Sample records for tau-mediated motor impairment

  1. Progressive Motor Deficit is Mediated by the Denervation of Neuromuscular Junctions and Axonal Degeneration in Transgenic Mice Expressing Mutant (P301S) Tau Protein.

    PubMed

    Yin, Zhuoran; Valkenburg, Femke; Hornix, Betty E; Mantingh-Otter, Ietje; Zhou, Xingdong; Mari, Muriel; Reggiori, Fulvio; Van Dam, Debby; Eggen, Bart J L; De Deyn, Peter P; Boddeke, Erik

    2017-01-01

    Tauopathies include a variety of neurodegenerative diseases associated with the pathological aggregation of hyperphosphorylated tau, resulting in progressive cognitive decline and motor impairment. The underlying mechanism for motor deficits related to tauopathy is not yet fully understood. Here, we use a novel transgenic tau mouse line, Tau 58/4, with enhanced neuron-specific expression of P301S mutant tau to investigate the motor abnormalities in association with the peripheral nervous system. Using stationary beam, gait, and rotarod tests, motor deficits were found in Tau 58/4 mice already 3 months after birth, which deteriorated during aging. Hyperphosphorylated tau was detected in the cell bodies and axons of motor neurons. At the age of 9 and 12 months, significant denervation of the neuromuscular junction in the extensor digitorum longus muscle was observed in Tau 58/4 mice, compared to wild-type mice. Muscle hypotrophy was observed in Tau 58/4 mice at 9 and 12 months. Using electron microscopy, we observed ultrastructural changes in the sciatic nerve of 12-month-old Tau 58/4 mice indicative of the loss of large axonal fibers and hypomyelination (assessed by g-ratio). We conclude that the accumulated hyperphosphorylated tau in the axon terminals may induce dying-back axonal degeneration, myelin abnormalities, neuromuscular junction denervation, and muscular atrophy, which may be the mechanisms responsible for the deterioration of the motor function in Tau 58/4 mice. Tau 58/4 mice represent an interesting neuromuscular degeneration model, and the pathological mechanisms might be responsible for motor signs observed in some human tauopathies.

  2. Glucocorticoid-mediated activation of GSK3β promotes tau phosphorylation and impairs memory in type 2 diabetes.

    PubMed

    Dey, Aditi; Hao, Shuai; Wosiski-Kuhn, Marlena; Stranahan, Alexis M

    2017-09-01

    Type 2 diabetes is increasingly recognized as a risk factor for Alzheimer's disease, but the underlying mechanisms remain poorly understood. Hyperphosphorylation of the microtubule-associated protein tau has been reported in rodent models of diabetes, including db/db mice, which exhibit insulin resistance and chronically elevated glucocorticoids due to leptin receptor insufficiency. In this report, we investigated endocrine mechanisms for hippocampal tau phosphorylation in db/db and wild-type mice. By separately manipulating peripheral and intrahippocampal corticosterone levels, we determined that hippocampal corticosteroid exposure promotes tau phosphorylation and activates glycogen synthase kinase 3β (GSK3β). Subsequent experiments in hippocampal slice preparations revealed evidence for a nongenomic interaction between glucocorticoids and GSK3β. To examine whether GSK3β activation mediates tau phosphorylation and impairs memory in diabetes, db/db and wild-type mice received intrahippocampal infusions of TDZD-8, a non-ATP competitive thiadiazolidinone inhibitor of GSK3β. Intrahippocampal TDZD-8 blocked tau hyperphosphorylation and normalized hippocampus-dependent memory in db/db mice, suggesting that pathological synergy between diabetes and Alzheimer's disease may involve glucocorticoid-mediated activation of GSK3β. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Tau mislocalization to dendritic spines mediates synaptic dysfunction independently of neurodegeneration

    PubMed Central

    Hoover, Brian R.; Reed, Miranda N.; Su, Jianjun; Penrod, Rachel D.; Kotilinek, Linda A.; Grant, Marianne K.; Pitstick, Rose; Carlson, George A.; Lanier, Lorene M.; Yuan, Li-Lian; Ashe, Karen H.; Liao, Dezhi

    2010-01-01

    The microtubule-associated protein tau accumulates in Alzheimer’s and other fatal dementias, which manifest when forebrain neurons die. Recent advances in understanding these disorders indicate that brain dysfunction precedes neurodegeneration, but the role of tau is unclear. Here, we show that early tau-related deficits develop not from the loss of synapses or neurons, but rather as a result of synaptic abnormalities caused by the accumulation of hyperphosphorylated tau within intact dendritic spines, where it disrupts synaptic function by impairing glutamate receptor trafficking or synaptic anchoring. Mutagenesis of 14 disease-associated serine and threonine amino acid residues to create pseudohyperphosphorylated tau caused tau mislocalization while creation of phosphorylation-deficient tau blocked the mis-targeting of tau to dendritic spines. Thus, tau phosphorylation plays a critical role in mediating tau mislocalization and subsequent synaptic impairment. These data establish that the locus of early synaptic malfunction caused by tau resides in dendritic spines. PMID:21172610

  4. Tau-mediated synaptic and neuronal dysfunction in neurodegenerative disease.

    PubMed

    Tracy, Tara E; Gan, Li

    2018-05-09

    The accumulation of pathological tau in the brain is associated with neuronal deterioration and cognitive impairments in tauopathies including Alzheimer's disease. Tau, while primarily localized in the axons of healthy neurons, accumulates in the soma and dendrites of neurons under pathogenic conditions. Tau is found in both presynaptic and postsynaptic compartments of neurons in Alzheimer's disease. New research supports that soluble forms of tau trigger pathophysiology in the brain by altering properties of synaptic and neuronal function at the early stages of disease progression, before neurons die. Here we review the current understanding of how tau-mediated synaptic and neuronal dysfunction contributes to cognitive decline. Delineating the mechanisms by which pathogenic tau alters synapses, dendrites and axons will help lay the foundation for new strategies that can restore neuronal function in tauopathy. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Non-Aggregating Tau Phosphorylation by Cyclin-Dependent Kinase 5 Contributes to Motor Neuron Degeneration in Spinal Muscular Atrophy

    PubMed Central

    Miller, Nimrod; Feng, Zhihua; Edens, Brittany M.; Yang, Ben; Shi, Han; Sze, Christie C.; Hong, Benjamin Taige; Su, Susan C.; Cantu, Jorge A.; Topczewski, Jacek; Crawford, Thomas O.; Ko, Chien-Ping; Sumner, Charlotte J.; Ma, Long

    2015-01-01

    Mechanisms underlying motor neuron degeneration in spinal muscular atrophy (SMA), the leading inherited cause of infant mortality, remain largely unknown. Many studies have established the importance of hyperphosphorylation of the microtubule-associated protein tau in various neurodegenerative disorders, including Alzheimer's and Parkinson's diseases. However, tau phosphorylation in SMA pathogenesis has yet to be investigated. Here we show that tau phosphorylation on serine 202 (S202) and threonine 205 (T205) is increased significantly in SMA motor neurons using two SMA mouse models and human SMA patient spinal cord samples. Interestingly, phosphorylated tau does not form aggregates in motor neurons or neuromuscular junctions (NMJs), even at late stages of SMA disease, distinguishing it from other tauopathies. Hyperphosphorylation of tau on S202 and T205 is mediated by cyclin-dependent kinase 5 (Cdk5) in SMA disease condition, because tau phosphorylation at these sites is significantly reduced in Cdk5 knock-out mice; genetic knock-out of Cdk5 activating subunit p35 in an SMA mouse model also leads to reduced tau phosphorylation on S202 and T205 in the SMA;p35−/− compound mutant mice. In addition, expression of the phosphorylation-deficient tauS202A,T205A mutant alleviates motor neuron defects in a zebrafish SMA model in vivo and mouse motor neuron degeneration in culture, whereas expression of phosphorylation-mimetic tauS202E,T205E promotes motor neuron defects. More importantly, genetic knock-out of tau in SMA mice rescues synapse stripping on motor neurons, NMJ denervation, and motor neuron degeneration in vivo. Altogether, our findings suggest a novel mechanism for SMA pathogenesis in which hyperphosphorylation of non-aggregating tau by Cdk5 contributes to motor neuron degeneration. PMID:25878277

  6. Tau pathology and neurodegeneration contribute to cognitive impairment in Alzheimer's disease.

    PubMed

    Bejanin, Alexandre; Schonhaut, Daniel R; La Joie, Renaud; Kramer, Joel H; Baker, Suzanne L; Sosa, Natasha; Ayakta, Nagehan; Cantwell, Averill; Janabi, Mustafa; Lauriola, Mariella; O'Neil, James P; Gorno-Tempini, Maria L; Miller, Zachary A; Rosen, Howard J; Miller, Bruce L; Jagust, William J; Rabinovici, Gil D

    2017-12-01

    Neuropathological and in vivo studies have revealed a tight relationship between tau pathology and cognitive impairment across the Alzheimer's disease spectrum. However, tau pathology is also intimately associated with neurodegeneration and amyloid pathology. The aim of the present study was therefore to assess whether grey matter atrophy and amyloid pathology contribute to the relationship between tau pathology, as measured with 18F-AV-1451-PET imaging, and cognitive deficits in Alzheimer's disease. We included 40 amyloid-positive patients meeting criteria for mild cognitive impairment due to Alzheimer's disease (n = 5) or probable Alzheimer's disease dementia (n = 35). Twelve patients additionally fulfilled the diagnostic criteria for posterior cortical atrophy and eight for logopenic variant primary progressive aphasia. All participants underwent 3 T magnetic resonance imaging, amyloid (11C-PiB) positron emission tomography and tau (18F-AV-1451) positron emission tomography, and episodic and semantic memory, language, executive and visuospatial functions assessment. Raw cognitive scores were converted to age-adjusted Z-scores (W-scores) and averaged to compute composite scores for each cognitive domain. Independent regressions were performed between 18F-AV-1451 binding and each cognitive domain, and we used the Biological Parametric Mapping toolbox to further control for local grey matter volumes, 11C-PiB uptake, or both. Partial correlations and causal mediation analyses (mediation R package) were then performed in brain regions showing an association between cognition and both 18F-AV-1451 uptake and grey matter volume. Our results showed that decreased cognitive performance in each domain was related to increased 18F-AV-1451 binding in specific brain regions conforming to established brain-behaviour relationships (i.e. episodic memory: medial temporal lobe and angular gyrus; semantic memory: left anterior temporal regions; language: left posterior superior

  7. Caspase-2 cleavage of tau reversibly impairs memory.

    PubMed

    Zhao, Xiaohui; Kotilinek, Linda A; Smith, Benjamin; Hlynialuk, Chris; Zahs, Kathleen; Ramsden, Martin; Cleary, James; Ashe, Karen H

    2016-11-01

    In Alzheimer's disease (AD) and other tauopathies, the tau protein forms fibrils, which are believed to be neurotoxic. However, fibrillar tau has been dissociated from neuron death and network dysfunction, suggesting the involvement of nonfibrillar species. Here we describe a novel pathological process in which caspase-2 cleavage of tau at Asp314 impairs cognitive and synaptic function in animal and cellular models of tauopathies by promoting the missorting of tau to dendritic spines. The truncation product, Δtau314, resists fibrillation and is present at higher levels in brains from cognitively impaired mice and humans with AD. The expression of tau mutants that resisted caspase-2 cleavage prevented tau from infiltrating spines, dislocating glutamate receptors and impairing synaptic function in cultured neurons, and it prevented memory deficits and neurodegeneration in mice. Decreasing the levels of caspase-2 restored long-term memory in mice that had existing deficits. Our results suggest an overall treatment strategy for re-establishing synaptic function and restoring memory in patients with AD by preventing tau from accumulating in dendritic spines.

  8. AGEs induce Alzheimer-like tau pathology and memory deficit via RAGE-mediated GSK-3 activation.

    PubMed

    Li, Xiao-Hong; Lv, Bing-Ling; Xie, Jia-Zhao; Liu, Jing; Zhou, Xin-Wen; Wang, Jian-Zhi

    2012-07-01

    Accumulation of β-amyloid and hyperphosphorylated tau with synapse damage and memory deterioration are hallmark lesions of Alzheimer disease (AD), but the upstream causative factors are elusive. The advanced glycation endproducts (AGEs) are elevated in AD brains and the AGEs can stimulate β-amyloid production. Whether and how AGEs may cause AD-like tau hyperphosphorylation and memory-related deficits is not known. Here we report that AGEs induce tau hyperphosphorylation, memory deterioration, decline of synaptic proteins, and impairment of long-term potentiation (LTP) in rats. In SK-NS-H cells, upregulation of AGEs receptor (RAGE), inhibition of Akt, and activation of glycogen synthase kinase-3 (GSK-3), Erk1/2, and p38 were observed after treatment with AGEs. In rats, blockage of RAGE attenuated the AGE-induced GSK-3 activation, tau hyperphosphorylation, and memory deficit with restoration of synaptic functions, and simultaneous inhibition of GSK-3 also antagonized the AGE-induced impairments. Our data reveal that AGEs can induce tau hyperphosphorylation and impair synapse and memory through RAGE-mediated GSK-3 activation and targeting RAGE/GSK-3 pathway can efficiently improve the AD-like histopathological changes and memory deterioration. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Tau and Amyloid-β Cerebrospinal Fluid Biomarkers have Differential Relationships with Cognition in Mild Cognitive Impairment.

    PubMed

    Malpas, Charles B; Saling, Michael M; Velakoulis, Dennis; Desmond, Patricia; O'Brien, Terence J

    2015-01-01

    Alzheimer's disease (AD) is characterized by two primary pathologies: tau-related neurofibrillary tangles and the extracellular accumulation of amyloid-β (Aβ). The development of these pathologies is topologically distinct early in the disease, with Aβ beginning to accumulate as a diffuse, neocortical pathology, while tau-related pathology begins to form in mesial temporal regions. This study investigated the hypothesis that, by virtue of this distinction, there exist preferential associations between the primary pathologies and aspects of the cognitive phenotype. We investigated the relationship between cerebrospinal fluid (CSF) biomarkers for tau and Aβ pathologies with neurocognitive measures in 191 patients with mild cognitive impairment (MCI). Participants completed cognitive tests of new learning, information processing speed, and working memory. Separate regression models were computed and then followed up with mediation analyses to examine the predictive status of CSF biomarkers. The effect of Aβ on learning was mediated by phospho-tau (p = 0.008). In contrast, Aβ had a direct effect on information processing speed that was not mediated by phospho-tau (p = 0.59). No predictors were significant for working memory. This study provided evidence for a differential relationship of Aβ and phospho-tau pathologies on the neurocognitive phenotype of MCI. This supports the proposition that these primary AD pathologies maximally affect different aspects of cognition, and has potential implications for cognitive assessments and the use of biomarkers in disease-modifyingtherapeutic trials.

  10. Loss of Axonal Mitochondria Promotes Tau-Mediated Neurodegeneration and Alzheimer's Disease–Related Tau Phosphorylation Via PAR-1

    PubMed Central

    Iijima-Ando, Kanae; Sekiya, Michiko; Suzuki, Emiko; Lu, Bingwei; Iijima, Koichi M.

    2012-01-01

    Abnormal phosphorylation and toxicity of a microtubule-associated protein tau are involved in the pathogenesis of Alzheimer's disease (AD); however, what pathological conditions trigger tau abnormality in AD is not fully understood. A reduction in the number of mitochondria in the axon has been implicated in AD. In this study, we investigated whether and how loss of axonal mitochondria promotes tau phosphorylation and toxicity in vivo. Using transgenic Drosophila expressing human tau, we found that RNAi–mediated knockdown of milton or Miro, an adaptor protein essential for axonal transport of mitochondria, enhanced human tau-induced neurodegeneration. Tau phosphorylation at an AD–related site Ser262 increased with knockdown of milton or Miro; and partitioning defective-1 (PAR-1), the Drosophila homolog of mammalian microtubule affinity-regulating kinase, mediated this increase of tau phosphorylation. Tau phosphorylation at Ser262 has been reported to promote tau detachment from microtubules, and we found that the levels of microtubule-unbound free tau increased by milton knockdown. Blocking tau phosphorylation at Ser262 site by PAR-1 knockdown or by mutating the Ser262 site to unphosphorylatable alanine suppressed the enhancement of tau-induced neurodegeneration caused by milton knockdown. Furthermore, knockdown of milton or Miro increased the levels of active PAR-1. These results suggest that an increase in tau phosphorylation at Ser262 through PAR-1 contributes to tau-mediated neurodegeneration under a pathological condition in which axonal mitochondria is depleted. Intriguingly, we found that knockdown of milton or Miro alone caused late-onset neurodegeneration in the fly brain, and this neurodegeneration could be suppressed by knockdown of Drosophila tau or PAR-1. Our results suggest that loss of axonal mitochondria may play an important role in tau phosphorylation and toxicity in the pathogenesis of AD. PMID:22952452

  11. Effect of the microtubule-associated protein tau on dynamics of single-headed motor proteins KIF1A

    NASA Astrophysics Data System (ADS)

    Sparacino, J.; Farías, M. G.; Lamberti, P. W.

    2014-02-01

    Intracellular transport based on molecular motors and its regulation are crucial to the functioning of cells. Filamentary tracks of the cells are abundantly decorated with nonmotile microtubule-associated proteins, such as tau. Motivated by experiments on kinesin-tau interactions [Dixit et al., Science 319, 1086 (2008), 10.1126/science.1152993] we developed a stochastic model of interacting single-headed motor proteins KIF1A that also takes into account the interactions between motor proteins and tau molecules. Our model reproduces experimental observations and predicts significant effects of tau on bound time and run length which suggest an important role of tau in regulation of kinesin-based transport.

  12. Receptor for advanced glycation end products mediates sepsis-triggered amyloid-β accumulation, Tau phosphorylation, and cognitive impairment.

    PubMed

    Gasparotto, Juciano; Girardi, Carolina S; Somensi, Nauana; Ribeiro, Camila T; Moreira, José C F; Michels, Monique; Sonai, Beatriz; Rocha, Mariane; Steckert, Amanda V; Barichello, Tatiana; Quevedo, João; Dal-Pizzol, Felipe; Gelain, Daniel P

    2018-01-05

    Patients recovering from sepsis have higher rates of CNS morbidities associated with long-lasting impairment of cognitive functions, including neurodegenerative diseases. However, the molecular etiology of these sepsis-induced impairments is unclear. Here, we investigated the role of the receptor for advanced glycation end products (RAGE) in neuroinflammation, neurodegeneration-associated changes, and cognitive dysfunction arising after sepsis recovery. Adult Wistar rats underwent cecal ligation and perforation (CLP), and serum and brain (hippocampus and prefrontal cortex) samples were obtained at days 1, 15, and 30 after the CLP. We examined these samples for systemic and brain inflammation; amyloid-β peptide (Aβ) and Ser-202-phosphorylated Tau (p-Tau Ser-202 ) levels; and RAGE, RAGE ligands, and RAGE intracellular signaling. Serum markers associated with the acute proinflammatory phase of sepsis (TNFα, IL-1β, and IL-6) rapidly increased and then progressively decreased during the 30-day period post-CLP, concomitant with a progressive increase in RAGE ligands (S100B, N ϵ-[carboxymethyl]lysine, HSP70, and HMGB1). In the brain, levels of RAGE and Toll-like receptor 4, glial fibrillary acidic protein and neuronal nitric-oxide synthase, and Aβ and p-Tau Ser-202 also increased during that time. Of note, intracerebral injection of RAGE antibody into the hippocampus at days 15, 17, and 19 post-CLP reduced Aβ and p-Tau Ser-202 accumulation, Akt/mechanistic target of rapamycin signaling, levels of ionized calcium-binding adapter molecule 1 and glial fibrillary acidic protein, and behavioral deficits associated with cognitive decline. These results indicate that brain RAGE is an essential factor in the pathogenesis of neurological disorders following acute systemic inflammation. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Network Disruption and Cerebrospinal Fluid Amyloid-Beta and Phospho-Tau Levels in Mild Cognitive Impairment.

    PubMed

    Canuet, Leonides; Pusil, Sandra; López, María Eugenia; Bajo, Ricardo; Pineda-Pardo, José Ángel; Cuesta, Pablo; Gálvez, Gerardo; Gaztelu, José María; Lourido, Daniel; García-Ribas, Guillermo; Maestú, Fernando

    2015-07-15

    Synaptic dysfunction is a core deficit in Alzheimer's disease, preceding hallmark pathological abnormalities. Resting-state magnetoencephalography (MEG) was used to assess whether functional connectivity patterns, as an index of synaptic dysfunction, are associated with CSF biomarkers [i.e., phospho-tau (p-tau) and amyloid beta (Aβ42) levels]. We studied 12 human subjects diagnosed with mild cognitive impairment due to Alzheimer's disease, comparing those with normal and abnormal CSF levels of the biomarkers. We also evaluated the association between aberrant functional connections and structural connectivity abnormalities, measured with diffusion tensor imaging, as well as the convergent impact of cognitive deficits and CSF variables on network disorganization. One-third of the patients converted to Alzheimer's disease during a follow-up period of 2.5 years. Patients with abnomal CSF p-tau and Aβ42 levels exhibited both reduced and increased functional connectivity affecting limbic structures such as the anterior/posterior cingulate cortex, orbitofrontal cortex, and medial temporal areas in different frequency bands. A reduction in posterior cingulate functional connectivity mediated by p-tau was associated with impaired axonal integrity of the hippocampal cingulum. We noted that several connectivity abnormalities were predicted by CSF biomarkers and cognitive scores. These preliminary results indicate that CSF markers of amyloid deposition and neuronal injury in early Alzheimer's disease associate with a dual pattern of cortical network disruption, affecting key regions of the default mode network and the temporal cortex. MEG is useful to detect early synaptic dysfunction associated with Alzheimer's disease brain pathology in terms of functional network organization. In this preliminary study, we used magnetoencephalography and an integrative approach to explore the impact of CSF biomarkers, neuropsychological scores, and white matter structural abnormalities

  14. Loss of Prohibitin Membrane Scaffolds Impairs Mitochondrial Architecture and Leads to Tau Hyperphosphorylation and Neurodegeneration

    PubMed Central

    Merkwirth, Carsten; Morbin, Michela; Brönneke, Hella S.; Jordan, Sabine D.; Rugarli, Elena I.; Langer, Thomas

    2012-01-01

    Fusion and fission of mitochondria maintain the functional integrity of mitochondria and protect against neurodegeneration, but how mitochondrial dysfunctions trigger neuronal loss remains ill-defined. Prohibitins form large ring complexes in the inner membrane that are composed of PHB1 and PHB2 subunits and are thought to function as membrane scaffolds. In Caenorhabditis elegans, prohibitin genes affect aging by moderating fat metabolism and energy production. Knockdown experiments in mammalian cells link the function of prohibitins to membrane fusion, as they were found to stabilize the dynamin-like GTPase OPA1 (optic atrophy 1), which mediates mitochondrial inner membrane fusion and cristae morphogenesis. Mutations in OPA1 are associated with dominant optic atrophy characterized by the progressive loss of retinal ganglion cells, highlighting the importance of OPA1 function in neurons. Here, we show that neuron-specific inactivation of Phb2 in the mouse forebrain causes extensive neurodegeneration associated with behavioral impairments and cognitive deficiencies. We observe early onset tau hyperphosphorylation and filament formation in the hippocampus, demonstrating a direct link between mitochondrial defects and tau pathology. Loss of PHB2 impairs the stability of OPA1, affects mitochondrial ultrastructure, and induces the perinuclear clustering of mitochondria in hippocampal neurons. A destabilization of the mitochondrial genome and respiratory deficiencies manifest in aged neurons only, while the appearance of mitochondrial morphology defects correlates with tau hyperphosphorylation in the absence of PHB2. These results establish an essential role of prohibitin complexes for neuronal survival in vivo and demonstrate that OPA1 stability, mitochondrial fusion, and the maintenance of the mitochondrial genome in neurons depend on these scaffolding proteins. Moreover, our findings establish prohibitin-deficient mice as a novel genetic model for tau pathologies

  15. Specific serum antibody binding to phosphorylated and non-phosphorylated tau in non-cognitively impaired, mildly cognitively impaired, and Alzheimer's disease subjects: an exploratory study.

    PubMed

    Klaver, Andrea C; Coffey, Mary P; Bennett, David A; Loeffler, David A

    2017-01-01

    Tau vaccination and administration of anti-tau antibodies can prevent pathology and cognitive impairment in transgenic mouse models of tauopathy, suggesting that therapies which increase anti-tau antibodies might slow the development and/or progression of Alzheimer's disease (AD). The extent to which individuals with no cognitive impairment (NCI) possess serum anti-tau antibodies, and whether their concentrations of these antibodies differ from anti-tau antibody levels in persons with mild cognitive impairment (MCI) or AD, are unclear. Previous studies measuring these antibodies did not account for antibody polyvalent binding, which can be extensive, nor that antibody binding to phosphorylated tau peptides could be due to binding to non-phosphorylated epitopes on those peptides. An ELISA controlling for these factors was used to measure the specific binding of serum IgG and IgM to phosphorylated ("pTau;" phosphorylated at Serine-199 and Serine-202) and non-phosphorylated ("non-pTau") tau 196-207 in subjects with NCI, MCI, or AD ( n  = 10/group). Between-group differences in these antibody levels were evaluated for statistical significance, and correlations were examined in pooled data from all subjects between these antibody levels and subject age, global cognitive functioning, and NFT counts. Specific IgG binding to pTau and non-pTau was detected in all subjects except for one NCI control. Specific IgM binding was detected to pTau in all subjects except for two AD patients, and to non-pTau in all subjects. Mean pTau IgG was increased in MCI subjects by 53% and 70% vs. AD and NCI subjects respectively (both p  < 0.05), while no significant differences were found between groups for non-pTau IgG ( p  = 0.052), pTau IgM, or non-pTau IgM. Non-pTau IgG was negatively associated with global cognition (Spearman rho = -0.50). Specific binding of serum IgG and IgM to phosphorylated and non-phosphorylated tau may be present in older persons regardless of their

  16. Neurodegeneration caused by expression of human truncated tau leads to progressive neurobehavioural impairment in transgenic rats.

    PubMed

    Hrnkova, Miroslava; Zilka, Norbert; Minichova, Zuzana; Koson, Peter; Novak, Michal

    2007-01-26

    Human truncated tau protein is an active constituent of the neurofibrillary degeneration in sporadic Alzheimer's disease. We have shown that modified tau protein, when expressed as a transgene in rats, induced AD characteristic tau cascade consisting of tau hyperphosphorylation, formation of argyrophilic tangles and sarcosyl-insoluble tau complexes. These pathological changes led to the functional impairment characterized by a variety of neurobehavioural symptoms. In the present study we have focused on the behavioural alterations induced by transgenic expression of human truncated tau. Transgenic rats underwent a battery of behavioural tests involving cognitive- and sensorimotor-dependent tasks accompanied with neurological assessment at the age of 4.5, 6 and 9 months. Behavioural examination of these rats showed altered spatial navigation in Morris water maze resulting in less time spent in target quadrant (p<0.05) and fewer crossings over previous platform position (p<0.05) during probe trial. Spontaneous locomotor activity and anxiety in open field was not influenced by transgene expression. However beam walking test revealed that transgenic rats developed progressive sensorimotor disturbances related to the age of tested animals. The disturbances were most pronounced at the age of 9 months (p<0.01). Neurological alterations indicating impaired reflex responses were other added features of behavioural phenotype of this novel transgenic rat. These results allow us to suggest that neurodegeneration, caused by the non-mutated human truncated tau derived from sporadic human AD, result in the neuronal dysfunction consequently leading to the progressive neurobehavioural impairment.

  17. Temperature control can abolish anesthesia-induced tau hyperphosphorylation and partly reverse anesthesia-induced cognitive impairment in old mice.

    PubMed

    Xiao, Haibing; Run, Xiaoqin; Cao, Xu; Su, Ying; Sun, Zhou; Tian, Cheng; Sun, Shenggang; Liang, Zhihou

    2013-11-01

    Anesthesia is related to cognitive impairment and the risk for Alzheimer's disease. Hypothermia during anesthesia can lead to abnormal hyperphosphorylation of tau, which has been speculated to be involved in anesthesia-induced cognitive impairment. The aim of this study was to investigate whether maintenance of the tau phosphorylation level by body temperature control during anesthesia could reverse the cognitive dysfunction in C57BL/6 mice. Eighteen-month-old mice were repeatedly anesthetized during a 2-week period with or without maintenance of body temperature, control mice were treated with normal saline instead of anesthetics. Tau phosphorylation level in mice brain was detected on western blot, and cognitive performance was measured using the Morris water maze (MWM). After anesthesia-induced hypothermia in old mice, tau was hyperphosphorylated and the cognitive performance, measured on MWM, was impaired. When body temperature was controlled during anesthesia, however, the tau hyperphosphorylation was completely avoided, and there was partial recovery in cognitive impairment measured on the MWM. Hyperphosphorylation of tau in the brain after anesthesia is an important event, and it might be, although not solely, responsible for postoperative cognitive decline. © 2013 The Authors. Psychiatry and Clinical Neurosciences © 2013 Japanese Society of Psychiatry and Neurology.

  18. Closing the tau loop: the missing tau mutation

    PubMed Central

    McCarthy, Allan; Lonergan, Roisin; Olszewska, Diana A.; O’Dowd, Sean; Cummins, Gemma; Magennis, Brian; Fallon, Emer M.; Pender, Niall; Huey, Edward D.; Cosentino, Stephanie; O’Rourke, Killian; Kelly, Brendan D.; O’Connell, Martin; Delon, Isabelle; Farrell, Michael; Spillantini, Maria Grazia; Rowland, Lewis P.; Fahn, Stanley; Craig, Peter; Hutton, Michael

    2015-01-01

    Frontotemporal lobar degeneration comprises a group of disorders characterized by behavioural, executive, language impairment and sometimes features of parkinsonism and motor neuron disease. In 1994 we described an Irish-American family with frontotemporal dementia linked to chromosome 17 associated with extensive tau pathology. We named this disinhibition-dementia-parkinsonism-amyotrophy complex. We subsequently identified mutations in the MAPT gene. Eleven MAPT gene splice site stem loop mutations were identified over time except for 5’ splice site of exon 10. We recently identified another Irish family with autosomal dominant early amnesia and behavioural change or parkinsonism associated with the ‘missing’ +15 mutation at the intronic boundary of exon 10. We performed a clinical, neuropsychological and neuroimaging study on the proband and four siblings, including two affected siblings. We sequenced MAPT and performed segregation analysis. We looked for a biological effect of the tau variant by performing real-time polymerase chain reaction analysis of RNA extracted from human embryonic kidney cells transfected with exon trapping constructs. We found a c.915+15A>C exon 10/intron 10 stem loop mutation in all affected subjects but not in the unaffected. The c.915+15A>C variant caused a shift in tau splicing pattern to a predominantly exon 10+ pattern presumably resulting in predominant 4 repeat tau and little 3 repeat tau. This strongly suggests that the c.915+15A>C variant is a mutation and that it causes frontotemporal dementia linked to chromosome 17 in this pedigree by shifting tau transcription and translation to +4 repeat tau. Tau (MAPT) screening should be considered in families where amnesia or atypical parkinsonism coexists with behavioural disturbance early in the disease process. We describe the final missing stem loop tau mutation predicted 15 years ago. Mutations have now been identified at all predicted sites within the ‘stem’ when the

  19. Assessment of Extent and Role of Tau in Subcortical Vascular Cognitive Impairment Using 18F-AV1451 Positron Emission Tomography Imaging.

    PubMed

    Kim, Hee Jin; Park, Seongbeom; Cho, Hanna; Jang, Young Kyoung; San Lee, Jin; Jang, Hyemin; Kim, Yeshin; Kim, Ko Woon; Ryu, Young Hoon; Choi, Jae Yong; Moon, Seung Hwan; Weiner, Michael W; Jagust, William J; Rabinovici, Gil D; DeCarli, Charles; Lyoo, Chul Hyoung; Na, Duk L; Seo, Sang Won

    2018-05-14

    . Involvement frequency of AV1451 uptake in the fusiform gyrus, inferior temporal, and precuneus regions were higher than that in the parahippocampal region. In patients with SVCI, higher AV1451 uptake in the inferior temporal and medial temporal regions correlated with worse language and general cognitive function. In patients with SVCI, Aβ positivity and CSVD score each correlated with worse general cognitive function, which was completely mediated by AV1451 uptake in the entorhinal cortex and inferior temporal gyrus, respectively. Our findings suggest that in SVCI, both Aβ and CSVD were independently associated with increased tau accumulation. Furthermore, tau burden played a pivotal role because it was the final common pathway for the cognitive impairment in patients with SVCI.

  20. Tau PET in Alzheimer disease and mild cognitive impairment.

    PubMed

    Cho, Hanna; Choi, Jae Yong; Hwang, Mi Song; Lee, Jae Hoon; Kim, You Jin; Lee, Hye Mi; Lyoo, Chul Hyoung; Ryu, Young Hoon; Lee, Myung Sik

    2016-07-26

    To investigate the topographical distribution of tau pathology and its effect on functional and structural changes in patients with Alzheimer disease (AD) and mild cognitive impairment (MCI) by using (18)F-AV-1451 PET. We included 20 patients with AD, 15 patients with MCI, and 20 healthy controls, and performed neuropsychological function tests, MRI, as well as (18)F-florbetaben (for amyloid) and (18)F-AV-1451 (for tau) PET scans. By using the regional volume-of-interest masks extracted from MRIs, regional binding values of standardized uptake value ratios and volumes were measured. We compared regional binding values among 3 diagnostic groups and identified correlations among the regional binding values, performance in each cognitive function test, and regional atrophy. (18)F-AV-1451 binding was increased only in the entorhinal cortex in patients with MCI, while patients with AD exhibited greater binding in most cortical regions. In the 35 patients with MCI and AD, (18)F-AV-1451 binding in most of the neocortex increased with a worsening of global cognitive function. The visual and verbal memory functions were associated with the extent of (18)F-AV-1451 binding, especially in the medial temporal regions. The (18)F-AV-1451 binding also correlated with the severity of regional atrophy of the cerebral cortex. Tau PET imaging with (18)F-AV-1451 could serve as an in vivo biomarker for the evaluation of AD-related tau pathology and monitoring disease progression. The accumulation of pathologic tau is more closely related to functional and structural deterioration in the AD spectrum than β-amyloid. © 2016 American Academy of Neurology.

  1. Impairment of Glymphatic Pathway Function Promotes Tau Pathology after Traumatic Brain Injury

    PubMed Central

    Chen, Michael J.; Plog, Benjamin A.; Zeppenfeld, Douglas M.; Soltero, Melissa; Yang, Lijun; Singh, Itender; Deane, Rashid; Nedergaard, Maiken

    2014-01-01

    Traumatic brain injury (TBI) is an established risk factor for the early development of dementia, including Alzheimer's disease, and the post-traumatic brain frequently exhibits neurofibrillary tangles comprised of aggregates of the protein tau. We have recently defined a brain-wide network of paravascular channels, termed the “glymphatic” pathway, along which CSF moves into and through the brain parenchyma, facilitating the clearance of interstitial solutes, including amyloid-β, from the brain. Here we demonstrate in mice that extracellular tau is cleared from the brain along these paravascular pathways. After TBI, glymphatic pathway function was reduced by ∼60%, with this impairment persisting for at least 1 month post injury. Genetic knock-out of the gene encoding the astroglial water channel aquaporin-4, which is importantly involved in paravascular interstitial solute clearance, exacerbated glymphatic pathway dysfunction after TBI and promoted the development of neurofibrillary pathology and neurodegeneration in the post-traumatic brain. These findings suggest that chronic impairment of glymphatic pathway function after TBI may be a key factor that renders the post-traumatic brain vulnerable to tau aggregation and the onset of neurodegeneration. PMID:25471560

  2. Escitalopram attenuates β-amyloid-induced tau hyperphosphorylation in primary hippocampal neurons through the 5-HT1A receptor mediated Akt/GSK-3β pathway

    PubMed Central

    Gong, Wei-Gang; Wu, Di; Tang, Xiang; Li, Xiao-Li; Wu, Fang-Fang; Bai, Feng; Xu, Lin; Zhang, Zhi-Jun

    2016-01-01

    Tau hyperphosphorylation is an important pathological feature of Alzheimer's disease (AD). To investigate whether escitalopram could inhibit amyloid-β (Aβ)-induced tau hyperphosphorylation and the underlying mechanisms, we treated the rat primary hippocampal neurons with Aβ1-42 and examined the effect of escitalopram on tau hyperphosphorylation. Results showed that escitalopram decreased Aβ1–42-induced tau hyperphosphorylation. In addition, escitalopram activated the Akt/GSK-3β pathway, and the PI3K inhibitor LY294002 blocked the attenuation of tau hyperphosphorylation induced by escitalopram. Moreover, the 5-HT1A receptor agonist 8-OH-DPAT also activated the Akt/GSK-3β pathway and decreased Aβ1-42-induced tau hyperphosphorylation. Furthermore, the 5-HT1A receptor antagonist WAY-100635 blocked the activation of Akt/GSK-3β pathway and the attenuation of tau hyperphosphorylation induced by escitalopram. Finally, escitalopram improved Aβ1–42 induced impairment of neurite outgrowth and spine density, and reversed Aβ1–42 induced reduction of synaptic proteins. Our results demonstrated that escitalopram attenuated Aβ1–42-induced tau hyperphosphorylation in primary hippocampal neurons through the 5-HT1A receptor mediated Akt/GSK-3β pathway. PMID:26950279

  3. Escitalopram attenuates β-amyloid-induced tau hyperphosphorylation in primary hippocampal neurons through the 5-HT1A receptor mediated Akt/GSK-3β pathway.

    PubMed

    Wang, Yan-Juan; Ren, Qing-Guo; Gong, Wei-Gang; Wu, Di; Tang, Xiang; Li, Xiao-Li; Wu, Fang-Fang; Bai, Feng; Xu, Lin; Zhang, Zhi-Jun

    2016-03-22

    Tau hyperphosphorylation is an important pathological feature of Alzheimer's disease (AD). To investigate whether escitalopram could inhibit amyloid-β (Aβ)-induced tau hyperphosphorylation and the underlying mechanisms, we treated the rat primary hippocampal neurons with Aβ1-42 and examined the effect of escitalopram on tau hyperphosphorylation. Results showed that escitalopram decreased Aβ1-42-induced tau hyperphosphorylation. In addition, escitalopram activated the Akt/GSK-3β pathway, and the PI3K inhibitor LY294002 blocked the attenuation of tau hyperphosphorylation induced by escitalopram. Moreover, the 5-HT1A receptor agonist 8-OH-DPAT also activated the Akt/GSK-3β pathway and decreased Aβ1-42-induced tau hyperphosphorylation. Furthermore, the 5-HT1A receptor antagonist WAY-100635 blocked the activation of Akt/GSK-3β pathway and the attenuation of tau hyperphosphorylation induced by escitalopram. Finally, escitalopram improved Aβ1-42 induced impairment of neurite outgrowth and spine density, and reversed Aβ1-42 induced reduction of synaptic proteins. Our results demonstrated that escitalopram attenuated Aβ1-42-induced tau hyperphosphorylation in primary hippocampal neurons through the 5-HT1A receptor mediated Akt/GSK-3β pathway.

  4. Acute tau knockdown in the hippocampus of adult mice causes learning and memory deficits.

    PubMed

    Velazquez, Ramon; Ferreira, Eric; Tran, An; Turner, Emily C; Belfiore, Ramona; Branca, Caterina; Oddo, Salvatore

    2018-05-10

    Misfolded and hyperphosphorylated tau accumulates in several neurodegenerative disorders including Alzheimer's disease, frontotemporal dementia with Parkinsonism, corticobasal degeneration, progressive supranuclear palsy, Down syndrome, and Pick's disease. Tau is a microtubule-binding protein, and its role in microtubule stabilization is well defined. In contrast, while growing evidence suggests that tau is also involved in synaptic physiology, a complete assessment of tau function in the adult brain has been hampered by robust developmental compensation of other microtubule-binding proteins in tau knockout mice. To circumvent these developmental compensations and assess the role of tau in the adult brain, we generated an adeno-associated virus (AAV) expressing a doxycycline-inducible short-hairpin (Sh) RNA targeted to tau, herein referred to as AAV-ShRNATau. We performed bilateral stereotaxic injections in 7-month-old C57Bl6/SJL wild-type mice with either the AAV-ShRNATau or a control AAV. We found that acute knockdown of tau in the adult hippocampus significantly impaired motor coordination and spatial memory. Blocking the expression of the AAV-ShRNATau, thereby allowing tau levels to return to control levels, restored motor coordination and spatial memory. Mechanistically, the reduced tau levels were associated with lower BDNF levels, reduced levels of synaptic proteins associated with learning, and decreased spine density. We provide compelling evidence that tau is necessary for motor and cognitive function in the adult brain, thereby firmly supporting that tau loss-of-function may contribute to the clinical manifestations of many tauopathies. These findings have profound clinical implications given that anti-tau therapies are in clinical trials for Alzheimer's disease. © 2018 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  5. Mammalian Target of Rapamycin (mTor) Mediates Tau Protein Dyshomeostasis

    PubMed Central

    Tang, Zhi; Bereczki, Erika; Zhang, Haiyan; Wang, Shan; Li, Chunxia; Ji, Xinying; Branca, Rui M.; Lehtiö, Janne; Guan, Zhizhong; Filipcik, Peter; Xu, Shaohua; Winblad, Bengt; Pei, Jin-Jing

    2013-01-01

    Previous evidence from post-mortem Alzheimer disease (AD) brains and drug (especially rapamycin)-oriented in vitro and in vivo models implicated an aberrant accumulation of the mammalian target of rapamycin (mTor) in tangle-bearing neurons in AD brains and its role in the formation of abnormally hyperphosphorylated tau. Compelling evidence indicated that the sequential molecular events such as the synthesis and phosphorylation of tau can be regulated through p70 S6 kinase, the well characterized immediate downstream target of mTor. In the present study, we further identified that the active form of mTor per se accumulates in tangle-bearing neurons, particularly those at early stages in AD brains. By using mass spectrometry and Western blotting, we identified three phosphoepitopes of tau directly phosphorylated by mTor. We have developed a variety of stable cell lines with genetic modification of mTor activity using SH-SY5Y neuroblastoma cells as background. In these cellular systems, we not only confirmed the tau phosphorylation sites found in vitro but also found that mTor mediates the synthesis and aggregation of tau, resulting in compromised microtubule stability. Changes of mTor activity cause fluctuation of the level of a battery of tau kinases such as protein kinase A, v-Akt murine thymoma viral oncogene homolog-1, glycogen synthase kinase 3β, cyclin-dependent kinase 5, and tau protein phosphatase 2A. These results implicate mTor in promoting an imbalance of tau homeostasis, a condition required for neurons to maintain physiological function. PMID:23585566

  6. CDK5-mediated tau accumulation triggers methamphetamine-induced neuronal apoptosis via endoplasmic reticulum-associated degradation pathway.

    PubMed

    Xiao, Ning; Zhang, Fu; Zhu, Bofeng; Liu, Chao; Lin, Zhoumeng; Wang, Huijun; Xie, Wei-Bing

    2018-08-01

    Overexposure to methamphetamine (METH) causes apoptosis in a number of cell types, particularly neuronal cells. However, the underlying mechanisms of METH-induced neuronal apoptosis remain to be elucidated. Accumulation of microtubule-associated protein Tau can lead to activation of multiple neurotoxic pathways, which is closely correlated with neuronal apoptosis. The aim of this study was to determine the role of Tau in METH-induced neuronal apoptosis. We determined the expression of two phosphorylated Tau proteins (serine 396 and threonine 231) in the human neuroblastoma SH-SY5Y cells and in the hippocampus of Sprague-Dawley rats treated with vehicle or METH using western blotting, immunohistochemical staining and immunofluorescence staining. We also measured the expression levels of the phosphorylated Tau protein, ubiquitination proteins, the intermediate products of proteasome degradation pathway, CD3-δ (a substrate of proteasome degradation pathway), endoplasmic reticulum stress signal molecule phosphorylated PERK (pPERK), and endoplasmic reticulum stress-specific apoptotic signal molecule caspase-12 in SH-SY5Y cells and in rats after inhibiting the expression of an upstream regulatory factor of phosphorylated Tau protein (CDK5) using siRNA or virus transfection. The results showed that exposure to METH significantly up-regulated the expression of phosphorylated Tau protein in vivo and in vitro and silencing the expression of CDK5 inhibited the up-regulation of phosphorylated Tau induced by METH exposure. METH exposure also significantly increased the expression of ubiquitination protein and CD3-δ and these effects were blocked by CDK5 silencing. In addition, METH exposure significantly elevated the levels of phosphorylated PERK and caspase-12 and these effects were suppressed after CDK5 silencing, which indicates that blockade of CDK5 expression can mitigate METH-induced neuronal apoptosis. These results suggest that METH can impair the endoplasmic

  7. Antisense reduction of tau in adult mice protects against seizures.

    PubMed

    DeVos, Sarah L; Goncharoff, Dustin K; Chen, Guo; Kebodeaux, Carey S; Yamada, Kaoru; Stewart, Floy R; Schuler, Dorothy R; Maloney, Susan E; Wozniak, David F; Rigo, Frank; Bennett, C Frank; Cirrito, John R; Holtzman, David M; Miller, Timothy M

    2013-07-31

    Tau, a microtubule-associated protein, is implicated in the pathogenesis of Alzheimer's Disease (AD) in regard to both neurofibrillary tangle formation and neuronal network hyperexcitability. The genetic ablation of tau substantially reduces hyperexcitability in AD mouse lines, induced seizure models, and genetic in vivo models of epilepsy. These data demonstrate that tau is an important regulator of network excitability. However, developmental compensation in the genetic tau knock-out line may account for the protective effect against seizures. To test the efficacy of a tau reducing therapy for disorders with a detrimental hyperexcitability profile in adult animals, we identified antisense oligonucleotides that selectively decrease endogenous tau expression throughout the entire mouse CNS--brain and spinal cord tissue, interstitial fluid, and CSF--while having no effect on baseline motor or cognitive behavior. In two chemically induced seizure models, mice with reduced tau protein had less severe seizures than control mice. Total tau protein levels and seizure severity were highly correlated, such that those mice with the most severe seizures also had the highest levels of tau. Our results demonstrate that endogenous tau is integral for regulating neuronal hyperexcitability in adult animals and suggest that an antisense oligonucleotide reduction of tau could benefit those with epilepsy and perhaps other disorders associated with tau-mediated neuronal hyperexcitability.

  8. Tau Deficiency Down-Regulated Transcription Factor Orthodenticle Homeobox 2 Expression in the Dopaminergic Neurons in Ventral Tegmental Area and Caused No Obvious Motor Deficits in Mice

    PubMed Central

    Tang, Xiaolu; Jiao, Luyan; Zheng, Meige; Yan, Yan; Nie, Qi; Wu, Ting; Wan, Xiaomei; Zhang, Guofeng; Li, Yonglin; Wu, Song; Jiang, Bin; Cai, Huaibin; Xu, Pingyi; Duan, Jinhai; Lin, Xian

    2018-01-01

    Tau protein participates in microtubule stabilization, axonal transport, and protein trafficking. Loss of normal tau function will exert a negative effect. However, current knowledge on the impact of tau deficiency on the motor behavior and related neurobiological changes is controversial. In this study, we examined motor functions and analyzed several proteins implicated in the maintenance of midbrain dopaminergic (DA) neurons (mDANs) function of adult and aged tau+/+, tau+/−, tau−/− mice. We found tau deficiency could not induce significant motor disorders. However, we discovered lower expression levels of transcription factors Orthodenticle homeobox 2 (OTX2) of mDANs in older aged mice. Compared with age-matched tau+/+ mice, there were 54.1% lower (p = 0.0192) OTX2 protein (OTX2-fluorescence intensity) in VTA DA neurons of tau+/−mice and 43.6% lower (p = 0.0249) OTX2 protein in VTA DA neurons of tau−/−mice at 18 months old. Combined with the relevant reports, our results suggested that tau deficiency alone might not be enough to mimic the pathology of Parkinson’s disease. However, OTX2 down-regulation indicates that mDANs of tau-deficient mice will be more sensitive to toxic damage from MPTP. PMID:29337233

  9. Tau Deletion Prevents Stress-Induced Dendritic Atrophy in Prefrontal Cortex: Role of Synaptic Mitochondria.

    PubMed

    Lopes, Sofia; Teplytska, Larysa; Vaz-Silva, Joao; Dioli, Chrysoula; Trindade, Rita; Morais, Monica; Webhofer, Christian; Maccarrone, Giuseppina; Almeida, Osborne F X; Turck, Christoph W; Sousa, Nuno; Sotiropoulos, Ioannis; Filiou, Michaela D

    2017-04-01

    Tau protein in dendrites and synapses has been recently implicated in synaptic degeneration and neuronal malfunction. Chronic stress, a well-known inducer of neuronal/synaptic atrophy, triggers hyperphosphorylation of Tau protein and cognitive deficits. However, the cause-effect relationship between these events remains to be established. To test the involvement of Tau in stress-induced impairments of cognition, we investigated the impact of stress on cognitive behavior, neuronal structure, and the synaptic proteome in the prefrontal cortex (PFC) of Tau knock-out (Tau-KO) and wild-type (WT) mice. Whereas exposure to chronic stress resulted in atrophy of apical dendrites and spine loss in PFC neurons as well as significant impairments in working memory in WT mice, such changes were absent in Tau-KO animals. Quantitative proteomic analysis of PFC synaptosomal fractions, combined with transmission electron microscopy analysis, suggested a prominent role for mitochondria in the regulation of the effects of stress. Specifically, chronically stressed animals exhibit Tau-dependent alterations in the levels of proteins involved in mitochondrial transport and oxidative phosphorylation as well as in the synaptic localization of mitochondria in PFC. These findings provide evidence for a causal role of Tau in mediating stress-elicited neuronal atrophy and cognitive impairment and indicate that Tau may exert its effects through synaptic mitochondria. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  10. Mild cognitive impairment and asymptomatic Alzheimer disease subjects: equivalent β-amyloid and tau loads with divergent cognitive outcomes.

    PubMed

    Iacono, Diego; Resnick, Susan M; O'Brien, Richard; Zonderman, Alan B; An, Yang; Pletnikova, Olga; Rudow, Gay; Crain, Barbara; Troncoso, Juan C

    2014-04-01

    Older adults with intact cognition before death and substantial Alzheimer disease (AD) lesions at autopsy have been termed "asymptomatic AD subjects" (ASYMAD). We previously reported hypertrophy of neuronal cell bodies, nuclei, and nucleoli in the CA1 of the hippocampus (CA1), anterior cingulate gyrus, posterior cingulate gyrus, and primary visual cortex of ASYMAD versus age-matched Control and mild cognitive impairment (MCI) subjects. However, it was unclear whether the neuronal hypertrophy could be attributed to differences in the severity of AD pathology. Here, we performed quantitative analyses of the severity of β-amyloid (Aβ) and phosphorylated tau (tau) loads in the brains of ASYMAD, Control, MCI, and AD subjects (n = 15 per group) from the Baltimore Longitudinal Study of Aging. Tissue sections from CA1, anterior cingulate gyrus, posterior cingulate gyrus, and primary visual cortex were immunostained for Aβ and tau; the respective loads were assessed using unbiased stereology by measuring the fractional areas of immunoreactivity for each protein in each region. The ASYMAD and MCI groups did not differ in Aβ and tau loads. These data confirm that ASYMAD and MCI subjects have comparable loads of insoluble Aβ and tau in regions vulnerable to AD pathology despite divergent cognitive outcomes. These findings imply that cognitive impairment in AD may be caused or modulated by factors other than insoluble forms of Aβ and tau.

  11. Children with motor impairment related to cerebral palsy: Prevalence, severity and concurrent impairments in China.

    PubMed

    He, Ping; Chen, Gong; Wang, Zhenjie; Guo, Chao; Zheng, Xiaoying

    2017-05-01

    Cerebral palsy (CP) is the most common cause of motor impairment in childhood. This study aimed to examine the prevalence, severity and concurrent impairments of CP-related motor impairment among Chinese children. Children with CP-related motor impairment aged 0-17 years were identified through a national population-based survey based on World Health Organization International Classification of Functioning, Disability and Health. Logistic regression models allowing for weights were used to examine individual and family factors in relation to CP-related motor impairment. The weighted prevalence of CP-related motor impairment was 1.25 per 1000 children (95% confidence interval (CI): 1.16, 1.35) in China. Male children, children in multiples and in families where adults suffered from CP, were more likely to be affected by CP-related motor impairment. For mild, moderate, severe and extremely severe groups of motor impairment, weighted proportions of CP were 14.12% (95%CI: 11.70, 16.95), 20.35% (95%CI: 17.48, 23.56), 27.44% (95%CI: 24.25, 30.87) and 38.09% (95%CI: 34.55, 41.76), respectively; and weighted proportions of concurrent visual, hearing and cognitive impairment were 5.00% (95%CI: 3.59, 6.91), 6.98% (95%CI: 5.34, 9.08) and 71.06% (95%CI: 67.57, 74.31), respectively. Gender, multiple births and family adults with CP were significantly associated with CP-related motor impairment in Chinese children. Proportions of CP and concurrent impairments that increased with severity of motor impairment were observed. © 2017 Paediatrics and Child Health Division (The Royal Australasian College of Physicians).

  12. Tau hyperphosphorylation and P-CREB reduction are involved in acrylamide-induced spatial memory impairment: Suppression by curcumin.

    PubMed

    Yan, Dandan; Yao, Jianling; Liu, Ying; Zhang, Xing; Wang, Yiqi; Chen, Xiaoyi; Liu, Liegang; Shi, Nian; Yan, Hong

    2018-04-26

    Acrylamide (ACR) is an axonal toxicant that produces peripheral neuropathy in laboratory animals and humans. Epidemiological study found that diet ACR exposure was associated with a mild cognitive decline in men. However, limited information is available as regards its potential and underlying mechanism to cause memory alterations. Curcumin is a polyphenol with neuroprotective and cognitive-enhancing properties. In this study, we aimed to investigate the mechanism of ACR-induced spatial memory impairment and the beneficial effect of curcumin. ACR exposure at 10 mg/kg/d for 7 weeks caused slight gait abnormality and spatial memory deficits, which was associated with an activation of glial cells, a reduction of phosphorylated cAMP response elements binding protein (P-CREB) and an aggregation of hyperphosphorylated tau including p-tau (Ser 262 ), AT8 (p-tau Ser 202 /Thr 205 ) and PHF1 (p-tau Ser 396/404 ) in the hippocampus and cortex. ACR markedly regulate the expression of glycogen synthase kinase-3β (GSK-3β) and cyclin-dependent kinase-5 (cdk5) to accelerate tau hyperphosphorylation. ACR inhibited the protein phosphatase 2A (PP2A) and lysosomal protease cathepsin D to decrease the p-tau dephosphorylation and degradation. The P-CREB and brain derived neurotrophic factor (BDNF) were significantly decreased by ACR. The upstream signalings of P-CREB, extracellular signal-related kinase (ERK) and Akt were markedly inhibited. The protein kinase RNA-like endoplasmic reticulum kinase (PERK) -eukaryotic initiation factor-2α (eIF2α) - activating transcription factor 4 (ATF4) signaling which negatively regulate memory processes by suppressing CREB was activated by ACR. Curcumin alleviated ACR-induced spatial memory impairment through reversing tau abnormalities and P-CREB reduction in the hippocampus. These results offered deeper insight into the mechanisms of and presented a potential new treatment for ACR-induced neurotoxicity. Copyright © 2018 Elsevier Inc. All

  13. ApoE4 markedly exacerbates tau-mediated neurodegeneration in a mouse model of tauopathy.

    PubMed

    Shi, Yang; Yamada, Kaoru; Liddelow, Shane Antony; Smith, Scott T; Zhao, Lingzhi; Luo, Wenjie; Tsai, Richard M; Spina, Salvatore; Grinberg, Lea T; Rojas, Julio C; Gallardo, Gilbert; Wang, Kairuo; Roh, Joseph; Robinson, Grace; Finn, Mary Beth; Jiang, Hong; Sullivan, Patrick M; Baufeld, Caroline; Wood, Michael W; Sutphen, Courtney; McCue, Lena; Xiong, Chengjie; Del-Aguila, Jorge L; Morris, John C; Cruchaga, Carlos; Fagan, Anne M; Miller, Bruce L; Boxer, Adam L; Seeley, William W; Butovsky, Oleg; Barres, Ben A; Paul, Steven M; Holtzman, David M

    2017-09-28

    APOE4 is the strongest genetic risk factor for late-onset Alzheimer disease. ApoE4 increases brain amyloid-β pathology relative to other ApoE isoforms. However, whether APOE independently influences tau pathology, the other major proteinopathy of Alzheimer disease and other tauopathies, or tau-mediated neurodegeneration, is not clear. By generating P301S tau transgenic mice on either a human ApoE knock-in (KI) or ApoE knockout (KO) background, here we show that P301S/E4 mice have significantly higher tau levels in the brain and a greater extent of somatodendritic tau redistribution by three months of age compared with P301S/E2, P301S/E3, and P301S/EKO mice. By nine months of age, P301S mice with different ApoE genotypes display distinct phosphorylated tau protein (p-tau) staining patterns. P301S/E4 mice develop markedly more brain atrophy and neuroinflammation than P301S/E2 and P301S/E3 mice, whereas P301S/EKO mice are largely protected from these changes. In vitro, E4-expressing microglia exhibit higher innate immune reactivity after lipopolysaccharide treatment. Co-culturing P301S tau-expressing neurons with E4-expressing mixed glia results in a significantly higher level of tumour-necrosis factor-α (TNF-α) secretion and markedly reduced neuronal viability compared with neuron/E2 and neuron/E3 co-cultures. Neurons co-cultured with EKO glia showed the greatest viability with the lowest level of secreted TNF-α. Treatment of P301S neurons with recombinant ApoE (E2, E3, E4) also leads to some neuronal damage and death compared with the absence of ApoE, with ApoE4 exacerbating the effect. In individuals with a sporadic primary tauopathy, the presence of an ε4 allele is associated with more severe regional neurodegeneration. In individuals who are positive for amyloid-β pathology with symptomatic Alzheimer disease who usually have tau pathology, ε4-carriers demonstrate greater rates of disease progression. Our results demonstrate that ApoE affects tau

  14. Structural equation modeling of motor impairment, gross motor function, and the functional outcome in children with cerebral palsy.

    PubMed

    Park, Eun-Young; Kim, Won-Ho

    2013-05-01

    Physical therapy intervention for children with cerebral palsy (CP) is focused on reducing neurological impairments, improving strength, and preventing the development of secondary impairments in order to improve functional outcomes. However, relationship between motor impairments and functional outcome has not been proved definitely. This study confirmed the construct of motor impairment and performed structural equation modeling (SEM) between motor impairment, gross motor function, and functional outcomes of regarding activities of daily living in children with CP. 98 children (59 boys, 39 girls) with CP participated in this cross-sectional study. Mean age was 11 y 5 mo (SD 1 y 9 mo). The Manual Muscle Test (MMT), the Modified Ashworth Scale (MAS), range of motion (ROM) measurement, and the selective motor control (SMC) scale were used to assess motor impairments. Gross motor function and functional outcomes were measured using the Gross Motor Function Measure (GMFM) and the Functional Skills domain of the Pediatric Evaluation of Disability Inventory (PEDI) respectively. Measurement of motor impairment was consisted of strength, spasticity, ROM, and SMC. The construct of motor impairment was confirmed though an examination of a measurement model. The proposed SEM model showed good fit indices. Motor impairment effected gross motor function (β=-.0869). Gross motor function and motor impairment affected functional outcomes directly (β=0.890) and indirectly (β=-0.773) respectively. We confirmed that the construct of motor impairment consist of strength, spasticity, ROM, and SMC and it was identified through measurement model analysis. Functional outcomes are best predicted by gross motor function and motor impairments have indirect effects on functional outcomes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Increased Tau Phosphorylation and Tau Truncation, and Decreased Synaptophysin Levels in Mutant BRI2/Tau Transgenic Mice

    PubMed Central

    Garringer, Holly J.; Murrell, Jill; Sammeta, Neeraja; Gnezda, Anita; Ghetti, Bernardino; Vidal, Ruben

    2013-01-01

    Familial Danish dementia (FDD) is an autosomal dominant neurodegenerative disease caused by a 10-nucleotide duplication-insertion in the BRI2 gene. FDD is clinically characterized by loss of vision, hearing impairment, cerebellar ataxia and dementia. The main neuropathologic findings in FDD are the deposition of Danish amyloid (ADan) and the presence of neurofibrillary tangles (NFTs). Here we investigated tau accumulation and truncation in double transgenic (Tg-FDD-Tau) mice generated by crossing transgenic mice expressing human Danish mutant BRI2 (Tg-FDD) with mice expressing human 4-repeat mutant Tau-P301S (Tg-Tau). Compared to Tg-Tau mice, we observed a significant enhancement of tau deposition in Tg-FDD-Tau mice. In addition, a significant increase in tau cleaved at aspartic acid (Asp) 421 was observed in Tg-FDD-Tau mice. Tg-FDD-Tau mice also showed a significant decrease in synaptophysin levels, occurring before widespread deposition of fibrillar ADan and tau can be observed. Thus, the presence of soluble ADan/mutant BRI2 can lead to significant changes in tau metabolism and synaptic dysfunction. Our data provide new in vivo insights into the pathogenesis of FDD and the pathogenic pathway(s) by which amyloidogenic peptides, regardless of their primary amino acid sequence, can cause neurodegeneration. PMID:23418567

  16. Increased tau phosphorylation and tau truncation, and decreased synaptophysin levels in mutant BRI2/tau transgenic mice.

    PubMed

    Garringer, Holly J; Murrell, Jill; Sammeta, Neeraja; Gnezda, Anita; Ghetti, Bernardino; Vidal, Ruben

    2013-01-01

    Familial Danish dementia (FDD) is an autosomal dominant neurodegenerative disease caused by a 10-nucleotide duplication-insertion in the BRI(2) gene. FDD is clinically characterized by loss of vision, hearing impairment, cerebellar ataxia and dementia. The main neuropathologic findings in FDD are the deposition of Danish amyloid (ADan) and the presence of neurofibrillary tangles (NFTs). Here we investigated tau accumulation and truncation in double transgenic (Tg-FDD-Tau) mice generated by crossing transgenic mice expressing human Danish mutant BRI(2) (Tg-FDD) with mice expressing human 4-repeat mutant Tau-P301S (Tg-Tau). Compared to Tg-Tau mice, we observed a significant enhancement of tau deposition in Tg-FDD-Tau mice. In addition, a significant increase in tau cleaved at aspartic acid (Asp) 421 was observed in Tg-FDD-Tau mice. Tg-FDD-Tau mice also showed a significant decrease in synaptophysin levels, occurring before widespread deposition of fibrillar ADan and tau can be observed. Thus, the presence of soluble ADan/mutant BRI(2) can lead to significant changes in tau metabolism and synaptic dysfunction. Our data provide new in vivo insights into the pathogenesis of FDD and the pathogenic pathway(s) by which amyloidogenic peptides, regardless of their primary amino acid sequence, can cause neurodegeneration.

  17. Dendritic Degeneration, Neurovascular Defects, and Inflammation Precede Neuronal Loss in a Mouse Model for Tau-Mediated Neurodegeneration

    PubMed Central

    Jaworski, Tomasz; Lechat, Benoit; Demedts, David; Gielis, Lies; Devijver, Herman; Borghgraef, Peter; Duimel, Hans; Verheyen, Fons; Kügler, Sebastian; Van Leuven, Fred

    2011-01-01

    Adeno-associated virus (AAV)–mediated expression of wild-type or mutant P301L protein tau produces massive degeneration of pyramidal neurons without protein tau aggregation. We probed this novel model for genetic and structural factors and early parameters of pyramidal neurodegeneration. In yellow fluorescent protein–expressing transgenic mice, intracerebral injection of AAV-tauP301L revealed early damage to apical dendrites of CA1 pyramidal neurons, whereas their somata remained normal. Ultrastructurally, more and enlarged autophagic vacuoles were contained in degenerating dendrites and manifested as dark, discontinuous, vacuolated processes surrounded by activated astrocytes. Dendritic spines were lost in AAV-tauP301L–injected yellow fluorescent protein–expressing transgenic mice, and ultrastructurally, spines appeared dark and degenerating. In CX3CR1EGFP/EGFP-deficient mice, microglia were recruited early to neurons expressing human tau. The inflammatory response was accompanied by extravasation of plasma immunoglobulins. α2-Macroglobulin, but neither albumin nor transferrin, became lodged in the brain parenchyma. Large proteins, but not Evans blue, entered the brain of mice injected with AAV-tauP301L. Ultrastructurally, brain capillaries were constricted and surrounded by swollen astrocytes with extensions that contacted degenerating dendrites and axons. Together, these data corroborate the hypothesis that neuroinflammation participates essentially in tau-mediated neurodegeneration, and the model recapitulates early dendritic defects reminiscent of “dendritic amputation” in Alzheimer's disease. PMID:21839061

  18. Intrinsic Tau Acetylation Is Coupled to Auto-Proteolytic Tau Fragmentation

    PubMed Central

    Cohen, Todd J.; Constance, Brian H.; Hwang, Andrew W.; James, Michael; Yuan, Chao-Xing

    2016-01-01

    Tau proteins are abnormally aggregated in a range of neurodegenerative tauopathies including Alzheimer’s disease (AD). Recently, tau has emerged as an extensively post-translationally modified protein, among which lysine acetylation is critical for normal tau function and its pathological aggregation. Here, we demonstrate that tau isoforms have different propensities to undergo lysine acetylation, with auto-acetylation occurring more prominently within the lysine-rich microtubule-binding repeats. Unexpectedly, we identified a unique intrinsic property of tau in which auto-acetylation induces proteolytic tau cleavage, thereby generating distinct N- and C-terminal tau fragments. Supporting a catalytic reaction-based mechanism, mapping and mutagenesis studies showed that tau cysteines, which are required for acetyl group transfer, are also essential for auto-proteolytic tau processing. Further mass spectrometry analysis identified the C-terminal 2nd and 4th microtubule binding repeats as potential sites of auto-cleavage. The identification of acetylation-mediated auto-proteolysis provides a new biochemical mechanism for tau self-regulation and warrants further investigation into whether auto-catalytic functions of tau are implicated in AD and other tauopathies. PMID:27383765

  19. Intrinsic Tau Acetylation Is Coupled to Auto-Proteolytic Tau Fragmentation.

    PubMed

    Cohen, Todd J; Constance, Brian H; Hwang, Andrew W; James, Michael; Yuan, Chao-Xing

    2016-01-01

    Tau proteins are abnormally aggregated in a range of neurodegenerative tauopathies including Alzheimer's disease (AD). Recently, tau has emerged as an extensively post-translationally modified protein, among which lysine acetylation is critical for normal tau function and its pathological aggregation. Here, we demonstrate that tau isoforms have different propensities to undergo lysine acetylation, with auto-acetylation occurring more prominently within the lysine-rich microtubule-binding repeats. Unexpectedly, we identified a unique intrinsic property of tau in which auto-acetylation induces proteolytic tau cleavage, thereby generating distinct N- and C-terminal tau fragments. Supporting a catalytic reaction-based mechanism, mapping and mutagenesis studies showed that tau cysteines, which are required for acetyl group transfer, are also essential for auto-proteolytic tau processing. Further mass spectrometry analysis identified the C-terminal 2nd and 4th microtubule binding repeats as potential sites of auto-cleavage. The identification of acetylation-mediated auto-proteolysis provides a new biochemical mechanism for tau self-regulation and warrants further investigation into whether auto-catalytic functions of tau are implicated in AD and other tauopathies.

  20. Dexmedetomidine Increases Tau Phosphorylation Under Normothermic Conditions In Vivo and In Vitro

    PubMed Central

    Whittington, Robert A.; Virág, László; Gratuze, Maud; Petry, Franck R.; Noël, Anastasia; Poitras, Isabelle; Truchetti, Geoffrey; Marcouiller, François; Papon, Marie-Amélie; Khoury, Noura El; Wong, Kevin; Bretteville, Alexis; Morin, Françoise; Planel, Emmanuel

    2015-01-01

    There is developing interest in the potential association between anesthesia and the onset and progression of Alzheimer's disease. Several anesthetics have thus been demonstrated to induce tau hyperphosphorylation, an effect mostly mediated by anesthesia-induced hypothermia. Here, we tested the hypothesis that acute normothermic administration of dexmedetomidine, an intravenous sedative used in intensive care units, would result in tau hyperphosphorylation in vivo and in vitro. When administered to non-transgenic mice, dexmedetomidine induced tau hyperphosphorylation persisting up to 6h in the hippocampus for the AT8 epitope. Pretreatment with atipamezole, a highly specific α2-adrenergic receptor (α2-AR) antagonist, blocked dexmedetomidine-induced tau hyperphosphorylation. Furthermore, dexmedetomidine dose-dependently increased tau phosphorylation at AT8 in SH-SY5Y cells, impaired mice spatial memory in the Barnes maze, and promoted tau hyperphosphorylation and aggregation in transgenic hTau mice. These findings suggest that dexmedetomidine: i) increases tau phosphorylation, in vivo and in vitro, in the absence of anesthetic-induced hypothermia and through α2-AR activation, ii) promotes tau aggregation in a mouse model of tauopathy, and iii) impacts spatial reference memory. PMID:26058840

  1. Tau mediates microtubule bundle architectures mimicking fascicles of microtubules found in the axon initial segment

    DOE PAGES

    Chung, Peter J.; Song, Chaeyeon; Deek, Joanna; ...

    2016-07-25

    Tau, an intrinsically disordered protein confined to neuronal axons, binds to and regulates microtubule dynamics. Although there have been observations of string-like microtubule fascicles in the axon initial segment (AIS) and hexagonal bundles in neurite-like processes in non-neuronal cells overexpressing Tau, cell-free reconstitutions have not replicated either geometry. Here we map out the energy landscape of Tau-mediated, GTP-dependent ‘active’ microtubule bundles at 37°C, as revealed by synchrotron SAXS and TEM. Widely spaced bundles (wall-to-wall distance D w–w≈25–41nm) with hexagonal and string-like symmetry are observed, the latter mimicking bundles found in the AIS. A second energy minimum (D w–w≈16–23nm) is revealedmore » under osmotic pressure. The wide spacing results from a balance between repulsive forces, due to Tau’s projection domain (PD), and a stabilizing sum of transient sub-k BT cationic/anionic charge–charge attractions mediated by weakly penetrating opposing PDs. In the end, we find that this landscape would be significantly affected by charge-altering modifications of Tau associated with neurodegeneration.« less

  2. Focal expression of mutated tau in entorhinal cortex neurons of rats impairs spatial working memory.

    PubMed

    Ramirez, Julio J; Poulton, Winona E; Knelson, Erik; Barton, Cole; King, Michael A; Klein, Ronald L

    2011-01-01

    Entorhinal cortex neuropathology begins very early in Alzheimer's disease (AD), a disorder characterized by severe memory disruption. Indeed, loss of entorhinal volume is predictive of AD and two of the hallmark neuroanatomical markers of AD, amyloid plaques and neurofibrillary tangles (NFTs), are particularly prevalent in the entorhinal area of AD-afflicted brains. Gene transfer techniques were used to create a model neurofibrillary tauopathy by injecting a recombinant adeno-associated viral vector with a mutated human tau gene (P301L) into the entorhinal cortex of adult rats. The objective of the present investigation was to determine whether adult onset, spatially restricted tauopathy could be sufficient to reproduce progressive deficits in mnemonic function. Spatial memory on a Y-maze was tested for approximately 3 months post-surgery. Upon completion of behavioral testing the brains were assessed for expression of human tau and evidence of tauopathy. Rats injected with the tau vector became persistently impaired on the task after about 6 weeks of postoperative testing, whereas the control rats injected with a green fluorescent protein vector performed at criterion levels during that period. Histological analysis confirmed the presence of hyperphosphorylated tau and NFTs in the entorhinal cortex and neighboring retrohippocampal areas as well as limited synaptic degeneration of the perforant path. Thus, highly restricted vector-induced tauopathy in retrohippocampal areas is sufficient for producing progressive impairment in mnemonic ability in rats, successfully mimicking a key aspect of tauopathies such as AD. Copyright © 2010 Elsevier B.V. All rights reserved.

  3. Proportional Recovery From Lower Limb Motor Impairment After Stroke.

    PubMed

    Smith, Marie-Claire; Byblow, Winston D; Barber, P Alan; Stinear, Cathy M

    2017-05-01

    In people with preserved corticospinal tract (CST) function after stroke, upper limb impairment resolves by ≈70% within 3 months. This is known as the proportional recovery rule. Patients without CST function do not fit this rule and have worse upper limb outcomes. This study investigated resolution of motor impairment in the lower limb (LL). Patients with stroke and LL weakness were assessed 3 days and 3 months after stroke with the LL Fugl-Meyer. CST integrity was determined in a subset of patients using transcranial magnetic stimulation to test for LL motor-evoked potentials and magnetic resonance imaging to measure CST lesion load. Linear regression analyses were conducted to predict resolution of motor impairment (ΔFugl-Meyer) including factors initial impairment, motor-evoked potential status, CST lesion load, and LL therapy dose. Thirty-two patients completed 3-month follow-up and recovered 74% (95% confidence interval, 60%-88%) of initial LL motor impairment. Initial impairment was the only significant predictor of resolution of motor impairment. There was no identifiable cluster of patients who did not fit the proportional recovery rule. Measures of CST integrity did not predict proportional LL recovery. LL impairment resolves by ≈70% within 3 months after stroke. The absence of a nonfitter group may be because of differences in the neuroanatomical organization of descending motor tracts to the upper limb and LL. Proportional recovery of the LL is not influenced by therapy dose providing further evidence that it reflects a fundamental biological process. © 2017 American Heart Association, Inc.

  4. Plasma tau in Alzheimer disease.

    PubMed

    Mattsson, Niklas; Zetterberg, Henrik; Janelidze, Shorena; Insel, Philip S; Andreasson, Ulf; Stomrud, Erik; Palmqvist, Sebastian; Baker, David; Tan Hehir, Cristina A; Jeromin, Andreas; Hanlon, David; Song, Linan; Shaw, Leslie M; Trojanowski, John Q; Weiner, Michael W; Hansson, Oskar; Blennow, Kaj

    2016-10-25

    To test whether plasma tau is altered in Alzheimer disease (AD) and whether it is related to changes in cognition, CSF biomarkers of AD pathology (including β-amyloid [Aβ] and tau), brain atrophy, and brain metabolism. This was a study of plasma tau in prospectively followed patients with AD (n = 179), patients with mild cognitive impairment (n = 195), and cognitive healthy controls (n = 189) from the Alzheimer's Disease Neuroimaging Initiative (ADNI) and cross-sectionally studied patients with AD (n = 61), mild cognitive impairment (n = 212), and subjective cognitive decline (n = 174) and controls (n = 274) from the Biomarkers for Identifying Neurodegenerative Disorders Early and Reliably (BioFINDER) study at Lund University, Sweden. A total of 1284 participants were studied. Associations were tested between plasma tau and diagnosis, CSF biomarkers, MRI measures, 18 fluorodeoxyglucose-PET, and cognition. Higher plasma tau was associated with AD dementia, higher CSF tau, and lower CSF Aβ 42 , but the correlations were weak and differed between ADNI and BioFINDER. Longitudinal analysis in ADNI showed significant associations between plasma tau and worse cognition, more atrophy, and more hypometabolism during follow-up. Plasma tau partly reflects AD pathology, but the overlap between normal aging and AD is large, especially in patients without dementia. Despite group-level differences, these results do not support plasma tau as an AD biomarker in individual people. Future studies may test longitudinal plasma tau measurements in AD. © 2016 American Academy of Neurology.

