease forskolin-induced tau hyperphosphorylation. Our results suggest that escitalopram can ameliorate forskolin-induced tau hyperphosphorylation, which is not through the typical 5-HT1A pathway, and Akt/GSK-3β signaling pathway is involved. These findings may support an effective role of antidepressants in the prevention of dementia associated with depression in patients.

  3. Ebselen inhibits iron-induced tau phosphorylation by attenuating DMT1 up-regulation and cellular iron uptake.

    PubMed

    Xie, Ling; Zheng, Wei; Xin, Na; Xie, Jing-Wei; Wang, Tao; Wang, Zhan-You

    2012-08-01

    Dysregulation of iron homeostasis is involved in the pathological process of Alzheimer's disease (AD). We have recently reported that divalent metal transporter 1 (DMT1) is upregulated in an AD transgenic mouse brain, and that silencing of DMT1, which reduces cellular iron influx, results in inhibition of amyloidogenesis in vitro, suggesting a potential target of DMT1 for AD therapy. In the present study, we tested the hypothesis that inhibition of DMT1 with ebselen, a DMT1 transport inhibitor, could affect tau phosphorylation. Human neuroblastoma SH-SY5Y cells were pre-treated with ebselen and then treated with ferrous sulfate (dissolved in ascorbic acid), and the effects of ebselen on tau phosphorylation and the relative signaling pathways were examined. Our results showed that ebselen decreased iron influx, reduced iron-induced ROS production, inhibited the activities of cyclin-dependent kinase 5 and glycogen synthase kinase 3β, and ultimately attenuated the levels of tau phosphorylation at the sites of Thr205, Ser396 and Thr231. The present study indicates that the neuroprotective effect of ebselen on AD is not only related to its antioxidant activity as reported previously, but is also associated with a reduction in tau phosphorylation by inhibition of DMT1. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Reducing Aβ load and tau phosphorylation: Emerging perspective for treating Alzheimer's disease.

    PubMed

    Kalra, Jaspreet; Khan, Aamir

    2015-10-05

    Alzheimer's disease (AD) is a complex, progressive neurological disorder affecting elderly population of above 65 years of age, characterized by failure of memory, loss of acquired skills leading to apraxia, agnosia, aphasia and frequent disturbances in emotion with interpersonal and social deterioration. The extracellular senile plaques and intracellular neurofibrillary tangles composed of amyloid beta protein and highly phosphorylated tau protein, the key components involved in pathogenesis of AD are considered as the pathological hallmark of this disease. This has led to immense development in the field of treatment for AD. Recent evidences suggest that removal of protein deposits from AD brains are the newer attempts for treating AD. The major developments in this direction are the amyloid and tau based therapeutics, which could hold the key to treatment of AD in the near future. Several putative drugs have been thoroughly investigated in preclinical studies, but many of them have failed to produce results in the clinical scenario. Therefore, failures from the past can be treated as lessons for the development of efficacious drugs. In addition to this, various non- pharmacological interventions and miscellaneous drugs are also being used now for combating the AD like disease progression. Thus, present review discusses about the disease modifying therapies together with the various non-pharmacological interventions and miscellaneous drugs for treating AD. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. HIV, prospective memory, and cerebrospinal fluid concentrations of quinolinic acid and phosphorylated Tau.

    PubMed

    Anderson, Albert M; Croteau, David; Ellis, Ronald J; Rosario, Debra; Potter, Michael; Guillemin, Gilles J; Brew, Bruce J; Woods, Steven Paul; Letendre, Scott L

    2018-06-15

    There is mounting evidence that prospective memory (PM) is impaired during HIV infection despite treatment. In this prospective study, 66 adults (43 HIV+ and 23 HIV negative) underwent PM assessment and cerebrospinal fluid (CSF) examination. HIV+ participants had significantly lower PM but significantly higher CSF concentrations of CXCL10 and quinolinic acid (QUIN). Higher CSF phosphorylated Tau (pTau) was associated with worse PM. In a secondary analysis excluding outliers, higher QUIN correlated with higher pTau. CSF QUIN is thus elevated during HIV infection despite antiretroviral therapy and could indirectly contribute to impaired PM by influencing the formation of pTau. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Differential effects of voluntary treadmill exercise and caloric restriction on tau pathogenesis in a mouse model of Alzheimer's disease-like tau pathology fed with Western diet.

    PubMed

    Gratuze, Maud; Julien, Jacinthe; Morin, Françoise; Marette, André; Planel, Emmanuel

    2017-10-03

    Tau is a microtubule-associated protein that becomes pathological when it undergoes hyperphosphorylation and aggregation as seen in Alzheimer's disease (AD). AD is mostly sporadic, with environmental, biological and/or genetic risks factors, interacting together to promote the disease. In the past decade, reports have suggested that obesity in midlife could be one of these risk factors. On the other hand, caloric restriction and physical exercise have been reported to reduce the incidence and outcome of obesity as well as AD. We evaluated the impact of voluntary physical exercise and caloric restriction on tau pathology during 2months in hTau mice under high caloric diet in order to evaluate if these strategies could prevent AD-like pathology in obese conditions. We found no effects of obesity induced by Western diet on both Tau phosphorylation and aggregation compared to controls. However, exercise reduced tau phosphorylation while caloric restriction exacerbated its aggregation in the brains of obese hTau mice. We then examined the mechanisms underlying changes in tau phosphorylation and aggregation by exploring major tau kinases and phosphatases and key proteins involved in autophagy. However, there were no significant effects of voluntary exercise and caloric restriction on these proteins in hTau mice that could explain our results. In this study, we report differential effects of voluntary treadmill exercise and caloric restriction on tau pathogenesis in our obese mice, namely beneficial effect of exercise on tau phosphorylation and deleterious effect of caloric restriction on tau aggregation. Our results suggest that lifestyle strategies used to reduce metabolic disorders and AD must be selected and studied carefully to avoid exacerbation of pathologies. Copyright © 2017. Published by Elsevier Inc.

  7. Insulin deprivation induces PP2A inhibition and tau hyperphosphorylation in hTau mice, a model of Alzheimer's disease-like tau pathology.

    PubMed

    Gratuze, Maud; Julien, Jacinthe; Petry, Franck R; Morin, Françoise; Planel, Emmanuel

    2017-04-12

    Abnormally hyperphosphorylated tau aggregated as intraneuronal neurofibrillary tangles is one of the two neuropathological hallmarks of Alzheimer's disease (AD). The majority of AD cases are sporadic with numerous environmental, biological and genetic risks factors. Interestingly, insulin dysfunction and hyperglycaemia are both risk factors for sporadic AD. However, how hyperglycaemia and insulin dysfunction affect tau pathology, is not well understood. In this study, we examined the effects of insulin deficiency on tau pathology in transgenic hTau mice by injecting different doses of streptozotocin (STZ), a toxin that destroys insulin-producing cells in the pancreas. One high dose of STZ resulted in marked diabetes, and five low doses led to a milder diabetes. Both groups exhibited brain tau hyperphosphorylation but no increased aggregation. Tau hyperphosphorylation correlated with inhibition of Protein Phosphatase 2A (PP2A), the main tau phosphatase. Interestingly, insulin injection 30 minutes before sacrifice partially restored tau phosphorylation to control levels in both STZ-injected groups. Our results confirm a link between insulin homeostasis and tau phosphorylation, which could explain, at least in part, a higher incidence of AD in diabetic patients.

  8. Amyloid-β oligomer Aβ*56 induces specific alterations of tau phosphorylation and neuronal signaling

    PubMed Central

    Amar, Fatou; Sherman, Mathew A.; Rush, Travis; Larson, Megan; Boyle, Gabriel; Chang, Liu; Götz, Jürgen; Buisson, Alain; Lesné, Sylvain E.

    2018-01-01

    Oligomeric forms of amyloid-forming proteins are believed to be the principal initiating bioactive species in many neurodegenerative disorders, including Alzheimer’s disease (AD). Amyloid-β (Aβ) oligomers are implicated in pathological modification and aggregation of the microtubule-associated protein tau. To investigate the specific molecular pathways activated by different assemblies, we isolated various forms of Aβ from Tg2576 mice. We found that the Aβ*56, which is linked with preclinical AD, interacted with NMDA receptors (NMDARs) in primary cortical neurons, increased NMDAR-dependent Ca2+ influx and, consequently, increased intracellular calcium concentrations and the activation of Ca2+-dependent calmodulin kinase IIα (CaMKIIα). In neurons in mice and in culture, activated CaMKIIα induced increased phosphorylation and missorting of tau, which is associated with AD pathology. In contrast, exposure of cultured primary cortical neurons to other oligomeric Aβ forms (dimers and trimers) did not trigger these effects. Our results indicate that distinct Aβ assemblies activate neuronal signaling pathways in a selective manner, and that dissecting the molecular events caused by each may inform more effective therapeutic strategies. PMID:28487416

  9. Sigma-1 receptor regulates Tau phosphorylation and axon extension by shaping p35 turnover via myristic acid

    PubMed Central

    Tsai, Shang-Yi A.; Pokrass, Michael J.; Klauer, Neal R.; Nohara, Hiroshi; Su, Tsung-Ping

    2015-01-01

    Dysregulation of cyclin-dependent kinase 5 (cdk5) per relative concentrations of its activators p35 and p25 is implicated in neurodegenerative diseases. P35 has a short t½ and undergoes rapid proteasomal degradation in its membrane-bound myristoylated form. P35 is converted by calpain to p25, which, along with an extended t½, promotes aberrant activation of cdk5 and causes abnormal hyperphosphorylation of tau, thus leading to the formation of neurofibrillary tangles. The sigma-1 receptor (Sig-1R) is an endoplasmic reticulum chaperone that is implicated in neuronal survival. However, the specific role of the Sig-1R in neurodegeneration is unclear. Here we found that Sig-1Rs regulate proper tau phosphorylation and axon extension by promoting p35 turnover through the receptor’s interaction with myristic acid. In Sig-1R–KO neurons, a greater accumulation of p35 is seen, which results from neither elevated transcription of p35 nor disrupted calpain activity, but rather to the slower degradation of p35. In contrast, Sig-1R overexpression causes a decrease of p35. Sig-1R–KO neurons exhibit shorter axons with lower densities. Myristic acid is found here to bind Sig-1R as an agonist that causes the dissociation of Sig-1R from its cognate partner binding immunoglobulin protein. Remarkably, treatment of Sig-1R–KO neurons with exogenous myristic acid mitigates p35 accumulation, diminishes tau phosphorylation, and restores axon elongation. Our results define the involvement of Sig-1Rs in neurodegeneration and provide a mechanistic explanation that Sig-1Rs help maintain proper tau phosphorylation by potentially carrying and providing myristic acid to p35 for enhanced p35 degradation to circumvent the formation of overreactive cdk5/p25. PMID:25964330

  10. Sigma-1 receptor regulates Tau phosphorylation and axon extension by shaping p35 turnover via myristic acid.

    PubMed

    Tsai, Shang-Yi A; Pokrass, Michael J; Klauer, Neal R; Nohara, Hiroshi; Su, Tsung-Ping

    2015-05-26

    Dysregulation of cyclin-dependent kinase 5 (cdk5) per relative concentrations of its activators p35 and p25 is implicated in neurodegenerative diseases. P35 has a short t½ and undergoes rapid proteasomal degradation in its membrane-bound myristoylated form. P35 is converted by calpain to p25, which, along with an extended t½, promotes aberrant activation of cdk5 and causes abnormal hyperphosphorylation of tau, thus leading to the formation of neurofibrillary tangles. The sigma-1 receptor (Sig-1R) is an endoplasmic reticulum chaperone that is implicated in neuronal survival. However, the specific role of the Sig-1R in neurodegeneration is unclear. Here we found that Sig-1Rs regulate proper tau phosphorylation and axon extension by promoting p35 turnover through the receptor's interaction with myristic acid. In Sig-1R-KO neurons, a greater accumulation of p35 is seen, which results from neither elevated transcription of p35 nor disrupted calpain activity, but rather to the slower degradation of p35. In contrast, Sig-1R overexpression causes a decrease of p35. Sig-1R-KO neurons exhibit shorter axons with lower densities. Myristic acid is found here to bind Sig-1R as an agonist that causes the dissociation of Sig-1R from its cognate partner binding immunoglobulin protein. Remarkably, treatment of Sig-1R-KO neurons with exogenous myristic acid mitigates p35 accumulation, diminishes tau phosphorylation, and restores axon elongation. Our results define the involvement of Sig-1Rs in neurodegeneration and provide a mechanistic explanation that Sig-1Rs help maintain proper tau phosphorylation by potentially carrying and providing myristic acid to p35 for enhanced p35 degradation to circumvent the formation of overreactive cdk5/p25.

  11. Escitalopram Ameliorates Tau Hyperphosphorylation and Spatial Memory Deficits Induced by Protein Kinase A Activation in Sprague Dawley Rats.

    PubMed

    Ren, Qing-Guo; Wang, Yan-Juan; Gong, Wei-Gang; Xu, Lin; Zhang, Zhi-Jun

    2015-01-01

    Here, we investigated the effect of escitalopram pretreatment on protein kinase A (PKA)-induced tau hyperphosphorylation and spatial memory deficits in rats using western blot and behavioral tests, respectively. We demonstrated that escitalopram effectively ameliorated tau hyperphosphorylation and the spatial memory deficits induced by PKA activation. We measured the total and activity-dependent Ser9-phosphorylated levels of glycogen synthase kinase (GSK)-3β in hippocampal extracts. No significant change in the total level of GSK-3β was observed between the different groups. However, compared with forskolin injection alone, pretreatment with escitalopram increased the level of Ser9-phosphorylated GSK-3β. We also demonstrated that escitalopram increased Akt phosphorylation at Ser473 (the active form of Akt). Furthermore, we identified other important kinases and phosphatases, such as protein phosphatase 2A, extracellular signal-regulated kinases 1 and 2, and MAP kinase kinase-1/2, that have previously been reported to play a crucial role in tau phosphorylation; however, we did not detect any significant change in the activation of these kinases or phosphatases in our study. We unexpectedly demonstrated that forskolin caused anxiety-like behavior in rats, and pretreatment with escitalopram did not significantly ameliorate the anxiety-like behavior induced by forskolin. These data provide the first evidence that escitalopram ameliorates forskolin-induced tau hyperphosphorylation and spatial memory impairment in rats; these effects do not occur via the anti-anxiety activity of escitalopram but may involve the Akt/GSK-3β signaling pathway.

  12. Insulin deprivation induces PP2A inhibition and tau hyperphosphorylation in hTau mice, a model of Alzheimer’s disease-like tau pathology

    PubMed Central

    Gratuze, Maud; Julien, Jacinthe; Petry, Franck R.; Morin, Françoise; Planel, Emmanuel

    2017-01-01

    Abnormally hyperphosphorylated tau aggregated as intraneuronal neurofibrillary tangles is one of the two neuropathological hallmarks of Alzheimer’s disease (AD). The majority of AD cases are sporadic with numerous environmental, biological and genetic risks factors. Interestingly, insulin dysfunction and hyperglycaemia are both risk factors for sporadic AD. However, how hyperglycaemia and insulin dysfunction affect tau pathology, is not well understood. In this study, we examined the effects of insulin deficiency on tau pathology in transgenic hTau mice by injecting different doses of streptozotocin (STZ), a toxin that destroys insulin-producing cells in the pancreas. One high dose of STZ resulted in marked diabetes, and five low doses led to a milder diabetes. Both groups exhibited brain tau hyperphosphorylation but no increased aggregation. Tau hyperphosphorylation correlated with inhibition of Protein Phosphatase 2A (PP2A), the main tau phosphatase. Interestingly, insulin injection 30 minutes before sacrifice partially restored tau phosphorylation to control levels in both STZ-injected groups. Our results confirm a link between insulin homeostasis and tau phosphorylation, which could explain, at least in part, a higher incidence of AD in diabetic patients. PMID:28402338

  13. CDK5-mediated tau accumulation triggers methamphetamine-induced neuronal apoptosis via endoplasmic reticulum-associated degradation pathway.

    PubMed

    Xiao, Ning; Zhang, Fu; Zhu, Bofeng; Liu, Chao; Lin, Zhoumeng; Wang, Huijun; Xie, Wei-Bing

    2018-08-01

    Overexposure to methamphetamine (METH) causes apoptosis in a number of cell types, particularly neuronal cells. However, the underlying mechanisms of METH-induced neuronal apoptosis remain to be elucidated. Accumulation of microtubule-associated protein Tau can lead to activation of multiple neurotoxic pathways, which is closely correlated with neuronal apoptosis. The aim of this study was to determine the role of Tau in METH-induced neuronal apoptosis. We determined the expression of two phosphorylated Tau proteins (serine 396 and threonine 231) in the human neuroblastoma SH-SY5Y cells and in the hippocampus of Sprague-Dawley rats treated with vehicle or METH using western blotting, immunohistochemical staining and immunofluorescence staining. We also measured the expression levels of the phosphorylated Tau protein, ubiquitination proteins, the intermediate products of proteasome degradation pathway, CD3-δ (a substrate of proteasome degradation pathway), endoplasmic reticulum stress signal molecule phosphorylated PERK (pPERK), and endoplasmic reticulum stress-specific apoptotic signal molecule caspase-12 in SH-SY5Y cells and in rats after inhibiting the expression of an upstream regulatory factor of phosphorylated Tau protein (CDK5) using siRNA or virus transfection. The results showed that exposure to METH significantly up-regulated the expression of phosphorylated Tau protein in vivo and in vitro and silencing the expression of CDK5 inhibited the up-regulation of phosphorylated Tau induced by METH exposure. METH exposure also significantly increased the expression of ubiquitination protein and CD3-δ and these effects were blocked by CDK5 silencing. In addition, METH exposure significantly elevated the levels of phosphorylated PERK and caspase-12 and these effects were suppressed after CDK5 silencing, which indicates that blockade of CDK5 expression can mitigate METH-induced neuronal apoptosis. These results suggest that METH can impair the endoplasmic

  14. Hyperphosphorylation of tau protein in the ipsilateral thalamus after focal cortical infarction in rats.

    PubMed

    Dong, Da-Wei; Zhang, Yu-Sheng; Yang, Wan-Yong; Wang-Qin, Run-Qi; Xu, An-Ding; Ruan, Yi-Wen

    2014-01-16

    Hyperphosphorylation of tau has been considered as an important risk factor for neurodegenerative diseases. It has been found also in the cortex after focal cerebral ischemia. The present study is aimed at investigating changes of tau protein expression in the ipsilateral thalamus remote from the primary ischemic lesion site after distal middle cerebral artery occlusion (MCAO). The number of neurons in the ventroposterior thalamic nucleus (VPN) was evaluated using Nissl staining and neuronal nuclei (NeuN) immunostaining. Total tau and phosphorylated tau at threonine 231 (p-T231-tau) and serine 199 (p-S199-tau) levels, respectively, in the thalamus were measured using immunostaining and immunoblotting. Moreover, apoptosis was detected with terminal deoxynucleotidyl transferase-mediated digoxigenin-dUTP-biotin nick-end labeling (TUNEL) assay. It was found that the numbers of intact neurons and NeuN(+) cells within the ipsilateral VPN were reduced significantly compared with the sham-operated group, but the levels of p-T231-tau and p-S199-tau in the ipsilateral thalamus were increased significantly in rats subjected to ischemia for 3 days, 7 days and 28 days. Furthermore, the number of TUNEL-positive cells was increased in the ipsilateral VPN at 7 days and 28 days after MCAO. Thus, hyperphosphorylated tau protein is observed in ipsilateral thalamus after focal cerebral infarction in this study. Our findings suggest that the expression of hyperphosphorylated tau protein induced by ischemia may be associated with the secondary thalamic damage after focal cortical infarction via an apoptotic pathway. © 2013 Published by Elsevier B.V.

  15. Effect of tibolone pretreatment on kinases and phosphatases that regulate the expression and phosphorylation of Tau in the hippocampus of rats exposed to ozone

    PubMed Central

    Pinto-Almazán, Rodolfo; Segura-Uribe, Julia J.; Soriano-Ursúa, Marvin A.; Farfán-García, Eunice D.; Gallardo, Juan M.; Guerra-Araiza, Christian

    2018-01-01

    Oxidative stress (OS) is a key process in the development of many neurodegenerative diseases, memory disorders, and other pathological processes related to aging. Tibolone (TIB), a synthetic hormone used as a treatment for menopausal symptoms, decreases lipoperoxidation levels, prevents memory impairment and learning disability caused by ozone (O3) exposure. However, it is not clear if TIB could prevent the increase in phosphorylation induced by oxidative stress of the microtubule-associated protein Tau. In this study, the effects of TIB at different times of administration on the phosphorylation of Tau, the activation of glycogen synthase kinase-3β (GSK3β), and the inactivation of Akt and phosphatases PP2A and PTEN induced by O3 exposure were assessed in adult male Wistar rats. Rats were divided into 10 groups: control group (ozone-free air plus vehicle [C]), control + TIB group (ozone-free air plus TIB 1 mg/kg [C + TIB]); 7, 15, 30, and 60 days of ozone exposure groups [O3] and 7, 15, 30, and 60 days of TIB 1 mg/kg before ozone exposure groups [O3 + TIB]. The effects of O3 exposure and TIB administration were assessed by western blot analysis of total and phosphorylated Tau, GSK3β, Akt, PP2A, and PTEN proteins and oxidative stress marker nitrotyrosine, and superoxide dismutase activity and lipid peroxidation of malondialdehyde by two different spectrophotometric methods (Marklund and TBARS, respectively). We observed that O3 exposure increases Tau phosphorylation, which is correlated with decreased PP2A and PTEN protein levels, diminished Akt protein levels, and increased GSK3β protein levels in the hippocampus of adult male rats. The effects of O3 exposure were prevented by the long-term treatment (over 15 days) with TIB. Malondialdehyde and nitrotyrosine levels increased from 15 to 60 days of exposure to O3 in comparison to C group, and superoxide dismutase activity decreased. Furthermore, TIB administration limited the changes induced by O3 exposure. Our

  16. Effect of tibolone pretreatment on kinases and phosphatases that regulate the expression and phosphorylation of Tau in the hippocampus of rats exposed to ozone.

    PubMed

    Pinto-Almazan, Rodolfo; Segura-Uribe, Julia J; Soriano-Ursúa, Marvin A; Farfán-García, Eunice D; Gallardo, Juan M; Guerra-Araiza, Christian

    2018-03-01

    Oxidative stress (OS) is a key process in the development of many neurodegenerative diseases, memory disorders, and other pathological processes related to aging. Tibolone (TIB), a synthetic hormone used as a treatment for menopausal symptoms, decreases lipoperoxidation levels, prevents memory impairment and learning disability caused by ozone (O 3 ) exposure. However, it is not clear if TIB could prevent the increase in phosphorylation induced by oxidative stress of the microtubule-associated protein Tau. In this study, the effects of TIB at different times of administration on the phosphorylation of Tau, the activation of glycogen synthase kinase-3β (GSK3β), and the inactivation of Akt and phosphatases PP2A and PTEN induced by O 3 exposure were assessed in adult male Wistar rats. Rats were divided into 10 groups: control group (ozone-free air plus vehicle [C]), control + TIB group (ozone-free air plus TIB 1 mg/kg [C + TIB]); 7, 15, 30, and 60 days of ozone exposure groups [O 3 ] and 7, 15, 30, and 60 days of TIB 1 mg/kg before ozone exposure groups [O 3 + TIB]. The effects of O 3 exposure and TIB administration were assessed by western blot analysis of total and phosphorylated Tau, GSK3β, Akt, PP2A, and PTEN proteins and oxidative stress marker nitrotyrosine, and superoxide dismutase activity and lipid peroxidation of malondialdehyde by two different spectrophotometric methods (Marklund and TBARS, respectively). We observed that O 3 exposure increases Tau phosphorylation, which is correlated with decreased PP2A and PTEN protein levels, diminished Akt protein levels, and increased GSK3β protein levels in the hippocampus of adult male rats. The effects of O 3 exposure were prevented by the long-term treatment (over 15 days) with TIB. Malondialdehyde and nitrotyrosine levels increased from 15 to 60 days of exposure to O 3 in comparison to C group, and superoxide dismutase activity decreased. Furthermore, TIB administration limited the changes induced by O 3

  17. No support for premature central nervous system aging in HIV-1 when measured by cerebrospinal fluid phosphorylated tau (p-tau).

    PubMed

    Krut, Jan J; Price, Richard W; Zetterberg, Henrik; Fuchs, Dietmar; Hagberg, Lars; Yilmaz, Aylin; Cinque, Paola; Nilsson, Staffan; Gisslén, Magnus

    2017-07-04

    The prevalence of neurocognitive deficits are reported to be high in HIV-1 positive patients, even with suppressive antiretroviral treatment, and it has been suggested that HIV can cause accelerated aging of the brain. In this study we measured phosphorylated tau (p-tau) in cerebrospinal fluid (CSF) as a potential marker for premature central nervous system (CNS) aging. P-tau increases with normal aging but is not affected by HIV-associated neurocognitive disorders. With a cross-sectional retrospective design, p-tau, total tau (t-tau), neopterin and HIV-RNA were measured in CSF together with plasma HIV-RNA and blood CD4 + T-cells of 225 HIV-infected patients <50 y of age, subdivided into 3 groups: untreated neuroasymptomatic (NA) (n = 145), on suppressive antiretroviral treatment (cART) (n = 49), and HIV-associated dementia (HAD) (n = 31). HIV-negative healthy subjects served as controls (n = 79). P-tau was not significantly higher in any HIV-infected group compared to HIV-negative controls. Significant increases in t-tau were found as expected in patients with HAD compared to NA, cART, and control groups (p < 0.001 ). P-tau was not higher in HIV-infected patients compared to uninfected controls, thus failing to support a role for premature or accelerated brain aging in HIV infection.

  18. Effects of PTEN inhibition on the regulation of Tau phosphorylation in rat cortical neuronal injury after oxygen and glucose deprivation.

    PubMed

    Zhao, Jing; Chen, Yurong; Xu, Yuxia; Pi, Guanghuan

    2016-01-01

    This report investigated the involvement of the PTEN pathway in the regulation of Tau phosphorylation using an oxygen and glucose deprivation (OGD) model with rat cortical neurons. Primary cortical neurons were used to establish the oxygen and glucose deprivation (OGD) model in vitro. These were randomly divided into control, OGD, bpV+OGD, As+OGD, Se+OGD and Mock treatment groups. The neuron viability was assessed by MTT, the cell apoptosis was detected using TUNEL staining. The expression of Phospho-PTEN/PTEN, Phospho-Tau/Tau, Phospho-Akt/Akt and Phospho-GSK-3β/GSK-3β were detected by Western blotting. OGD induced Tau phosphorylation through PTEN and glycogen synthase kinase-3β (GSK-3β) activation, together with a decrease in AKT activity. Pre-treatment with bpv, a potent PTEN inhibitor, and PTEN antisense nucleotides decreased PTEN and GSK-3β activity and caused alterations in Tau phosphorylation. Neuronal apoptosis was also reduced. The PTEN/Akt/GSK-3β/Tau pathway is involved in the regulation of neuronal injury, providing a novel route for protecting neurons following neonatal HI.

  19. β-Amyloid Oligomers Induce Phosphorylation of Tau and Inactivation of Insulin Receptor Substrate via c-Jun N-Terminal Kinase Signaling: Suppression by Omega-3 Fatty Acids and Curcumin

    PubMed Central

    Ma, Qiu-Lan; Yang, Fusheng; Rosario, Emily R.; Ubeda, Oliver J.; Beech, Walter; Gant, Dana J.; Chen, Ping Ping; Hudspeth, Beverly; Chen, Cory; Zhao, Yongle; Vinters, Harry V.; Frautschy, Sally A.

    2009-01-01

    Both insulin resistance (type II diabetes) and β-amyloid (Aβ) oligomers are implicated in Alzheimer's disease (AD). Here, we investigate the role of Aβ oligomer-induced c-Jun N-terminal kinase (JNK) activation leading to phosphorylation and degradation of the adaptor protein insulin receptor substrate-1 (IRS-1). IRS-1 couples insulin and other trophic factor receptors to downstream kinases and neuroprotective signaling. Increased phospho-IRS-1 is found in AD brain and insulin-resistant tissues from diabetics. Here, we report Aβ oligomers significantly increased active JNK and phosphorylation of IRS-1 (Ser616) and tau (Ser422) in cultured hippocampal neurons, whereas JNK inhibition blocked these responses. The omega-3 fatty acid docosahexaenoic acid (DHA) similarly inhibited JNK and the phosphorylation of IRS-1 and tau in cultured hippocampal neurons. Feeding 3xTg-AD transgenic mice a diet high in saturated and omega-6 fat increased active JNK and phosphorylated IRS-1 and tau. Treatment of the 3xTg-AD mice on high-fat diet with fish oil or curcumin or a combination of both for 4 months reduced phosphorylated JNK, IRS-1, and tau and prevented the degradation of total IRS-1. This was accompanied by improvement in Y-maze performance. Mice fed with fish oil and curcumin for 1 month had more significant effects on Y-maze, and the combination showed more significant inhibition of JNK, IRS-1, and tau phosphorylation. These data indicate JNK mediates Aβ oligomer inactivation of IRS-1 and phospho-tau pathology and that dietary treatment with fish oil/DHA, curcumin, or a combination of both has the potential to improve insulin/trophic signaling and cognitive deficits in AD. PMID:19605645

  20. Expression of Tau Pathology-Related Proteins in Different Brain Regions: A Molecular Basis of Tau Pathogenesis.

    PubMed

    Hu, Wen; Wu, Feng; Zhang, Yanchong; Gong, Cheng-Xin; Iqbal, Khalid; Liu, Fei

    2017-01-01

    Microtubule-associated protein tau is hyperphosphorylated and aggregated in affected neurons in Alzheimer disease (AD) brains. The tau pathology starts from the entorhinal cortex (EC), spreads to the hippocampus and frontal and temporal cortices, and finally to all isocortex areas, but the cerebellum is spared from tau lesions. The molecular basis of differential vulnerability of different brain regions to tau pathology is not understood. In the present study, we analyzed brain regional expressions of tau and tau pathology-related proteins. We found that tau was hyperphosphorylated at multiple sites in the frontal cortex (FC), but not in the cerebellum, from AD brain. The level of tau expression in the cerebellum was about 1/4 of that seen in the frontal and temporal cortices in human brain. In the rat brain, the expression level of tau with three microtubule-binding repeats (3R-tau) was comparable in the hippocampus, EC, FC, parietal-temporal cortex (PTC), occipital-temporal cortex (OTC), striatum, thalamus, olfactory bulb (OB) and cerebellum. However, the expression level of 4R-tau was the highest in the EC and the lowest in the cerebellum. Tau phosphatases, kinases, microtubule-related proteins and other tau pathology-related proteins were also expressed in a region-specific manner in the rat brain. These results suggest that higher levels of tau and tau kinases in the EC and low levels of these proteins in the cerebellum may accounts for the vulnerability and resistance of these representative brain regions to the development of tau pathology, respectively. The present study provides the regional expression profiles of tau and tau pathology-related proteins in the brain, which may help understand the brain regional vulnerability to tau pathology in neurodegenerative tauopathies.

  1. Phosphorylated human tau associates with mouse prion protein amyloid in scrapie-infected mice but does not increase progression of clinical disease.

    PubMed

    Race, Brent; Phillips, Katie; Kraus, Allison; Chesebro, Bruce

    2016-07-03

    Tauopathies are a family of neurodegenerative diseases in which fibrils of human hyperphosphorylated tau (P-tau) are believed to cause neuropathology. In Alzheimer disease, P-tau associates with A-beta amyloid and contributes to disease pathogenesis. In familial human prion diseases and variant CJD, P-tau often co-associates with prion protein amyloid, and might also accelerate disease progression. To test this latter possibility, here we compared progression of amyloid prion disease in vivo after scrapie infection of mice with and without expression of human tau. The mice used expressed both anchorless prion protein (PrP) and membrane-anchored PrP, that generate disease associated amyloid and non-amyloid PrP (PrPSc) after scrapie infection. Human P-tau induced by scrapie infection was only rarely associated with non-amyloid PrPSc, but abundant human P-tau was detected at extracellular, perivascular and axonal deposits associated with amyloid PrPSc. This pathology was quite similar to that seen in familial prion diseases. However, association of human and mouse P-tau with amyloid PrPSc did not diminish survival time following prion infection in these mice. By analogy, human P-tau may not affect prion disease progression in humans. Alternatively, these results might be due to other factors, including rapidity of disease, blocking effects by mouse tau, or low toxicity of human P-tau in this model.

  2. Behind the curtain of tauopathy: a show of multiple players orchestrating tau toxicity.

    PubMed

    Huang, Yunpeng; Wu, Zhihao; Zhou, Bing

    2016-01-01

    tau, a microtubule-associated protein, directly binds with microtubules to dynamically regulate the organization of cellular cytoskeletons, and is especially abundant in neurons of the central nervous system. Under disease conditions such as Pick's disease, progressive supranuclear palsy, frontotemporal dementia, parkinsonism linked to chromosome 17 and Alzheimer's disease, tau proteins can self-assemble to paired helical filaments progressing to neurofibrillary tangles. In these diseases, collectively referred to as "tauopathies", alterations of diverse tau modifications including phosphorylation, metal ion binding, glycosylation, as well as structural changes of tau proteins have all been observed, indicating the complexity and variability of factors in the regulation of tau toxicity. Here, we review our current knowledge and hypotheses from relevant studies on tau toxicity, emphasizing the roles of phosphorylations, metal ions, folding and clearance control underlining tau etiology and their regulations. A summary of clinical efforts and associated findings of drug candidates under development is also presented. It is hoped that a more comprehensive understanding of tau regulation will provide us with a better blueprint of tau networking in neuronal cells and offer hints for the design of more efficient strategies to tackle tau-related diseases in the future.

  3. LRRK2 Mediated Changes in TAU Phosphorylation

    DTIC Science & Technology

    2012-10-01

    DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE 01 October 2012 2. REPORT TYPE Final 3. DATES COVERED 4 April 2011 – 3 September...2012 4 . TITLE AND SUBTITLE 5a. CONTRACT NUMBER LRRK2 Mediated Changes in TAU Phosphorylation 5b. GRANT NUMBER W81XWH-11-1-0338 5c. PROGRAM...Page Introduction…………………………………………………………….………..….. 4 Body………………………………………………………………………………….. 4 Key Research

  4. Loss of intramolecular electrostatic interactions and limited conformational ensemble may promote self-association of cis-tau peptide.

    PubMed

    Barman, Arghya; Hamelberg, Donald

    2015-03-01

    Self-association of proteins can be triggered by a change in the distribution of the conformational ensemble. Posttranslational modification, such as phosphorylation, can induce a shift in the ensemble of conformations. In the brain of Alzheimer's disease patients, the formation of intra-cellular neurofibrillary tangles deposition is a result of self-aggregation of hyper-phosphorylated tau protein. Biochemical and NMR studies suggest that the cis peptidyl prolyl conformation of a phosphorylated threonine-proline motif in the tau protein renders tau more prone to aggregation than the trans isomer. However, little is known about the role of peptidyl prolyl cis/trans isomerization in tau aggregation. Here, we show that intra-molecular electrostatic interactions are better formed in the trans isomer. We explore the conformational landscape of the tau segment containing the phosphorylated-Thr(231)-Pro(232) motif using accelerated molecular dynamics and show that intra-molecular electrostatic interactions are coupled to the isomeric state of the peptidyl prolyl bond. Our results suggest that the loss of intra-molecular interactions and the more restricted conformational ensemble of the cis isomer could favor self-aggregation. The results are consistent with experiments, providing valuable complementary atomistic insights and a hypothetical model for isomer specific aggregation of the tau protein. © 2014 Wiley Periodicals, Inc.

  5. Structure of a Protein Phosphatase 2A Holoenzyme: Insights into B55-Mediated Tau Dephosphorylation

    PubMed Central

    Xu, Yanhui; Chen, Yu; Zhang, Ping; Jeffrey, Philip D.; Shi, Yigong

    2009-01-01

    Summary Protein phosphatase 2A (PP2A) regulates many essential aspects of cellular physiology. Members of the regulatory B/B55/PR55 family are thought to play a key role in the dephosphorylation of Tau, whose hyperphosphorylation contributes to Alzheimer's disease. The underlying mechanisms of the PP2A-Tau connection remain largely enigmatic. Here, we report the complete reconstitution of a Tau dephosphorylation assay and the crystal structure of a heterotrimeric PP2A holoenzyme involving the regulatory subunit Bα. We show that Bα specifically and markedly facilitates dephosphorylation of the phosphorylated Tau in our reconstituted assay. The Bα subunit comprises a seven-bladed β propeller, with an acidic, substrate-binding groove located in the center of the propeller. The β propeller latches onto the ridge of the PP2A scaffold subunit with the help of a protruding β hairpin arm. Structure-guided mutagenesis studies revealed the underpinnings of PP2A-mediated dephosphorylation of Tau. PMID:18922469

  6. Tau mislocalization to dendritic spines mediates synaptic dysfunction independently of neurodegeneration

    PubMed Central

    Hoover, Brian R.; Reed, Miranda N.; Su, Jianjun; Penrod, Rachel D.; Kotilinek, Linda A.; Grant, Marianne K.; Pitstick, Rose; Carlson, George A.; Lanier, Lorene M.; Yuan, Li-Lian; Ashe, Karen H.; Liao, Dezhi

    2010-01-01

    The microtubule-associated protein tau accumulates in Alzheimer’s and other fatal dementias, which manifest when forebrain neurons die. Recent advances in understanding these disorders indicate that brain dysfunction precedes neurodegeneration, but the role of tau is unclear. Here, we show that early tau-related deficits develop not from the loss of synapses or neurons, but rather as a result of synaptic abnormalities caused by the accumulation of hyperphosphorylated tau within intact dendritic spines, where it disrupts synaptic function by impairing glutamate receptor trafficking or synaptic anchoring. Mutagenesis of 14 disease-associated serine and threonine amino acid residues to create pseudohyperphosphorylated tau caused tau mislocalization while creation of phosphorylation-deficient tau blocked the mis-targeting of tau to dendritic spines. Thus, tau phosphorylation plays a critical role in mediating tau mislocalization and subsequent synaptic impairment. These data establish that the locus of early synaptic malfunction caused by tau resides in dendritic spines. PMID:21172610

  7. CSF neurofilament light chain and phosphorylated tau 181 predict disease progression in PSP.

    PubMed

    Rojas, Julio C; Bang, Jee; Lobach, Iryna V; Tsai, Richard M; Rabinovici, Gil D; Miller, Bruce L; Boxer, Adam L

    2018-01-23

    To determine the ability of CSF biomarkers to predict disease progression in progressive supranuclear palsy (PSP). We compared the ability of baseline CSF β-amyloid 1-42 , tau, phosphorylated tau 181 (p-tau), and neurofilament light chain (NfL) concentrations, measured by INNO-BIA AlzBio3 or ELISA, to predict 52-week changes in clinical (PSP Rating Scale [PSPRS] and Schwab and England Activities of Daily Living [SEADL]), neuropsychological, and regional brain volumes on MRI using linear mixed effects models controlled for age, sex, and baseline disease severity, and Fisher F density curves to compare effect sizes in 50 patients with PSP. Similar analyses were done using plasma NfL measured by single molecule arrays in 141 patients. Higher CSF NfL concentration predicted more rapid decline (biomarker × time interaction) over 52 weeks in PSPRS ( p = 0.004, false discovery rate-corrected) and SEADL ( p = 0.008), whereas lower baseline CSF p-tau predicted faster decline on PSPRS ( p = 0.004). Higher CSF tau concentrations predicted faster decline by SEADL ( p = 0.004). The CSF NfL/p-tau ratio was superior for predicting change in PSPRS, compared to p-tau ( p = 0.003) or NfL ( p = 0.001) alone. Higher NfL concentrations in CSF or blood were associated with greater superior cerebellar peduncle atrophy (fixed effect, p ≤ 0.029 and 0.008, respectively). Both CSF p-tau and NfL correlate with disease severity and rate of disease progression in PSP. The inverse correlation of p-tau with disease severity suggests a potentially different mechanism of tau pathology in PSP as compared to Alzheimer disease. Copyright © 2017 American Academy of Neurology.

  8. Interaction of tau protein with model lipid membranes induces tau structural compaction and membrane disruption

    PubMed Central

    Jones, Emmalee M.; Dubey, Manish; Camp, Phillip J.; Vernon, Briana C.; Biernat, Jacek; Mandelkow, Eckhard; Majewski, Jaroslaw; Chi, Eva Y.

    2012-01-01

    The misfolding and aggregation of the intrinsically disordered, microtubule-associated tau protein into neurofibrillary tangles is implicated in the pathogenesis of Alzheimer's disease. However, the mechanisms of tau aggregation and toxicity remain unknown. Recent work has shown that lipid membrane can induce tau aggregation and that membrane permeabilization may serve as a pathway by which protein aggregates exert toxicity, suggesting that the plasma membrane may play dual roles in tau pathology. This prompted our investigation to assess tau's propensity to interact with membranes and to elucidate the mutually disruptive structural perturbations the interactions induce in both tau and the membrane. We show that although highly charged and soluble, the full-length tau (hTau40) is also highly surface active, selectively inserts into anionic DMPG lipid monolayers and induces membrane morphological changes. To resolve molecular-scale structural details of hTau40 associated with lipid membranes, X-ray and neutron scattering techniques are utilized. X-ray reflectivity indicates hTau40's presence underneath a DMPG monolayer and penetration into the lipid headgroups and tailgroups, whereas grazing incidence X-ray diffraction shows that hTau40 insertion disrupts lipid packing. Moreover, both air/water and DMPG lipid membrane interfaces induce the disordered hTau40 to partially adopt a more compact conformation with density similar to that of a folded protein. Neutron reflectivity shows that tau completely disrupts supported DMPG bilayers while leaving the neutral DPPC bilayer intact. Our results show that hTau40's strong interaction with anionic lipids induces tau structural compaction and membrane disruption, suggesting possible membrane-based mechanisms of tau aggregation and toxicity in neurodegenerative diseases. PMID:22401494

  9. APP metabolism regulates tau proteostasis in human cerebral cortex neurons.

    PubMed

    Moore, Steven; Evans, Lewis D B; Andersson, Therese; Portelius, Erik; Smith, James; Dias, Tatyana B; Saurat, Nathalie; McGlade, Amelia; Kirwan, Peter; Blennow, Kaj; Hardy, John; Zetterberg, Henrik; Livesey, Frederick J

    2015-05-05

    Accumulation of Aβ peptide fragments of the APP protein and neurofibrillary tangles of the microtubule-associated protein tau are the cellular hallmarks of Alzheimer's disease (AD). To investigate the relationship between APP metabolism and tau protein levels and phosphorylation, we studied human-stem-cell-derived forebrain neurons with genetic forms of AD, all of which increase the release of pathogenic Aβ peptides. We identified marked increases in intracellular tau in genetic forms of AD that either mutated APP or increased its dosage, suggesting that APP metabolism is coupled to changes in tau proteostasis. Manipulating APP metabolism by β-secretase and γ-secretase inhibition, as well as γ-secretase modulation, results in specific increases and decreases in tau protein levels. These data demonstrate that APP metabolism regulates tau proteostasis and suggest that the relationship between APP processing and tau is not mediated solely through extracellular Aβ signaling to neurons. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Cerebrospinal Fluid Amyloid-β 42, Total Tau and Phosphorylated Tau are Low in Patients with Normal Pressure Hydrocephalus: Analogies and Differences with Alzheimer's Disease.

    PubMed

    Santangelo, Roberto; Cecchetti, Giordano; Bernasconi, Maria Paola; Cardamone, Rosalinda; Barbieri, Alessandra; Pinto, Patrizia; Passerini, Gabriella; Scomazzoni, Francesco; Comi, Giancarlo; Magnani, Giuseppe

    2017-01-01

    Co-existence of Alzheimer's disease (AD) in normal pressure hydrocephalus (NPH) is a frequent finding, thus a common pathophysiological basis between AD and NPH has been postulated. We measured CSF amyloid-β 42 (Aβ42), total tau (t-tau), and phosphorylated tau (p-tau) concentrations in a sample of 294 patients with different types of dementia and 32 subjects without dementia. We then compared scores on neuropsychological tests of NPH patients with pathological and normal CSF Aβ42 values. Aβ42 levels were significantly lower in NPH than in control patients, with no significant differences between AD and NPH. On the contrary, t-tau and p-tau levels were significantly lower in NPH than in AD, with no differences between NPH and controls. NPH patients with pathological Aβ42 levels did not perform worse than NPH patients with normal Aβ42 levels in any cognitive domains. Our data seem to support the hypothesis of amyloid accumulation in brains of NPH patients. Nevertheless, amyloid does not seem to play a pathogenetic role in the development of cognitive deficits in NPH.

  11. Hyperforin attenuates aluminum-induced Aβ production and Tau phosphorylation via regulating Akt/GSK-3β signaling pathway in PC12 cells.

    PubMed

    Huang, Wanyue; Cheng, Ping; Yu, Kaiyuan; Han, Yanfei; Song, Miao; Li, Yanfei

    2017-12-01

    Aluminum (Al) is a neurotoxicant and cause β-amyloid (Aβ) peptides aggregation and tau hyperphosphorylation. Hyperforin (HF) is one of the major active constituents of the extracts of St. John's Wort (Hypericum perforatum), can treat Alzheimer's disease (AD) and other diseases involving peptide accumulation and cognition impairment. To determine the effects of HF on Al-induced Aβ formation and tau hyperphosphorylation, PC12 cells were cultured and treated with Al-malt (500μM) and/or HF (1μM). The results showed that HF treatment significantly attenuated Al-malt-induced Aβ 1-42 production by reducing the expressions of APP, BACE1 and PS1, while increasing the expressions of sAPPα, ADAM9/10/17, and tau phosphorylation in PC12 cells. In addition, HF treatment also increased phosphorylation of AKT (Ser473) and inhibited GSK-3β activity by increasing phosphorylation of GSK-3β (Ser9). These results indicated that HF may exert the protection via regulating the AKT/GSK-3β signaling to reduce Aβ production and tau phosphorylation in PC12 cells. Furthermore, these results could lead a possible therapeutics for the management of Al neurotoxicity. Copyright © 2017. Published by Elsevier Masson SAS.

  12. Selective loss of glycogen synthase kinase-3α in birds reveals distinct roles for GSK-3 isozymes in tau phosphorylation.

    PubMed

    Alon, Lina Tsaadon; Pietrokovski, Shmuel; Barkan, Shay; Avrahami, Limor; Kaidanovich-Beilin, Oksana; Woodgett, James R; Barnea, Anat; Eldar-Finkelman, Hagit

    2011-04-20

    Mammalian glycogen synthase kinase-3 (GSK-3), a critical regulator in neuronal signaling, cognition, and behavior, exists as two isozymes GSK-3α and GSK-3β. Their distinct biological functions remains largely unknown. Here, we examined the evolutionary significance of each of these isozymes. Surprisingly, we found that unlike other vertebrates that harbor both GSK-3 genes, the GSK-3α gene is missing in birds. GSK-3-mediated tau phosphorylation was significantly lower in adult bird brains than in mouse brains, a phenomenon that was reproduced in GSK-3α knockout mouse brains. Tau phosphorylation was detected in brains from bird embryos suggesting that GSK-3 isozymes play distinct roles in tau phosphorylation during development. Birds are natural GSK-3α knockout organisms and may serve as a novel model to study the distinct functions of GSK-3 isozymes. Copyright © 2011 Federation of European Biochemical Societies. All rights reserved.

  13. Orexin-A is Associated with Increases in Cerebrospinal Fluid Phosphorylated-Tau in Cognitively Normal Elderly Subjects

    PubMed Central

    Osorio, Ricardo S.; Ducca, Emma L.; Wohlleber, Margaret E.; Tanzi, Emily B.; Gumb, Tyler; Twumasi, Akosua; Tweardy, Samuel; Lewis, Clifton; Fischer, Esther; Koushyk, Viachaslau; Cuartero-Toledo, Maria; Sheikh, Mohammed O.; Pirraglia, Elizabeth; Zetterberg, Henrik; Blennow, Kaj; Lu, Shou-En; Mosconi, Lisa; Glodzik, Lidia; Schuetz, Sonja; Varga, Andrew W.; Ayappa, Indu; Rapoport, David M.; de Leon, Mony J.

    2016-01-01

    Study Objectives: To evaluate the role of orexin-A with respect to cerebrospinal fluid (CSF) Alzheimer disease (AD) biomarkers, and explore its relationship to cognition and sleep characteristics in a group of cognitively normal elderly individuals. Methods: Subjects were recruited from multiple community sources for National Institutes of Health supported studies on normal aging, sleep and CSF biomarkers. Sixty-three participants underwent home monitoring for sleep-disordered breathing, clinical, sleep and cognitive evaluations, as well as a lumbar puncture to obtain CSF. Individuals with medical history or with magnetic resonance imaging evidence of disorders that may affect brain structure or function were excluded. Correlation and linear regression analyses were used to assess the relationship between orexin-A and CSF AD-biomarkers controlling for potential sociodemographic and sleep confounders. Results: Levels of orexin-A, amyloid beta 42 (Aβ42), phosphorylated-tau (P-Tau), total-tau (T-Tau), Apolipoprotein E4 status, age, years of education, reported total sleep time, number of awakenings, apnea-hypopnea indices (AHI), excessive daytime sleepiness, and a cognitive battery were analyzed. Subjects were 69.59 ± 8.55 years of age, 57.1% were female, and 30.2% were apolipoprotein E4+. Orexin-A was positively correlated with Aβ42, P-Tau, and T-Tau. The associations between orexin-A and the AD-biomarkers were driven mainly by the relationship between orexin-A and P-Tau and were not influenced by other clinical or sleep characteristics that were available. Conclusions: Orexin-A is associated with increased P-Tau in normal elderly individuals. Increases in orexin-A and P-Tau might be a consequence of the reduction in the proportion of the deeper, more restorative slow wave sleep and rapid eye movement sleep reported with aging. Clinical Trial Registration: Clinicaltrials.gov registration number NCT01962779. Citation: Osorio RS, Ducca EL, Wohlleber ME, Tanzi EB

  14. Dimethyl Sulfoxide Induces Both Direct and Indirect Tau Hyperphosphorylation

    PubMed Central

    Julien, Carl; Marcouiller, François; Bretteville, Alexis; El Khoury, Noura B.; Baillargeon, Joanie; Hébert, Sébastien S.; Planel, Emmanuel

    2012-01-01

    Dimethyl sulfoxide (DMSO) is widely used as a solvent or vehicle for biological studies, and for treatment of specific disorders, including traumatic brain injury and several forms of amyloidosis. As Alzheimer’s disease (AD) brains are characterized by deposits of β-amyloid peptides, it has been suggested that DMSO could be used as a treatment for this devastating disease. AD brains are also characterized by aggregates of hyperphosphorylated tau protein, but the effect of DMSO on tau phosphorylation is unknown. We thus investigated the impact of DMSO on tau phosphorylation in vitro and in vivo. One hour following intraperitoneal administration of 1 or 2 ml/kg DMSO in mice, no change was observed in tau phosphorylation. However, at 4 ml/kg, tau was hyperphosphorylated at AT8 (Ser202/Thr205), PHF-1 (Ser396/Ser404) and AT180 (Thr231) epitopes. At this dose, we also noticed that the animals were hypothermic. When the mice were maintained normothermic, the effect of 4 ml/kg DMSO on tau hyperphosphorylation was prevented. On the other hand, in SH-SY5Y cells, 0.1% DMSO induced tau hyperphosphorylation at AT8 and AT180 phosphoepitopes in normothermic conditions. Globally, these findings demonstrate that DMSO can induce tau hyperphosphorylation indirectly via hypothermia in vivo, and directly in vitro. These data should caution researchers working with DMSO as it can induce artifactual results both in vivo and in vitro. PMID:22768202

  15. Receptor for advanced glycation end products mediates sepsis-triggered amyloid-β accumulation, Tau phosphorylation, and cognitive impairment.

    PubMed

    Gasparotto, Juciano; Girardi, Carolina S; Somensi, Nauana; Ribeiro, Camila T; Moreira, José C F; Michels, Monique; Sonai, Beatriz; Rocha, Mariane; Steckert, Amanda V; Barichello, Tatiana; Quevedo, João; Dal-Pizzol, Felipe; Gelain, Daniel P

    2018-01-05

    Patients recovering from sepsis have higher rates of CNS morbidities associated with long-lasting impairment of cognitive functions, including neurodegenerative diseases. However, the molecular etiology of these sepsis-induced impairments is unclear. Here, we investigated the role of the receptor for advanced glycation end products (RAGE) in neuroinflammation, neurodegeneration-associated changes, and cognitive dysfunction arising after sepsis recovery. Adult Wistar rats underwent cecal ligation and perforation (CLP), and serum and brain (hippocampus and prefrontal cortex) samples were obtained at days 1, 15, and 30 after the CLP. We examined these samples for systemic and brain inflammation; amyloid-β peptide (Aβ) and Ser-202-phosphorylated Tau (p-Tau Ser-202 ) levels; and RAGE, RAGE ligands, and RAGE intracellular signaling. Serum markers associated with the acute proinflammatory phase of sepsis (TNFα, IL-1β, and IL-6) rapidly increased and then progressively decreased during the 30-day period post-CLP, concomitant with a progressive increase in RAGE ligands (S100B, N ϵ-[carboxymethyl]lysine, HSP70, and HMGB1). In the brain, levels of RAGE and Toll-like receptor 4, glial fibrillary acidic protein and neuronal nitric-oxide synthase, and Aβ and p-Tau Ser-202 also increased during that time. Of note, intracerebral injection of RAGE antibody into the hippocampus at days 15, 17, and 19 post-CLP reduced Aβ and p-Tau Ser-202 accumulation, Akt/mechanistic target of rapamycin signaling, levels of ionized calcium-binding adapter molecule 1 and glial fibrillary acidic protein, and behavioral deficits associated with cognitive decline. These results indicate that brain RAGE is an essential factor in the pathogenesis of neurological disorders following acute systemic inflammation. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. A Simple Method to Avoid Nonspecific Signal When Using Monoclonal Anti-Tau Antibodies in Western Blotting of Mouse Brain Proteins.

    PubMed

    Petry, Franck R; Nicholls, Samantha B; Hébert, Sébastien S; Planel, Emmanuel

    2017-01-01

    In Alzheimer's disease and other tauopathies, tau displays several abnormal post-translation modifications such as hyperphosphorylation, truncation, conformation, and oligomerization. Mouse monoclonal antibodies have been raised against such tau modifications for research, diagnostic, and therapeutic purposes. However, many of these primary antibodies are at risk of giving nonspecific signals in common Western blotting procedures. Not because they are unspecific, but because the secondary antibodies used to detect them will also detect the heavy chain of endogenous mouse immunoglobulins (Igs), and give a nonspecific signal at the same molecular weight than tau protein (around 50 kDa). Here, we propose the use of anti-light chain secondary antibodies as a simple and efficient technique to prevent nonspecific Igs signals at around 50 kDa. We demonstrate the efficacy of this method by removing artifactual signals when using monoclonal antibodies directed at tau phosphorylation (AT100, 12E8, AT270), tau truncation (TauC3), tau oligomerization (TOMA), or tau abnormal conformation (Alz50), in wild-type, 3×Tg-AD, and tau knockout mice.

  17. Sulforaphane Upregulates the Heat Shock Protein Co-Chaperone CHIP and Clears Amyloid-β and Tau in a Mouse Model of Alzheimer's Disease.

    PubMed

    Lee, Siyoung; Choi, Bo-Ryoung; Kim, Jisung; LaFerla, Frank M; Park, Jung Han Yoon; Han, Jung-Soo; Lee, Ki Won; Kim, Jiyoung

    2018-04-30

    Sulforaphane is an herbal isothiocyanate enriched in cruciferous vegetables. Here, the authors investigate whether sulforaphane modulates the production of amyloid-β (Aβ) and tau, the two main pathological factors in Alzheimer's disease (AD). A triple transgenic mouse model of AD (3 × Tg-AD) is used to study the effect of sulforaphane. Oral gavage of sulforaphane reduces protein levels of monomeric and polymeric forms of Aβ as well as tau and phosphorylated tau in 3 × Tg-AD mice. However, sulforaphane treatment do not affect mRNA expression of amyloid precursor protein or tau. As previous studies show that Aβ and tau metabolism are influenced by a heat shock protein (HSP) co-chaperone, C-terminus of HSP70-interacting protein (CHIP), the authors examine whether sulforaphane can modulate CHIP. The authors find that sulforaphane treatment increase levels of CHIP and HSP70. Furthermore, observations of CHIP-deficient primary neurons derived from 3 × Tg-AD mice suggest that sulforaphane treatment increase CHIP level and clear the accumulation of Aβ and tau. Finally, sulforaphane ameliorated memory deficits in 3 × Tg-AD mice as reveal by novel object/location recognition tests and contextual fear conditioning tests. These results demonstrate that sulforaphane treatment upregulates CHIP and has the potential to decrease the accumulation of Aβ and tau in patients with AD. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Protective Effect of Tat PTD-Hsp27 Fusion Protein on Tau Hyperphosphorylation Induced by Okadaic Acid in the Human Neuroblastoma Cell Line SH-SY5Y.

    PubMed

    Choi, Sunghyun; Oh, Jae Hoon; Kim, Hyeseon; Nam, So Hee; Shin, Jeehae; Park, Jong-Sang

    2015-10-01

    Alzheimer's disease (AD) is an age-related disorder that causes a loss of brain function. Hyperphosphorylation of tau and the subsequent formation of intracellular neurofibrillary tangles (NFTs) are implicated in the pathogenesis of AD. Hyperphosphorylated tau accumulates into insoluble paired helical filaments that aggregate into NFTs; therefore, regulation of tau phosphorylation represents an important treatment approach for AD. Heat shock protein 27 (Hsp27) plays a specific role in human neurodegenerative diseases; however, few studies have examined its therapeutic effect. In this study, we induced tau hyperphosphorylation using okadaic acid, which is a protein phosphatase inhibitor, and generated a fusion protein of Hsp27 and the protein transduction domain of the HIV Tat protein (Tat-Hsp27) to enhance the delivery of Hsp27. We treated Tat-Hsp27 to SH-SY5Y neuroblastoma cells for 2 h; the transduction level was proportional to the Tat-hsp27 concentration. Additionally, Tat-Hsp27 reduced the level of hyperphosphorylated tau and protected cells from apoptotic cell death caused by abnormal tau aggregates. These results reveal that Hsp27 represents a valuable protein therapeutic for AD.

  19. Review: Tau in biofluids - relation to pathology, imaging and clinical features.

    PubMed

    Zetterberg, H

    2017-04-01

    Tau is a microtubule-binding protein that is important for the stability of neuronal axons. It is normally expressed within neurons and is also secreted into the brain interstitial fluid that communicates freely with cerebrospinal fluid (CSF) and, in a more restricted manner, blood via the glymphatic clearance system of the brain. In Alzheimer's disease (AD), neuroaxonal degeneration results in increased release of tau from neurons. Furthermore, tau is truncated and phosphorylated, which leads to aggregation of tau in neurofibrillary tangles of the proximal axoplasm. Neuroaxonal degeneration and tangle formation are reflected by increased concentrations of total tau (T-tau, measured using assays that detect most forms of tau) and phospho-tau (P-tau, measured using assays with antibodies specific to phosphorylated forms of tau). In AD CSF, both T-tau and P-tau concentrations are increased. In stroke and other CNS disorders with neuroaxonal injury but without tangles, T-tau is selectively increased, whereas P-tau concentration often stays normal. In tauopathies (diseases with both neurodegeneration and neurofibrillary tangles) other than AD, CSF T-tau and P-tau concentrations are typically unaltered, which is a puzzling result that warrants further investigation. In the current review, I discuss the association of T-tau and P-tau concentrations in body fluids with neuropathological changes, imaging findings and clinical features in AD and other CNS diseases. © 2017 British Neuropathological Society.

  20. Increased Tau Phosphorylation and Tau Truncation, and Decreased Synaptophysin Levels in Mutant BRI2/Tau Transgenic Mice

    PubMed Central

    Garringer, Holly J.; Murrell, Jill; Sammeta, Neeraja; Gnezda, Anita; Ghetti, Bernardino; Vidal, Ruben

    2013-01-01

    Familial Danish dementia (FDD) is an autosomal dominant neurodegenerative disease caused by a 10-nucleotide duplication-insertion in the BRI2 gene. FDD is clinically characterized by loss of vision, hearing impairment, cerebellar ataxia and dementia. The main neuropathologic findings in FDD are the deposition of Danish amyloid (ADan) and the presence of neurofibrillary tangles (NFTs). Here we investigated tau accumulation and truncation in double transgenic (Tg-FDD-Tau) mice generated by crossing transgenic mice expressing human Danish mutant BRI2 (Tg-FDD) with mice expressing human 4-repeat mutant Tau-P301S (Tg-Tau). Compared to Tg-Tau mice, we observed a significant enhancement of tau deposition in Tg-FDD-Tau mice. In addition, a significant increase in tau cleaved at aspartic acid (Asp) 421 was observed in Tg-FDD-Tau mice. Tg-FDD-Tau mice also showed a significant decrease in synaptophysin levels, occurring before widespread deposition of fibrillar ADan and tau can be observed. Thus, the presence of soluble ADan/mutant BRI2 can lead to significant changes in tau metabolism and synaptic dysfunction. Our data provide new in vivo insights into the pathogenesis of FDD and the pathogenic pathway(s) by which amyloidogenic peptides, regardless of their primary amino acid sequence, can cause neurodegeneration. PMID:23418567

  1. Increased tau phosphorylation and tau truncation, and decreased synaptophysin levels in mutant BRI2/tau transgenic mice.

    PubMed

    Garringer, Holly J; Murrell, Jill; Sammeta, Neeraja; Gnezda, Anita; Ghetti, Bernardino; Vidal, Ruben

    2013-01-01

    Familial Danish dementia (FDD) is an autosomal dominant neurodegenerative disease caused by a 10-nucleotide duplication-insertion in the BRI(2) gene. FDD is clinically characterized by loss of vision, hearing impairment, cerebellar ataxia and dementia. The main neuropathologic findings in FDD are the deposition of Danish amyloid (ADan) and the presence of neurofibrillary tangles (NFTs). Here we investigated tau accumulation and truncation in double transgenic (Tg-FDD-Tau) mice generated by crossing transgenic mice expressing human Danish mutant BRI(2) (Tg-FDD) with mice expressing human 4-repeat mutant Tau-P301S (Tg-Tau). Compared to Tg-Tau mice, we observed a significant enhancement of tau deposition in Tg-FDD-Tau mice. In addition, a significant increase in tau cleaved at aspartic acid (Asp) 421 was observed in Tg-FDD-Tau mice. Tg-FDD-Tau mice also showed a significant decrease in synaptophysin levels, occurring before widespread deposition of fibrillar ADan and tau can be observed. Thus, the presence of soluble ADan/mutant BRI(2) can lead to significant changes in tau metabolism and synaptic dysfunction. Our data provide new in vivo insights into the pathogenesis of FDD and the pathogenic pathway(s) by which amyloidogenic peptides, regardless of their primary amino acid sequence, can cause neurodegeneration.

  2. Near-atomic model of microtubule-tau interactions.

    PubMed

    Kellogg, Elizabeth H; Hejab, Nisreen M A; Poepsel, Simon; Downing, Kenneth H; DiMaio, Frank; Nogales, Eva

    2018-06-15

    Tau is a developmentally regulated axonal protein that stabilizes and bundles microtubules (MTs). Its hyperphosphorylation is thought to cause detachment from MTs and subsequent aggregation into fibrils implicated in Alzheimer's disease. It is unclear which tau residues are crucial for tau-MT interactions, where tau binds on MTs, and how it stabilizes them. We used cryo-electron microscopy to visualize different tau constructs on MTs and computational approaches to generate atomic models of tau-tubulin interactions. The conserved tubulin-binding repeats within tau adopt similar extended structures along the crest of the protofilament, stabilizing the interface between tubulin dimers. Our structures explain the effect of phosphorylation on MT affinity and lead to a model of tau repeats binding in tandem along protofilaments, tethering together tubulin dimers and stabilizing polymerization interfaces. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  3. High-fat, high-sugar, and high-cholesterol consumption does not impact tau pathogenesis in a mouse model of Alzheimer's disease-like tau pathology.

    PubMed

    Gratuze, Maud; Julien, Jacinthe; Morin, Françoise; Calon, Frédéric; Hébert, Sébastien S; Marette, André; Planel, Emmanuel

    2016-11-01

    Aggregates of hyperphosphorylated tau protein are a pathological hallmark of Alzheimer's disease (AD). The origin of AD is multifactorial, and many metabolic disorders originating from overconsumption of fat, cholesterol, and sugar are associated with higher risk of AD later in life. However, the effects of fat, cholesterol, and sugar overconsumption on tau pathology in AD remain controversial. Using the hTau mice, a model of AD-like tau pathology, we assessed the effects of high-fat, high-cholesterol, and/or high-sugar diets on tau pathogenesis. Surprisingly, we found no effects of these compounds, even combined, on tau phosphorylation, O-GlcNAcylation, splicing, cleavage, and aggregation, suggesting that their overconsumption does not seem to worsen tau pathology in these mice. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.

  4. Anesthesia and Tau Pathology

    PubMed Central

    Whittington, Robert A.; Bretteville, Alexis; Dickler, Maya F.; Planel, Emmanuel

    2013-01-01

    Alzheimer’s disease (AD) is the most common form of dementia and remains a growing worldwide health problem. As life expectancy continues to increase, the number of AD patients presenting for surgery and anesthesia will steadily rise. The etiology of sporadic AD is thought to be multifactorial, with environmental, biological and genetic factors interacting together to influence AD pathogenesis. Recent reports suggest that general anesthetics may be such a factor and may contribute to the development and exacerbation of this neurodegenerative disorder. Intra-neuronal neurofibrillary tangles (NFT), composed of hyperphosphorylated and aggregated tau protein are one of the main neuropathological hallmarks of AD. Tau pathology is important in AD as it correlates very well with cognitive dysfunction. Lately, several studies have begun to elucidate the mechanisms by which anesthetic exposure might affect the phosphorylation, aggregation and function of this microtubule-associated protein. Here, we specifically review the literature detailing the impact of anesthetic administration on aberrant tau hyperphosphorylation as well as the subsequent development of neurofibrillary pathology and degeneration. PMID:23535147

  5. Oligomerization of the protein tau in the Alzheimer's disease

    NASA Astrophysics Data System (ADS)

    Larini, Luca

    The Alzheimer's disease is characterized by the formation of protein aggregates both within and outside of the brain's cells, the neurons. Within the neurons, the aggregation of the microtubule associated protein tau leads to the destruction of the microtubules in the axon of the neuron. Tau is extremely flexible and is classified as an intrinsically disordered protein due to its low propensity to form secondary structure. Tau promotes tubulin assembly into microtubules, which are an essential component of the cytoskeleton of the axon. The microtubule binding region of tau consists of 4 pseudo-repeats that are critical for aggregation as well. In this study, we focus on the aggregation propensity of different segments of the microtubule binding region as well as post-translational modifications that can alter tau dynamics and structure. We have performed replica exchange molecular dynamics simulations to characterize the ensemble of conformations of the monomer and small oligomers as well as how these structures are stabilized or destabilized by mutations and post-translational modifications.

  6. Tau hyperphosphorylation and deregulation of calcineurin in mouse models of Huntington's disease.

    PubMed

    Gratuze, Maud; Noël, Anastasia; Julien, Carl; Cisbani, Giulia; Milot-Rousseau, Philippe; Morin, Françoise; Dickler, Maya; Goupil, Claudia; Bezeau, François; Poitras, Isabelle; Bissonnette, Stéphanie; Whittington, Robert A; Hébert, Sébastien S; Cicchetti, Francesca; Parker, J Alex; Samadi, Pershia; Planel, Emmanuel

    2015-01-01

    Huntington's disease (HD) is an autosomal-dominant neurodegenerative disorder caused by polyglutamine expansions in the amino-terminal region of the huntingtin (Htt) protein. At the cellular level, neuronal death is accompanied by the proteolytic cleavage, misfolding and aggregation of huntingtin. Abnormal hyperphosphorylation of tau protein is a characteristic feature of a class of neurodegenerative diseases called tauopathies. As a number of studies have reported tau pathology in HD patients, we investigated whether HD pathology may promote tau hyperphosphorylation and if so tackle some of its underlying mechanisms. For that purpose, we used the R6/2 mouse, a well-characterized model of HD, and analyzed tau phosphorylation before and after the onset of HD-like symptoms. We found a significant increase in tau hyperphosphorylation at the PHF-1 epitope in pre-symptomatic R6/2 mice, whereas symptomatic mice displayed tau hyperphosphorylation at multiple tau phosphoepitopes (AT8, CP13, PT205 and PHF-1). There was no activation of major tau kinases that could explain this observation. However, when we examined tau phosphatases, we found that calcineurin/PP2B was downregulated by 30% in pre-symptomatic and 50% in symptomatic R6/2 mice, respectively. We observed similar changes in tau phosphorylation and calcineurin expression in Q175 mice, another HD model. Calcineurin was also reduced in Q111 compared with Q7 cells. Finally, pharmacological or genetic inhibition of endogenous calcineurin was sufficient to promote tau hyperphosphorylation in neuronal cells. Taken together, our data suggest that mutant huntingtin can induce abnormal tau hyperphosphorylation in vivo, via the deregulation of calcineurin. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Insulin dysfunction and Tau pathology.

    PubMed

    El Khoury, Noura B; Gratuze, Maud; Papon, Marie-Amélie; Bretteville, Alexis; Planel, Emmanuel

    2014-01-01

    The neuropathological hallmarks of Alzheimer's disease (AD) include senile plaques of β-amyloid (Aβ) peptides (a cleavage product of the Amyloid Precursor Protein, or APP) and neurofibrillary tangles (NFT) of hyperphosphorylated Tau protein assembled in paired helical filaments (PHF). NFT pathology is important since it correlates with the degree of cognitive impairment in AD. Only a small proportion of AD is due to genetic variants, whereas the large majority of cases (~99%) is late onset and sporadic in origin. The cause of sporadic AD is likely to be multifactorial, with external factors interacting with biological or genetic susceptibilities to accelerate the manifestation of the disease. Insulin dysfunction, manifested by diabetes mellitus (DM) might be such factor, as there is extensive data from epidemiological studies suggesting that DM is associated with an increased relative risk for AD. Type 1 diabetes (T1DM) and type 2 diabetes (T2DM) are known to affect multiple cognitive functions in patients. In this context, understanding the effects of diabetes on Tau pathogenesis is important since Tau pathology show a strong relationship to dementia in AD, and to memory loss in normal aging and mild cognitive impairment. Here, we reviewed preclinical studies that link insulin dysfunction to Tau protein pathogenesis, one of the major pathological hallmarks of AD. We found more than 30 studies reporting Tau phosphorylation in a mouse or rat model of insulin dysfunction. We also payed attention to potential sources of artifacts, such as hypothermia and anesthesia, that were demonstrated to results in Tau hyperphosphorylation and could major confounding experimental factors. We found that very few studies reported the temperature of the animals, and only a handful did not use anesthesia. Overall, most published studies showed that insulin dysfunction can promote Tau hyperphosphorylation and pathology, both directly and indirectly, through hypothermia.

  8. Insulin dysfunction and Tau pathology

    PubMed Central

    El Khoury, Noura B.; Gratuze, Maud; Papon, Marie-Amélie; Bretteville, Alexis; Planel, Emmanuel

    2013-01-01

    The neuropathological hallmarks of Alzheimer's disease (AD) include senile plaques of β-amyloid (Aβ) peptides (a cleavage product of the Amyloid Precursor Protein, or APP) and neurofibrillary tangles (NFT) of hyperphosphorylated Tau protein assembled in paired helical filaments (PHF). NFT pathology is important since it correlates with the degree of cognitive impairment in AD. Only a small proportion of AD is due to genetic variants, whereas the large majority of cases (~99%) is late onset and sporadic in origin. The cause of sporadic AD is likely to be multifactorial, with external factors interacting with biological or genetic susceptibilities to accelerate the manifestation of the disease. Insulin dysfunction, manifested by diabetes mellitus (DM) might be such factor, as there is extensive data from epidemiological studies suggesting that DM is associated with an increased relative risk for AD. Type 1 diabetes (T1DM) and type 2 diabetes (T2DM) are known to affect multiple cognitive functions in patients. In this context, understanding the effects of diabetes on Tau pathogenesis is important since Tau pathology show a strong relationship to dementia in AD, and to memory loss in normal aging and mild cognitive impairment. Here, we reviewed preclinical studies that link insulin dysfunction to Tau protein pathogenesis, one of the major pathological hallmarks of AD. We found more than 30 studies reporting Tau phosphorylation in a mouse or rat model of insulin dysfunction. We also payed attention to potential sources of artifacts, such as hypothermia and anesthesia, that were demonstrated to results in Tau hyperphosphorylation and could major confounding experimental factors. We found that very few studies reported the temperature of the animals, and only a handful did not use anesthesia. Overall, most published studies showed that insulin dysfunction can promote Tau hyperphosphorylation and pathology, both directly and indirectly, through hypothermia. PMID:24574966

  9. Resveratrol increases cerebral glycogen synthase kinase phosphorylation as well as protein levels of drebrin and transthyretin in mice: an exploratory study.

    PubMed

    Varamini, Behzad; Sikalidis, Angelos K; Bradford, Kathryn L

    2014-02-01

    Alzheimer's disease (AD) is characterized by intraneuronal β-amyloid plaques and hyperphosphorylated tau, leading to neuronal cell death and progressive memory losses. This exploratory work investigates if dietary resveratrol, previously shown to have broad anti-aging effects and improve AD pathology in vivo, leads to neuroprotective changes in specific protein targets in the mouse brain. Both wild-type and APP/PS1 mice, a transgenic AD mouse model, received control AIN-93G diet or AIN-93G supplemented with resveratrol. Pathology parameters and AD risk were assessed via measurements on plaque burden, levels of phosphorylated glycogen synthase kinase 3-β (GSK3-β), tau, transthyretin and drebrin. Dietary resveratrol treatment did not decrease plaque burden in APP/PS1 mice. However, resveratrol-fed mice demonstrated increases in GSK3-β phosphorylation, a 3.8-fold increase in protein levels of transthyretin, and a 2.2-fold increase in drebrin. This study broadens our understanding of specific mechanisms and targets whereby resveratrol provides neuroprotection.

  10. Orexin-A is Associated with Increases in Cerebrospinal Fluid Phosphorylated-Tau in Cognitively Normal Elderly Subjects.

    PubMed

    Osorio, Ricardo S; Ducca, Emma L; Wohlleber, Margaret E; Tanzi, Emily B; Gumb, Tyler; Twumasi, Akosua; Tweardy, Samuel; Lewis, Clifton; Fischer, Esther; Koushyk, Viachaslau; Cuartero-Toledo, Maria; Sheikh, Mohammed O; Pirraglia, Elizabeth; Zetterberg, Henrik; Blennow, Kaj; Lu, Shou-En; Mosconi, Lisa; Glodzik, Lidia; Schuetz, Sonja; Varga, Andrew W; Ayappa, Indu; Rapoport, David M; de Leon, Mony J

    2016-06-01

    To evaluate the role of orexin-A with respect to cerebrospinal fluid (CSF) Alzheimer disease (AD) biomarkers, and explore its relationship to cognition and sleep characteristics in a group of cognitively normal elderly individuals. Subjects were recruited from multiple community sources for National Institutes of Health supported studies on normal aging, sleep and CSF biomarkers. Sixty-three participants underwent home monitoring for sleep-disordered breathing, clinical, sleep and cognitive evaluations, as well as a lumbar puncture to obtain CSF. Individuals with medical history or with magnetic resonance imaging evidence of disorders that may affect brain structure or function were excluded. Correlation and linear regression analyses were used to assess the relationship between orexin-A and CSF AD-biomarkers controlling for potential sociodemographic and sleep confounders. Levels of orexin-A, amyloid beta 42 (Aβ42), phosphorylated-tau (P-Tau), total-tau (T-Tau), Apolipoprotein E4 status, age, years of education, reported total sleep time, number of awakenings, apnea-hypopnea indices (AHI), excessive daytime sleepiness, and a cognitive battery were analyzed. Subjects were 69.59 ± 8.55 years of age, 57.1% were female, and 30.2% were apolipoprotein E4+. Orexin-A was positively correlated with Aβ42, P-Tau, and T-Tau. The associations between orexin-A and the AD-biomarkers were driven mainly by the relationship between orexin-A and P-Tau and were not influenced by other clinical or sleep characteristics that were available. Orexin-A is associated with increased P-Tau in normal elderly individuals. Increases in orexin-A and P-Tau might be a consequence of the reduction in the proportion of the deeper, more restorative slow wave sleep and rapid eye movement sleep reported with aging. Clinicaltrials.gov registration number NCT01962779. © 2016 Associated Professional Sleep Societies, LLC.

  11. Alteration in amyloid β42, phosphorylated tau protein, interleukin 6, and acetylcholine during diabetes-accelerated memory dysfunction in diabetic rats: correlation of amyloid β42 with changes in glucose metabolism.

    PubMed

    Zhou, You; Zhao, Ying; Xie, Hailong; Wang, Yan; Liu, Lin; Yan, Xinjia

    2015-08-14

    Diabetes accelerates memory dysfunction in a continuous, slowly pathological process. Studies suggest that the time course of certain biomarkers can characterize the pathological course of the disease to provide information for early intervention. Thus, there is an urgent need for validated biomarkers to characterize the cognitive impairment induced by DM. We aimed to detect changes in cerebrospinal fluid biomarkers such as amyloid β42, phosphorylated tau protein, interleukin 6, and acetylcholine in diabetic rats over time, and to analyse the relationship between diabetes and cognitive impairment. Rats were injected once intraperitoneally with 1% of streptozotocin to establish a diabetic model. Index changes were investigated longitudinally and all were measured at the end of the experiment at day 75. Aβ42, P-tau, IL-6, and ACh levels in CSF, insulin levels in plasma, and Aβ42 levels in plasma and brain tissue were measured by ELISA. Compared with control, the diabetic model showed ACh in CSF to be decreased by day 15, continuing lower out to day 75. Aβ42 changes in brain and blood showed the same trends but exhibited minima at different time points: day 30 in CSF and day 15 in plasma. After the minimum, Aβ42 in cerebrospinal fluid rose and levelled off lower than in the control group, whereas Aβ42 in plasma rose and went above the controls at day 30, slowly trending upwards for the remainder of the experiment. P-tau protein in CSF in diabetic rats showed an increasing trend, becoming significantly different from the controls at day 60 and day 75. Aβ42 in CSF was strongly negatively correlated with blood glucose at day 15 and was negatively correlated with insulin in serum, particularly at day 45. Our longitudinal research model suggest that changes in the measured biomarkers appear before learning and memory impairments do. Aβ42 and ACh in the diabetes model group clearly changed from day 0 to day 45, and then P-tau and IL-6 varied significantly from day

  12. Isoprenoids and tau pathology in sporadic Alzheimer's disease.

    PubMed

    Pelleieux, Sandra; Picard, Cynthia; Lamarre-Théroux, Louise; Dea, Doris; Leduc, Valérie; Tsantrizos, Youla S; Poirier, Judes

    2018-05-01

    The mevalonate pathway has been described to play a key role in Alzheimer's disease (AD) physiopathology. Farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP) are nonsterol isoprenoids derived from mevalonate, which serve as precursors to numerous human metabolites. They facilitate protein prenylation; hFPP and hGGPP synthases act as gateway enzymes to the prenylation of the small guanosine triphosphate (GTP)ase proteins such as RhoA and cdc42 that have been shown to facilitate phospho-tau (p-Tau, i.e., protein tau phosphorylated) production in the brain. In this study, a significant positive correlation was observed between the synthases mRNA prevalence and disease status (FPPS, p < 0.001, n = 123; GGPPS, p < 0.001, n = 122). The levels of mRNA for hFPPS and hGGPPS were found to significantly correlate with the amount of p-Tau protein levels (p < 0.05, n = 34) and neurofibrillary tangle density (p < 0.05, n = 39) in the frontal cortex. Interestingly, high levels of hFPPS and hGGPPS mRNA prevalence are associated with earlier age of onset in AD (p < 0.05, n = 58). Together, these results suggest that accumulation of p-Tau in the AD brain is related, at least in part, to increased levels of neuronal isoprenoids. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Aggregation propensity of critical regions of the protein Tau

    NASA Astrophysics Data System (ADS)

    Muthee, Micaiah; Ahmed, Azka; Larini, Luca

    The Alzheimer's disease is an irreversible, progressive brain disorder that slowly destroys memory and thinking skills, which eventually leads to the ability to not able to carry out the simplest tasks. The Alzheimer's disease is characterized by the formation of protein aggregates both within and outside of the brain's cells, the neurons. Within the neurons, the aggregation of the protein tau leads to the destruction of the microtubules in the axon of the neuron. Tau belongs to a group of proteins referred to as Microtubule-Associated Proteins. It is extremely flexible and is classified as an intrinsically unstructured protein due to its low propensity to form secondary structure. Tau promotes tubulin assembly into microtubules thereby stabilizing the cytoskeleton of the axon of the neurons. The microtubule binding region of tau consists of 4 pseudo-repeats. In this study, we will focus on the aggregation propensity of two fragments. In this study we will focus on the PHF43 fragment that contains the third pseudo-repeat and has been shown experimentally to aggregate readily. Another fragment that contains the second pseudo-repeat will be considered as well. Mutations in this region are associated with various form of dementia and for this reason we will consider the mutant P301L.

  14. Tau Kinetics in Neurons and the Human Central Nervous System.

    PubMed

    Sato, Chihiro; Barthélemy, Nicolas R; Mawuenyega, Kwasi G; Patterson, Bruce W; Gordon, Brian A; Jockel-Balsarotti, Jennifer; Sullivan, Melissa; Crisp, Matthew J; Kasten, Tom; Kirmess, Kristopher M; Kanaan, Nicholas M; Yarasheski, Kevin E; Baker-Nigh, Alaina; Benzinger, Tammie L S; Miller, Timothy M; Karch, Celeste M; Bateman, Randall J

    2018-03-21

    We developed stable isotope labeling and mass spectrometry approaches to measure the kinetics of multiple isoforms and fragments of tau in the human central nervous system (CNS) and in human induced pluripotent stem cell (iPSC)-derived neurons. Newly synthesized tau is truncated and released from human neurons in 3 days. Although most tau proteins have similar turnover, 4R tau isoforms and phosphorylated forms of tau exhibit faster turnover rates, suggesting unique processing of these forms that may have independent biological activities. The half-life of tau in control human iPSC-derived neurons is 6.74 ± 0.45 days and in human CNS is 23 ± 6.4 days. In cognitively normal and Alzheimer's disease participants, the production rate of tau positively correlates with the amount of amyloid plaques, indicating a biological link between amyloid plaques and tau physiology. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Effect of the microtubule-associated protein tau on dynamics of single-headed motor proteins KIF1A

    NASA Astrophysics Data System (ADS)

    Sparacino, J.; Farías, M. G.; Lamberti, P. W.

    2014-02-01

    Intracellular transport based on molecular motors and its regulation are crucial to the functioning of cells. Filamentary tracks of the cells are abundantly decorated with nonmotile microtubule-associated proteins, such as tau. Motivated by experiments on kinesin-tau interactions [Dixit et al., Science 319, 1086 (2008), 10.1126/science.1152993] we developed a stochastic model of interacting single-headed motor proteins KIF1A that also takes into account the interactions between motor proteins and tau molecules. Our model reproduces experimental observations and predicts significant effects of tau on bound time and run length which suggest an important role of tau in regulation of kinesin-based transport.

  16. DOPA Decarboxylase Modulates Tau Toxicity.

    PubMed

    Kow, Rebecca L; Sikkema, Carl; Wheeler, Jeanna M; Wilkinson, Charles W; Kraemer, Brian C

    2018-03-01

    The microtubule-associated protein tau accumulates into toxic aggregates in multiple neurodegenerative diseases. We found previously that loss of D 2 -family dopamine receptors ameliorated tauopathy in multiple models including a Caenorhabditis elegans model of tauopathy. To better understand how loss of D 2 -family dopamine receptors can ameliorate tau toxicity, we screened a collection of C. elegans mutations in dopamine-related genes (n = 45) for changes in tau transgene-induced behavioral defects. These included many genes responsible for dopamine synthesis, metabolism, and signaling downstream of the D 2 receptors. We identified one dopamine synthesis gene, DOPA decarboxylase (DDC), as a suppressor of tau toxicity in tau transgenic worms. Loss of the C. elegans DDC gene, bas-1, ameliorated the behavioral deficits of tau transgenic worms, reduced phosphorylated and detergent-insoluble tau accumulation, and reduced tau-mediated neuron loss. Loss of function in other genes in the dopamine and serotonin synthesis pathways did not alter tau-induced toxicity; however, their function is required for the suppression of tau toxicity by bas-1. Additional loss of D 2 -family dopamine receptors did not synergize with bas-1 suppression of tauopathy phenotypes. Loss of the DDC bas-1 reduced tau-induced toxicity in a C. elegans model of tauopathy, while loss of no other dopamine or serotonin synthesis genes tested had this effect. Because loss of activity upstream of DDC could reduce suppression of tau by DDC, this suggests the possibility that loss of DDC suppresses tau via the combined accumulation of dopamine precursor levodopa and serotonin precursor 5-hydroxytryptophan. Published by Elsevier Inc.

  17. Early glycogen synthase kinase-3β and protein phosphatase 2A independent tau dephosphorylation during global brain ischaemia and reperfusion following cardiac arrest and the role of the adenosine monophosphate kinase pathway.