  5. Central Processing Energetic Factors Mediate Impaired Motor Control in ADHD Combined Subtype but Not in ADHD Inattentive Subtype

    ERIC Educational Resources Information Center

    Egeland, Jens; Ueland, Torill; Johansen, Susanne

    2012-01-01

    Participants with attention-deficit/hyperactivity disorder (ADHD) are often impaired in visuomotor tasks. However, little is known about the contribution of modal impairment in motor function relative to central processing deficits or whether different processes underlie the impairment in ADHD combined (ADHD-C) versus ADHD inattentive (ADHD-I)…

  6. Structure of a Protein Phosphatase 2A Holoenzyme: Insights into B55-Mediated Tau Dephosphorylation

    PubMed Central

    Xu, Yanhui; Chen, Yu; Zhang, Ping; Jeffrey, Philip D.; Shi, Yigong

    2009-01-01

    Summary Protein phosphatase 2A (PP2A) regulates many essential aspects of cellular physiology. Members of the regulatory B/B55/PR55 family are thought to play a key role in the dephosphorylation of Tau, whose hyperphosphorylation contributes to Alzheimer's disease. The underlying mechanisms of the PP2A-Tau connection remain largely enigmatic. Here, we report the complete reconstitution of a Tau dephosphorylation assay and the crystal structure of a heterotrimeric PP2A holoenzyme involving the regulatory subunit Bα. We show that Bα specifically and markedly facilitates dephosphorylation of the phosphorylated Tau in our reconstituted assay. The Bα subunit comprises a seven-bladed β propeller, with an acidic, substrate-binding groove located in the center of the propeller. The β propeller latches onto the ridge of the PP2A scaffold subunit with the help of a protruding β hairpin arm. Structure-guided mutagenesis studies revealed the underpinnings of PP2A-mediated dephosphorylation of Tau. PMID:18922469

  7. Wnt5a Evokes Cortical Axon Outgrowth and Repulsive Guidance by Tau Mediated Reorganization of Dynamic Microtubules

    PubMed Central

    Li, Li; Fothergill, Thomas; Hutchins, B Ian; Dent, Erik W; Kali, Katherine

    2014-01-01

    Wnt5a guides cortical axons in vivo by repulsion and in vitro evokes cortical axon outgrowth and repulsion by calcium signaling pathways. Here we examined the role of microtubule (MT) reorganization and dynamics in mediating effects of Wnt5a. Inhibiting MT dynamics with nocodazole and taxol abolished Wnt5a evoked axon outgrowth and repulsion of cultured hamster cortical neurons. EGFP-EB3 labeled dynamic MTs visualized in live cell imaging revealed that growth cone MTs align with the nascent axon. Wnt5a increased axon outgrowth by reorganization of dynamic MTs from a splayed to a bundled array oriented in the direction of axon extension, and Wnt5a gradients induced asymmetric redistribution of dynamic MTs toward the far side of the growth cone. Wnt5a gradients also evoked calcium transients that were highest on the far side of the growth cone. Calcium signaling and the reorganization of dynamic MTs could be linked by tau, a MT associated protein that stabilizes MTs. Tau is phosphorylated at the Ser 262 MT binding site by CaMKII, and is required for Wnt5a induced axon outgrowth and repulsive turning. Phosphorylation of tau at Ser262 is known to detach tau from MTs to increase their dynamics. Using transfection with tau constructs mutated at Ser262, we found that this site is required for the growth and guidance effects of Wnt5a by mediating reorganization of dynamic MTs in cortical growth cones. Moreover, CaMKII inhibition also prevents MT reorganization required for Wnt5a induced axon outgrowth, thus linking Wnt/calcium signaling to tau mediated MT reorganization during growth cone behaviors. © 2013 The Authors. Developmental Neurobiology Published by Wiley Periodicals, Inc.Develop Neurobiol 74: 797–817, 2014 PMID:23818454

  8. Dexmedetomidine increases tau phosphorylation under normothermic conditions in vivo and in vitro.

    PubMed

    Whittington, Robert A; Virág, László; Gratuze, Maud; Petry, Franck R; Noël, Anastasia; Poitras, Isabelle; Truchetti, Geoffrey; Marcouiller, François; Papon, Marie-Amélie; El Khoury, Noura; Wong, Kevin; Bretteville, Alexis; Morin, Françoise; Planel, Emmanuel

    2015-08-01

    There is developing interest in the potential association between anesthesia and the onset and progression of Alzheimer's disease. Several anesthetics have, thus, been demonstrated to induce tau hyperphosphorylation, an effect mostly mediated by anesthesia-induced hypothermia. Here, we tested the hypothesis that acute normothermic administration of dexmedetomidine (Dex), an intravenous sedative used in intensive care units, would result in tau hyperphosphorylation in vivo and in vitro. When administered to nontransgenic mice, Dex-induced tau hyperphosphorylation persisting up to 6 hours in the hippocampus for the AT8 epitope. Pretreatment with atipamezole, a highly specific α2-adrenergic receptor antagonist, blocked Dex-induced tau hyperphosphorylation. Furthermore, Dex dose-dependently increased tau phosphorylation at AT8 in SH-SY5Y cells, impaired mice spatial memory in the Barnes maze and promoted tau hyperphosphorylation and aggregation in transgenic hTau mice. These findings suggest that Dex: (1) increases tau phosphorylation, in vivo and in vitro, in the absence of anesthetic-induced hypothermia and through α2-adrenergic receptor activation, (2) promotes tau aggregation in a mouse model of tauopathy, and (3) impacts spatial reference memory. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. LRRK2 Mediated Changes in TAU Phosphorylation

    DTIC Science & Technology

    2012-10-01

    DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE 01 October 2012 2. REPORT TYPE Final 3. DATES COVERED 4 April 2011 – 3 September...2012 4 . TITLE AND SUBTITLE 5a. CONTRACT NUMBER LRRK2 Mediated Changes in TAU Phosphorylation 5b. GRANT NUMBER W81XWH-11-1-0338 5c. PROGRAM...Page Introduction…………………………………………………………….………..….. 4 Body………………………………………………………………………………….. 4 Key Research

  10. Impairments of Motor Function While Multitasking in HIV.

    PubMed

    Kronemer, Sharif I; Mandel, Jordan A; Sacktor, Ned C; Marvel, Cherie L

    2017-01-01

    Human immunodeficiency virus (HIV) became a treatable illness with the introduction of combination antiretroviral therapy (CART). As a result, patients with regular access to CART are expected to live decades with HIV. Long-term HIV infection presents unique challenges, including neurocognitive impairments defined by three major stages of HIV-associated neurocognitive disorders (HAND). The current investigation aimed to study cognitive and motor impairments in HIV using a novel multitasking paradigm. Unlike current standard measures of cognitive and motor performance in HIV, multitasking increases real-world validity by mimicking the dual motor and cognitive demands that are part of daily professional and personal settings (e.g., driving, typing and writing). Moreover, multitask assessments can unmask compensatory mechanisms, normally used under single task conditions, to maintain performance. This investigation revealed that HIV+ participants were impaired on the motor component of the multitask, while cognitive performance was spared. A patient-specific positive interaction between motor performance and working memory recall was driven by poor HIV+ multitaskers. Surprisingly, HAND stage did not correspond with multitask performance and a variety of commonly used assessments indicated normal motor function among HIV+ participants with poor motor performance during the experimental task. These results support the use of multitasks to reveal otherwise hidden impairment in chronic HIV by expanding the sensitivity of clinical assessments used to determine HAND stage. Future studies should examine the capability of multitasks to predict performance in personal, professional and health-related behaviors and prognosis of patients living with chronic HIV.

  11. 18F-AV-1451 tau PET imaging correlates strongly with tau neuropathology in MAPT mutation carriers

    PubMed Central

    Puschmann, Andreas; Schöll, Michael; Ohlsson, Tomas; van Swieten, John; Honer, Michael; Englund, Elisabet

    2016-01-01

    Abstract Tau positron emission tomography ligands provide the novel possibility to image tau pathology in vivo. However, little is known about how in vivo brain uptake of tau positron emission tomography ligands relates to tau aggregates observed post-mortem. We performed tau positron emission tomography imaging with 18F-AV-1451 in three patients harbouring a p.R406W mutation in the MAPT gene, encoding tau. This mutation results in 3- and 4-repeat tau aggregates similar to those in Alzheimer’s disease, and many of the mutation carriers initially suffer from memory impairment and temporal lobe atrophy. Two patients with short disease duration and isolated memory impairment exhibited 18F-AV-1451 uptake mainly in the hippocampus and adjacent temporal lobe regions, correlating with glucose hypometabolism in corresponding regions. One patient died after 26 years of disease duration with dementia and behavioural deficits. Pre-mortem, there was 18F-AV-1451 uptake in the temporal and frontal lobes, as well as in the basal ganglia, which strongly correlated with the regional extent and amount of tau pathology in post-mortem brain sections. Amyloid-β (18F-flutemetamol) positron emission tomography scans were negative in all cases, as were stainings of brain sections for amyloid. This provides strong evidence that 18F-AV-1451 positron emission tomography can be used to accurately quantify in vivo the regional distribution of hyperphosphorylated tau protein. PMID:27357347

  12. Impairments of Motor Function While Multitasking in HIV

    PubMed Central

    Kronemer, Sharif I.; Mandel, Jordan A.; Sacktor, Ned C.; Marvel, Cherie L.

    2017-01-01

    Human immunodeficiency virus (HIV) became a treatable illness with the introduction of combination antiretroviral therapy (CART). As a result, patients with regular access to CART are expected to live decades with HIV. Long-term HIV infection presents unique challenges, including neurocognitive impairments defined by three major stages of HIV-associated neurocognitive disorders (HAND). The current investigation aimed to study cognitive and motor impairments in HIV using a novel multitasking paradigm. Unlike current standard measures of cognitive and motor performance in HIV, multitasking increases real-world validity by mimicking the dual motor and cognitive demands that are part of daily professional and personal settings (e.g., driving, typing and writing). Moreover, multitask assessments can unmask compensatory mechanisms, normally used under single task conditions, to maintain performance. This investigation revealed that HIV+ participants were impaired on the motor component of the multitask, while cognitive performance was spared. A patient-specific positive interaction between motor performance and working memory recall was driven by poor HIV+ multitaskers. Surprisingly, HAND stage did not correspond with multitask performance and a variety of commonly used assessments indicated normal motor function among HIV+ participants with poor motor performance during the experimental task. These results support the use of multitasks to reveal otherwise hidden impairment in chronic HIV by expanding the sensitivity of clinical assessments used to determine HAND stage. Future studies should examine the capability of multitasks to predict performance in personal, professional and health-related behaviors and prognosis of patients living with chronic HIV. PMID:28503143

  13. [MK-801 or DNQX reduces electroconvulsive shock-induced impairment of learning-memory and hyperphosphorylation of Tau in rats].

    PubMed

    Liu, Chao; Min, Su; Wei, Ke; Liu, Dong; Dong, Jun; Luo, Jie; Liu, Xiao-Bin

    2012-08-25

    This study explored the effect of the excitatory amino acid receptor antagonists on the impairment of learning-memory and the hyperphosphorylation of Tau protein induced by electroconvulsive shock (ECT) in depressed rats, in order to provide experimental evidence for the study on neuropsychological mechanisms improving learning and memory impairment and the clinical intervention treatment. The analysis of variance of factorial design set up two intervention factors which were the electroconvulsive shock (two level: no disposition; a course of ECT) and the excitatory amino acid receptor antagonists (three level: iv saline; iv NMDA receptor antagonist MK-801; iv AMPA receptor antagonist DNQX). Forty-eight adult Wistar-Kyoto (WKY) rats (an animal model for depressive behavior) were randomly divided into six experimental groups (n = 8 in each group): saline (iv 2 mL saline through the tail veins of WKY rats ); MK-801 (iv 2 mL 5 mg/kg MK-801 through the tail veins of WKY rats) ; DNQX (iv 2 mL 5 mg/kg DNQX through the tail veins of WKY rats ); saline + ECT (iv 2 mL saline through the tail veins of WKY rats and giving a course of ECT); MK-801 + ECT (iv 2 mL 5 mg/kg MK-801 through the tail veins of WKY rats and giving a course of ECT); DNQX + ECT (iv 2 mL 5 mg/kg DNQX through the tail veins of WKY rats and giving a course of ECT). The Morris water maze test started within 1 day after the finish of the course of ECT to evaluate learning and memory. The hippocampus was removed from rats within 1 day after the finish of Morris water maze test. The content of glutamate in the hippocampus of rats was detected by high performance liquid chromatography. The contents of Tau protein which included Tau5 (total Tau protein), p-PHF1(Ser396/404), p-AT8(Ser199/202) and p-12E8(Ser262) in the hippocampus of rats were detected by immunohistochemistry staining (SP) and Western blot. The results showed that ECT and the glutamate ionic receptor blockers (NMDA receptor antagonist MK-801 and

  14. Reactive microglia drive tau pathology and contribute to the spreading of pathological tau in the brain

    PubMed Central

    Maphis, Nicole; Xu, Guixiang; Kokiko-Cochran, Olga N.; Jiang, Shanya; Cardona, Astrid; Ransohoff, Richard M.; Lamb, Bruce T.

    2015-01-01

    Pathological aggregation of tau is a hallmark of Alzheimer’s disease and related tauopathies. We have previously shown that the deficiency of the microglial fractalkine receptor (CX3CR1) led to the acceleration of tau pathology and memory impairment in an hTau mouse model of tauopathy. Here, we show that microglia drive tau pathology in a cell-autonomous manner. First, tau hyperphosphorylation and aggregation occur as early as 2 months of age in hTauCx3cr1−/− mice. Second, CD45+ microglial activation correlates with the spatial memory deficit and spread of tau pathology in the anatomically connected regions of the hippocampus. Third, adoptive transfer of purified microglia derived from hTauCx3cr1−/− mice induces tau hyperphosphorylation within the brains of non-transgenic recipient mice. Finally, inclusion of interleukin 1 receptor antagonist (Kineret®) in the adoptive transfer inoculum significantly reduces microglia-induced tau pathology. Together, our results suggest that reactive microglia are sufficient to drive tau pathology and correlate with the spread of pathological tau in the brain. PMID:25833819

  15. Anti-tau oligomers passive vaccination for the treatment of Alzheimer disease.

    PubMed

    Kayed, Rakez

    2010-11-01

    The aggregation and accumulation of the microtubule-associated protein (Tau) is a pathological hallmark of Alzheimer's disease (AD) and many neurodegenerative diseases. Despite the poor correlation between neurofirillary tangles (NFTs) and disease progression, and evidence showing, that neuronal loss in AD actually precedes NFTs formation research until recently focused on them and other large meta-stable inclusions composed of aggregated hyperphosphorylated tau protein. Lately, the significance and toxicity of NFTs has been challenged and new aggregated tau entity has emerged as the true pathogenic species in tauopathies and a possible mediator of Aβ toxicity in AD. Tau intermediate aggregate (tau oligomers; aggregates of an intermediate that is between monomers and NFTs in size) can cause neurodegeneration and memory impairment in the absence of Aβ. This exciting body of evidence includes results from human brain samples, transgenic mouse and cell-based studies. Despite extensive efforts to develop a safe and efficacious vaccine for AD using Aβ peptide as an immunogen in active vaccination approaches or anti Aβ antibodies for passive vaccination, success has been modest. Nonetheless, these studies have produced a wealth of fundamental knowledge that has potential to application to the development of a tau-based immunotherapy. Herein, I discuss the evidence supporting the critical role of tau oligomers in AD, the potential and challenges for targeting them by immunotherapy as a novel approach for AD treatment.

  16. PAK Inactivation Impairs Social Recognition in 3xTg-AD Mice without Increasing Brain Deposition of Tau and Aβ

    PubMed Central

    Arsenault, Dany; Dal-Pan, Alexandre; Tremblay, Cyntia; Bennett, David A.; Guitton, Matthieu J.; De Koninck, Yves; Tonegawa, Susumu

    2013-01-01

    Defects in p21-activated kinase (PAK) are suspected to play a role in cognitive symptoms of Alzheimer's disease (AD). Dysfunction in PAK leads to cofilin activation, drebrin displacement from its actin-binding site, actin depolymerization/severing, and, ultimately, defects in spine dynamics and cognitive impairment in mice. To determine the role of PAK in AD, we first quantified PAK by immunoblotting in homogenates from the parietal neocortex of subjects with a clinical diagnosis of no cognitive impairment (n = 12), mild cognitive impairment (n = 12), or AD (n = 12). A loss of total PAK, detected in the cortex of AD patients (−39% versus controls), was correlated with cognitive impairment (r2 = 0.148, p = 0.027) and deposition of total and phosphorylated tau (r2 = 0.235 and r2 = 0.206, respectively), but not with Aβ42 (r2 = 0.056). Accordingly, we found a decrease of total PAK in the cortex of 12- and 20-month-old 3xTg-AD mice, an animal model of AD-like Aβ and tau neuropathologies. To determine whether PAK dysfunction aggravates AD phenotype, 3xTg-AD mice were crossed with dominant-negative PAK mice. PAK inactivation led to obliteration of social recognition in old 3xTg-AD mice, which was associated with a decrease in cortical drebrin (−25%), but without enhancement of Aβ/tau pathology or any clear electrophysiological signature. Overall, our data suggest that PAK decrease is a consequence of AD neuropathology and that therapeutic activation of PAK may exert symptomatic benefits on high brain function. PMID:23804095

  17. Procedural Motor Learning in Children with Specific Language Impairment

    ERIC Educational Resources Information Center

    Sanjeevan, Teenu; Mainela-Arnold, Elina

    2017-01-01

    Purpose: Specific language impairment (SLI) is a developmental disorder that affects language and motor development in the absence of a clear cause. An explanation for these impairments is offered by the procedural deficit hypothesis (PDH), which argues that motor difficulties in SLI are due to deficits in procedural memory. The aim of this study…

  18. Regulation of brain insulin signaling: A new function for tau

    PubMed Central

    Gratuze, Maud; Planel, Emmanuel

    2017-01-01

    In this issue of JEM, Marciniak et al. (https://doi.org/10.1084/jem.20161731) identify a putative novel function of tau protein as a regulator of insulin signaling in the brain. They find that tau deletion impairs hippocampal response to insulin through IRS-1 and PTEN dysregulation and suggest that, in Alzheimer’s disease, impairment of brain insulin signaling might occur via tau loss of function. PMID:28652305

  19. Regulation of brain insulin signaling: A new function for tau.

    PubMed

    Gratuze, Maud; Planel, Emmanuel

    2017-08-07

    In this issue of JEM, Marciniak et al. (https://doi.org/10.1084/jem.20161731) identify a putative novel function of tau protein as a regulator of insulin signaling in the brain. They find that tau deletion impairs hippocampal response to insulin through IRS-1 and PTEN dysregulation and suggest that, in Alzheimer's disease, impairment of brain insulin signaling might occur via tau loss of function. © 2017 Gratuze and Planel.

  20. Hypoglycemia induces tau hyperphosphorylation.

    PubMed

    Lee, Chu-Wan; Shih, Yao-Hsiang; Wu, Shih-Ying; Yang, Tingting; Lin, Chingju; Kuo, Yu-Min

    2013-03-01

    Cerebral hypoglycemia/hypometabolism is associated with Alzheimer's disease (AD) and is routinely used to assist clinical diagnosis of AD by brain imaging. However, whether cerebral hypoglycemia/hypometabolism contributes to the development of AD or is a response of reduced neuronal activity remains unclear. To investigate the causal relationship, we cultured the differentiated N2a neuroblastoma cells in glucose/pyruvate-deficient media (GDM). Shortly after the N2a cells cultured in the GDM, the mitochondria membrane potential was reduced and the AMP-activated-proteinkinase (AMPK), an energy sensor, was activated. Treatment of GDM not only increased the levels of tau phosphorylation at Ser(262) and Ser(396), but also increased the levels of active forms of GSK3α and GSK3β, two known kinases for tau phosphorylation, of the N2a cells. The levels of activated Akt, a mediator downstream to AMPK and upstream to GSK3α/β, were reduced by the GDM treatment. The effect of hypoglycemia was further examined in vivo by intracerebroventricular (icv) injection of streptozotocin (STZ) to the Wistar rats. STZ selectively injuries glucose transporter type 2-bearing cells which are primarily astrocytes in the rat brain, hence, interrupts glucose transportation from blood vessel to neuron. STZicv injection induced energy crisis in the brain regions surrounding the ventricles, as indicated by higher pAMPK levels in the hippocampus, but not cortex far away from the ventricles. STZ-icv treatment increased the levels of phosphorylated tau and activated GSK3β, but decreased the levels of activated Akt in the hippocampus. The hippocampus-dependent spatial learning and memory was impaired by the STZ-icv treatment. In conclusion, our works suggest that hypoglycemia enhances the AMPK-Akt-GSK3 pathway and leads to tau hyperphosphorylation.

  1. Mild cognitive impairment affects motor control and skill learning.

    PubMed

    Wu, Qiaofeng; Chan, John S Y; Yan, Jin H

    2016-02-01

    Mild cognitive impairment (MCI) is a transitional phase between normal cognitive aging and dementia. As the world population is aging rapidly, more MCI patients will be identified, posing significant problems to society. Normal aging is associated with cognitive and motor decline, and MCI brings additional impairments. Compared to healthy older adults, MCI patients show poorer motor control in a variety of tasks. Efficient motor control and skill learning are essential for occupational and leisure purposes; degradation of motor behaviors in MCI patients often adversely affects their health and quality of life. In this article, we first define MCI and describe its pathology and neural correlates. After this, we review cognitive changes and motor control and skill learning in normal aging. This section is followed by a discussion of MCI-related degradation of motor behaviors. Finally, we propose that multicomponent interventions targeting both cognitive and motor domains can improve MCI patients' motor functions. Future research directions are also raised.

  2. Rescue of impaired late-phase long-term depression in a tau transgenic mouse model.

    PubMed

    Ahmed, Tariq; Blum, David; Burnouf, Sylvie; Demeyer, Dominique; Buée-Scherrer, Valérie; D'Hooge, Rudi; Buée, Luc; Balschun, Detlef

    2015-02-01

    Cognitive decline, the hallmark of Alzheimer's disease, and accompanying neuropsychiatric symptoms share dysfunctions of synaptic processes as a common cellular pathomechanism. Long-term potentiation has proven to be a sensitive tool for the "diagnosis" of such synaptic dysfunctions. Much less, however, is known about how long-term depression (LTD), an alternative mechanism for the storage of memory, is affected by Alzheimer's disease progression. Here, we demonstrate that impaired late LTD (>3 hours) in THY-Tau22 mice can be rescued by either inhibition of glycogen synthase kinase-3 (GSK3β) activity or by application of the protein-phosphatase 2A agonist selenate. In line with these findings, we observed increased phosphorylation of GSK3β at Y216 and reduced total phosphatase activity in biochemical assays of hippocampal tissue of THY-Tau22 mice. Interestingly, LTD induction and pharmacologic inhibition of GSK3β appeared to downregulate GSK3ß activity via a marked upregulation of phosphorylation at the inhibitory Ser9 residue. Our results point to alterations in phosphorylation and/or dephosphorylation homeostasis as key mechanisms underlying the deficits in LTD and hippocampus-dependent learning found in THY-Tau22 mice. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Impairments of Social Motor Coordination in Schizophrenia

    PubMed Central

    Varlet, Manuel; Marin, Ludovic; Raffard, Stéphane; Schmidt, R. C.; Capdevielle, Delphine; Boulenger, Jean-Philippe; Del-Monte, Jonathan; Bardy, Benoît G.

    2012-01-01

    It has been demonstrated that motor coordination of interacting people plays a crucial role in the success of social exchanges. Abnormal movements have been reported during interpersonal interactions of patients suffering from schizophrenia and a motor coordination breakdown could explain this social interaction deficit, which is one of the main and earliest features of the illness. Using the dynamical systems framework, the goal of the current study was (i) to investigate whether social motor coordination is impaired in schizophrenia and (ii) to determine the underlying perceptual or cognitive processes that may be affected. We examined intentional and unintentional social motor coordination in participants oscillating hand-held pendulums from the wrist. The control group consisted of twenty healthy participant pairs while the experimental group consisted of twenty participant pairs that included one participant suffering from schizophrenia. The results showed that unintentional social motor coordination was preserved while intentional social motor coordination was impaired. In intentional coordination, the schizophrenia group displayed coordination patterns that had lower stability and in which the patient never led the coordination. A coupled oscillator model suggests that the schizophrenia group coordination pattern was due to a decrease in the amount of available information together with a delay in information transmission. Our study thus identified relational motor signatures of schizophrenia and opens new perspectives for detecting the illness and improving social interactions of patients. PMID:22272247

  4. Study of molecular mechanisms of learning and memory impairment in neonatal rats post intrauterine distress via the pathway of Tau protein hyperphosphorylation.

    PubMed

    Wang, X-S; Huang, H

    2018-05-01

    To explore the reversion of the excitatory amino acid receptor antagonists against the impairment of learning-memory and the hyperphosphorylation of protein Tau induced by fetal intrauterine distress in neonatal rats. The analysis of variance of factorial design set up two intervention factors, fetal intrauterine distress (two levels: no fetal intrauterine distress and a course of fetal intrauterine distress) and the excitatory amino acid receptor antagonists (three levels: Saline; NMDA receptor antagonist MK-801; astragalosides). Forty-eight pregnant rats were randomly divided into six experimental groups (n=8, in each group). After the end of the fetal intrauterine distress, the pregnant rats continued until the birth of newborn rats. When the neonatal rats grow to 12W, the Morris water maze test started in order to evaluate learning-memory. The hippocampus was removed from newborn rats within 1 day after the Morris water maze test finished. The content of glutamate in the hippocampus of rats was detected by high performance liquid chromatography. Besides, the content of protein Tau including Tau5 (total protein Tau), p-PHF1Ser396/404, p-AT8Ser199/202, p-12E8Ser262 in the hippocampus of rats, was examined with the method of immunohistochemistry (IHC) staining (SP). Fetal intrauterine distress and the glutamate ionic receptor blockers could induce the impairment of learning-memory in neonatal rats, extending the evasive latency time and shorten the space exploration time. Both influences present subtract effect. Fetal intrauterine distress could significantly up-regulate the content of glutamate in the hippocampus of neonatal rats, which was not affected by the glutamate ionic receptor blockers. Fetal intrauterine distress and the glutamate ionic receptor blockers did not affect the total protein Tau in the hippocampus of rats. Moreover, fetal intrauterine distress could increase the hyperphosphorylation of protein Tau in the hippocampus of neonatal rats, which

  5. AMPA receptor-induced local brain-derived neurotrophic factor signaling mediates motor recovery after stroke.

    PubMed

    Clarkson, Andrew N; Overman, Justine J; Zhong, Sheng; Mueller, Rudolf; Lynch, Gary; Carmichael, S Thomas

    2011-03-09

    Stroke is the leading cause of adult disability. Recovery after stroke shares similar molecular and cellular properties with learning and memory. A main component of learning-induced plasticity involves signaling through AMPA receptors (AMPARs). We systematically tested the role of AMPAR function in motor recovery in a mouse model of focal stroke. AMPAR function controls functional recovery beginning 5 d after the stroke. Positive allosteric modulators of AMPARs enhance recovery of limb control when administered after a delay from the stroke. Conversely, AMPAR antagonists impair motor recovery. The contributions of AMPARs to recovery are mediated by release of brain-derived neurotrophic factor (BDNF) in periinfarct cortex, as blocking local BDNF function in periinfarct cortex blocks AMPAR-mediated recovery and prevents the normal pattern of motor recovery. In contrast to a delayed AMPAR role in motor recovery, early administration of AMPAR agonists after stroke increases stroke damage. These findings indicate that the role of glutamate signaling through the AMPAR changes over time in stroke: early potentiation of AMPAR signaling worsens stroke damage, whereas later potentiation of the same signaling system improves functional recovery.

  6. Electroacupunctre improves motor impairment via inhibition of microglia-mediated neuroinflammation in the sensorimotor cortex after ischemic stroke.

    PubMed

    Liu, Weilin; Wang, Xian; Yang, Shanli; Huang, Jia; Xue, Xiehua; Zheng, Yi; Shang, Guanhao; Tao, Jing; Chen, Lidian

    2016-04-15

    Electroacupuncture (EA) is one of the safety and effective therapies for improving neurological and sensorimotor impairment via blockade of inappropriate inflammatory responses. However, the mechanisms of anti-inflammation involved is far from been fully elucidated. Focal cerebral ischemic stroke was administered by the middle cerebral artery occlusion and reperfusion (MCAO/R) surgery. The MCAO/R rats were accepted EA treatment at the LI 11 and ST 36 acupoints for consecutive 3days. The neurological outcome, animal behaviors test and molecular biology assays were used to evaluate the MCAO/R model and therapeutic effect of EA. EA treatment for MCAO rats showed a significant reduction in the infarct volumes accompanied by functional recovery in mNSS outcomes, motor function performances. The possible mechanisms that EA treatment attenuated the over-activation of Iba-1 and ED1 positive microglia in the peri-infract sensorimotor cortex. Simultaneously, both tissue and serum protein levels of the tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6) were decreased by EA treatment in MCAO/R injured rats. The levels of inflammatory cytokine tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6) were decreased in the peri-infract sensorimotor cortex and blood serum of MCAO/R injured rats after EA treatment. Furthermore, we found that EA treatment prevented from the nucleus translocation of NF-κB p65 and suppressed the expression of p38 mitogen-activated protein kinase (p38 MAPK) and myeloid differentiation factor 88 (MyD88) in the peri-infract sensorimotor cortex. The findings from this study indicated that EA improved the motor impairment via inhibition of microglia-mediated neuroinflammation that invoked NF-κB p65, p38 MAPK and MyD88 produced proinflammatory cytokine in the peri-infract sensorimotor cortex of rats following ischemic stroke. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Chronic Repetitive Mild Traumatic Brain Injury Results in Reduced Cerebral Blood Flow, Axonal Injury, Gliosis, and Increased T-Tau and Tau Oligomers

    PubMed Central

    Mouzon, Benoit; Algamal, Moustafa; Leary, Paige; Lynch, Cillian; Abdullah, Laila; Evans, James; Mullan, Michael; Bachmeier, Corbin; Stewart, William; Crawford, Fiona

    2016-01-01

    Exposure to repetitive mild traumatic brain injury (mTBI) is a risk factor for chronic traumatic encephalopathy, which is characterized by patchy deposition of hyperphosphorylated tau aggregates in neurons and astrocytes at the depths of cortical sulci. We developed an mTBI paradigm to explore effects of repetitive concussive-type injury over several months in mice with a human tau genetic background (hTau). Two injuries were induced in the hTau mice weekly over a period of 3 or 4 months and the effects were compared with those in noninjured sham animals. Behavioral and in vivo measures and detailed neuropathological assessments were conducted 6 months after the first injury. Our data confirm impairment in cerebral blood flow and white matter damage. This was accompanied by a 2-fold increase in total tau levels and mild increases in tau oligomers/conformers and pTau (Thr231) species in brain gray matter. There was no evidence of neurofibrillary/astroglial tangles, neuropil threads, or perivascular foci of tau immunoreactivity. There were neurobehavioral deficits (ie, disinhibition and impaired cognitive performance) in the mTBI animals. These data support the relevance of this new mTBI injury model for studying the consequences of chronic repetitive mTBI in humans, and the role of tau in TBI. PMID:27251042

  8. CSF tau and the CSF tau/ABeta ratio for the diagnosis of Alzheimer's disease dementia and other dementias in people with mild cognitive impairment (MCI).

    PubMed

    Ritchie, Craig; Smailagic, Nadja; Noel-Storr, Anna H; Ukoumunne, Obioha; Ladds, Emma C; Martin, Steven

    2017-03-22

    Research suggests that measurable change in cerebrospinal fluid (CSF) biomarkers occurs years in advance of the onset of clinical symptoms (Beckett 2010). In this review, we aimed to assess the ability of CSF tau biomarkers (t-tau and p-tau) and the CSF tau (t-tau or p-tau)/ABeta ratio to enable the detection of Alzheimer's disease pathology in patients with mild cognitive impairment (MCI). These biomarkers have been proposed as important in new criteria for Alzheimer's disease dementia that incorporate biomarker abnormalities. To determine the diagnostic accuracy of 1) CSF t-tau, 2) CSF p-tau, 3) the CSF t-tau/ABeta ratio and 4) the CSF p-tau/ABeta ratio index tests for detecting people with MCI at baseline who would clinically convert to Alzheimer's disease dementia or other forms of dementia at follow-up. The most recent search for this review was performed in January 2013. We searched MEDLINE (OvidSP), Embase (OvidSP), BIOSIS Previews (Thomson Reuters Web of Science), Web of Science Core Collection, including Conference Proceedings Citation Index (Thomson Reuters Web of Science), PsycINFO (OvidSP), and LILACS (BIREME). We searched specialized sources of diagnostic test accuracy studies and reviews. We checked reference lists of relevant studies and reviews for additional studies. We contacted researchers for possible relevant but unpublished data. We did not apply any language or data restriction to the electronic searches. We did not use any methodological filters as a method to restrict the search overall. We selected those studies that had prospectively well-defined cohorts with any accepted definition of MCI and with CSF t-tau or p-tau and CSF tau (t-tau or p-tau)/ABeta ratio values, documented at or around the time the MCI diagnosis was made. We also included studies which looked at data from those cohorts retrospectively, and which contained sufficient data to construct two by two tables expressing those biomarker results by disease status. Moreover

  9. Plasma phospho-tau181 increases with Alzheimer's disease clinical severity and is associated with tau- and amyloid-positron emission tomography.

    PubMed

    Mielke, Michelle M; Hagen, Clinton E; Xu, Jing; Chai, Xiyun; Vemuri, Prashanthi; Lowe, Val J; Airey, David C; Knopman, David S; Roberts, Rosebud O; Machulda, Mary M; Jack, Clifford R; Petersen, Ronald C; Dage, Jeffrey L

    2018-04-04

    We examined and compared plasma phospho-tau181 (pTau181) and total tau: (1) across the Alzheimer's disease (AD) clinical spectrum; (2) in relation to brain amyloid β (Aβ) positron emission tomography (PET), tau PET, and cortical thickness; and (3) as a screening tool for elevated brain Aβ. Participants included 172 cognitively unimpaired, 57 mild cognitively impaired, and 40 AD dementia patients with concurrent Aβ PET (Pittsburgh compound B), tau PET (AV1451), magnetic resonance imaging, plasma total tau, and pTau181. Plasma total tau and pTau181 levels were higher in AD dementia patients than those in cognitively unimpaired. Plasma pTau181 was more strongly associated with both Aβ and tau PET. Plasma pTau181 was a more sensitive and specific predictor of elevated brain Aβ than total tau and was as good as, or better than, the combination of age and apolipoprotein E (APOE). Plasma pTau181 may have utility as a biomarker of AD pathophysiology and as a noninvasive screener for elevated brain Aβ. Copyright © 2018. Published by Elsevier Inc.

  10. Insulin dysfunction and Tau pathology.

    PubMed

    El Khoury, Noura B; Gratuze, Maud; Papon, Marie-Amélie; Bretteville, Alexis; Planel, Emmanuel

    2014-01-01

    The neuropathological hallmarks of Alzheimer's disease (AD) include senile plaques of β-amyloid (Aβ) peptides (a cleavage product of the Amyloid Precursor Protein, or APP) and neurofibrillary tangles (NFT) of hyperphosphorylated Tau protein assembled in paired helical filaments (PHF). NFT pathology is important since it correlates with the degree of cognitive impairment in AD. Only a small proportion of AD is due to genetic variants, whereas the large majority of cases (~99%) is late onset and sporadic in origin. The cause of sporadic AD is likely to be multifactorial, with external factors interacting with biological or genetic susceptibilities to accelerate the manifestation of the disease. Insulin dysfunction, manifested by diabetes mellitus (DM) might be such factor, as there is extensive data from epidemiological studies suggesting that DM is associated with an increased relative risk for AD. Type 1 diabetes (T1DM) and type 2 diabetes (T2DM) are known to affect multiple cognitive functions in patients. In this context, understanding the effects of diabetes on Tau pathogenesis is important since Tau pathology show a strong relationship to dementia in AD, and to memory loss in normal aging and mild cognitive impairment. Here, we reviewed preclinical studies that link insulin dysfunction to Tau protein pathogenesis, one of the major pathological hallmarks of AD. We found more than 30 studies reporting Tau phosphorylation in a mouse or rat model of insulin dysfunction. We also payed attention to potential sources of artifacts, such as hypothermia and anesthesia, that were demonstrated to results in Tau hyperphosphorylation and could major confounding experimental factors. We found that very few studies reported the temperature of the animals, and only a handful did not use anesthesia. Overall, most published studies showed that insulin dysfunction can promote Tau hyperphosphorylation and pathology, both directly and indirectly, through hypothermia.

  11. Insulin dysfunction and Tau pathology

    PubMed Central

    El Khoury, Noura B.; Gratuze, Maud; Papon, Marie-Amélie; Bretteville, Alexis; Planel, Emmanuel

    2013-01-01

    The neuropathological hallmarks of Alzheimer's disease (AD) include senile plaques of β-amyloid (Aβ) peptides (a cleavage product of the Amyloid Precursor Protein, or APP) and neurofibrillary tangles (NFT) of hyperphosphorylated Tau protein assembled in paired helical filaments (PHF). NFT pathology is important since it correlates with the degree of cognitive impairment in AD. Only a small proportion of AD is due to genetic variants, whereas the large majority of cases (~99%) is late onset and sporadic in origin. The cause of sporadic AD is likely to be multifactorial, with external factors interacting with biological or genetic susceptibilities to accelerate the manifestation of the disease. Insulin dysfunction, manifested by diabetes mellitus (DM) might be such factor, as there is extensive data from epidemiological studies suggesting that DM is associated with an increased relative risk for AD. Type 1 diabetes (T1DM) and type 2 diabetes (T2DM) are known to affect multiple cognitive functions in patients. In this context, understanding the effects of diabetes on Tau pathogenesis is important since Tau pathology show a strong relationship to dementia in AD, and to memory loss in normal aging and mild cognitive impairment. Here, we reviewed preclinical studies that link insulin dysfunction to Tau protein pathogenesis, one of the major pathological hallmarks of AD. We found more than 30 studies reporting Tau phosphorylation in a mouse or rat model of insulin dysfunction. We also payed attention to potential sources of artifacts, such as hypothermia and anesthesia, that were demonstrated to results in Tau hyperphosphorylation and could major confounding experimental factors. We found that very few studies reported the temperature of the animals, and only a handful did not use anesthesia. Overall, most published studies showed that insulin dysfunction can promote Tau hyperphosphorylation and pathology, both directly and indirectly, through hypothermia. PMID:24574966

  12. Microglial internalization and degradation of pathological tau is enhanced by an anti-tau monoclonal antibody

    PubMed Central

    Luo, Wenjie; Liu, Wencheng; Hu, Xiaoyan; Hanna, Mary; Caravaca, April; Paul, Steven M.

    2015-01-01

    Microglia have been shown to contribute to the clearance of brain amyloid β peptides (Aβ), the major component of amyloid plaques, in Alzheimer’s disease (AD). However, it is not known whether microglia play a similar role in the clearance of tau, the major component of neurofibrillary tangles (NFTs). We now report that murine microglia rapidly internalize and degrade hyperphosphorylated pathological tau isolated from AD brain tissue in a time-dependent manner in vitro. We further demonstrate that microglia readily degrade human tau species released from AD brain sections and eliminate NFTs from brain sections of P301S tauopathy mice. The anti-tau monoclonal antibody MC1 enhances microglia-mediated tau degradation in an Fc-dependent manner. Our data identify a potential role for microglia in the degradation and clearance of pathological tau species in brain and provide a mechanism explaining the potential therapeutic actions of passively administered anti-tau monoclonal antibodies. PMID:26057852

  13. Chronic Repetitive Mild Traumatic Brain Injury Results in Reduced Cerebral Blood Flow, Axonal Injury, Gliosis, and Increased T-Tau and Tau Oligomers.

    PubMed

    Ojo, Joseph O; Mouzon, Benoit; Algamal, Moustafa; Leary, Paige; Lynch, Cillian; Abdullah, Laila; Evans, James; Mullan, Michael; Bachmeier, Corbin; Stewart, William; Crawford, Fiona

    2016-07-01

    Exposure to repetitive mild traumatic brain injury (mTBI) is a risk factor for chronic traumatic encephalopathy, which is characterized by patchy deposition of hyperphosphorylated tau aggregates in neurons and astrocytes at the depths of cortical sulci. We developed an mTBI paradigm to explore effects of repetitive concussive-type injury over several months in mice with a human tau genetic background (hTau). Two injuries were induced in the hTau mice weekly over a period of 3 or 4 months and the effects were compared with those in noninjured sham animals. Behavioral and in vivo measures and detailed neuropathological assessments were conducted 6 months after the first injury. Our data confirm impairment in cerebral blood flow and white matter damage. This was accompanied by a 2-fold increase in total tau levels and mild increases in tau oligomers/conformers and pTau (Thr231) species in brain gray matter. There was no evidence of neurofibrillary/astroglial tangles, neuropil threads, or perivascular foci of tau immunoreactivity. There were neurobehavioral deficits (ie, disinhibition and impaired cognitive performance) in the mTBI animals. These data support the relevance of this new mTBI injury model for studying the consequences of chronic repetitive mTBI in humans, and the role of tau in TBI. © 2016 American Association of Neuropathologists, Inc. All rights reserved.

  14. Motor Impairment in Sibling Pairs Concordant and Discordant for Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Hilton, Claudia List; Zhang, Yi; Whilte, Megan R.; Klohr, Cheryl L.; Constantino, John

    2012-01-01

    Aim: Although motor impairment is frequently observed in children with autism spectrum disorders (ASD), the manner in which these impairments aggregate in families affected by autism is unknown. We used a standardized measure of motor proficiency to objectively examine quantitative variation in motor proficiency in sibling pairs concordant and…

  15. Specific Calpain Inhibition by Calpastatin Prevents Tauopathy and Neurodegeneration and Restores Normal Lifespan in Tau P301L Mice

    PubMed Central

    McBrayer, Mary Kate; Campbell, Jabbar; Kumar, Asok; Hashim, Audrey; Sershen, Henry; Stavrides, Philip H.; Ohno, Masuo; Hutton, Michael; Nixon, Ralph A.

    2014-01-01

    Tau pathogenicity in Alzheimer's disease and other tauopathies is thought to involve the generation of hyperphosphorylated, truncated, and oligomeric tau species with enhanced neurotoxicity, although the generative mechanisms and the implications for disease therapy are not well understood. Here, we report a striking rescue from mutant tau toxicity in the JNPL3 mouse model of tauopathy. We show that pathological activation of calpains gives rise to a range of potentially toxic forms of tau, directly, and by activating cdk5. Calpain overactivation in brains of these mice is accelerated as a result of the marked depletion of the endogenous calpain inhibitor, calpastatin. When levels of this inhibitor are restored in neurons of JNPL3 mice by overexpressing calpastatin, tauopathy is prevented, including calpain-mediated breakdown of cytoskeletal proteins, cdk5 activation, tau hyperphosphorylation, formation of potentially neurotoxic tau fragments by either calpain or caspase-3, and tau oligomerization. Calpastatin overexpression also prevents loss of motor axons, delays disease onset, and extends survival of JNPL3 mice by 3 months to within the range of normal lifespan. Our findings support the therapeutic promise of highly specific calpain inhibition in the treatment of tauopathies and other neurodegenerative states. PMID:25009256

  16. The mediational effects of FDG hypometabolism on the association between cerebrospinal fluid biomarkers and neurocognitive function.

    PubMed

    Dowling, N Maritza; Johnson, Sterling C; Gleason, Carey E; Jagust, William J

    2015-01-15

    Positive cerebrospinal fluid (CSF) biomarkers of tau and amyloid beta42 suggest possible active underlying Alzheimer's disease (AD) including neurometabolic dysfunction and neurodegeneration leading to eventual cognitive decline. But the temporal relationship between CSF, imaging markers of neural function, and cognition has not been described. Using a statistical mediation model, we examined relationships between cerebrospinal fluid (CSF) analytes (hyperphosphorylated tau (p-Tau(181p)), β-amyloid peptides 1-42 (Aβ(1-42)), total tau (t-Tau), and their ratios); change in cognitive function; and change in [18F]fluorodeoxyglucose (FDG) uptake using positron emission tomography (PET). We hypothesized that a) abnormal CSF protein values at baseline, result in cognitive declines by decreasing neuronal glucose metabolism across time, and b) the role of altered glucose metabolism in the assumed causal chain varies by brain region and the nature of CSF protein alteration. Data from 412 individuals participating in Alzheimer's Disease Neuroimaging (ADNI) cohort studies were included in analyses. At baseline, individuals were cognitively normal (N = 82), or impaired: 241 with mild cognitive impairment, and 89 with Alzheimer's disease. A parallel-process latent growth curve model was used to test mediational effects of changes in regional FDG-PET uptake over time in relation to baseline CSF biomarkers and changes in cognition, measured with the 13-item Alzheimer Disease's Assessment Scale-cognitive subscale (ADAS-Cog). Findings suggested a causal sequence of events; specifically, FDG hypometabolism acted as a mediator between antecedent CSF biomarker alterations and subsequent cognitive impairment. Higher baseline concentrations of t-Tau, and p-Tau(181p) were more predictive of decline in cerebral glucose metabolism than lower baseline concentrations of Aβ(1-42). FDG-PET changes appeared to mediate t-Tau or t-Tau/Aβ(1-42)-associated cognitive change across all brain

  17. Motor Skills in Hearing Impaired Children with or without Cochlear Implant--A Systematic Review.

    PubMed

    Vidranski, Tihomir; Farkaš, Daria

    2015-07-01

    Hearing impairment is a major limitation in communication, and it can obstruct psychological development, development of social skills and motor development. Hearing impairment is the third most common contemporary chronic health condition, and it has become a public health problem. The effectiveness of problem solving in everyday life and in emergency situations depends greatly on the amount and quality of the motor programs. Therefore, it is evident that the normal motor development in persons with hearing impairment is essential for everyday life. The aim of this research is to analyze the available information pertaining to motor skills of hearing impaired children both with and without a cochlear implant (CI) and to analyze possibilities of influencing their motor skills. The relevant studies on motor skills of hearing impaired children both with and without CI were obtained by an extensive computer search of various databases using special keywords and extraction with respect to certain criteria, resulting in 22 studies. The overall results of this systematic review indicate that the children with hearing impairment exhibit suboptimal levels of motor skills especially balance. Very few studies compared children with hearing impairment with CI units and without CI units and the results of those studies are quite contradictory. Numerous studies have confirmed that the regular and appropriate physical exercise can improve motor skills of children with hearing impairment, especially balance. The fact that the development of motor skills is crucial for the child's interaction with the outside world, action, perception and acquisition of academic skills and other skills necessary for life shows the importance of motor skills development for children with hearing impairment.

  18. CSF tau and tau/Aβ42 predict cognitive decline in Parkinson's disease.

    PubMed

    Liu, Changqin; Cholerton, Brenna; Shi, Min; Ginghina, Carmen; Cain, Kevin C; Auinger, Peggy; Zhang, Jing

    2015-03-01

    A substantial proportion of patients with Parkinson's disease (PD) have concomitant cognitive dysfunction. Identification of biomarker profiles that predict which PD patients have a greater likelihood for progression of cognitive symptoms is pressingly needed for future treatment and prevention approaches. Subjects were drawn from the Deprenyl and Tocopherol Antioxidative Therapy of Parkinsonism (DATATOP) study, a large clinical trial that enrolled initially untreated PD patients. For the current study, Phase One encompassed trial baseline until just prior to levodopa administration (n = 403), and Phase Two spanned the initiation of levodopa treatment until the end of cognitive follow-up (n = 305). Correlations and linear mixed models were performed to determine cross-sectional and longitudinal associations between baseline amyloid β1-42 (Aβ42), total tau (t-tau), and phosphorylated tau (p-tau) in cerebrospinal fluid (CSF) and measures of memory and executive function. Analyses also considered APOE genotype and tremor- vs. rigidity-dominant phenotype. No association was found between baseline CSF biomarkers and cognitive test performance during Phase One. However, once levodopa treatment was initiated, higher p-tau and p-tau/Aβ42 predicted subsequent decline on cognitive tasks involving both memory and executive functions. The interactions between biomarkers and cognition decline did not appear to be influenced by levodopa dosage, APOE genotype or motor phenotype. The current study has, for the first time, demonstrated the possible involvement of tau species, whose gene (MAPT) has been consistently linked to the risk of PD by genome-wide association studies, in the progression of cognitive symptoms in PD. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Sources of extracellular tau and its signaling.

    PubMed

    Avila, Jesús; Simón, Diana; Díaz-Hernández, Miguel; Pintor, Jesús; Hernández, Félix

    2014-01-01

    The pathology associated with tau protein, tauopathy, has been recently analyzed in different disorders, leading to the suggestion that intracellular and extracellular tau may itself be the principal agent in the transmission and spreading of tauopathies. Tau pathology is based on an increase in the amount of tau, an increase in phosphorylated tau, and/or an increase in aggregated tau. Indeed, phosphorylated tau protein is the main component of tau aggregates, such as the neurofibrillary tangles present in the brain of Alzheimer's disease patients. It has been suggested that intracellular tau could be toxic to neurons in its phosphorylated and/or aggregated form. However, extracellular tau could also damage neurons and since neuronal death is widespread in Alzheimer's disease, mainly among cholinergic neurons, these cells may represent a possible source of extracellular tau. However, other sources of extracellular tau have been proposed that are independent of cell death. In addition, several ways have been proposed for cells to interact with, transmit, and spread extracellular tau, and to transduce signals mediated by this tau. In this work, we will discuss the role of extracellular tau in the spreading of the tau pathology.

  20. Selective clearance of aberrant tau proteins and rescue of neurotoxicity by transcription factor EB.

    PubMed

    Polito, Vinicia A; Li, Hongmei; Martini-Stoica, Heidi; Wang, Baiping; Yang, Li; Xu, Yin; Swartzlander, Daniel B; Palmieri, Michela; di Ronza, Alberto; Lee, Virginia M-Y; Sardiello, Marco; Ballabio, Andrea; Zheng, Hui

    2014-09-01

    Accumulating evidence implicates impairment of the autophagy-lysosome pathway in Alzheimer's disease (AD). Recently discovered, transcription factor EB (TFEB) is a molecule shown to play central roles in cellular degradative processes. Here we investigate the role of TFEB in AD mouse models. In this study, we demonstrate that TFEB effectively reduces neurofibrillary tangle pathology and rescues behavioral and synaptic deficits and neurodegeneration in the rTg4510 mouse model of tauopathy with no detectable adverse effects when expressed in wild-type mice. TFEB specifically targets hyperphosphorylated and misfolded Tau species present in both soluble and aggregated fractions while leaving normal Tau intact. We provide in vitro evidence that this effect requires lysosomal activity and we identify phosphatase and tensin homolog (PTEN) as a direct target of TFEB that is required for TFEB-dependent aberrant Tau clearance. The specificity and efficacy of TFEB in mediating the clearance of toxic Tau species makes it an attractive therapeutic target for treating diseases of tauopathy including AD. © 2014 The Authors. Published under the terms of the CC BY 4.0 license.

  1. Hippocampal tau pathology is related to neuroanatomical connections: an ageing population-based study.

    PubMed

    Lace, G; Savva, G M; Forster, G; de Silva, R; Brayne, C; Matthews, F E; Barclay, J J; Dakin, L; Ince, P G; Wharton, S B

    2009-05-01

    Deposits of abnormally phosphorylated tau protein are found in numerous neurodegenerative disorders; the 'tauopathies', which include Alzheimer's and Pick's diseases, but tau pathology is also found in the ageing brain. Variation in tau pathology in brain ageing and its relationship to development of tauopathies and cognitive impairment remains unclear. We aimed to determine the extent and pattern of spread of tau pathology in the hippocampus, a susceptible region important in dementia and milder states of memory impairment, using hippocampal samples from the elderly population-based Medical Research Council Cognitive Function and Ageing Study neuropathology cohort. Tau deposition was assessed in hippocampal anatomical sub-regions using the AT8 antibody to phosphorylated tau and isoform-specific antibodies to 3 and 4-repeat tau (RD3 and RD4). Abeta pathology was also assessed. In this population sample, which includes the full ageing spectrum from individuals with no cognitive impairment to those with dementia satisfying clinico-pathology criteria for Alzheimer's disease, we have demonstrated a high prevalence at death of tau pathology. AT8, Abeta, RD3 and RD4 showed similar regional distribution and increased RD3 was noted in late-stage ghost tangles. Abeta was shown to be a poor explanatory variable for tau pathology. Tau deposition progressed in a hierarchical manner. Hippocampal input regions and projection zones (such as lateral entorhinal cortex, CA1/subiculum border and outer molecular layer of dentate) were initially affected, with anterograde progression though the hippocampal circuitry. Six hippocampal tau anatomical stages were defined, each linking projectionally to their adjacent stages, suggesting spread of tau malfunction through neuroanatomical pathways in hippocampal ageing. These stages were significantly associated with dementia, and may provide a clinically useful tool in the clinico-pathological assessment of dementia and mild cognitive

  2. Chronic Nicotine Mitigates Aberrant Inhibitory Motor Learning Induced by Motor Experience under Dopamine Deficiency

    PubMed Central

    Krok, Anne C.; Xu, Jian; Contractor, Anis; McGehee, Daniel S.; Zhuang, Xiaoxi

    2016-01-01

    Although dopamine receptor antagonism has long been associated with impairments in motor performance, more recent studies have shown that dopamine D2 receptor (D2R) antagonism, paired with a motor task, not only impairs motor performance concomitant with the pharmacodynamics of the drug, but also impairs future motor performance once antagonism has been relieved. We have termed this phenomenon “aberrant motor learning” and have suggested that it may contribute to motor symptoms in movement disorders such as Parkinson's disease (PD). Here, we show that chronic nicotine (cNIC), but not acute nicotine, treatment mitigates the acquisition of D2R-antagonist-induced aberrant motor learning in mice. Although cNIC mitigates D2R-mediated aberrant motor learning, cNIC has no effect on D1R-mediated motor learning. β2-containing nicotinic receptors in dopamine neurons likely mediate the protective effect of cNIC against aberrant motor learning, because selective deletion of β2 nicotinic subunits in dopamine neurons reduced D2R-mediated aberrant motor learning. Finally, both cNIC treatment and β2 subunit deletion blunted postsynaptic responses to D2R antagonism. These results suggest that a chronic decrease in function or a downregulation of β2-containing nicotinic receptors protects the striatal network against aberrant plasticity and aberrant motor learning induced by motor experience under dopamine deficiency. SIGNIFICANCE STATEMENT Increasingly, aberrant plasticity and aberrant learning are recognized as contributing to the development and progression of movement disorders. Here, we show that chronic nicotine (cNIC) treatment or specific deletion of β2 nicotinic receptor subunits in dopamine neurons mitigates aberrant motor learning induced by dopamine D2 receptor (D2R) blockade in mice. Moreover, both manipulations also reduced striatal dopamine release and blunt postsynaptic responses to D2R antagonists. These results suggest that chronic downregulation of

  3. Longitudinal tau PET in ageing and Alzheimer’s disease

    PubMed Central

    Jack, Clifford R; Wiste, Heather J; Schwarz, Christopher G; Lowe, Val J; Senjem, Matthew L; Vemuri, Prashanthi; Weigand, Stephen D; Therneau, Terry M; Knopman, Dave S; Gunter, Jeffrey L; Jones, David T; Graff-Radford, Jonathan; Kantarci, Kejal; Roberts, Rosebud O; Mielke, Michelle M; Machulda, Mary M; Petersen, Ronald C

    2018-01-01

    Abstract See Hansson and Mormino (doi:10.1093/brain/awy065) for a scientific commentary on this article. Our objective was to compare different whole-brain and region-specific measurements of within-person change on serial tau PET and evaluate its utility for clinical trials. We studied 126 individuals: 59 cognitively unimpaired with normal amyloid, 37 cognitively unimpaired with abnormal amyloid, and 30 cognitively impaired with an amnestic phenotype and abnormal amyloid. All had baseline amyloid PET and two tau PET, MRI, and clinical assessments. We compared the topography across all cortical regions of interest of tau PET accumulation rates and the rates of four different whole-brain or region-specific meta-regions of interest among the three clinical groups. We computed sample size estimates for change in tau PET, cortical volume, and memory/mental status indices for use as outcome measures in clinical trials. The cognitively unimpaired normal amyloid group had no observable tau accumulation throughout the brain. Tau accumulation rates in cognitively unimpaired abnormal amyloid were low [0.006 standardized uptake value ratio (SUVR), 0.5%, per year] but greater than rates in the cognitively unimpaired normal amyloid group in the basal and mid-temporal, retrosplenial, posterior cingulate, and entorhinal regions of interest. Thus, the earliest elevation in accumulation rates was widespread and not confined to the entorhinal cortex. Tau accumulation rates in the cognitively impaired abnormal amyloid group were 0.053 SUVR (3%) per year and greater than rates in cognitively unimpaired abnormal amyloid in all cortical areas except medial temporal. Rates of accumulation in the four meta-regions of interest differed but only slightly from one another. Among all tau PET meta-regions of interest, sample size estimates were smallest for a temporal lobe composite within cognitively unimpaired abnormal amyloid and for the late Alzheimer’s disease meta-region of interest

  4. Reorganization of motor cortex and impairment of motor performance induced by hindlimb unloading are partially reversed by cortical IGF-1 administration.

    PubMed

    Mysoet, Julien; Canu, Marie-Hélène; Gillet, Christophe; Fourneau, Julie; Garnier, Cyril; Bastide, Bruno; Dupont, Erwan

    2017-01-15

    Immobilization, bed rest, or sedentary lifestyle, are known to induce a profound impairment in sensorimotor performance. These alterations are due to a combination of peripheral and central factors. Previous data conducted on a rat model of disuse (hindlimb unloading, HU) have shown a profound reorganization of motor cortex and an impairment of motor performance. Recently, our interest was turned towards the role of insulin-like growth factor 1 (IGF-1) in cerebral plasticity since this growth factor is considered as the mediator of beneficial effects of exercise on the central nervous system, and its cortical level is decreased after a 14-day period of HU. In the present study, we attempted to determine whether a chronic subdural administration of IGF-1 in HU rats could prevent deleterious effects of HU on the motor cortex and on motor activity. We demonstrated that HU induces a shrinkage of hindlimb cortical representation and an increase in current threshold to elicit a movement. Administration of IGF-1 in HU rats partially reversed these changes. The functional evaluation revealed that IGF-1 prevents the decrease in spontaneous activity found in HU rats and the changes in hip kinematics during overground locomotion, but had no effect of challenged locomotion (ladder rung walking test). Taken together, these data clearly indicate the implication of IGF-1 in cortical plastic mechanisms and in behavioral alteration induced by a decreased in sensorimotor activity. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Association of Cerebrospinal Fluid β-Amyloid 1-42, T-tau, P-tau181, and α-Synuclein Levels With Clinical Features of Drug-Naive Patients With Early Parkinson Disease

    PubMed Central

    Kang, Ju-Hee; Irwin, David J.; Chen-Plotkin, Alice S.; Siderowf, Andrew; Caspell, Chelsea; Coffey, Christopher S.; Waligórska, Teresa; Taylor, Peggy; Pan, Sarah; Frasier, Mark; Marek, Kenneth; Kieburtz, Karl; Jennings, Danna; Simuni, Tanya; Tanner, Caroline M.; Singleton, Andrew; Toga, Arthur W.; Chowdhury, Sohini; Mollenhauer, Brit; Trojanowski, John Q.; Shaw, Leslie M.

    2014-01-01

    Importance We observed a significant correlation between cerebrospinal fluid (CSF) levels of tau proteins and α-synuclein, but not β-amyloid 1–42 (Aβ1–42), and lower concentration of CSF biomarkers, as compared with healthy controls, in a cohort of entirely untreated patients with Parkinson disease (PD) at the earliest stage of the disease studied so far. Objective To evaluate the baseline characteristics and relationship to clinical features of CSF biomarkers (Aβ1–42, total tau [T-tau], tau phosphorylated at threonine 181 [P-tau181], and α-synuclein) in drug-naive patients with early PD and demographically matched healthy controls enrolled in the Parkinson’s Progression Markers Initiative (PPMI) study. Design, Setting, and Participants Cross-sectional study of the initial 102 research volunteers (63 patients with PD and 39 healthy controls) of the PPMI cohort. Main Outcomes and Measures The CSF biomarkers were measured by INNO-BIA AlzBio3 immunoassay (Aβ1–42, T-tau, and P-tau181; Innogenetics Inc) or by enzyme-linked immunosorbent assay (α-synuclein). Clinical features including diagnosis, demographic characteristics, motor, neuropsychiatric, and cognitive assessments, and DaTscan were systematically assessed according to the PPMI study protocol. Results Slightly, but significantly, lower levels of Aβ1–42, T-tau, P-tau181, α-synuclein, and T-tau/Aβ1–42 were seen in subjects with PD compared with healthy controls but with a marked overlap between groups. Using multivariate regression analysis, we found that lower Aβ1–42 and P-tau181 levels were associated with PD diagnosis and that decreased CSF T-tau and α-synuclein were associated with increased motor severity. Notably, when we classified patients with PD by their motor phenotypes, lower CSF Aβ1–42 and P-tau181 concentrations were associated with the postural instability–gait disturbance–dominant phenotype but not with the tremor-dominant or intermediate phenotype. Finally, we

  6. Status and Determinants of Motor Impairment in Preschool Children from Migrant Families in China.

    PubMed

    Jin, Hua; Hua, Jing; Shen, Jianqiang; Feng, Lijuan; Gu, Guixiong

    2016-10-01

    Although poor health conditions and decreased developmental levels have been investigated in migrant children, no study in China has focused on these children's individual motor development. This study aims to explore the prevalence of motor impairment in Chinese migrant children and to determine the contributory factors. In this cross-sectional study, a structured questionnaire was administered to primary caregivers of preschool children aged 3 - 6 (n = 2,976) in ten kindergartens from two districts of Suzhou, China, to assess the children's home socioeconomic status and motor environment, that is, the presence of affordances for motor development. Motor ability was assessed using the Movement Assessment battery for children-second edition (MABC-2). Multiple logistic regression analysis was used to determine the risk factors for motor impairment in migrant children. Migrant children showed correlations with impairment in manual dexterity, aiming and catching, and motor development (odds ratios [ORs] = 1.320, 1.255, 1.260, respectively; P < 0.05). Outdoor movement affordances and toys for fine motor development were significantly associated with motor impairment in migrant children (ORs = 0.834 [movement affordances, 0.843 [toys], P < 0.05). Chinese migrant children are at a high risk of motor impairment, which is associated with a lack of outdoor movement affordances and toys for fine motor development. Future prevention and intervention should focus on the motor environment of the home.

  7. Phenotype of postural instability/gait difficulty in Parkinson disease: relevance to cognitive impairment and mechanism relating pathological proteins and neurotransmitters

    PubMed Central

    Zuo, Li-Jun; Piao, Ying-Shan; Li, Li-Xia; Yu, Shu-Yang; Guo, Peng; Hu, Yang; Lian, Teng-Hong; Wang, Rui-Dan; Yu, Qiu-Jin; Jin, Zhao; Wang, Ya-Jie; Wang, Xiao-Min; Chan, Piu; Chen, Sheng-Di; Wang, Yong-Jun; Zhang, Wei

    2017-01-01

    Parkinson disease (PD) is identified as tremor-dominant (TD) and postural instability and gait difficulty (PIGD) phenotypes. The relationships between motor phenotypes and cognitive impairment and the underlying mechanisms relating pathological proteins and neurotransmitters in cerebrospinal fluid (CSF) are unknown. We evaluated the motor symptoms and cognitive function by scales, and detected the levels of pathological proteins and neurotransmitters in CSF. TD group and PIGD group had significantly higher levels of total tau, tau phosphorylated at the position of threonine 181(P-tau181t), threonine 231, serine 396, serine 199 and lower β amyloid (Aβ)1–42 level in CSF than those in control group; PIGD group had significantly higher P-tau181t level and lower Aβ1–42 level than those in TD group. In PD group, PIGD severity was negatively correlated with MoCA score and Aβ1–42 level in CSF, and positively correlated with Hoehn-Yahr stage and P-tau181t level in CSF. In PIGD group, PIGD severity was negatively correlated with homovanillic acid (HVA) level in CSF, and HVA level was positively correlated with Aβ1–42 level in CSF. PIGD was significantly correlated with cognitive impairment, which underlying mechanism might be involved in Aβ1–42 aggregation in brain and relevant neurochemical disturbance featured by the depletion of HVA in CSF. PMID:28332604

  8. Modulation of Tau Isoforms Imbalance Precludes Tau Pathology and Cognitive Decline in a Mouse Model of Tauopathy.

    PubMed

    Espíndola, Sonia Lorena; Damianich, Ana; Alvarez, Rodrigo Javier; Sartor, Manuela; Belforte, Juan Emilio; Ferrario, Juan Esteban; Gallo, Jean-Marc; Avale, María Elena

    2018-04-17

    The microtubule-associated protein tau regulates myriad neuronal functions, such as microtubule dynamics, axonal transport and neurite outgrowth. Tauopathies are neurodegenerative disorders characterized by the abnormal metabolism of tau, which accumulates as insoluble neuronal deposits. The adult human brain contains equal amounts of tau isoforms with three (3R) or four (4R) repeats of microtubule-binding domains, derived from the alternative splicing of exon 10 (E10) in the tau transcript. Several tauopathies are associated with imbalances of tau isoforms, due to splicing deficits. Here, we used a trans-splicing strategy to shift the inclusion of E10 in a mouse model of tauopathy that produces abnormal excess of 3R tau. Modulating the 3R/4R ratio in the prefrontal cortex led to a significant reduction of pathological tau accumulation concomitant with improvement of neuronal firing and reduction of cognitive impairments. Our results suggest promising potential for the use of RNA reprogramming in human neurodegenerative diseases. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Motor loop dysfunction causes impaired cognitive sequencing in patients suffering from Parkinson's disease.

    PubMed

    Schönberger, Anna R; Hagelweide, Klara; Pelzer, Esther A; Fink, Gereon R; Schubotz, Ricarda I

    2015-10-01

    Cognitive impairment in Parkinson's disease (PD) is often attributed to dopamine deficiency in the prefrontal-basal ganglia-thalamo-cortical loops. Although recent studies point to a close interplay between motor and cognitive abilities in PD, the so-called "motor loop" connecting supplementary motor area (SMA) and putamen has been considered solely with regard to the patients' motor impairment. Our study challenges this view by testing patients with the serial prediction task (SPT), a cognitive task that requires participants to predict stimulus sequences and particularly engages premotor sites of the motor loop. We hypothesised that affection of the motor loop causes impaired SPT performance, especially when the internal sequence representation is challenged by suspension of external stimuli. As shown for motor tasks, we further expected this impairment to be compensated by hyperactivity of the lateral premotor cortex (PM). We tested 16 male PD patients ON and OFF dopaminergic medication and 16 male age-matched healthy controls in an functional Magnetic Resonance Imaging study. All subjects performed two versions of the SPT: one with on-going sequences (SPT0), and one with sequences containing non-informative wildcards (SPT+) increasing the demands on mnemonic sequence representation. Patients ON (compared to controls) revealed an impaired performance coming along with hypoactivity of SMA and putamen. Patients OFF compared to ON medication, while showing poorer performance, exhibited a significantly increased PM activity for SPT+ vs. SPT0. Furthermore, patients' performance positively co-varied with PM activity, corroborating a compensatory account. Our data reveal a contribution of the motor loop to cognitive impairment in PD, and suggest a close interplay of SMA and PM beyond motor control. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Alcohol-impaired motor vehicle crash risk and the location of alcohol purchase.

    PubMed

    Cotti, Chad; Dunn, Richard A; Tefft, Nathan

    2014-05-01

    Motor vehicle crashes involving alcohol impairment are among the leading causes of mortality and morbidity in the U.S. In this study, we examine how the probability of driving after a binge-drinking episode varies with the location of consumption and type of alcohol consumed. We also investigate the relationship between the location of alcohol purchase and the number of alcohol-impaired fatal motor vehicle crashes. Using multiple datasets that are representative of the U.S. between 2003 and 2009, we find that binge-drinkers are significantly more likely to drive after consuming alcohol at establishments that sell alcohol for on-premises consumption, e.g., from bars or restaurants, particularly after drinking beer. Further, per capita sales of alcohol for off-premises consumption are unrelated to the rate of alcohol-impaired fatal motor vehicle crashes. When disaggregating alcohol types, per capita sales of beer for off-premises consumption are negatively associated with the rate of alcohol-impaired fatal motor vehicle crashes. In contrast, total per capita sales of alcohol from all establishments (on- and off-premises) are positively related to the rate of alcohol-impaired fatal motor vehicle crashes and the magnitude of this relationship is strongest for beer sales. Thus, policies that shift consumption away from bars and restaurants could lead to a decline in the number of motor vehicle crashes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. False recognition correlates with amyloid-beta (1-42) but not with total tau in cerebrospinal fluid of patients with dementia and mild cognitive impairment.

    PubMed

    Hildebrandt, Helmut; Haldenwanger, Andreas; Eling, Paul

    2009-01-01

    Severe memory impairment forms the core symptom of Alzheimer's disease (AD), which is present early in the disease course. Recent studies show that AD patients not only suffer from forgetfulness, but also differ in their response bias, when having to decide whether information has been perceived recently, or whether it is only familiar or semantically related to perceived information. Changes in total tau-protein and amyloid-beta (Abeta) (1-42) concentration in cerebrospinal fluid are also features of AD, and they predict conversion from mild cognitive impairment to dementia. In this study we correlated recognition scores with total tau and Abeta (1-42) concentrations in patients with suggested dementia. We studied 40 patients and 21 healthy controls, using an incidental recognition memory task and a neuropsychological test battery. False recognition scores correlated with delayed recall and with Abeta(1-42), and Abeta (1-42) tended to correlate with delayed recall. Total tau, however, did not correlate with memory scores or with neuropsychological performance in general. We suggest that Abeta (1-42) may indicate a reduction in the specificity of the neuronal response in the limbic cortex, due to agglomeration of plaques. This process might be more specific for AD than the increase of tau, and therefore it is stronger correlated with recognition errors.

  12. Status and Determinants of Motor Impairment in Preschool Children from Migrant Families in China

    PubMed Central

    Jin, Hua; Hua, Jing; Shen, Jianqiang; Feng, Lijuan; Gu, Guixiong

    2016-01-01

    Background Although poor health conditions and decreased developmental levels have been investigated in migrant children, no study in China has focused on these children’s individual motor development. Objectives This study aims to explore the prevalence of motor impairment in Chinese migrant children and to determine the contributory factors. Patients and Methods In this cross-sectional study, a structured questionnaire was administered to primary caregivers of preschool children aged 3 - 6 (n = 2,976) in ten kindergartens from two districts of Suzhou, China, to assess the children’s home socioeconomic status and motor environment, that is, the presence of affordances for motor development. Motor ability was assessed using the Movement Assessment battery for children-second edition (MABC-2). Multiple logistic regression analysis was used to determine the risk factors for motor impairment in migrant children. Results Migrant children showed correlations with impairment in manual dexterity, aiming and catching, and motor development (odds ratios [ORs] = 1.320, 1.255, 1.260, respectively; P < 0.05). Outdoor movement affordances and toys for fine motor development were significantly associated with motor impairment in migrant children (ORs = 0.834 [movement affordances, 0.843 [toys], P < 0.05). Conclusions Chinese migrant children are at a high risk of motor impairment, which is associated with a lack of outdoor movement affordances and toys for fine motor development. Future prevention and intervention should focus on the motor environment of the home. PMID:28203332

  13. Cognitive and motor function of neurologically impaired extremely low birth weight children.

    PubMed

    Bernardo, Janine; Friedman, Harriet; Minich, Nori; Taylor, H Gerry; Wilson-Costello, Deanne; Hack, Maureen

    2015-01-01

    Rates of neurological impairment among extremely low birth weight children (ELBW [<1 kg]) have decreased since 2000; however, their functioning is unexamined. To compare motor and cognitive functioning of ELBW children with neurological impairment, including cerebral palsy and severe hypotonia/hypertonia, between two periods: 1990 to 1999 (n=83) and 2000 to 2005 (n=34). Measures of function at 20 months corrected age included the Mental and Psychomotor Developmental Indexes of the Bayley Scales of Infant Development and the Gross Motor Functional Classification System as primary outcomes and individual motor function items as secondary outcomes. Analysis failed to reveal significant differences for the primary outcomes, although during 2000 to 2005, sitting significantly improved in children with neurological impairment (P=0.003). Decreases in rates of neurological impairment among ELBW children have been accompanied by a suggestion of improved motor function, although cognitive function has not changed.

  14. Recovery-related indicators of motor network plasticity according to impairment severity after stroke.

    PubMed

    Lee, J; Park, E; Lee, A; Chang, W H; Kim, D-S; Kim, Y-H

    2017-10-01

    Brain connectivity analysis has been widely used to investigate brain plasticity and recovery-related indicators of patients with stroke. However, results remain controversial because of interindividual variability of initial impairment and subsequent recovery of function. In this study, we aimed to investigate the differences in network plasticity and motor recovery-related indicators according to initial severity. We divided participants (16 males and 14 females, aged 54.2 ± 12.0 years) into groups of different severity by Fugl-Mayer Assessment score, i.e. moderate (50-84), severe (20-49) and extremely severe (<20) impairment groups. Longitudinal resting-state functional magnetic resonance imaging data were acquired at 2 weeks and 3 months after onset. The differences in network plasticity and recovery-related indicators between groups were investigated using network distance and graph measurements. As the level of impairment increased, the network balance was more disrupted. Network balance, interhemispheric connectivity and network efficiency were recovered at 3 months only in the moderate impairment group. However, this was not the case in the extremely severe impairment group. A single connection strength between the ipsilesional primary motor cortex and ventral premotor cortex was implicated in the recovery of motor function for the extremely severe impairment group. The connections of the ipsilesional primary motor cortex-ventral premotor cortex were positively associated with motor recovery as the patients were more severely impaired. Differences in plasticity and recovery-related indicators of motor networks were noted according to impairment severity. Our results may suggest meaningful implications for recovery prediction and treatment strategies in future stroke research. © 2017 EAN.

  15. Deletion of Type-2 Cannabinoid Receptor Induces Alzheimer's Disease-Like Tau Pathology and Memory Impairment Through AMPK/GSK3β Pathway.

    PubMed

    Wang, Lin; Liu, Bing-Jin; Cao, Yun; Xu, Wei-Qi; Sun, Dong-Sheng; Li, Meng-Zhu; Shi, Fang-Xiao; Li, Man; Tian, Qing; Wang, Jian-Zhi; Zhou, Xin-Wen

    2018-06-01

    Although several studies have shown that type-2 cannabinoid receptor (CB2R) is involved in Alzheimer's disease (AD) pathology, the effects of CB2R on AD-like tau abnormal phosphorylation and its underlying mechanism remain unclear. Herein, we employed the CB2R -/- mice as the animal model to explore roles of CB2R in regulating tau phosphorylation and brain function. We found that CB2R -/- mice display AD-like tau hyperphosphorylation, hippocampus-dependent memory impairment, increase of GSK3β activity, decrease of AMPK and Sirt1 activity and mitochondria dysfunction. Interestingly, AICAR or resveratrol (AMPK agonist) could efficiently rescue most alternations caused by solo deletion of CB2R in CB2R -/- mice. Moreover, JWH133, a selective agonist of CB2R, reduces phosphorylation of tau and GSK3β activity in HEK293 tau cells, but the effects of JWH133 on phosphorylation of tau and GSK3β disappeared while blocking AMPK activity with compound C or Prkaa2-RNAi. Taken together, our study indicated that deletion of CB2R induces behavior damage and AD-like pathological alternation via AMPK/GSK3β pathway. These findings proved that CB2R/AMPK/GSK3β pathway can be a promising new drug target for AD.

  16. Color discrimination errors associate with axial motor impairments in Parkinson's disease.

    PubMed

    Bohnen, Nicolaas I; Haugen, Jacob; Ridder, Andrew; Kotagal, Vikas; Albin, Roger L; Frey, Kirk A; Müller, Martijn L T M

    2017-01-01

    Visual function deficits are more common in imbalance-predominant compared to tremor-predominant PD suggesting a pathophysiological role of impaired visual functions in axial motor impairments. To investigate the relationship between changes in color discrimination and motor impairments in PD while accounting for cognitive or other confounder factors. PD subjects (n=49, age 66.7±8.3 years; Hoehn & Yahr stage 2.6±0.6) completed color discrimination assessment using the Farnsworth-Munsell 100 Hue Color Vision Test, neuropsychological, motor assessments and [ 11 C]dihydrotetrabenazine vesicular monoamine transporter type 2 PET imaging. MDS-UPDRS sub-scores for cardinal motor features were computed. Timed up and go mobility and walking tests were assessed in 48 subjects. Bivariate correlation coefficients between color discrimination and motor variables were significant only for the Timed up and go (R S =0.44, P=0.0018) and the MDS-UPDRS axial motor scores (R S =0.38, P=0.0068). Multiple regression confounder analysis using the Timed up and go as outcome parameter showed a significant total model (F (5,43) = 7.3, P<0.0001) with significant regressor effects for color discrimination (standardized β=0.32, t=2.6, P=0.012), global cognitive Z-score (β=-0.33, t=-2.5, P=0.018), duration of disease (β=0.26, t=1.8, P=0.038), but not for age or striatal dopaminergic binding. The color discrimination test was also a significant independent regressor in the MDS-UPDRS axial motor model (standardized β=0.29, t=2.4, P=0.022; total model t (5,43) = 6.4, P=0.0002). Color discrimination errors associate with axial motor features in PD independent of cognitive deficits, nigrostriatal dopaminergic denervation, and other confounder variables. These findings may reflect shared pathophysiology between color discrimination visual impairments and axial motor burden in PD.

  17. DOPA Decarboxylase Modulates Tau Toxicity.

    PubMed

    Kow, Rebecca L; Sikkema, Carl; Wheeler, Jeanna M; Wilkinson, Charles W; Kraemer, Brian C

    2018-03-01

    The microtubule-associated protein tau accumulates into toxic aggregates in multiple neurodegenerative diseases. We found previously that loss of D 2 -family dopamine receptors ameliorated tauopathy in multiple models including a Caenorhabditis elegans model of tauopathy. To better understand how loss of D 2 -family dopamine receptors can ameliorate tau toxicity, we screened a collection of C. elegans mutations in dopamine-related genes (n = 45) for changes in tau transgene-induced behavioral defects. These included many genes responsible for dopamine synthesis, metabolism, and signaling downstream of the D 2 receptors. We identified one dopamine synthesis gene, DOPA decarboxylase (DDC), as a suppressor of tau toxicity in tau transgenic worms. Loss of the C. elegans DDC gene, bas-1, ameliorated the behavioral deficits of tau transgenic worms, reduced phosphorylated and detergent-insoluble tau accumulation, and reduced tau-mediated neuron loss. Loss of function in other genes in the dopamine and serotonin synthesis pathways did not alter tau-induced toxicity; however, their function is required for the suppression of tau toxicity by bas-1. Additional loss of D 2 -family dopamine receptors did not synergize with bas-1 suppression of tauopathy phenotypes. Loss of the DDC bas-1 reduced tau-induced toxicity in a C. elegans model of tauopathy, while loss of no other dopamine or serotonin synthesis genes tested had this effect. Because loss of activity upstream of DDC could reduce suppression of tau by DDC, this suggests the possibility that loss of DDC suppresses tau via the combined accumulation of dopamine precursor levodopa and serotonin precursor 5-hydroxytryptophan. Published by Elsevier Inc.

  18. Tau and β-Amyloid Are Associated with Medial Temporal Lobe Structure, Function, and Memory Encoding in Normal Aging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marks, Shawn M.; Lockhart, Samuel N.; Baker, Suzanne L.

    Normal aging is associated with a decline in episodic memory and also with aggregation of the β-amyloid (Aβ) and tau proteins and atrophy of medial temporal lobe (MTL) structures crucial to memory formation. Although some evidence suggests that Aβ is associated with aberrant neural activity, the relationships among these two aggregated proteins, neural function, and brain structure are poorly understood. Using in vivo human Aβ and tau imaging, we demonstrate that increased Aβ and tau are both associated with aberrant fMRI activity in the MTL during memory encoding in cognitively normal older adults. This pathological neural activity was in turnmore » associated with worse memory performance and atrophy within the MTL. A mediation analysis revealed that the relationship with regional atrophy was explained by MTL tau. These findings broaden the concept of cognitive aging to include evidence of Alzheimer’s disease-related protein aggregation as an underlying mechanism of age-related memory impairment.« less

  19. Two Novel Tau Antibodies Targeting the 396/404 Region Are Primarily Taken Up by Neurons and Reduce Tau Protein Pathology*

    PubMed Central

    Gu, Jiaping; Congdon, Erin E.; Sigurdsson, Einar M.