    PubMed

    Majd, Shohreh; Power, John H T; Koblar, Simon A; Grantham, Hugh J M

    2016-08-01

    Abnormal tau phosphorylation (p-tau) has been shown after hypoxic damage to the brain associated with traumatic brain injury and stroke. As the level of p-tau is controlled by Glycogen Synthase Kinase (GSK)-3β, Protein Phosphatase 2A (PP2A) and Adenosine Monophosphate Kinase (AMPK), different activity levels of these enzymes could be involved in tau phosphorylation following ischaemia. This study assessed the effects of global brain ischaemia/reperfusion on the immediate status of p-tau in a rat model of cardiac arrest (CA) followed by cardiopulmonary resuscitation (CPR). We reported an early dephosphorylation of tau at its AMPK sensitive residues, Ser(396) and Ser(262) after 2 min of ischaemia, which did not recover during the first two hours of reperfusion, while the tau phosphorylation at GSK-3β sensitive but AMPK insensitive residues, Ser(202) /Thr(205) (AT8), as well as the total amount of tau remained unchanged. Our data showed no alteration in the activities of GSK-3β and PP2A during similar episodes of ischaemia of up to 8 min and reperfusion of up to 2 h, and 4 weeks recovery. Dephosphorylation of AMPK followed the same pattern as tau dephosphorylation during ischaemia/reperfusion. Catalase, another AMPK downstream substrate also showed a similar pattern of decline to p-AMPK, in ischaemic/reperfusion groups. This suggests the involvement of AMPK in changing the p-tau levels, indicating that tau dephosphorylation following ischaemia is not dependent on GSK-3β or PP2A activity, but is associated with AMPK dephosphorylation. We propose that a reduction in AMPK activity is a possible early mechanism responsible for tau dephosphorylation. © 2016 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  18. Aging-related tau astrogliopathy (ARTAG): harmonized evaluation strategy.

    PubMed

    Kovacs, Gabor G; Ferrer, Isidro; Grinberg, Lea T; Alafuzoff, Irina; Attems, Johannes; Budka, Herbert; Cairns, Nigel J; Crary, John F; Duyckaerts, Charles; Ghetti, Bernardino; Halliday, Glenda M; Ironside, James W; Love, Seth; Mackenzie, Ian R; Munoz, David G; Murray, Melissa E; Nelson, Peter T; Takahashi, Hitoshi; Trojanowski, John Q; Ansorge, Olaf; Arzberger, Thomas; Baborie, Atik; Beach, Thomas G; Bieniek, Kevin F; Bigio, Eileen H; Bodi, Istvan; Dugger, Brittany N; Feany, Mel; Gelpi, Ellen; Gentleman, Stephen M; Giaccone, Giorgio; Hatanpaa, Kimmo J; Heale, Richard; Hof, Patrick R; Hofer, Monika; Hortobágyi, Tibor; Jellinger, Kurt; Jicha, Gregory A; Ince, Paul; Kofler, Julia; Kövari, Enikö; Kril, Jillian J; Mann, David M; Matej, Radoslav; McKee, Ann C; McLean, Catriona; Milenkovic, Ivan; Montine, Thomas J; Murayama, Shigeo; Lee, Edward B; Rahimi, Jasmin; Rodriguez, Roberta D; Rozemüller, Annemieke; Schneider, Julie A; Schultz, Christian; Seeley, William; Seilhean, Danielle; Smith, Colin; Tagliavini, Fabrizio; Takao, Masaki; Thal, Dietmar Rudolf; Toledo, Jon B; Tolnay, Markus; Troncoso, Juan C; Vinters, Harry V; Weis, Serge; Wharton, Stephen B; White, Charles L; Wisniewski, Thomas; Woulfe, John M; Yamada, Masahito; Dickson, Dennis W

    2016-01-01

    Pathological accumulation of abnormally phosphorylated tau protein in astrocytes is a frequent, but poorly characterized feature of the aging brain. Its etiology is uncertain, but its presence is sufficiently ubiquitous to merit further characterization and classification, which may stimulate clinicopathological studies and research into its pathobiology. This paper aims to harmonize evaluation and nomenclature of aging-related tau astrogliopathy (ARTAG), a term that refers to a morphological spectrum of astroglial pathology detected by tau immunohistochemistry, especially with phosphorylation-dependent and 4R isoform-specific antibodies. ARTAG occurs mainly, but not exclusively, in individuals over 60 years of age. Tau-immunoreactive astrocytes in ARTAG include thorn-shaped astrocytes at the glia limitans and in white matter, as well as solitary or clustered astrocytes with perinuclear cytoplasmic tau immunoreactivity that extends into the astroglial processes as fine fibrillar or granular immunopositivity, typically in gray matter. Various forms of ARTAG may coexist in the same brain and might reflect different pathogenic processes. Based on morphology and anatomical distribution, ARTAG can be distinguished from primary tauopathies, but may be concurrent with primary tauopathies or other disorders. We recommend four steps for evaluation of ARTAG: (1) identification of five types based on the location of either morphologies of tau astrogliopathy: subpial, subependymal, perivascular, white matter, gray matter; (2) documentation of the regional involvement: medial temporal lobe, lobar (frontal, parietal, occipital, lateral temporal), subcortical, brainstem; (3) documentation of the severity of tau astrogliopathy; and (4) description of subregional involvement. Some types of ARTAG may underlie neurological symptoms; however, the clinical significance of ARTAG is currently uncertain and awaits further studies. The goal of this proposal is to raise awareness of

  19. Aging-related tau astrogliopathy (ARTAG): harmonized evaluation strategy

    PubMed Central

    Ferrer, Isidro; Grinberg, Lea T.; Alafuzoff, Irina; Attems, Johannes; Budka, Herbert; Cairns, Nigel J.; Crary, John F.; Duyckaerts, Charles; Ghetti, Bernardino; Halliday, Glenda M.; Ironside, James W.; Love, Seth; Mackenzie, Ian R.; Munoz, David G.; Murray, Melissa E.; Nelson, Peter T.; Takahashi, Hitoshi; Trojanowski, John Q.; Ansorge, Olaf; Arzberger, Thomas; Baborie, Atik; Beach, Thomas G.; Bieniek, Kevin F.; Bigio, Eileen H.; Bodi, Istvan; Dugger, Brittany N.; Feany, Mel; Gelpi, Ellen; Gentleman, Stephen M.; Giaccone, Giorgio; Hatanpaa, Kimmo J.; Heale, Richard; Hof, Patrick R.; Hofer, Monika; Hortobágyi, Tibor; Jellinger, Kurt; Jicha, Gregory A.; Ince, Paul; Kofler, Julia; Kövari, Enikö; Kril, Jillian J.; Mann, David M.; Matej, Radoslav; McKee, Ann C.; McLean, Catriona; Milenkovic, Ivan; Montine, Thomas J.; Murayama, Shigeo; Lee, Edward B.; Rahimi, Jasmin; Rodriguez, Roberta D.; Rozemüller, Annemieke; Schneider, Julie A.; Schultz, Christian; Seeley, William; Seilhean, Danielle; Smith, Colin; Tagliavini, Fabrizio; Takao, Masaki; Thal, Dietmar Rudolf; Toledo, Jon B.; Tolnay, Markus; Troncoso, Juan C.; Vinters, Harry V.; Weis, Serge; Wharton, Stephen B.; White, Charles L.; Wisniewski, Thomas; Woulfe, John M.; Yamada, Masahito

    2016-01-01

    Pathological accumulation of abnormally phosphorylated tau protein in astrocytes is a frequent, but poorly characterized feature of the aging brain. Its etiology is uncertain, but its presence is sufficiently ubiquitous to merit further characterization and classification, which may stimulate clinicopathological studies and research into its pathobiology. This paper aims to harmonize evaluation and nomenclature of aging-related tau astrogliopathy (ARTAG), a term that refers to a morphological spectrum of astroglial pathology detected by tau immunohistochemistry, especially with phosphorylation-dependent and 4R isoform-specific antibodies. ARTAG occurs mainly, but not exclusively, in individuals over 60 years of age. Tau-immunoreactive astrocytes in ARTAG include thorn-shaped astrocytes at the glia limitans and in white matter, as well as solitary or clustered astrocytes with perinuclear cytoplasmic tau immunoreactivity that extends into the astroglial processes as fine fibrillar or granular immunopositivity, typically in gray matter. Various forms of ARTAG may coexist in the same brain and might reflect different pathogenic processes. Based on morphology and anatomical distribution, ARTAG can be distinguished from primary tauopathies, but may be concurrent with primary tauopathies or other disorders. We recommend four steps for evaluation of ARTAG: (1) identification of five types based on the location of either morphologies of tau astrogliopathy: subpial, subependymal, perivascular, white matter, gray matter; (2) documentation of the regional involvement: medial temporal lobe, lobar (frontal, parietal, occipital, lateral temporal), subcortical, brainstem; (3) documentation of the severity of tau astrogliopathy; and (4) description of subregional involvement. Some types of ARTAG may underlie neurological symptoms; however, the clinical significance of ARTAG is currently uncertain and awaits further studies. The goal of this proposal is to raise awareness of

  20. Diabetes synergistically exacerbates poststroke dementia and tau abnormality in brain.

    PubMed

    Zhang, Ting; Pan, Bai-Shen; Sun, Guang-Chun; Sun, Xiao; Sun, Feng-Yan

    2010-07-01

    This study investigated whether exacerbation of poststroke dementia by diabetes associated abnormal tau phosphorylation and its mechanism. Streptozotocin (STZ) injection and/or a high fat diet (HFD) were used to treat rats to induce type 1 and 2 diabetes. Animals were randomly divided into STZ, HFD, STZ-HFD, and normal diet (NPD) groups. Focal ischemic stroke was induced by middle cerebral artery occlusion (MCAO). Cognitive function was tested by the Morris water maze. STZ or STZ-HFD treatment exacerbated ischemia-induced cognitive deficits, brain infarction and reduction of synaptophysin expression. Moreover, we found that diabetes further increased AT8, a marker of hyperphosphorylated tau, protein and immunopositive stained cells in the hippocampus of rats following MCAO while reduced the level of phosphorylated glycogen synthase kinase 3-beta at serine-9 residues (p-ser9-GSK-3beta), indicating activation of GSK-3beta. We conclude that diabetes further deteriorates ischemia-induced brain damage and cognitive deficits which may be associated with abnormal phosphorylation of tau as well as activation of GSK-3beta. These findings may be helpful for developing new strategies to prevent/delay formation of poststroke dementia in patients with diabetes. 2010 Elsevier Ltd. All rights reserved.

  1. Structural elucidation of the interaction between neurodegenerative disease-related tau protein with model lipid membranes

    NASA Astrophysics Data System (ADS)

    Jones, Emmalee M.

    A protein's sequence of amino acids determines how it folds. That folded structure is linked to protein function, and misfolding to dysfunction. Protein misfolding and aggregation into beta-sheet rich fibrillar aggregates is connected with over 20 neurodegenerative diseases, including Alzheimer's disease (AD). AD is characterized in part by misfolding, aggregation and deposition of the microtubule associated tau protein into neurofibrillary tangles (NFTs). However, two questions remain: What is tau's fibrillization mechanism, and what is tau's cytotoxicity mechanism? Tau is prone to heterogeneous interactions, including with lipid membranes. Lipids have been found in NFTs, anionic lipid vesicles induced aggregation of the microtubule binding domain of tau, and other protein aggregates induced ion permeability in cells. This evidence prompted our investigation of tau's interaction with model lipid membranes to elucidate the structural perturbations those interactions induced in tau protein and in the membrane. We show that although tau is highly charged and soluble, it is highly surface active and preferentially interacts with anionic membranes. To resolve molecular-scale structural details of tau and model membranes, we utilized X-ray and neutron scattering techniques. X-ray reflectivity indicated tau aggregated at air/water and anionic lipid membrane interfaces and penetrated into membranes. More significantly, membrane interfaces induced tau protein to partially adopt a more compact conformation with density similar to folded protein and ordered structure characteristic of beta-sheet formation. This suggests possible membrane-based mechanisms of tau aggregation. Membrane morphological changes were seen using fluorescence microscopy, and X-ray scattering techniques showed tau completely disrupts anionic membranes, suggesting an aggregate-based cytotoxicity mechanism. Further investigation of protein constructs and a "hyperphosphorylation" disease mimic helped

  2. Gene knockout of tau expression does not contribute to the pathogenesis of prion disease.

    PubMed

    Lawson, Victoria A; Klemm, Helen M; Welton, Jeremy M; Masters, Colin L; Crouch, Peter; Cappai, Roberto; Ciccotosto, Giuseppe D

    2011-11-01

    Prion diseases or transmissible spongiform encephalopathies are a group of fatal and transmissible disorders affecting the central nervous system of humans and animals. The principal agent of prion disease transmission and pathogenesis is proposed to be an abnormal protease-resistant isoform of the normal cellular prion protein. The microtubule-associated protein tau is elevated in patients with Creutzfeldt-Jakob disease. To determine whether tau expression contributes to prion disease pathogenesis, tau knockout and control wild-type mice were infected with the M1000 strain of mouse-adapted human prions. Immunohistochemical analysis for total tau expression in prion-infected wild-type mice indicated tau aggregation in the cytoplasm of a subpopulation of neurons in regions associated with spongiform change. Western immunoblot analysis of brain homogenates revealed a decrease in total tau immunoreactivity and epitope-specific changes in tau phosphorylation. No significant difference in incubation period or other disease features were observed between tau knockout and wild-type mice with clinical prion disease. These results demonstrate that, in this model of prion disease, tau does not contribute to the pathogenesis of prion disease and that changes in the tau protein profile observed in mice with clinical prion disease occurs as a consequence of the prion-induced pathogenesis.

  3. Ultrastructural characteristics of tau filaments in tauopathies: immuno-electron microscopic demonstration of tau filaments in tauopathies.

    PubMed

    Arima, Kunimasa

    2006-10-01

    The microtubule-associated protein tau aggregates into filaments in the form of neurofibrillary tangles, neuropil threads and argyrophilic grains in neurons, in the form of variable astrocytic tangles in astrocytes and in the form of coiled bodies and argyrophilic threads in oligodendrocytes. These tau filaments may be classified into two types, straight filaments or tubules with 9-18 nm diameters and "twisted ribbons" composed of two parallel aligned components. In the same disease, the fine structure of tau filaments in glial cells roughly resembles that in neurons. In sporadic tauopathies, individual tau filaments show characteristic sizes, shapes and arrangements, and therefore contribute to neuropathologic differential diagnosis. In frontotemporal dementias caused by tau gene mutations, variable filamentous profiles were observed in association with mutation sites and insoluble tau isoforms, including straight filaments or tubules, paired helical filament-like filaments, and twisted ribbons. Pre-embedding immunoelectron microscopic studies were carried out using anti-3-repeat tau and anti-4-repeat tau specific antibodies, RD3 and RD4. Straight tubules in neuronal and astrocytic Pick bodies were immunolabeled by the anti-3-repeat tau antibody. The anti-4-repeat tau antibody recognized abnormal tubules comprising neurofibrillary tangles, coiled bodies and argyrophilic threads in progressive supranuclear palsy (PSP) and corticobasal degeneration. In the pre-embedding immunoelectron microscopic study using the phosphorylated tau AT8 antibody, tuft-shaped astrocytes of PSP were found to be composed of bundles of abnormal tubules in processes and perikarya of protoplasmic astrocytes. In this study, the 3-repeat tau or 4-repeat tau epitope was detected in situ at the ultrastructural level in abnormal tubules in representative pathological lesions in Pick's disease, PSP and corticobasal degeneration.

  4. A High-throughput Screening Assay for Determining Cellular Levels of Total Tau Protein

    PubMed Central

    Dehdashti, Seameen J.; Zheng, Wei; Gever, Joel R.; Wilhelm, Robert; Nguyen, Dac-Trung; Sittampalam, Gurusingham; McKew, John C.; Austin, Christopher P.; Prusiner, Stanley B.

    2014-01-01

    The microtubule-associated protein (MAP) tau has been implicated in the pathology of numerous neurodegenerative diseases. In the past decade, the hyperphosphorylated and aggregated states of tau protein have been important targets in the drug discovery field for the potential treatment of Alzheimer’s disease. Although several compounds have been reported to reduce the hyperphosphorylated state of tau or impact the stabilization of tau, their therapeutic activities are still to be validated. Recently, reduction of total cellular tau protein has emerged as an alternate intervention point for drug development and a potential treatment of tauopathies. We have developed and optimized a homogenous assay, using the AlphaLISA and HTRF assay technologies, for the quantification of total cellular tau protein levels in the SH-SY5Y neuroblastoma cell line. The signal-to-basal ratios were 375 and 5.3, and the Z’ factors were 0.67 and 0.60 for the AlphaLISA and HTRF tau assays, respectively. The clear advantages of this homogeneous tau assay over conventional total tau assays, such as ELISA and Western blot, are the elimination of plate wash steps and miniaturization of the assay into 1536-well plate format for the ultra–high-throughput screening of large compound libraries. PMID:23905996

  5. Lack of tau proteins rescues neuronal cell death and decreases amyloidogenic processing of APP in APP/PS1 mice.

    PubMed

    Leroy, Karelle; Ando, Kunie; Laporte, Vincent; Dedecker, Robert; Suain, Valérie; Authelet, Michèle; Héraud, Céline; Pierrot, Nathalie; Yilmaz, Zehra; Octave, Jean-Noël; Brion, Jean-Pierre

    2012-12-01

    Lack of tau expression has been reported to protect against excitotoxicity and to prevent memory deficits in mice expressing mutant amyloid precursor protein (APP) identified in familial Alzheimer disease. In APP mice, mutant presenilin 1 (PS1) enhances generation of Aβ42 and inhibits cell survival pathways. It is unknown whether the deficient phenotype induced by concomitant expression of mutant PS1 is rescued by absence of tau. In this study, we have analyzed the effect of tau deletion in mice expressing mutant APP and PS1. Although APP/PS1/tau(+/+) mice had a reduced survival, developed spatial memory deficits at 6 months and motor impairments at 12 months, these deficits were rescued in APP/PS1/tau(-/-) mice. Neuronal loss and synaptic loss in APP/PS1/tau(+/+) mice were rescued in the APP/PS1/tau(-/-) mice. The amyloid plaque burden was decreased by roughly 50% in the cortex and the spinal cord of the APP/PS1/tau(-/-) mice. The levels of soluble and insoluble Aβ40 and Aβ42, and the Aβ42/Aβ40 ratio were reduced in APP/PS1/tau(-/-) mice. Levels of phosphorylated APP, of β-C-terminal fragments (CTFs), and of β-secretase 1 (BACE1) were also reduced, suggesting that β-secretase cleavage of APP was reduced in APP/PS1/tau(-/-) mice. Our results indicate that tau deletion had a protective effect against amyloid induced toxicity even in the presence of mutant PS1 and reduced the production of Aβ. Copyright © 2012 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  6. Osmotin attenuates amyloid beta-induced memory impairment, tau phosphorylation and neurodegeneration in the mouse hippocampus.

    PubMed

    Ali, Tahir; Yoon, Gwang Ho; Shah, Shahid Ali; Lee, Hae Young; Kim, Myeong Ok

    2015-06-29

    The pathological hallmarks of Alzheimer's disease (AD) include amyloid beta (Aβ) accumulation, neurofibrillary tangle formation, synaptic dysfunction and neuronal loss. In this study, we investigated the neuroprotection of novel osmotin, a plant protein extracted from Nicotiana tabacum that has been considered to be a homolog of mammalian adiponectin. Here, we observed that treatment with osmotin (15 μg/g, intraperitoneally, 4 hr) at 3 and 40 days post-intracerebroventricular injection of Aβ1-42 significantly ameliorated Aβ1-42-induced memory impairment in mice. These results revealed that osmotin reverses Aβ1-42 injection-induced synaptic deficits, Aβ accumulation and BACE-1 expression. Treatment with osmotin also alleviated the Aβ1-42-induced hyperphosphorylation of the tau protein at serine 413 through the regulation of the aberrant phosphorylation of p-PI3K, p-Akt (serine 473) and p-GSK3β (serine 9). Moreover, our western blots and immunohistochemical results indicated that osmotin prevented Aβ1-42-induced apoptosis and neurodegeneration in the Aβ1-42-treated mice. Furthermore, osmotin attenuated Aβ1-42-induced neurotoxicity in vitro.To our knowledge, this study is the first to investigate the neuroprotective effect of a novel osmotin against Aβ1-42-induced neurotoxicity. Our results demonstrated that this ubiquitous plant protein could potentially serve as a novel, promising, and accessible neuroprotective agent against progressive neurodegenerative diseases such as AD.

  7. No added diagnostic value of non-phosphorylated tau fraction (p-taurel) in CSF as a biomarker for differential dementia diagnosis.

    PubMed

    Goossens, Joery; Bjerke, Maria; Struyfs, Hanne; Niemantsverdriet, Ellis; Somers, Charisse; Van den Bossche, Tobi; Van Mossevelde, Sara; De Vil, Bart; Sieben, Anne; Martin, Jean-Jacques; Cras, Patrick; Goeman, Johan; De Deyn, Peter Paul; Van Broeckhoven, Christine; van der Zee, Julie; Engelborghs, Sebastiaan

    2017-07-14

    The Alzheimer's disease (AD) cerebrospinal fluid (CSF) biomarkers Aβ 1-42 , t-tau, and p-tau 181 overlap with other diseases. New tau modifications or epitopes, such as the non-phosphorylated tau fraction (p-tau rel ), may improve differential dementia diagnosis. The goal of this study is to investigate if p-tau rel can improve the diagnostic performance of the AD CSF biomarker panel for differential dementia diagnosis. The study population consisted of 45 AD, 45 frontotemporal lobar degeneration (FTLD), 45 dementia with Lewy bodies (DLB), and 21 Creutzfeldt-Jakob disease (CJD) patients, and 20 cognitively healthy controls. A substantial subset of the patients was pathology-confirmed. CSF levels of Aβ 1-42 , t-tau, p-tau 181 , and p-tau rel were determined with commercially available single-analyte enzyme-linked immunosorbent assay (ELISA) kits. Diagnostic performance was evaluated by receiver operating characteristic (ROC) curve analyses, and area under the curve (AUC) values were compared using DeLong tests. The diagnostic performance of single markers as well as biomarker ratios was determined for each pairwise comparison of different dementia groups and controls. The addition of p-tau rel to the AD biomarker panel decreased its diagnostic performance when discriminating non-AD, FTLD, and DLB from AD. As a single marker, p-tau rel increased the diagnostic performance for CJD. No significant difference was found in AUC values with the addition of p-tau rel when differentiating between AD or non-AD dementias and controls. The addition of p-tau rel to the AD CSF biomarker panel failed to improve differentiation between AD and non-AD dementias.

  8. Protein phosphorylations in poliovirus infected cells.

    PubMed

    James, L A; Tershak, D R

    1981-01-01

    In vivo phosphorylation of proteins that are associated with polysomes of poliovirus-infected VERO (African green monkey kidney) and HeLa (Henrietta Lacks) cells differed from phosphorylations observed with uninfected cells that were fed fresh medium. With both types of cells infection stimulated phosphorylation of proteins with molecular weights of 40 000-41 000, 39 000, 34 000, 32 000, and 24 000. Similarities of phosphorylations in VERO and HeLa cells suggest that they are a specific consequence of infection and might serve a regulatory function during protein synthesis.

  9. Dimer model for Tau proteins bound in microtubule bundles

    NASA Astrophysics Data System (ADS)

    Hall, Natalie; Kluber, Alexander; Hayre, N. Robert; Singh, Rajiv; Cox, Daniel

    2013-03-01

    The microtubule associated protein tau is important in nucleating and maintaining microtubule spacing and structure in neuronal axons. Modification of tau is implicated as a later stage process in Alzheimer's disease, but little is known about the structure of tau in microtubule bundles. We present preliminary work on a proposed model for tau dimers in microtubule bundles (dimers are the minimal units since there is one microtubule binding domain per tau). First, a model of tau monomer was created and its characteristics explored using implicit solvent molecular dynamics simulation. Multiple simulations yield a partially collapsed form with separate positively/negatively charged clumps, but which are a factor of two smaller than required by observed microtubule spacing. We argue that this will elongate in dimer form to lower electrostatic energy at a cost of entropic ``spring'' energy. We will present preliminary results on steered molecular dynamics runs on tau dimers to estimate the actual force constant. Supported by US NSF Grant DMR 1207624.

  10. Reduction of Nuak1 Decreases Tau and Reverses Phenotypes in a Tauopathy Mouse Model.

    PubMed

    Lasagna-Reeves, Cristian A; de Haro, Maria; Hao, Shuang; Park, Jeehye; Rousseaux, Maxime W C; Al-Ramahi, Ismael; Jafar-Nejad, Paymaan; Vilanova-Velez, Luis; See, Lauren; De Maio, Antonia; Nitschke, Larissa; Wu, Zhenyu; Troncoso, Juan C; Westbrook, Thomas F; Tang, Jianrong; Botas, Juan; Zoghbi, Huda Y

    2016-10-19

    Many neurodegenerative proteinopathies share a common pathogenic mechanism: the abnormal accumulation of disease-related proteins. As growing evidence indicates that reducing the steady-state levels of disease-causing proteins mitigates neurodegeneration in animal models, we developed a strategy to screen for genes that decrease the levels of tau, whose accumulation contributes to the pathology of both Alzheimer disease (AD) and progressive supranuclear palsy (PSP). Integrating parallel cell-based and Drosophila genetic screens, we discovered that tau levels are regulated by Nuak1, an AMPK-related kinase. Nuak1 stabilizes tau by phosphorylation specifically at Ser356. Inhibition of Nuak1 in fruit flies suppressed neurodegeneration in tau-expressing Drosophila, and Nuak1 haploinsufficiency rescued the phenotypes of a tauopathy mouse model. These results demonstrate that decreasing total tau levels is a valid strategy for mitigating tau-related neurodegeneration and reveal Nuak1 to be a novel therapeutic entry point for tauopathies. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Methylglyoxal induces tau hyperphosphorylation via promoting AGEs formation.

    PubMed

    Li, Xiao-Hong; Xie, Jia-Zhao; Jiang, Xia; Lv, Bing-Ling; Cheng, Xiang-Shu; Du, Lai-Ling; Zhang, Jia-Yu; Wang, Jian-Zhi; Zhou, Xin-Wen

    2012-12-01

    The hyperphosphorylated tau is a major protein component of neurofibrillary tangle, which is one of hallmarks of Alzheimer's disease (AD). While the level of methylglyoxal (MG) is significantly increased in the AD brains, the role of MG in tau phosphorylation is still not reported. Here, we found that MG could induce tau hyperphosphorylation at multiple AD-related sites in neuroblastoma 2a cells under maintaining normal cell viability. MG treatment increased the level of advanced glycation end products (AGEs) and the receptor of AGEs (RAGE). Glycogen synthesis kinase-3β (GSK-3β) and p38 MAPK were activated, whereas the level and activity of JNK, Erk1/2, cdk5, and PP2A were not altered after MG treatment. Simultaneous inhibition of GSK-3β or p38 attenuated the MG-induced tau hyperphosphorylation. Aminoguanidine, a blocker of AGEs formation, could effectively reverse the MG-induced tau hyperphosphorylation. These data suggest that MG induces AD-like tau hyperphosphorylation through AGEs formation involving RAGE up-regulation and GSK-3β activation and p38 activation is also partially involved in MG-induced tau hyperphosphorylation. Thus, targeting MG may be a promising therapeutic strategy to prevent AD-like tau hyperphosphorylation.

  12. The neuroprotection of liraglutide on Alzheimer-like learning and memory impairment by modulating the hyperphosphorylation of tau and neurofilament proteins and insulin signaling pathways in mice.

    PubMed

    Xiong, Hui; Zheng, Chen; Wang, Jingjing; Song, Jinzhi; Zhao, Gang; Shen, Hui; Deng, Yanqiu

    2013-01-01

    The aim of this study was to investigate the effect of liraglutide on Alzheimer-like learning and memory impairment in mice, which were intracerebroventricularly (i.c.v.) injected with streptozotocin (STZ). Twenty-four mice were randomly divided into three groups: control (CON), AD model (STZ), and liraglutide-treated (LIR). The results show that both hyperphosphorylated tau and neurofilament proteins had deceased protein glycosylation and the tau bound to microtubules was lower in the STZ group compared to the CON group. The expression of JNK phosphorylation was higher and the number of Fluoro-Jade-B-positive degenerative neurons was increased in the STZ group as compared to both the CON and liraglutide groups. Escape latency in the STZ group was longer than that in both the CON and LIR groups, while the number of hidden platform crossings in path length was less than that in the other two groups. Liraglutide decreased the hyperphosphorylation levels of tau and neurofilament proteins, increased protein O-glycosylation, increased tau bound to microtubules, and also significantly improved the learning and memory ability of the mice. These results suggest that the effects of liraglutide on decreasing the hyperphosphorylation of tau and neurofilament proteins by enhancing O-glycosylation of neuronal cytoskeleton protein, improving the JNK and ERK signaling pathway, and reducing neural degeneration may be related to its protective effects on AD-like learning and memory impairment induced by i.c.v. injection of STZ. Our results indicate that GLP-1 analogs represent a novel treatment strategy for Alzheimer's disease.

  13. Glutamate system, amyloid β peptides and tau protein: functional interrelationships and relevance to Alzheimer disease pathology

    PubMed Central

    Revett, Timothy J.; Baker, Glen B.; Jhamandas, Jack; Kar, Satyabrata

    2013-01-01

    Alzheimer disease is the most prevalent form of dementia globally and is characterized premortem by a gradual memory loss and deterioration of higher cognitive functions and postmortem by neuritic plaques containing amyloid β peptide and neurofibrillary tangles containing phospho-tau protein. Glutamate is the most abundant neurotransmitter in the brain and is essential to memory formation through processes such as long-term potentiation and so might be pivotal to Alzheimer disease progression. This review discusses how the glutamatergic system is impaired in Alzheimer disease and how interactions of amyloid β and glutamate influence synaptic function, tau phosphorylation and neurodegeneration. Interestingly, glutamate not only influences amyloid β production, but also amyloid β can alter the levels of glutamate at the synapse, indicating that small changes in the concentrations of both molecules could influence Alzheimer disease progression. Finally, we describe how the glutamate receptor antagonist, memantine, has been used in the treatment of individuals with Alzheimer disease and discuss its effectiveness. PMID:22894822

  14. Genetic modification of the relationship between phosphorylated tau and neurodegeneration.

    PubMed

    Hohman, Timothy J; Koran, Mary Ellen I; Thornton-Wells, Tricia A

    2014-11-01

    A subset of individuals present at autopsy with the pathologic features of Alzheimer's disease having never manifest the clinical symptoms. We sought to identify genetic factors that modify the relationship between phosphorylated tau (PTau) and dilation of the lateral inferior ventricles. We used data from 700 subjects enrolled in the Alzheimer's Disease Neuroimaging Initiative (ADNI). A genome-wide association study approach was used to identify PTau × single nucleotide polymorphism (SNP) interactions. Variance explained by these interactions was quantified using hierarchical linear regression. Five SNP × PTau interactions passed a Bonferroni correction, one of which (rs4728029, POT1, 2.6% of variance) was consistent across ADNI-1 and ADNI-2/GO subjects. This interaction also showed a trend-level association with memory performance and levels of interleukin-6 receptor. Our results suggest that rs4728029 modifies the relationship between PTau and both ventricular dilation and cognition, perhaps through an altered neuroinflammatory response. Copyright © 2014 The Alzheimer's Association. Published by Elsevier Inc. All rights reserved.

  15. Delta-Secretase Phosphorylation by SRPK2 Enhances Its Enzymatic Activity, Provoking Pathogenesis in Alzheimer's Disease.

    PubMed

    Wang, Zhi-Hao; Liu, Pai; Liu, Xia; Manfredsson, Fredric P; Sandoval, Ivette M; Yu, Shan Ping; Wang, Jian-Zhi; Ye, Keqiang

    2017-09-07

    Delta-secretase, a lysosomal asparagine endopeptidase (AEP), simultaneously cleaves both APP and tau, controlling the onset of pathogenesis of Alzheimer's disease (AD). However, how this protease is post-translationally regulated remains unclear. Here we report that serine-arginine protein kinase 2 (SRPK2) phosphorylates delta-secretase and enhances its enzymatic activity. SRPK2 phosphorylates serine 226 on delta-secretase and accelerates its autocatalytic cleavage, leading to its cytoplasmic translocation and escalated enzymatic activities. Delta-secretase is highly phosphorylated in human AD brains, tightly correlated with SRPK2 activity. Overexpression of a phosphorylation mimetic (S226D) in young 3xTg mice strongly promotes APP and tau fragmentation and facilitates amyloid plaque deposits and neurofibrillary tangle (NFT) formation, resulting in cognitive impairment. Conversely, viral injection of the non-phosphorylatable mutant (S226A) into 5XFAD mice decreases APP and tau proteolytic cleavage, attenuates AD pathologies, and reverses cognitive defects. Our findings support that delta-secretase phosphorylation by SRPK2 plays a critical role in aggravating AD pathogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Tauopathy induced by low level expression of a human brain-derived tau fragment in mice is rescued by phenylbutyrate.

    PubMed

    Bondulich, Marie K; Guo, Tong; Meehan, Christopher; Manion, John; Rodriguez Martin, Teresa; Mitchell, Jacqueline C; Hortobagyi, Tibor; Yankova, Natalia; Stygelbout, Virginie; Brion, Jean-Pierre; Noble, Wendy; Hanger, Diane P

    2016-08-01

    Human neurodegenerative tauopathies exhibit pathological tau aggregates in the brain along with diverse clinical features including cognitive and motor dysfunction. Post-translational modifications including phosphorylation, ubiquitination and truncation, are characteristic features of tau present in the brain in human tauopathy. We have previously reported an N-terminally truncated form of tau in human brain that is associated with the development of tauopathy and is highly phosphorylated. We have generated a new mouse model of tauopathy in which this human brain-derived, 35 kDa tau fragment (Tau35) is expressed in the absence of any mutation and under the control of the human tau promoter. Most existing mouse models of tauopathy overexpress mutant tau at levels that do not occur in human neurodegenerative disease, whereas Tau35 transgene expression is equivalent to less than 10% of that of endogenous mouse tau. Tau35 mice recapitulate key features of human tauopathies, including aggregated and abnormally phosphorylated tau, progressive cognitive and motor deficits, autophagic/lysosomal dysfunction, loss of synaptic protein, and reduced life-span. Importantly, we found that sodium 4-phenylbutyrate (Buphenyl®), a drug used to treat urea cycle disorders and currently in clinical trials for a range of neurodegenerative diseases, reverses the observed abnormalities in tau and autophagy, behavioural deficits, and loss of synapsin 1 in Tau35 mice. Our results show for the first time that, unlike other tau transgenic mouse models, minimal expression of a human disease-associated tau fragment in Tau35 mice causes a profound and progressive tauopathy and cognitive changes, which are rescued by pharmacological intervention using a clinically approved drug. These novel Tau35 mice therefore represent a highly disease-relevant animal model in which to investigate molecular mechanisms and to develop novel treatments for human tauopathies. © The Author (2016). Published by

  17. Tauopathy induced by low level expression of a human brain-derived tau fragment in mice is rescued by phenylbutyrate

    PubMed Central

    Bondulich, Marie K.; Guo, Tong; Meehan, Christopher; Manion, John; Rodriguez Martin, Teresa; Mitchell, Jacqueline C.; Hortobagyi, Tibor; Yankova, Natalia; Stygelbout, Virginie; Brion, Jean-Pierre; Noble, Wendy

    2016-01-01

    Abstract Human neurodegenerative tauopathies exhibit pathological tau aggregates in the brain along with diverse clinical features including cognitive and motor dysfunction. Post-translational modifications including phosphorylation, ubiquitination and truncation, are characteristic features of tau present in the brain in human tauopathy. We have previously reported an N-terminally truncated form of tau in human brain that is associated with the development of tauopathy and is highly phosphorylated. We have generated a new mouse model of tauopathy in which this human brain-derived, 35 kDa tau fragment (Tau35) is expressed in the absence of any mutation and under the control of the human tau promoter. Most existing mouse models of tauopathy overexpress mutant tau at levels that do not occur in human neurodegenerative disease, whereas Tau35 transgene expression is equivalent to less than 10% of that of endogenous mouse tau. Tau35 mice recapitulate key features of human tauopathies, including aggregated and abnormally phosphorylated tau, progressive cognitive and motor deficits, autophagic/lysosomal dysfunction, loss of synaptic protein, and reduced life-span. Importantly, we found that sodium 4-phenylbutyrate (Buphenyl®), a drug used to treat urea cycle disorders and currently in clinical trials for a range of neurodegenerative diseases, reverses the observed abnormalities in tau and autophagy, behavioural deficits, and loss of synapsin 1 in Tau35 mice. Our results show for the first time that, unlike other tau transgenic mouse models, minimal expression of a human disease-associated tau fragment in Tau35 mice causes a profound and progressive tauopathy and cognitive changes, which are rescued by pharmacological intervention using a clinically approved drug. These novel Tau35 mice therefore represent a highly disease-relevant animal model in which to investigate molecular mechanisms and to develop novel treatments for human tauopathies. PMID:27297240

  18. Probing Conformational Dynamics of Tau Protein by Hydrogen/Deuterium Exchange Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Huang, Richard Y.-C.; Iacob, Roxana E.; Sankaranarayanan, Sethu; Yang, Ling; Ahlijanian, Michael; Tao, Li; Tymiak, Adrienne A.; Chen, Guodong

    2018-01-01

    Fibrillization of the microtubule-associated protein tau has been recognized as one of the signature pathologies of the nervous system in Alzheimer's disease, progressive supranuclear palsy, and other tauopathies. The conformational transition of tau in the fibrillization process, tau monomer to soluble aggregates to fibrils in particular, remains unclear. Here we report on the use of hydrogen/deuterium exchange mass spectrometry (HDX-MS) in combination with other biochemical approaches, including Thioflavin S fluorescence measurements, enzyme-linked immunosorbent assay (ELISA), and Western blotting to understand the heparin-induced tau's fibrillization. HDX-MS studies including anti-tau antibody epitope mapping experiments provided molecular level details of the full-length tau's conformational dynamics and its regional solvent accessibility upon soluble aggregates formation. The results demonstrate that R3 region in the full-length tau's microtubule binding repeat region (MTBR) is stabilized in the aggregation process, leaving both N and C terminal regions to be solvent exposed in the soluble aggregates and fibrils. The findings also illustrate the practical utility of orthogonal analytical methodologies for the characterization of protein higher order structure. [Figure not available: see fulltext.

  19. Analysis of tau post-translational modifications in rTg4510 mice, a model of tau pathology.

    PubMed

    Song, Lixin; Lu, Sherry X; Ouyang, Xuesong; Melchor, Jerry; Lee, Julie; Terracina, Giuseppe; Wang, Xiaohai; Hyde, Lynn; Hess, J Fred; Parker, Eric M; Zhang, Lili

    2015-03-26

    Microtubule associated protein tau is the major component of the neurofibrillary tangles (NFTs) found in the brains of patients with Alzheimer's disease and several other neurodegenerative diseases. Tau mutations are associated with frontotemperal dementia with parkinsonism on chromosome 17 (FTDP-17). rTg4510 mice overexpress human tau carrying the P301L FTDP-17 mutation and develop robust NFT-like pathology at 4-5 months of age. The current study is aimed at characterizing the rTg4510 mice to better understand the genesis of tau pathology and to better enable the use of this model in drug discovery efforts targeting tau pathology. Using a panel of immunoassays, we analyzed the age-dependent formation of pathological tau in rTg4510 mice and our data revealed a steady age-dependent accumulation of pathological tau in the insoluble fraction of brain homogenates. The pathological tau was associated with multiple post-translational modifications including aggregation, phosphorylation at a wide variety of sites, acetylation, ubiquitination and nitration. The change of most tau species reached statistical significance at the age of 16 weeks. There was a strong correlation between the different post-translationally modified tau species in this heterogeneous pool of pathological tau. Total tau in the cerebrospinal fluid (CSF) displayed a multiphasic temporal profile distinct from the steady accumulation of pathological tau in the brain. Female rTg4510 mice displayed significantly more aggressive accumulation of pathological tau in the brain and elevation of total tau in CSF than their male littermates. The immunoassays described here were used to generate the most comprehensive description of the changes in various tau species across the lifespan of the rTg4510 mouse model. The data indicate that development of tauopathy in rTg4510 mice involves the accumulation of a pool of pathological tau that carries multiple post-translational modifications, a process that can be

  20. Senile dementia of Lewy body type and Alzheimer type are biochemically distinct in terms of paired helical filaments and hyperphosphorylated tau protein.

    PubMed

    Harrington, C R; Perry, R H; Perry, E K; Hurt, J; McKeith, I G; Roth, M; Wischik, C M

    1994-01-01

    We have used biochemical assays to examine cingulate and occipital cortices from age-matched cases of Alzheimer's disease (AD; n = 12), senile dementia of the Lewy body type (SDLT; n = 13), Parkinson's disease (PD; 5 non-demented cases and 7 cognitively impaired cases) and controls (n = 11) for paired helical filaments (PHFs), phosphorylated and normal tau protein and beta/A4-protein. Whereas cingulate cortex is characterised by relatively high densities of cortical Lewy bodies in the SDLT cases and lower numbers in PD, these inclusion bodies were absent in the cingulate cortex from AD and control cases. Protease-resistant PHFs and hyperphosphorylated tau protein were found in AD and, at low levels, in a minority of SDLT cases. Qualitatively, both of these preparations were indistinguishable in SDLT from those found in AD but levels of both parameters in SDLT were less than 5% of those in AD. SDLT, PD and control groups did not differ from each other in terms of the quantity of protease-resistant PHFs or the level of hyperphosphorylated tau. Furthermore, PHF accumulation did not distinguish between PD cases with or without dementia. The levels of normal tau protein did not differ between the four groups. beta/A4 protein levels did not distinguish between PD and control groups, between AD and SDLT groups, or between SDLT and control groups for either cingulate or occipital cortices. Thus extensive accumulation of PHFs in either neurofibrillary tangles or dystrophic neurites is not a feature of either SDLT or PD. Our findings provide molecular support for the neuropathological and clinical separation of SDLT as a form of dementia that is distinct from AD.

  1. Abnormally phosphorylated tau protein related to the formation of neurofibrillary tangles and neuropil threads in the cerebral cortex of sheep and goat.

    PubMed

    Braak, H; Braak, E; Strothjohann, M

    1994-04-25

    Frontal sections including temporal isocortex, entorhinal region and hippocampus from aged domestic animals (dog, cat, horse, sheep and goat) were studied for Alzheimer-related changes using immunostaining with the AT8 antibody for abnormally phosphorylated tau protein and selective silver techniques for A4 amyloid and neurofibrillary changes of the Alzheimer type. The material available to us did not show A4 amyloid deposits or argyrophilic neurofibrillary changes. Only the brains of aged sheep and goat exhibited the presence of AT8-immunoreactive pyramidal cells in the entorhinal region and hippocampal formation. Two groups of AT8-positive neurons could be observed: The first group contained evenly distributed immunoreactive material in all parts of the soma, the dendrites and the axon. The neuronal processes appeared quite normal. The second group, however, showed conspicuous changes in the cellular processes consisting of a loss of immunoreactivity within the axon and the proximal dendrites and the appearance of intensely stained swellings within the curved distal dendrites. These changes were closely reminiscent to alterations of the cytoskeleton known to occur at the same location in the aging human brain and in Alzheimer's disease. The findings justify a closer look at sheep and goat when searching for suitable animal models for experimental studies of the conditions responsible for the development of Alzheimer-related neurofibrillary changes.

  2. Tau regulates the localization and function of End-binding proteins 1 and 3 in developing neuronal cells.

    PubMed

    Sayas, Carmen Laura; Tortosa, Elena; Bollati, Flavia; Ramírez-Ríos, Sacnicte; Arnal, Isabelle; Avila, Jesús

    2015-06-01

    The axonal microtubule-associated protein tau is a well-known regulator of microtubule stability in neurons. However, the putative interplay between tau and End-binding proteins 1 and 3 (EB1/3), the core microtubule plus-end tracking proteins, has not been elucidated yet. Here, we show that a cross-talk between tau and EB1/3 exists in developing neuronal cells. Tau and EBs partially colocalize at extending neurites of N1E-115 neuroblastoma cells and axons of primary hippocampal neurons, as shown by confocal immunofluorescence analyses. Tau down-regulation leads to a reduction of EB1/3 comet length, as observed in shRNA-stably depleted neuroblastoma cells and TAU-/- neurons. EB1/3 localization depends on the expression levels and localization of tau protein. Over-expression of tau at high levels induces EBs relocalization to microtubule bundles at extending neurites of N1E-115 cells. In differentiating primary neurons, tau is required for the proper accumulation of EBs at stretches of microtubule bundles at the medial and distal regions of the axon. Tau interacts with EB proteins, as shown by immunoprecipitation in different non-neuronal and neuronal cells and in whole brain lysates. A tau/EB1 direct interaction was corroborated by in vitro pull-down assays. Fluorescence recovery after photobleaching assays performed in neuroblastoma cells confirmed that tau modulates EB3 cellular mobility. In summary, we provide evidence of a new function of tau as a direct regulator of EB proteins in developing neuronal cells. This cross-talk between a classical microtubule-associated protein and a core microtubule plus-end tracking protein may contribute to the fine-tuned regulation of microtubule dynamics and stability during neuronal differentiation. We describe here a novel function for tau as a direct regulator of End binding (EB) proteins in differentiating neuronal cells. EB1/3 cellular mobility and localization in extending neurites and axons is modulated by tau levels and

  3. Cardiac mitochondrial matrix and respiratory complex protein phosphorylation

    PubMed Central

    Covian, Raul

    2012-01-01

    It has become appreciated over the last several years that protein phosphorylation within the cardiac mitochondrial matrix and respiratory complexes is extensive. Given the importance of oxidative phosphorylation and the balance of energy metabolism in the heart, the potential regulatory effect of these classical signaling events on mitochondrial function is of interest. However, the functional impact of protein phosphorylation and the kinase/phosphatase system responsible for it are relatively unknown. Exceptions include the well-characterized pyruvate dehydrogenase and branched chain α-ketoacid dehydrogenase regulatory system. The first task of this review is to update the current status of protein phosphorylation detection primarily in the matrix and evaluate evidence linking these events with enzymatic function or protein processing. To manage the scope of this effort, we have focused on the pathways involved in energy metabolism. The high sensitivity of modern methods of detecting protein phosphorylation and the low specificity of many kinases suggests that detection of protein phosphorylation sites without information on the mole fraction of phosphorylation is difficult to interpret, especially in metabolic enzymes, and is likely irrelevant to function. However, several systems including protein translocation, adenine nucleotide translocase, cytochrome c, and complex IV protein phosphorylation have been well correlated with enzymatic function along with the classical dehydrogenase systems. The second task is to review the current understanding of the kinase/phosphatase system within the matrix. Though it is clear that protein phosphorylation occurs within the matrix, based on 32P incorporation and quantitative mass spectrometry measures, the kinase/phosphatase system responsible for this process is ill-defined. An argument is presented that remnants of the much more labile bacterial protein phosphoryl transfer system may be present in the matrix and that the

  4. CNS Injury: Posttranslational Modification of the Tau Protein as a Biomarker.

    PubMed

    Caprelli, Mitchell T; Mothe, Andrea J; Tator, Charles H

    2017-11-01

    The ideal biomarker for central nervous system (CNS) trauma in patients would be a molecular marker specific for injured nervous tissue that would provide a consistent and reliable assessment of the presence and severity of injury and the prognosis for recovery. One candidate biomarker is the protein tau, a microtubule-associated protein abundant in the axonal compartment of CNS neurons. Following axonal injury, tau becomes modified primarily by hyperphosphorylation of its various amino acid residues and cleavage into smaller fragments. These posttrauma products can leak into the cerebrospinal fluid or bloodstream and become candidate biomarkers of CNS injury. This review examines the primary molecular changes that tau undergoes following traumatic brain injury and spinal cord injury, and reviews the current literature in traumatic CNS biomarker research with a focus on the potential for hyperphosphorylated and cleaved tau as sensitive biomarkers of injury.

  5. Protein phosphorylation in human peripheral blood lymphocytes. Phosphorylation of endogenous plasma membrane and cytoplasmic proteins

    PubMed Central

    Chaplin, David D.; Wedner, H. James; Parker, Charles W.

    1979-01-01

    Phosphorylation of endogenous proteins in subcellular fractions of human peripheral-blood lymphocytes was studied by one- and two-dimensional polyacrylamide-gel electrophoresis. Studies using extensively purified subcellular fractions indicated that the endogenous phosphorylating activity in the particulate fractions was derived primarily from the plasma membrane. Electrophoresis of 32P-labelled subcellular fractions in two dimensions [O'Farrell (1975) J. Biol. Chem. 250, 4007–4021] provided much greater resolution of the endogenous phosphoproteins than electrophoresis in one dimension, facilitating their excision from gels for quantification of 32P content. More than 100 cytoplasmic and 20 plasma-membrane phosphorylated species were observed. Phosphorylation of more than 10 cytoplasmic proteins was absolutely dependent on cyclic AMP. In the plasma membrane, cyclic AMP-dependent phosphoproteins were observed with mol.wts. of 42000, 42000, 80000 and 90000 and pI values of 6.1, 6.3, 6.25 and 6.5 respectively. Phosphorylation of endogenous cytoplasmic and plasma-membrane proteins was rapid with t½=5–12s at 25°C. Between 40 and 70% of the 32P was recovered as phosphoserine and phosphothreonine when acid hydrolysates of isolated plasma-membrane phosphoproteins were analysed by high-voltage paper electrophoresis. The presence of cyclic AMP-dependent protein kinase and endogenous phosphate-acceptor proteins in the plasma membranes of lymphocytes provides a mechanism by which these cells might respond to plasma-membrane pools of cyclic AMP generated in response to stimulation by mitogens or physiological modulators of lymphocyte function. ImagesFig. 1.Fig. 2.Fig. 3.Fig. 4. PMID:228657

  6. Subcutaneous administration of liraglutide ameliorates learning and memory impairment by modulating tau hyperphosphorylation via the glycogen synthase kinase-3β pathway in an amyloid β protein induced alzheimer disease mouse model.

    PubMed

    Qi, Liqin; Ke, Linfang; Liu, Xiaohong; Liao, Lianming; Ke, Sujie; Liu, Xiaoying; Wang, Yanping; Lin, Xiaowei; Zhou, Yu; Wu, Lijuan; Chen, Zhou; Liu, Libin

    2016-07-15

    Type 2 diabetes mellitus is a risk factor for Alzheimer's disease (AD). The glucagon-like peptide-1 analog liraglutide, a novel long-lasting incretin hormone, has been used to treat type 2 diabetes mellitus. In addition, liraglutide has been shown to be neurotrophic and neuroprotective. Here, we investigated the effects of liraglutide on amyloid β protein (Aβ)-induced AD in mice and explored its mechanism of action. The results showed that subcutaneous administration of liraglutide (25nmol/day), once daily for 8 weeks, prevented memory impairments in the Y Maze and Morris Water Maze following Aβ1-42 intracerebroventricular injection, and alleviated the ultra-structural changes of pyramidal neurons and chemical synapses in the hippocampal CA1 region. Furthermore, liraglutide reduced Aβ1-42-induced tau phosphorylation via the protein kinase B and glycogen synthase kinase-3β pathways. Thus liraglutide may alleviate cognitive impairment in AD by at least decreasing the phosphorylation of tau. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Hippocampal tau pathology is related to neuroanatomical connections: an ageing population-based study.

    PubMed

    Lace, G; Savva, G M; Forster, G; de Silva, R; Brayne, C; Matthews, F E; Barclay, J J; Dakin, L; Ince, P G; Wharton, S B

    2009-05-01

    Deposits of abnormally phosphorylated tau protein are found in numerous neurodegenerative disorders; the 'tauopathies', which include Alzheimer's and Pick's diseases, but tau pathology is also found in the ageing brain. Variation in tau pathology in brain ageing and its relationship to development of tauopathies and cognitive impairment remains unclear. We aimed to determine the extent and pattern of spread of tau pathology in the hippocampus, a susceptible region important in dementia and milder states of memory impairment, using hippocampal samples from the elderly population-based Medical Research Council Cognitive Function and Ageing Study neuropathology cohort. Tau deposition was assessed in hippocampal anatomical sub-regions using the AT8 antibody to phosphorylated tau and isoform-specific antibodies to 3 and 4-repeat tau (RD3 and RD4). Abeta pathology was also assessed. In this population sample, which includes the full ageing spectrum from individuals with no cognitive impairment to those with dementia satisfying clinico-pathology criteria for Alzheimer's disease, we have demonstrated a high prevalence at death of tau pathology. AT8, Abeta, RD3 and RD4 showed similar regional distribution and increased RD3 was noted in late-stage ghost tangles. Abeta was shown to be a poor explanatory variable for tau pathology. Tau deposition progressed in a hierarchical manner. Hippocampal input regions and projection zones (such as lateral entorhinal cortex, CA1/subiculum border and outer molecular layer of dentate) were initially affected, with anterograde progression though the hippocampal circuitry. Six hippocampal tau anatomical stages were defined, each linking projectionally to their adjacent stages, suggesting spread of tau malfunction through neuroanatomical pathways in hippocampal ageing. These stages were significantly associated with dementia, and may provide a clinically useful tool in the clinico-pathological assessment of dementia and mild cognitive

  8. Real-Time Tau Protein Detection by Sandwich-Based Piezoelectric Biosensing: Exploring Tubulin as a Mass Enhancer.

    PubMed

    Li, Dujuan; Scarano, Simona; Lisi, Samuele; Palladino, Pasquale; Minunni, Maria

    2018-03-22

    Human tau protein is one of the most advanced and accepted biomarkers for AD and tauopathies diagnosis in general. In this work, a quartz crystal balance (QCM) immunosensor was developed for the detection of human tau protein in buffer and artificial cerebrospinal fluid (aCSF), through both direct and sandwich assays. Starting from a conventional immuno-based sandwich strategy, two monoclonal antibodies recognizing different epitopes of tau protein were used, achieving a detection limit for the direct assay in nanomolar range both in HBES-EP and aCSF. Afterward, for exploring alternative specific receptors as secondary recognition elements for tau protein biosensing, we tested tubulin and compared its behavior to a conventional secondary antibody in the sandwich assay. Tau-tubulin binding has shown an extended working range coupled to a signal improvement in comparison with the conventional secondary antibody-based approach, showing a dose-response trend at lower tau concentration than is usually investigated and closer to the physiological levels in the reference matrix for protein tau biomarker. Our results open up new and encouraging perspectives for the use of tubulin as an alternative receptor for tau protein with interesting features due to the possibility of taking advantage of its polymerization and reversible binding to this key hallmark of Alzheimer's disease.

  9. Tau Deletion Prevents Stress-Induced Dendritic Atrophy in Prefrontal Cortex: Role of Synaptic Mitochondria.

    PubMed

    Lopes, Sofia; Teplytska, Larysa; Vaz-Silva, Joao; Dioli, Chrysoula; Trindade, Rita; Morais, Monica; Webhofer, Christian; Maccarrone, Giuseppina; Almeida, Osborne F X; Turck, Christoph W; Sousa, Nuno; Sotiropoulos, Ioannis; Filiou, Michaela D

    2017-04-01

    Tau protein in dendrites and synapses has been recently implicated in synaptic degeneration and neuronal malfunction. Chronic stress, a well-known inducer of neuronal/synaptic atrophy, triggers hyperphosphorylation of Tau protein and cognitive deficits. However, the cause-effect relationship between these events remains to be established. To test the involvement of Tau in stress-induced impairments of cognition, we investigated the impact of stress on cognitive behavior, neuronal structure, and the synaptic proteome in the prefrontal cortex (PFC) of Tau knock-out (Tau-KO) and wild-type (WT) mice. Whereas exposure to chronic stress resulted in atrophy of apical dendrites and spine loss in PFC neurons as well as significant impairments in working memory in WT mice, such changes were absent in Tau-KO animals. Quantitative proteomic analysis of PFC synaptosomal fractions, combined with transmission electron microscopy analysis, suggested a prominent role for mitochondria in the regulation of the effects of stress. Specifically, chronically stressed animals exhibit Tau-dependent alterations in the levels of proteins involved in mitochondrial transport and oxidative phosphorylation as well as in the synaptic localization of mitochondria in PFC. These findings provide evidence for a causal role of Tau in mediating stress-elicited neuronal atrophy and cognitive impairment and indicate that Tau may exert its effects through synaptic mitochondria. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  10. Binding to the minor groove of the double-strand, tau protein prevents DNA from damage by peroxidation.

    PubMed

    Wei, Yan; Qu, Mei-Hua; Wang, Xing-Sheng; Chen, Lan; Wang, Dong-Liang; Liu, Ying; Hua, Qian; He, Rong-Qiao

    2008-07-02

    Tau, an important microtubule associated protein, has been found to bind to DNA, and to be localized in the nuclei of both neurons and some non-neuronal cells. Here, using electrophoretic mobility shifting assay (EMSA) in the presence of DNA with different chain-lengths, we observed that tau protein favored binding to a 13 bp or a longer polynucleotide. The results from atomic force microscopy also showed that tau protein preferred a 13 bp polynucleotide to a 12 bp or shorter polynucleotide. In a competitive assay, a minor groove binder distamycin A was able to replace the bound tau from the DNA double helix, indicating that tau protein binds to the minor groove. Tau protein was able to protect the double-strand from digestion in the presence of DNase I that was bound to the minor groove. On the other hand, a major groove binder methyl green as a negative competitor exhibited little effect on the retardation of tau-DNA complex in EMSA. This further indicates the DNA minor groove as the binding site for tau protein. EMSA with truncated tau proteins showed that both the proline-rich domain (PRD) and the microtubule-binding domain (MTBD) contributed to the interaction with DNA; that is to say, both PRD and MTBD bound to the minor groove of DNA and bent the double-strand, as observed by electron microscopy. To investigate whether tau protein is able to prevent DNA from the impairment by hydroxyl free radical, the chemiluminescence emitted by the phen-Cu/H(2)O(2)/ascorbate was measured. The emission intensity of the luminescence was markedly decreased when tau protein was present, suggesting a significant protection of DNA from the damage in the presence of hydroxyl free radical.

  11. Paired Helical Filaments from Alzheimer Disease Brain Induce Intracellular Accumulation of Tau Protein in Aggresomes*

    PubMed Central

    Santa-Maria, Ismael; Varghese, Merina; Ksiȩżak-Reding, Hanna; Dzhun, Anastasiya; Wang, Jun; Pasinetti, Giulio M.

    2012-01-01

    Abnormal folding of tau protein leads to the generation of paired helical filaments (PHFs) and neurofibrillary tangles, a key neuropathological feature in Alzheimer disease and tauopathies. A specific anatomical pattern of pathological changes developing in the brain suggests that once tau pathology is initiated it propagates between neighboring neuronal cells, possibly spreading along the axonal network. We studied whether PHFs released from degenerating neurons could be taken up by surrounding cells and promote spreading of tau pathology. Neuronal and non-neuronal cells overexpressing green fluorescent protein-tagged tau (GFP-Tau) were treated with isolated fractions of human Alzheimer disease-derived PHFs for 24 h. We found that cells internalized PHFs through an endocytic mechanism and developed intracellular GFP-Tau aggregates with attributes of aggresomes. This was particularly evident by the perinuclear localization of aggregates and redistribution of the vimentin intermediate filament network and retrograde motor protein dynein. Furthermore, the content of Sarkosyl-insoluble tau, a measure of abnormal tau aggregation, increased 3-fold in PHF-treated cells. An exosome-related mechanism did not appear to be involved in the release of GFP-Tau from untreated cells. The evidence that cells can internalize PHFs, leading to formation of aggresome-like bodies, opens new therapeutic avenues to prevent propagation and spreading of tau pathology. PMID:22496370

  12. Identification of Mitosis-Specific Phosphorylation in Mitotic Chromosome-Associated Proteins.

    PubMed

    Ohta, Shinya; Kimura, Michiko; Takagi, Shunsuke; Toramoto, Iyo; Ishihama, Yasushi

    2016-09-02

    During mitosis, phosphorylation of chromosome-associated proteins is a key regulatory mechanism. Mass spectrometry has been successfully applied to determine the complete protein composition of mitotic chromosomes, but not to identify post-translational modifications. Here, we quantitatively compared the phosphoproteome of isolated mitotic chromosomes with that of chromosomes in nonsynchronized cells. We identified 4274 total phosphorylation sites and 350 mitosis-specific phosphorylation sites in mitotic chromosome-associated proteins. Significant mitosis-specific phosphorylation in centromere/kinetochore proteins was detected, although the chromosomal association of these proteins did not change throughout the cell cycle. This mitosis-specific phosphorylation might play a key role in regulation of mitosis. Further analysis revealed strong dependency of phosphorylation dynamics on kinase consensus patterns, thus linking the identified phosphorylation sites to known key mitotic kinases. Remarkably, chromosomal axial proteins such as non-SMC subunits of condensin, TopoIIα, and Kif4A, together with the chromosomal periphery protein Ki67 involved in the establishment of the mitotic chromosomal structure, demonstrated high phosphorylation during mitosis. These findings suggest a novel mechanism for regulation of chromosome restructuring in mitosis via protein phosphorylation. Our study generated a large quantitative database on protein phosphorylation in mitotic and nonmitotic chromosomes, thus providing insights into the dynamics of chromatin protein phosphorylation at mitosis onset.

  13. Maintained activity of glycogen synthase kinase-3{beta} despite of its phosphorylation at serine-9 in okadaic acid-induced neurodegenerative model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, Yong-Whan; Yoon, Seung-Yong, E-mail: ysy@amc.seoul.kr; Institute for Biomacromolecules, University of Ulsan College of Medicine, Seoul

    2010-04-30

    Glycogen synthase kinase-3{beta} (GSK3{beta}) is recognized as one of major kinases to phosphorylate tau in Alzheimer's disease (AD), thus lots of AD drug discoveries target GSK3{beta}. However, the inactive form of GSK3{beta} which is phosphorylated at serine-9 is increased in AD brains. This is also inconsistent with phosphorylation status of other GSK3{beta} substrates, such as {beta}-catenin and collapsin response mediator protein-2 (CRMP2) since their phosphorylation is all increased in AD brains. Thus, we addressed this paradoxical condition of AD in rat neurons treated with okadaic acid (OA) which inhibits protein phosphatase-2A (PP2A) and induces tau hyperphosphorylation and cell death. Interestingly,more » OA also induces phosphorylation of GSK3{beta} at serine-9 and other substrates including tau, {beta}-catenin and CRMP2 like in AD brains. In this context, we observed that GSK3{beta} inhibitors such as lithium chloride and 6-bromoindirubin-3'-monoxime (6-BIO) reversed those phosphorylation events and protected neurons. These data suggest that GSK3{beta} may still have its kinase activity despite increase of its phosphorylation at serine-9 in AD brains at least in PP2A-compromised conditions and that GSK3{beta} inhibitors could be a valuable drug candidate in AD.« less

  14. Dietary Lycopene Supplementation Improves Cognitive Performances in Tau Transgenic Mice Expressing P301L Mutation via Inhibiting Oxidative Stress and Tau Hyperphosphorylation.

    PubMed

    Yu, Lixia; Wang, Weiguang; Pang, Wei; Xiao, Zhonghai; Jiang, Yugang; Hong, Yan

    2017-01-01

    Oxidative stress is implicated in the pathogenesis of Alzheimer's disease (AD) and other tauopathies and participates in their development by promoting hyperphosphorylation of microtubule-associated protein tau. Lycopene, as an effective antioxidant, combined with vitamin E seemed to be additive against oxidative stress. The present study was undertaken to examine whether lycopene or lycopene/vitamin E could exert protective effects on memory deficit and oxidative stress in tau transgenic mice expressing P301L mutation. P301L transgenic mice were assigned to three groups: P301L group (P301L), P301L+lycopene (Lyc), and P301L+lycopene/vitamin E (Lyc+VE). Age-matched C57BL/6J mice as wild type controls (Con) were used in the present study. Spatial memory was assessed by radial arm while passive memories were evaluated by step-down and step-through tests. Levels of tau phosphorylation were detected by western blot. Oxidative stress biomarkers were measured in the serum using biochemical assay kits. Compared with the control group, P301L mice displayed significant spatial and passive memory impairments, elevated malondialdehyde (MDA) levels and decreased glutathione peroxidase (GSH-Px) activities in serum, and increased tau phosphorylation at Thr231/Ser235, Ser262, and Ser396 in brain. Supplementations of lycopene or lycopene/vitamin E could significantly ameliorate the memory deficits, observably decreased MDA concentrations and increased GSH-Px activities, and markedly attenuated tau hyperphosphorylation at multiple AD-related sites. Our findings indicated that the combination of lycopene and vitamin E antioxidants acted in a synergistic fashion to bring significant effects against oxidative stress in tauopathies.

  15. Intraneuronal accumulation of misfolded tau protein induces overexpression of Hsp27 in activated astrocytes.

    PubMed

    Filipcik, Peter; Cente, Martin; Zilka, Norbert; Smolek, Tomas; Hanes, Jozef; Kucerak, Juraj; Opattova, Alena; Kovacech, Branislav; Novak, Michal

    2015-07-01

    Accumulation of misfolded forms of microtubule associated, neuronal protein tau causes neurofibrillary degeneration typical of Alzheimer's disease and other tauopathies. This process is accompanied by elevated cellular stress and concomitant deregulation of heat-shock proteins. We used a transgenic rat model of tauopathy to study involvement of heat shock protein 27 (Hsp27) in the process of neurofibrillary degeneration, its cell type specific expression and correlation with the amount of insoluble tau protein aggregates. The expression of Hsp27-mRNA is more than doubled and levels of Hsp27 protein tripled in aged transgenic animals with tau pathology. The data revealed a strong positive and highly significant correlation between Hsp27-mRNA and amount of sarkosyl insoluble tau. Interestingly, intracellular accumulation of insoluble misfolded tau protein in neurons was associated with overexpression of Hsp27 almost exclusively in reactive astrocytes, not in neurons. The topological dissociation of neuronally expressed pathological tau and the induction of astrocytic Hsp27, GFAP, and Vimentin along with up-regulation of microglia specific markers such as CD18, CD68 and C3 point to cooperation of astrocytes, microglia and neurons in response to intra-neuronal accumulation of insoluble tau. Our data suggest that over expression of Hsp27 represents a part of microglia-mediated astrocytic response mechanism in the process of neurofibrillary degeneration, which is not necessarily associated with neuroprotection and which in contrary may accelerate neurodegeneration in late stage of the disease. This phenomenon should be considered during development of disease modifying strategies for treatment of tauopathies and AD via regulation of activity of Hsp27. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Oxidative stress induces transient O-GlcNAc elevation and tau dephosphorylation in SH-SY5Y cells.

    PubMed

    Kátai, Emese; Pál, József; Poór, Viktor Soma; Purewal, Rupeena; Miseta, Attila; Nagy, Tamás

    2016-12-01

    O-linked β-N-acetlyglucosamine or O-GlcNAc modification is a dynamic post-translational modification occurring on the Ser/Thr residues of many intracellular proteins. The chronic imbalance between phosphorylation and O-GlcNAc on tau protein is considered as one of the main hallmarks of Alzheimer's disease. In recent years, many studies also showed that O-GlcNAc levels can elevate upon acute stress and suggested that this might facilitate cell survival. However, many consider chronic stress, including oxidative damage as a major risk factor in the development of the disease. In this study, using the neuronal cell line SH-SY5Y we investigated the dynamic nature of O-GlcNAc after treatment with 0.5 mM H 2 O 2 for 30 min. to induce oxidative stress. We found that overall O-GlcNAc quickly increased and reached peak level at around 2 hrs post-stress, then returned to baseline levels after about 24 hrs. Interestingly, we also found that tau protein phosphorylation at site S262 showed parallel, whereas at S199 and PHF1 sites showed inverse dynamic to O-Glycosylation. In conclusion, our results show that temporary elevation in O-GlcNAc modification after H 2 O 2 -induced oxidative stress is detectable in cells of neuronal origin. Furthermore, oxidative stress changes the dynamic balance between O-GlcNAc and phosphorylation on tau proteins. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  17. Systematic identification of phosphorylation-mediated protein interaction switches

    PubMed Central

    Wichmann, Oliver; Utz, Mathias; Andre, Timon; Minguez, Pablo; Parca, Luca; Roth, Frederick P.; Gavin, Anne-Claude; Bork, Peer; Russell, Robert B.

    2017-01-01

    Proteomics techniques can identify thousands of phosphorylation sites in a single experiment, the majority of which are new and lack precise information about function or molecular mechanism. Here we present a fast method to predict potential phosphorylation switches by mapping phosphorylation sites to protein-protein interactions of known structure and analysing the properties of the protein interface. We predict 1024 sites that could potentially enable or disable particular interactions. We tested a selection of these switches and showed that phosphomimetic mutations indeed affect interactions. We estimate that there are likely thousands of phosphorylation mediated switches yet to be uncovered, even among existing phosphorylation datasets. The results suggest that phosphorylation sites on globular, as distinct from disordered, parts of the proteome frequently function as switches, which might be one of the ancient roles for kinase phosphorylation. PMID:28346509

  18. Intrinsic Tau Acetylation Is Coupled to Auto-Proteolytic Tau Fragmentation

    PubMed Central

    Cohen, Todd J.; Constance, Brian H.; Hwang, Andrew W.; James, Michael; Yuan, Chao-Xing

    2016-01-01

    Tau proteins are abnormally aggregated in a range of neurodegenerative tauopathies including Alzheimer’s disease (AD). Recently, tau has emerged as an extensively post-translationally modified protein, among which lysine acetylation is critical for normal tau function and its pathological aggregation. Here, we demonstrate that tau isoforms have different propensities to undergo lysine acetylation, with auto-acetylation occurring more prominently within the lysine-rich microtubule-binding repeats. Unexpectedly, we identified a unique intrinsic property of tau in which auto-acetylation induces proteolytic tau cleavage, thereby generating distinct N- and C-terminal tau fragments. Supporting a catalytic reaction-based mechanism, mapping and mutagenesis studies showed that tau cysteines, which are required for acetyl group transfer, are also essential for auto-proteolytic tau processing. Further mass spectrometry analysis identified the C-terminal 2nd and 4th microtubule binding repeats as potential sites of auto-cleavage. The identification of acetylation-mediated auto-proteolysis provides a new biochemical mechanism for tau self-regulation and warrants further investigation into whether auto-catalytic functions of tau are implicated in AD and other tauopathies. PMID:27383765

  19. Intrinsic Tau Acetylation Is Coupled to Auto-Proteolytic Tau Fragmentation.

    PubMed

    Cohen, Todd J; Constance, Brian H; Hwang, Andrew W; James, Michael; Yuan, Chao-Xing

    2016-01-01

    Tau proteins are abnormally aggregated in a range of neurodegenerative tauopathies including Alzheimer's disease (AD). Recently, tau has emerged as an extensively post-translationally modified protein, among which lysine acetylation is critical for normal tau function and its pathological aggregation. Here, we demonstrate that tau isoforms have different propensities to undergo lysine acetylation, with auto-acetylation occurring more prominently within the lysine-rich microtubule-binding repeats. Unexpectedly, we identified a unique intrinsic property of tau in which auto-acetylation induces proteolytic tau cleavage, thereby generating distinct N- and C-terminal tau fragments. Supporting a catalytic reaction-based mechanism, mapping and mutagenesis studies showed that tau cysteines, which are required for acetyl group transfer, are also essential for auto-proteolytic tau processing. Further mass spectrometry analysis identified the C-terminal 2nd and 4th microtubule binding repeats as potential sites of auto-cleavage. The identification of acetylation-mediated auto-proteolysis provides a new biochemical mechanism for tau self-regulation and warrants further investigation into whether auto-catalytic functions of tau are implicated in AD and other tauopathies.

  20. Tonoplast-Bound Protein Kinase Phosphorylates Tonoplast Intrinsic Protein 1

    PubMed Central

    Johnson, Kenneth D.; Chrispeels, Maarten J.

    1992-01-01

    Tonoplast intrinsic protein (TIP) is a member of a family of putative membrane channels found in bacteria, animals, and plants. Plants have seed-specific, vegetative/reproductive organ-specific, and water-stress-induced forms of TIP. Here, we report that the seed-specific TIP is a phosphoprotein whose phosphorylation can be monitored in vivo by allowing bean cotyledons to take up [32P]orthophosphate and in vitro by incubating purified tonoplasts with γ-labeled [32P]ATP. Characterization of the in vitro phosphorylation of TIP indicates that a membrane-bound protein kinase phosphorylates TIP in a Ca2+-dependent manner. The capacity of the isolated tonoplast membranes to phosphorylate TIP declined markedly during seed germination, and this decline occurred well before the development-mediated decrease in TIP occurs. Phosphoamino acid analysis of purified, radiolabeled TIP showed that serine is the major, if not only, phosphorylated residue, and cyanogen bromide cleavage yielded a single radioactive peptide peak on a reverse-phase high-performance liquid chromatogram. Estimation of the molecular mass of the cyanogen bromide phosphopeptide by laser desorption mass spectroscopy led to its identification as the hydrophilic N-terminal domain of TIP. The putative phosphate-accepting serine residue occurs in a consensus phosphorylation site for serine/threonine protein kinases. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 PMID:16653198

  1. Odor-induced phosphorylation of olfactory cilia proteins.

    PubMed Central

    Boekhoff, I; Schleicher, S; Strotmann, J; Breer, H

    1992-01-01

    Stimulation of isolated rat olfactory cilia in the presence of [gamma-32P]ATP leads to a significantly enhanced incorporation of [32P]phosphate. Depending on the type of odorants applied, the induced phosphorylation is completely blocked by specific inhibitors of either protein kinase A or protein kinase C. Time-course experiments indicate that the odor-induced modification of ciliary proteins is transient; the intensity of labeling decayed over time (1-10 sec). Separation of ciliary proteins by SDS/polyacrylamide gel electrophoresis followed by autoradiography demonstrated that upon stimulation with lilial, a single polypeptide (50,000 Da) was phosphorylated; the size of the modified protein is in line with the hypothesis that odorant receptors are phosphorylated subsequent to activation by specific odors. Images PMID:1334554

  2. GFP-Mutant Human Tau Transgenic Mice Develop Tauopathy Following CNS Injections of Alzheimer's Brain-Derived Pathological Tau or Synthetic Mutant Human Tau Fibrils

    PubMed Central

    Banks, Rachel A.; Kim, Bumjin; Xu, Hong; Changolkar, Lakshmi; Leight, Susan N.; Riddle, Dawn M.; Li, Chi; Brown, Hannah J.; Zhang, Bin

    2017-01-01

    Neurodegenerative proteinopathies characterized by intracellular aggregates of tau proteins, termed tauopathies, include Alzheimer's disease (AD), frontotemporal lobar degeneration (FTLD) with tau pathology (FTLD-tau), and related disorders. Pathological tau proteins derived from human AD brains (AD-tau) act as proteopathic seeds that initiate the templated aggregation of soluble tau upon intracerebral injection into tau transgenic (Tg) and wild-type mice, thereby modeling human tau pathology. In this study, we found that aged Tg mice of both sexes expressing human tau proteins harboring a pathogenic P301L MAPT mutation labeled with green fluorescent protein (T40PL-GFP Tg mouse line) exhibited hyperphosphorylated tau mislocalized to the somatodentritic domain of neurons, but these mice did not develop de novo insoluble tau aggregates, which are characteristic of human AD and related tauopathies. However, intracerebral injections of either T40PL preformed fibrils (PFFs) or AD-tau seeds into T40PL-GFP mice induced abundant intraneuronal pathological inclusions of hyperphosphorylated T40PL-GFP. These injections of pathological tau resulted in the propagation of tau pathology from the injection site to neuroanatomically connected brain regions, and these tau inclusions consisted of both T40PL-GFP and WT endogenous mouse tau. Primary neurons cultured from the brains of neonatal T40PL-GFP mice provided an informative in vitro model for examining the uptake and localization of tau PFFs. These findings demonstrate the seeded aggregation of T40PL-GFP in vivo by synthetic PFFs and human AD-tau and the utility of this system to study the neuropathological spread of tau aggregates. SIGNIFICANCE STATEMENT The stereotypical spread of pathological tau protein aggregates have recently been attributed to the transmission of proteopathic seeds. Despite the extensive use of transgenic mouse models to investigate the propagation of tau pathology in vivo, details of the aggregation

  3. Protein phosphorylation and its role in archaeal signal transduction

    PubMed Central

    Esser, Dominik; Hoffmann, Lena; Pham, Trong Khoa; Bräsen, Christopher; Qiu, Wen; Wright, Phillip C.; Albers, Sonja-Verena; Siebers, Bettina

    2016-01-01

    Reversible protein phosphorylation is the main mechanism of signal transduction that enables cells to rapidly respond to environmental changes by controlling the functional properties of proteins in response to external stimuli. However, whereas signal transduction is well studied in Eukaryotes and Bacteria, the knowledge in Archaea is still rather scarce. Archaea are special with regard to protein phosphorylation, due to the fact that the two best studied phyla, the Euryarchaeota and Crenarchaeaota, seem to exhibit fundamental differences in regulatory systems. Euryarchaeota (e.g. halophiles, methanogens, thermophiles), like Bacteria and Eukaryotes, rely on bacterial-type two-component signal transduction systems (phosphorylation on His and Asp), as well as on the protein phosphorylation on Ser, Thr and Tyr by Hanks-type protein kinases. Instead, Crenarchaeota (e.g. acidophiles and (hyper)thermophiles) only depend on Hanks-type protein phosphorylation. In this review, the current knowledge of reversible protein phosphorylation in Archaea is presented. It combines results from identified phosphoproteins, biochemical characterization of protein kinases and protein phosphatases as well as target enzymes and first insights into archaeal signal transduction by biochemical, genetic and polyomic studies. PMID:27476079

  4. Single-well monitoring of protein-protein interaction and phosphorylation-dephosphorylation events.

    PubMed

    Arcand, Mathieu; Roby, Philippe; Bossé, Roger; Lipari, Francesco; Padrós, Jaime; Beaudet, Lucille; Marcil, Alexandre; Dahan, Sophie

    2010-04-20

    We combined oxygen channeling assays with two distinct chemiluminescent beads to detect simultaneously protein phosphorylation and interaction events that are usually monitored separately. This novel method was tested in the ERK1/2 MAP kinase pathway. It was first used to directly monitor dissociation of MAP kinase ERK2 from MEK1 upon phosphorylation and to evaluate MAP kinase phosphatase (MKP) selectivity and mechanism of action. In addition, MEK1 and ERK2 were probed with an ATP competitor and an allosteric MEK1 inhibitor, which generated distinct phosphorylation-interaction patterns. Simultaneous monitoring of protein-protein interactions and substrate phosphorylation can provide significant mechanistic insight into enzyme activity and small molecule action.

  5. Rescue of impaired late-phase long-term depression in a tau transgenic mouse model.

    PubMed

    Ahmed, Tariq; Blum, David; Burnouf, Sylvie; Demeyer, Dominique; Buée-Scherrer, Valérie; D'Hooge, Rudi; Buée, Luc; Balschun, Detlef

    2015-02-01

    Cognitive decline, the hallmark of Alzheimer's disease, and accompanying neuropsychiatric symptoms share dysfunctions of synaptic processes as a common cellular pathomechanism. Long-term potentiation has proven to be a sensitive tool for the "diagnosis" of such synaptic dysfunctions. Much less, however, is known about how long-term depression (LTD), an alternative mechanism for the storage of memory, is affected by Alzheimer's disease progression. Here, we demonstrate that impaired late LTD (>3 hours) in THY-Tau22 mice can be rescued by either inhibition of glycogen synthase kinase-3 (GSK3β) activity or by application of the protein-phosphatase 2A agonist selenate. In line with these findings, we observed increased phosphorylation of GSK3β at Y216 and reduced total phosphatase activity in biochemical assays of hippocampal tissue of THY-Tau22 mice. Interestingly, LTD induction and pharmacologic inhibition of GSK3β appeared to downregulate GSK3ß activity via a marked upregulation of phosphorylation at the inhibitory Ser9 residue. Our results point to alterations in phosphorylation and/or dephosphorylation homeostasis as key mechanisms underlying the deficits in LTD and hippocampus-dependent learning found in THY-Tau22 mice. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Tau excess impairs mitosis and kinesin-5 function, leading to aneuploidy and cell death.

    PubMed

    Bougé, Anne-Laure; Parmentier, Marie-Laure

    2016-03-01

    In neurodegenerative diseases such as Alzheimer's disease (AD), cell cycle defects and associated aneuploidy have been described. However, the importance of these defects in the physiopathology of AD and the underlying mechanistic processes are largely unknown, in particular with respect to the microtubule (MT)-binding protein Tau, which is found in excess in the brain and cerebrospinal fluid of affected individuals. Although it has long been known that Tau is phosphorylated during mitosis to generate a lower affinity for MTs, there is, to our knowledge, no indication that an excess of this protein could affect mitosis. Here, we studied the effect of an excess of human Tau (hTau) protein on cell mitosis in vivo. Using the Drosophila developing wing disc epithelium as a model, we show that an excess of hTau induces a mitotic arrest, with the presence of monopolar spindles. This mitotic defect leads to aneuploidy and apoptotic cell death. We studied the mechanism of action of hTau and found that the MT-binding domain of hTau is responsible for these defects. We also demonstrate that the effects of hTau occur via the inhibition of the function of the kinesin Klp61F, the Drosophila homologue of kinesin-5 (also called Eg5 or KIF11). We finally show that this deleterious effect of hTau is also found in other Drosophila cell types (neuroblasts) and tissues (the developing eye disc), as well as in human HeLa cells. By demonstrating that MT-bound Tau inhibits the Eg5 kinesin and cell mitosis, our work provides a new framework to consider the role of Tau in neurodegenerative diseases. © 2016. Published by The Company of Biologists Ltd.

  7. Simultaneous quantification of Myelin Basic Protein and Tau proteins in cerebrospinal fluid and serum of Multiple Sclerosis patients using nanoimmunosensor.

    PubMed

    Derkus, Burak; Acar Bozkurt, Pinar; Tulu, Metin; Emregul, Kaan C; Yucesan, Canan; Emregul, Emel

    2017-03-15

    This study was aimed at the development of an immunosensor for the simultaneous quantification of Myelin Basic Protein (MBP) and Tau proteins in cerebrospinal fluid (CSF) and serum, obtained from Multiple Sclerosis (MS) patients. The newly developed GO/pPG/anti-MBP/anti-Tau nanoimmunosensor has been established by immobilization of MBP and Tau antibodies. The newly developed nanoimmunosensor was tested, optimized and characterized using differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS). The developed nanoimmunosensor was seen to have detection limits of 0.30nM for MBP and 0.15nM for Tau proteins which were sufficient for the levels to be analysed in neuro-clinic. The clinical study performed using CSF and serum of MS patients showed that the designed nanoimmunosensor was capable of detecting the proteins properly, that were essentially proven by ELISA. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. GFP-Mutant Human Tau Transgenic Mice Develop Tauopathy Following CNS Injections of Alzheimer's Brain-Derived Pathological Tau or Synthetic Mutant Human Tau Fibrils.

    PubMed

    Gibbons, Garrett S; Banks, Rachel A; Kim, Bumjin; Xu, Hong; Changolkar, Lakshmi; Leight, Susan N; Riddle, Dawn M; Li, Chi; Gathagan, Ronald J; Brown, Hannah J; Zhang, Bin; Trojanowski, John Q; Lee, Virginia M-Y

    2017-11-22

    Neurodegenerative proteinopathies characterized by intracellular aggregates of tau proteins, termed tauopathies, include Alzheimer's disease (AD), frontotemporal lobar degeneration (FTLD) with tau pathology (FTLD-tau), and related disorders. Pathological tau proteins derived from human AD brains (AD-tau) act as proteopathic seeds that initiate the templated aggregation of soluble tau upon intracerebral injection into tau transgenic (Tg) and wild-type mice, thereby modeling human tau pathology. In this study, we found that aged Tg mice of both sexes expressing human tau proteins harboring a pathogenic P301L MAPT mutation labeled with green fluorescent protein (T40PL-GFP Tg mouse line) exhibited hyperphosphorylated tau mislocalized to the somatodentritic domain of neurons, but these mice did not develop de novo insoluble tau aggregates, which are characteristic of human AD and related tauopathies. However, intracerebral injections of either T40PL preformed fibrils (PFFs) or AD-tau seeds into T40PL-GFP mice induced abundant intraneuronal pathological inclusions of hyperphosphorylated T40PL-GFP. These injections of pathological tau resulted in the propagation of tau pathology from the injection site to neuroanatomically connected brain regions, and these tau inclusions consisted of both T40PL-GFP and WT endogenous mouse tau. Primary neurons cultured from the brains of neonatal T40PL-GFP mice provided an informative in vitro model for examining the uptake and localization of tau PFFs. These findings demonstrate the seeded aggregation of T40PL-GFP in vivo by synthetic PFFs and human AD-tau and the utility of this system to study the neuropathological spread of tau aggregates. SIGNIFICANCE STATEMENT The stereotypical spread of pathological tau protein aggregates have recently been attributed to the transmission of proteopathic seeds. Despite the extensive use of transgenic mouse models to investigate the propagation of tau pathology in vivo , details of the aggregation

  9. Hypoglycemia induces tau hyperphosphorylation.

    PubMed

    Lee, Chu-Wan; Shih, Yao-Hsiang; Wu, Shih-Ying; Yang, Tingting; Lin, Chingju; Kuo, Yu-Min

    2013-03-01

    Cerebral hypoglycemia/hypometabolism is associated with Alzheimer's disease (AD) and is routinely used to assist clinical diagnosis of AD by brain imaging. However, whether cerebral hypoglycemia/hypometabolism contributes to the development of AD or is a response of reduced neuronal activity remains unclear. To investigate the causal relationship, we cultured the differentiated N2a neuroblastoma cells in glucose/pyruvate-deficient media (GDM). Shortly after the N2a cells cultured in the GDM, the mitochondria membrane potential was reduced and the AMP-activated-proteinkinase (AMPK), an energy sensor, was activated. Treatment of GDM not only increased the levels of tau phosphorylation at Ser(262) and Ser(396), but also increased the levels of active forms of GSK3α and GSK3β, two known kinases for tau phosphorylation, of the N2a cells. The levels of activated Akt, a mediator downstream to AMPK and upstream to GSK3α/β, were reduced by the GDM treatment. The effect of hypoglycemia was further examined in vivo by intracerebroventricular (icv) injection of streptozotocin (STZ) to the Wistar rats. STZ selectively injuries glucose transporter type 2-bearing cells which are primarily astrocytes in the rat brain, hence, interrupts glucose transportation from blood vessel to neuron. STZicv injection induced energy crisis in the brain regions surrounding the ventricles, as indicated by higher pAMPK levels in the hippocampus, but not cortex far away from the ventricles. STZ-icv treatment increased the levels of phosphorylated tau and activated GSK3β, but decreased the levels of activated Akt in the hippocampus. The hippocampus-dependent spatial learning and memory was impaired by the STZ-icv treatment. In conclusion, our works suggest that hypoglycemia enhances the AMPK-Akt-GSK3 pathway and leads to tau hyperphosphorylation.