    2013-01-01

    Aggregated Tau proteins are hallmarks of Alzheimer disease and other tauopathies. Recent studies from our group and others have demonstrated that both active and passive immunizations reduce Tau pathology and prevent cognitive decline in transgenic mice. To determine the efficacy and safety of targeting the prominent 396/404 region, we developed two novel monoclonal antibodies (mAbs) with distinct binding profiles for phospho and non-phospho epitopes. The two mAbs significantly reduced hyperphosphorylated soluble Tau in long term brain slice cultures without apparent toxicity, suggesting the therapeutic importance of targeting the 396/404 region. In mechanistic studies, we found that neurons were the primary cell type that internalized the mAbs, whereas a small amount of mAbs was taken up by microglia cells. Within neurons, the two mAbs were highly colocalized with distinct pathological Tau markers, indicating their affinity toward different stages or forms of pathological Tau. Moreover, the mAbs were largely co-localized with endosomal/lysosomal markers, and partially co-localized with autophagy pathway markers. Additionally, the Fab fragments of the mAbs were able to enter neurons, but unlike the whole antibodies, the fragments were not specifically localized in pathological neurons. In summary, our Tau mAbs were safe and efficient to clear pathological Tau in a brain slice model. Fc-receptor-mediated endocytosis and the endosome/autophagosome/lysosome system are likely to have a critical role in antibody-mediated clearance of Tau pathology. PMID:24089520

  20. Effects of forward and backward transitions in light intensities in tau-illuminance curves of the rat motor activity rhythm under constant dim light.

    PubMed

    Cambras, Trinitat; Díez-Noguera, Antoni

    2012-07-01

    Circadian rhythms are strongly influenced by light intensity, the effects of which may persist beyond the duration of light exposure (aftereffects). Here, the authors constructed period-illuminance curves for the motor activity circadian rhythm of male and female rats by recording the effects of a series of small upward and downward steps in light intensity (illuminance ranging between .01 lux of dim red light and 1 lux of white light) on their activity. In all cases, stepwise changes were made in five logarithmic steps (irradiance: dim red light: .692 µW/cm(2) and white light: .006, .016, .044, .12, and .315 µW/cm(2), corresponding, respectively, to .02, .05, .14, .13, and 1 lux measured at cage level), with changes in intensity every 2 wks. One group of rats (DLD) started in dim red light, moved up to 1 lux white light, and then back down to the original light intensity. Another group (LDL) started at 1 lux, moved down to .01 lux, and then back up to the original intensity. Motor activity data were recorded throughout the experiment and tau values, the percentage of variance explained by the rhythm, and the mean motor activity for each stage and group were calculated. The results show differences in the dynamics of tau values between the DLD and LDL groups and between males and females. In the LDL group, the tau values of both males and females were dependent on light intensity, and were similar for the forward and backward transitions. In other words, no aftereffects were found, and no differences were detected between males and females. In the DLD group, however, differences were found between males and females. Males had a tau value of 24 h 20 min under dim red light, 25 h 40 min under 1 lux, and 24 h 50 min on return to dim red light. It is noticeable that the tau values of the backward branch of the illuminance curve contradicted classical predictions, since at .38 and .14 lux the tau values were shorter than those found under the same intensities after

  1. [Disabled workers with motor impairments: data from an occupational health service].

    PubMed

    Schnitzler, A; D'Apolito, A C; Roche, N; Genêt, F; Ameille, J; Azouvi, P

    2006-04-01

    Mediclen is an occupational health service in charge of following-up 36,736 workers (divided among 1770 companies) in 3 cities of an area near Paris. The employment rate of disabled people among the French population is not well known (rough estimate 4.4%), and few studies have reported on the situation of workers with a motor impairment. The recent computerization of medical records allowed us to identify 195 workers considered disabled by the French administration (i.e. 0.55% of the 36,736 workers followed up in 2002). Among these, 26 had a motor impairment. Twenty-one neurological disabilities were central and 5 were peripheral or neuromuscular. The workers were 44-years-old. Only two workers had a severe handicap. Companies had to adapt workstations for half of the workers, with the advice of neurologists (7 of 10 advice given) and once a physical medicine doctor. The integration of people with motor impairments into the world of work is rare and difficult. This practical experience showed the difficulties people with motor impairment face. Close collaboration of physical medicine services with occupational health services is necessary to improve the integration of this population into the world of work.

  2. Improvement of Fine Motor Skills in Children with Visual Impairment: An Explorative Study

    ERIC Educational Resources Information Center

    Reimer, A. M.; Cox, R. F. A.; Nijhuis-Van der Sanden, M. W. G.; Boonstra, F. N.

    2011-01-01

    In this study we analysed the potential spin-off of magnifier training on the fine-motor skills of visually impaired children. The fine-motor skills of 4- and 5-year-old visually impaired children were assessed using the manual skills test for children (6-12 years) with a visual impairment (ManuVis) and movement assessment for children (Movement…

  3. Lack of tau proteins rescues neuronal cell death and decreases amyloidogenic processing of APP in APP/PS1 mice.

    PubMed

    Leroy, Karelle; Ando, Kunie; Laporte, Vincent; Dedecker, Robert; Suain, Valérie; Authelet, Michèle; Héraud, Céline; Pierrot, Nathalie; Yilmaz, Zehra; Octave, Jean-Noël; Brion, Jean-Pierre

    2012-12-01

    Lack of tau expression has been reported to protect against excitotoxicity and to prevent memory deficits in mice expressing mutant amyloid precursor protein (APP) identified in familial Alzheimer disease. In APP mice, mutant presenilin 1 (PS1) enhances generation of Aβ42 and inhibits cell survival pathways. It is unknown whether the deficient phenotype induced by concomitant expression of mutant PS1 is rescued by absence of tau. In this study, we have analyzed the effect of tau deletion in mice expressing mutant APP and PS1. Although APP/PS1/tau(+/+) mice had a reduced survival, developed spatial memory deficits at 6 months and motor impairments at 12 months, these deficits were rescued in APP/PS1/tau(-/-) mice. Neuronal loss and synaptic loss in APP/PS1/tau(+/+) mice were rescued in the APP/PS1/tau(-/-) mice. The amyloid plaque burden was decreased by roughly 50% in the cortex and the spinal cord of the APP/PS1/tau(-/-) mice. The levels of soluble and insoluble Aβ40 and Aβ42, and the Aβ42/Aβ40 ratio were reduced in APP/PS1/tau(-/-) mice. Levels of phosphorylated APP, of β-C-terminal fragments (CTFs), and of β-secretase 1 (BACE1) were also reduced, suggesting that β-secretase cleavage of APP was reduced in APP/PS1/tau(-/-) mice. Our results indicate that tau deletion had a protective effect against amyloid induced toxicity even in the presence of mutant PS1 and reduced the production of Aβ. Copyright © 2012 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  4. HIV, prospective memory, and cerebrospinal fluid concentrations of quinolinic acid and phosphorylated Tau.

    PubMed

    Anderson, Albert M; Croteau, David; Ellis, Ronald J; Rosario, Debra; Potter, Michael; Guillemin, Gilles J; Brew, Bruce J; Woods, Steven Paul; Letendre, Scott L

    2018-06-15

    There is mounting evidence that prospective memory (PM) is impaired during HIV infection despite treatment. In this prospective study, 66 adults (43 HIV+ and 23 HIV negative) underwent PM assessment and cerebrospinal fluid (CSF) examination. HIV+ participants had significantly lower PM but significantly higher CSF concentrations of CXCL10 and quinolinic acid (QUIN). Higher CSF phosphorylated Tau (pTau) was associated with worse PM. In a secondary analysis excluding outliers, higher QUIN correlated with higher pTau. CSF QUIN is thus elevated during HIV infection despite antiretroviral therapy and could indirectly contribute to impaired PM by influencing the formation of pTau. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Curcumin Suppresses Soluble Tau Dimers and Corrects Molecular Chaperone, Synaptic, and Behavioral Deficits in Aged Human Tau Transgenic Mice*

    PubMed Central

    Ma, Qiu-Lan; Zuo, Xiaohong; Yang, Fusheng; Ubeda, Oliver J.; Gant, Dana J.; Alaverdyan, Mher; Teng, Edmond; Hu, Shuxin; Chen, Ping-Ping; Maiti, Panchanan; Teter, Bruce; Cole, Greg M.; Frautschy, Sally A.

    2013-01-01

    The mechanisms underlying Tau-related synaptic and cognitive deficits and the interrelationships between Tau species, their clearance pathways, and synaptic impairments remain poorly understood. To gain insight into these mechanisms, we examined these interrelationships in aged non-mutant genomic human Tau mice, with established Tau pathology and neuron loss. We also examined how these interrelationships changed with an intervention by feeding mice either a control diet or one containing the brain permeable beta-amyloid and Tau aggregate binding molecule curcumin. Transgene-dependent elevations in soluble and insoluble phospho-Tau monomer and soluble Tau dimers accompanied deficits in behavior, hippocampal excitatory synaptic markers, and molecular chaperones (heat shock proteins (HSPs)) involved in Tau degradation and microtubule stability. In human Tau mice but not control mice, HSP70, HSP70/HSP72, and HSP90 were reduced in membrane-enriched fractions but not in cytosolic fractions. The synaptic proteins PSD95 and NR2B were reduced in dendritic fields and redistributed into perikarya, corresponding to changes observed by immunoblot. Curcumin selectively suppressed levels of soluble Tau dimers, but not of insoluble and monomeric phospho-Tau, while correcting behavioral, synaptic, and HSP deficits. Treatment increased PSD95 co-immunoprecipitating with NR2B and, independent of transgene, increased HSPs implicated in Tau clearance. It elevated HSP90 and HSC70 without increasing HSP mRNAs; that is, without induction of the heat shock response. Instead curcumin differentially impacted HSP90 client kinases, reducing Fyn without reducing Akt. In summary, curcumin reduced soluble Tau and elevated HSPs involved in Tau clearance, showing that even after tangles have formed, Tau-dependent behavioral and synaptic deficits can be corrected. PMID:23264626

  6. Motor impairment in children with Neurofibromatosis type 1: Effect of the comorbidity with language disorders.

    PubMed

    Iannuzzi, Stéphanie; Albaret, Jean-Michel; Chignac, Céline; Faure-Marie, Nathalie; Barry, Isabelle; Karsenty, Caroline; Chaix, Yves

    2016-02-01

    There is a body of evidence demonstrating comorbidity of motor and cognitive deficit in «idiopathic» developmental disorders. These associations are also found in developmental disorders secondary to monogenic disorders as in Neurofibromatosis type 1 for which the principal complication during childhood is learning disabilities. The comparison of motor impairment between developmental disorders either idiopathic or secondary as in NF1 could help us to better understand the cause of the combined language/motor deficit in these populations. The aim of this current study was to investigate motor impairment in children with NF1 for which oral language had been specified and then to compare the motors skills of the NF1 group to motor performance of children with Specific Language Disorder (SLD). Two groups of 49 children between 5 and 12years old were included and compared, the NF1 group and the SLD (Specific Language Disorder) group. Each child completed evaluation involving cognitive, language and motor assessment. In NF1 group, motor impairment was more frequent and more severe and concerned specifically balance rather than manual dexterity or ball skills, compared to a group of children with SLD. This motor impairment was independent of language status in the NF1 group. These results as well as other studies on the same topic could suggest that in NF1 children, fine motor skills impairment would be dependent on the existence of comorbidity with language disorders. Also, that gross motor skills impairment, and more precisely the balance deficit would be characteristic of NF1. This issue encourages studies of procedural learning that can involve the fronto-striatal or the fronto-cerebellar loops according to the type of motor tasks and the stage of learning. Copyright © 2015 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  7. Apolipoprotein E4 causes age- and Tau-dependent impairment of GABAergic interneurons, leading to learning and memory deficits in mice.

    PubMed

    Andrews-Zwilling, Yaisa; Bien-Ly, Nga; Xu, Qin; Li, Gang; Bernardo, Aubrey; Yoon, Seo Yeon; Zwilling, Daniel; Yan, Tonya Xue; Chen, Ligong; Huang, Yadong

    2010-10-13

    Apolipoprotein E4 (apoE4) is the major genetic risk factor for Alzheimer's disease. However, the underlying mechanisms are unclear. We found that female apoE4 knock-in (KI) mice had an age-dependent decrease in hilar GABAergic interneurons that correlated with the extent of learning and memory deficits, as determined in the Morris water maze, in aged mice. Treating apoE4-KI mice with daily peritoneal injections of the GABA(A) receptor potentiator pentobarbital at 20 mg/kg for 4 weeks rescued the learning and memory deficits. In neurotoxic apoE4 fragment transgenic mice, hilar GABAergic interneuron loss was even more pronounced and also correlated with the extent of learning and memory deficits. Neurodegeneration and tauopathy occurred earliest in hilar interneurons in apoE4 fragment transgenic mice; eliminating endogenous Tau prevented hilar GABAergic interneuron loss and the learning and memory deficits. The GABA(A) receptor antagonist picrotoxin abolished this rescue, while pentobarbital rescued learning deficits in the presence of endogenous Tau. Thus, apoE4 causes age- and Tau-dependent impairment of hilar GABAergic interneurons, leading to learning and memory deficits in mice. Consequently, reducing Tau and enhancing GABA signaling are potential strategies to treat or prevent apoE4-related Alzheimer's disease.

  8. Tetrahydrobiopterin in antenatal brain hypoxia-ischemia-induced motor impairments and cerebral palsy.

    PubMed

    Vasquez-Vivar, Jeannette; Shi, Zhongjie; Luo, Kehuan; Thirugnanam, Karthikeyan; Tan, Sidhartha

    2017-10-01

    Antenatal brain hypoxia-ischemia, which occurs in cerebral palsy, is considered a significant cause of motor impairments in children. The mechanisms by which antenatal hypoxia-ischemia causes brain injury and motor deficits still need to be elucidated. Tetrahydrobiopterin is an important enzyme cofactor that is necessary to produce neurotransmitters and to maintain the redox status of the brain. A genetic deficiency of this cofactor from mutations of biosynthetic or recycling enzymes is a well-recognized factor in the development of childhood neurological disorders characterized by motor impairments, developmental delay, and encephalopathy. Experimental hypoxia-ischemia causes a decline in the availability of tetrahydrobiopterin in the immature brain. This decline coincides with the loss of brain function, suggesting this occurrence contributes to neuronal dysfunction and motor impairments. One possible mechanism linking tetrahydrobiopterin deficiency, hypoxia-ischemia, and neuronal injury is oxidative injury. Evidence of the central role of the developmental biology of tetrahydrobiopterin in response to hypoxic ischemic brain injury, especially the development of motor deficits, is discussed. Copyright © 2017. Published by Elsevier B.V.

  9. Toll-Like Receptor 4 Deficiency Impairs Motor Coordination

    PubMed Central

    Zhu, Jian-Wei; Li, Yi-Fei; Wang, Zhao-Tao; Jia, Wei-Qiang; Xu, Ru-Xiang

    2016-01-01

    The cerebellum plays an essential role in balance and motor coordination. Purkinje cells (PCs) are the sole output neurons of the cerebellar cortex and are critical for the execution of its functions, including motor coordination. Toll-like receptor (TLR) 4 is involved in the innate immune response and is abundantly expressed in the central nervous system; however, little is known about its role in cerebellum-related motor functions. To address this question, we evaluated motor behavior in TLR4 deficient mice. We found that TLR4−∕− mice showed impaired motor coordination. Morphological analyses revealed that TLR4 deficiency was associated with a reduction in the thickness of the molecular layer of the cerebellum. TLR4 was highly expressed in PCs but not in Bergmann glia or cerebellar granule cells; however, loss of TLR4 decreased the number of PCs. These findings suggest a novel role for TLR4 in cerebellum-related motor coordination through maintenance of the PC population. PMID:26909014

  10. Affinity of Tau antibodies for solubilized pathological Tau species but not their immunogen or insoluble Tau aggregates predicts in vivo and ex vivo efficacy.

    PubMed

    Congdon, Erin E; Lin, Yan; Rajamohamedsait, Hameetha B; Shamir, Dov B; Krishnaswamy, Senthilkumar; Rajamohamedsait, Wajitha J; Rasool, Suhail; Gonzalez, Veronica; Levenga, Josien; Gu, Jiaping; Hoeffer, Charles; Sigurdsson, Einar M

    2016-08-30

    A few tau immunotherapies are now in clinical trials with several more likely to be initiated in the near future. A priori, it can be anticipated that an antibody which broadly recognizes various pathological tau aggregates with high affinity would have the ideal therapeutic properties. Tau antibodies 4E6 and 6B2, raised against the same epitope region but of varying specificity and affinity, were tested for acutely improving cognition and reducing tau pathology in transgenic tauopathy mice and neuronal cultures. Surprisingly, we here show that one antibody, 4E6, which has low affinity for most forms of tau acutely improved cognition and reduced soluble phospho-tau, whereas another antibody, 6B2, which has high affinity for various tau species was ineffective. Concurrently, we confirmed and clarified these efficacy differences in an ex vivo model of tauopathy. Alzheimer's paired helical filaments (PHF) were toxic to the neurons and increased tau levels in remaining neurons. Both toxicity and tau seeding were prevented by 4E6 but not by 6B2. Furthermore, 4E6 reduced PHF spreading between neurons. Interestingly, 4E6's efficacy relates to its high affinity binding to solubilized PHF, whereas the ineffective 6B2 binds mainly to aggregated PHF. Blocking 4E6's uptake into neurons prevented its protective effects if the antibody was administered after PHF had been internalized. When 4E6 and PHF were administered at the same time, the antibody was protective extracellularly. Overall, these findings indicate that high antibody affinity for solubilized PHF predicts efficacy, and that acute antibody-mediated improvement in cognition relates to clearance of soluble phospho-tau. Importantly, both intra- and extracellular clearance pathways are in play. Together, these results have major implications for understanding the pathogenesis of tauopathies and for development of immunotherapies.

  11. Structural Equation Modeling of Motor Impairment, Gross Motor Function, and the Functional Outcome in Children with Cerebral Palsy

    ERIC Educational Resources Information Center

    Park, Eun-Young; Kim, Won-Ho

    2013-01-01

    Physical therapy intervention for children with cerebral palsy (CP) is focused on reducing neurological impairments, improving strength, and preventing the development of secondary impairments in order to improve functional outcomes. However, relationship between motor impairments and functional outcome has not been proved definitely. This study…

  12. Tau excess impairs mitosis and kinesin-5 function, leading to aneuploidy and cell death.

    PubMed

    Bougé, Anne-Laure; Parmentier, Marie-Laure

    2016-03-01

    In neurodegenerative diseases such as Alzheimer's disease (AD), cell cycle defects and associated aneuploidy have been described. However, the importance of these defects in the physiopathology of AD and the underlying mechanistic processes are largely unknown, in particular with respect to the microtubule (MT)-binding protein Tau, which is found in excess in the brain and cerebrospinal fluid of affected individuals. Although it has long been known that Tau is phosphorylated during mitosis to generate a lower affinity for MTs, there is, to our knowledge, no indication that an excess of this protein could affect mitosis. Here, we studied the effect of an excess of human Tau (hTau) protein on cell mitosis in vivo. Using the Drosophila developing wing disc epithelium as a model, we show that an excess of hTau induces a mitotic arrest, with the presence of monopolar spindles. This mitotic defect leads to aneuploidy and apoptotic cell death. We studied the mechanism of action of hTau and found that the MT-binding domain of hTau is responsible for these defects. We also demonstrate that the effects of hTau occur via the inhibition of the function of the kinesin Klp61F, the Drosophila homologue of kinesin-5 (also called Eg5 or KIF11). We finally show that this deleterious effect of hTau is also found in other Drosophila cell types (neuroblasts) and tissues (the developing eye disc), as well as in human HeLa cells. By demonstrating that MT-bound Tau inhibits the Eg5 kinesin and cell mitosis, our work provides a new framework to consider the role of Tau in neurodegenerative diseases. © 2016. Published by The Company of Biologists Ltd.

  13. Proteolytic cleavage of polymeric tau protein by caspase-3: implications for Alzheimer disease.

    PubMed

    Jarero-Basulto, Jose J; Luna-Muñoz, Jose; Mena, Raul; Kristofikova, Zdena; Ripova, Daniela; Perry, George; Binder, Lester I; Garcia-Sierra, Francisco

    2013-12-01

    Truncated tau protein at Asp(421) is associated with neurofibrillary pathology in Alzheimer disease (AD); however, little is known about its presence in the form of nonfibrillary aggregates. Here, we report immunohistochemical staining of the Tau-C3 antibody, which recognizes Asp(421)-truncated tau, in a group of AD cases with different extents of cognitive impairment. In the hippocampus, we found distinct nonfibrillary aggregates of Asp(421)-truncated tau. Unlike Asp(421)-composed neurofibrillary tangles, however, these nonfibrillary pathologies did not increase significantly with respect to the Braak staging and, therefore, make no significant contribution to cognitive impairment. On the other hand, despite in vitro evidence that caspase-3 cleaves monomeric tau at Asp(421), to date, this truncation has not been demonstrated to be executed by this protease in polymeric tau entities. We determined that Asp(421) truncation can be produced by caspase-3 in oligomeric and multimeric complexes of recombinant full-length tau in isolated native tau filaments in vitro and in situ in neurofibrillary tangles analyzed in fresh brain slices from AD cases. Our data suggest that generation of this pathologic Asp(421) truncation of tau in long-lasting fibrillary structures may produce further permanent toxicity for neurons in the brains of patients with AD.

  14. Thinking About Better Speech: Mental Practice for Stroke-Induced Motor Speech Impairments

    PubMed Central

    Page, Stephen J.; Harnish, Stacy

    2012-01-01

    Background Mental practice (MP) is a mind-body technique in which physical movements are cognitively rehearsed. It has shown efficacy in reducing the severity of a number of neurological impairments. Aims In the present review, we highlight recent developments in MP research, and the basis for MP use after stroke-induced motor speech disorders. Main Contribution In this review, we: (a) propose a novel conceptual model regarding the development of learned nonuse in people with motor speech impairments; (b) review the rationale and efficacy of MP for reducing the severity of stroke-induced impairments; (c) review evidence demonstrating muscular and neural activations during and following MP use; (d) review evidence showing that MP increases skill acquisition, use, and function in stroke; (e) review literature regarding neuroplasticity after stroke, including MP-induced neuroplasticity and the neural substrates underlying motor and language reacquisition; and (f) based on the above, review the rationale and clinical application of MP for stroke-induced motor speech impairments. Conclusions Support for MP use includes decades of MP neurobiological and behavioral efficacy data in a number of populations. Most recently, these data have expanded to the application of MP in neurological populations. Given increasingly demanding managed care environments, efficacious strategies that can be easily administered are needed. We also encounter clinicians who aspire to use MP, but their protocols do not contain several of the elements shown to be fundamental to effective MP implementation. Given shortfalls of some conventional aphasia and motor speech rehabilitative techniques, and uncertainty regarding optimal MP implementation, this paper introduces the neurophysiologic bases for MP, the evidence for MP use in stroke rehabilitation, and discusses its applications and considerations in patients with stroke-induced motor speech impairments. PMID:22308050

  15. Entorhinal Tau Pathology, Episodic Memory Decline, and Neurodegeneration in Aging.

    PubMed

    Maass, Anne; Lockhart, Samuel N; Harrison, Theresa M; Bell, Rachel K; Mellinger, Taylor; Swinnerton, Kaitlin; Baker, Suzanne L; Rabinovici, Gil D; Jagust, William J

    2018-01-17

    The medial temporal lobe (MTL) is an early site of tau accumulation and MTL dysfunction may underlie episodic-memory decline in aging and dementia. Postmortem data indicate that tau pathology in the transentorhinal cortex is common by age 60, whereas spread to neocortical regions and worsening of cognition is associated with β-amyloid (Aβ). We used [ 18 F]AV-1451 and [ 11 C]PiB positron emission tomography, structural MRI, and neuropsychological assessment to investigate how in vivo tau accumulation in temporal lobe regions, Aβ, and MTL atrophy contribute to episodic memory in cognitively normal older adults ( n = 83; age, 77 ± 6 years; 58% female). Stepwise regressions identified tau in MTL regions known to be affected in old age as the best predictor of episodic-memory performance independent of Aβ status. There was no interactive effect of MTL tau with Aβ on memory. Higher MTL tau was related to higher age in the subjects without evidence of Aβ. Among temporal lobe subregions, episodic memory was most strongly related to tau-tracer uptake in the parahippocampal gyrus, particularly the posterior entorhinal cortex, which in our parcellation includes the transentorhinal cortex. In subjects with longitudinal MRI and cognitive data ( n = 57), entorhinal atrophy mirrored patterns of tau pathology and their relationship with memory decline. Our data are consistent with neuropathological studies and further suggest that entorhinal tau pathology underlies memory decline in old age even without Aβ. SIGNIFICANCE STATEMENT Tau tangles and β-amyloid (Aβ) plaques are key lesions in Alzheimer's disease (AD) but both pathologies also occur in cognitively normal older people. Neuropathological data indicate that tau tangles in the medial temporal lobe (MTL) underlie episodic-memory impairments in AD dementia. However, it remains unclear whether MTL tau pathology also accounts for memory impairments often seen in elderly people and how Aβ affects this relationship

  16. The neuroprotection of liraglutide on Alzheimer-like learning and memory impairment by modulating the hyperphosphorylation of tau and neurofilament proteins and insulin signaling pathways in mice.

    PubMed

    Xiong, Hui; Zheng, Chen; Wang, Jingjing; Song, Jinzhi; Zhao, Gang; Shen, Hui; Deng, Yanqiu

    2013-01-01

    The aim of this study was to investigate the effect of liraglutide on Alzheimer-like learning and memory impairment in mice, which were intracerebroventricularly (i.c.v.) injected with streptozotocin (STZ). Twenty-four mice were randomly divided into three groups: control (CON), AD model (STZ), and liraglutide-treated (LIR). The results show that both hyperphosphorylated tau and neurofilament proteins had deceased protein glycosylation and the tau bound to microtubules was lower in the STZ group compared to the CON group. The expression of JNK phosphorylation was higher and the number of Fluoro-Jade-B-positive degenerative neurons was increased in the STZ group as compared to both the CON and liraglutide groups. Escape latency in the STZ group was longer than that in both the CON and LIR groups, while the number of hidden platform crossings in path length was less than that in the other two groups. Liraglutide decreased the hyperphosphorylation levels of tau and neurofilament proteins, increased protein O-glycosylation, increased tau bound to microtubules, and also significantly improved the learning and memory ability of the mice. These results suggest that the effects of liraglutide on decreasing the hyperphosphorylation of tau and neurofilament proteins by enhancing O-glycosylation of neuronal cytoskeleton protein, improving the JNK and ERK signaling pathway, and reducing neural degeneration may be related to its protective effects on AD-like learning and memory impairment induced by i.c.v. injection of STZ. Our results indicate that GLP-1 analogs represent a novel treatment strategy for Alzheimer's disease.

  17. Somatostatin, tau, and beta-amyloid within the anterior olfactory nucleus in Alzheimer disease.

    PubMed

    Saiz-Sanchez, D; Ubeda-Bañon, I; de la Rosa-Prieto, C; Argandoña-Palacios, L; Garcia-Muñozguren, S; Insausti, R; Martinez-Marcos, A

    2010-06-01

    Impaired olfaction is an early symptom of Alzheimer disease (AD). This likely to reflect neurodegenerative processes taking place in basal telencephalic structures that mediate olfactory processing, including the anterior olfactory nucleus. Betaeta-amyloid (Abeta) accumulation in AD brain may relate to decline in somatostatin levels: somatostatin induces the expression of the Abeta-degrading enzyme neprilysin and somatostatin deficiency in AD may therefore reduce Abeta clearance. We have investigated the expression of somatostatin in the anterior olfactory nucleus of AD and control brain. We report that somatostatin levels were reduced by approximately 50% in AD brain. Furthermore, triple-immunofluorescence revealed co-localization of somatostatin expression with Abeta (65.43%) with Abeta and tau (19.75%) and with tau (2.47%). These data indicate that somatostatin decreases in AD and its expression may be linked with Abeta deposition. Copyright (c) 2009 Elsevier Inc. All rights reserved.

  18. Use of the Bruininks-Oseretsky Test of Motor Proficiency for Identifying Children with Motor Impairment

    ERIC Educational Resources Information Center

    Venetsanou, Fotini; Kambas, Antonis; Aggeloussis, Nickos; Serbezis, Vasilios; Taxildaris, Kyriakos

    2007-01-01

    This study compared the consistency of the Short Form (SF) and the Long Form (LF) of the Bruininks-Oseretsky Test of Motor Proficiency (BOTMP) in identifying preschool children with motor impairment (MI). One hundred and forty-four Greek preschool children participated (74 males, 70 females; mean age 5y 2mo [SD 5mo], range 4y 6mo-5y 6mo). Although…

  19. Comparing Plasma Phospho Tau, Total Tau, and Phospho Tau-Total Tau Ratio as Acute and Chronic Traumatic Brain Injury Biomarkers.

    PubMed

    Rubenstein, Richard; Chang, Binggong; Yue, John K; Chiu, Allen; Winkler, Ethan A; Puccio, Ava M; Diaz-Arrastia, Ramon; Yuh, Esther L; Mukherjee, Pratik; Valadka, Alex B; Gordon, Wayne A; Okonkwo, David O; Davies, Peter; Agarwal, Sanjeev; Lin, Fan; Sarkis, George; Yadikar, Hamad; Yang, Zhihui; Manley, Geoffrey T; Wang, Kevin K W; Cooper, Shelly R; Dams-O'Connor, Kristen; Borrasso, Allison J; Inoue, Tomoo; Maas, Andrew I R; Menon, David K; Schnyer, David M; Vassar, Mary J

    2017-09-01

    Annually in the United States, at least 3.5 million people seek medical attention for traumatic brain injury (TBI). The development of therapies for TBI is limited by the absence of diagnostic and prognostic biomarkers. Microtubule-associated protein tau is an axonal phosphoprotein. To date, the presence of the hypophosphorylated tau protein (P-tau) in plasma from patients with acute TBI and chronic TBI has not been investigated. To examine the associations between plasma P-tau and total-tau (T-tau) levels and injury presence, severity, type of pathoanatomic lesion (neuroimaging), and patient outcomes in acute and chronic TBI. In the TRACK-TBI Pilot study, plasma was collected at a single time point from 196 patients with acute TBI admitted to 3 level I trauma centers (<24 hours after injury) and 21 patients with TBI admitted to inpatient rehabilitation units (mean [SD], 176.4 [44.5] days after injury). Control samples were purchased from a commercial vendor. The TRACK-TBI Pilot study was conducted from April 1, 2010, to June 30, 2012. Data analysis for the current investigation was performed from August 1, 2015, to March 13, 2017. Plasma samples were assayed for P-tau (using an antibody that specifically recognizes phosphothreonine-231) and T-tau using ultra-high sensitivity laser-based immunoassay multi-arrayed fiberoptics conjugated with rolling circle amplification. In the 217 patients with TBI, 161 (74.2%) were men; mean (SD) age was 42.5 (18.1) years. The P-tau and T-tau levels and P-tau-T-tau ratio in patients with acute TBI were higher than those in healthy controls. Receiver operating characteristic analysis for the 3 tau indices demonstrated accuracy with area under the curve (AUC) of 1.000, 0.916, and 1.000, respectively, for discriminating mild TBI (Glasgow Coma Scale [GCS] score, 13-15, n = 162) from healthy controls. The P-tau level and P-tau-T-tau ratio were higher in individuals with more severe TBI (GCS, ≤12 vs 13-15). The P-tau level and P-tau-T-tau

  20. Gross Motor Skills and Sports Participation of Children with Visual Impairments

    ERIC Educational Resources Information Center

    Houwen, Suzanne; Visscher, Chris; Hartman, Esther; Lemmink, Koen A. P. M.

    2007-01-01

    Gross motor skill performance of children with visual impairments and its association with the degree of visual impairment and sports participation was examined. Twenty children with visual impairments (M age = 9.2 years, SD = 1.5) and 100 sighted children (M age = 9.1 years, SD = 1.5) from mainstream schools participated. The results showed that…

  1. Impaired esophageal motor function in eosinophilic esophagitis.

    PubMed

    Santander, Cecilio; Chavarría-Herbozo, Carlos M; Becerro-González, Irene; Burgos-Santamaría, Diego

    2015-10-01

    Eosinophilic esophagitis is a chronic immunoallergic inflammatory disease of the esophagus that represents a major cause of digestive morbidity among the pediatric and young adult populations. Despite the fact that key symptoms in adults include dysphagia and food impaction, many patients lack structural changes in the esophagus to account for their complaints, which suggests the presence of underlying motor disorders and esophageal distensibility impairment. In the last few years the esophageal motility of these patients has been studied using various approaches, most particularly high-resolution manometry, ambulatory manometry, and impedance planimetry. This review focuses on the most relevant findings and scientific evidence regarding esophageal motor disorders in eosinophilic esophagitis.

  2. Hypothermia mediates age-dependent increase of tau phosphorylation in db/db mice.

    PubMed

    El Khoury, Noura B; Gratuze, Maud; Petry, Franck; Papon, Marie-Amélie; Julien, Carl; Marcouiller, François; Morin, Françoise; Nicholls, Samantha B; Calon, Frédéric; Hébert, Sébastien S; Marette, André; Planel, Emmanuel

    2016-04-01

    Accumulating evidence from epidemiological studies suggest that type 2 diabetes is linked to an increased risk of Alzheimer's disease (AD). However, the consequences of type 2 diabetes on AD pathologies, such as tau hyperphosphorylation, are not well understood. Here, we evaluated the impact of type 2 diabetes on tau phosphorylation in db/db diabetic mice aged 4 and 26weeks. We found increased tau phosphorylation at the CP13 epitope correlating with a deregulation of c-Jun. N-terminal kinase (JNK) and Protein Phosphatase 2A (PP2A) in 4-week-old db/db mice. 26-week-old db/db mice displayed tau hyperphosphorylation at multiple epitopes (CP13, AT8, PHF-1), but no obvious change in kinases or phosphatases, no cleavage of tau, and no deregulation of central insulin signaling pathways. In contrast to younger animals, 26-week-old db/db mice were hypothermic and restoration of normothermia rescued phosphorylation at most epitopes. Our results suggest that, at early stages of type 2 diabetes, changes in tau phosphorylation may be due to deregulation of JNK and PP2A, while at later stages hyperphosphorylation is mostly a consequence of hypothermia. These results provide a novel link between diabetes and tau pathology, and underlie the importance of recording body temperature to better understand the relationship between diabetes and AD. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Delayed Motor Skill Acquisition in Kindergarten Children with Language Impairment

    ERIC Educational Resources Information Center

    Adi-Japha, Esther; Strulovich-Schwartz, Orli; Julius, Mona

    2011-01-01

    The acquisition and consolidation of a new grapho-motor symbol into long-term memory was studied in 5-year-old children with language impairment (LI) and peers matched for age and visual-motor integration skills. The children practiced the production of a new symbol and were tested 24 h and two weeks post-practice day. Differences in performance…

  4. Sodium benzoate, a food preservative, induces anxiety and motor impairment in rats.

    PubMed

    Noorafshan, Ali; Erfanizadeh, Mahboobeh; Karbalay-Doust, Saied

    2014-01-01

    To investigate the behavioral characteristics, including anxiety and motor impairment, in sodium benzoate (NaB) treated rats. The study was carried out between July and September 2012 in the Laboratory Animal Center of Shiraz University of Medical Sciences, Shiraz, Iran. The rats were divided into 2 groups receiving distilled water and NaB (200mg/kg/day). All the animals received daily gavages for 4 weeks. At the end of the fourth week, anxiety, and motor function were assessed in elevated plus maze and rotarod test. According to the results, NaB-treated rats spent less time in the open arm and had fewer entrances to the open arms in comparison with the control group (p<0.04). Also, the performance of the NaB-treated rats in fixed and accelerating speed rotarods was impaired, and the riding time (endurance) was lower than the control group (p<0.01). The performance of the NaB-treated rats was impaired in the elevated plus maze, an indicator of anxiety. Their riding time in fixed and accelerating speed rotarods was decreased, indicating motor impairment.

  5. Determinants of gross motor skill performance in children with visual impairments.

    PubMed

    Haibach, Pamela S; Wagner, Matthias O; Lieberman, Lauren J

    2014-10-01

    Children with visual impairments (CWVI) generally perform poorer in gross motor skills when compared with their sighted peers. This study examined the influence of age, sex, and severity of visual impairment upon locomotor and object control skills in CWVI. Participants included 100 CWVI from across the United States who completed the Test of Gross Motor Development II (TGMD-II). The TGMD-II consists of 12 gross motor skills including 6 object control skills (catching, kicking, striking, dribbling, throwing, and rolling) and 6 locomotor skills (running, sliding, galloping, leaping, jumping, and hopping). The full range of visual impairments according to United States Association for Blind Athletes (USABA; B3=20/200-20/599, legally blind; B2=20/600 and up, travel vision; B1=totally blind) were assessed. The B1 group performed significantly worse than the B2 (0.000 ≤ p ≤ 0.049) or B3 groups (0.000 ≤ p ≤ 0.005); however, there were no significant differences between B2 and B3 except for the run (p=0.006), catch (p=0.000), and throw (p=0.012). Age and sex did not play an important role in most of the skills, with the exception of boys outperforming girls striking (p=0.009), dribbling (p=0.013), and throwing (p=0.000), and older children outperforming younger children in dribbling (p=0.002). The significant impact of the severity of visual impairment is likely due to decreased experiences and opportunities for children with more severe visual impairments. In addition, it is likely that these reduced experiences explain the lack of age-related differences in the CWVI. The large disparities in performance between children who are blind and their partially sighted peers give direction for instruction and future research. In addition, there is a critical need for intentional and specific instruction on motor skills at a younger age to enable CWVI to develop their gross motor skills. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Non-motor tasks improve adaptive brain-computer interface performance in users with severe motor impairment

    PubMed Central

    Faller, Josef; Scherer, Reinhold; Friedrich, Elisabeth V. C.; Costa, Ursula; Opisso, Eloy; Medina, Josep; Müller-Putz, Gernot R.

    2014-01-01

    Individuals with severe motor impairment can use event-related desynchronization (ERD) based BCIs as assistive technology. Auto-calibrating and adaptive ERD-based BCIs that users control with motor imagery tasks (“SMR-AdBCI”) have proven effective for healthy users. We aim to find an improved configuration of such an adaptive ERD-based BCI for individuals with severe motor impairment as a result of spinal cord injury (SCI) or stroke. We hypothesized that an adaptive ERD-based BCI, that automatically selects a user specific class-combination from motor-related and non motor-related mental tasks during initial auto-calibration (“Auto-AdBCI”) could allow for higher control performance than a conventional SMR-AdBCI. To answer this question we performed offline analyses on two sessions (21 data sets total) of cue-guided, five-class electroencephalography (EEG) data recorded from individuals with SCI or stroke. On data from the twelve individuals in Session 1, we first identified three bipolar derivations for the SMR-AdBCI. In a similar way, we determined three bipolar derivations and four mental tasks for the Auto-AdBCI. We then simulated both, the SMR-AdBCI and the Auto-AdBCI configuration on the unseen data from the nine participants in Session 2 and compared the results. On the unseen data of Session 2 from individuals with SCI or stroke, we found that automatically selecting a user specific class-combination from motor-related and non motor-related mental tasks during initial auto-calibration (Auto-AdBCI) significantly (p < 0.01) improved classification performance compared to an adaptive ERD-based BCI that only used motor imagery tasks (SMR-AdBCI; average accuracy of 75.7 vs. 66.3%). PMID:25368546

  7. Tau and β-Amyloid Are Associated with Medial Temporal Lobe Structure, Function, and Memory Encoding in Normal Aging

    PubMed Central

    2017-01-01

    Normal aging is associated with a decline in episodic memory and also with aggregation of the β-amyloid (Aβ) and tau proteins and atrophy of medial temporal lobe (MTL) structures crucial to memory formation. Although some evidence suggests that Aβ is associated with aberrant neural activity, the relationships among these two aggregated proteins, neural function, and brain structure are poorly understood. Using in vivo human Aβ and tau imaging, we demonstrate that increased Aβ and tau are both associated with aberrant fMRI activity in the MTL during memory encoding in cognitively normal older adults. This pathological neural activity was in turn associated with worse memory performance and atrophy within the MTL. A mediation analysis revealed that the relationship with regional atrophy was explained by MTL tau. These findings broaden the concept of cognitive aging to include evidence of Alzheimer's disease-related protein aggregation as an underlying mechanism of age-related memory impairment. SIGNIFICANCE STATEMENT Alterations in episodic memory and the accumulation of Alzheimer's pathology are common in cognitively normal older adults. However, evidence of pathological effects on episodic memory has largely been limited to β-amyloid (Aβ). Because Aβ and tau often cooccur in older adults, previous research offers an incomplete understanding of the relationship between pathology and episodic memory. With the recent development of in vivo tau PET radiotracers, we show that Aβ and tau are associated with different aspects of memory encoding, leading to aberrant neural activity that is behaviorally detrimental. In addition, our results provide evidence linking Aβ- and tau-associated neural dysfunction to brain atrophy. PMID:28213439

  8. Fine Motor Function Skills in Patients with Parkinson Disease with and without Mild Cognitive Impairment.

    PubMed

    Dahdal, Philippe; Meyer, Antonia; Chaturvedi, Menorca; Nowak, Karolina; Roesch, Anne D; Fuhr, Peter; Gschwandtner, Ute

    2016-01-01

    The objective of this study was to investigate the relation between impaired fine motor skills in Parkinson disease (PD) patients and their cognitive status, and to determine whether fine motor skills are more impaired in PD patients with mild cognitive impairment (MCI) than in non-MCI patients. Twenty PD MCI and 31 PD non-MCI patients (mean age 66.7 years, range 50-84, 36 males/15 females), all right-handed, took part in a motor performance test battery. Steadiness, precision, dexterity, velocity of arm-hand movements, and velocity of wrist-finger movements were measured and compared across groups and analyzed for confounders (age, sex, education, severity of motor symptoms, and disease duration). Statistical analysis included t tests corrected for multiple testing, and a linear regression with stepwise elimination procedure was used to select significant predictors for fine motor function. PD MCI patients performed significantly worse in precision (p < 0.05), dexterity (p < 0.05), and velocity (arm-hand movements; p < 0.05) compared to PD non-MCI patients. The fine motor function skills were confounded by age. Fine motor skills in PD MCI patients are impaired compared to PD non-MCI patients. Investigating the relation between the fine motor performance and MCI in PD might be a relevant subject for future research. © 2016 S. Karger AG, Basel.

  9. Tunneling nanotube (TNT)-mediated neuron-to neuron transfer of pathological Tau protein assemblies.

    PubMed

    Tardivel, Meryem; Bégard, Séverine; Bousset, Luc; Dujardin, Simon; Coens, Audrey; Melki, Ronald; Buée, Luc; Colin, Morvane

    2016-11-04

    A given cell makes exchanges with its neighbors through a variety of means ranging from diffusible factors to vesicles. Cells use also tunneling nanotubes (TNTs), filamentous-actin-containing membranous structures that bridge and connect cells. First described in immune cells, TNTs facilitate HIV-1 transfer and are found in various cell types, including neurons. We show that the microtubule-associated protein Tau, a key player in Alzheimer's disease, is a bona fide constituent of TNTs. This is important because Tau appears beside filamentous actin and myosin 10 as a specific marker of these fine protrusions of membranes and cytosol that are difficult to visualize. Furthermore, we observed that exogenous Tau species increase the number of TNTs established between primary neurons, thereby facilitating the intercellular transfer of Tau fibrils. In conclusion, Tau may contribute to the formation and function of the highly dynamic TNTs that may be involved in the prion-like propagation of Tau assemblies.

  10. Neurodegenerative disorder FTDP-17-related tau intron 10 +16C → T mutation increases tau exon 10 splicing and causes tauopathy in transgenic mice.

    PubMed

    Umeda, Tomohiro; Yamashita, Takenari; Kimura, Tetsuya; Ohnishi, Kiyouhisa; Takuma, Hiroshi; Ozeki, Tomoko; Takashima, Akihiko; Tomiyama, Takami; Mori, Hiroshi

    2013-07-01

    Frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17) is a neurodegenerative disorder caused by mutations in the tau gene. Many mutations identified in FTDP-17 have been shown to affect tau exon 10 splicing in vitro, which presumably causes pathologic imbalances in exon 10(-) [3-repeat (3R)] and exon 10(+) [4-repeat (4R)] tau expression and leads to intracellular inclusions of hyperphosphorylated tau in patient brains. However, no reports have investigated this theory using model mice with a tau intronic mutation. Herein, we generated new transgenic mice harboring the tau intron 10 +16C → T mutation. We prepared a transgene construct containing intronic sequences required for exon 10 splicing in the longest tau isoform cDNA. Although mice bearing the construct without the intronic mutation showed normal developmental changes of the tau isoform from 3R tau to equal amounts of 3R and 4R tau, mice with the mutation showed much higher levels of 4R tau at the adult stage. 4R tau was selectively recovered in insoluble brain fractions in their old age. Furthermore, these mice displayed abnormal tau phosphorylation, synapse loss and dysfunction, memory impairment, glial activation, tangle formation, and neuronal loss in an age-dependent manner. These findings provide the first evidence in a mouse model that a tau intronic mutation-induced imbalance of 3R and 4R tau could be a cause of tauopathy. Copyright © 2013 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  11. Passive Immunization with Anti-Tau Antibodies in Two Transgenic Models

    PubMed Central

    Chai, Xiyun; Wu, Su; Murray, Tracey K.; Kinley, Robert; Cella, Claire V.; Sims, Helen; Buckner, Nicola; Hanmer, Jenna; Davies, Peter; O'Neill, Michael J.; Hutton, Michael L.; Citron, Martin

    2011-01-01

    The microtubule-associated protein Tau plays a critical role in the pathogenesis of Alzheimer disease and several related disorders (tauopathies). In the disease Tau aggregates and becomes hyperphosphorylated forming paired helical and straight filaments, which can further condense into higher order neurofibrillary tangles in neurons. The development of this pathology is consistently associated with progressive neuronal loss and cognitive decline. The identification of tractable therapeutic targets in this pathway has been challenging, and consequently very few clinical studies addressing Tau pathology are underway. Recent active immunization studies have raised the possibility of modulating Tau pathology by activating the immune system. Here we report for the first time on passive immunotherapy for Tau in two well established transgenic models of Tau pathogenesis. We show that peripheral administration of two antibodies against pathological Tau forms significantly reduces biochemical Tau pathology in the JNPL3 mouse model. We further demonstrate that peripheral administration of the same antibodies in the more rapidly progressive P301S tauopathy model not only reduces Tau pathology quantitated by biochemical assays and immunohistochemistry, but also significantly delays the onset of motor function decline and weight loss. This is accompanied by a reduction in neurospheroids, providing direct evidence of reduced neurodegeneration. Thus, passive immunotherapy is effective at preventing the buildup of intracellular Tau pathology, neurospheroids, and associated symptoms, although the exact mechanism remains uncertain. Tau immunotherapy should therefore be considered as a therapeutic approach for the treatment of Alzheimer disease and other tauopathies. PMID:21841002

  12. Gene Expression Changes in the Motor Cortex Mediating Motor Skill Learning

    PubMed Central

    Cheung, Vincent C. K.; DeBoer, Caroline; Hanson, Elizabeth; Tunesi, Marta; D'Onofrio, Mara; Arisi, Ivan; Brandi, Rossella; Cattaneo, Antonino; Goosens, Ki A.

    2013-01-01

    The primary motor cortex (M1) supports motor skill learning, yet little is known about the genes that contribute to motor cortical plasticity. Such knowledge could identify candidate molecules whose targeting might enable a new understanding of motor cortical functions, and provide new drug targets for the treatment of diseases which impair motor function, such as ischemic stroke. Here, we assess changes in the motor-cortical transcriptome across different stages of motor skill acquisition. Adult rats were trained on a gradually acquired appetitive reach and grasp task that required different strategies for successful pellet retrieval, or a sham version of the task in which the rats received pellet reward without needing to develop the reach and grasp skill. Tissue was harvested from the forelimb motor-cortical area either before training commenced, prior to the initial rise in task performance, or at peak performance. Differential classes of gene expression were observed at the time point immediately preceding motor task improvement. Functional clustering revealed that gene expression changes were related to the synapse, development, intracellular signaling, and the fibroblast growth factor (FGF) family, with many modulated genes known to regulate synaptic plasticity, synaptogenesis, and cytoskeletal dynamics. The modulated expression of synaptic genes likely reflects ongoing network reorganization from commencement of training till the point of task improvement, suggesting that motor performance improves only after sufficient modifications in the cortical circuitry have accumulated. The regulated FGF-related genes may together contribute to M1 remodeling through their roles in synaptic growth and maturation. PMID:23637843

  13. Phonological and Motor Errors in Individuals with Acquired Sound Production Impairment

    ERIC Educational Resources Information Center

    Buchwald, Adam; Miozzo, Michele

    2012-01-01

    Purpose: This study aimed to compare sound production errors arising due to phonological processing impairment with errors arising due to motor speech impairment. Method: Two speakers with similar clinical profiles who produced similar consonant cluster simplification errors were examined using a repetition task. We compared both overall accuracy…

  14. Beta-amyloid and phosphorylated tau metabolism changes in narcolepsy over time.

    PubMed

    Liguori, Claudio; Placidi, Fabio; Izzi, Francesca; Nuccetelli, Marzia; Bernardini, Sergio; Sarpa, Maria Giovanna; Cum, Fabrizio; Marciani, Maria Grazia; Mercuri, Nicola Biagio; Romigi, Andrea

    2016-03-01

    The aim od this study is to test whether metabolism of beta-amyloid and tau proteins changes in narcolepsy along with the disease course. We analyzed a population of narcoleptic drug-naïve patients compared to a sample of healthy controls. Patients and controls underwent lumbar puncture for assessment of cerebrospinal fluid (CSF) beta-amyloid1-42 (Aβ42), total tau (t-tau), and phosphorylated tau (p-tau) levels. Moreover, based on the median disease duration of the whole narcolepsy group, the patients were divided into two subgroups: patients with a short disease duration (SdN, <5 years) and patients with a long disease duration (LdN, >5 years). We found significantly lower CSF Aβ42 levels in the whole narcolepsy group with respect to controls. Taking into account the patient subgroups, we documented reduced CSF Aβ42 levels in SdN compared to both LdN and controls. Even LdN patients showed lower CSF Aβ42 levels with respect to controls. Moreover, we documented higher CSF p-tau levels in LdN patients compared to both SdN and controls. Finally, a significant positive correlation between CSF Aβ42 levels and disease duration was evident. We hypothesize that beta-amyloid metabolism and cascade may be impaired in narcolepsy not only at the onset but also along with the disease course, although they show a compensatory profile over time. Concurrently, also CSF biomarkers indicative of neural structure (p-tau) appear to be altered in narcolepsy patients with a long disease duration. However, the mechanism underlying beta-amyloid and tau metabolism impairment in narcolepsy remains still unclear and deserves to be better elucidated.

  15. Alcohol hangover: type and time-extension of motor function impairments.

    PubMed

    Karadayian, Analía G; Cutrera, Rodolfo A

    2013-06-15

    Alcohol hangover is defined as the unpleasant next-day state following an evening of excessive alcohol consumption. Hangover begins when ethanol is absent in plasma and is characterized by physical and psychological symptoms. During hangover cognitive functions and subjective capacities are affected along with inefficiency, reduced productivity, absenteeism, driving impairments, poor academic achievement and reductions in motor coordination. The aim of this work was to study the type and length of motor and exploratory functions from the beginning to the end of the alcohol hangover. Male Swiss mice were injected i.p. either with saline (control group) or with ethanol (3.8 g/kg BW) (hangover group). Motor performance, walking deficiency, motor strength, locomotion and exploratory activity were evaluated at a basal point (ZT0) and every 2 h up to 20 h after blood alcohol levels were close to zero (hangover onset). Motor performance was 80% decreased at the onset of hangover (p<0.001). Hangover mice exhibited a reduced motor performance during the next 16 h (p<0.01). Motor function was recovered 20 h after hangover onset. Hangover mice displayed walking deficiencies from the beginning to 16 h after hangover onset (p<0.05). Moreover, mice suffering from a hangover, exhibited a significant decrease in neuromuscular strength during 16 h (p<0.001). Averaged speed and total distance traveled in the open field test and the exploratory activity on T-maze and hole board tests were reduced during 16 h after hangover onset (p<0.05). Our findings demonstrate a time-extension between 16 to 20 h for hangover motor and exploratory impairments. As a whole, this study shows the long lasting effects of alcohol hangover. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Learning trajectories for speech motor performance in children with specific language impairment.

    PubMed

    Richtsmeier, Peter T; Goffman, Lisa

    2015-01-01

    Children with specific language impairment (SLI) often perform below expected levels, including on tests of motor skill and in learning tasks, particularly procedural learning. In this experiment we examined the possibility that children with SLI might also have a motor learning deficit. Twelve children with SLI and thirteen children with typical development (TD) produced complex nonwords in an imitation task. Productions were collected across three blocks, with the first and second blocks on the same day and the third block one week later. Children's lip movements while producing the nonwords were recorded using an Optotrak camera system. Movements were then analyzed for production duration and stability. Movement analyses indicated that both groups of children produced shorter productions in later blocks (corroborated by an acoustic analysis), and the rate of change was comparable for the TD and SLI groups. A nonsignificant trend for more stable productions was also observed in both groups. SLI is regularly accompanied by a motor deficit, and this study does not dispute that. However, children with SLI learned to make more efficient productions at a rate similar to their peers with TD, revealing some modification of the motor deficit associated with SLI. The reader will learn about deficits commonly associated with specific language impairment (SLI) that often occur alongside the hallmark language deficit. The authors present an experiment showing that children with SLI improved speech motor performance at a similar rate compared to typically developing children. The implication is that speech motor learning is not impaired in children with SLI. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. The aqueous extract of Glycyrrhiza inflata can upregulate unfolded protein response-mediated chaperones to reduce tau misfolding in cell models of Alzheimer’s disease

    PubMed Central

    Chang, Kuo-Hsuan; Chen, I-Cheng; Lin, Hsuan-Yuan; Chen, Hsuan-Chiang; Lin, Chih-Hsin; Lin, Te-Hsien; Weng, Yu-Ting; Chao, Chih-Ying; Wu, Yih-Ru; Lin, Jung-Yaw; Lee-Chen, Guey-Jen; Chen, Chiung-Mei

    2016-01-01

    Background Alzheimer’s disease (AD) and several neurodegenerative disorders known as tauopathies are characterized by misfolding and aggregation of tau protein. Although several studies have suggested the potential of traditional Chinese medicine (TCM) as treatment for neurodegenerative diseases, the role of TCM in treating AD and tauopathies have not been well explored. Materials and methods Tau protein was coupled to the DsRed fluorophore by fusing a pro-aggregation mutant of repeat domain of tau (ΔK280 tauRD) with DsRed. The ΔK280 tauRD-DsRed fusion gene was then used to generate Tet-On 293 and SH-SY5Y cell clones as platforms to test the efficacy of 39 aqueous extracts of TCM in reducing tau misfolding and in neuroprotection. Results Seven TCM extracts demonstrated a significant reduction in tau misfolding and reactive oxidative species with low cytotoxicity in the ΔK280 tauRD-DsRed 293 cell model. Glycyrrhiza inflata and Panax ginseng also demonstrated the potential to improve neurite outgrowth in the ΔK280 tauRD-DsRed SH-SY5Y neuronal cell model. G. inflata further rescued the upregulation of ERN2 (pro-apoptotic) and downregulation of unfolded-protein-response-mediated chaperones ERP44, DNAJC3, and SERP1 in ΔK280 tauRD-DsRed 293 cells. Conclusion This in vitro study provides evidence that G. inflata may be a novel therapeutic for AD and tauopathies. Future applications of G. inflata on animal models of AD and tauopathies are warranted to corroborate its effect of reducing misfolding and potential disease modification. PMID:27013866

  18. Impairments in prehension produced by early postnatal sensory motor cortex activity blockade.

    PubMed

    Martin, J H; Donarummo, L; Hacking, A

    2000-02-01

    This study examined the effects of blocking neural activity in sensory motor cortex during early postnatal development on prehension. We infused muscimol, either unilaterally or bilaterally, into the sensory motor cortex of cats to block activity continuously between postnatal weeks 3-7. After stopping infusion, we trained animals to reach and grasp a cube of meat and tested behavior thereafter. Animals that had not received muscimol infusion (unilateral saline infusion; age-matched) reached for the meat accurately with small end-point errors. They grasped the meat using coordinated digit flexion followed by forearm supination on 82.7% of trials. Performance using either limb did not differ significantly. In animals receiving unilateral muscimol infusion, reaching and grasping using the limb ipsilateral to the infusion were similar to controls. The limb contralateral to infusion showed significant increases in systematic and variable reaching end-point errors, often requiring subsequent corrective movements to contact the meat. Grasping occurred on only 14.8% of trials, replaced on most trials by raking without distal movements. Compensatory adjustments in reach length and angle, to maintain end-point accuracy as movements were started from a more lateral position, were less effective using the contralateral limb than ipsilateral limb. With bilateral inactivations, the form of reaching and grasping impairments was identical to that produced by unilateral inactivation, but the magnitude of the reaching impairments was less. We discuss these results in terms of the differential effects of unilateral and bilateral inactivation on corticospinal tract development. We also investigated the degree to which these prehension impairments after unilateral blockade reflect control by each hemisphere. In animals that had received unilateral blockade between postnatal weeks (PWs) 3 and 7, we silenced on-going activity (after PW 11) during task performance using continuous

  19. Eye Gaze Correlates of Motor Impairment in VR Observation of Motor Actions.

    PubMed

    Alves, J; Vourvopoulos, A; Bernardino, A; Bermúdez I Badia, S

    2016-01-01

    This article is part of the Focus Theme of Methods of Information in Medicine on "Methodologies, Models and Algorithms for Patients Rehabilitation". Identify eye gaze correlates of motor impairment in a virtual reality motor observation task in a study with healthy participants and stroke patients. Participants consisted of a group of healthy subjects (N = 20) and a group of stroke survivors (N = 10). Both groups were required to observe a simple reach-and-grab and place-and-release task in a virtual environment. Additionally, healthy subjects were required to observe the task in a normal condition and a constrained movement condition. Eye movements were recorded during the observation task for later analysis. For healthy participants, results showed differences in gaze metrics when comparing the normal and arm-constrained conditions. Differences in gaze metrics were also found when comparing dominant and non-dominant arm for saccades and smooth pursuit events. For stroke patients, results showed longer smooth pursuit segments in action observation when observing the paretic arm, thus providing evidence that the affected circuitry may be activated for eye gaze control during observation of the simulated motor action. This study suggests that neural motor circuits are involved, at multiple levels, in observation of motor actions displayed in a virtual reality environment. Thus, eye tracking combined with action observation tasks in a virtual reality display can be used to monitor motor deficits derived from stroke, and consequently can also be used for rehabilitation of stroke patients.

  20. APP metabolism regulates tau proteostasis in human cerebral cortex neurons.

    PubMed

    Moore, Steven; Evans, Lewis D B; Andersson, Therese; Portelius, Erik; Smith, James; Dias, Tatyana B; Saurat, Nathalie; McGlade, Amelia; Kirwan, Peter; Blennow, Kaj; Hardy, John; Zetterberg, Henrik; Livesey, Frederick J

    2015-05-05

    Accumulation of Aβ peptide fragments of the APP protein and neurofibrillary tangles of the microtubule-associated protein tau are the cellular hallmarks of Alzheimer's disease (AD). To investigate the relationship between APP metabolism and tau protein levels and phosphorylation, we studied human-stem-cell-derived forebrain neurons with genetic forms of AD, all of which increase the release of pathogenic Aβ peptides. We identified marked increases in intracellular tau in genetic forms of AD that either mutated APP or increased its dosage, suggesting that APP metabolism is coupled to changes in tau proteostasis. Manipulating APP metabolism by β-secretase and γ-secretase inhibition, as well as γ-secretase modulation, results in specific increases and decreases in tau protein levels. These data demonstrate that APP metabolism regulates tau proteostasis and suggest that the relationship between APP processing and tau is not mediated solely through extracellular Aβ signaling to neurons. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Association between vestibular function and motor performance in hearing-impaired children.

    PubMed

    Maes, Leen; De Kegel, Alexandra; Van Waelvelde, Hilde; Dhooge, Ingeborg

    2014-12-01

    The clinical balance performance of normal-hearing (NH) children was compared with the balance performance of hearing-impaired (HI) children with and without vestibular dysfunction to identify an association between vestibular function and motor performance. Prospective study. Tertiary referral center. Thirty-six children (mean age, 7 yr 5 mo; range, 3 yr 8 mo-12 yr 11 mo) divided into three groups: NH children with normal vestibular responses, HI children with normal vestibular responses, and HI children with abnormal vestibular function. A vestibular test protocol (rotatory and collic vestibular evoked myogenic potential testing) in combination with three clinical balance tests (balance beam walking, one-leg hopping, one-leg stance). Clinical balance performance. HI children with abnormal vestibular test results obtained the lowest quotients of motor performance, which were significantly lower compared with the NH group (p < 0.001 for balance beam walking and one-leg stance; p = 0.003 for one-leg hopping). The balance performance of the HI group with normal vestibular responses was better in comparison with the vestibular impaired group but still significantly lower compared with the NH group (p = 0.020 for balance beam walking; p = 0.001 for one-leg stance; not significant for one-leg hopping). These results indicate an association between vestibular function and motor performance in HI children, with a more distinct motor deterioration if a vestibular impairment is superimposed to the auditory dysfunction.

  2. Improvement of fine motor skills in children with visual impairment: an explorative study.

    PubMed

    Reimer, A M; Cox, R F A; Nijhuis-Van der Sanden, M W G; Boonstra, F N

    2011-01-01

    In this study we analysed the potential spin-off of magnifier training on the fine-motor skills of visually impaired children. The fine-motor skills of 4- and 5-year-old visually impaired children were assessed using the manual skills test for children (6-12 years) with a visual impairment (ManuVis) and movement assessment for children (Movement ABC), before and after receiving a 12-sessions training within a 6-weeks period. The training was designed to practice the use of a stand magnifier, as part of a larger research project on low-vision aids. In this study, fifteen children trained with a magnifier; seven without. Sixteen children had nystagmus. In this group head orientation (ocular torticollis) was monitored. Results showed an age-related progress in children's fine-motor skills after the training, irrespective of magnifier condition: performance speed of the ManuVis items went from 333.4s to 273.6s on average. Accuracy in the writing tasks also increased. Finally, for the children with nystagmus, an increase of ocular torticollis was found. These results suggest a careful reconsideration of which intervention is most effective for enhancing perceptuomotor performance in visually impaired children: specific 'fine-motor' training or 'non-specific' visual-attention training with a magnifier. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Gross Motor Skills and Cardiometabolic Risk in Children: A Mediation Analysis.

    PubMed

    Burns, Ryan D; Brusseau, Timothy A; Fu, You; Hannon, James C

    2017-04-01

    The purpose of this study was to examine the linear relationship between gross motor skills and cardiometabolic risk, with aerobic fitness as a mediator variable, in low-income children from the United States. Participants were a convenience sample of 224 children (mean ± SD age = 9.1 ± 1.1 yr; 129 girls and 95 boys) recruited from five low-income elementary schools from the Mountain West Region of the United States. Gross motor skills were assessed using the Test for Gross Motor Development, 3rd Edition. Gross motor skills were analyzed using a locomotor skill, a ball skill, and a total gross motor skill score. Aerobic fitness was assessed using the Progressive Aerobic Cardiovascular Endurance Run that was administered during physical education class. A continuous and age- and sex-adjusted metabolic syndrome score (MetS) was calculated from health and blood marker measurements collected in a fasted state before school hours. Total effects, average direct effects, and indirect effects (average causal mediation effect) were calculated using a bootstrap mediation analysis method via a linear regression algorithm. The average causal mediation effect of gross locomotor skills on MetS scores, using aerobic fitness as the mediator variable, was statistically significant (β = -0.055, 95% confidence interval = -0.097 to -0.021, P = 0.003). The model explained approximately 17.5% of the total variance in MetS with approximately 43.7% of the relationship between locomotor skills and MetS mediated through aerobic fitness. Ball skills did not significantly relate with cardiometabolic risk. There is a significant relationship between gross locomotor skills and cardiometabolic risk that is partially mediated through aerobic fitness in a sample of low-income children from the United States.

  4. Simulated Cytoskeletal Collapse via Tau Degradation

    PubMed Central

    Sendek, Austin; Fuller, Henry R.; Hayre, N. Robert; Singh, Rajiv R. P.; Cox, Daniel L.

    2014-01-01

    We present a coarse-grained two dimensional mechanical model for the microtubule-tau bundles in neuronal axons in which we remove taus, as can happen in various neurodegenerative conditions such as Alzheimers disease, tauopathies, and chronic traumatic encephalopathy. Our simplified model includes (i) taus modeled as entropic springs between microtubules, (ii) removal of taus from the bundles due to phosphorylation, and (iii) a possible depletion force between microtubules due to these dissociated phosphorylated taus. We equilibrate upon tau removal using steepest descent relaxation. In the absence of the depletion force, the transverse rigidity to radial compression of the bundles falls to zero at about 60% tau occupancy, in agreement with standard percolation theory results. However, with the attractive depletion force, spring removal leads to a first order collapse of the bundles over a wide range of tau occupancies for physiologically realizable conditions. While our simplest calculations assume a constant concentration of microtubule intercalants to mediate the depletion force, including a dependence that is linear in the detached taus yields the same collapse. Applying percolation theory to removal of taus at microtubule tips, which are likely to be the protective sites against dynamic instability, we argue that the microtubule instability can only obtain at low tau occupancy, from 0.06–0.30 depending upon the tau coordination at the microtubule tips. Hence, the collapse we discover is likely to be more robust over a wide range of tau occupancies than the dynamic instability. We suggest in vitro tests of our predicted collapse. PMID:25162587

  5. Generalized Motor Abilities and Timing Behavior in Children with Specific Language Impairment

    ERIC Educational Resources Information Center

    Zelaznik, Howard N.; Goffman, Lisa

    2010-01-01

    Purpose: To examine whether children with specific language impairment (SLI) differ from normally developing peers in motor skills, especially those skills related to timing. Method: Standard measures of gross and fine motor development were obtained. Furthermore, finger and hand movements were recorded while children engaged in 4 different timing…

  6. Predicting severe motor impairment in preterm children at age 5 years.

    PubMed

    Synnes, Anne; Anderson, Peter J; Grunau, Ruth E; Dewey, Deborah; Moddemann, Diane; Tin, Win; Davis, Peter G; Doyle, Lex W; Foster, Gary; Khairy, May; Nwaesei, Chukwuma; Schmidt, Barbara

    2015-08-01

    To determine whether the ability to predict severe motor impairment at age 5 years improves between birth and 18 months. Ancillary study of the Caffeine for Apnea of Prematurity Trial. International cohort of very low birth weight children who were assessed sequentially from birth to 5 years. Severe motor impairment was defined as a score <5th percentile on the Movement Assessment Battery of Children (MABC), or inability to complete the MABC because of cerebral palsy. Multivariable logistic regression cumulative risk models used four sets of predictor variables: early neonatal risk factors, risk factors at 36 weeks' postmenstrual age, risk factors at a corrected age of 18 months, and sociodemographic variables. A receiver operating characteristic curve (ROC) was generated for each model, and the four ROC curves were compared to determine if the addition of the new set of predictors significantly increased the area under the curve (AUC). Of 1469 children, 291 (19.8%) had a severe motor impairment at 5 years. The AUC increased from 0.650 soon after birth, to 0.718 (p<0.001) at 36 weeks' postmenstrual age, and to 0.797 at 18 months (p<0.001). Sociodemographic variables did not significantly improve the AUC (AUC=0.806; p=0.07). Prediction of severe motor impairment at 5 years of age using a cumulative risk model improves significantly from birth to 18 months of age in children with birth weights between 500 g and 1250 g. ClinicalTrials.gov number NCT00182312. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  7. TBI-Induced Formation of Toxic Tau and Its Biochemical Similarities to Tau in AD Brains

    DTIC Science & Technology

    2017-10-01

    current study is to demonstrate that blast-induced traumatic brain injury (TBI) and Alzheimer’s disease (AD) lead to similar biochemical changes in tau...induced TBI leads to the production of a toxic form of tau that contributes to cognitive and electrophysiological impairments; 2) the formation of...3 4. Impact…………………………...…………………………………... 5 5. Changes/Problems...….……………………………………………… 6 6. Products …………………………………….……….….……………. 6 7

  8. Associations of Postural Knowledge and Basic Motor Skill with Dyspraxia in Autism: Implication for Abnormalities in Distributed Connectivity and Motor Learning

    PubMed Central

    Dowell, Lauren R.; Mahone, E. Mark; Mostofsky, Stewart H.

    2009-01-01

    Children with autism often have difficulty performing skilled movements. Praxis performance requires basic motor skill, knowledge of representations of the movement (mediated by parietal regions), and transcoding of these representations into movement plans (mediated by premotor circuits). The goals of this study were: (a) to determine whether dyspraxia in autism is associated with impaired representational (“postural”) knowledge, and (b) to examine the contributions of postural knowledge and basic motor skill to dyspraxia in autism. Thirty-seven children with autism spectrum disorder (ASD) and 50 typically developing (TD) children, ages 8–13, completed: (a) an examination of basic motor skills, (b) a postural knowledge test assessing praxis discrimination, and (c) a praxis examination. Children with ASD showed worse basic motor skill and postural knowledge than controls. The ASD group continued to show significantly poorer praxis than controls after accounting for age, IQ, basic motor skill, and postural knowledge. Dyspraxia in autism appears to be associated with impaired formation of spatial representations, as well as transcoding and execution. Distributed abnormality across parietal, premotor, and motor circuitry, as well as anomalous connectivity may be implicated. PMID:19702410

  9. Tauopathy induced by low level expression of a human brain-derived tau fragment in mice is rescued by phenylbutyrate.

    PubMed

    Bondulich, Marie K; Guo, Tong; Meehan, Christopher; Manion, John; Rodriguez Martin, Teresa; Mitchell, Jacqueline C; Hortobagyi, Tibor; Yankova, Natalia; Stygelbout, Virginie; Brion, Jean-Pierre; Noble, Wendy; Hanger, Diane P

    2016-08-01

    Human neurodegenerative tauopathies exhibit pathological tau aggregates in the brain along with diverse clinical features including cognitive and motor dysfunction. Post-translational modifications including phosphorylation, ubiquitination and truncation, are characteristic features of tau present in the brain in human tauopathy. We have previously reported an N-terminally truncated form of tau in human brain that is associated with the development of tauopathy and is highly phosphorylated. We have generated a new mouse model of tauopathy in which this human brain-derived, 35 kDa tau fragment (Tau35) is expressed in the absence of any mutation and under the control of the human tau promoter. Most existing mouse models of tauopathy overexpress mutant tau at levels that do not occur in human neurodegenerative disease, whereas Tau35 transgene expression is equivalent to less than 10% of that of endogenous mouse tau. Tau35 mice recapitulate key features of human tauopathies, including aggregated and abnormally phosphorylated tau, progressive cognitive and motor deficits, autophagic/lysosomal dysfunction, loss of synaptic protein, and reduced life-span. Importantly, we found that sodium 4-phenylbutyrate (Buphenyl®), a drug used to treat urea cycle disorders and currently in clinical trials for a range of neurodegenerative diseases, reverses the observed abnormalities in tau and autophagy, behavioural deficits, and loss of synapsin 1 in Tau35 mice. Our results show for the first time that, unlike other tau transgenic mouse models, minimal expression of a human disease-associated tau fragment in Tau35 mice causes a profound and progressive tauopathy and cognitive changes, which are rescued by pharmacological intervention using a clinically approved drug. These novel Tau35 mice therefore represent a highly disease-relevant animal model in which to investigate molecular mechanisms and to develop novel treatments for human tauopathies. © The Author (2016). Published by

  10. Tauopathy induced by low level expression of a human brain-derived tau fragment in mice is rescued by phenylbutyrate

    PubMed Central

    Bondulich, Marie K.; Guo, Tong; Meehan, Christopher; Manion, John; Rodriguez Martin, Teresa; Mitchell, Jacqueline C.; Hortobagyi, Tibor; Yankova, Natalia; Stygelbout, Virginie; Brion, Jean-Pierre; Noble, Wendy

    2016-01-01

    Abstract Human neurodegenerative tauopathies exhibit pathological tau aggregates in the brain along with diverse clinical features including cognitive and motor dysfunction. Post-translational modifications including phosphorylation, ubiquitination and truncation, are characteristic features of tau present in the brain in human tauopathy. We have previously reported an N-terminally truncated form of tau in human brain that is associated with the development of tauopathy and is highly phosphorylated. We have generated a new mouse model of tauopathy in which this human brain-derived, 35 kDa tau fragment (Tau35) is expressed in the absence of any mutation and under the control of the human tau promoter. Most existing mouse models of tauopathy overexpress mutant tau at levels that do not occur in human neurodegenerative disease, whereas Tau35 transgene expression is equivalent to less than 10% of that of endogenous mouse tau. Tau35 mice recapitulate key features of human tauopathies, including aggregated and abnormally phosphorylated tau, progressive cognitive and motor deficits, autophagic/lysosomal dysfunction, loss of synaptic protein, and reduced life-span. Importantly, we found that sodium 4-phenylbutyrate (Buphenyl®), a drug used to treat urea cycle disorders and currently in clinical trials for a range of neurodegenerative diseases, reverses the observed abnormalities in tau and autophagy, behavioural deficits, and loss of synapsin 1 in Tau35 mice. Our results show for the first time that, unlike other tau transgenic mouse models, minimal expression of a human disease-associated tau fragment in Tau35 mice causes a profound and progressive tauopathy and cognitive changes, which are rescued by pharmacological intervention using a clinically approved drug. These novel Tau35 mice therefore represent a highly disease-relevant animal model in which to investigate molecular mechanisms and to develop novel treatments for human tauopathies. PMID:27297240

  11. Tau Oligomers as Potential Targets for Alzheimer’s Diagnosis and Novel Drugs

    PubMed Central

    Guzmán-Martinez, Leonardo; Farías, Gonzalo A.; Maccioni, Ricardo Benjamin

    2013-01-01

    A cumulative number of approaches have been carried out to elucidate the pathogenesis of Alzheimer’s disease (AD). Tangles formation has been identified as a major event involved in the neurodegenerative process, due to the conversion of either soluble peptides or oligomers into insoluble filaments. Most of recent studies share in common the observation that formation of tau oligomers and the subsequent pathological filaments arrays is a critical step in AD etiopathogenesis. Oligomeric tau species appear to be toxic for neuronal cells, and therefore appear as an appropriate target for the design of molecules that may control morphological and functional alterations leading to cognitive impairment. Thus, current therapeutic strategies are aimed at three major types of molecules: (1) inhibitors of protein kinases and phosphatases that modify tau and that may control neuronal degeneration, (2) methylene blue, and (3) natural phytocomplexes and polyphenolics compounds able to either inhibit the formation of tau filaments or disaggregate them. Only a few polyphenolic molecules have emerged to prevent tau aggregation. In this context, fulvic acid (FA), a humic substance, has potential protective activity cognitive impairment. In fact, formation of paired helical filaments in vitro, is inhibited by FA affecting the length of fibrils and their morphology. PMID:24191153

  12. Training leads to increased auditory brain-computer interface performance of end-users with motor impairments.

    PubMed

    Halder, S; Käthner, I; Kübler, A

    2016-02-01

    Auditory brain-computer interfaces are an assistive technology that can restore communication for motor impaired end-users. Such non-visual brain-computer interface paradigms are of particular importance for end-users that may lose or have lost gaze control. We attempted to show that motor impaired end-users can learn to control an auditory speller on the basis of event-related potentials. Five end-users with motor impairments, two of whom with additional visual impairments, participated in five sessions. We applied a newly developed auditory brain-computer interface paradigm with natural sounds and directional cues. Three of five end-users learned to select symbols using this method. Averaged over all five end-users the information transfer rate increased by more than 1800% from the first session (0.17 bits/min) to the last session (3.08 bits/min). The two best end-users achieved information transfer rates of 5.78 bits/min and accuracies of 92%. Our results show that an auditory BCI with a combination of natural sounds and directional cues, can be controlled by end-users with motor impairment. Training improves the performance of end-users to the level of healthy controls. To our knowledge, this is the first time end-users with motor impairments controlled an auditory brain-computer interface speller with such high accuracy and information transfer rates. Further, our results demonstrate that operating a BCI with event-related potentials benefits from training and specifically end-users may require more than one session to develop their full potential. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  13. Global Mobility Task: index for evaluating motor impairment and motor rehabilitation programs in Parkinson's disease patients.

    PubMed

    Peppe, A; Ranaldi, A; Chiavalon, C; Gasbarra, A; Collepardo, A; Romeo, R; Pasqualetti, P; Caltagirone, C

    2007-09-01

    In this study, the validity of a motor task, i.e., the Global Mobility Task (GMT), was assessed in a group of Parkinson's disease (PD) patients. Fifty-eight PD patients (mean age: 68.7 years) and 18 healthy subjects (mean age: 65.8 years) were enrolled in the study. The GMT measures the ability of an adult to roll over on the floor and stand up in five steps using two parameters: 'Time' and 'Score', i.e., the time needed and the ability to perform each step of the task. As the GMT has never been evaluated before, internal consistency and concurrent and discriminative validity were considered in assessing its characteristics in a group of PD patients at the beginning and at the end of a motor rehabilitation program. To determine whether the GMT could also quantify the extrapyramidal impairment, we compared data collected using this task with data obtained using clinical scales such as the Unified Parkinson's Disease Rating Scale III (UPDRS part III) and Hoehn & Yahr's score. Results showed that the GMT had good consistency and inter-rater reproducibility, was closely related to clinical scales and was able to detect the amelioration of extrapyramidal symptoms at the end of the motor rehabilitation program. we propose the GMT as a tool for measuring impaired mobility in PD patients and for evaluating the objective effects of motor rehabilitation programs.