  10. Simulated Cytoskeletal Collapse via Tau Degradation

    PubMed Central

    Sendek, Austin; Fuller, Henry R.; Hayre, N. Robert; Singh, Rajiv R. P.; Cox, Daniel L.

    2014-01-01

    We present a coarse-grained two dimensional mechanical model for the microtubule-tau bundles in neuronal axons in which we remove taus, as can happen in various neurodegenerative conditions such as Alzheimers disease, tauopathies, and chronic traumatic encephalopathy. Our simplified model includes (i) taus modeled as entropic springs between microtubules, (ii) removal of taus from the bundles due to phosphorylation, and (iii) a possible depletion force between microtubules due to these dissociated phosphorylated taus. We equilibrate upon tau removal using steepest descent relaxation. In the absence of the depletion force, the transverse rigidity to radial compression of the bundles falls to zero at about 60% tau occupancy, in agreement with standard percolation theory results. However, with the attractive depletion force, spring removal leads to a first order collapse of the bundles over a wide range of tau occupancies for physiologically realizable conditions. While our simplest calculations assume a constant concentration of microtubule intercalants to mediate the depletion force, including a dependence that is linear in the detached taus yields the same collapse. Applying percolation theory to removal of taus at microtubule tips, which are likely to be the protective sites against dynamic instability, we argue that the microtubule instability can only obtain at low tau occupancy, from 0.06–0.30 depending upon the tau coordination at the microtubule tips. Hence, the collapse we discover is likely to be more robust over a wide range of tau occupancies than the dynamic instability. We suggest in vitro tests of our predicted collapse. PMID:25162587

  11. Human High Temperature Requirement Serine Protease A1 (HTRA1) Degrades Tau Protein Aggregates*

    PubMed Central

    Tennstaedt, Annette; Pöpsel, Simon; Truebestein, Linda; Hauske, Patrick; Brockmann, Anke; Schmidt, Nina; Irle, Inga; Sacca, Barbara; Niemeyer, Christof M.; Brandt, Roland; Ksiezak-Reding, Hanna; Tirniceriu, Anca Laura; Egensperger, Rupert; Baldi, Alfonso; Dehmelt, Leif; Kaiser, Markus; Huber, Robert; Clausen, Tim; Ehrmann, Michael

    2012-01-01

    Protective proteases are key elements of protein quality control pathways that are up-regulated, for example, under various protein folding stresses. These proteases are employed to prevent the accumulation and aggregation of misfolded proteins that can impose severe damage to cells. The high temperature requirement A (HtrA) family of serine proteases has evolved to perform important aspects of ATP-independent protein quality control. So far, however, no HtrA protease is known that degrades protein aggregates. We show here that human HTRA1 degrades aggregated and fibrillar tau, a protein that is critically involved in various neurological disorders. Neuronal cells and patient brains accumulate less tau, neurofibrillary tangles, and neuritic plaques, respectively, when HTRA1 is expressed at elevated levels. Furthermore, HTRA1 mRNA and HTRA1 activity are up-regulated in response to elevated tau concentrations. These data suggest that HTRA1 is performing regulated proteolysis during protein quality control, the implications of which are discussed. PMID:22535953

  12. Effects of protein phosphorylation on color stability of ground meat.

    PubMed

    Li, Meng; Li, Xin; Xin, Jianzeng; Li, Zheng; Li, Guixia; Zhang, Yan; Du, Manting; Shen, Qingwu W; Zhang, Dequan

    2017-03-15

    The influence of protein phosphorylation on meat color stability was investigated in this study. Phosphatase and protein kinase inhibitors were added to minced ovine Longissimus thoracis et lumborum (LTL) muscle to manipulate the global phosphorylation of sarcoplasmic proteins. The data obtained show that the rate and extent of pH decline, along with lactate accumulation in postmortem muscle, were related to protein phosphorylation. Analysis of meat color and the relative content of myoglobin redox forms revealed that meat color stability was inversely related to the phosphorylation of sarcoplasmic proteins. Thus, this study suggests that protein phosphorylation may be involved in meat color development by regulating glycolysis and the redox stability of myoglobin. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Comparing Plasma Phospho Tau, Total Tau, and Phospho Tau-Total Tau Ratio as Acute and Chronic Traumatic Brain Injury Biomarkers.

    PubMed

    Rubenstein, Richard; Chang, Binggong; Yue, John K; Chiu, Allen; Winkler, Ethan A; Puccio, Ava M; Diaz-Arrastia, Ramon; Yuh, Esther L; Mukherjee, Pratik; Valadka, Alex B; Gordon, Wayne A; Okonkwo, David O; Davies, Peter; Agarwal, Sanjeev; Lin, Fan; Sarkis, George; Yadikar, Hamad; Yang, Zhihui; Manley, Geoffrey T; Wang, Kevin K W; Cooper, Shelly R; Dams-O'Connor, Kristen; Borrasso, Allison J; Inoue, Tomoo; Maas, Andrew I R; Menon, David K; Schnyer, David M; Vassar, Mary J

    2017-09-01

    Annually in the United States, at least 3.5 million people seek medical attention for traumatic brain injury (TBI). The development of therapies for TBI is limited by the absence of diagnostic and prognostic biomarkers. Microtubule-associated protein tau is an axonal phosphoprotein. To date, the presence of the hypophosphorylated tau protein (P-tau) in plasma from patients with acute TBI and chronic TBI has not been investigated. To examine the associations between plasma P-tau and total-tau (T-tau) levels and injury presence, severity, type of pathoanatomic lesion (neuroimaging), and patient outcomes in acute and chronic TBI. In the TRACK-TBI Pilot study, plasma was collected at a single time point from 196 patients with acute TBI admitted to 3 level I trauma centers (<24 hours after injury) and 21 patients with TBI admitted to inpatient rehabilitation units (mean [SD], 176.4 [44.5] days after injury). Control samples were purchased from a commercial vendor. The TRACK-TBI Pilot study was conducted from April 1, 2010, to June 30, 2012. Data analysis for the current investigation was performed from August 1, 2015, to March 13, 2017. Plasma samples were assayed for P-tau (using an antibody that specifically recognizes phosphothreonine-231) and T-tau using ultra-high sensitivity laser-based immunoassay multi-arrayed fiberoptics conjugated with rolling circle amplification. In the 217 patients with TBI, 161 (74.2%) were men; mean (SD) age was 42.5 (18.1) years. The P-tau and T-tau levels and P-tau-T-tau ratio in patients with acute TBI were higher than those in healthy controls. Receiver operating characteristic analysis for the 3 tau indices demonstrated accuracy with area under the curve (AUC) of 1.000, 0.916, and 1.000, respectively, for discriminating mild TBI (Glasgow Coma Scale [GCS] score, 13-15, n = 162) from healthy controls. The P-tau level and P-tau-T-tau ratio were higher in individuals with more severe TBI (GCS, ≤12 vs 13-15). The P-tau level and P-tau-T-tau

  14. Protein Phosphorylation during Coconut Zygotic Embryo Development1

    PubMed Central

    Islas-Flores, Ignacio; Oropeza, Carlos; Hernández-Sotomayor, S.M. Teresa

    1998-01-01

    Evidence was obtained on the occurrence of protein threonine, serine, and tyrosine (Tyr) kinases in developing coconut (Cocos nucifera L.) zygotic embryos, based on in vitro phosphorylation of proteins in the presence of [γ-32P]ATP, alkaline treatment, and thin-layer chromatography analysis, which showed the presence of [32P]phosphoserine, [32P]phosphothreonine, and [32P]phosphotyrosine in [32P]-labeled protein hydrolyzates. Tyr kinase activity was further confirmed in extracts of embryos at different stages of development using antiphosphotyrosine monoclonal antibodies and the synthetic peptide derived from the amino acid sequence surrounding the phosphorylation site in pp60src (RR-SRC), which is specific for Tyr kinases. Anti-phosphotyrosine western blotting revealed a changing profile of Tyr-phosphorylated proteins during embryo development. Tyr kinase activity, as assayed using RR-SRC, also changed during embryo development, showing two peaks of activity, one during early and another during late embryo development. In addition, the use of genistein, a Tyr kinase inhibitor, diminished the ability of extracts to phosphorylate RR-SRC. Results presented here show the occurrence of threonine, serine, and Tyr kinases in developing coconut zygotic embryos, and suggest that protein phosphorylation, and the possible inference of Tyr phosphorylation in particular, may play a role in the coordination of the development of embryos in this species. PMID:9733545

  15. Curcumin Decreases Hyperphosphorylation of Tau by Down-Regulating Caveolin-1/GSK-3β in N2a/APP695swe Cells and APP/PS1 Double Transgenic Alzheimer's Disease Mice.

    PubMed

    Sun, Jieyun; Zhang, Xiong; Wang, Chen; Teng, Zhipeng; Li, Yu

    2017-01-01

    Caveolin-1, the marker protein of membranal caveolae, is not only involved in cholesterol regulation, but also participates in the cleavage of amyloid [Formula: see text]-protein precursor (APP) and the generation of [Formula: see text]-amyloid peptide. It has been reported to be tightly related with Tau. In our previous studies, curcumin has been confirmed to play a neuroprotective role in Alzheimer's disease (AD), but its effects on Caveolin-1, Tau and their correlation, and the mechanism is still unknown. As such, in the present study, N2a/WT cells, N2a/APP695swe cell and six-month-old APP/PS1 double transgenic mice were enrolled. After curcumin treatment, the expression of Caveolin-1, Tau and their relationship was detected, and the potential mechanisms were explored. The results showed that in the N2a/APP695swe cells, curcumin not only decreased the number of caveolae, but also made their membrane to be thinner; and curcumin could decreased the expression of phosphorylated Tau (P-Tau(ser404)/Tau) and Caveolin-1 ([Formula: see text]), but the expression of phosphorylated GSK-3[Formula: see text] (P-GSK-3[Formula: see text]/GSK-3[Formula: see text] was increased ([Formula: see text]). In APP/PS1 transgenic mice, the same results were observed. Taken together, our data suggest that curcumin may play an important role in AD via reducing Caveolin-1, inactivating GSK-3[Formula: see text] and inhibiting the abnormal excessive phosphorylation of Tau, which will provide a new theory for AD treatment with curcumin.

  16. Phosphorylation of the Yeast Choline Kinase by Protein Kinase C

    PubMed Central

    Choi, Mal-Gi; Kurnov, Vladlen; Kersting, Michael C.; Sreenivas, Avula; Carman, George M.

    2005-01-01

    The Saccharomyces cerevisiae CKI1-encoded choline kinase catalyzes the committed step in phosphatidylcholine synthesis via the Kennedy pathway. The enzyme is phosphorylated on multiple serine residues, and some of this phosphorylation is mediated by protein kinase A. In this work, we examined the hypothesis that choline kinase is also phosphorylated by protein kinase C. Using choline kinase as a substrate, protein kinase C activity was dose- and time-dependent, and dependent on the concentrations of choline kinase (Km = 27 μg/ml) and ATP (Km = 15 μM). This phosphorylation, which occurred on a serine residue, was accompanied by a 1.6-fold stimulation of choline kinase activity. The synthetic peptide SRSSS25QRRHS (Vmax/Km = 17.5 mM-1 μmol min-1 mg-1) that contains the protein kinase C motif for Ser25 was a substrate for protein kinase C. A Ser25 to Ala (S25A) mutation in choline kinase resulted in a 60% decrease in protein kinase C phosphorylation of the enzyme. Phosphopeptide mapping analysis of the S25A mutant enzyme confirmed that Ser25 was a protein kinase C target site. In vivo, the S25A mutation correlated with a decrease (55%) in phosphatidylcholine synthesis via the Kennedy pathway whereas an S25D phosphorylation site mimic correlated with an increase (44%) in phosphatidylcholine synthesis. Whereas the S25A (protein kinase C site) mutation did not affect the phosphorylation of choline kinase by protein kinase A, the S30A (protein kinase A site) mutation caused a 46% reduction in enzyme phosphorylation by protein kinase C. A choline kinase synthetic peptide (SQRRHS30LTRQ) containing Ser30 was a substrate (Vmax/Km = 3.0 mM−1 μmol min−1 mg−1) for protein kinase C. Comparison of phosphopeptide maps of the wild type and S30A mutant choline kinase enzymes phosphorylated by protein kinase C confirmed that Ser30 was also a target site for protein kinase C. PMID:15919656

  17. Phosphorylation of plastoglobular proteins in Arabidopsis thaliana

    PubMed Central

    Lohscheider, Jens N.; Friso, Giulia; van Wijk, Klaas J.

    2016-01-01

    Plastoglobules (PGs) are plastid lipid–protein particles with a small specialized proteome and metabolome. Among the 30 core PG proteins are six proteins of the ancient ABC1 atypical kinase (ABC1K) family and their locations in an Arabidopsis mRNA-based co-expression network suggested central regulatory roles. To identify candidate ABC1K targets and a possible ABC1K hierarchical phosphorylation network within the chloroplast PG proteome, we searched Arabidopsis phosphoproteomics data from publicly available sources. Evaluation of underlying spectra and/or associated information was challenging for a variety of reasons, but supported pSer sites and a few pThr sites in nine PG proteins, including five FIBRILLINS. PG phosphorylation motifs are discussed in the context of possible responsible kinases. The challenges of collection and evaluation of published Arabidopsis phosphorylation data are discussed, illustrating the importance of deposition of all mass spectrometry data in well-organized repositories such as PRIDE and ProteomeXchange. This study provides a starting point for experimental testing of phosho-sites in PG proteins and also suggests that phosphoproteomics studies specifically designed toward the PG proteome and its ABC1K are needed to understand phosphorylation networks in these specialized particles. PMID:26962209

  18. Frontotemporal dementia with Pick-type histology associated with Q336R mutation in the tau gene.

    PubMed

    Pickering-Brown, S M; Baker, M; Nonaka, T; Ikeda, K; Sharma, S; Mackenzie, J; Simpson, S A; Moore, J W; Snowden, J S; de Silva, R; Revesz, T; Hasegawa, M; Hutton, M; Mann, D M A

    2004-06-01

    In this report, we describe the clinical and neuropathological features of a case of familial frontotemporal dementia (FTD), with onset at 58 years of age and disease duration of 10 years, associated with a novel mutation, Q336R, in the tau gene (tau). In vitro studies concerning the properties of tau proteins bearing this mutation, with respect to microtubule assembly and tau filament aggregation, are reported. Clinically, the patient showed alterations in memory, language and executive functions and marked behavioural change consistent with FTD, although the extent of memory impairment was more than is characteristic of FTD. At autopsy, there was degeneration of the frontal and temporal lobes associated with the presence of hyperphosphorylated tau proteins in swollen (Pick) cells and intraneuronal inclusions (Pick bodies). By immunohistochemistry, the Pick bodies contained both 3-repeat and 4-repeat tau proteins although, because no fresh tissues were available for analysis, the exact isoform composition of the aggregated tau proteins could not be determined. Neurons within frontal cortex contained neurofibrillary tangle-like structures, comprising both straight and twisted tubules, or Pick bodies in which the filaments were short and randomly orientated. In vitro, and in common with other tau missense mutations, Q336R caused an increase in tau fibrillogenesis. However, in contrast to most other tau missense mutations, Q336R increased, not decreased, the ability of mutant tau to promote microtubule assembly. Nonetheless, this latter functional change may likewise be detrimental to neuronal function by inducing a compensatory phosphorylation that may yield increased intracellular hyperphosphorylated tau species that are also liable to fibrillize. We believe the mutation is indeed pathogenic and disease causing and not simply a coincidental rare and benign polymorphism. Since this mutation is segregating with the FTD clinical and neuropathological phenotype, it has

  19. Visualizing an ultra-weak protein-protein interaction in phosphorylation signaling.

    PubMed

    Xing, Qiong; Huang, Peng; Yang, Ju; Sun, Jian-Qiang; Gong, Zhou; Dong, Xu; Guo, Da-Chuan; Chen, Shao-Min; Yang, Yu-Hong; Wang, Yan; Yang, Ming-Hui; Yi, Ming; Ding, Yi-Ming; Liu, Mai-Li; Zhang, Wei-Ping; Tang, Chun

    2014-10-20

    Proteins interact with each other to fulfill their functions. The importance of weak protein-protein interactions has been increasingly recognized. However, owing to technical difficulties, ultra-weak interactions remain to be characterized. Phosphorylation can take place via a K(D)≈25 mM interaction between two bacterial enzymes. Using paramagnetic NMR spectroscopy and with the introduction of a novel Gd(III)-based probe, we determined the structure of the resulting complex to atomic resolution. The structure accounts for the mechanism of phosphoryl transfer between the two enzymes and demonstrates the physical basis for their ultra-weak interaction. Further, molecular dynamics (MD) simulations suggest that the complex has a lifetime in the micro- to millisecond regimen. Hence such interaction is termed a fleeting interaction. From mathematical modeling, we propose that an ultra-weak fleeting interaction enables rapid flux of phosphoryl signal, providing a high effective protein concentration. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Two Novel Tau Antibodies Targeting the 396/404 Region Are Primarily Taken Up by Neurons and Reduce Tau Protein Pathology*

    PubMed Central

    Gu, Jiaping; Congdon, Erin E.; Sigurdsson, Einar M.

    2013-01-01

    Aggregated Tau proteins are hallmarks of Alzheimer disease and other tauopathies. Recent studies from our group and others have demonstrated that both active and passive immunizations reduce Tau pathology and prevent cognitive decline in transgenic mice. To determine the efficacy and safety of targeting the prominent 396/404 region, we developed two novel monoclonal antibodies (mAbs) with distinct binding profiles for phospho and non-phospho epitopes. The two mAbs significantly reduced hyperphosphorylated soluble Tau in long term brain slice cultures without apparent toxicity, suggesting the therapeutic importance of targeting the 396/404 region. In mechanistic studies, we found that neurons were the primary cell type that internalized the mAbs, whereas a small amount of mAbs was taken up by microglia cells. Within neurons, the two mAbs were highly colocalized with distinct pathological Tau markers, indicating their affinity toward different stages or forms of pathological Tau. Moreover, the mAbs were largely co-localized with endosomal/lysosomal markers, and partially co-localized with autophagy pathway markers. Additionally, the Fab fragments of the mAbs were able to enter neurons, but unlike the whole antibodies, the fragments were not specifically localized in pathological neurons. In summary, our Tau mAbs were safe and efficient to clear pathological Tau in a brain slice model. Fc-receptor-mediated endocytosis and the endosome/autophagosome/lysosome system are likely to have a critical role in antibody-mediated clearance of Tau pathology. PMID:24089520

  1. Identification of phosphorylation sites in the nucleocapsid protein (N protein) of SARS-coronavirus

    NASA Astrophysics Data System (ADS)

    Lin, Liang; Shao, Jianmin; Sun, Maomao; Liu, Jinxiu; Xu, Gongjin; Zhang, Xumin; Xu, Ningzhi; Wang, Rong; Liu, Siqi

    2007-12-01

    After decoding the genome of SARS-coronavirus (SARS-CoV), next challenge is to understand how this virus causes the illness at molecular bases. Of the viral structural proteins, the N protein plays a pivot role in assembly process of viral particles as well as viral replication and transcription. The SARS-CoV N proteins expressed in the eukaryotes, such as yeast and HEK293 cells, appeared in the multiple spots on two-dimensional electrophoresis (2DE), whereas the proteins expressed in E. coli showed a single 2DE spotE These 2DE spots were further examined by Western blot and MALDI-TOF/TOF MS, and identified as the N proteins with differently apparent pI values and similar molecular mass of 50 kDa. In the light of the observations and other evidences, a hypothesis was postulated that the SARS-CoV N protein could be phosphorylated in eukaryotes. To locate the plausible regions of phosphorylation in the N protein, two truncated N proteins were generated in E. coli and treated with PKC[alpha]. The two truncated N proteins after incubation of PKC[alpha] exhibited the differently electrophoretic behaviors on 2DE, suggesting that the region of 1-256 aa in the N protein was the possible target for PKC[alpha] phosphorylation. Moreover, the SARS-CoV N protein expressed in yeast were partially digested with trypsin and carefully analyzed by MALDI-TOF/TOF MS. In contrast to the completely tryptic digestion, these partially digested fragments generated two new peptide mass signals with neutral loss, and MS/MS analysis revealed two phosphorylated peptides located at the "dense serine" island in the N protein with amino acid sequences, GFYAEGSRGGSQASSRSSSR and GNSGNSTPGSSRGNSPARMASGGGK. With the PKC[alpha] phosphorylation treatment and the partially tryptic digestion, the N protein expressed in E. coli released the same peptides as observed in yeast cells. Thus, this investigation provided the preliminary data to determine the phosphorylation sites in the SARS-CoV N protein, and

  2. Protein phosphorylation differs significantly among ontogenetic phases in Malus seedlings

    PubMed Central

    2014-01-01

    Background Although protein phosphorylation is an important post-translational modification affecting protein function and metabolism, dynamic changes in this process during ontogenesis remain unexplored in woody angiosperms. Methods Phosphorylated proteins from leaves of three apple seedlings at juvenile, adult vegetative and reproductive stages were extracted and subjected to alkaline phosphatase pre-treatment. After separating the proteins by two-dimensional gel electrophoresis and phosphoprotein-specific Pro-Q Diamond staining, differentially expressed phosphoproteins were identified by MALDI-TOF-TOF mass spectrometry. Results A total of 107 phosphorylated protein spots on nine gels (three ontogenetic phases × three seedlings) were identified by MALDI-TOF-TOF mass spectrometry. The 55 spots of ribulose-1, 5-bisphosphate carboxylase/oxygenase (Rubisco) large-chain fragments varied significantly in protein abundance and degree of phosphorylation among ontogenetic phases. Abundances of the 27 spots corresponding to Rubisco activase declined between juvenile and reproductive phases. More extensively, phosphorylated β-tubulin chain spots with lower isoelectric points were most abundant during juvenile and adult vegetative phases. Conclusions Protein phosphorylation varied significantly during vegetative phase change and floral transition in apple seedlings. Most of the observed changes were consistent among seedlings and between hybrid populations. PMID:24904238

  3. Tyrosine phosphorylation switching of a G protein.

    PubMed

    Li, Bo; Tunc-Ozdemir, Meral; Urano, Daisuke; Jia, Haiyan; Werth, Emily G; Mowrey, David D; Hicks, Leslie M; Dokholyan, Nikolay V; Torres, Matthew P; Jones, Alan M

    2018-03-30

    Heterotrimeric G protein complexes are molecular switches relaying extracellular signals sensed by G protein-coupled receptors (GPCRs) to downstream targets in the cytoplasm, which effect cellular responses. In the plant heterotrimeric GTPase cycle, GTP hydrolysis, rather than nucleotide exchange, is the rate-limiting reaction and is accelerated by a receptor-like regulator of G signaling (RGS) protein. We hypothesized that posttranslational modification of the Gα subunit in the G protein complex regulates the RGS-dependent GTPase cycle. Our structural analyses identified an invariant phosphorylated tyrosine residue (Tyr 166 in the Arabidopsis Gα subunit AtGPA1) located in the intramolecular domain interface where nucleotide binding and hydrolysis occur. We also identified a receptor-like kinase that phosphorylates AtGPA1 in a Tyr 166 -dependent manner. Discrete molecular dynamics simulations predicted that phosphorylated Tyr 166 forms a salt bridge in this interface and potentially affects the RGS protein-accelerated GTPase cycle. Using a Tyr 166 phosphomimetic substitution, we found that the cognate RGS protein binds more tightly to the GDP-bound Gα substrate, consequently reducing its ability to accelerate GTPase activity. In conclusion, we propose that phosphorylation of Tyr 166 in AtGPA1 changes the binding pattern with AtRGS1 and thereby attenuates the steady-state rate of the GTPase cycle. We coin this newly identified mechanism "substrate phosphoswitching." © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Phosphorylation of spore coat proteins by a family of atypical protein kinases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Kim B.; Sreelatha, Anju; Durrant, Eric S.

    The modification of proteins by phosphorylation occurs in all life forms and is catalyzed by a large superfamily of enzymes known as protein kinases. We recently discovered a family of secretory pathway kinases that phosphorylate extracellular proteins. One member, family with sequence similarity 20C (Fam20C), is the physiological Golgi casein kinase. While examining distantly related protein sequences, we observed low levels of identity between the spore coat protein H (CotH), and the Fam20C-related secretory pathway kinases. CotH is a component of the spore in many bacterial and eukaryotic species, and is required for efficient germination of spores in Bacillus subtilis;more » however, the mechanism by which CotH affects germination is unclear. In this paper, we show that CotH is a protein kinase. The crystal structure of CotH reveals an atypical protein kinase-like fold with a unique mode of ATP binding. Examination of the genes neighboring cotH in B. subtilis led us to identify two spore coat proteins, CotB and CotG, as CotH substrates. Furthermore, we show that CotH-dependent phosphorylation of CotB and CotG is required for the efficient germination of B. subtilis spores. Finally and collectively, our results define a family of atypical protein kinases and reveal an unexpected role for protein phosphorylation in spore biology.« less

  5. Phosphorylation of spore coat proteins by a family of atypical protein kinases

    DOE PAGES

    Nguyen, Kim B.; Sreelatha, Anju; Durrant, Eric S.; ...

    2016-05-16

    The modification of proteins by phosphorylation occurs in all life forms and is catalyzed by a large superfamily of enzymes known as protein kinases. We recently discovered a family of secretory pathway kinases that phosphorylate extracellular proteins. One member, family with sequence similarity 20C (Fam20C), is the physiological Golgi casein kinase. While examining distantly related protein sequences, we observed low levels of identity between the spore coat protein H (CotH), and the Fam20C-related secretory pathway kinases. CotH is a component of the spore in many bacterial and eukaryotic species, and is required for efficient germination of spores in Bacillus subtilis;more » however, the mechanism by which CotH affects germination is unclear. In this paper, we show that CotH is a protein kinase. The crystal structure of CotH reveals an atypical protein kinase-like fold with a unique mode of ATP binding. Examination of the genes neighboring cotH in B. subtilis led us to identify two spore coat proteins, CotB and CotG, as CotH substrates. Furthermore, we show that CotH-dependent phosphorylation of CotB and CotG is required for the efficient germination of B. subtilis spores. Finally and collectively, our results define a family of atypical protein kinases and reveal an unexpected role for protein phosphorylation in spore biology.« less

  6. Alzheimer's amyloid-β oligomers rescue cellular prion protein induced tau reduction via the Fyn pathway.

    PubMed

    Chen, Rong-Jie; Chang, Wei-Wei; Lin, Yu-Chun; Cheng, Pei-Lin; Chen, Yun-Ru

    2013-09-18

    Amyloid-β (Aβ) and tau are the pathogenic hallmarks in Alzheimer's disease (AD). Aβ oligomers are considered the actual toxic entities, and the toxicity relies on the presence of tau. Recently, Aβ oligomers have been shown to specifically interact with cellular prion protein (PrP(C)) where the role of PrP(C) in AD is still not fully understood. To investigate the downstream mechanism of PrP(C) and Aβ oligomer interaction and their possible relationships to tau, we examined tau expression in human neuroblastoma BE(2)-C cells transfected with murine PrP(C) and studied the effect under Aβ oligomer treatment. By Western blotting, we found that PrP(C) overexpression down-regulated tau protein and Aβ oligomer binding alleviated the tau reduction induced by wild type but not M128V PrP(C), the high AD risk polymorphic allele in human prion gene. PrP(C) lacking the Aβ oligomer binding site was incapable of rescuing the level of tau reduction. Quantitative RT-PCR showed the PrP(C) effect was attributed to tau reduction at the transcription level. Treatment with Fyn pathway inhibitors, Fyn kinase inhibitor PP2 and MEK inhibitor U0126, reversed the PrP(C)-induced tau reduction and Aβ oligomer treatment modulated Fyn kinase activity. The results suggested Fyn pathway regulated Aβ-PrP(C)-tau signaling. Overall, our results demonstrated that PrP(C) down-regulated tau via the Fyn pathway and the effect can be regulated by Aβ oligomers. Our study facilitated the understanding of molecular mechanisms among PrP(C), tau, and Aβ oligomers.

  7. Effects of protein kinase inhibitors on in vitro protein phosphorylation and cellular differentiation of Streptomyces griseus.

    PubMed

    Hong, S K; Matsumoto, A; Horinouchi, S; Beppu, T

    1993-01-01

    In vitro phosphorylation reactions using extracts of Streptomyces griseus cells and gamma-[32P]ATP revealed the presence of multiple phosphorylated proteins. Most of the phosphorylations were distinctly inhibited by staurosporine and K-252a which are known to be eukaryotic protein kinase inhibitors. The in vitro experiments also showed that phosphorylation was greatly enhanced by manganese and inhibition of phosphorylation by staurosporine and K-252a was partially circumvented by 10 mM manganese. A calcium-activated protein kinase(s) was little affected by these inhibitors. Herbimycin and radicicol, known to be tyrosine kinase inhibitors, completely inhibited the phosphorylation of one protein. Consistent with their in vitro effects the protein kinase inhibitors inhibited aerial mycelium formation and pigment production by S. griseus. All these data suggest that S. griseus possesses several protein kinases of eukaryotic type which are essential for morphogenesis and secondary metabolism. In vitro phosphorylation of some proteins in a staurosporine-producing Streptomyces sp. was also inhibited by staurosporine, K-252a and herbimycin, which suggests the presence of a mechanism for self-protection in this microorganism.

  8. Non-Antibody Universal Detection of Protein Phosphorylation Using pIMAGO

    PubMed Central

    Iliuk, Anton B.; Tao, W. Andy

    2015-01-01

    With recent technical advances, important signaling pathways have continuously been discovered and dissected in many biological events. The vast majority of these signaling pathways involve reversible protein phosphorylation, and the dynamics of phosphorylation provides important mechanisms on how signaling networks function and interact. With a variety of research projects using lab models or clinical samples, a simple and reliable phosphorylation assay is highly desirable for routine detection of phosphorylation in sample mixtures. The protocols in this article describe the general procedure for a new non-antibody strategy for phosphorylation assay, termed pIMAGO (phospho-imaging). This novel design takes advantage of not only the unique properties of the soluble nanoparticles, but also of the multiple functionality of the molecule, allowing for highly selective, sensitive and quantitative assessment of protein phosphorylation without the use of either radioactive isotopes or limited phosphospecific antibodies. It also offers the capability for multiplexed detection of phosphorylation and total protein amount simultaneously. The described procedures allow for straightforward and routine detection and quantitation of general phosphorylation on any site of any protein in Western Blot and ELISA formats. PMID:25727060

  9. Developmental exposure to lead (Pb) alters the expression of the human tau gene and its products in a transgenic animal model

    PubMed Central

    Dash, M.; Eid, A.; Subaiea, G.; Chang, J.; Deeb, R.; Masoud, A.; Renehan, W.E.; Adem, A.; Zawia, N.H.

    2016-01-01

    Tauopathies are a class of neurodegenerative diseases associated with the pathological aggregationof the tau protein in the human brain. The best known of these illnesses is Alzheimer's disease (AD); a disease where the microtubule associated protein tau (MAPT) becomes hyperphosphorylated (lowering its binding affinity to microtubules) and aggregates within neurons in the form of neurofibrillary tangles (NFTs). In this paper we examine whether environmental factors play a significant role in tau pathogenesis. Our studies were conducted in a double mutant mouse model that expressed the human tau gene and lacked the gene for murine tau. The human tau mouse model was tested for the transgene's ability to respond to an environmental toxicant. Pups were developmentally exposed to lead (Pb) from postnatal day (PND) 1-20 with 0.2% Pb acetate. Mice were then sacrificed at PND 20, 30, 40 and 60. Protein and mRNA levels for tau and CDK5 as well as tau phosphorylation at Ser396 were determined. In addition, the potential role of miRNA in tau expression was investigated by measuring levels of miR-34c, a miRNA that targets the mRNA for human tau, at PND20 and 50. The expression of the human tau transgene was altered by developmental exposure to Pb. This exposure also altered the expression of miR-34c. Our findings are the first of their kind to test the responsiveness of the human tau gene to an environmental toxicant and to examine an epigenetic mechanism that may be involved in the regulation of this gene's expression. PMID:27293183

  10. Tyrosine phosphorylation of WW proteins

    PubMed Central

    Reuven, Nina; Shanzer, Matan

    2015-01-01

    A number of key regulatory proteins contain one or two copies of the WW domain known to mediate protein–protein interaction via proline-rich motifs, such as PPxY. The Hippo pathway components take advantage of this module to transduce tumor suppressor signaling. It is becoming evident that tyrosine phosphorylation is a critical regulator of the WW proteins. Here, we review the current knowledge on the involved tyrosine kinases and their roles in regulating the WW proteins. PMID:25627656

  11. S-nitrosoglutathione reduces tau hyper-phosphorylation and provides neuroprotection in rat model of chronic cerebral hypoperfusion.

    PubMed

    Won, Je-Seong; Annamalai, Balasubramaniam; Choi, Seungho; Singh, Inderjit; Singh, Avtar K

    2015-10-22

    We have previously reported that treatment of rats subjected to permanent bilateral common carotid artery occlusion (pBCCAO), a model of chronic cerebral hypoperfusion (CCH), with S-nitrosoglutathione (GSNO), an endogenous nitric oxide carrier, improved cognitive functions and decreased amyloid-β accumulation in the brains. Since CCH has been implicated in tau hyperphosphorylation induced neurodegeneration, we investigated the role of GSNO in regulation of tau hyperphosphorylation in rat pBCCAO model. The rats subjected to pBCCAO had a significant increase in tau hyperphosphorylation with increased neuronal loss in hippocampal/cortical areas. GSNO treatment attenuated not only the tau hyperphosphorylation, but also the neurodegeneration in pBCCAO rat brains. The pBCCAO rat brains also showed increased activities of GSK-3β and Cdk5 (major tau kinases) and GSNO treatment significantly attenuated their activities. GSNO attenuated the increased calpain activities and calpain-mediated cleavage of p35 leading to production of p25 and aberrant Cdk5 activation. In in vitro studies using purified calpain protein, GSNO treatment inhibited calpain activities while 3-morpholinosydnonimine (a donor of peroxynitrite) treatment increased its activities, suggesting the opposing role of GSNO vs. peroxynitrite in regulation of calpain activities. In pBCCAO rat brains, GSNO treatment attenuated the expression of inducible nitric oxide synthase (iNOS) expression and also reduced the brain levels of nitro-tyrosine formation, thereby indicating the protective role of GSNO in iNOS/nitrosative-stress mediated calpain/tau pathologies under CCH conditions. Taken together with our previous report, these data support the therapeutic potential of GSNO, a biological NO carrier, as a neuro- and cognitive-protective agent under conditions of CCH. Published by Elsevier B.V.

  12. Tau Antibody Targeting Pathological Species Blocks Neuronal Uptake and Interneuron Propagation of Tau in Vitro.

    PubMed

    Nobuhara, Chloe K; DeVos, Sarah L; Commins, Caitlin; Wegmann, Susanne; Moore, Benjamin D; Roe, Allyson D; Costantino, Isabel; Frosch, Matthew P; Pitstick, Rose; Carlson, George A; Hock, Christoph; Nitsch, Roger M; Montrasio, Fabio; Grimm, Jan; Cheung, Anne E; Dunah, Anthone W; Wittmann, Marion; Bussiere, Thierry; Weinreb, Paul H; Hyman, Bradley T; Takeda, Shuko

    2017-06-01

    The clinical progression of Alzheimer disease (AD) is associated with the accumulation of tau neurofibrillary tangles, which may spread throughout the cortex by interneuronal tau transfer. If so, targeting extracellular tau species may slow the spreading of tau pathology and possibly cognitive decline. To identify suitable target epitopes, we tested the effects of a panel of tau antibodies on neuronal uptake and aggregation in vitro. Immunodepletion was performed on brain extract from tau-transgenic mice and postmortem AD brain and added to a sensitive fluorescence resonance energy transfer-based tau uptake assay to assess blocking efficacy. The antibodies reduced tau uptake in an epitope-dependent manner: N-terminal (Tau13) and middomain (6C5 and HT7) antibodies successfully prevented uptake of tau species, whereas the distal C-terminal-specific antibody (Tau46) had little effect. Phosphorylation-dependent (40E8 and p396) and C-terminal half (4E4) tau antibodies also reduced tau uptake despite removing less total tau by immunodepletion, suggesting specific interactions with species involved in uptake. Among the seven antibodies evaluated, 6C5 most efficiently blocked uptake and subsequent aggregation. More important, 6C5 also blocked neuron-to-neuron spreading of tau in a unique three-chamber microfluidic device. Furthermore, 6C5 slowed down the progression of tau aggregation even after uptake had begun. Our results imply that not all antibodies/epitopes are equally robust in terms of blocking tau uptake of human AD-derived tau species. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  13. Proteolytic cleavage of polymeric tau protein by caspase-3: implications for Alzheimer disease.

    PubMed

    Jarero-Basulto, Jose J; Luna-Muñoz, Jose; Mena, Raul; Kristofikova, Zdena; Ripova, Daniela; Perry, George; Binder, Lester I; Garcia-Sierra, Francisco

    2013-12-01

    Truncated tau protein at Asp(421) is associated with neurofibrillary pathology in Alzheimer disease (AD); however, little is known about its presence in the form of nonfibrillary aggregates. Here, we report immunohistochemical staining of the Tau-C3 antibody, which recognizes Asp(421)-truncated tau, in a group of AD cases with different extents of cognitive impairment. In the hippocampus, we found distinct nonfibrillary aggregates of Asp(421)-truncated tau. Unlike Asp(421)-composed neurofibrillary tangles, however, these nonfibrillary pathologies did not increase significantly with respect to the Braak staging and, therefore, make no significant contribution to cognitive impairment. On the other hand, despite in vitro evidence that caspase-3 cleaves monomeric tau at Asp(421), to date, this truncation has not been demonstrated to be executed by this protease in polymeric tau entities. We determined that Asp(421) truncation can be produced by caspase-3 in oligomeric and multimeric complexes of recombinant full-length tau in isolated native tau filaments in vitro and in situ in neurofibrillary tangles analyzed in fresh brain slices from AD cases. Our data suggest that generation of this pathologic Asp(421) truncation of tau in long-lasting fibrillary structures may produce further permanent toxicity for neurons in the brains of patients with AD.

  14. Tunneling nanotube (TNT)-mediated neuron-to neuron transfer of pathological Tau protein assemblies.

    PubMed

    Tardivel, Meryem; Bégard, Séverine; Bousset, Luc; Dujardin, Simon; Coens, Audrey; Melki, Ronald; Buée, Luc; Colin, Morvane

    2016-11-04

    A given cell makes exchanges with its neighbors through a variety of means ranging from diffusible factors to vesicles. Cells use also tunneling nanotubes (TNTs), filamentous-actin-containing membranous structures that bridge and connect cells. First described in immune cells, TNTs facilitate HIV-1 transfer and are found in various cell types, including neurons. We show that the microtubule-associated protein Tau, a key player in Alzheimer's disease, is a bona fide constituent of TNTs. This is important because Tau appears beside filamentous actin and myosin 10 as a specific marker of these fine protrusions of membranes and cytosol that are difficult to visualize. Furthermore, we observed that exogenous Tau species increase the number of TNTs established between primary neurons, thereby facilitating the intercellular transfer of Tau fibrils. In conclusion, Tau may contribute to the formation and function of the highly dynamic TNTs that may be involved in the prion-like propagation of Tau assemblies.

  15. Digital ELISA for the quantification of attomolar concentrations of Alzheimer's disease biomarker protein Tau in biological samples.

    PubMed

    Pérez-Ruiz, Elena; Decrop, Deborah; Ven, Karen; Tripodi, Lisa; Leirs, Karen; Rosseels, Joelle; van de Wouwer, Marlies; Geukens, Nick; De Vos, Ann; Vanmechelen, Eugeen; Winderickx, Joris; Lammertyn, Jeroen; Spasic, Dragana

    2018-07-26

    The close correlation between Tau pathology and Alzheimer's disease (AD) progression makes this protein a suitable biomarker for diagnosis and monitoring of the disorder evolution. However, the use of Tau in diagnostics has been hampered, as it currently requires collection of cerebrospinal fluid (CSF), which is an invasive clinical procedure. Although measuring Tau-levels in blood plasma would be favorable, the concentrations are below the detection limit of a conventional ELISA. In this work, we developed a digital ELISA for the quantification of attomolar protein Tau concentrations in both buffer and biological samples. Individual Tau molecules were first captured on the surface of magnetic particles using in-house developed antibodies and subsequently isolated into the femtoliter-sized wells of a 2 × 2 mm 2 microwell array. Combination of high-affinity antibodies, optimal assay conditions and a digital quantification approach resulted in a 24 ± 7 aM limit of detection (LOD) in buffer samples. Additionally, a dynamic range of 6 orders of magnitude was achieved by combining the digital readout with an analogue approach, allowing quantification from attomolar to picomolar levels of Tau using the same platform. This proves the compatibility of the presented assay with the wide range of Tau concentrations encountered in different biological samples. Next, the developed digital assay was applied to detect total Tau levels in spiked blood plasma. A similar LOD (55 ± 29 aM) was obtained compared to the buffer samples, which was 5000-fold more sensitive than commercially available ELISAs and even outperformed previously reported digital assays with 10-fold increase in sensitivity. Finally, the performance of the developed digital ELISA was assessed by quantifying protein Tau in three clinical CSF samples. Here, a high correlation (i.e. Pearson coefficient of 0.99) was found between the measured percentage of active particles and the reference protein Tau

  16. Robust co-regulation of tyrosine phosphorylation sites on proteins reveals novel protein interactions†

    PubMed Central

    Naegle, Kristen M.; White, Forest M.; Lauffenburger, Douglas A.; Yaffe, Michael B.

    2012-01-01

    Cell signaling networks propagate information from extracellular cues via dynamic modulation of protein–protein interactions in a context-dependent manner. Networks based on receptor tyrosine kinases (RTKs), for example, phosphorylate intracellular proteins in response to extracellular ligands, resulting in dynamic protein–protein interactions that drive phenotypic changes. Most commonly used methods for discovering these protein–protein interactions, however, are optimized for detecting stable, longer-lived complexes, rather than the type of transient interactions that are essential components of dynamic signaling networks such as those mediated by RTKs. Substrate phosphorylation downstream of RTK activation modifies substrate activity and induces phospho-specific binding interactions, resulting in the formation of large transient macromolecular signaling complexes. Since protein complex formation should follow the trajectory of events that drive it, we reasoned that mining phosphoproteomic datasets for highly similar dynamic behavior of measured phosphorylation sites on different proteins could be used to predict novel, transient protein–protein interactions that had not been previously identified. We applied this method to explore signaling events downstream of EGFR stimulation. Our computational analysis of robustly co-regulated phosphorylation sites, based on multiple clustering analysis of quantitative time-resolved mass-spectrometry phosphoproteomic data, not only identified known sitewise-specific recruitment of proteins to EGFR, but also predicted novel, a priori interactions. A particularly intriguing prediction of EGFR interaction with the cytoskeleton-associated protein PDLIM1 was verified within cells using co-immunoprecipitation and in situ proximity ligation assays. Our approach thus offers a new way to discover protein–protein interactions in a dynamic context- and phosphorylation site-specific manner. PMID:22851037

  17. Palmitic and stearic fatty acids induce Alzheimer-like hyperphosphorylation of tau in primary rat cortical neurons.

    PubMed

    Patil, Sachin; Chan, Christina

    2005-08-26

    Epidemiological studies suggest that high fat diets significantly increase the risk of Alzheimer's disease (AD). In addition, the AD brain is characterized by high fatty acid content compared to that of healthy subjects. Nevertheless, the basic mechanism relating elevated fatty acids and the pathogenesis of AD remains unclear. The present study examines the role of fatty acids in causing hyperphosphorylation of the tau protein, one of the characteristic signatures of AD pathology. Hyperphosphorylation of tau disrupts the cell cytoskeleton and leads to neuronal degeneration. Here, primary rat cortical neurons and astrocytes were treated with saturated free fatty acids (FFAs), palmitic and stearic acids. There was no change in the levels of phosphorylated tau in rat cortical neurons treated directly with these FFAs. The conditioned media from FFA-treated astrocytes, however, caused hyperphosphorylation of tau in the cortical neurons at AD-specific phospho-epitopes. Co-treatment of neurons with N-acetyl cysteine, an antioxidant, reduced FFA-induced hyperphosphorylation of tau. The present results establish a central role of FFAs in causing hyperphosphorylation of tau through astroglia-mediated oxidative stress.

  18. Unprecedented Abundance of Protein Tyrosine Phosphorylation Modulates Shigella flexneri Virulence.

    PubMed

    Standish, Alistair James; Teh, Min Yan; Tran, Elizabeth Ngoc Hoa; Doyle, Matthew Thomas; Baker, Paul J; Morona, Renato

    2016-10-09

    Evidence is accumulating that protein tyrosine phosphorylation plays a crucial role in the ability of important human bacterial pathogens to cause disease. While most works have concentrated on its role in the regulation of a major bacterial virulence factor, the polysaccharide capsule, recent studies have suggested a much broader role for this post-translational modification. This prompted us to investigate protein tyrosine phosphorylation in the human pathogen Shigella flexneri. We first completed a tyrosine phosphoproteome, identifying 905 unique tyrosine phosphorylation sites on at least 573 proteins (approximately 15% of all proteins). This is the most tyrosine-phosphorylated sites and proteins in a single bacterium identified to date, substantially more than the level seen in eukaryotic cells. Most had not previously been identified and included proteins encoded by the virulence plasmid, which is essential for S. flexneri to invade cells and cause disease. In order to investigate the function of these phosphorylation sites in important virulence factors, phosphomimetic and ablative mutations were constructed in the type 3 secretion system ATPase Spa47 and the master virulence regulator VirB. This revealed that tyrosine residues phosphorylated in our study are critical for Spa47 and VirB activity, and tyrosine phosphorylation likely regulates their functional activity and subsequently the virulence of this major human pathogen. This study suggests that tyrosine phosphorylation plays a critical role in regulating a wide variety of virulence factors in the human pathogen S. flexneri and serves as a base for future studies defining its complete role. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Selenomethionine ameliorates cognitive decline, reduces tau hyperphosphorylation, and reverses synaptic deficit in the triple transgenic mouse model of Alzheimer's disease.

    PubMed

    Song, Guoli; Zhang, Zhonghao; Wen, Lei; Chen, Chen; Shi, Qingxue; Zhang, Yu; Ni, Jiazuan; Liu, Qiong

    2014-01-01

    Disruption of the intracellular balance between free radicals and the antioxidant system is a prominent and early feature in the neuropathology of Alzheimer's disease (AD). Selenium, a vital trace element with known antioxidant potential, has been reported to provide neuroprotection through resisting oxidative damage but its therapeutic effect on AD remains to be investigated. The objective of our study was to investigate the potential of selenomethionine (Se-Met), an organic form of selenium, in the treatment of cognitive dysfunction and neuropathology of triple transgenic AD (3 × Tg-AD) mice. 3 × Tg-AD mice, which were four months old, were treated with Se-Met for 3 months and demonstrated significant improvements in cognitive deficit along with an increased selenium level compared with the untreated control mice. Se-Met treatment significantly reduced the level of total tau and phosphorylated tau, mitigated the decrease of synaptic proteins including synaptophysin and postsynaptic density protein 95 in the hippocampus and cortex of the 3 × Tg-AD mice. Meanwhile, glial activation in AD mice was inhibited and the level of reduced glutathione was increased in the treated mice compared with control mice. Additionally, the expression and activity of glycogen synthase kinase 3β and protein phosphatase 2A, two important enzymes involved in tau phosphorylation, were markedly decreased and increased respectively by Se-Met treatment. Thus Se-Met improves cognitive deficit in a murine model of AD, which is associated with reduction in tau expression and hyperphosphorylation, amelioration of inflammation, and restoration of synaptic proteins and antioxidants. This study provides a novel therapeutic approach for the prevention of AD.

  20. Protein phosphorylation in isolated hepatocytes of septic and endotoxemic rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deaciuc, I.V.; Spitzer, J.A.

    The purpose of this study was to investigate possible alterations induced by sepsis and endotoxicosis in the late phase of Ca2+-dependent signaling in rat liver. Hepatocytes isolated from septic or chronically endotoxin (ET)-treated rats were labeled with (32P)H3PO4 and stimulated with various agents. Proteins were resolved by one-dimensional polyacrylamide gel electrophoresis and autoradiographed. Vasopressin (VP)- and phenylephrine (PE)-induced responses were attenuated in both septic and ET-treated rats for cytosolic and membrane proteins compared with their respective controls. Glucagon and 12-O-myristate phorbol-13-acetate (TPA) affected only the phosphorylation of membrane proteins. Glucagon-induced changes in the phosphorylation of membrane proteins were affected bymore » both sepsis and endotoxicosis, whereas TPA-stimulated phosphorylation was lowered only in endotoxicosis. Response to the Ca2+ ionophore A23187 was depressed in septic rats for cytosolic proteins. The phosphorylation of two cytosolic proteins, i.e., 93 and 61 kDa (previously identified as glycogen phosphorylase and pyruvate kinase, respectively), in response to VP, PE, and A23187 was severely impaired by endotoxicosis and sepsis. TPA did not affect the phosphorylation state of these two proteins. The results show that sepsis and endotoxicosis produce perturbations of the phosphorylation step in Ca2+ transmembrane signaling. Such changes can explain alterations of glycogenolysis and gluconeogenesis associated with sepsis and endotoxicosis.« less

  1. How Phosphotransferase System-Related Protein Phosphorylation Regulates Carbohydrate Metabolism in Bacteria†

    PubMed Central

    Deutscher, Josef; Francke, Christof; Postma, Pieter W.

    2006-01-01

    The phosphoenolpyruvate(PEP):carbohydrate phosphotransferase system (PTS) is found only in bacteria, where it catalyzes the transport and phosphorylation of numerous monosaccharides, disaccharides, amino sugars, polyols, and other sugar derivatives. To carry out its catalytic function in sugar transport and phosphorylation, the PTS uses PEP as an energy source and phosphoryl donor. The phosphoryl group of PEP is usually transferred via four distinct proteins (domains) to the transported sugar bound to the respective membrane component(s) (EIIC and EIID) of the PTS. The organization of the PTS as a four-step phosphoryl transfer system, in which all P derivatives exhibit similar energy (phosphorylation occurs at histidyl or cysteyl residues), is surprising, as a single protein (or domain) coupling energy transfer and sugar phosphorylation would be sufficient for PTS function. A possible explanation for the complexity of the PTS was provided by the discovery that the PTS also carries out numerous regulatory functions. Depending on their phosphorylation state, the four proteins (domains) forming the PTS phosphorylation cascade (EI, HPr, EIIA, and EIIB) can phosphorylate or interact with numerous non-PTS proteins and thereby regulate their activity. In addition, in certain bacteria, one of the PTS components (HPr) is phosphorylated by ATP at a seryl residue, which increases the complexity of PTS-mediated regulation. In this review, we try to summarize the known protein phosphorylation-related regulatory functions of the PTS. As we shall see, the PTS regulation network not only controls carbohydrate uptake and metabolism but also interferes with the utilization of nitrogen and phosphorus and the virulence of certain pathogens. PMID:17158705

  2. Phosphorylation of NBR1 by GSK3 modulates protein aggregation

    PubMed Central

    Nicot, Anne-Sophie; Lo Verso, Francesca; Ratti, Francesca; Pilot-Storck, Fanny; Streichenberger, Nathalie; Sandri, Marco; Schaeffer, Laurent; Goillot, Evelyne

    2014-01-01

    The autophagy receptor NBR1 (neighbor of BRCA1 gene 1) binds UB/ubiquitin and the autophagosome-conjugated MAP1LC3/LC3 (microtubule-associated protein 1 light chain 3) proteins, thereby ensuring ubiquitinated protein degradation. Numerous neurodegenerative and neuromuscular diseases are associated with inappropriate aggregation of ubiquitinated proteins and GSK3 (glycogen synthase kinase 3) activity is involved in several of these proteinopathies. Here we show that NBR1 is a substrate of GSK3. NBR1 phosphorylation by GSK3 at Thr586 prevents the aggregation of ubiquitinated proteins and their selective autophagic degradation. Indeed, NBR1 phosphorylation decreases protein aggregation induced by puromycin or by the DES/desmin N342D mutant found in desminopathy patients and stabilizes ubiquitinated proteins. Importantly, decrease of protein aggregates is due to an inhibition of their formation and not to their autophagic degradation as confirmed by data on Atg7 knockout mice. The relevance of NBR1 phosphorylation in human pathology was investigated. Analysis of muscle biopsies of sporadic inclusion body myositis (sIBM) patients revealed a strong decrease of NBR1 phosphorylation in muscles of sIBM patients that directly correlated with the severity of protein aggregation. We propose that phosphorylation of NBR1 by GSK3 modulates the formation of protein aggregates and that this regulation mechanism is defective in a human muscle proteinopathy. PMID:24879152

  3. Liraglutide Improves Water Maze Learning and Memory Performance While Reduces Hyperphosphorylation of Tau and Neurofilaments in APP/PS1/Tau Triple Transgenic Mice.

    PubMed

    Chen, Shuyi; Sun, Jie; Zhao, Gang; Guo, Ai; Chen, Yanlin; Fu, Rongxia; Deng, Yanqiu

    2017-08-01

    The purpose of this study was to explore how liraglutide affects AD-like pathology and cognitive function in APP/PS1/Tau triple transgenic (3 × Tg) Alzheimer disease (AD) model mice. Male 3 × Tg mice and C57BL/6 J mice were treated for 8 weeks with liraglutide (300 μg/kg/day, subcutaneous injection) or saline. Levels of phosphorylated tau, neurofilaments (NFs), extracellular signal-regulated kinase (ERK), and c-Jun N-terminal kinase (JNK) in brain tissues were assessed with western blots. Fluoro-Jade-B labeling were applied to detect pathological changes. The Morris water maze (MWM) was used to assess the spatial learning and memory. Liraglutide decreased levels of hyperphosphorylated tau and NFs in 3 × Tg liraglutide-treated (Tg + LIR) mice, increased ERK phosphorylation, and decreased JNK phosphorylation. Liraglutide also decreased the number of degenerative neurons in the hippocampus and cortex of Tg + LIR mice, and shortened their escape latencies and increased their hidden platform crossings in the MWM task. Liraglutide did not significantly affect the animals' body weight (BW) or fasting blood glucose. Liraglutide can reduce hyperphosphorylation of tau and NFs and reduce neuronal degeneration, apparently through alterations in JNK and ERK signaling, which may be related to its positive effects on AD-like learning and memory impairment.

  4. Heat-shock protein-25/27 phosphorylation by the delta isoform of protein kinase C.

    PubMed Central

    Maizels, E T; Peters, C A; Kline, M; Cutler, R E; Shanmugam, M; Hunzicker-Dunn, M

    1998-01-01

    Small heat-shock proteins (sHSPs) are widely expressed 25-28 kDa proteins whose functions are dynamically regulated by phosphorylation. While recent efforts have clearly delineated a stress-responsive p38 mitogen-activated protein-kinase (MAPK)-dependent kinase pathway culminating in activation of the heat-shock (HSP)-kinases, mitogen-activated protein-kinase-activated protein kinase-2 and -3, not all sHSP phosphorylation events can be explained by the p38 MAPK-dependent pathway. The contribution of protein kinase C (PKC) to sHSP phosphorylation was suggested by early studies but later questioned on the basis of the reported poor ability of purified PKC to phosphorylate sHSP in vitro. The current study re-evaluates the role of PKC in sHSP phosphorylation in the light of the isoform complexity of the PKC family. We evaluated the sHSP phosphorylation status in rat corpora lutea obtained from two stages of pregnancy, mid-pregnancy and late-pregnancy, which express different levels of the novel PKC isoform, PKC-delta. Two-dimensional Western blot analysis showed that HSP-27 was more highly phosphorylated in vivo in corpora lutea of late pregnancy, corresponding to the developmental stage in which PKC-delta is abundant and active. Late-pregnant luteal extracts contained a lipid-sensitive HSP-kinase activity which exactly co-purified with PKC-delta using hydroxyapatite and S-Sepharose column chromatography. To determine whether there might be preferential phosphorylation of sHSP by a particular PKC isoform, purified recombinant PKC isoforms corresponding to those PKC isoforms detected in rat corpora lutea were evaluated for HSP-kinase activity in vitro. Recombinant PKC-delta effectively catalysed the phosphorylation of sHSP in vitro, and PKC-alpha was 30-50% as effective as an HSP-kinase; other PKCs tested (beta1, beta2, epsilon and zeta) were poor HSP-kinases. These results show that select PKC family members can function as direct HSP-kinases in vitro. Moreover, the

  5. Identifying protein phosphorylation sites with kinase substrate specificity on human viruses.

    PubMed

    Bretaña, Neil Arvin; Lu, Cheng-Tsung; Chiang, Chiu-Yun; Su, Min-Gang; Huang, Kai-Yao; Lee, Tzong-Yi; Weng, Shun-Long

    2012-01-01

    Viruses infect humans and progress inside the body leading to various diseases and complications. The phosphorylation of viral proteins catalyzed by host kinases plays crucial regulatory roles in enhancing replication and inhibition of normal host-cell functions. Due to its biological importance, there is a desire to identify the protein phosphorylation sites on human viruses. However, the use of mass spectrometry-based experiments is proven to be expensive and labor-intensive. Furthermore, previous studies which have identified phosphorylation sites in human viruses do not include the investigation of the responsible kinases. Thus, we are motivated to propose a new method to identify protein phosphorylation sites with its kinase substrate specificity on human viruses. The experimentally verified phosphorylation data were extracted from virPTM--a database containing 301 experimentally verified phosphorylation data on 104 human kinase-phosphorylated virus proteins. In an attempt to investigate kinase substrate specificities in viral protein phosphorylation sites, maximal dependence decomposition (MDD) is employed to cluster a large set of phosphorylation data into subgroups containing significantly conserved motifs. The experimental human phosphorylation sites are collected from Phospho.ELM, grouped according to its kinase annotation, and compared with the virus MDD clusters. This investigation identifies human kinases such as CK2, PKB, CDK, and MAPK as potential kinases for catalyzing virus protein substrates as confirmed by published literature. Profile hidden Markov model is then applied to learn a predictive model for each subgroup. A five-fold cross validation evaluation on the MDD-clustered HMMs yields an average accuracy of 84.93% for Serine, and 78.05% for Threonine. Furthermore, an independent testing data collected from UniProtKB and Phospho.ELM is used to make a comparison of predictive performance on three popular kinase-specific phosphorylation site

  6. Blocking Effects of Human Tau on Squid Giant Synapse Transmission and Its Prevention by T-817 MA

    PubMed Central

    Moreno, Herman; Choi, Soonwook; Yu, Eunah; Brusco, Janaina; Avila, Jesus; Moreira, Jorge E.; Sugimori, Mutsuyuki; Llinás, Rodolfo R.

    2011-01-01

    Filamentous tau inclusions are hallmarks of Alzheimer's disease and related neurodegenerative tauopathies, but the molecular mechanisms involved in tau-mediated changes in neuronal function and their possible effects on synaptic transmission are unknown. We have evaluated the effects of human tau protein injected directly into the presynaptic terminal axon of the squid giant synapse, which affords functional, structural, and biochemical analysis of its action on the synaptic release process. Indeed, we have found that at physiological concentration recombinant human tau (h-tau42) becomes phosphorylated, produces a rapid synaptic transmission block, and induces the formation of clusters of aggregated synaptic vesicles in the vicinity of the active zone. Presynaptic voltage clamp recordings demonstrate that h-tau42 does not modify the presynaptic calcium current amplitude or kinetics. Analysis of synaptic noise at the post-synaptic axon following presynaptic h-tau42 microinjection revealed an initial phase of increase spontaneous transmitter release followed by a marked reduction in noise. Finally, systemic administration of T-817MA, a proposed neuro-protective agent, rescued tau-induced synaptic abnormalities. Our results show novel mechanisms of h-tau42 mediated synaptic transmission failure and identify a potential therapeutic agent to treat tau-related neurotoxicity. PMID:21629767

  7. RNA stores tau reversibly in complex coacervates

    PubMed Central

    Lin, Yanxian; Eschmann, Neil A.; Zhou, Hongjun; Rauch, Jennifer N.; Hernandez, Israel; Guzman, Elmer; Kosik, Kenneth S.; Han, Songi

    2017-01-01

    Nonmembrane-bound organelles that behave like liquid droplets are widespread among eukaryotic cells. Their dysregulation appears to be a critical step in several neurodegenerative conditions. Here, we report that tau protein, the primary constituent of Alzheimer neurofibrillary tangles, can form liquid droplets and therefore has the necessary biophysical properties to undergo liquid-liquid phase separation (LLPS) in cells. Consonant with the factors that induce LLPS, tau is an intrinsically disordered protein that complexes with RNA to form droplets. Uniquely, the pool of RNAs to which tau binds in living cells are tRNAs. This phase state of tau is held in an approximately 1:1 charge balance across the protein and the nucleic acid constituents, and can thus be maximal at different RNA:tau mass ratios, depending on the biopolymer constituents involved. This feature is characteristic of complex coacervation. We furthermore show that the LLPS process is directly and sensitively tuned by salt concentration and temperature, implying it is modulated by both electrostatic interactions between the involved protein and nucleic acid constituents, as well as net changes in entropy. Despite the high protein concentration within the complex coacervate phase, tau is locally freely tumbling and capable of diffusing through the droplet interior. In fact, tau in the condensed phase state does not reveal any immediate changes in local protein packing, local conformations and local protein dynamics from that of tau in the dilute solution state. In contrast, the population of aggregation-prone tau as induced by the complexation with heparin is accompanied by large changes in local tau conformations and irreversible aggregation. However, prolonged residency within the droplet state eventually results in the emergence of detectable β-sheet structures according to thioflavin-T assay. These findings suggest that the droplet state can incubate tau and predispose the protein toward the

  8. The identification of raft-derived tau-associated vesicles that are incorporated into immature tangles and paired helical filaments.

    PubMed

    Nishikawa, T; Takahashi, T; Nakamori, M; Hosomi, N; Maruyama, H; Miyazaki, Y; Izumi, Y; Matsumoto, M

    2016-12-01

    Neurofibrillary tangles (NFTs), a cardinal pathological feature of neurodegenerative disorders, such as Alzheimer's disease (AD) are primarily composed of hyper-phosphorylated tau protein. Recently, several other molecules, including flotillin-1, phosphatidylinositol-4,5-bisphosphate [PtdIns(4,5)P2] and cyclin-dependent kinase 5 (CDK5), have also been revealed as constituents of NFTs. Flotillin-1 and PtdIns(4,5)P2 are considered markers of raft microdomains, whereas CDK5 is a tau kinase. Therefore, we hypothesized that NFTs have a relationship with raft domains and the tau phosphorylation that occurs within NFTs. We investigated six cases of AD, six cases of other neurodegenerative diseases with NFTs and three control cases. We analysed the PtdIns(4,5)P2-immunopositive material in detail, using super-resolution microscopy and electron microscopy to elucidate its pattern of expression. We also investigated the spatial relationship between the PtdIns(4,5)P2-immunopositive material and tau kinases through double immunofluorescence analysis. Pretangles contained either paired helical filaments (PHFs) or PtdIns(4,5)P2-immunopositive small vesicles (approximately 1 μm in diameter) with nearly identical topology to granulovacuolar degeneration (GVD) bodies. Various combinations of these vesicles and GVD bodies, the latter of which are pathological hallmarks observed within the neurons of AD patients, were found concurrently in neurons. These vesicles and GVD bodies were both immunopositive not only for PtdIns(4,5)P2, but also for several tau kinases such as glycogen synthase kinase-3β and spleen tyrosine kinase. These observations suggest that clusters of raft-derived vesicles that resemble GVD bodies are substructures of pretangles other than PHFs. These tau kinase-bearing vesicles are likely involved in the modification of tau protein and in NFT formation. © 2015 The Authors Neuropathology and Applied Neurobiology published by John Wiley & Sons Ltd on behalf of

  9. The ε3 and ε4 alleles of human APOE differentially affect tau phosphorylation in hyperinsulinemic and pioglitazone treated mice.

    PubMed

    To, Alvina W M; Ribe, Elena M; Chuang, Tsu Tshen; Schroeder, Joern E; Lovestone, Simon

    2011-02-10

    Impaired insulin signalling is increasingly thought to contribute to Alzheimer's disease (AD). The ε4 isoform of the APOE gene is the greatest genetic risk factor for sporadic, late onset AD, and is also associated with risk for type 2 diabetes mellitus (T2DM). Neuropathological studies reported the highest number of AD lesions in brain tissue of ε4 diabetic patients. However other studies assessing AD pathology amongst the diabetic population have produced conflicting reports and have failed to show an increase in AD-related pathology in diabetic brain. The thiazolidinediones (TZDs), peroxisome proliferator-activated receptor gamma agonists, are peripheral insulin sensitisers used to treat T2DM. The TZD, pioglitazone, improved memory and cognitive functions in mild to moderate AD patients. Since it is not yet clear how apoE isoforms influence the development of T2DM and its progression to AD, we investigated amyloid beta and tau pathology in APOE knockout mice, carrying human APOEε3 or ε4 transgenes after diet-induced insulin resistance with and without pioglitazone treatment. Male APOE knockout, APOEε3-transgenic and APOEε4-transgenic mice, together with background strain C57BL6 mice were kept on a high fat diet (HFD) or low fat diet (LFD) for 32 weeks, or were all fed HFD for 32 weeks and during the final 3 weeks animals were treated with pioglitazone or vehicle. All HFD animals developed hyperglycaemia with elevated plasma insulin. Tau phosphorylation was reduced at 3 epitopes (Ser396, Ser202/Thr205 and Thr231) in all HFD, compared to LFD, animals independent of APOE genotype. The introduction of pioglitazone to HFD animals led to a significant reduction in tau phosphorylation at the Ser202/Thr205 epitope in APOEε3 animals only. We found no changes in APP processing however the levels of soluble amyloid beta 40 was reduced in APOE knockout animals treated with pioglitazone.

  10. CSF tau and tau/Aβ42 predict cognitive decline in Parkinson's disease.

    PubMed

    Liu, Changqin; Cholerton, Brenna; Shi, Min; Ginghina, Carmen; Cain, Kevin C; Auinger, Peggy; Zhang, Jing

    2015-03-01

    A substantial proportion of patients with Parkinson's disease (PD) have concomitant cognitive dysfunction. Identification of biomarker profiles that predict which PD patients have a greater likelihood for progression of cognitive symptoms is pressingly needed for future treatment and prevention approaches. Subjects were drawn from the Deprenyl and Tocopherol Antioxidative Therapy of Parkinsonism (DATATOP) study, a large clinical trial that enrolled initially untreated PD patients. For the current study, Phase One encompassed trial baseline until just prior to levodopa administration (n = 403), and Phase Two spanned the initiation of levodopa treatment until the end of cognitive follow-up (n = 305). Correlations and linear mixed models were performed to determine cross-sectional and longitudinal associations between baseline amyloid β1-42 (Aβ42), total tau (t-tau), and phosphorylated tau (p-tau) in cerebrospinal fluid (CSF) and measures of memory and executive function. Analyses also considered APOE genotype and tremor- vs. rigidity-dominant phenotype. No association was found between baseline CSF biomarkers and cognitive test performance during Phase One. However, once levodopa treatment was initiated, higher p-tau and p-tau/Aβ42 predicted subsequent decline on cognitive tasks involving both memory and executive functions. The interactions between biomarkers and cognition decline did not appear to be influenced by levodopa dosage, APOE genotype or motor phenotype. The current study has, for the first time, demonstrated the possible involvement of tau species, whose gene (MAPT) has been consistently linked to the risk of PD by genome-wide association studies, in the progression of cognitive symptoms in PD. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. March separate, strike together--role of phosphorylated TAU in mitochondrial dysfunction in Alzheimer's disease.

    PubMed

    Eckert, Anne; Nisbet, Rebecca; Grimm, Amandine; Götz, Jürgen

    2014-08-01

    The energy demand and calcium buffering requirements of the brain are met by the high number of mitochondria in neurons and in these, especially at the synapses. Mitochondria are the major producer of reactive oxygen species (ROS); at the same time, they are damaged by ROS that are induced by abnormal protein aggregates that characterize human neurodegenerative diseases such as Alzheimer's disease (AD). Because synaptic mitochondria are long-lived, any damage exerted by these aggregates impacts severely on neuronal function. Here we review how increased TAU, a defining feature of AD and related tauopathies, impairs mitochondrial function by following the principle: 'March separate, strike together!' In the presence of amyloid-β, TAU's toxicity is augmented suggesting synergistic pathomechanisms. In order to restore mitochondrial functions in neurodegeneration as a means of therapeutic intervention it will be important to integrate the various aspects of dysfunction and get a handle on targeting distinct cell types and subcellular compartments. © 2013.

  12. Site-specific quantitative analysis of cardiac mitochondrial protein phosphorylation.

    PubMed

    Lam, Maggie P Y; Lau, Edward; Scruggs, Sarah B; Wang, Ding; Kim, Tae-Young; Liem, David A; Zhang, Jun; Ryan, Christopher M; Faull, Kym F; Ping, Peipei

    2013-04-09

    We report the development of a multiple-reaction monitoring (MRM) strategy specifically tailored to the detection and quantification of mitochondrial protein phosphorylation. We recently derived 68 MRM transitions specific to protein modifications in the respiratory chain, voltage-dependent anion channel, and adenine nucleotide translocase. Here, we have now expanded the total number of MRM transitions to 176 to cover proteins from the tricarboxylic acid cycle, pyruvate dehydrogenase complex, and branched-chain alpha-keto acid dehydrogenase complex. We utilized the transition set to analyze endogenous protein phosphorylation in human heart, mouse heart, and mouse liver. The data demonstrate the potential utility of the MRM workflow for studying the functional details of mitochondrial phosphorylation signaling. This article is part of a Special Issue entitled: From protein structures to clinical applications. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Analysis of Protein Phosphorylation and Its Functional Impact on Protein-Protein Interactions via Text Mining of the Scientific Literature.

    PubMed

    Wang, Qinghua; Ross, Karen E; Huang, Hongzhan; Ren, Jia; Li, Gang; Vijay-Shanker, K; Wu, Cathy H; Arighi, Cecilia N

    2017-01-01

    Post-translational modifications (PTMs) are one of the main contributors to the diversity of proteoforms in the proteomic landscape. In particular, protein phosphorylation represents an essential regulatory mechanism that plays a role in many biological processes. Protein kinases, the enzymes catalyzing this reaction, are key participants in metabolic and signaling pathways. Their activation or inactivation dictate downstream events: what substrates are modified and their subsequent impact (e.g., activation state, localization, protein-protein interactions (PPIs)). The biomedical literature continues to be the main source of evidence for experimental information about protein phosphorylation. Automatic methods to bring together phosphorylation events and phosphorylation-dependent PPIs can help to summarize the current knowledge and to expose hidden connections. In this chapter, we demonstrate two text mining tools, RLIMS-P and eFIP, for the retrieval and extraction of kinase-substrate-site data and phosphorylation-dependent PPIs from the literature. These tools offer several advantages over a literature search in PubMed as their results are specific for phosphorylation. RLIMS-P and eFIP results can be sorted, organized, and viewed in multiple ways to answer relevant biological questions, and the protein mentions are linked to UniProt identifiers.

  14. Oxysterol-binding protein-related protein (ORP) 9 is a PDK-2 substrate and regulates Akt phosphorylation.

    PubMed

    Lessmann, Eva; Ngo, Mike; Leitges, Michael; Minguet, Susana; Ridgway, Neale D; Huber, Michael

    2007-02-01

    The oxysterol-binding protein and oxysterol-binding protein-related protein family has been implicated in lipid transport and metabolism, vesicle trafficking and cell signaling. While investigating the phosphorylation of Akt/protein kinase B in stimulated bone marrow-derived mast cells, we observed that a monoclonal antibody directed against phospho-S473 Akt cross-reacted with oxysterol-binding protein-related protein 9 (ORP9). Further analysis revealed that mast cells exclusively express ORP9S, an N-terminal truncated version of full-length ORP9L. A PDK-2 consensus phosphorylation site in ORP9L and OPR9S at S287 (VPEFS(287)Y) was confirmed by site-directed mutagenesis. In contrast to Akt, increased phosphorylation of ORP9S S287 in stimulated mast cells was independent of phosphatidylinositol 3-kinase but sensitive to inhibition of conventional PKC isotypes. PKC-beta dependence was confirmed by lack of ORP9S phosphorylation at S287 in PKC-beta-deficient, but not PKC-alpha-deficient, mast cells. Moreover, co-immunoprecipitation of PKC-beta and ORP9S, and in vitro phosphorylation of ORP9S in this complex, argued for direct phosphorylation of ORP9S by PKC-beta, introducing ORP9S as a novel PKC-beta substrate. Akt was also detected in a PKC-beta/ORP9S immune complex and phosphorylation of Akt on S473 was delayed in PKC-deficient mast cells. In HEK293 cells, RNAi experiments showed that depletion of ORP9L increased Akt S473 phosphorylation 3-fold without affecting T308 phosphorylation in the activation loop. Furthermore, mammalian target of rapamycin was implicated in ORP9L phosphorylation in HEK293 cells. These studies identify ORP9 as a PDK-2 substrate and negative regulator of Akt phosphorylation at the PDK-2 site.

  15. Pericellular innervation of neurons expressing abnormally hyperphosphorylated tau in the hippocampal formation of Alzheimer's disease patients.

    PubMed

    Blazquez-Llorca, Lidia; Garcia-Marin, Virginia; Defelipe, Javier

    2010-01-01

    Neurofibrillary tangles (NFT) represent one of the main neuropathological features in the cerebral cortex associated with Alzheimer's disease (AD). This neurofibrillary lesion involves the accumulation of abnormally hyperphosphorylated or abnormally phosphorylated microtubule-associated protein tau into paired helical filaments (PHF-tau) within neurons. We have used immunocytochemical techniques and confocal microscopy reconstructions to examine the distribution of PHF-tau-immunoreactive (ir) cells, and their perisomatic GABAergic and glutamatergic innervations in the hippocampal formation and adjacent cortex of AD patients. Furthermore, correlative light and electron microscopy was employed to examine these neurons and the perisomatic synapses. We observed two patterns of staining in PHF-tau-ir neurons, pattern I (without NFT) and pattern II (with NFT), the distribution of which varies according to the cortical layer and area. Furthermore, the distribution of both GABAergic and glutamatergic terminals around the soma and proximal processes of PHF-tau-ir neurons does not seem to be altered as it is indistinguishable from both control cases and from adjacent neurons that did not contain PHF-tau. At the electron microscope level, a normal looking neuropil with typical symmetric and asymmetric synapses was observed around PHF-tau-ir neurons. These observations suggest that the synaptic connectivity around the perisomatic region of these PHF-tau-ir neurons was apparently unaltered.

  16. Bioinformatics Analysis of Protein Phosphorylation in Plant Systems Biology Using P3DB.

    PubMed

    Yao, Qiuming; Xu, Dong

    2017-01-01

    Protein phosphorylation is one of the most pervasive protein post-translational modification events in plant cells. It is involved in many plant biological processes, such as plant growth, organ development, and plant immunology, by regulating or switching signaling and metabolic pathways. High-throughput experimental methods like mass spectrometry can easily characterize hundreds to thousands of phosphorylation events in a single experiment. With the increasing volume of the data sets, Plant Protein Phosphorylation DataBase (P3DB, http://p3db.org ) provides a comprehensive, systematic, and interactive online platform to deposit, query, analyze, and visualize these phosphorylation events in many plant species. It stores the protein phosphorylation sites in the context of identified mass spectra, phosphopeptides, and phosphoproteins contributed from various plant proteome studies. In addition, P3DB associates these plant phosphorylation sites to protein physicochemical information in the protein charts and tertiary structures, while various protein annotations from hierarchical kinase phosphatase families, protein domains, and gene ontology are also added into the database. P3DB not only provides rich information, but also interconnects and provides visualization of the data in networks, in systems biology context. Currently, P3DB includes the KiC (Kinase Client) assay network, the protein-protein interaction network, the kinase-substrate network, the phosphatase-substrate network, and the protein domain co-occurrence network. All of these are available to query for and visualize existing phosphorylation events. Although P3DB only hosts experimentally identified phosphorylation data, it provides a plant phosphorylation prediction model for any unknown queries on the fly. P3DB is an entry point to the plant phosphorylation community to deposit and visualize any customized data sets within this systems biology framework. Nowadays, P3DB has become one of the major

  17. In vivo phosphorylation of a peptide tag for protein purification.

    PubMed

    Goux, Marine; Fateh, Amina; Defontaine, Alain; Cinier, Mathieu; Tellier, Charles

    2016-05-01

    To design a new system for the in vivo phosphorylation of proteins in Escherichia coli using the co-expression of the α-subunit of casein kinase II (CKIIα) and a target protein, (Nanofitin) fused with a phosphorylatable tag. The level of the co-expressed CKIIα was controlled by the arabinose promoter and optimal phosphorylation was obtained with 2 % (w/v) arabinose as inductor. The effectiveness of the phosphorylation system was demonstrated by electrophoretic mobility shift assay (NUT-PAGE) and staining with a specific phosphoprotein-staining gel. The resulting phosphorylated tag was also used to purify the phosphoprotein by immobilized metal affinity chromatography, which relies on the specific interaction of phosphate moieties with Fe(III). The use of a single tag for both the purification and protein array anchoring provides a simple and straightforward system for protein analysis.

  18. Azaphilones inhibit tau aggregation and dissolve tau aggregates in vitro.

    PubMed

    Paranjape, Smita R; Riley, Andrew P; Somoza, Amber D; Oakley, C Elizabeth; Wang, Clay C C; Prisinzano, Thomas E; Oakley, Berl R; Gamblin, T Chris

    2015-05-20

    The aggregation of the microtubule-associated protein tau is a seminal event in many neurodegenerative diseases, including Alzheimer's disease. The inhibition or reversal of tau aggregation is therefore a potential therapeutic strategy for these diseases. Fungal natural products have proven to be a rich source of useful compounds having wide varieties of biological activities. We have previously screened Aspergillus nidulans secondary metabolites for their ability to inhibit tau aggregation in vitro using an arachidonic acid polymerization protocol. One aggregation inhibitor identified was asperbenzaldehyde, an intermediate in azaphilone biosynthesis. We therefore tested 11 azaphilone derivatives to determine their tau assembly inhibition properties in vitro. All compounds tested inhibited tau filament assembly to some extent, and four of the 11 compounds had the advantageous property of disassembling preformed tau aggregates in a dose-dependent fashion. The addition of these compounds to the tau aggregates reduced both the total length and number of tau polymers. The most potent compounds were tested in in vitro reactions to determine whether they interfere with tau's normal function of stabilizing microtubules (MTs). We found that they did not completely inhibit MT assembly in the presence of tau. These derivatives are very promising lead compounds for tau aggregation inhibitors and, more excitingly, for compounds that can disassemble pre-existing tau filaments. They also represent a new class of anti-tau aggregation compounds with a novel structural scaffold.

  19. Amyloid-β₂₅₋₃₅ induces impairment of cognitive function and long-term potentiation through phosphorylation of collapsin response mediator protein 2.

    PubMed

    Isono, Toshinari; Yamashita, Naoya; Obara, Masami; Araki, Tomomi; Nakamura, Fumio; Kamiya, Yoshinori; Alkam, Tursun; Nitta, Atsumi; Nabeshima, Toshitaka; Mikoshiba, Katsuhiko; Ohshima, Toshio; Goshima, Yoshio

    2013-11-01

    Alzheimer's disease (AD) is characterized by amyloid-β (Aβ) protein and tau deposition in the brain. Numerous studies have reported a central role of Aβ in the development of AD, but the pathogenesis is not well understood. Collapsin response mediator protein 2 (CRMP2), an intracellular protein mediating a repulsive axon guidance molecule, Semaphorin3A, is also accumulated in neurofibrillary tangles in AD brains. To gain insight into the role of CRMP2 phosphorylation in AD pathogenesis, we investigated the effects of Aβ neurotoxicity in CRMP2 phosphorylation-deficient knock-in (crmp2(ki/ki)) mice, in which the serine residue at 522 was replaced with alanine. Intracerebroventricular (i.c.v.) injection of Aβ₂₅₋₃₅ peptide, a neurotoxic fragment of Aβ protein, to wild-type (wt) mice increased hippocampal phosphorylation of CRMP2. Behavioral assessment revealed that i.c.v. injection of Aβ₂₅₋₃₅ peptide caused impairment of novel object recognition in wt mice, while the same peptide did not in crmp2(ki/ki) mice. In electrophysiological recording, wt and crmp2(ki/ki) mice have similar input-output basal synaptic transmission and paired-pulse ratios. However, long-term potentiation was impaired in hippocampal slices of Aβ₂₅₋₃₅ peptide-treated wt but not those of crmp2(ki/ki). Our findings indicate that CRMP2 phosphorylation is required for Aβ-induced impairment of cognitive memory and synaptic plasticity. Copyright © 2013 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  20. Tau hyperphosphorylation in the brain of ob/ob mice is due to hypothermia: Importance of thermoregulation in linking diabetes and Alzheimer's disease.

    PubMed

    Gratuze, Maud; El Khoury, Noura B; Turgeon, Andréanne; Julien, Carl; Marcouiller, François; Morin, Françoise; Whittington, Robert A; Marette, André; Calon, Frédéric; Planel, Emmanuel

    2017-02-01

    Over the last few decades, there has been a significant increase in epidemiological studies suggesting that type 2 diabetes (T2DM) is linked to a higher risk of Alzheimer's disease (AD). However, how T2DM affects AD pathology, such as tau hyperphosphorylation, is not well understood. In this study, we investigated the impact of T2DM on tau phosphorylation in ob/ob mice, a spontaneous genetic model of T2DM. Tau phosphorylation at the AT8 epitope was slightly elevated in 4-week-old ob/ob mice while 26-week-old ob/ob mice exhibited tau hyperphosphorylation at multiple tau phospho-epitopes (Tau1, CP13, AT8, AT180, PHF1). We then examined the mechanism of tau hyperphosphorylation and demonstrated that it is mostly due to hypothermia, as ob/ob mice were hypothermic and normothermia restored tau phosphorylation to control levels. As caffeine has been shown to be beneficial for diabetes, obesity and tau phosphorylation, we, therefore, used it as therapeutic treatment. Unexpectedly, chronic caffeine intake exacerbated tau hyperphosphorylation by promoting deeper hypothermia. Our data indicate that tau hyperphosphorylation is predominately due to hypothermia consequent to impaired thermoregulation in ob/ob mice. This study establishes a novel link between diabetes and AD, and reinforces the importance of recording body temperature to better assess the relationship between diabetes and AD. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. The Impact of Protein Phosphorylation on Chlamydial Physiology

    PubMed Central

    Claywell, Ja E.; Matschke, Lea M.; Fisher, Derek J.

    2016-01-01

    Chlamydia are Gram negative bacterial pathogens responsible for disease in humans and economically important domesticated animals. As obligate intracellular bacteria, they must gain entry into a host cell where they propagate within a parasitophorous organelle that serves as an interactive interface between the bacterium and the host. Nutrient acquisition, growth, and evasion of host defense mechanisms occur from this location. In addition to these cellular and bacterial dynamics, Chlamydia differentiate between two morphologically distinct forms, the elementary body and reticulate body, that are optimized for either extracellular or intracellular survival, respectively. The mechanisms regulating and mediating these diverse physiological events remain largely unknown. Reversible phosphorylation, including classical two-component signaling systems, partner switching mechanisms, and the more recently appreciated bacterial Ser/Thr/Tyr kinases and phosphatases, has gained increasing attention for its role in regulating important physiological processes in bacteria including metabolism, development, and virulence. Phosphorylation modulates these events via rapid and reversible modification of protein substrates leading to changes in enzyme activity, protein oligomerization, cell signaling, and protein localization. The characterization of several conserved chlamydial protein kinases and phosphatases along with phosphoproteome analysis suggest that Chlamydia are capable of global and growth stage-specific protein phosphorylation. This mini review will highlight the current knowledge of protein phosphorylation in Chlamydia and its potential role in chlamydial physiology and, consequently, virulence. Comparisons with other minimal genome intracellular bacterial pathogens also will be addressed with the aim of illustrating the importance of this understudied regulatory mechanism on pathogenesis and the principle questions that remain unanswered. PMID:28066729

  2. Advanced tools for the analysis of protein phosphorylation in yeast mitochondria.

    PubMed

    Walter, Corvin; Gonczarowska-Jorge, Humberto; Sickmann, Albert; Zahedi, René P; Meisinger, Chris; Schmidt, Oliver

    2018-05-24

    The biochemical analysis of protein phosphorylation in mitochondria lags behind that of cytosolic signaling events. One reason is the poor stability of many phosphorylation sites during common isolation procedures for mitochondria. We present here an optimized, fast protocol for the purification of yeast mitochondria that greatly increases recovery of phosphorylated mitochondrial proteins. Moreover, we describe improved protocols for the biochemical analysis of mitochondrial protein phosphorylation by Zn 2+ -Phos-tag electrophoresis under both denaturing and - for the first time - native conditions, and demonstrate that they outperform previously applied methods. Copyright © 2018. Published by Elsevier Inc.

  3. Methods for the Analysis of Protein Phosphorylation-Mediated Cellular Signaling Networks

    NASA Astrophysics Data System (ADS)

    White, Forest M.; Wolf-Yadlin, Alejandro

    2016-06-01

    Protein phosphorylation-mediated cellular signaling networks regulate almost all aspects of cell biology, including the responses to cellular stimulation and environmental alterations. These networks are highly complex and comprise hundreds of proteins and potentially thousands of phosphorylation sites. Multiple analytical methods have been developed over the past several decades to identify proteins and protein phosphorylation sites regulating cellular signaling, and to quantify the dynamic response of these sites to different cellular stimulation. Here we provide an overview of these methods, including the fundamental principles governing each method, their relative strengths and weaknesses, and some examples of how each method has been applied to the analysis of complex signaling networks. When applied correctly, each of these techniques can provide insight into the topology, dynamics, and regulation of protein phosphorylation signaling networks.

  4. Differential phosphorylation of ribosomal proteins in Arabidopsis thaliana plants during day and night.

    PubMed

    Turkina, Maria V; Klang Årstrand, Hanna; Vener, Alexander V

    2011-01-01

    Protein synthesis in plants is characterized by increase in the translation rates for numerous proteins and central metabolic enzymes during the day phase of the photoperiod. The detailed molecular mechanisms of this diurnal regulation are unknown, while eukaryotic protein translation is mainly controlled at the level of ribosomal initiation complexes, which also involves multiple events of protein phosphorylation. We characterized the extent of protein phosphorylation in cytosolic ribosomes isolated from leaves of the model plant Arabidopsis thaliana harvested during day or night. Proteomic analyses of preparations corresponding to both phases of the photoperiod detected phosphorylation at eight serine residues in the C-termini of six ribosomal proteins: S2-3, S6-1, S6-2, P0-2, P1 and L29-1. This included previously unknown phosphorylation of the 40S ribosomal protein S6 at Ser-231. Relative quantification of the phosphorylated peptides using stable isotope labeling and mass spectrometry revealed a 2.2 times increase in the day/night phosphorylation ratio at this site. Phosphorylation of the S6-1 and S6-2 variants of the same protein at Ser-240 increased by the factors of 4.2 and 1.8, respectively. The 1.6 increase in phosphorylation during the day was also found at Ser-58 of the 60S ribosomal protein L29-1. It is suggested that differential phosphorylation of the ribosomal proteins S6-1, S6-2 and L29-1 may contribute to modulation of the diurnal protein synthesis in plants.

  5. A Proteome-wide Domain-centric Perspective on Protein Phosphorylation *

    PubMed Central

    Palmeri, Antonio; Ausiello, Gabriele; Ferrè, Fabrizio; Helmer-Citterich, Manuela; Gherardini, Pier Federico

    2014-01-01

    Phosphorylation is a widespread post-translational modification that modulates the function of a large number of proteins. Here we show that a significant proportion of all the domains in the human proteome is significantly enriched or depleted in phosphorylation events. A substantial improvement in phosphosites prediction is achieved by leveraging this observation, which has not been tapped by existing methods. Phosphorylation sites are often not shared between multiple occurrences of the same domain in the proteome, even when the phosphoacceptor residue is conserved. This is partly because of different functional constraints acting on the same domain in different protein contexts. Moreover, by augmenting domain alignments with structural information, we were able to provide direct evidence that phosphosites in protein-protein interfaces need not be positionally conserved, likely because they can modulate interactions simply by sitting in the same general surface area. PMID:24830415

  6. Calcium-regulated in vivo protein phosphorylation in Zea mays L. root tips

    NASA Technical Reports Server (NTRS)

    Raghothama, K. G.; Reddy, A. S.; Friedmann, M.; Poovaiah, B. W.

    1987-01-01

    Calcium dependent protein phosphorylation was studied in corn (Zea mays L.) root tips. Prior to in vivo protein phosphorylation experiments, the effect of calcium, ethyleneglycol-bis-(beta-aminoethyl ether)-N-N' -tetraacetic acid (EGTA) and calcium ionophore (A-23187) on phosphorus uptake was studied. Calcium increased phosphorus uptake, whereas EGTA and A-23187 decreased it. Consequently, phosphorus concentration in the media was adjusted so as to attain similar uptake in different treatments. Phosphoproteins were analyzed by two-dimensional gel electrophoresis. Distinct changes in phosphorylation were observed following altered calcium levels. Calcium depletion in root tips with EGTA and A-23187 decreased protein phosphorylation. However, replenishment of calcium following EGTA and ionophore pretreatment enhanced phosphorylation of proteins. Preloading of the root tips with 32P in the presence of EGTA and A-23187 followed by a ten minute calcium treatment, resulted in increased phosphorylation indicating the involvement of calcium, calcium and calmodulin-dependent kinases. Calmodulin antagonist W-7 was effective in inhibiting calcium-promoted phosphorylation. These studies suggest a physiological role for calcium-dependent phosphorylation in calcium-mediated processes in plants.

  7. Secretion of full-length Tau or Tau fragments in cell culture models. Propagation of Tau in vivo and in vitro.

    PubMed

    Pérez, Mar; Medina, Miguel; Hernández, Félix; Avila, Jesús

    2018-03-05

    The microtubule-associated protein Tau plays a crucial role in stabilizing neuronal microtubules. In Tauopathies, Tau loses its ability to bind microtubules, detach from them and forms intracellular aggregates. Increasing evidence in recent years supports the notion that Tau pathology spreading throughout the brain in AD and other Tauopathies is the consequence of the propagation of specific Tau species along neuroanatomically connected brain regions in a so-called "prion-like" manner. A number of steps are assumed to be involved in this process, including secretion, cellular uptake, transcellular transfer and/or seeding, although the precise mechanisms underlying propagation of Tau pathology are not fully understood yet. This review summarizes recent evidence on the nature of the specific Tau species that are propagated and the different mechanisms of Tau pathology spreading.

  8. Using Human iPSC-Derived Neurons to Model TAU Aggregation

    PubMed Central

    Verheyen, An; Diels, Annick; Dijkmans, Joyce; Oyelami, Tutu; Meneghello, Giulia; Mertens, Liesbeth; Versweyveld, Sofie; Borgers, Marianne; Buist, Arjan; Peeters, Pieter; Cik, Miroslav

    2015-01-01

    Alzheimer’s disease and frontotemporal dementia are amongst the most common forms of dementia characterized by the formation and deposition of abnormal TAU in the brain. In order to develop a translational human TAU aggregation model suitable for screening, we transduced TAU harboring the pro-aggregating P301L mutation into control hiPSC-derived neural progenitor cells followed by differentiation into cortical neurons. TAU aggregation and phosphorylation was quantified using AlphaLISA technology. Although no spontaneous aggregation was observed upon expressing TAU-P301L in neurons, seeding with preformed aggregates consisting of the TAU-microtubule binding repeat domain triggered robust TAU aggregation and hyperphosphorylation already after 2 weeks, without affecting general cell health. To validate our model, activity of two autophagy inducers was tested. Both rapamycin and trehalose significantly reduced TAU aggregation levels suggesting that iPSC-derived neurons allow for the generation of a biologically relevant human Tauopathy model, highly suitable to screen for compounds that modulate TAU aggregation. PMID:26720731

  9. Tau regulates the subcellular localization of calmodulin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barreda, Elena Gomez de; Avila, Jesus, E-mail: javila@cbm.uam.es; CIBER de Enfermedades Neurodegenerativas, 28031 Madrid

    Highlights: {yields} In this work we have tried to explain how a cytoplasmic protein could regulate a cell nuclear function. We have tested the role of a cytoplasmic protein (tau) in regulating the expression of calbindin gene. We found that calmodulin, a tau-binding protein with nuclear and cytoplasmic localization, increases its nuclear localization in the absence of tau. Since nuclear calmodulin regulates calbindin expression, a decrease in nuclear calmodulin, due to the presence of tau that retains it at the cytoplasm, results in a change in calbindin expression. -- Abstract: Lack of tau expression in neuronal cells results in amore » change in the expression of few genes. However, little is known about how tau regulates gene expression. Here we show that the presence of tau could alter the subcellular localization of calmodulin, a protein that could be located at the cytoplasm or in the nucleus. Nuclear calmodulin binds to co-transcription factors, regulating the expression of genes like calbindin. In this work, we have found that in neurons containing tau, a higher proportion of calmodulin is present in the cytoplasm compared with neurons lacking tau and that an increase in cytoplasmic calmodulin correlates with a higher expression of calbindin.« less

  10. The selective phosphorylation of a guanine nucleotide-binding regulatory protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlson, K.E.

    1989-01-01

    Receptor-activated signal transduction pathways regulate the responsiveness of cells to external stimuli. These transduction pathways themselves are subject to regulation, most commonly by phosphorylation. Guanine nucleotide-binding regulatory proteins (G Proteins), as requisite signal transducing elements for many plasma membrane receptors, are considered likely targets for regulation by phosphorylation. Protein kinase C (PKC) has been shown to phosphorylate the {alpha} subunit of G{sub i} and other G proteins in solution. However, the occurrence of the phosphorylation of G{sub 1} within intact cells in response to activation of PKC has not been rigorously demonstrated. In this thesis, the extent to which themore » {alpha} subunits of G{sub i} undergo phosphorylation within human platelets in response to activation of PKC was examined by means of radiolabeling and immunoprecipitation. Incubation of platelets with phorbol-12-myristate-13-acetate (PMA), a potent activator of PKC, promoted the phosphorylation of several proteins within saponin-permeabilized and intact platelets incubated with ({gamma}{sup 32}P)ATP and ({sup 32}P)H{sub 3}PO{sub 4}, respectively. None of the phosphoproteins, however, were precipitated by either of two antisera containing antibodies differing in specificities for epitopes within G{sub i{alpha}}-despite precipitation of a substantial fraction of the subunit itself. In contrast, other antisera, containing antibodies specific for the recently describe G{sub z{alpha}}, or antibodies for both G{sub z{alpha}} and G{sub i{alpha}}, precipitated a 40-kDa phosphoprotein.« less

  11. Cholinergic Basal Forebrain Lesion Decreases Neurotrophin Signaling without Affecting Tau Hyperphosphorylation in Genetically Susceptible Mice.

    PubMed

    Turnbull, Marion T; Coulson, Elizabeth J

    2017-01-01

    Alzheimer's disease (AD) is a progressive, irreversible neurodegenerative disease that destroys memory and cognitive function. Aggregates of hyperphosphorylated tau protein are a prominent feature in the brain of patients with AD, and are a major contributor to neuronal toxicity and disease progression. However, the factors that initiate the toxic cascade that results in tau hyperphosphorylation in sporadic AD are unknown. Here we investigated whether degeneration of basal forebrain cholinergic neurons (BFCNs) and/or a resultant decrease in neurotrophin signaling cause aberrant tau hyperphosphorylation. Our results reveal that the loss of BFCNs in pre-symptomatic pR5 (P301L) tau transgenic mice results in a decrease in hippocampal brain-derived neurotrophic factor levels and reduced TrkB receptor activation. However, there was no exacerbation of the levels of phosphorylated tau or its aggregation in the hippocampus of susceptible mice. Furthermore the animals' performance in a hippocampal-dependent learning and memory task was unaltered, and no changes in hippocampal synaptic markers were observed. This suggests that tau pathology is likely to be regulated independently of BFCN degeneration and the corresponding decrease in hippocampal neurotrophin levels, although these features may still contribute to disease etiology.

  12. Myelin basic protein is a glial microtubule-associated protein -- characterization of binding domains, kinetics of polymerization, and regulation by phosphorylation and a lipidic environment.

    PubMed

    Zienowicz, Agata; Bamm, Vladimir V; Vassall, Kenrick A; Harauz, George

    2015-05-22

    The 18.5-kDa splice isoform of myelin basic protein (MBP) predominates in the adult brain, adhering the cytoplasmic leaflets of the oligodendrocyte membrane together, but also assembling the cytoskeleton at leading edges of membrane processes. Here, we characterized MBP's role as a microtubule-assembly protein (MAP). Using light scattering and sedimentation assays we found that pseudo-phosphorylation of Ser54 (murine 18.5-kDa sequence) significantly enhanced the rate but not the final degree of polymerization. This residue lies within a short KPGSG motif identical to one in tau, a ubiquitous MAP important in neuronal microtubule assembly. Using polypeptide constructs, each comprising one of three major amphipathic α-helical molecular recognition fragments of 18.5-kDa MBP, we identified the N-terminal α1-peptide as sufficient to cause microtubule polymerization, the rate of which was significantly enhanced in the presence of dodecylphosphocholine (DPC) micelles to mimic a lipidic environment. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Diagnostic value of cerebrospinal fluid tau, neurofilament, and progranulin in definite frontotemporal lobar degeneration.

    PubMed

    Goossens, Joery; Bjerke, Maria; Van Mossevelde, Sara; Van den Bossche, Tobi; Goeman, Johan; De Vil, Bart; Sieben, Anne; Martin, Jean-Jacques; Cras, Patrick; De Deyn, Peter Paul; Van Broeckhoven, Christine; van der Zee, Julie; Engelborghs, Sebastiaan

    2018-03-20

    We explored the diagnostic performance of cerebrospinal fluid (CSF) biomarkers in allowing differentiation between frontotemporal lobar degeneration (FTLD) and Alzheimer's disease (AD), as well as between FTLD pathological subtypes. CSF levels of routine AD biomarkers (phosphorylated tau (p-tau 181 ), total tau (t-tau), and amyloid-beta (Aβ) 1-42 ) and neurofilament proteins, as well as progranulin levels in both CSF and serum were quantified in definite FTLD (n = 46), clinical AD (n = 45), and cognitively healthy controls (n = 20). FTLD subgroups were defined by genetic carrier status and/or postmortem neuropathological confirmation (FTLD-TDP: n = 34, including FTLD-C9orf72: n = 19 and FTLD-GRN: n = 9; FTLD-tau: n = 10). GRN mutation carriers had significantly lower progranulin levels compared to other FTLD patients, AD, and controls. Both t-tau and p-tau 181 were normal in FTLD patients, even in FTLD-tau. Aβ 1-42 levels were very variable in FTLD. Neurofilament light chain (Nf-L) was significantly higher in FTLD compared with AD and controls. The reference logistic regression model based on the established AD biomarkers could be improved by the inclusion of CSF Nf-L, which was also important for the differentiation between FTLD and controls. Within the FTLD cohort, no significant differences were found between FTLD-TDP and FTLD-tau, but GRN mutation carriers had higher t-tau and Nf-L levels than C9orf72 mutation carriers and FTLD-tau patients. There is an added value for Nf-L in the differential diagnosis of FTLD. Progranulin levels in CSF depend on mutation status, and GRN mutation carriers seem to be affected by more severe neurodegeneration.

  14. Tau hyperphosphorylation and P-CREB reduction are involved in acrylamide-induced spatial memory impairment: Suppression by curcumin.

    PubMed

    Yan, Dandan; Yao, Jianling; Liu, Ying; Zhang, Xing; Wang, Yiqi; Chen, Xiaoyi; Liu, Liegang; Shi, Nian; Yan, Hong

    2018-04-26

    Acrylamide (ACR) is an axonal toxicant that produces peripheral neuropathy in laboratory animals and humans. Epidemiological study found that diet ACR exposure was associated with a mild cognitive decline in men. However, limited information is available as regards its potential and underlying mechanism to cause memory alterations. Curcumin is a polyphenol with neuroprotective and cognitive-enhancing properties. In this study, we aimed to investigate the mechanism of ACR-induced spatial memory impairment and the beneficial effect of curcumin. ACR exposure at 10 mg/kg/d for 7 weeks caused slight gait abnormality and spatial memory deficits, which was associated with an activation of glial cells, a reduction of phosphorylated cAMP response elements binding protein (P-CREB) and an aggregation of hyperphosphorylated tau including p-tau (Ser 262 ), AT8 (p-tau Ser 202 /Thr 205 ) and PHF1 (p-tau Ser 396/404 ) in the hippocampus and cortex. ACR markedly regulate the expression of glycogen synthase kinase-3β (GSK-3β) and cyclin-dependent kinase-5 (cdk5) to accelerate tau hyperphosphorylation. ACR inhibited the protein phosphatase 2A (PP2A) and lysosomal protease cathepsin D to decrease the p-tau dephosphorylation and degradation. The P-CREB and brain derived neurotrophic factor (BDNF) were significantly decreased by ACR. The upstream signalings of P-CREB, extracellular signal-related kinase (ERK) and Akt were markedly inhibited. The protein kinase RNA-like endoplasmic reticulum kinase (PERK) -eukaryotic initiation factor-2α (eIF2α) - activating transcription factor 4 (ATF4) signaling which negatively regulate memory processes by suppressing CREB was activated by ACR. Curcumin alleviated ACR-induced spatial memory impairment through reversing tau abnormalities and P-CREB reduction in the hippocampus. These results offered deeper insight into the mechanisms of and presented a potential new treatment for ACR-induced neurotoxicity. Copyright © 2018 Elsevier Inc. All

  15. Structural characterization by NMR of a double phosphorylated chimeric peptide vaccine for treatment of Alzheimer's disease.

    PubMed

    Ramírez-Gualito, Karla; Richter, Monique; Matzapetakis, Manolis; Singer, David; Berger, Stefan

    2013-04-26

    Rational design of peptide vaccines becomes important for the treatment of some diseases such as Alzheimer's disease (AD) and related disorders. In this study, as part of a larger effort to explore correlations of structure and activity, we attempt to characterize the doubly phosphorylated chimeric peptide vaccine targeting a hyperphosphorylated epitope of the Tau protein. The 28-mer linear chimeric peptide consists of the double phosphorylated B cell epitope Tau₂₂₉₋₂₃₇[pThr231/pSer235] and the immunomodulatory T cell epitope Ag85B₂₄₁₋₂₅₅ originating from the well-known antigen Ag85B of the Mycobacterium tuberculosis, linked by a four amino acid sequence -GPSL-. NMR chemical shift analysis of our construct demonstrated that the synthesized peptide is essentially unfolded with a tendency to form a β-turn due to the linker. In conclusion, the -GPSL- unit presumably connects the two parts of the vaccine without transferring any structural information from one part to the other. Therefore, the double phosphorylated epitope of the Tau peptide is flexible and accessible.

  16. Epidermal growth factor-stimulated protein phosphorylation in rat hepatocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Connelly, P.A.; Sisk, R.B.; Johnson, R.M.

    1987-05-01

    Epidermal growth factor (EGF) causes a 6-fold increase in the phosphorylation state of a cytosolic protein (pp36, M/sub r/ = 36,000, pI = 5.5) in hepatocytes isolated from fasted, male, Wistar rats. Stimulation of /sup 32/P incorporation is observed as early as 1 min following treatment of hepatocytes with EGF and is still present at 30 min after exposure to the growth factor. The phosphate incorporated into pp36 in response to EGF is located predominantly in serine but not tyrosine residues. Phosphorylation of pp36 does not occur in response to insulin or to agents which specifically activate the cAMP-dependent proteinmore » kinase (S/sub p/ -cAMPS), protein kinase C (PMA) or Ca/sup 2 +//calmodulin-dependent protein kinases (A23187) in these cells. Prior treatment of hepatocytes with the cAMP analog, S/sub p/-cAMPS, or ADP-ribosylation of N/sub i/, the inhibitory GTP-binding protein of the adenylate cyclase complex, does not prevent EGF-stimulated phosphorylation of pp36. However, as seen in other cell types, pretreatment of hepatocytes with PMA abolishes all EGF-mediated responses including phosphorylation of pp36. These results suggest that EGP specifically activates an uncharacterized, serine protein kinase in hepatocytes that is distal to the intrinsic EGF receptor tyrosine protein kinase. The rapid activation of this kinase suggests that it may play an important role in the early response of the cell to EGF.« less

  17. The effect of human microtubule-associated-protein tau on the assembly structure of microtubules and its ionic strength dependence

    NASA Astrophysics Data System (ADS)

    Choi, M. C.; Raviv, U.; Miller, H. P.; Gaylord, M. R.; Kiris, E.; Ventimiglia, D.; Needleman, D. J.; Chung, P. J.; Deek, J.; Lapointe, N.; Kim, M. W.; Wilson, L.; Feinstein, S. C.; Safinya, C. R.

    2010-03-01

    Microtubules (MTs), 25 nm protein nanotubes, are among the major filamentous elements of the eukaryotic cytoskeleton involved in intracellular trafficking, cell division and the establishment and maintenance of cell shape. Microtubule-associated-protein tau regulates tubulin assembly, MT dynamics and stability. Aberrant tau action has long been correlated with numerous neurodegenerative diseases, including Alzheimer's, and fronto-temporal dementia with Parkinsonism linked to chromosome 17 (FTDP-17) Using synchrotron small angle x-ray scattering (SAXS) and binding assay, we examine the effects of tau on the assembly structure of taxol-stabilized MTs. We find that tau regulates the distribution of protofilament numbers in MTs as reflected in the observed increase in the average radius of MTs with increasing the tau/tubulin molar ratio. Additionally, tau-MT interactions are mediated to a large extent via electrostatic interactions: the binding affinity of tau to MTs is ionic strength dependent. Supported by DOE-BES DE-FG02-06ER46314, NSF DMR-0803103, NIH NS35010, NIH NS13560. (Ref) M.C. Choi, S.C. Feinstein, and C.R. Safinya et al. Biophys. J. 97; 519 (2009).

  18. Stimulation of skeletal muscle myofibrillar protein synthesis, p70 S6 kinase phosphorylation, and ribosomal protein S6 phosphorylation by inhibition of myostatin in mature mice.

    PubMed

    Welle, Stephen; Burgess, Kerri; Mehta, Sangeeta

    2009-03-01

    Knocking out myostatin activity during development increases the rate of muscle protein synthesis. The present study was done to determine whether postdevelopmental loss of myostatin activity stimulates myofibrillar protein synthesis and the phosphorylation of some of the proteins involved in regulation of protein synthesis rate. Myostatin activity was inhibited for 4 days, in 4- to 5-mo-old male mice, with injections of an anti-myostatin antibody (JA16). The mean myofibrillar synthesis rate increased 19% (P < 0.01) relative to the mean rate in saline-treated mice, as determined by incorporation of deuterium-labeled phenylalanine. JA16 increased phosphorylation of p70 S6 kinase (S6K) and ribosomal protein S6 (rpS6) 1.9-fold (P < 0.05). It did not affect phosphorylation of eukaryotic initiation factor 4E-binding protein-1 or Akt. Microarrays and real-time PCR analyses indicated that JA16 administration did not selectively enrich levels of mRNAs encoding myofibrillar proteins, ribosomal proteins, or translation initiation and elongation factors. Rapamycin treatment did not affect the rate of myofibrillar protein synthesis whether or not the mice received JA16 injections, although it eliminated the phosphorylation of S6K and rpS6. We conclude that the normal level of myostatin activity in mature muscle is sufficient to inhibit myofibrillar synthesis rate and phosphorylation of S6K and rpS6. Reversal of the inhibition of myofibrillar synthesis with an anti-myostatin antibody is not dependent on mTOR activation.

  19. Phosphorylation of Tat-interactive protein 60 kDa by protein kinase C epsilon is important for its subcellular localisation.

    PubMed

    Sapountzi, Vasileia; Logan, Ian R; Nelson, Glyn; Cook, Susan; Robson, Craig N

    2008-01-01

    Tat-interactive protein 60 kDa is a nuclear acetyltransferase that both coactivates and corepresses transcription factors and has a definitive function in the DNA damage response. Here, we provide evidence that Tat-interactive protein 60 kDa is phosphorylated by protein kinase C epsilon. In vitro, protein kinase C epsilon phosphorylates Tat-interactive protein 60 kDa on at least two sites within the acetyltransferase domain. In whole cells, activation of protein kinase C increases the levels of phosphorylated Tat-interactive protein 60 kDa and the interaction of Tat-interactive protein 60 kDa with protein kinase C epsilon. A phosphomimetic mutant Tat-interactive protein 60 kDa has distinct subcellular localisation compared to the wild-type protein in whole cells. Taken together, these findings suggest that the protein kinase C epsilon phosphorylation sites on Tat-interactive protein 60 kDa are important for its subcellular localisation. Regulation of the subcellular localisation of Tat-interactive protein 60 kDa via phosphorylation provides a novel means of controlling Tat-interactive protein 60 kDa function.

  20. Anti-tau antibody administration increases plasma tau in transgenic mice and patients with tauopathy

    PubMed Central

    Yanamandra, Kiran; Patel, Tirth K.; Jiang, Hong; Schindler, Suzanne; Ulrich, Jason D.; Boxer, Adam L.; Miller, Bruce L.; Kerwin, Diana R.; Gallardo, Gilbert; Stewart, Floy; Finn, Mary Beth; Cairns, Nigel J.; Verghese, Philip B.; Fogelman, Ilana; West, Tim; Braunstein, Joel; Robinson, Grace; Keyser, Jennifer; Roh, Joseph; Knapik, Stephanie S.; Hu, Yan; Holtzman, David M.

    2017-01-01

    Tauopathies are a group of disorders in which the cytosolic protein tau aggregates and accumulates in cells within the brain, resulting in neurodegeneration. A promising treatment being explored for tauopathies is passive immunization with anti-tau antibodies. We previously found that administration of an anti-tau antibody to human tau transgenic mice increased the concentration of plasma tau. We further explored the effects of administering an anti-tau antibody on plasma tau. After peripheral administration of an anti-tau antibody to human patients with tauopathy and to mice expressing human tau in the central nervous system, there was a dose-dependent increase in plasma tau. In mouse plasma, we found that tau had a short half-life of 8 min that increased to more than 3 hours after administration of anti-tau antibody. As tau transgenic mice accumulated insoluble tau in the brain, brain soluble and interstitial fluid tau decreased. Administration of anti-tau antibody to tau transgenic mice that had decreased brain soluble tau and interstitial fluid tau resulted in an increase in plasma tau, but this increase was less than that observed in tau transgenic mice without these brain changes. Tau transgenic mice subjected to acute neuronal injury using 3-nitropropionic acid showed increased interstitial fluid tau and plasma tau. These data suggest that peripheral administration of an anti-tau antibody results in increased plasma tau, which correlates with the concentration of extracellular and soluble tau in the brain. PMID:28424326

  1. Comparing Plasma Phospho Tau, Total Tau, and Phospho Tau–Total Tau Ratio as Acute and Chronic Traumatic Brain Injury Biomarkers

    PubMed Central

    Rubenstein, Richard; Chang, Binggong; Yue, John K.; Chiu, Allen; Winkler, Ethan A.; Puccio, Ava M.; Diaz-Arrastia, Ramon; Yuh, Esther L.; Mukherjee, Pratik; Valadka, Alex B.; Gordon, Wayne A.; Okonkwo, David O.; Davies, Peter; Agarwal, Sanjeev; Lin, Fan; Sarkis, George; Yadikar, Hamad; Yang, Zhihui; Manley, Geoffrey T.; Wang, Kevin K. W.

    2017-01-01

    IMPORTANCE Annually in the United States, at least 3.5 million people seek medical attention for traumatic brain injury (TBI). The development of therapies for TBI is limited by the absence of diagnostic and prognostic biomarkers. Microtubule-associated protein tau is an axonal phosphoprotein. To date, the presence of the hypophosphorylated tau protein (P-tau) in plasma from patients with acute TBI and chronic TBI has not been investigated. OBJECTIVE To examine the associations between plasma P-tau and total-tau (T-tau) levels and injury presence, severity, type of pathoanatomic lesion (neuroimaging), and patient outcomes in acute and chronic TBI. DESIGN, SETTING, AND PARTICIPANTS In the TRACK-TBI Pilot study, plasma was collected at a single time point from 196 patients with acute TBI admitted to 3 level I trauma centers (<24 hours after injury) and 21 patients with TBI admitted to inpatient rehabilitation units (mean [SD], 176.4 [44.5] days after injury). Control samples were purchased from a commercial vendor. The TRACK-TBI Pilot study was conducted from April 1, 2010, to June 30, 2012. Data analysis for the current investigation was performed from August 1, 2015, to March 13, 2017. MAIN OUTCOMES AND MEASURES Plasma samples were assayed for P-tau (using an antibody that specifically recognizes phosphothreonine-231) and T-tau using ultra-high sensitivity laser-based immunoassay multi-arrayed fiberoptics conjugated with rolling circle amplification. RESULTS In the 217 patients with TBI, 161 (74.2%) were men; mean (SD) age was 42.5 (18.1) years. The P-tau and T-tau levels and P-tau–T-tau ratio in patients with acute TBI were higher than those in healthy controls. Receiver operating characteristic analysis for the 3 tau indices demonstrated accuracy with area under the curve (AUC) of 1.000, 0.916, and 1.000, respectively, for discriminating mild TBI (Glasgow Coma Scale [GCS] score, 13–15, n = 162) from healthy controls. The P-tau level and P-tau–T-tau ratio

  2. The Impact of Phosphorylation on Electron Capture Dissociation of Proteins: A Top-Down Perspective

    NASA Astrophysics Data System (ADS)

    Chen, Bifan; Guo, Xiao; Tucholski, Trisha; Lin, Ziqing; McIlwain, Sean; Ge, Ying

    2017-09-01

    Electron capture dissociation (ECD) is well suited for the characterization of phosphoproteins, with which labile phosphate groups are generally preserved during the fragmentation process. However, the impact of phosphorylation on ECD fragmentation of intact proteins remains unclear. Here, we have performed a systematic investigation of the phosphorylation effect on ECD of intact proteins by comparing the ECD cleavages of mono-phosphorylated α-casein, multi-phosphorylated β-casein, and immunoaffinity-purified phosphorylated cardiac troponin I with those of their unphosphorylated counterparts, respectively. In contrast to phosphopeptides, phosphorylation has significantly reduced deleterious effects on the fragmentation of intact proteins during ECD. On a global scale, the fragmentation patterns are highly comparable between unphosphorylated and phosphorylated precursors under the same ECD conditions, despite a slight decrease in the number of fragment ions observed for the phosphorylated forms. On a local scale, single phosphorylation of intact proteins imposes minimal effects on fragmentation near the phosphorylation sites, but multiple phosphorylations in close proximity result in a significant reduction of ECD bond cleavages. [Figure not available: see fulltext.

  3. Wnt5a Evokes Cortical Axon Outgrowth and Repulsive Guidance by Tau Mediated Reorganization of Dynamic Microtubules

    PubMed Central

    Li, Li; Fothergill, Thomas; Hutchins, B Ian; Dent, Erik W; Kali, Katherine

    2014-01-01

    Wnt5a guides cortical axons in vivo by repulsion and in vitro evokes cortical axon outgrowth and repulsion by calcium signaling pathways. Here we examined the role of microtubule (MT) reorganization and dynamics in mediating effects of Wnt5a. Inhibiting MT dynamics with nocodazole and taxol abolished Wnt5a evoked axon outgrowth and repulsion of cultured hamster cortical neurons. EGFP-EB3 labeled dynamic MTs visualized in live cell imaging revealed that growth cone MTs align with the nascent axon. Wnt5a increased axon outgrowth by reorganization of dynamic MTs from a splayed to a bundled array oriented in the direction of axon extension, and Wnt5a gradients induced asymmetric redistribution of dynamic MTs toward the far side of the growth cone. Wnt5a gradients also evoked calcium transients that were highest on the far side of the growth cone. Calcium signaling and the reorganization of dynamic MTs could be linked by tau, a MT associated protein that stabilizes MTs. Tau is phosphorylated at the Ser 262 MT binding site by CaMKII, and is required for Wnt5a induced axon outgrowth and repulsive turning. Phosphorylation of tau at Ser262 is known to detach tau from MTs to increase their dynamics. Using transfection with tau constructs mutated at Ser262, we found that this site is required for the growth and guidance effects of Wnt5a by mediating reorganization of dynamic MTs in cortical growth cones. Moreover, CaMKII inhibition also prevents MT reorganization required for Wnt5a induced axon outgrowth, thus linking Wnt/calcium signaling to tau mediated MT reorganization during growth cone behaviors. © 2013 The Authors. Developmental Neurobiology Published by Wiley Periodicals, Inc.Develop Neurobiol 74: 797–817, 2014 PMID:23818454

  4. Impact of SNPs on Protein Phosphorylation Status in Rice (Oryza sativa L.).

    PubMed

    Lin, Shoukai; Chen, Lijuan; Tao, Huan; Huang, Jian; Xu, Chaoqun; Li, Lin; Ma, Shiwei; Tian, Tian; Liu, Wei; Xue, Lichun; Ai, Yufang; He, Huaqin

    2016-11-11

    Single nucleotide polymorphisms (SNPs) are widely used in functional genomics and genetics research work. The high-quality sequence of rice genome has provided a genome-wide SNP and proteome resource. However, the impact of SNPs on protein phosphorylation status in rice is not fully understood. In this paper, we firstly updated rice SNP resource based on the new rice genome Ver. 7.0, then systematically analyzed the potential impact of Non-synonymous SNPs (nsSNPs) on the protein phosphorylation status. There were 3,897,312 SNPs in Ver. 7.0 rice genome, among which 9.9% was nsSNPs. Whilst, a total 2,508,261 phosphorylated sites were predicted in rice proteome. Interestingly, we observed that 150,197 (39.1%) nsSNPs could influence protein phosphorylation status, among which 52.2% might induce changes of protein kinase (PK) types for adjacent phosphorylation sites. We constructed a database, SNP_rice, to deposit the updated rice SNP resource and phosSNPs information. It was freely available to academic researchers at http://bioinformatics.fafu.edu.cn. As a case study, we detected five nsSNPs that potentially influenced heterotrimeric G proteins phosphorylation status in rice, indicating that genetic polymorphisms showed impact on the signal transduction by influencing the phosphorylation status of heterotrimeric G proteins. The results in this work could be a useful resource for future experimental identification and provide interesting information for better rice breeding.

  5. Site-Specific Phosphorylation of PSD-95 PDZ Domains Reveals Fine-Tuned Regulation of Protein-Protein Interactions.

    PubMed

    Pedersen, Søren W; Albertsen, Louise; Moran, Griffin E; Levesque, Brié; Pedersen, Stine B; Bartels, Lina; Wapenaar, Hannah; Ye, Fei; Zhang, Mingjie; Bowen, Mark E; Strømgaard, Kristian

    2017-09-15

    The postsynaptic density protein of 95 kDa (PSD-95) is a key scaffolding protein that controls signaling at synapses in the brain through interactions of its PDZ domains with the C-termini of receptors, ion channels, and enzymes. PSD-95 is highly regulated by phosphorylation. To explore the effect of phosphorylation on PSD-95, we used semisynthetic strategies to introduce phosphorylated amino acids at four positions within the PDZ domains and examined the effects on interactions with a large set of binding partners. We observed complex effects on affinity. Most notably, phosphorylation at Y397 induced a significant increase in affinity for stargazin, as confirmed by NMR and single molecule FRET. Additionally, we compared the effects of phosphorylation to phosphomimetic mutations, which revealed that phosphomimetics are ineffective substitutes for tyrosine phosphorylation. Our strategy to generate site-specifically phosphorylated PDZ domains provides a detailed understanding of the role of phosphorylation in the regulation of PSD-95 interactions.

  6. Auxin effects on in vitro and in vivo protein phosphorylation in pea. [Pisum sativum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallagher, S.R.; Ray, P.M.

    1987-04-01

    Terminal 8mm sections from the third internode of dark grown 7 day old Pisum sativum cv Alaska seedlings were separated into membrane and soluble fractions. SDS gradient PAGE identified approximately 50 in vivo phosphorylated proteins and proved superior to 2-D SDS PAGE in terms of resolution and repeatability. Addition of indoleacetic acid (IAA), fusicoccin, or 2,4 dichlorophenoxyacetic acid to membranes resulted in no detectable change in the number or phosphorylation level of the labeled proteins during in vitro phosphorylation in the presence of submicromolar concentrations of calcium. Similar results were obtained with soluble proteins. In the absence of calcium, themore » level of in vitro protein phosphorylation was much less, but not auxin effects could be identified. Furthermore, treatment of the sections with IAA in vivo followed by cell fractionation and in vitro phosphorylation failed to identify auxin responsive proteins. Lastly, when sections were labeled with /sup 32/P inorganic phosphate in the presence of 17 uM IAA, no auxin specific changes were found in the level of phosphorylation or in the number of phosphorylated proteins. Auxin effects on phosphorylation are thus slight or below their detection limit.« less

  7. Intellectual functioning of childhood leukemia survivors--relation to Tau protein--a marker of white matter injury.

    PubMed

    Krawczuk-Rybak, M; Grabowska, A; Protas, P T; Muszynska-Roslan, K; Holownia, A; Braszko, J

    2012-01-01

    Chemo- and radiotherapy used in acute lymphoblastic leukemia (ALL) can influence on brain functioning in the future. In a prospective study we analysed the cognitive functions of ALL survivors in relation to Tau protein as a marker of white matter injury. Thirty-one survivors of childhood ALL (6.3 years after diagnosis); without the signs of CNS involvement, treated with chemotherapy alone, rested in first remission; underwent Intelligence tests- Wechsler Intelligence Scales (WISC-R, WAIS-R). Their results were analyzed in relation to the levels of Tau in cerebrospinal fluid (CSF) obtained during the treatment. The analysis showed that all survivors attained the average scores in intelligence tests. A negative correlation was found between methotrexate (MTX) doses and Freedom from Distractibility (FFD). Females had higher values of Performance Intelligence Quotient (PIQ) than males. A negative correlation was noted of Tau protein levels obtained from the last CSF with: Total and Verbal Intelligence Quotient, PIQ, Perceptual Organisation Index and FFD but not with Verbal Comprehension Index. Our results suggest the possibility of white matter injury during the treatment for ALL with chemotherapy alone. Elevated Tau protein level in CSF at the end of treatment might indicate future difficulties in neurocognitive functioning.

  8. The Fanconi Anemia C Protein Binds to and Regulates Stathmin-1 Phosphorylation

    PubMed Central

    Magron, Audrey; Elowe, Sabine; Carreau, Madeleine

    2015-01-01

    The Fanconi anemia (FA) proteins are involved in a signaling network that assures the safeguard of chromosomes. To understand the function of FA proteins in cellular division events, we investigated the interaction between Stathmin-1 (STMN1) and the FA group C (FANCC) protein. STMN1 is a ubiquitous cytosolic protein that regulates microtubule dynamics. STMN1 activities are regulated through phosphorylation-dephosphorylation mechanisms that control assembly of the mitotic spindle, and dysregulation of STMN1 phosphorylation is associated with mitotic aberrancies leading to chromosome instability and cancer progression. Using different biochemical approaches, we showed that FANCC interacts and co-localizes with STMN1 at centrosomes during mitosis. We also showed that FANCC is required for STMN1 phosphorylation, as mutations in FANCC reduced serine 16- and 38-phosphorylated forms of STMN1. Phosphorylation of STMN1 at serine 16 is likely an event dependent on a functional FA pathway, as it is reduced in FANCA- and FANCD2-mutant cells. Furthermore, FA-mutant cells exhibited mitotic spindle anomalies such as supernumerary centrosomes and shorter mitotic spindles. These results suggest that FA proteins participate in the regulation of cellular division via the microtubule-associated protein STMN1. PMID:26466335

  9. Quantification of plasma phosphorylated tau to use as a biomarker for brain Alzheimer pathology: pilot case-control studies including patients with Alzheimer's disease and down syndrome.

    PubMed

    Tatebe, Harutsugu; Kasai, Takashi; Ohmichi, Takuma; Kishi, Yusuke; Kakeya, Tomoshi; Waragai, Masaaki; Kondo, Masaki; Allsop, David; Tokuda, Takahiko

    2017-09-04

    There is still a substantial unmet need for less invasive and lower-cost blood-based biomarkers to detect brain Alzheimer's disease (AD) pathology. This study is aimed to determine whether quantification of plasma tau phosphorylated at threonine 181 (p-tau181) is informative in the diagnosis of AD. We have developed a novel ultrasensitive immunoassay to quantify plasma p-tau181, and measured the levels of plasma p-tau181 in three cohorts. In the first cohort composed of 20 AD patients and 15 age-matched controls, the plasma levels of p-tau181 were significantly higher in the AD patients than those in the controls (0.171 ± 0.166 pg/ml in AD versus 0.0405 ± 0.0756 pg/ml in controls, p = 0.0039). The percentage of the subjects whose levels of plasma p-tau181 exceeded the cut-off value (0.0921 pg/ml) was significantly higher in the AD group compared with the control group (60% in AD versus 16.7% in controls, p = 0.0090). In the second cohort composed of 20 patients with Down syndrome (DS) and 22 age-matched controls, the plasma concentrations of p-tau181 were significantly higher in the DS group (0.767 ± 1.26 pg/ml in DS versus 0.0415 ± 0.0710 pg/ml in controls, p = 0.0313). There was a significant correlation between the plasma levels of p-tau181 and age in the DS group (R 2  = 0.4451, p = 0.0013). All of the DS individuals showing an extremely high concentration of plasma p-tau181 (> 1.0 pg/ml) were older than the age of 40. In the third cohort composed of 8 AD patients and 3 patients with other neurological diseases, the levels of plasma p-tau181 significantly correlated with those of CSF p-tau181 (R 2  = 0.4525, p = 0.023). We report for the first time quantitative data on the plasma levels of p-tau181 in controls and patients with AD and DS, and these data suggest that the plasma p-tau181 is a promising blood biomarker for brain AD pathology. This exploratory pilot study warrants further large-scale and well-controlled studies to

  10. Phosphorylation and nuclear localization of the varicella-zoster virus gene 63 protein.

    PubMed Central

    Stevenson, D; Xue, M; Hay, J; Ruyechan, W T

    1996-01-01

    The protein encoded by varicella-zoster virus open reading frame 63 and carboxy-terminal deletions of the same were expressed either as fusion proteins at the carboxy terminus of the maltose-binding protein in Escherichia coli or independently in transfected mammalian cells. The truncations contained amino acids 1 to 142 (63 delta N) or 1 to 210 (63 delta K) of the complete 278-amino-acid primary sequence. Recombinant casein kinase II phosphorylated the 63F and 63 delta KF fusion proteins in vitro but did not phosphorylate the 63 delta NF fusion protein, implying that phosphorylation occurred between amino acids 142 and 210. Immunoprecipitation of 35S- or 32P-labelled extracts of cells transfected with plasmids expressing 63, 63 delta N, or 63 delta K also indicated that in situ phosphorylation most likely occurred between amino acids 142 and 210. These combined results suggest that casein kinase II plays a significant role in the phosphorylation of the varicella-zoster virus 63 protein. Indirect immunofluorescence of transfected cells indicated nuclear localization of the 63 protein and cytoplasmic localization of 63 delta K and 63 delta N, implying a requirement for sequences between amino acids 210 and 278 for efficient nuclear localization. PMID:8523589

  11. Effects of propofol and dizocilpine maleate on the cognitive abilities and the hyperphosphorylation of Tau protein of rats after the electroconvulsive therapy.

    PubMed

    Liu, Chao; Min, Su; Wei, Ke; Liu, Dong; Dong, Jun; Luo, Jie; Li, Ping; Liu, Xiao-bin

    2012-08-01

    To explore the effects of propofol and dizocilpine maleate (MK-801) on the cognitive abilities the hyperphosphorylation of Tau protein of rats after the electroconvulsive therapy. Two intervention factors including electroconvulsive shock therapy (ECT) (two levels: not applied and one treatment course) and drug intervention (three levels: intravenous saline,intravenous MK-801, and intravenous propofol). The morris water maze test started within 1 day after ECT to evaluate the learning-memory. The glutamate level in the hippocampus of rats was determined by high-performance liquid chromatography. The Tau protein that includes Tau5 (total Tau protein), PHF-1 (pSer(396/404)), AT8 (pSer(199/202)), and 12E8 (pSer(262)) in the hippocampus of rats was determined using Western blotting. Propofol, MK-801, and ECT could induce the impairment of learning-memory in depressed rats. The electroconvulsive shock significantly up-regulated the glutamate level, which was reduces by the propofol. The ECT up-regulated the hyperphosphorylation of Tau protein in the hippocampus of depressed rats, which was reduced by propofol and MK-801. Both propofol and MK-801 could protect against the impairment of learning-memory and reduce the hyperphosphorylation of Tau protein induced by ECT in depressed rats.

  12. Auto-phosphorylation Represses Protein Kinase R Activity.

    PubMed

    Wang, Die; de Weerd, Nicole A; Willard, Belinda; Polekhina, Galina; Williams, Bryan R G; Sadler, Anthony J

    2017-03-10

    The central role of protein kinases in controlling disease processes has spurred efforts to develop pharmaceutical regulators of their activity. A rational strategy to achieve this end is to determine intrinsic auto-regulatory processes, then selectively target these different states of kinases to repress their activation. Here we investigate auto-regulation of the innate immune effector protein kinase R, which phosphorylates the eukaryotic initiation factor 2α to inhibit global protein translation. We demonstrate that protein kinase R activity is controlled by auto-inhibition via an intra-molecular interaction. Part of this mechanism of control had previously been reported, but was then controverted. We account for the discrepancy and extend our understanding of the auto-inhibitory mechanism by identifying that auto-inhibition is paradoxically instigated by incipient auto-phosphorylation. Phosphor-residues at the amino-terminus instigate an intra-molecular interaction that enlists both of the N-terminal RNA-binding motifs of the protein with separate surfaces of the C-terminal kinase domain, to co-operatively inhibit kinase activation. These findings identify an innovative mechanism to control kinase activity, providing insight for strategies to better regulate kinase activity.

  13. Rapid changes in protein phosphorylation associated with light-induced gravity perception in corn roots

    NASA Technical Reports Server (NTRS)

    McFadden, J. J.; Poovaiah, B. W.

    1988-01-01

    The effect of light and calcium depletion on in vivo protein phosphorylation was tested using dark-grown roots of Merit corn. Light caused rapid and specific promotion of phosphorylation of three polypeptides. Pretreatment of roots with ethylene glycol bis N,N,N',N' tetraacetic acid and A23187 prevented light-induced changes in protein phosphorylation. We postulate that these changes in protein phosphorylation are involved in the light-induced gravity response.

  14. Lead induced changes in phosphorylation of PSII proteins in low light grown pea plants.

    PubMed

    Wioleta, Wasilewska; Anna, Drożak; Ilona, Bacławska; Kamila, Kąkol; Elżbieta, Romanowska

    2015-02-01

    Light-intensity and redox-state induced thylakoid proteins phosphorylation involved in structural changes and in regulation of protein turnover. The presence of heavy metal ions triggers a wide range of cellular responses including changes in plant growth and photosynthesis. Plants have evolved a number of mechanisms to protect photosynthetic apparatus. We have characterized the effect of lead on PSII protein phosphorylation in pea (Pisum sativum L.) plants grown in low light conditions. Pb ions affected only slightly photochemical efficiency of PSII and had no effect on organization of thylakoid complexes. Lead activated strongly phosphorylation of PSII core D1 protein and dephosphorylation of this protein did not proceed in far red light. D1 protein was also not degraded in this conditions. However, phosphorylation of LHCII proteins was not affected by lead. These results indicate that Pb(2+) stimulate the phosphorylation of PSII core proteins and by disturbing the disassembly of supercomplexes play a role in PSII repair mechanism. LHCII phosphorylation could control the distribution of energy between the photosystems in low light conditions. This demonstrates that plants may respond to heavy metals by induction different pathways responsible for protein protection under stress conditions.

  15. Association of Cerebrospinal Fluid β-Amyloid 1-42, T-tau, P-tau181, and α-Synuclein Levels With Clinical Features of Drug-Naive Patients With Early Parkinson Disease

    PubMed Central

    Kang, Ju-Hee; Irwin, David J.; Chen-Plotkin, Alice S.; Siderowf, Andrew; Caspell, Chelsea; Coffey, Christopher S.; Waligórska, Teresa; Taylor, Peggy; Pan, Sarah; Frasier, Mark; Marek, Kenneth; Kieburtz, Karl; Jennings, Danna; Simuni, Tanya; Tanner, Caroline M.; Singleton, Andrew; Toga, Arthur W.; Chowdhury, Sohini; Mollenhauer, Brit; Trojanowski, John Q.; Shaw, Leslie M.

    2014-01-01

    Importance We observed a significant correlation between cerebrospinal fluid (CSF) levels of tau proteins and α-synuclein, but not β-amyloid 1–42 (Aβ1–42), and lower concentration of CSF biomarkers, as compared with healthy controls, in a cohort of entirely untreated patients with Parkinson disease (PD) at the earliest stage of the disease studied so far. Objective To evaluate the baseline characteristics and relationship to clinical features of CSF biomarkers (Aβ1–42, total tau [T-tau], tau phosphorylated at threonine 181 [P-tau181], and α-synuclein) in drug-naive patients with early PD and demographically matched healthy controls enrolled in the Parkinson’s Progression Markers Initiative (PPMI) study. Design, Setting, and Participants Cross-sectional study of the initial 102 research volunteers (63 patients with PD and 39 healthy controls) of the PPMI cohort. Main Outcomes and Measures The CSF biomarkers were measured by INNO-BIA AlzBio3 immunoassay (Aβ1–42, T-tau, and P-tau181; Innogenetics Inc) or by enzyme-linked immunosorbent assay (α-synuclein). Clinical features including diagnosis, demographic characteristics, motor, neuropsychiatric, and cognitive assessments, and DaTscan were systematically assessed according to the PPMI study protocol. Results Slightly, but significantly, lower levels of Aβ1–42, T-tau, P-tau181, α-synuclein, and T-tau/Aβ1–42 were seen in subjects with PD compared with healthy controls but with a marked overlap between groups. Using multivariate regression analysis, we found that lower Aβ1–42 and P-tau181 levels were associated with PD diagnosis and that decreased CSF T-tau and α-synuclein were associated with increased motor severity. Notably, when we classified patients with PD by their motor phenotypes, lower CSF Aβ1–42 and P-tau181 concentrations were associated with the postural instability–gait disturbance–dominant phenotype but not with the tremor-dominant or intermediate phenotype. Finally, we

  16. Alterations in protein phosphorylation in the amygdala of the 5XFamilial Alzheimer's disease animal model.

    PubMed

    Yang, Eun-Jeong; Mahmood, Usman; Kim, Hyunju; Choi, Moonseok; Choi, Yunjung; Lee, Jean-Pyo; Chang, Moon-Jeong; Kim, Hye-Sun

    2017-04-01

    Alzheimer's disease is the most common disease underlying dementia in humans. Two major neuropathological hallmarks of AD are neuritic plaques primarily composed of amyloid beta peptide and neurofibrillary tangles primarily composed of hyperphosphorylated tau. In addition to impaired memory function, AD patients often display neuropsychiatric symptoms and abnormal emotional states such as confusion, delusion, manic/depressive episodes and altered fear status. Brains from AD patients show atrophy of the amygdala which is involved in fear expression and emotional processing as well as hippocampal atrophy. However, which molecular changes are responsible for the altered emotional states observed in AD remains to be elucidated. Here, we observed that the fear response as assessed by evaluating fear memory via a cued fear conditioning test was impaired in 5XFamilial AD (5XFAD) mice, an animal model of AD. Compared to wild-type mice, 5XFAD mice showed changes in the phosphorylation of twelve proteins in the amygdala. Thus, our study provides twelve potential protein targets in the amygdala that may be responsible for the impairment in fear memory in AD. Copyright © 2017 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  17. Deletion of Type-2 Cannabinoid Receptor Induces Alzheimer's Disease-Like Tau Pathology and Memory Impairment Through AMPK/GSK3β Pathway.

    PubMed

    Wang, Lin; Liu, Bing-Jin; Cao, Yun; Xu, Wei-Qi; Sun, Dong-Sheng; Li, Meng-Zhu; Shi, Fang-Xiao; Li, Man; Tian, Qing; Wang, Jian-Zhi; Zhou, Xin-Wen

    2018-06-01

    Although several studies have shown that type-2 cannabinoid receptor (CB2R) is involved in Alzheimer's disease (AD) pathology, the effects of CB2R on AD-like tau abnormal phosphorylation and its underlying mechanism remain unclear. Herein, we employed the CB2R -/- mice as the animal model to explore roles of CB2R in regulating tau phosphorylation and brain function. We found that CB2R -/- mice display AD-like tau hyperphosphorylation, hippocampus-dependent memory impairment, increase of GSK3β activity, decrease of AMPK and Sirt1 activity and mitochondria dysfunction. Interestingly, AICAR or resveratrol (AMPK agonist) could efficiently rescue most alternations caused by solo deletion of CB2R in CB2R -/- mice. Moreover, JWH133, a selective agonist of CB2R, reduces phosphorylation of tau and GSK3β activity in HEK293 tau cells, but the effects of JWH133 on phosphorylation of tau and GSK3β disappeared while blocking AMPK activity with compound C or Prkaa2-RNAi. Taken together, our study indicated that deletion of CB2R induces behavior damage and AD-like pathological alternation via AMPK/GSK3β pathway. These findings proved that CB2R/AMPK/GSK3β pathway can be a promising new drug target for AD.

  18. Genome-wide network-based pathway analysis of CSF t-tau/Aβ1-42 ratio in the ADNI cohort.

    PubMed

    Cong, Wang; Meng, Xianglian; Li, Jin; Zhang, Qiushi; Chen, Feng; Liu, Wenjie; Wang, Ying; Cheng, Sipu; Yao, Xiaohui; Yan, Jingwen; Kim, Sungeun; Saykin, Andrew J; Liang, Hong; Shen, Li

    2017-05-30

    The cerebrospinal fluid (CSF) levels of total tau (t-tau) and Aβ 1-42 are potential early diagnostic markers for probable Alzheimer's disease (AD). The influence of genetic variation on these CSF biomarkers has been investigated in candidate or genome-wide association studies (GWAS). However, the investigation of statistically modest associations in GWAS in the context of biological networks is still an under-explored topic in AD studies. The main objective of this study is to gain further biological insights via the integration of statistical gene associations in AD with physical protein interaction networks. The CSF and genotyping data of 843 study subjects (199 CN, 85 SMC, 239 EMCI, 207 LMCI, 113 AD) from the Alzheimer's Disease Neuroimaging Initiative (ADNI) were analyzed. PLINK was used to perform GWAS on the t-tau/Aβ 1-42 ratio using quality controlled genotype data, including 563,980 single nucleotide polymorphisms (SNPs), with age, sex and diagnosis as covariates. Gene-level p-values were obtained by VEGAS2. Genes with p-value ≤ 0.05 were mapped on to a protein-protein interaction (PPI) network (9,617 nodes, 39,240 edges, from the HPRD Database). We integrated a consensus model strategy into the iPINBPA network analysis framework, and named it as CM-iPINBPA. Four consensus modules (CMs) were discovered by CM-iPINBPA, and were functionally annotated using the pathway analysis tool Enrichr. The intersection of four CMs forms a common subnetwork of 29 genes, including those related to tau phosphorylation (GSK3B, SUMO1, AKAP5, CALM1 and DLG4), amyloid beta production (CASP8, PIK3R1, PPA1, PARP1, CSNK2A1, NGFR, and RHOA), and AD (BCL3, CFLAR, SMAD1, and HIF1A). This study coupled a consensus module (CM) strategy with the iPINBPA network analysis framework, and applied it to the GWAS of CSF t-tau/Aβ1-42 ratio in an AD study. The genome-wide network analysis yielded 4 enriched CMs that share not only genes related to tau phosphorylation or amyloid beta

  19. Comparison of phosphorylated proteins in intact rat spermatozoa from caput and cauda epididymidis.

    PubMed

    Chulavatnatol, M; Panyim, S; Wititsuwannakul, D

    1982-02-01

    Spermatozoa from rat epididymis were incubated with [32P] orthophosphate and the radioactively labeled proteins were solubilized for analysis by electrophoresis in SDS-gels or in two-dimensional gels by isoelectric focusing and SDS electrophoresis. Three major phosphorylated protein bands of Mr 42,700, 56,200, and 76,200 were identified together with several minor phosphorylated proteins. The phosphorylated proteins of Mr 42,700 and 76,200 were more heterogeneous in charge than the one of Mr 56,000. The major phosphorylated proteins were not found in the isolated heads of cytosol derived from sperm sonicate. They were not solubilized by 1% Triton X-100 and 2 mM DTT, which removed the plasma membrane and mitochondria, but they were solubilized by 6 M urea and 5 mM DTT away from the insoluble fibrous sheath which contained no appreciable radioactivity. Most of the major phosphorylated bands were solubilized by 2% SDS and 4 mM DTT, leaving the insoluble outer dense fiber-connecting piece (ODF-CP) complex with some of the proteins. The ODF-CP complex of the spermatozoa from the cauda epididymis contained more of the major phosphorylated bands than did that of the spermatozoa from the caput region. Treatment with 1% SDS alone can solubilize about half of the major phosphorylated bands from the spermatozoa of the caput region and essentially none from the spermatozoa of the caudal part. The latter required 1% SDS and 13 mM DTT to achieve solubilization, suggesting the formation of disulfide bonds holding the three major phosphorylated proteins to some intracellular structure during sperm maturation.

  20. Exendin-4, a glucagon-like peptide-1 receptor agonist, reduces Alzheimer disease-associated tau hyperphosphorylation in the hippocampus of rats with type 2 diabetes.

    PubMed

    Xu, Weijie; Yang, Yan; Yuan, Gang; Zhu, Wenjun; Ma, Delin; Hu, Shuhong

    2015-02-01

    Impaired insulin signaling pathway in the brain in type 2 diabetes (T2D) is a risk factor for Alzheimer disease (AD). Glucagon-like peptide-1 (GLP-1) and its receptor agonist are widely used for treatment of T2D. Here we studied whether the effects of exendin-4 (EX-4), a long-lasting GLP-1 receptor agonist, could reduce the risk of AD in T2D. Type 2 diabetes rats were injected with EX-4 for 28 consecutive days. Blood glucose and insulin levels, as well as GLP-1 and insulin in cerebrospinal fluid, were determined during the experiment. The phosphorylation level of tau at individual phosphorylation sites, the activities of phosphatidylinositol 3 kinase/protein kinase B (PI3K/AKT), and glycogen synthase kinase-3β (GSK-3β) were analyzed with Western blots. The levels of phosphorylated tau protein at site Ser199/202 and Thr217 level in the hippocampus of T2D rats were found to be raised notably and evidently decreased after EX-4 intervention. In addition, brain insulin signaling pathway was ameliorated after EX-4 treatment, and this result was reflected by a decreased activity of PI3K/AKT and an increased activity of GSK-3β in the hippocampus of T2D rats as well as a rise in PI3K/AKT activity and a decline in GSK-3β activity after 4 weeks intervention of EX-4. These results demonstrate that multiple days with EX-4 appears to prevent the hyperphosphorylation of AD-associated tau protein due to increased insulin signaling pathway in the brain. These findings support the potential use of GLP-1 for the prevention and treatment of AD in individuals with T2D.

  1. Characterization of mitosis-specific phosphorylation of tumor-associated microtubule-associated protein.

    PubMed

    Hong, Kyung Uk; Kim, Hyun-Jun; Bae, Chang-Dae; Park, Joobae

    2009-11-30

    Tumor-associated microtubule-associated protein (TMAP), also known as cytoskeleton associated protein 2 (CKAP2), has been recently shown to be involved in the assembly and maintenance of mitotic spindle and also plays an essential role in maintaining the fidelity of chromosome segregation during mitosis. We have previously reported that TMAP is phosphorylated at multiple residues specifically during mitosis, and characterized the mechanism and functional importance of phosphorylation at one of the mitosis-specific phosphorylation residues (i.e., Thr-622). However, the phosphorylation events at the remaining mitotic phosphorylation sites of TMAP have not been fully characterized in detail. Here, we report on generation and characterization of phosphorylated Thr-578- and phosphorylated Thr-596-specific antibodies. Using the antibodies, we show that phosphorylation of TMAP at Thr-578 and Thr-596 indeed occurs specifically during mitosis. Immunofluorescent staining using the antibodies shows that these residues become phosphorylated starting at prophase and then become rapidly dephosphorylated soon after initiation of anaphase. Subtle differences in the kinetics of phosphorylation between Thr-578 and Thr-596 imply that they may be under different mechanisms of phosphorylation during mitosis. Unlike the phosphorylation-deficient mutant form for Thr-622, the mutant in which both Thr-578 and Thr-596 had been mutated to alanines did not induce significant delay in progression of mitosis. These results show that the majority of mitosis-specific phosphorylation of TMAP is limited to pre-anaphase stages and suggest that the multiple phosphorylation may not act in concert but serve diverse functions.

  2. Characterization of mitosis-specific phosphorylation of tumor-associated microtubule-associated protein

    PubMed Central

    Hong, Kyung Uk; Kim, Hyun-Jun

    2009-01-01

    Tumor-associated microtubule-associated protein (TMAP), also known as cytoskeleton associated protein 2 (CKAP2), has been recently shown to be involved in the assembly and maintenance of mitotic spindle and also plays an essential role in maintaining the fidelity of chromosome segregation during mitosis. We have previously reported that TMAP is phosphorylated at multiple residues specifically during mitosis, and characterized the mechanism and functional importance of phosphorylation at one of the mitosis-specific phosphorylation residues (i.e., Thr-622). However, the phosphorylation events at the remaining mitotic phosphorylation sites of TMAP have not been fully characterized in detail. Here, we report on generation and characterization of phosphorylated Thr-578- and phosphorylated Thr-596-specific antibodies. Using the antibodies, we show that phosphorylation of TMAP at Thr-578 and Thr-596 indeed occurs specifically during mitosis. Immunofluorescent staining using the antibodies shows that these residues become phosphorylated starting at prophase and then become rapidly dephosphorylated soon after initiation of anaphase. Subtle differences in the kinetics of phosphorylation between Thr-578 and Thr-596 imply that they may be under different mechanisms of phosphorylation during mitosis. Unlike the phosphorylation-deficient mutant form for Thr-622, the mutant in which both Thr-578 and Thr-596 had been mutated to alanines did not induce significant delay in progression of mitosis. These results show that the majority of mitosis-specific phosphorylation of TMAP is limited to pre-anaphase stages and suggest that the multiple phosphorylation may not act in concert but serve diverse functions. PMID:19641375

  3. The intricacies of p21 phosphorylation: protein/protein interactions, subcellular localization and stability.

    PubMed

    Child, Emma S; Mann, David J

    2006-06-01

    p21 was originally described as functioning as a cell cycle regulator via inhibition of both cyclin-dependent kinases and processive DNA replication. Nowadays it is recognized to play other fundamental roles including transcriptional regulation and the modulation of apoptosis. Each of these functions of p21 is achieved through direct p21/protein interactions and the subcellular localization of p21 plays an important part in dictating the binding partners to which p21 is exposed. Over recent years, a number of phosphorylation sites in p21 have been identified, these being targeted by several important intracellular signalling protein kinases. Here we review the state of our knowledge of p21 phosphorylation with respect to the kinases involved and the molecular biological effects of each phosphorylation event.

  4. Muscarinic agonists and phorbol esters increase tyrosine phosphorylation of a 40-kilodalton protein in hippocampal slices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stratton, K.R.; Worley, P.F.; Huganir, R.L.

    The authors have used the hippocampal slice preparation to investigate the regulation of protein tyrosine phosphorylation in brain. After pharmacological treatment of intact slices, proteins were separated by electrophoresis, and levels of protein tyrosine phosphorylation were assessed by immunoblotting with specific anti-phosphotyrosine antibodies. Phorbol esters, activators of the serine- and threonine-phosphorylating enzyme protein kinase C, selectively increase tyrosine phosphorylation of a soluble protein with an apparent molecular mass of approximately 40 kilodaltons. Muscarinic agonists such as carbachol and oxotremorine M that strongly activate the inositol phospholipid system also increase tyrosine phosphorylation of this protein. Neurotransmitter activation of the inositol phospholipidmore » system and protein kinase C appears to trigger a cascade leading to increased tyrosine phosphorylation.« less

  5. Calcium and protein phosphorylation in the transduction of gravity signal in corn roots

    NASA Technical Reports Server (NTRS)

    Friedmann, M.; Poovaiah, B. W.

    1991-01-01

    The involvement of calcium and protein phosphorylation in the transduction of gravity signal was studied using corn roots of a light-insensitive variety (Zea mays L., cv. Patriot). The gravitropic response was calcium-dependent. Horizontal placement of roots preloaded with 32P for three minutes resulted in changes in protein phosphorylation of polypeptides of 32 and 35 kD. Calcium depletion resulted in decreased phosphorylation of these phosphoproteins and replenishment of calcium restored the phosphorylation.

  6. Ebselen ameliorates β-amyloid pathology, tau pathology, and cognitive impairment in triple-transgenic Alzheimer's disease mice.

    PubMed

    Xie, Yongli; Tan, Yibin; Zheng, Youbiao; Du, Xiubo; Liu, Qiong

    2017-08-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disease which is clinically characterized by memory loss and cognitive decline caused by protein misfolding and aggregation. Imbalance between free radicals and the antioxidant system is a prominent and early feature in the neuropathology of AD. Selenium (Se), a vital trace element with excellent antioxidant potential, is preferentially retained in the brain in Se-limited conditions and has been reported to provide neuroprotection through resisting oxidative damage. In this paper, we studied for the first time the potential of Ebselen, a lipid-soluble selenium compound with GPx-like activity, in the treatment of cognitive dysfunction and neuropathology of triple-transgenic AD (3 × Tg-AD) mice, AD model cell, and primary culture. We demonstrated that Ebselen inhibited oxidative stress in both AD model cells and mouse brains with increasing GPx and SOD activities and meanwhile reduced p38 mitogen-activated protein kinases activities. By decreasing the expression of amyloid precursor protein and β-secretase, Ebselen reduced the levels of Aβ in AD neurons and mouse brains, especially the most toxic oligomeric form. Besides, mislocation of phosphorylated tau in neurons and phosphorylation levels of tau protein at Thr231, Ser396, and Ser404 residues were also inhibited by Ebselen, probably by its regulatory roles in glycogen synthase kinase 3β and protein phosphatase 2A activity. In addition, Ebselen mitigated the decrease of synaptic proteins including synaptophysin and postsynaptic density protein 95 in AD model cells and neurons. Consequently, the spatial learning and memory of 3 × Tg-AD mice were significantly improved upon Ebselen treatment. This study provides a potential novel therapeutic approach for the prevention of AD.

  7. Tau protein degradation is catalyzed by the ATP/ubiquitin-independent 20S proteasome under normal cell conditions

    PubMed Central

    Grune, Tilman; Botzen, Diana; Engels, Martina; Voss, Peter; Kaiser, Barbara; Jung, Tobias; Grimm, Stefanie; Ermak, Gennady; Davies, Kelvin J. A.

    2010-01-01

    Tau is the major protein exhibiting intracellular accumulation in Alzheimer disease. The mechanisms leading to its accumulation are not fully understood. It has been proposed that the proteasome is responsible for degrading tau but, since proteasomal inhibitors block both the ubiquitin-dependent 26S proteasome and the ubiqutin-independent 20S proteasome pathways, it is not clear which of these pathways is involved in tau degradation. Some involvement of the ubiquitin ligase, CHIP in tau degradation has also been postulated during stress. In the current studies, we utilized HT22 cells and tau-transfected E36 cells in order to test the relative importance or possible requirement of the ubiquitin-dependent 26S proteasomal system versus the ubiquitin-independent 20S proteasome, in tau degradation. By means of ATP-depletion, ubiquitinylation-deficient E36ts20 cells, a 19S proteasomal regulator subunit MSS1-siRNA approaches, and in vitro ubiquitinylation studies, we were able to demonstrate that ubiquitinylation is not required for normal tau degradation. PMID:20478262

  8. Associations between [18F]AV1451 tau PET and CSF measures of tau pathology in a clinical sample.

    PubMed

    La Joie, Renaud; Bejanin, Alexandre; Fagan, Anne M; Ayakta, Nagehan; Baker, Suzanne L; Bourakova, Viktoriya; Boxer, Adam L; Cha, Jungho; Karydas, Anna; Jerome, Gina; Maass, Anne; Mensing, Ashley; Miller, Zachary A; O'Neil, James P; Pham, Julie; Rosen, Howard J; Tsai, Richard; Visani, Adrienne V; Miller, Bruce L; Jagust, William J; Rabinovici, Gil D

    2018-01-23

    To assess the relationships between fluid and imaging biomarkers of tau pathology and compare their diagnostic utility in a clinically heterogeneous sample. Fifty-three patients (28 with clinical Alzheimer disease [AD] and 25 with non-AD clinical neurodegenerative diagnoses) underwent β-amyloid (Aβ) and tau ([ 18 F]AV1451) PET and lumbar puncture. CSF biomarkers (Aβ 42 , total tau [t-tau], and phosphorylated tau [p-tau]) were measured by multianalyte immunoassay (AlzBio3). Receiver operator characteristic analyses were performed to compare discrimination of Aβ-positive AD from non-AD conditions across biomarkers. Correlations between CSF biomarkers and PET standardized uptake value ratios (SUVR) were assessed using skipped Pearson correlation coefficients. Voxelwise analyses were run to assess regional CSF-PET associations. [ 18 F]AV1451-PET cortical SUVR and p-tau showed excellent discrimination between Aβ-positive AD and non-AD conditions (area under the curve 0.92-0.94; ≤0.83 for other CSF measures), and reached 83% classification agreement. In the full sample, cortical [ 18 F]AV1451 was associated with all CSF biomarkers, most strongly with p-tau ( r = 0.75 vs 0.57 for t-tau and -0.49 for Aβ 42 ). When restricted to Aβ-positive patients with AD, [ 18 F]AV1451 SUVR correlated modestly with p-tau and t-tau (both r = 0.46) but not Aβ 42 ( r = 0.02). On voxelwise analysis, [ 18 F]AV1451 correlated with CSF p-tau in temporoparietal cortices and with t-tau in medial prefrontal regions. Within AD, Mini-Mental State Examination scores were associated with [ 18 F]AV1451-PET, but not CSF biomarkers. [ 18 F]AV1451-PET and CSF p-tau had comparable value for differential diagnosis. Correlations were robust in a heterogeneous clinical group but attenuated (although significant) in AD, suggesting that fluid and imaging biomarkers capture different aspects of tau pathology. This study provides Class III evidence that, in a clinical sample of patients with a variety

  9. Identification of a novel mitotic phosphorylation motif associated with protein localization to the mitotic apparatus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Feng; Camp, David G.; Gritsenko, Marina A.

    2007-11-16

    The chromosomal passenger complex (CPC) is a critical regulator of chromosome, cytoskeleton and membrane dynamics during mitosis. Here, we identified phosphopeptides and phosphoprotein complexes recognized by a phosphorylation specific antibody that labels the CPC using liquid chromatography coupled to mass spectrometry. A mitotic phosphorylation motif (PX{G/T/S}{L/M}[pS]P or WGL[pS]P) was identified in 11 proteins including Fzr/Cdh1 and RIC-8, two proteins with potential links to the CPC. Phosphoprotein complexes contained known CPC components INCENP, Aurora-B and TD-60, as well as SMAD2, 14-3-3 proteins, PP2A, and Cdk1, a likely kinase for this motif. Protein sequence analysis identified phosphorylation motifs in additional proteins includingmore » SMAD2, Plk3 and INCENP. Mitotic SMAD2 and Plk3 phosphorylation was confirmed using phosphorylation specific antibodies, and in the case of Plk3, phosphorylation correlates with its localization to the mitotic apparatus. A mutagenesis approach was used to show INCENP phosphorylation is required for midbody localization. These results provide evidence for a shared phosphorylation event that regulates localization of critical proteins during mitosis.« less

  10. Multiplexed Imaging of Protein Phosphorylation on Membranes Based on Ti(IV) Functionalized Nanopolymers.

    PubMed

    Iliuk, Anton; Li, Li; Melesse, Michael; Hall, Mark C; Tao, W Andy

    2016-05-17

    Accurate protein phosphorylation analysis reveals dynamic cellular signaling events not evident from protein expression levels. The most dominant biochemical assay, western blotting, suffers from the inadequate availability and poor quality of phospho-specific antibodies for phosphorylated proteins. Furthermore, multiplexed assays based on antibodies are limited by steric interference between the antibodies. Here we introduce a multifunctionalized nanopolymer for the universal detection of phosphoproteins that, in combination with regular antibodies, allows multiplexed imaging and accurate determination of protein phosphorylation on membranes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. The role of tau in the pathological process and clinical expression of Huntington’s disease

    PubMed Central

    Vuono, Romina; Winder-Rhodes, Sophie; de Silva, Rohan; Cisbani, Giulia; Drouin-Ouellet, Janelle; Spillantini, Maria G.; Cicchetti, Francesca

    2015-01-01

    Huntington’s disease is a neurodegenerative disorder caused by an abnormal CAG repeat expansion within exon 1 of the huntingtin gene HTT. While several genetic modifiers, distinct from the Huntington’s disease locus itself, have been identified as being linked to the clinical expression and progression of Huntington’s disease, the exact molecular mechanisms driving its pathogenic cascade and clinical features, especially the dementia, are not fully understood. Recently the microtubule associated protein tau, MAPT, which is associated with several neurodegenerative disorders, has been implicated in Huntington’s disease. We explored this association in more detail at the neuropathological, genetic and clinical level. We first investigated tau pathology by looking for the presence of hyperphosphorylated tau aggregates, co-localization of tau with mutant HTT and its oligomeric intermediates in post-mortem brain samples from patients with Huntington’s disease (n = 16) compared to cases with a known tauopathy and healthy controls. Next, we undertook a genotype–phenotype analysis of a large cohort of patients with Huntington’s disease (n = 960) with a particular focus on cognitive decline. We report not only on the tau pathology in the Huntington’s disease brain but also the association between genetic variation in tau gene and the clinical expression and progression of the disease. We found extensive pathological inclusions containing abnormally phosphorylated tau protein that co-localized in some instances with mutant HTT. We confirmed this related to the disease process rather than age, by showing it is also present in two patients with young-onset Huntington’s disease (26 and 40 years old at death). In addition we demonstrate that tau oligomers (suggested to be the most likely neurotoxic tau entity) are present in the Huntington’s disease brains. Finally we highlight the clinical significance of this pathology by demonstrating that the MAPT

  12. Neurodegenerative disorder FTDP-17-related tau intron 10 +16C → T mutation increases tau exon 10 splicing and causes tauopathy in transgenic mice.

    PubMed

    Umeda, Tomohiro; Yamashita, Takenari; Kimura, Tetsuya; Ohnishi, Kiyouhisa; Takuma, Hiroshi; Ozeki, Tomoko; Takashima, Akihiko; Tomiyama, Takami; Mori, Hiroshi

    2013-07-01

    Frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17) is a neurodegenerative disorder caused by mutations in the tau gene. Many mutations identified in FTDP-17 have been shown to affect tau exon 10 splicing in vitro, which presumably causes pathologic imbalances in exon 10(-) [3-repeat (3R)] and exon 10(+) [4-repeat (4R)] tau expression and leads to intracellular inclusions of hyperphosphorylated tau in patient brains. However, no reports have investigated this theory using model mice with a tau intronic mutation. Herein, we generated new transgenic mice harboring the tau intron 10 +16C → T mutation. We prepared a transgene construct containing intronic sequences required for exon 10 splicing in the longest tau isoform cDNA. Although mice bearing the construct without the intronic mutation showed normal developmental changes of the tau isoform from 3R tau to equal amounts of 3R and 4R tau, mice with the mutation showed much higher levels of 4R tau at the adult stage. 4R tau was selectively recovered in insoluble brain fractions in their old age. Furthermore, these mice displayed abnormal tau phosphorylation, synapse loss and dysfunction, memory impairment, glial activation, tangle formation, and neuronal loss in an age-dependent manner. These findings provide the first evidence in a mouse model that a tau intronic mutation-induced imbalance of 3R and 4R tau could be a cause of tauopathy. Copyright © 2013 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  13. Characterization and Prediction of Protein Phosphorylation Hotspots in Arabidopsis thaliana.

    PubMed

    Christian, Jan-Ole; Braginets, Rostyslav; Schulze, Waltraud X; Walther, Dirk

    2012-01-01

    The regulation of protein function by modulating the surface charge status via sequence-locally enriched phosphorylation sites (P-sites) in so called phosphorylation "hotspots" has gained increased attention in recent years. We set out to identify P-hotspots in the model plant Arabidopsis thaliana. We analyzed the spacing of experimentally detected P-sites within peptide-covered regions along Arabidopsis protein sequences as available from the PhosPhAt database. Confirming earlier reports (Schweiger and Linial, 2010), we found that, indeed, P-sites tend to cluster and that distributions between serine and threonine P-sites to their respected closest next P-site differ significantly from those for tyrosine P-sites. The ability to predict P-hotspots by applying available computational P-site prediction programs that focus on identifying single P-sites was observed to be severely compromised by the inevitable interference of nearby P-sites. We devised a new approach, named HotSPotter, for the prediction of phosphorylation hotspots. HotSPotter is based primarily on local amino acid compositional preferences rather than sequence position-specific motifs and uses support vector machines as the underlying classification engine. HotSPotter correctly identified experimentally determined phosphorylation hotspots in A. thaliana with high accuracy. Applied to the Arabidopsis proteome, HotSPotter-predicted 13,677 candidate P-hotspots in 9,599 proteins corresponding to 7,847 unique genes. Hotspot containing proteins are involved predominantly in signaling processes confirming the surmised modulating role of hotspots in signaling and interaction events. Our study provides new bioinformatics means to identify phosphorylation hotspots and lays the basis for further investigating novel candidate P-hotspots. All phosphorylation hotspot annotations and predictions have been made available as part of the PhosPhAt database at http://phosphat.mpimp-golm.mpg.de.

  14. Clinical validity of cerebrospinal fluid Aβ42, tau, and phospho-tau as biomarkers for Alzheimer's disease in the context of a structured 5-phase development framework.

    PubMed

    Mattsson, Niklas; Lönneborg, Anders; Boccardi, Marina; Blennow, Kaj; Hansson, Oskar

    2017-04-01

    Novel diagnostic criteria for Alzheimer's disease (AD) incorporate biomarkers, but their maturity for implementation in clinical practice at the prodromal stage (mild cognitive impairment [MCI]) is unclear. Here, we evaluate cerebrospinal fluid (CSF) β-amyloid 42 (Aβ42), total tau, and phosphorylated tau in the light of a 5-phase framework for biomarker development. Ample evidence is available for phase 1 (identifying useful leads) and phase 2 (assessing the accuracy for AD dementia versus controls) for CSF biomarkers. Phase 3 (utility in MCI) is partially achieved. In cohorts with long follow-up time, CSF Aβ42, total tau, and phosphorylated tau have high diagnostic accuracy for MCI due to AD. Phase 4 (performance in real world) is ongoing, and phase 5 studies (quantify impact and costs) are to come. Our results highlight priorities to pursue and to enable the proper use of CSF biomarkers in the clinic. Priorities are to reduce measurement variability by introduction of fully automated assay systems; to increase diagnostic specificity toward non-AD neurocognitive diseases at the MCI stage; and to clarify the role of CSF biomarkers versus other biomarker modalities in clinical practice and in design of clinical trials. These efforts are currently ongoing. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Differential effects of PER2 phosphorylation: molecular basis for the human familial advanced sleep phase syndrome (FASPS).

    PubMed

    Vanselow, Katja; Vanselow, Jens T; Westermark, Pål O; Reischl, Silke; Maier, Bert; Korte, Thomas; Herrmann, Andreas; Herzel, Hanspeter; Schlosser, Andreas; Kramer, Achim

    2006-10-01

    PERIOD (PER) proteins are central components within the mammalian circadian oscillator, and are believed to form a negative feedback complex that inhibits their own transcription at a particular circadian phase. Phosphorylation of PER proteins regulates their stability as well as their subcellular localization. In a systematic screen, we have identified 21 phosphorylated residues of mPER2 including Ser 659, which is mutated in patients suffering from familial advanced sleep phase syndrome (FASPS). When expressing FASPS-mutated mPER2 in oscillating fibroblasts, we can phenocopy the short period and advanced phase of FASPS patients' behavior. We show that phosphorylation at Ser 659 results in nuclear retention and stabilization of mPER2, whereas phosphorylation at other sites leads to mPER2 degradation. To conceptualize our findings, we use mathematical modeling and predict that differential PER phosphorylation events can result in opposite period phenotypes. Indeed, interference with specific aspects of mPER2 phosphorylation leads to either short or long periods in oscillating fibroblasts. This concept explains not only the FASPS phenotype, but also the effect of the tau mutation in hamster as well as the doubletime mutants (dbtS and dbtL ) in Drosophila.

  16. Huntingtin-Interacting Protein 1 Phosphorylation by Receptor Tyrosine Kinases

    PubMed Central

    Ames, Heather M.; Wang, Anmin A.; Coughran, Alanna; Evaul, Kristen; Huang, Sha; Graves, Chiron W.; Soyombo, Abigail A.

    2013-01-01

    Huntingtin-interacting protein 1 (HIP1) binds inositol lipids, clathrin, actin, and receptor tyrosine kinases (RTKs). HIP1 is elevated in many tumors, and its expression is prognostic in prostate cancer. HIP1 overexpression increases levels of the RTK epidermal growth factor receptor (EGFR) and transforms fibroblasts. Here we report that HIP1 is tyrosine phosphorylated in the presence of EGFR and platelet-derived growth factor β receptor (PDGFβR) as well as the oncogenic derivatives EGFRvIII, HIP1/PDGFβR (H/P), and TEL/PDGFβR (T/P). We identified a four-tyrosine “HIP1 phosphorylation motif” (HPM) in the N-terminal region of HIP1 that is required for phosphorylation mediated by both EGFR and PDGFβR but not by the oncoproteins H/P and T/P. We also identified a tyrosine residue (Y152) within the HPM motif of HIP1 that inhibits HIP1 tyrosine phosphorylation. The HPM tyrosines are conserved in HIP1's only known mammalian relative, HIP1-related protein (HIP1r), and are also required for HIP1r phosphorylation. Tyrosine-to-phenylalanine point mutations in the HPM of HIP1 result in proapoptotic activity, indicating that an intact HPM may be necessary for HIP1's role in cellular survival. These data suggest that phosphorylation of HIP1 by RTKs in an N-terminal region contributes to the promotion of cellular survival. PMID:23836884

  17. Huntingtin-interacting protein 1 phosphorylation by receptor tyrosine kinases.

    PubMed

    Ames, Heather M; Wang, Anmin A; Coughran, Alanna; Evaul, Kristen; Huang, Sha; Graves, Chiron W; Soyombo, Abigail A; Ross, Theodora S

    2013-09-01

    Huntingtin-interacting protein 1 (HIP1) binds inositol lipids, clathrin, actin, and receptor tyrosine kinases (RTKs). HIP1 is elevated in many tumors, and its expression is prognostic in prostate cancer. HIP1 overexpression increases levels of the RTK epidermal growth factor receptor (EGFR) and transforms fibroblasts. Here we report that HIP1 is tyrosine phosphorylated in the presence of EGFR and platelet-derived growth factor β receptor (PDGFβR) as well as the oncogenic derivatives EGFRvIII, HIP1/PDGFβR (H/P), and TEL/PDGFβR (T/P). We identified a four-tyrosine "HIP1 phosphorylation motif" (HPM) in the N-terminal region of HIP1 that is required for phosphorylation mediated by both EGFR and PDGFβR but not by the oncoproteins H/P and T/P. We also identified a tyrosine residue (Y152) within the HPM motif of HIP1 that inhibits HIP1 tyrosine phosphorylation. The HPM tyrosines are conserved in HIP1's only known mammalian relative, HIP1-related protein (HIP1r), and are also required for HIP1r phosphorylation. Tyrosine-to-phenylalanine point mutations in the HPM of HIP1 result in proapoptotic activity, indicating that an intact HPM may be necessary for HIP1's role in cellular survival. These data suggest that phosphorylation of HIP1 by RTKs in an N-terminal region contributes to the promotion of cellular survival.

  18. Tau-imaging in neurodegeneration.

    PubMed

    Bischof, Gérard N; Endepols, Heike; van Eimeren, Thilo; Drzezga, Alexander

    2017-11-01

    Pathological cerebral aggregations of proteins are suggested to play a crucial role in the development of neurodegenerative disorders. For example, aggregation of the protein ß-amyloid in form of extracellular amyloid-plaques as well as intraneuronal depositions of the protein tau in form of neurofibrillary tangles represent hallmarks of Alzheimer's disease (AD). Recently, novel tracers for in vivo molecular imaging of tau-aggregates in the brain have been introduced, complementing existing tracers for imaging amyloid-plaques. Available data on these novel tracers indicate that the subject of Tau-PET may be of considerable complexity. On the one hand this refers to the various forms of appearance of tau-pathology in different types of neurodegenerative disorders. On the other hand, a number of hurdles regarding validation of these tracers still need to be overcome with regard to comparability and standardization of the different tracers, observed off-target/non-specific binding and quantitative interpretation of the signal. These issues will have to be clarified before systematic clinical application of this exciting new methodological approach may become possible. Potential applications refer to early detection of neurodegeneration, differential diagnosis between tauopathies and non-tauopathies and specific patient selection and follow-up in therapy trials. Copyright © 2017. Published by Elsevier Inc.

  19. P³DB 3.0: From plant phosphorylation sites to protein networks.

    PubMed

    Yao, Qiuming; Ge, Huangyi; Wu, Shangquan; Zhang, Ning; Chen, Wei; Xu, Chunhui; Gao, Jianjiong; Thelen, Jay J; Xu, Dong

    2014-01-01

    In the past few years, the Plant Protein Phosphorylation Database (P(3)DB, http://p3db.org) has become one of the most significant in vivo data resources for studying plant phosphoproteomics. We have substantially updated P(3)DB with respect to format, new datasets and analytic tools. In the P(3)DB 3.0, there are altogether 47 923 phosphosites in 16 477 phosphoproteins curated across nine plant organisms from 32 studies, which have met our multiple quality standards for acquisition of in vivo phosphorylation site data. Centralized by these phosphorylation data, multiple related data and annotations are provided, including protein-protein interaction (PPI), gene ontology, protein tertiary structures, orthologous sequences, kinase/phosphatase classification and Kinase Client Assay (KiC Assay) data--all of which provides context for the phosphorylation event. In addition, P(3)DB 3.0 incorporates multiple network viewers for the above features, such as PPI network, kinase-substrate network, phosphatase-substrate network, and domain co-occurrence network to help study phosphorylation from a systems point of view. Furthermore, the new P(3)DB reflects a community-based design through which users can share datasets and automate data depository processes for publication purposes. Each of these new features supports the goal of making P(3)DB a comprehensive, systematic and interactive platform for phosphoproteomics research.