  14. Weaker Seniors Exhibit Motor Cortex Hypoexcitability and Impairments in Voluntary Activation

    PubMed Central

    Taylor, Janet L.; Hong, S. Lee; Law, Timothy D.; Russ, David W.

    2015-01-01

    Background. Weakness predisposes seniors to a fourfold increase in functional limitations. The potential for age-related degradation in nervous system function to contribute to weakness and physical disability has garnered much interest of late. In this study, we tested the hypothesis that weaker seniors have impairments in voluntary (neural) activation and increased indices of GABAergic inhibition of the motor cortex, assessed using transcranial magnetic stimulation. Methods. Young adults (N = 46; 21.2±0.5 years) and seniors (N = 42; 70.7±0.9 years) had their wrist flexion strength quantified along with voluntary activation capacity (by comparing voluntary and electrically evoked forces). Single-pulse transcranial magnetic stimulation was used to measure motor-evoked potential amplitude and silent period duration during isometric contractions at 15% and 30% of maximum strength. Paired-pulse transcranial magnetic stimulation was used to measure intracortical facilitation and short-interval and long-interval intracortical inhibition. The primary analysis compared seniors to young adults. The secondary analysis compared stronger seniors (top two tertiles) to weaker seniors (bottom tertile) based on strength relative to body weight. Results. The most novel findings were that weaker seniors exhibited: (i) a 20% deficit in voluntary activation; (ii) ~20% smaller motor-evoked potentials during the 30% contraction task; and (iii) nearly twofold higher levels of long-interval intracortical inhibition under resting conditions. Conclusions. These findings indicate that weaker seniors exhibit significant impairments in voluntary activation, and that this impairment may be mechanistically associated with increased GABAergic inhibition of the motor cortex. PMID:25834195

  15. Impaired glutamatergic projection from the motor cortex to the subthalamic nucleus in 6-hydroxydopamine-lesioned hemi-parkinsonian rats.

    PubMed

    Wang, Yan-Yan; Wang, Yong; Jiang, Hai-Fei; Liu, Jun-Hua; Jia, Jun; Wang, Ke; Zhao, Fei; Luo, Min-Hua; Luo, Min-Min; Wang, Xiao-Min

    2018-02-01

    The glutamatergic projection from the motor cortex to the subthalamic nucleus (STN) constitutes the cortico-basal ganglia circuit and plays a critical role in the control of movement. Emerging evidence shows that the cortico-STN pathway is susceptible to dopamine depletion. Specifically in Parkinson's disease (PD), abnormal electrophysiological activities were observed in the motor cortex and STN, while the STN serves as a key target of deep brain stimulation for PD therapy. However, direct morphological changes in the cortico-STN connectivity in response to PD progress are poorly understood at present. In the present study, we used a trans-synaptic anterograde tracing method with herpes simplex virus-green fluorescent protein (HSV-GFP) to monitor the cortico-STN connectivity in a rat model of PD. We found that the connectivity from the primary motor cortex (M1) to the STN was impaired in parkinsonian rats as manifested by a marked decrease in trans-synaptic infection of HSV-GFP from M1 neurons to STN neurons in unilateral 6-hydroxydopamine (6-OHDA)-lesioned rats. Ultrastructural analysis with electron microscopy revealed that excitatory synapses in the STN were also impaired in parkinsonian rats. Glutamatergic terminals identified by a specific marker (vesicular glutamate transporter 1) were reduced in the STN, while glutamatergic neurons showed an insignificant change in their total number in both the M1 and STN regions. These results indicate that the M1-STN glutamatergic connectivity is downregulated in parkinsonian rats. This downregulation is mediated probably via a mechanism involving the impairments of excitatory terminals and synapses in the STN. Copyright © 2017. Published by Elsevier Inc.

  16. Family Stress in Dutch Families with Motor Impaired Toddlers: A Survey in a Dutch Rehabilitation Centre

    ERIC Educational Resources Information Center

    Tibosch, Marijke

    2008-01-01

    The study investigated the relationship between family stress and child characteristics in families with motor impaired toddlers. Families of 20 children between 2 1/2 and 5 years old with motor impairments, who visit a therapeutic toddler class in a rehabilitation centre, participated. The study was carried out in the Netherlands. Family stress…

  17. The Logan School Motor Development Program for the Deaf-Blind and Sensory Impaired.

    ERIC Educational Resources Information Center

    Logan, Thomas E.

    Presented are numerous motor development activities for sensory impaired, severely and profoundly mentally retarded, and multiply handicapped mentally retarded students of all ages. Background information is provided on program objectives and administration, the multiply handicapped child, motor development, and methods of movement training.…

  18. An experimental evaluation of a new designed apparatus (NDA) for the rapid measurement of impaired motor function in rats.

    PubMed

    Jarrahi, M; Sedighi Moghadam, B; Torkmandi, H

    2015-08-15

    Assessment of the ability of rat to balance by rotarod apparatus (ROTA) is frequently used as a measure of impaired motor system function. Most of these methods have some disadvantages, such as failing to sense motor coordination rather than endurance and as the sensitivity of the method is low, more animals are needed to obtain statistically significant results. We have designed and tested a new designed apparatus (NDA) to measure motor system function in rats. Our system consists of a glass box containing 4 beams which placed with 1cm distance between them, two electrical motors for rotating the beams, and a camera to record the movements of the rats. The RPM of the beams is adjustable digitally between 0 and 50 rounds per minute. We evaluated experimentally the capability of the NDA for the rapid measurement of impaired motor function in rats. Also we demonstrated that the sensitivity of the NDA increases by faster rotation speeds and may be more sensitive than ROTA for evaluating of impaired motor system function. Compared to a previous version of this task, our NDA provides a more efficient method to test rodents for studies of motor system function after impaired motor nervous system. In summary, our NDA will allow high efficient monitoring of rat motor system function and may be more sensitive than ROTA for evaluating of impaired motor system function in rats. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Repeated Exposure to Ketamine-Xylazine during Early Development Impairs Motor Learning-dependent Dendritic Spine Plasticity in Adulthood

    PubMed Central

    Huang, Lianyan; Yang, Guang

    2014-01-01

    Background Recent studies in rodents suggest that repeated and prolonged anesthetic exposure at early stages of development leads to cognitive and behavioral impairments later in life. However, the underlying mechanism remains unknown. In this study, we tested whether exposure to general anesthesia during early development will disrupt the maturation of synaptic circuits and compromise learning-related synaptic plasticity later in life. Methods Mice received ketamine/xylazine (20/3 mg/kg) anesthesia for one or three times, starting at either early [postnatal day 14 (P14)] or late (P21) stages of development (n=105). Control mice received saline injections (n=34). At P30, mice were subjected to rotarod motor training and fear conditioning. Motor learning-induced synaptic remodeling was examined in vivo by repeatedly imaging fluorescently-labeled postsynaptic dendritic spines in the primary motor cortex before and after training using two-photon microscopy. Results Three exposures to ketamine/xylazine anesthesia between P14–18 impair the animals’ motor learning and learning-dependent dendritic spine plasticity [new spine formation, 8.4 ± 1.3% (mean ± SD) versus 13.4 ± 1.8%, P = 0.002] without affecting fear memory and cell apoptosis. One exposure at P14 or three exposures between P21–25 has no effects on the animals’ motor learning or spine plasticity. Finally, enriched motor experience ameliorates anesthesia-induced motor learning impairment and synaptic deficits. Conclusion Our study demonstrates that repeated exposures to ketamine/xylazine during early development impair motor learning and learning-dependent dendritic spine plasticity later in life. The reduction in synaptic structural plasticity may underlie anesthesia-induced behavioral impairment. PMID:25575163

  20. Tau and spectraplakins promote synapse formation and maintenance through Jun kinase and neuronal trafficking

    PubMed Central

    Voelzmann, Andre; Okenve-Ramos, Pilar; Qu, Yue; Chojnowska-Monga, Monika; del Caño-Espinel, Manuela; Prokop, Andreas; Sanchez-Soriano, Natalia

    2016-01-01

    The mechanisms regulating synapse numbers during development and ageing are essential for normal brain function and closely linked to brain disorders including dementias. Using Drosophila, we demonstrate roles of the microtubule-associated protein Tau in regulating synapse numbers, thus unravelling an important cellular requirement of normal Tau. In this context, we find that Tau displays a strong functional overlap with microtubule-binding spectraplakins, establishing new links between two different neurodegenerative factors. Tau and the spectraplakin Short Stop act upstream of a three-step regulatory cascade ensuring adequate delivery of synaptic proteins. This cascade involves microtubule stability as the initial trigger, JNK signalling as the central mediator, and kinesin-3 mediated axonal transport as the key effector. This cascade acts during development (synapse formation) and ageing (synapse maintenance) alike. Therefore, our findings suggest novel explanations for intellectual disability in Tau deficient individuals, as well as early synapse loss in dementias including Alzheimer’s disease. DOI: http://dx.doi.org/10.7554/eLife.14694.001 PMID:27501441

  1. Increased CDK5 expression in HIV encephalitis contributes to neurodegeneration via tau phosphorylation and is reversed with Roscovitine.

    PubMed

    Patrick, Christina; Crews, Leslie; Desplats, Paula; Dumaop, Wilmar; Rockenstein, Edward; Achim, Cristian L; Everall, Ian P; Masliah, Eliezer

    2011-04-01

    Recent treatments with highly active antiretroviral therapy (HAART) regimens have been shown to improve general clinical status in patients with human immunodeficiency virus (HIV) infection; however, the prevalence of cognitive alterations and neurodegeneration has remained the same or has increased. These deficits are more pronounced in the subset of HIV patients with the inflammatory condition known as HIV encephalitis (HIVE). Activation of signaling pathways such as GSK3β and CDK5 has been implicated in the mechanisms of HIV neurotoxicity; however, the downstream mediators of these effects are unclear. The present study investigated the involvement of CDK5 and tau phosphorylation in the mechanisms of neurodegeneration in HIVE. In the frontal cortex of patients with HIVE, increased levels of CDK5 and p35 expression were associated with abnormal tau phosphorylation. Similarly, transgenic mice engineered to express the HIV protein gp120 exhibited increased brain levels of CDK5 and p35, alterations in tau phosphorylation, and dendritic degeneration. In contrast, genetic knockdown of CDK5 or treatment with the CDK5 inhibitor roscovitine improved behavioral performance in the water maze test and reduced neurodegeneration, abnormal tau phosphorylation, and astrogliosis in gp120 transgenic mice. These findings indicate that abnormal CDK5 activation contributes to the neurodegenerative process in HIVE via abnormal tau phosphorylation; thus, reducing CDK5 might ameliorate the cognitive impairments associated with HIVE. Copyright © 2011 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  2. Methionine stimulates motor impairment and cerebellar mercury deposition in methylmercury-exposed mice.

    PubMed

    Zimmermann, Luciana T; dos Santos, Danúbia B; Colle, Dirleise; dos Santos, Alessandra A; Hort, Mariana A; Garcia, Solange C; Bressan, Lucas Paines; Bohrer, Denise; Farina, Marcelo

    2014-01-01

    Methylmercury (MeHg) is a highly toxic environmental contaminant that produces neurological and developmental impairments in animals and humans. Although its neurotoxic properties have been widely reported, the molecular mechanisms by which MeHg enters the cells and exerts toxicity are not yet completely understood. Taking into account that MeHg is found mostly bound to sulfhydryl-containing molecules such as cysteine in the environment and based on the fact that the MeHg-cysteine complex (MeHg-S-Cys) can be transported via the L-type neutral amino acid carrier transport (LAT) system, the potential beneficial effects of L-methionine (L-Met, a well known LAT substrate) against MeHg (administrated as MeHg-S-Cys)-induced neurotoxicity in mice were investigated. Mice were exposed to MeHg (daily subcutaneous injections of MeHg-S-Cys, 10 mg Hg/kg) and/or L-Met (daily intraperitoneal injections, 250 mg/kg) for 10 consecutive days. After treatments, the measured hallmarks of toxicity were mostly based on behavioral parameters related to motor performance, as well as biochemical parameters related to the cerebellar antioxidant glutathione (GSH) system. MeHg significantly decreased motor activity (open-field test) and impaired motor performance (rota-rod task) compared with controls, as well as producing disturbances in the cerebellar antioxidant GSH system. Interestingly, L-Met administration did not protect against MeHg-induced behavioral and cerebellar changes, but rather increased motor impairments in animals exposed to MeHg. In agreement with this observation, cerebellar levels of mercury (Hg) were higher in animals exposed to MeHg plus L-Met compared to those only exposed to MeHg. However, this event was not observed in kidney and liver. These results are the first to demonstrate that L-Met enhances cerebellar deposition of Hg in mice exposed to MeHg and that this higher deposition may be responsible for the greater motor impairment observed in mice simultaneously

  3. Cannabidiol Prevents Motor and Cognitive Impairments Induced by Reserpine in Rats.

    PubMed

    Peres, Fernanda F; Levin, Raquel; Suiama, Mayra A; Diana, Mariana C; Gouvêa, Douglas A; Almeida, Valéria; Santos, Camila M; Lungato, Lisandro; Zuardi, Antônio W; Hallak, Jaime E C; Crippa, José A; Vânia, D'Almeida; Silva, Regina H; Abílio, Vanessa C

    2016-01-01

    Cannabidiol (CBD) is a non-psychotomimetic compound from Cannabis sativa that presents antipsychotic, anxiolytic, anti-inflammatory, and neuroprotective effects. In Parkinson's disease patients, CBD is able to attenuate the psychotic symptoms induced by L-DOPA and to improve quality of life. Repeated administration of reserpine in rodents induces motor impairments that are accompanied by cognitive deficits, and has been applied to model both tardive dyskinesia and Parkinson's disease. The present study investigated whether CBD administration would attenuate reserpine-induced motor and cognitive impairments in rats. Male Wistar rats received four injections of CBD (0.5 or 5 mg/kg) or vehicle (days 2-5). On days 3 and 5, animals received also one injection of 1 mg/kg reserpine or vehicle. Locomotor activity, vacuous chewing movements, and catalepsy were assessed from day 1 to day 7. On days 8 and 9, we evaluated animals' performance on the plus-maze discriminative avoidance task, for learning/memory assessment. CBD (0.5 and 5 mg/kg) attenuated the increase in catalepsy behavior and in oral movements - but not the decrease in locomotion - induced by reserpine. CBD (0.5 mg/kg) also ameliorated the reserpine-induced memory deficit in the discriminative avoidance task. Our data show that CBD is able to attenuate motor and cognitive impairments induced by reserpine, suggesting the use of this compound in the pharmacotherapy of Parkinson's disease and tardive dyskinesia.

  4. The toxicity of tau in Alzheimer disease: turnover, targets and potential therapeutics.

    PubMed

    Pritchard, Susanne M; Dolan, Philip J; Vitkus, Alisa; Johnson, Gail V W

    2011-08-01

    It has been almost 25 years since the initial discovery that tau was the primary component of the neurofibrillary tangles (NFTs) in Alzheimer disease (AD) brain. Although AD is defined by both β-amyloid (Aβ) pathology (Aβ plaques) and tau pathology (NFTs), whether or not tau played a critical role in disease pathogenesis was a subject of discussion for many years. However, given the increasing evidence that pathological forms of tau can compromise neuronal function and that tau is likely an important mediator of Aβ toxicity, there is a growing awareness that tau is a central player in AD pathogenesis. In this review we begin with a brief history of tau, then provide an overview of pathological forms of tau, followed by a discussion of the differential degradation of tau by either the proteasome or autophagy and possible mechanisms by which pathological forms of tau may exert their toxicity. We conclude by discussing possible avenues for therapeutic intervention based on these emerging themes of tau's role in AD. © 2011 The Authors Journal compilation © 2011 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.

  5. Azaphilones inhibit tau aggregation and dissolve tau aggregates in vitro.

    PubMed

    Paranjape, Smita R; Riley, Andrew P; Somoza, Amber D; Oakley, C Elizabeth; Wang, Clay C C; Prisinzano, Thomas E; Oakley, Berl R; Gamblin, T Chris

    2015-05-20

    The aggregation of the microtubule-associated protein tau is a seminal event in many neurodegenerative diseases, including Alzheimer's disease. The inhibition or reversal of tau aggregation is therefore a potential therapeutic strategy for these diseases. Fungal natural products have proven to be a rich source of useful compounds having wide varieties of biological activities. We have previously screened Aspergillus nidulans secondary metabolites for their ability to inhibit tau aggregation in vitro using an arachidonic acid polymerization protocol. One aggregation inhibitor identified was asperbenzaldehyde, an intermediate in azaphilone biosynthesis. We therefore tested 11 azaphilone derivatives to determine their tau assembly inhibition properties in vitro. All compounds tested inhibited tau filament assembly to some extent, and four of the 11 compounds had the advantageous property of disassembling preformed tau aggregates in a dose-dependent fashion. The addition of these compounds to the tau aggregates reduced both the total length and number of tau polymers. The most potent compounds were tested in in vitro reactions to determine whether they interfere with tau's normal function of stabilizing microtubules (MTs). We found that they did not completely inhibit MT assembly in the presence of tau. These derivatives are very promising lead compounds for tau aggregation inhibitors and, more excitingly, for compounds that can disassemble pre-existing tau filaments. They also represent a new class of anti-tau aggregation compounds with a novel structural scaffold.

  6. Weaker Seniors Exhibit Motor Cortex Hypoexcitability and Impairments in Voluntary Activation.

    PubMed

    Clark, Brian C; Taylor, Janet L; Hong, S Lee; Law, Timothy D; Russ, David W

    2015-09-01

    Weakness predisposes seniors to a fourfold increase in functional limitations. The potential for age-related degradation in nervous system function to contribute to weakness and physical disability has garnered much interest of late. In this study, we tested the hypothesis that weaker seniors have impairments in voluntary (neural) activation and increased indices of GABAergic inhibition of the motor cortex, assessed using transcranial magnetic stimulation. Young adults (N = 46; 21.2±0.5 years) and seniors (N = 42; 70.7±0.9 years) had their wrist flexion strength quantified along with voluntary activation capacity (by comparing voluntary and electrically evoked forces). Single-pulse transcranial magnetic stimulation was used to measure motor-evoked potential amplitude and silent period duration during isometric contractions at 15% and 30% of maximum strength. Paired-pulse transcranial magnetic stimulation was used to measure intracortical facilitation and short-interval and long-interval intracortical inhibition. The primary analysis compared seniors to young adults. The secondary analysis compared stronger seniors (top two tertiles) to weaker seniors (bottom tertile) based on strength relative to body weight. The most novel findings were that weaker seniors exhibited: (i) a 20% deficit in voluntary activation; (ii) ~20% smaller motor-evoked potentials during the 30% contraction task; and (iii) nearly twofold higher levels of long-interval intracortical inhibition under resting conditions. These findings indicate that weaker seniors exhibit significant impairments in voluntary activation, and that this impairment may be mechanistically associated with increased GABAergic inhibition of the motor cortex. © The Author 2015. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Alzheimer brain-derived tau oligomers propagate pathology from endogenous tau.

    PubMed

    Lasagna-Reeves, Cristian A; Castillo-Carranza, Diana L; Sengupta, Urmi; Guerrero-Munoz, Marcos J; Kiritoshi, Takaki; Neugebauer, Volker; Jackson, George R; Kayed, Rakez

    2012-01-01

    Intracerebral injection of brain extracts containing amyloid or tau aggregates in transgenic animals can induce cerebral amyloidosis and tau pathology. We extracted pure populations of tau oligomers directly from the cerebral cortex of Alzheimer disease (AD) brain. These oligomers are potent inhibitors of long term potentiation (LTP) in hippocampal brain slices and disrupt memory in wild type mice. We observed for the first time that these authentic brain-derived tau oligomers propagate abnormal tau conformation of endogenous murine tau after prolonged incubation. The conformation and hydrophobicity of tau oligomers play a critical role in the initiation and spread of tau pathology in the naïve host in a manner reminiscent of sporadic AD.

  8. Impact of N-tau on adult hippocampal neurogenesis, anxiety, and memory.

    PubMed

    Pristerà, Andrea; Saraulli, Daniele; Farioli-Vecchioli, Stefano; Strimpakos, Georgios; Costanzi, Marco; di Certo, Maria Grazia; Cannas, Sara; Ciotti, Maria Teresa; Tirone, Felice; Mattei, Elisabetta; Cestari, Vincenzo; Canu, Nadia

    2013-11-01

    Different pathological tau species are involved in memory loss in Alzheimer's disease, the most common cause of dementia among older people. However, little is known about how tau pathology directly affects adult hippocampal neurogenesis, a unique form of structural plasticity implicated in hippocampus-dependent spatial learning and mood-related behavior. To this aim, we generated a transgenic mouse model conditionally expressing a pathological tau fragment (26-230 aa of the longest human tau isoform, or N-tau) in nestin-positive stem/progenitor cells. We found that N-tau reduced the proliferation of progenitor cells in the adult dentate gyrus, reduced cell survival and increased cell death by a caspase-3-independent mechanism, and recruited microglia. Although the number of terminally differentiated neurons was reduced, these showed an increased dendritic arborization and spine density. This resulted in an increase of anxiety-related behavior and an impairment of episodic-like memory, whereas less complex forms of spatial learning remained unaltered. Understanding how pathological tau species directly affect neurogenesis is important for developing potential therapeutic strategies to direct neurogenic instructive cues for hippocampal function repair. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Oral motor deficits in speech-impaired children with autism

    PubMed Central

    Belmonte, Matthew K.; Saxena-Chandhok, Tanushree; Cherian, Ruth; Muneer, Reema; George, Lisa; Karanth, Prathibha

    2013-01-01

    Absence of communicative speech in autism has been presumed to reflect a fundamental deficit in the use of language, but at least in a subpopulation may instead stem from motor and oral motor issues. Clinical reports of disparity between receptive vs. expressive speech/language abilities reinforce this hypothesis. Our early-intervention clinic develops skills prerequisite to learning and communication, including sitting, attending, and pointing or reference, in children below 6 years of age. In a cohort of 31 children, gross and fine motor skills and activities of daily living as well as receptive and expressive speech were assessed at intake and after 6 and 10 months of intervention. Oral motor skills were evaluated separately within the first 5 months of the child's enrolment in the intervention programme and again at 10 months of intervention. Assessment used a clinician-rated structured report, normed against samples of 360 (for motor and speech skills) and 90 (for oral motor skills) typically developing children matched for age, cultural environment and socio-economic status. In the full sample, oral and other motor skills correlated with receptive and expressive language both in terms of pre-intervention measures and in terms of learning rates during the intervention. A motor-impaired group comprising a third of the sample was discriminated by an uneven profile of skills with oral motor and expressive language deficits out of proportion to the receptive language deficit. This group learnt language more slowly, and ended intervention lagging in oral motor skills. In individuals incapable of the degree of motor sequencing and timing necessary for speech movements, receptive language may outstrip expressive speech. Our data suggest that autistic motor difficulties could range from more basic skills such as pointing to more refined skills such as articulation, and need to be assessed and addressed across this entire range in each individual. PMID:23847480

  10. Impaired Visual Motor Coordination in Obese Adults.

    PubMed

    Gaul, David; Mat, Arimin; O'Shea, Donal; Issartel, Johann

    2016-01-01

    Objective. To investigate whether obesity alters the sensory motor integration process and movement outcome during a visual rhythmic coordination task. Methods. 88 participants (44 obese and 44 matched control) sat on a chair equipped with a wrist pendulum oscillating in the sagittal plane. The task was to swing the pendulum in synchrony with a moving visual stimulus displayed on a screen. Results. Obese participants demonstrated significantly ( p < 0.01) higher values for continuous relative phase (CRP) indicating poorer level of coordination, increased movement variability ( p < 0.05), and a larger amplitude ( p < 0.05) than their healthy weight counterparts. Conclusion. These results highlight the existence of visual sensory integration deficiencies for obese participants. The obese group have greater difficulty in synchronizing their movement with a visual stimulus. Considering that visual motor coordination is an essential component of many activities of daily living, any impairment could significantly affect quality of life.

  11. Protein restriction cycles reduce IGF-1 and phosphorylated Tau, and improve behavioral performance in an Alzheimer's disease mouse model.

    PubMed

    Parrella, Edoardo; Maxim, Tom; Maialetti, Francesca; Zhang, Lu; Wan, Junxiang; Wei, Min; Cohen, Pinchas; Fontana, Luigi; Longo, Valter D

    2013-04-01

    In laboratory animals, calorie restriction (CR) protects against aging, oxidative stress, and neurodegenerative pathologies. Reduced levels of growth hormone and IGF-1, which mediate some of the protective effects of CR, can also extend longevity and/or protect against age-related diseases in rodents and humans. However, severely restricted diets are difficult to maintain and are associated with chronically low weight and other major side effects. Here we show that 4 months of periodic protein restriction cycles (PRCs) with supplementation of nonessential amino acids in mice already displaying significant cognitive impairment and Alzheimer's disease (AD)-like pathology reduced circulating IGF-1 levels by 30-70% and caused an 8-fold increase in IGFBP-1. Whereas PRCs did not affect the levels of β amyloid (Aβ), they decreased tau phosphorylation in the hippocampus and alleviated the age-dependent impairment in cognitive performance. These results indicate that periodic protein restriction cycles without CR can promote changes in circulating growth factors and tau phosphorylation associated with protection against age-related neuropathologies. © 2013 The Authors Aging Cell © 2013 Blackwell Publishing Ltd/Anatomical Society of Great Britain and Ireland.

  12. Characterization of Early Pathological Tau Conformations and Phosphorylation in Chronic Traumatic Encephalopathy

    PubMed Central

    Kanaan, Nicholas M.; Cox, Kristine; Alvarez, Victor E.; Stein, Thor D.; Poncil, Sharra; McKee, Ann C.

    2016-01-01

    Chronic traumatic encephalopathy (CTE) is a neurodegenerative tauopathy that develops after repetitive head injury. Several lines of evidence in other tauopathies suggest that tau oligomer formation induces neurotoxicity and that tau oligomer-mediated neurotoxicity involves induction of axonal dysfunction through exposure of an N-terminal motif in tau, the phosphatase-activating domain (PAD). Additionally, phosphorylation at serine 422 in tau occurs early and correlates with cognitive decline in patients with Alzheimer disease (AD). We performed immunohistochemistry and immunofluorescence on fixed brain sections and biochemical analysis of fresh brain extracts to characterize the presence of PAD-exposed tau (TNT1 antibody), tau oligomers (TOC1 antibody), tau phosphorylated at S422 (pS422 antibody), and tau truncated at D421 (TauC3 antibody) in the brains of 9-11 cases with CTE and cases of nondemented aged controls and AD (Braak VI) (n = 6, each). All 3 early tau markers (ie, TNT1, TOC1, and pS422) were present in CTE and displayed extensive colocalization in perivascular tau lesions that are considered diagnostic for CTE. Notably, the TauC3 epitope, which is abundant in AD, was relatively sparse in CTE. Together, these results provide the first description of PAD exposure, TOC1 reactive oligomers, phosphorylation of S422, and TauC3 truncation in the tau pathology of CTE. PMID:26671985

  13. Interaction of Language Processing and Motor Skill in Children with Specific Language Impairment

    ERIC Educational Resources Information Center

    DiDonato Brumbach, Andrea C.; Goffman, Lisa

    2014-01-01

    Purpose: To examine how language production interacts with speech motor and gross and fine motor skill in children with specific language impairment (SLI). Method: Eleven children with SLI and 12 age-matched peers (4-6 years) produced structurally primed sentences containing particles and prepositions. Utterances were analyzed for errors and for…

  14. Clubfoot Does Not Impair Gross Motor Development in 5-Year-Olds.

    PubMed

    Zapata, Karina A; Karol, Lori A; Jeans, Kelly A; Jo, Chan-Hee

    2018-04-01

    To evaluate the gross motor development of 5-year-olds using the Peabody Developmental Motor Scales, 2nd Edition (PDMS-2), test after initial nonoperative management of clubfoot as infants. The PDMS-2 Stationary, Locomotion, and Object Manipulation subtests were assessed on 128 children with idiopathic clubfeet at the age of 5 years. Children were categorized by their initial clubfoot severity as greater than 13, unilateral or bilateral involvement, and required surgery. Children with treated clubfeet had average gross motor scores (99 Gross Motor Quotient) compared with age-matched normative scores. Children with more severe clubfeet required surgery significantly more than children with less severe scores (P < .01). Peabody scores were not significantly different according to initial clubfoot severity, unilateral versus bilateral involvement, and surgical versus nonsurgical outcomes. Clubfoot does not significantly impair gross motor development in 5-year-olds.

  15. Blocking Effects of Human Tau on Squid Giant Synapse Transmission and Its Prevention by T-817 MA

    PubMed Central

    Moreno, Herman; Choi, Soonwook; Yu, Eunah; Brusco, Janaina; Avila, Jesus; Moreira, Jorge E.; Sugimori, Mutsuyuki; Llinás, Rodolfo R.

    2011-01-01

    Filamentous tau inclusions are hallmarks of Alzheimer's disease and related neurodegenerative tauopathies, but the molecular mechanisms involved in tau-mediated changes in neuronal function and their possible effects on synaptic transmission are unknown. We have evaluated the effects of human tau protein injected directly into the presynaptic terminal axon of the squid giant synapse, which affords functional, structural, and biochemical analysis of its action on the synaptic release process. Indeed, we have found that at physiological concentration recombinant human tau (h-tau42) becomes phosphorylated, produces a rapid synaptic transmission block, and induces the formation of clusters of aggregated synaptic vesicles in the vicinity of the active zone. Presynaptic voltage clamp recordings demonstrate that h-tau42 does not modify the presynaptic calcium current amplitude or kinetics. Analysis of synaptic noise at the post-synaptic axon following presynaptic h-tau42 microinjection revealed an initial phase of increase spontaneous transmitter release followed by a marked reduction in noise. Finally, systemic administration of T-817MA, a proposed neuro-protective agent, rescued tau-induced synaptic abnormalities. Our results show novel mechanisms of h-tau42 mediated synaptic transmission failure and identify a potential therapeutic agent to treat tau-related neurotoxicity. PMID:21629767

  16. What is the evidence of impaired motor skills and motor control among children with attention deficit hyperactivity disorder (ADHD)? Systematic review of the literature.

    PubMed

    Kaiser, M-L; Schoemaker, M M; Albaret, J-M; Geuze, R H

    2014-11-06

    This article presents a review of the studies that have analysed the motor skills of ADHD children without medication and the influence of medication on their motor skills. The following two questions guided the study: What is the evidence of impairment of motor skills and aspects of motor control among children with ADHD aged between 6 and 16 years? What are the effects of ADHD medication on motor skills and motor control? The following keywords were introduced in the main databases: attention disorder and/or ADHD, motor skills and/or handwriting, children, medication. Of the 45 articles retrieved, 30 described motor skills of children with ADHD and 15 articles analysed the influence of ADHD medication on motor skills and motor control. More than half of the children with ADHD have difficulties with gross and fine motor skills. The children with ADHD inattentive subtype seem to present more impairment of fine motor skills, slow reaction time, and online motor control during complex tasks. The proportion of children with ADHD who improved their motor skills to the normal range by using medication varied from 28% to 67% between studies. The children who still show motor deficit while on medication might meet the diagnostic criteria of developmental coordination disorder (DCD). It is important to assess motor skills among children with ADHD because of the risk of reduced participation in activities of daily living that require motor coordination and attention. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Curcumin Inhibits Tau Aggregation and Disintegrates Preformed Tau Filaments in vitro.

    PubMed

    Rane, Jitendra Subhash; Bhaumik, Prasenjit; Panda, Dulal

    2017-01-01

    The pathological aggregation of tau is a common feature of most of the neuronal disorders including frontotemporal dementia, Parkinson's disease, and Alzheimer's disease. The inhibition of tau aggregation is considered to be one of the important strategies for treating these neurodegenerative diseases. Curcumin, a natural polyphenolic molecule, has been reported to have neuroprotective ability. In this work, curcumin was found to bind to adult tau and fetal tau with a dissociation constant of 3.3±0.4 and 8±1 μM, respectively. Molecular docking studies indicated a putative binding site of curcumin in the microtubule-binding region of tau. Using several complementary techniques, including dynamic light scattering, thioflavin S fluorescence, 90° light scattering, electron microscopy, and atomic force microscopy, curcumin was found to inhibit the aggregation of tau. The dynamic light scattering analysis and atomic force microscopic images revealed that curcumin inhibits the oligomerization of tau. Curcumin also disintegrated preformed tau oligomers. Using Far-UV circular dichroism, curcumin was found to inhibit the β-sheets formation in tau indicating that curcumin inhibits an initial step of tau aggregation. In addition, curcumin inhibited tau fibril formation. Furthermore, the effect of curcumin on the preformed tau filaments was analyzed by atomic force microscopy, transmission electron microscopy, and 90° light scattering. Curcumin treatment disintegrated preformed tau filaments. The results indicated that curcumin inhibited the oligomerization of tau and could disaggregate tau filaments.

  18. Interplay of pathogenic forms of human tau with different autophagic pathways.

    PubMed

    Caballero, Benjamin; Wang, Yipeng; Diaz, Antonio; Tasset, Inmaculada; Juste, Yves Robert; Stiller, Barbara; Mandelkow, Eva-Maria; Mandelkow, Eckhard; Cuervo, Ana Maria

    2018-02-01

    Loss of neuronal proteostasis, a common feature of the aging brain, is accelerated in neurodegenerative disorders, including different types of tauopathies. Aberrant turnover of tau, a microtubule-stabilizing protein, contributes to its accumulation and subsequent toxicity in tauopathy patients' brains. A direct toxic effect of pathogenic forms of tau on the proteolytic systems that normally contribute to their turnover has been proposed. In this study, we analyzed the contribution of three different types of autophagy, macroautophagy, chaperone-mediated autophagy, and endosomal microautophagy to the degradation of tau protein variants and tau mutations associated with this age-related disease. We have found that the pathogenic P301L mutation inhibits degradation of tau by any of the three autophagic pathways, whereas the risk-associated tau mutation A152T reroutes tau for degradation through a different autophagy pathway. We also found defective autophagic degradation of tau when using mutations that mimic common posttranslational modifications in tau or known to promote its aggregation. Interestingly, although most mutations markedly reduced degradation of tau through autophagy, the step of this process preferentially affected varies depending on the type of tau mutation. Overall, our studies unveil a complex interplay between the multiple modifications of tau and selective forms of autophagy that may determine its physiological degradation and its faulty clearance in the disease context. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  19. Motor Symptoms at Onset of Parkinson Disease and Risk for Cognitive Impairment and Depression

    PubMed Central

    Dewey, Richard B.; Taneja, Aanchal; McClintock, Shawn M.; Cullum, C. Munro; Dewey, Richard B.; Bernstein, Ira; Husain, Mustafa M.

    2012-01-01

    Objective To determine if side and type of initial motor symptoms in Parkinson disease predict risk for later development of cognitive impairment or depressive symptoms. Methods We recruited 124 nondemented patients with Parkinson disease to participate in a cohort study of cognitive function and depressive symptoms that used validated neuropsychological tests and a depressive symptom inventory. We first reviewed the patients’ charts to determine their initial motor symptom and side of onset, and then classified the patients into 4 groups: right-side onset tremor, right-side onset bradykinesia/rigidity, left-side onset tremor, and left-side onset bradykinesia/rigidity. We excluded patients with bilateral symptom onset. We used analysis of variance on neuropsychological test performance and depressive symptoms to determine if group classification affected risk of cognitive impairment or depressive symptoms. We controlled our analyses for disease duration and motor severity as measured by the Unified Parkinson Disease Rating Scale Part III motor score. Results There were no differences in any cognitive measure by side and type of initial motor symptoms. The right-side onset tremor group had the lowest depressive symptom scores, and no patient in any group reported severe depressive symptoms. Conclusion Our findings suggest that patterns of nigral cell loss correlating to the initial side and type of motor symptoms in Parkinson disease are not related to the risk of later cognitive impairment. By contrast, patients with right-side onset of tremor appear to have a lower risk of depressive symptoms than patients with other presentations. PMID:22960435

  20. Progressive solitary sclerosis: Gradual motor impairment from a single CNS demyelinating lesion.

    PubMed

    Keegan, B Mark; Kaufmann, Timothy J; Weinshenker, Brian G; Kantarci, Orhun H; Schmalstieg, William F; Paz Soldan, M Mateo; Flanagan, Eoin P

    2016-10-18

    To report patients with progressive motor impairment resulting from an isolated CNS demyelinating lesion in cerebral, brainstem, or spinal cord white matter that we call progressive solitary sclerosis. Thirty patients were identified with (1) progressive motor impairment for over 1 year with a single radiologically identified CNS demyelinating lesion along corticospinal tracts, (2) absence of other demyelinating CNS lesions, and (3) no history of relapses affecting other CNS pathways. Twenty-five were followed prospectively in our multiple sclerosis (MS) clinic and 5 were identified retrospectively from our progressive MS database. Patients were excluded if an alternative etiology for progressive motor impairment was found. Multiple brain and spinal cord MRI were reviewed by a neuroradiologist blinded to the clinical details. The patients' median age was 48.5 years (range 23-71) and 15 (50%) were women. The median follow-up from symptom onset was 100 months (range 15-343 months). All had insidiously progressive upper motor neuron weakness attributable to the solitary demyelinating lesion found on MRI. Clinical presentations were hemiparesis/monoparesis (n = 24), quadriparesis (n = 5), and paraparesis (n = 1). Solitary MRI lesions involved cervical spinal cord (n = 18), cervico-medullary/brainstem region (n = 6), thoracic spinal cord (n = 4), and subcortical white matter (n = 2). CSF abnormalities consistent with MS were found in 13 of 26 (50%). Demyelinating disease was confirmed pathologically in 2 (biopsy, 1; autopsy, 1). Progressive solitary sclerosis results from an isolated CNS demyelinating lesion. Future revisions to MS diagnostic criteria could incorporate this presentation of demyelinating disease. © 2016 American Academy of Neurology.

  1. Evidence for Specificity of Motor Impairments in Catching and Balance in Children with Autism

    ERIC Educational Resources Information Center

    Ament, Katarina; Mejia, Amanda; Buhlman, Rebecca; Erklin, Shannon; Caffo, Brian; Mostofsky, Stewart; Wodka, Ericka

    2015-01-01

    To evaluate evidence for motor impairment specificity in autism spectrum disorder (ASD) and attention deficit/hyperactivity disorder (ADHD). Children completed performance-based assessment of motor functioning (Movement Assessment Battery for Children: MABC-2). Logistic regression models were used to predict group membership. In the models…

  2. Stabilization of dynamic microtubules by mDia1 drives Tau-dependent Aβ1–42 synaptotoxicity

    PubMed Central

    Qu, Xiaoyi; Corona, Carlo; Pasini, Silvia; Pero, Maria Elena; Gundersen, Gregg G.; Shelanski, Michael L.

    2017-01-01

    Oligomeric Amyloid β1–42 (Aβ) plays a crucial synaptotoxic role in Alzheimer’s disease, and hyperphosphorylated tau facilitates Aβ toxicity. The link between Aβ and tau, however, remains controversial. In this study, we find that in hippocampal neurons, Aβ acutely induces tubulin posttranslational modifications (PTMs) and stabilizes dynamic microtubules (MTs) by reducing their catastrophe frequency. Silencing or acute inhibition of the formin mDia1 suppresses these activities and corrects the synaptotoxicity and deficits of axonal transport induced by Aβ. We explored the mechanism of rescue and found that stabilization of dynamic MTs promotes tau-dependent loss of dendritic spines and tau hyperphosphorylation. Collectively, these results uncover a novel role for mDia1 in Aβ-mediated synaptotoxicity and demonstrate that inhibition of MT dynamics and accumulation of PTMs are driving factors for the induction of tau-mediated neuronal damage. PMID:28877993

  3. Prevalence of vision impairment and refractive error in school children in Ba Ria - Vung Tau province, Vietnam.

    PubMed

    Paudel, Prakash; Ramson, Prasidh; Naduvilath, Thomas; Wilson, David; Phuong, Ha Thanh; Ho, Suit M; Giap, Nguyen V

    2014-04-01

    To assess the prevalence of vision impairment and refractive error in school children 12-15 years of age in Ba Ria - Vung Tau province, Vietnam. Prospective, cross-sectional study. 2238 secondary school children. Subjects were selected based on stratified multistage cluster sampling of 13 secondary schools from urban, rural and semi-urban areas. The examination included visual acuity measurements, ocular motility evaluation, cycloplegic autorefraction, and examination of the external eye, anterior segment, media and fundus. Visual acuity and principal cause of vision impairment. The prevalence of uncorrected and presenting visual acuity ≤6/12 in the better eye were 19.4% (95% confidence interval, 12.5-26.3) and 12.2% (95% confidence interval, 8.8-15.6), respectively. Refractive error was the cause of vision impairment in 92.7%, amblyopia in 2.2%, cataract in 0.7%, retinal disorders in 0.4%, other causes in 1.5% and unexplained causes in the remaining 2.6%. The prevalence of vision impairment due to myopia in either eye (-0.50 diopter or greater) was 20.4% (95% confidence interval, 12.8-28.0), hyperopia (≥2.00 D) was 0.4% (95% confidence interval, 0.0-0.7) and emmetropia with astigmatism (≥0.75 D) was 0.7% (95% confidence interval, 0.2-1.2). Vision impairment due to myopia was associated with higher school grade and increased time spent reading and working on a computer. Uncorrected refractive error, particularly myopia, among secondary school children in Vietnam is a major public health problem. School-based eye health initiative such as refractive error screening is warranted to reduce vision impairment. © 2013 The Authors. Clinical & Experimental Ophthalmology published by Wiley Publishing Asia Pty Ltd on behalf of Royal Australian and New Zealand College of Ophthalmologists.

  4. BAG3 facilitates the clearance of endogenous tau in primary neurons.

    PubMed

    Lei, Zhinian; Brizzee, Corey; Johnson, Gail V W

    2015-01-01

    Tau is a microtubule associated protein that is found primarily in neurons, and in pathologic conditions, such as Alzheimer's disease (AD) it accumulates and contributes to the disease process. Because tau plays a fundamental role in the pathogenesis of AD and other tauopathies, and in AD mouse models reducing tau levels improves outcomes, approaches that facilitate tau clearance are being considered as therapeutic strategies. However, fundamental to the development of such interventions is a clearer understanding of the mechanisms that regulate tau clearance. Here, we report a novel mechanism of tau degradation mediated by the co-chaperone BAG3. BAG3 has been shown to be an essential component of a complex that targets substrates to the autophagy pathway for degradation. In rat primary neurons, activation of autophagy by inhibition of proteasome activity or treatment with trehalose resulted in significant decreases in tau and phospho-tau levels. These treatments also induced an upregulation of BAG3. Proteasome inhibition activated JNK, which was responsible for the upregulation of BAG3 and increased tau clearance. Inhibiting JNK or knocking down BAG3 blocked the proteasome inhibition-induced decreases in tau. Further, BAG3 overexpression alone resulted in significant decreases in tau and phospho-tau levels in neurons. These results indicate that BAG3 plays a critical role in regulating the levels of tau in neurons, and interventions that increase BAG3 levels could provide a therapeutic approach in the treatment of AD. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Lithium suppression of tau induces brain iron accumulation and neurodegeneration.

    PubMed

    Lei, P; Ayton, S; Appukuttan, A T; Moon, S; Duce, J A; Volitakis, I; Cherny, R; Wood, S J; Greenough, M; Berger, G; Pantelis, C; McGorry, P; Yung, A; Finkelstein, D I; Bush, A I

    2017-03-01

    Lithium is a first-line therapy for bipolar affective disorder. However, various adverse effects, including a Parkinson-like hand tremor, often limit its use. The understanding of the neurobiological basis of these side effects is still very limited. Nigral iron elevation is also a feature of Parkinsonian degeneration that may be related to soluble tau reduction. We found that magnetic resonance imaging T 2 relaxation time changes in subjects commenced on lithium therapy were consistent with iron elevation. In mice, lithium treatment lowers brain tau levels and increases nigral and cortical iron elevation that is closely associated with neurodegeneration, cognitive loss and parkinsonian features. In neuronal cultures lithium attenuates iron efflux by lowering tau protein that traffics amyloid precursor protein to facilitate iron efflux. Thus, tau- and amyloid protein precursor-knockout mice were protected against lithium-induced iron elevation and neurotoxicity. These findings challenge the appropriateness of lithium as a potential treatment for disorders where brain iron is elevated (for example, Alzheimer's disease), and may explain lithium-associated motor symptoms in susceptible patients.

  6. PICALM modulates autophagy activity and tau accumulation

    PubMed Central

    Moreau, Kevin; Fleming, Angeleen; Imarisio, Sara; Lopez Ramirez, Ana; Mercer, Jacob L.; Jimenez-Sanchez, Maria; Bento, Carla F.; Puri, Claudia; Zavodszky, Eszter; Siddiqi, Farah; Lavau, Catherine P.; Betton, Maureen; O’Kane, Cahir J.; Wechsler, Daniel S.; Rubinsztein, David C.

    2014-01-01

    Genome-wide association studies have identified several loci associated with Alzheimer’s disease (AD), including proteins involved in endocytic trafficking such as PICALM/CALM (phosphatidylinositol binding clathrin assembly protein). It is unclear how these loci may contribute to AD pathology. Here we show that CALM modulates autophagy and alters clearance of tau, a protein which is a known autophagy substrate and which is causatively linked to AD, both in vitro and in vivo. Furthermore, altered CALM expression exacerbates tau-mediated toxicity in zebrafish transgenic models. CALM influences autophagy by regulating the endocytosis of SNAREs, such as VAMP2, VAMP3 and VAMP8, which have diverse effects on different stages of the autophagy pathway, from autophagosome formation to autophagosome degradation. This study suggests that the AD genetic risk factor CALM modulates autophagy, and this may affect disease in a number of ways including modulation of tau turnover. PMID:25241929

  7. Motor Learning in Stroke: Trained Patients Are Not Equal to Untrained Patients With Less Impairment

    PubMed

    Hardwick, Robert M; Rajan, Vikram A; Bastian, Amy J; Krakauer, John W; Celnik, Pablo A

    2017-02-01

    Stroke rehabilitation assumes motor learning contributes to motor recovery, yet motor learning in stroke has received little systematic investigation. Here we aimed to illustrate that despite matching levels of performance on a task, a trained patient should not be considered equal to an untrained patient with less impairment. We examined motor learning in healthy control participants and groups of stroke survivors with mild-to-moderate or moderate-to-severe motor impairment. Participants performed a series of isometric contractions of the elbow flexors to navigate an on-screen cursor to different targets, and trained to perform this task over a 4-day period. The speed-accuracy trade-off function (SAF) was assessed for each group, controlling for differences in self-selected movement speeds between individuals. The initial SAF for each group was proportional to their impairment. All groups were able to improve their performance through skill acquisition. Interestingly, training led the moderate-to-severe group to match the untrained (baseline) performance of the mild-to-moderate group, while the trained mild-to-moderate group matched the untrained (baseline) performance of the controls. Critically, this did not make the two groups equivalent; they differed in their capacity to improve beyond this matched performance level. Specifically, the trained groups had reached a plateau, while the untrained groups had not. Despite matching levels of performance on a task, a trained patient is not equal to an untrained patient with less impairment. This has important implications for decisions both on the focus of rehabilitation efforts for chronic stroke, as well as for returning to work and other activities.

  8. Impairment of Auditory-Motor Timing and Compensatory Reorganization after Ventral Premotor Cortex Stimulation

    PubMed Central

    Kornysheva, Katja; Schubotz, Ricarda I.

    2011-01-01

    Integrating auditory and motor information often requires precise timing as in speech and music. In humans, the position of the ventral premotor cortex (PMv) in the dorsal auditory stream renders this area a node for auditory-motor integration. Yet, it remains unknown whether the PMv is critical for auditory-motor timing and which activity increases help to preserve task performance following its disruption. 16 healthy volunteers participated in two sessions with fMRI measured at baseline and following rTMS (rTMS) of either the left PMv or a control region. Subjects synchronized left or right finger tapping to sub-second beat rates of auditory rhythms in the experimental task, and produced self-paced tapping during spectrally matched auditory stimuli in the control task. Left PMv rTMS impaired auditory-motor synchronization accuracy in the first sub-block following stimulation (p<0.01, Bonferroni corrected), but spared motor timing and attention to task. Task-related activity increased in the homologue right PMv, but did not predict the behavioral effect of rTMS. In contrast, anterior midline cerebellum revealed most pronounced activity increase in less impaired subjects. The present findings suggest a critical role of the left PMv in feed-forward computations enabling accurate auditory-motor timing, which can be compensated by activity modulations in the cerebellum, but not in the homologue region contralateral to stimulation. PMID:21738657

  9. Mutual relationship between Tau and central insulin signalling: consequences for AD and Tauopathies ?

    PubMed

    Gratuze, Maud; Joly-Amado, Aurélie; Vieau, Didier; Buée, Luc; Blum, David

    2018-02-13


    Alzheimer's disease (AD) is a progressive neurodegenerative disorder mainly characterized by cognitive deficits and neuropathological changes such as Tau lesions and amyloid plaques, but also associated with non-cognitive symptomatology. Metabolic and neuroendocrine abnormalities, such as alterations in body weight, brain insulin impairments and lower brain glucose metabolism, that often precede clinical diagnosis, have been extensively reported in AD patients. However, the origin of these symptoms and their relation to pathology and cognitive impairments remain misunderstood. Insulin is a hormone involved in the control of energy homeostasis both peripherally and centrally, and insulin resistant state has been linked to increased risk of dementia. It is now well established that insulin resistance can exacerbate Tau lesions, mainly by disrupting the balance between Tau kinases and phosphatases. On the other hand, emerging literature indicates that Tau protein can also modulate insulin signalling in the brain, thus creating a detrimental vicious circle. The following review will highlight our current understanding on the role of insulin in the brain and its relation to Tau protein in the context of AD and Tauopathies. Considering that insulin signaling is prone to be pharmacologically targeted at multiple levels, it constitutes an appealing approach to improve both insulin brain sensitivity and mitigate brain pathology with expected positive outcome in term of cognition.
    . ©2018S. Karger AG, Basel.

  10. Phosphorylation of Threonine 175 Tau in the Induction of Tau Pathology in Amyotrophic Lateral Sclerosis-Frontotemporal Spectrum Disorder (ALS-FTSD). A Review.

    PubMed

    Moszczynski, Alexander J; Hintermayer, Matthew A; Strong, Michael J

    2018-01-01

    Approximately 50-60% of all patients with amyotrophic lateral sclerosis (ALS) will develop a deficit of frontotemporal function, ranging from frontotemporal dementia (FTD) to one or more deficits of neuropsychological, speech or language function which are collectively known as the frontotemporal spectrum disorders of ALS (ALS-FTSD). While the neuropathology underlying these disorders is most consistent with a widespread alteration in the metabolism of transactive response DNA-binding protein 43 (TDP-43), in both ALS with cognitive impairment (ALSci) and ALS with FTD (ALS-FTD; also known as MND-FTD) there is evidence for alterations in the metabolism of the microtubule associated protein tau. This alteration in tau metabolism is characterized by pathological phosphorylation at residue Thr 175 (pThr 175 tau) which in vitro is associated with activation of GSK3β (pTyr 216 GSK3β), phosphorylation of Thr 231 tau, and the formation of cytoplasmic inclusions with increased rates of cell death. This putative pathway of pThr 175 induction of pThr 231 and the formation of pathogenic tau inclusions has been recently shown to span a broad range of tauopathies, including chronic traumatic encephalopathy (CTE) and CTE in association with ALS (CTE-ALS). This pathway can be experimentally triggered through a moderate traumatic brain injury, suggesting that it is a primary neuropathological event and not secondary to a more widespread neuronal dysfunction. In this review, we discuss the neuropathological underpinnings of the postulate that ALS is associated with a tauopathy which manifests as a FTSD, and examine possible mechanisms by which phosphorylation at Thr 175 tau is induced. We hypothesize that this might lead to an unfolding of the hairpin structure of tau, activation of GSK3β and pathological tau fibril formation through the induction of cis -Thr 231 tau conformers. A potential role of TDP-43 acting synergistically with pathological tau metabolism is proposed.

  11. Anti-tau antibody administration increases plasma tau in transgenic mice and patients with tauopathy

    PubMed Central

    Yanamandra, Kiran; Patel, Tirth K.; Jiang, Hong; Schindler, Suzanne; Ulrich, Jason D.; Boxer, Adam L.; Miller, Bruce L.; Kerwin, Diana R.; Gallardo, Gilbert; Stewart, Floy; Finn, Mary Beth; Cairns, Nigel J.; Verghese, Philip B.; Fogelman, Ilana; West, Tim; Braunstein, Joel; Robinson, Grace; Keyser, Jennifer; Roh, Joseph; Knapik, Stephanie S.; Hu, Yan; Holtzman, David M.

    2017-01-01

    Tauopathies are a group of disorders in which the cytosolic protein tau aggregates and accumulates in cells within the brain, resulting in neurodegeneration. A promising treatment being explored for tauopathies is passive immunization with anti-tau antibodies. We previously found that administration of an anti-tau antibody to human tau transgenic mice increased the concentration of plasma tau. We further explored the effects of administering an anti-tau antibody on plasma tau. After peripheral administration of an anti-tau antibody to human patients with tauopathy and to mice expressing human tau in the central nervous system, there was a dose-dependent increase in plasma tau. In mouse plasma, we found that tau had a short half-life of 8 min that increased to more than 3 hours after administration of anti-tau antibody. As tau transgenic mice accumulated insoluble tau in the brain, brain soluble and interstitial fluid tau decreased. Administration of anti-tau antibody to tau transgenic mice that had decreased brain soluble tau and interstitial fluid tau resulted in an increase in plasma tau, but this increase was less than that observed in tau transgenic mice without these brain changes. Tau transgenic mice subjected to acute neuronal injury using 3-nitropropionic acid showed increased interstitial fluid tau and plasma tau. These data suggest that peripheral administration of an anti-tau antibody results in increased plasma tau, which correlates with the concentration of extracellular and soluble tau in the brain. PMID:28424326

  12. Predicted sequence of cortical tau and amyloid-β deposition in Alzheimer disease spectrum.

    PubMed

    Cho, Hanna; Lee, Hye Sun; Choi, Jae Yong; Lee, Jae Hoon; Ryu, Young Hoon; Lee, Myung Sik; Lyoo, Chul Hyoung

    2018-04-17

    We investigated sequential order between tau and amyloid-β (Aβ) deposition in Alzheimer disease spectrum using a conditional probability method. Two hundred twenty participants underwent 18 F-flortaucipir and 18 F-florbetaben positron emission tomography scans and neuropsychological tests. The presence of tau and Aβ in each region and impairment in each cognitive domain were determined by Z-score cutoffs. By comparing pairs of conditional probabilities, the sequential order of tau and Aβ deposition were determined. Probability for the presence of tau in the entorhinal cortex was higher than that of Aβ in all cortical regions, and in the medial temporal cortices, probability for the presence of tau was higher than that of Aβ. Conversely, in the remaining neocortex above the inferior temporal cortex, probability for the presence of Aβ was always higher than that of tau. Tau pathology in the entorhinal cortex may appear earlier than neocortical Aβ and may spread in the absence of Aβ within the neighboring medial temporal regions. However, Aβ may be required for massive tau deposition in the distant cortical areas. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Paired Helical Filaments from Alzheimer Disease Brain Induce Intracellular Accumulation of Tau Protein in Aggresomes*

    PubMed Central

    Santa-Maria, Ismael; Varghese, Merina; Ksiȩżak-Reding, Hanna; Dzhun, Anastasiya; Wang, Jun; Pasinetti, Giulio M.

    2012-01-01

    Abnormal folding of tau protein leads to the generation of paired helical filaments (PHFs) and neurofibrillary tangles, a key neuropathological feature in Alzheimer disease and tauopathies. A specific anatomical pattern of pathological changes developing in the brain suggests that once tau pathology is initiated it propagates between neighboring neuronal cells, possibly spreading along the axonal network. We studied whether PHFs released from degenerating neurons could be taken up by surrounding cells and promote spreading of tau pathology. Neuronal and non-neuronal cells overexpressing green fluorescent protein-tagged tau (GFP-Tau) were treated with isolated fractions of human Alzheimer disease-derived PHFs for 24 h. We found that cells internalized PHFs through an endocytic mechanism and developed intracellular GFP-Tau aggregates with attributes of aggresomes. This was particularly evident by the perinuclear localization of aggregates and redistribution of the vimentin intermediate filament network and retrograde motor protein dynein. Furthermore, the content of Sarkosyl-insoluble tau, a measure of abnormal tau aggregation, increased 3-fold in PHF-treated cells. An exosome-related mechanism did not appear to be involved in the release of GFP-Tau from untreated cells. The evidence that cells can internalize PHFs, leading to formation of aggresome-like bodies, opens new therapeutic avenues to prevent propagation and spreading of tau pathology. PMID:22496370

  14. Preliminary evidence of motor impairment among polysubstance 3,4-methylenedioxymethamphetamine users with intact neuropsychological functioning

    PubMed Central

    BOUSMAN, CHAD A.; CHERNER, MARIANA; EMORY, KRISTEN T.; BARRON, DANIEL; GREBENSTEIN, PATRICIA; ATKINSON, J. HAMPTON; HEATON, ROBERT K.; GRANT, IGOR

    2013-01-01

    Neuropsychological disturbances have been reported in association with use of the recreational drug “ecstasy,” or 3,4-methylenedioxymethamphetamine (MDMA), but findings have been inconsistent. We performed comprehensive neuropsychological testing examining seven ability domains in 21 MDMA users (MDMA+) and 21 matched control participants (MDMA−). Among MDMA+ participants, median [interquartile range] lifetime MDMA use was 186 [111, 516] doses, with 120 [35–365] days of abstinence. There were no significant group differences in neuropsychological performance, with the exception of the motor speed/dexterity domain in which 43% of MDMA+ were impaired compared with 5% of MDMA− participants (p = .004). Motor impairment differences were not explained by use of other substances and were unrelated to length of abstinence or lifetime number of MDMA doses. Findings provide limited evidence for neuropsychological differences between MDMA+ and MDMA− participants with the exception of motor impairments observed in the MDMA+ group. However, replication of this finding in a larger sample is warranted. PMID:20735886

  15. Theory of mind deficits partly mediate impaired social decision-making in schizophrenia.

    PubMed

    Yang, Liuqing; Li, Peifu; Mao, Haiying; Wang, Huiling; Shu, Chang; Bliksted, Vibeke; Zhou, Yuan

    2017-05-05

    Using paradigms from game theory, researchers have reported abnormal decision-making in social context in patients with schizophrenia. However, less is known about the underpinnings of the impairment. This study aimed to test whether theory of mind (ToM) deficits and/or neurocognitive dysfunctions mediate impaired social decision-making in patients with schizophrenia. We compared thirty-five patients with schizophrenia to thirty-eight matched healthy controls with regard to social decision-making using the mini Ultimatum Game (mini UG), a paradigm from game theory. Additionally, we assessed ToM using the Theory of Mind Picture Stories Task, a mental state attribution task, and assessed neurocognition using the Brief Assessment of Cognition in Schizophrenia. Mediation analyses were performed on the data. In contrast to the behavioral pattern of healthy controls in the mini UG, the patients with schizophrenia significantly accepted more disadvantageous offers and rejected more advantageous offers, and showed reduced sensitivity to the fairness-related context changes in the mini UG. Impaired ToM and neurocognition were also found in the patients. Mediation analyses indicated that ToM but not neurocognition partially mediated the group differences on the disadvantageous and advantageous offers in the mini UG. Patients with schizophrenia exhibited impaired social decision-making. This impairment can be partly explained by their ToM deficits rather than neurocognitive deficits. However, the exact nature of the ToM deficits that mediate impaired social decision-making needs to be identified in future.

  16. Comparing Plasma Phospho Tau, Total Tau, and Phospho Tau–Total Tau Ratio as Acute and Chronic Traumatic Brain Injury Biomarkers

    PubMed Central

    Rubenstein, Richard; Chang, Binggong; Yue, John K.; Chiu, Allen; Winkler, Ethan A.; Puccio, Ava M.; Diaz-Arrastia, Ramon; Yuh, Esther L.; Mukherjee, Pratik; Valadka, Alex B.; Gordon, Wayne A.; Okonkwo, David O.; Davies, Peter; Agarwal, Sanjeev; Lin, Fan; Sarkis, George; Yadikar, Hamad; Yang, Zhihui; Manley, Geoffrey T.; Wang, Kevin K. W.

    2017-01-01

    IMPORTANCE Annually in the United States, at least 3.5 million people seek medical attention for traumatic brain injury (TBI). The development of therapies for TBI is limited by the absence of diagnostic and prognostic biomarkers. Microtubule-associated protein tau is an axonal phosphoprotein. To date, the presence of the hypophosphorylated tau protein (P-tau) in plasma from patients with acute TBI and chronic TBI has not been investigated. OBJECTIVE To examine the associations between plasma P-tau and total-tau (T-tau) levels and injury presence, severity, type of pathoanatomic lesion (neuroimaging), and patient outcomes in acute and chronic TBI. DESIGN, SETTING, AND PARTICIPANTS In the TRACK-TBI Pilot study, plasma was collected at a single time point from 196 patients with acute TBI admitted to 3 level I trauma centers (<24 hours after injury) and 21 patients with TBI admitted to inpatient rehabilitation units (mean [SD], 176.4 [44.5] days after injury). Control samples were purchased from a commercial vendor. The TRACK-TBI Pilot study was conducted from April 1, 2010, to June 30, 2012. Data analysis for the current investigation was performed from August 1, 2015, to March 13, 2017. MAIN OUTCOMES AND MEASURES Plasma samples were assayed for P-tau (using an antibody that specifically recognizes phosphothreonine-231) and T-tau using ultra-high sensitivity laser-based immunoassay multi-arrayed fiberoptics conjugated with rolling circle amplification. RESULTS In the 217 patients with TBI, 161 (74.2%) were men; mean (SD) age was 42.5 (18.1) years. The P-tau and T-tau levels and P-tau–T-tau ratio in patients with acute TBI were higher than those in healthy controls. Receiver operating characteristic analysis for the 3 tau indices demonstrated accuracy with area under the curve (AUC) of 1.000, 0.916, and 1.000, respectively, for discriminating mild TBI (Glasgow Coma Scale [GCS] score, 13–15, n = 162) from healthy controls. The P-tau level and P-tau–T-tau ratio

  17. CSF Aβ1-42, but not p-Tau181, differentiates aMCI from SCI.

    PubMed

    Rizzi, Liara; Maria Portal, Marcelle; Batista, Carlos Eduardo Alves; Missiaggia, Luciane; Roriz-Cruz, Matheus

    2018-01-01

    Individuals with amnestic mild cognitive impairment (aMCI) are at a high risk to develop Alzheimer's disease (AD). We compared CSF levels of biomarkers of amyloidosis (Aβ 1-42 ) and neurodegeneration (p-Tau 181 ) in individuals with aMCI and with subjective cognitive impairment (SCI) in order to ascertain diagnostic accuracy and predict the odds ratio associated with aMCI. We collected CSF of individuals clinically diagnosed with aMCI (33) and SCI (12) of a memory clinic of Southern Brazil. Levels of Aβ 1-42 and p-Tau 181 were measured by immunoenzymatic assay. Participants also underwent neuropsychological testing including the verbal memory test subscore of the Consortium to Establish a Registry for Alzheimer's Disease (VM-CERAD). CSF concentration of Aβ 1-42 was significantly lower (p: .007) and p-Tau 181 /Aβ 1-42 ratio higher (p: .014) in aMCI individuals than in SCI. However, isolate p-Tau 181 levels were not associated with aMCI (p: .166). There was a statistically significant association between Aβ 1-42 and p-Tau 181 (R 2 : 0.177; β: -4.43; p: .017). ROC AUC of CSF Aβ 1-42 was 0.768 and of the p-Tau 181 /Aβ 1-42 ratio equals 0.742. Individuals with Aβ 1-42  < 823 pg/mL levels were 6.0 times more likely to be diagnosed with aMCI (p: .019), with a 68.9% accuracy. Those with p-Tau 181 /Aβ 1-42 ratio > 0.071 were at 4.6 increased odds to have aMCI (p: .043), with a 64.5% accuracy. VM-CERAD was significantly lower in aMCI than among SCI (p: .041). CSF Aβ 1-42 , but not p-Tau 181, level was significantly associated with aMCI. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. CONTRIBUTION OF AXIAL MOTOR IMPAIRMENT TO PHYSICAL INACTIVITY IN PARKINSON'S DISEASE

    PubMed Central

    Bryant, Mon S; Hou, Jyhgong Gabriel; Collins, Robert L; Protas, Elizabeth J

    2015-01-01

    Objective To investigate the relationships between motor symptoms of Parkinson’s disease (PD) and activity limitations in persons with PD. Design/Methods Cross-sectional study of persons with mild to moderate PD (N=90). Associations among axial motor features, limb motor signs, the Physical Activity Scale for Elders (PASE), the ability to perform Activities of Daily Living (ADL) and level of ADL dependency were studied. A composite score of axial motor features included the following UPDRS items: speech, rigidity of the neck, arising from chair, posture, gait and postural stability. A composite score of limb motor signs included the following UPDRS items: tremor at rest of all extremities, action tremor, rigidity of all extremities, finger taps, hand movement, rapid alternating hand movements and foot tapping. Results Axial motor features of PD were significantly correlated with physical inactivity (p<.001), decreased ADL (p<.001) and increase in ADL dependency (p<.001). Limb motor signs significantly correlated with decreased ADL (p<.001) and level of ADL dependency (p=.035), but was not correlated with physical inactivity. After controlling for age, gender, disease duration and comorbidity, axial motor features contributed significantly to physical inactivity, decreased ADL and increase in ADL dependency, whereas the limb motor signs did not. Conclusions Axial motor impairment contributed to physical inactivity and decreased ability to perform ADLs in persons with PD. PMID:26368837

  19. Foxp2 mutations impair auditory-motor association learning.

    PubMed

    Kurt, Simone; Fisher, Simon E; Ehret, Günter

    2012-01-01

    Heterozygous mutations of the human FOXP2 transcription factor gene cause the best-described examples of monogenic speech and language disorders. Acquisition of proficient spoken language involves auditory-guided vocal learning, a specialized form of sensory-motor association learning. The impact of etiological Foxp2 mutations on learning of auditory-motor associations in mammals has not been determined yet. Here, we directly assess this type of learning using a newly developed conditioned avoidance paradigm in a shuttle-box for mice. We show striking deficits in mice heterozygous for either of two different Foxp2 mutations previously implicated in human speech disorders. Both mutations cause delays in acquiring new motor skills. The magnitude of impairments in association learning, however, depends on the nature of the mutation. Mice with a missense mutation in the DNA-binding domain are able to learn, but at a much slower rate than wild type animals, while mice carrying an early nonsense mutation learn very little. These results are consistent with expression of Foxp2 in distributed circuits of the cortex, striatum and cerebellum that are known to play key roles in acquisition of motor skills and sensory-motor association learning, and suggest differing in vivo effects for distinct variants of the Foxp2 protein. Given the importance of such networks for the acquisition of human spoken language, and the fact that similar mutations in human FOXP2 cause problems with speech development, this work opens up a new perspective on the use of mouse models for understanding pathways underlying speech and language disorders.

  20. Impairment of motor skills in children with fetal alcohol spectrum disorders in remote Australia: The Lililwan Project.

    PubMed

    Lucas, Barbara R; Doney, Robyn; Latimer, Jane; Watkins, Rochelle E; Tsang, Tracey W; Hawkes, Genevieve; Fitzpatrick, James P; Oscar, June; Carter, Maureen; Elliott, Elizabeth J

    2016-11-01

    We aimed to characterise motor performance in predominantly Aboriginal children living in very remote Australia, where rates of prenatal alcohol exposure (PAE) are high. Motor performance was assessed, and the relationship between motor skills, fetal alcohol spectrum disorders (FASD) and PAE was explored. Motor performance was assessed using the Bruininks-Oseretsky Test of Motor Proficiency-Second Edition Complete Form, in a population-based study of children born in 2002 or 2003 living in the Fitzroy Valley, Western Australia. Composite scores ≥2SD (2nd percentile) and ≥1SD (16th percentile) below the mean were used respectively for FASD diagnosis and referral for treatment. FASD diagnoses were assigned using modified Canadian Guidelines. A total of 108 children (Aboriginal: 98.1%; male: 53%) with a mean age of 8.7 years was assessed. The cohort's mean total motor composite score (mean ± SD 47.2 ± 7.6) approached the Bruininks-Oseretsky Test of Motor Proficiency-Second Edition normative mean (50 ± 10). Motor performance was lower in children with FASD diagnosis than without (mean difference (MD) ± SD: -5.0 ± 1.8; confidence interval: -8.6 to -1.5). There was no difference between children with PAE than without (MD ± SE: -2.2 ± 1.5; confidence interval: -5.1 to 0.80). The prevalence of motor impairment (≥-2SD) was 1.9% in the entire cohort, 9.5% in children with FASD, 3.3% in children with PAE and 0.0% both in children without PAE or FASD. Almost of 10% of children with FASD has significant motor impairment. Evaluation of motor function should routinely be included in assessments for FASD, to document impairment and enable targeted early intervention.[Lucas BR, Doney R, Latimer J, Watkins RE, Tsang TW, Hawkes G, Fitzpatrick JP, Oscar J, Carter M, Elliott EJ. Impairment of motor skills in children with fetal alcohol spectrum disorders in remote Australia: The Lililwan Project. Drug Alcohol Rev 2016;35:719-727]. © 2016

  1. The relationship between actual motor competence and physical activity in children: mediating roles of perceived motor competence and health-related physical fitness.

    PubMed

    Khodaverdi, Zeinab; Bahram, Abbas; Stodden, David; Kazemnejad, Anoshirvan

    2016-08-01

    The purpose of this study was to investigate whether perceived motor competence and components of health-related physical fitness mediated the relationship between actual motor competence and physical activity in 8- to 9-year-old Iranian girls. A convenience sample of 352 girls (mean age = 8.7, SD = 0.3 years) participated in the study. Actual motor competence, perceived motor competence and children's physical activity were assessed using the Test of Gross Motor Development-2, the physical ability sub-scale of Marsh's Self-Description Questionnaire and Physical Activity Questionnaire for Older Children, respectively. Body mass index, the 600 yard run/walk, curl-ups, push-ups, and back-saver sit and reach tests assessed health-related physical fitness. Preacher & Hayes (2004) bootstrap method was used to assess the potential mediating effects of fitness and perceived competence on the direct relationship between actual motor competence and physical activity. Regression analyses revealed that aerobic fitness (b = .28, 95% CI = [.21, .39]), as the only fitness measure, and perceived competence (b = .16, 95% CI = [.12, .32]) were measures that mediated the relationship between actual motor competence and physical activity with the models. Development of strategies targeting motor skill acquisition, children's self-perceptions of competence and cardiorespiratory fitness should be targeted to promote girls' moderate-to-vigorous physical activity.

  2. Detecting tau in serum of transgenic animal models after tau immunotherapy treatment.

    PubMed

    d'Abramo, Cristina; Acker, Christopher M; Schachter, Joel B; Terracina, Giuseppe; Wang, Xiaohai; Forest, Stefanie K; Davies, Peter

    2016-01-01

    In the attempt to elucidate if the "peripheral sink hypothesis" could be a potential mechanism of action for tau removal in passive immunotherapy experiments, we have examined tau levels in serum of chronically injected JNPL3 and Tg4510 transgenic animals. Measurement of tau in serum of mice treated with tau antibodies is challenging because of the antibody interference in sandwich enzyme-linked immunosorbent assays. To address this issue, we have developed a heat-treatment protocol at acidic pH to remove interfering molecules from serum, with excellent recovery of tau. The present data show that pan-tau and conformational antibodies do increase tau in mouse sera. However, these concentrations in serum do not consistently correlate with reductions of tau pathology in brain, suggesting that large elevations of tau species measured in serum are not predictive of efficacy. Here, we describe a reliable method to detect tau in serum of transgenic animals that have undergone tau immunotherapy. Levels of tau in human serum are less than the sensitivity of current assays, although artifactual signals are common. The method may be useful in similarly treated humans, a situation in which false positive signals are likely. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Prevalence of vision impairment and refractive error in school children in Ba Ria – Vung Tau province, Vietnam

    PubMed Central

    Paudel, Prakash; Ramson, Prasidh; Naduvilath, Thomas; Wilson, David; Phuong, Ha Thanh; Ho, Suit M; Giap, Nguyen V

    2014-01-01

    Background To assess the prevalence of vision impairment and refractive error in school children 12–15 years of age in Ba Ria – Vung Tau province, Vietnam. Design Prospective, cross-sectional study. Participants 2238 secondary school children. Methods Subjects were selected based on stratified multistage cluster sampling of 13 secondary schools from urban, rural and semi-urban areas. The examination included visual acuity measurements, ocular motility evaluation, cycloplegic autorefraction, and examination of the external eye, anterior segment, media and fundus. Main Outcome Measures Visual acuity and principal cause of vision impairment. Results The prevalence of uncorrected and presenting visual acuity ≤6/12 in the better eye were 19.4% (95% confidence interval, 12.5–26.3) and 12.2% (95% confidence interval, 8.8–15.6), respectively. Refractive error was the cause of vision impairment in 92.7%, amblyopia in 2.2%, cataract in 0.7%, retinal disorders in 0.4%, other causes in 1.5% and unexplained causes in the remaining 2.6%. The prevalence of vision impairment due to myopia in either eye (–0.50 diopter or greater) was 20.4% (95% confidence interval, 12.8–28.0), hyperopia (≥2.00 D) was 0.4% (95% confidence interval, 0.0–0.7) and emmetropia with astigmatism (≥0.75 D) was 0.7% (95% confidence interval, 0.2–1.2). Vision impairment due to myopia was associated with higher school grade and increased time spent reading and working on a computer. Conclusions Uncorrected refractive error, particularly myopia, among secondary school children in Vietnam is a major public health problem. School-based eye health initiative such as refractive error screening is warranted to reduce vision impairment. PMID:24299145

  4. Tau Phosphorylation Pathway Genes and Cerebrospinal Fluid Tau Levels in Alzheimer’s Disease

    PubMed Central

    Bekris, Lynn M.; Millard, Steve; Lutz, Franziska; Li, Gail; Galasko, Doug R.; Farlow, Martin R.; Quinn, Joseph F.; Kaye, Jeffrey A.; Leverenz, James B.; Tsuang, Debby W.; Yu, Chang-En; Peskind, Elaine R.

    2013-01-01

    Alzheimer’s disease (AD) is characterized by the presence in the brain of amyloid plaques, consisting predominately of the amyloid β peptide (Aβ), and neurofibrillary tangles, consisting primarily of tau. Hyper-phosphorylated-tau (p-tau) contributes to neuronal damage, and both p-tau and total-tau (t-tau) levels are elevated in AD cerebrospinal fluid (CSF) compared to cognitively normal controls. Our hypothesis was that increased ratios of CSF phosphorylated-tau levels relative to total-tau levels correlate with regulatory region genetic variation of kinase or phosphatase genes biologically associated with the phosphorylation status of tau. Eighteen SNPs located within 5′ and 3′ regions of 5 kinase and 4 phosphatase genes, as well as two SNPs within regulatory regions of the MAPT gene were chosen for this analysis. The study sample consisted of 101 AD patients and 169 cognitively normal controls. Rs7768046 in the FYN kinase gene and rs913275 in the PPP2R4 phosphatase gene were both associated with CSF p-tau and t-tau levels in AD. These SNPs were also differentially associated with either CSF t-tau (rs7768046) or CSF p-tau (rs913275) relative to t-tau levels in AD compared to controls. These results suggest that rs7768046 and rs913275 both influence CSF tau levels in an AD-associated manner. PMID:22927204

  5. Opposing effects of dopamine antagonism in a motor sequence task—tiapride increases cortical excitability and impairs motor learning

    PubMed Central

    Lissek, Silke; Vallana, Guido S.; Schlaffke, Lara; Lenz, Melanie; Dinse, Hubert R.; Tegenthoff, Martin

    2014-01-01

    The dopaminergic system is involved in learning and participates in the modulation of cortical excitability (CE). CE has been suggested as a marker of learning and use-dependent plasticity. However, results from separate studies on either motor CE or motor learning challenge this notion, suggesting opposing effects of dopaminergic modulation upon these parameters: while agonists decrease and antagonists increase CE, motor learning is enhanced by agonists and disturbed by antagonists. To examine whether this discrepancy persists when complex motor learning and motor CE are measured in the same experimental setup, we investigated the effects of dopaminergic (DA) antagonism upon both parameters and upon task-associated brain activation. Our results demonstrate that DA-antagonism has opposing effects upon motor CE and motor sequence learning. Tiapride did not alter baseline CE, but increased CE post training of a complex motor sequence while simultaneously impairing motor learning. Moreover, tiapride reduced activation in several brain regions associated with motor sequence performance, i.e., dorsolateral PFC (dlPFC), supplementary motor area (SMA), Broca's area, cingulate and caudate body. Blood-oxygenation-level-dependent (BOLD) intensity in anterior cingulate and caudate body, but not CE, correlated with performance across groups. In summary, our results do not support a concept of CE as a general marker of motor learning, since they demonstrate that a straightforward relation of increased CE and higher learning success does not apply to all instances of motor learning. At least for complex motor tasks that recruit a network of brain regions outside motor cortex, CE in primary motor cortex is probably no central determinant for learning success. PMID:24994972

  6. GFP-Mutant Human Tau Transgenic Mice Develop Tauopathy Following CNS Injections of Alzheimer's Brain-Derived Pathological Tau or Synthetic Mutant Human Tau Fibrils

    PubMed Central

    Banks, Rachel A.; Kim, Bumjin; Xu, Hong; Changolkar, Lakshmi; Leight, Susan N.; Riddle, Dawn M.; Li, Chi; Brown, Hannah J.; Zhang, Bin

    2017-01-01

    Neurodegenerative proteinopathies characterized by intracellular aggregates of tau proteins, termed tauopathies, include Alzheimer's disease (AD), frontotemporal lobar degeneration (FTLD) with tau pathology (FTLD-tau), and related disorders. Pathological tau proteins derived from human AD brains (AD-tau) act as proteopathic seeds that initiate the templated aggregation of soluble tau upon intracerebral injection into tau transgenic (Tg) and wild-type mice, thereby modeling human tau pathology. In this study, we found that aged Tg mice of both sexes expressing human tau proteins harboring a pathogenic P301L MAPT mutation labeled with green fluorescent protein (T40PL-GFP Tg mouse line) exhibited hyperphosphorylated tau mislocalized to the somatodentritic domain of neurons, but these mice did not develop de novo insoluble tau aggregates, which are characteristic of human AD and related tauopathies. However, intracerebral injections of either T40PL preformed fibrils (PFFs) or AD-tau seeds into T40PL-GFP mice induced abundant intraneuronal pathological inclusions of hyperphosphorylated T40PL-GFP. These injections of pathological tau resulted in the propagation of tau pathology from the injection site to neuroanatomically connected brain regions, and these tau inclusions consisted of both T40PL-GFP and WT endogenous mouse tau. Primary neurons cultured from the brains of neonatal T40PL-GFP mice provided an informative in vitro model for examining the uptake and localization of tau PFFs. These findings demonstrate the seeded aggregation of T40PL-GFP in vivo by synthetic PFFs and human AD-tau and the utility of this system to study the neuropathological spread of tau aggregates. SIGNIFICANCE STATEMENT The stereotypical spread of pathological tau protein aggregates have recently been attributed to the transmission of proteopathic seeds. Despite the extensive use of transgenic mouse models to investigate the propagation of tau pathology in vivo, details of the aggregation

  7. The role of α-synuclein and tau hyperphosphorylation-mediated autophagy and apoptosis in lead-induced learning and memory injury.