  20. G Protein-coupled Receptor Kinases of the GRK4 Protein Subfamily Phosphorylate Inactive G Protein-coupled Receptors (GPCRs).

    PubMed

    Li, Lingyong; Homan, Kristoff T; Vishnivetskiy, Sergey A; Manglik, Aashish; Tesmer, John J G; Gurevich, Vsevolod V; Gurevich, Eugenia V

    2015-04-24

    G protein-coupled receptor (GPCR) kinases (GRKs) play a key role in homologous desensitization of GPCRs. It is widely assumed that most GRKs selectively phosphorylate only active GPCRs. Here, we show that although this seems to be the case for the GRK2/3 subfamily, GRK5/6 effectively phosphorylate inactive forms of several GPCRs, including β2-adrenergic and M2 muscarinic receptors, which are commonly used as representative models for GPCRs. Agonist-independent GPCR phosphorylation cannot be explained by constitutive activity of the receptor or membrane association of the GRK, suggesting that it is an inherent ability of GRK5/6. Importantly, phosphorylation of the inactive β2-adrenergic receptor enhanced its interactions with arrestins. Arrestin-3 was able to discriminate between phosphorylation of the same receptor by GRK2 and GRK5, demonstrating preference for the latter. Arrestin recruitment to inactive phosphorylated GPCRs suggests that not only agonist activation but also the complement of GRKs in the cell regulate formation of the arrestin-receptor complex and thereby G protein-independent signaling. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. 14-3-3 Proteins Interact with a Hybrid Prenyl-Phosphorylation Motif to Inhibit G Proteins

    PubMed Central

    Riou, Philippe; Kjær, Svend; Garg, Ritu; Purkiss, Andrew; George, Roger; Cain, Robert J.; Bineva, Ganka; Reymond, Nicolas; McColl, Brad; Thompson, Andrew J.; O’Reilly, Nicola; McDonald, Neil Q.; Parker, Peter J.; Ridley, Anne J.

    2013-01-01

    Summary Signaling through G proteins normally involves conformational switching between GTP- and GDP-bound states. Several Rho GTPases are also regulated by RhoGDI binding and sequestering in the cytosol. Rnd proteins are atypical constitutively GTP-bound Rho proteins, whose regulation remains elusive. Here, we report a high-affinity 14-3-3-binding site at the C terminus of Rnd3 consisting of both the Cys241-farnesyl moiety and a Rho-associated coiled coil containing protein kinase (ROCK)-dependent Ser240 phosphorylation site. 14-3-3 binding to Rnd3 also involves phosphorylation of Ser218 by ROCK and/or Ser210 by protein kinase C (PKC). The crystal structure of a phosphorylated, farnesylated Rnd3 peptide with 14-3-3 reveals a hydrophobic groove in 14-3-3 proteins accommodating the farnesyl moiety. Functionally, 14-3-3 inhibits Rnd3-induced cell rounding by translocating it from the plasma membrane to the cytosol. Rnd1, Rnd2, and geranylgeranylated Rap1A interact similarly with 14-3-3. In contrast to the canonical GTP/GDP switch that regulates most Ras superfamily members, our results reveal an unprecedented mechanism for G protein inhibition by 14-3-3 proteins. PMID:23622247

  2. Prediction of serine/threonine phosphorylation sites in bacteria proteins.

    PubMed

    Li, Zhengpeng; Wu, Ping; Zhao, Yuanyuan; Liu, Zexian; Zhao, Wei

    2015-01-01

    As a critical post-translational modification, phosphorylation plays important roles in regulating various biological processes, while recent studies suggest that phosphorylation in bacteria is also critical for functional signaling transduction. Since identification of phosphorylation substrates and sites is fundamental for understanding the phosphorylation mediated regulatory mechanism, a number of studies have been contributed to this area. Since experimental identification of phosphorylation sites is time-consuming and labor-intensive, computational predictions attract much attention for its convenience to provide helpful information. However, although there are a large number of computational studies in eukaryotes, predictions in bacteria are still rare. In this study, we present a new predictor of cPhosBac to predict phosphorylation serine/threonine in bacteria proteins. The predictor is developed with CKSAAP algorithm, which was combined with motif length selection to optimize the prediction, which achieves promising performance. The online service of cPhosBac is available at: http://netalign.ustc.edu.cn/cphosbac/ .

  3. Conserved salt-bridge competition triggered by phosphorylation regulates the protein interactome

    PubMed Central

    Skinner, John J.; Wang, Sheng; Lee, Jiyoung; Ong, Colin; Sommese, Ruth; Koelmel, Wolfgang; Hirschbeck, Maria; Kisker, Caroline; Lorenz, Kristina; Sosnick, Tobin R.; Rosner, Marsha Rich

    2017-01-01

    Phosphorylation is a major regulator of protein interactions; however, the mechanisms by which regulation occurs are not well understood. Here we identify a salt-bridge competition or “theft” mechanism that enables a phospho-triggered swap of protein partners by Raf Kinase Inhibitory Protein (RKIP). RKIP transitions from inhibiting Raf-1 to inhibiting G-protein–coupled receptor kinase 2 upon phosphorylation, thereby bridging MAP kinase and G-Protein–Coupled Receptor signaling. NMR and crystallography indicate that a phosphoserine, but not a phosphomimetic, competes for a lysine from a preexisting salt bridge, initiating a partial unfolding event and promoting new protein interactions. Structural elements underlying the theft occurred early in evolution and are found in 10% of homo-oligomers and 30% of hetero-oligomers including Bax, Troponin C, and Early Endosome Antigen 1. In contrast to a direct recognition of phosphorylated residues by binding partners, the salt-bridge theft mechanism represents a facile strategy for promoting or disrupting protein interactions using solvent-accessible residues, and it can provide additional specificity at protein interfaces through local unfolding or conformational change. PMID:29208709

  4. Structure-based inhibitors of tau aggregation

    NASA Astrophysics Data System (ADS)

    Seidler, P. M.; Boyer, D. R.; Rodriguez, J. A.; Sawaya, M. R.; Cascio, D.; Murray, K.; Gonen, T.; Eisenberg, D. S.

    2018-02-01

    Aggregated tau protein is associated with over 20 neurological disorders, which include Alzheimer's disease. Previous work has shown that tau's sequence segments VQIINK and VQIVYK drive its aggregation, but inhibitors based on the structure of the VQIVYK segment only partially inhibit full-length tau aggregation and are ineffective at inhibiting seeding by full-length fibrils. Here we show that the VQIINK segment is the more powerful driver of tau aggregation. Two structures of this segment determined by the cryo-electron microscopy method micro-electron diffraction explain its dominant influence on tau aggregation. Of practical significance, the structures lead to the design of inhibitors that not only inhibit tau aggregation but also inhibit the ability of exogenous full-length tau fibrils to seed intracellular tau in HEK293 biosensor cells into amyloid. We also raise the possibility that the two VQIINK structures represent amyloid polymorphs of tau that may account for a subset of prion-like strains of tau.

  5. Curcumin Suppresses Soluble Tau Dimers and Corrects Molecular Chaperone, Synaptic, and Behavioral Deficits in Aged Human Tau Transgenic Mice*

    PubMed Central

    Ma, Qiu-Lan; Zuo, Xiaohong; Yang, Fusheng; Ubeda, Oliver J.; Gant, Dana J.; Alaverdyan, Mher; Teng, Edmond; Hu, Shuxin; Chen, Ping-Ping; Maiti, Panchanan; Teter, Bruce; Cole, Greg M.; Frautschy, Sally A.

    2013-01-01

    The mechanisms underlying Tau-related synaptic and cognitive deficits and the interrelationships between Tau species, their clearance pathways, and synaptic impairments remain poorly understood. To gain insight into these mechanisms, we examined these interrelationships in aged non-mutant genomic human Tau mice, with established Tau pathology and neuron loss. We also examined how these interrelationships changed with an intervention by feeding mice either a control diet or one containing the brain permeable beta-amyloid and Tau aggregate binding molecule curcumin. Transgene-dependent elevations in soluble and insoluble phospho-Tau monomer and soluble Tau dimers accompanied deficits in behavior, hippocampal excitatory synaptic markers, and molecular chaperones (heat shock proteins (HSPs)) involved in Tau degradation and microtubule stability. In human Tau mice but not control mice, HSP70, HSP70/HSP72, and HSP90 were reduced in membrane-enriched fractions but not in cytosolic fractions. The synaptic proteins PSD95 and NR2B were reduced in dendritic fields and redistributed into perikarya, corresponding to changes observed by immunoblot. Curcumin selectively suppressed levels of soluble Tau dimers, but not of insoluble and monomeric phospho-Tau, while correcting behavioral, synaptic, and HSP deficits. Treatment increased PSD95 co-immunoprecipitating with NR2B and, independent of transgene, increased HSPs implicated in Tau clearance. It elevated HSP90 and HSC70 without increasing HSP mRNAs; that is, without induction of the heat shock response. Instead curcumin differentially impacted HSP90 client kinases, reducing Fyn without reducing Akt. In summary, curcumin reduced soluble Tau and elevated HSPs involved in Tau clearance, showing that even after tangles have formed, Tau-dependent behavioral and synaptic deficits can be corrected. PMID:23264626

  6. Antisense reduction of tau in adult mice protects against seizures.

    PubMed

    DeVos, Sarah L; Goncharoff, Dustin K; Chen, Guo; Kebodeaux, Carey S; Yamada, Kaoru; Stewart, Floy R; Schuler, Dorothy R; Maloney, Susan E; Wozniak, David F; Rigo, Frank; Bennett, C Frank; Cirrito, John R; Holtzman, David M; Miller, Timothy M

    2013-07-31

    Tau, a microtubule-associated protein, is implicated in the pathogenesis of Alzheimer's Disease (AD) in regard to both neurofibrillary tangle formation and neuronal network hyperexcitability. The genetic ablation of tau substantially reduces hyperexcitability in AD mouse lines, induced seizure models, and genetic in vivo models of epilepsy. These data demonstrate that tau is an important regulator of network excitability. However, developmental compensation in the genetic tau knock-out line may account for the protective effect against seizures. To test the efficacy of a tau reducing therapy for disorders with a detrimental hyperexcitability profile in adult animals, we identified antisense oligonucleotides that selectively decrease endogenous tau expression throughout the entire mouse CNS--brain and spinal cord tissue, interstitial fluid, and CSF--while having no effect on baseline motor or cognitive behavior. In two chemically induced seizure models, mice with reduced tau protein had less severe seizures than control mice. Total tau protein levels and seizure severity were highly correlated, such that those mice with the most severe seizures also had the highest levels of tau. Our results demonstrate that endogenous tau is integral for regulating neuronal hyperexcitability in adult animals and suggest that an antisense oligonucleotide reduction of tau could benefit those with epilepsy and perhaps other disorders associated with tau-mediated neuronal hyperexcitability.

  7. Evaluation of prognostic and predictive value of microtubule associated protein tau in two independent cohorts.

    PubMed

    Baquero, Maria T; Lostritto, Karen; Gustavson, Mark D; Bassi, Kimberly A; Appia, Franck; Camp, Robert L; Molinaro, Annette M; Harris, Lyndsay N; Rimm, David L

    2011-11-02

    Microtubule associated proteins (MAPs) endogenously regulate microtubule stabilization and have been reported as prognostic and predictive markers for taxane response. The microtubule stabilizer, MAP-tau, has shown conflicting results. We quantitatively assessed MAP-tau expression in two independent breast cancer cohorts to determine prognostic and predictive value of this biomarker. MAP-tau expression was evaluated in the retrospective Yale University breast cancer cohort (n = 651) using tissue microarrays and also in the TAX 307 cohort, a clinical trial randomized for TAC versus FAC chemotherapy (n = 140), using conventional whole tissue sections. Expression was measured using the AQUA method for quantitative immunofluorescence. Scores were correlated with clinicopathologic variables, survival, and response to therapy. Assessment of the Yale cohort using Cox univariate analysis indicated an improved overall survival (OS) in tumors with a positive correlation between high MAP-tau expression and overall survival (OS) (HR = 0.691, 95% CI = 0.489-0.974; P = 0.004). Kaplan Meier analysis showed 10-year survival for 65% of patients with high MAP-tau expression compared to 52% with low expression (P = .006). In TAX 307, high expression was associated with significantly longer median time to tumor progression (TTP) regardless of treatment arm (33.0 versus 23.4 months, P = 0.010) with mean TTP of 31.2 months. Response rates did not differ by MAP-tau expression (P = 0.518) or by treatment arm (P = 0.584). Quantitative measurement of MAP-tau expression has prognostic value in both cohorts, with high expression associated with longer TTP and OS. Differences by treatment arm or response rate in low versus high MAP-tau groups were not observed, indicating that MAP-tau is not associated with response to taxanes and is not a useful predictive marker for taxane-based chemotherapy.

  8. Evaluation of prognostic and predictive value of microtubule associated protein tau in two independent cohorts

    PubMed Central

    2011-01-01

    Introduction Microtubule associated proteins (MAPs) endogenously regulate microtubule stabilization and have been reported as prognostic and predictive markers for taxane response. The microtubule stabilizer, MAP-tau, has shown conflicting results. We quantitatively assessed MAP-tau expression in two independent breast cancer cohorts to determine prognostic and predictive value of this biomarker. Methods MAP-tau expression was evaluated in the retrospective Yale University breast cancer cohort (n = 651) using tissue microarrays and also in the TAX 307 cohort, a clinical trial randomized for TAC versus FAC chemotherapy (n = 140), using conventional whole tissue sections. Expression was measured using the AQUA method for quantitative immunofluorescence. Scores were correlated with clinicopathologic variables, survival, and response to therapy. Results Assessment of the Yale cohort using Cox univariate analysis indicated an improved overall survival (OS) in tumors with a positive correlation between high MAP-tau expression and overall survival (OS) (HR = 0.691, 95% CI = 0.489-0.974; P = 0.004). Kaplan Meier analysis showed 10-year survival for 65% of patients with high MAP-tau expression compared to 52% with low expression (P = .006). In TAX 307, high expression was associated with significantly longer median time to tumor progression (TTP) regardless of treatment arm (33.0 versus 23.4 months, P = 0.010) with mean TTP of 31.2 months. Response rates did not differ by MAP-tau expression (P = 0.518) or by treatment arm (P = 0.584). Conclusions Quantitative measurement of MAP-tau expression has prognostic value in both cohorts, with high expression associated with longer TTP and OS. Differences by treatment arm or response rate in low versus high MAP-tau groups were not observed, indicating that MAP-tau is not associated with response to taxanes and is not a useful predictive marker for taxane-based chemotherapy. PMID:21888627

  9. Pr-specific phytochrome phosphorylation in vitro by a protein kinase present in anti-phytochrome maize immunoprecipitates

    NASA Technical Reports Server (NTRS)

    Biermann, B. J.; Pao, L. I.; Feldman, L. J.

    1994-01-01

    Protein kinase activity has repeatedly been found to co-purify with the plant photoreceptor phytochrome, suggesting that light signals received by phytochrome may be transduced or modulated through protein phosphorylation. In this study immunoprecipitation techniques were used to characterize protein kinase activity associated with phytochrome from maize (Zea mays L.). A protein kinase that specifically phosphorylated phytochrome was present in washed anti-phytochrome immunoprecipitates of etiolated coleoptile proteins. No other substrate tested was phosphorylated by this kinase. Adding salts or detergents to disrupt low-affinity protein interactions reduced background phosphorylation in immunoprecipitates without affecting phytochrome phosphorylation, indicating that the protein kinase catalytic activity is either intrinsic to the phytochrome molecule or associated with it by high-affinity interactions. Red irradiation (of coleoptiles or extracts) sufficient to approach photoconversion saturation reduced phosphorylation of immunoprecipitated phytochrome. Subsequent far-red irradiation reversed the red-light effect. Phytochrome phosphorylation was stimulated about 10-fold by a co-immunoprecipitated factor. The stimulatory factor was highest in immunoprecipitates when Mg2+ was present in immunoprecipitation reactions but remained in the supernatant in the absence of Mg2+. These observations provide strong support for the hypothesis that phytochrome-associated protein kinase modulates light responses in vivo. Since only phytochrome was found to be phosphorylated, the co-immunoprecipitated protein kinase may function to regulate receptor activity.

  10. Multiplexed quantitation of protein expression and phosphorylation based on functionalized soluble nanopolymers

    PubMed Central

    Pan, Li; Iliuk, Anton; Yu, Shuai; Geahlen, Robert L.; Tao, W. Andy

    2012-01-01

    We report here for the first time the multiplexed quantitation of phosphorylation and protein expression based on a functionalized soluble nanopolymer. The soluble nanopolymer, pIMAGO, is functionalized with Ti (IV) ions for chelating phosphoproteins in high specificity, and with infrared fluorescent tags for direct, multiplexed assays. The nanopolymer allows for direct competition for epitopes on proteins of interest, thus facilitating simultaneous detection of phosphorylation by pIMAGO and total protein amount by protein antibody in the same well of microplates. The new strategy has a great potential to measure cell signaling events by clearly distinguishing actual phosphorylation signals from protein expression changes, thus providing a powerful tool to accurately profile cellular signal transduction in healthy and disease cells. We anticipate broad applications of this new strategy in monitoring cellular signaling pathways and discovering new signaling events. PMID:23088311

  11. Alzheimer disease therapy--moving from amyloid-β to tau.

    PubMed

    Giacobini, Ezio; Gold, Gabriel

    2013-12-01

    Disease-modifying treatments for Alzheimer disease (AD) have focused mainly on reducing levels of amyloid-β (Aβ) in the brain. Some compounds have achieved this goal, but none has produced clinically meaningful results. Several methodological issues relating to clinical trials of these agents might explain this failure; an additional consideration is that the amyloid cascade hypothesis--which places amyloid plaques at the heart of AD pathogenesis--does not fully integrate a large body of data relevant to the emergence of clinical AD. Importantly, amyloid deposition is not strongly correlated with cognition in multivariate analyses, unlike hyperphosphorylated tau, neurofibrillary tangles, and synaptic and neuronal loss, which are closely associated with memory deficits. Targeting tau pathology, therefore, might be more clinically effective than Aβ-directed therapies. Furthermore, numerous immunization studies in animal models indicate that reduction of intracellular levels of tau and phosphorylated tau is possible, and is associated with improved cognitive performance. Several tau-related vaccines are in advanced preclinical stages and will soon enter clinical trials. In this article, we present a critical analysis of the failure of Aβ-directed therapies, discuss limitations of the amyloid cascade hypothesis, and suggest the potential value of tau-targeted therapy for AD.

  12. Regulation of Tau Pathology by the Microglial Fractalkine Receptor

    PubMed Central

    Bhaskar, Kiran; Konerth, Megan; Kokiko-Cochran, Olga N.; Cardona, Astrid; Ransohoff, Richard M.; Lamb, Bruce T.

    2010-01-01

    SUMMARY Aggregates of the hyperphosphorylated microtubule associated protein tau (MAPT) are an invariant neuropathological feature of tauopathies. Here we show that microglial neuroinflammation promotes MAPT phosphorylation and aggregation. First, lipopolysaccharide-induced microglial activation promotes hyperphosphorylation of endogenous mouse MAPT in non-transgenic mice that is further enhanced in mice lacking the microglial-specific fractalkine receptor (CX3CR1) and is dependent upon functional toll-like receptor 4 and interleukin 1 (IL1) receptors. Second, humanized MAPT transgenic mice lacking CX3CR1 exhibited enhanced MAPT phosphorylation and aggregation as well as behavioral impairments that correlated with increased levels of active p38 MAPK. Third, in vitro experiments demonstrate that microglial activation elevates the level of active p38 MAPK and enhances MAPT hyperphosphorylation within neurons that can be blocked by administration of an interleukin 1 receptor antagonist and a specific p38 MAPK inhibitor. Taken together, our results suggest that CX3CR1 and IL1/p38 MAPK may serve as novel therapeutic targets for human tauopathies. PMID:20920788

  13. Paired Helical Filaments of Inclusion-Body Myositis Muscle Contain RNA and Survival Motor Neuron Protein

    PubMed Central

    Broccolini, Aldobrando; Engel, W. King; Alvarez, Renate B.; Askanas, Valerie

    2000-01-01

    Sporadic inclusion-body myositis (s-IBM) is the most common progressive muscle disease of older persons. Pathologically, the muscle biopsy manifests various degrees of inflammation and specific vacuolar degeneration of muscle fibers characterized by paired helical filaments (PHFs) composed of phosphorylated tau. IBM vacuolated fibers also contain accumulations of several other Alzheimer-characteristic proteins. Molecular mechanisms leading to formation of the PHFs and accumulations of proteins in IBM muscle are not known. We report that the abnormal muscle fibers of IBM contained (i) acridine-orange-positive RNA inclusions that colocalized with the immunoreactivity of phosphorylated tau and (ii) survival motor neuron protein immunoreactive inclusions, which by immuno-electron microscopy were confined to paired helical filaments. This study demonstrates two novel components of the IBM paired helical filaments, which may lead to better understanding of their pathogenesis. PMID:10751338

  14. Paired helical filaments of inclusion-body myositis muscle contain RNA and survival motor neuron protein.

    PubMed

    Broccolini, A; Engel, W K; Alvarez, R B; Askanas, V

    2000-04-01

    Sporadic inclusion-body myositis (s-IBM) is the most common progressive muscle disease of older persons. Pathologically, the muscle biopsy manifests various degrees of inflammation and specific vacuolar degeneration of muscle fibers characterized by paired helical filaments (PHFs) composed of phosphorylated tau. IBM vacuolated fibers also contain accumulations of several other Alzheimer-characteristic proteins. Molecular mechanisms leading to formation of the PHFs and accumulations of proteins in IBM muscle are not known. We report that the abnormal muscle fibers of IBM contained (i) acridine-orange-positive RNA inclusions that colocalized with the immunoreactivity of phosphorylated tau and (ii) survival motor neuron protein immunoreactive inclusions, which by immuno-electron microscopy were confined to paired helical filaments. This study demonstrates two novel components of the IBM paired helical filaments, which may lead to better understanding of their pathogenesis.

  15. Novel marker for the onset of frontotemporal dementia: early increase in activity-dependent neuroprotective protein (ADNP) in the face of Tau mutation.

    PubMed

    Schirer, Yulie; Malishkevich, Anna; Ophir, Yotam; Lewis, Jada; Giladi, Eliezer; Gozes, Illana

    2014-01-01

    Tauopathy, a major pathology in Alzheimer's disease, is also found in ~50% of frontotemporal dementias (FTDs). Tau transcript, a product of a single gene, undergoes alternative splicing to yield 6 protein species, each with either 3 or 4 microtubule binding repeat domains (tau 3R or 4R, associated with dynamic and stable microtubules, respectively). While the healthy human brain shows a 1/1 ratio of tau 3R/4R, this ratio may be dramatically changed in the FTD brain. We have previously discovered that activity-dependent neuroprotective protein (ADNP) is essential for brain formation in the mouse, with ADNP+/- mice exhibiting tauopathy, age-driven neurodegeneration and behavioral deficits. Here, in transgenic mice overexpressing a mutated tau 4R species, in the cerebral cortex but not in the cerebellum, we showed significantly increased ADNP expression (~3-fold transcripts) in the cerebral cortex of young transgenic mice (~disease onset), but not in the cerebellum, as compared to control littermates. The transgene-age-related increased ADNP expression paralleled augmented dynamic tau 3R transcript level compared to control littermates. Blocking mutated tau 4R transgene expression resulted in normalization of ADNP and tau 3R expression. ADNP was previously shown to be a member of the SWItch/Sucrose NonFermentable (SWI/SNF) chromatin remodeling complex. Here, Brahma (Brm), a component of the SWI/SNF complex regulating alternative splicing, showed a similar developmental expression pattern to ADNP. Immunoprecipitations further suggested Brm-ADNP interaction coupled to ADNP - polypyrimidine tract-binding protein (PTB)-associated splicing factor (PSF)-binding, with PSF being a direct regulator of tau transcript splicing. It should be noted that although we have shown a correlation between levels of ADNP and tau isoform expression three months of age, we are not presenting evidence of a direct link between the two. Future research into ADNP/tau relations is warranted.

  16. Direct force measurements reveal that protein Tau confers short-range attractions and isoform-dependent steric stabilization to microtubules

    PubMed Central

    Chung, Peter J.; Choi, Myung Chul; Miller, Herbert P.; Feinstein, H. Eric; Raviv, Uri; Li, Youli; Wilson, Leslie; Feinstein, Stuart C.; Safinya, Cyrus R.

    2015-01-01

    Microtubules (MTs) are hollow cytoskeletal filaments assembled from αβ-tubulin heterodimers. Tau, an unstructured protein found in neuronal axons, binds to MTs and regulates their dynamics. Aberrant Tau behavior is associated with neurodegenerative dementias, including Alzheimer’s. Here, we report on a direct force measurement between paclitaxel-stabilized MTs coated with distinct Tau isoforms by synchrotron small-angle X-ray scattering (SAXS) of MT-Tau mixtures under osmotic pressure (P). In going from bare MTs to MTs with Tau coverage near the physiological submonolayer regime (Tau/tubulin-dimer molar ratio; ΦTau = 1/10), isoforms with longer N-terminal tails (NTTs) sterically stabilized MTs, preventing bundling up to PB ∼ 10,000–20,000 Pa, an order of magnitude larger than bare MTs. Tau with short NTTs showed little additional effect in suppressing the bundling pressure (PB ∼ 1,000–2,000 Pa) over the same range. Remarkably, the abrupt increase in PB observed for longer isoforms suggests a mushroom to brush transition occurring at 1/13 < ΦTau < 1/10, which corresponds to MT-bound Tau with NTTs that are considerably more extended than SAXS data for Tau in solution indicate. Modeling of Tau-mediated MT–MT interactions supports the hypothesis that longer NTTs transition to a polyelectrolyte brush at higher coverages. Higher pressures resulted in isoform-independent irreversible bundling because the polyampholytic nature of Tau leads to short-range attractions. These findings suggest an isoform-dependent biological role for regulation by Tau, with longer isoforms conferring MT steric stabilization against aggregation either with other biomacromolecules or into tight bundles, preventing loss of function in the crowded axon environment. PMID:26542680

  17. Dual Role of Protein Phosphorylation in DNA Activator/Coactivator Binding

    PubMed Central

    Dadarlat, Voichita M.; Skeel, Robert D.

    2011-01-01

    Binding free energies are calculated for the phosphorylated and unphosphorylated complexes between the kinase inducible domain (KID) of the DNA transcriptional activator cAMP response element binding (CREB) protein and the KIX domain of its coactivator, CREB-binding protein (CBP). To our knowledge, this is the first application of a method based on a potential of mean force (PMF) with restraining potentials to compute the binding free energy of protein-protein complexes. The KID:KIX complexes are chosen here because of their biological relevance to the DNA transcription process and their relatively small size (81 residues for the KIX domain of CBP, and 28 residues for KID). The results for pKID:KIX and KID:KIX are −9.55 and −4.96 kcal/mol, respectively, in good agreement with experimental estimates (−8.8 and −5.8 kcal/mol, respectively). A comparison between specific contributions to protein-protein binding for the phosphorylated and unphosphorylated complexes reveals a dual role for the phosphorylation of KID at Ser-133 in effecting a more favorable free energy of the bound system: 1), stabilization of the unbound conformation of phosphorylated KID due to favorable intramolecular interactions of the phosphate group of Ser-133 with the charged groups of an arginine-rich region spanning both α-helices, which lowers the configurational entropy; and 2), more favorable intermolecular electrostatic interactions between pSer-133 and Arg-131 of KID, and Lys-662, Tyr-658, and Glu-666 of KIX. Charge reduction through ligand phosphorylation emerges as a possible mechanism for controlling the unbound state conformation of KID and, ultimately, gene expression. This work also demonstrates that the PMF-based method with restraining potentials provides an added benefit in that important elements of the binding pathway are evidenced. Furthermore, the practicality of the PMF-based method for larger systems is validated by agreement with experiment. In addition, we provide

  18. Haloperidol Regulates the State of Phosphorylation of Ribosomal Protein S6 via Activation of PKA and Phosphorylation of DARPP-32

    PubMed Central

    Valjent, Emmanuel; Bertran-Gonzalez, Jesus; Bowling, Heather; Lopez, Sébastien; Santini, Emanuela; Matamales, Miriam; Bonito-Oliva, Alessandra; Hervé, Denis; Hoeffer, Charles; Klann, Eric; Girault, Jean-Antoine; Fisone, Gilberto

    2011-01-01

    Administration of typical antipsychotic drugs, such as haloperidol, promotes cAMP-dependent signaling in the medium spiny neurons (MSNs) of the striatum. In this study, we have examined the effect of haloperidol on the state of phosphorylation of the ribosomal protein S6 (rpS6), a component of the small 40S ribosomal subunit. We found that haloperidol increases the phosphorylation of rpS6 at the dual site Ser235/236, which is involved in the regulation of mRNA translation. This effect was exerted in the MSNs of the indirect pathway, which express specifically dopamine D2 receptors (D2Rs) and adenosine A2 receptors (A2ARs). The effect of haloperidol was decreased by blockade of A2ARs or by genetic attenuation of the Gαolf protein, which couples A2ARs to activation of adenylyl cyclase. Moreover, stimulation of cAMP-dependent protein kinase A (PKA) increased Ser235/236 phosphorylation in cultured striatal neurons. The ability of haloperidol to promote rpS6 phosphorylation was abolished in knock-in mice deficient for PKA activation of the protein phosphatase-1 inhibitor, dopamine- and cAMP-regulated phosphoprotein of 32 kDa. In contrast, pharmacological or genetic inactivation of p70 rpS6 kinase 1, or extracellular signal-regulated kinases did not affect haloperidol-induced rpS6 phosphorylation. These results identify PKA as a major rpS6 kinase in neuronal cells and suggest that regulation of protein synthesis through rpS6 may be a potential target of antipsychotic drugs. PMID:21814187

  19. Changes in topography and function of thylakoid membranes following membrane protein phosphorylation.

    PubMed

    Black, M T; Lee, P; Horton, P

    1986-09-01

    Changes in topography and function of pea (Pisum sativum L.) thylakoid membrane fractions following membrane protein phosphorylation have been studied. After protein phosphorylation the stromal membrane fraction had a higher chlorophyll a/b ratio, an increased content of light-harvesting chlorophyll protein and a higher ratio of chlorophyll to cytochrome f. This indicates that a pool of light-harvesting chlorophyll protein migrates from the photosystem II-enriched grana regions to the photosystem I-enriched stroma lamellae, in agreement with Kyle et al. (1984, Biochim. Biophys. Acta 765, 89-96) and Larsson et al. (1983, Eur. J. Biochem. 136, 25-29). Phosphorylation caused a stimulation in the rate of light-limited photosystem-I electron transfer in the unappressed membrane fraction, indicating that the translocated LHC-II becomes functionally associated with photosystem I.

  20. Phosphorylation of Wheat Germ Initiation Factors and Ribosomal Proteins 1

    PubMed Central

    Browning, Karen S.; Yan, Tyan Fuh J.; Lauer, Stephen J.; Aquino, Lu Ann; Tao, Mariano; Ravel, Joanne M.

    1985-01-01

    The ability of the wheat germ initiation factors and ribosomes to serve as substrates for a wheat germ protein kinase (Yan and Tao 1982 J Biol Chem 257: 7037-7043) has been investigated. The wheat germ kinase catalyzes the phosphorylation of the 42,000 dalton subunit of eukaryotic initiation factor (eIF)-2 and the 107,000 dalton subunit of eIF-3. Other initiation factors, eIF-4B and eIF-4A, and elongation factors, EF-1 and EF-2, are not phosphorylated by the kinase. Quantitative analysis indicates that the kinase catalyzes the incorporation of about 0.5 to 0.6 mole of phosphate per mole of the 42,000 dalton subunit of eIF-2 and about 6 moles of phosphate per mole of the 107,000 dalton subunit of eIF-3. Three proteins (Mr = 38,000, 14,800, and 12,600) of the 60S ribosomal subunit are phosphorylated by the kinase, but none of the 40S ribosomal proteins are substrates of the kinase. No effects of phosphorylation on the activities of eIF-2, eIF-3, or 60S ribosomal subunits could be demonstrated in vitro. Images Fig. 1 Fig. 3 Fig. 4 PMID:16664060

  1. Insulin stimulates the tyrosine phosphorylation of a 61-kilodalton protein in rat adipocytes.

    PubMed

    Mooney, R A; Bordwell, K L

    1992-03-01

    Insulin stimulated the tyrosine phosphorylation of a 61-kilodalton (kDa) protein in rat adipocytes prelabeled for 2 h with [32P]orthophosphate. Tyrosine phosphorylation of this 61-kDa protein displayed very similar insulin concentration dependency to receptor autophosphorylation and tyrosine phosphorylation of a high molecular mass receptor substrate of 160 kDa. Phosphorylation of the 61-kDa protein was very rapid with maximum labeling attained at 30 sec, paralleling that of the other two proteins. Phosphoamino acid analysis revealed that each of the insulin-responsive phosphoproteins contained phosphoserine as well as phosphotyrosine, though the ratio of two phosphoamino acids recovered from each protein differed. The 61-kDa protein yielded relatively equal proportions of phosphoserine and phosphotyrosine. In contrast, the insulin receptor yielded relatively more label on phosphotyrosine than phosphoserine, whereas label incorporated into the 160-kDa protein was recovered primarily on phosphoserine. Cleveland peptide maps using either Staphylococcus aureus V8 proteinase or chymotrypsin revealed no similarities between the 61-kDa protein and the other tyrosine phosphorylated proteins. With subcellular fractionation, the 160-kDa protein was found in equal proportions in the high speed pellet (100,000 g) and supernatant. The 61-kDa protein had a similar distribution to that of the 160-kDa protein but was also detected in the low speed pellet (10,000 g). The insulin receptor was localized to the low speed pellet. In summary, rat adipocytes contain an insulin-dependent phosphotyrosyl protein of 61 kDa which is distinct from the more prominent high molecular mass receptor substrate. This 61-kDa protein has characteristics consistent with it being a substrate for the insulin receptor tyrosine kinase.

  2. Mild cognitive impairment and asymptomatic Alzheimer disease subjects: equivalent β-amyloid and tau loads with divergent cognitive outcomes.

    PubMed

    Iacono, Diego; Resnick, Susan M; O'Brien, Richard; Zonderman, Alan B; An, Yang; Pletnikova, Olga; Rudow, Gay; Crain, Barbara; Troncoso, Juan C

    2014-04-01

    Older adults with intact cognition before death and substantial Alzheimer disease (AD) lesions at autopsy have been termed "asymptomatic AD subjects" (ASYMAD). We previously reported hypertrophy of neuronal cell bodies, nuclei, and nucleoli in the CA1 of the hippocampus (CA1), anterior cingulate gyrus, posterior cingulate gyrus, and primary visual cortex of ASYMAD versus age-matched Control and mild cognitive impairment (MCI) subjects. However, it was unclear whether the neuronal hypertrophy could be attributed to differences in the severity of AD pathology. Here, we performed quantitative analyses of the severity of β-amyloid (Aβ) and phosphorylated tau (tau) loads in the brains of ASYMAD, Control, MCI, and AD subjects (n = 15 per group) from the Baltimore Longitudinal Study of Aging. Tissue sections from CA1, anterior cingulate gyrus, posterior cingulate gyrus, and primary visual cortex were immunostained for Aβ and tau; the respective loads were assessed using unbiased stereology by measuring the fractional areas of immunoreactivity for each protein in each region. The ASYMAD and MCI groups did not differ in Aβ and tau loads. These data confirm that ASYMAD and MCI subjects have comparable loads of insoluble Aβ and tau in regions vulnerable to AD pathology despite divergent cognitive outcomes. These findings imply that cognitive impairment in AD may be caused or modulated by factors other than insoluble forms of Aβ and tau.

  3. [Changes of protein tyrosine phosphorylation in erythrocyte band 3 glucose-6-phosphate dehydrogenase deficiency].

    PubMed

    Yu, Guoyu; Li, Jialin; Tian, Xingya; Lin, Hong; Wang, Xiaoying

    2002-11-01

    To explore the hemolytic mechanism of glucose-6-phosphate dehydrogenase (G6PD) deficient erythrocytes in the view of phosphorylation of membrane protein. The alternation of membrane protein phosphorylation and the effect of dithiothreitol (DTT) on protein phosphorylation were analysed by Western blot technique. The activity of phosphotyrosine phosphatase (PTPs) was determined by using p-nitrophenyl phosphate as substrate. Tyrosine phosphorylation of band 3 protein was obviously enhanced in G6PD-deficient erythrocytes. The activity of PTPs was low compared to the normal erythrocytes. The level of phosphotyrosine in G6PD-deficient erythrocytes incubated with DTT was almost the same as in those without DTT. The results were consistent with the activity of PTPs. PTPs activity reduction and tyrosine phosphorylation enhancement induced by oxidation in G6PD deficiency play an important role in erythrocytes hemolysis. However, the alternation of thiol group is not the only factor affecting the activity of PTPs in G6PD-deficient erythrocytes.

  4. Cell Cycle-Dependent Phosphorylation of Theileria annulata Schizont Surface Proteins

    PubMed Central

    von Schubert, Conrad; Wastling, Jonathan M.; Heussler, Volker T.; Woods, Kerry L.

    2014-01-01

    The invasion of Theileria sporozoites into bovine leukocytes is rapidly followed by the destruction of the surrounding host cell membrane, allowing the parasite to establish its niche within the host cell cytoplasm. Theileria infection induces host cell transformation, characterised by increased host cell proliferation and invasiveness, and the activation of anti-apoptotic genes. This process is strictly dependent on the presence of a viable parasite. Several host cell kinases, including PI3-K, JNK, CK2 and Src-family kinases, are constitutively activated in Theileria-infected cells and contribute to the transformed phenotype. Although a number of host cell molecules, including IkB kinase and polo-like kinase 1 (Plk1), are recruited to the schizont surface, very little is known about the schizont molecules involved in host-parasite interactions. In this study we used immunofluorescence to detect phosphorylated threonine (p-Thr), serine (p-Ser) and threonine-proline (p-Thr-Pro) epitopes on the schizont during host cell cycle progression, revealing extensive schizont phosphorylation during host cell interphase. Furthermore, we established a quick protocol to isolate schizonts from infected macrophages following synchronisation in S-phase or mitosis, and used mass spectrometry to detect phosphorylated schizont proteins. In total, 65 phosphorylated Theileria proteins were detected, 15 of which are potentially secreted or expressed on the surface of the schizont and thus may be targets for host cell kinases. In particular, we describe the cell cycle-dependent phosphorylation of two T. annulata surface proteins, TaSP and p104, both of which are highly phosphorylated during host cell S-phase. TaSP and p104 are involved in mediating interactions between the parasite and the host cell cytoskeleton, which is crucial for the persistence of the parasite within the dividing host cell and the maintenance of the transformed state. PMID:25077614

  5. Mechanism of tau-induced neurodegeneration in Alzheimer disease and related tauopathies.

    PubMed

    Alonso, Alejandra del C; Li, Ben; Grundke-Iqbal, Inge; Iqbal, Khalid

    2008-08-01

    The accumulation of hyperphosphorylated tau is a common feature of several dementias. Tau is one of the brain microtubule-associated proteins. Here we discuss tau's function in microtubule assembly and stabilization and with regards to tau's interactions with other proteins, membranes, and DNA. We describe and analyze important posttranslational modifications: hyperphosphorylation, glycosylation, ubiquitination, glycation, polyamination, nitration, and truncation. We discuss how these post-translational modifications can alter tau's biological function and what is known about tau self-assembly, and we propose a mechanism of tau polymerization. We analyze the impact of natural mutations on tau that cause fronto-temporal dementia associated with chromosome 17 (FTDP-1 7). Finally, we consider whether tau accumulation or its conformational change is related to tau-induced neurodegeneration, and we propose a mechanism of neurodegeneration.

  6. Thermal sensitivity of mitochondrial respiration efficiency and protein phosphorylation in the clam Mercenaria mercenaria.

    PubMed

    Ulrich, P N; Marsh, A G

    2009-01-01

    The mitochondria of intertidal invertebrates continue to function when organisms are exposed to rapid substantial shifts in temperature. To test if mitochondrial physiology of the clam Mercenaria mercenaria is compromised under elevated temperatures, we measured mitochondrial respiration efficiency at 15 degrees C, 18 degrees C, and 21 degrees C using a novel, high-throughput, microplate respirometry methodology developed for this study. Though phosphorylating (state 3) and resting (state 4) respiration rates were unaffected over this temperature range, respiratory control ratios (RCRs: ratio of state 3 to state 4 respiration rates) decreased significantly above 18 degrees C (p < 0.05). The drop in RCR was not associated with reduction of phosphorylation efficiency, suggesting that, while aerobic scope of mitochondrial respiration is limited at elevated temperatures, mitochondria continue to efficiently produce adenosine triphosphate. We further investigated the response of clam mitochondria to elevated temperatures by monitoring phosphorylation of mitochondrial protein. Three proteins clearly demonstrated significant time- and temperature-specific phosphorylation patterns. The protein-specific patterns of phosphorylation may suggest that a suite of protein kinases and phosphatases regulate mitochondrial physiology in response to temperature. Thus, while aerobic scope of clam mitochondrial respiration is reduced at moderate temperatures, specific protein phosphorylation responses reflect large shifts in function that are initiated within the organelle at higher temperatures.

  7. Arctigenin Attenuates Learning and Memory Deficits through PI3k/Akt/GSK-3β Pathway Reducing Tau Hyperphosphorylation in Aβ-Induced AD Mice.

    PubMed

    Qi, Yue; Dou, De-Qiang; Jiang, Hong; Zhang, Bing-Bing; Qin, Wen-Yan; Kang, Kai; Zhang, Na; Jia, Dong

    2017-01-01

    Arctigenin is a phenylpropanoid dibenzylbutyrolactone lignan compound possessing antitumor, anti-inflammatory, anti-influenza, antioxidant, antibacterial, and hypoglycaemic activities. Our previous study demonstrated that arctigenin exerts neuroprotective effects both in vitro and in vivo in a Parkinson's disease model. However, the exact mechanism through which arctigenin improves amyloid beta-induced memory impairment by inhibiting the production of the hyperphosphorylated tau protein is unknown. Amyloid β 1-42 was slowly administered via the intracerebroventricular route in a volume of 3 µL (≈ 410 pmmol/mouse) to mice. The mice were administered arctigenin (10, 40, or 150 mg/kg) or vehicle starting from the second day after amyloid β 1-42 injection to the end of the experiment. Behavioural tests were performed from days 9 to 15. On day 16 after the intracerebroventricular administration of amyloid β 1-42 , the mice were sacrificed for biochemical analysis. Arctigenin (10-150 mg/kg) significantly attenuated the impairment of spontaneous alternation behaviours in the Y-maze task, decreased the escape latency in the Morris water maze test, and increased the swimming times and swimming distances to the platform located in the probe test. Arctigenin attenuated the level of phosphorylated tau at the Thr-181, Thr-231, and Ser-404 sites in the hippocampus, and increased the phosphorylation levels of phosphatidylinositol-3-kinase, threonine/serine protein kinase B, and glycogen synthase kinase-3 β . Arctigenin effectively provides protection against learning and memory deficits and in inhibits hyperphosphorylated tau protein expression in the hippocampus. The possible mechanism may occur via the phosphatidylinositol-3-kinase/protein kinase B-dependent glycogen synthase kinase-3 β signalling pathway. Georg Thieme Verlag KG Stuttgart · New York.

  8. Survey of phosphorylation near drug binding sites in the Protein Data Bank (PDB) and their effects.

    PubMed

    Smith, Kyle P; Gifford, Kathleen M; Waitzman, Joshua S; Rice, Sarah E

    2015-01-01

    While it is currently estimated that 40 to 50% of eukaryotic proteins are phosphorylated, little is known about the frequency and local effects of phosphorylation near pharmaceutical inhibitor binding sites. In this study, we investigated how frequently phosphorylation may affect the binding of drug inhibitors to target proteins. We examined the 453 non-redundant structures of soluble mammalian drug target proteins bound to inhibitors currently available in the Protein Data Bank (PDB). We cross-referenced these structures with phosphorylation data available from the PhosphoSitePlus database. Three hundred twenty-two of 453 (71%) of drug targets have evidence of phosphorylation that has been validated by multiple methods or labs. For 132 of 453 (29%) of those, the phosphorylation site is within 12 Å of the small molecule-binding site, where it would likely alter small molecule binding affinity. We propose a framework for distinguishing between drug-phosphorylation site interactions that are likely to alter the efficacy of drugs versus those that are not. In addition we highlight examples of well-established drug targets, such as estrogen receptor alpha, for which phosphorylation may affect drug affinity and clinical efficacy. Our data suggest that phosphorylation may affect drug binding and efficacy for a significant fraction of drug target proteins. © 2014 Wiley Periodicals, Inc.

  9. In vitro phosphorylation of the movement protein of tomato mosaic tobamovirus by a cellular kinase.

    PubMed

    Matsushita, Y; Hanazawa, K; Yoshioka, K; Oguchi, T; Kawakami, S; Watanabe, Y; Nishiguchi, M; Nyunoya, H

    2000-08-01

    The movement protein (MP) of tomato mosaic virus (ToMV) was produced in E. coli as a soluble fusion protein with glutathione S-transferase. When immobilized on glutathione affinity beads, the recombinant protein was phosphorylated in vitro by incubating with cell extracts of Nicotiana tabacum and tobacco suspension culture cells (BY-2) in the presence of [gamma-(32)P]ATP. Phosphorylation occurred even after washing the beads with a detergent-containing buffer, indicating that the recombinant MP formed a stable complex with some protein kinase(s) during incubation with the cell extract. Phosphoamino acid analysis revealed that the MP was phosphorylated on serine and threonine residues. Phosphorylation of the MP was decreased by addition of kinase inhibitors such as heparin, suramin and quercetin, which are known to be effective for casein kinase II (CK II). The phosphorylation level was not changed by other types of inhibitor. In addition, as shown for animal and plant CK II, [gamma-(32)P]GTP was efficiently used as a phosphoryl donor. Phosphorylation was not affected by amino acid replacements at serine-37 and serine-238, but was completely inhibited by deletion of the carboxy-terminal 9 amino acids, including threonine-256, serine-257, serine-261 and serine-263. These results suggest that the MP of ToMV could be phosphorylated in plant cells by a host protein kinase that is closely related to CK II.

  10. The disorderly conduct of Hsc70 and its interaction with the Alzheimer's related Tau protein.

    PubMed

    Taylor, Isabelle R; Ahmad, Atta; Wu, Taia; Nordhues, Bryce A; Bhullar, Anup; Gestwicki, Jason E; Zuiderweg, Erik R P

    2018-05-15

    Hsp70 chaperones bind to various protein substrates for folding, trafficking, and degradation. Considerable structural information is available about how prokaryotic Hsp70 (DnaK) binds substrates, but less is known about mammalian Hsp70s, of which there are 13 isoforms encoded in the human genome. Here, we report the interaction between the human Hsp70 isoform heat shock cognate 71 KDa protein (Hsc70 or HSPA8) and peptides derived from the microtubule-associated protein tau, which is linked to Alzheimer's disease. For structural studies, we used an Hsc70 construct (called BETA) comprising the substrate-binding domain, but lacking the lid. Importantly, we found that truncating the lid does not significantly impair Hsc70's chaperone activity or allostery in vitro. Using NMR, we show that BETA is partially dynamically disordered in the absence of substrate and that binding of the tau sequence GKVQIINKKG (with a KD = 500 nM) causes dramatic rigidification of BETA. Nuclear Overhauser effect distance measurements revealed that tau binds to the canonical substrate-binding cleft, similar to the binding observed with DnaK. To further develop BETA as a tool for studying Hsc70 interactions, we also measured BETA binding in NMR and fluorescent competition assays to peptides derived from huntingtin, insulin, a second tau-recognition sequence, and a KFERQ-like sequence linked to chaperone-mediated autophagy. We found that the insulin C-peptide binds BETA with high affinity (KD < 100 nM), whereas the others do not (KD > 100 μM). Together, our findings reveal several similarities and differences in how prokaryotic and mammalian Hsp70 isoforms interact with different substrate peptides. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Reduced miR-512 and the Elevated Expression of Its Targets cFLIP and MCL1 Localize to Neurons With Hyperphosphorylated Tau Protein in Alzheimer Disease.

    PubMed

    Mezache, Louisa; Mikhail, Madison; Garofalo, Michela; Nuovo, Gerard J

    2015-10-01

    The cause for the neurofibrillary tangles and plaques in Alzheimer disease likely relates to an abnormal accumulation of their key components, which include β-amyloid and hyperphosphorylated tau protein. We segregated Alzheimer brain sections from people with end-stage disease into those with abundant hyperphosphorylated tau protein and those without and compared each to normal brains for global microRNA patterns. A significant reduced expression of several microRNAs, including miR-512, was evident in the Alzheimer brain sections with abundant hyperphosphorylated tau. Immunohistochemistry documented that 2 known targets of microRNA-512, cFLIP and MCL1, were significantly over expressed and each colocalized to neurons with the abnormal tau protein. Analysis for apoptosis including activated caspase-3, increased caspase-4 and caspase-8, apoptosis initiating factor, APAF-1 activity, and the TUNEL assay was negative in the areas where neurons showed hyperphosphorylated tau. MCM2 expression, a marker of neuroprogenitor cells, was significantly reduced in the Alzheimer sections that contained the hyperphosphorylated tau. These results suggest that a basic defect in Alzheimer disease may be the reduced microRNA-driven increased expression of proteins that may alter the apoptotic/antiapoptotic balance of neurons. This, in turn, could lead to the accumulation of key Alzheimer proteins such as hyperphosphorylated tau that ultimately prevent normal neuronal function and lead to disease symptomatology.

  12. The Role of Tau in Neurodegenerative Diseases and Its Potential as a Therapeutic Target

    PubMed Central

    2012-01-01

    The abnormal deposition of proteins in and around neurons is a common pathological feature of many neurodegenerative diseases. Among these pathological proteins, the microtubule-associated protein tau forms intraneuronal filaments in a spectrum of neurological disorders. The discovery that dominant mutations in the MAPT gene encoding tau are associated with familial frontotemporal dementia strongly supports abnormal tau protein as directly involved in disease pathogenesis. This and other evidence suggest that tau is a worthwhile target for the prevention or treatment of tau-associated neurodegenerative diseases, collectively called tauopathies. However, it is critical to understand the normal biological roles of tau, the specific molecular events that induce tau to become neurotoxic, the biochemical nature of pathogenic tau, the means by which pathogenic tau exerts neurotoxicity, and how tau pathology propagates. Based on known differences between normal and abnormal tau, a number of approaches have been taken toward the discovery of potential therapeutics. Key questions still remain open, such as the nature of the connection between the amyloid-β protein of Alzheimer's disease and tau pathology. Answers to these questions should help better understand the nature of tauopathies and may also reveal new therapeutic targets and strategies. PMID:24278740

  13. Microgravity alters protein phosphorylation changes during initiation of sea urchin sperm motility

    NASA Technical Reports Server (NTRS)

    Tash, J. S.; Bracho, G. E.

    1999-01-01

    European Space Agency (ESA) studies demonstrated that bull sperm swim with higher velocity in microgravity (microG) than at 1 G. Coupling between protein phosphorylation and sperm motility during activation in microG and at 1 G was examined in the ESA Biorack on two space shuttle missions. Immotile sperm were activated to swim (86-90% motility) at launch +20 h by dilution into artificial seawater (ASW). Parallel ground controls were performed 2 h after the flight experiment. Activation after 0, 30, and 60 s was terminated with electrophoresis sample buffer and samples analyzed for phosphoamino acids by Western blotting. Phosphorylation of a 130-kDa phosphothreonine-containing protein (FP130) occurred three to four times faster in microG than at 1 G. A 32-kDa phosphoserine-containing protein was significantly stimulated at 30 s but returned to 1 G control levels at 60 s. The rate of FP130 phosphorylation in microG was attenuated by D2O, suggesting that changes in water properties participate in altering signal transduction. Changes in FP130 phosphorylation triggered by the egg peptide speract were delayed in microG. These results demonstrate that previously observed effects of microG on sperm motility are coupled to changes in phosphorylation of specific flagellar proteins and that early events of sperm activation and fertilization are altered in microG.

  14. New Phosphospecific Antibody Reveals Isoform-Specific Phosphorylation of CPEB3 Protein

    PubMed Central

    Sehgal, Kapil; Sylvester, Marc; Skubal, Magdalena; Josten, Michele; Steinhäuser, Christian; De Koninck, Paul; Theis, Martin

    2016-01-01

    Cytoplasmic Polyadenylation Element Binding proteins (CPEBs) are a family of polyadenylation factors interacting with 3’UTRs of mRNA and thereby regulating gene expression. Various functions of CPEBs in development, synaptic plasticity, and cellular senescence have been reported. Four CPEB family members of partially overlapping functions have been described to date, each containing a distinct alternatively spliced region. This region is highly conserved between CPEBs-2-4 and contains a putative phosphorylation consensus, overlapping with the exon seven of CPEB3. We previously found CPEBs-2-4 splice isoforms containing exon seven to be predominantly present in neurons, and the isoform expression pattern to be cell type-specific. Here, focusing on the alternatively spliced region of CPEB3, we determined that putative neuronal isoforms of CPEB3 are phosphorylated. Using a new phosphospecific antibody directed to the phosphorylation consensus we found Protein Kinase A and Calcium/Calmodulin-dependent Protein Kinase II to robustly phosphorylate CPEB3 in vitro and in primary hippocampal neurons. Interestingly, status epilepticus induced by systemic kainate injection in mice led to specific upregulation of the CPEB3 isoforms containing exon seven. Extensive analysis of CPEB3 phosphorylation in vitro revealed two other phosphorylation sites. In addition, we found plethora of potential kinases that might be targeting the alternatively spliced kinase consensus site of CPEB3. As this site is highly conserved between the CPEB family members, we suggest the existence of a splicing-based regulatory mechanism of CPEB function, and describe a robust phosphospecific antibody to study it in future. PMID:26915047

  15. Analysis of Phosphorylation of the Receptor-Like Protein Kinase HAESA during Arabidopsis Floral Abscission

    PubMed Central

    Taylor, Isaiah; Wang, Ying; Seitz, Kati; Baer, John; Bennewitz, Stefan; Mooney, Brian P.; Walker, John C.

    2016-01-01

    Receptor-like protein kinases (RLKs) are the largest family of plant transmembrane signaling proteins. Here we present functional analysis of HAESA, an RLK that regulates floral organ abscission in Arabidopsis. Through in vitro and in vivo analysis of HAE phosphorylation, we provide evidence that a conserved phosphorylation site on a region of the HAE protein kinase domain known as the activation segment positively regulates HAE activity. Additional analysis has identified another putative activation segment phosphorylation site common to multiple RLKs that potentially modulates HAE activity. Comparative analysis suggests that phosphorylation of this second activation segment residue is an RLK specific adaptation that may regulate protein kinase activity and substrate specificity. A growing number of RLKs have been shown to exhibit biologically relevant dual specificity toward serine/threonine and tyrosine residues, but the mechanisms underlying dual specificity of RLKs are not well understood. We show that a phospho-mimetic mutant of both HAE activation segment residues exhibits enhanced tyrosine auto-phosphorylation in vitro, indicating phosphorylation of this residue may contribute to dual specificity of HAE. These results add to an emerging framework for understanding the mechanisms and evolution of regulation of RLK activity and substrate specificity. PMID:26784444

  16. Pharmacological modulation of GSAP reduces amyloid-β levels and tau phosphorylation in a mouse model of Alzheimer's disease with plaques and tangles.

    PubMed

    Chu, Jin; Lauretti, Elisabetta; Craige, Caryne P; Praticò, Domenico

    2014-01-01

    Accumulation of neurotoxic amyloid-β (Aβ) is a major hallmark of Alzheimer's disease (AD) pathology and an important player in its clinical manifestations. Formation of Aβ is controlled by the availability of an enzyme called γ-secretase. Despite its blockers being attractive therapeutic tools for lowering Aβ, this approach has failed because of their serious toxic side-effects. The discovery of the γ-secretase activating protein (GSAP), a co-factor for this protease which facilitates Aβ production without affecting other pathways responsible for the toxicity, is giving us the opportunity to develop a safer anti-Aβ therapy. In this study we have characterized the effect of Imatinib, an inhibitor of GSAP, in the 3×Tg mice, a mouse model of AD with plaques and tangles. Compared with controls, mice receiving the drug had a significant reduction in brain Aβ levels and deposition, but no changes in the steady state levels of AβPP, BACE-1, ADAM-10, or the four components of the γ-secretase complex. By contrast, Imatinib-treated animals had a significant increase in CTF-β and a significant reduction in GSAP expression levels. Additionally, we observed that tau phosphorylation was reduced at specific epitopes together with its insoluble fraction. In vitro studies confirmed that Imatinib prevents Aβ formation by modulating γ-secretase activity and GSAP levels. Our findings represent the first in vivo demonstration of the biological role that GSAP plays in the development of the AD-like neuropathologies. They establish this protein as a viable target for a safer anti-Aβ therapeutic approach in AD.

  17. Identification of Phosphorylation Codes for Arrestin Recruitment by G Protein-Coupled Receptors.

    PubMed

    Zhou, X Edward; He, Yuanzheng; de Waal, Parker W; Gao, Xiang; Kang, Yanyong; Van Eps, Ned; Yin, Yanting; Pal, Kuntal; Goswami, Devrishi; White, Thomas A; Barty, Anton; Latorraca, Naomi R; Chapman, Henry N; Hubbell, Wayne L; Dror, Ron O; Stevens, Raymond C; Cherezov, Vadim; Gurevich, Vsevolod V; Griffin, Patrick R; Ernst, Oliver P; Melcher, Karsten; Xu, H Eric

    2017-07-27

    G protein-coupled receptors (GPCRs) mediate diverse signaling in part through interaction with arrestins, whose binding promotes receptor internalization and signaling through G protein-independent pathways. High-affinity arrestin binding requires receptor phosphorylation, often at the receptor's C-terminal tail. Here, we report an X-ray free electron laser (XFEL) crystal structure of the rhodopsin-arrestin complex, in which the phosphorylated C terminus of rhodopsin forms an extended intermolecular β sheet with the N-terminal β strands of arrestin. Phosphorylation was detected at rhodopsin C-terminal tail residues T336 and S338. These two phospho-residues, together with E341, form an extensive network of electrostatic interactions with three positively charged pockets in arrestin in a mode that resembles binding of the phosphorylated vasopressin-2 receptor tail to β-arrestin-1. Based on these observations, we derived and validated a set of phosphorylation codes that serve as a common mechanism for phosphorylation-dependent recruitment of arrestins by GPCRs. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Calcium-calmodulin and pH regulate protein tyrosine phosphorylation in stallion sperm.

    PubMed

    González-Fernández, L; Macías-García, B; Velez, I C; Varner, D D; Hinrichs, K

    2012-10-01

    The mechanisms leading to capacitation in stallion sperm are poorly understood. The objective of our study was to define factors associated with regulation of protein tyrosine phosphorylation in stallion sperm. Stallion sperm were incubated for 4 h in modified Whitten's media with or without bicarbonate, calcium, or BSA. When sperm were incubated in air at 30×10⁶/ml at initial pH 7.25, protein tyrosine phosphorylation was detected only in medium containing 25 mM bicarbonate alone; calcium and BSA inhibited phosphorylation. Surprisingly, this inhibition did not occur when sperm were incubated at 10×10⁶/ml. The final pH values after incubation at 30×10⁶ and 10×10⁶ sperm/ml were 7.43 ± 0.04 and 7.83 ± 0.07 (mean ± s.e.m.) respectively. Sperm were then incubated at initial pH values of 7.25, 7.90, or 8.50 in either air or 5% CO₂. Protein tyrosine phosphorylation increased with increasing final medium pH, regardless of the addition of bicarbonate or BSA. An increase in environmental pH was observed when raw semen was instilled into the uteri of estrous mares and retrieved after 30 min (from 7.47 ± 0.10 to 7.85 ± 0.08), demonstrating a potential physiological role for pH regulation of capacitation. Sperm incubated in the presence of the calmodulin (CaM) inhibitor W-7 exhibited a dose-dependent increase in protein tyrosine phosphorylation, suggesting that the inhibitory effect of calcium was CaM mediated. These results show for the first time a major regulatory role of external pH, calcium, and CaM in stallion sperm protein tyrosine phosphorylation.

  19. SN56 neuronal cell death after 24 h and 14 days chlorpyrifos exposure through glutamate transmission dysfunction, increase of GSK-3β enzyme, β-amyloid and tau protein levels.

    PubMed

    Moyano, Paula; Frejo, María Teresa; Anadon, María José; García, José Manuel; Díaz, María Jesús; Lobo, Margarita; Sola, Emma; García, Jimena; Del Pino, Javier

    2018-06-01

    Chlorpyrifos (CPF) is an organophosphate insecticide described to induce cognitive disorders, both after acute and repeated administration. However, the mechanisms through which it induces these effects are unknown. CPF has been reported to produce basal forebrain cholinergic neuronal cell death, involved on learning and memory regulation, which could be the cause of such cognitive disorders. Neuronal cell death was partially mediated by oxidative stress generation, P75 NTR and α 7 -nAChRs gene expression alteration triggered through acetylcholinesterase (AChE) variants disruption, suggesting other mechanisms are involved. In this regard, CPF induces Aβ and tau proteins production and activation of GSK3β enzyme and alters glutamatergic transmission, which have been related with basal forebrain cholinergic neuronal cell death and development of cognitive disorders. According to these data, we hypothesized that CPF induces basal forebrain cholinergic neuronal cell death through induction of Aβ and tau proteins production, activation of GSK-3β enzyme and disruption of glutamatergic transmission. We evaluated this hypothesis in septal SN56 basal forebrain cholinergic neurons, after 24 h and 14 days CPF exposure. This study shows that CPF increases glutamate levels, upregulates GSK-3β gene expression, and increases the production of Aβ and phosphorylated tau proteins and all these effects reduced cell viability. CPF increases glutaminase activity and upregulates the VGLUT1 gene expression, which could mediate the disruption of glutamatergic transmission. Our present results provide new understanding of the mechanisms contributing to the harmful effects of CPF, and its possible relevance in the pathogenesis of neurodegenerative diseases. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Phosphorylation of the budgerigar fledgling disease virus major capsid protein VP1

    NASA Technical Reports Server (NTRS)

    Haynes, J. I. 2nd; Consigli, R. A.; Spooner, B. S. (Principal Investigator)

    1992-01-01

    The structural proteins of the budgerigar fledgling disease virus, the first known nonmammalian polyomavirus, were analyzed by isoelectric focusing and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The major capsid protein VP1 was found to be composed of at least five distinct species having isoelectric points ranging from pH 6.45 to 5.85. By analogy with the murine polyomavirus, these species apparently result from different modifications of an initial translation product. Primary chicken embryo cells were infected in the presence of 32Pi to determine whether the virus structural proteins were modified by phosphorylation. SDS-PAGE of the purified virus structural proteins demonstrated that VP1 (along with both minor capsid proteins) was phosphorylated. Two-dimensional analysis of the radiolabeled virus showed phosphorylation of only the two most acidic isoelectric species of VP1, indicating that this posttranslational modification contributes to VP1 species heterogeneity. Phosphoamino acid analysis of 32P-labeled VP1 revealed that phosphoserine is the only phosphoamino acid present in the VP1 protein.

  1. Alzheimer Abeta peptide induces chromosome mis-segregation and aneuploidy, including trisomy 21: requirement for tau and APP.

    PubMed

    Granic, Antoneta; Padmanabhan, Jaya; Norden, Michelle; Potter, Huntington

    2010-02-15

    Both sporadic and familial Alzheimer's disease (AD) patients exhibit increased chromosome aneuploidy, particularly trisomy 21, in neurons and other cells. Significantly, trisomy 21/Down syndrome patients develop early onset AD pathology. We investigated the mechanism underlying mosaic chromosome aneuploidy in AD and report that FAD mutations in the Alzheimer Amyloid Precursor Protein gene, APP, induce chromosome mis-segregation and aneuploidy in transgenic mice and in transfected cells. Furthermore, adding synthetic Abeta peptide, the pathogenic product of APP, to cultured cells causes rapid and robust chromosome mis-segregation leading to aneuploid, including trisomy 21, daughters, which is prevented by LiCl addition or Ca(2+) chelation and is replicated in tau KO cells, implicating GSK-3beta, calpain, and Tau-dependent microtubule transport in the aneugenic activity of Abeta. Furthermore, APP KO cells are resistant to the aneugenic activity of Abeta, as they have been shown previously to be resistant to Abeta-induced tau phosphorylation and cell toxicity. These results indicate that Abeta-induced microtubule dysfunction leads to aneuploid neurons and may thereby contribute to the pathogenesis of AD.

  2. The aqueous extract of Glycyrrhiza inflata can upregulate unfolded protein response-mediated chaperones to reduce tau misfolding in cell models of Alzheimer’s disease

    PubMed Central

    Chang, Kuo-Hsuan; Chen, I-Cheng; Lin, Hsuan-Yuan; Chen, Hsuan-Chiang; Lin, Chih-Hsin; Lin, Te-Hsien; Weng, Yu-Ting; Chao, Chih-Ying; Wu, Yih-Ru; Lin, Jung-Yaw; Lee-Chen, Guey-Jen; Chen, Chiung-Mei

    2016-01-01

    Background Alzheimer’s disease (AD) and several neurodegenerative disorders known as tauopathies are characterized by misfolding and aggregation of tau protein. Although several studies have suggested the potential of traditional Chinese medicine (TCM) as treatment for neurodegenerative diseases, the role of TCM in treating AD and tauopathies have not been well explored. Materials and methods Tau protein was coupled to the DsRed fluorophore by fusing a pro-aggregation mutant of repeat domain of tau (ΔK280 tauRD) with DsRed. The ΔK280 tauRD-DsRed fusion gene was then used to generate Tet-On 293 and SH-SY5Y cell clones as platforms to test the efficacy of 39 aqueous extracts of TCM in reducing tau misfolding and in neuroprotection. Results Seven TCM extracts demonstrated a significant reduction in tau misfolding and reactive oxidative species with low cytotoxicity in the ΔK280 tauRD-DsRed 293 cell model. Glycyrrhiza inflata and Panax ginseng also demonstrated the potential to improve neurite outgrowth in the ΔK280 tauRD-DsRed SH-SY5Y neuronal cell model. G. inflata further rescued the upregulation of ERN2 (pro-apoptotic) and downregulation of unfolded-protein-response-mediated chaperones ERP44, DNAJC3, and SERP1 in ΔK280 tauRD-DsRed 293 cells. Conclusion This in vitro study provides evidence that G. inflata may be a novel therapeutic for AD and tauopathies. Future applications of G. inflata on animal models of AD and tauopathies are warranted to corroborate its effect of reducing misfolding and potential disease modification. PMID:27013866

  3. Lopinavir Impairs Protein Synthesis and Induces eEF2 Phosphorylation via the Activation of AMP-Activated Protein Kinase

    PubMed Central

    Hong-Brown, Ly Q.; Brown, C. Randell; Huber, Danuta S.; Lang, Charles H.

    2008-01-01

    HIV anti-retroviral drugs decrease protein synthesis, although the underlying regulatory mechanisms of this process are not fully established. Therefore, we investigated the effects of the HIV protease inhibitor lopinavir (LPV) on protein metabolism. We also characterized the mechanisms that mediate the effects of this drug on elongation factor-2 (eEF2), a key component of the translational machinery. Treatment of C2C12 myocytes with LPV produced a dose-dependent inhibitory effect on protein synthesis. This effect was observed at 15 min and was maintained for at least 4 h. Mechanistically, LPV increased the phosphorylation of eEF2 and thereby decreased the activity of this protein. Increased phosphorylation of eEF2 was associated with increased activity of its upstream regulators AMP-activated protein kinase (AMPK) and eEF2 kinase (eEF2K). Both AMPK and eEF2K directly phosphorylated eEF2 in an in vitro kinase assay suggesting two distinct paths lead to eEF2 phosphorylation. To verify this connection, myocytes were treated with the AMPK inhibitor compound C. Compound C blocked eEF2K and eEF2 phosphorylation, demonstrating that LPV affects eEF2 activity via an AMPK-eEF2K dependent pathway. In contrast, incubation of myocytes with rottlerin suppressed eEF2K, but not eEF2 phosphorylation, suggesting that eEF2 can be regulated independent of eEF2K. Finally, LPV did not affect PP2A activity when either eEF2 or peptide was used as the substrate. Collectively, these results indicate that LPV decreases protein synthesis, at least in part, via inhibition of eEF2. This appears regulated by AMPK which can act directly on eEF2 or indirectly via the action of eEF2K. PMID:18712774

  4. Regulation of the autophagy protein LC3 by phosphorylation

    PubMed Central

    Cherra, Salvatore J.; Kulich, Scott M.; Uechi, Guy; Balasubramani, Manimalha; Mountzouris, John; Day, Billy W.

    2010-01-01

    Macroautophagy is a major catabolic pathway that impacts cell survival, differentiation, tumorigenesis, and neurodegeneration. Although bulk degradation sustains carbon sources during starvation, autophagy contributes to shrinkage of differentiated neuronal processes. Identification of autophagy-related genes has spurred rapid advances in understanding the recruitment of microtubule-associated protein 1 light chain 3 (LC3) in autophagy induction, although braking mechanisms remain less understood. Using mass spectrometry, we identified a direct protein kinase A (PKA) phosphorylation site on LC3 that regulates its participation in autophagy. Both metabolic (rapamycin) and pathological (MPP+) inducers of autophagy caused dephosphorylation of endogenous LC3. The pseudophosphorylated LC3 mutant showed reduced recruitment to autophagosomes, whereas the nonphosphorylatable mutant exhibited enhanced puncta formation. Finally, autophagy-dependent neurite shortening induced by expression of a Parkinson disease–associated G2019S mutation in leucine-rich repeat kinase 2 was inhibited by dibutyryl–cyclic adenosine monophosphate, cytoplasmic expression of the PKA catalytic subunit, or the LC3 phosphorylation mimic. These data demonstrate a role for phosphorylation in regulating LC3 activity. PMID:20713600

  5. Differential Mass Spectrometry Profiles of Tau Protein in the Cerebrospinal Fluid of Patients with Alzheimer's Disease, Progressive Supranuclear Palsy, and Dementia with Lewy Bodies.

    PubMed

    Barthélemy, Nicolas R; Gabelle, Audrey; Hirtz, Christophe; Fenaille, François; Sergeant, Nicolas; Schraen-Maschke, Susanna; Vialaret, Jérôme; Buée, Luc; Junot, Christophe; Becher, François; Lehmann, Sylvain

    2016-01-01

    Microtubule-associated Tau proteins are major actors in neurological disorders, the so-called tauopathies. In some of them, and specifically in Alzheimer's disease (AD), hyperphosphorylated forms of Tau aggregate into neurofibrillary tangles. Following and understanding the complexity of Tau's molecular profile with its multiple isoforms and post-translational modifications represent an important issue, and a major analytical challenge. Immunodetection methods are, in fact, limited by the number, specificity, sensitivity, and capturing property of the available antibodies. Mass spectrometry (MS) has recently allowed protein quantification in complex biological fluids using isotope-labeled recombinant standard for absolute quantification (PSAQ). To study Tau proteins, which are found at very low concentrations within the cerebrospinal fluid (CSF), we relied on an innovative two-step pre-fractionation strategy, which was not dependent on immuno-enrichment. We then developed a sensitive multiplex peptide detection capability using targeted high-resolution MS to quantify Tau-specific peptides covering its entire sequence. This approach was used on a clinical cohort of patients with AD, progressive supranuclear palsy (PSP), and dementia with Lewy body (DLB) and with control non-neurodegenerative disorders. We uncovered a common CSF Tau molecular profile characterized by a predominance of central core expression and 1N/3R isoform detection. While PSP and DLB tau profiles showed minimal changes, AD was characterized by a unique pattern with specific modifications of peptide distribution. Taken together these results provide important information on Tau biology for future therapeutic interventions, and improved molecular diagnosis of tauopathies.

  6. Genistein suppresses adhesion-induced protein tyrosine phosphorylation and invasion of B16-BL6 melanoma cells.

    PubMed

    Yan, C; Han, R

    1998-07-03

    Protein tyrosine phosphorylation occurs as one of the earlier events in cancer cell-extracellular matrix (ECM) interaction. With immunoblot analysis and immunofluorescence microscopy, genistein was found to suppress the tyrosine phosphorylation of proteins located at the cell periphery, including a 125 kDa protein, when B16-BL6 melanoma cells attached to and interacted with ECM. When accompanied by the suppression of adhesion-induced protein tyrosine phosphorylation, the invasive potential of B16-BL6 cells through reconstituted basement membrane was decreased significantly. However, neither adhesive capability nor cell growth was significantly affected by genistein. Therefore, the interruption of cancer cell-ECM interaction by suppression of protein tyrosine phosphorylation may contribute to invasion prevention of genistein.

  7. dbPAF: an integrative database of protein phosphorylation in animals and fungi.

    PubMed

    Ullah, Shahid; Lin, Shaofeng; Xu, Yang; Deng, Wankun; Ma, Lili; Zhang, Ying; Liu, Zexian; Xue, Yu

    2016-03-24

    Protein phosphorylation is one of the most important post-translational modifications (PTMs) and regulates a broad spectrum of biological processes. Recent progresses in phosphoproteomic identifications have generated a flood of phosphorylation sites, while the integration of these sites is an urgent need. In this work, we developed a curated database of dbPAF, containing known phosphorylation sites in H. sapiens, M. musculus, R. norvegicus, D. melanogaster, C. elegans, S. pombe and S. cerevisiae. From the scientific literature and public databases, we totally collected and integrated 54,148 phosphoproteins with 483,001 phosphorylation sites. Multiple options were provided for accessing the data, while original references and other annotations were also present for each phosphoprotein. Based on the new data set, we computationally detected significantly over-represented sequence motifs around phosphorylation sites, predicted potential kinases that are responsible for the modification of collected phospho-sites, and evolutionarily analyzed phosphorylation conservation states across different species. Besides to be largely consistent with previous reports, our results also proposed new features of phospho-regulation. Taken together, our database can be useful for further analyses of protein phosphorylation in human and other model organisms. The dbPAF database was implemented in PHP + MySQL and freely available at http://dbpaf.biocuckoo.org.

  8. Study of molecular mechanisms of learning and memory impairment in neonatal rats post intrauterine distress via the pathway of Tau protein hyperphosphorylation.

    PubMed

    Wang, X-S; Huang, H

    2018-05-01

    To explore the reversion of the excitatory amino acid receptor antagonists against the impairment of learning-memory and the hyperphosphorylation of protein Tau induced by fetal intrauterine distress in neonatal rats. The analysis of variance of factorial design set up two intervention factors, fetal intrauterine distress (two levels: no fetal intrauterine distress and a course of fetal intrauterine distress) and the excitatory amino acid receptor antagonists (three levels: Saline; NMDA receptor antagonist MK-801; astragalosides). Forty-eight pregnant rats were randomly divided into six experimental groups (n=8, in each group). After the end of the fetal intrauterine distress, the pregnant rats continued until the birth of newborn rats. When the neonatal rats grow to 12W, the Morris water maze test started in order to evaluate learning-memory. The hippocampus was removed from newborn rats within 1 day after the Morris water maze test finished. The content of glutamate in the hippocampus of rats was detected by high performance liquid chromatography. Besides, the content of protein Tau including Tau5 (total protein Tau), p-PHF1Ser396/404, p-AT8Ser199/202, p-12E8Ser262 in the hippocampus of rats, was examined with the method of immunohistochemistry (IHC) staining (SP). Fetal intrauterine distress and the glutamate ionic receptor blockers could induce the impairment of learning-memory in neonatal rats, extending the evasive latency time and shorten the space exploration time. Both influences present subtract effect. Fetal intrauterine distress could significantly up-regulate the content of glutamate in the hippocampus of neonatal rats, which was not affected by the glutamate ionic receptor blockers. Fetal intrauterine distress and the glutamate ionic receptor blockers did not affect the total protein Tau in the hippocampus of rats. Moreover, fetal intrauterine distress could increase the hyperphosphorylation of protein Tau in the hippocampus of neonatal rats, which

  9. Amyloid and tau signatures of brain metabolic decline in preclinical Alzheimer's disease.

    PubMed

    Pascoal, Tharick A; Mathotaarachchi, Sulantha; Shin, Monica; Park, Ah Yeon; Mohades, Sara; Benedet, Andrea L; Kang, Min Su; Massarweh, Gassan; Soucy, Jean-Paul; Gauthier, Serge; Rosa-Neto, Pedro

    2018-06-01

    We aimed to determine the amyloid (Aβ) and tau biomarker levels associated with imminent Alzheimer's disease (AD) - related metabolic decline in cognitively normal individuals. A threshold analysis was performed in 120 cognitively normal elderly individuals by modelling 2-year declines in brain glucose metabolism measured with [ 18 F]fluorodeoxyglucose ([ 18 F]FDG) as a function of [ 18 F]florbetapir Aβ positron emission tomography (PET) and cerebrospinal fluid phosphorylated tau biomarker thresholds. Additionally, using a novel voxel-wise analytical framework, we determined the sample sizes needed to test an estimated 25% drugeffect with 80% of power on changes in FDG uptake over 2 years at every brain voxel. The combination of [ 18 F]florbetapir standardized uptake value ratios and phosphorylated-tau levels more than one standard deviation higher than their respective thresholds for biomarker abnormality was the best predictor of metabolic decline in individuals with preclinical AD. We also found that a clinical trial using these thresholds would require as few as 100 individuals to test a 25% drug effect on AD-related metabolic decline over 2 years. These results highlight the new concept that combined Aβ and tau thresholds can predict imminent neurodegeneration as an alternative framework with a high statistical power for testing the effect of disease-modifying therapies on [ 18 F]FDG uptake decline over a typical 2-year clinical trial period in individuals with preclinical AD.

  10. Pseudotargeted MS Method for the Sensitive Analysis of Protein Phosphorylation in Protein Complexes.

    PubMed

    Lyu, Jiawen; Wang, Yan; Mao, Jiawei; Yao, Yating; Wang, Shujuan; Zheng, Yong; Ye, Mingliang

    2018-05-15

    In this study, we presented an enrichment-free approach for the sensitive analysis of protein phosphorylation in minute amounts of samples, such as purified protein complexes. This method takes advantage of the high sensitivity of parallel reaction monitoring (PRM). Specifically, low confident phosphopeptides identified from the data-dependent acquisition (DDA) data set were used to build a pseudotargeted list for PRM analysis to allow the identification of additional phosphopeptides with high confidence. The development of this targeted approach is very easy as the same sample and the same LC-system were used for the discovery and the targeted analysis phases. No sample fractionation or enrichment was required for the discovery phase which allowed this method to analyze minute amount of sample. We applied this pseudotargeted MS method to quantitatively examine phosphopeptides in affinity purified endogenous Shc1 protein complexes at four temporal stages of EGF signaling and identified 82 phospho-sites. To our knowledge, this is the highest number of phospho-sites identified from the protein complexes. This pseudotargeted MS method is highly sensitive in the identification of low abundance phosphopeptides and could be a powerful tool to study phosphorylation-regulated assembly of protein complex.

  11. Protein kinases responsible for the phosphorylation of the nuclear egress core complex of human cytomegalovirus.

    PubMed

    Sonntag, Eric; Milbradt, Jens; Svrlanska, Adriana; Strojan, Hanife; Häge, Sigrun; Kraut, Alexandra; Hesse, Anne-Marie; Amin, Bushra; Sonnewald, Uwe; Couté, Yohann; Marschall, Manfred

    2017-10-01

    Nuclear egress of herpesvirus capsids is mediated by a multi-component nuclear egress complex (NEC) assembled by a heterodimer of two essential viral core egress proteins. In the case of human cytomegalovirus (HCMV), this core NEC is defined by the interaction between the membrane-anchored pUL50 and its nuclear cofactor, pUL53. NEC protein phosphorylation is considered to be an important regulatory step, so this study focused on the respective role of viral and cellular protein kinases. Multiply phosphorylated pUL50 varieties were detected by Western blot and Phos-tag analyses as resulting from both viral and cellular kinase activities. In vitro kinase analyses demonstrated that pUL50 is a substrate of both PKCα and CDK1, while pUL53 can also be moderately phosphorylated by CDK1. The use of kinase inhibitors further illustrated the importance of distinct kinases for core NEC phosphorylation. Importantly, mass spectrometry-based proteomic analyses identified five major and nine minor sites of pUL50 phosphorylation. The functional relevance of core NEC phosphorylation was confirmed by various experimental settings, including kinase knock-down/knock-out and confocal imaging, in which it was found that (i) HCMV core NEC proteins are not phosphorylated solely by viral pUL97, but also by cellular kinases; (ii) both PKC and CDK1 phosphorylation are detectable for pUL50; (iii) no impact of PKC phosphorylation on NEC functionality has been identified so far; (iv) nonetheless, CDK1-specific phosphorylation appears to be required for functional core NEC interaction. In summary, our findings provide the first evidence that the HCMV core NEC is phosphorylated by cellular kinases, and that the complex pattern of NEC phosphorylation has functional relevance.

  12. The GAGA protein of Drosophila is phosphorylated by CK2.

    PubMed

    Bonet, Carles; Fernández, Irene; Aran, Xavier; Bernués, Jordi; Giralt, Ernest; Azorín, Fernando

    2005-08-19

    The GAGA factor of Drosophila is a sequence-specific DNA-binding protein that contributes to multiple processes from the regulation of gene expression to the structural organisation of heterochromatin and chromatin remodelling. GAGA is known to interact with various other proteins (tramtrack, pipsqueak, batman and dSAP18) and protein complexes (PRC1, NURF and FACT). GAGA functions are likely regulated at the level of post-translational modifications. Little is known, however, about its actual pattern of modification. It was proposed that GAGA can be O-glycosylated. Here, we report that GAGA519 isoform is a phosphoprotein that is phosphorylated by CK2 at the region of the DNA-binding domain. Our results indicate that phosphorylation occurs at S388 and, to a lesser extent, at S378. These two residues are located in a region of the DNA-binding domain that makes no direct contact with DNA, being dispensable for sequence-specific recognition. Phosphorylation at these sites does not abolish DNA binding but reduces the affinity of the interaction. These results are discussed in the context of the various functions and interactions that GAGA supports.

  13. Activated actin-depolymerizing factor/cofilin sequesters phosphorylated microtubule-associated protein during the assembly of alzheimer-like neuritic cytoskeletal striations.

    PubMed

    Whiteman, Ineka T; Gervasio, Othon L; Cullen, Karen M; Guillemin, Gilles J; Jeong, Erica V; Witting, Paul K; Antao, Shane T; Minamide, Laurie S; Bamburg, James R; Goldsbury, Claire

    2009-10-14

    In Alzheimer's disease (AD), rod-like cofilin aggregates (cofilin-actin rods) and thread-like inclusions containing phosphorylated microtubule-associated protein (pMAP) tau form in the brain (neuropil threads), and the extent of their presence correlates with cognitive decline and disease progression. The assembly mechanism of these respective pathological lesions and the relationship between them is poorly understood, yet vital to understanding the causes of sporadic AD. We demonstrate that, during mitochondrial inhibition, activated actin-depolymerizing factor (ADF)/cofilin assemble into rods along processes of cultured primary neurons that recruit pMAP/tau and mimic neuropil threads. Fluorescence resonance energy transfer analysis revealed colocalization of cofilin-GFP (green fluorescent protein) and pMAP in rods, suggesting their close proximity within a cytoskeletal inclusion complex. The relationship between pMAP and cofilin-actin rods was further investigated using actin-modifying drugs and small interfering RNA knockdown of ADF/cofilin in primary neurons. The results suggest that activation of ADF/cofilin and generation of cofilin-actin rods is required for the subsequent recruitment of pMAP into the inclusions. Additionally, we were able to induce the formation of pMAP-positive ADF/cofilin rods by exposing cells to exogenous amyloid-beta (Abeta) peptides. These results reveal a common pathway for pMAP and cofilin accumulation in neuronal processes. The requirement of activated ADF/cofilin for the sequestration of pMAP suggests that neuropil thread structures in the AD brain may be initiated by elevated cofilin activation and F-actin bundling that can be caused by oxidative stress, mitochondrial dysfunction, or Abeta peptides, all suspected initiators of synaptic loss and neurodegeneration in AD.

  14. Temperature control can abolish anesthesia-induced tau hyperphosphorylation and partly reverse anesthesia-induced cognitive impairment in old mice.

    PubMed

    Xiao, Haibing; Run, Xiaoqin; Cao, Xu; Su, Ying; Sun, Zhou; Tian, Cheng; Sun, Shenggang; Liang, Zhihou

    2013-11-01

    Anesthesia is related to cognitive impairment and the risk for Alzheimer's disease. Hypothermia during anesthesia can lead to abnormal hyperphosphorylation of tau, which has been speculated to be involved in anesthesia-induced cognitive impairment. The aim of this study was to investigate whether maintenance of the tau phosphorylation level by body temperature control during anesthesia could reverse the cognitive dysfunction in C57BL/6 mice. Eighteen-month-old mice were repeatedly anesthetized during a 2-week period with or without maintenance of body temperature, control mice were treated with normal saline instead of anesthetics. Tau phosphorylation level in mice brain was detected on western blot, and cognitive performance was measured using the Morris water maze (MWM). After anesthesia-induced hypothermia in old mice, tau was hyperphosphorylated and the cognitive performance, measured on MWM, was impaired. When body temperature was controlled during anesthesia, however, the tau hyperphosphorylation was completely avoided, and there was partial recovery in cognitive impairment measured on the MWM. Hyperphosphorylation of tau in the brain after anesthesia is an important event, and it might be, although not solely, responsible for postoperative cognitive decline. © 2013 The Authors. Psychiatry and Clinical Neurosciences © 2013 Japanese Society of Psychiatry and Neurology.

  15. A rapid and cost-effective fluorescence detection in tube (FDIT) method to analyze protein phosphorylation.

    PubMed

    Jin, Xiao; Gou, Jin-Ying

    2016-01-01

    Protein phosphorylation is one of the most important post-translational modifications catalyzed by protein kinases in living organisms. The advance of genome sequencing provided the information of protein kinase families in many organisms, including both model and non-model plants. The development of proteomics technologies also enabled scientists to efficiently reveal a large number of protein phosphorylations of an organism. However, kinases and phosphorylation targets are still to be connected to illustrate the complicated network in life. Here we adapted Pro-Q ® Diamond (Pro-Q ® Diamond Phosphoprotein Gel Stain), a widely used phosphoprotein gel-staining fluorescence dye, to establish a rapid, economical and non-radioactive fluorescence detection in tube (FDIT) method to analyze phosphorylated proteins. Taking advantages of high sensitivity and specificity of Pro-Q ® diamond, the FDIT method is also demonstrated to be rapid and reliable, with a suitable linear range for in vitro protein phosphorylation. A significant and satisfactory protein kinase reaction was detected as fast as 15 min from Wheat Kinase START 1.1 (WKS1.1) on a thylakoid ascorbate peroxidase (tAPX), an established phosphorylation target in our earlier study. The FDIT method saves up to 95% of the dye consumed in a gel staining method. The FDIT method is remarkably quick, highly reproducible, unambiguous and capable to be scaled up to dozens of samples. The FDIT method could serve as a simple and sensitive alternative procedure to determine protein kinase reactions with zero radiation exposure, as a supplementation to other widely used radioactive and in-gel assays.

  16. Imbalance of Hsp70 family variants fosters tau accumulation.

    PubMed

    Jinwal, Umesh K; Akoury, Elias; Abisambra, Jose F; O'Leary, John C; Thompson, Andrea D; Blair, Laura J; Jin, Ying; Bacon, Justin; Nordhues, Bryce A; Cockman, Matthew; Zhang, Juan; Li, Pengfei; Zhang, Bo; Borysov, Sergiy; Uversky, Vladimir N; Biernat, Jacek; Mandelkow, Eckhard; Gestwicki, Jason E; Zweckstetter, Markus; Dickey, Chad A

    2013-04-01

    Dysfunctional tau accumulation is a major contributing factor in tauopathies, and the heat-shock protein 70 (Hsp70) seems to play an important role in this accumulation. Several reports suggest that Hsp70 proteins can cause tau degradation to be accelerated or slowed, but how these opposing activities are controlled is unclear. Here we demonstrate that highly homologous variants in the Hsp70 family can have opposing effects on tau clearance kinetics. When overexpressed in a tetracycline (Tet)-based protein chase model, constitutive heat shock cognate 70 (Hsc70) and inducible Hsp72 slowed or accelerated tau clearance, respectively. Tau synergized with Hsc70, but not Hsp72, to promote microtubule assembly at nearly twice the rate of either Hsp70 homologue in reconstituted, ATP-regenerating Xenopus extracts supplemented with rhodamine-labeled tubulin and human recombinant Hsp72 and Hsc70. Nuclear magnetic resonance spectroscopy with human recombinant protein revealed that Hsp72 had greater affinity for tau than Hsc70 (I/I0 ratio difference of 0.3), but Hsc70 was 30 times more abundant than Hsp72 in human and mouse brain tissue. This indicates that the predominant Hsp70 variant in the brain is Hsc70, suggesting that the brain environment primarily supports slower tau clearance. Despite its capacity to clear tau, Hsp72 was not induced in the Alzheimer's disease brain, suggesting a mechanism for age-associated onset of the disease. Through the use of chimeras that blended the domains of Hsp72 and Hsc70, we determined that the reason for these differences between Hsc70 and Hsp72 with regard to tau clearance kinetics lies within their C-terminal domains, which are essential for their interactions with substrates and cochaperones. Hsp72 but not Hsc70 in the presence of tau was able to recruit the cochaperone ubiquitin ligase CHIP, which is known to facilitate the ubiquitination of tau, describing a possible mechanism of how the C-termini of these homologous Hsp70 variants

  17. Depletion of microglia and inhibition of exosome synthesis halt tau propagation

    PubMed Central

    Asai, Hirohide; Ikezu, Seiko; Tsunoda, Satoshi; Medalla, Maria; Luebke, Jennifer; Haydar, Tarik; Wolozin, Benjamin; Butovsky, Oleg; Kügler, Sebastian; Ikezu, Tsuneya

    2015-01-01

    Accumulation of pathological tau protein is a major hallmark of Alzheimer’s disease. Tau protein spreads from the entorhinal cortex to the hippocampal region early in the disease. Microglia, the primary phagocytes in the brain, are positively correlated with tau pathology, but their involvement in tau propagation is unknown. We developed an adeno-associated virus–based model exhibiting rapid tau propagation from the entorhinal cortex to the dentate gyrus in 4 weeks. We found that depleting microglia dramatically suppressed the propagation of tau and reduced excitability in the dentate gyrus in this mouse model. Moreover, we demonstrate that microglia spread tau via exosome secretion, and inhibiting exosome synthesis significantly reduced tau propagation in vitro and in vivo. These data suggest that microglia and exosomes contribute to the progression of tauopathy and that the exosome secretion pathway may be a therapeutic target. PMID:26436904

  18. Use of a benzimidazole derivative BF-188 in fluorescence multispectral imaging for selective visualization of tau protein fibrils in the Alzheimer's disease brain.

    PubMed

    Harada, Ryuichi; Okamura, Nobuyuki; Furumoto, Shozo; Yoshikawa, Takeo; Arai, Hiroyuki; Yanai, Kazuhiko; Kudo, Yukitsuka

    2014-02-01

    Selective visualization of amyloid-β and tau protein deposits will help to understand the pathophysiology of Alzheimer's disease (AD). Here, we introduce a novel fluorescent probe that can distinguish between these two deposits by multispectral fluorescence imaging technique. Fluorescence spectral analysis was performed using AD brain sections stained with novel fluorescence compounds. Competitive binding assay using [(3)H]-PiB was performed to evaluate the binding affinity of BF-188 for synthetic amyloid-β (Aβ) and tau fibrils. In AD brain sections, BF-188 clearly stained Aβ and tau protein deposits with different fluorescence spectra. In vitro binding assays indicated that BF-188 bound to both amyloid-β and tau fibrils with high affinity (K i  < 10 nM). In addition, BF-188 showed an excellent blood-brain barrier permeability in mice. Multispectral imaging with BF-188 could potentially be used for selective in vivo imaging of tau deposits as well as amyloid-β in the brain.

  19. A Cdk5 inhibitory peptide reduces tau hyperphosphorylation and apoptosis in neurons

    PubMed Central

    Zheng, Ya-Li; Kesavapany, Sashi; Gravell, Maneth; Hamilton, Rebecca S; Schubert, Manfred; Amin, Niranjana; Albers, Wayne; Grant, Philip; Pant, Harish C

    2005-01-01

    The extracellular aggregation of amyloid β (Aβ) peptides and the intracellular hyperphosphorylation of tau at specific epitopes are pathological hallmarks of neurodegenerative diseases such as Alzheimer's disease (AD). Cdk5 phosphorylates tau at AD-specific phospho-epitopes when it associates with p25. p25 is a truncated activator, which is produced from the physiological Cdk5 activator p35 upon exposure to Aβ peptides. We show that neuronal infections with Cdk5 inhibitory peptide (CIP) selectively inhibit p25/Cdk5 activity and suppress the aberrant tau phosphorylation in cortical neurons. Furthermore, Aβ1−42-induced apoptosis of these cortical neurons was also reduced by coinfection with CIP. Of particular importance is our finding that CIP did not inhibit endogenous or transfected p35/Cdk5 activity, nor did it inhibit the other cyclin-dependent kinases such as Cdc2, Cdk2, Cdk4 and Cdk6. These results, therefore, provide a strategy to address, and possibly ameliorate, the pathology of neurodegenerative diseases that may be a consequence of aberrant p25 activation of Cdk5, without affecting ‘normal' Cdk5 activity. PMID:15592431

  20. Cellular progesterone receptor phosphorylation in response to ligands activating protein kinases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, K.V.; Peralta, W.D.; Greene, G.L.

    1987-08-14

    Progesterone receptors were immunoprecipitated with monoclonal antibodies KD68 from lysates of human breast carcinoma T47D cells labelled to steady state specific activity with /sup 32/Pi. The 120 kDa /sup 32/P-labelled progesterone receptor band was resolved by polyacrylamide gel electrophoresis and identified by autoradiography. Phosphoamino acid analysis revealed serine phosphorylation, but no threonine or tyrosine phosphorylation. Treatment of the /sup 32/Pi-labelled cells with EGF, TPA or dibutyryl cAMP had no significant quantitative effect on progesterone receptor phosphorylation, though the EGF receptor and the cAMP-dependent protein kinases have been reported to catalyze phosphorylation of purified avian progesterone receptor preparations in cell freemore » systems. Progesterone receptor phosphorylation on serine residues was increased by 2-fold in cells treated with 10 nM progesterone; EGF had no effect on progesterone-mediated progesterone receptor phosphorylation.« less

  1. Petri net-based prediction of therapeutic targets that recover abnormally phosphorylated proteins in muscle atrophy.

    PubMed

    Jung, Jinmyung; Kwon, Mijin; Bae, Sunghwa; Yim, Soorin; Lee, Doheon

    2018-03-05

    Muscle atrophy, an involuntary loss of muscle mass, is involved in various diseases and sometimes leads to mortality. However, therapeutics for muscle atrophy thus far have had limited effects. Here, we present a new approach for therapeutic target prediction using Petri net simulation of the status of phosphorylation, with a reasonable assumption that the recovery of abnormally phosphorylated proteins can be a treatment for muscle atrophy. The Petri net model was employed to simulate phosphorylation status in three states, i.e. reference, atrophic and each gene-inhibited state based on the myocyte-specific phosphorylation network. Here, we newly devised a phosphorylation specific Petri net that involves two types of transitions (phosphorylation or de-phosphorylation) and two types of places (activation with or without phosphorylation). Before predicting therapeutic targets, the simulation results in reference and atrophic states were validated by Western blotting experiments detecting five marker proteins, i.e. RELA, SMAD2, SMAD3, FOXO1 and FOXO3. Finally, we determined 37 potential therapeutic targets whose inhibition recovers the phosphorylation status from an atrophic state as indicated by the five validated marker proteins. In the evaluation, we confirmed that the 37 potential targets were enriched for muscle atrophy-related terms such as actin and muscle contraction processes, and they were also significantly overlapping with the genes associated with muscle atrophy reported in the Comparative Toxicogenomics Database (p-value < 0.05). Furthermore, we noticed that they included several proteins that could not be characterized by the shortest path analysis. The three potential targets, i.e. BMPR1B, ROCK, and LEPR, were manually validated with the literature. In this study, we suggest a new approach to predict potential therapeutic targets of muscle atrophy with an analysis of phosphorylation status simulated by Petri net. We generated a list of the potential

  2. Synthesis and initial evaluation of YM-08, a blood-brain barrier permeable derivative of the heat shock protein 70 (Hsp70) inhibitor MKT-077, which reduces tau levels.

    PubMed

    Miyata, Yoshinari; Li, Xiaokai; Lee, Hsiu-Fang; Jinwal, Umesh K; Srinivasan, Sharan R; Seguin, Sandlin P; Young, Zapporah T; Brodsky, Jeffrey L; Dickey, Chad A; Sun, Duxin; Gestwicki, Jason E

    2013-06-19

    The molecular chaperone, heat shock protein 70 (Hsp70), is an emerging drug target for treating neurodegenerative tauopathies. We recently found that one promising Hsp70 inhibitor, MKT-077, reduces tau levels in cellular models. However, MKT-077 does not penetrate the blood-brain barrier (BBB), limiting its use as either a clinical candidate or probe for exploring Hsp70 as a drug target in the central nervous system (CNS). We hypothesized that replacing the cationic pyridinium moiety in MKT-077 with a neutral pyridine might improve its clogP and enhance its BBB penetrance. To test this idea, we designed and synthesized YM-08, a neutral analogue of MKT-077. Like the parent compound, YM-08 bound to Hsp70 in vitro and reduced phosphorylated tau levels in cultured brain slices. Pharmacokinetic evaluation in CD1 mice showed that YM-08 crossed the BBB and maintained a brain/plasma (B/P) value of ∼0.25 for at least 18 h. Together, these studies suggest that YM-08 is a promising scaffold for the development of Hsp70 inhibitors suitable for use in the CNS.

  3. Trichinella spiralis infection enhances protein kinase C phosphorylation in guinea pig alveolar macrophages.

    PubMed

    Dzik, J M; Zieliński, Z; Cieśla, J; Wałajtys-Rode, E

    2010-03-01

    To learn more about the signalling pathways involved in superoxide anion production in guinea pig alveolar macrophages, triggered by Trichinella spiralis infection, protein level and phosphorylation of mitogen activated protein (MAP) kinases and protein kinase C (PKC) were investigated. Infection with T. spiralis, the nematode having 'lung phase' during colonization of the host, enhances PKC phosphorylation in guinea pig alveolar macrophages. Isoenzymes beta and delta of PKC have been found significantly phosphorylated, although their location was not changed as a consequence of T. spiralis infection. Neither in macrophages from T. spiralis-infected guinea pig nor in platelet-activating factor (PAF)-stimulated macrophages from uninfected animals, participation of MAP kinases in respiratory burst activation was statistically significant. The parasite antigens seem to act through macrophage PAF receptors, transducing a signal for enhanced NADPH oxidase activity, as stimulating effect of newborn larvae homogenate on respiratory burst was abolished by specific PAF receptor antagonist CV 6209. A suppressive action of T. spiralis larvae on host alveolar macrophage innate immunological response was reflected by diminished protein level of ERK2 kinase and suppressed superoxide anion production, in spite of high level of PKC phosphorylation.

  4. Immunoprecipitation of PDE2 phosphorylated and inactivated by an associated protein kinase.

    PubMed

    Bentley, J Kelley

    2005-01-01

    A PDE2A2-associated protein kinase phosphorylates PDE2A2 in vivo and in vitro to inhibit its catalytic activity. Rat brain PDE2A2 may be solubilized using nona (ethylene glycol) mono dodecyl ether (Lubrol 12A9). PDE2A2 exists in a complex with a protein kinase regulating its activity in an adenosine triphosphate-dependent manner. When native or recombinant PDE2 is immunoprecipitated from PC12 cells using an antibody to the amino terminus in a buffer containing Lubrol 12A9, protease inhibitors, and phosphatase inhibitors, a coimmunoprecipitating nerve growth factor-stimulated protein kinase acts to phosphorylate it. PDE2A2 phosphoryla-tion occurs optimally at pH 6.5 in a sodium 2-(4-morpholino)-ethane sulfonate buffer with 5 mM MgCl2 and 1 mM Na3VO4. I describe protocols for producing an antibody to an amino-terminal bacterial fusion protein encoding amino acids 1-251 of PDE2A2 as well as the use of this antibody in immunoprecipitating a PDE2: tyrosine protein-kinase complex from rat brain or PC12 cells.

  5. An MRM-based workflow for quantifying cardiac mitochondrial protein phosphorylation in murine and human tissue.

    PubMed

    Lam, Maggie P Y; Scruggs, Sarah B; Kim, Tae-Young; Zong, Chenggong; Lau, Edward; Wang, Ding; Ryan, Christopher M; Faull, Kym F; Ping, Peipei

    2012-08-03

    The regulation of mitochondrial function is essential for cardiomyocyte adaptation to cellular stress. While it has long been understood that phosphorylation regulates flux through metabolic pathways, novel phosphorylation sites are continually being discovered in all functionally distinct areas of the mitochondrial proteome. Extracting biologically meaningful information from these phosphorylation sites requires an adaptable, sensitive, specific and robust method for their quantification. Here we report a multiple reaction monitoring-based mass spectrometric workflow for quantifying site-specific phosphorylation of mitochondrial proteins. Specifically, chromatographic and mass spectrometric conditions for 68 transitions derived from 23 murine and human phosphopeptides, and their corresponding unmodified peptides, were optimized. These methods enabled the quantification of endogenous phosphopeptides from the outer mitochondrial membrane protein VDAC, and the inner membrane proteins ANT and ETC complexes I, III and V. The development of this quantitative workflow is a pivotal step for advancing our knowledge and understanding of the regulatory effects of mitochondrial protein phosphorylation in cardiac physiology and pathophysiology. This article is part of a Special Issue entitled: Translational Proteomics. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Olympic boxing is associated with elevated levels of the neuronal protein tau in plasma.

    PubMed

    Neselius, Sanna; Zetterberg, Henrik; Blennow, Kaj; Randall, Jeffrey; Wilson, David; Marcusson, Jan; Brisby, Helena

    2013-01-01

    The aim of this study was to investigate if olympic (amateur) boxing is associated with elevation of brain injury biomarkers in peripheral blood compared to controls. Thirty olympic boxers competing in at least 47 bouts were compared to 25 controls. Blood was collected from the controls at one occasion and from the boxers within 1-6 days after a bout and after a rest period of at least 14 days. Tau concentration in plasma was determined using a novel single molecule ELISA assay and S-100B, glial fibrillary acidic protein, brain-derived neurotrophic factor and amyloid β 1-42 were determined using standard immunoassays. None of the boxers had been knocked-out during the bout. Plasma-tau was significantly increased in the boxers after a bout compared to controls (mean ± SD, 2.46 ± 5.10 vs. 0.79 ± 0.961 ng L(-1), p = 0.038). The other brain injury markers did not differ between the groups. Plasma-tau decreased significantly in the boxers after a resting period compared to after a bout (p = 0.030). Olympic boxing is associated with elevation of tau in plasma. The repetitive minimal head injury in boxing may lead to axonal injuries that can be diagnosed with a blood test.

  7. Evidence for an intermediate in tau filament formation.

    PubMed

    Chirita, Carmen N; Kuret, Jeff

    2004-02-17

    Alzheimer's disease is defined in part by the intraneuronal accumulation of filaments comprised of the microtubule-associated protein tau. In vitro, fibrillization of full-length, unphosphorylated recombinant tau can be induced under near-physiological conditions by treatment with various agents, including anionic surfactants. Here we examine the pathway through which anionic surfactants promote tau fibrillization using a combination of electron microscopy and fluorescence spectroscopy. Protein and surfactant first interacted in solution to form micelles, which then provided negatively charged surfaces that accumulated tau aggregates. Surface aggregation of tau protein was followed by the time-dependent appearance of a thioflavin S reactive intermediate that accumulated over a period of hours. The intermediate was unstable in the absence of anionic surfaces, suggesting it was not filamentous. Fibrillization proceeded after intermediate formation with classic nucleation-dependent kinetics, consisting of lag phase followed by the exponential increase in filament lengths, followed by an equilibrium phase reached in approximately 24 h. The pathway did not require protein insertion into the micelle hydrophobic core or conformational change arising from mixed micelle formation, because anionic microspheres constructed from impermeable polystyrene were capable of qualitatively reproducing all aspects of the fibrillization reaction. It is proposed that the progression from amorphous aggregation through intermediate formation and fibrillization may underlie the activity of other inducers such as hyperphosphorylation and may be operative in vivo.

  8. Applying the Brakes to Multi-Site SR Protein Phosphorylation: Substrate-Induced Effects on the Splicing Kinase SRPK1†

    PubMed Central

    Aubol, Brandon E.; Adams, Joseph A.

    2011-01-01

    To investigate how a protein kinase interacts with its protein substrate during extended, multi-site phosphorylation, the kinetic mechanism of a protein kinase involved in mRNA splicing control was investigated using rapid quench flow techniques. The protein kinase SRPK1 phosphorylates approximately 10 serines in the arginine-serine-rich domain (RS domain) of the SR protein SRSF1 in a C-to-N-terminal direction, a modification that directs this essential splicing factor from the cytoplasm to the nucleus. Transient-state kinetic experiments illustrate that the first phosphate is added rapidly onto the RS domain of SRSF1 (t1/2 = 0.1 sec) followed by slower, multi-site phosphorylation at the remaining serines (t1/2 = 15 sec). Mutagenesis experiments suggest that efficient phosphorylation rates are maintained by an extensive hydrogen bonding and electrostatic network between the RS domain of the SR protein and the active site and docking groove of the kinase. Catalytic trapping and viscosometric experiments demonstrate that while the phosphoryl transfer step is fast, ADP release limits multi-site phosphorylation. By studying phosphate incorporation into selectively pre-phosphorylated forms of the enzyme-substrate complex, the kinetic mechanism for site-specific phosphorylation along the reaction coordinate was assessed. The binding affinity of the SR protein, the phosphoryl transfer rate and ADP exchange rate were found to decline significantly as a function of progressive phosphorylation in the RS domain. These findings indicate that the protein substrate actively modulates initiation, extension and termination events associated with prolonged, multi-site phosphorylation. PMID:21728354

  9. Quantitative phosphoproteomics reveals the role of protein arginine phosphorylation in the bacterial stress response.

    PubMed

    Schmidt, Andreas; Trentini, Débora Broch; Spiess, Silvia; Fuhrmann, Jakob; Ammerer, Gustav; Mechtler, Karl; Clausen, Tim

    2014-02-01

    Arginine phosphorylation is an emerging protein modification implicated in the general stress response of Gram-positive bacteria. The modification is mediated by the arginine kinase McsB, which phosphorylates and inactivates the heat shock repressor CtsR. In this study, we developed a mass spectrometric approach accounting for the peculiar chemical properties of phosphoarginine. The improved methodology was used to analyze the dynamic changes in the Bacillus subtilis arginine phosphoproteome in response to different stress situations. Quantitative analysis showed that a B. subtilis mutant lacking the YwlE arginine phosphatase accumulated a strikingly large number of arginine phosphorylations (217 sites in 134 proteins), however only a minor fraction of these sites was increasingly modified during heat shock or oxidative stress. The main targets of McsB-mediated arginine phosphorylation comprise central factors of the stress response system including the CtsR and HrcA heat shock repressors, as well as major components of the protein quality control system such as the ClpCP protease and the GroEL chaperonine. These findings highlight the impact of arginine phosphorylation in orchestrating the bacterial stress response.

  10. Inhibitors of protein phosphorylation including the retinoblastoma protein induce germination of Candida albicans.

    PubMed

    Cho, T; Hamatake, H; Hagihara, Y; Kaminishi, H

    2000-02-01

    It has been previously shown that the induction of germination in Candida albicans occurs following its cessation of growth as a yeast. Similarly, mammalian cells undergo a differentiation process that is preceded by a growth cessation associated with a hypophosphorylation of proteins of the retinoblastoma gene family. It is postulated that a similar type of mechanism may be operative in C. albicans and protein phosphorylation inhibitors: forskolin (stimulates cyclic adenosine monophosphate production), okadaic acid (phosphatase inhibitor) and D-erythro-sphingosine (retinoblastoma protein phosphorylation inhibitor) have been used to further strengthen this hypothesis. Okadaic acid (1-1000 nM) and D-erythro-sphingosine (100 microM) significantly inhibited the growth of yeast cells of C. albicans. D-Erythro-sphingosine at 1000 microM was candidicidal. Forskolin did not significantly affect growth. Exponentially grown C. albicans pretreated with forskolin (10 microM), okadaic acid (1000 nM) or D-erythro-sphingosine (100 microM) readily germinated. In comparison, when these inhibitors were incorporated in the same medium, germination of exponentially grown cells did not occur. These results suggest that protein dephosphorylation may be necessary at an early stage of the yeast-hyphae transition in C. albicans.

  11. Modulation of Tau Isoforms Imbalance Precludes Tau Pathology and Cognitive Decline in a Mouse Model of Tauopathy.

    PubMed

    Espíndola, Sonia Lorena; Damianich, Ana; Alvarez, Rodrigo Javier; Sartor, Manuela; Belforte, Juan Emilio; Ferrario, Juan Esteban; Gallo, Jean-Marc; Avale, María Elena

    2018-04-17

    The microtubule-associated protein tau regulates myriad neuronal functions, such as microtubule dynamics, axonal transport and neurite outgrowth. Tauopathies are neurodegenerative disorders characterized by the abnormal metabolism of tau, which accumulates as insoluble neuronal deposits. The adult human brain contains equal amounts of tau isoforms with three (3R) or four (4R) repeats of microtubule-binding domains, derived from the alternative splicing of exon 10 (E10) in the tau transcript. Several tauopathies are associated with imbalances of tau isoforms, due to splicing deficits. Here, we used a trans-splicing strategy to shift the inclusion of E10 in a mouse model of tauopathy that produces abnormal excess of 3R tau. Modulating the 3R/4R ratio in the prefrontal cortex led to a significant reduction of pathological tau accumulation concomitant with improvement of neuronal firing and reduction of cognitive impairments. Our results suggest promising potential for the use of RNA reprogramming in human neurodegenerative diseases. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Phosphorylation coexists with O-GlcNAcylation in a plant virus protein and influences viral infection.

    PubMed

    Martínez-Turiño, Sandra; Pérez, José De Jesús; Hervás, Marta; Navajas, Rosana; Ciordia, Sergio; Udeshi, Namrata D; Shabanowitz, Jeffrey; Hunt, Donald F; García, Juan Antonio

    2018-06-01

    Phosphorylation and O-GlcNAcylation are two widespread post-translational modifications (PTMs), often affecting the same eukaryotic target protein. Plum pox virus (PPV) is a member of the genus Potyvirus which infects a wide range of plant species. O-GlcNAcylation of the capsid protein (CP) of PPV has been studied extensively, and some evidence of CP phosphorylation has also been reported. Here, we use proteomics analyses to demonstrate that PPV CP is phosphorylated in vivo at the N-terminus and the beginning of the core region. In contrast with the 'yin-yang' mechanism that applies to some mammalian proteins, PPV CP phosphorylation affects residues different from those that are O-GlcNAcylated (serines Ser-25, Ser-81, Ser-101 and Ser-118). Our findings show that PPV CP can be concurrently phosphorylated and O-GlcNAcylated at nearby residues. However, an analysis using a differential proteomics strategy based on iTRAQ (isobaric tags for relative and absolute quantitation) showed a significant enhancement of phosphorylation at Ser-25 in virions recovered from O-GlcNAcylation-deficient plants, suggesting that crosstalk between O-GlcNAcylation and phosphorylation in PPV CP takes place. Although the preclusion of phosphorylation at the four identified phosphotarget sites only had a limited impact on viral infection, the mimicking of phosphorylation prevents PPV infection in Prunus persica and weakens infection in Nicotiana benthamiana and other herbaceous hosts, prompting the emergence of potentially compensatory second mutations. We postulate that the joint action of phosphorylation and O-GlcNAcylation in the N-proximal segment of CP allows a fine-tuning of protein stability, providing the amount of CP required in each step of viral infection. © 2017 BSPP AND JOHN WILEY & SONS LTD.

  13. Controllability of protein-protein interaction phosphorylation-based networks: Participation of the hub 14-3-3 protein family

    PubMed Central

    Uhart, Marina; Flores, Gabriel; Bustos, Diego M.

    2016-01-01

    Posttranslational regulation of protein function is an ubiquitous mechanism in eukaryotic cells. Here, we analyzed biological properties of nodes and edges of a human protein-protein interaction phosphorylation-based network, especially of those nodes critical for the network controllability. We found that the minimal number of critical nodes needed to control the whole network is 29%, which is considerably lower compared to other real networks. These critical nodes are more regulated by posttranslational modifications and contain more binding domains to these modifications than other kinds of nodes in the network, suggesting an intra-group fast regulation. Also, when we analyzed the edges characteristics that connect critical and non-critical nodes, we found that the former are enriched in domain-to-eukaryotic linear motif interactions, whereas the later are enriched in domain-domain interactions. Our findings suggest a possible structure for protein-protein interaction networks with a densely interconnected and self-regulated central core, composed of critical nodes with a high participation in the controllability of the full network, and less regulated peripheral nodes. Our study offers a deeper understanding of complex network control and bridges the controllability theorems for complex networks and biological protein-protein interaction phosphorylation-based networked systems. PMID:27195976

  14. Phosphorylation-dependent trafficking of plasma membrane proteins in animal and plant cells.

    PubMed

    Offringa, Remko; Huang, Fang

    2013-09-01

    In both unicellular and multicellular organisms, transmembrane (TM) proteins are sorted to and retained at specific membrane domains by endomembrane trafficking mechanisms that recognize sorting signals in the these proteins. The trafficking and distribution of plasma membrane (PM)-localized TM proteins (PM proteins), especially of those PM proteins that show an asymmetric distribution over the PM, has received much attention, as their proper PM localization is crucial for elementary signaling and transport processes, and defects in their localization often lead to severe disease symptoms or developmental defects. The subcellular localization of PM proteins is dynamically regulated by post-translational modifications, such as phosphorylation and ubiquitination. These modificaitons mostly occur on sorting signals that are located in the larger cytosolic domains of the cargo proteins. Here we review the effects of phosphorylation of PM proteins on their trafficking, and present the key examples from the animal field that have been subject to studies for already several decades, such as that of aquaporin 2 and the epidermal growth factor receptor. Our knowledge on cargo trafficking in plants is largely based on studies of the family of PIN FORMED (PIN) carriers that mediate the efflux of the plant hormone auxin. We will review what is known on the subcellular distribution and trafficking of PIN proteins, with a focus on how this is modulated by phosphorylation, and identify and discuss analogies and differences in trafficking with the well-studied animal examples. © 2013 Institute of Botany, Chinese Academy of Sciences.

  15. Aminothienopyridazines and Methylene Blue Affect Tau Fibrillization via Cysteine Oxidation*

    PubMed Central

    Crowe, Alex; James, Michael J.; Lee, Virginia M.-Y.; Smith, Amos B.; Trojanowski, John Q.; Ballatore, Carlo; Brunden, Kurt R.

    2013-01-01

    Alzheimer disease and several other neurodegenerative disorders are characterized by the accumulation of intraneuronal fibrils comprised of the protein Tau. Tau is normally a soluble protein that stabilizes microtubules, with splice isoforms that contain either three (3-R) or four (4-R) microtubule binding repeats. The formation of Tau fibrils is thought to result in neuronal damage, and inhibitors of Tau fibrillization may hold promise as therapeutic agents. The process of Tau fibrillization can be replicated in vitro, and a number of small molecules have been identified that inhibit Tau fibril formation. However, little is known about how these molecules affect Tau fibrillization. Here, we examined the mechanism by which the previously described aminothieno pyridazine (ATPZ) series of compounds inhibit Tau fibrillization. Active ATPZs were found to promote the oxidation of the two cysteine residues within 4-R Tau by a redox cycling mechanism, resulting in the formation of a disulfide-containing compact monomer that was refractory to fibrillization. Moreover, the ATPZs facilitated intermolecular disulfide formation between 3-R Tau monomers, leading to dimers that were capable of fibrillization. The ATPZs also caused cysteine oxidation in molecules unrelated to Tau. Interestingly, methylene blue, an inhibitor of Tau fibrillization under evaluation in Alzheimer disease clinical trials, caused a similar oxidation of cysteines in Tau and other molecules. These findings reveal that the ATPZs and methylene blue act by a mechanism that may affect their viability as potential therapeutic agents. PMID:23443659

  16. Cerebrospinal Fluid Amyloid Beta and Tau Concentrations Are Not Modulated by 16 Weeks of Moderate- to High-Intensity Physical Exercise in Patients with Alzheimer Disease.

    PubMed

    Steen Jensen, Camilla; Portelius, Erik; Siersma, Volkert; Høgh, Peter; Wermuth, Lene; Blennow, Kaj; Zetterberg, Henrik; Waldemar, Gunhild; Gregers Hasselbalch, Steen; Hviid Simonsen, Anja

    2016-01-01

    Physical exercise may have some effect on cognition in patients with Alzheimer disease (AD). However, the underlying biochemical effects are unclear. Animal studies have shown that amyloid beta (Aβ), one of the pathological hallmarks of AD, can be altered with high levels of physical activity. The objective of this study was to elucidate the effect of 16 weeks of moderate- to high-intensity physical exercise on the biomarkers of AD, with special emphasis on the amyloidogenic pathway. From a total of 53 patients with AD participating in the Preserving Cognition, Quality of Life, Physical Health and Functional Ability in Alzheimer's Disease: The Effect of Physical Exercise (ADEX) study we analyzed cerebrospinal fluid samples for Aβ species, total tau (t-tau), phosphorylated tau (p-tau) and soluble amyloid precursor protein (sAPP) species. We also assessed the patients for apolipoprotein E ε4 (ApoE ε4) genotype. We found no effect of 16 weeks of physical exercise on the selected biomarkers, and no effect of ApoE ε4 genotype. Our findings suggest that the possible effect of physical exercise on cognition in patients with AD is not due to modulation of Aβ, t-tau, p-tau and sAPP species. © 2016 S. Karger AG, Basel.

  17. ApoE4 markedly exacerbates tau-mediated neurodegeneration in a mouse model of tauopathy.

    PubMed

    Shi, Yang; Yamada, Kaoru; Liddelow, Shane Antony; Smith, Scott T; Zhao, Lingzhi; Luo, Wenjie; Tsai, Richard M; Spina, Salvatore; Grinberg, Lea T; Rojas, Julio C; Gallardo, Gilbert; Wang, Kairuo; Roh, Joseph; Robinson, Grace; Finn, Mary Beth; Jiang, Hong; Sullivan, Patrick M; Baufeld, Caroline; Wood, Michael W; Sutphen, Courtney; McCue, Lena; Xiong, Chengjie; Del-Aguila, Jorge L; Morris, John C; Cruchaga, Carlos; Fagan, Anne M; Miller, Bruce L; Boxer, Adam L; Seeley, William W; Butovsky, Oleg; Barres, Ben A; Paul, Steven M; Holtzman, David M

    2017-09-28

    APOE4 is the strongest genetic risk factor for late-onset Alzheimer disease. ApoE4 increases brain amyloid-β pathology relative to other ApoE isoforms. However, whether APOE independently influences tau pathology, the other major proteinopathy of Alzheimer disease and other tauopathies, or tau-mediated neurodegeneration, is not clear. By generating P301S tau transgenic mice on either a human ApoE knock-in (KI) or ApoE knockout (KO) background, here we show that P301S/E4 mice have significantly higher tau levels in the brain and a greater extent of somatodendritic tau redistribution by three months of age compared with P301S/E2, P301S/E3, and P301S/EKO mice. By nine months of age, P301S mice with different ApoE genotypes display distinct phosphorylated tau protein (p-tau) staining patterns. P301S/E4 mice develop markedly more brain atrophy and neuroinflammation than P301S/E2 and P301S/E3 mice, whereas P301S/EKO mice are largely protected from these changes. In vitro, E4-expressing microglia exhibit higher innate immune reactivity after lipopolysaccharide treatment. Co-culturing P301S tau-expressing neurons with E4-expressing mixed glia results in a significantly higher level of tumour-necrosis factor-α (TNF-α) secretion and markedly reduced neuronal viability compared with neuron/E2 and neuron/E3 co-cultures. Neurons co-cultured with EKO glia showed the greatest viability with the lowest level of secreted TNF-α. Treatment of P301S neurons with recombinant ApoE (E2, E3, E4) also leads to some neuronal damage and death compared with the absence of ApoE, with ApoE4 exacerbating the effect. In individuals with a sporadic primary tauopathy, the presence of an ε4 allele is associated with more severe regional neurodegeneration. In individuals who are positive for amyloid-β pathology with symptomatic Alzheimer disease who usually have tau pathology, ε4-carriers demonstrate greater rates of disease progression. Our results demonstrate that ApoE affects tau

  18. Protein phosphorylation in plant immunity: insights into the regulation of pattern recognition receptor-mediated signaling

    PubMed Central

    Park, Chang-Jin; Caddell, Daniel F.; Ronald, Pamela C.

    2012-01-01

    Plants are continuously challenged by pathogens including viruses, bacteria, and fungi. The plant immune system recognizes invading pathogens and responds by activating an immune response. These responses occur rapidly and often involve post-translational modifications (PTMs) within the proteome. Protein phosphorylation is a common and intensively studied form of these PTMs and regulates many plant processes including plant growth, development, and immunity. Most well-characterized pattern recognition receptors (PRRs), including Xanthomonas resistance 21, flagellin sensitive 2, and elongation factor-Tu receptor, possess intrinsic protein kinase activity and regulate downstream signaling through phosphorylation events. Here, we focus on the phosphorylation events of plant PRRs that play important roles in the immune response. We also discuss the role of phosphorylation in regulating mitogen-associated protein kinase cascades and transcription factors in plant immune signaling. PMID:22876255

  19. PICALM modulates autophagy activity and tau accumulation

    PubMed Central

    Moreau, Kevin; Fleming, Angeleen; Imarisio, Sara; Lopez Ramirez, Ana; Mercer, Jacob L.; Jimenez-Sanchez, Maria; Bento, Carla F.; Puri, Claudia; Zavodszky, Eszter; Siddiqi, Farah; Lavau, Catherine P.; Betton, Maureen; O’Kane, Cahir J.; Wechsler, Daniel S.; Rubinsztein, David C.

    2014-01-01

    Genome-wide association studies have identified several loci associated with Alzheimer’s disease (AD), including proteins involved in endocytic trafficking such as PICALM/CALM (phosphatidylinositol binding clathrin assembly protein). It is unclear how these loci may contribute to AD pathology. Here we show that CALM modulates autophagy and alters clearance of tau, a protein which is a known autophagy substrate and which is causatively linked to AD, both in vitro and in vivo. Furthermore, altered CALM expression exacerbates tau-mediated toxicity in zebrafish transgenic models. CALM influences autophagy by regulating the endocytosis of SNAREs, such as VAMP2, VAMP3 and VAMP8, which have diverse effects on different stages of the autophagy pathway, from autophagosome formation to autophagosome degradation. This study suggests that the AD genetic risk factor CALM modulates autophagy, and this may affect disease in a number of ways including modulation of tau turnover. PMID:25241929

  20. Human amyloid β peptide and tau co-expression impairs behavior and causes specific gene expression changes in Caenorhabditis elegans.

    PubMed

    Wang, Chenyin; Saar, Valeria; Leung, Ka Lai; Chen, Liang; Wong, Garry

    2018-01-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by the presence of extracellular amyloid plaques consisting of Amyloid-β peptide (Aβ) aggregates and neurofibrillary tangles formed by aggregation of hyperphosphorylated microtubule-associated protein tau. We generated a novel invertebrate model of AD by crossing Aβ1-42 (strain CL2355) with either pro-aggregating tau (strain BR5270) or anti-aggregating tau (strain BR5271) pan-neuronal expressing transgenic Caenorhabditis elegans. The lifespan and progeny viability of the double transgenic strains were significantly decreased compared with wild type N2 (P<0.0001). In addition, co-expression of these transgenes interfered with neurotransmitter signaling pathways, caused deficits in chemotaxis associative learning, increased protein aggregation visualized by Congo red staining, and increased neuronal loss. Global transcriptomic RNA-seq analysis revealed 248 up- and 805 down-regulated genes in N2 wild type versus Aβ1-42+pro-aggregating tau animals, compared to 293 up- and 295 down-regulated genes in N2 wild type versus Aβ1-42+anti-aggregating tau animals. Gene set enrichment analysis of Aβ1-42+pro-aggregating tau animals uncovered up-regulated annotation clusters UDP-glucuronosyltransferase (5 genes, P<4.2E-4), protein phosphorylation (5 genes, P<2.60E-02), and aging (5 genes, P<8.1E-2) while the down-regulated clusters included nematode cuticle collagen (36 genes, P<1.5E-21). RNA interference of 13 available top up-regulated genes in Aβ1-42+pro-aggregating tau animals revealed that F-box family genes and nep-4 could enhance life span deficits and chemotaxis deficits while Y39G8C.2 (TTBK2) could suppress these behaviors. Comparing the list of regulated genes from C. elegans to the top 60 genes related to human AD confirmed an overlap of 8 genes: patched homolog 1, PTCH1 (ptc-3), the Rab GTPase activating protein, TBC1D16 (tbc-16), the WD repeat and FYVE domain-containing protein 3

  1. Hsp90 activator Aha1 drives production of pathological tau aggregates

    PubMed Central

    Shelton, Lindsey B.; Baker, Jeremy D.; Zheng, Dali; Sullivan, Leia E.; Solanki, Parth K.; Webster, Jack M.; Sun, Zheying; Sabbagh, Jonathan J.; Nordhues, Bryce A.; Koren, John; Ghosh, Suman; Blagg, Brian S. J.; Dickey, Chad A.

    2017-01-01

    The microtubule-associated protein tau (MAPT, tau) forms neurotoxic aggregates that promote cognitive deficits in tauopathies, the most common of which is Alzheimer’s disease (AD). The 90-kDa heat shock protein (Hsp90) chaperone system affects the accumulation of these toxic tau species, which can be modulated with Hsp90 inhibitors. However, many Hsp90 inhibitors are not blood–brain barrier-permeable, and several present associated toxicities. Here, we find that the cochaperone, activator of Hsp90 ATPase homolog 1 (Aha1), dramatically increased the production of aggregated tau. Treatment with an Aha1 inhibitor, KU-177, dramatically reduced the accumulation of insoluble tau. Aha1 colocalized with tau pathology in human brain tissue, and this association positively correlated with AD progression. Aha1 overexpression in the rTg4510 tau transgenic mouse model promoted insoluble and oligomeric tau accumulation leading to a physiological deficit in cognitive function. Overall, these data demonstrate that Aha1 contributes to tau fibril formation and neurotoxicity through Hsp90. This suggests that therapeutics targeting Aha1 may reduce toxic tau oligomers and slow or prevent neurodegenerative disease progression. PMID:28827321

  2. Cadmium inhibits mouse sperm motility through inducing tyrosine phosphorylation in a specific subset of proteins.

    PubMed

    Wang, Lirui; Li, Yuhua; Fu, Jieli; Zhen, Linqing; Zhao, Na; Yang, Qiangzhen; Li, Sisi; Li, Xinhong

    2016-08-01

    Cadmium (Cd) has been reported to impair male fertility, primarily by disrupting sperm motility, but the underlying molecular mechanism remains unclear. Here we investigated the effects of Cd on sperm motility, tyrosine phosphorylation, AMP-activated protein kinase (AMPK) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) activity, and ATP levels in vitro. Our results demonstrated that Cd inhibited sperm motility, GAPDH activity, AMPK activity and ATP production, and induced tyrosine phosphorylation of 55-57KDa proteins. Importantly, all the parameters affected by Cd were restored to normal levels when incubated with 10μM Cd in the presence of 30μM ethylene diamine tetraacetic acid (EDTA). Interestingly, changes of tyrosine phosphorylation levels of 55-57KDa proteins are completely contrary to that of other parameters. These results suggest that Cd-induced tyrosine phosphorylation of 55-57KDa proteins might act as an engine to block intracellular energy metabolism and thus decrease sperm motility. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Evaluating the Patterns of Aging-Related Tau Astrogliopathy Unravels Novel Insights Into Brain Aging and Neurodegenerative Diseases.

    PubMed

    Kovacs, Gabor G; Robinson, John L; Xie, Sharon X; Lee, Edward B; Grossman, Murray; Wolk, David A; Irwin, David J; Weintraub, Dan; Kim, Christopher F; Schuck, Theresa; Yousef, Ahmed; Wagner, Stephanie T; Suh, Eunran; Van Deerlin, Vivianna M; Lee, Virginia M-Y; Trojanowski, John Q

    2017-04-01

    The term "aging-related tau astrogliopathy" (ARTAG) describes pathological accumulation of abnormally phosphorylated tau protein in astrocytes. We evaluated the correlates of ARTAG types (i.e., subpial, subependymal, white and gray matter, and perivascular) in different neuroanatomical regions. Clinical, neuropathological, and genetic (eg, APOE ε4 allele, MAPT H1/H2 haplotype) data from 628 postmortem brains from subjects were investigated; most of the patients had been longitudinally followed at the University of Pennsylvania. We found that (i) the amygdala is a hotspot for all ARTAG types; (ii) age at death, male sex, and presence of primary frontotemporal lobar degeneration (FTLD) tauopathy are significantly associated with ARTAG; (iii) age at death, greater degree of brain atrophy, ventricular enlargement, and Alzheimer disease (AD)-related variables are associated with subpial, white matter, and perivascular ARTAG types; (iv) AD-related variables are associated particularly with lobar white matter ARTAG; and (v) gray matter ARTAG in primary FTLD-tauopathies appears in areas without neuronal tau pathology. We provide a reference map of ARTAG types and propose at least 5 constellations of ARTAG. Furthermore, we propose a conceptual link between primary FTLD-tauopathy and ARTAG-related astrocytic tau pathologies. Our observations serve as a basis for etiological stratification and definition of progression patterns of ARTAG. © 2017 American Association of Neuropathologists, Inc. All rights reserved.

  4. Calcium ion binding properties and the effect of phosphorylation on the intrinsically disordered Starmaker protein.

    PubMed

    Wojtas, Magdalena; Hołubowicz, Rafał; Poznar, Monika; Maciejewska, Marta; Ożyhar, Andrzej; Dobryszycki, Piotr

    2015-10-27

    Starmaker (Stm) is an intrinsically disordered protein (IDP) involved in otolith biomineralization in Danio rerio. Stm controls calcium carbonate crystal formation in vivo and in vitro. Phosphorylation of Stm affects its biomineralization properties. This study examined the effects of calcium ions and phosphorylation on the structure of Stm. We have shown that CK2 kinase phosphorylates 25 or 26 residues in Stm. Furthermore, we have demonstrated that Stm's affinity for calcium binding is dependent on its phosphorylation state. Phosphorylated Stm (StmP) has an estimated 30 ± 1 calcium binding sites per protein molecule with a dissociation constant (KD) of 61 ± 4 μM, while the unphosphorylated protein has 28 ± 3 sites and a KD of 210 ± 22 μM. Calcium ion binding induces a compaction of the Stm molecule, causing a significant decrease in its hydrodynamic radius and the formation of a secondary structure. The screening effect of Na(+) ions on calcium binding was also observed. Analysis of the hydrodynamic properties of Stm and StmP showed that Stm and StmP molecules adopt the structure of native coil-like proteins.

  5. PD Trafficking of Potato Leaf Roll Virus Movement Protein in Arabidopsis Depends on Site-specific Protein Phosphorylation

    PubMed Central

    Sonnewald, Uwe

    2011-01-01

    Many plant viruses encode for specialized movement proteins (MP) to facilitate passage of viral material to and through plasmodesmata (PD). To analyze intracellular trafficking of potato leaf roll virus (PLRV) movement protein (MP17) we performed GFP fusion experiments with distinct deletion variants of MP17. These studies revealed that the C-terminus of MP17 is essential but not sufficient for PD targeting. Interestingly, fusion of GFP to three C-terminal MP17 deletion variants resulted in the accumulation of GFP in chloroplasts. This indicates that MP17 harbors hidden plastid targeting sequences. Previous studies showed that posttranslational protein phosphorylation influences PD targeting of MP and virus spread. Analysis of MP17-derived phospho-peptides by mass spectrometry revealed four phosphorylated serine residues (S71, S79, S137, and S140). Site-directed mutagenesis of S71/S79 and S137/S140 showed that the C-terminal serine residues S137/S140 are dispensable for PD targeting. However, exchange of S71/S79 to A71/A79 abolished PD targeting of the mutated MP17 protein. To mimic phosphorylation of S71/S79 both amino acids were substituted by aspartic acid. The resulting D71/D79 variant of MP17 was efficiently targeted to PD. Further deletion analysis showed that PD targeting of MP17 is dependent on the C-terminus, phosphorylation of S71 and/or S79 and a N-terminal domain. PMID:22645527

  6. 18F-AV-1451 tau PET imaging correlates strongly with tau neuropathology in MAPT mutation carriers

    PubMed Central

    Puschmann, Andreas; Schöll, Michael; Ohlsson, Tomas; van Swieten, John; Honer, Michael; Englund, Elisabet

    2016-01-01

    Abstract Tau positron emission tomography ligands provide the novel possibility to image tau pathology in vivo. However, little is known about how in vivo brain uptake of tau positron emission tomography ligands relates to tau aggregates observed post-mortem. We performed tau positron emission tomography imaging with 18F-AV-1451 in three patients harbouring a p.R406W mutation in the MAPT gene, encoding tau. This mutation results in 3- and 4-repeat tau aggregates similar to those in Alzheimer’s disease, and many of the mutation carriers initially suffer from memory impairment and temporal lobe atrophy. Two patients with short disease duration and isolated memory impairment exhibited 18F-AV-1451 uptake mainly in the hippocampus and adjacent temporal lobe regions, correlating with glucose hypometabolism in corresponding regions. One patient died after 26 years of disease duration with dementia and behavioural deficits. Pre-mortem, there was 18F-AV-1451 uptake in the temporal and frontal lobes, as well as in the basal ganglia, which strongly correlated with the regional extent and amount of tau pathology in post-mortem brain sections. Amyloid-β (18F-flutemetamol) positron emission tomography scans were negative in all cases, as were stainings of brain sections for amyloid. This provides strong evidence that 18F-AV-1451 positron emission tomography can be used to accurately quantify in vivo the regional distribution of hyperphosphorylated tau protein. PMID:27357347

  7. Juvenile Hormone Prevents 20-Hydroxyecdysone-induced Metamorphosis by Regulating the Phosphorylation of a Newly Identified Broad Protein*

    PubMed Central

    Cai, Mei-Juan; Liu, Wen; Pei, Xu-Yang; Li, Xiang-Ru; He, Hong-Juan; Wang, Jin-Xing; Zhao, Xiao-Fan

    2014-01-01

    The steroid hormone 20-hydroxyecdysone (20E) initiates insect molting and metamorphosis. By contrast, juvenile hormone (JH) prevents metamorphosis. However, the mechanism by which JH inhibits metamorphosis remains unclear. In this study, we propose that JH induces the phosphorylation of Broad isoform Z7 (BrZ7), a newly identified protein, to inhibit 20E-mediated metamorphosis in the lepidopteran insect Helicoverpa armigera. The knockdown of BrZ7 in larvae inhibited metamorphosis by repressing the expression of the 20E response gene. BrZ7 was weakly expressed and phosphorylated during larval growth but highly expressed and non-phosphorylated during metamorphosis. JH regulated the rapid phosphorylation of BrZ7 via a G-protein-coupled receptor-, phospholipase C-, and protein kinase C-triggered pathway. The phosphorylated BrZ7 bound to the 5′-regulatory region of calponin to regulate its expression in the JH pathway. Exogenous JH induced BrZ7 phosphorylation to prevent metamorphosis by suppressing 20E-related gene transcription. JH promoted non-phosphorylated calponin interacting with ultraspiracle protein to activate the JH pathway and antagonize the 20E pathway. This study reveals one of the possible mechanisms by which JH counteracts 20E-regulated metamorphosis by inducing the phosphorylation of BrZ7. PMID:25096576

  8. Phosphorylation of the human respiratory syncytial virus P protein mediates M2-2 regulation of viral RNA synthesis, a process that involves two P proteins.

    PubMed

    Asenjo, Ana; Villanueva, Nieves

    2016-01-04

    The M2-2 protein regulates the balance between human respiratory syncytial virus (HRSV) transcription and replication. Here it is shown that M2-2 mediated transcriptional inhibition is managed through P protein phosphorylation. Transcription inhibition by M2-2 of the HRSV based minigenome pRSVluc, required P protein phosphorylation at serines (S) in positions 116, 117, 119 and increased inhibition is observed if S232 or S237 is also phosphorylated. Phosphorylation of these residues is required for viral particle egression from infected cells. Viral RNA synthesis complementation assays between P protein variants, suggest that two types of P proteins participate in the process as components of RNA dependent RNA polymerase (RdRp). Type I is only functional when, as a homotetramer, it is bound to N and L proteins through residues 203-241. Type II is functionally independent of these interactions and binds to N protein at a region outside residues 232-241. P protein type I phosphorylation at S116, S117 and S119, did not affect the activity of RdRp but this phosphorylation in type II avoids its interaction with N protein and impairs RdRp functionality for transcription and replication. Structural changes in the RdRp, mediated by phosphorylation turnover at the indicated residues, in the two types of P proteins, may result in a fine adjustment, late in the infectious cycle, of transcription, replication and progression in the morphogenetic process that ends in egression of the viral particles from infected cells. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Quantitative Phosphoproteomics Reveals the Role of Protein Arginine Phosphorylation in the Bacterial Stress Response*

    PubMed Central

    Schmidt, Andreas; Trentini, Débora Broch; Spiess, Silvia; Fuhrmann, Jakob; Ammerer, Gustav; Mechtler, Karl; Clausen, Tim

    2014-01-01

    Arginine phosphorylation is an emerging protein modification implicated in the general stress response of Gram-positive bacteria. The modification is mediated by the arginine kinase McsB, which phosphorylates and inactivates the heat shock repressor CtsR. In this study, we developed a mass spectrometric approach accounting for the peculiar chemical properties of phosphoarginine. The improved methodology was used to analyze the dynamic changes in the Bacillus subtilis arginine phosphoproteome in response to different stress situations. Quantitative analysis showed that a B. subtilis mutant lacking the YwlE arginine phosphatase accumulated a strikingly large number of arginine phosphorylations (217 sites in 134 proteins), however only a minor fraction of these sites was increasingly modified during heat shock or oxidative stress. The main targets of McsB-mediated arginine phosphorylation comprise central factors of the stress response system including the CtsR and HrcA heat shock repressors, as well as major components of the protein quality control system such as the ClpCP protease and the GroEL chaperonine. These findings highlight the impact of arginine phosphorylation in orchestrating the bacterial stress response. PMID:24263382

  10. The 29-kDa proteins phosphorylated ion thrombin-activated human platelets are forms of the estrogen receptor-related 27-kDa heat shock protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mendelsohn, M.E.; Yan Zhu; O'Neill, S.

    Thrombin plays a critical role in platelet activation, hemostasis, and thrombosis. Cellular activation by thrombin leads to the phosphorylation of multiple proteins, most of which are unidentified. The authors have characterized several 29-kDa proteins that are rapidly phosphorylated following exposure of intact human platelets to thrombin. A murine monoclonal antibody raised to an unidentified estrogen receptor-related 29-kDa protein selectively recognized these proteins as well as a more basic, unphosphorylated 27-kDa protein. Cellular activation by thrombin led to a marked shift in the proportion of protein from the 27-kDa unphosphorylated form to the 29-kDa phosphoprotein species. Using this antibody, they isolatedmore » and sequenced a human cDNA clone encoding a protein that was identical to the mammalian 27-kDa heat shock protein (HSP27), a protein of uncertain function that is known to be phosphorylated to several forms and to be transcriptionally induced by estrogen. The 29-kDa proteins were confirmed to be phosphorylated forms of HSP27 by immunoprecipitation studies. Thus, the estrogen receptor-related protein is HSP27, and the three major 20-kDa proteins phosphorylated in thrombin-activated platelets are forms of HSP27. These data suggest a role for HSP27 in the signal transduction events of platelet activation.« less

  11. Signal-transducing protein phosphorylation cascades mediated by Ras/Rho proteins in the mammalian cell: the potential for multiplex signalling.

    PubMed Central

    Denhardt, D T

    1996-01-01

    The features of three distinct protein phosphorylation cascades in mammalian cells are becoming clear. These signalling pathways link receptor-mediated events at the cell surface or intracellular perturbations such as DNA damage to changes in cytoskeletal structure, vesicle transport and altered transcription factor activity. The best known pathway, the Ras-->Raf-->MEK-->ERK cascade [where ERK is extracellular-signal-regulated kinase and MEK is mitogen-activated protein (MAP) kinase/ERK kinase], is typically stimulated strongly by mitogens and growth factors. The other two pathways, stimulated primarily by assorted cytokines, hormones and various forms of stress, predominantly utilize p21 proteins of the Rho family (Rho, Rac and CDC42), although Ras can also participate. Diagnostic of each pathway is the MAP kinase component, which is phosphorylated by a unique dual-specificity kinase on both tyrosine and threonine in one of three motifs (Thr-Glu-Tyr, Thr-Phe-Tyr or Thr-Gly-Tyr), depending upon the pathway. In addition to activating one or more protein phosphorylation cascades, the initiating stimulus may also mobilize a variety of other signalling molecules (e.g. protein kinase C isoforms, phospholipid kinases, G-protein alpha and beta gamma subunits, phospholipases, intracellular Ca2+). These various signals impact to a greater or lesser extent on multiple downstream effectors. Important concepts are that signal transmission often entails the targeted relocation of specific proteins in the cell, and the reversible formation of protein complexes by means of regulated protein phosphorylation. The signalling circuits may be completed by the phosphorylation of upstream effectors by downstream kinases, resulting in a modulation of the signal. Signalling is terminated and the components returned to the ground state largely by dephosphorylation. There is an indeterminant amount of cross-talk among the pathways, and many of the proteins in the pathways belong to families

  12. The virion N protein of infectious bronchitis virus is more phosphorylated than the N protein from infected cell lysates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jayaram, Jyothi; Department of Biology, Texas A and M University, College Station, TX 77843-3258; Youn, Soonjeon

    Because phosphorylation of the infectious bronchitis virus (IBV) nucleocapsid protein (N) may regulate its multiple roles in viral replication, the dynamics of N phosphorylation were examined. {sup 32}P-orthophosphate labeling and Western blot analyses confirmed that N was the only viral protein that was phosphorylated. Pulse labeling with {sup 32}P-orthophosphate indicated that the IBV N protein was phosphorylated in the virion, as well as at all times during infection in either chicken embryo kidney cells or Vero cells. Pulse-chase analyses followed by immunoprecipitation of IBV N proteins using rabbit anti-IBV N polyclonal antibody demonstrated that the phosphate on the N proteinmore » was stable for at least 1 h. Simultaneous labeling with {sup 32}P-orthophosphate and {sup 3}H-leucine identified a 3.5-fold increase in the {sup 32}P:{sup 3}H counts per minute (cpm) ratio of N in the virion as compared to the {sup 32}P:{sup 3}H cpm ratio of N in the cell lysates from chicken embryo kidney cells, whereas in Vero cells the {sup 32}P:{sup 3}H cpm ratio of N from the virion was 10.5-fold greater than the {sup 32}P:{sup 3}H cpm ratio of N from the cell lysates. These studies are consistent with the phosphorylation of the IBV N playing a role in assembly or maturation of the viral particle.« less

  13. Tau Pathology is Present In Vivo and Develops In Vitro in Sensory Neurons from Human P301S Tau Transgenic Mice: A System for Screening Drugs against Tauopathies

    PubMed Central

    Mellone, Manuela; Kestoras, Dimitra; Andrews, Melissa R.; Dassie, Elisa; Crowther, R. Anthony; Stokin, Gorazd B.; Tinsley, Jon; Horne, Graeme; Goedert, Michel

    2013-01-01

    Intracellular tau aggregates are the neuropathological hallmark of several neurodegenerative diseases, including Alzheimer's disease, progressive supranuclear palsy, and cases of frontotemporal dementia, but the link between these aggregates and neurodegeneration remains unclear. Neuronal models recapitulating the main features of tau pathology are necessary to investigate the molecular mechanisms of tau malfunction, but current models show little and inconsistent spontaneous tau aggregation. We show that dorsal root ganglion (DRG) neurons in transgenic mice expressing human P301S tau (P301S-htau) develop tau pathology similar to that found in brain and spinal cord and a significant reduction in mechanosensation occurs before detectable fibrillar tau formation. DRG neuronal cultures established from adult P301S-htau mice at different ages retained the pattern of aberrant tau found in vivo. Moreover, htau became progressively hyperphosphorylated over 2 months in vitro beginning with nonsymptomatic neurons, while hyperphosphorylated P301S-htau-positive neurons from 5-month-old mice cultured for 2 months died preferentially. P301S-htau-positive neurons grew aberrant axons, including spheroids, typically found in human tauopathies. Neurons cultured at advanced stages of tau pathology showed a 60% decrease in the fraction of moving mitochondria. SEG28019, a novel O-GlcNAcase inhibitor, reduced steady-state pSer396/pSer404 phosphorylation over 7 weeks in a significant proportion of DRG neurons showing for the first time the possible beneficial effect of prolonged dosing of O-GlcNAcase inhibitor in vitro. Our system is unique in that fibrillar tau forms without external manipulation and provides an important new tool for understanding the mechanisms of tau dysfunction and for screening of compounds for treatment of tauopathies. PMID:24227726

  14. Expression of a truncated human tau protein induces aqueous-phase free radicals in a rat model of tauopathy: implications for targeted antioxidative therapy.

    PubMed

    Cente, Martin; Filipcik, Peter; Mandakova, Stanislava; Zilka, Norbert; Krajciova, Gabriela; Novak, Michal

    2009-01-01

    Oxidative stress has been implicated in the pathogenesis of many neurodegenerative diseases including Alzheimer's disease (AD). We investigated the effect of a truncated form of the human tau protein in the neurons of transgenic rats. Using electron paramagnetic resonance we observed significantly increased accumulation of ascorbyl free radicals in brains of transgenic animals (up to 1.5-fold increase; P < 0.01). Examination of an in vitro model of cultured rat corticohippocampal neurons revealed that even relatively low level expression of human truncated tau protein (equal to 50% of endogenous tau) induced oxidative stress that resulted in increased depolarization of mitochondria (approximately 1.2-fold above control, P < 0.01) and increases in reactive oxygen species (approximately 1.3-fold above control, P < 0.001). We show that mitochondrial damage-associated oxidative stress is an early event in neurodegeneration. Furthermore, using two common antioxidants (vitamin C and E), we were able significantly eliminate tau-induced elevation of reactive oxygen species. Interestingly, vitamin C was found to be selective in the scavenging activity, suggesting that expression of truncated tau protein preferentially leads to increases in aqueous phase oxidants and free radicals such as hydrogen peroxide and hydroxyl and superoxide radicals. Our results suggest that antioxidant strategies designed to treat AD should focus on elimination of aqueous phase oxidants and free radicals.

  15. A tyrosine-phosphorylated 55-kilodalton motility-associated bovine sperm protein is regulated by cyclic adenosine 3',5'-monophosphates and calcium.

    PubMed

    Vijayaraghavan, S; Trautman, K D; Goueli, S A; Carr, D W

    1997-06-01

    Sperm motility is regulated by protein phosphorylation. We have recently shown that a serine/threonine phosphatase system is involved in motility regulation. Two of the components of the phosphatase system, GSK-3 and PP1gamma2, are regulated by tyrosine phosphorylation. During our investigation of sperm tyrosine-phosphorylated proteins we discovered a 55-kDa protein whose tyrosine phosphorylation correlates closely to the motility state of sperm. This protein is tyrosine phosphorylated to a much higher degree in motile caudal than in immotile caput epididymal sperm. Motility inhibition of caudal epididymal sperm by protein kinase A (PKA) anchoring inhibition or by ionomycin-induced calcium overload led to the virtual disappearance of tyrosine phosphorylation of the 55-kDa protein. Conversely, treatment of sperm with motility activators, isobutylmethylxanthine or 8-bromo-cAMP, resulted in increased tyrosine phosphorylation of the protein. The protein was present in the soluble 100 000 x g supernatants of sperm extracts and was heat labile. Chromatography through diethylaminoethyl-cellulose and Western blot analysis showed that this 55-kDa protein is not a regulatory subunit of PKA or alpha-tubulin. Our results represent the identification of a soluble protein whose tyrosine phosphorylation varies directly with motility and suggest that motility regulation may involve cross talk between PKA, calcium, and tyrosine kinase pathways.

  16. Phosphorylation-mediated PTEN conformational closure and deactivation revealed with protein semisynthesis

    PubMed Central

    Bolduc, David; Rahdar, Meghdad; Tu-Sekine, Becky; Sivakumaren, Sindhu Carmen; Raben, Daniel; Amzel, L Mario; Devreotes, Peter; Gabelli, Sandra B; Cole, Philip

    2013-01-01

    The tumor suppressor PIP3 phosphatase PTEN is phosphorylated on four clustered Ser/Thr on its C-terminal tail (aa 380–385) and these phosphorylations are proposed to induce a reduction in PTEN’s plasma membrane recruitment. How these phosphorylations affect the structure and enzymatic function of PTEN is poorly understood. To gain insight into the mechanistic basis of PTEN regulation by phosphorylation, we generated semisynthetic site-specifically tetra-phosphorylated PTEN using expressed protein ligation. By employing a combination of biophysical and enzymatic approaches, we have found that purified tail-phosphorylated PTEN relative to its unphosphorylated counterpart shows reduced catalytic activity and membrane affinity and undergoes conformational compaction likely involving an intramolecular interaction between its C-tail and the C2 domain. Our results suggest that there is a competition between membrane phospholipids and PTEN phospho-tail for binding to the C2 domain. These findings reveal a key aspect of PTEN’s regulation and suggest pharmacologic approaches for direct PTEN activation. DOI: http://dx.doi.org/10.7554/eLife.00691.001 PMID:23853711

  17. Tau Fibril Formation in Cultured Cells Compatible with a Mouse Model of Tauopathy.

    PubMed

    Matsumoto, Gen; Matsumoto, Kazuki; Kimura, Taeko; Suhara, Tetsuya; Higuchi, Makoto; Sahara, Naruhiko; Mori, Nozomu

    2018-05-17

    Neurofibrillary tangles composed of hyperphosphorylated tau protein are primarily neuropathological features of a number of neurodegenerative diseases collectively termed tauopathy. To understand the mechanisms underlying the cause of tauopathy, precise cellular and animal models are required. Recent data suggest that the transient introduction of exogenous tau can accelerate the development of tauopathy in the brains of non-transgenic and transgenic mice expressing wild-type human tau. However, the transmission mechanism leading to tauopathy is not fully understood. In this study, we developed cultured-cell models of tauopathy representing a human tauopathy. Neuro2a (N2a) cells containing propagative tau filaments were generated by introducing purified tau fibrils. These cell lines expressed full-length (2N4R) human tau and the green fluorescent protein (GFP)-fused repeat domain of tau with P301L mutation. Immunocytochemistry and super-resolution microscopic imaging revealed that tau inclusions exhibited filamentous morphology and were composed of both full-length and repeat domain fragment tau. Live-cell imaging analysis revealed that filamentous tau inclusions are transmitted to daughter cells, resulting in yeast-prion-like propagation. By a standard method of tau preparation, both full-length tau and repeat domain fragments were recovered in sarkosyl insoluble fraction. Hyperphosphorylation of full-length tau was confirmed by the immunoreactivity of phospho-Tau antibodies and mobility shifts by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). These properties were similar to the biochemical features of P301L mutated human tau in a mouse model of tauopathy. In addition, filamentous tau aggregates in cells barely co-localized with ubiquitins, suggesting that most tau aggregates were excluded from protein degradation systems, and thus propagated to daughter cells. The present cellular model of tauopathy will provide an advantage for dissecting

  18. Pea DNA topoisomerase I is phosphorylated and stimulated by casein kinase 2 and protein kinase C.

    PubMed

    Tuteja, Narendra; Reddy, Malireddy Kodandarami; Mudgil, Yashwanti; Yadav, Badam Singh; Chandok, Meena Rani; Sopory, Sudhir Kumar

    2003-08-01

    DNA topoisomerase I catalyzes the relaxation of superhelical DNA tension and is vital for DNA metabolism; therefore, it is essential for growth and development of plants. Here, we have studied the phosphorylation-dependent regulation of topoisomerase I from pea (Pisum sativum). The purified enzyme did not show autophosphorylation but was phosphorylated in an Mg(2+)-dependent manner by endogenous protein kinases present in pea nuclear extracts. This phosphorylation was abolished with calf intestinal alkaline phosphatase and lambda phosphatase. It was also phosphorylated by exogenous casein kinase 2 (CK2), protein kinase C (PKC; from animal sources), and an endogenous pea protein, which was purified using a novel phorbol myristate acetate affinity chromatography method. All of these phosphorylations were inhibited by heparin (inhibitor of CK2) and calphostin (inhibitor of PKC), suggesting that pea topoisomerase I is a bona fide substrate for these kinases. Spermine and spermidine had no effect on the CK2-mediated phosphorylation, suggesting that it is polyamine independent. Phospho-amino acid analysis showed that only serine residues were phosphorylated, which was further confirmed using antiphosphoserine antibody. The topoisomerase I activity increased after phosphorylation with exogenous CK2 and PKC. This study shows that these kinases may contribute to the physiological regulation of DNA topoisomerase I activity and overall DNA metabolism in plants.

  19. Ovariectomy increases the age-induced hyperphosphorylation of Tau at hippocampal CA1.

    PubMed

    Picazo, O; Espinosa-Raya, J; Briones-Aranda, A; Cerbón, M

    2016-11-01

    One of the main hallmarks of Alzheimer's disease includes the neurofibrillary tangles formation produced by hyperphosphorylation of the Tau protein, whose expression is putatively regulated by the ovarian hormones estradiol and progesterone. Hippocampus is a brain region that participates in many functions related to learning and memory; in addition, it is abundant in both estradiol and progesterone receptors. In this study, we explore the expression of Tau hyperphosphorylation at hippocampus and the performance of rats in an autoshaping learning task at 5, 10 and 15 months after the ovaries removal. In these animals, ovariectomy was performed at 3 months of age. These data were compared with those derived from intact rats at 8, 13 and 18 months old. A clear decrease in the number of conditioned responses of both intact and ovariectomized rats in the autoshaping learning task was observed. The interaction of both factors confirms that, in this test, learning varies depending on aging and the presence or absence of ovaries. A progressive increase in hippocampal Tau phosphorylation at Ser-396 was observed in either intact or ovariectomized rats. Interestingly, an interaction between the analyzed factors shows that such hyperphosphorylation was potentiated by the absence of ovaries. These results emphasize the importance of aging and the lack of ovarian hormones for an associative learning test and for the expression of one of the most important hallmarks of Alzheimer's disease.

  20. Poliovirus-associated protein kinase: Destabilization of the virus capsid and stimulation of the phosphorylation reaction by Zn sup 2+

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ratka, M.; Lackmann, M.; Ueckermann, C.

    1989-09-01

    The previously described poliovirus-associated protein kinase activity phosphorylates viral proteins VP0 and VP2 as well as exogenous proteins in the presence of Mg{sup 2+}. In this paper, the effect of Zn{sup 2+} on the phosphorylation reaction and the stability of the poliovirus capsid has been studied in detail and compared to that of Mg{sup 2+}. In the presence of Zn{sup 2+}, phosphorylation of capsid proteins VP2 and VP4 is significantly higher while phosphorylation of VP0 and exogenous phosphate acceptor proteins is not detected. The results indicate the activation of more than one virus-associated protein kinase by Zn{sup 2+}. The ion-dependentmore » behavior of the enzyme activities is observed independently of whether the virus was obtained from HeLa or green monkey kidney cells. The poliovirus capsid is destabilized by Zn{sup 2+}. This alteration of the poliovirus capsid structure is a prerequisite for effective phosphorylation of viral capsid proteins. The increased level of phosphorylation of viral capsid proteins results in further destabilization of the viral capsid. As a result of the conformational changes, poliovirus-associated protein kinase activities dissociate from the virus particle. The authors suggest that the destabilizing effect of phosphorylation on the viral capsid plays a role in uncoating of poliovirus.« less

  1. cAMP-dependent protein kinase phosphorylates and activates nuclear Ca2+-ATPase

    PubMed Central

    Rogue, Patrick J.; Humbert, Jean-Paul; Meyer, Alphonse; Freyermuth, Solange; Krady, Marie-Marthe; Malviya, Anant N.

    1998-01-01

    A Ca2+-pump ATPase, similar to that in the endoplasmic reticulum, has been located on the outer membrane of rat liver nuclei. The effect of cAMP-dependent protein kinase (PKA) on nuclear Ca2+-ATPase (NCA) was studied by using purified rat liver nuclei. Treatment of isolated nuclei with the catalytic unit of PKA resulted in the phosphorylation of a 105-kDa band that was recognized by antibodies specific for sarcoplasmic reticulum Ca2+-ATPase type 2b. Partial purification and immunoblotting confirmed that the 105-kDa protein band phosphorylated by PKA is NCA. The stoichiometry of phosphorylation was 0.76 mol of phosphate incorporated/mol of partially purified enzyme. Measurement of ATP-dependent 45Ca2+ uptake into purified nuclei showed that PKA phosphorylation enhanced the Ca2+-pumping activity of NCA. We show that PKA phosphorylation of Ca2+-ATPase enhances the transport of 10-kDa fluorescent-labeled dextrans across the nuclear envelope. The findings reported in this paper are consistent with the notion that the crosstalk between the cAMP/PKA- and Ca2+-dependent signaling pathways identified at the cytoplasmic level extends to the nucleus. Furthermore, these data support a function for crosstalk in the regulation of calcium-dependent transport across the nuclear envelope. PMID:9689054

  2. Invited review: Frontotemporal dementia caused by microtubule-associated protein tau gene (MAPT) mutations: a chameleon for neuropathology and neuroimaging.

    PubMed

    Ghetti, B; Oblak, A L; Boeve, B F; Johnson, K A; Dickerson, B C; Goedert, M

    2015-02-01

    Hereditary frontotemporal dementia associated with mutations in the microtubule-associated protein tau gene (MAPT) is a protean disorder. Three neuropathologic subtypes can be recognized, based on the presence of inclusions made of tau isoforms with three and four repeats, predominantly three repeats and mostly four repeats. This is relevant for establishing a correlation between structural magnetic resonance imaging and positron emission tomography using tracers specific for aggregated tau. Longitudinal studies will be essential to determine the evolution of anatomical alterations from the asymptomatic stage to the various phases of disease following the onset of symptoms. © 2014 The Authors. Neuropathology and Applied Neurobiology published by John Wiley & Sons Ltd on behalf of British Neuropathological Society.

  3. Protein Ser/Thr/Tyr phosphorylation in the Archaea.

    PubMed

    Kennelly, Peter J

    2014-04-04

    The third domain of life, the Archaea (formerly Archaebacteria), is populated by a physiologically diverse set of microorganisms, many of which reside at the ecological extremes of our global environment. Although ostensibly prokaryotic in morphology, the Archaea share much closer evolutionary ties with the Eukarya than with the superficially more similar Bacteria. Initial genomic, proteomic, and biochemical analyses have revealed the presence of "eukaryotic" protein kinases and phosphatases and an intriguing set of serine-, threonine-, and tyrosine-phosphorylated proteins in the Archaea that may offer new insights into this important regulatory mechanism.

  4. Synaptic Activation of Ribosomal Protein S6 Phosphorylation Occurs Locally in Activated Dendritic Domains

    ERIC Educational Resources Information Center

    Pirbhoy, Patricia Salgado; Farris, Shannon; Steward, Oswald

    2016-01-01

    Previous studies have shown that induction of long-term potentiation (LTP) induces phosphorylation of ribosomal protein S6 (rpS6) in postsynaptic neurons, but the functional significance of rpS6 phosphorylation is poorly understood. Here, we show that synaptic stimulation that induces perforant path LTP triggers phosphorylation of rpS6 (p-rpS6)…

  5. Nuclear localization signal regulates porcine circovirus type 2 capsid protein nuclear export through phosphorylation.

    PubMed

    Hou, Qiang; Hou, Shaohua; Chen, Qing; Jia, Hong; Xin, Ting; Jiang, Yitong; Guo, Xiaoyu; Zhu, Hongfei

    2018-02-15

    The open reading frame 2 (ORF2) of Porcine circovirus type 2 (PCV2) encodes the major Capsid (Cap) protein, which self-assembles into virus-like particle (VLP) of similar morphology to the PCV2 virion and accumulates in the nucleus through the N-terminal arginine-rich nuclear localization signal (NLS). In this study, PCV2 Cap protein and its derivates were expressed via the baculovirus expression system, and the cellular localization of the recombinant proteins were investigated using anti-Cap mAb by imaging flow cytometry. Analysis of subcellular localization of Cap protein and its variants demonstrated that NLS mediated Cap protein nuclear export as well as nuclear import, and a phosphorylation site (S17) was identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS) in the NLS domain to regulate Cap protein nuclear export. Phosphorylation of NLS regulating the PCV2 Cap protein nuclear export was also demonstrated in PK15 cells by fluorescence microscopy. Moreover, the influence of Rep and Rep' protein on Cap protein subcellular localization was investigated in PK15 cells. Phosphorylation of NLS regulating Cap protein nuclear export provides more detailed knowledge of the PCV2 viral life cycle. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Emerging drug targets for Aβ and tau in Alzheimer’s disease: a systematic review

    PubMed Central

    West, Sophie; Bhugra, Praveen

    2015-01-01

    Aims Currently, treatment for Alzheimer’s disease (AD) focuses on the cholinergic hypothesis and provides limited symptomatic effects. Research currently focuses on other factors that are thought to contribute to AD development such as tau proteins and Aβ deposits, and how modification of the associated pathology affects outcomes in patients. This systematic review summarizes and appraises the evidence for the emerging drugs affecting Aβ and tau pathology in AD. Methods A comprehensive, systematic online database search was conducted using the databases ScienceDirect and PubMed to include original research articles. A systematic review was conducted following a minimum set of standards, as outlined by The PRISMA Group 1. Specific inclusion and exclusion criteria were followed and studies fitting the criteria were selected. No human trials were included in this review. In vitro and in vivo AD models were used to assess efficacy to ensure studied agents were emerging targets without large bodies of evidence. Results The majority of studies showed statistically significant improvement (P < 0.05) of Aβ and/or tau pathology, or cognitive effects. Many studies conducted in AD animal models have shown a reduction in Aβ peptide burden and a reduction in tau phosphorylation post-intervention. This has the potential to reduce plaque formation and neuronal degeneration. Conclusions There are many emerging targets showing promising results in the effort to modify the pathological effects associated with AD. Many of the trials also provided evidence of the clinical effects of such drugs reducing pathological outcomes, which was often demonstrated as an improvement of cognition. PMID:25753046

  7. Identification of ATM Protein Kinase Phosphorylation Sites by Mass Spectrometry.

    PubMed

    Graham, Mark E; Lavin, Martin F; Kozlov, Sergei V

    2017-01-01

    ATM (ataxia-telangiectasia mutated) protein kinase is a key regulator of cellular responses to DNA damage and oxidative stress. DNA damage triggers complex cascade of signaling events leading to numerous posttranslational modification on multitude of proteins. Understanding the regulation of ATM kinase is therefore critical not only for understanding the human genetic disorder ataxia-telangiectasia and potential treatment strategies, but essential for deciphering physiological responses of cells to stress. These responses play an important role in carcinogenesis, neurodegeneration, and aging. We focus here on the identification of DNA damage inducible ATM phosphorylation sites to understand the importance of autophosphorylation in the mechanism of ATM kinase activation. We demonstrate the utility of using immunoprecipitated ATM in quantitative LC-MS/MS workflow with stable isotope dimethyl labeling of ATM peptides for identification of phosphorylation sites.

  8. Tyrosine Nitration within the Proline-Rich Region of Tau in Alzheimer's Disease

    PubMed Central

    Reyes, Juan F.; Fu, Yifan; Vana, Laurel; Kanaan, Nicholas M.; Binder, Lester I.

    2011-01-01

    A substantial body of evidence suggests that nitrative injury contributes to neurodegeneration in Alzheimer's disease (AD) and other neurodegenerative disorders. Previously, we showed in vitro that within the tau protein the N-terminal tyrosine residues (Y18 and Y29) are more susceptible to nitrative modifications than other tyrosine sites (Y197 and Y394). Using site-specific antibodies to nitrated tau at Y18 and Y29, we identified tau nitrated in both glial (Y18) and neuronal (Y29) tau pathologies. In this study, we report the characterization of two novel monoclonal antibodies, Tau-nY197 and Tau-nY394, recognizing tau nitrated at Y197 and Y394, respectively. By Western blot analysis, Tau-nY197 labeled soluble tau and insoluble paired helical filament proteins (PHF-tau) nitrated at Y197 from control and AD brain samples. Tau-nY394 failed to label soluble tau isolated from control or severe AD samples, but labeled insoluble PHF-tau to a limited extent. Immunohistochemical analysis using Tau-nY197 revealed the hallmark tau pathology associated with AD; Tau-nY394 did not detect any pathological lesions characteristic of the disorder. These data suggest that a subset of the hallmark pathological inclusions of AD contain tau nitrated at Y197. However, nitration at Y197 was also identified in soluble tau from all control samples, including those at Braak stage 0, suggesting that nitration at this site in the proline-rich region of tau may have normal biological functions in the human brain. PMID:21514440

  9. Roles of the phosphorylation of specific serines and threonines in the NS1 protein of human influenza A viruses.

    PubMed

    Hsiang, Tien-Ying; Zhou, Ligang; Krug, Robert M

    2012-10-01

    We demonstrate that phosphorylation of the NS1 protein of a human influenza A virus occurs not only at the threonine (T) at position 215 but also at serines (Ss), specifically at positions 42 and 48. By generating recombinant influenza A/Udorn/72 (Ud) viruses that encode mutant NS1 proteins, we determined the roles of these phosphorylations in virus replication. At position 215 only a T-to-A substitution attenuated replication, whereas other substitutions (T to E to mimic constitutive phosphorylation, T to N, and T to P, the amino acid in avian influenza A virus NS1 proteins) had no effect. We conclude that attenuation resulting from the T-to-A substitution at position 215 is attributable to a deleterious structural change in the NS1 protein that is not caused by other amino acid substitutions and that phosphorylation of T215 does not affect virus replication. At position 48 neither an S-to-A substitution nor an S-to-D substitution that mimics constitutive phosphorylation affected virus replication. In contrast, at position 42, an S-to-D, but not an S-to-A, substitution caused attenuation. The S-to-D substitution eliminates detectable double-stranded RNA binding by the NS1 protein, accounting for attenuation of virus replication. We show that protein kinase C α (PKCα) catalyzes S42 phosphorylation. Consequently, the only phosphorylation of the NS1 protein of this human influenza A virus that regulates its replication is S42 phosphorylation catalyzed by PKCα. In contrast, phosphorylation of Ts or Ss in the NS1 protein of the 2009 H1N1 pandemic virus was not detected, indicating that NS1 phosphorylation probably does not play any role in the replication of this virus.

  10. Juvenile hormone prevents 20-hydroxyecdysone-induced metamorphosis by regulating the phosphorylation of a newly identified broad protein.

    PubMed

    Cai, Mei-Juan; Liu, Wen; Pei, Xu-Yang; Li, Xiang-Ru; He, Hong-Juan; Wang, Jin-Xing; Zhao, Xiao-Fan

    2014-09-19

    The steroid hormone 20-hydroxyecdysone (20E) initiates insect molting and metamorphosis. By contrast, juvenile hormone (JH) prevents metamorphosis. However, the mechanism by which JH inhibits metamorphosis remains unclear. In this study, we propose that JH induces the phosphorylation of Broad isoform Z7 (BrZ7), a newly identified protein, to inhibit 20E-mediated metamorphosis in the lepidopteran insect Helicoverpa armigera. The knockdown of BrZ7 in larvae inhibited metamorphosis by repressing the expression of the 20E response gene. BrZ7 was weakly expressed and phosphorylated during larval growth but highly expressed and non-phosphorylated during metamorphosis. JH regulated the rapid phosphorylation of BrZ7 via a G-protein-coupled receptor-, phospholipase C-, and protein kinase C-triggered pathway. The phosphorylated BrZ7 bound to the 5'-regulatory region of calponin to regulate its expression in the JH pathway. Exogenous JH induced BrZ7 phosphorylation to prevent metamorphosis by suppressing 20E-related gene transcription. JH promoted non-phosphorylated calponin interacting with ultraspiracle protein to activate the JH pathway and antagonize the 20E pathway. This study reveals one of the possible mechanisms by which JH counteracts 20E-regulated metamorphosis by inducing the phosphorylation of BrZ7. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Identification of a novel phosphorylation site in c-jun directly targeted in vitro by protein kinase D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waldron, Richard T.; Whitelegge, Julian P.; Faull, Kym F.