    PubMed

    Zhang, Jianbin; Cai, Tongjian; Zhao, Fang; Yao, Ting; Chen, Yaoming; Liu, Xinqin; Luo, Wenjing; Chen, Jingyuan

    2012-01-01

    Lead (Pb) is a well-known heavy metal in nature. Pb can cause pathophysiological changes in several organ systems including central nervous system. Especially, Pb can affect intelligence development and the ability of learning and memory of children. However, the toxic effects and mechanisms of Pb on learning and memory are still unclear. To clarify the mechanisms of Pb-induced neurotoxicity in hippocampus, and its effect on learning and memory, we chose Sprague-Dawley rats (SD-rats) as experimental subjects. We used Morris water maze to verify the ability of learning and memory after Pb treatment. We used immunohistofluorescence and Western blotting to detect the level of tau phosphorylation, accumulation of α-synuclein, autophagy and related signaling molecules in hippocampus. We demonstrated that Pb can cause abnormally hyperphosphorylation of tau and accumulation of α-synuclein, and these can induce hippocampal injury and the ability of learning and memory damage. To provide the new insight into the underlying mechanisms, we showed that Grp78, ATF4, caspase-3, autophagy-related proteins were induced and highly expressed following Pb-exposure. But mTOR signaling pathway was suppressed in Pb-exposed groups. Our results showed that Pb could cause hyperphosphorylation of tau and accumulation of α-synuclein, which could induce ER stress and suppress mTOR signal pathway. These can enhance type II program death (autophgy) and type I program death (apoptosis) in hippocampus, and impair the ability of learning and memory of rats. This is the first evidence showing the novel role of autophagy in the neurotoxicity of Pb.

  8. GFP-Mutant Human Tau Transgenic Mice Develop Tauopathy Following CNS Injections of Alzheimer's Brain-Derived Pathological Tau or Synthetic Mutant Human Tau Fibrils.

    PubMed

    Gibbons, Garrett S; Banks, Rachel A; Kim, Bumjin; Xu, Hong; Changolkar, Lakshmi; Leight, Susan N; Riddle, Dawn M; Li, Chi; Gathagan, Ronald J; Brown, Hannah J; Zhang, Bin; Trojanowski, John Q; Lee, Virginia M-Y

    2017-11-22

    Neurodegenerative proteinopathies characterized by intracellular aggregates of tau proteins, termed tauopathies, include Alzheimer's disease (AD), frontotemporal lobar degeneration (FTLD) with tau pathology (FTLD-tau), and related disorders. Pathological tau proteins derived from human AD brains (AD-tau) act as proteopathic seeds that initiate the templated aggregation of soluble tau upon intracerebral injection into tau transgenic (Tg) and wild-type mice, thereby modeling human tau pathology. In this study, we found that aged Tg mice of both sexes expressing human tau proteins harboring a pathogenic P301L MAPT mutation labeled with green fluorescent protein (T40PL-GFP Tg mouse line) exhibited hyperphosphorylated tau mislocalized to the somatodentritic domain of neurons, but these mice did not develop de novo insoluble tau aggregates, which are characteristic of human AD and related tauopathies. However, intracerebral injections of either T40PL preformed fibrils (PFFs) or AD-tau seeds into T40PL-GFP mice induced abundant intraneuronal pathological inclusions of hyperphosphorylated T40PL-GFP. These injections of pathological tau resulted in the propagation of tau pathology from the injection site to neuroanatomically connected brain regions, and these tau inclusions consisted of both T40PL-GFP and WT endogenous mouse tau. Primary neurons cultured from the brains of neonatal T40PL-GFP mice provided an informative in vitro model for examining the uptake and localization of tau PFFs. These findings demonstrate the seeded aggregation of T40PL-GFP in vivo by synthetic PFFs and human AD-tau and the utility of this system to study the neuropathological spread of tau aggregates. SIGNIFICANCE STATEMENT The stereotypical spread of pathological tau protein aggregates have recently been attributed to the transmission of proteopathic seeds. Despite the extensive use of transgenic mouse models to investigate the propagation of tau pathology in vivo , details of the aggregation

  9. Comparison of multiple tau-PET measures as biomarkers in aging and Alzheimer's disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maass, Anne; Landau, Susan; Baker, Suzanne L.

    The recent development of tau-specific positron emission tomography (PET) tracers enables in vivo quantification of regional tau pathology, one of the key lesions in Alzheimer's disease (AD). Tau PET imaging may become a useful biomarker for clinical diagnosis and tracking of disease progression but there is no consensus yet on how tau PET signal is best quantified. The goal of the current paper was to evaluate multiple whole-brain and region-specific approaches to detect clinically relevant tau PET signal. Two independent cohorts of cognitively normal adults and amyloid-positive (Aβ +) patients with mild cognitive impairment (MCI) or AD-dementia underwent [ 18F]AV-1451more » PET. Methods for tau tracer quantification included: (i) in vivo Braak staging, (ii) regional uptake in Braak composite regions, (iii) several whole-brain measures of tracer uptake, (iv) regional uptake in AD-vulnerable voxels, and (v) uptake in a priori defined regions. Receiver operating curves characterized accuracy in distinguishing Aβ - controls from AD/MCI patients and yielded tau positivity cutoffs. Clinical relevance of tau PET measures was assessed by regressions against cognition and MR imaging measures. Key tracer uptake patterns were identified by a factor analysis and voxel-wise contrasts. Braak staging, global and region-specific tau measures yielded similar diagnostic accuracies, which differed between cohorts. While all tau measures were related to amyloid and global cognition, memory and hippocampal/entorhinal volume/thickness were associated with regional tracer retention in the medial temporal lobe. Key regions of tau accumulation included medial temporal and inferior/middle temporal regions, retrosplenial cortex, and banks of the superior temporal sulcus. Finally, our data indicate that whole-brain tau PET measures might be adequate biomarkers to detect AD-related tau pathology. However, regional measures covering AD-vulnerable regions may increase sensitivity to early

  10. Concurrent silent strokes impair motor function by limiting behavioral compensation.

    PubMed

    Faraji, Jamshid; Kurio, Kristyn; Metz, Gerlinde A

    2012-08-01

    Silent strokes occur more frequently than classic strokes; however, symptoms may go unreported in spite of lasting tissue damage. A silent stroke may indicate elevated susceptibility to recurrent stroke, which may eventually result in apparent and lasting impairments. Here we investigated if multiple silent strokes to the motor system challenge the compensatory capacity of the brain to cumulatively result in permanent functional deficits. Adult male rats with focal ischemia received single focal ischemic mini-lesions in the sensorimotor cortex (SMC) or the dorsolateral striatum (DLS), or multiple lesions affecting both SMC and DLS. The time course and outcome of motor compensation and recovery were determined by quantitative and qualitative assessment of skilled reaching and skilled walking. Rats with SMC or DLS lesion alone did not show behavioral deficits in either task. However, the combination of focal ischemic lesions in SMC and DLS perturbed skilled reaching accuracy and disrupted forelimb placement in the ladder rung walking task. These observations suggest that multiple focal infarcts, each resembling a silent stroke, gradually compromise the plastic capacity of the motor system to cause permanent motor deficits. Moreover, these findings support the notion that cortical and subcortical motor systems cooperate when adopting beneficial compensatory movement strategies. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Prediction of P300 BCI Aptitude in Severe Motor Impairment

    PubMed Central

    Halder, Sebastian; Ruf, Carolin Anne; Furdea, Adrian; Pasqualotto, Emanuele; De Massari, Daniele; van der Heiden, Linda; Bogdan, Martin; Rosenstiel, Wolfgang; Birbaumer, Niels; Kübler, Andrea; Matuz, Tamara

    2013-01-01

    Brain-computer interfaces (BCIs) provide a non-muscular communication channel for persons with severe motor impairments. Previous studies have shown that the aptitude with which a BCI can be controlled varies from person to person. A reliable predictor of performance could facilitate selection of a suitable BCI paradigm. Eleven severely motor impaired participants performed three sessions of a P300 BCI web browsing task. Before each session auditory oddball data were collected to predict the BCI aptitude of the participants exhibited in the current session. We found a strong relationship of early positive and negative potentials around 200 ms (elicited with the auditory oddball task) with performance. The amplitude of the P2 (r  =  −0.77) and of the N2 (r  =  −0.86) had the strongest correlations. Aptitude prediction using an auditory oddball was successful. The finding that the N2 amplitude is a stronger predictor of performance than P3 amplitude was reproduced after initially showing this effect with a healthy sample of BCI users. This will reduce strain on the end-users by minimizing the time needed to find suitable paradigms and inspire new approaches to improve performance. PMID:24204597

  12. Subcutaneous administration of liraglutide ameliorates learning and memory impairment by modulating tau hyperphosphorylation via the glycogen synthase kinase-3β pathway in an amyloid β protein induced alzheimer disease mouse model.

    PubMed

    Qi, Liqin; Ke, Linfang; Liu, Xiaohong; Liao, Lianming; Ke, Sujie; Liu, Xiaoying; Wang, Yanping; Lin, Xiaowei; Zhou, Yu; Wu, Lijuan; Chen, Zhou; Liu, Libin

    2016-07-15

    Type 2 diabetes mellitus is a risk factor for Alzheimer's disease (AD). The glucagon-like peptide-1 analog liraglutide, a novel long-lasting incretin hormone, has been used to treat type 2 diabetes mellitus. In addition, liraglutide has been shown to be neurotrophic and neuroprotective. Here, we investigated the effects of liraglutide on amyloid β protein (Aβ)-induced AD in mice and explored its mechanism of action. The results showed that subcutaneous administration of liraglutide (25nmol/day), once daily for 8 weeks, prevented memory impairments in the Y Maze and Morris Water Maze following Aβ1-42 intracerebroventricular injection, and alleviated the ultra-structural changes of pyramidal neurons and chemical synapses in the hippocampal CA1 region. Furthermore, liraglutide reduced Aβ1-42-induced tau phosphorylation via the protein kinase B and glycogen synthase kinase-3β pathways. Thus liraglutide may alleviate cognitive impairment in AD by at least decreasing the phosphorylation of tau. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Secretion of full-length Tau or Tau fragments in cell culture models. Propagation of Tau in vivo and in vitro.

    PubMed

    Pérez, Mar; Medina, Miguel; Hernández, Félix; Avila, Jesús

    2018-03-05

    The microtubule-associated protein Tau plays a crucial role in stabilizing neuronal microtubules. In Tauopathies, Tau loses its ability to bind microtubules, detach from them and forms intracellular aggregates. Increasing evidence in recent years supports the notion that Tau pathology spreading throughout the brain in AD and other Tauopathies is the consequence of the propagation of specific Tau species along neuroanatomically connected brain regions in a so-called "prion-like" manner. A number of steps are assumed to be involved in this process, including secretion, cellular uptake, transcellular transfer and/or seeding, although the precise mechanisms underlying propagation of Tau pathology are not fully understood yet. This review summarizes recent evidence on the nature of the specific Tau species that are propagated and the different mechanisms of Tau pathology spreading.

  14. Finger tapping impairments are highly sensitive for evaluating upper motor neuron lesions.

    PubMed

    Shirani, Afsaneh; Newton, Braeden D; Okuda, Darin T

    2017-03-21

    Identifying highly sensitive and reliable neurological exam components are crucial in recognizing clinical deficiencies. This study aimed to investigate finger tapping performance differences between patients with CNS demyelinating lesions and healthy control subjects. Twenty-three patients with multiple sclerosis or clinically isolated syndrome with infratentorial and/or cervical cord lesions on MRI, and 12 healthy controls were videotaped while tapping the tip of the index finger against the tip and distal crease of the thumb using both the dominant and non-dominant hand. Videos were assessed independently by 10 evaluators (three MS neurologists, four neurology residents, three advanced practice providers). Sensitivity and inter-evaluator reliability of finger tapping interpretations were calculated. A total of 1400 evaluations (four videos per each of the 35 subjects evaluated by 10 independent providers) were obtained. Impairments in finger tapping against the distal thumb crease of the non-dominant hand, identified by neurologists, had the greatest sensitivity (84%, p < 0.001) for detecting impairment. Finger tapping against the thumb crease was more sensitive than the thumb tip across all categories of providers. The best inter-evaluator reliability was associated with neurologists' evaluations for the thumb crease of the non-dominant hand (kappa = 0.83, p < 0.001). Impaired finger tapping against the distal thumb crease of the non-dominant hand was a more sensitive technique for detecting impairments related to CNS demyelinating lesions. Our findings highlight the importance of precise examinations of the non-dominant side where impaired fine motor control secondary to an upper motor injury might be detectable earlier than the dominant side.

  15. Determination of the Michel Parameters and the tau Neutrino Helicity in tau Decay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jessop, Colin P.

    2003-05-07

    Using the CLEO II detector at the e{sup +}e{sup -} storage ring CESR, we have determined the Michel parameters {rho}, {zeta}, and {delta} in {tau}{sup {-+}}{nu}{bar {nu}} decay as well as the {tau} neutrino helicity parameter H{sub {nu}{sub {tau}}} in {tau}{sup {-+}}{pi}{sup 0}{nu} decay. From a data sample of 3.02 x 10{sup 6} {tau} pairs produced at {radical}s = 10.6 GeV, using events of the topology e{sup +}e{sup -} {yields} {tau}{sup +}{tau}{sup -} {yields} (l{sup {+-}}{nu}{bar {nu}})({pi}{sup {-+}}{pi}{sup 0}{nu}) and e{sup +}e{sup -} {yields} {tau}{sup +}{tau}{sup -} {yields} ({pi}{sup {+-}}{pi}{sup 0}{bar {nu}})({pi}{sup {-+}}{pi}{sup 0}{nu}), and the determined sign of h{submore » {nu}{sub {tau}}} [1,2], the combined result of the three samples is: {rho} = 0.747 {+-} 0.010 {+-} 0.006, {zeta} = 1.007 {+-} 0.040 {+-} 0.015, {zeta}{delta} = 0.745 {+-}0.026 {+-}0.009, and h{sub {nu}{sub {tau}}} = -0.995 {+-} 0.010 {+-} 0.003. The results are in agreement with the Standard Model V-A interaction.« less

  16. Amyloid-β₂₅₋₃₅ induces impairment of cognitive function and long-term potentiation through phosphorylation of collapsin response mediator protein 2.

    PubMed

    Isono, Toshinari; Yamashita, Naoya; Obara, Masami; Araki, Tomomi; Nakamura, Fumio; Kamiya, Yoshinori; Alkam, Tursun; Nitta, Atsumi; Nabeshima, Toshitaka; Mikoshiba, Katsuhiko; Ohshima, Toshio; Goshima, Yoshio

    2013-11-01

    Alzheimer's disease (AD) is characterized by amyloid-β (Aβ) protein and tau deposition in the brain. Numerous studies have reported a central role of Aβ in the development of AD, but the pathogenesis is not well understood. Collapsin response mediator protein 2 (CRMP2), an intracellular protein mediating a repulsive axon guidance molecule, Semaphorin3A, is also accumulated in neurofibrillary tangles in AD brains. To gain insight into the role of CRMP2 phosphorylation in AD pathogenesis, we investigated the effects of Aβ neurotoxicity in CRMP2 phosphorylation-deficient knock-in (crmp2(ki/ki)) mice, in which the serine residue at 522 was replaced with alanine. Intracerebroventricular (i.c.v.) injection of Aβ₂₅₋₃₅ peptide, a neurotoxic fragment of Aβ protein, to wild-type (wt) mice increased hippocampal phosphorylation of CRMP2. Behavioral assessment revealed that i.c.v. injection of Aβ₂₅₋₃₅ peptide caused impairment of novel object recognition in wt mice, while the same peptide did not in crmp2(ki/ki) mice. In electrophysiological recording, wt and crmp2(ki/ki) mice have similar input-output basal synaptic transmission and paired-pulse ratios. However, long-term potentiation was impaired in hippocampal slices of Aβ₂₅₋₃₅ peptide-treated wt but not those of crmp2(ki/ki). Our findings indicate that CRMP2 phosphorylation is required for Aβ-induced impairment of cognitive memory and synaptic plasticity. Copyright © 2013 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  17. Down but Not Out: The Consequences of Pretangle Tau in the Locus Coeruleus

    PubMed Central

    Chalermpalanupap, Termpanit; Weinshenker, David

    2017-01-01

    Degeneration of locus coeruleus (LC) is an underappreciated hallmark of Alzheimer's disease (AD). The LC is the main source of norepinephrine (NE) in the forebrain, and its degeneration is highly correlated with cognitive impairment and amyloid-beta (Aβ) and tangle pathology. Hyperphosphorylated tau in the LC is among the first detectable AD-like neuropathology in the brain, and while the LC/NE system impacts multiple aspects of AD (e.g., cognition, neuropathology, and neuroinflammation), the functional consequences of hyperphosphorylated tau accrual on LC neurons are not known. Recent evidence suggests that LC neurons accumulate aberrant tau species for decades before frank LC cell body degeneration occurs in AD, suggesting that a therapeutic window exists. In this review, we combine the literature on how pathogenic tau affects forebrain neurons with the known properties and degeneration patterns of LC neurons to synthesize hypotheses on hyperphosphorylated tau-induced dysfunction of LC neurons and the prion-like spread of pretangle tau from the LC to the forebrain. We also propose novel experiments using both in vitro and in vivo models to address the many questions surrounding the impact of hyperphosphorylated tau on LC neurons in AD and its role in disease progression. PMID:29038736

  18. Motor dysfunction in NF1: Mediated by attention deficit or inherent to the disorder?

    PubMed

    Haas-Lude, Karin; Heimgärtner, Magdalena; Winter, Sarah; Mautner, Victor-Felix; Krägeloh-Mann, Ingeborg; Lidzba, Karen

    2018-01-01

    Attention deficit and compromised motor skills are both prevalent in Neurofibromatosis type 1 (NF1), but the relationship is unclear. We investigated motor function in children with NF1 and in children with Attention Deficit/Hyperactivity Disorder (ADHD), and explored if, in patients with NF1, attention deficit influences motor performance. Motor performance was measured using the Movement Assessment Battery for Children (M-ABC) in 71 children (26 with NF1 plus ADHD, 14 with NF1 without ADHD, and 31 with ADHD without NF1) aged 6-12 years. There was a significant effect of group on motor performance. Both NF1 groups scored below children with ADHD without NF1. Attention performance mediated motor performance in children with ADHD without NF1, but not in children with NF1. Motor function is not mediated by attention performance in children with NF1. While in ADHD, attention deficit influences motor performance, motor problems in NF1 seem to be independent from attention deficit. This argues for different pathomechanisms in these two groups of developmental disorders. Copyright © 2017 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  19. Decreased function of survival motor neuron protein impairs endocytic pathways

    PubMed Central

    Dimitriadi, Maria; Derdowski, Aaron; Kalloo, Geetika; Maginnis, Melissa S.; O’Hern, Patrick; Bliska, Bryn; Sorkaç, Altar; Nguyen, Ken C. Q.; Cook, Steven J.; Poulogiannis, George; Atwood, Walter J.; Hall, David H.; Hart, Anne C.

    2016-01-01

    Spinal muscular atrophy (SMA) is caused by depletion of the ubiquitously expressed survival motor neuron (SMN) protein, with 1 in 40 Caucasians being heterozygous for a disease allele. SMN is critical for the assembly of numerous ribonucleoprotein complexes, yet it is still unclear how reduced SMN levels affect motor neuron function. Here, we examined the impact of SMN depletion in Caenorhabditis elegans and found that decreased function of the SMN ortholog SMN-1 perturbed endocytic pathways at motor neuron synapses and in other tissues. Diminished SMN-1 levels caused defects in C. elegans neuromuscular function, and smn-1 genetic interactions were consistent with an endocytic defect. Changes were observed in synaptic endocytic proteins when SMN-1 levels decreased. At the ultrastructural level, defects were observed in endosomal compartments, including significantly fewer docked synaptic vesicles. Finally, endocytosis-dependent infection by JC polyomavirus (JCPyV) was reduced in human cells with decreased SMN levels. Collectively, these results demonstrate for the first time, to our knowledge, that SMN depletion causes defects in endosomal trafficking that impair synaptic function, even in the absence of motor neuron cell death. PMID:27402754

  20. Decreased function of survival motor neuron protein impairs endocytic pathways.

    PubMed

    Dimitriadi, Maria; Derdowski, Aaron; Kalloo, Geetika; Maginnis, Melissa S; O'Hern, Patrick; Bliska, Bryn; Sorkaç, Altar; Nguyen, Ken C Q; Cook, Steven J; Poulogiannis, George; Atwood, Walter J; Hall, David H; Hart, Anne C

    2016-07-26

    Spinal muscular atrophy (SMA) is caused by depletion of the ubiquitously expressed survival motor neuron (SMN) protein, with 1 in 40 Caucasians being heterozygous for a disease allele. SMN is critical for the assembly of numerous ribonucleoprotein complexes, yet it is still unclear how reduced SMN levels affect motor neuron function. Here, we examined the impact of SMN depletion in Caenorhabditis elegans and found that decreased function of the SMN ortholog SMN-1 perturbed endocytic pathways at motor neuron synapses and in other tissues. Diminished SMN-1 levels caused defects in C. elegans neuromuscular function, and smn-1 genetic interactions were consistent with an endocytic defect. Changes were observed in synaptic endocytic proteins when SMN-1 levels decreased. At the ultrastructural level, defects were observed in endosomal compartments, including significantly fewer docked synaptic vesicles. Finally, endocytosis-dependent infection by JC polyomavirus (JCPyV) was reduced in human cells with decreased SMN levels. Collectively, these results demonstrate for the first time, to our knowledge, that SMN depletion causes defects in endosomal trafficking that impair synaptic function, even in the absence of motor neuron cell death.

  1. Loss of Mitochondrial Ndufs4 in Striatal Medium Spiny Neurons Mediates Progressive Motor Impairment in a Mouse Model of Leigh Syndrome.

    PubMed

    Chen, Byron; Hui, Jessica; Montgomery, Kelsey S; Gella, Alejandro; Bolea, Irene; Sanz, Elisenda; Palmiter, Richard D; Quintana, Albert

    2017-01-01

    Inability of mitochondria to generate energy leads to severe and often fatal myoencephalopathies. Among these, Leigh syndrome (LS) is one of the most common childhood mitochondrial diseases; it is characterized by hypotonia, failure to thrive, respiratory insufficiency and progressive mental and motor dysfunction, leading to early death. Basal ganglia nuclei, including the striatum, are affected in LS patients. However, neither the identity of the affected cell types in the striatum nor their contribution to the disease has been established. Here, we used a mouse model of LS lacking Ndufs4 , a mitochondrial complex I subunit, to confirm that loss of complex I, but not complex II, alters respiration in the striatum. To assess the role of striatal dysfunction in the pathology, we selectively inactivated Ndufs4 in the striatal medium spiny neurons (MSNs), which account for over 95% of striatal neurons. Our results show that lack of Ndufs4 in MSNs causes a non-fatal progressive motor impairment without affecting the cognitive function of mice. Furthermore, no inflammatory responses or neuronal loss were observed up to 6 months of age. Hence, complex I deficiency in MSNs contributes to the motor deficits observed in LS, but not to the neural degeneration, suggesting that other neuronal populations drive the plethora of clinical signs in LS.

  2. Vectored Intracerebral Immunization with the Anti-Tau Monoclonal Antibody PHF1 Markedly Reduces Tau Pathology in Mutant Tau Transgenic Mice.

    PubMed

    Liu, Wencheng; Zhao, Lingzhi; Blackman, Brittany; Parmar, Mayur; Wong, Man Ying; Woo, Thomas; Yu, Fangmin; Chiuchiolo, Maria J; Sondhi, Dolan; Kaminsky, Stephen M; Crystal, Ronald G; Paul, Steven M

    2016-12-07

    Passive immunization with anti-tau monoclonal antibodies has been shown by several laboratories to reduce age-dependent tau pathology and neurodegeneration in mutant tau transgenic mice. These studies have used repeated high weekly doses of various tau antibodies administered systemically for several months and have reported reduced tau pathology of ∼40-50% in various brain regions. Here we show that direct intrahippocampal administration of the adeno-associated virus (AAV)-vectored anti-phospho-tau antibody PHF1 to P301S tau transgenic mice results in high and durable antibody expression, primarily in neurons. Hippocampal antibody levels achieved after AAV delivery were ∼50-fold more than those reported following repeated systemic administration. In contrast to systemic passive immunization, we observed markedly reduced (≥80-90%) hippocampal insoluble pathological tau species and neurofibrillary tangles following a single dose of AAV-vectored PHF1 compared with mice treated with an AAV-IgG control vector. Moreover, the hippocampal atrophy observed in untreated P301S mice was fully rescued by treatment with the AAV-vectored PHF1 antibody. Vectored passive immunotherapy with an anti-tau monoclonal antibody may represent a viable therapeutic strategy for treating or preventing such tauopathies as frontotemporal dementia, progressive supranuclear palsy, or Alzheimer's disease. We have used an adeno-associated viral (AAV) vector to deliver the genes encoding an anti-phospho-tau monoclonal antibody, PHF1, directly to the brain of mice that develop neurodegeneration due to a tau mutation that causes frontotemporal dementia (FTD). When administered systemically, PHF1 has been shown to modestly reduce tau pathology and neurodegeneration. Since such antibodies do not readily cross the blood-brain barrier, we used an AAV vector to deliver antibody directly to the hippocampus and observed much higher antibody levels and a much greater reduction in tau pathology. Using

  3. Phosphodiesterase 7 inhibitor reduced cognitive impairment and pathological hallmarks in a mouse model of Alzheimer's disease.

    PubMed

    Perez-Gonzalez, Rocio; Pascual, Consuelo; Antequera, Desiree; Bolos, Marta; Redondo, Miriam; Perez, Daniel I; Pérez-Grijalba, Virginia; Krzyzanowska, Agnieszka; Sarasa, Manuel; Gil, Carmen; Ferrer, Isidro; Martinez, Ana; Carro, Eva

    2013-09-01

    Elevated levels of amyloid beta (Aβ) peptide, hyperphosphorylation of tau protein, and inflammation are pathological hallmarks in Alzheimer's disease (AD). Phosphodiesterase 7 (PDE7) regulates the inflammatory response through the cyclic adenosine monophosphate signaling cascade, and thus plays a central role in AD. The aim of this study was to evaluate the efficacy of an inhibitor of PDE7, named S14, in a mouse model of AD. We report that APP/Ps1 mice treated daily for 4 weeks with S14 show: (1) significant attenuation in behavioral impairment; (2) decreased brain Aβ deposition; (3) enhanced astrocyte-mediated Aβ degradation; and (4) decreased tau phosphorylation. These effects are mediated via the cyclic adenosine monophosphate/cyclic adenosine monophosphate response element-binding protein signaling pathway, and inactivation of glycogen synthase kinase (GSK)3. Our data support the use of PDE7 inhibitors, and specifically S14, as effective therapeutic agents for the prevention and treatment of AD. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Three-Dimensional Kinematic Analysis of Prehension Movements in Young Children with Autism Spectrum Disorder: New Insights on Motor Impairment.

    PubMed

    Campione, Giovanna Cristina; Piazza, Caterina; Villa, Laura; Molteni, Massimo

    2016-06-01

    The study was aimed at better clarifying whether action execution impairment in autism depends mainly on disruptions either in feedforward mechanisms or in feedback-based control processes supporting motor execution. To this purpose, we analyzed prehension movement kinematics in 4- and 5-year-old children with autism and in peers with typical development. Statistical analysis showed that the kinematics of the grasp component was spared in autism, whereas early kinematics of the reach component was atypical. We discussed this evidence as suggesting impairment in the feedforward processes involved in action execution, whereas impairment in feedback-based control processes remained unclear. We proposed that certain motor abilities are available in autism, and children may use them differently as a function of motor context complexity.

  5. The disorderly conduct of Hsc70 and its interaction with the Alzheimer's related Tau protein.

    PubMed

    Taylor, Isabelle R; Ahmad, Atta; Wu, Taia; Nordhues, Bryce A; Bhullar, Anup; Gestwicki, Jason E; Zuiderweg, Erik R P

    2018-05-15

    Hsp70 chaperones bind to various protein substrates for folding, trafficking, and degradation. Considerable structural information is available about how prokaryotic Hsp70 (DnaK) binds substrates, but less is known about mammalian Hsp70s, of which there are 13 isoforms encoded in the human genome. Here, we report the interaction between the human Hsp70 isoform heat shock cognate 71 KDa protein (Hsc70 or HSPA8) and peptides derived from the microtubule-associated protein tau, which is linked to Alzheimer's disease. For structural studies, we used an Hsc70 construct (called BETA) comprising the substrate-binding domain, but lacking the lid. Importantly, we found that truncating the lid does not significantly impair Hsc70's chaperone activity or allostery in vitro. Using NMR, we show that BETA is partially dynamically disordered in the absence of substrate and that binding of the tau sequence GKVQIINKKG (with a KD = 500 nM) causes dramatic rigidification of BETA. Nuclear Overhauser effect distance measurements revealed that tau binds to the canonical substrate-binding cleft, similar to the binding observed with DnaK. To further develop BETA as a tool for studying Hsc70 interactions, we also measured BETA binding in NMR and fluorescent competition assays to peptides derived from huntingtin, insulin, a second tau-recognition sequence, and a KFERQ-like sequence linked to chaperone-mediated autophagy. We found that the insulin C-peptide binds BETA with high affinity (KD < 100 nM), whereas the others do not (KD > 100 μM). Together, our findings reveal several similarities and differences in how prokaryotic and mammalian Hsp70 isoforms interact with different substrate peptides. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Subthalamic nucleus phase–amplitude coupling correlates with motor impairment in Parkinson’s disease

    PubMed Central

    van Wijk, Bernadette C.M.; Beudel, Martijn; Jha, Ashwani; Oswal, Ashwini; Foltynie, Tom; Hariz, Marwan I.; Limousin, Patricia; Zrinzo, Ludvic; Aziz, Tipu Z.; Green, Alexander L.; Brown, Peter; Litvak, Vladimir

    2016-01-01

    Objective High-amplitude beta band oscillations within the subthalamic nucleus are frequently associated with Parkinson’s disease but it is unclear how they might lead to motor impairments. Here we investigate a likely pathological coupling between the phase of beta band oscillations and the amplitude of high-frequency oscillations around 300 Hz. Methods We analysed an extensive data set comprising resting-state recordings obtained from deep brain stimulation electrodes in 33 patients before and/or after taking dopaminergic medication. We correlated mean values of spectral power and phase–amplitude coupling with severity of hemibody bradykinesia/rigidity. In addition, we used simultaneously recorded magnetoencephalography to look at functional interactions between the subthalamic nucleus and ipsilateral motor cortex. Results Beta band power and phase–amplitude coupling within the subthalamic nucleus correlated positively with severity of motor impairment. This effect was more pronounced within the low-beta range, whilst coherence between subthalamic nucleus and motor cortex was dominant in the high-beta range. Conclusions We speculate that the beta band might impede pro-kinetic high-frequency activity patterns when phase–amplitude coupling is prominent. Furthermore, results provide evidence for a functional subdivision of the beta band into low and high frequencies. Significance Our findings contribute to the interpretation of oscillatory activity within the cortico-basal ganglia circuit. PMID:26971483

  7. Beneficial effects of exercise in a transgenic mouse model of Alzheimer's disease-like Tau pathology.

    PubMed

    Belarbi, Karim; Burnouf, Sylvie; Fernandez-Gomez, Francisco-Jose; Laurent, Cyril; Lestavel, Sophie; Figeac, Martin; Sultan, Audrey; Troquier, Laetitia; Leboucher, Antoine; Caillierez, Raphaëlle; Grosjean, Marie-Eve; Demeyer, Dominique; Obriot, Hélène; Brion, Ingrid; Barbot, Bérangère; Galas, Marie-Christine; Staels, Bart; Humez, Sandrine; Sergeant, Nicolas; Schraen-Maschke, Susanna; Muhr-Tailleux, Anne; Hamdane, Malika; Buée, Luc; Blum, David

    2011-08-01

    Tau pathology is encountered in many neurodegenerative disorders known as tauopathies, including Alzheimer's disease. Physical activity is a lifestyle factor affecting processes crucial for memory and synaptic plasticity. Whether long-term voluntary exercise has an impact on Tau pathology and its pathophysiological consequences is currently unknown. To address this question, we investigated the effects of long-term voluntary exercise in the THY-Tau22 transgenic model of Alzheimer's disease-like Tau pathology, characterized by the progressive development of Tau pathology, cholinergic alterations and subsequent memory impairments. Three-month-old THY-Tau22 mice and wild-type littermates were assigned to standard housing or housing supplemented with a running wheel. After 9 months of exercise, mice were evaluated for memory performance and examined for hippocampal Tau pathology, cholinergic defects, inflammation and genes related to cholesterol metabolism. Exercise prevented memory alterations in THY-Tau22 mice. This was accompanied by a decrease in hippocampal Tau pathology and a prevention of the loss of expression of choline acetyltransferase within the medial septum. Whereas the expression of most cholesterol-related genes remained unchanged in the hippocampus of running THY-Tau22 mice, we observed a significant upregulation in mRNA levels of NPC1 and NPC2, genes involved in cholesterol trafficking from the lysosomes. Our data support the view that long-term voluntary physical exercise is an effective strategy capable of mitigating Tau pathology and its pathophysiological consequences. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Functional electrical stimulation mediated by iterative learning control and 3D robotics reduces motor impairment in chronic stroke

    PubMed Central

    2012-01-01

    Background Novel stroke rehabilitation techniques that employ electrical stimulation (ES) and robotic technologies are effective in reducing upper limb impairments. ES is most effective when it is applied to support the patients’ voluntary effort; however, current systems fail to fully exploit this connection. This study builds on previous work using advanced ES controllers, and aims to investigate the feasibility of Stimulation Assistance through Iterative Learning (SAIL), a novel upper limb stroke rehabilitation system which utilises robotic support, ES, and voluntary effort. Methods Five hemiparetic, chronic stroke participants with impaired upper limb function attended 18, 1 hour intervention sessions. Participants completed virtual reality tracking tasks whereby they moved their impaired arm to follow a slowly moving sphere along a specified trajectory. To do this, the participants’ arm was supported by a robot. ES, mediated by advanced iterative learning control (ILC) algorithms, was applied to the triceps and anterior deltoid muscles. Each movement was repeated 6 times and ILC adjusted the amount of stimulation applied on each trial to improve accuracy and maximise voluntary effort. Participants completed clinical assessments (Fugl-Meyer, Action Research Arm Test) at baseline and post-intervention, as well as unassisted tracking tasks at the beginning and end of each intervention session. Data were analysed using t-tests and linear regression. Results From baseline to post-intervention, Fugl-Meyer scores improved, assisted and unassisted tracking performance improved, and the amount of ES required to assist tracking reduced. Conclusions The concept of minimising support from ES using ILC algorithms was demonstrated. The positive results are promising with respect to reducing upper limb impairments following stroke, however, a larger study is required to confirm this. PMID:22676920

  9. Functional electrical stimulation mediated by iterative learning control and 3D robotics reduces motor impairment in chronic stroke.

    PubMed

    Meadmore, Katie L; Hughes, Ann-Marie; Freeman, Chris T; Cai, Zhonglun; Tong, Daisy; Burridge, Jane H; Rogers, Eric

    2012-06-07

    Novel stroke rehabilitation techniques that employ electrical stimulation (ES) and robotic technologies are effective in reducing upper limb impairments. ES is most effective when it is applied to support the patients' voluntary effort; however, current systems fail to fully exploit this connection. This study builds on previous work using advanced ES controllers, and aims to investigate the feasibility of Stimulation Assistance through Iterative Learning (SAIL), a novel upper limb stroke rehabilitation system which utilises robotic support, ES, and voluntary effort. Five hemiparetic, chronic stroke participants with impaired upper limb function attended 18, 1 hour intervention sessions. Participants completed virtual reality tracking tasks whereby they moved their impaired arm to follow a slowly moving sphere along a specified trajectory. To do this, the participants' arm was supported by a robot. ES, mediated by advanced iterative learning control (ILC) algorithms, was applied to the triceps and anterior deltoid muscles. Each movement was repeated 6 times and ILC adjusted the amount of stimulation applied on each trial to improve accuracy and maximise voluntary effort. Participants completed clinical assessments (Fugl-Meyer, Action Research Arm Test) at baseline and post-intervention, as well as unassisted tracking tasks at the beginning and end of each intervention session. Data were analysed using t-tests and linear regression. From baseline to post-intervention, Fugl-Meyer scores improved, assisted and unassisted tracking performance improved, and the amount of ES required to assist tracking reduced. The concept of minimising support from ES using ILC algorithms was demonstrated. The positive results are promising with respect to reducing upper limb impairments following stroke, however, a larger study is required to confirm this.

  10. Cerebellar peduncle injury predicts motor impairments in preterm infants: A quantitative tractography study at term-equivalent age.

    PubMed

    Hasegawa, Tatsuji; Yamada, Kei; Tozawa, Takenori; Chiyonobu, Tomohiro; Tokuda, Sachiko; Nishimura, Akira; Hosoi, Hajime; Morimoto, Masafumi

    2018-05-15

    Cerebellar injury is well established as an important finding in preterm infants with cerebral palsy (CP). In this study, we investigated associations between injury to the cerebellar peduncles and motor impairments in preterm infants using quantitative tractography at term-equivalent age, which represents an early phase before the onset of motor impairments. We studied 64 preterm infants who were born at <33 weeks gestational age. These infants were divided into three groups: CP, Non-CP (defined as infants with periventricular leukomalacia but having normal motor function), and a Normal group. Diffusion tensor imaging was performed at term-equivalent age and motor function was assessed no earlier than a corrected age of 2 years. Using tractography, we measured fractional anisotropy (FA) and apparent diffusion coefficient (ADC) of the superior cerebellar peduncles (SCP) and middle cerebellar peduncles (MCP), as well as the motor/sensory tracts. The infants in the CP group had significantly lower FA of the SCP and sensory tract than those in the other groups. There was no significant difference in FA and ADC of the motor tract among the three groups. Severity of CP had a significant correlation with FA of the MCP, but not with the FA of other white matter tracts. Our results suggested that the infants with CP had injuries of the ascending tracts (e.g. the SCP and sensory tract), and that additional MCP injury might increase the severity of CP. Quantitative tractography assessment at term-equivalent age may be useful for screening preterm infants for prediction of future motor impairments. Copyright © 2018 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  11. Comorbidity of Motor and Language Impairments in Preschool Children of Taiwan

    ERIC Educational Resources Information Center

    Cheng, Hsiang-Chun; Chen, Hung-Yi; Tsai, Chia-Liang; Chen, Yung-Jung; Cherng, Rong-Ju

    2009-01-01

    Comorbidity of motor and speech/language impairments was investigated in 363 preschool children between the ages of 5 and 6 years (boys: 205, age 6.04 plus or minus 0.48 years; girls: 158, age 5.98 plus or minus 0.53 years). The children were sampled from two municipals of Taiwan, and were determined to present no apparent neurological,…

  12. Parenting Mediates Symptoms and Impairment in Children with ADHD-Inattentive Type

    PubMed Central

    Haack, Lauren; Villodas, Miguel T.; McBurnett, Keith; Hinshaw, Stephen; Pfiffner, Linda

    2015-01-01

    The current study investigates potential pathways between inattentive symptom severity, positive and negative parenting practices, and functional impairment (i.e., academic, social, and home impairment) in a sample of children diagnosed with ADHD, Predominantly Inattentive Type (ADHD-I). Participants included 199 children and their parents and teachers enrolled in a randomized clinical trial investigating the efficacy of an integrated psychosocial intervention for children with ADHD-I. Boys constituted just over half the sample; children averaged 8.6 years of age (range 7–11) and were from varied ethnic/racial backgrounds. As part of the initial screening and assessment procedures, parents and teachers completed questionnaires assessing child behavior and parent/family functioning. Results supported both main effects of symptoms and parenting on impairment, as well as a mediational path between symptoms and impairment via parenting, as observed by parents in the home setting. Specifically, higher severity of inattention was associated with higher rates of homework, social, and home impairment. Negative parenting contributed to homework and home impairment, and positive and negative parenting contributed to social impairment, incrementally above and beyond the impact of inattention symptom severity alone. Negative parenting partially mediated the relationship between inattentive symptom severity and impairment, such that higher rates of inattention were associated with higher rates of negative parenting, which in turn was associated with higher rates of homework, social, and home impairment. Results provide support for underlying mechanisms for associations between symptoms and impairment in children with ADHD-I, and also identify potential intervention targets to improve impairment experienced by these children. PMID:25411896

  13. Motor Control and Nonword Repetition in Specific Working Memory Impairment and SLI

    ERIC Educational Resources Information Center

    Archibald, Lisa M. D.; Joanisse, Marc F.; Munson, Benjamin

    2013-01-01

    Purpose: Debate around the underlying cognitive factors leading to poor performance in the repetition of nonwords by children with developmental impairments in language has centered around phonological short-term memory, lexical knowledge, and other factors. This study examines the impact of motor control demands on nonword repetition in groups of…

  14. Rhythmic motor entrainment in children with speech and language impairments: tapping to the beat.

    PubMed

    Corriveau, Kathleen H; Goswami, Usha

    2009-01-01

    In prior work (Corriveau et al., 2007), we showed that children with speech and language impairments (SLI) were significantly less sensitive than controls to two auditory cues to rhythmic timing, amplitude envelope rise time and duration. Here we explore whether rhythmic problems extend to rhythmic motor entrainment. Tapping in synchrony with a beat has been described as the simplest rhythmic act that humans perform. We explored whether tapping to a beat would be impaired in children for whom auditory rhythmic timing is impaired. Children with SLI were indeed found to be impaired in a range of measures of paced rhythmic tapping, but were not equally impaired in tapping in an unpaced control condition requiring an internally-generated rhythm. The severity of impairment in paced tapping was linked to language and literacy outcomes.

  15. Connecting impairment, disability, and handicap in immune mediated polyneuropathies

    PubMed Central

    Merkies, I; Schmitz, P; van der Meche, F G A; Samijn, J; van Doorn, P A

    2003-01-01

    Background: In the World Health Organisation (WHO) International Classification of Impairments, Disabilities, and Handicaps (ICIDH), it is suggested that various levels of outcome are associated with one another. However, the ICIDH has been criticised on the grounds that it only represents a general, non-specific relation between its entities. Objective: To examine the significance of the ICIDH in immune mediated polyneuropathies. Methods: Four impairment measures (fatigue severity scale, MRC sum score, "INCAT" sensory sum score, grip strength with the Vigorimeter), five disability scales (nine hole peg test, 10 metres walking test, an overall disability sum score (ODSS), Hughes functional grading scale, Rankin scale), and a handicap scale (Rotterdam nine items handicap scale (RIHS9)) were assessed in 113 clinically stable patients (83 with Guillain–Barré syndrome, 22 with chronic inflammatory demyelinating polyneuropathy, eight with a gammopathy related polyneuropathy). Regression analyses with backward and forward stepwise strategies were undertaken to determine the correlation between the various levels of outcome (impairment on disability, impairment on handicap, disability leading to handicap, and impairment plus disability on handicap). Results: Impairment measures explained a substantial part of disability (R2 = 0.64) and about half of the variance in handicap (R2 = 0.52). Disability measures showed a stronger association with handicap (R2 = 0.76). Combining impairment and disability scales accounted for 77% of the variance in handicap (RIHS9) scores. Conclusions: In contrast to some suggestions, support for the ICIDH model is found in the current study because significant associations were shown between its various levels in patients with immune mediated polyneuropathies. Further studies are required to examine other possible contributors to deficits in daily life and social functioning in these conditions. PMID:12486276

  16. Insulin deprivation induces PP2A inhibition and tau hyperphosphorylation in hTau mice, a model of Alzheimer's disease-like tau pathology.

    PubMed

    Gratuze, Maud; Julien, Jacinthe; Petry, Franck R; Morin, Françoise; Planel, Emmanuel

    2017-04-12

    Abnormally hyperphosphorylated tau aggregated as intraneuronal neurofibrillary tangles is one of the two neuropathological hallmarks of Alzheimer's disease (AD). The majority of AD cases are sporadic with numerous environmental, biological and genetic risks factors. Interestingly, insulin dysfunction and hyperglycaemia are both risk factors for sporadic AD. However, how hyperglycaemia and insulin dysfunction affect tau pathology, is not well understood. In this study, we examined the effects of insulin deficiency on tau pathology in transgenic hTau mice by injecting different doses of streptozotocin (STZ), a toxin that destroys insulin-producing cells in the pancreas. One high dose of STZ resulted in marked diabetes, and five low doses led to a milder diabetes. Both groups exhibited brain tau hyperphosphorylation but no increased aggregation. Tau hyperphosphorylation correlated with inhibition of Protein Phosphatase 2A (PP2A), the main tau phosphatase. Interestingly, insulin injection 30 minutes before sacrifice partially restored tau phosphorylation to control levels in both STZ-injected groups. Our results confirm a link between insulin homeostasis and tau phosphorylation, which could explain, at least in part, a higher incidence of AD in diabetic patients.

  17. Cotinine improves visual recognition memory and decreases cortical Tau phosphorylation in the Tg6799 mice.

    PubMed

    Grizzell, J Alex; Patel, Sagar; Barreto, George E; Echeverria, Valentina

    2017-08-01

    Alzheimer's disease (AD) is associated with the progressive aggregation of hyperphosphorylated forms of the microtubule associated protein Tau in the central nervous system. Cotinine, the main metabolite of nicotine, reduced working memory deficits, synaptic loss, and amyloid β peptide aggregation into oligomers and plaques as well as inhibited the cerebral Tau kinase, glycogen synthase 3β (GSK3β) in the transgenic (Tg)6799 (5XFAD) mice. In this study, the effect of cotinine on visual recognition memory and cortical Tau phosphorylation at the GSK3β sites Serine (Ser)-396/Ser-404 and phospho-CREB were investigated in the Tg6799 and non-transgenic (NT) littermate mice. Tg mice showed short-term visual recognition memory impairment in the novel object recognition test, and higher levels of Tau phosphorylation when compared to NT mice. Cotinine significantly improved visual recognition memory performance increased CREB phosphorylation and reduced cortical Tau phosphorylation. Potential mechanisms underlying theses beneficial effects are discussed. Copyright © 2017. Published by Elsevier Inc.

  18. Work stressors and impaired sleep: rumination as a mediator.

    PubMed

    Berset, Martial; Elfering, Achim; Lüthy, Stefan; Lüthi, Simon; Semmer, Norbert K

    2011-04-01

    An association between stress at work and impaired sleep is theoretically plausible and supported by empirical evidence. The current study's main aim was to investigate how the influence of stressors is carried over into the evening and the night. We assume that this relationship is mediated by perseverative cognitions. We tested this assumption in two cross-sectional samples with structural equation modeling, using bootstrapped standard errors to test for significance. Effort–reward imbalance and time pressure were used as stressors, and rumination as a measure for perseverative cognitions. Results show that the stressors are related to perseverative cognitions, and these are related to impaired sleep in both samples. Indirect effects are significant in both samples. With rumination controlled, direct effects of stressors on sleep are only significant in one out of four cases. Thus, there is full mediation in three out of four cases, and partial mediation in the fourth one. Our results underscore the notion that perseverative cognitions are crucial for transferring negative effects of work stressors into private life, including sleep, thus hindering individuals to successfully recover.

  19. Interaction of tau protein with model lipid membranes induces tau structural compaction and membrane disruption

    PubMed Central

    Jones, Emmalee M.; Dubey, Manish; Camp, Phillip J.; Vernon, Briana C.; Biernat, Jacek; Mandelkow, Eckhard; Majewski, Jaroslaw; Chi, Eva Y.

    2012-01-01

    The misfolding and aggregation of the intrinsically disordered, microtubule-associated tau protein into neurofibrillary tangles is implicated in the pathogenesis of Alzheimer's disease. However, the mechanisms of tau aggregation and toxicity remain unknown. Recent work has shown that lipid membrane can induce tau aggregation and that membrane permeabilization may serve as a pathway by which protein aggregates exert toxicity, suggesting that the plasma membrane may play dual roles in tau pathology. This prompted our investigation to assess tau's propensity to interact with membranes and to elucidate the mutually disruptive structural perturbations the interactions induce in both tau and the membrane. We show that although highly charged and soluble, the full-length tau (hTau40) is also highly surface active, selectively inserts into anionic DMPG lipid monolayers and induces membrane morphological changes. To resolve molecular-scale structural details of hTau40 associated with lipid membranes, X-ray and neutron scattering techniques are utilized. X-ray reflectivity indicates hTau40's presence underneath a DMPG monolayer and penetration into the lipid headgroups and tailgroups, whereas grazing incidence X-ray diffraction shows that hTau40 insertion disrupts lipid packing. Moreover, both air/water and DMPG lipid membrane interfaces induce the disordered hTau40 to partially adopt a more compact conformation with density similar to that of a folded protein. Neutron reflectivity shows that tau completely disrupts supported DMPG bilayers while leaving the neutral DPPC bilayer intact. Our results show that hTau40's strong interaction with anionic lipids induces tau structural compaction and membrane disruption, suggesting possible membrane-based mechanisms of tau aggregation and toxicity in neurodegenerative diseases. PMID:22401494

  20. Motor Skill Performance of Children and Adolescents with Visual Impairments: A Review

    ERIC Educational Resources Information Center

    Houwen, Suzanne; Visscher, Chris; Lemmink, Koen A. P. M.; Hartman, Esther

    2009-01-01

    This article reviews studies on variables that are related to the motor skill performance of children and adolescents with visual impairments (VI). Three major groups of variables are considered (child, environmental, and task). Thirty-nine studies are included in this review, 26 of which examined the effects of child, environmental, and/or task…

  1. Nrf2 reduces levels of phosphorylated tau protein by inducing autophagy adaptor protein NDP52

    NASA Astrophysics Data System (ADS)

    Jo, Chulman; Gundemir, Soner; Pritchard, Susanne; Jin, Youngnam N.; Rahman, Irfan; Johnson, Gail V. W.

    2014-03-01

    Nuclear factor erythroid 2-related factor 2 (Nrf2) is a pivotal transcription factor in the defence against oxidative stress. Here we provide evidence that activation of the Nrf2 pathway reduces the levels of phosphorylated tau by induction of an autophagy adaptor protein NDP52 (also known as CALCOCO2) in neurons. The expression of NDP52, which we show has three antioxidant response elements (AREs) in its promoter region, is strongly induced by Nrf2, and its overexpression facilitates clearance of phosphorylated tau in the presence of an autophagy stimulator. In Nrf2-knockout mice, phosphorylated and sarkosyl-insoluble tau accumulates in the brains concurrent with decreased levels of NDP52. Moreover, NDP52 associates with phosphorylated tau from brain cortical samples of Alzheimer disease cases, and the amount of phosphorylated tau in sarkosyl-insoluble fractions is inversely proportional to that of NDP52. These results suggest that NDP52 plays a key role in autophagy-mediated degradation of phosphorylated tau in vivo.

  2. Antibody uptake into neurons occurs primarily via clathrin-dependent Fcγ receptor endocytosis and is a prerequisite for acute tau protein clearance.

    PubMed

    Congdon, Erin E; Gu, Jiaping; Sait, Hameetha B R; Sigurdsson, Einar M

    2013-12-06

    Tau immunotherapy is effective in transgenic mice, but the mechanisms of Tau clearance are not well known. To this end, Tau antibody uptake was analyzed in brain slice cultures and primary neurons. Internalization was rapid (<1 h), saturable, and substantial compared with control mouse IgG. Furthermore, temperature reduction to 4 °C, an excess of unlabeled mouse IgG, or an excess of Tau antibodies reduced uptake in slices by 63, 41, and 62%, respectively (p = 0.002, 0.04, and 0.005). Uptake strongly correlated with total and insoluble Tau levels (r(2) = 0.77 and 0.87 and p = 0.002 and 0.0002), suggesting that Tau aggregates influence antibody internalization and/or retention within neurons. Inhibiting phagocytosis did not reduce uptake in slices or neuronal cultures, indicating limited microglial involvement. In contrast, clathrin-specific inhibitors reduced uptake in neurons (≤ 78%, p < 0.0001) and slices (≤ 35%, p = 0.03), demonstrating receptor-mediated endocytosis as the primary uptake pathway. Fluid phase endocytosis accounted for the remainder of antibody uptake in primary neurons, based on co-staining with internalized dextran. The receptor-mediated uptake is to a large extent via low affinity FcγII/III receptors and can be blocked in slices (43%, p = 0.04) and neurons (53%, p = 0.008) with an antibody against these receptors. Importantly, antibody internalization appears to be necessary for Tau reduction in primary neurons. Overall, these findings clarify that Tau antibody uptake is primarily receptor-mediated, that these antibodies are mainly found in neurons with Tau aggregates, and that their intracellular interaction leads to clearance of Tau pathology, all of which have major implications for therapeutic development of this approach.

  3. Associations between regional brain physiology and trait impulsivity, motor inhibition, and impaired control over drinking

    PubMed Central

    Weafer, Jessica; Dzemidzic, Mario; Eiler, William; Oberlin, Brandon G.; Wang, Yang; Kareken, David A.

    2015-01-01

    Trait impulsivity and poor inhibitory control are well-established risk factors for alcohol misuse, yet little is known about the associated neurobiological endophenotypes. Here we examined correlations among brain physiology and self-reported trait impulsive behavior, impaired control over drinking, and a behavioral measure of response inhibition. A sample of healthy drinkers (n=117) completed a pulsed arterial spin labeling (PASL) scan to quantify resting regional cerebral blood flow (rCBF), and measures of self-reported impulsivity (Eysenck I7 Impulsivity scale) and impaired control over drinking. A subset of subjects (n=40) performed a stop signal task during blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging to assess brain regions involved in response inhibition. Eysenck I7 scores were inversely related to blood flow in the right precentral gyrus. Significant BOLD activation during response inhibition occurred in an overlapping right frontal motor/premotor region. Moreover, impaired control over drinking was associated with reduced BOLD response in the same region. These findings suggest that impulsive personality and impaired control over drinking are associated with brain physiology in areas implicated in response inhibition. This is consistent with the idea that difficulty controlling behavior is due in part to impairment in motor restraint systems. PMID:26065376

  4. Motor deficits, impaired response inhibition, and blunted response to methylphenidate following neonatal exposure to decabromodiphenyl ether.

    PubMed

    Markowski, Vincent P; Miller-Rhodes, Patrick; Cheung, Randy; Goeke, Calla; Pecoraro, Vincent; Cohen, Gideon; Small, Deena J

    2017-09-01

    Decabromodiphenyl ether (decaBDE) is an applied brominated flame retardant that is widely-used in electronic equipment. After decades of use, decaBDE and other members of its polybrominated diphenyl ether class have become globally-distributed environmental contaminants that can be measured in the atmosphere, water bodies, wildlife, food staples and human breastmilk. Although it has been banned in Europe and voluntarily withdrawn from the U.S. market, it is still used in Asian countries. Evidence from epidemiological and animal studies indicate that decaBDE exposure targets brain development and produces behavioral impairments. The current study examined an array of motor and learning behaviors in a C57BL6/J mouse model to determine the breadth of the developmental neurotoxicity produced by decaBDE. Mouse pups were given a single daily oral dose of 0 or 20mg/kg decaBDE from postnatal day 1 to 21 and were tested in adulthood. Exposed male mice had impaired forelimb grip strength, altered motor output in a circadian wheel-running procedure, increased response errors during an operant differential reinforcement of low rates (DRL) procedure and a blunted response to an acute methylphenidate challenge administered before DRL testing. With the exception of altered wheel-running output, exposed females were not affected. Neither sex had altered somatic growth, motor coordination impairments on the Rotarod, gross learning deficits during operant lever-press acquisition, or impaired food motivation. The overall pattern of effects suggests that males are more sensitive to developmental decaBDE exposure, especially when performing behaviors that require effortful motor output or when learning tasks that require sufficient response inhibition for their successful completion. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Differential induction and spread of tau pathology in young PS19 tau transgenic mice following intracerebral injections of pathological tau from Alzheimer’s disease or corticobasal degeneration brains

    PubMed Central

    Boluda, Susana; Iba, Michiyo; Zhang, Bin; Raible, Kevin M.; Lee, Virginia M-Y.; Trojanowski, John Q.

    2015-01-01

    Filamentous tau pathologies are hallmark lesions of several neurodegenerative tauopathies including Alzheimer’s disease (AD) and corticobasal degeneration (CBD) which show cell type-specific and topographically distinct tau inclusions. Growing evidence supports templated transmission of tauopathies through functionally interconnected neuroanatomical pathways suggesting that different self-propagating strains of pathological tau could account for the diverse manifestations of neurodegenerative tauopathies. Here, we describe the rapid and distinct cell type-specific spread of pathological tau following intracerebral injections of CBD or AD brain extracts enriched in pathological tau (designated CBD-Tau and AD-Tau, respectively) in young human mutant P301S tau transgenic (Tg) mice (line PS19) ~6–9 months before they show onset of mutant tau transgene-induced tau pathology. At 1 month post-injection of CBD-Tau, tau inclusions developed predominantly in oligodendrocytes of the fimbria and white matter near the injection sites with infrequent intraneuronal tau aggregates. In contrast, injections of AD-Tau in young PS19 mice induced tau pathology predominantly in neuronal perikarya with little or no oligodendrocyte involvement 1 month post-injection. With longer post-injection survival intervals of up to 6 months, CBD-Tau- and AD-Tau-induced tau pathology spread to different brain regions distant from the injection sites while maintaining the cell type-specific pattern noted above. Finally, CA3 neuron loss was detected 3 months post-injection of AD-Tau but not CBD-Tau. Thus, AD-Tau and CBD-Tau represent specific pathological tau strains that spread differentially and may underlie distinct clinical and pathological features of these two tauopathies. Hence, these strains could become targets to develop disease-modifying therapies for CBD and AD. PMID:25534024

  6. Electro-acupuncture stimulation acts on the basal ganglia output pathway to ameliorate motor impairment in Parkinsonian model rats.

    PubMed

    Jia, Jun; Li, Bo; Sun, Zuo-Li; Yu, Fen; Wang, Xuan; Wang, Xiao-Min

    2010-04-01

    The role of electro-acupuncture (EA) stimulation on motor symptoms in Parkinson's disease (PD) has not been well studied. In a rat hemiparkinsonian model induced by unilateral transection of the medial forebrain bundle (MFB), EA stimulation improved motor impairment in a frequency-dependent manner. Whereas EA stimulation at a low frequency (2 Hz) had no effect, EA stimulation at a high frequency (100 Hz) significantly improved motor coordination. However, neither low nor high EA stimulation could significantly enhance dopamine levels in the striatum. EA stimulation at 100 Hz normalized the MFB lesion-induced increase in midbrain GABA content, but it had no effect on GABA content in the globus pallidus. These results suggest that high-frequency EA stimulation improves motor impairment in MFB-lesioned rats by increasing GABAergic inhibition in the output structure of the basal ganglia.

  7. Organizational strategies mediate nonverbal memory impairment in obsessive-compulsive disorder.

    PubMed

    Savage, C R; Baer, L; Keuthen, N J; Brown, H D; Rauch, S L; Jenike, M A

    1999-04-01

    Previous neuropsychological studies of obsessive-compulsive disorder (OCD) have indicated impaired executive functioning and nonverbal memory. The extent to which impaired executive functioning impacts nonverbal memory has not been established. The current study investigated the mediating effects of organizational strategies used when copying a figure on subsequent nonverbal memory for that figure. We examined neuropsychological performance in 20 unmedicated subjects with OCD and 20 matched normal control subjects. Subjects were administered the Rey-Osterrieth Complex Figure Test (RCFT) and neuropsychological tests assessing various aspects of executive function. OCD subjects differed significantly from healthy control subjects in the organizational strategies used to copy the RCFT figure, and they recalled significantly less information on both immediate and delayed testing. Multiple regression analyses indicated that group differences in immediate percent recall were significantly mediated by copy organizational strategies. Further exploratory analyses indicated that organizational problems in OCD may be related to difficulties shifting mental and/or spatial set. Immediate nonverbal memory problems in OCD subjects were mediated by impaired organizational strategies used during the initial copy of the RCFT figure. Thus, the primary deficit was one affecting executive function, which then had a secondary effect on immediate memory. These findings are consistent with current theories proposing frontal-striatal system dysfunction in OCD.

  8. Expression of Tau Pathology-Related Proteins in Different Brain Regions: A Molecular Basis of Tau Pathogenesis.

    PubMed

    Hu, Wen; Wu, Feng; Zhang, Yanchong; Gong, Cheng-Xin; Iqbal, Khalid; Liu, Fei

    2017-01-01

    Microtubule-associated protein tau is hyperphosphorylated and aggregated in affected neurons in Alzheimer disease (AD) brains. The tau pathology starts from the entorhinal cortex (EC), spreads to the hippocampus and frontal and temporal cortices, and finally to all isocortex areas, but the cerebellum is spared from tau lesions. The molecular basis of differential vulnerability of different brain regions to tau pathology is not understood. In the present study, we analyzed brain regional expressions of tau and tau pathology-related proteins. We found that tau was hyperphosphorylated at multiple sites in the frontal cortex (FC), but not in the cerebellum, from AD brain. The level of tau expression in the cerebellum was about 1/4 of that seen in the frontal and temporal cortices in human brain. In the rat brain, the expression level of tau with three microtubule-binding repeats (3R-tau) was comparable in the hippocampus, EC, FC, parietal-temporal cortex (PTC), occipital-temporal cortex (OTC), striatum, thalamus, olfactory bulb (OB) and cerebellum. However, the expression level of 4R-tau was the highest in the EC and the lowest in the cerebellum. Tau phosphatases, kinases, microtubule-related proteins and other tau pathology-related proteins were also expressed in a region-specific manner in the rat brain. These results suggest that higher levels of tau and tau kinases in the EC and low levels of these proteins in the cerebellum may accounts for the vulnerability and resistance of these representative brain regions to the development of tau pathology, respectively. The present study provides the regional expression profiles of tau and tau pathology-related proteins in the brain, which may help understand the brain regional vulnerability to tau pathology in neurodegenerative tauopathies.

  9. Tau Antibody Targeting Pathological Species Blocks Neuronal Uptake and Interneuron Propagation of Tau in Vitro.

    PubMed

    Nobuhara, Chloe K; DeVos, Sarah L; Commins, Caitlin; Wegmann, Susanne; Moore, Benjamin D; Roe, Allyson D; Costantino, Isabel; Frosch, Matthew P; Pitstick, Rose; Carlson, George A; Hock, Christoph; Nitsch, Roger M; Montrasio, Fabio; Grimm, Jan; Cheung, Anne E; Dunah, Anthone W; Wittmann, Marion; Bussiere, Thierry; Weinreb, Paul H; Hyman, Bradley T; Takeda, Shuko

    2017-06-01

    The clinical progression of Alzheimer disease (AD) is associated with the accumulation of tau neurofibrillary tangles, which may spread throughout the cortex by interneuronal tau transfer. If so, targeting extracellular tau species may slow the spreading of tau pathology and possibly cognitive decline. To identify suitable target epitopes, we tested the effects of a panel of tau antibodies on neuronal uptake and aggregation in vitro. Immunodepletion was performed on brain extract from tau-transgenic mice and postmortem AD brain and added to a sensitive fluorescence resonance energy transfer-based tau uptake assay to assess blocking efficacy. The antibodies reduced tau uptake in an epitope-dependent manner: N-terminal (Tau13) and middomain (6C5 and HT7) antibodies successfully prevented uptake of tau species, whereas the distal C-terminal-specific antibody (Tau46) had little effect. Phosphorylation-dependent (40E8 and p396) and C-terminal half (4E4) tau antibodies also reduced tau uptake despite removing less total tau by immunodepletion, suggesting specific interactions with species involved in uptake. Among the seven antibodies evaluated, 6C5 most efficiently blocked uptake and subsequent aggregation. More important, 6C5 also blocked neuron-to-neuron spreading of tau in a unique three-chamber microfluidic device. Furthermore, 6C5 slowed down the progression of tau aggregation even after uptake had begun. Our results imply that not all antibodies/epitopes are equally robust in terms of blocking tau uptake of human AD-derived tau species. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  10. Impaired motor inhibition in adults who stutter - evidence from speech-free stop-signal reaction time tasks.

    PubMed

    Markett, Sebastian; Bleek, Benjamin; Reuter, Martin; Prüss, Holger; Richardt, Kirsten; Müller, Thilo; Yaruss, J Scott; Montag, Christian

    2016-10-01

    Idiopathic stuttering is a fluency disorder characterized by impairments during speech production. Deficits in the motor control circuits of the basal ganglia have been implicated in idiopathic stuttering but it is unclear how these impairments relate to the disorder. Previous work has indicated a possible deficiency in motor inhibition in children who stutter. To extend these findings to adults, we designed two experiments to probe executive motor control in people who stutter using manual reaction time tasks that do not rely on speech production. We used two versions of the stop-signal reaction time task, a measure for inhibitory motor control that has been shown to rely on the basal ganglia circuits. We show increased stop-signal reaction times in two independent samples of adults who stutter compared to age- and sex-matched control groups. Additional measures involved simple reaction time measurements and a task-switching task where no group difference was detected. Results indicate a deficiency in inhibitory motor control in people who stutter in a task that does not rely on overt speech production and cannot be explained by general deficits in executive control or speeded motor execution. This finding establishes the stop-signal reaction time as a possible target for future experimental and neuroimaging studies on fluency disorders and is a further step towards unraveling the contribution of motor control deficits to idiopathic stuttering. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Insulin deprivation induces PP2A inhibition and tau hyperphosphorylation in hTau mice, a model of Alzheimer’s disease-like tau pathology

    PubMed Central

    Gratuze, Maud; Julien, Jacinthe; Petry, Franck R.; Morin, Françoise; Planel, Emmanuel

    2017-01-01

    Abnormally hyperphosphorylated tau aggregated as intraneuronal neurofibrillary tangles is one of the two neuropathological hallmarks of Alzheimer’s disease (AD). The majority of AD cases are sporadic with numerous environmental, biological and genetic risks factors. Interestingly, insulin dysfunction and hyperglycaemia are both risk factors for sporadic AD. However, how hyperglycaemia and insulin dysfunction affect tau pathology, is not well understood. In this study, we examined the effects of insulin deficiency on tau pathology in transgenic hTau mice by injecting different doses of streptozotocin (STZ), a toxin that destroys insulin-producing cells in the pancreas. One high dose of STZ resulted in marked diabetes, and five low doses led to a milder diabetes. Both groups exhibited brain tau hyperphosphorylation but no increased aggregation. Tau hyperphosphorylation correlated with inhibition of Protein Phosphatase 2A (PP2A), the main tau phosphatase. Interestingly, insulin injection 30 minutes before sacrifice partially restored tau phosphorylation to control levels in both STZ-injected groups. Our results confirm a link between insulin homeostasis and tau phosphorylation, which could explain, at least in part, a higher incidence of AD in diabetic patients. PMID:28402338

  12. Does early communication mediate the relationship between motor ability and social function in children with cerebral palsy?

    PubMed

    Lipscombe, Belinda; Boyd, Roslyn N; Coleman, Andrea; Fahey, Michael; Rawicki, Barry; Whittingham, Koa

    2016-01-01

    Children diagnosed with neurodevelopmental conditions such as cerebral palsy (CP) are at risk of experiencing restrictions in social activities negatively impacting their subsequent social functioning. Research has identified motor and communication ability as being unique determinants of social function capabilities in children with CP, to date, no research has investigated whether communication is a mediator of the relationship between motor ability and social functioning. To investigate whether early communication ability at 24 months corrected age (ca.) mediates the relationship between early motor ability at 24 months ca. and later social development at 60 months ca. in a cohort of children diagnosed with cerebral palsy (CP). A cohort of 71 children (43 male) diagnosed with CP (GMFCS I=24, 33.8%, II=9, 12.7%, III=12, 16.9%, IV=10, 14.1%, V=16, 22.5%) were assessed at 24 and 60 months ca. Assessments included the Gross Motor Function Measure (GMFM), the Communication and Symbolic Behaviour Scales-Developmental Profile (CSBS-DP) Infant-Toddler Checklist and the Paediatric Evaluation of Disability Inventory (PEDI). A mediation model was examined using bootstrapping. Early communication skills mediated the relationship between early motor abilities and later social functioning, b=0.24 (95% CI=0.08-0.43 and the mediation model was significant, F (2, 68)=32.77, p<0.001, R(2)=0.49. Early communication ability partially mediates the relationship between early motor ability and later social function in children with CP. This demonstrates the important role of early communication in ongoing social development. Early identification of communication delay and enriched language exposure is crucial in this population. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Tau Now

    NASA Astrophysics Data System (ADS)

    Fargion, D.; Oliva, P.

    2016-10-01

    Ultra High Energy Cosmic Rays and UHE neutrinos may lead to a new deep astronomy. However the most recent results on their correlations and clustering seem to most authors inconclusive. We briefly remind some UHECR models and past and recent results. Our reading and overlapping of IR-gamma-UHECR maps and their correlations seem to answer to several key puzzles, offering a first hope of the UHECR astronomy, mostly ruled by lightest nuclei from nearby Universe. Regarding the UHE neutrino we recently noted that the flavor ratio and the absence of double bang in IceCube within highest energetic ten events may suggest still a dominant noisy prompt component. However a first correlated UHE crossing muon with expected location (through going upward muon neutrino or horizontally) in IceCube is in our view a milestone in neutrino astronomy road map, possibly partially related, to galactic UHECR narrow clustering. The disturbing and persistent atmospheric neutrino noises, both conventional and prompt, call for a better filtered neutrino astronomy: the tau neutrino ones. There are no yet (at present, detectable) TeV-PeVs or more energetic tau neutrino of atmospheric, conventional or prompt nature; only astrophysical ones might soon shine. Double bangs in IceCube and in particular the tau air-showers in large array are the unique definitive expected signatures of astrophysical signals. In particular tau air-shower amplify in a huge way the otherwise single lepton track, once in decay in flight, into a richest three of secondaries (up to a million of billion Cherenkov photons for PeV tau energy) whose wide areas may extend up to nearly kilometer size. Such airshowers are very directional. PeVs energetic tau lepton penetrate hundreds meters inside the rock before its decay. Therefore horizontal tau air-shower in front of deep, wide valleys or mountain cliff [D. Fargion, A. Aiello, R. Conversano; 26th ICRC, He 6.1.09, 6 p. 396-398. (1999). Ed. D. Kieda, et al. arxiv

  14. Waist circumference as a mediator of biological maturation effect on the motor coordination in children.

    PubMed

    Luz, Leonardo G O; Seabra, André; Padez, Cristina; Duarte, João P; Rebelo-Gonçalves, Ricardo; Valente-Dos-Santos, João; Luz, Tatiana D D; Carmo, Bruno C M; Coelho-E-Silva, Manuel

    2016-09-01

    The present study aimed to: 1) examine the association of biological maturation effect on children's performance at a motor coordination battery and 2) to assess whether the association between biological maturation and scores obtained in motor coordination tests is mediated by some anthropometric measurement. The convenience sample consisted of 73 male children aged 8 years old. Anthropometric data considered the height, body mass, sitting height, waist circumference, body mass index, fat mass and fat-free mass estimates. Biological maturation was assessed by the percentage of the predicted mature stature. Motor coordination was tested by the Körperkoordinationstest für Kinder. A partial correlation between anthropometric measurements, z-score of maturation and the motor coordination tests were performed, controlling for chronological age. Finally, causal mediation analysis was performed. Height, body mass, waist circumference and fat mass showed a slight to moderate inverse correlation with motor coordination. Biological maturation was significantly associated with the balance test with backward walking (r=-0.34). Total mediation of the waist circumference was identified in the association between biological maturation and balance test with backward walking (77%). We identified an association between biological maturation and KTK test performance in male children and also verified that there is mediation of waist circumference. It is recommended that studies be carried out with female individuals and at other age ranges. Copyright © 2016 Sociedade de Pediatria de São Paulo. Publicado por Elsevier Editora Ltda. All rights reserved.

  15. Analysis of tau post-translational modifications in rTg4510 mice, a model of tau pathology.

    PubMed

    Song, Lixin; Lu, Sherry X; Ouyang, Xuesong; Melchor, Jerry; Lee, Julie; Terracina, Giuseppe; Wang, Xiaohai; Hyde, Lynn; Hess, J Fred; Parker, Eric M; Zhang, Lili

    2015-03-26

    Microtubule associated protein tau is the major component of the neurofibrillary tangles (NFTs) found in the brains of patients with Alzheimer's disease and several other neurodegenerative diseases. Tau mutations are associated with frontotemperal dementia with parkinsonism on chromosome 17 (FTDP-17). rTg4510 mice overexpress human tau carrying the P301L FTDP-17 mutation and develop robust NFT-like pathology at 4-5 months of age. The current study is aimed at characterizing the rTg4510 mice to better understand the genesis of tau pathology and to better enable the use of this model in drug discovery efforts targeting tau pathology. Using a panel of immunoassays, we analyzed the age-dependent formation of pathological tau in rTg4510 mice and our data revealed a steady age-dependent accumulation of pathological tau in the insoluble fraction of brain homogenates. The pathological tau was associated with multiple post-translational modifications including aggregation, phosphorylation at a wide variety of sites, acetylation, ubiquitination and nitration. The change of most tau species reached statistical significance at the age of 16 weeks. There was a strong correlation between the different post-translationally modified tau species in this heterogeneous pool of pathological tau. Total tau in the cerebrospinal fluid (CSF) displayed a multiphasic temporal profile distinct from the steady accumulation of pathological tau in the brain. Female rTg4510 mice displayed significantly more aggressive accumulation of pathological tau in the brain and elevation of total tau in CSF than their male littermates. The immunoassays described here were used to generate the most comprehensive description of the changes in various tau species across the lifespan of the rTg4510 mouse model. The data indicate that development of tauopathy in rTg4510 mice involves the accumulation of a pool of pathological tau that carries multiple post-translational modifications, a process that can be

  16. mTOR and Neuronal Cell Cycle Re-entry: How Impaired Brain Insulin Signaling Promotes Alzheimer's Disease

    PubMed Central

    Norambuena, Andrés; Wallrabe, Horst; McMahon, Lloyd; Silva, Antonia; Swanson, Eric; Khan, Shahzad S.; Baerthlein, Daniel; Kodis, Erin; Oddo, Salvatore; Mandell, James W.; Bloom, George S.

    2016-01-01

    A major obstacle to pre-symptomatic diagnosis and disease-modifying therapy for Alzheimer's disease (AD) is inadequate understanding of molecular mechanisms of AD pathogenesis. For example, impaired brain insulin signaling is an AD hallmark, but whether and how it might contribute to the synaptic dysfunction and neuron death that underlie memory and cognitive impairment has been mysterious. Neuron death in AD is often caused by cell cycle re-entry (CCR) mediated by amyloid-β oligomers (AβOs) and tau, the precursors of plaques and tangles. We now report that CCR results from AβO-induced activation of the protein kinase complex, mTORC1, at the plasma membrane and mTORC1-dependent tau phosphorylation, and that CCR can be prevented by insulin-stimulated activation of lysosomal mTORC1. AβOs were also shown previously to reduce neuronal insulin signaling. Our data therefore indicate that the decreased insulin signaling provoked by AβOs unleashes their toxic potential to cause neuronal CCR, and by extension, neuron death. PMID:27693185

  17. Antinociception induced by epidural motor cortex stimulation in naive conscious rats is mediated by the opioid system.

    PubMed

    Fonoff, Erich Talamoni; Dale, Camila Squarzoni; Pagano, Rosana Lima; Paccola, Carina Cicconi; Ballester, Gerson; Teixeira, Manoel Jacobsen; Giorgi, Renata

    2009-01-03

    Epidural motor cortex stimulation (MCS) has been used for treating patients with neuropathic pain resistant to other therapeutic approaches. Experimental evidence suggests that the motor cortex is also involved in the modulation of normal nociceptive response, but the underlying mechanisms of pain control have not been clarified yet. The aim of this study was to investigate the effects of epidural electrical MCS on the nociceptive threshold of naive rats. Electrodes were placed on epidural motor cortex, over the hind paw area, according to the functional mapping accomplished in this study. Nociceptive threshold and general activity were evaluated under 15-min electrical stimulating sessions. When rats were evaluated by the paw pressure test, MCS induced selective antinociception in the paw contralateral to the stimulated cortex, but no changes were noticed in the ipsilateral paw. When the nociceptive test was repeated 15 min after cessation of electrical stimulation, the nociceptive threshold returned to basal levels. On the other hand, no changes in the nociceptive threshold were observed in rats evaluated by the tail-flick test. Additionally, no behavioral or motor impairment were noticed in the course of stimulation session at the open-field test. Stimulation of posterior parietal or somatosensory cortices did not elicit any changes in the general activity or nociceptive response. Opioid receptors blockade by naloxone abolished the increase in nociceptive threshold induced by MCS. Data shown herein demonstrate that epidural electrical MCS elicits a substantial and selective antinociceptive effect, which is mediated by opioids.