    Protein kinase D (PKD) phosphorylates the c-jun amino-terminal in vitro at site(s) distinct from JNK [C. Hurd, R.T. Waldron, E. Rozengurt, Protein kinase D complexes with c-jun N-terminal kinase via activation loop phosphorylation and phosphorylates the c-jun N-terminus, Oncogene 21 (2002) 2154-2160], but the sites have not been identified. Here, metabolic {sup 32}P-labeling of c-jun protein in COS-7 cells indicated that PKD phosphorylates c-jun in vivo at a site(s) between aa 43-93, a region containing important functional elements. On this basis, the PKD-mediated phosphorylation site(s) was further characterized in vitro using GST-c-jun fusion proteins. PKD did not incorporate phosphate intomore » Ser63 and Ser73, the JNK sites in GST-c-jun(1-89). Rather, PKD and JNK could sequentially phosphorylate distinct site(s) simultaneously. By mass spectrometry of tryptic phosphopeptides, Ser58 interposed between the JNK-binding portion of the delta domain and the adjacent TAD1 was identified as a prominent site phosphorylated in vitro by PKD. These data were further supported by kinase reactions using truncations or point-mutations of GST-c-jun. Together, these data suggest that PKD-mediated phosphorylation modulates c-jun at the level of its N-terminal functional domains.« less

  12. Phosphorylation of Puma modulates its apoptotic function by regulating protein stability

    PubMed Central

    Fricker, M; O'Prey, J; Tolkovsky, A M; Ryan, K M

    2010-01-01

    Puma is a potent BH3-only protein that antagonises anti-apoptotic Bcl-2 proteins, promotes Bax/Bak activation and has an essential role in multiple apoptotic models. Puma expression is normally kept very low, but can be induced by several transcription factors including p53, p73, E2F1 and FOXO3a, whereby it can induce an apoptotic response. As Puma can to bind and inactivate all anti-apoptotic members of the Bcl-2 family, its activity must be tightly controlled. We report here, for the first time, evidence that Puma is subject to post-translational control through phosphorylation. We show that Puma is phosphorylated at multiple sites, with the major site of phosphorylation being serine 10. Replacing serine 10 with alanine causes reduced Puma turnover and enhanced cell death. Interestingly, Puma turnover occurs through the proteasome, and substitution of serine 10 causes elevated Puma levels independently of macroautophagy, Bcl-2 family member binding, caspase activity and apoptotic death. We conclude, therefore, that phosphorylation of Puma at serine 10 promotes Puma turnover, represses Puma's cell death potential and promotes cell survival. Owing to the highly pro-apoptotic nature of Puma, these studies highlight an important additional regulatory step in the determination of cellular life or death. PMID:21364664

  13. Phosphorylation of ribosomal protein S6 mediates compensatory renal hypertrophy

    PubMed Central

    Xu, Jinxian; Chen, Jianchun; Dong, Zheng; Meyuhas, Oded; Chen, Jian-Kang

    2014-01-01

    The molecular mechanism underlying renal hypertrophy and progressive nephron damage remains poorly understood. Here we generated congenic ribosomal protein S6 (rpS6) knockin mice expressing non-phosphorylatable rpS6 and found that uninephrectomy-induced renal hypertrophy was significantly blunted in these knockin mice. Uninephrectomy-induced increases in cyclin D1 and decreases in cyclin E in the remaining kidney were attenuated in the knockin mice compared to their wild-type littermates. Uninephrectomy induced rpS6 phosphorylation in the wild type mice; however, no rpS6 phosphorylation was detected in uninephrectomized or sham-operated knockin mice. Nonetheless, uninephrectomy stimulated comparable 4E-BP1 phosphorylation in both knockin and wild type mice, indicating that mTORC1 was still activated in the knockin mice. Moreover, the mTORC1 inhibitor rapamycin prevented both rpS6 and 4E-BP1 phosphorylation, significantly blunted uninephrectomy-induced renal hypertrophy in wild type mice, but did not prevent residual renal hypertrophy despite inhibiting 4E-BP1 phosphorylation in uninephrectomized knockin mice. Thus, both genetic and pharmacological approaches unequivocally demonstrate that phosphorylated rpS6 is a downstream effector of the mTORC1-S6K1 signaling pathway mediating renal hypertrophy. Hence, rpS6 phosphorylation facilitates the increase in cyclin D1 and decrease in cyclin E1 that underlie the hypertrophic nature of uninephrectomy-induced kidney growth. PMID:25229342

  14. Molecular dynamics simulation on HP1 protein binding by histone H3 tail methylation and phosphorylation

    NASA Astrophysics Data System (ADS)

    Jiang, Yan-Ke; Zou, Jian-Wei; Wu, Yu-Qian; Zhang, Na; Yu, Qing-Sen; Jiang, Yong-Jun

    Trimethylation of histone H3 lysine 9 is important for recruiting heterochromatin protein 1 (HP1) to discrete regions of the genome, thereby regulating gene expression, chromatin packaging, and heterochromatin formation. Phosphorylation of histone H3 has been linked with mitotic chromatin condensation. During mitosis in vivo, H3 lysine 9 methylation and serine 10 phosphorylation can occur concomitantly on the same histone tail, whereas the influence of phosphorylation to trimethylation H3 tail recruiting HP1 remains controversial. In this work, molecular dynamics simulation of HP1 complexed with both trimethylated and phosphorylated H3 tail were performed and compared with the results from the previous methylated H3-HP1 trajectory. It is clear from the 10-ns dynamics simulation that two adjacent posttranslational modifications directly increase the flexibility of the H3 tail and weaken HP1 binding to chromatin. A combinatorial readout of two adjacent posttranslational modifications-a stable methylation and a dynamic phosphorylation mark-establish a regulatory mechanism of protein-protein interactions.

  15. p130Cas-associated Protein (p140Cap) as a New Tyrosine-phosphorylated Protein Involved in Cell Spreading

    PubMed Central

    Di Stefano, Paola; Cabodi, Sara; Erba, Elisabetta Boeri; Margaria, Valentina; Bergatto, Elena; Giuffrida, Maria Gabriella; Silengo, Lorenzo; Tarone, Guido; Turco, Emilia; Defilippi, Paola

    2004-01-01

    Integrin-mediated cell adhesion stimulates a cascade of signaling pathways that control cell proliferation, migration, and survival, mostly through tyrosine phosphorylation of signaling molecules. p130Cas, originally identified as a major substrate of v-Src, is a scaffold molecule that interacts with several proteins and mediates multiple cellular events after cell adhesion and mitogen treatment. Here, we describe a novel p130Cas-associated protein named p140Cap (Cas-associated protein) as a new tyrosine phosphorylated molecule involved in integrin- and epidermal growth factor (EGF)-dependent signaling. By affinity chromatography of human ECV304 cell extracts on a MBP-p130Cas column followed by mass spectrometry matrix-assisted laser desorption ionization/time of flight analysis, we identified p140Cap as a protein migrating at 140 kDa. We detected its expression in human, mouse, and rat cells and in different mouse tissues. Endogenous and transfected p140Cap proteins coimmunoprecipitate with p130Cas in ECV304 and in human embryonic kidney 293 cells and associate with p130Cas through their carboxy-terminal region. By immunofluorescence analysis, we demonstrated that in ECV304 cells plated on fibronectin, the endogenous p140Cap colocalizes with p130Cas in the perinuclear region as well as in lamellipodia. In addition p140Cap codistributes with cortical actin and actin stress fibers but not with focal adhesions. We also show that p140Cap is tyrosine phosphorylated within 15 min of cell adhesion to integrin ligands. p140Cap tyrosine phosphorylation is also induced in response to EGF through an EGF receptor dependent-mechanism. Interestingly expression of p140Cap in NIH3T3 and in ECV304 cells delays the onset of cell spreading in the early phases of cell adhesion to fibronectin. Therefore, p140Cap is a novel protein associated with p130Cas and actin cytoskeletal structures. Its tyrosine phosphorylation by integrin-mediated adhesion and EGF stimulation and its

  16. Effects of PKA phosphorylation on the conformation of the Na,K-ATPase regulatory protein FXYD1

    PubMed Central

    Teriete, Peter; Thai, Khang; Choi, Jungyuen; Marassi, Francesca M.

    2009-01-01

    FXYD1 (phospholemman) is a member of an evolutionarily conserved family of membrane proteins that regulate the function of the Na,K-ATPase enzyme complex in specific tissues and specific physiological states. In heart and skeletal muscle sarcolemma, FXYD1 is also the principal substrate of hormone-regulated phosphorylation by c-AMP dependent protein kinase A and by protein kinase C, which phosphorylate the protein at conserved Ser residues in its cytoplasmic domain, altering its Na,K-ATPase regulatory activity. FXYD1 adopts an L-shaped α-helical structure with the transmembrane helix loosely connected to a cytoplasmic amphipathic helix that rests on the membrane surface. In this paper we describe NMR experiments showing that neither PKA phosphorylation at Ser68 nor the physiologically relevant phosphorylation mimicking mutation Ser68Asp induces major changes in the protein conformation. The results, viewed in light of a model of FXYD1 associated with the Na,K-ATPase α and β subunits, indicate that the effects of phosphorylation on the Na,K-ATPase regulatory activity of FXYD1 could be due primarily to changes in electrostatic potential near the membrane surface and near the Na+/K+ ion binding site of the Na,K-ATPase α subunit. PMID:19761758

  17. Relationship Among Tau Antigens Isolated from Various Lines of Simian Virus 40-Transformed Cells

    PubMed Central

    Simmons, Daniel T.; Martin, Malcolm A.; Mora, Peter T.; Chang, Chungming

    1980-01-01

    In addition to the virus-specified tumor antigens, simian virus 40-transformed cells contain at least one other protein which can be immunoprecipitated with serum from animals bearing simian virus 40-induced tumors. This protein, which is designated Tau antigen, has an apparent molecular weight of 56,000 as determined by electrophoresis on acrylamide gels. The relationship among Tau antigens isolated from different lines of simian virus 40-transformed cells was examined by comparing the methionine-labeled tryptic peptides of these proteins by two-dimensional fingerprinting on thin-layer cellulose plates. In this fashion, we initially determined that the Tau antigens isolated from three different lines of transformed mouse cells were very similar. Second, we found that Tau antigen isolated from a line of rat transformants was closely related, but not identical, to the mouse cell Tau antigens. Approximately 70% of their methionine peptides comigrated in two dimensions. Finally, we showed that Tau antigen isolated from a line of transformed human cells was only partially related to the mouse and rat proteins. About 40% of the methionine peptides of the human protein were also contained in the Tau antigens from the other two species. These results strongly indicate that the Tau antigens isolated from these various simian virus 40-transformed cell lines contain common amino acid sequences. Images PMID:6247503

  18. cis p-tau: early driver of brain injury and tauopathy blocked by antibody

    PubMed Central

    Mannix, Rebekah; Qiu, Jianhua; Moncaster, Juliet; Chen, Chun-Hau; Yao, Yandan; Lin, Yu-Min; Driver, Jane A; Sun, Yan; Wei, Shuo; Luo, Man-Li; Albayram, Onder; Huang, Pengyu; Rotenberg, Alexander; Ryo, Akihide; Goldstein, Lee E; Pascual-Leone, Alvaro; McKee, Ann C.; Meehan, William; Zhou, Xiao Zhen; Lu, Kun Ping

    2015-01-01

    Traumatic brain injury (TBI), characterized by acute neurological dysfunction, is one of the best known environmental risk factors for chronic traumatic encephalopathy (CTE) and Alzheimer's disease (AD), whose defining pathologic features include tauopathy made of phosphorylated tau (p-tau). However, tauopathy has not been detected in early stages after TBI and how TBI leads to tauopathy is unknown. Here we find robust cis p-tau pathology after sport- and military-related TBI in humans and mice. Acutely after TBI in mice and stress in vitro, neurons prominently produce cis p-tau, which disrupts axonal microtubule network and mitochondrial transport, spreads to other neurons, and leads to apoptosis. This process, termed “cistauosis”, appears long before other tauopathy. Treating TBI mice with cis antibody blocks cistauosis, prevents tauopathy development and spread, and restores many TBI-related structural and functional sequelae. Thus, cis p-tau is a major early driver after TBI and leads to tauopathy in CTE and AD, and cis antibody may be further developed to detect and treat TBI, and prevent progressive neurodegeneration after injury. PMID:26176913

  19. High glucose induces formation of tau hyperphosphorylation via Cav-1-mTOR pathway: A potential molecular mechanism for diabetes-induced cognitive dysfunction

    PubMed Central

    Wu, Jing; Zhou, Shan-Lei; Pi, Lin-Hua; Shi, Xia-Jie; Ma, Ling-Ran; Chen, Zi; Qu, Min-Li; Li, Xin; Nie, Sheng-Dan; Liao, Duan-Fang; Pei, Jin-Jing; Wang, Shan

    2017-01-01

    The abnormally hyperphosphorylated tau is thought to be implicated in diabetes-associated cognitive deficits. The role of mammalian target of rapamycin (mTOR) / S6 kinase (S6K) signalling in the formation of tau hyperphosphorylation has been previously studied. Caveolin-1 (Cav-1), the essential structure protein of caveolae, promotes neuronal survival and growth, and inhibits glucose metabolism. In this study, we aimed to investigate the role of Cav-1 in the formation of tau hyperphosphorylation under chronic hyperglycemic condition (HGC). Diabetic rats were induced by streptozotocin (STZ). Primary hippocampal neurons with or without molecular intervention such as the transient over-expression or knock-down were subjected to HGC. The obtained experimental samples were analyzed by real time quantitative RT-PCR, Western blot, immunofluorescence or immunohistochemisty. We found: 1) that a chronic HGC directly decreases Cav-1 expression, increases tau phosphorylation and activates mTOR/S6K signalling in the brain neurons of diabetic rats, 2) that overexpression of Cav-1 attenuates tau hyperphosphorylation induced by chronic HGC in primary hippocampal neurons, whereas down-regulation of Cav-1 using Cav-1 siRNA dramatically worsens tau hyperphosphorylation via mTOR/S6K signalling pathway, and 3) that the down-regulation of Cav-1 induced by HGC is independent of mTOR signalling. Our results suggest that tau hyperphosphorylation and the sustained over-activated mTOR signalling under hyperglycemia may be due to the suppression of Cav-1. Therefore, Cav-1 is a potential therapeutic target for diabetes-induced cognitive dysfunction. PMID:28489581

  20. The Phosphorylation of Ribosomal Protein in Lemna minor

    PubMed Central

    Trewavas, A.

    1973-01-01

    Sterile cultures of Lemna minor have been labeled with 32P1, and the ribosomal proteins have been examined for radioactivity. In relatively short term labeling a radioactive protein was found which ran as a single component in both urea/acetic acid and sodium lauryl sulfate gel electrophoresis. Acid hydrolysis of the labeled protein permitted the isolation of serine phosphate. After labeling to equilibrium with 32P1, calculation indicated only 0.6 to 0.75 atom of this protein phosphorus per ribosome. The phosphorylated protein is found in both polysomes and “derived” monomers and appears to be located in the ribosomal small subunit. Its apparent molecular weight is 42,000. Addition of growth-inhibiting concentrations of abscisic acid does not alter the apparent degree of labeling of this protein in 5 hours, but after 24 hours of treatment the total protein phosphorus was reduced from 0.75 atom of phosphorus per ribosome to 0.36 atom of phosphorus per ribosome. PMID:16658405

  1. Pea DNA Topoisomerase I Is Phosphorylated and Stimulated by Casein Kinase 2 and Protein Kinase C

    PubMed Central

    Tuteja, Narendra; Reddy, Malireddy Kodandarami; Mudgil, Yashwanti; Yadav, Badam Singh; Chandok, Meena Rani; Sopory, Sudhir Kumar

    2003-01-01

    DNA topoisomerase I catalyzes the relaxation of superhelical DNA tension and is vital for DNA metabolism; therefore, it is essential for growth and development of plants. Here, we have studied the phosphorylation-dependent regulation of topoisomerase I from pea (Pisum sativum). The purified enzyme did not show autophosphorylation but was phosphorylated in an Mg2+-dependent manner by endogenous protein kinases present in pea nuclear extracts. This phosphorylation was abolished with calf intestinal alkaline phosphatase and lambda phosphatase. It was also phosphorylated by exogenous casein kinase 2 (CK2), protein kinase C (PKC; from animal sources), and an endogenous pea protein, which was purified using a novel phorbol myristate acetate affinity chromatography method. All of these phosphorylations were inhibited by heparin (inhibitor of CK2) and calphostin (inhibitor of PKC), suggesting that pea topoisomerase I is a bona fide substrate for these kinases. Spermine and spermidine had no effect on the CK2-mediated phosphorylation, suggesting that it is polyamine independent. Phospho-amino acid analysis showed that only serine residues were phosphorylated, which was further confirmed using antiphosphoserine antibody. The topoisomerase I activity increased after phosphorylation with exogenous CK2 and PKC. This study shows that these kinases may contribute to the physiological regulation of DNA topoisomerase I activity and overall DNA metabolism in plants. PMID:12913165

  2. GWAS of cerebrospinal fluid tau levels identifies risk variants for Alzheimer's disease.

    PubMed

    Cruchaga, Carlos; Kauwe, John S K; Harari, Oscar; Jin, Sheng Chih; Cai, Yefei; Karch, Celeste M; Benitez, Bruno A; Jeng, Amanda T; Skorupa, Tara; Carrell, David; Bertelsen, Sarah; Bailey, Matthew; McKean, David; Shulman, Joshua M; De Jager, Philip L; Chibnik, Lori; Bennett, David A; Arnold, Steve E; Harold, Denise; Sims, Rebecca; Gerrish, Amy; Williams, Julie; Van Deerlin, Vivianna M; Lee, Virginia M-Y; Shaw, Leslie M; Trojanowski, John Q; Haines, Jonathan L; Mayeux, Richard; Pericak-Vance, Margaret A; Farrer, Lindsay A; Schellenberg, Gerard D; Peskind, Elaine R; Galasko, Douglas; Fagan, Anne M; Holtzman, David M; Morris, John C; Goate, Alison M

    2013-04-24

    Cerebrospinal fluid (CSF) tau, tau phosphorylated at threonine 181 (ptau), and Aβ₄₂ are established biomarkers for Alzheimer's disease (AD) and have been used as quantitative traits for genetic analyses. We performed the largest genome-wide association study for cerebrospinal fluid (CSF) tau/ptau levels published to date (n = 1,269), identifying three genome-wide significant loci for CSF tau and ptau: rs9877502 (p = 4.89 × 10⁻⁹ for tau) located at 3q28 between GEMC1 and OSTN, rs514716 (p = 1.07 × 10⁻⁸ and p = 3.22 × 10⁻⁹ for tau and ptau, respectively), located at 9p24.2 within GLIS3 and rs6922617 (p = 3.58 × 10⁻⁸ for CSF ptau) at 6p21.1 within the TREM gene cluster, a region recently reported to harbor rare variants that increase AD risk. In independent data sets, rs9877502 showed a strong association with risk for AD, tangle pathology, and global cognitive decline (p = 2.67 × 10⁻⁴, 0.039, 4.86 × 10⁻⁵, respectively) illustrating how this endophenotype-based approach can be used to identify new AD risk loci. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Interplay of pathogenic forms of human tau with different autophagic pathways.

    PubMed

    Caballero, Benjamin; Wang, Yipeng; Diaz, Antonio; Tasset, Inmaculada; Juste, Yves Robert; Stiller, Barbara; Mandelkow, Eva-Maria; Mandelkow, Eckhard; Cuervo, Ana Maria

    2018-02-01

    Loss of neuronal proteostasis, a common feature of the aging brain, is accelerated in neurodegenerative disorders, including different types of tauopathies. Aberrant turnover of tau, a microtubule-stabilizing protein, contributes to its accumulation and subsequent toxicity in tauopathy patients' brains. A direct toxic effect of pathogenic forms of tau on the proteolytic systems that normally contribute to their turnover has been proposed. In this study, we analyzed the contribution of three different types of autophagy, macroautophagy, chaperone-mediated autophagy, and endosomal microautophagy to the degradation of tau protein variants and tau mutations associated with this age-related disease. We have found that the pathogenic P301L mutation inhibits degradation of tau by any of the three autophagic pathways, whereas the risk-associated tau mutation A152T reroutes tau for degradation through a different autophagy pathway. We also found defective autophagic degradation of tau when using mutations that mimic common posttranslational modifications in tau or known to promote its aggregation. Interestingly, although most mutations markedly reduced degradation of tau through autophagy, the step of this process preferentially affected varies depending on the type of tau mutation. Overall, our studies unveil a complex interplay between the multiple modifications of tau and selective forms of autophagy that may determine its physiological degradation and its faulty clearance in the disease context. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  4. A Universal Stress Protein Involved in Oxidative Stress Is a Phosphorylation Target for Protein Kinase CIPK61

    PubMed Central

    2017-01-01

    Calcineurin B-like interacting protein kinases (CIPKs) decode calcium signals upon interaction with the calcium sensors calcineurin B like proteins into phosphorylation events that result into adaptation to environmental stresses. Few phosphorylation targets of CIPKs are known and therefore the molecular mechanisms underlying their downstream output responses are not fully understood. Tomato (Solanum lycopersicum) Cipk6 regulates immune and susceptible Programmed cell death in immunity transforming Ca2+ signals into reactive oxygen species (ROS) signaling. To investigate SlCipk6-induced molecular mechanisms and identify putative substrates, a yeast two-hybrid approach was carried on and a protein was identified that contained a Universal stress protein (Usp) domain present in bacteria, protozoa and plants, which we named “SlRd2”. SlRd2 was an ATP-binding protein that formed homodimers in planta. SlCipk6 and SlRd2 interacted using coimmunoprecipitation and bimolecular fluorescence complementation (BiFC) assays in Nicotiana benthamiana leaves and the complex localized in the cytosol. SlCipk6 phosphorylated SlRd2 in vitro, thus defining, to our knowledge, a novel target for CIPKs. Heterologous SlRd2 overexpression in yeast conferred resistance to highly toxic LiCl, whereas SlRd2 expression in Escherichia coli UspA mutant restored bacterial viability in response to H2O2 treatment. Finally, transient expression of SlCipk6 in transgenic N. benthamiana SlRd2 overexpressors resulted in reduced ROS accumulation as compared to wild-type plants. Taken together, our results establish that SlRd2, a tomato UspA, is, to our knowledge, a novel interactor and phosphorylation target of a member of the CIPK family, SlCipk6, and functionally regulates SlCipk6-mediated ROS generation. PMID:27899535

  5. A Universal Stress Protein Involved in Oxidative Stress Is a Phosphorylation Target for Protein Kinase CIPK6.

    PubMed

    Gutiérrez-Beltrán, Emilio; Personat, José María; de la Torre, Fernando; Del Pozo, Olga

    2017-01-01

    Calcineurin B-like interacting protein kinases (CIPKs) decode calcium signals upon interaction with the calcium sensors calcineurin B like proteins into phosphorylation events that result into adaptation to environmental stresses. Few phosphorylation targets of CIPKs are known and therefore the molecular mechanisms underlying their downstream output responses are not fully understood. Tomato (Solanum lycopersicum) Cipk6 regulates immune and susceptible Programmed cell death in immunity transforming Ca 2+ signals into reactive oxygen species (ROS) signaling. To investigate SlCipk6-induced molecular mechanisms and identify putative substrates, a yeast two-hybrid approach was carried on and a protein was identified that contained a Universal stress protein (Usp) domain present in bacteria, protozoa and plants, which we named "SlRd2". SlRd2 was an ATP-binding protein that formed homodimers in planta. SlCipk6 and SlRd2 interacted using coimmunoprecipitation and bimolecular fluorescence complementation (BiFC) assays in Nicotiana benthamiana leaves and the complex localized in the cytosol. SlCipk6 phosphorylated SlRd2 in vitro, thus defining, to our knowledge, a novel target for CIPKs. Heterologous SlRd2 overexpression in yeast conferred resistance to highly toxic LiCl, whereas SlRd2 expression in Escherichia coli UspA mutant restored bacterial viability in response to H 2 O 2 treatment. Finally, transient expression of SlCipk6 in transgenic N benthamiana SlRd2 overexpressors resulted in reduced ROS accumulation as compared to wild-type plants. Taken together, our results establish that SlRd2, a tomato UspA, is, to our knowledge, a novel interactor and phosphorylation target of a member of the CIPK family, SlCipk6, and functionally regulates SlCipk6-mediated ROS generation. © 2017 American Society of Plant Biologists. All Rights Reserved.

  6. Caspase-2 cleavage of tau reversibly impairs memory.

    PubMed

    Zhao, Xiaohui; Kotilinek, Linda A; Smith, Benjamin; Hlynialuk, Chris; Zahs, Kathleen; Ramsden, Martin; Cleary, James; Ashe, Karen H

    2016-11-01

    In Alzheimer's disease (AD) and other tauopathies, the tau protein forms fibrils, which are believed to be neurotoxic. However, fibrillar tau has been dissociated from neuron death and network dysfunction, suggesting the involvement of nonfibrillar species. Here we describe a novel pathological process in which caspase-2 cleavage of tau at Asp314 impairs cognitive and synaptic function in animal and cellular models of tauopathies by promoting the missorting of tau to dendritic spines. The truncation product, Δtau314, resists fibrillation and is present at higher levels in brains from cognitively impaired mice and humans with AD. The expression of tau mutants that resisted caspase-2 cleavage prevented tau from infiltrating spines, dislocating glutamate receptors and impairing synaptic function in cultured neurons, and it prevented memory deficits and neurodegeneration in mice. Decreasing the levels of caspase-2 restored long-term memory in mice that had existing deficits. Our results suggest an overall treatment strategy for re-establishing synaptic function and restoring memory in patients with AD by preventing tau from accumulating in dendritic spines.

  7. Sporadic inclusion-body myositis: conformational multifactorial ageing-related degenerative muscle disease associated with proteasomal and lysosomal inhibition, endoplasmic reticulum stress, and accumulation of amyloid-β42 oligomers and phosphorylated tau.

    PubMed

    Askanas, Valerie; Engel, W King

    2011-04-01

    The pathogenesis of sporadic inclusion-body myositis (s-IBM), the most common muscle disease of older persons, is complex and multifactorial. Both the muscle fiber degeneration and the mononuclear-cell inflammation are components of the s-IBM pathology, but how each relates to the pathogenesis remains unsettled. We consider that the intramuscle fiber degenerative component plays the primary and the major pathogenic role leading to muscle fiber destruction and clinical weakness. In this article we review the newest research advances that provide a better understanding of the s-IBM pathogenesis. Cellular abnormalities occurring in s-IBM muscle fibers are discussed, including: several proteins that are accumulated in the form of aggregates within muscle fibers, including amyloid-β42 and its oligomers, and phosphorylated tau in the form of paired helical filaments, and we consider their putative detrimental influence; cellular mechanisms leading to protein misfolding and aggregation, including evidence of their inadequate disposal; pathogenic importance of endoplasmic reticulum stress and the unfolded protein response demonstrated in s-IBM muscle fibers; and decreased deacetylase activity of SIRT1. All these factors are combined with, and perhaps provoked by, an ageing intracellular milieu. Also discussed are the intriguing phenotypic similarities between s-IBM muscle fibers and the brains of Alzheimer and Parkinson's disease patients, the two most common neurodegenerative diseases associated with ageing. Muscle biopsy diagnostic criteria are also described and illustrated. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  8. Endothelial nitric-oxide synthase (eNOS) is activated through G-protein-coupled receptor kinase-interacting protein 1 (GIT1) tyrosine phosphorylation and Src protein.

    PubMed

    Liu, Songling; Premont, Richard T; Rockey, Don C

    2014-06-27

    Nitric oxide (NO) is a critical regulator of vascular tone and plays an especially prominent role in liver by controlling portal blood flow and pressure within liver sinusoids. Synthesis of NO in sinusoidal endothelial cells by endothelial nitric-oxide synthase (eNOS) is regulated in response to activation of endothelial cells by vasoactive signals such as endothelins. The endothelin B (ETB) receptor is a G-protein-coupled receptor, but the mechanisms by which it regulates eNOS activity in sinusoidal endothelial cells are not well understood. In this study, we built on two previous strands of work, the first showing that G-protein βγ subunits mediated activation of phosphatidylinositol 3-kinase and Akt to regulate eNOS and the second showing that eNOS directly bound to the G-protein-coupled receptor kinase-interacting protein 1 (GIT1) scaffold protein, and this association stimulated NO production. Here we investigated the mechanisms by which the GIT1-eNOS complex is formed and regulated. GIT1 was phosphorylated on tyrosine by Src, and Y293F and Y554F mutations reduced GIT1 phosphorylation as well as the ability of GIT1 to bind to and activate eNOS. Akt phosphorylation activated eNOS (at Ser(1177)), and Akt also regulated the ability of Src to phosphorylate GIT1 as well as GIT1-eNOS association. These pathways were activated by endothelin-1 through the ETB receptor; inhibiting receptor-activated G-protein βγ subunits blocked activation of Akt, GIT1 tyrosine phosphorylation, and ET-1-stimulated GIT1-eNOS association but did not affect Src activation. These data suggest a model in which Src and Akt cooperate to regulate association of eNOS with the GIT1 scaffold to facilitate NO production. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Proteotoxic Stress Induces Phosphorylation of p62/SQSTM1 by ULK1 to Regulate Selective Autophagic Clearance of Protein Aggregates

    PubMed Central

    Lim, Junghyun; Lachenmayer, M. Lenard; Wu, Shuai; Liu, Wenchao; Kundu, Mondira; Wang, Rong; Komatsu, Masaaki; Oh, Young J.; Zhao, Yanxiang; Yue, Zhenyu

    2015-01-01

    Disruption of proteostasis, or protein homeostasis, is often associated with aberrant accumulation of misfolded proteins or protein aggregates. Autophagy offers protection to cells by removing toxic protein aggregates and injured organelles in response to proteotoxic stress. However, the exact mechanism whereby autophagy recognizes and degrades misfolded or aggregated proteins has yet to be elucidated. Mounting evidence demonstrates the selectivity of autophagy, which is mediated through autophagy receptor proteins (e.g. p62/SQSTM1) linking autophagy cargos and autophagosomes. Here we report that proteotoxic stress imposed by the proteasome inhibition or expression of polyglutamine expanded huntingtin (polyQ-Htt) induces p62 phosphorylation at its ubiquitin-association (UBA) domain that regulates its binding to ubiquitinated proteins. We find that autophagy-related kinase ULK1 phosphorylates p62 at a novel phosphorylation site S409 in UBA domain. Interestingly, phosphorylation of p62 by ULK1 does not occur upon nutrient starvation, in spite of its role in canonical autophagy signaling. ULK1 also phosphorylates S405, while S409 phosphorylation critically regulates S405 phosphorylation. We find that S409 phosphorylation destabilizes the UBA dimer interface, and increases binding affinity of p62 to ubiquitin. Furthermore, lack of S409 phosphorylation causes accumulation of p62, aberrant localization of autophagy proteins and inhibition of the clearance of ubiquitinated proteins or polyQ-Htt. Therefore, our data provide mechanistic insights into the regulation of selective autophagy by ULK1 and p62 upon proteotoxic stress. Our study suggests a potential novel drug target in developing autophagy-based therapeutics for the treatment of proteinopathies including Huntington’s disease. PMID:25723488

  10. Multisite Assessment of Aging-Related Tau Astrogliopathy (ARTAG).

    PubMed

    Kovacs, Gabor G; Xie, Sharon X; Lee, Edward B; Robinson, John L; Caswell, Carrie; Irwin, David J; Toledo, Jon B; Johnson, Victoria E; Smith, Douglas H; Alafuzoff, Irina; Attems, Johannes; Bencze, Janos; Bieniek, Kevin F; Bigio, Eileen H; Bodi, Istvan; Budka, Herbert; Dickson, Dennis W; Dugger, Brittany N; Duyckaerts, Charles; Ferrer, Isidro; Forrest, Shelley L; Gelpi, Ellen; Gentleman, Stephen M; Giaccone, Giorgio; Grinberg, Lea T; Halliday, Glenda M; Hatanpaa, Kimmo J; Hof, Patrick R; Hofer, Monika; Hortobágyi, Tibor; Ironside, James W; King, Andrew; Kofler, Julia; Kövari, Enikö; Kril, Jillian J; Love, Seth; Mackenzie, Ian R; Mao, Qinwen; Matej, Radoslav; McLean, Catriona; Munoz, David G; Murray, Melissa E; Neltner, Janna; Nelson, Peter T; Ritchie, Diane; Rodriguez, Roberta D; Rohan, Zdenek; Rozemuller, Annemieke; Sakai, Kenji; Schultz, Christian; Seilhean, Danielle; Smith, Vanessa; Tacik, Pawel; Takahashi, Hitoshi; Takao, Masaki; Rudolf Thal, Dietmar; Weis, Serge; Wharton, Stephen B; White, Charles L; Woulfe, John M; Yamada, Masahito; Trojanowski, John Q

    2017-07-01

    Aging-related tau astrogliopathy (ARTAG) is a recently introduced terminology. To facilitate the consistent identification of ARTAG and to distinguish it from astroglial tau pathologies observed in the primary frontotemporal lobar degeneration tauopathies we evaluated how consistently neuropathologists recognize (1) different astroglial tau immunoreactivities, including those of ARTAG and those associated with primary tauopathies (Study 1); (2) ARTAG types (Study 2A); and (3) ARTAG severity (Study 2B). Microphotographs and scanned sections immunostained for phosphorylated tau (AT8) were made available for download and preview. Percentage of agreement and kappa values with 95% confidence interval (CI) were calculated for each evaluation. The overall agreement for Study 1 was >60% with a kappa value of 0.55 (95% CI 0.433-0.645). Moderate agreement (>90%, kappa 0.48, 95% CI 0.457-0.900) was reached in Study 2A for the identification of ARTAG pathology for each ARTAG subtype (kappa 0.37-0.72), whereas fair agreement (kappa 0.40, 95% CI 0.341-0.445) was reached for the evaluation of ARTAG severity. The overall assessment of ARTAG showed moderate agreement (kappa 0.60, 95% CI 0.534-0.653) among raters. Our study supports the application of the current harmonized evaluation strategy for ARTAG with a slight modification of the evaluation of its severity. © 2017 American Association of Neuropathologists, Inc. All rights reserved.

  11. Degradation of phosphorylated p53 by viral protein-ECS E3 ligase complex.

    PubMed

    Sato, Yoshitaka; Kamura, Takumi; Shirata, Noriko; Murata, Takayuki; Kudoh, Ayumi; Iwahori, Satoko; Nakayama, Sanae; Isomura, Hiroki; Nishiyama, Yukihiro; Tsurumi, Tatsuya

    2009-07-01

    p53-signaling is modulated by viruses to establish a host cellular environment advantageous for their propagation. The Epstein-Barr virus (EBV) lytic program induces phosphorylation of p53, which prevents interaction with MDM2. Here, we show that induction of EBV lytic program leads to degradation of p53 via an ubiquitin-proteasome pathway independent of MDM2. The BZLF1 protein directly functions as an adaptor component of the ECS (Elongin B/C-Cul2/5-SOCS-box protein) ubiquitin ligase complex targeting p53 for degradation. Intringuingly, C-terminal phosphorylation of p53 resulting from activated DNA damage response by viral lytic replication enhances its binding to BZLF1 protein. Purified BZLF1 protein-associated ECS could be shown to catalyze ubiquitination of phospho-mimetic p53 more efficiently than the wild-type in vitro. The compensation of p53 at middle and late stages of the lytic infection inhibits viral DNA replication and production during lytic infection, suggesting that the degradation of p53 is required for efficient viral propagation. Taken together, these findings demonstrate a role for the BZLF1 protein-associated ECS ligase complex in regulation of p53 phosphorylated by activated DNA damage signaling during viral lytic infection.

  12. Novel RepA-MCM proteins encoded in plasmids pTAU4, pORA1 and pTIK4 from Sulfolobus neozealandicus

    PubMed Central

    Greve, Bo; Jensen, Susanne; Phan, Hoa; Brügger, Kim; Zillig, Wolfram; She, Qunxin; Garrett, Roger A.

    2005-01-01

    Three plasmids isolated from the crenarchaeal thermoacidophile Sulfolobus neozealandicus were characterized. Plasmids pTAU4 (7,192 bp), pORA1 (9,689 bp) and pTIK4 (13,638 bp) show unusual properties that distinguish them from previously characterized cryptic plasmids of the genus Sulfolobus. Plasmids pORA1 and pTIK4 encode RepA proteins, only the former of which carries the novel polymerase–primase domain of other known Sulfolobus plasmids. Plasmid pTAU4 encodes a mini-chromosome maintenance protein homolog and no RepA protein; the implications for DNA replication are considered. Plasmid pORA1 is the first Sulfolobus plasmid to be characterized that does not encode the otherwise highly conserved DNA-binding PlrA protein. Another encoded protein appears to be specific for the New Zealand plasmids. The three plasmids should provide useful model systems for functional studies of these important crenarchaeal proteins. PMID:15876565

  13. Discovery of a highly selective glycogen synthase kinase-3 inhibitor (PF-04802367) that modulates tau phosphorylation in brain: Translation for PET neuroimaging

    PubMed Central

    Liang, Steven H.; Chen, Jinshan Michael; Normandin, Marc D.; Chang, Jeanne S.; Chang, George C.; Taylor, Christine K.; Trapa, Patrick; Plummer, Mark S.; Para, Kimberly S.; Conn, Edward L.; Lopresti-Morrow, Lori; Lanyon, Lorraine F.; Cook, James M.; Richter, Karl E. G.; Nolan, Charlie E.; Schachter, Joel B.; Janat, Fouad; Che, Ye; Shanmugasundaram, Veerabahu; Lefker, Bruce A.; Enerson, Bradley E.; Livni, Elijahu; Wang, Lu; Guehl, Nicolas; Patnaik, Debasis; Wagner, Florence F.; Perlis, Roy; Holson, Edward B.; Haggarty, Stephen J.; Fakhri, Georges El

    2016-01-01

    Glycogen synthase kinase-3 (GSK-3) regulates multiple cellular processes in diabetes, oncology and neurology. We have identified N-(3-(1H-1,2,4-triazol-1-yl)propyl)-5-(3-chloro-4-methoxyphenyl)oxazole-4-carboxamide (PF-04802367 or PF-367) as a highly potent inhibitor, which is among the most selective antagonists of GSK-3 to date. We demonstrated its efficacy in modulation of tau phosphorylation in vitro and in vivo. Whereas the kinetics of PF-367 binding in brain tissues are too fast for an effective therapeutic agent, the pharmacokinetic profile of PF-367 is ideal for discovery of radiopharmaceuticals for GSK-3 in the central nervous system. A 11C-isotopologue of PF-367 was synthesized and preliminary PET imaging studies in non-human primates confirmed that we have overcome the two major obstacles for imaging GSK-3, namely, reasonable brain permeability and displaceable binding. PMID:27355874

  14. Synaptic Contacts Enhance Cell-to-Cell Tau Pathology Propagation.

    PubMed

    Calafate, Sara; Buist, Arjan; Miskiewicz, Katarzyna; Vijayan, Vinoy; Daneels, Guy; de Strooper, Bart; de Wit, Joris; Verstreken, Patrik; Moechars, Diederik

    2015-05-26

    Accumulation of insoluble Tau protein aggregates and stereotypical propagation of Tau pathology through the brain are common hallmarks of tauopathies, including Alzheimer's disease (AD). Propagation of Tau pathology appears to occur along connected neurons, but whether synaptic contacts between neurons are facilitating propagation has not been demonstrated. Using quantitative in vitro models, we demonstrate that, in parallel to non-synaptic mechanisms, synapses, but not merely the close distance between the cells, enhance the propagation of Tau pathology between acceptor hippocampal neurons and Tau donor cells. Similarly, in an artificial neuronal network using microfluidic devices, synapses and synaptic activity are promoting neuronal Tau pathology propagation in parallel to the non-synaptic mechanisms. Our work indicates that the physical presence of synaptic contacts between neurons facilitate Tau pathology propagation. These findings can have implications for synaptic repair therapies, which may turn out to have adverse effects by promoting propagation of Tau pathology. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Expression of the oncoprotein gankyrin and phosphorylated retinoblastoma protein in human testis and testicular germ cell tumor.

    PubMed

    Ando, Satoshi; Matsuoka, Taeko; Kawai, Koji; Sugita, Shintaro; Joraku, Akira; Kojima, Takahiro; Suetomi, Takahiro; Miyazaki, Jun; Fujita, Jun; Nishiyama, Hiroyuki

    2014-10-01

    The oncoprotein, gankyrin, is known to facilitate cell proliferation through phosphorylation and degradation of retinoblastoma protein. In the present study, we evaluated the expression of gankyrin and phosphorylated retinoblastoma protein in human testis and testicular germ cell tumors. The effects of suppression of gankyrin by locked nucleic acid on phosphorylation status of retinoblastoma and cell proliferation were analyzed using western blot analysis and testicular tumor cell line NEC8. The expressions of gankyrin, retinoblastoma and retinoblastoma protein were analyzed in 93 testicular germ cell tumor samples and five normal human testis by immunohistochemistry. The retinoblastoma protein expression was determined using an antibody to retinoblastoma protein, Ser795. Gankyrin was expressed in NEC8 cells as well as a normal human testis and testicular tumors. Suppression of gankyrin by locked nucleic acid led to suppression of retinoblastoma protein and cell proliferation in NEC8 cells. Immunohistochemistry of normal testis showed that gankyrin is expressed dominantly in spermatocytes. In testicular germ cell tumors, high expressions of gankyrin and phosphorylated-retinoblastoma protein were observed in seminoma and embryonal carcinoma, whereas the expressions of both proteins were weak in histological subtypes of non-seminoma. Growing teratoma and testicular malignant transformation tissues expressed phosphorylated-retinoblastoma protein strongly, but gankyrin faintly. Gankyrin is dominantly expressed in normal spermatocytes and seminoma/embryonal carcinoma, and its expression correlates well with retinoblastoma protein expression except in the growing teratoma and testicular malignant transformation cases. These data provide new insights into the molecular mechanisms of normal spermatogenesis and pathogenesis of testicular germ cell tumors. © 2014 The Japanese Urological Association.

  16. Changes of testicular phosphorylated proteins in response to restraint stress in male rats*

    PubMed Central

    Arun, Supatcharee; Burawat, Jaturon; Sukhorum, Wannisa; Sampannang, Apichakan; Uabundit, Nongnut; Iamsaard, Sitthichai

    2016-01-01

    Objective: To investigate male reproductive parameters via changes of potential testicular protein markers in restraint-stress rats. Methods: Male Sprague-Dawley rats were divided into two groups (non-immobilized control and restraint-immobilized/stress groups, n=8 each group). The stress animals were immobilized (12 h/d) by a restraint cage for 7 consecutive days. All reproductive parameters, morphology and histology were observed and compared between groups. In addition, the expression of steroidogenic acute regulatory (StAR) and phosphotyrosine proteins (previously localized in Sertoli and late spermatid cells) in testicular lysate was assayed by immuno-Western blotting. Results: Testosterone level, sperm concentration and sperm head normality of stress rats were significantly decreased while the corticosterone level was increased as compared with the control (P<0.05). Histologically, stress rats showed low sperm mass in epididymal lumen and some atrophy of seminiferous tubules. Although the expression of testicular StAR protein was not significantly different between groups, changed patterns of the 131, 95, and 75 kDa testicular phosphorylated proteins were observed in the stress group compared with the control group. The intensity of a testicular 95-kDa phosphorylated protein was significantly decreased in stress rats. Conclusions: This study has demonstrated the alteration of testicular phosphorylated protein patterns, associated with adverse male reproductive parameters in stress rats. It could be an explanation of some infertility in stress males. PMID:26739523

  17. Cdk1-cyclin B1-mediated phosphorylation of tumor-associated microtubule-associated protein/cytoskeleton-associated protein 2 in mitosis.

    PubMed

    Hong, Kyung Uk; Kim, Hyun-Jun; Kim, Hyo-Sil; Seong, Yeon-Sun; Hong, Kyeong-Man; Bae, Chang-Dae; Park, Joobae

    2009-06-12

    During mitosis, establishment of structurally and functionally sound bipolar spindles is necessary for maintaining the fidelity of chromosome segregation. Tumor-associated microtubule-associated protein (TMAP), also known as cytoskeleton-associated protein 2 (CKAP2), is a mitotic spindle-associated protein whose level is frequently up-regulated in various malignancies. Previous reports have suggested that TMAP is a potential regulator of mitotic spindle assembly and dynamics and that it is required for chromosome segregation to occur properly. So far, there have been no reports on how its mitosis-related functions are regulated. Here, we report that TMAP is hyper-phosphorylated at the C terminus specifically during mitosis. At least four different residues (Thr-578, Thr-596, Thr-622, and Ser-627) were responsible for the mitosis-specific phosphorylation of TMAP. Among these, Thr-622 was specifically phosphorylated by Cdk1-cyclin B1 both in vitro and in vivo. Interestingly, compared with the wild type, a phosphorylation-deficient mutant form of TMAP, in which Thr-622 had been replaced with an alanine (T622A), induced a significant increase in the frequency of metaphase cells with abnormal bipolar spindles, which often displayed disorganized, asymmetrical, or narrow and elongated morphologies. Formation of these abnormal bipolar spindles subsequently resulted in misalignment of metaphase chromosomes and ultimately caused a delay in the entry into anaphase. Moreover, such defects resulting from the T622A mutation were associated with a decrease in the rate of protein turnover at spindle microtubules. These findings suggest that Cdk1-cyclin B1-mediated phosphorylation of TMAP is important for and contributes to proper regulation of microtubule dynamics and establishment of functional bipolar spindles during mitosis.

  18. Cdk1-Cyclin B1-mediated Phosphorylation of Tumor-associated Microtubule-associated Protein/Cytoskeleton-associated Protein 2 in Mitosis*

    PubMed Central

    Uk Hong, Kyung; Kim, Hyun-Jun; Kim, Hyo-Sil; Seong, Yeon-Sun; Hong, Kyeong-Man; Bae, Chang-Dae; Park, Joobae

    2009-01-01

    During mitosis, establishment of structurally and functionally sound bipolar spindles is necessary for maintaining the fidelity of chromosome segregation. Tumor-associated microtubule-associated protein (TMAP), also known as cytoskeleton-associated protein 2 (CKAP2), is a mitotic spindle-associated protein whose level is frequently up-regulated in various malignancies. Previous reports have suggested that TMAP is a potential regulator of mitotic spindle assembly and dynamics and that it is required for chromosome segregation to occur properly. So far, there have been no reports on how its mitosis-related functions are regulated. Here, we report that TMAP is hyper-phosphorylated at the C terminus specifically during mitosis. At least four different residues (Thr-578, Thr-596, Thr-622, and Ser-627) were responsible for the mitosis-specific phosphorylation of TMAP. Among these, Thr-622 was specifically phosphorylated by Cdk1-cyclin B1 both in vitro and in vivo. Interestingly, compared with the wild type, a phosphorylation-deficient mutant form of TMAP, in which Thr-622 had been replaced with an alanine (T622A), induced a significant increase in the frequency of metaphase cells with abnormal bipolar spindles, which often displayed disorganized, asymmetrical, or narrow and elongated morphologies. Formation of these abnormal bipolar spindles subsequently resulted in misalignment of metaphase chromosomes and ultimately caused a delay in the entry into anaphase. Moreover, such defects resulting from the T622A mutation were associated with a decrease in the rate of protein turnover at spindle microtubules. These findings suggest that Cdk1-cyclin B1-mediated phosphorylation of TMAP is important for and contributes to proper regulation of microtubule dynamics and establishment of functional bipolar spindles during mitosis. PMID:19369249

  19. STAT1:DNA sequence-dependent binding modulation by phosphorylation, protein:protein interactions and small-molecule inhibition

    PubMed Central

    Bonham, Andrew J.; Wenta, Nikola; Osslund, Leah M.; Prussin, Aaron J.; Vinkemeier, Uwe; Reich, Norbert O.

    2013-01-01

    The DNA-binding specificity and affinity of the dimeric human transcription factor (TF) STAT1, were assessed by total internal reflectance fluorescence protein-binding microarrays (TIRF-PBM) to evaluate the effects of protein phosphorylation, higher-order polymerization and small-molecule inhibition. Active, phosphorylated STAT1 showed binding preferences consistent with prior characterization, whereas unphosphorylated STAT1 showed a weak-binding preference for one-half of the GAS consensus site, consistent with recent models of STAT1 structure and function in response to phosphorylation. This altered-binding preference was further tested by use of the inhibitor LLL3, which we show to disrupt STAT1 binding in a sequence-dependent fashion. To determine if this sequence-dependence is specific to STAT1 and not a general feature of human TF biology, the TF Myc/Max was analysed and tested with the inhibitor Mycro3. Myc/Max inhibition by Mycro3 is sequence independent, suggesting that the sequence-dependent inhibition of STAT1 may be specific to this system and a useful target for future inhibitor design. PMID:23180800

  20. Raf kinase inhibitory protein function is regulated via a flexible pocket and novel phosphorylation-dependent mechanism.

    PubMed

    Granovsky, Alexey E; Clark, Matthew C; McElheny, Dan; Heil, Gary; Hong, Jia; Liu, Xuedong; Kim, Youngchang; Joachimiak, Grazyna; Joachimiak, Andrzej; Koide, Shohei; Rosner, Marsha Rich

    2009-03-01

    Raf kinase inhibitory protein (RKIP/PEBP1), a member of the phosphatidylethanolamine binding protein family that possesses a conserved ligand-binding pocket, negatively regulates the mammalian mitogen-activated protein kinase (MAPK) signaling cascade. Mutation of a conserved site (P74L) within the pocket leads to a loss or switch in the function of yeast or plant RKIP homologues. However, the mechanism by which the pocket influences RKIP function is unknown. Here we show that the pocket integrates two regulatory signals, phosphorylation and ligand binding, to control RKIP inhibition of Raf-1. RKIP association with Raf-1 is prevented by RKIP phosphorylation at S153. The P74L mutation increases kinase interaction and RKIP phosphorylation, enhancing Raf-1/MAPK signaling. Conversely, ligand binding to the RKIP pocket inhibits kinase interaction and RKIP phosphorylation by a noncompetitive mechanism. Additionally, ligand binding blocks RKIP association with Raf-1. Nuclear magnetic resonance studies reveal that the pocket is highly dynamic, rationalizing its capacity to interact with distinct partners and be involved in allosteric regulation. Our results show that RKIP uses a flexible pocket to integrate ligand binding- and phosphorylation-dependent interactions and to modulate the MAPK signaling pathway. This mechanism is an example of an emerging theme involving the regulation of signaling proteins and their interaction with effectors at the level of protein dynamics.

  1. N'-benzylidene-benzohydrazides as novel and selective tau-PHF ligands.

    PubMed

    Taghavi, Ali; Nasir, Samir; Pickhardt, Marcus; Heyny-von Haussen, Roland; Mall, Gerhard; Mandelkow, Eckhard; Mandelkow, Eva-Maria; Schmidt, Boris

    2011-01-01

    The structure activity relationship of N'-benzylidene-benzohydrazide (NBB) binding to tau and paired helical filament (PHF) proteins as well as amyloid-β₁₋₄₂ fibrils indicate differential selectivity for these protein aggregates. The ability of the compounds to stain neurofibrillary tangles and senile plaques isolated from human AD brain was investigated histochemically. These studies resulted in several tau-PHF and amyloid-β₁₋₄₂ fibril selective ligands respectively. Supported by these results, we rationalized a model for the design of selective ligands for tau, PHF, and amyloid-β₁₋₄₂ fibrils.

  2. HALOACETIC ACIDS PERTURB PROTEIN PHOSPHORYLATION IN MOUSE EMBRYOS IN VITRO

    EPA Science Inventory

    HALOACETIC ACIDS PERTURB PROTEIN PHOSPHORYLATION IN MOUSE EMBRYOS IN VITRO. MR Blanton and ES Hunter. Reproductive Toxicology Division, NHEERL, ORD, US EPA, RTP, NC, USA.
    Sponsor: JM Rogers.
    Haloacetic Acids (HAAs) formed during the disinfection process are present in drin...

  3. Analysis of phosphorylated proteins and inhibition of kinase activity during Giardia intestinalis excystation.

    PubMed

    Alvarado, Magda E; Wasserman, Moisés

    2010-03-01

    The parasite Giardia intestinalis undergoes a differentiation process that allows it to infect its mammal host. That process is excystation. We examined the importance of protein phosphorylation during the passage from cyst to trophozoite. Cysts obtained from patients with giardiasis were excysted in vitro and the soluble cytoplasmic proteins were analyzed during the three phases of the process, using a specific staining for phosphoproteins. We found two phosphorylated proteins and identified them with MALDI-TOF as 14-3-3 and Hsp70. Modifications were detected in both proteins, which could indicate a role in differentiation of the parasite. In addition, the inhibition of serine-threonine kinases during excystation specifically affected the cytokinesis of the excyzoite, thus inhibiting the completion of trophozoite formation. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.

  4. Multiple Protein Kinases Determine the Phosphorylated State of the Small Heat Shock Protein, HSP27, in SH-SY5Y Neuroblastoma Cells

    PubMed Central

    Dokas, Linda A.; Malone, Amy M.; Williams, Frederick E.; Nauli, Surya M.; Messer, William S.

    2011-01-01

    In SH-SY5Y human neuroblastoma cells, the cholinergic agonist, carbachol, stimulates phosphorylation of the small heat shock protein 27 (HSP27). Carbachol increases phosphorylation of both Ser-82 and Ser-78 while the phorbol ester, phorbol-12, 13-dibutyrate (PDB) affects only Ser-82. Muscarinic receptor activation by carbachol was confirmed by sensitivity of Ser-82 phosphorylation to hyoscyamine with no effect of nicotine or bradykinin. This response to carbachol is partially reduced by inhibition of protein kinase C (PKC) with GF 109203X and p38 mitogen-activated protein kinase (MAPK) with SB 203580. In contrast, phosphorylation produced by PDB is completely reversed by GF 109203X or CID 755673, an inhibitor of PKD. Inhibition of phosphatidylinositol 3-kinase or Akt with LY 294002 or Akti-1/2 stimulates HSP27 phosphorylation while rapamycin, which inhibits mTORC1, does not. The stimulatory effect of Akti-1/2 is reversed by SB 203580 and correlates with increased p38 MAPK phosphorylation. SH-SY5Y cells differentiated with a low concentration of PDB and basic fibroblast growth factor to a more neuronal phenotype retain carbachol-, PDB- and Akti-1/2-responsive HSP27 phosphorylation. Immunofluorescence microscopy confirms increased HSP27 phosphorylation in response to carbachol or PDB. At cell margins, PDB causes f-actin to reorganize forming lamellipodial structures from which phospho-HSP27 is segregated. The resultant phenotypic change in cell morphology is dependent upon PKC, but not PKD, activity. The major conclusion from this study is that the phosphorylated state of HSP27 in SH-SY5Y cells results from integrated signaling involving PKC, p38 MAPK and Akt. PMID:21338617

  5. Neutral Sphingomyelinase 2 Activity and Protein Stability Are Modulated by Phosphorylation of Five Conserved Serines*

    PubMed Central

    Filosto, Simone; Ashfaq, Majid; Chung, Samuel; Fry, William; Goldkorn, Tzipora

    2012-01-01

    We previously presented that the neutral sphingomyelinase 2 (nSMase2) is the only SMase activated in human airway epithelial (HAE) cells following exposure to oxidative stress (ox-stress), yielding ceramide accumulation and thereby inducing apoptosis. Furthermore, we reported that nSMase2 is a phospho-protein in which the level of phosphorylation controls nSMase2 activation induced by ox-stress. Here we identify five specific serines that are phosphorylated in nSMase2 and demonstrate that their phosphorylation controls the nSMase2 activity upon ox-stress exposure in an interdependent manner. Furthermore, we show that the nSMase2 protein stability and thus its level of expression is also post-translationally regulated by these five serine phosphorylation sites. This study provides initial structure/function insights regarding nSMase2 phosphorylation sites and offers some new links for future studies aiming to fully elucidate nSMase2 regulatory machinery. PMID:22074919

  6. Use of LC-MS/MS and Bayes' theorem to identify protein kinases that phosphorylate aquaporin-2 at Ser256.

    PubMed

    Bradford, Davis; Raghuram, Viswanathan; Wilson, Justin L L; Chou, Chung-Lin; Hoffert, Jason D; Knepper, Mark A; Pisitkun, Trairak

    2014-07-15

    In the renal collecting duct, binding of AVP to the V2 receptor triggers signaling changes that regulate osmotic water transport. Short-term regulation of water transport is dependent on vasopressin-induced phosphorylation of aquaporin-2 (AQP2) at Ser256. The protein kinase that phosphorylates this site is not known. We use Bayes' theorem to rank all 521 rat protein kinases with regard to the likelihood of a role in Ser256 phosphorylation on the basis of prior data and new experimental data. First, prior probabilities were estimated from previous transcriptomic and proteomic profiling data, kinase substrate specificity data, and evidence for kinase regulation by vasopressin. This ranking was updated using new experimental data describing the effects of several small-molecule kinase inhibitors with known inhibitory spectra (H-89, KN-62, KN-93, and GSK-650394) on AQP2 phosphorylation at Ser256 in inner medullary collecting duct suspensions. The top-ranked kinase was Ca2+/calmodulin-dependent protein kinase II (CAMK2), followed by protein kinase A (PKA) and protein kinase B (AKT). Liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based in vitro phosphorylation studies compared the ability of three highly ranked kinases to phosphorylate AQP2 and other inner medullary collecting duct proteins, PKA, CAMK2, and serum/glucocorticoid-regulated kinase (SGK). All three proved capable of phosphorylating AQP2 at Ser256, although CAMK2 and PKA were more potent than SGK. The in vitro phosphorylation experiments also identified candidate protein kinases for several additional phosphoproteins with likely roles in collecting duct regulation, including Nedd4-2, Map4k4, and 3-phosphoinositide-dependent protein kinase 1. We conclude that Bayes' theorem is an effective means of integrating data from multiple data sets in physiology.

  7. Development of a phosphorylated Momordica charantia protein system for inhibiting susceptible dose-dependent C. albicans to available antimycotics: An allosteric regulation of protein.

    PubMed

    Qiao, Yuanbiao; Song, Li; Zhu, Chenchen; Wang, Qian; Guo, Tianyan; Yan, Yanhua; Li, Qingshan

    2017-11-15

    A regulatory Momordica charantia protein system was constructed allosterically by in vitro protein phosphorylation, in an attempt to evaluate antimycological pluripotency against dose-dependent susceptibilities in C. albicans. Fungal strain lineages susceptible to ketoconazole, econazole, miconazole, 5-flucytosine, nystatin and amphotericin B were prepared in laboratory, followed by identification via antifungal susceptibility testing. Protein phosphorylation was carried out in reactions with 5'-adenylic, guanidylic, cytidylic and uridylic acids and cyclic adenosine triphosphate, through catalysis of cyclin-dependent kinase 1, protein kinase A and protein kinase C respectively. Biochemical analysis of enzymatic reactions indicated the apparent Michaelis-Menten constants and maximal velocity values of 16.57-91.97mM and 55.56-208.33μM·min -1 , together with an approximate 1:1 reactant stoichiometric ratio. Three major protein phosphorylation sites were theoretically predicted at Thr255, Thr102 and Thr24 by a KinasePhos tool. Additionally, circular dichroism spectroscopy demonstrated that upon phosphorylation, protein folding structures were decreased in random coil, β6-sheet and α1-helix partial regions. McFarland equivalence standard testing yielded the concentration-dependent inhibition patterns, while fungus was grown in Sabouraud's dextrose agar. The minimal inhibitory concentrations of 0.16-0.51μM (at 50% response) were obtained for free protein and phosphorylated counterparts. With respect to the 3-cycling susceptibility testing regimen, individuals of total protein forms were administrated in-turn at 0.14μM/cycle. Relative inhibition ratios were retained to 66.13-81.04% of initial ones regarding the ketoconazole-susceptible C. albicans growth. An inhibitory protein system, with an advantage of decreasing antifungal susceptibilities to diverse antimycotics, was proposed because of regulatory pluripotency whereas little contribution to susceptibility in

  8. Phosphorylation and calcium antagonistically tune myosin-binding protein C’s structure and function

    PubMed Central

    Previs, Michael J.; Mun, Ji Young; Michalek, Arthur J.; Previs, Samantha Beck; Gulick, James; Robbins, Jeffrey; Warshaw, David M.; Craig, Roger

    2016-01-01

    During each heartbeat, cardiac contractility results from calcium-activated sliding of actin thin filaments toward the centers of myosin thick filaments to shorten cellular length. Cardiac myosin-binding protein C (cMyBP-C) is a component of the thick filament that appears to tune these mechanochemical interactions by its N-terminal domains transiently interacting with actin and/or the myosin S2 domain, sensitizing thin filaments to calcium and governing maximal sliding velocity. Both functional mechanisms are potentially further tunable by phosphorylation of an intrinsically disordered, extensible region of cMyBP-C’s N terminus, the M-domain. Using atomic force spectroscopy, electron microscopy, and mutant protein expression, we demonstrate that phosphorylation reduced the M-domain’s extensibility and shifted the conformation of the N-terminal domain from an extended structure to a compact configuration. In combination with motility assay data, these structural effects of M-domain phosphorylation suggest a mechanism for diminishing the functional potency of individual cMyBP-C molecules. Interestingly, we found that calcium levels necessary to maximally activate the thin filament mitigated the structural effects of phosphorylation by increasing M-domain extensibility and shifting the phosphorylated N-terminal fragments back to the extended state, as if unphosphorylated. Functionally, the addition of calcium to the motility assays ablated the impact of phosphorylation on maximal sliding velocities, fully restoring cMyBP-C’s inhibitory capacity. We conclude that M-domain phosphorylation may have its greatest effect on tuning cMyBP-C’s calcium-sensitization of thin filaments at the low calcium levels between contractions. Importantly, calcium levels at the peak of contraction would allow cMyBP-C to remain a potent contractile modulator, regardless of cMyBP-C’s phosphorylation state. PMID:26908872

  9. Replicative Functions of Minute Virus of Mice NS1 Protein Are Regulated In Vitro by Phosphorylation through Protein Kinase C

    PubMed Central

    Nüesch, Jürg P. F.; Dettwiler, Sabine; Corbau, Romuald; Rommelaere, Jean

    1998-01-01

    NS1, the major nonstructural protein of the parvovirus minute virus of mice, is a multifunctional phosphoprotein which is involved in cytotoxicity, transcriptional regulation, and initiation of viral DNA replication. For coordination of these various functions during virus propagation, NS1 has been proposed to be regulated by posttranslational modifications, in particular phosphorylation. Recent in vitro studies (J. P. F. Nüesch, R. Corbau, P. Tattersall, and J. Rommelaere, J. Virol. 72:8002–8012, 1998) provided evidence that distinct NS1 activities, notably the intrinsic helicase function, are modulated by the phosphorylation state of the protein. In order to study the dependence of the initiation of viral DNA replication on NS1 phosphorylation and to identify the protein kinases involved, we established an in vitro replication system that is devoid of endogenous protein kinases and is based on plasmid substrates containing the minimal left-end origins of replication. Cellular components necessary to drive NS1-dependent rolling-circle replication (RCR) were freed from endogenous serine/threonine protein kinases by affinity chromatography, and the eukaryotic DNA polymerases were replaced by the bacteriophage T4 DNA polymerase. While native NS1 (NS1P) supported RCR under these conditions, dephosphorylated NS1 (NS1O) was impaired. Using fractionated HeLa cell extracts, we identified two essential protein components which are able to phosphorylate NS1O, are enriched in protein kinase C (PKC), and, when present together, reactivate NS1O for replication. One of these components, containing atypical PKC, was sufficient to restore NS1O helicase activity. The requirement of NS1O reactivation for characteristic PKC cofactors such as Ca2+/phosphatidylserine or phorbol esters strongly suggests the involvement of this protein kinase family in regulation of NS1 replicative functions in vitro. PMID:9811734

  10. Shade-induced nuclear localization of PIF7 is regulated by phosphorylation and 14-3-3 proteins in Arabidopsis.

    PubMed

    Huang, Xu; Zhang, Qian; Jiang, Yupei; Yang, Chuanwei; Wang, Qianyue; Li, Lin

    2018-06-21

    Shade avoidance syndrome enables shaded plants to grow and compete effectively against their neighbors. In Arabidopsis , the shade-induced de-phosphorylation of the transcription factor PIF7 (PHYTOCHROME-INTERACTING FACTOR 7) is the key event linking light perception to stem elongation. However, the mechanism through which phosphorylation regulates the activity of PIF7 is unclear. Here, we show that shade light induces the de-phosphorylation and nuclear accumulation of PIF7. Phosphorylation-resistant site mutations in PIF7 result in increased nuclear localization and shade-induced gene expression, and consequently augment hypocotyl elongation. PIF7 interacts with 14-3-3 proteins. Blocking the interaction between PIF7 and 14-3-3 proteins or reducing the expression of 14-3-3 proteins accelerates shade-induced nuclear localization and de-phosphorylation of PIF7, and enhances the shade phenotype. By contrast, the 14-3-3 overexpressing line displays an attenuated shade phenotype. These studies demonstrate a phosphorylation-dependent translocation of PIF7 when plants are in shade and a novel mechanism involving 14-3-3 proteins, mediated by the retention of PIF7 in the cytoplasm that suppresses the shade response. © 2018, Huang et al.

  11. (S)-α-Chlorohydrin Inhibits Protein Tyrosine Phosphorylation through Blocking Cyclic AMP - Protein Kinase A Pathway in Spermatozoa

    PubMed Central

    Zheng, Weiwei; Yang, Bei; Pi, Jingbo; He, Gengsheng; Qu, Weidong

    2012-01-01

    α-Chlorohydrin is a common contaminant in food. Its (S)-isomer, (S)-α-chlorohydrin (SACH), is known for causing infertility in animals by inhibiting glycolysis of spermatozoa. The aim of present work was to examine the relationship between SACH and protein tyrosine phosphorylation (PTP), which plays a critical role in regulating mammalian sperm capacitation. In vitro exposure of SACH 50 µM to isolated rat epididymal sperm inhibited PTP. Sperm-specific glyceraldehyde 3-phosphate dehydrogenase (GAPDS) activities, the intracellular adenosine 5′-triphosphate (ATP) levels, 3′-5′-cyclic adenosine monophosphate (cAMP) levels and phosphorylation of protein kinase A (PKA) substrates in rat sperm were diminished dramatically, indicating that both glycolysis and the cAMP/PKA signaling pathway were impaired by SACH. The inhibition of both PTP and phosphorylation of PKA substrates by SACH could be restored by addition of cAMP analog dibutyryl-cAMP (dbcAMP) and phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (IBMX). Moreover, addition of glycerol protected glycolysis, ATP levels, phosphorylation of PKA substrates and PTP against the influence of SACH. These results suggested SACH inhibited PTP through blocking cAMP/PKA pathway in sperm, and PTP inhibition may play a role in infertility associated with SACH. PMID:22916194

  12. (S)-α-chlorohydrin inhibits protein tyrosine phosphorylation through blocking cyclic AMP - protein kinase A pathway in spermatozoa.

    PubMed

    Zhang, Hao; Yu, Huan; Wang, Xia; Zheng, Weiwei; Yang, Bei; Pi, Jingbo; He, Gengsheng; Qu, Weidong

    2012-01-01

    α-Chlorohydrin is a common contaminant in food. Its (S)-isomer, (S)-α-chlorohydrin (SACH), is known for causing infertility in animals by inhibiting glycolysis of spermatozoa. The aim of present work was to examine the relationship between SACH and protein tyrosine phosphorylation (PTP), which plays a critical role in regulating mammalian sperm capacitation. In vitro exposure of SACH 50 µM to isolated rat epididymal sperm inhibited PTP. Sperm-specific glyceraldehyde 3-phosphate dehydrogenase (GAPDS) activities, the intracellular adenosine 5'-triphosphate (ATP) levels, 3'-5'-cyclic adenosine monophosphate (cAMP) levels and phosphorylation of protein kinase A (PKA) substrates in rat sperm were diminished dramatically, indicating that both glycolysis and the cAMP/PKA signaling pathway were impaired by SACH. The inhibition of both PTP and phosphorylation of PKA substrates by SACH could be restored by addition of cAMP analog dibutyryl-cAMP (dbcAMP) and phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (IBMX). Moreover, addition of glycerol protected glycolysis, ATP levels, phosphorylation of PKA substrates and PTP against the influence of SACH. These results suggested SACH inhibited PTP through blocking cAMP/PKA pathway in sperm, and PTP inhibition may play a role in infertility associated with SACH.

  13. Selective stabilization of tau in axons and microtubule-associated protein 2C in cell bodies and dendrites contributes to polarized localization of cytoskeletal proteins in mature neurons.

    PubMed

    Hirokawa, N; Funakoshi, T; Sato-Harada, R; Kanai, Y

    1996-02-01

    In mature neurons, tau is abundant in axons, whereas microtubule-associated protein 2 (MAP2) and MAP2C are specifically localized in dendrites. Known mechanisms involved in the compartmentalization of these cytoskeletal proteins include the differential localization of mRNA (MAP2 mRNA in dendrites, MAP2C mRNA in cell body, and Tau mRNA in proximal axon revealed by in situ hybridization) (Garner, C.C., R.P. Tucker, and A. Matus. 1988. Nature (Lond.). 336:674-677; Litman, P., J. Barg, L. Rindzooski, and I. Ginzburg. 1993. Neuron. 10:627-638), suppressed transit of MAP2 into axons (revealed by cDNA transfection into neurons) (Kanai, Y., and N. Hirokawa. 1995. Neuron. 14:421-432), and differential turnover of MAP2 in axons vs dendrites (Okabe, S., and N. Hirokawa. 1989. Proc. Natl. Acad. Sci. USA. 86:4127-4131). To investigate whether differential turnover of MAPs contributes to localization of other major MAPs in general, we microinjected biotinylated tau, MAP2C, or MAP2 into mature spinal cord neurons in culture (approximately 3 wk) and then analyzed their fates by antibiotin immunocytochemistry. Initially, each was detected in axons and dendrites, although tau persisted only in axons, whereas MAP2C and MAP2 were restricted to cell bodies and dendrites. Injected MAP2C and MAP2 bound to dendritic microtubules more firmly than to microtubules in axons, while injected tau bound to axonal microtubules more firmly than to microtubules in dendrites. Thus, beyond contributions from mRNA localization and selective axonal transport, compartmentalization of each of the three major MAPs occurs through local differential turnover.

  14. A Pea Plasma Membrane Protein Exhibiting Blue Light-Induced Phosphorylation Retains Photosensitivity following Triton Solubilization.

    PubMed Central

    Short, T. W.; Reymond, P.; Briggs, W. R.

    1993-01-01

    Phosphorylation of a polypeptide of approximately 120 kD in pea (Pisum sativum L.) plasma membranes in response to blue light has been shown to be involved in phototropic curvature, but the relationship of this protein to the kinase and photoreceptor acting upon it is uncertain. Using two-phase aqueous partitioning to isolate right-side-out plasma membrane vesicles, we have obtained evidence suggesting that the photoreceptor, kinase, and substrate are localized to the plasma membrane fraction. Latent phosphorylation accessible through Triton X-100 or freeze/thaw treatments of purified plasma membrane vesicles indicates that at least the kinase moiety is present on the internal face of the plasma membrane. Effects of solubilization of vesicles on fluence-response characteristics and on phosphorylation levels provide evidence that the receptor, kinase, and protein substrate are present together in individual mixed detergent micelles, either as a stable complex or as domains of a single polypeptide. In vivo blue-light irradiation results in a small but significant decrease in mobility of the 120-kD phosphorylated protein on sodium dodecylsulfate gel electrophoresis. This mobility shift is evident on Coomassie-stained gels and on western blots probed with polyclonal antibodies raised against the 120-kD protein. Among the plasma membrane proteins bound to the reactive nucleotide analog fluorosulfonylbenzoyladenine (FSBA), a distinct protein band at 120 kD can be detected on blots probed with anti-FSBA antibodies. This band exhibits an in vivo light-dependent mobility shift identical to that observed for the protein band and antibodies specific for the 120-kD protein, implying that the 120-kD protein has an integral nucleotide binding site and consistent with the possibility that the substrate protein is also a kinase. PMID:12231721

  15. Phosphorylation of G Protein-Coupled Receptors: From the Barcode Hypothesis to the Flute Model.

    PubMed

    Yang, Zhao; Yang, Fan; Zhang, Daolai; Liu, Zhixin; Lin, Amy; Liu, Chuan; Xiao, Peng; Yu, Xiao; Sun, Jin-Peng

    2017-09-01

    Seven transmembrane G protein-coupled receptors (GPCRs) are often phosphorylated at the C terminus and on intracellular loops in response to various extracellular stimuli. Phosphorylation of GPCRs by GPCR kinases and certain other kinases can promote the recruitment of arrestin molecules. The arrestins critically regulate GPCR functions not only by mediating receptor desensitization and internalization, but also by redirecting signaling to G protein-independent pathways via interactions with numerous downstream effector molecules. Accumulating evidence over the past decade has given rise to the phospho-barcode hypothesis, which states that ligand-specific phosphorylation patterns of a receptor direct its distinct functional outcomes. Our recent work using unnatural amino acid incorporation and fluorine-19 nuclear magnetic resonance ( 19 F-NMR) spectroscopy led to the flute model, which provides preliminary insight into the receptor phospho-coding mechanism, by which receptor phosphorylation patterns are recognized by an array of phosphate-binding pockets on arrestin and are translated into distinct conformations. These selective conformations are recognized by various effector molecules downstream of arrestin. The phospho-barcoding mechanism enables arrestin to recognize a wide range of phosphorylation patterns of GPCRs, contributing to their diverse functions. Copyright © 2017 by The Author(s).

  16. Fasting and Systemic Insulin Signaling Regulate Phosphorylation of Brain Proteins That Modulate Cell Morphology and Link to Neurological Disorders*

    PubMed Central

    Li, Min; Quan, Chao; Toth, Rachel; Campbell, David G.; MacKintosh, Carol; Wang, Hong Yu; Chen, Shuai

    2015-01-01

    Diabetes is strongly associated with cognitive decline, but the molecular reasons are unknown. We found that fasting and peripheral insulin promote phosphorylation and dephosphorylation, respectively, of specific residues on brain proteins including cytoskeletal regulators such as slit-robo GTPase-activating protein 3 (srGAP3) and microtubule affinity-regulating protein kinases (MARKs), in which deficiency or dysregulation is linked to neurological disorders. Fasting activates protein kinase A (PKA) but not PKB/Akt signaling in the brain, and PKA can phosphorylate the purified srGAP3. The phosphorylation of srGAP3 and MARKs were increased when PKA signaling was activated in primary neurons. Knockdown of PKA decreased the phosphorylation of srGAP3. Furthermore, WAVE1, a protein kinase A-anchoring protein, formed a complex with srGAP3 and PKA in the brain of fasted mice to facilitate the phosphorylation of srGAP3 by PKA. Although brain cells have insulin receptors, our findings are inconsistent with the down-regulation of phosphorylation of target proteins being mediated by insulin signaling within the brain. Rather, our findings infer that systemic insulin, through a yet unknown mechanism, inhibits PKA or protein kinase(s) with similar specificity and/or activates an unknown phosphatase in the brain. Ser858 of srGAP3 was identified as a key regulatory residue in which phosphorylation by PKA enhanced the GAP activity of srGAP3 toward its substrate, Rac1, in cells, thereby inhibiting the action of this GTPase in cytoskeletal regulation. Our findings reveal novel mechanisms linking peripheral insulin sensitivity with cytoskeletal remodeling in neurons, which may help to explain the association of diabetes with neurological disorders such as Alzheimer disease. PMID:26499801

  17. Tau Processing by Mural Cells in Traumatic Brain Injury and Alzheimer’s Disease

    DTIC Science & Technology

    2017-10-01

    Cerebrovessels were treated with recombinant human tau (5ng/ml) for 1 hour at 37oC and total tau uptake was assessed in the lysates via ELISA . We observed a...to 5ng/ml recombinant human tau (rhtau-441) for 1 hour at 37oC. Lysates were analyzed for total tau content by ELISA and normalized to total protein...and 6 months post-last injury). Brain vessels were analyzed for PDGFRβ and α-SMC-actin content by ELISA and normalized to total protein using the

  18. Antibody-based detection of protein phosphorylation status to track the efficacy of novel therapies using nanogram protein quantities from stem cells and cell lines.

    PubMed

    Aspinall-O'Dea, Mark; Pierce, Andrew; Pellicano, Francesca; Williamson, Andrew J; Scott, Mary T; Walker, Michael J; Holyoake, Tessa L; Whetton, Anthony D

    2015-01-01

    This protocol describes a highly reproducible antibody-based method that provides protein level and phosphorylation status information from nanogram quantities of protein cell lysate. Nanocapillary isoelectric focusing (cIEF) combines with UV-activated linking chemistry to detect changes in phosphorylation status. As an example application, we describe how to detect changes in response to tyrosine kinase inhibitors (TKIs) in the phosphorylation status of the adaptor protein CrkL, a major substrate of the oncogenic tyrosine kinase BCR-ABL in chronic myeloid leukemia (CML), using highly enriched CML stem cells and mature cell populations in vitro. This protocol provides a 2.5 pg/nl limit of protein detection (<0.2% of a stem cell sample containing <10(4) cells). Additional assays are described for phosphorylated tyrosine 207 (pTyr207)-CrkL and the protein tyrosine phosphatase PTPRC/CD45; these assays were developed using this protocol and applied to CML patient samples. This method is of high throughput, and it can act as a screen for in vitro cancer stem cell response to drugs and novel agents.

  19. Alzheimer brain-derived tau oligomers propagate pathology from endogenous tau.

    PubMed

    Lasagna-Reeves, Cristian A; Castillo-Carranza, Diana L; Sengupta, Urmi; Guerrero-Munoz, Marcos J; Kiritoshi, Takaki; Neugebauer, Volker; Jackson, George R; Kayed, Rakez

    2012-01-01

    Intracerebral injection of brain extracts containing amyloid or tau aggregates in transgenic animals can induce cerebral amyloidosis and tau pathology. We extracted pure populations of tau oligomers directly from the cerebral cortex of Alzheimer disease (AD) brain. These oligomers are potent inhibitors of long term potentiation (LTP) in hippocampal brain slices and disrupt memory in wild type mice. We observed for the first time that these authentic brain-derived tau oligomers propagate abnormal tau conformation of endogenous murine tau after prolonged incubation. The conformation and hydrophobicity of tau oligomers play a critical role in the initiation and spread of tau pathology in the naïve host in a manner reminiscent of sporadic AD.

  20. Tau truncation is a productive posttranslational modification of neurofibrillary degeneration in Alzheimer's disease.

    PubMed

    Kovacech, B; Novak, M

    2010-12-01

    Deposits of the misfolded neuronal protein tau are major hallmarks of neurodegeneration in Alzheimer's disease (AD) and other tauopathies. The etiology of the transformation process of the intrinsically disordered soluble protein tau into the insoluble misordered aggregate has attracted much attention. Tau undergoes multiple modifications in AD, most notably hyperphosphorylation and truncation. Hyperphosphorylation is widely regarded as the hottest candidate for the inducer of the neurofibrillary pathology. However, the true nature of the impetus that initiates the whole process in the human brains remains unknown. In AD, several site-specific tau cleavages were identified and became connected to the progression of the disease. In addition, western blot analyses of tau species in AD brains reveal multitudes of various truncated forms. In this review we summarize evidence showing that tau truncation alone is sufficient to induce the complete cascade of neurofibrillary pathology, including hyperphosphorylation and accumulation of misfolded insoluble forms of tau. Therefore, proteolytical abnormalities in the stressed neurons and production of aberrant tau cleavage products deserve closer attention and should be considered as early therapeutic targets for Alzheimer's disease.

  1. Lithium suppression of tau induces brain iron accumulation and neurodegeneration.

    PubMed

    Lei, P; Ayton, S; Appukuttan, A T; Moon, S; Duce, J A; Volitakis, I; Cherny, R; Wood, S J; Greenough, M; Berger, G; Pantelis, C; McGorry, P; Yung, A; Finkelstein, D I; Bush, A I

    2017-03-01

    Lithium is a first-line therapy for bipolar affective disorder. However, various adverse effects, including a Parkinson-like hand tremor, often limit its use. The understanding of the neurobiological basis of these side effects is still very limited. Nigral iron elevation is also a feature of Parkinsonian degeneration that may be related to soluble tau reduction. We found that magnetic resonance imaging T 2 relaxation time changes in subjects commenced on lithium therapy were consistent with iron elevation. In mice, lithium treatment lowers brain tau levels and increases nigral and cortical iron elevation that is closely associated with neurodegeneration, cognitive loss and parkinsonian features. In neuronal cultures lithium attenuates iron efflux by lowering tau protein that traffics amyloid precursor protein to facilitate iron efflux. Thus, tau- and amyloid protein precursor-knockout mice were protected against lithium-induced iron elevation and neurotoxicity. These findings challenge the appropriateness of lithium as a potential treatment for disorders where brain iron is elevated (for example, Alzheimer's disease), and may explain lithium-associated motor symptoms in susceptible patients.

  2. PrkC-mediated phosphorylation of overexpressed YvcK protein regulates PBP1 protein localization in Bacillus subtilis mreB mutant cells.

    PubMed

    Foulquier, Elodie; Pompeo, Frédérique; Freton, Céline; Cordier, Baptiste; Grangeasse, Christophe; Galinier, Anne

    2014-08-22

    The YvcK protein has been shown to be necessary for growth under gluconeogenic conditions in Bacillus subtilis. Amazingly, its overproduction rescues growth and morphology defects of the actin-like protein MreB deletion mutant by restoration of PBP1 localization. In this work, we observed that YvcK was phosphorylated at Thr-304 by the protein kinase PrkC and that phosphorylated YvcK was dephosphorylated by the cognate phosphatase PrpC. We show that neither substitution of this threonine with a constitutively phosphorylated mimicking glutamic acid residue or a phosphorylation-dead mimicking alanine residue nor deletion of prkC or prpC altered the ability of B. subtilis to grow under gluconeogenic conditions. However, we observed that a prpC mutant and a yvcK mutant were more sensitive to bacitracin compared with the WT strain. In addition, the bacitracin sensitivity of strains in which YvcK Thr-304 was replaced with either an alanine or a glutamic acid residue was also affected. We also analyzed rescue of the mreB mutant strain by overproduction of YvcK in which the phosphorylation site was substituted. We show that YvcK T304A overproduction did not rescue the mreB mutant aberrant morphology due to PBP1 mislocalization. The same observation was made in an mreB prkC double mutant overproducing YvcK. Altogether, these data show that YvcK may have two distinct functions: 1) in carbon source utilization independent of its phosphorylation level and 2) in cell wall biosynthesis and morphogenesis through its phosphorylation state. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Gene Profiling of Nucleus Basalis Tau Containing Neurons in Chronic Traumatic Encephalopathy: A Chronic Effects of Neurotrauma Consortium Study.

    PubMed

    Mufson, Elliott J; He, Bin; Ginsberg, Stephen D; Carper, Benjamin A; Bieler, Gayle S; Crawford, Fiona; Alvarez, Victor E; Huber, Bertrand R; Stein, Thor D; McKee, Ann C; Perez, Sylvia E

    2018-06-01

    Military personnel and athletes exposed to traumatic brain injury may develop chronic traumatic encephalopathy (CTE). Brain pathology in CTE includes intracellular accumulation of abnormally phosphorylated tau proteins (p-tau), the main constituent of neurofibrillary tangles (NFTs). Recently, we found that cholinergic basal forebrain (CBF) neurons within the nucleus basalis of Meynert (nbM), which provide the major cholinergic innervation to the cortex, display an increased number of NFTs across the pathological stages of CTE. However, molecular mechanisms underlying nbM neurodegeneration in the context of CTE pathology remain unknown. Here, we assessed the genetic signature of nbM neurons containing the p-tau pretangle maker pS422 from CTE subjects who came to autopsy and received a neuropathological CTE staging assessment (Stages II, III, and IV) using laser capture microdissection and custom-designed microarray analysis. Quantitative analysis revealed dysregulation of key genes in several gene ontology groups between CTE stages. Specifically, downregulation of the nicotinic cholinergic receptor subunit β-2 gene (CHRNB2), monoaminergic enzymes catechol-O-methyltransferase (COMT) and dopa decarboxylase (DDC), chloride channels CLCN4 and CLCN5, scaffolding protein caveolin 1 (CAV1), cortical development/cytoskeleton element lissencephaly 1 (LIS1), and intracellular signaling cascade member adenylate cyclase 3 (ADCY3) was observed in pS422-immunreactive nbM neurons in CTE patients. By contrast, upregulation of calpain 2 (CAPN2) and microtubule-associated protein 2 (MAP2) transcript levels was found in Stage IV CTE patients. These single-population data in vulnerable neurons indicate alterations in gene expression associated with neurotransmission, signal transduction, the cytoskeleton, cell survival/death signaling, and microtubule dynamics, suggesting novel molecular pathways to target for drug discovery in CTE.

  4. Learning and Memory Deficits upon TAU Accumulation in "Drosophila" Mushroom Body Neurons

    ERIC Educational Resources Information Center

    Mershin, Andreas; Pavlopoulos, Elias; Fitch, Olivia; Braden, Brittany C.; Nanopoulos, Dimitri V.; Skoulakis, Efthimios M. C.

    2004-01-01

    Mutations in the neuronal-specific microtubule-binding protein TAU are associated with several dementias and neurodegenerative diseases. However, the effects of elevated TAU accumulation on behavioral plasticity are unknown. We report that directed expression of wild-type vertebrate and "Drosophila" TAU in adult mushroom body neurons, centers for…

  5. Tumor promoters alter gene expression and protein phosphorylation in avian cells in culture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laszlo, A.; Radke, K.; Chin, S.

    1981-10-01

    We have investigated the effect of 12-O-tetradecanoylphorbol 13-acetate (TPA) on the synthesis and modification of polypeptides in normal avian cells and cells infected by wild-type and temperature-sensitive Rous sarcoma virus (RSV). Using two-dimensional gel electrophoresis, we have detected alterations in both the abundance of cellular polypeptides and in their phosphorylation that seem unique to TPA treatment. However, the state of phosphorylation of the major putative substrate for the action of the src gene-associated protein kinase, the 34- to 36-kilodalton protein, was not altered. Moreover, examination of the phosphorylated amino acid content of total cellular phosphoproteins revealed that the response tomore » TPA was not associated with detectable increases in their phosphotyrosine content. These results make it unlikely that TPA acts by the activation of the phosphorylating activity of the cellular proto-src gene or by the activation of other cellular phosphotyrosine-specific kinases. We have shown previously that temperature-sensitive RSV-infected cells at nonpermissive temperature demonstrate an increased sensitivity to TPA treatment (Bissell, M.J., Hatie, C. and Calfin, M. (1979) Proc. Natl. Acad. Sci. USA 76, 348-352). Our present results indicate that this is not due to reactivation of the phosphorylating activity of the defective src gene product or to its leakiness, and they lend support to the notion of multistep viral carcinogenesis.« less

  6. Organic conjugated small molecule materials based optical probe for rapid, colorimetric and UV-vis spectral detection of phosphorylated protein in placental tissue

    NASA Astrophysics Data System (ADS)

    Wang, Yanfang; Yang, Na; Liu, Yi

    2018-04-01

    A novel organic small molecule with D-Pi-A structure was prepared, which was found to be a promising colorimetric and ratiometric UV-vis spetral probe for detection of phosphorylated proteins with the help of tetravalent zirconium ion. Such optical probe based on chromophore WYF-1 shows a rapid response (within 10 s) and high selectivity and sensitivity for phosphorylated proteins, giving distinct colorimetric and ratiometric UV-vis changes at 720 and 560 nm. The detection limit for phosphorylated proteins was estimated to be 100 nM. In addition, detection of phosphorylated proteins in placental tissue samples with this probe was successfully applied, which indicates that this probe holds great potential for phosphorylated proteins detection.