  18. Tau, amyloid, and cascading network failure across the Alzheimer's disease spectrum.

    PubMed

    Jones, David T; Graff-Radford, Jonathan; Lowe, Val J; Wiste, Heather J; Gunter, Jeffrey L; Senjem, Matthew L; Botha, Hugo; Kantarci, Kejal; Boeve, Bradley F; Knopman, David S; Petersen, Ronald C; Jack, Clifford R

    2017-12-01

    -Braak-like' patterns of tau, suggesting an association with atypical clinical phenotypes. As predicted by the cascading network failure model of Alzheimer's disease, we found that amyloid is a partial mediator of the relationship between functional network failure and tau deposition in functionally connected brain regions. This study implicates large-scale brain networks in the pathophysiology of tau deposition and offers support to models incorporating large-scale network physiology into disease models linking tau and amyloid, such as the cascading network failure model of Alzheimer's disease. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Determination of the Michel parameters and the {tau} neutrino helicity in {tau} decay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    CLEO Collaboration

    1997-11-01

    Using the CLEO II detector at the Cornell Electron Storage Ring operated at {radical} (s) =10.6GeV, we have determined the Michel parameters {rho}, {xi}, and {delta} in {tau}{sup {minus_plus}}{r_arrow}l{sup {minus_plus}}{nu}{bar {nu}} decay as well as the {tau} neutrino helicity parameter h{sub {nu}{sub {tau}}} in {tau}{sup {minus_plus}}{r_arrow}{pi}{sup {minus_plus}}{pi}{sup 0}{nu} decay. From a data sample of 3.02{times}10{sup 6} produced {tau} pairs we analyzed events of the topologies e{sup +}e{sup {minus}}{r_arrow}{tau}{sup +}{tau}{sup {minus}}{r_arrow}(l{sup {plus_minus}}{nu}{bar {nu}})({pi}{sup {minus_plus}}{pi}{sup 0}{nu}) and e{sup +}e{sup {minus}}{r_arrow}{tau}{sup +}{tau}{sup {minus}}{r_arrow}({pi}{sup {plus_minus}}{pi}{sup 0}{bar {nu}})({pi}{sup {minus_plus}}{pi}{sup 0}{nu}). We obtain {rho}=0.747{rho}=0.747{plus_minus}0.010{plus_minus}0.006, {xi}=1.007{plus_minus}0.040{plus_minus}0.015, {xi}{delta}=0.745{plus_minus}0.026{plus_minus}0.009, and h{sub {nu}{sub {tau}}}={minus}0.995{plus_minus}0.010{plus_minus}0.003, where we have used the previouslymore » determined sign of h{sub {nu}{sub {tau}}} [ARGUS Collaboration, H. Albrecht {ital et al.}, Z. Phys. C {bold 58}, 61 (1993); Phys. Lett. B {bold 349}, 576 (1995)]. We also present the Michel parameters as determined from the electron and muon samples separately. All results are in agreement with the standard model V{minus}A interaction. {copyright} {ital 1997} {ital The American Physical Society}« less

  20. Liraglutide Improves Water Maze Learning and Memory Performance While Reduces Hyperphosphorylation of Tau and Neurofilaments in APP/PS1/Tau Triple Transgenic Mice.

    PubMed

    Chen, Shuyi; Sun, Jie; Zhao, Gang; Guo, Ai; Chen, Yanlin; Fu, Rongxia; Deng, Yanqiu

    2017-08-01

    The purpose of this study was to explore how liraglutide affects AD-like pathology and cognitive function in APP/PS1/Tau triple transgenic (3 × Tg) Alzheimer disease (AD) model mice. Male 3 × Tg mice and C57BL/6 J mice were treated for 8 weeks with liraglutide (300 μg/kg/day, subcutaneous injection) or saline. Levels of phosphorylated tau, neurofilaments (NFs), extracellular signal-regulated kinase (ERK), and c-Jun N-terminal kinase (JNK) in brain tissues were assessed with western blots. Fluoro-Jade-B labeling were applied to detect pathological changes. The Morris water maze (MWM) was used to assess the spatial learning and memory. Liraglutide decreased levels of hyperphosphorylated tau and NFs in 3 × Tg liraglutide-treated (Tg + LIR) mice, increased ERK phosphorylation, and decreased JNK phosphorylation. Liraglutide also decreased the number of degenerative neurons in the hippocampus and cortex of Tg + LIR mice, and shortened their escape latencies and increased their hidden platform crossings in the MWM task. Liraglutide did not significantly affect the animals' body weight (BW) or fasting blood glucose. Liraglutide can reduce hyperphosphorylation of tau and NFs and reduce neuronal degeneration, apparently through alterations in JNK and ERK signaling, which may be related to its positive effects on AD-like learning and memory impairment.

  1. Dietary Lycopene Supplementation Improves Cognitive Performances in Tau Transgenic Mice Expressing P301L Mutation via Inhibiting Oxidative Stress and Tau Hyperphosphorylation.

    PubMed

    Yu, Lixia; Wang, Weiguang; Pang, Wei; Xiao, Zhonghai; Jiang, Yugang; Hong, Yan

    2017-01-01

    Oxidative stress is implicated in the pathogenesis of Alzheimer's disease (AD) and other tauopathies and participates in their development by promoting hyperphosphorylation of microtubule-associated protein tau. Lycopene, as an effective antioxidant, combined with vitamin E seemed to be additive against oxidative stress. The present study was undertaken to examine whether lycopene or lycopene/vitamin E could exert protective effects on memory deficit and oxidative stress in tau transgenic mice expressing P301L mutation. P301L transgenic mice were assigned to three groups: P301L group (P301L), P301L+lycopene (Lyc), and P301L+lycopene/vitamin E (Lyc+VE). Age-matched C57BL/6J mice as wild type controls (Con) were used in the present study. Spatial memory was assessed by radial arm while passive memories were evaluated by step-down and step-through tests. Levels of tau phosphorylation were detected by western blot. Oxidative stress biomarkers were measured in the serum using biochemical assay kits. Compared with the control group, P301L mice displayed significant spatial and passive memory impairments, elevated malondialdehyde (MDA) levels and decreased glutathione peroxidase (GSH-Px) activities in serum, and increased tau phosphorylation at Thr231/Ser235, Ser262, and Ser396 in brain. Supplementations of lycopene or lycopene/vitamin E could significantly ameliorate the memory deficits, observably decreased MDA concentrations and increased GSH-Px activities, and markedly attenuated tau hyperphosphorylation at multiple AD-related sites. Our findings indicated that the combination of lycopene and vitamin E antioxidants acted in a synergistic fashion to bring significant effects against oxidative stress in tauopathies.

  2. Interplay between glutamatergic and GABAergic neurotransmission alterations in cognitive and motor impairment in minimal hepatic encephalopathy.

    PubMed

    Llansola, Marta; Montoliu, Carmina; Agusti, Ana; Hernandez-Rabaza, Vicente; Cabrera-Pastor, Andrea; Gomez-Gimenez, Belen; Malaguarnera, Michele; Dadsetan, Sherry; Belghiti, Majedeline; Garcia-Garcia, Raquel; Balzano, Tiziano; Taoro, Lucas; Felipo, Vicente

    2015-09-01

    The cognitive and motor alterations in hepatic encephalopathy (HE) are the final result of altered neurotransmission and communication between neurons in neuronal networks and circuits. Different neurotransmitter systems cooperate to modulate cognitive and motor function, with a main role for glutamatergic and GABAergic neurotransmission in different brain areas and neuronal circuits. There is an interplay between glutamatergic and GABAergic neurotransmission alterations in cognitive and motor impairment in HE. This interplay may occur: (a) in different brain areas involved in specific neuronal circuits; (b) in the same brain area through cross-modulation of glutamatergic and GABAergic neurotransmission. We will summarize some examples of the (1) interplay between glutamatergic and GABAergic neurotransmission alterations in different areas in the basal ganglia-thalamus-cortex circuit in the motor alterations in minimal hepatic encephalopathy (MHE); (2) interplay between glutamatergic and GABAergic neurotransmission alterations in cerebellum in the impairment of cognitive function in MHE through altered function of the glutamate-nitric oxide-cGMP pathway. We will also comment the therapeutic implications of the above studies and the utility of modulators of glutamate and GABA receptors to restore cognitive and motor function in rats with hyperammonemia and hepatic encephalopathy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Impairment of sensory-motor plasticity in mild Alzheimer's disease.

    PubMed

    Terranova, Carmen; Carmen, Terranova; SantAngelo, Antonino; Antonino, Sant'Angelo; Morgante, Francesca; Francesca, Morgante; Rizzo, Vincenzo; Vincenzo, Rizzo; Allegra, Roberta; Roberta, Allegra; Arena, Maria Grazia; Grazia, Arena Maria; Ricciardi, Lucia; Lucia, Ricciardi; Ghilardi, Marie Felice; Felice, Ghilardi Maria; Girlanda, Paolo; Paolo, Girlanda; Quartarone, Angelo; Angelo, Quartarone

    2013-01-01

    Primary motor cortex (M1) is relatively spared in the early stages of Alzheimer's disease (AD). Aim of the present study was to investigate whether abnormal M1 synaptic plasticity is present at an early stage of AD. We employed an electrophysiological protocol, named rapid paired associative stimulation (rPAS), involving repetitive transcranial magnetic stimulation (rTMS) paired with electrical stimulation of the contralateral median nerve, that modifies corticospinal excitability and short latency afferent inhibition (SAI). We studied 10 patients with a diagnosis of probable mild AD according to the Mini Mental State Examination score (minimum 21) and 14 age-matched control subjects. Motor evoked potentials (MEP) amplitudes and short-afferent inhibition (SAI) were measured at baseline before and for up to 60 min after 5Hz-rPAS in abductor pollicis brevis (APB). rPAS consisted of 600 pairs of transcranial magnetic stimuli, at a rate of 5 Hz for 2 min, coupled with electrical median nerve stimulation preceding TMS over the contralateral M1 at an inter-stimulus interval of 25 ms. Baseline SAI was significantly reduced in AD patients. In the control subjects rPAS induced a significant increase in MEP amplitudes and a decrease of SAI in the APB muscle persistently for up to 1 h. Conversely 5Hz-rPAS did not induce any significant changes in MEP amplitudes and SAI in mild AD patients. Sensory-motor plasticity is impaired in the motor cortex of AD at an early stage of the disease. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Braking reaching movements: a test of the constant tau-dot strategy under different viewing conditions.

    PubMed

    Hopkins, Brian; Churchill, Andrew; Vogt, Stefan; Rönnqvist, Louise

    2004-03-01

    Following F. Zaal and R. J. Bootsma (1995), the authors studied whether the decelerative phase of a reaching movement could be modeled as a constant tau-dot strategy resulting in a soft collision with the object. Specifically, they investigated whether that strategy is sustained over different viewing conditions. Participants (N = 11) were required to reach for 15- and 50-mm objects at 2 different distances under 3 conditions in which visual availability of the immediate environment and of the reaching hand were varied. Tau-dot estimates and goodness-of-fit were highly similar across the 3 conditions. Only within-participant variability of tau-dot estimates was increased when environmental cues were removed. That finding suggests that the motor system uses a tau-dot strategy involving the intermodal (i.e., visual, proprioceptive, or both) specification of information to regulate the decelerative phase of reaching under restricted viewing conditions. The authors provide recommendations for improving the derivation of tau;(x) estimates and stress the need for further research on how time-to-contact information is used in the regulation of the dynamics of actions such as reaching.

  5. Tau phosphorylation and kinase activation in familial tauopathy linked to deln296 mutation.

    PubMed

    Ferrer, I; Pastor, P; Rey, M J; Muñoz, E; Puig, B; Pastor, E; Oliva, R; Tolosa, E

    2003-02-01

    Tau phosphorylation has been examined by immunohistochemistry in the brain of a patient affected with familial tauopathy with progressive supranuclear palsy-like phenotype linked to the delN296 mutation in the tau gene. Phospho-specific tau antibodies Thr181, Ser202, Ser214, Ser396 and Ser422, and antibodies to glycogen synthase kinase-3alpha/beta (GSK-3alpha/beta) and to phosphorylated (P) mitogen-activated protein kinase/extracellular signal-regulated kinases (MAPK/ERK), stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK), p38 kinase (p38) and GSK-3betaSer9 have been used to gain understanding of the identification of phosphorylation sites, as well as of the specific kinases that regulate tau phosphorylation at those specific sites, in a familial tauopathy. The neuropathological examination disclosed atrophy of the right precentral gyrus and the brainstem. Neurone loss and gliosis were observed in the substantia nigra, several nuclei of the brainstem and diencephalon. Hyper-phosphorylated tau accumulated in neurones with neurofibrillary tangles and in neurones with pretangles in the substantia nigra, locus ceruleus, peri-aqueductal grey matter, reticular formation, motor nuclei of the brainstem, and thalamus, amygdala and hippocampus. tau-immunoreactive astrocytes and, particularly, oligodendrocytes with coiled bodies were widespread in the brainstem, diencephalons, cerebral white matter and cerebral cortex. Increased expression of MAPK/ERK-P, SAPK/JNK-P, p-38-P and GSK-3beta-P was observed in select subpopulations of neurones with neurofibrillary tangles and in neurones with pretangles. MAPK/ERK-P, SAPK/JNK-P, p38-P and GSK-3beta-P were also expressed in tau-containing astrocytes and in oligodendrocytes with coiled bodies. These findings show, for the first time, activation of precise kinases that regulate tau phosphorylation at specific sites in familial tauopathy.

  6. Tau-Induced Ca2+/Calmodulin-Dependent Protein Kinase-IV Activation Aggravates Nuclear Tau Hyperphosphorylation.

    PubMed

    Wei, Yu-Ping; Ye, Jin-Wang; Wang, Xiong; Zhu, Li-Ping; Hu, Qing-Hua; Wang, Qun; Ke, Dan; Tian, Qing; Wang, Jian-Zhi

    2018-04-01

    Hyperphosphorylated tau is the major protein component of neurofibrillary tangles in the brains of patients with Alzheimer's disease (AD). However, the mechanism underlying tau hyperphosphorylation is not fully understood. Here, we demonstrated that exogenously expressed wild-type human tau40 was detectable in the phosphorylated form at multiple AD-associated sites in cytoplasmic and nuclear fractions from HEK293 cells. Among these sites, tau phosphorylated at Thr205 and Ser214 was almost exclusively found in the nuclear fraction at the conditions used in the present study. With the intracellular tau accumulation, the Ca 2+ concentration was significantly increased in both cytoplasmic and nuclear fractions. Further studies using site-specific mutagenesis and pharmacological treatment demonstrated that phosphorylation of tau at Thr205 increased nuclear Ca 2+ concentration with a simultaneous increase in the phosphorylation of Ca 2+ /calmodulin-dependent protein kinase IV (CaMKIV) at Ser196. On the other hand, phosphorylation of tau at Ser214 did not significantly change the nuclear Ca 2+ /CaMKIV signaling. Finally, expressing calmodulin-binding protein-4 that disrupts formation of the Ca 2+ /calmodulin complex abolished the okadaic acid-induced tau hyperphosphorylation in the nuclear fraction. We conclude that the intracellular accumulation of phosphorylated tau, as detected in the brains of AD patients, can trigger nuclear Ca 2+ /CaMKIV signaling, which in turn aggravates tau hyperphosphorylation. Our findings provide new insights for tauopathies: hyperphosphorylation of intracellular tau and an increased Ca 2+ concentration may induce a self-perpetuating harmful loop to promote neurodegeneration.

  7. Obesity Reduces Cognitive and Motor Functions across the Lifespan

    PubMed Central

    Wang, Chuanming; Chan, John S. Y.; Ren, Lijie; Yan, Jin H.

    2016-01-01

    Due to a sedentary lifestyle, more and more people are becoming obese nowadays. In addition to health-related problems, obesity can also impair cognition and motor performance. Previous results have shown that obesity mainly affects cognition and motor behaviors through altering brain functions and musculoskeletal system, respectively. Many factors, such as insulin/leptin dysregulation and inflammation, mediate the effect of obesity and cognition and motor behaviors. Substantial evidence has suggested exercise to be an effective way to improve obesity and related cognitive and motor dysfunctions. This paper aims to discuss the association of obesity with cognition and motor behaviors and its underlying mechanisms. Following this, mechanisms of exercise to improve obesity-related dysfunctions are described. Finally, implications and future research direction are raised. PMID:26881095

  8. Obesity Reduces Cognitive and Motor Functions across the Lifespan.

    PubMed

    Wang, Chuanming; Chan, John S Y; Ren, Lijie; Yan, Jin H

    2016-01-01

    Due to a sedentary lifestyle, more and more people are becoming obese nowadays. In addition to health-related problems, obesity can also impair cognition and motor performance. Previous results have shown that obesity mainly affects cognition and motor behaviors through altering brain functions and musculoskeletal system, respectively. Many factors, such as insulin/leptin dysregulation and inflammation, mediate the effect of obesity and cognition and motor behaviors. Substantial evidence has suggested exercise to be an effective way to improve obesity and related cognitive and motor dysfunctions. This paper aims to discuss the association of obesity with cognition and motor behaviors and its underlying mechanisms. Following this, mechanisms of exercise to improve obesity-related dysfunctions are described. Finally, implications and future research direction are raised.

  9. Implicit Perceptual-Motor Skill Learning in Mild Cognitive Impairment and Parkinson's Disease

    PubMed Central

    Gobel, Eric W.; Blomeke, Kelsey; Zadikoff, Cindy; Simuni, Tanya; Weintraub, Sandy; Reber, Paul J.

    2015-01-01

    Objective Implicit skill learning is hypothesized to depend on nondeclarative memory that operates independent of the medial temporal lobe (MTL) memory system and instead depends on cortico-striatal circuits between the basal ganglia and cortical areas supporting motor function and planning. Research with the Serial Reaction Time (SRT) task suggests that patients with memory-disorders due to MTL damage exhibit normal implicit sequence learning. However, reports of intact learning rely on observations of no group differences, leading to speculation whether implicit sequence learning is fully intact in these patients. Patients with Parkinson's Disease (PD) often exhibit impaired sequence learning, but this impairment is not universally observed. Method Implicit perceptual-motor sequence learning was examined using the Serial Interception Sequence Learning (SISL) task in patients with amnestic Mild Cognitive Impairment (MCI; n=11) and patients with PD (n=15). Sequence learning in SISL is resistant to explicit learning and individually adapted task difficulty controls for baseline performance differences. Results Patients with MCI exhibited robust sequence learning, equivalent to healthy older adults (n=20), supporting the hypothesis that the MTL does not contribute to learning in this task. In contrast, the majority of patients with PD exhibited no sequence-specific learning in spite of matched overall task performance. Two patients with PD exhibited performance indicative of an explicit compensatory strategy suggesting that impaired implicit learning may lead to greater reliance on explicit memory in some individuals. Conclusion The differences in learning between patient groups provides strong evidence in favor of implicit sequence learning depending solely on intact basal ganglia function with no contribution from the MTL memory system. PMID:23688213

  10. Implicit perceptual-motor skill learning in mild cognitive impairment and Parkinson's disease.

    PubMed

    Gobel, Eric W; Blomeke, Kelsey; Zadikoff, Cindy; Simuni, Tanya; Weintraub, Sandra; Reber, Paul J

    2013-05-01

    Implicit skill learning is hypothesized to depend on nondeclarative memory that operates independent of the medial temporal lobe (MTL) memory system and instead depends on cortico striatal circuits between the basal ganglia and cortical areas supporting motor function and planning. Research with the Serial Reaction Time (SRT) task suggests that patients with memory disorders due to MTL damage exhibit normal implicit sequence learning. However, reports of intact learning rely on observations of no group differences, leading to speculation as to whether implicit sequence learning is fully intact in these patients. Patients with Parkinson's disease (PD) often exhibit impaired sequence learning, but this impairment is not universally observed. Implicit perceptual-motor sequence learning was examined using the Serial Interception Sequence Learning (SISL) task in patients with amnestic Mild Cognitive Impairment (MCI; n = 11) and patients with PD (n = 15). Sequence learning in SISL is resistant to explicit learning and individually adapted task difficulty controls for baseline performance differences. Patients with MCI exhibited robust sequence learning, equivalent to healthy older adults (n = 20), supporting the hypothesis that the MTL does not contribute to learning in this task. In contrast, the majority of patients with PD exhibited no sequence-specific learning in spite of matched overall task performance. Two patients with PD exhibited performance indicative of an explicit compensatory strategy suggesting that impaired implicit learning may lead to greater reliance on explicit memory in some individuals. The differences in learning between patient groups provides strong evidence in favor of implicit sequence learning depending solely on intact basal ganglia function with no contribution from the MTL memory system.

  11. Effects of propofol and dizocilpine maleate on the cognitive abilities and the hyperphosphorylation of Tau protein of rats after the electroconvulsive therapy.

    PubMed

    Liu, Chao; Min, Su; Wei, Ke; Liu, Dong; Dong, Jun; Luo, Jie; Li, Ping; Liu, Xiao-bin

    2012-08-01

    To explore the effects of propofol and dizocilpine maleate (MK-801) on the cognitive abilities the hyperphosphorylation of Tau protein of rats after the electroconvulsive therapy. Two intervention factors including electroconvulsive shock therapy (ECT) (two levels: not applied and one treatment course) and drug intervention (three levels: intravenous saline,intravenous MK-801, and intravenous propofol). The morris water maze test started within 1 day after ECT to evaluate the learning-memory. The glutamate level in the hippocampus of rats was determined by high-performance liquid chromatography. The Tau protein that includes Tau5 (total Tau protein), PHF-1 (pSer(396/404)), AT8 (pSer(199/202)), and 12E8 (pSer(262)) in the hippocampus of rats was determined using Western blotting. Propofol, MK-801, and ECT could induce the impairment of learning-memory in depressed rats. The electroconvulsive shock significantly up-regulated the glutamate level, which was reduces by the propofol. The ECT up-regulated the hyperphosphorylation of Tau protein in the hippocampus of depressed rats, which was reduced by propofol and MK-801. Both propofol and MK-801 could protect against the impairment of learning-memory and reduce the hyperphosphorylation of Tau protein induced by ECT in depressed rats.

  12. Hyperphosphorylation of tau protein in the ipsilateral thalamus after focal cortical infarction in rats.

    PubMed

    Dong, Da-Wei; Zhang, Yu-Sheng; Yang, Wan-Yong; Wang-Qin, Run-Qi; Xu, An-Ding; Ruan, Yi-Wen

    2014-01-16

    Hyperphosphorylation of tau has been considered as an important risk factor for neurodegenerative diseases. It has been found also in the cortex after focal cerebral ischemia. The present study is aimed at investigating changes of tau protein expression in the ipsilateral thalamus remote from the primary ischemic lesion site after distal middle cerebral artery occlusion (MCAO). The number of neurons in the ventroposterior thalamic nucleus (VPN) was evaluated using Nissl staining and neuronal nuclei (NeuN) immunostaining. Total tau and phosphorylated tau at threonine 231 (p-T231-tau) and serine 199 (p-S199-tau) levels, respectively, in the thalamus were measured using immunostaining and immunoblotting. Moreover, apoptosis was detected with terminal deoxynucleotidyl transferase-mediated digoxigenin-dUTP-biotin nick-end labeling (TUNEL) assay. It was found that the numbers of intact neurons and NeuN(+) cells within the ipsilateral VPN were reduced significantly compared with the sham-operated group, but the levels of p-T231-tau and p-S199-tau in the ipsilateral thalamus were increased significantly in rats subjected to ischemia for 3 days, 7 days and 28 days. Furthermore, the number of TUNEL-positive cells was increased in the ipsilateral VPN at 7 days and 28 days after MCAO. Thus, hyperphosphorylated tau protein is observed in ipsilateral thalamus after focal cerebral infarction in this study. Our findings suggest that the expression of hyperphosphorylated tau protein induced by ischemia may be associated with the secondary thalamic damage after focal cortical infarction via an apoptotic pathway. © 2013 Published by Elsevier B.V.

  13. Hyperphosphorylated tau in the brains of mice and monkeys with long-term administration of ketamine.

    PubMed

    Yeung, L Y; Wai, Maria S M; Fan, Ming; Mak, Y T; Lam, W P; Li, Zhen; Lu, Gang; Yew, David T

    2010-03-15

    Ketamine, a non-competitive antagonist at the glutamatergic N-methyl-d-aspartate (NMDA) receptor, might impair memory function of the brain. Loss of memory is also a characteristic of aging and Alzheimer's disease. Hyperphosphorylation of tau is an early event in the aging process and Alzheimer's disease. Therefore, we aimed to find out whether long-term ketmaine administration is related to hyperphosphorylation of tau or not in the brains of mice and monkeys. Results showed that after 6 months' administration of ketamine, in the prefrontal and entorhinal cortical sections of mouse and monkey brains, there were significant increases of positive sites for the hyperphosphorylated tau protein as compared to the control animals receiving no ketamine administration. Furthermore, about 15% of hyperphosphorylated tau positive cells were also positively labeled by terminal dUTP nick end labeling (TUNEL) indicating there might be a relationship between hyperphosphorylation of tau and apoptosis. Therefore, the long-term ketamine toxicity might involve neurodegenerative process similar to that of aging and/or Alzheimer's disease. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  14. BDNF Val66Met moderates memory impairment, hippocampal function and tau in preclinical autosomal dominant Alzheimer's disease.

    PubMed

    Lim, Yen Ying; Hassenstab, Jason; Cruchaga, Carlos; Goate, Alison; Fagan, Anne M; Benzinger, Tammie L S; Maruff, Paul; Snyder, Peter J; Masters, Colin L; Allegri, Ricardo; Chhatwal, Jasmeer; Farlow, Martin R; Graff-Radford, Neill R; Laske, Christoph; Levin, Johannes; McDade, Eric; Ringman, John M; Rossor, Martin; Salloway, Stephen; Schofield, Peter R; Holtzman, David M; Morris, John C; Bateman, Randall J

    2016-10-01

    SEE ROGAEVA AND SCHMITT-ULMS DOI101093/AWW201 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE: The brain-derived neurotrophic factor (BDNF) Val66Met polymorphism is implicated in synaptic excitation and neuronal integrity, and has previously been shown to moderate amyloid-β-related memory decline and hippocampal atrophy in preclinical sporadic Alzheimer's disease. However, the effect of BDNF in autosomal dominant Alzheimer's disease is unknown. We aimed to determine the effect of BDNF Val66Met on cognitive function, hippocampal function, tau and amyloid-β in preclinical autosomal dominant Alzheimer's disease. We explored effects of apolipoprotein E (APOE) ε4 on these relationships. The Dominantly Inherited Alzheimer Network conducted clinical, neuropsychological, genetic, biomarker and neuroimaging measures at baseline in 131 mutation non-carriers and 143 preclinical autosomal dominant Alzheimer's disease mutation carriers on average 12 years before clinical symptom onset. BDNF genotype data were obtained for mutation carriers (95 Val 66 homozygotes, 48 Met 66 carriers). Among preclinical mutation carriers, Met 66 carriers had worse memory performance, lower hippocampal glucose metabolism and increased levels of cerebrospinal fluid tau and phosphorylated tau (p-tau) than Val 66 homozygotes. Cortical amyloid-β and cerebrospinal fluid amyloid-β 42 levels were significantly different from non-carriers but did not differ between preclinical mutation carrier Val 66 homozygotes and Met 66 carriers. There was an effect of APOE on amyloid-β levels, but not cognitive function, glucose metabolism or tau. As in sporadic Alzheimer's disease, the deleterious effects of amyloid-β on memory, hippocampal function, and tau in preclinical autosomal dominant Alzheimer's disease mutation carriers are greater in Met 66 carriers. To date, this is the only genetic factor found to moderate downstream effects of amyloid-β in autosomal dominant Alzheimer's disease. © The Author (2016

  15. Cognitive predictors of sequential motor impairments in children with dyslexia and/or attention deficit/hyperactivity disorder.

    PubMed

    Marchand-Krynski, Marie-Ève; Bélanger, Anne-Marie; Morin-Moncet, Olivier; Beauchamp, Miriam H; Leonard, Gabriel

    2018-01-01

    This study examined cognitive predictors of sequential motor skills in 215 children with dyslexia and/or attention deficit/hyperactivity disorder (ADHD). Visual working memory and math fluency abilities contributed significantly to performance of sequential motor abilities in children with dyslexia (N = 67), ADHD (N = 66) and those with a comorbid diagnosis (N = 82), generally without differentiation between groups. In addition, primary diagnostic features of each disorder, such as reading and inattention, did not contribute to the variance in motor skill performance of these children. The results support a unifying framework of motor impairment in children with neurodevelopmental disorders such as dyslexia and ADHD.

  16. Developmental Coordination Disorder, An Umbrella Term for Motor Impairments in Children: Nature and Co-Morbid Disorders

    PubMed Central

    Vaivre-Douret, Laurence; Lalanne, Christophe; Golse, Bernard

    2016-01-01

    Background: Developmental Coordination Disorder (DCD) defines a heterogeneous class of children exhibiting marked impairment in motor coordination as a general group of deficits in fine and gross motricity (subtype mixed group) common to all research studies, and with a variety of other motor disorders that have been little investigated. No consensus about symptoms and etiology has been established. Methods: Data from 58 children aged 6 to 13 years with DCD were collected on DSM-IV criteria, similar to DSM-5 criteria. They had no other medical condition and inclusion criteria were strict (born full-term, no medication, no occupational/physical therapy). Multivariate statistical methods were used to evidence relevant interactions between discriminant features in a general DCD subtype group and to highlight specific co-morbidities. The study examined age-calibrated standardized scores from completed assessments of psychological, neuropsychological, and neuropsychomotor functions, and more specifically the presence of minor neurological dysfunctions (MND) including neurological soft signs (NSS), without evidence of focal neurological brain involvement. These were not considered in most previous studies. Results: Findings show the salient DCD markers for the mixed subtype (imitation of gestures, digital perception, digital praxia, manual dexterity, upper, and lower limb coordination), vs. surprising co-morbidities, with 33% of MND with mild spasticity from phasic stretch reflex (PSR), not associated with the above impairments but rather with sitting tone (p = 0.004) and dysdiadochokinesia (p = 0.011). PSR was not specific to a DCD subtype but was related to increased impairment of coordination between upper and lower limbs and manual dexterity. Our results highlight the major contribution of an extensive neuro-developmental assessment (mental and physical). Discussion: The present study provides important new evidence in favor of a complete physical neuropsychomotor

  17. Clinical validity of cerebrospinal fluid Aβ42, tau, and phospho-tau as biomarkers for Alzheimer's disease in the context of a structured 5-phase development framework.

    PubMed

    Mattsson, Niklas; Lönneborg, Anders; Boccardi, Marina; Blennow, Kaj; Hansson, Oskar

    2017-04-01

    Novel diagnostic criteria for Alzheimer's disease (AD) incorporate biomarkers, but their maturity for implementation in clinical practice at the prodromal stage (mild cognitive impairment [MCI]) is unclear. Here, we evaluate cerebrospinal fluid (CSF) β-amyloid 42 (Aβ42), total tau, and phosphorylated tau in the light of a 5-phase framework for biomarker development. Ample evidence is available for phase 1 (identifying useful leads) and phase 2 (assessing the accuracy for AD dementia versus controls) for CSF biomarkers. Phase 3 (utility in MCI) is partially achieved. In cohorts with long follow-up time, CSF Aβ42, total tau, and phosphorylated tau have high diagnostic accuracy for MCI due to AD. Phase 4 (performance in real world) is ongoing, and phase 5 studies (quantify impact and costs) are to come. Our results highlight priorities to pursue and to enable the proper use of CSF biomarkers in the clinic. Priorities are to reduce measurement variability by introduction of fully automated assay systems; to increase diagnostic specificity toward non-AD neurocognitive diseases at the MCI stage; and to clarify the role of CSF biomarkers versus other biomarker modalities in clinical practice and in design of clinical trials. These efforts are currently ongoing. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Tau depletion prevents progressive blood-brain barrier damage in a mouse model of tauopathy.

    PubMed

    Blair, Laura J; Frauen, Haley D; Zhang, Bo; Nordhues, Bryce A; Bijan, Sara; Lin, Yen-Chi; Zamudio, Frank; Hernandez, Lidice D; Sabbagh, Jonathan J; Selenica, Maj-Linda B; Dickey, Chad A

    2015-01-31

    The blood-brain barrier (BBB) is damaged in tauopathies, including progressive supranuclear palsy (PSP) and Alzheimer's disease (AD), which is thought to contribute to pathogenesis later in the disease course. In AD, BBB dysfunction has been associated with amyloid beta (Aß) pathology, but the role of tau in this process is not well characterized. Since increased BBB permeability is found in tauopathies without Aß pathology, like PSP, we suspected that tau accumulation alone could not only be sufficient, but even more important than Aß for BBB damage. Longitudinal evaluation of brain tissue from the tetracycline-regulatable rTg4510 tau transgenic mouse model showed progressive IgG, T cell and red blood cell infiltration. The Evans blue (EB) dye that is excluded from the brain when the BBB is intact also permeated the brains of rTg4510 mice following peripheral administration, indicative of a bonafide BBB defect, but this was only evident later in life. Thus, despite the marked brain atrophy and inflammation that occurs earlier in this model, BBB integrity is maintained. Interestingly, BBB dysfunction emerged at the same time that perivascular tau emerged around major hippocampal blood vessels. However, when tau expression was suppressed using doxycycline, BBB integrity was preserved, suggesting that the BBB can be stabilized in a tauopathic brain by reducing tau levels. For the first time, these data demonstrate that tau alone can initiate breakdown of the BBB, but the BBB is remarkably resilient, maintaining its integrity in the face of marked brain atrophy, neuroinflammation and toxic tau accumulation. Moreover, the BBB can recover integrity when tau levels are reduced. Thus, late stage interventions targeting tau may slow the vascular contributions to cognitive impairment and dementia that occur in tauopathies.

  19. Sarcosine attenuates toluene-induced motor incoordination, memory impairment, and hypothermia but not brain stimulation reward enhancement in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, Ming-Huan; Institute of Neuroscience, National Changchi University, Taipei, Taiwan; Chung, Shiang-Sheng

    Toluene, a widely used and commonly abused organic solvent, produces various behavioral disturbances, including motor incoordination and cognitive impairment. Toluene alters the function of a large number of receptors and ion channels. Blockade of N-methyl-D-aspartate (NMDA) receptors has been suggested to play a critical role in toluene-induced behavioral manifestations. The present study determined the effects of various toluene doses on motor coordination, recognition memory, body temperature, and intracranial self-stimulation (ICSS) thresholds in mice. Additionally, the effects of sarcosine on the behavioral and physiological effects induced by toluene were evaluated. Sarcosine may reverse toluene-induced behavioral manifestations by acting as an NMDAmore » receptor co-agonist and by inhibiting the effects of the type I glycine transporter (GlyT1). Mice were treated with toluene alone or combined with sarcosine pretreatment and assessed for rotarod performance, object recognition memory, rectal temperature, and ICSS thresholds. Toluene dose-dependently induced motor incoordination, recognition memory impairment, and hypothermia and lowered ICSS thresholds. Sarcosine pretreatment reversed toluene-induced changes in rotarod performance, novel object recognition, and rectal temperature but not ICSS thresholds. These findings suggest that the sarcosine-induced potentiation of NMDA receptors may reverse motor incoordination, memory impairment, and hypothermia but not the enhancement of brain stimulation reward function associated with toluene exposure. Sarcosine may be a promising compound to prevent acute toluene intoxications by occupational or intentional exposure. -- Highlights: ► Toluene induces impairments in Rotarod test and novel object recognition test. ► Toluene lowers rectal temperature and ICSS thresholds in mice. ► Sarcosine reverses toluene-induced changes in motor, memory and body temperature. ► Sarcosine pretreatment does not affect toluene

  20. Grasping Motor Impairments in Autism: Not Action Planning but Movement Execution Is Deficient

    ERIC Educational Resources Information Center

    Stoit, Astrid M. B.; van Schie, Hein T.; Slaats-Willemse, Dorine I. E.; Buitelaar, Jan K.

    2013-01-01

    Different views on the origin of deficits in action chaining in autism spectrum disorders (ASD) have been posited, ranging from functional impairments in action planning to internal models supporting motor control. Thirty-one children and adolescents with ASD and twenty-nine matched controls participated in a two-choice reach-to-grasp paradigm…

  1. Characterization of f-actin tryptophan phosphorescence in the presence and absence of tryptophan-free myosin motor domain.

    PubMed

    Bódis, Emöke; Strambini, Giovanni B; Gonnelli, Margherita; Málnási-Csizmadia, András; Somogyi, Béla

    2004-08-01

    The effect of binding the Trp-free motor domain mutant of Dictyostelium discoideum, rabbit skeletal muscle myosin S1, and tropomyosin on the dynamics and conformation of actin filaments was characterized by an analysis of steady-state tryptophan phosphorescence spectra and phosphorescence decay kinetics over a temperature range of 140-293 K. The binding of the Trp-free motor domain mutant of D. discoideum to actin caused red shifts in the phosphorescence spectrum of two internal Trp residues of actin and affected the intrinsic lifetime of each emitter, decreasing by roughly twofold the short phosphorescence lifetime components (tau(1) and tau(2)) and increasing by approximately 20% the longest component (tau(3)). The alteration of actin phosphorescence by the motor protein suggests that i), structural changes occur deep down in the core of actin and that ii), subtle changes in conformation appear also on the surface but in regions distant from the motor domain binding site. When actin formed complexes with skeletal S1, an extra phosphorescence lifetime component appeared (tau(4), twice as long as tau(3)) in the phosphorescence decay that is absent in the isolated proteins. The lack of this extra component in the analogous actin-Trp-free motor domain mutant of D. discoideum complex suggests that it should be assigned to Trps in S1 that in the complex attain a more compact local structure. Our data indicated that the binding of tropomyosin to actin filaments had no effect on the structure or flexibility of actin observable by this technique.

  2. Search for the lepton-flavor-violating leptonic B(0)-->mu(+/-)tau(-/+) and B(0)-->e(+/-)tau(-/+).

    PubMed

    Bornheim, A; Lipeles, E; Pappas, S P; Weinstein, A J; Briere, R A; Chen, G P; Ferguson, T; Tatishvili, G; Vogel, H; Watkins, M E; Adam, N E; Alexander, J P; Berkelman, K; Cassel, D G; Duboscq, J E; Ecklund, K M; Ehrlich, R; Fields, L; Galik, R S; Gibbons, L; Gittelman, B; Gray, R; Gray, S W; Hartill, D L; Heltsley, B K; Hertz, D; Hsu, L; Jones, C D; Kandaswamy, J; Kreinick, D L; Kuznetsov, V E; Mahlke-Krüger, H; Meyer, T O; Onyisi, P U E; Patterson, J R; Peterson, D; Pivarski, J; Riley, D; Rosner, J L; Ryd, A; Sadoff, A J; Schwarthoff, H; Shepherd, M R; Sun, W M; Thayer, J G; Urner, D; Wilksen, T; Weinberger, M; Athar, S B; Avery, P; Breva-Newell, L; Patel, R; Potlia, V; Stoeck, H; Yelton, J; Rubin, P; Cawlfield, C; Eisenstein, B I; Gollin, G D; Karliner, I; Kim, D; Lowrey, N; Naik, P; Sedlack, C; Selen, M; Thaler, J J; Williams, J; Wiss, J; Edwards, K W; Besson, D; Gao, K Y; Gong, D T; Kubota, Y; Li, S Z; Poling, R; Scott, A W; Smith, A; Stepaniak, C J; Urheim, J; Metreveli, Z; Seth, K K; Tomaradze, A; Zweber, P; Ernst, J; Arms, K; Gan, K K; Severini, H; Skubic, P; Asner, D M; Dytman, S A; Mehrabyan, S; Mueller, J A; Savinov, V; Li, Z; Lopez, A; Mendez, H; Ramirez, J; Huang, G S; Miller, D H; Pavlunin, V; Sanghi, B; Shibata, E I; Shipsey, I P J; Adams, G S; Chasse, M; Cummings, J P; Danko, I; Napolitano, J; Cronin-Hennessy, D; Park, C S; Park, W; Thayer, J B; Thorndike, E H; Coan, T E; Gao, Y S; Liu, F; Stroynowski, R; Artuso, M; Boulahouache, C; Blusk, S; Butt, J; Dambasuren, E; Dorjkhaidav, O; Menaa, N; Mountain, R; Muramatsu, H; Nandakumar, R; Redjimi, R; Sia, R; Skwarnicki, T; Stone, S; Wang, J C; Zhang, K; Mahmood, A H; Csorna, S E; Bonvicini, G; Cinabro, D; Dubrovin, M

    2004-12-10

    We have searched a sample of 9.6 x 10(6) BB events for the lepton-flavor-violating leptonic B decays, B(0)-->mu(+/-)tau(-/+) and B(0)-->e(+/-)tau(-/+). The tau lepton was detected through the decay modes tau-->lnunu(-) , where l=e, mu. There is no indication of a signal, and we obtain the 90% confidence level upper limits B(B(0)-->mu(+/-)tau(-/+))<3.8 x 10(-5) and B(B(0)-->e(+/-)tau(-/+))<1.3 x 10(-4).

  3. Bimanual coupling paradigm as an effective tool to investigate productive behaviors in motor and body awareness impairments.

    PubMed

    Garbarini, Francesca; Pia, Lorenzo

    2013-11-05

    When humans move simultaneously both hands strong coupling effects arise and neither of the two hands is able to perform independent actions. It has been suggested that such motor constraints are tightly linked to action representation rather than to movement execution. Hence, bimanual tasks can represent an ideal experimental tool to investigate internal motor representations in those neurological conditions in which the movement of one hand is impaired. Indeed, any effect on the "moving" (healthy) hand would be caused by the constraints imposed by the ongoing motor program of the 'impaired' hand. Here, we review recent studies that successfully utilized the above-mentioned paradigms to investigate some types of productive motor behaviors in stroke patients. Specifically, bimanual tasks have been employed in left hemiplegic patients who report illusory movements of their contralesional limbs (anosognosia for hemiplegia). They have also been administered to patients affected by a specific monothematic delusion of body ownership, namely the belief that another person's arm and his/her voluntary action belong to them. In summary, the reviewed studies show that bimanual tasks are a simple and valuable experimental method apt to reveal information about the motor programs of a paralyzed limb. Therefore, it can be used to objectively examine the cognitive processes underpinning motor programming in patients with different delusions of motor behavior. Additionally, it also sheds light on the mechanisms subserving bimanual coordination in the intact brain suggesting that action representation might be sufficient to produce these effects.

  4. Tau Kung | NREL

    Science.gov Websites

    Tau Kung Photo of Feitau Kung Tau Kung Commercial Buildings Research Engineer Feitau.Kung@nrel.gov evaluating building system energy performance in commercial settings, such as office, healthcare, higher

  5. Investigation of language and motor skills in Serbian speaking children with specific language impairment and in typically developing children.

    PubMed

    Vukovic, Mile; Vukovic, Irena; Stojanovik, Vesna

    2010-01-01

    Specific language impairment (SLI) is usually defined as a developmental language disorder which does not result from a hearing loss, autism, neurological and emotional difficulties, severe social deprivation, low non-verbal abilities. Children affected with SLI typically have difficulties with the acquisition of different aspects of language and by definition, their impairment is specific to language and no other skills are affected. However, there has been a growing body of literature to suggest that children with SLI also have non-linguistic deficits, including impaired motor abilities. The aim of the current study is to investigate language and motor abilities of a group of thirty children with SLI (aged between 4 and 7) in comparison to a group of 30 typically developing children matched for chronological age. The results showed that the group of children with SLI had significantly more difficulties on the language and motor assessments compared to the control group. The SLI group also showed delayed onset in the development of all motor skills under investigation in comparison to the typically developing group. More interestingly, the two groups differed with respect to which language abilities were correlated with motor abilities, however Imitation of Complex Movements was the unique skill which reliably predicted expressive vocabulary in both typically developing children and in children with SLI. Copyright © 2010 Elsevier Ltd. All rights reserved.

  6. Prospect for measuring the CP phase in the $$h\\tau\\tau$$ coupling at the LHC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Askew, Andrew; Jaiswal, Prerit; Okui, Takemichi

    The search for a new source of CP violation is one of the most important endeavors in particle physics. A particularly interesting way to perform this search is to probe the CP phase in themore » $$h\\tau\\tau$$ coupling, as the phase is currently completely unconstrained by all existing data. Recently, a novel variable $$\\Theta$$ was proposed for measuring the CP phase in the $$h\\tau\\tau$$ coupling through the $$\\tau^\\pm \\to \\pi^\\pm \\pi^0 \

  7. Prospect for measuring the CP phase in the $$h\\tau\\tau$$ coupling at the LHC

    DOE PAGES

    Askew, Andrew; Jaiswal, Prerit; Okui, Takemichi; ...

    2015-04-01

    The search for a new source of CP violation is one of the most important endeavors in particle physics. A particularly interesting way to perform this search is to probe the CP phase in themore » $$h\\tau\\tau$$ coupling, as the phase is currently completely unconstrained by all existing data. Recently, a novel variable $$\\Theta$$ was proposed for measuring the CP phase in the $$h\\tau\\tau$$ coupling through the $$\\tau^\\pm \\to \\pi^\\pm \\pi^0 \

  8. An Unbiased Approach to Identifying Tau Kinases That Phosphorylate Tau at Sites Associated with Alzheimer Disease

    PubMed Central

    Cavallini, Annalisa; Brewerton, Suzanne; Bell, Amanda; Sargent, Samantha; Glover, Sarah; Hardy, Clare; Moore, Roger; Calley, John; Ramachandran, Devaki; Poidinger, Michael; Karran, Eric; Davies, Peter; Hutton, Michael; Szekeres, Philip; Bose, Suchira

    2013-01-01

    Neurofibrillary tangles, one of the hallmarks of Alzheimer disease (AD), are composed of paired helical filaments of abnormally hyperphosphorylated tau. The accumulation of these proteinaceous aggregates in AD correlates with synaptic loss and severity of dementia. Identifying the kinases involved in the pathological phosphorylation of tau may identify novel targets for AD. We used an unbiased approach to study the effect of 352 human kinases on their ability to phosphorylate tau at epitopes associated with AD. The kinases were overexpressed together with the longest form of human tau in human neuroblastoma cells. Levels of total and phosphorylated tau (epitopes Ser(P)-202, Thr(P)-231, Ser(P)-235, and Ser(P)-396/404) were measured in cell lysates using AlphaScreen assays. GSK3α, GSK3β, and MAPK13 were found to be the most active tau kinases, phosphorylating tau at all four epitopes. We further dissected the effects of GSK3α and GSK3β using pharmacological and genetic tools in hTau primary cortical neurons. Pathway analysis of the kinases identified in the screen suggested mechanisms for regulation of total tau levels and tau phosphorylation; for example, kinases that affect total tau levels do so by inhibition or activation of translation. A network fishing approach with the kinase hits identified other key molecules putatively involved in tau phosphorylation pathways, including the G-protein signaling through the Ras family of GTPases (MAPK family) pathway. The findings identify novel tau kinases and novel pathways that may be relevant for AD and other tauopathies. PMID:23798682

  9. Structure-based inhibitors of tau aggregation

    NASA Astrophysics Data System (ADS)

    Seidler, P. M.; Boyer, D. R.; Rodriguez, J. A.; Sawaya, M. R.; Cascio, D.; Murray, K.; Gonen, T.; Eisenberg, D. S.

    2018-02-01

    Aggregated tau protein is associated with over 20 neurological disorders, which include Alzheimer's disease. Previous work has shown that tau's sequence segments VQIINK and VQIVYK drive its aggregation, but inhibitors based on the structure of the VQIVYK segment only partially inhibit full-length tau aggregation and are ineffective at inhibiting seeding by full-length fibrils. Here we show that the VQIINK segment is the more powerful driver of tau aggregation. Two structures of this segment determined by the cryo-electron microscopy method micro-electron diffraction explain its dominant influence on tau aggregation. Of practical significance, the structures lead to the design of inhibitors that not only inhibit tau aggregation but also inhibit the ability of exogenous full-length tau fibrils to seed intracellular tau in HEK293 biosensor cells into amyloid. We also raise the possibility that the two VQIINK structures represent amyloid polymorphs of tau that may account for a subset of prion-like strains of tau.

  10. Detection of Motor Impairment in Parkinson's Disease Via Mobile Touchscreen Typing.

    PubMed

    Arroyo-Gallego, Teresa; Ledesma-Carbayo, Maria Jesus; Sanchez-Ferro, Alvaro; Butterworth, Ian; Mendoza, Carlos S; Matarazzo, Michele; Montero, Paloma; Lopez-Blanco, Roberto; Puertas-Martin, Veronica; Trincado, Rocio; Giancardo, Luca

    2017-09-01

    Mobile technology is opening a wide range of opportunities for transforming the standard of care for chronic disorders. Using smartphones as tools for longitudinally tracking symptoms could enable personalization of drug regimens and improve patient monitoring. Parkinson's disease (PD) is an ideal candidate for these tools. At present, evaluation of PD signs requires trained experts to quantify motor impairment in the clinic, limiting the frequency and quality of the information available for understanding the status and progression of the disease. Mobile technology can help clinical decision making by completing the information of motor status between hospital visits. This paper presents an algorithm to detect PD by analyzing the typing activity on smartphones independently of the content of the typed text. We propose a set of touchscreen typing features based on a covariance, skewness, and kurtosis analysis of the timing information of the data to capture PD motor signs. We tested these features, both independently and in a multivariate framework, in a population of 21 PD and 23 control subjects, achieving a sensitivity/specificity of 0.81/0.81 for the best performing feature and 0.73/0.84 for the best multivariate method. The results of the alternating finger-tapping, an established motor test, measured in our cohort are 0.75/0.78. This paper contributes to the development of a home-based, high-compliance, and high-frequency PD motor test by analysis of routine typing on touchscreens.

  11. Gesture and Motor Skill in Relation to Language in Children with Language Impairment

    ERIC Educational Resources Information Center

    Iverson, Jana M.; Braddock, Barbara A.

    2011-01-01

    Purpose: To examine gesture and motor abilities in relation to language in children with language impairment (LI). Method: Eleven children with LI (aged 2;7 to 6;1 [years;months]) and 16 typically developing (TD) children of similar chronological ages completed 2 picture narration tasks, and their language (rate of verbal utterances, mean length…

  12. Effects of antibodies to phosphorylated and non-phosphorylated tau on in vitro tau phosphorylation at Serine-199: Preliminary report.

    PubMed

    Loeffler, David A; Smith, Lynnae M; Klaver, Andrea C; Martić, Sanela

    2015-07-01

    Phosphorylation of multiple amino acids on tau protein ("hyperphosphorylation") is required for the development of tau pathology in Alzheimer's disease. Administration of anti-tau antibodies to transgenic "tauopathy mice" has been shown to reduce their tau pathology but the mechanisms responsible are unclear. To examine the effects of anti-tau antibodies on tau phosphorylation, we used western blots to study the effects of three antibodies to phosphorylated tau (pTau), namely anti-pTau S199, T231, and S396, and three antibodies to non-phosphorylated tau on in vitro phosphorylation of recombinant human tau-441 at S199. Inclusion of an anti-pTau T231 antibody in the phosphorylation reaction reduced the intensity of monomeric pTau S199 in western blots of denaturing gels, but the other antibodies had no apparent effects on this process. Surprisingly, including all three anti-phospho-tau antibodies in the reaction did not reduce the intensity of the monomer band, possibly due to steric hindrance between the antibodies. These preliminary findings suggest that anti-tau antibodies may have minimal direct effects on tau phosphorylation. Limitations of using western blots to examine the effects of anti-tau antibodies on this process were found to include between-experiment variability in pTau band densities and poor resolution of high molecular weight pTau oligomers. The presence of bands representing immunoglobulins as well as pTau may also complicate interpretation of the western blots. Further studies are indicated to examine the effects of anti-pTau antibodies on phosphorylation of other tau amino acids in addition to S199. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Distinguishing Motor Weakness From Impaired Spatial Awareness: A Helping Hand!

    PubMed

    Raju, Suneil A; Swift, Charles R; Bardhan, Karna Dev

    2017-01-01

    Our patient, aged 73 years, had background peripheral neuropathy of unknown cause, stable for several years, which caused some difficulty in walking on uneven ground. He attended for a teaching session but now staggered in, a new development. He had apparent weakness of his right arm, but there was difficulty in distinguishing motor weakness from impaired spatial awareness suggestive of parietal lobe dysfunction. With the patient seated, eyes closed, and left arm outstretched, S.A.R. lifted the patient's right arm and asked him to indicate when both were level. This confirmed motor weakness. Urgent computed tomographic scan confirmed left subdural haematoma and its urgent evacuation rapidly resolved the patient's symptoms. Intrigued by our patient's case, we explored further and learnt that in rehabilitation medicine, the awareness of limb position is commonly viewed in terms of joint position sense. We present recent literature evidence indicating that the underlying mechanisms are more subtle.

  14. Distinguishing Motor Weakness From Impaired Spatial Awareness: A Helping Hand!

    PubMed Central

    Raju, Suneil A; Swift, Charles R; Bardhan, Karna Dev

    2017-01-01

    Our patient, aged 73 years, had background peripheral neuropathy of unknown cause, stable for several years, which caused some difficulty in walking on uneven ground. He attended for a teaching session but now staggered in, a new development. He had apparent weakness of his right arm, but there was difficulty in distinguishing motor weakness from impaired spatial awareness suggestive of parietal lobe dysfunction. With the patient seated, eyes closed, and left arm outstretched, S.A.R. lifted the patient’s right arm and asked him to indicate when both were level. This confirmed motor weakness. Urgent computed tomographic scan confirmed left subdural haematoma and its urgent evacuation rapidly resolved the patient’s symptoms. Intrigued by our patient’s case, we explored further and learnt that in rehabilitation medicine, the awareness of limb position is commonly viewed in terms of joint position sense. We present recent literature evidence indicating that the underlying mechanisms are more subtle. PMID:28579860

  15. Ultrastructural characteristics of tau filaments in tauopathies: immuno-electron microscopic demonstration of tau filaments in tauopathies.

    PubMed

    Arima, Kunimasa

    2006-10-01

    The microtubule-associated protein tau aggregates into filaments in the form of neurofibrillary tangles, neuropil threads and argyrophilic grains in neurons, in the form of variable astrocytic tangles in astrocytes and in the form of coiled bodies and argyrophilic threads in oligodendrocytes. These tau filaments may be classified into two types, straight filaments or tubules with 9-18 nm diameters and "twisted ribbons" composed of two parallel aligned components. In the same disease, the fine structure of tau filaments in glial cells roughly resembles that in neurons. In sporadic tauopathies, individual tau filaments show characteristic sizes, shapes and arrangements, and therefore contribute to neuropathologic differential diagnosis. In frontotemporal dementias caused by tau gene mutations, variable filamentous profiles were observed in association with mutation sites and insoluble tau isoforms, including straight filaments or tubules, paired helical filament-like filaments, and twisted ribbons. Pre-embedding immunoelectron microscopic studies were carried out using anti-3-repeat tau and anti-4-repeat tau specific antibodies, RD3 and RD4. Straight tubules in neuronal and astrocytic Pick bodies were immunolabeled by the anti-3-repeat tau antibody. The anti-4-repeat tau antibody recognized abnormal tubules comprising neurofibrillary tangles, coiled bodies and argyrophilic threads in progressive supranuclear palsy (PSP) and corticobasal degeneration. In the pre-embedding immunoelectron microscopic study using the phosphorylated tau AT8 antibody, tuft-shaped astrocytes of PSP were found to be composed of bundles of abnormal tubules in processes and perikarya of protoplasmic astrocytes. In this study, the 3-repeat tau or 4-repeat tau epitope was detected in situ at the ultrastructural level in abnormal tubules in representative pathological lesions in Pick's disease, PSP and corticobasal degeneration.

  16. Imaging the accumulation and suppression of tau pathology using multiparametric MRI

    PubMed Central

    Holmes, Holly E.; Colgan, Niall; Ismail, Ozama; Ma, Da; Powell, Nick M.; O'Callaghan, James M.; Harrison, Ian F.; Johnson, Ross A.; Murray, Tracey K.; Ahmed, Zeshan; Heggenes, Morton; Fisher, Alice; Cardoso, M.J.; Modat, Marc; Walker-Samuel, Simon; Fisher, Elizabeth M.C.; Ourselin, Sebastien; O'Neill, Michael J.; Wells, Jack A.; Collins, Emily C.; Lythgoe, Mark F.

    2016-01-01

    Mouse models of Alzheimer's disease have served as valuable tools for investigating pathogenic mechanisms relating to neurodegeneration, including tau-mediated and neurofibrillary tangle pathology—a major hallmark of the disease. In this work, we have used multiparametric magnetic resonance imaging (MRI) in a longitudinal study of neurodegeneration in the rTg4510 mouse model of tauopathy, a subset of which were treated with doxycycline at different time points to suppress the tau transgene. Using this paradigm, we investigated the sensitivity of multiparametric MRI to both the accumulation and suppression of pathologic tau. Tau-related atrophy was discernible from 5.5 months within the cortex and hippocampus. We observed markedly less atrophy in the treated rTg4510 mice, which was enhanced after doxycycline intervention from 3.5 months. We also observed differences in amide proton transfer, cerebral blood flow, and diffusion tensor imaging parameters in the rTg4510 mice, which were significantly less altered after doxycycline treatment. We propose that these non-invasive MRI techniques offer insight into pathologic mechanisms underpinning Alzheimer's disease that may be important when evaluating emerging therapeutics targeting one of more of these processes. PMID:26923415

  17. Shared and differentiated motor skill impairments in children with dyslexia and/or attention deficit disorder: From simple to complex sequential coordination

    PubMed Central

    Morin-Moncet, Olivier; Bélanger, Anne-Marie; Beauchamp, Miriam H.; Leonard, Gabriel

    2017-01-01

    Dyslexia and Attention deficit disorder (AD) are prevalent neurodevelopmental conditions in children and adolescents. They have high comorbidity rates and have both been associated with motor difficulties. Little is known, however, about what is shared or differentiated in dyslexia and AD in terms of motor abilities. Even when motor skill problems are identified, few studies have used the same measurement tools, resulting in inconstant findings. The present study assessed increasingly complex gross motor skills in children and adolescents with dyslexia, AD, and with both Dyslexia and AD. Our results suggest normal performance on simple motor-speed tests, whereas all three groups share a common impairment on unimanual and bimanual sequential motor tasks. Children in these groups generally improve with practice to the same level as normal subjects, though they make more errors. In addition, children with AD are the most impaired on complex bimanual out-of-phase movements and with manual dexterity. These latter findings are examined in light of the Multiple Deficit Model. PMID:28542319

  18. Monoaminergic Modulation of Motor Cortex Function

    PubMed Central

    Vitrac, Clément; Benoit-Marand, Marianne

    2017-01-01

    Elaboration of appropriate responses to behavioral situations rests on the ability of selecting appropriate motor outcomes in accordance to specific environmental inputs. To this end, the primary motor cortex (M1) is a key structure for the control of voluntary movements and motor skills learning. Subcortical loops regulate the activity of the motor cortex and thus contribute to the selection of appropriate motor plans. Monoamines are key mediators of arousal, attention and motivation. Their firing pattern enables a direct encoding of different states thus promoting or repressing the selection of actions adapted to the behavioral context. Monoaminergic modulation of motor systems has been extensively studied in subcortical circuits. Despite evidence of converging projections of multiple neurotransmitters systems in the motor cortex pointing to a direct modulation of local circuits, their contribution to the execution and learning of motor skills is still poorly understood. Monoaminergic dysregulation leads to impaired plasticity and motor function in several neurological and psychiatric conditions, thus it is critical to better understand how monoamines modulate neural activity in the motor cortex. This review aims to provide an update of our current understanding on the monoaminergic modulation of the motor cortex with an emphasis on motor skill learning and execution under physiological conditions. PMID:29062274

  19. Palmitic and stearic fatty acids induce Alzheimer-like hyperphosphorylation of tau in primary rat cortical neurons.

    PubMed

    Patil, Sachin; Chan, Christina

    2005-08-26

    Epidemiological studies suggest that high fat diets significantly increase the risk of Alzheimer's disease (AD). In addition, the AD brain is characterized by high fatty acid content compared to that of healthy subjects. Nevertheless, the basic mechanism relating elevated fatty acids and the pathogenesis of AD remains unclear. The present study examines the role of fatty acids in causing hyperphosphorylation of the tau protein, one of the characteristic signatures of AD pathology. Hyperphosphorylation of tau disrupts the cell cytoskeleton and leads to neuronal degeneration. Here, primary rat cortical neurons and astrocytes were treated with saturated free fatty acids (FFAs), palmitic and stearic acids. There was no change in the levels of phosphorylated tau in rat cortical neurons treated directly with these FFAs. The conditioned media from FFA-treated astrocytes, however, caused hyperphosphorylation of tau in the cortical neurons at AD-specific phospho-epitopes. Co-treatment of neurons with N-acetyl cysteine, an antioxidant, reduced FFA-induced hyperphosphorylation of tau. The present results establish a central role of FFAs in causing hyperphosphorylation of tau through astroglia-mediated oxidative stress.

  20. The Relationship among Motor Proficiency, Physical Fitness, and Body Composition in Children with and without Visual Impairments

    ERIC Educational Resources Information Center

    Houwen, Suzanne; Hartman, Esther; Visscher, Chris

    2010-01-01

    This study compares the motor skills and physical fitness of school-age children (6-12 years) with visual impairments (VI; n = 60) and sighted children (n = 60). The relationships between the performance parameters and the children's body composition are investigated as well as the role of the severity of the impairment. The degree of VI did not…

  1. Influence of Language Load on Speech Motor Skill in Children with Specific Language Impairment

    ERIC Educational Resources Information Center

    Saletta, Meredith; Goffman, Lisa; Ward, Caitlin; Oleson, Jacob

    2018-01-01

    Purpose: Children with specific language impairment (SLI) show particular deficits in the generation of sequenced action--the quintessential procedural task. Practiced imitation of a sequence may become rote and require reduced procedural memory. This study explored whether speech motor deficits in children with SLI occur generally or only in…

  2. Helping Children with Visual and Motor Impairments Make the Most of Their Visual Abilities.

    ERIC Educational Resources Information Center

    Amerson, Marie J.

    1999-01-01

    Lists strategies for promoting functional vision use in children with visual and motor impairments, including providing postural stability, presenting visual attention tasks when energy level is the highest, using a slanted work surface, placing target items in varied locations within reach, and determining the most effective visual adaptations.…

  3. Nigrostriatal proteasome inhibition impairs dopamine neurotransmission and motor function in minipigs.

    PubMed

    Lillethorup, Thea P; Glud, Andreas N; Alstrup, Aage K O; Mikkelsen, Trine W; Nielsen, Erik H; Zaer, Hamed; Doudet, Doris J; Brooks, David J; Sørensen, Jens Christian H; Orlowski, Dariusz; Landau, Anne M

    2018-05-01

    Parkinson's disease (PD) is characterized by degeneration of dopaminergic neurons in the substantia nigra leading to slowness and stiffness of limb movement with rest tremor. Using ubiquitin proteasome system inhibitors, rodent models have shown nigrostriatal degeneration and motor impairment. We translated this model to the Göttingen minipig by administering lactacystin into the medial forebrain bundle (MFB). Minipigs underwent positron emission tomography (PET) imaging with (+)-α-[ 11 C]dihydrotetrabenazine ([ 11 C]DTBZ), a marker of vesicular monoamine transporter 2 availability, at baseline and three weeks after the unilateral administration of 100 μg lactacystin into the MFB. Compared to their baseline values, minipigs injected with lactacystin showed on average a 36% decrease in ipsilateral striatal binding potential corresponding to impaired presynaptic dopamine terminals. Behaviourally, minipigs displayed asymmetrical motor disability with spontaneous rotations in one of the animals. Immunoreactivity for tyrosine hydroxylase (TH) and HLA-DR-positive microglia confirmed asymmetrical reduction in nigral TH-positive neurons with an inflammatory response in the lactacystin-injected minipigs. In conclusion, direct injection of lactacystin into the MFB of minipigs provides a model of PD with reduced dopamine neurotransmission, TH-positive neuron reduction, microglial activation and behavioural deficits. This large animal model could be useful in studies of symptomatic and neuroprotective therapies with translatability to human PD. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Escitalopram Ameliorates Forskolin-Induced Tau Hyperphosphorylation in HEK239/tau441 Cells.

    PubMed

    Ren, Qing-Guo; Wang, Yan-Juan; Gong, Wei-Gang; Zhou, Qi-Da; Xu, Lin; Zhang, Zhi-Jun

    2015-06-01

    To investigate the effect of escitalopram (a widely used and highly efficacious antidepressant from the SSRI class) on tau hyperphosphorylation, HEK293/tau441 cells were pretreated with 4 μM of forskolin for 2 h. Then we treated the cells with different doses of escitalopram (0, 5, 10, 20, 40, 80 μM) for 22 h. We measured the phosphorylation level of tau by Western blotting. It was shown that escitalopram could protect tau from hyperphosphorylation induced by pharmacological activation of protein kinase A (PKA) at a dose of 20, 40, and 80 μM in vitro. Interestingly, the same dose of escitalopram could also increase the level of serine-9-phosphorylated GSK-3β (inactive form) and the phosphorylation level of Akt at Ser473 (active form) with no significant change in the level of total GSK-3β and Akt. Unexpectedly, 5-hydroxytryptamine 1A receptor (5-HT1A) agonist 8-OH-DPAT did not decrease forskolin-induced tau hyperphosphorylation. Our results suggest that escitalopram can ameliorate forskolin-induced tau hyperphosphorylation, which is not through the typical 5-HT1A pathway, and Akt/GSK-3β signaling pathway is involved. These findings may support an effective role of antidepressants in the prevention of dementia associated with depression in patients.

  5. Difficulties with Fine Motor Skills and Cognitive Impairment in an Elderly Population: The Progetto Veneto Anziani.

    PubMed

    Curreri, Chiara; Trevisan, Caterina; Carrer, Pamela; Facchini, Silvia; Giantin, Valter; Maggi, Stefania; Noale, Marianna; De Rui, Marina; Perissinotto, Egle; Zambon, Sabina; Crepaldi, Gaetano; Manzato, Enzo; Sergi, Giuseppe

    2018-02-01

    To investigate dysfunction in fine motor skills in a cohort of older Italian adults, identifying their prevalence and usefulness as indicators and predictors of cognitive impairment. Population-based longitudinal study with mean follow-up of 4.4 years. Community. Older men and women enrolled in the Progetto Veneto Anziani (Pro.V.A.) (N = 2,361); 1,243 subjects who were cognitively intact at baseline were selected for longitudinal analyses. Fine motor skills were assessed by measuring the time needed to successfully complete two functional tasks: putting on a shirt and a manual dexterity task. Cognitive impairment was defined as a Mini-Mental State Examination (MMSE) score less than 24. On simple correlation, baseline MMSE score was significantly associated with the manual dexterity task (correlation coefficient (r) = -0.25, P < .001) and time needed to put on a shirt (r = -0.29, P < .001). Over the study period, changes in time needed to perform the fine motor tasks were significantly associated with changes in MMSE (putting on a shirt: β = 0.083, P = .003; manual dexterity task: β = 0.098, P < .001). Logistic regression analyses confirmed that worse results on tasks were associated with cognitive impairment at baseline (odds ratio (OR) = 2.47, 95% confidence interval (CI) = 1.74-3.50, for the fourth quartile of time needed to put on a shirt; OR = 1.98, 95% CI = 1.42-2.76, for the fourth manual dexterity task quartile) and greater risk of cognitive impairment developing during follow-up (OR = 4.38, 95% CI = 2.46-7.80, for the fourth quartile of time needed to put on a shirt; OR = 2.20, 95% CI = 1.30-3.72, for the fourth manual dexterity task quartile). Difficulties with fine motor skills are common in older adults, and assessing them may help to identify early signs of dementia, subjects at high risk to develop cognitive decline, and individuals who can be referred to specialists. © 2017, Copyright the Authors Journal compilation © 2017, The American Geriatrics

  6. Cognitive-motor dual-task ability of athletes with and without intellectual impairment.

    PubMed

    Van Biesen, Debbie; Jacobs, Lore; McCulloch, Katina; Janssens, Luc; Vanlandewijck, Yves C

    2018-03-01

    Cognition is important in many sports, for example, making split-second-decisions under pressure, or memorising complex movement sequences. The dual-task (DT) paradigm is an ecologically valid approach for the assessment of cognitive function in conjunction with motor demands. This study aimed to determine the impact of impaired intelligence on DT performance. The motor task required balancing on one leg on a beam, and the cognitive task was a multiple-object-tracking (MOT) task assessing dynamic visual-search capacity. The sample included 206 well-trained athletes with and without intellectual impairment (II), matched for sport, age and training volume (140 males, 66 females, M age = 23.2 ± 4.1 years, M training experience = 12.3 ± 5.7 years). In the single-task condition, II-athletes showed reduced balance control (F = 55.9, P < .001, η 2  = .23) and reduced MOT (F = 86.3, P < .001, η 2  = .32) compared to the control group. A mixed-model ANCOVA revealed significant differences in DT performance for the balance and the MOT task between both groups. The DT costs were significantly larger for the II-athletes (-8.28% versus -1.34% for MOT and -33.13% versus -12.89% for balance). The assessment of MOT in a DT paradigm provided insight in how impaired intelligence constrains the ability of II-athletes to successfully perform at the highest levels in the complex and dynamical sport-environment.

  7. S-nitrosoglutathione reduces tau hyper-phosphorylation and provides neuroprotection in rat model of chronic cerebral hypoperfusion.

    PubMed

    Won, Je-Seong; Annamalai, Balasubramaniam; Choi, Seungho; Singh, Inderjit; Singh, Avtar K

    2015-10-22

    We have previously reported that treatment of rats subjected to permanent bilateral common carotid artery occlusion (pBCCAO), a model of chronic cerebral hypoperfusion (CCH), with S-nitrosoglutathione (GSNO), an endogenous nitric oxide carrier, improved cognitive functions and decreased amyloid-β accumulation in the brains. Since CCH has been implicated in tau hyperphosphorylation induced neurodegeneration, we investigated the role of GSNO in regulation of tau hyperphosphorylation in rat pBCCAO model. The rats subjected to pBCCAO had a significant increase in tau hyperphosphorylation with increased neuronal loss in hippocampal/cortical areas. GSNO treatment attenuated not only the tau hyperphosphorylation, but also the neurodegeneration in pBCCAO rat brains. The pBCCAO rat brains also showed increased activities of GSK-3β and Cdk5 (major tau kinases) and GSNO treatment significantly attenuated their activities. GSNO attenuated the increased calpain activities and calpain-mediated cleavage of p35 leading to production of p25 and aberrant Cdk5 activation. In in vitro studies using purified calpain protein, GSNO treatment inhibited calpain activities while 3-morpholinosydnonimine (a donor of peroxynitrite) treatment increased its activities, suggesting the opposing role of GSNO vs. peroxynitrite in regulation of calpain activities. In pBCCAO rat brains, GSNO treatment attenuated the expression of inducible nitric oxide synthase (iNOS) expression and also reduced the brain levels of nitro-tyrosine formation, thereby indicating the protective role of GSNO in iNOS/nitrosative-stress mediated calpain/tau pathologies under CCH conditions. Taken together with our previous report, these data support the therapeutic potential of GSNO, a biological NO carrier, as a neuro- and cognitive-protective agent under conditions of CCH. Published by Elsevier B.V.

  8. Glucocorticoids mediate stress-induced impairment of retrieval of stimulus-response memory.

    PubMed

    Atsak, Piray; Guenzel, Friederike M; Kantar-Gok, Deniz; Zalachoras, Ioannis; Yargicoglu, Piraye; Meijer, Onno C; Quirarte, Gina L; Wolf, Oliver T; Schwabe, Lars; Roozendaal, Benno

    2016-05-01

    Acute stress and elevated glucocorticoid hormone levels are well known to impair the retrieval of hippocampus-dependent 'declarative' memory. Recent findings suggest that stress might also impair the retrieval of non-hippocampal memories. In particular, stress shortly before retention testing was shown to impair the retrieval of striatal stimulus-response associations in humans. However, the mechanism underlying this stress-induced retrieval impairment of non-hippocampal stimulus-response memory remains elusive. In the present study, we investigated whether an acute elevation in glucocorticoid levels mediates the impairing effects of stress on retrieval of stimulus-response memory. Male Sprague-Dawley rats were trained on a stimulus-response task in an eight-arm radial maze until they learned to associate a stimulus, i.e., cue, with a food reward in one of the arms. Twenty-four hours after successful acquisition, they received a systemic injection of vehicle, corticosterone (1mg/kg), the corticosterone-synthesis inhibitor metyrapone (35mg/kg) or were left untreated 1h before retention testing. We found that the corticosterone injection impaired the retrieval of stimulus-response memory. We further found that the systemic injection procedure per se was stressful as the vehicle administration also increased plasma corticosterone levels and impaired the retrieval of stimulus-response memory. However, memory retrieval was not impaired when rats were tested 2min after the systemic vehicle injection, before any stress-induced elevation in corticosterone levels had occurred. Moreover, metyrapone treatment blocked the effect of injection stress on both plasma corticosterone levels and memory retrieval impairment, indicating that the endogenous corticosterone response mediates the stress-induced memory retrieval impairment. None of the treatments affected rats' locomotor activity or motivation to search for the food reward within the maze. These findings show that stress

  9. Proximal movements compensate for distal forelimb movement impairments in a reach-to-eat task in Huntington's disease: new insights into motor impairments in a real-world skill.

    PubMed

    Klein, Alexander; Sacrey, Lori-Ann R; Dunnett, Stephen B; Whishaw, Ian Q; Nikkhah, Guido

    2011-02-01

    Huntington's disease (HD) causes severe motor impairments that are characterized by chorea, dystonia, and impaired fine motor control. The motor deficits include deficits in the control of the forelimb, but as yet there has been no comprehensive assessment of the impairments in arm, hand and digit movements as they are used in every-day tasks. The present study investigated the reaching of twelve HD subjects and twelve age-matched control subjects on a reach-to-eat task. The subjects were asked to reach for a small food item, with the left or the right hand, and then bring it to the mouth for eating. The task assesses the major features of skilled forelimb use, including orienting to a target, transport of the hand to a target, use of a precision grasp of the target, limb withdrawal to the mouth, and release of the food item into the mouth, and the integration of the movements into a smooth act. The movements were analyzed frame-by-frame by scoring the video record using an established movement element rating scale and by biometric analysis to describe limb trajectory. All HD subjects displayed greater reliance on more proximal movements in reaching. They also displayed overall jerkiness, a significant impairment in end point error correction (i.e. no smooth trajectories), deficits in timing and terminating motion (overshooting the target), impairments in rotation of the hand, abnormalities in grasping, and impairments in releasing the food item to the mouth. Although impairment in the control of the distal segments of the limb was common to all subjects, the intrusion of choreatic movements produced a pattern of highly variable performance between subjects. The quantification of reaching performance as measured by this analysis provides new insights into the impairments of HD subjects, allows an easily administered and inexpensive way to document the many skilled limb movement abnormalities, and relates the impairments to a real-world context. The protocol can

  10. Association Between Amyloid and Tau Accumulation in Young Adults With Autosomal Dominant Alzheimer Disease.

    PubMed

    Quiroz, Yakeel T; Sperling, Reisa A; Norton, Daniel J; Baena, Ana; Arboleda-Velasquez, Joseph F; Cosio, Danielle; Schultz, Aaron; Lapoint, Molly; Guzman-Velez, Edmarie; Miller, John B; Kim, Leo A; Chen, Kewei; Tariot, Pierre N; Lopera, Francisco; Reiman, Eric M; Johnson, Keith A

    2018-05-01

    It is critically important to improve our ability to diagnose and track Alzheimer disease (AD) as early as possible. Individuals with autosomal dominant forms of AD can provide clues as to which and when biological changes are reliably present prior to the onset of clinical symptoms. To characterize the associations between amyloid and tau deposits in the brains of cognitively unimpaired and impaired carriers of presenilin 1 (PSEN1) E280A mutation. In this cross-sectional imaging study, we leveraged data from a homogeneous autosomal dominant AD kindred, which allowed us to examine measurable tau deposition as a function of individuals' proximity to the expected onset of dementia. Cross-sectional measures of carbon 11-labeled Pittsburgh Compound B positron emission tomography (PET) and flortaucipir F 18 (previously known as AV 1451, T807) PET imaging were assessed in 24 PSEN1 E280A kindred members (age range, 28-55 years), including 12 carriers, 9 of whom were cognitively unimpaired and 3 of whom had mild cognitive impairment, and 12 cognitively unimpaired noncarriers. We compared carbon 11-labeled Pittsburgh Compound B PET cerebral with cerebellar distribution volume ratios as well as flortaucipir F 18 PET cerebral with cerebellar standardized uptake value ratios in mutation carriers and noncarriers. Spearman correlations characterized the associations between age and mean cortical Pittsburgh Compound B distribution volume ratio levels or regional flortaucipir standardized uptake value ratio levels in both groups. Of the 24 individuals, the mean (SD) age was 38.0 (7.4) years, or approximately 6 years younger than the expected onset of clinical symptoms in carriers. Compared with noncarriers, cognitively unimpaired mutation carriers had elevated mean cortical Pittsburgh Compound B distribution volume ratio levels in their late 20s, and 7 of 9 carriers older than 30 years reached the threshold for amyloidosis (distribution volume ratio level > 1.2). Elevated

  11. Recommendations for toxicological investigation of drug-impaired driving and motor vehicle fatalities.

    PubMed

    Logan, Barry K; Lowrie, Kayla J; Turri, Jennifer L; Yeakel, Jillian K; Limoges, Jennifer F; Miles, Amy K; Scarneo, Colleen E; Kerrigan, Sarah; Farrell, Laurel J

    2013-10-01

    This report describes the review and update of a set of minimum recommendations for the toxicological investigation of suspected alcohol and drug-impaired driving cases and motor vehicle fatalities involving drugs or alcohol. The recommendations have the goal of ensuring that a consistent set of data regarding the most frequently encountered drugs linked to driving impairment is collected for practical application in the investigation of these cases and to allow epidemiological monitoring and the development of evidence-based public policy on this important public safety issue. The recommendations are based on a survey of practices in US laboratories performing this kind of analysis, consideration of existing epidemiological crash and arrest data and practical considerations of widely available technology platforms in laboratories performing this work. The final recommendations were derived from a consensus meeting of experts recruited from survey respondents and the membership of the National Safety Council's Alcohol, Drug and Impairment Division (formerly known as the Committee on Alcohol and Other Drugs, CAOD).