  7. Raf Kinase Inhibitory Protein Function Is Regulated via a Flexible Pocket and Novel Phosphorylation-Dependent Mechanism▿ †

    PubMed Central

    Granovsky, Alexey E.; Clark, Matthew C.; McElheny, Dan; Heil, Gary; Hong, Jia; Liu, Xuedong; Kim, Youngchang; Joachimiak, Grazyna; Joachimiak, Andrzej; Koide, Shohei; Rosner, Marsha Rich

    2009-01-01

    Raf kinase inhibitory protein (RKIP/PEBP1), a member of the phosphatidylethanolamine binding protein family that possesses a conserved ligand-binding pocket, negatively regulates the mammalian mitogen-activated protein kinase (MAPK) signaling cascade. Mutation of a conserved site (P74L) within the pocket leads to a loss or switch in the function of yeast or plant RKIP homologues. However, the mechanism by which the pocket influences RKIP function is unknown. Here we show that the pocket integrates two regulatory signals, phosphorylation and ligand binding, to control RKIP inhibition of Raf-1. RKIP association with Raf-1 is prevented by RKIP phosphorylation at S153. The P74L mutation increases kinase interaction and RKIP phosphorylation, enhancing Raf-1/MAPK signaling. Conversely, ligand binding to the RKIP pocket inhibits kinase interaction and RKIP phosphorylation by a noncompetitive mechanism. Additionally, ligand binding blocks RKIP association with Raf-1. Nuclear magnetic resonance studies reveal that the pocket is highly dynamic, rationalizing its capacity to interact with distinct partners and be involved in allosteric regulation. Our results show that RKIP uses a flexible pocket to integrate ligand binding- and phosphorylation-dependent interactions and to modulate the MAPK signaling pathway. This mechanism is an example of an emerging theme involving the regulation of signaling proteins and their interaction with effectors at the level of protein dynamics. PMID:19103740

  8. Expression of Human CTP Synthetase in Saccharomyces cerevisiae Reveals Phosphorylation by Protein Kinase A*

    PubMed Central

    Han, Gil-Soo; Sreenivas, Avula; Choi, Mal-Gi; Chang, Yu-Fang; Martin, Shelley S.; Baldwin, Enoch P.; Carman, George M.

    2005-01-01

    CTP synthetase (EC 6.3.4.2, UTP: ammonia ligase (ADP-forming)) is an essential enzyme in all organisms; it generates the CTP required for the synthesis of nucleic acids and membrane phospholipids. In this work we showed that the human CTP synthetase genes, CTPS1 and CTPS2, were functional in Saccharomyces cerevisiae and complemented the lethal phenotype of the ura7Δ ura8Δ mutant lacking CTP synthetase activity. The expression of the CTPS1-and CTPS2-encoded human CTP synthetase enzymes in the ura7Δ ura8Δ mutant was shown by immunoblot analysis of CTP synthetase proteins, the measurement of CTP synthetase activity, and the synthesis of CTP in vivo. Phosphoamino acid and phosphopeptide mapping analyses of human CTP synthetase 1 isolated from 32Pi-labeled cells revealed that the enzyme was phosphorylated on multiple serine residues in vivo. Activation of protein kinase A activity in yeast resulted in transient increases (2-fold) in the phosphorylation of human CTP synthetase 1 and the cellular level of CTP. Human CTP synthetase 1 was also phosphorylated by mammalian protein kinase A in vitro. Using human CTP synthetase 1 purified from Escherichia coli as a substrate, protein kinase A activity was dose- and time-dependent, and dependent on the concentrations of CTP synthetase1 and ATP. These studies showed that S. cerevisiae was useful for the analysis of human CTP synthetase phosphorylation. PMID:16179339

  9. Pyruvate kinase type M2 promotes tumour cell exosome release via phosphorylating synaptosome-associated protein 23

    PubMed Central

    Wei, Yao; Wang, Dong; Jin, Fangfang; Bian, Zhen; Li, Limin; Liang, Hongwei; Li, Mingzhen; Shi, Lei; Pan, Chaoyun; Zhu, Dihan; Chen, Xi; Hu, Gang; Liu, Yuan; Zhang, Chen-Yu; Zen, Ke

    2017-01-01

    Tumour cells secrete exosomes that are involved in the remodelling of the tumour–stromal environment and promoting malignancy. The mechanisms governing tumour exosome release, however, remain incompletely understood. Here we show that tumour cell exosomes secretion is controlled by pyruvate kinase type M2 (PKM2), which is upregulated and phosphorylated in tumours. During exosome secretion, phosphorylated PKM2 serves as a protein kinase to phosphorylate synaptosome-associated protein 23 (SNAP-23), which in turn enables the formation of the SNARE complex to allow exosomes release. Direct phosphorylation assay and mass spectrometry confirm that PKM2 phosphorylates SNAP-23 at Ser95. Ectopic expression of non-phosphorylated SNAP-23 mutant (Ser95→Ala95) significantly reduces PKM2-mediated exosomes release whereas expression of selective phosphomimetic SNAP-23 mutants (Ser95→Glu95 but not Ser20→Glu20) rescues the impaired exosomes release induced by PKM2 knockdown. Our findings reveal a non-metabolic function of PKM2, an enzyme associated with tumour cell reliance on aerobic glycolysis, in promoting tumour cell exosome release. PMID:28067230

  10. Inhibition of protein phosphorylation in MIA pancreatic cancer cells: Confluence of metabolic and signaling pathways

    PubMed Central

    Zhang, Hengwei; Cao, Rui; Lee, Wai-Nang Paul; Deng, Caishu; Zhao, Yingchun; Lappe, Joan; Recker, Robert; Yen, Yun; Wang, Qi; Tsai, Ming-Ying; Go, Vay Liang; Xiao, Gary Guishan

    2010-01-01

    Oxythiamine (OT), a transketolase inhibitor, is known to inhibit pancreatic cancer cell proliferation. In this study, we investigated the effect of inhibition of the transketolase pathway on signaling pathways in MIA PaCa cancer cells using in-house proteomic techniques. We hypothesized that OT alter protein phosphorylation thus affecting cell cycle arrest and cell proliferation. MIA PaCa-2 cells were cultured in media containing an algal 15N amino acid mixture at 50% enrichment, with and without OT, to determine protein expression and synthesis. Analysis of cell lysates using two-dimensional gel electrophoresis matrix assisted laser desorption and ionization time-of-flight and time-of-flight mass spectrometry (2-DE-MALDI-TOF/TOF MS) identified 12 phosphor proteins that were significantly suppressed by OT treatment. Many of these proteins are involved in regulation of cycle activities and apoptosis. Among the proteins identified, expression of the phosphor heat shock protein 27 (Hsp27) was dramatically inhibited by OT treatment while the level of its total protein remained unchanged. Hsp27 expression and phoshporylation is known to be associated with drug resistance and cancer cell survival. The changes in phosphorylation of key proteins of cancer proliferation and survival suggest that protein phosphorylation is the confluence of the effects of OT on metabolic and signaling pathways. PMID:20035555

  11. Regulation of brain insulin signaling: A new function for tau

    PubMed Central

    Gratuze, Maud; Planel, Emmanuel

    2017-01-01

    In this issue of JEM, Marciniak et al. (https://doi.org/10.1084/jem.20161731) identify a putative novel function of tau protein as a regulator of insulin signaling in the brain. They find that tau deletion impairs hippocampal response to insulin through IRS-1 and PTEN dysregulation and suggest that, in Alzheimer’s disease, impairment of brain insulin signaling might occur via tau loss of function. PMID:28652305

  12. Regulation of brain insulin signaling: A new function for tau.

    PubMed

    Gratuze, Maud; Planel, Emmanuel

    2017-08-07

    In this issue of JEM, Marciniak et al. (https://doi.org/10.1084/jem.20161731) identify a putative novel function of tau protein as a regulator of insulin signaling in the brain. They find that tau deletion impairs hippocampal response to insulin through IRS-1 and PTEN dysregulation and suggest that, in Alzheimer's disease, impairment of brain insulin signaling might occur via tau loss of function. © 2017 Gratuze and Planel.

  13. Akt regulates the subcellular localization of the Rab27a-binding protein JFC1 by phosphorylation.

    PubMed

    Johnson, Jennifer L; Pacquelet, Sandrine; Lane, William S; Eam, Boreth; Catz, Sergio D

    2005-08-01

    Here, we show that the Rab27a-binding protein JFC1/Slp1 (synaptotagmin-like protein) is regulated by Akt-mediated phosphorylation. Using the phosphatase and tensin homolog-null LNCaP cells and the phosphatidylinositol 3-kinase inhibitor LY294002, we show that the phosphorylation of endogenous JFC1 is dependent on the phosphatidylinositol 3-kinase/Akt pathway. JFC1 was phosphorylated in cells expressing a constitutively active Akt, confirming that it is an Akt substrate in vivo. Direct phosphorylation of JFC1 by Akt was confirmed in vitro. Using microcapillary high-performance liquid chromatography tandem mass spectrometry, we identified five Akt-phosphorylation sites in JFC1. By mutagenesis analysis and subsequent immunoprecipitation (IP), we established that Akt phosphorylates JFC1 at serine 241. JFC1 and Rab27a colocalize in the proximity of the plasma membrane in LNCaP cells. The interaction was confirmed by IP analysis and was abolished by the point mutation W83S in JFC1. Phosphorylation did not alter the ability of JFC1 to bind to Rab27a. Instead, phosphorylation by Akt dramatically decreased when JFC1 was bound to Rab27a. Finally, we show that as a consequence of in vivo phosphorylation, JFC1 dissociates from the membrane, promoting JFC1 redistribution to the cytosol. Our results suggest that Akt regulates JFC1/Slp1 function by phosphorylation and may have implications on Rab27a-containing vesicle secretion.

  14. Acute tau knockdown in the hippocampus of adult mice causes learning and memory deficits.

    PubMed

    Velazquez, Ramon; Ferreira, Eric; Tran, An; Turner, Emily C; Belfiore, Ramona; Branca, Caterina; Oddo, Salvatore

    2018-05-10

    Misfolded and hyperphosphorylated tau accumulates in several neurodegenerative disorders including Alzheimer's disease, frontotemporal dementia with Parkinsonism, corticobasal degeneration, progressive supranuclear palsy, Down syndrome, and Pick's disease. Tau is a microtubule-binding protein, and its role in microtubule stabilization is well defined. In contrast, while growing evidence suggests that tau is also involved in synaptic physiology, a complete assessment of tau function in the adult brain has been hampered by robust developmental compensation of other microtubule-binding proteins in tau knockout mice. To circumvent these developmental compensations and assess the role of tau in the adult brain, we generated an adeno-associated virus (AAV) expressing a doxycycline-inducible short-hairpin (Sh) RNA targeted to tau, herein referred to as AAV-ShRNATau. We performed bilateral stereotaxic injections in 7-month-old C57Bl6/SJL wild-type mice with either the AAV-ShRNATau or a control AAV. We found that acute knockdown of tau in the adult hippocampus significantly impaired motor coordination and spatial memory. Blocking the expression of the AAV-ShRNATau, thereby allowing tau levels to return to control levels, restored motor coordination and spatial memory. Mechanistically, the reduced tau levels were associated with lower BDNF levels, reduced levels of synaptic proteins associated with learning, and decreased spine density. We provide compelling evidence that tau is necessary for motor and cognitive function in the adult brain, thereby firmly supporting that tau loss-of-function may contribute to the clinical manifestations of many tauopathies. These findings have profound clinical implications given that anti-tau therapies are in clinical trials for Alzheimer's disease. © 2018 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  15. The Binding of Plasmodium falciparum Adhesins and Erythrocyte Invasion Proteins to Aldolase Is Enhanced by Phosphorylation.

    PubMed

    Diaz, Suraya A; Martin, Stephen R; Howell, Steven A; Grainger, Munira; Moon, Robert W; Green, Judith L; Holder, Anthony A

    2016-01-01

    Aldolase has been implicated as a protein coupling the actomyosin motor and cell surface adhesins involved in motility and host cell invasion in the human malaria parasite Plasmodium falciparum. It binds to the cytoplasmic domain (CTD) of type 1 membrane proteins of the thrombospondin-related anonymous protein (TRAP) family. Other type 1 membrane proteins located in the apical organelles of merozoites, the form of the parasite that invades red blood cells, including apical membrane antigen 1 (AMA1) and members of the erythrocyte binding ligand (EBL) and reticulocyte binding homologue (RH) protein families have been implicated in host cell binding and invasion. Using a direct binding method we confirm that TRAP and merozoite TRAP (MTRAP) bind aldolase and show that the interaction is mediated by more than just the C-terminal six amino acid residues identified previously. Single amino acid substitutions in the MTRAP CTD abolished binding to aldolase. The CTDs of AMA1 and members of the EBL and RH protein families also bound to aldolase. MTRAP competed with AMA1 and RH4 for binding to aldolase, indicating overlapping binding sites. MTRAP CTD was phosphorylated in vitro by both calcium dependent kinase 1 (CDPK1) and protein kinase A, and this modification increased the affinity of binding to aldolase by ten-fold. Phosphorylation of the CTD of members of the EBL and RH protein families also increased their affinity for aldolase in some cases. To examine whether or not MTRAP expressed in asexual blood stage parasites is phosphorylated, it was tagged with GFP, purified and analysed, however no phosphorylation was detected. We propose that CTD binding to aldolase may be dynamically modulated by phosphorylation, and there may be competition for aldolase binding between different CTDs. The use and efficiency of alternate invasion pathways may be determined by the affinity of adhesins and cell invasion proteins for aldolase, in addition to their host ligand specificity.

  16. Grape powder consumption affects the expression of neurodegeneration-related brain proteins in rats chronically fed a high-fructose-high-fat diet.

    PubMed

    Liao, Hsiang; Chou, Liang-Mao; Chien, Yi-Wen; Wu, Chi-Hao; Chang, Jung-Su; Lin, Ching-I; Lin, Shyh-Hsiang

    2017-05-01

    Abnormal glucose metabolism in the brain is recognized to be associated with cognitive decline. Because grapes are rich in polyphenols that produce antioxidative and blood sugar-lowering effects, we investigated how grape consumption affects the expression and/or phosphorylation of neurodegeneration-related brain proteins in aged rats fed a high-fructose-high-fat (HFHF) diet. Wistar rats were maintained on the HFHF diet from the age of 8 weeks to 66 weeks, and then on an HFHF diet containing either 3% or 6% grape powder as an intervention for 12 weeks. Western blotting was performed to measure the expression/phosphorylation levels of several cortical and hippocampal proteins, including amyloid precursor protein (APP), tau, phosphatidylinositol-3-kinase (PI3K), extracellular signal-regulated kinase (ERK), receptor for advanced glycation end products (RAGEs), erythroid 2-related factor 2 (Nrf2) and brain-derived neurotrophic factor (BDNF). Inclusion of up to 6% grape powder in the diet markedly reduced RAGE expression and tau hyperphosphorylation, but upregulated the expression of Nrf2 and BDNF, as well as the phosphorylation of PI3K and ERK, in the brain tissues of aged rats fed the HFHF diet. Thus, grape powder consumption produced beneficial effects in HFHF-diet-fed rats, exhibiting the potential to ameliorate changes in neurodegeneration-related proteins in the brain. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Curcumin Inhibits Tau Aggregation and Disintegrates Preformed Tau Filaments in vitro.

    PubMed

    Rane, Jitendra Subhash; Bhaumik, Prasenjit; Panda, Dulal

    2017-01-01

    The pathological aggregation of tau is a common feature of most of the neuronal disorders including frontotemporal dementia, Parkinson's disease, and Alzheimer's disease. The inhibition of tau aggregation is considered to be one of the important strategies for treating these neurodegenerative diseases. Curcumin, a natural polyphenolic molecule, has been reported to have neuroprotective ability. In this work, curcumin was found to bind to adult tau and fetal tau with a dissociation constant of 3.3±0.4 and 8±1 μM, respectively. Molecular docking studies indicated a putative binding site of curcumin in the microtubule-binding region of tau. Using several complementary techniques, including dynamic light scattering, thioflavin S fluorescence, 90° light scattering, electron microscopy, and atomic force microscopy, curcumin was found to inhibit the aggregation of tau. The dynamic light scattering analysis and atomic force microscopic images revealed that curcumin inhibits the oligomerization of tau. Curcumin also disintegrated preformed tau oligomers. Using Far-UV circular dichroism, curcumin was found to inhibit the β-sheets formation in tau indicating that curcumin inhibits an initial step of tau aggregation. In addition, curcumin inhibited tau fibril formation. Furthermore, the effect of curcumin on the preformed tau filaments was analyzed by atomic force microscopy, transmission electron microscopy, and 90° light scattering. Curcumin treatment disintegrated preformed tau filaments. The results indicated that curcumin inhibited the oligomerization of tau and could disaggregate tau filaments.

  18. Effect of cooling (4°C) and cryopreservation on cytoskeleton actin and protein tyrosine phosphorylation in buffalo spermatozoa.

    PubMed

    Naresh, Sai

    2016-02-01

    Semen cryopreservation is broadly utilized as a part of the bovine reproducing industry, a large portion of the spermatozoa does not survive and the majority of those that do survive experience various molecular and physiological changes that influence their fertilizing capacity. The main aim of this study is to determine the effect of cooling (4 °C) and cryopreservation on cytoskeleton actin, tyrosine phosphorylation and quality of buffalo spermatozoa, and to determine the similarity between in vitro capacitation and cryopreservation induced capacitation like changes. To achieve this, Western blot was used to examine the changes in actin expression and protein tyrosine phosphorylation, whereas changes in actin polymerization, localization of actin and protein tyrosine phosphorylation during capacitation and cryopreservation were evaluated by indirect immunofluorescence technique. Localization studies revealed that the actin localized to flagella and acrosome membrane regions and following, capacitation it migrated towards the acrosome region of sperm. Time dependent increase in actin polymerization and protein tyrosine phosphorylation was observed during in vitro capacitation. The cooling phase (4 °C) and cryopreservation processes resulted in the loss/damage of cytoskeleton actin. In addition, we performed the actin polymerization and protein tyrosine phosphorylation in cooled and cryopreserved buffalo spermatozoa. Interestingly, cooling and cryopreservation induces actin polymerization and protein tyrosine phosphorylation, which were similar to in vitro capacitation (cryo-capacitation). These changes showed 1.3 folds reduction in the sperm quality parameters which includes motility, viability and plasma membrane integrity. Furthermore, our findings indicate that cooling and cryopreservation damages the cytoskeleton actin and also induces capacitation like changes such as protein tyrosine phosphorylation and actin polymerization. This could be one of the

  19. Protein Kinase A (PKA) Phosphorylation of Shp2 Protein Inhibits Its Phosphatase Activity and Modulates Ligand Specificity

    PubMed Central

    Burmeister, Brian T.; Wang, Li; Gold, Matthew G.; Skidgel, Randal A.; O'Bryan, John P.; Carnegie, Graeme K.

    2015-01-01

    Pathological cardiac hypertrophy (an increase in cardiac mass resulting from stress-induced cardiac myocyte growth) is a major factor underlying heart failure. Src homology 2 domain-containing phosphatase (Shp2) is critical for cardiac function because mutations resulting in loss of Shp2 catalytic activity are associated with congenital cardiac defects and hypertrophy. We identified a novel mechanism of Shp2 inhibition that may promote cardiac hypertrophy. We demonstrate that Shp2 is a component of the protein kinase A anchoring protein (AKAP)-Lbc complex. AKAP-Lbc facilitates PKA phosphorylation of Shp2, which inhibits Shp2 phosphatase activity. We identified two key amino acids in Shp2 that are phosphorylated by PKA. Thr-73 contributes a helix cap to helix αB within the N-terminal SH2 domain of Shp2, whereas Ser-189 occupies an equivalent position within the C-terminal SH2 domain. Utilizing double mutant PKA phosphodeficient (T73A/S189A) and phosphomimetic (T73D/S189D) constructs, in vitro binding assays, and phosphatase activity assays, we demonstrate that phosphorylation of these residues disrupts Shp2 interaction with tyrosine-phosphorylated ligands and inhibits its protein-tyrosine phosphatase activity. Overall, our data indicate that AKAP-Lbc integrates PKA and Shp2 signaling in the heart and that AKAP-Lbc-associated Shp2 activity is reduced in hypertrophic hearts in response to chronic β-adrenergic stimulation and PKA activation. Therefore, although induction of cardiac hypertrophy is a multifaceted process, inhibition of Shp2 activity through AKAP-Lbc-anchored PKA is a previously unrecognized mechanism that may promote this compensatory response. PMID:25802336

  20. Protein Kinase A (PKA) Phosphorylation of Shp2 Protein Inhibits Its Phosphatase Activity and Modulates Ligand Specificity.

    PubMed

    Burmeister, Brian T; Wang, Li; Gold, Matthew G; Skidgel, Randal A; O'Bryan, John P; Carnegie, Graeme K

    2015-05-08

    Pathological cardiac hypertrophy (an increase in cardiac mass resulting from stress-induced cardiac myocyte growth) is a major factor underlying heart failure. Src homology 2 domain-containing phosphatase (Shp2) is critical for cardiac function because mutations resulting in loss of Shp2 catalytic activity are associated with congenital cardiac defects and hypertrophy. We identified a novel mechanism of Shp2 inhibition that may promote cardiac hypertrophy. We demonstrate that Shp2 is a component of the protein kinase A anchoring protein (AKAP)-Lbc complex. AKAP-Lbc facilitates PKA phosphorylation of Shp2, which inhibits Shp2 phosphatase activity. We identified two key amino acids in Shp2 that are phosphorylated by PKA. Thr-73 contributes a helix cap to helix αB within the N-terminal SH2 domain of Shp2, whereas Ser-189 occupies an equivalent position within the C-terminal SH2 domain. Utilizing double mutant PKA phosphodeficient (T73A/S189A) and phosphomimetic (T73D/S189D) constructs, in vitro binding assays, and phosphatase activity assays, we demonstrate that phosphorylation of these residues disrupts Shp2 interaction with tyrosine-phosphorylated ligands and inhibits its protein-tyrosine phosphatase activity. Overall, our data indicate that AKAP-Lbc integrates PKA and Shp2 signaling in the heart and that AKAP-Lbc-associated Shp2 activity is reduced in hypertrophic hearts in response to chronic β-adrenergic stimulation and PKA activation. Therefore, although induction of cardiac hypertrophy is a multifaceted process, inhibition of Shp2 activity through AKAP-Lbc-anchored PKA is a previously unrecognized mechanism that may promote this compensatory response. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Phosphorylation of influenza A virus NS1 protein at threonine 49 suppresses its interferon antagonistic activity.

    PubMed

    Kathum, Omer Abid; Schräder, Tobias; Anhlan, Darisuren; Nordhoff, Carolin; Liedmann, Swantje; Pande, Amit; Mellmann, Alexander; Ehrhardt, Christina; Wixler, Viktor; Ludwig, Stephan

    2016-06-01

    Phosphorylation and dephosphorylation acts as a fundamental molecular switch that alters protein function and thereby regulates many cellular processes. The non-structural protein 1 (NS1) of influenza A virus is an important factor regulating virulence by counteracting cellular immune responses against viral infection. NS1 was shown to be phosphorylated at several sites; however, so far, no function has been conclusively assigned to these post-translational events yet. Here, we show that the newly identified phospho-site threonine 49 of NS1 is differentially phosphorylated in the viral replication cycle. Phosphorylation impairs binding of NS1 to double-stranded RNA and TRIM25 as well as complex formation with RIG-I, thereby switching off its interferon antagonistic activity. Because phosphorylation was shown to occur at later stages of infection, we hypothesize that at this stage other functions of the multifunctional NS1 beyond its interferon-antagonistic activity are needed. © 2016 The Authors Cellular Microbiology published by John Wiley & Sons Ltd.

  2. An improved method to unravel phosphoacceptors in Ser/Thr protein kinase-phosphorylated substrates.

    PubMed

    Molle, Virginie; Leiba, Jade; Zanella-Cléon, Isabelle; Becchi, Michel; Kremer, Laurent

    2010-11-01

    Identification of the phosphorylated residues of bacterial Ser/Thr protein kinase (STPK) substrates still represents a challenging task. Herein, we present a new strategy allowing the rapid determination of phosphoacceptors in kinase substrates, essentially based on the dual expression of the kinase with its substrate in the surrogate E. coli, followed by MS analysis in a single-step procedure. The performance of this strategy is illustrated using two distinct proteins from Mycobacterium tuberculosis as model substrates, the GroEL2 and HspX chaperones. A comparative analysis with a standard method that includes mass spectrometry analysis of in vitro phosphorylated substrates is also addressed.

  3. In situ phosphorylation of proteins in MCTs microdissected from rat kidney: Effect of AVP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Homma, S.; Gapstur, S.M.; Yusufi, N.K.

    1988-04-01

    Adenosine 3{prime},5{prime}-cyclic monophosphate (cAMP)-dependent protein phosphorylation is considered a key step in the cellular action of vasopressin (AVP) to regulate water permeability in collecting tubules. However, the proteins serving as a substrate(s) for phosphorylation in undisrupted cells have not yet been identified. In the present study, the authors developed a method for investigation of in situ phosphorylation of microdissected segments of medullary collecting tubules (MCT) from rat kidney. Incubation of microdissected MCT segments with low concentrations of saponin, semipermeabilization, increased permeability of the membrane for ATP but did not allow leakage of macromolecules such as lactate dehydrogenase. This treatment alsomore » did not cause major disruption of cell structure, or impairment of AVP-sensitive adenylate cyclase. Incubation of semipermeabilized MCT with {gamma}-({sup 32}P)ATP resulted in corporation of {sup 32}P{sub i} into two major protein bands detected by sodium dodecyl sulfate polyacrylamide gel electrophoresis and subsequent autoradiography. Similar incubation of tubules disrupted by hyposmotic solutions and a stronger detergent Triton X-100 resulted in {sup 32}P{sub i} incorporation into multiple protein bands. These findings demonstrate a novel method for identification of endogenous protein substrate(s) for cAMP-dependent protein kinase and other protein kinases and phosphatases that are probably involved in post-cAMP steps in the cellular action of AVP in the intact cells of collecting tubules.« less

  4. Identification of tyrosine phosphorylation sites in human Gab-1 protein by EGF receptor kinase in vitro.

    PubMed

    Lehr, S; Kotzka, J; Herkner, A; Klein, E; Siethoff, C; Knebel, B; Noelle, V; Brüning, J C; Klein, H W; Meyer, H E; Krone, W; Müller-Wieland, D

    1999-01-05

    Grb2-associated binder-1 (Gab-1) has been identified recently in a cDNA library of glioblastoma tumors and appears to play a central role in cellular growth response, transformation, and apoptosis. Structural and functional features indicate that Gab-1 is a multisubstrate docking protein downstream in the signaling pathways of different receptor tyrosine kinases, including the epidermal growth factor receptor (EGFR). Therefore, the aim of the study was to characterize the phosphorylation of recombinant human Gab-1 (hGab-1) protein by EGFR in vitro. Using the pGEX system to express the entire protein and different domains of hGab-1 as glutathione S-transferase proteins, kinetic data for phosphorylation of these proteins by wheat germ agglutinine-purified EGFR and the recombinant EGFR (rEGFR) receptor kinase domain were determined. Our data revealed similar affinities of hGab-1-C for both receptor preparations (KM = 2.7 microM for rEGFR vs 3.2 microM for WGA EGFR) as well as for the different recombinant hGab-1 domains. To identify the specific EGFR phosphorylation sites, hGab-1-C was sequenced by Edman degradation and mass spectrometry. The entire protein was phosphorylated by rEGFR at eight tyrosine residues (Y285, Y373, Y406, Y447, Y472, Y619, Y657, and Y689). Fifty percent of the identified radioactivity was incorporated in tyrosine Y657 as the predominant peak in HPLC analysis, a site exhibiting features of a potential Syp (PTP1D) binding site. Accordingly, GST-pull down assays with A431 and HepG2 cell lysates showed that phosphorylated intact hGab-1 was able to bind Syp. This binding appears to be specific, because it was abolished by changing the Y657 of hGab-1 to F657. These results demonstrate that hGab-1 is a high-affinity substrate for the EGFR and the major tyrosine phosphorylation site Y657 in the C terminus is a specific binding site for the tyrosine phosphatase Syp.

  5. Protein phosphorylation as a mechanism for osmotic-stress activation of sucrose-phosphate synthase in spinach leaves.

    PubMed

    Toroser, D; Huber, S C

    1997-07-01

    Experiments were performed to investigated the mechanism of sucrose-phosphate synthase (SPS) activation by osmotic stress in darkened spinach (Spinacia oleracea L.) leaves. The activation was stable through immunopurification and was not the result of an increased SPS protein level. The previously described Ca(2+)-independent peak III kinase, obtained by ion-exchange chromatography, is confirmed to be the predominant enzyme catalyzing phosphorylation and inactivation of dephosphoserine-158-SPS. A new, Ca(2+)-dependent SPS-protein kinase activity (peak IV kinase) was also resolved and shown to phosphorylate and activate phosphoserine-158-SPS in vitro. The peak IV kinase also phosphorylated a synthetic peptide (SP29) based on the amino acid sequence surrounding serine-424, which also contains the motif described for the serine-158 regulatory phosphorylation site; i.e. basic residues at P-3 and P-6 and a hydrophobic residue at P-5. Peak IV kinase had a native molecular weight of approximately 150,000 as shown by gel filtration. The SP29 peptide was not phosphorylated by the inactivating peak III kinase. Osmotically stressed leaves showed increased peak IV kinase activity with the SP29 peptide as a substrate. Tryptic 32P-phosphopeptide analysis of SPS from excised spinach leaves fed [32P]inorganic P showed increased phosphorylation of the tryptic peptide containing serine-424. Therefore, at least part of the osmotic stress activation of SPS in dark leaves results from phosphorylation of serine-424 catalyzed by a Ca(2+)-dependent, 150-kD protein kinase.

  6. Organic conjugated small molecule materials based optical probe for rapid, colorimetric and UV-vis spectral detection of phosphorylated protein in placental tissue.

    PubMed

    Wang, Yanfang; Yang, Na; Liu, Yi

    2018-04-05

    A novel organic small molecule with D-Pi-A structure was prepared, which was found to be a promising colorimetric and ratiometric UV-vis spetral probe for detection of phosphorylated proteins with the help of tetravalent zirconium ion. Such optical probe based on chromophore WYF-1 shows a rapid response (within 10s) and high selectivity and sensitivity for phosphorylated proteins, giving distinct colorimetric and ratiometric UV-vis changes at 720 and 560nm. The detection limit for phosphorylated proteins was estimated to be 100nM. In addition, detection of phosphorylated proteins in placental tissue samples with this probe was successfully applied, which indicates that this probe holds great potential for phosphorylated proteins detection. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Phosphorylation of the Antiviral Protein Interferon-inducible Transmembrane Protein 3 (IFITM3) Dually Regulates Its Endocytosis and Ubiquitination*

    PubMed Central

    Chesarino, Nicholas M.; McMichael, Temet M.; Hach, Jocelyn C.; Yount, Jacob S.

    2014-01-01

    Interferon-inducible transmembrane protein 3 (IFITM3) is essential for innate defense against influenza virus in mice and humans. IFITM3 localizes to endolysosomes where it prevents virus fusion, although mechanisms controlling its trafficking to this cellular compartment are not fully understood. We determined that both mouse and human IFITM3 are phosphorylated by the protein-tyrosine kinase FYN on tyrosine 20 (Tyr20) and that mouse IFITM3 is also phosphorylated on the non-conserved Tyr27. Phosphorylation led to a cellular redistribution of IFITM3, including plasma membrane accumulation. Mutation of Tyr20 caused a similar redistribution of IFITM3 and resulted in decreased antiviral activity against influenza virus, whereas Tyr27 mutation of mouse IFITM3 showed minimal effects on localization or activity. Using FYN knockout cells, we also found that IFITM3 phosphorylation is not a requirement for its antiviral activity. Together, these results indicate that Tyr20 is part of an endocytosis signal that can be blocked by phosphorylation or by mutation of this residue. Further mutagenesis narrowed this endocytosis-controlling region to four residues conforming to a YXXΦ (where X is any amino acid and Φ is Val, Leu, or Ile) endocytic motif that, when transferred to CD4, resulted in its internalization from the cell surface. Additionally, we found that phosphorylation of IFITM3 by FYN and mutagenesis of Tyr20 both resulted in decreased IFITM3 ubiquitination. Overall, these results suggest that modification of Tyr20 may serve in a cellular checkpoint controlling IFITM3 trafficking and degradation and demonstrate the complexity of posttranslational regulation of IFITM3. PMID:24627473

  8. Proteopathic tau seeding predicts tauopathy in vivo

    PubMed Central

    Holmes, Brandon B.; Furman, Jennifer L.; Mahan, Thomas E.; Yamasaki, Tritia R.; Mirbaha, Hilda; Eades, William C.; Belaygorod, Larisa; Cairns, Nigel J.; Holtzman, David M.; Diamond, Marc I.

    2014-01-01

    Transcellular propagation of protein aggregates, or proteopathic seeds, may drive the progression of neurodegenerative diseases in a prion-like manner. In tauopathies such as Alzheimer’s disease, this model predicts that tau seeds propagate pathology through the brain via cell–cell transfer in neural networks. The critical role of tau seeding activity is untested, however. It is unknown whether seeding anticipates and correlates with subsequent development of pathology as predicted for a causal agent. One major limitation has been the lack of a robust assay to measure proteopathic seeding activity in biological specimens. We engineered an ultrasensitive, specific, and facile FRET-based flow cytometry biosensor assay based on expression of tau or synuclein fusions to CFP and YFP, and confirmed its sensitivity and specificity to tau (∼300 fM) and synuclein (∼300 pM) fibrils. This assay readily discriminates Alzheimer’s disease vs. Huntington's disease and aged control brains. We then carried out a detailed time-course study in P301S tauopathy mice, comparing seeding activity versus histological markers of tau pathology, including MC1, AT8, PG5, and Thioflavin S. We detected robust seeding activity at 1.5 mo, >1 mo before the earliest histopathological stain. Proteopathic tau seeding is thus an early and robust marker of tauopathy, suggesting a proximal role for tau seeds in neurodegeneration. PMID:25261551

  9. Involvement of GSK3 and PP2A in ginsenoside Rb1's attenuation of aluminum-induced tau hyperphosphorylation.

    PubMed

    Zhao, Hai-hua; Di, Jing; Liu, Wen-su; Liu, Hui-li; Lai, Hong; Lü, Yong-li

    2013-03-15

    Environmental agent aluminum, a well-known neurotoxin, has been proposed to play a role in the development of Alzheimer's disease (AD), and produced clinical and pathological features which were strikingly similar to those seen in AD brain, such as neurofibrillary tangles. Ginsenoside Rb1, highly abundant active component of ginseng, has been demonstrated to be neuroprotective against various neurotoxins. In this study we investigated the effect of Rb1 on aluminum-induced tau hyperphosphorylation in ICR mice. Mice were exposed to aluminum chloride (200 mg/kg/day) for 6 months followed by a post treatment of Rb1 (20 mg/kg/day) for another 4 months. Aluminum exposure induced the cognitive ability by Morris water maze, and upregulated the tau phosphorylation level at Ser396 accompanied by increasing p-GSK and decreasing PP2A level in motor, sensory cortex and hippocampal formation. Post treatment of Rb1 significantly improved the learning and memory and reduced the tau phosphorylation by reversing the p-GSK3 and PP2A level. Our results indicate that ginsenoside Rb1 protected mice against Al-induced toxicity. The possible mechanism may be its role in preventing tau hyperphosphorylation by regulating p-GSK3 and PP2A level, which implicate Rb1 as the potential preventive drug candidate for AD and other tau pathology-related neuronal degenerative diseases. Copyright © 2013. Published by Elsevier B.V.

  10. Secondary Metabolites in Ramalina terebrata Detected by UHPLC/ESI/MS/MS and Identification of Parietin as Tau Protein Inhibitor.

    PubMed

    Cornejo, Alberto; Salgado, Francisco; Caballero, Julio; Vargas, Reinaldo; Simirgiotis, Mario; Areche, Carlos

    2016-08-18

    Liquid chromatography coupled with mass spectrometry is an outstanding methodology for fast analysis of phenolic compounds in biological samples. Twenty two compounds were quickly and accurately identified in the methanolic extract of the Antarctic lichen Ramalina terebrata for the first time using ultra high pressure liquid chromatography coupled with photodiode array detector and high resolution mass spectrometry (UHPLC-PDA-Q/Orbitrap/MS/MS). In addition, the extract and the four compounds isolated from this species were tested for the inhibitory activity of tau protein aggregation, which is a protein involved in Alzheimer's disease (AD). All compounds showed null activity with the exception of parietin, which it was able to inhibit aggregation process of tau in a concentration range between 3 µg/mL (10 µM) to 28 µg/mL (100 µM). In addition, we show how parietin interact with tau (306)VQIVYK(311) hexapeptide inside of the microtubule binding domain (4R) with the help of molecular docking experiments. Finally, the constituents present in the methanolic extract could possibly contribute to the established anti-aggregation activity for this extract and this in-depth analysis of the chemical composition of R. terebrata could guide further research into its medicinal properties and potential uses.

  11. Secondary Metabolites in Ramalina terebrata Detected by UHPLC/ESI/MS/MS and Identification of Parietin as Tau Protein Inhibitor

    PubMed Central

    Cornejo, Alberto; Salgado, Francisco; Caballero, Julio; Vargas, Reinaldo; Simirgiotis, Mario; Areche, Carlos

    2016-01-01

    Liquid chromatography coupled with mass spectrometry is an outstanding methodology for fast analysis of phenolic compounds in biological samples. Twenty two compounds were quickly and accurately identified in the methanolic extract of the Antarctic lichen Ramalina terebrata for the first time using ultra high pressure liquid chromatography coupled with photodiode array detector and high resolution mass spectrometry (UHPLC-PDA-Q/Orbitrap/MS/MS). In addition, the extract and the four compounds isolated from this species were tested for the inhibitory activity of tau protein aggregation, which is a protein involved in Alzheimer’s disease (AD). All compounds showed null activity with the exception of parietin, which it was able to inhibit aggregation process of tau in a concentration range between 3 µg/mL (10 µM) to 28 µg/mL (100 µM). In addition, we show how parietin interact with tau 306VQIVYK311 hexapeptide inside of the microtubule binding domain (4R) with the help of molecular docking experiments. Finally, the constituents present in the methanolic extract could possibly contribute to the established anti-aggregation activity for this extract and this in-depth analysis of the chemical composition of R. terebrata could guide further research into its medicinal properties and potential uses. PMID:27548142

  12. Phosphorylation Reaction in cAPK Protein Kinase - Free Energy Quantum Mechanic/Molecular Mechanics Simulations.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valiev, Marat; Yang, Jie; Adams, Joseph

    2007-11-29

    Protein kinases catalyze the transfer of the γ-phosphoryl group from ATP, a key regulatory process governing signalling pathways in eukaryotic cells. The structure of the active site in these enzymes is highly conserved implying common catalytic mechanism. In this work we investigate the reaction process in cAPK protein kinase (PKA) using a combined quantum mechanics and molecular mechanics approach. The novel computational features of our work include reaction pathway determination with nudged elastic band methodology and calculation of free energy profiles of the reaction process taking into account finite temperature fluctuations of the protein environment. We find that the transfermore » of the γ-phosphoryl group in the protein environment is an exothermic reaction with the reaction barrier of 15 kcal/mol.« less

  13. Taurolithocholate-induced MRP2 retrieval involves MARCKS phosphorylation by protein kinase Cϵ in HUH-NTCP Cells.

    PubMed

    Schonhoff, Christopher M; Webster, Cynthia R L; Anwer, M Sawkat

    2013-07-01

    Taurolithocholate (TLC) acutely inhibits the biliary excretion of multidrug-resistant associated protein 2 (Mrp2) substrates by inducing Mrp2 retrieval from the canalicular membrane, whereas cyclic adenosine monophosphate (cAMP) increases plasma membrane (PM)-MRP2. The effect of TLC may be mediated via protein kinase Cϵ (PKCϵ). Myristoylated alanine-rich C kinase substrate (MARCKS) is a membrane-bound F-actin crosslinking protein and is phosphorylated by PKCs. MARCKS phosphorylation has been implicated in endocytosis, and the underlying mechanism appears to be the detachment of phosphorylated myristoylated alanine-rich C kinase substrate (pMARCKS) from the membrane. The aim of the present study was to test the hypothesis that TLC-induced MRP2 retrieval involves PKCϵ-mediated MARCKS phosphorylation. Studies were conducted in HuH7 cells stably transfected with sodium taurocholate cotransporting polypeptide (HuH-NTCP cells) and in rat hepatocytes. TLC increased PM-PKCϵ and decreased PM-MRP2 in both HuH-NTCP cells and hepatocytes. cAMP did not affect PM-PKCϵ and increased PM-MRP2 in these cells. In HuH-NTCP cells, dominant-negative (DN) PKCϵ reversed TLC-induced decreases in PM-MRP2 without affecting cAMP-induced increases in PM-MRP2. TLC, but not cAMP, increased MARCKS phosphorylation in HuH-NTCP cells and hepatocytes. TLC and phorbol myristate acetate increased cytosolic pMARCKS and decreased PM-MARCKS in HuH-NTCP cells. TLC failed to increase MARCKS phosphorylation in HuH-NTCP cells transfected with DN-PKCϵ, and this suggested PKCϵ-mediated phosphorylation of MARCKS by TLC. In HuH-NTCP cells transfected with phosphorylation-deficient MARCKS, TLC failed to increase MARCKS phosphorylation or decrease PM-MRP2. Taken together, these results support the hypothesis that TLC-induced MRP2 retrieval involves TLC-mediated activation of PKCϵ followed by MARCKS phosphorylation and consequent detachment of MARCKS from the membrane. Copyright © 2013 American Association

  14. Acetylated tau destabilizes the cytoskeleton in the axon initial segment and is mislocalized to the somatodendritic compartment.

    PubMed

    Sohn, Peter Dongmin; Tracy, Tara E; Son, Hye-In; Zhou, Yungui; Leite, Renata E P; Miller, Bruce L; Seeley, William W; Grinberg, Lea T; Gan, Li

    2016-06-29

    Neurons are highly polarized cells in which asymmetric axonal-dendritic distribution of proteins is crucial for neuronal function. Loss of polarized distribution of the axonal protein tau is an early sign of Alzheimer's disease (AD) and other neurodegenerative disorders. The cytoskeletal network in the axon initial segment (AIS) forms a barrier between the axon and the somatodentritic compartment, contributing to axonal retention of tau. Although perturbation of the AIS cytoskeleton has been implicated in neurological disorders, the molecular triggers and functional consequence of AIS perturbation are incompletely understood. Here we report that tau acetylation and consequent destabilization of the AIS cytoskeleton promote the somatodendritic mislocalization of tau. AIS cytoskeletal proteins, including ankyrin G and βIV-spectrin, were downregulated in AD brains and negatively correlated with an increase in tau acetylated at K274 and K281. AIS proteins were also diminished in transgenic mice expressing tauK274/281Q, a tau mutant that mimics K274 and K281 acetylation. In primary neuronal cultures, the tauK274/281Q mutant caused hyperdynamic microtubules (MTs) in the AIS, shown by live-imaging of MT mobility and fluorescence recovery after photobleaching. Using photoconvertible tau constructs, we found that axonal tauK274/281Q was missorted into the somatodendritic compartment. Stabilizing MTs with epothilone D to restore the cytoskeletal barrier in the AIS prevented tau mislocalization in primary neuronal cultures. Together, these findings demonstrate that tau acetylation contributes to the pathogenesis of neurodegenerative disease by compromising the cytoskeletal sorting machinery in the AIS.

  15. Protein Phosphorylation Profiling Using an In Situ Proximity Ligation Assay: Phosphorylation of AURKA-Elicited EGFR-Thr654 and EGFR-Ser1046 in Lung Cancer Cells

    PubMed Central

    Chen, Tzu-Chi; Liu, Yu-Wen; Huang, Yei-Hsuan; Yeh, Yi-Chen; Chou, Teh-Ying; Wu, Yu-Chung; Wu, Chun-Chi; Chen, Yi-Rong; Cheng, Hui-Chuan; Lu, Pei-Jung; Lai, Jin-Mei; Huang, Chi-Ying F.

    2013-01-01

    The epidermal growth factor receptor (EGFR), which is up-regulated in lung cancer, involves the activation of mitogenic signals and triggers multiple signaling cascades. To dissect these EGFR cascades, we used 14 different phospho-EGFR antibodies to quantify protein phosphorylation using an in situ proximity ligation assay (in situ PLA). Phosphorylation at EGFR-Thr654 and -Ser1046 was EGF-dependent in the wild-type (WT) receptor but EGF-independent in a cell line carrying the EGFR-L858R mutation. Using a ProtoAarray™ containing ∼5000 recombinant proteins on the protein chip, we found that AURKA interacted with the EGFR-L861Q mutant. Moreover, overexpression of EGFR could form a complex with AURKA, and the inhibitors of AURKA and EGFR decreased EGFR-Thr654 and -Ser1046 phosphorylation. Immunohistochemical staining of stage I lung adenocarcinoma tissues demonstrated a positive correlation between AURKA expression and phosphorylation of EGFR at Thr654 and Ser1046 in EGFR-mutant specimens, but not in EGFR-WT specimens. The interplay between EGFR and AURKA provides an explanation for the difference in EGF dependency between EGFR-WT and EGFR-mutant cells and may provide a new therapeutic strategy for lung cancer patients carrying EGFR mutations. PMID:23520446

  16. Structural Investigation of a Phosphorylation-Catalyzed, Isoaspartate-Free, Protein Succinimide: Crystallographic Structure of Post-Succinimide His15Asp Histidine-Containing Protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Napper, Scott; Prasad, Lata; Delbaere, Louis T.J.

    2008-09-08

    Aspartates and asparagines can spontaneously cyclize with neighboring main-chain amides to form succinimides. These succinimides hydrolyze to a mixture of isoaspartate and aspartate products. Phosphorylation of aspartates is a common mechanism of protein regulation and increases the propensity for succinimide formation. Although typically regarded as a form of protein damage, we hypothesize succinimides could represent an effective mechanism of phosphoaspartate autophosphatase activity, provided hydrolysis is limited to aspartate products. We previously reported the serendipitous creation of a protein, His15Asp histidine-containing protein (HPr), which undergoes phosphorylation-catalyzed formation of a succinimide whose hydrolysis is seemingly exclusive for aspartate formation. Here, through themore » high-resolution structure of postsuccinimide His15Asp HPr, we confirm the absence of isoaspartate residues and propose mechanisms for phosphorylation-catalyzed succinimide formation and its directed hydrolysis to aspartate. His15Asp HPr represents the first characterized protein example of an isoaspartate-free succinimide and lends credence to the hypothesis that intramolecular cyclization could represent a physiological mechanism of autophosphatase activity. Furthermore, this indicates that current strategies for succinimide evaluation, based on isoaspartate detection, underestimate the frequencies of these reactions. This is considerably significant for evaluation of protein stability and integrity.« less

  17. The Clk/Sty protein kinase phosphorylates SR splicing factors and regulates their intranuclear distribution.

    PubMed Central

    Colwill, K; Pawson, T; Andrews, B; Prasad, J; Manley, J L; Bell, J C; Duncan, P I

    1996-01-01

    Mammalian Clk/Sty is the prototype for a family of dual specificity kinases (termed LAMMER kinases) that have been conserved in evolution, but whose physiological substrates are unknown. In a yeast two-hybrid screen, the Clk/Sty kinase specifically interacted with RNA binding proteins, particularly members of the serine/arginine-rich (SR) family of splicing factors. Clk/Sty itself has an serine/arginine-rich non-catalytic N-terminal region which is important for its association with SR splicing factors. In vitro, Clk/Sty efficiently phosphorylated the SR family member ASF/SF2 on serine residues located within its serine/arginine-rich region (the RS domain). Tryptic phosphopeptide mapping demonstrated that the sites on ASF/SF2 phosphorylated in vitro overlap with those phosphorylated in vivo. Immunofluorescence studies showed that a catalytically inactive form of Clk/Sty co-localized with SR proteins in nuclear speckles. Overexpression of the active Clk/Sty kinase caused a redistribution of SR proteins within the nucleus. These results suggest that Clk/Sty kinase directly regulates the activity and compartmentalization of SR splicing factors. Images PMID:8617202

  18. Small Molecule p75NTR Ligands Reduce Pathological Phosphorylation and Misfolding of Tau, Inflammatory Changes, Cholinergic Degeneration, and Cognitive Deficits in AβPPL/S Transgenic Mice

    PubMed Central

    Nguyen, Thuy-Vi V.; Shen, Lin; Griend, Lilith Vander; Quach, Lisa N.; Belichenko, Nadia P.; Saw, Nay; Yang, Tao; Shamloo, Mehrdad; Wyss-Coray, Tony; Massa, Stephen M.; Longo, Frank M.

    2014-01-01

    The p75 neurotrophin receptor (p75NTR ) is involved in degenerative mechanisms related to Alzheimer’s disease (AD). In addition, p75NTR levels are increased in AD and the receptor is expressed by neurons that are particularly vulnerable in the disease. Therefore, modulating p75NTR function may be a significant disease-modifying treatment approach. Prior studies indicated that the non-peptide, small molecule p75NTR ligands LM11A-31, and chemically unrelated LM11A-24, could block amyloid-β-induced deleterious signaling and neurodegeneration in vitro, and LM11A-31 was found to mitigate neuritic degeneration and behavioral deficits in a mouse model of AD. In this study, we determined whether these in vivo findings represent class effects of p75NTR ligands by examining LM11A-24 effects. In addition, the range of compound effects was further examined by evaluating tau pathology and neuroinflammation. Following oral administration, both ligands reached brain concentrations known to provide neuroprotection in vitro. Compound induction of p75NTR cleavage provided evidence for CNS target engagement. LM11A-31 and LM11A-24 reduced excessive phosphorylation of tau, and LM11A-31 also inhibited its aberrant folding. Both ligands decreased activation of microglia, while LM11A-31 attenuated reactive astrocytes. Along with decreased inflammatory responses, both ligands reduced cholinergic neurite degeneration. In addition to the amelioration of neuropathology in AD model mice, LM11A-31, but not LM11A-24, prevented impairments in water maze performance, while both ligands prevented deficits in fear conditioning. These findings support a role for p75NTR ligands in preventing fundamental tau-related pathologic mechanisms in AD, and further validate the development of these small molecules as a new class of therapeutic compounds. PMID:24898660

  19. Mining protein phosphorylation information from biomedical literature using NLP parsing and Support Vector Machines.

    PubMed

    Raja, Kalpana; Natarajan, Jeyakumar

    2018-07-01

    Extraction of protein phosphorylation information from biomedical literature has gained much attention because of the importance in numerous biological processes. In this study, we propose a text mining methodology which consists of two phases, NLP parsing and SVM classification to extract phosphorylation information from literature. First, using NLP parsing we divide the data into three base-forms depending on the biomedical entities related to phosphorylation and further classify into ten sub-forms based on their distribution with phosphorylation keyword. Next, we extract the phosphorylation entity singles/pairs/triplets and apply SVM to classify the extracted singles/pairs/triplets using a set of features applicable to each sub-form. The performance of our methodology was evaluated on three corpora namely PLC, iProLink and hPP corpus. We obtained promising results of >85% F-score on ten sub-forms of training datasets on cross validation test. Our system achieved overall F-score of 93.0% on iProLink and 96.3% on hPP corpus test datasets. Furthermore, our proposed system achieved best performance on cross corpus evaluation and outperformed the existing system with recall of 90.1%. The performance analysis of our unique system on three corpora reveals that it extracts protein phosphorylation information efficiently in both non-organism specific general datasets such as PLC and iProLink, and human specific dataset such as hPP corpus. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Rational Design of in Vivo Tau Tangle-Selective Near-Infrared Fluorophores: Expanding the BODIPY Universe.

    PubMed

    Verwilst, Peter; Kim, Hye-Ri; Seo, Jinho; Sohn, Nak-Won; Cha, Seung-Yun; Kim, Yeongmin; Maeng, Sungho; Shin, Jung-Won; Kwak, Jong Hwan; Kang, Chulhun; Kim, Jong Seung

    2017-09-27

    The elucidation of the cause of Alzheimer's disease remains one of the greatest questions in neurodegenerative research. The lack of highly reliable low-cost sensors to study the structural changes in key proteins during the progression of the disease is a contributing factor to this lack of insight. In the current work, we describe the rational design and synthesis of two fluorescent BODIPY-based probes, named Tau 1 and Tau 2. The probes were evaluated on the molecular surface formed by a fibril of the PHF6 ( 306 VQIVYK 311 ) tau fragment using molecular docking studies to provide a potential molecular model to rationalize the selectivity of the new probes as compared to a homologous Aβ-selective probe. The probes were synthesized in a few steps from commercially available starting products and could thus prove to be highly cost-effective. We demonstrated the excellent photophysical properties of the dyes, such as a large Stokes shift and emission in the near-infrared window of the electromagnetic spectrum. The probes demonstrated a high selectivity for self-assembled microtubule-associated protein tau (Tau protein), in both solution and cell-based experiments. Moreover, the administration to an acute murine model of tauopathy clearly revealed the staining of self-assembled hyperphosphorylated tau protein in pathologically relevant hippocampal brain regions. Tau 1 demonstrated efficient blood-brain barrier penetrability and demonstrated a clear selectivity for tau tangles over Aβ plaques, as well as the capacity for in vivo imaging in a transgenic mouse model. The current work could open up avenues for the cost-effective monitoring of the tau protein aggregation state in animal models as well as tissue staining. Furthermore, these fluorophores could serve as the basis for the development of clinically relevant sensors, for example based on PET imaging.

  1. Characterization of protein phosphatase 2A acting on phosphorylated plasma membrane aquaporin of tulip petals.

    PubMed

    Azad, Abul Kalam; Sawa, Yoshihiro; Ishikawa, Takahiro; Shibata, Hitoshi

    2004-05-01

    A protein phosphatase holo-type enzyme (38, 65, and 75 kDa) preparation and a free catalytic subunit (38 kDa) purified from tulip petals were characterized as protein phosphatase 2A (PP2A) by immunological and biochemical approaches. The plasma membrane containing the putative plasma membrane aquaporin (PM-AQP) was prepared from tulip petals, phosphorylated in vitro, and used as the substrate for both of the purified PP2A preparations. Although both preparations dephosphorylated the phosphorylated PM-AQP at 20 degrees C, only the holo-type enzyme preparation acted at 5 degrees C on the phosphorylated PM-AQP with higher substrate specificity, suggesting that regulatory subunits are required for low temperature-dependent dephosphorylation of PM-AQP in tulip petals.

  2. Phosphorylation and subcellular redistribution of high mobility group proteins 14 and 17, analyzed by mass spectrometry.

    PubMed Central

    Louie, D. F.; Gloor, K. K.; Galasinski, S. C.; Resing, K. A.; Ahn, N. G.

    2000-01-01

    High mobility group (HMG) proteins 14 and 17 are nonhistone nuclear proteins that have been implicated in control of transcription and chromatin structure. To examine the posttranslational modifications of HMG-14 and -17 in vivo, HMG proteins were prepared from nuclear vs. cytosolic fractions of human K562 cells treated with 12-O-tetradecanoylphorbol 13-acetate (TPA) or okadaic acid (OA) and examined by electrospray mass spectrometry. Analysis of full-length masses demonstrated mono-, di-, and triphosphorylation of HMG-14 and mono- and diphosphorylation of HMG-17 from OA treated cells, whereas HMG-14 and -17 from TPA treated cells were monophosphorylated. Peptide mass and sequence analysis showed major and minor phosphorylation sites, respectively, at Ser24 and Ser28 in HMG-17, and Ser20 and Ser24 in HMG-14. These sites were found in the consensus sequence RRSARLSAK, within the nucleosomal binding domain of each protein. A third phosphorylation site in HMG-14 was located at either Ser6 or Ser7. Interestingly, the proportion of HMG-14 and -17 found in cytosolic pools increased significantly after 1 h of treatment compared to control cells and showed preferential phosphorylation compared with proteins from nuclear fractions. These results suggest that phosphorylation of HMG-14 and -7 interferes with nuclear localization mechanisms in a manner favoring release from nuclei. PMID:10739259

  3. Phosphorylation and subcellular redistribution of high mobility group proteins 14 and 17, analyzed by mass spectrometry.

    PubMed

    Louie, D F; Gloor, K K; Galasinski, S C; Resing, K A; Ahn, N G

    2000-01-01

    High mobility group (HMG) proteins 14 and 17 are nonhistone nuclear proteins that have been implicated in control of transcription and chromatin structure. To examine the posttranslational modifications of HMG-14 and -17 in vivo, HMG proteins were prepared from nuclear vs. cytosolic fractions of human K562 cells treated with 12-O-tetradecanoylphorbol 13-acetate (TPA) or okadaic acid (OA) and examined by electrospray mass spectrometry. Analysis of full-length masses demonstrated mono-, di-, and triphosphorylation of HMG-14 and mono- and diphosphorylation of HMG-17 from OA treated cells, whereas HMG-14 and -17 from TPA treated cells were monophosphorylated. Peptide mass and sequence analysis showed major and minor phosphorylation sites, respectively, at Ser24 and Ser28 in HMG-17, and Ser20 and Ser24 in HMG-14. These sites were found in the consensus sequence RRSARLSAK, within the nucleosomal binding domain of each protein. A third phosphorylation site in HMG-14 was located at either Ser6 or Ser7. Interestingly, the proportion of HMG-14 and -17 found in cytosolic pools increased significantly after 1 h of treatment compared to control cells and showed preferential phosphorylation compared with proteins from nuclear fractions. These results suggest that phosphorylation of HMG-14 and -7 interferes with nuclear localization mechanisms in a manner favoring release from nuclei.

  4. Rapid changes in phospho-MAP/tau epitopes during neuronal stress: cofilin-actin rods primarily recruit microtubule binding domain epitopes.

    PubMed

    Whiteman, Ineka T; Minamide, Laurie S; Goh, De Lian; Bamburg, James R; Goldsbury, Claire

    2011-01-01

    Abnormal mitochondrial function is a widely reported contributor to neurodegenerative disease including Alzheimer's disease (AD), however, a mechanistic link between mitochondrial dysfunction and the initiation of neuropathology remains elusive. In AD, one of the earliest hallmark pathologies is neuropil threads comprising accumulated hyperphosphorylated microtubule-associated protein (MAP) tau in neurites. Rod-like aggregates of actin and its associated protein cofilin (AC rods) also occur in AD. Using a series of antibodies--AT270, AT8, AT100, S214, AT180, 12E8, S396, S404 and S422--raised against different phosphoepitopes on tau, we characterize the pattern of expression and re-distribution in neurites of these phosphoepitope labels during mitochondrial inhibition. Employing chick primary neuron cultures, we demonstrate that epitopes recognized by the monoclonal antibody 12E8, are the only species rapidly recruited into AC rods. These results were recapitulated with the actin depolymerizing drug Latrunculin B, which induces AC rods and a concomitant increase in the 12E8 signal measured on Western blot. This suggests that AC rods may be one way in which MAP redistribution and phosphorylation is influenced in neurons during mitochondrial stress and potentially in the early pathogenesis of AD.

  5. Suppression of adhesion-induced protein tyrosine phosphorylation decreases invasive and metastatic potentials of B16-BL6 melanoma cells by protein tyrosine kinase inhibitor genistein.

    PubMed

    Yan, C; Han, R

    1997-01-01

    Protein tyrosine kinase (PTK) appears to be involved in the activation of signaling during cell attachment to and spreading on extracellular matrix (ECM) in the metastatic cascade. To verify the assumption that PTK inhibitors might impair ECM signaling and prevent cancer metastasis, the highly metastatic B16-BL6 mouse melanoma cells were exposed to the PTK inhibitor genistein for 3 days. The ability of the cells to invade through reconstituted basement membrane (Matrigel) and to establish experimental pulmonary metastatic foci in C57BL/6 mice decreased after genistein exposure. The genistein-treated cells were also prevented from attaching to Matrigel and spread extremely poorly on the ECM substratum. Immunoblot analysis showed that tyrosine phosphorylation of a 125-kD protein in response to cell spreading on Matrigel was suppressed in the genistein-treated cells. Adhesion-induced protein tyrosine phosphorylation represents the earlier and specific event in the activation of ECM signaling, so this result implied ECM signaling was impaired in the treated cells. With immunofluorescence microscopy, the adhesion-induced tyrosine phosphorylated proteins were located at the pericytoplasms of well-spread cells, but not at the periphery of poorly spread genistein-treated cells. Therefore, this paper suggests that genistein might impair ECM signaling and subsequently prevent cancer cells from spreading well and invading or establishing metastasis through the suppression of adhesion-induced protein tyrosine phosphorylation. PTKs and adhesion-induced protein tyrosine phosphorylation might play a role in the control of invasion and metastasis.

  6. The tau positron-emission tomography tracer AV-1451 binds with similar affinities to tau fibrils and monoamine oxidases.

    PubMed

    Vermeiren, Céline; Motte, Philippe; Viot, Delphine; Mairet-Coello, Georges; Courade, Jean-Philippe; Citron, Martin; Mercier, Joël; Hannestad, Jonas; Gillard, Michel

    2018-02-01

    Lilly/Avid's AV-1451 is one of the most advanced tau PET tracers in the clinic. Although results obtained in Alzheimer's disease patients are compelling, discrimination of tracer uptake in healthy individuals and patients with supranuclear palsy (PSP) is less clear as there is substantial overlap of signal in multiple brain regions. Moreover, accurate quantification of [ 18 F]AV-1451 uptake in Alzheimer's disease may not be possible. The aim of the present study was to characterize the in vitro binding of AV-1451 to understand and identify potential off-target binding that could explain the poor discrimination observed in PSP patients. [ 3 H]AV-1451 and AV-1451 were characterized in in vitro binding assays using recombinant and native proteins/tissues from postmortem samples of controls and Alzheimer's disease and PSP patients. [ 3 H]AV-1451 binds to multiple sites with nanomolar affinities in brain homogenates and to tau fibrils isolated from Alzheimer's disease or PSP patients. [ 3 H]AV-1451 also binds with similarly high affinities in brain homogenates devoid of tau pathology. This unexpected binding was demonstrated to be because of nanomolar affinities of [ 3 H]AV-1451 for monoamine oxidase A and B enzymes. High affinity of AV-1451 for monoamine oxidase proteins may limit its utility as a tau PET tracer in PSP and Alzheimer's disease because of high levels of monoamine oxidase expression in brain regions also affected by tau deposition, especially if monoamine oxidase levels change over time or with a treatment intervention. © 2017 International Parkinson and Movement Disorder Society. © 2017 International Parkinson and Movement Disorder Society.

  7. Band 3 Erythrocyte Membrane Protein Acts as Redox Stress Sensor Leading to Its Phosphorylation by p (72) Syk.

    PubMed

    Pantaleo, Antonella; Ferru, Emanuela; Pau, Maria Carmina; Khadjavi, Amina; Mandili, Giorgia; Mattè, Alessandro; Spano, Alessandra; De Franceschi, Lucia; Pippia, Proto; Turrini, Francesco

    2016-01-01

    In erythrocytes, the regulation of the redox sensitive Tyr phosphorylation of band 3 and its functions are still partially defined. A role of band 3 oxidation in regulating its own phosphorylation has been previously suggested. The current study provides evidences to support this hypothesis: (i) in intact erythrocytes, at 2 mM concentration of GSH, band 3 oxidation, and phosphorylation, Syk translocation to the membrane and Syk phosphorylation responded to the same micromolar concentrations of oxidants showing identical temporal variations; (ii) the Cys residues located in the band 3 cytoplasmic domain are 20-fold more reactive than GSH; (iii) disulfide linked band 3 cytoplasmic domain docks Syk kinase; (iv) protein Tyr phosphatases are poorly inhibited at oxidant concentrations leading to massive band 3 oxidation and phosphorylation. We also observed that hemichromes binding to band 3 determined its irreversible oxidation and phosphorylation, progressive hemolysis, and serine hyperphosphorylation of different cytoskeleton proteins. Syk inhibitor suppressed the phosphorylation of band 3 also preventing serine phosphorylation changes and hemolysis. Our data suggest that band 3 acts as redox sensor regulating its own phosphorylation and that hemichromes leading to the protracted phosphorylation of band 3 may trigger a cascade of events finally leading to hemolysis.

  8. Mechanism of phosphoryl transfer and protein-protein interaction in the PTS system-an NMR study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajagopal, P.; Klevit, R.E.

    1994-12-01

    HPr and Enzyme IIA{sup Glc} are two of the components of the bacterial PTS (phosphoenolpyruvate: sugar phosphotranferase system) and are involved in the phosphorylation and concomitant translocation of sugars across the membrane. These PTS protein complexes also regulate sugar transport. HPr, phosphorylated at a histidine N1 site by Enzyme I and phosphoenol pyruvate, transfers the phosphoryl group to a histidine N3 position in Enzyme IIA{sup Glc}. HPrs from Gram-positive bacteria undergo regulatory phosphorylation at Ser{sup 46}, whereby phosphorylation of the histidine residue is inhibited. Conversely, histidine phosphorylation inhibits phosphorylation at Ser{sup 46}. HPrs from Gram-negative bacteria possess a serine residuemore » at position 46, but do not undergo regulatory phosphorylation. HPr forms an open-faced sandwich structure with a four-strand S-sheet and 2 to 3 helices lying on top of the sheet. The active-site histidine and Ser{sup 46} occur in conformationally flexible regions. P-His-HPr from the Gram-positive bacterium Bacillus subtilus has been investigated by both homonuclear and heteronuclear two-dimensional and three-dimensional NMR experiments using an in-situ enzymatic regeneration system to maintain a constant level of P-His-HPr. The results show that localized conformational changes occur in the vicinity of the active-site histidine and also near Ser{sup 46}. HPr-Enzyme IIA{sup Glc} complexes from both Bacillus subtilis and Gram-negative Escherichia coli were also studied by a variety of {sup 15}N-edited two-dimensional NMR experiments, which were performed on uniformly {sup 15}N-labeled HPr complexed to unlabeled Enzyme IIA{sup Glc}. The complex is in fast exchange with a molecular weight of about 27 kDa. The focus of our work is to assess the changes undergone by HPr (the smaller of the two components), and so all the experiments were performed with excess Enzyme IIA present in the system.« less

  9. Proteome and behavioral alterations in phosphorylation-deficient mutant Collapsin Response Mediator Protein2 knock-in mice.

    PubMed

    Nakamura, Haruko; Takahashi-Jitsuki, Aoi; Makihara, Hiroko; Asano, Tetsuya; Kimura, Yayoi; Nakabayashi, Jun; Yamashita, Naoya; Kawamoto, Yuko; Nakamura, Fumio; Ohshima, Toshio; Hirano, Hisashi; Tanaka, Fumiaki; Goshima, Yoshio

    2018-05-11

    CRMP2, alternatively designated as DPYSL2, was the first CRMP family member to be identified as an intracellular molecule mediating the signaling of the axon guidance molecule Semaphorin 3A (Sema3A). In Sema3A signaling, cyclin-dependent kinase 5 (Cdk5) primarily phosphorylates CRMP2 at Ser522. Glycogen synthase kinase-3β (GSK-3β) subsequently phosphorylates the residues of Thr509 and Thr514 of CRMP2. Previous studies showed that CRMP2 is involved in pathogenesis of neurological disorders such as Alzheimer's disease. In Alzheimer's disease, hyper-phosphorylated forms of CRMP2 are accumulated in the paired helical filaments. To get insight into the possible involvement of the phosphorylation of CRMP2 in pathogenesis of neurological disorders, we previously created CRMP2 S522A knock-in (crmp2 ki/ki ) mice and demonstrated that the phosphorylation of CRMP2 at Ser522 is involved in normal dendrite patterning in cortical neurons. However, the behavioral impact and in vivo signaling network of the CRMP2 phosphorylation are not fully understood. In this study, we performed behavioral and proteomics analysis of crmp2 ki/ki mice. The crmp2 ki/ki mice appeared healthy and showed no obvious differences in physical characteristics compared to wild-type mice, but they showed impaired emotional behavior, reduced sociality, and low sensitivity to pain stimulation. Through mass-spectrometry-based proteomic analysis, we found that 59 proteins were increased and 77 proteins were decreased in the prefrontal cortex of crmp2 ki/ki mice. Notably, CRMP3, CRMP4, and CRMP5, the other CRMP family proteins, were increased in crmp2 ki/ki mice. KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analyses identified 14 pathways in increased total proteins and 13 pathways in decreased total proteins which are associated with the pathogenesis of Parkinson's, Alzheimer's, and Huntington's diseases. We also detected 20 pathways in increased phosphopeptides and 16 pathways in decreased

  10. Anti-tau oligomers passive vaccination for the treatment of Alzheimer disease.

    PubMed

    Kayed, Rakez

    2010-11-01

    The aggregation and accumulation of the microtubule-associated protein (Tau) is a pathological hallmark of Alzheimer's disease (AD) and many neurodegenerative diseases. Despite the poor correlation between neurofirillary tangles (NFTs) and disease progression, and evidence showing, that neuronal loss in AD actually precedes NFTs formation research until recently focused on them and other large meta-stable inclusions composed of aggregated hyperphosphorylated tau protein. Lately, the significance and toxicity of NFTs has been challenged and new aggregated tau entity has emerged as the true pathogenic species in tauopathies and a possible mediator of Aβ toxicity in AD. Tau intermediate aggregate (tau oligomers; aggregates of an intermediate that is between monomers and NFTs in size) can cause neurodegeneration and memory impairment in the absence of Aβ. This exciting body of evidence includes results from human brain samples, transgenic mouse and cell-based studies. Despite extensive efforts to develop a safe and efficacious vaccine for AD using Aβ peptide as an immunogen in active vaccination approaches or anti Aβ antibodies for passive vaccination, success has been modest. Nonetheless, these studies have produced a wealth of fundamental knowledge that has potential to application to the development of a tau-based immunotherapy. Herein, I discuss the evidence supporting the critical role of tau oligomers in AD, the potential and challenges for targeting them by immunotherapy as a novel approach for AD treatment.

  11. Polo-like kinase 1 (PLK1) and protein phosphatase 6 (PP6) regulate DNA-dependent protein kinase catalytic subunit (DNA-PKcs) phosphorylation in mitosis.

    PubMed

    Douglas, Pauline; Ye, Ruiqiong; Trinkle-Mulcahy, Laura; Neal, Jessica A; De Wever, Veerle; Morrice, Nick A; Meek, Katheryn; Lees-Miller, Susan P

    2014-06-25

    The protein kinase activity of the DNA-PKcs (DNA-dependent protein kinase catalytic subunit) and its autophosphorylation are critical for DBS (DNA double-strand break) repair via NHEJ (non-homologous end-joining). Recent studies have shown that depletion or inactivation of DNA-PKcs kinase activity also results in mitotic defects. DNA-PKcs is autophosphorylated on Ser2056, Thr2647 and Thr2609 in mitosis and phosphorylated DNA-PKcs localize to centrosomes, mitotic spindles and the midbody. DNA-PKcs also interacts with PP6 (protein phosphatase 6), and PP6 has been shown to dephosphorylate Aurora A kinase in mitosis. Here we report that DNA-PKcs is phosphorylated on Ser3205 and Thr3950 in mitosis. Phosphorylation of Thr3950 is DNA-PK-dependent, whereas phosphorylation of Ser3205 requires PLK1 (polo-like kinase 1). Moreover, PLK1 phosphorylates DNA-PKcs on Ser3205 in vitro and interacts with DNA-PKcs in mitosis. In addition, PP6 dephosphorylates DNA-PKcs at Ser3205 in mitosis and after IR (ionizing radiation). DNA-PKcs also phosphorylates Chk2 on Thr68 in mitosis and both phosphorylation of Chk2 and autophosphorylation of DNA-PKcs in mitosis occur in the apparent absence of Ku and DNA damage. Our findings provide mechanistic insight into the roles of DNA-PKcs and PP6 in mitosis and suggest that DNA-PKcs' role in mitosis may be mechanistically distinct from its well-established role in NHEJ.

  12. Polo-like kinase 1 (PLK1) and protein phosphatase 6 (PP6) regulate DNA-dependent protein kinase catalytic subunit (DNA-PKcs) phosphorylation in mitosis

    PubMed Central

    Douglas, Pauline; Ye, Ruiqiong; Trinkle-Mulcahy, Laura; Neal, Jessica A.; De Wever, Veerle; Morrice, Nick A.; Meek, Katheryn; Lees-Miller, Susan P.

    2014-01-01

    The protein kinase activity of the DNA-PKcs (DNA-dependent protein kinase catalytic subunit) and its autophosphorylation are critical for DBS (DNA double-strand break) repair via NHEJ (non-homologous end-joining). Recent studies have shown that depletion or inactivation of DNA-PKcs kinase activity also results in mitotic defects. DNA-PKcs is autophosphorylated on Ser2056, Thr2647 and Thr2609 in mitosis and phosphorylated DNA-PKcs localize to centrosomes, mitotic spindles and the midbody. DNA-PKcs also interacts with PP6 (protein phosphatase 6), and PP6 has been shown to dephosphorylate Aurora A kinase in mitosis. Here we report that DNA-PKcs is phosphorylated on Ser3205 and Thr3950 in mitosis. Phosphorylation of Thr3950 is DNA-PK-dependent, whereas phosphorylation of Ser3205 requires PLK1 (polo-like kinase 1). Moreover, PLK1 phosphorylates DNA-PKcs on Ser3205 in vitro and interacts with DNA-PKcs in mitosis. In addition, PP6 dephosphorylates DNA-PKcs at Ser3205 in mitosis and after IR (ionizing radiation). DNA-PKcs also phosphorylates Chk2 on Thr68 in mitosis and both phosphorylation of Chk2 and autophosphorylation of DNA-PKcs in mitosis occur in the apparent absence of Ku and DNA damage. Our findings provide mechanistic insight into the roles of DNA-PKcs and PP6 in mitosis and suggest that DNA-PKcs’ role in mitosis may be mechanistically distinct from its well-established role in NHEJ. PMID:24844881

  13. Protein Tyrosine Phosphatase 1B Regulates Pyruvate Kinase M2 Tyrosine Phosphorylation*

    PubMed Central

    Bettaieb, Ahmed; Bakke, Jesse; Nagata, Naoto; Matsuo, Kosuke; Xi, Yannan; Liu, Siming; AbouBechara, Daniel; Melhem, Ramzi; Stanhope, Kimber; Cummings, Bethany; Graham, James; Bremer, Andrew; Zhang, Sheng; Lyssiotis, Costas A.; Zhang, Zhong-Yin; Cantley, Lewis C.; Havel, Peter J.; Haj, Fawaz G.

    2013-01-01

    Protein-tyrosine phosphatase 1B (PTP1B) is a physiological regulator of glucose homeostasis and adiposity and is a drug target for the treatment of obesity and diabetes. Here we identify pyruvate kinase M2 (PKM2) as a novel PTP1B substrate in adipocytes. PTP1B deficiency leads to increased PKM2 total tyrosine and Tyr105 phosphorylation in cultured adipocytes and in vivo. Substrate trapping and mutagenesis studies identify PKM2 Tyr-105 and Tyr-148 as key sites that mediate PTP1B-PKM2 interaction. In addition, in vitro analyses illustrate a direct effect of Tyr-105 phosphorylation on PKM2 activity in adipocytes. Importantly, PTP1B pharmacological inhibition increased PKM2 Tyr-105 phosphorylation and decreased PKM2 activity. Moreover, PKM2 Tyr-105 phosphorylation is regulated nutritionally, decreasing in adipose tissue depots after high-fat feeding. Further, decreased PKM2 Tyr-105 phosphorylation correlates with the development of glucose intolerance and insulin resistance in rodents, non-human primates, and humans. Together, these findings identify PKM2 as a novel substrate of PTP1B and provide new insights into the regulation of adipose PKM2 activity. PMID:23640882

  14. Phosphorylation of an HP1-like protein is a prerequisite for heterochromatin body formation in Tetrahymena DNA elimination.

    PubMed

    Kataoka, Kensuke; Noto, Tomoko; Mochizuki, Kazufumi

    2016-08-09

    Multiple heterochromatic loci are often clustered into a higher order nuclear architecture called a heterochromatin body in diverse eukaryotes. Although phosphorylation of Heterochromatin Protein 1 (HP1) family proteins regulates heterochromatin dynamics, its role in heterochromatin bodies remains unknown. We previously reported that dephosphorylation of the HP1-like protein Pdd1p is required for the formation of heterochromatin bodies during the process of programmed DNA elimination in the ciliated protozoan Tetrahymena Here, we show that the heterochromatin body component Jub4p is required for Pdd1p phosphorylation, heterochromatin body formation, and DNA elimination. Moreover, our analyses of unphosphorylatable Pdd1p mutants demonstrate that Pdd1p phosphorylation is required for heterochromatin body formation and DNA elimination, whereas it is dispensable for local heterochromatin assembly. Therefore, both phosphorylation and the following dephosphorylation of Pdd1p are necessary to facilitate the formation of heterochromatin bodies. We suggest that Jub4p-mediated phosphorylation of Pdd1p creates a chromatin environment that is a prerequisite for subsequent heterochromatin body assembly and DNA elimination.

  15. Gating connexin 43 channels reconstituted in lipid vesicles by mitogen-activated protein kinase phosphorylation.

    PubMed

    Kim, D Y; Kam, Y; Koo, S K; Joe, C O

    1999-02-26

    The regulation of gap junctional permeability by phosphorylation was examined in a model system in which connexin 43 (Cx43) gap junction hemichannels were reconstituted in lipid vesicles. Cx43 was immunoaffinity-purified from rat brain, and Cx43 channels were reconstituted into unilamellar phospholipid liposomes. The activities of the reconstituted channels were measured by monitoring liposome permeability. Liposomes containing the Cx43 protein were fractionated on the basis of permeability to sucrose using sedimentation in an iso-osmolar density gradient. The gradient allowed separation of the sucrose-permeable and -impermeable liposomes. Liposomes that were permeable to sucrose were also permeable to the communicating dye molecule lucifer yellow. Permeability, and therefore activity of the reconstituted Cx43 channels, were directly dependent on the state of Cx43 phosphorylation. The permeability of liposomes containing Cx43 channels was increased by treatment of liposomes with calf intestinal phosphatase. Moreover, liposomes formed with Cx43 that had been dephosphorylated by calf intestinal phosphatase treatment showed increased permeability to sucrose. The role of phosphorylation in the gating mechanism of Cx43 channels was supported further by the observation that phosphorylation of Cx43 by mitogen-activated protein kinase reversibly reduced the permeability of liposomes containing dephosphorylated Cx43. Our results show a direct correlation between gap junctional permeability and the phosphorylation state of Cx43.

  16. Dynamic Lipid-dependent Modulation of Protein Topology by Post-translational Phosphorylation.

    PubMed

    Vitrac, Heidi; MacLean, David M; Karlstaedt, Anja; Taegtmeyer, Heinrich; Jayaraman, Vasanthi; Bogdanov, Mikhail; Dowhan, William

    2017-02-03

    Membrane protein topology and folding are governed by structural principles and topogenic signals that are recognized and decoded by the protein insertion and translocation machineries at the time of initial membrane insertion and folding. We previously demonstrated that the lipid environment is also a determinant of initial protein topology, which is dynamically responsive to post-assembly changes in membrane lipid composition. However, the effect on protein topology of post-assembly phosphorylation of amino acids localized within initially cytoplasmically oriented extramembrane domains has never been investigated. Here, we show in a controlled in vitro system that phosphorylation of a membrane protein can trigger a change in topological arrangement. The rate of change occurred on a scale of seconds, comparable with the rates observed upon changes in the protein lipid environment. The rate and extent of topological rearrangement were dependent on the charges of extramembrane domains and the lipid bilayer surface. Using model membranes mimicking the lipid compositions of eukaryotic organelles, we determined that anionic lipids, cholesterol, sphingomyelin, and membrane fluidity play critical roles in these processes. Our results demonstrate how post-translational modifications may influence membrane protein topology in a lipid-dependent manner, both along the organelle trafficking pathway and at their final destination. The results provide further evidence that membrane protein topology is dynamic, integrating for the first time the effect of changes in lipid composition and regulators of cellular processes. The discovery of a new topology regulatory mechanism opens additional avenues for understanding unexplored structure-function relationships and the development of optimized topology prediction tools. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Phosphatidylinositol-3-kinase-dependent phosphorylation of SLP-76 by the lymphoma-associated ITK-SYK fusion-protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hussain, Alamdar, E-mail: alamdar.hussain@ki.se; Department of Biosciences, COMSATS Institute of Information Technology, Chak Shazad Campus, Islamabad; Faryal, Rani

    Recurrent chromosomal translocations have long been implicated in various types of lymphomas and other malignancies. Novel recurrent t(5;9)(q33;q22) has been recently discovered in un-specified peripheral T-cell lymphoma. To elucidate the role of this translocation, the corresponding fusion construct encoding the N-terminal portion of the ITK kinase and the C-terminal catalytic region of the SYK kinase was generated. We herein show that the ITK-SYK fusion-protein is constitutively active. Moreover, we demonstrate that ITK-SYK is phosphorylated on key tyrosine residues and is capable of potently phosphorylating the related adapter proteins BLNK and SLP-76. In transiently transfected cells, SYK was phosphorylated at Y352more » but not detectably at the activation-loop tyrosines Y525/Y526. In contrast, ITK-SYK was phosphorylated both at Y212 and the activation-loop tyrosines Y385/Y386, corresponding to Y352 and Y525/Y526 in SYK, respectively. In resting primary lymphocytes, ITK-SYK predominantly localizes to the cell surface. In addition, we demonstrate that following stimulation, the ITK-SYK fusion-protein in cell lines translocates to the cell membrane and, moreover, that this phenomenon as well as SLP-76 phosphorylation are blocked upon phosphatidylinositol-3-kinase (PI3-kinase) inhibition.« less

  18. Complete mitochondrial genome of Zeugodacus tau (Insecta: Tephritidae) and differentiation of Z. tau species complex by mitochondrial cytochrome c oxidase subunit I gene

    PubMed Central

    Yong, Hoi-Sen; Lim, Phaik-Eem; Eamsobhana, Praphathip

    2017-01-01

    The tephritid fruit fly Zeugodacus tau (Walker) is a polyphagous fruit pest of economic importance in Asia. Studies based on genetic markers indicate that it forms a species complex. We report here (1) the complete mitogenome of Z. tau from Malaysia and comparison with that of China as well as the mitogenome of other congeners, and (2) the relationship of Z. tau taxa from different geographical regions based on sequences of cytochrome c oxidase subunit I gene. The complete mitogenome of Z. tau had a total length of 15631 bp for the Malaysian specimen (ZT3) and 15835 bp for the China specimen (ZT1), with similar gene order comprising 37 genes (13 protein-coding genes—PCGs, 2 rRNA genes, and 22 tRNA genes) and a non-coding A + T-rich control region (D-loop). Based on 13 PCGs and 15 mt-genes, Z. tau NC_027290 (China) and Z. tau ZT1 (China) formed a sister group in the lineage containing also Z. tau ZT3 (Malaysia). Phylogenetic analysis based on partial sequences of cox1 gene indicates that the taxa from China, Japan, Laos, Malaysia, Bangladesh, India, Sri Lanka, and Z. tau sp. A from Thailand belong to Z. tau sensu stricto. A complete cox1 gene (or 13 PCGs or 15 mt-genes) instead of partial sequence is more appropriate for determining phylogenetic relationship. PMID:29216281

  19. The Polarity Protein Partitioning-defective 1 (PAR-1) Regulates Dendritic Spine Morphogenesis through Phosphorylating Postsynaptic Density Protein 95 (PSD-95)*

    PubMed Central

    Wu, Qian; DiBona, Victoria L.; Bernard, Laura P.; Zhang, Huaye

    2012-01-01

    The polarity protein PAR-1 plays an essential role in many cellular contexts, including embryogenesis, asymmetric cell division, directional migration, and epithelial morphogenesis. Despite its known importance in different cellular processes, the role of PAR-1 in neuronal morphogenesis is less well understood. In particular, its role in the morphogenesis of dendritic spines, which are sites of excitatory synaptic inputs, has been unclear. Here, we show that PAR-1 is required for normal spine morphogenesis in hippocampal neurons. We further show that PAR-1 functions through phosphorylating the synaptic scaffolding protein PSD-95 in this process. Phosphorylation at a conserved serine residue in the KXGS motif in PSD-95 regulates spine morphogenesis, and a phosphomimetic mutant of this site can rescue the defects of kinase-dead PAR-1. Together, our findings uncover a role of PAR-1 in spine morphogenesis in hippocampal neurons through phosphorylating PSD-95. PMID:22807451

  20. The polarity protein partitioning-defective 1 (PAR-1) regulates dendritic spine morphogenesis through phosphorylating postsynaptic density protein 95 (PSD-95).

    PubMed

    Wu, Qian; DiBona, Victoria L; Bernard, Laura P; Zhang, Huaye

    2012-08-31

    The polarity protein PAR-1 plays an essential role in many cellular contexts, including embryogenesis, asymmetric cell division, directional migration, and epithelial morphogenesis. Despite its known importance in different cellular processes, the role of PAR-1 in neuronal morphogenesis is less well understood. In particular, its role in the morphogenesis of dendritic spines, which are sites of excitatory synaptic inputs, has been unclear. Here, we show that PAR-1 is required for normal spine morphogenesis in hippocampal neurons. We further show that PAR-1 functions through phosphorylating the synaptic scaffolding protein PSD-95 in this process. Phosphorylation at a conserved serine residue in the KXGS motif in PSD-95 regulates spine morphogenesis, and a phosphomimetic mutant of this site can rescue the defects of kinase-dead PAR-1. Together, our findings uncover a role of PAR-1 in spine morphogenesis in hippocampal neurons through phosphorylating PSD-95.