  12. Gross motor skill performance in children with and without visual impairments--research to practice.

    PubMed

    Wagner, Matthias O; Haibach, Pamela S; Lieberman, Lauren J

    2013-10-01

    The aim of this study was to provide an empirical basis for teaching gross motor skills in children with visual impairments. For this purpose, gross motor skill performance of 23, 6-12 year old, boys and girls who are blind (ICD-10 H54.0) and 28 sighted controls with comparable age and gender characteristics was compared on six locomotor and six object control tasks using the Test of Gross Motor Development-Second Edition. Results indicate that children who are blind perform significantly (p<.05) worse in all assessed locomotor and object control skills, whereby running, leaping, kicking and catching are the most affected skills, and corresponding differences are related to most running, leaping, kicking and catching component. Practical implications are provided. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Use of a physiological profile to document motor impairment in ageing and in clinical groups.

    PubMed

    Lord, S R; Delbaere, K; Gandevia, S C

    2016-08-15

    Ageing decreases exercise performance and is frequently accompanied by reductions in cognitive performance. Deterioration in the physiological capacity to stand, locomote and exercise can manifest itself as falling over and represents a significant deterioration in sensorimotor control. In the elderly, falling leads to serious morbidity and mortality with major societal costs. Measurement of a suite of physiological capacities that are required for successful motor performance (including vision, muscle strength, proprioception and balance) has been used to produce a physiological profile assessment (PPA) which has been tracked over the age spectrum and in different diseases (e.g. multiple sclerosis, Parkinson's disease). As well as measures of specific physiological capacities, the PPA generates an overall 'score' which quantitatively measures an individual's cumulative risk of falling. The present review collates data from the PPA (and the physiological capacities it measures) as well as its use in strategies to reduce falls in the elderly and those with different diseases. We emphasise that (i) motor impairment arises via reductions in a wide range of sensorimotor abilities; (ii) the PPA approach not only gives a snapshot of the physiological capacity of an individual, but it also gives insight into the deficits among groups of individuals with particular diseases; and (iii) deficits in seemingly restricted and disparate physiological domains (e.g. vision, strength, cognition) are funnelled into impairments in tasks requiring upright balance. Motor impairments become more prevalent with ageing but careful physiological measurement and appropriate interventions offer a way to maximise health across the lifespan. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  14. Deliberate Play and Preparation Jointly Benefit Motor and Cognitive Development: Mediated and Moderated Effects

    PubMed Central

    Pesce, Caterina; Masci, Ilaria; Marchetti, Rosalba; Vazou, Spyridoula; Sääkslahti, Arja; Tomporowski, Phillip D.

    2016-01-01

    In light of the interrelation between motor and cognitive development and the predictive value of the former for the latter, the secular decline observed in motor coordination ability as early as preschool urges identification of interventions that may jointly impact motor and cognitive efficiency. The aim of this study was twofold. It (1) explored the outcomes of enriched physical education (PE), centered on deliberate play and cognitively challenging variability of practice, on motor coordination and cognitive processing; (2) examined whether motor coordination outcomes mediate intervention effects on children’s cognition, while controlling for moderation by lifestyle factors as outdoor play habits and weight status. Four hundred and sixty children aged 5–10 years participated in a 6-month group randomized intervention in PE, with or without playful coordinative and cognitive enrichment. The weight status and spontaneous outdoor play habits of children (parental report of outdoor play) were evaluated at baseline. Before and after the intervention, motor developmental level (Movement Assessment Battery for Children) was evaluated in all children, who were then assessed either with a test of working memory (Random Number Generation task), or with a test of attention (from the Cognitive Assessment System). Children assigned to the ‘enriched’ intervention showed more pronounced improvements in all motor coordination assessments (manual dexterity, ball skills, static/dynamic balance). The beneficial effect on ball skills was amplified by the level of spontaneous outdoor play and weight status. Among indices of executive function and attention, only that of inhibition showed a differential effect of intervention type. Moderated mediation showed that the better outcome of the enriched PE on ball skills mediated the better inhibition outcome, but only when the enrichment intervention was paralleled by a medium-to-high level of outdoor play. Results suggest that

  15. Reduced sensory synaptic excitation impairs motor neuron function via Kv2.1 in spinal muscular atrophy.

    PubMed

    Fletcher, Emily V; Simon, Christian M; Pagiazitis, John G; Chalif, Joshua I; Vukojicic, Aleksandra; Drobac, Estelle; Wang, Xiaojian; Mentis, George Z

    2017-07-01

    Behavioral deficits in neurodegenerative diseases are often attributed to the selective dysfunction of vulnerable neurons via cell-autonomous mechanisms. Although vulnerable neurons are embedded in neuronal circuits, the contributions of their synaptic partners to disease process are largely unknown. Here we show that, in a mouse model of spinal muscular atrophy (SMA), a reduction in proprioceptive synaptic drive leads to motor neuron dysfunction and motor behavior impairments. In SMA mice or after the blockade of proprioceptive synaptic transmission, we observed a decrease in the motor neuron firing that could be explained by the reduction in the expression of the potassium channel Kv2.1 at the surface of motor neurons. Chronically increasing neuronal activity pharmacologically in vivo led to a normalization of Kv2.1 expression and an improvement in motor function. Our results demonstrate a key role of excitatory synaptic drive in shaping the function of motor neurons during development and the contribution of its disruption to a neurodegenerative disease.

  16. Reduced sensory synaptic excitation impairs motor neuron function via Kv2.1 in spinal muscular atrophy

    PubMed Central

    Fletcher, Emily V.; Simon, Christian M.; Pagiazitis, John G.; Chalif, Joshua I.; Vukojicic, Aleksandra; Drobac, Estelle; Wang, Xiaojian; Mentis, George Z.

    2017-01-01

    Behavioral deficits in neurodegenerative diseases are often attributed to the selective dysfunction of vulnerable neurons via cell-autonomous mechanisms. Although vulnerable neurons are embedded in neuronal circuits, the contribution of their synaptic partners to the disease process is largely unknown. Here, we show that in a mouse model of spinal muscular atrophy (SMA), a reduction in proprioceptive synaptic drive leads to motor neuron dysfunction and motor behavior impairments. In SMA mice or after the blockade of proprioceptive synaptic transmission we observed a decrease in the motor neuron firing which could be explained by the reduction in the expression of the potassium channel Kv2.1 at the surface of motor neurons. Increasing neuronal activity pharmacologically by chronic exposure in vivo led to a normalization of Kv2.1 expression and an improvement in motor function. Our results demonstrate a key role of excitatory synaptic drive in shaping the function of motor neurons during development and the contribution of its disruption to a neurodegenerative disease. PMID:28504671

  17. Predictive value of the Movement Assessment Battery for Children - Second Edition at 4 years, for motor impairment at 8 years in children born preterm.

    PubMed

    Griffiths, Alison; Morgan, Prue; Anderson, Peter J; Doyle, Lex W; Lee, Katherine J; Spittle, Alicia J

    2017-05-01

    To assess the predictive validity at 4 years of the Movement Assessment Battery for Children - Second Edition (MABC-2) for motor impairment at 8 years in children born preterm. We also aimed to determine if sex, cognition, medical, or social risks were associated with motor impairment at 8 years or with a change in MABC-2 score between 4 years and 8 years. Ninety-six children born at less than 30 weeks' gestation were assessed with the MABC-2 at 4 years and 8 years of age. Motor impairment was defined as less than or equal to the 5th centile. The Differential Ability Scales - Second Edition (DAS-II) was used to measure General Conceptual Ability (GCA) at 4 years, with a score <90 defined as 'below average'. There was a strong association between the MABC-2 total standard scores at 4 years and 8 years (59% variance explained, regression coefficient=0.80, 95% confidence interval [CI] 0.69-0.91, p<0.001). The MABC-2 at 4 years had high sensitivity (79%) and specificity (93%) for predicting motor impairment at 8 years. Below average cognition and higher medical risk were associated with increased odds of motor impairment at 8 years (odds ratio [OR]=15.3, 95% CI 4.19-55.8, p<0.001, and OR=3.77, 95% CI 1.28-11.1, p=0.016 respectively). Sex and social risk did not appear to be associated with motor impairment at 8 years. There was little evidence that any variables were related to change in MABC-2 score between 4 years and 8 years. The MABC-2 at 4 years is predictive of motor functioning in middle childhood. Below average cognition and higher medical risk may be predictors of motor impairment. © 2017 Mac Keith Press.

  18. Impaired Communication Between the Motor and Somatosensory Homunculus Is Associated With Poor Manual Dexterity in Autism Spectrum Disorder.

    PubMed

    Thompson, Abigail; Murphy, Declan; Dell'Acqua, Flavio; Ecker, Christine; McAlonan, Grainne; Howells, Henrietta; Baron-Cohen, Simon; Lai, Meng-Chuan; Lombardo, Michael V

    2017-02-01

    Fine motor skill impairments are common in autism spectrum disorder (ASD), significantly affecting quality of life. Sensory inputs reaching the primary motor cortex (M1) from the somatosensory cortex (S1) are likely involved in fine motor skill and specifically motor learning. However, the role of these connections has not been directly investigated in humans. This study aimed to investigate, for the first time, the role of the S1-M1 connections in healthy subjects in vivo and whether microstructural alterations are associated with motor impairment in ASD. Sixty right-handed neurotypical adult men aged 18 to 45 years, and 60 right-handed age- and sex-matched subjects diagnosed with ASD underwent fine motor skill assessment and scanning with diffusion tensor imaging (DTI). The streamlines of the hand region connecting S1-M1 of the motor-sensory homunculus were virtually dissected using TrackVis, and diffusion properties were extracted. The face/tongue region connections were used as control tracts. The ASD group displayed lower motor performances and altered DTI measurements of the hand-region connection. Behavioral performance correlated with hand-region DTI measures in both groups, but not with the face/tongue connections, indicating anatomical specificity. There was a left-hemisphere association of motor ability in the control group and an atypical rightward shift in the ASD group. These findings suggest that direct interaction between S1 and M1 may contribute to the human ability to precisely interact with and manipulate the environment. Because electrophysiological evidence indicates that these connections may underpin long-term potentiation in M1, our findings may lead to novel therapeutic treatments for motor skill disorders. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  19. The Molecular Motor KIF21B Mediates Synaptic Plasticity and Fear Extinction by Terminating Rac1 Activation.

    PubMed

    Morikawa, Momo; Tanaka, Yosuke; Cho, Hyun-Soo; Yoshihara, Masaharu; Hirokawa, Nobutaka

    2018-06-26

    Fear extinction is a component of cognitive flexibility that is relevant for important psychiatric diseases, but its molecular mechanism is still largely elusive. We established mice lacking the kinesin-4 motor KIF21B as a model for fear extinction defects. Postsynaptic NMDAR-dependent long-term depression (LTD) is specifically impaired in knockouts. NMDAR-mediated LTD-causing stimuli induce dynamic association of KIF21B with the Rac1GEF subunit engulfment and cell motility protein 1 (ELMO1), leading to ELMO1 translocation out of dendritic spines and its sequestration in endosomes. This process may essentially terminate transient activation of Rac1, shrink spines, facilitate AMPAR endocytosis, and reduce postsynaptic strength, thereby forming a mechanistic link to LTD expression. Antagonizing ELMO1/Dock Rac1GEF activity by the administration of 4-[3'-(2″-chlorophenyl)-2'-propen-1'-ylidene]-1-phenyl-3,5-pyrazolidinedione (CPYPP) significantly reverses the knockout phenotype. Therefore, we propose that KIF21B-mediated Rac1 inactivation is a key molecular event in NMDAR-dependent LTD expression underlying cognitive flexibility in fear extinction. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  20. RNA Interference Silencing of Glycogen Synthase Kinase 3β Inhibites Tau Phosphorylation in Mice with Alzheimer Disease.

    PubMed

    Bian, Hong; Bian, Wei; Lin, Xiaoying; Ma, Zhaoyin; Chen, Wen; Pu, Ying

    2016-09-01

    To explore the effect of glycogen synthase kinase 3β (GSK-3β) silencing on Tau-5 phosphorylation in mice suffering Alzheimer disease (AD). GSK-3β was firstly silenced in human neuroblastoma SH-SY5Y cells using special lentivirus (LV) and the content of Tau (A-12), p-Tau (Ser396) and p-Tau (PHF-6) proteins. GSK-3β was also silenced in APP/PS1 mouse model of AD mice, which were divided into three groups (n = 10): AD, vehicle, and LV group. Ten C57 mice were used as control. The memory ability of mice was tested by square water maze, and the morphological changes of hippocampus and neuron death were analyzed by haematoxylin-eosin staining. Moreover, the levels of Tau and phosphorylated Tau (p-Tau) were detected by western blotting and immunohistochemistry, respectively. The lentivirus-mediated GSK-3β silencing system was successfully developed and silencing GSK-3β at the cellular level reduced Tau phosphorylation obviously. Moreover, GSK-3β silence significantly improved the memory ability of AD mice in LV group compared with AD group (P < 0.05) according to the latency periods and error numbers. As for the hippocampus morphology and neuron death, no significant change was observed between LV group and normal control. Immunohistochemical detection and western blotting revealed that the levels of Tau and p-Tau were significantly down-regulated after GSK-3β silence. Silencing GSK-3β may have a positive effect on inhibiting the pathologic progression of AD through down-regulating the level of p-Tau.

  1. Direct force measurements reveal that protein Tau confers short-range attractions and isoform-dependent steric stabilization to microtubules

    PubMed Central

    Chung, Peter J.; Choi, Myung Chul; Miller, Herbert P.; Feinstein, H. Eric; Raviv, Uri; Li, Youli; Wilson, Leslie; Feinstein, Stuart C.; Safinya, Cyrus R.

    2015-01-01

    Microtubules (MTs) are hollow cytoskeletal filaments assembled from αβ-tubulin heterodimers. Tau, an unstructured protein found in neuronal axons, binds to MTs and regulates their dynamics. Aberrant Tau behavior is associated with neurodegenerative dementias, including Alzheimer’s. Here, we report on a direct force measurement between paclitaxel-stabilized MTs coated with distinct Tau isoforms by synchrotron small-angle X-ray scattering (SAXS) of MT-Tau mixtures under osmotic pressure (P). In going from bare MTs to MTs with Tau coverage near the physiological submonolayer regime (Tau/tubulin-dimer molar ratio; ΦTau = 1/10), isoforms with longer N-terminal tails (NTTs) sterically stabilized MTs, preventing bundling up to PB ∼ 10,000–20,000 Pa, an order of magnitude larger than bare MTs. Tau with short NTTs showed little additional effect in suppressing the bundling pressure (PB ∼ 1,000–2,000 Pa) over the same range. Remarkably, the abrupt increase in PB observed for longer isoforms suggests a mushroom to brush transition occurring at 1/13 < ΦTau < 1/10, which corresponds to MT-bound Tau with NTTs that are considerably more extended than SAXS data for Tau in solution indicate. Modeling of Tau-mediated MT–MT interactions supports the hypothesis that longer NTTs transition to a polyelectrolyte brush at higher coverages. Higher pressures resulted in isoform-independent irreversible bundling because the polyampholytic nature of Tau leads to short-range attractions. These findings suggest an isoform-dependent biological role for regulation by Tau, with longer isoforms conferring MT steric stabilization against aggregation either with other biomacromolecules or into tight bundles, preventing loss of function in the crowded axon environment. PMID:26542680

  2. Do Perceptions of Competence Mediate The Relationship Between Fundamental Motor Skill Proficiency and Physical Activity Levels of Children in Kindergarten?

    PubMed

    Crane, Jeff R; Naylor, Patti J; Cook, Ryan; Temple, Viviene A

    2015-07-01

    Perceptions of competence mediate the relationship between motor skill proficiency and physical activity among older children and adolescents. This study examined kindergarten children's perceptions of physical competence as a mediator of the relationship between motor skill proficiency as a predictor variable and physical activity levels as the outcome variable; and also with physical activity as a predictor and motor skill proficiency as the outcome. Participants were 116 children (mean age = 5 years 7 months, 58% boys) from 10 schools. Motor skills were measured using the Test of Gross Motor Development-2 and physical activity was monitored through accelerometry. Perceptions of physical competence were measured using The Pictorial Scale of Perceived Competence and Social Acceptance for Young Children, and the relationships between these variables were examined using a model of mediation. The direct path between object control skills and moderate-vigorous physical activity (MVPA) was significant and object control skills predicted perceived physical competence. However, perceived competence did not mediate the relationship between object control skills and MVPA. The significant relationship between motor proficiency and perceptions of competence did not in turn influence kindergarten children's participation in physical activity. These findings support concepts of developmental differences in the structure of the self-perception system.

  3. Postural Care for People with Intellectual Disabilities and Severely Impaired Motor Function: A Scoping Review

    ERIC Educational Resources Information Center

    Robertson, Janet; Baines, Susannah; Emerson, Eric; Hatton, Chris

    2018-01-01

    Background: Poor postural care can have severe and life-threatening complications. This scoping review aims to map and summarize existing evidence regarding postural care for people with intellectual disabilities and severely impaired motor function. Method: Studies were identified via electronic database searches (MEDLINE, CINAHL, PsycINFO and…

  4. Changes in tau phosphorylation in hibernating rodents.

    PubMed

    León-Espinosa, Gonzalo; García, Esther; García-Escudero, Vega; Hernández, Félix; Defelipe, Javier; Avila, Jesús

    2013-07-01

    Tau is a cytoskeletal protein present mainly in the neurons of vertebrates. By comparing the sequence of tau molecule among different vertebrates, it was found that the variability of the N-terminal sequence in tau protein is higher than that of the C-terminal region. The N-terminal region is involved mainly in the binding of tau to cellular membranes, whereas the C-terminal region of the tau molecule contains the microtubule-binding sites. We have compared the sequence of Syrian hamster tau with the sequences of other hibernating and nonhibernating rodents and investigated how differences in the N-terminal region of tau could affect the phosphorylation level and tau binding to cell membranes. We also describe a change, in tau phosphorylation, on a casein kinase 1 (ck1)-dependent site that is found only in hibernating rodents. This ck1 site seems to play an important role in the regulation of tau binding to membranes. Copyright © 2013 Wiley Periodicals, Inc.

  5. Childhood social withdrawal, interpersonal impairment, and young adult depression: a mediational model.

    PubMed

    Katz, Shaina J; Conway, Christopher C; Hammen, Constance L; Brennan, Patricia A; Najman, Jake M

    2011-11-01

    Building on interpersonal theories of depression, the current study sought to explore whether early childhood social withdrawal serves as a risk factor for depressive symptoms and diagnoses in young adulthood. The researchers hypothesized that social impairment at age 15 would mediate the association between social withdrawal at age 5 and depression by age 20. This mediational model was tested in a community sample of 702 Australian youth followed from mother's pregnancy to youth age 20. Structural equation modeling analyses found support for a model in which childhood social withdrawal predicted adolescent social impairment, which, in turn, predicted depression in young adulthood. Additionally, gender was found to moderate the relationship between adolescent social impairment and depression in early adulthood, with females exhibiting a stronger association between social functioning and depression at the symptom and diagnostic level. This study illuminates one potential pathway from early developing social difficulties to later depressive symptoms and disorders.

  6. Childhood Social Withdrawal, Interpersonal Impairment, and Young Adult Depression: A Mediational Model

    PubMed Central

    Katz, Shaina J.; Conway, Christopher C.; Hammen, Constance L.; Brennan, Patricia A.; Najman, Jake M.

    2012-01-01

    Building on interpersonal theories of depression, the current study sought to explore whether early childhood social withdrawal serves as a risk factor for depressive symptoms and diagnoses in young adulthood. The researchers hypothesized that social impairment at age 15 would mediate the association between social withdrawal at age 5 and depression by age 20. This mediational model was tested in a community sample of 702 Australian youth followed from mother’s pregnancy to youth age 20. Structural equation modeling analyses found support for a model in which childhood social withdrawal predicted adolescent social impairment, which, in turn, predicted depression in young adulthood. Additionally, gender was found to moderate the relationship between adolescent social impairment and depression in early adulthood, with females exhibiting a stronger association between social functioning and depression at the symptom and diagnostic level. This study illuminates one potential pathway from early developing social difficulties to later depressive symptoms and disorders. PMID:21744059

  7. Molecules of the quinoline family block tau self-aggregation: implications toward a therapeutic approach for Alzheimer's disease.

    PubMed

    Navarrete, Leonardo P; Guzmán, Leonardo; San Martín, Aurelio; Astudillo-Saavedra, Luis; Maccioni, Ricardo B

    2012-01-01

    The neurofibrillary tangles (NFTs) generated by self-aggregation of anomalous forms of tau represent a neuropathological hallmark of Alzheimer's disease (AD). These lesions begin to form long before the clinical manifestation of AD, and its severity is correlated with cognitive impairment in patients. We focused on the search for molecules that interact with aggregated tau of the Alzheimer's type and that may block its aggregation before the formation of NFTs. We show that molecules from a family of quinolines interact specifically with oligomeric forms of tau, inhibiting their assembly into AD filaments. The quinolines 2-(4-methylphenyl)-6-methyl quinoline (THQ-4S) and 2-(4-aminophenyl)-6-methylquinoline (THQ-55) inhibited in vitro aggregation of heparin-induced polymers of purified brain tau and aggregates of human recombinant tau. They also interact with paired helical filaments (PHFs) purified from AD postmortem brains. In vitro studies indicated a significantly lower inhibitory effect of amyloid-β42 on the aggregation, suggesting that tau aggregates are specific targets for quinoline interactions. These compounds showed highly lipophilic properties as corroborated with the analysis of total polar surface areas, and evaluation of their molecular properties. Moreover, these quinolines exhibit physical chemical properties similar to drugs able to penetrate the human brain blood barrier. Docking studies based on tau modeling, as a structural approach to the analysis of the interaction of tau-binding ligands, indicated that a C-terminal tau moiety, involved in the formation of PHFs, seems to be a site for binding of quinolines. Studies suggest the potential clinical use of these quinolines and of their derivatives to inhibit tau aggregation and possible therapeutic routes for AD.

  8. Axodendritic sorting and pathological missorting of Tau are isoform-specific and determined by axon initial segment architecture.

    PubMed

    Zempel, Hans; Dennissen, Frank J A; Kumar, Yatender; Luedtke, Julia; Biernat, Jacek; Mandelkow, Eva-Maria; Mandelkow, Eckhard

    2017-07-21

    Subcellular mislocalization of the microtubule-associated protein Tau is a hallmark of Alzheimer disease (AD) and other tauopathies. Six Tau isoforms, differentiated by the presence or absence of a second repeat or of N-terminal inserts, exist in the human CNS, but their physiological and pathological differences have long remained elusive. Here, we investigated the properties and distributions of human and rodent Tau isoforms in primary forebrain rodent neurons. We found that the Tau diffusion barrier (TDB), located within the axon initial segment (AIS), controls retrograde (axon-to-soma) and anterograde (soma-to-axon) traffic of Tau. Tau isoforms without the N-terminal inserts were sorted efficiently into the axon. However, the longest isoform (2N4R-Tau) was partially retained in cell bodies and dendrites, where it accelerated spine and dendrite growth. The TDB (located within the AIS) was impaired when AIS components (ankyrin G, EB1) were knocked down or when glycogen synthase kinase-3β (GSK3β; an AD-associated kinase tethered to the AIS) was overexpressed. Using superresolution nanoscopy and live-cell imaging, we observed that microtubules within the AIS appeared highly dynamic, a feature essential for the TDB. Pathomechanistically, amyloid-β insult caused cofilin activation and F-actin remodeling and decreased microtubule dynamics in the AIS. Concomitantly with these amyloid-β-induced disruptions, the AIS/TDB sorting function failed, causing AD-like Tau missorting. In summary, we provide evidence that the human and rodent Tau isoforms differ in axodendritic sorting and amyloid-β-induced missorting and that the axodendritic distribution of Tau depends on AIS integrity. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Frontotemporal dementia with Pick-type histology associated with Q336R mutation in the tau gene.

    PubMed

    Pickering-Brown, S M; Baker, M; Nonaka, T; Ikeda, K; Sharma, S; Mackenzie, J; Simpson, S A; Moore, J W; Snowden, J S; de Silva, R; Revesz, T; Hasegawa, M; Hutton, M; Mann, D M A

    2004-06-01

    In this report, we describe the clinical and neuropathological features of a case of familial frontotemporal dementia (FTD), with onset at 58 years of age and disease duration of 10 years, associated with a novel mutation, Q336R, in the tau gene (tau). In vitro studies concerning the properties of tau proteins bearing this mutation, with respect to microtubule assembly and tau filament aggregation, are reported. Clinically, the patient showed alterations in memory, language and executive functions and marked behavioural change consistent with FTD, although the extent of memory impairment was more than is characteristic of FTD. At autopsy, there was degeneration of the frontal and temporal lobes associated with the presence of hyperphosphorylated tau proteins in swollen (Pick) cells and intraneuronal inclusions (Pick bodies). By immunohistochemistry, the Pick bodies contained both 3-repeat and 4-repeat tau proteins although, because no fresh tissues were available for analysis, the exact isoform composition of the aggregated tau proteins could not be determined. Neurons within frontal cortex contained neurofibrillary tangle-like structures, comprising both straight and twisted tubules, or Pick bodies in which the filaments were short and randomly orientated. In vitro, and in common with other tau missense mutations, Q336R caused an increase in tau fibrillogenesis. However, in contrast to most other tau missense mutations, Q336R increased, not decreased, the ability of mutant tau to promote microtubule assembly. Nonetheless, this latter functional change may likewise be detrimental to neuronal function by inducing a compensatory phosphorylation that may yield increased intracellular hyperphosphorylated tau species that are also liable to fibrillize. We believe the mutation is indeed pathogenic and disease causing and not simply a coincidental rare and benign polymorphism. Since this mutation is segregating with the FTD clinical and neuropathological phenotype, it has

  10. The effect of human microtubule-associated-protein tau on the assembly structure of microtubules and its ionic strength dependence

    NASA Astrophysics Data System (ADS)

    Choi, M. C.; Raviv, U.; Miller, H. P.; Gaylord, M. R.; Kiris, E.; Ventimiglia, D.; Needleman, D. J.; Chung, P. J.; Deek, J.; Lapointe, N.; Kim, M. W.; Wilson, L.; Feinstein, S. C.; Safinya, C. R.

    2010-03-01

    Microtubules (MTs), 25 nm protein nanotubes, are among the major filamentous elements of the eukaryotic cytoskeleton involved in intracellular trafficking, cell division and the establishment and maintenance of cell shape. Microtubule-associated-protein tau regulates tubulin assembly, MT dynamics and stability. Aberrant tau action has long been correlated with numerous neurodegenerative diseases, including Alzheimer's, and fronto-temporal dementia with Parkinsonism linked to chromosome 17 (FTDP-17) Using synchrotron small angle x-ray scattering (SAXS) and binding assay, we examine the effects of tau on the assembly structure of taxol-stabilized MTs. We find that tau regulates the distribution of protofilament numbers in MTs as reflected in the observed increase in the average radius of MTs with increasing the tau/tubulin molar ratio. Additionally, tau-MT interactions are mediated to a large extent via electrostatic interactions: the binding affinity of tau to MTs is ionic strength dependent. Supported by DOE-BES DE-FG02-06ER46314, NSF DMR-0803103, NIH NS35010, NIH NS13560. (Ref) M.C. Choi, S.C. Feinstein, and C.R. Safinya et al. Biophys. J. 97; 519 (2009).

  11. Binding to the minor groove of the double-strand, tau protein prevents DNA from damage by peroxidation.

    PubMed

    Wei, Yan; Qu, Mei-Hua; Wang, Xing-Sheng; Chen, Lan; Wang, Dong-Liang; Liu, Ying; Hua, Qian; He, Rong-Qiao

    2008-07-02

    Tau, an important microtubule associated protein, has been found to bind to DNA, and to be localized in the nuclei of both neurons and some non-neuronal cells. Here, using electrophoretic mobility shifting assay (EMSA) in the presence of DNA with different chain-lengths, we observed that tau protein favored binding to a 13 bp or a longer polynucleotide. The results from atomic force microscopy also showed that tau protein preferred a 13 bp polynucleotide to a 12 bp or shorter polynucleotide. In a competitive assay, a minor groove binder distamycin A was able to replace the bound tau from the DNA double helix, indicating that tau protein binds to the minor groove. Tau protein was able to protect the double-strand from digestion in the presence of DNase I that was bound to the minor groove. On the other hand, a major groove binder methyl green as a negative competitor exhibited little effect on the retardation of tau-DNA complex in EMSA. This further indicates the DNA minor groove as the binding site for tau protein. EMSA with truncated tau proteins showed that both the proline-rich domain (PRD) and the microtubule-binding domain (MTBD) contributed to the interaction with DNA; that is to say, both PRD and MTBD bound to the minor groove of DNA and bent the double-strand, as observed by electron microscopy. To investigate whether tau protein is able to prevent DNA from the impairment by hydroxyl free radical, the chemiluminescence emitted by the phen-Cu/H(2)O(2)/ascorbate was measured. The emission intensity of the luminescence was markedly decreased when tau protein was present, suggesting a significant protection of DNA from the damage in the presence of hydroxyl free radical.

  12. One-carbon metabolism, cognitive impairment and CSF measures of Alzheimer pathology: homocysteine and beyond.

    PubMed

    Dayon, Loïc; Guiraud, Seu Ping; Corthésy, John; Da Silva, Laeticia; Migliavacca, Eugenia; Tautvydaitė, Domilė; Oikonomidi, Aikaterini; Moullet, Barbara; Henry, Hugues; Métairon, Sylviane; Marquis, Julien; Descombes, Patrick; Collino, Sebastiano; Martin, François-Pierre J; Montoliu, Ivan; Kussmann, Martin; Wojcik, Jérôme; Bowman, Gene L; Popp, Julius

    2017-06-17

    Hyperhomocysteinemia is a risk factor for cognitive decline and dementia, including Alzheimer disease (AD). Homocysteine (Hcy) is a sulfur-containing amino acid and metabolite of the methionine pathway. The interrelated methionine, purine, and thymidylate cycles constitute the one-carbon metabolism that plays a critical role in the synthesis of DNA, neurotransmitters, phospholipids, and myelin. In this study, we tested the hypothesis that one-carbon metabolites beyond Hcy are relevant to cognitive function and cerebrospinal fluid (CSF) measures of AD pathology in older adults. Cross-sectional analysis was performed on matched CSF and plasma collected from 120 older community-dwelling adults with (n = 72) or without (n = 48) cognitive impairment. Liquid chromatography-mass spectrometry was performed to quantify one-carbon metabolites and their cofactors. Least absolute shrinkage and selection operator (LASSO) regression was initially applied to clinical and biomarker measures that generate the highest diagnostic accuracy of a priori-defined cognitive impairment (Clinical Dementia Rating-based) and AD pathology (i.e., CSF tau phosphorylated at threonine 181 [p-tau181]/β-Amyloid 1-42 peptide chain [Aβ 1-42 ] >0.0779) to establish a reference benchmark. Two other LASSO-determined models were generated that included the one-carbon metabolites in CSF and then plasma. Correlations of CSF and plasma one-carbon metabolites with CSF amyloid and tau were explored. LASSO-determined models were stratified by apolipoprotein E (APOE) ε4 carrier status. The diagnostic accuracy of cognitive impairment for the reference model was 80.8% and included age, years of education, Aβ 1-42 , tau, and p-tau181. A model including CSF cystathionine, methionine, S-adenosyl-L-homocysteine (SAH), S-adenosylmethionine (SAM), serine, cysteine, and 5-methyltetrahydrofolate (5-MTHF) improved the diagnostic accuracy to 87.4%. A second model derived from plasma included cystathionine

  13. Osmotin attenuates amyloid beta-induced memory impairment, tau phosphorylation and neurodegeneration in the mouse hippocampus.

    PubMed

    Ali, Tahir; Yoon, Gwang Ho; Shah, Shahid Ali; Lee, Hae Young; Kim, Myeong Ok

    2015-06-29

    The pathological hallmarks of Alzheimer's disease (AD) include amyloid beta (Aβ) accumulation, neurofibrillary tangle formation, synaptic dysfunction and neuronal loss. In this study, we investigated the neuroprotection of novel osmotin, a plant protein extracted from Nicotiana tabacum that has been considered to be a homolog of mammalian adiponectin. Here, we observed that treatment with osmotin (15 μg/g, intraperitoneally, 4 hr) at 3 and 40 days post-intracerebroventricular injection of Aβ1-42 significantly ameliorated Aβ1-42-induced memory impairment in mice. These results revealed that osmotin reverses Aβ1-42 injection-induced synaptic deficits, Aβ accumulation and BACE-1 expression. Treatment with osmotin also alleviated the Aβ1-42-induced hyperphosphorylation of the tau protein at serine 413 through the regulation of the aberrant phosphorylation of p-PI3K, p-Akt (serine 473) and p-GSK3β (serine 9). Moreover, our western blots and immunohistochemical results indicated that osmotin prevented Aβ1-42-induced apoptosis and neurodegeneration in the Aβ1-42-treated mice. Furthermore, osmotin attenuated Aβ1-42-induced neurotoxicity in vitro.To our knowledge, this study is the first to investigate the neuroprotective effect of a novel osmotin against Aβ1-42-induced neurotoxicity. Our results demonstrated that this ubiquitous plant protein could potentially serve as a novel, promising, and accessible neuroprotective agent against progressive neurodegenerative diseases such as AD.

  14. A causal test of the motor theory of speech perception: A case of impaired speech production and spared speech perception

    PubMed Central

    Stasenko, Alena; Bonn, Cory; Teghipco, Alex; Garcea, Frank E.; Sweet, Catherine; Dombovy, Mary; McDonough, Joyce; Mahon, Bradford Z.

    2015-01-01

    In the last decade, the debate about the causal role of the motor system in speech perception has been reignited by demonstrations that motor processes are engaged during the processing of speech sounds. However, the exact role of the motor system in auditory speech processing remains elusive. Here we evaluate which aspects of auditory speech processing are affected, and which are not, in a stroke patient with dysfunction of the speech motor system. The patient’s spontaneous speech was marked by frequent phonological/articulatory errors, and those errors were caused, at least in part, by motor-level impairments with speech production. We found that the patient showed a normal phonemic categorical boundary when discriminating two nonwords that differ by a minimal pair (e.g., ADA-AGA). However, using the same stimuli, the patient was unable to identify or label the nonword stimuli (using a button-press response). A control task showed that he could identify speech sounds by speaker gender, ruling out a general labeling impairment. These data suggest that the identification (i.e. labeling) of nonword speech sounds may involve the speech motor system, but that the perception of speech sounds (i.e., discrimination) does not require the motor system. This means that motor processes are not causally involved in perception of the speech signal, and suggest that the motor system may be used when other cues (e.g., meaning, context) are not available. PMID:25951749

  15. What happens to the motor theory of perception when the motor system is damaged?

    PubMed

    Stasenko, Alena; Garcea, Frank E; Mahon, Bradford Z

    2013-09-01

    Motor theories of perception posit that motor information is necessary for successful recognition of actions. Perhaps the most well known of this class of proposals is the motor theory of speech perception, which argues that speech recognition is fundamentally a process of identifying the articulatory gestures (i.e. motor representations) that were used to produce the speech signal. Here we review neuropsychological evidence from patients with damage to the motor system, in the context of motor theories of perception applied to both manual actions and speech. Motor theories of perception predict that patients with motor impairments will have impairments for action recognition. Contrary to that prediction, the available neuropsychological evidence indicates that recognition can be spared despite profound impairments to production. These data falsify strong forms of the motor theory of perception, and frame new questions about the dynamical interactions that govern how information is exchanged between input and output systems.

  16. Profile of refractive errors in cerebral palsy: impact of severity of motor impairment (GMFCS) and CP subtype on refractive outcome.

    PubMed

    Saunders, Kathryn J; Little, Julie-Anne; McClelland, Julie F; Jackson, A Jonathan

    2010-06-01

    To describe refractive status in children and young adults with cerebral palsy (CP) and relate refractive error to standardized measures of type and severity of CP impairment and to ocular dimensions. A population-based sample of 118 participants aged 4 to 23 years with CP (mean 11.64 +/- 4.06) and an age-appropriate control group (n = 128; age, 4-16 years; mean, 9.33 +/- 3.52) were recruited. Motor impairment was described with the Gross Motor Function Classification Scale (GMFCS), and subtype was allocated with the Surveillance of Cerebral Palsy in Europe (SCPE). Measures of refractive error were obtained from all participants and ocular biometry from a subgroup with CP. A significantly higher prevalence and magnitude of refractive error was found in the CP group compared to the control group. Axial length and spherical refractive error were strongly related. This relation did not improve with inclusion of corneal data. There was no relation between the presence or magnitude of spherical refractive errors in CP and the level of motor impairment, intellectual impairment, or the presence of communication difficulties. Higher spherical refractive errors were significantly associated with the nonspastic CP subtype. The presence and magnitude of astigmatism were greater when intellectual impairment was more severe, and astigmatic errors were explained by corneal dimensions. Conclusions. High refractive errors are common in CP, pointing to impairment of the emmetropization process. Biometric data support this In contrast to other functional vision measures, spherical refractive error is unrelated to CP severity, but those with nonspastic CP tend to demonstrate the most extreme errors in refraction.

  17. Associations between [18F]AV1451 tau PET and CSF measures of tau pathology in a clinical sample.

    PubMed

    La Joie, Renaud; Bejanin, Alexandre; Fagan, Anne M; Ayakta, Nagehan; Baker, Suzanne L; Bourakova, Viktoriya; Boxer, Adam L; Cha, Jungho; Karydas, Anna; Jerome, Gina; Maass, Anne; Mensing, Ashley; Miller, Zachary A; O'Neil, James P; Pham, Julie; Rosen, Howard J; Tsai, Richard; Visani, Adrienne V; Miller, Bruce L; Jagust, William J; Rabinovici, Gil D

    2018-01-23

    To assess the relationships between fluid and imaging biomarkers of tau pathology and compare their diagnostic utility in a clinically heterogeneous sample. Fifty-three patients (28 with clinical Alzheimer disease [AD] and 25 with non-AD clinical neurodegenerative diagnoses) underwent β-amyloid (Aβ) and tau ([ 18 F]AV1451) PET and lumbar puncture. CSF biomarkers (Aβ 42 , total tau [t-tau], and phosphorylated tau [p-tau]) were measured by multianalyte immunoassay (AlzBio3). Receiver operator characteristic analyses were performed to compare discrimination of Aβ-positive AD from non-AD conditions across biomarkers. Correlations between CSF biomarkers and PET standardized uptake value ratios (SUVR) were assessed using skipped Pearson correlation coefficients. Voxelwise analyses were run to assess regional CSF-PET associations. [ 18 F]AV1451-PET cortical SUVR and p-tau showed excellent discrimination between Aβ-positive AD and non-AD conditions (area under the curve 0.92-0.94; ≤0.83 for other CSF measures), and reached 83% classification agreement. In the full sample, cortical [ 18 F]AV1451 was associated with all CSF biomarkers, most strongly with p-tau ( r = 0.75 vs 0.57 for t-tau and -0.49 for Aβ 42 ). When restricted to Aβ-positive patients with AD, [ 18 F]AV1451 SUVR correlated modestly with p-tau and t-tau (both r = 0.46) but not Aβ 42 ( r = 0.02). On voxelwise analysis, [ 18 F]AV1451 correlated with CSF p-tau in temporoparietal cortices and with t-tau in medial prefrontal regions. Within AD, Mini-Mental State Examination scores were associated with [ 18 F]AV1451-PET, but not CSF biomarkers. [ 18 F]AV1451-PET and CSF p-tau had comparable value for differential diagnosis. Correlations were robust in a heterogeneous clinical group but attenuated (although significant) in AD, suggesting that fluid and imaging biomarkers capture different aspects of tau pathology. This study provides Class III evidence that, in a clinical sample of patients with a variety

  18. Brief Report: Children with ADHD without Co-Morbid Autism Do Not Have Impaired Motor Proficiency on the Movement Assessment Battery for Children

    ERIC Educational Resources Information Center

    Papadopoulos, Nicole; Rinehart, Nicole; Bradshaw, John L.; McGinley, Jennifer L.

    2013-01-01

    Motor proficiency was investigated in a sample of children with Attention Deficit Hyperactivity Disorder-Combined type (ADHD-CT) without autism. Accounting for the influence of co-morbid autistic symptoms in ADHD motor studies is vital given that motor impairment has been linked to social-communication symptoms in children who have co-morbid ADHD…

  19. Chromosome congression by kinesin-5 motor-mediated disassembly of longer kinetochore microtubules

    PubMed Central

    Gardner, Melissa K; Bouck, David C.; Paliulis, Leocadia V.; Meehl, Janet B.; O’Toole, Eileen T.; Haase, Julian; Soubry, Adelheid; Joglekar, Ajit P.; Winey, Mark; Salmon, Edward D.; Bloom, Kerry; Odde, David J.

    2008-01-01

    Summary During mitosis, sister chromatids congress to the spindle equator and are subsequently segregated via attachment to dynamic kinetochore microtubule (kMT) plus-ends. A major question is how kMT plus-end assembly is spatially regulated to achieve chromosome congression. Here we find in budding yeast that the widely-conserved kinesin-5 sliding motor proteins, Cin8p and Kip1p, mediate chromosome congression by suppressing kMT plus-end assembly of longer kMTs. Of the two, Cin8p is the major effector and its activity requires a functional motor domain. In contrast, the depolymerizing kinesin-8 motor Kip3p plays a minor role in spatial regulation of yeast kMT assembly. Our analysis identified a model where kinesin-5 motors bind to kMTs, move to kMT plus ends, and upon arrival at a growing plus-end promote net kMT plus-end disassembly. In conclusion, we find that length-dependent control of net kMT assembly by kinesin-5 motors yields a simple and stable self-organizing mechanism for chromosome congression. PMID:19041752

  20. The localization of facial motor impairment in sporadic Möbius syndrome.

    PubMed

    Cattaneo, L; Chierici, E; Bianchi, B; Sesenna, E; Pavesi, G

    2006-06-27

    To investigate the neurophysiologic aspects of facial motor control in patients with sporadic Möbius syndrome defined as nonprogressive congenital facial and abducens palsy. The authors assessed 24 patients with sporadic Möbius syndrome by performing a complete clinical examination and neurophysiologic tests including facial nerve conduction studies, needle electromyography examination of facial muscles, and recording of the blink reflex and of the trigeminofacial inhibitory reflex. Two distinct groups of patients were identified according to neurophysiologic testing. The first group was characterized by increased facial distal motor latencies (DMLs) and poor recruitment of small and polyphasic motor unit action potentials (MUAPs). The second group was characterized by normal facial DMLs and neuropathic MUAPs. It is hypothesized that in the first group, the disorder is due to a rhombencephalic maldevelopment with selective sparing of small-size MUs, and in the second group, the disorder is related to an acquired nervous injury during intrauterine life, with subsequent neurogenic remodeling of MUs. The trigeminofacial reflexes showed that in most subjects of both groups, the functional impairment of facial movements was caused by a nuclear or peripheral site of lesion, with little evidence of brainstem interneuronal involvement. Two different neurophysiologically defined phenotypes can be distinguished in sporadic Möbius syndrome, with different pathogenetic implications.

  1. Learning Impairments, Memory Deficits, and Neuropathology in Aged Tau Transgenic Mice Are Dependent on Leukotrienes Biosynthesis: Role of the cdk5 Kinase Pathway.

    PubMed

    Giannopoulos, Phillip F; Chiu, Jian; Praticò, Domenico

    2018-06-07

    Previous studies showed that the leukotrienes pathway is increased in human tauopathy and that its manipulation may modulate the onset and development of the pathological phenotype of tau transgenic mice. However, whether interfering with leukotrienes biosynthesis is beneficial after the behavioral deficits and the neuropathology have fully developed in these mice is not known. To test this hypothesis, aged tau transgenic mice were randomized to receive zileuton, a specific leukotriene biosynthesis inhibitor, or vehicle starting at 12 months of age for 16 weeks and then assessed in their functional and pathological phenotype. Compared with baseline, we observed that untreated tau mice had a worsening of their memory and spatial learning. By contrast, tau mice treated with zileuton had a reversal of these deficits and behaved in an undistinguishable manner from wild-type mice. Leukotriene-inhibited tau mice had an amelioration of synaptic integrity, lower levels of neuroinflammation, and a significant reduction in tau phosphorylation and pathology, which was secondary to an involvement of the cdk5 kinase pathway. Taken together, our findings represent the first demonstration that the leukotriene biosynthesis is functionally involved at the later stages of the tau pathological phenotype and represents an ideal target with viable therapeutic potential for treating human tauopathies.

  2. Does Physical Self-Concept Mediate the Relationship between Motor Abilities and Physical Activity in Adolescents and Young Adults?

    PubMed Central

    Jekauc, Darko; Wagner, Matthias Oliver; Herrmann, Christian; Hegazy, Khaled; Woll, Alexander

    2017-01-01

    The purpose of this study is to examine the reciprocal relationship between motor abilities and physical activity and the mediation effects of physical self-concept in this relationship using longitudinal data. We expect that the effects of motor abilities on physical activity are rather indirect via physical self-concept and that the effects of physical activity on motor abilities are rather direct without involvement of the motor ability self-concept. Data was obtained from the Motorik-Modul (MoMo) Longitudinal Study in which 335 boys and 363 girls aged 11–17 years old at Baseline were examined twice in a period of six years. Physical activity was assessed by the MoMo Physical Activity Questionnaire for adolescents, physical self-concept by Physical Self-Description Questionnaire and motor abilities by MoMo Motor Test which comprised of the dimensions strength, endurance, coordination and flexibility. Multiple regression analyses were used to analyse the direct and indirect effects. The results of the multiple regression analyses show that the effects of motor abilities on physical activity were only indirect for the dimensions strength, coordination, and flexibility. For the dimension endurance, neither direct nor indirect effects were significant. In the opposite direction, the effects of physical activity on motor abilities were partially mediated by the self-concept of strength. For the dimensions endurance, coordination and flexibility, only indirect were significant. The results of this study support the assumption that the relationship between motor abilities and physical activity is mediated by physical self-concept in both directions. Physical self-concept seems to be an important determinant of adolescents´ physical activity. PMID:28045914

  3. Does Physical Self-Concept Mediate the Relationship between Motor Abilities and Physical Activity in Adolescents and Young Adults?

    PubMed

    Jekauc, Darko; Wagner, Matthias Oliver; Herrmann, Christian; Hegazy, Khaled; Woll, Alexander

    2017-01-01

    The purpose of this study is to examine the reciprocal relationship between motor abilities and physical activity and the mediation effects of physical self-concept in this relationship using longitudinal data. We expect that the effects of motor abilities on physical activity are rather indirect via physical self-concept and that the effects of physical activity on motor abilities are rather direct without involvement of the motor ability self-concept. Data was obtained from the Motorik-Modul (MoMo) Longitudinal Study in which 335 boys and 363 girls aged 11-17 years old at Baseline were examined twice in a period of six years. Physical activity was assessed by the MoMo Physical Activity Questionnaire for adolescents, physical self-concept by Physical Self-Description Questionnaire and motor abilities by MoMo Motor Test which comprised of the dimensions strength, endurance, coordination and flexibility. Multiple regression analyses were used to analyse the direct and indirect effects. The results of the multiple regression analyses show that the effects of motor abilities on physical activity were only indirect for the dimensions strength, coordination, and flexibility. For the dimension endurance, neither direct nor indirect effects were significant. In the opposite direction, the effects of physical activity on motor abilities were partially mediated by the self-concept of strength. For the dimensions endurance, coordination and flexibility, only indirect were significant. The results of this study support the assumption that the relationship between motor abilities and physical activity is mediated by physical self-concept in both directions. Physical self-concept seems to be an important determinant of adolescents´ physical activity.

  4. Cervical spinal demyelination with ethidium bromide impairs respiratory (phrenic) activity and forelimb motor behavior in rats

    PubMed Central

    Nichols, Nicole L.; Punzo, Antonio M.; Duncan, Ian D.; Mitchell, Gordon S.; Johnson, Rebecca A.

    2012-01-01

    Although respiratory complications are a major cause of morbidity/mortality in many neural injuries or diseases, little is known concerning mechanisms whereby deficient myelin impairs breathing, or how patients compensate for such changes. Here, we tested the hypothesis that respiratory and forelimb motor function are impaired in a rat model of focal dorsolateral spinal demyelination (ethidium bromide, EB). Ventilation, phrenic nerve activity and horizontal ladder walking were performed 7-14 days post-C2 injection of EB or vehicle (SHAM). EB caused dorsolateral demyelination at C2-C3 followed by signficant spontaneous remyelination at 14 days post-EB. Although ventilation did not differ between groups, ipsilateral integrated phrenic nerve burst amplitude was significantly reduced versus SHAM during chemoreceptor activation at 7 days post-EB but recovered by 14 days. The ratio of ipsi- to contralateral phrenic nerve amplitude correlated with cross-sectional lesion area. This ratio was significantly reduced 7 days post-EB versus SHAM during baseline conditions, and versus SHAM and 14 day groups during chemoreceptor activation. Limb function ipsilateral to EB was impaired 7 days post-EB and partially recovered by 14 days post-EB. EB provides a reversible model of focal, spinal demyelination, and may be a useful model to study mechanisms of functional impairment and recovery via motor plasticity, or the efficacy of new therapeutic interventions to reduce severity or duration of disease. PMID:23159317

  5. Treatment-as-usual (TAU) is anything but usual: a meta-analysis of CBT versus TAU for anxiety and depression.

    PubMed

    Watts, Sarah E; Turnell, Adrienne; Kladnitski, Natalie; Newby, Jill M; Andrews, Gavin

    2015-04-01

    There were three aims of this study, the first was to examine the efficacy of CBT versus treatment-as-usual (TAU) in the treatment of anxiety and depressive disorders, the second was to examine how TAU is defined in TAU control groups for those disorders, and the third was to explore whether the type of TAU condition influences the estimate of effects of CBT. A systematic search of Cochrane Central Register of Controlled Trials, PsycINFO, and CINAHL was conducted. 48 studies of CBT for depressive or anxiety disorders (n=6926) that specified that their control group received TAU were identified. Most (n=45/48) provided an explanation of the TAU group however there was significant heterogeneity amongst TAU conditions. The meta-analysis showed medium effects favoring CBT over TAU for both anxiety (g=0.69, 95% CI 0.47-0.92, p<0.001, n=1318) and depression (g=0.70, 95% CI 0.49-0.90, p<0.001, n=5054), with differential effects observed across TAU conditions. CBT is superior to TAU and the size of the effect of CBT compared to TAU depends on the nature of the TAU condition. The term TAU is used in different ways and should be more precisely described. The four key details to be reported can be thought of as "who, what, how many, and any additional treatments?" Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Observation of Upsilon(3S)-->tau+tau- and tests of lepton universality in Upsilon decays.

    PubMed

    Besson, D; Pedlar, T K; Cronin-Hennessy, D; Gao, K Y; Gong, D T; Hietala, J; Kubota, Y; Klein, T; Lang, B W; Poling, R; Scott, A W; Smith, A; Zweber, P; Dobbs, S; Metreveli, Z; Seth, K K; Tomaradze, A; Ernst, J; Severini, H; Dytman, S A; Love, W; Savinov, V; Aquines, O; Li, Z; Lopez, A; Mehrabyan, S; Mendez, H; Ramirez, J; Huang, G S; Miller, D H; Pavlunin, V; Sanghi, B; Shipsey, I P J; Xin, B; Adams, G S; Anderson, M; Cummings, J P; Danko, I; Napolitano, J; He, Q; Insler, J; Muramatsu, H; Park, C S; Thorndike, E H; Yang, F; Coan, T E; Gao, Y S; Liu, F; Artuso, M; Blusk, S; Butt, J; Horwitz, N; Li, J; Menaa, N; Mountain, R; Nisar, S; Randrianarivony, K; Redjimi, R; Sia, R; Skwarnicki, T; Stone, S; Wang, J C; Zhang, K; Csorna, S E; Bonvicini, G; Cinabro, D; Dubrovin, M; Lincoln, A; Asner, D M; Edwards, K W; Briere, R A; Brock, I; Chen, J; Ferguson, T; Tatishvili, G; Vogel, H; Watkins, M E; Rosner, J L; Adam, N E; Alexander, J P; Berkelman, K; Cassel, D G; Duboscq, J E; Ecklund, K M; Ehrlich, R; Fields, L; Galik, R S; Gibbons, L; Gray, R; Gray, S W; Hartill, D L; Heltsley, B K; Hertz, D; Jones, C D; Kandaswamy, J; Kreinick, D L; Kuznetsov, V E; Mahlke-Krüger, H; Meyer, T O; Onyisi, P U E; Patterson, J R; Peterson, D; Pivarski, J; Riley, D; Ryd, A; Sadoff, A J; Schwarthoff, H; Shi, X; Stroiney, S; Sun, W M; Wilksen, T; Weinberger, M; Athar, S B; Patel, R; Potlia, V; Yelton, J; Rubin, P; Cawlfield, C; Eisenstein, B I; Karliner, I; Kim, D; Lowrey, N; Naik, P; Sedlack, C; Selen, M; White, E J; Wiss, J; Shepherd, M R

    2007-02-02

    Using data collected with the CLEO III detector at the CESR e+e- collider, we report on a first observation of the decay Upsilon(3S)-->tau+tau-, and precisely measure the ratio of branching fractions of Upsilon(nS), n=1, 2, 3, to tau+tau- and mu+mu- final states, finding agreement with expectations from lepton universality. We derive absolute branching fractions for these decays, and also set a limit on the influence of a low mass CP-odd Higgs boson in the decay of the Upsilon(1S).

  7. Role of Scoparia dulcis linn on noise-induced nitric oxide synthase (NOS) expression and neurotransmitter assessment on motor function in Wistar albino rats.

    PubMed

    Wankhar, Wankupar; Srinivasan, Sakthivel; Sundareswaran, Loganathan; Wankhar, Dapkupar; Rajan, Ravindran; Sheeladevi, Rathinasamy

    2017-02-01

    Noise pollution is one of the most widespread and fast growing environmental and occupational menaces in the modern era. Exposure to noise above 100dB is not adaptable through the brain homeostatic mechanism. Yet, the detrimental effects of noise have often been ignored. Developing reliable animal models to understand the neurobiology of noise stress and advance our research in the field of medicine to impede this growing stressor is needed. In this study experimental animals were divided into four groups, (i) Control and (ii) S. dulcis extract (200mg/kgbw) treated control group. (iii) To mimic the influence of noise, animals in this group were exposed to noise stress (100dB/4h/day) for 15days and finally, (iv) Noise exposed treated with S. dulcis extract (200mg/kgbw) group. Rota-rod and narrow beam performance results showed impaired motor co-ordination in noise exposed group on both 1st and 15th day when compared to controls. This impaired motor function on exposure to noise could be attributed to the altered norepinephrine, dopamine and serotonin levels in both the striatum and cerebellum. Moreover, the motor impaired associated changes could also be attributed to upregulated nNOS and iNOS protein expression in the cerebellum resulting in increased nitric oxide radical production. This increased reactive free radicals species can initiate lipid peroxidation mediated changes in the cerebellar Purkinje cells, which is responsible for initiating inhibitory motor response and ultimately leading to impaired motor co-ordination. Treatment with S. dulcis extract (200mg/kgbw) could control motor impairment and regulate neurotransmitter level as that of control groups when compared to noise exposed group. One key aspect of therapeutic efficacy of the plant could have resulted due to attenuated lipid peroxidation mediated damages on the cerebellar Purkinje cells thereby regulating motor impairment. Thus, targeting the antioxidant and free radicals scavenging properties of

  8. A Novel MAPT Mutation, G55R, in a Frontotemporal Dementia Patient Leads to Altered Tau Function

    PubMed Central

    Guzman, Elmer; Barczak, Anna; Chodakowska-Żebrowska, Małgorzata; Barcikowska, Maria; Feinstein, Stuart

    2013-01-01

    Over two dozen mutations in the gene encoding the microtubule associated protein tau cause a variety of neurodegenerative dementias known as tauopathies, including frontotemporal dementia (FTD), PSP, CBD and Pick's disease. The vast majority of these mutations map to the C-terminal region of tau possessing microtubule assembly and microtubule dynamics regulatory activities as well as the ability to promote pathological tau aggregation. Here, we describe a novel and non-conservative tau mutation (G55R) mapping to an alternatively spliced exon encoding part of the N-terminal region of the protein in a patient with the behavioral variant of FTD. Although less well understood than the C-terminal region of tau, the N-terminal region can influence both MT mediated effects as well as tau aggregation. The mutation changes an uncharged glycine to a basic arginine in the midst of a highly conserved and very acidic region. In vitro, 4-repeat G55R tau nucleates microtubule assembly more effectively than wild-type 4-repeat tau; surprisingly, this effect is tau isoform specific and is not observed in a 3-repeat G55R tau versus 3-repeat wild-type tau comparison. In contrast, the G55R mutation has no effect upon the abilities of tau to regulate MT growing and shortening dynamics or to aggregate. Additionally, the mutation has no effect upon kinesin translocation in a microtubule gliding assay. Together, (i) we have identified a novel tau mutation mapping to a mutation deficient region of the protein in a bvFTD patient, and (ii) the G55R mutation affects the ability of tau to nucleate microtubule assembly in vitro in a 4-repeat tau isoform specific manner. This altered capability could markedly affect in vivo microtubule function and neuronal cell biology. We consider G55R to be a candidate mutation for bvFTD since additional criteria required to establish causality are not yet available for assessment. PMID:24086739

  9. What happens to the motor theory of perception when the motor system is damaged?

    PubMed Central

    Stasenko, Alena; Garcea, Frank E.; Mahon, Bradford Z.

    2016-01-01

    Motor theories of perception posit that motor information is necessary for successful recognition of actions. Perhaps the most well known of this class of proposals is the motor theory of speech perception, which argues that speech recognition is fundamentally a process of identifying the articulatory gestures (i.e. motor representations) that were used to produce the speech signal. Here we review neuropsychological evidence from patients with damage to the motor system, in the context of motor theories of perception applied to both manual actions and speech. Motor theories of perception predict that patients with motor impairments will have impairments for action recognition. Contrary to that prediction, the available neuropsychological evidence indicates that recognition can be spared despite profound impairments to production. These data falsify strong forms of the motor theory of perception, and frame new questions about the dynamical interactions that govern how information is exchanged between input and output systems. PMID:26823687

  10. Impaired Inhibition of Prepotent Motor Tendencies in Friedreich Ataxia Demonstrated by the Simon Interference Task

    ERIC Educational Resources Information Center

    Corben, L. A.; Akhlaghi, H.; Georgiou-Karistianis, N.; Bradshaw, J. L.; Egan, G. F.; Storey, E.; Churchyard, A. J.; Delatycki, M. B.

    2011-01-01

    Friedreich ataxia (FRDA) is the most common of the genetically inherited ataxias. We recently demonstrated that people with FRDA have impairment in motor planning--most likely because of pathology affecting the cerebral cortex and/or cerebello-cortical projections. We used the Simon interference task to examine how effective 13 individuals with…

  11. Cortical disconnection of the ipsilesional primary motor cortex is associated with gait speed and upper extremity motor impairment in chronic left hemispheric stroke.

    PubMed

    Peters, Denise M; Fridriksson, Julius; Stewart, Jill C; Richardson, Jessica D; Rorden, Chris; Bonilha, Leonardo; Middleton, Addie; Gleichgerrcht, Ezequiel; Fritz, Stacy L

    2018-01-01

    Advances in neuroimaging have enabled the mapping of white matter connections across the entire brain, allowing for a more thorough examination of the extent of white matter disconnection after stroke. To assess how cortical disconnection contributes to motor impairments, we examined the relationship between structural brain connectivity and upper and lower extremity motor function in individuals with chronic stroke. Forty-three participants [mean age: 59.7 (±11.2) years; time poststroke: 64.4 (±58.8) months] underwent clinical motor assessments and MRI scanning. Nonparametric correlation analyses were performed to examine the relationship between structural connectivity amid a subsection of the motor network and upper/lower extremity motor function. Standard multiple linear regression analyses were performed to examine the relationship between cortical necrosis and disconnection of three main cortical areas of motor control [primary motor cortex (M1), premotor cortex (PMC), and supplementary motor area (SMA)] and motor function. Anatomical connectivity between ipsilesional M1/SMA and the (1) cerebral peduncle, (2) thalamus, and (3) red nucleus were significantly correlated with upper and lower extremity motor performance (P ≤ 0.003). M1-M1 interhemispheric connectivity was also significantly correlated with gross manual dexterity of the affected upper extremity (P = 0.001). Regression models with M1 lesion load and M1 disconnection (adjusted for time poststroke) explained a significant amount of variance in upper extremity motor performance (R 2  = 0.36-0.46) and gait speed (R 2  = 0.46), with M1 disconnection an independent predictor of motor performance. Cortical disconnection, especially of ipsilesional M1, could significantly contribute to variability seen in locomotor and upper extremity motor function and recovery in chronic stroke. Hum Brain Mapp 39:120-132, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  12. Measurement of the $$\\mathrm{Z}\\gamma^{*} \\to \\tau\\tau$$ cross section in pp collisions at $$\\sqrt{s} = $$ 13 TeV and validation of $$\\tau$$ lepton analysis techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sirunyan, Albert M; et al.

    A measurement is presented of themore » $$\\mathrm{Z}/\\gamma^{*} \\to \\tau\\tau$$ cross section in pp collisions at $$\\sqrt{s} = $$ 13 TeV, using data recorded by the CMS experiment at the LHC, corresponding to an integrated luminosity of 2.3 fb$$^{-1}$$. The product of the inclusive cross section and branching fraction is measured to be $$\\sigma(\\mathrm{pp} \\to \\mathrm{Z}/\\gamma^{*}\\text{+X}) \\, \\mathcal{B}(\\mathrm{Z}/\\gamma^{*} \\to \\tau\\tau) = $$ 1848 $$\\pm$$ 12 (stat) $$\\pm$$ 67 (syst+lumi) pb, in agreement with the standard model expectation, computed at next-to-next-to-leading order accuracy in perturbative quantum chromodynamics. The measurement is used to validate new analysis techniques relevant for future measurements of $$\\tau$$ lepton production. The measurement also provides the reconstruction efficiency and energy scale for $$\\tau$$ decays to hadrons+$$\

  13. Loss of VGLUT3 Produces Circadian-Dependent Hyperdopaminergia and Ameliorates Motor Dysfunction and l-Dopa-Mediated Dyskinesias in a Model of Parkinson's Disease

    PubMed Central

    Divito, Christopher B.; Steece-Collier, Kathy; Case, Daniel T.; Williams, Sean-Paul G.; Stancati, Jennifer A.; Zhi, Lianteng; Rubio, Maria E.; Sortwell, Caryl E.; Collier, Timothy J.; Sulzer, David; Edwards, Robert H.; Zhang, Hui

    2015-01-01

    The striatum is essential for many aspects of mammalian behavior, including motivation and movement, and is dysfunctional in motor disorders such as Parkinson's disease. The vesicular glutamate transporter 3 (VGLUT3) is expressed by striatal cholinergic interneurons (CINs) and is thus well positioned to regulate dopamine (DA) signaling and locomotor activity, a canonical measure of basal ganglia output. We now report that VGLUT3 knock-out (KO) mice show circadian-dependent hyperlocomotor activity that is restricted to the waking cycle and is due to an increase in striatal DA synthesis, packaging, and release. Using a conditional VGLUT3 KO mouse, we show that deletion of the transporter from CINs, surprisingly, does not alter evoked DA release in the dorsal striatum or baseline locomotor activity. The mice do, however, display changes in rearing behavior and sensorimotor gating. Elevation of DA release in the global KO raised the possibility that motor deficits in a Parkinson's disease model would be reduced. Remarkably, after a partial 6-hydroxydopamine (6-OHDA)-mediated DA depletion (∼70% in dorsal striatum), KO mice, in contrast to WT mice, showed normal motor behavior across the entire circadian cycle. l-3,4-dihydroxyphenylalanine-mediated dyskinesias were also significantly attenuated. These findings thus point to new mechanisms to regulate basal ganglia function and potentially treat Parkinson's disease and related disorders. SIGNIFICANCE STATEMENT Dopaminergic signaling is critical for both motor and cognitive functions in the mammalian nervous system. Impairments, such as those found in Parkinson's disease patients, can lead to severe motor deficits. Vesicular glutamate transporter 3 (VGLUT3) loads glutamate into secretory vesicles for neurotransmission and is expressed by discrete neuron populations throughout the nervous system. Here, we report that the absence of VGLUT3 in mice leads to an upregulation of the midbrain dopamine system. Remarkably, in a

  14. Neuropsychological Investigation of Motor Impairments in Autism

    PubMed Central

    Duffield, Tyler; Trontel, Haley; Bigler, Erin D.; Froehlich, Alyson; Prigge, Molly B.; Travers, Brittany; Green, Ryan R.; Cariello, Annahir N.; Cooperrider, Jason; Nielsen, Jared; Alexander, Andrew; Anderson, Jeffrey; Fletcher, P. Thomas; Lange, Nicholas; Zielinski, Brandon; Lainhart, Janet

    2013-01-01

    It is unclear how standardized neuropsychological measures of motor function relate to brain volumes of motor regions in autism spectrum disorder (ASD). An all male sample composed of 59 ASD and 30 controls (ages 5–33 years) completed three measures of motor function: strength of grip (SOG), finger tapping test (FTT), and grooved peg-board test (GPT). Likewise, all participants underwent magnetic resonance imaging with region of interest (ROI) volumes obtained to include the following regions: motor cortex (pre-central gyrus), somatosensory cortex (post-central gyrus), thalamus, basal ganglia, cerebellum and caudal middle frontal gyrus. These traditional neuropsychological measures of motor function are assumed to differ in motor complexity with GPT requiring the most followed by FTT and SOG. Performance by ASD participants on the GPT and FTT differed significantly from controls, with the largest effect size differences observed on the more complex GPT task. Differences on the SOG task between the two groups were non-significant. Since more complex motor tasks tap more complex networks, poorer GPT performance by those with ASD may reflect less efficient motor networks. There was no gross pathology observed in classic motor areas of the brain in ASD, as region of interest (ROI) volumes did not differ, but FTT was negatively related to motor cortex volume in ASD. The results suggest a hierarchical motor disruption in ASD, with difficulties evident only in more complex tasks as well as a potential anomalous size-function relation in motor cortex in ASD. PMID:23985036

  15. Physical activity and obesity mediate the association between childhood motor function and adolescents’ academic achievement

    PubMed Central

    Kantomaa, Marko T.; Stamatakis, Emmanuel; Kankaanpää, Anna; Kaakinen, Marika; Rodriguez, Alina; Taanila, Anja; Ahonen, Timo; Järvelin, Marjo-Riitta; Tammelin, Tuija

    2013-01-01

    The global epidemic of obesity and physical inactivity may have detrimental implications for young people’s cognitive function and academic achievement. This prospective study investigated whether childhood motor function predicts later academic achievement via physical activity, fitness, and obesity. The study sample included 8,061 children from the Northern Finland Birth Cohort 1986, which contains data about parent-reported motor function at age 8 y and self-reported physical activity, predicted cardiorespiratory fitness (cycle ergometer test), obesity (body weight and height), and academic achievement (grades) at age 16 y. Structural equation models with unstandardized (B) and standardized (β) coefficients were used to test whether, and to what extent, physical activity, cardiorespiratory fitness, and obesity at age 16 mediated the association between childhood motor function and adolescents’ academic achievement. Physical activity was associated with a higher grade-point average, and obesity was associated with a lower grade-point average in adolescence. Furthermore, compromised motor function in childhood had a negative indirect effect on adolescents’ academic achievement via physical inactivity (B = –0.023, 95% confidence interval = –0.031, –0.015) and obesity (B = –0.025, 95% confidence interval = –0.039, –0.011), but not via cardiorespiratory fitness. These results suggest that physical activity and obesity may mediate the association between childhood motor function and adolescents’ academic achievement. Compromised motor function in childhood may represent an important factor driving the effects of obesity and physical inactivity on academic underachievement. PMID:23277558

  16. Physical activity and obesity mediate the association between childhood motor function and adolescents' academic achievement.

    PubMed

    Kantomaa, Marko T; Stamatakis, Emmanuel; Kankaanpää, Anna; Kaakinen, Marika; Rodriguez, Alina; Taanila, Anja; Ahonen, Timo; Järvelin, Marjo-Riitta; Tammelin, Tuija

    2013-01-29

    The global epidemic of obesity and physical inactivity may have detrimental implications for young people's cognitive function and academic achievement. This prospective study investigated whether childhood motor function predicts later academic achievement via physical activity, fitness, and obesity. The study sample included 8,061 children from the Northern Finland Birth Cohort 1986, which contains data about parent-reported motor function at age 8 y and self-reported physical activity, predicted cardiorespiratory fitness (cycle ergometer test), obesity (body weight and height), and academic achievement (grades) at age 16 y. Structural equation models with unstandardized (B) and standardized (β) coefficients were used to test whether, and to what extent, physical activity, cardiorespiratory fitness, and obesity at age 16 mediated the association between childhood motor function and adolescents' academic achievement. Physical activity was associated with a higher grade-point average, and obesity was associated with a lower grade-point average in adolescence. Furthermore, compromised motor function in childhood had a negative indirect effect on adolescents' academic achievement via physical inactivity (B = -0.023, 95% confidence interval = -0.031, -0.015) and obesity (B = -0.025, 95% confidence interval = -0.039, -0.011), but not via cardiorespiratory fitness. These results suggest that physical activity and obesity may mediate the association between childhood motor function and adolescents' academic achievement. Compromised motor function in childhood may represent an important factor driving the effects of obesity and physical inactivity on academic underachievement.

  17. Calpastatin inhibits motor neuron death and increases survival of hSOD1(G93A) mice.

    PubMed

    Rao, Mala V; Campbell, Jabbar; Palaniappan, Arti; Kumar, Asok; Nixon, Ralph A

    2016-04-01

    Amyotrophic lateral sclerosis (ALS) is a progressive motor neuron disease with a poorly understood cause and no effective treatment. Given that calpains mediate neurodegeneration in other pathological states and are abnormally activated in ALS, we investigated the possible ameliorative effects of inhibiting calpain over-activation in hSOD1(G93A) transgenic (Tg) mice in vivo by neuron-specific over-expression of calpastatin (CAST), the highly selective endogenous inhibitor of calpains. Our data indicate that over-expression of CAST in hSOD1(G93A) mice, which lowered calpain activation to levels comparable to wild-type mice, inhibited the abnormal breakdown of cytoskeletal proteins (spectrin, MAP2 and neurofilaments), and ameliorated motor axon loss. Disease onset in hSOD1(G93A) /CAST mice compared to littermate hSOD1(G93A) mice is delayed, which accounts for their longer time of survival. We also find that neuronal over-expression of CAST in hSOD1(G93A) transgenic mice inhibited production of putative neurotoxic caspase-cleaved tau and activation of Cdk5, which have been implicated in neurodegeneration in ALS models, and also reduced the formation of SOD1 oligomers. Our data indicate that inhibition of calpain with CAST is neuroprotective in an ALS mouse model. CAST (encoding calpastatin) inhibits hyperactivated calpain to prevent motor neuron disease operating through a cascade of events as indicated in the schematic, with relevance to amyotrophic lateral sclerosis (ALS). We propose that over-expression of CAST in motor neurons of hSOD1(G93A) mice inhibits activation of CDK5, breakdown of cytoskeletal proteins (NFs, MAP2 and Tau) and regulatory molecules (Cam Kinase IV, Calcineurin A), and disease-causing proteins (TDP-43, α-Synuclein and Huntingtin) to prevent neuronal loss and delay neurological deficits. In our experiments, CAST could also inhibit cleavage of Bid, Bax, AIF to prevent mitochondrial, ER and lysosome-mediated cell death mechanisms. Similarly, CAST

  18. Quantitative measures detect sensory and motor impairments in multiple sclerosis.

    PubMed

    Newsome, Scott D; Wang, Joseph I; Kang, Jonathan Y; Calabresi, Peter A; Zackowski, Kathleen M

    2011-06-15

    Sensory and motor dysfunction in multiple sclerosis (MS) is often assessed with rating scales which rely heavily on clinical judgment. Quantitative devices may be more precise than rating scales. To quantify lower extremity sensorimotor measures in individuals with MS, evaluate the extent to which they can detect functional systems impairments, and determine their relationship to global disability measures. We tested 145 MS subjects and 58 controls. Vibration thresholds were quantified using a Vibratron-II device. Strength was quantified by a hand-held dynamometer. We also recorded Expanded Disability Status Scale (EDSS) and Timed 25-Foot Walk (T25FW). t-tests and Wilcoxon-rank sum were used to compare group data. Spearman correlations were used to assess relationships between each measure. We also used a step-wise linear regression model to determine how much the quantitative measures explain the variance in the respective functional systems scores (FSS). EDSS scores ranged from 0-7.5, mean disease duration was 10.4 ± 9.6 years, and 66% were female. In relapsing-remitting MS, but not progressive MS, poorer vibration sensation correlated with a worse EDSS score, whereas progressive groups' ankle/hip strength changed significantly with EDSS progression. Interestingly, not only did sensorimotor measures significantly correlate with global disability measures (i.e., EDSS), but they had improved sensitivity, as they detected impairments in up to 32% of MS subjects with normal sensory and pyramidal FSS. Sensory and motor deficits in MS can be quantified using clinically accessible tools and distinguish differences among MS subtypes. We show that quantitative sensorimotor measures are more sensitive than FSS from the EDSS. These tools have the potential to be used as clinical outcome measures in practice and for future MS clinical trials of neurorehabilitative and neuroreparative interventions. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Quantitative measures detect sensory and motor impairments in multiple sclerosis

    PubMed Central

    Newsome, Scott D.; Wang, Joseph I.; Kang, Jonathan Y.; Calabresi, Peter A.; Zackowski, Kathleen M.

    2011-01-01

    Background Sensory and motor dysfunction in multiple sclerosis (MS) is often assessed with rating scales which rely heavily on clinical judgment. Quantitative devices may be more precise than rating scales. Objective To quantify lower extremity sensorimotor measures in individuals with MS, evaluate the extent to which they can detect functional systems impairments, and determine their relationship to global disability measures. Methods We tested 145 MS subjects and 58 controls. Vibration thresholds were quantified using a Vibratron-II device. Strength was quantified by a hand-held dynamometer. We also recorded Expanded Disability Status Scale (EDSS) and timed 25-foot walk (T25FW). T-tests and Wilcoxon-rank sum were used to compare group data. Spearman correlations were used to assess relationships between each measure. We also used a step-wise linear regression model to determine how much the quantitative measures explain the variance in the respective functional systems scores (FSS). Results EDSS scores ranged from 0-7.5, mean disease duration was 10.4±9.6 years, and 66% were female. In RRMS, but not progressive MS, poorer vibration sensation correlated with a worse EDSS score, whereas progressive groups’ ankle/hip strength changed significantly with EDSS progression. Interestingly, not only did sensorimotor measures significantly correlate with global disability measures (EDSS), but they had improved sensitivity, as they detected impairments in up to 32% of MS subjects with normal sensory FSS. Conclusions Sensory and motor deficits can be quantified using clinically accessible tools and distinguish differences among MS subtypes. We show that quantitative sensorimotor measures are more sensitive than FSS from the EDSS. These tools have the potential to be used as clinical outcome measures in practice and for future MS clinical trials of neurorehabilitative and neuroreparative interventions. PMID:21458828

  20. Abnormally reduced primary motor cortex output is related to impaired hand function in chronic stroke.

    PubMed

    Buetefisch, Cathrin M; Pirog Revill, Kathleen; Haut, Marc W; Kowalski, Greg M; Wischnewski, Miles; Pifer, Marissa; Belagaje, Samir R; Nahab, Fadi; Cobia, Derin J; Hu, Xiaoping; Drake, Daniel; Hobbs, Gerald

    2018-06-20

    Stroke often involves primary motor cortex (M1) and its corticospinal projections (CST). As hand function is critically dependent on these structures, its recovery is often incomplete. The neuronal substrate supporting affected hand function is not well understood but likely involves reorganized M1 and CST of the lesioned hemisphere (M1 IL and CST IL ). We hypothesized that affected hand function in chronic stroke is related to structural and functional reorganization of M1 IL and CST IL . We tested 18 patients with chronic ischemic stroke involving M1 or CST. Their hand function was compared to 18 age matched healthy subjects. M1 IL thickness and CST IL fractional anisotropy (FA) were determined with MRI and compared to measures of the other hemisphere. Transcranial magnetic stimulation (TMS) was applied to M1 IL to determine its input output function (stimulus response curve, SRC). The plateau of the SRC (MEPmax), inflection point and slope parameters of the curve were extracted. Results were compared to measures in 12 age matched healthy controls. MEPmax of M1 IL was significantly smaller (p=0.02) in the patients, indicating reduced CST IL motor output, and was correlated with impaired hand function (p=0.02). M1 IL thickness (p<0.01) and CST IL -FA (p<0.01) were reduced but did not correlate with hand function. The results indicate that employed M1 IL or CST IL structural measures do not explain the extent of impairment in hand function once M1 and CST are sufficiently functional for TMS to evoke a motor potential. Instead, impairment of hand function is best explained by the abnormally low output from M1 IL .

  1. Near-atomic model of microtubule-tau interactions.

    PubMed

    Kellogg, Elizabeth H; Hejab, Nisreen M A; Poepsel, Simon; Downing, Kenneth H; DiMaio, Frank; Nogales, Eva

    2018-06-15

    Tau is a developmentally regulated axonal protein that stabilizes and bundles microtubules (MTs). Its hyperphosphorylation is thought to cause detachment from MTs and subsequent aggregation into fibrils implicated in Alzheimer's disease. It is unclear which tau residues are crucial for tau-MT interactions, where tau binds on MTs, and how it stabilizes them. We used cryo-electron microscopy to visualize different tau constructs on MTs and computational approaches to generate atomic models of tau-tubulin interactions. The conserved tubulin-binding repeats within tau adopt similar extended structures along the crest of the protofilament, stabilizing the interface between tubulin dimers. Our structures explain the effect of phosphorylation on MT affinity and lead to a model of tau repeats binding in tandem along protofilaments, tethering together tubulin dimers and stabilizing polymerization interfaces. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  2. Electroacupuncture ameliorating post-stroke cognitive impairments via inhibition of peri-infarct astroglial and microglial/macrophage P2 purinoceptors-mediated neuroinflammation and hyperplasia.

    PubMed

    Huang, Jia; You, Xiaofang; Liu, Weilin; Song, Changming; Lin, Xiaomin; Zhang, Xiufeng; Tao, Jing; Chen, Lidian

    2017-10-10

    During ischemic stroke (IS), adenosine 5'-triphosphate (ATP) is released from damaged nerve cells of the infract core region to the extracellular space, invoking peri-infarct glial cellular P2 purinoceptors singling, and causing pro-inflammatory cytokine secretion, which is likely to initiate or aggravate motor and cognitive impairment. It has been proved that electroacupuncture (EA) is an effective and safe strategy used in anti-inflammation. However, EA for the role of purine receptors in the central nervous system has not yet been reported. Ischemia-reperfusion injured rat model was induced by middle cerebral artery occlusion and reperfusion (MCAO/R). EA treatment at the DU 20 and DU 24 acupoints treatment were conducted to rats from the 12 h after MCAO/R injury for consecutive 7 days. The neurological outcomes, infarction volumes and the level of astroglial and microglial/macrophage hyperplasia, inflammatory cytokine and P2X7R and P2Y1R expression in the peri-infarct hippocampal CA1and sensorimotor cortex were investigated after IS to evaluate the MCAO/R model and therapeutic mechanism of EA treatment. EA effectively reduced the level of pro-inflammatory cytokine interleukin-1β (IL-1β) as evidenced by reduction in astroglial and microglial/macrophage hyperplasia and the levels of P2X7R and ED1, P2X7R and GFAP, P2Y1R and ED1, P2Y1R and GFAP co-expression in peri-infarct hippocampal CA1 and sensorimotor cortex compared with that of MCAO/R model and Non-EA treatment, accompanied by the improved neurological deficit and the motor and memory impairment outcomes. Therefore, our data support the hypothesis that EA could exert its anti-inflammatory effect via inhibiting the astroglial and microglial/macrophage P2 purinoceptors (P2X7R and P2Y1R)-mediated neuroinflammation after MCAO/R injury. Astroglial and microglial/macrophage P2 purinoceptors-mediated neuroinflammation and hyperplasia in peri-infarct hippocampal CA1 and sensorimotor cortex were attenuated by EA

  3. Tau hyperphosphorylation in the brain of ob/ob mice is due to hypothermia: Importance of thermoregulation in linking diabetes and Alzheimer's disease.

    PubMed

    Gratuze, Maud; El Khoury, Noura B; Turgeon, Andréanne; Julien, Carl; Marcouiller, François; Morin, Françoise; Whittington, Robert A; Marette, André; Calon, Frédéric; Planel, Emmanuel

    2017-02-01

    Over the last few decades, there has been a significant increase in epidemiological studies suggesting that type 2 diabetes (T2DM) is linked to a higher risk of Alzheimer's disease (AD). However, how T2DM affects AD pathology, such as tau hyperphosphorylation, is not well understood. In this study, we investigated the impact of T2DM on tau phosphorylation in ob/ob mice, a spontaneous genetic model of T2DM. Tau phosphorylation at the AT8 epitope was slightly elevated in 4-week-old ob/ob mice while 26-week-old ob/ob mice exhibited tau hyperphosphorylation at multiple tau phospho-epitopes (Tau1, CP13, AT8, AT180, PHF1). We then examined the mechanism of tau hyperphosphorylation and demonstrated that it is mostly due to hypothermia, as ob/ob mice were hypothermic and normothermia restored tau phosphorylation to control levels. As caffeine has been shown to be beneficial for diabetes, obesity and tau phosphorylation, we, therefore, used it as therapeutic treatment. Unexpectedly, chronic caffeine intake exacerbated tau hyperphosphorylation by promoting deeper hypothermia. Our data indicate that tau hyperphosphorylation is predominately due to hypothermia consequent to impaired thermoregulation in ob/ob mice. This study establishes a novel link between diabetes and AD, and reinforces the importance of recording body temperature to better assess the relationship between diabetes and AD. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Human amyloid β peptide and tau co-expression impairs behavior and causes specific gene expression changes in Caenorhabditis elegans.

    PubMed

    Wang, Chenyin; Saar, Valeria; Leung, Ka Lai; Chen, Liang; Wong, Garry

    2018-01-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by the presence of extracellular amyloid plaques consisting of Amyloid-β peptide (Aβ) aggregates and neurofibrillary tangles formed by aggregation of hyperphosphorylated microtubule-associated protein tau. We generated a novel invertebrate model of AD by crossing Aβ1-42 (strain CL2355) with either pro-aggregating tau (strain BR5270) or anti-aggregating tau (strain BR5271) pan-neuronal expressing transgenic Caenorhabditis elegans. The lifespan and progeny viability of the double transgenic strains were significantly decreased compared with wild type N2 (P<0.0001). In addition, co-expression of these transgenes interfered with neurotransmitter signaling pathways, caused deficits in chemotaxis associative learning, increased protein aggregation visualized by Congo red staining, and increased neuronal loss. Global transcriptomic RNA-seq analysis revealed 248 up- and 805 down-regulated genes in N2 wild type versus Aβ1-42+pro-aggregating tau animals, compared to 293 up- and 295 down-regulated genes in N2 wild type versus Aβ1-42+anti-aggregating tau animals. Gene set enrichment analysis of Aβ1-42+pro-aggregating tau animals uncovered up-regulated annotation clusters UDP-glucuronosyltransferase (5 genes, P<4.2E-4), protein phosphorylation (5 genes, P<2.60E-02), and aging (5 genes, P<8.1E-2) while the down-regulated clusters included nematode cuticle collagen (36 genes, P<1.5E-21). RNA interference of 13 available top up-regulated genes in Aβ1-42+pro-aggregating tau animals revealed that F-box family genes and nep-4 could enhance life span deficits and chemotaxis deficits while Y39G8C.2 (TTBK2) could suppress these behaviors. Comparing the list of regulated genes from C. elegans to the top 60 genes related to human AD confirmed an overlap of 8 genes: patched homolog 1, PTCH1 (ptc-3), the Rab GTPase activating protein, TBC1D16 (tbc-16), the WD repeat and FYVE domain-containing protein 3

  5. Intraneuronal accumulation of misfolded tau protein induces overexpression of Hsp27 in activated astrocytes.

    PubMed

    Filipcik, Peter; Cente, Martin; Zilka, Norbert; Smolek, Tomas; Hanes, Jozef; Kucerak, Juraj; Opattova, Alena; Kovacech, Branislav; Novak, Michal

    2015-07-01

    Accumulation of misfolded forms of microtubule associated, neuronal protein tau causes neurofibrillary degeneration typical of Alzheimer's disease and other tauopathies. This process is accompanied by elevated cellular stress and concomitant deregulation of heat-shock proteins. We used a transgenic rat model of tauopathy to study involvement of heat shock protein 27 (Hsp27) in the process of neurofibrillary degeneration, its cell type specific expression and correlation with the amount of insoluble tau protein aggregates. The expression of Hsp27-mRNA is more than doubled and levels of Hsp27 protein tripled in aged transgenic animals with tau pathology. The data revealed a strong positive and highly significant correlation between Hsp27-mRNA and amount of sarkosyl insoluble tau. Interestingly, intracellular accumulation of insoluble misfolded tau protein in neurons was associated with overexpression of Hsp27 almost exclusively in reactive astrocytes, not in neurons. The topological dissociation of neuronally expressed pathological tau and the induction of astrocytic Hsp27, GFAP, and Vimentin along with up-regulation of microglia specific markers such as CD18, CD68 and C3 point to cooperation of astrocytes, microglia and neurons in response to intra-neuronal accumulation of insoluble tau. Our data suggest that over expression of Hsp27 represents a part of microglia-mediated astrocytic response mechanism in the process of neurofibrillary degeneration, which is not necessarily associated with neuroprotection and which in contrary may accelerate neurodegeneration in late stage of the disease. This phenomenon should be considered during development of disease modifying strategies for treatment of tauopathies and AD via regulation of activity of Hsp27. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Symptomatic and Nonamyloid/Tau Based Pharmacologic Treatment for Alzheimer Disease

    PubMed Central

    Aisen, Paul S.; Cummings, Jeffrey; Schneider, Lon S.

    2012-01-01

    In this work we consider marketed drugs for Alzheimer disease (AD) including acetylcholinesterase inhibitors (AChE-Is) and antiglutamatergic treatment involving the N-methyl-d-aspartate (NMDA) receptor. We discuss medications and substances available for use as cognitive enhancers that are not approved for AD or cognitive impairment, and other neurotransmitter-related therapies in development or currently being researched. We also review putative therapies that aim to slow disease progression by mechanisms not directly related to amyloid or tau. PMID:22393531

  7. The Reflex Sympathetic Dystrophy Syndrome: A Review with Special Reference to Chronic Pain and Motor Impairments.

    ERIC Educational Resources Information Center

    Ribbers, G.; And Others

    1995-01-01

    This article reviews reflex sympathetic dystrophy (RSD), a symptom complex caused by a minor injury and characterized by pain, vasomotor and trophic disregulation, and motor impairments. Both an acute stage and a chronic stage are described. Implications for diagnosis, prevention of disabilities, and development of rehabilitation strategies are…

  8. Sympathetic arousal, but not disturbed executive functioning, mediates the impairment of cognitive flexibility under stress.

    PubMed

    Marko, Martin; Riečanský, Igor

    2018-05-01

    Cognitive flexibility emerges from an interplay of multiple cognitive systems, of which lexical-semantic and executive are thought to be the most important. Yet this has not been addressed by previous studies demonstrating that such forms of flexible thought deteriorate under stress. Motivated by these shortcomings, the present study evaluated several candidate mechanisms implied to mediate the impairing effects of stress on flexible thinking. Fifty-seven healthy adults were randomly assigned to psychosocial stress or control condition while assessed for performance on cognitive flexibility, working memory capacity, semantic fluency, and self-reported cognitive interference. Stress response was indicated by changes in skin conductance, hearth rate, and state anxiety. Our analyses showed that acute stress impaired cognitive flexibility via a concomitant increase in sympathetic arousal, while this mediator was positively associated with semantic fluency. Stress also decreased working memory capacity, which was partially mediated by elevated cognitive interference, but neither of these two measures were associated with cognitive flexibility or sympathetic arousal. Following these findings, we conclude that acute stress impairs cognitive flexibility via sympathetic arousal that modulates lexical-semantic and associative processes. In particular, the results indicate that stress-level of sympathetic activation may restrict the accessibility and integration of remote associates and bias the response competition towards prepotent and dominant ideas. Importantly, our results indicate that stress-induced impairments of cognitive flexibility and executive functions are mediated by distinct neurocognitive mechanisms. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Piano training in youths with hand motor impairments after damage to the developing brain

    PubMed Central

    Lampe, Renée; Thienel, Anna; Mitternacht, Jürgen; Blumenstein, Tobias; Turova, Varvara; Alves-Pinto, Ana

    2015-01-01

    Damage to the developing brain may lead to impairment of the hand motor function and negatively impact on patients’ quality of life. Development of manual dexterity and finger and hand motor function may be promoted by learning to play the piano. The latter brings together music with the intensive training of hand coordination and fine finger mobility. We investigated if learning to play the piano helped to improve hand motor skills in 18 youths with hand motor disorders resulting from damage during early brain development. Participants trained 35–40 minutes twice a week for 18 months with a professional piano teacher. With the use of a Musical Instrument Digital Interface piano, the uniformity of finger strokes could be objectively assessed from the timing of keystrokes. The analysis showed a significant improvement in the uniformity of keystrokes during the training. Furthermore, the youths showed strong motivation and engagement during the study. This is nevertheless an open study, and further studies remain needed to exclude effects of growth and concomitant therapies on the improvements observed and clarify which patients will more likely benefit from learning to play the piano. PMID:26345312

  10. Piano training in youths with hand motor impairments after damage to the developing brain.

    PubMed

    Lampe, Renée; Thienel, Anna; Mitternacht, Jürgen; Blumenstein, Tobias; Turova, Varvara; Alves-Pinto, Ana

    2015-01-01

    Damage to the developing brain may lead to impairment of the hand motor function and negatively impact on patients' quality of life. Development of manual dexterity and finger and hand motor function may be promoted by learning to play the piano. The latter brings together music with the intensive training of hand coordination and fine finger mobility. We investigated if learning to play the piano helped to improve hand motor skills in 18 youths with hand motor disorders resulting from damage during early brain development. Participants trained 35-40 minutes twice a week for 18 months with a professional piano teacher. With the use of a Musical Instrument Digital Interface piano, the uniformity of finger strokes could be objectively assessed from the timing of keystrokes. The analysis showed a significant improvement in the uniformity of keystrokes during the training. Furthermore, the youths showed strong motivation and engagement during the study. This is nevertheless an open study, and further studies remain needed to exclude effects of growth and concomitant therapies on the improvements observed and clarify which patients will more likely benefit from learning to play the piano.

  11. Measuring B{sup {+-}}{yields}{tau}{sup {+-}}{nu} and B{sub c}{sup {+-}}{yields}{tau}{sup {+-}}{nu} at the Z peak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akeroyd, A. G.; Chen, C.H.; National Center for Theoretical Sciences, Taiwan

    2008-06-01

    The measurement of B{sup {+-}}{yields}{tau}{sup {+-}}{nu}{sub {tau}} at the B factories provides important constraints on the parameter tan{beta}/m{sub H{sup {+-}}} in the context of models with two Higgs doublets. Limits on this decay from e{sup +}e{sup -} collisions at the Z peak were sensitive to the sum of B{sup {+-}}{yields}{tau}{sup {+-}}{nu}{sub {tau}} and B{sub c}{sup {+-}}{yields}{tau}{sup {+-}}{nu}{sub {tau}}. Because of the possibly sizeable contribution from B{sub c}{sup {+-}}{yields}{tau}{sup {+-}}{nu}{sub {tau}} we suggest that a signal for this combination might be observed if the CERN LEP L3 Collaboration used its total data of {approx}3.6x10{sup 6} hadronic decays of the Z boson.more » Moreover, we point out that a future linear collider operating at the Z peak (Giga Z option) could constrain tan{beta}/m{sub H{sup {+-}}} from the sum of these processes with a precision comparable to that anticipated at proposed high luminosity B factories from B{sup {+-}}{yields}{tau}{sup {+-}}{nu}{sub {tau}} alone.« less

  12. 5-HT2A receptor antagonists improve motor impairments in the MPTP mouse model of Parkinson's disease.

    PubMed

    Ferguson, Marcus C; Nayyar, Tultul; Deutch, Ariel Y; Ansah, Twum A

    2010-01-01

    Clinical observations have suggested that ritanserin, a 5-HT(2A/C) receptor antagonist may reduce motor deficits in persons with Parkinson's Disease (PD). To better understand the potential antiparkinsonian actions of ritanserin, we compared the effects of ritanserin with the selective 5-HT(2A) receptor antagonist M100907 and the selective 5-HT(2C) receptor antagonist SB 206553 on motor impairments in mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). MPTP-treated mice exhibited decreased performance on the beam-walking apparatus. These motor deficits were reversed by acute treatment with L-3,4-dihydroxyphenylalanine (levodopa). Both the mixed 5-HT(2A/C) antagonist ritanserin and the selective 5-HT(2A) antagonist M100907 improved motor performance on the beam-walking apparatus. In contrast, SB 206553 was ineffective in improving the motor deficits in MPTP-treated mice. These data suggest that 5-HT(2A) receptor antagonists may represent a novel approach to ameliorate motor symptoms of Parkinson's disease. Published by Elsevier Ltd.

  13. 5-HT2A receptor antagonists improve motor impairments in the MPTP mouse model of Parkinson's disease

    PubMed Central

    Ferguson, Marcus C.; Nayyar, Tultul; Deutch, Ariel Y.; Ansah, Twum A.

    2010-01-01

    Clinical observations have suggested that ritanserin, a 5-HT2A/C receptor antagonist may reduce motor deficits in persons with Parkinson's Disease (PD). To better understand the potential antiparkinsonian actions of ritanserin, we compared the effects of ritanserin with the selective 5-HT2A receptor antagonist M100907 and the selective 5-HT2C receptor antagonist SB 206553 on motor impairments in mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). MPTP-treated mice exhibited decreased performance on the beam-walking apparatus. These motor deficits were reversed by acute treatment with L-3,4-dihydroxyphenylalanine (levodopa). Both the mixed 5-HT2A/C antagonist ritanserin and the selective 5-HT2A antagonist M100907 improved motor performance on the beam-walking apparatus. In contrast, SB 206553 was ineffective in improving the motor deficits in MPTP-treated mice. These data suggest that 5-HT2A receptor antagonists may represent a novel approach to ameliorate motor symptoms of Parkinson's disease. PMID:20361986

  14. Tau regulates the subcellular localization of calmodulin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barreda, Elena Gomez de; Avila, Jesus, E-mail: javila@cbm.uam.es; CIBER de Enfermedades Neurodegenerativas, 28031 Madrid

    Highlights: {yields} In this work we have tried to explain how a cytoplasmic protein could regulate a cell nuclear function. We have tested the role of a cytoplasmic protein (tau) in regulating the expression of calbindin gene. We found that calmodulin, a tau-binding protein with nuclear and cytoplasmic localization, increases its nuclear localization in the absence of tau. Since nuclear calmodulin regulates calbindin expression, a decrease in nuclear calmodulin, due to the presence of tau that retains it at the cytoplasm, results in a change in calbindin expression. -- Abstract: Lack of tau expression in neuronal cells results in amore » change in the expression of few genes. However, little is known about how tau regulates gene expression. Here we show that the presence of tau could alter the subcellular localization of calmodulin, a protein that could be located at the cytoplasm or in the nucleus. Nuclear calmodulin binds to co-transcription factors, regulating the expression of genes like calbindin. In this work, we have found that in neurons containing tau, a higher proportion of calmodulin is present in the cytoplasm compared with neurons lacking tau and that an increase in cytoplasmic calmodulin correlates with a higher expression of calbindin.« less

  15. Abnormal tau phosphorylation in the thorny excrescences of CA3 hippocampal neurons in patients with Alzheimer's disease.

    PubMed

    Blazquez-Llorca, Lidia; Garcia-Marin, Virginia; Merino-Serrais, Paula; Ávila, Jesús; DeFelipe, Javier

    2011-01-01

    A key symptom in the early stages of Alzheimer's disease (AD) is the loss of declarative memory. The anatomical substrate that supports this kind of memory involves the neural circuits of the medial temporal lobe, and in particular, of the hippocampal formation and adjacent cortex. A main feature of AD is the abnormal phosphorylation of the tau protein and the presence of tangles. The sequence of cellular changes related to tau phosphorylation and tangle formation has been studied with an antibody that binds to diffuse phosphotau (AT8). Moreover, another tau antibody (PHF-1) has been used to follow the pathway of neurofibrillary (tau aggregation) degeneration in AD. We have used a variety of quantitative immunocytochemical techniques and confocal microscopy to visualize and characterize neurons labeled with AT8 and PHF-1 antibodies. We present here the rather unexpected discovery that in AD, there is conspicuous abnormal phosphorylation of the tau protein in a selective subset of dendritic spines. We identified these spines as the typical thorny excrescences of hippocampal CA3 neurons in a pre-tangle state. Since thorny excrescences represent a major synaptic target of granule cell axons (mossy fibers), such aberrant phosphorylation may play an essential role in the memory impairment typical of AD patients.

  16. Intrinsic motivation as a mediator between metacognition deficits and impaired functioning in psychosis.

    PubMed

    Luther, Lauren; Firmin, Ruth L; Vohs, Jenifer L; Buck, Kelly D; Rand, Kevin L; Lysaker, Paul H

    2016-09-01

    Poor functioning has long been observed in individuals with psychosis. Recent studies have identified metacognition - one's ability to form complex ideas about oneself and others and to use that information to respond to psychological and social challenges-as being an important determinant of functioning. However, the exact process by which deficits in metacognition lead to impaired functioning remains unclear. This study first examined whether low intrinsic motivation, or the tendency to pursue novel experiences and to engage in self-improvement, mediates the relationship between deficits in metacognition and impaired functioning. We then examined whether intrinsic motivation significantly mediated the relationship when controlling for age, education, symptoms, executive functioning, and social cognition. Mediation models were examined in a cross-sectional data set. One hundred and seventy-five individuals with a psychotic disorder completed interview-based measures of metacognition, intrinsic motivation, symptoms, and functioning and performance-based measures of executive functioning and social cognition. Analyses revealed that intrinsic motivation mediated the relationship between metacognition deficits and impaired functioning (95% CI of indirect effect [0.12-0.43]), even after controlling for the aforesaid variables (95% CI of indirect effect [0.04-0.29]). Results suggest that intrinsic motivation may be a mechanism that underlies the link between deficits in metacognition and impaired functioning and indicate that metacognition and intrinsic motivation may be important treatment targets to improve functioning in individuals with psychosis. The findings of this study suggest that deficits in metacognition may indirectly lead to impaired functioning through their effect on intrinsic motivation in individuals with psychosis. Psychological treatments that target deficits in both metacognition and intrinsic motivation may help to alleviate impaired functioning in

  17. Distinct motor impairments of dopamine D1 and D2 receptor knockout mice revealed by three types of motor behavior.

    PubMed

    Nakamura, Toru; Sato, Asako; Kitsukawa, Takashi; Momiyama, Toshihiko; Yamamori, Tetsuo; Sasaoka, Toshikuni

    2014-01-01

    Both D1R and D2R knock out (KO) mice of the major dopamine receptors show significant motor impairments. However, there are some discrepant reports, which may be due to the differences in genetic background and experimental procedures. In addition, only few studies directly compared the motor performance of D1R and D2R KO mice. In this paper, we examined the behavioral difference among N10 congenic D1R and D2R KO, and wild type (WT) mice. First, we examined spontaneous motor activity in the home cage environment for consecutive 5 days. Second, we examined motor performance using the rota-rod task, a standard motor task in rodents. Third, we examined motor ability with the Step-Wheel task in which mice were trained to run in a motor-driven turning wheel adjusting their steps on foothold pegs to drink water. The results showed clear differences among the mice of three genotypes in three different types of behavior. In monitoring spontaneous motor activities, D1R and D2R KO mice showed higher and lower 24 h activities, respectively, than WT mice. In the rota-rod tasks, at a low speed, D1R KO mice showed poor performance but later improved, whereas D2R KO mice showed a good performance at early days without further improvement. When first subjected to a high speed task, the D2R KO mice showed poorer rota-rod performance at a low speed than the D1R KO mice. In the Step-Wheel task, across daily sessions, D2R KO mice increased the duration that mice run sufficiently close to the spout to drink water, and decreased time to touch the floor due to missing the peg steps and number of times the wheel was stopped, which performance was much better than that of D1R KO mice. These incongruent results between the two tasks for D1R and D2R KO mice may be due to the differences in the motivation for the rota-rod and Step-Wheel tasks, aversion- and reward-driven, respectively. The Step-Wheel system may become a useful tool for assessing the motor ability of WT and mutant mice.

  18. Gap Junction-Mediated Signaling from Motor Neurons Regulates Motor Generation in the Central Circuits of Larval Drosophila.

    PubMed

    Matsunaga, Teruyuki; Kohsaka, Hiroshi; Nose, Akinao

    2017-02-22

    In this study, we used the peristaltic crawling of Drosophila larvae as a model to study how motor patterns are regulated by central circuits. We built an experimental system that allows simultaneous application of optogenetics and calcium imaging to the isolated ventral nerve cord (VNC). We then investigated the effects of manipulating local activity of motor neurons (MNs) on fictive locomotion observed as waves of MN activity propagating along neuromeres. Optical inhibition of MNs with halorhodopsin3 in a middle segment (A4, A5, or A6), but not other segments, dramatically decreased the frequency of the motor waves. Conversely, local activation of MNs with channelrhodopsin2 in a posterior segment (A6 or A7) increased the frequency of the motor waves. Since peripheral nerves mediating sensory feedback were severed in the VNC preparation, these results indicate that MNs send signals to the central circuits to regulate motor pattern generation. Our results also indicate segmental specificity in the roles of MNs in motor control. The effects of the local MN activity manipulation were lost in shaking-B 2 ( shakB 2 ) or ogre 2 , gap-junction mutations in Drosophila , or upon acute application of the gap junction blocker carbenoxolone, implicating electrical synapses in the signaling from MNs. Cell-type-specific RNAi suggested shakB and ogre function in MNs and interneurons, respectively, during the signaling. Our results not only reveal an unexpected role for MNs in motor pattern regulation, but also introduce a powerful experimental system that enables examination of the input-output relationship among the component neurons in this system. SIGNIFICANCE STATEMENT Motor neurons are generally considered passive players in motor pattern generation, simply relaying information from upstream interneuronal circuits to the target muscles. This study shows instead that MNs play active roles in the control of motor generation by conveying information via gap junctions to the

  19. Ethyl acetate fraction from Hibiscus sabdariffa L. attenuates diabetes-associated cognitive impairment in mice.

    PubMed

    Seung, Tae Wan; Park, Seon Kyeong; Kang, Jin Yong; Kim, Jong Min; Park, Sang Hyun; Kwon, Bong Seok; Lee, Chang Jun; Kang, Jeong Eun; Kim, Dae Ok; Lee, Uk; Heo, Ho Jin

    2018-03-01

    The ameliorating effects of the ethyl acetate fraction from Hibiscus sabdariffa L. (EFHS) 2 against diabetes mellitus (DM) 3 and DM-induced cognitive impairment were investigated on streptozotocin (STZ) 4 -induced DM mice. The EFHS groups showed improved hyperglycemia and glucose tolerance compared to the STZ group. Furthermore, their liver and kidney function and lipid metabolic imbalance in the blood serum were effectively recovered. The EFHS groups significantly ameliorated STZ-induced cognitive impairment in Y-maze, passive avoidance, and Morris water maze (MWM) 5 tests. The EFHS groups showed significant improvement in the antioxidant and cholinergic systems of the brain tissue. In addition, EFHS had an excellent ameliorating effect on protein expression levels from the tau hyperphosphorylation pathways, such as phospho-c-Jun N-terminal kinases (p-JNK), 6 phospho-tau (p-tau), 7 and cleaved poly (ADP-ribose) polymerase (c-PARP). 8 The main compounds of EFHS were identified as various phenolic compounds, including hibiscus acid, caffeoylquinic acid (CQA) 9 isomers, and quercetin derivates. Therefore, EFHS containing various physiologically active materials can potentially be used for improving DM-induced cognitive impairment via its antioxidant activity, improvement of the cholinergic system, and hyperphosphorylation tau signaling. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Prediction of Neurocognitive Deficits by Parkinsonian Motor Impairment in Schizophrenia: A Study in Neuroleptic-Naïve Subjects, Unaffected First-Degree Relatives and Healthy Controls From an Indigenous Population

    PubMed Central

    Molina, Juan L.; González Alemán, Gabriela; Florenzano, Néstor; Padilla, Eduardo; Calvó, María; Guerrero, Gonzalo; Kamis, Danielle; Stratton, Lee; Toranzo, Juan; Molina Rangeon, Beatriz; Hernández Cuervo, Helena; Bourdieu, Mercedes; Sedó, Manuel; Strejilevich, Sergio; Cloninger, Claude Robert; Escobar, Javier I.; de Erausquin, Gabriel A.

    2016-01-01

    Background: Neurocognitive deficits are among the most debilitating and pervasive symptoms of schizophrenia, and are present also in unaffected first-degree relatives. Also, multiple reports reveal parkisonian motor deficits in untreated subjects with schizophrenia and in first-degree relatives of affected subjects. Yet, the relation between motor and cognitive impairment and its value as a classifier of endophenotypes has not been studied. Aims: To test the efficacy of midbrain hyperechogenicity (MHE) and parkinsonian motor impairment (PKM) as predictors of neurocognitive impairment in subjects with or at risk for schizophrenia, that could be used to segregate them from first-degree relatives and healthy controls. Method: Seventy-six subjects with chronic schizophrenia never exposed to antipsychotic medication, 106 unaffected first-degree relatives, and 62 healthy controls were blindly assessed for cognitive and motor function, and transcranial ultrasound. Results: Executive function, fluid intelligence, motor planning, and hand coordination showed group differences. PKM and MHE were significantly higher in untreated schizophrenia and unaffected relatives. Unaffected relatives showed milder impairment, but were different from controls. Conclusions: PKM and MHE predict cognitive impairment in neuroleptic-naive patients with schizophrenia and their unaffected first-degree relatives and may be used to segregate them from first-degree relatives and healthy controls. PMID:26994395

  1. RNA stores tau reversibly in complex coacervates

    PubMed Central

    Lin, Yanxian; Eschmann, Neil A.; Zhou, Hongjun; Rauch, Jennifer N.; Hernandez, Israel; Guzman, Elmer; Kosik, Kenneth S.; Han, Songi

    2017-01-01

    Nonmembrane-bound organelles that behave like liquid droplets are widespread among eukaryotic cells. Their dysregulation appears to be a critical step in several neurodegenerative conditions. Here, we report that tau protein, the primary constituent of Alzheimer neurofibrillary tangles, can form liquid droplets and therefore has the necessary biophysical properties to undergo liquid-liquid phase separation (LLPS) in cells. Consonant with the factors that induce LLPS, tau is an intrinsically disordered protein that complexes with RNA to form droplets. Uniquely, the pool of RNAs to which tau binds in living cells are tRNAs. This phase state of tau is held in an approximately 1:1 charge balance across the protein and the nucleic acid constituents, and can thus be maximal at different RNA:tau mass ratios, depending on the biopolymer constituents involved. This feature is characteristic of complex coacervation. We furthermore show that the LLPS process is directly and sensitively tuned by salt concentration and temperature, implying it is modulated by both electrostatic interactions between the involved protein and nucleic acid constituents, as well as net changes in entropy. Despite the high protein concentration within the complex coacervate phase, tau is locally freely tumbling and capable of diffusing through the droplet interior. In fact, tau in the condensed phase state does not reveal any immediate changes in local protein packing, local conformations and local protein dynamics from that of tau in the dilute solution state. In contrast, the population of aggregation-prone tau as induced by the complexation with heparin is accompanied by large changes in local tau conformations and irreversible aggregation. However, prolonged residency within the droplet state eventually results in the emergence of detectable β-sheet structures according to thioflavin-T assay. These findings suggest that the droplet state can incubate tau and predispose the protein toward the

  2. A novel triple repeat mutant tau transgenic model that mimics aspects of pick's disease and fronto-temporal tauopathies.

    PubMed

    Rockenstein, Edward; Overk, Cassia R; Ubhi, Kiren; Mante, Michael; Patrick, Christina; Adame, Anthony; Bisquert, Alejandro; Trejo-Morales, Margarita; Spencer, Brian; Masliah, Eliezer

    2015-01-01

    Tauopathies are a group of disorders leading to cognitive and behavioral impairment in the aging population. While four-repeat (4R) Tau is more abundant in corticobasal degeneration, progressive supranuclear palsy, and Alzheimer's disease, three-repeat (3R) Tau is the most abundant splice, in Pick's disease. A number of transgenic models expressing wild-type and mutant forms of the 4R Tau have been developed. However, few models of three-repeat Tau are available. A transgenic mouse model expressing three-repeat Tau was developed bearing the mutations associated with familial forms of Pick's disease (L266V and G272V mutations). Two lines expressing high (Line 13) and low (Line 2) levels of the three-repeat mutant Tau were analyzed. By Western blot, using antibodies specific to three-repeat Tau, Line 13 expressed 5-times more Tau than Line 2. The Tau expressed by these mice was most abundant in the frontal-temporal cortex and limbic system and was phosphorylated at residues detected by the PHF-1, AT8, CP9 and CP13 antibodies. The higher-expressing mice displayed hyperactivity, memory deficits in the water maze and alterations in the round beam. The behavioral deficits started at 6-8 months of age and were associated with a progressive increase in the accumulation of 3R Tau. By immunocytochemistry, mice from Line 13 displayed extensive accumulation of 3R Tau in neuronal cells bodies in the pyramidal neurons of the neocortex, CA1-3 regions, and dentate gyrus of the hippocampus. Aggregates in the granular cells had a globus appearance and mimic Pick's-like inclusions. There were abundant dystrophic neurites, astrogliosis and synapto-dendritic damage in the neocortex and hippocampus of the higher expresser line. The hippocampal lesions were moderately argyrophilic and Thioflavin-S negative. By electron microscopy, discrete straight filament aggregates were detected in some neurons in the hippocampus. This model holds promise for better understanding the natural history

  3. Visual-motor integration performance in children with severe specific language impairment.

    PubMed

    Nicola, K; Watter, P

    2016-09-01

    This study investigated (1) the visual-motor integration (VMI) performance of children with severe specific language impairment (SLI), and any effect of age, gender, socio-economic status and concomitant speech impairment; and (2) the relationship between language and VMI performance. It is hypothesized that children with severe SLI would present with VMI problems irrespective of gender and socio-economic status; however, VMI deficits will be more pronounced in younger children and those with concomitant speech impairment. Furthermore, it is hypothesized that there will be a relationship between VMI and language performance, particularly in receptive scores. Children enrolled between 2000 and 2008 in a school dedicated to children with severe speech-language impairments were included, if they met the criteria for severe SLI with or without concomitant speech impairment which was verified by a government organization. Results from all initial standardized language and VMI assessments found during a retrospective review of chart files were included. The final study group included 100 children (males = 76), from 4 to 14 years of age with mean language scores at least 2SD below the mean. For VMI performance, 52% of the children scored below -1SD, with 25% of the total group scoring more than 1.5SD below the mean. Age, gender and the addition of a speech impairment did not impact on VMI performance; however, children living in disadvantaged suburbs scored significantly better than children residing in advantaged suburbs. Receptive language scores of the Clinical Evaluation of Language Fundamentals was the only score associated with and able to predict VMI performance. A small subgroup of children with severe SLI will also have poor VMI skills. The best predictor of poor VMI is receptive language scores on the Clinical Evaluation of Language Fundamentals. Children with poor receptive language performance may benefit from VMI assessment and multidisciplinary

  4. Identification and Remediation of Phonological and Motor Errors in Acquired Sound Production Impairment

    PubMed Central

    Gagnon, Bernadine; Miozzo, Michele

    2017-01-01

    Purpose This study aimed to test whether an approach to distinguishing errors arising in phonological processing from those arising in motor planning also predicts the extent to which repetition-based training can lead to improved production of difficult sound sequences. Method Four individuals with acquired speech production impairment who produced consonant cluster errors involving deletion were examined using a repetition task. We compared the acoustic details of productions with deletion errors in target consonant clusters to singleton consonants. Changes in accuracy over the course of the study were also compared. Results Two individuals produced deletion errors consistent with a phonological locus of the errors, and 2 individuals produced errors consistent with a motoric locus of the errors. The 2 individuals who made phonologically driven errors showed no change in performance on a repetition training task, whereas the 2 individuals with motoric errors improved in their production of both trained and untrained items. Conclusions The results extend previous findings about a metric for identifying the source of sound production errors in individuals with both apraxia of speech and aphasia. In particular, this work may provide a tool for identifying predominant error types in individuals with complex deficits. PMID:28655044

  5. Nicotine impairs cyclooxygenase-2-dependent kinin-receptor-mediated murine airway relaxations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Yuan, E-mail: yuan.xu@ki.se; Cardell, Lars-Olaf

    seen in some patients with asthma. - Highlights: • Nicotine from smoking impaired epithelial COX-2-mediated airway relaxation. • Nicotine's effects were at least partially mediated by α7-nicotinic receptors. • Kinin-receptor-mediated airway relaxations are mediated by EP2 receptors in mice. • Nicotine reduced mPGES-1 mRNA and protein expressions in airway smooth muscle. • Dexamethasone could not restore nicotine-impaired airway relaxations.« less

  6. Motor-mediated Cortical versus Astral Microtubule Organization in Lipid-monolayered Droplets

    PubMed Central

    Baumann, Hella; Surrey, Thomas

    2014-01-01

    The correct spatial organization of microtubules is of crucial importance for determining the internal architecture of eukaryotic cells. Microtubules are arranged in space by a multitude of biochemical activities and by spatial constraints imposed by the cell boundary. The principles underlying the establishment of distinct intracellular architectures are only poorly understood. Here, we studied the effect of spatial confinement on the self-organization of purified motors and microtubules that are encapsulated in lipid-monolayered droplets in oil, varying in diameter from 5–100 μm, which covers the size range of typical cell bodies. We found that droplet size alone had a major organizing influence. The presence of a microtubule-crosslinking motor protein decreased the number of accessible types of microtubule organizations. Depending on the degree of spatial confinement, the presence of the motor caused either the formation of a cortical array of bent microtubule bundles or the generation of single microtubule asters in the droplets. These are two of the most prominent forms of microtubule arrangements in plant and metazoan cells. Our results provide insights into the combined organizing influence of spatial constraints and cross-linking motor activities determining distinct microtubule architectures in a minimal biomimetic system. In the future, this simple lipid-monolayered droplet system characterized here can be expanded readily to include further biochemical activities or used as the starting point for the investigation of motor-mediated microtubule organization inside liposomes surrounded by a deformable lipid bilayer. PMID:24966327

  7. FOXP2 Expression in Frontotemporal Lobar Degeneration-Tau.

    PubMed

    López-González, Irene; Palmeira, Andre; Aso, Ester; Carmona, Margarita; Fernandez, Liana; Ferrer, Isidro

    2016-09-06

    FOXP2 is altered in a variety of language disorders. We found reduced mRNA and protein expression of FOXP2 in frontal cortex area 8 in Pick's disease, and frontotemporal lobar degeneration-tau linked to P301L mutation presenting with language impairment in comparison with age-matched controls and cases with parkinsonian variant progressive supranuclear palsy. Foxp2 mRNA and protein are also reduced with disease progression in the somatosensory cortex in transgenic mice bearing the P301S mutation in MAPT when compared with wild-type littermates. Our findings support the presence of FOXP2 expression abnormalities in sporadic and familial frontotemporal degeneration tauopathies.

  8. A common antigenic motif recognized by naturally occurring human VH5-51/VL4-1 anti-tau antibodies with distinct functionalities.

    PubMed

    Apetri, Adrian; Crespo, Rosa; Juraszek, Jarek; Pascual, Gabriel; Janson, Roosmarijn; Zhu, Xueyong; Zhang, Heng; Keogh, Elissa; Holland, Trevin; Wadia, Jay; Verveen, Hanneke; Siregar, Berdien; Mrosek, Michael; Taggenbrock, Renske; Ameijde, Jeroenvan; Inganäs, Hanna; van Winsen, Margot; Koldijk, Martin H; Zuijdgeest, David; Borgers, Marianne; Dockx, Koen; Stoop, Esther J M; Yu, Wenli; Brinkman-van der Linden, Els C; Ummenthum, Kimberley; van Kolen, Kristof; Mercken, Marc; Steinbacher, Stefan; de Marco, Donata; Hoozemans, Jeroen J; Wilson, Ian A; Koudstaal, Wouter; Goudsmit, Jaap

    2018-05-31

    Misfolding and aggregation of tau protein are closely associated with the onset and progression of Alzheimer's Disease (AD). By interrogating IgG + memory B cells from asymptomatic donors with tau peptides, we have identified two somatically mutated V H 5-51/V L 4-1 antibodies. One of these, CBTAU-27.1, binds to the aggregation motif in the R3 repeat domain and blocks the aggregation of tau into paired helical filaments (PHFs) by sequestering monomeric tau. The other, CBTAU-28.1, binds to the N-terminal insert region and inhibits the spreading of tau seeds and mediates the uptake of tau aggregates into microglia by binding PHFs. Crystal structures revealed that the combination of V H 5-51 and V L 4-1 recognizes a common Pro-X n -Lys motif driven by germline-encoded hotspot interactions while the specificity and thereby functionality of the antibodies are defined by the CDR3 regions. Affinity improvement led to improvement in functionality, identifying their epitopes as new targets for therapy and prevention of AD.

  9. The herbal medicine daikenchuto ameliorates an impaired anorectal motor activity in postoperative pediatric patients with an anorectal malformation--a pilot study.

    PubMed

    Takagi, Akiko; Yagi, Minoru; Tanaka, Yoshiaki; Asagiri, Kimio; Asakawa, Takahiro; Tanaka, Hiroaki; Ishii, Shinji; Egami, Hideaki; Akaiwa, Masao; Tsuru, Tomomitsu

    2010-01-01

    Fecoflowmetry (FFM) has been introduced to simulate natural anorectal evacuation. So far, few reports have described the effect of the herbal medicine Daikenchuto (DKT) on impaired anorectal motor function. The aim of this pilot study was to assess anorectal motor function by FFM in postoperatively impaired patients with an anorectal malformation (ARM) before and after administration of DKT. Six postoperative patients with ARM (mean age, 7.8 years) who complained of intractable constipation with soiling in spite of administration of magnesia as a laxative were assessed over an extended period. These patients received 0.3 g/kg/d of DKT for an average of 128 days. Evacuative rate and maximum fecal stream flow were seen to increase significantly after administration of DKT when compared with values before administration of DKT. In conclusion, DKT had a favorable clinical effect on anorectal motor function in postoperative patients with ARM.

  10. Can the Griffiths scales predict neuromotor and perceptual-motor impairment in term infants with neonatal encephalopathy?

    PubMed Central

    Barnett, A; Guzzetta, A; Mercuri, E; Henderson, S; Haataja, L; Cowan, F; Dubowitz, L

    2004-01-01

    Aims: To examine the predictive value of early developmental testing for identifying neuromotor and perceptual-motor impairment at school age in children with neonatal encephalopathy (NE). Methods: Eighty full term infants with NE were followed longitudinally. Where possible, children were tested on the Griffiths scales at 1 and 2 years and at 5–6 years, on the Touwen Examination, Movement ABC, and WPPSI. The relation between the Griffiths scores and later outcome measures was examined using correlation coefficients and sensitivity and specificity values. Results: By 2 years, 25 children with cerebral palsy were too severely impaired to be formally assessed and remained so at 5–6 years. Abnormal Griffiths scores were obtained by 12% and 7% of the children at 1 and 2 years respectively. At 5–6 years, 33% had poor Movement ABC scores and 15% poor WPPSI scores. The highest correlation between Griffiths scores and the outcome measures was for the Movement ABC (0.72), although this accounted for only 50% of the variance. Sensitivity scores for the Movement ABC were below 70% but specificity was 100%. Conclusions: A poor score on the Griffiths scales at 1 and/or 2 years is a good predictor of impairment at school age. However, a normal score in the early years cannot preclude later neurological, perceptual-motor, or cognitive abnormalities. PMID:15210495

  11. No support for premature central nervous system aging in HIV-1 when measured by cerebrospinal fluid phosphorylated tau (p-tau).

    PubMed

    Krut, Jan J; Price, Richard W; Zetterberg, Henrik; Fuchs, Dietmar; Hagberg, Lars; Yilmaz, Aylin; Cinque, Paola; Nilsson, Staffan; Gisslén, Magnus

    2017-07-04

    The prevalence of neurocognitive deficits are reported to be high in HIV-1 positive patients, even with suppressive antiretroviral treatment, and it has been suggested that HIV can cause accelerated aging of the brain. In this study we measured phosphorylated tau (p-tau) in cerebrospinal fluid (CSF) as a potential marker for premature central nervous system (CNS) aging. P-tau increases with normal aging but is not affected by HIV-associated neurocognitive disorders. With a cross-sectional retrospective design, p-tau, total tau (t-tau), neopterin and HIV-RNA were measured in CSF together with plasma HIV-RNA and blood CD4 + T-cells of 225 HIV-infected patients <50 y of age, subdivided into 3 groups: untreated neuroasymptomatic (NA) (n = 145), on suppressive antiretroviral treatment (cART) (n = 49), and HIV-associated dementia (HAD) (n = 31). HIV-negative healthy subjects served as controls (n = 79). P-tau was not significantly higher in any HIV-infected group compared to HIV-negative controls. Significant increases in t-tau were found as expected in patients with HAD compared to NA, cART, and control groups (p < 0.001 ). P-tau was not higher in HIV-infected patients compared to uninfected controls, thus failing to support a role for premature or accelerated brain aging in HIV infection.

  12. Methylene blue upregulates Nrf2/ARE genes and prevents tau-related neurotoxicity

    PubMed Central

    Stack, Cliona; Jainuddin, Shari; Elipenahli, Ceyhan; Gerges, Meri; Starkova, Natalia; Starkov, Anatoly A.; Jové, Mariona; Portero-Otin, Manuel; Launay, Nathalie; Pujol, Aurora; Kaidery, Navneet Ammal; Thomas, Bobby; Tampellini, Davide; Beal, M. Flint; Dumont, Magali

    2014-01-01

    Methylene blue (MB, methylthioninium chloride) is a phenothiazine that crosses the blood brain barrier and acts as a redox cycler. Among its beneficial properties are its abilities to act as an antioxidant, to reduce tau protein aggregation and to improve energy metabolism. These actions are of particular interest for the treatment of neurodegenerative diseases with tau protein aggregates known as tauopathies. The present study examined the effects of MB in the P301S mouse model of tauopathy. Both 4 mg/kg MB (low dose) and 40 mg/kg MB (high dose) were administered in the diet ad libitum from 1 to 10 months of age. We assessed behavior, tau pathology, oxidative damage, inflammation and numbers of mitochondria. MB improved the behavioral abnormalities and reduced tau pathology, inflammation and oxidative damage in the P301S mice. These beneficial effects were associated with increased expression of genes regulated by NF-E2-related factor 2 (Nrf2)/antioxidant response element (ARE), which play an important role in antioxidant defenses, preventing protein aggregation, and reducing inflammation. The activation of Nrf2/ARE genes is neuroprotective in other transgenic mouse models of neurodegenerative diseases and it appears to be an important mediator of the neuroprotective effects of MB in P301S mice. Moreover, we used Nrf2 knock out fibroblasts to show that the upregulation of Nrf2/ARE genes by MB is Nrf2 dependent and not due to secondary effects of the compound. These findings provide further evidence that MB has important neuroprotective effects that may be beneficial in the treatment of human neurodegenerative diseases with tau pathology. PMID:24556215

  13. Peripheral apelin-13 administration inhibits gastrointestinal motor functions in rats: The role of cholecystokinin through CCK1 receptor-mediated pathway.

    PubMed

    Bülbül, Mehmet; Sinen, Osman; Birsen, İlknur; Nimet İzgüt-Uysal, V

    2017-06-01

    Apelin is the endogenous ligand of the G protein-coupled receptor APJ. The APJ receptor is widely expressed in gastrointestinal (GI) tissues including stomach and small intestine. Apelin administration was shown to induce the release of cholecystokinin (CCK) which is a well-known alimentary hormone with its inhibitory actions on GI motor functions through CCK 1 receptors on vagal afferent fibers. We investigated whether; (i) peripherally injected apelin-13 alters GI motor functions, (ii) apelin-induced changes are mediated by APJ receptor or CCK 1 receptor and (iii) vagal afferents are involved in inhibitory effects of apelin. Solid gastric emptying (GE) and colon transit (CT) were measured, whereas duodenal phase III-like contractions were recorded in rats administered with apelin-13 (300μg/kg, ip). CCK 1 receptor antagonist lorglumide (10mg/kg, ip) or APJ receptor antagonist F13A (300μg/kg, ip) was administered 30min prior to the apelin-13 injections. Vagal afferent denervation was achieved by systemic administration of vanilloid receptor agonist capsaicin (125mg/kg, sc). Apelin-13 administration significantly (p<0.01) increased the CCK level in portal venous plasma samples. Compared with vehicle-treated rats, apelin-13 significantly delayed both GE (p<0.001) and CT (p<0.01). Pretreatment of lorglumide or F13A completely abolished the apelin-13-induced inhibitory effects on GE and CT, moreover, apelin-13 was found ineffective in rats underwent afferent denervation. F13A administration alone significantly accelerated the basal CT. Apelin-13 noticeably disturbed the duodenal fasting motor pattern by impairing phase III-like contractions while increasing the amplitudes of phase II contractions which were prevented by pretreatment of lorglumide and capsaicin. Compared with vehicle-treated rats, lorglumide and capsaicin significantly (p<0.05) reduced the apelin-13-induced increases in phase II motility index. Peripherally administered apelin-13 inhibits GI motor

  14. Protein malnutrition blunts the increment of taurine transporter expression by a high-fat diet and impairs taurine reestablishment of insulin secretion.

    PubMed

    Branco, Renato Chaves Souto; Camargo, Rafael Ludemann; Batista, Thiago Martins; Vettorazzi, Jean Franciesco; Borck, Patrícia Cristine; Dos Santos-Silva, Junia Carolina Rebelo; Boschero, Antonio Carlos; Zoppi, Cláudio Cesar; Carneiro, Everardo Magalhães

    2017-09-01

    Taurine (Tau) restores β-cell function in obesity; however, its action is lost in malnourished obese rodents. Here, we investigated the mechanisms involved in the lack of effects of Tau in this model. C57BL/6 mice were fed a control diet (CD) (14% protein) or a protein-restricted diet (RD) (6% protein) for 6 wk. Afterward, mice received a high-fat diet (HFD) for 8 wk [CD + HFD (CH) and RD + HFD (RH)] with or without 5% Tau supplementation after weaning on their drinking water [CH + Tau (CHT) and RH + Tau (RHT)]. The HFD increased insulin secretion through mitochondrial metabolism in CH and RH. Tau prevented all those alterations in CHT only. The expression of the taurine transporter (Tau-T), as well as Tau content in pancreatic islets, was increased in CH but had no effect on RH. Protein malnutrition programs β cells and impairs Tau-induced restoration of mitochondrial metabolism and biogenesis. This may be associated with modulation of the expression of Tau-T in pancreatic islets, which may be responsible for the absence of effect of Tau in protein-malnourished obese mice.-Branco, R. C. S., Camargo, R. L., Batista, T. M., Vettorazzi, J. F., Borck, P. C., dos Santos-Silva, J. C. R., Boschero, A. C., Zoppi, C. C., Carneiro, E. M. Protein malnutrition blunts the increment of taurine transporter expression by a high-fat diet and impairs taurine reestablishment of insulin secretion. © FASEB.

  15. Effect of IQoro® training on impaired postural control and oropharyngeal motor function in patients with dysphagia after stroke.

    PubMed

    Hägg, Mary; Tibbling, Lita

    2016-07-01

    Conclusion All patients with dysphagia after stroke have impaired postural control. IQoro® screen (IQS) training gives a significant and lasting improvement of postural control running parallel with significant improvement of oropharyngeal motor dysfunction (OPMD). Objectives The present investigation aimed at studying the frequency of impaired postural control in patients with stroke-related dysphagia and if IQS training has any effect on impaired postural control in parallel with effect on OPMD. Method A prospective clinical study was carried out with 26 adult patients with stroke-related dysphagia. The training effect was compared between patients consecutively investigated at two different time periods, the first period with 15 patients included in the study more than half a year after stroke, the second period with 11 patients included within 1 month after stroke. Postural control tests and different oropharyngeal motor tests were performed before and after 3 months of oropharyngeal sensorimotor training with an IQS, and at a late follow-up (median 59 weeks after end of training). Result All patients had impaired postural control at baseline. Significant improvement in postural control and OPMD was observed after the completion of IQS training in both intervention groups. The improvements were still present at the late follow-up.

  16. Impaired Retention of Motor Learning of Writing Skills in Patients with Parkinson's Disease with Freezing of Gait.

    PubMed

    Heremans, Elke; Nackaerts, Evelien; Vervoort, Griet; Broeder, Sanne; Swinnen, Stephan P; Nieuwboer, Alice

    2016-01-01

    Patients with Parkinson's disease (PD) and freezing of gait (FOG) suffer from more impaired motor and cognitive functioning than their non-freezing counterparts. This underlies an even higher need for targeted rehabilitation programs in this group. However, so far it is unclear whether FOG affects the ability for consolidation and generalization of motor learning and thus the efficacy of rehabilitation. To investigate the hallmarks of motor learning in people with FOG compared to those without by comparing the effects of an intensive motor learning program to improve handwriting. Thirty five patients with PD, including 19 without and 16 with FOG received six weeks of handwriting training consisting of exercises provided on paper and on a touch-sensitive writing tablet. Writing training was based on single- and dual-task writing and was supported by means of visual target zones. To investigate automatization, generalization and retention of learning, writing performance was assessed before and after training in the presence and absence of cues and dual tasking and after a six-week retention period. Writing amplitude was measured as primary outcome measure and variability of writing and dual-task accuracy as secondary outcomes. Significant learning effects were present on all outcome measures in both groups, both for writing under single- and dual-task conditions. However, the gains in writing amplitude were not retained after a retention period of six weeks without training in the patient group without FOG. Furthermore, patients with FOG were highly dependent on the visual target zones, reflecting reduced generalization of learning in this group. Although short-term learning effects were present in both groups, generalization and retention of motor learning were specifically impaired in patients with PD and FOG. The results of this study underscore the importance of individualized rehabilitation protocols.

  17. cuTauLeaping: A GPU-Powered Tau-Leaping Stochastic Simulator for Massive Parallel Analyses of Biological Systems

    PubMed Central

    Besozzi, Daniela; Pescini, Dario; Mauri, Giancarlo

    2014-01-01

    Tau-leaping is a stochastic simulation algorithm that efficiently reconstructs the temporal evolution of biological systems, modeled according to the stochastic formulation of chemical kinetics. The analysis of dynamical properties of these systems in physiological and perturbed conditions usually requires the execution of a large number of simulations, leading to high computational costs. Since each simulation can be executed independently from the others, a massive parallelization of tau-leaping can bring to relevant reductions of the overall running time. The emerging field of General Purpose Graphic Processing Units (GPGPU) provides power-efficient high-performance computing at a relatively low cost. In this work we introduce cuTauLeaping, a stochastic simulator of biological systems that makes use of GPGPU computing to execute multiple parallel tau-leaping simulations, by fully exploiting the Nvidia's Fermi GPU architecture. We show how a considerable computational speedup is achieved on GPU by partitioning the execution of tau-leaping into multiple separated phases, and we describe how to avoid some implementation pitfalls related to the scarcity of memory resources on the GPU streaming multiprocessors. Our results show that cuTauLeaping largely outperforms the CPU-based tau-leaping implementation when the number of parallel simulations increases, with a break-even directly depending on the size of the biological system and on the complexity of its emergent dynamics. In particular, cuTauLeaping is exploited to investigate the probability distribution of bistable states in the Schlögl model, and to carry out a bidimensional parameter sweep analysis to study the oscillatory regimes in the Ras/cAMP/PKA pathway in S. cerevisiae. PMID:24663957

  18. Immunoglobulin Fc gamma receptor promotes immunoglobulin uptake, immunoglobulin-mediated calcium increase, and neurotransmitter release in motor neurons

    NASA Technical Reports Server (NTRS)

    Mohamed, Habib A.; Mosier, Dennis R.; Zou, Ling L.; Siklos, Laszlo; Alexianu, Maria E.; Engelhardt, Jozsef I.; Beers, David R.; Le, Wei-dong; Appel, Stanley H.

    2002-01-01

    Receptors for the Fc portion of immunoglobulin G (IgG; FcgammaRs) facilitate IgG uptake by effector cells as well as cellular responses initiated by IgG binding. In earlier studies, we demonstrated that amyotrophic lateral sclerosis (ALS) patient IgG can be taken up by motor neuron terminals and transported retrogradely to the cell body and can alter the function of neuromuscular synapses, such as increasing intracellular calcium and spontaneous transmitter release from motor axon terminals after passive transfer. In the present study, we examined whether FcgammaR-mediated processes can contribute to these effects of ALS patient immunoglobulins. F(ab')(2) fragments (which lack the Fc portion) of ALS patient IgG were not taken up by motor axon terminals and were not retrogradely transported. Furthermore, in a genetically modified mouse lacking the gamma subunit of the FcR, the uptake of whole ALS IgG and its ability to enhance intracellular calcium and acetylcholine release were markedly attenuated. These data suggest that FcgammaRs appear to participate in IgG uptake into motor neurons as well as IgG-mediated increases in intracellular calcium and acetylcholine release from motor axon terminals. Copyright 2002 Wiley-Liss, Inc.

  19. Atorvastatin prevents Aβ oligomer-induced neurotoxicity in cultured rat hippocampal neurons by inhibiting Tau cleavage

    PubMed Central

    Sui, Hai-juan; Zhang, Ling-ling; Liu, Zhou; Jin, Ying

    2015-01-01

    Aim: The proteolytic cleavage of Tau is involved in Aβ-induced neuronal dysfunction and cell death. In this study, we investigated whether atorvastatin could prevent Tau cleavage and hence prevent Aβ1–42 oligomer (AβO)-induced neurotoxicity in cultured cortical neurons. Methods: Cultured rat hippocampal neurons were incubated in the presence of AβOs (1.25 μmol/L) with or without atorvastatin pretreatment. ATP content and LDH in the culture medium were measured to assess the neuronal viability. Caspase-3/7 and calpain protease activities were detected. The levels of phospho-Akt, phospho-Erk1/2, phospho-GSK3β, p35 and Tau proteins were measured using Western blotting. Results: Treatment of the neurons with AβO significantly decreased the neuronal viability, induced rapid activation of calpain and caspase-3/7 proteases, accompanied by Tau degradation and relatively stable fragments generated in the neurons. AβO also suppressed Akt and Erk1/2 kinase activity, while increased GSK3β and Cdk5 activity in the neurons. Pretreatment with atorvastatin (0.5, 1, 2.5 μmol/L) dose-dependently inhibited AβO-induced activation of calpain and caspase-3/7 proteases, and effectively diminished the generation of Tau fragments, attenuated synaptic damage and increased neuronal survival. Atorvastatin pretreatment also prevented AβO-induced decreases in Akt and Erk1/2 kinase activity and the increases in GSK3β and Cdk5 kinase activity. Conclusion: Atorvastatin prevents AβO-induced neurotoxicity in cultured rat hippocampal neurons by inhibiting calpain- and caspase-mediated Tau cleavage. PMID:25891085

  20. Prediction of Neurocognitive Deficits by Parkinsonian Motor Impairment in Schizophrenia: A Study in Neuroleptic-Naïve Subjects, Unaffected First-Degree Relatives and Healthy Controls From an Indigenous Population.

    PubMed

    Molina, Juan L; González Alemán, Gabriela; Florenzano, Néstor; Padilla, Eduardo; Calvó, María; Guerrero, Gonzalo; Kamis, Danielle; Stratton, Lee; Toranzo, Juan; Molina Rangeon, Beatriz; Hernández Cuervo, Helena; Bourdieu, Mercedes; Sedó, Manuel; Strejilevich, Sergio; Cloninger, Claude Robert; Escobar, Javier I; de Erausquin, Gabriel A

    2016-11-01

    Neurocognitive deficits are among the most debilitating and pervasive symptoms of schizophrenia, and are present also in unaffected first-degree relatives. Also, multiple reports reveal parkisonian motor deficits in untreated subjects with schizophrenia and in first-degree relatives of affected subjects. Yet, the relation between motor and cognitive impairment and its value as a classifier of endophenotypes has not been studied. To test the efficacy of midbrain hyperechogenicity (MHE) and parkinsonian motor impairment (PKM) as predictors of neurocognitive impairment in subjects with or at risk for schizophrenia, that could be used to segregate them from first-degree relatives and healthy controls. Seventy-six subjects with chronic schizophrenia never exposed to antipsychotic medication, 106 unaffected first-degree relatives, and 62 healthy controls were blindly assessed for cognitive and motor function, and transcranial ultrasound. Executive function, fluid intelligence, motor planning, and hand coordination showed group differences. PKM and MHE were significantly higher in untreated schizophrenia and unaffected relatives. Unaffected relatives showed milder impairment, but were different from controls. PKM and MHE predict cognitive impairment in neuroleptic-naive patients with schizophrenia and their unaffected first-degree relatives and may be used to segregate them from first-degree relatives and healthy controls. © The Author 2016. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  1. Cognitive-Motor Interference during Walking in Older Adults with Probable Mild Cognitive Impairment

    PubMed Central

    Klotzbier, Thomas J.; Schott, Nadja

    2017-01-01

    Although several studies have shown that dual-tasking (DT) mobility is impaired in Alzheimer's disease, studies on the effects of DT conditions in probable Mild Cognitive Impairment (pMCI) have not yielded unequivocal results. The objectives of the study were to (1) examine the effect of a concurrent task on a complex walking task in adults with cognitive impairment; and (2) determine whether the effect varied with different difficulty levels of the concurrent task. Furthermore, the study was designed to evaluate the Trail-Walking Test (TWT) as a potential detection tool for MCI. We examined DT performance in 42 young adults (mean age 23.9 ± 1.98), and 43 older adults (mean age 68.2 ± 6.42). The MoCA was used to stratify the subjects into those with and without pMCI. DT was assessed using the TWT: participants completed 5 trials each of walking along a fixed pathway, stepping on targets with increasing sequential numbers (i.e., 1-2-…-15), and increasing sequential numbers and letters (i.e., 1-A-2-B-3-…-8). Motor and cognitive DT effects (DTE) were calculated for each task. ROC curves were used to distinguish younger and healthy older adults from older adults with pMCI. The TWT showed excellent test-retest reliability across all conditions and groups (ICC : 0.83–0.97). SEM% was also low (<11%) as was the MDC95% (<30%). Within the DT conditions, the pMCI group showed significantly longer durations for all tasks regardless of the cognitive load compared to the younger and the healthy older adults. The motor DTEs were greatest for the complex condition in older adults with pMCI more so than in comparison with younger and healthy older adults. ROC analyses confirmed that only the tasks with higher cognitive load could differentiate older adults with pMCI from controls (area under the curve >0.7, p < 0.05). The TWT is a reliable DT mobility measure in people with pMCI. However, the condition with high cognitive load is more sensitive than the condition with low

  2. Cognitive-Motor Interference during Walking in Older Adults with Probable Mild Cognitive Impairment.

    PubMed

    Klotzbier, Thomas J; Schott, Nadja

    2017-01-01

    Although several studies have shown that dual-tasking (DT) mobility is impaired in Alzheimer's disease, studies on the effects of DT conditions in probable Mild Cognitive Impairment (pMCI) have not yielded unequivocal results. The objectives of the study were to (1) examine the effect of a concurrent task on a complex walking task in adults with cognitive impairment; and (2) determine whether the effect varied with different difficulty levels of the concurrent task. Furthermore, the study was designed to evaluate the Trail-Walking Test (TWT) as a potential detection tool for MCI. We examined DT performance in 42 young adults (mean age 23.9 ± 1.98), and 43 older adults (mean age 68.2 ± 6.42). The MoCA was used to stratify the subjects into those with and without pMCI. DT was assessed using the TWT: participants completed 5 trials each of walking along a fixed pathway, stepping on targets with increasing sequential numbers (i.e., 1-2-…-15), and increasing sequential numbers and letters (i.e., 1-A-2-B-3-…-8). Motor and cognitive DT effects (DTE) were calculated for each task. ROC curves were used to distinguish younger and healthy older adults from older adults with pMCI. The TWT showed excellent test-retest reliability across all conditions and groups (ICC : 0.83-0.97). SEM% was also low (<11%) as was the MDC95% (<30%). Within the DT conditions, the pMCI group showed significantly longer durations for all tasks regardless of the cognitive load compared to the younger and the healthy older adults. The motor DTEs were greatest for the complex condition in older adults with pMCI more so than in comparison with younger and healthy older adults. ROC analyses confirmed that only the tasks with higher cognitive load could differentiate older adults with pMCI from controls (area under the curve >0.7, p < 0.05). The TWT is a reliable DT mobility measure in people with pMCI. However, the condition with high cognitive load is more sensitive than the condition with low

  3. Does Emotion Dysregulation Mediate the Association Between Sluggish Cognitive Tempo and College Students' Social Impairment?

    PubMed

    Flannery, Andrew J; Becker, Stephen P; Luebbe, Aaron M

    2016-09-01

    Studies demonstrate an association between sluggish cognitive tempo (SCT) and social impairment, although no studies have tested possible mechanisms of this association. This study aimed to (a) examine SCT in relation to college students' social functioning; (b) test if SCT is significantly associated with emotion dysregulation beyond depressive, anxious, and ADHD symptoms; and (c) test if emotion dysregulation mediates the association between SCT symptoms and social impairment. College students (N = 158) completed measures of psychopathology symptoms, emotion dysregulation, and social functioning. Participants with elevated SCT (12%) had higher ADHD, depressive, and anxious symptoms in addition to poorer emotion regulation and social adjustment than participants without elevated SCT. Above and beyond other psychopathologies, SCT was significantly associated with social impairment but not general interpersonal functioning. SCT was also associated with emotion dysregulation, even after accounting for the expectedly strong association between depression and emotion dysregulation. Further analyses supported emotion dysregulation as a mediator of the association between SCT and social impairment. These findings are important for theoretical models of SCT and underscore the need for additional, longitudinal research. © The Author(s) 2014.

  4. Distinct motor impairments of dopamine D1 and D2 receptor knockout mice revealed by three types of motor behavior

    PubMed Central

    Nakamura, Toru; Sato, Asako; Kitsukawa, Takashi; Momiyama, Toshihiko; Yamamori, Tetsuo; Sasaoka, Toshikuni

    2014-01-01

    Both D1R and D2R knock out (KO) mice of the major dopamine receptors show significant motor impairments. However, there are some discrepant reports, which may be due to the differences in genetic background and experimental procedures. In addition, only few studies directly compared the motor performance of D1R and D2R KO mice. In this paper, we examined the behavioral difference among N10 congenic D1R and D2R KO, and wild type (WT) mice. First, we examined spontaneous motor activity in the home cage environment for consecutive 5 days. Second, we examined motor performance using the rota-rod task, a standard motor task in rodents. Third, we examined motor ability with the Step-Wheel task in which mice were trained to run in a motor-driven turning wheel adjusting their steps on foothold pegs to drink water. The results showed clear differences among the mice of three genotypes in three different types of behavior. In monitoring spontaneous motor activities, D1R and D2R KO mice showed higher and lower 24 h activities, respectively, than WT mice. In the rota-rod tasks, at a low speed, D1R KO mice showed poor performance but later improved, whereas D2R KO mice showed a good performance at early days without further improvement. When first subjected to a high speed task, the D2R KO mice showed poorer rota-rod performance at a low speed than the D1R KO mice. In the Step-Wheel task, across daily sessions, D2R KO mice increased the duration that mice run sufficiently close to the spout to drink water, and decreased time to touch the floor due to missing the peg steps and number of times the wheel was stopped, which performance was much better than that of D1R KO mice. These incongruent results between the two tasks for D1R and D2R KO mice may be due to the differences in the motivation for the rota-rod and Step-Wheel tasks, aversion- and reward-driven, respectively. The Step-Wheel system may become a useful tool for assessing the motor ability of WT and mutant mice. PMID

  5. Strain Mediated Adaptation Is Key for Myosin Mechanochemistry: Discovering General Rules for Motor Activity.

    PubMed

    Jana, Biman; Onuchic, José N

    2016-08-01

    A structure-based model of myosin motor is built in the same spirit of our early work for kinesin-1 and Ncd towards physical understanding of its mechanochemical cycle. We find a structural adaptation of the motor head domain in post-powerstroke state that signals faster ADP release from it compared to the same from the motor head in the pre-powerstroke state. For dimeric myosin, an additional forward strain on the trailing head, originating from the postponed powerstroke state of the leading head in the waiting state of myosin, further increases the rate of ADP release. This coordination between the two heads is the essence of the processivity of the cycle. Our model provides a structural description of the powerstroke step of the cycle as an allosteric transition of the converter domain in response to the Pi release. Additionally, the variation in structural elements peripheral to catalytic motor domain is the deciding factor behind diverse directionalities of myosin motors (myosin V & VI). Finally, we observe that there are general rules for functional molecular motors across the different families. Allosteric structural adaptation of the catalytic motor head in different nucleotide states is crucial for mechanochemistry. Strain-mediated coordination between motor heads is essential for processivity and the variation of peripheral structural elements is essential for their diverse functionalities.

  6. Strain Mediated Adaptation Is Key for Myosin Mechanochemistry: Discovering General Rules for Motor Activity

    PubMed Central

    Jana, Biman; Onuchic, José N.

    2016-01-01

    A structure-based model of myosin motor is built in the same spirit of our early work for kinesin-1 and Ncd towards physical understanding of its mechanochemical cycle. We find a structural adaptation of the motor head domain in post-powerstroke state that signals faster ADP release from it compared to the same from the motor head in the pre-powerstroke state. For dimeric myosin, an additional forward strain on the trailing head, originating from the postponed powerstroke state of the leading head in the waiting state of myosin, further increases the rate of ADP release. This coordination between the two heads is the essence of the processivity of the cycle. Our model provides a structural description of the powerstroke step of the cycle as an allosteric transition of the converter domain in response to the Pi release. Additionally, the variation in structural elements peripheral to catalytic motor domain is the deciding factor behind diverse directionalities of myosin motors (myosin V & VI). Finally, we observe that there are general rules for functional molecular motors across the different families. Allosteric structural adaptation of the catalytic motor head in different nucleotide states is crucial for mechanochemistry. Strain-mediated coordination between motor heads is essential for processivity and the variation of peripheral structural elements is essential for their diverse functionalities. PMID:27494025

  7. Participation in physical play and leisure: developing a theory- and evidence-based intervention for children with motor impairments

    PubMed Central

    2011-01-01

    Background Children with motor impairments (e.g. difficulties with motor control, muscle tone or balance) experience significant difficulties in participating in physical play and leisure. Current interventions are often poorly defined, lack explicit hypotheses about why or how they might work, and have insufficient evidence about effectiveness. This project will identify (i) the 'key ingredients' of an effective intervention to increase participation in physical play and leisure in children with motor impairments; and (ii) how these ingredients can be combined in a feasible and acceptable intervention. Methods/Design The project draws on the WHO International Classification of Functioning, Disability and Health and the UK Medical Research Council guidance for developing 'complex interventions'. There will be five steps: 1) identifying biomedical, personal and environmental factors proposed to predict children's participation in physical play and leisure; 2) developing an explicit model of the key predictors; 3) selecting intervention strategies to target the predictors, and specifying the pathways to change; 4) operationalising the strategies in a feasible and acceptable intervention; and 5) modelling the intervention processes and outcomes within single cases. Discussion The primary output from this project will be a detailed protocol for an intervention. The intervention, if subsequently found to be effective, will support children with motor difficulties to attain life-long well-being and participation in society. The project will also be an exemplar of methodology for a systematic development of non-drug interventions for children. PMID:22061203

  8. Participation in physical play and leisure: developing a theory- and evidence-based intervention for children with motor impairments.

    PubMed

    Kolehmainen, Niina; Francis, Jillian J; Ramsay, Craig R; Owen, Christine; McKee, Lorna; Ketelaar, Marjolijn; Rosenbaum, Peter

    2011-11-07

    Children with motor impairments (e.g. difficulties with motor control, muscle tone or balance) experience significant difficulties in participating in physical play and leisure. Current interventions are often poorly defined, lack explicit hypotheses about why or how they might work, and have insufficient evidence about effectiveness. This project will identify (i) the 'key ingredients' of an effective intervention to increase participation in physical play and leisure in children with motor impairments; and (ii) how these ingredients can be combined in a feasible and acceptable intervention. The project draws on the WHO International Classification of Functioning, Disability and Health and the UK Medical Research Council guidance for developing 'complex interventions'. There will be five steps: 1) identifying biomedical, personal and environmental factors proposed to predict children's participation in physical play and leisure; 2) developing an explicit model of the key predictors; 3) selecting intervention strategies to target the predictors, and specifying the pathways to change; 4) operationalising the strategies in a feasible and acceptable intervention; and 5) modelling the intervention processes and outcomes within single cases. The primary output from this project will be a detailed protocol for an intervention. The intervention, if subsequently found to be effective, will support children with motor difficulties to attain life-long well-being and participation in society. The project will also be an exemplar of methodology for a systematic development of non-drug interventions for children.

  9. P301L tau expression affects glutamate release and clearance in the hippocampal trisynaptic pathway.

    PubMed

    Hunsberger, Holly C; Rudy, Carolyn C; Batten, Seth R; Gerhardt, Greg A; Reed, Miranda N

    2015-01-01

    Individuals at risk of developing Alzheimer's disease (AD) often exhibit hippocampal hyperexcitability. A growing body of evidence suggests that perturbations in the glutamatergic tripartite synapse may underlie this hyperexcitability. Here, we used a tau mouse model of AD (rTg(TauP301L)4510) to examine the effects of tau pathology on hippocampal glutamate regulation. We found a 40% increase in hippocampal vesicular glutamate transporter, which packages glutamate into vesicles, and has previously been shown to influence glutamate release, and a 40% decrease in hippocampal glutamate transporter 1, the major glutamate transporter responsible for removing glutamate from the extracellular space. To determine whether these alterations affected glutamate regulation in vivo, we measured tonic glutamate levels, potassium-evoked glutamate release, and glutamate uptake/clearance in the dentate gyrus, cornu ammonis 3(CA3), and cornu ammonis 1(CA1) regions of the hippocampus. P301L tau expression resulted in a 4- and 7-fold increase in potassium-evoked glutamate release in the dentate gyrus and CA3, respectively, and significantly decreased glutamate clearance in all three regions. Both release and clearance correlated with memory performance in the hippocampal-dependent Barnes maze task. Alterations in mice expressing P301L were observed at a time when tau pathology was subtle and before readily detectable neuron loss. These data suggest novel mechanisms by which tau may mediate hyperexcitability. Pre-synaptic vesicular glutamate transporters (vGLUTs) package glutamate into vesicles before exocytosis into the synaptic cleft. Once in the extracellular space, glutamate acts on glutamate receptors. Glutamate is removed from the extracellular space by excitatory amino acid transporters, including GLT-1, predominantly localized to glia. P301L tau expression increases vGLUT expression and glutamate release, while also decreasing GLT-1 expression and glutamate clearance. © 2014

  10. Social defeat leads to changes in the endocannabinoid system: An overexpression of calreticulin and motor impairment in mice.

    PubMed

    Tomas-Roig, J; Piscitelli, F; Gil, V; Del Río, J A; Moore, T P; Agbemenyah, H; Salinas-Riester, G; Pommerenke, C; Lorenzen, S; Beißbarth, T; Hoyer-Fender, S; Di Marzo, V; Havemann-Reinecke, U

    2016-04-15

    Prolonged and sustained stimulation of the hypothalamo-pituitary-adrenal axis have adverse effects on numerous brain regions, including the cerebellum. Motor coordination and motor learning are essential for animal and require the regulation of cerebellar neurons. The G-protein-coupled cannabinoid CB1 receptor coordinates synaptic transmission throughout the CNS and is of highest abundance in the cerebellum. Accordingly, the aim of this study was to investigate the long-lasting effects of chronic psychosocial stress on motor coordination and motor learning, CB1 receptor expression, endogenous cannabinoid ligands and gene expression in the cerebellum. After chronic psychosocial stress, motor coordination and motor learning were impaired as indicated the righting reflex and the rota-rod. The amount of the endocannabinoid 2-AG increased while CB1 mRNA and protein expression were downregulated after chronic stress. Transcriptome analysis revealed 319 genes differentially expressed by chronic psychosocial stress in the cerebellum; mainly involved in synaptic transmission, transmission of nerve impulse, and cell-cell signaling. Calreticulin was validated as a stress candidate gene. The present study provides evidence that chronic stress activates calreticulin and might be one of the pathological mechanisms underlying the motor coordination and motor learning dysfunctions seen in social defeat mice. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Folic Acid Reduces Tau Phosphorylation by Regulating PP2A Methylation in Streptozotocin-Induced Diabetic Mice

    PubMed Central

    Zheng, Miaoyan; Zou, Chen; Li, Mengyue; Huang, Guowei; Gao, Yuxia; Liu, Huan

    2017-01-01

    High incidence rate of Alzheimer’s disease (AD) is observed in patients with type 2 diabetes. Aggregated β-amyloid (Aβ) and hyperphosphorylated tau are the hallmarks of AD. Hyperphosphorylated tau has been detected in diabetic animals as well as in diabetic patients. Folates mediate the transfer of one carbon unit, required in various biochemical reactions. The effect of folate on tau phosphorylation in diabetic models still remains unknown. In this study, we investigated the effect and mechanism of folic acid on hyperphosphorylation of tau in streptozotocin (STZ)-induced diabetic mice. Diabetic mice induced by STZ, at the age of 10 weeks, were administered with three levels of folic acid: folic acid-deficient diet, diet with normal folic acid content, and 120 μg/kg folic acid diet for 8 weeks. Levels of serum folate and blood glucose were monitored. Tau phosphorylation, protein phosphatase 2A (PP2A) methylation, and Glycogen synthase kinase 3β (GSK-3β) phosphorylation were detected using Western blot. The S-adenosyl methionine:S-adenosyl homocysteine ratio (SAM:SAH) in brain tissues was also determined. DNA methyltransferase (DNMT) mRNA expression levels were detected using real-time PCR. Folic acid reduced tau hyperphosphorylation at Ser396 in the brain of diabetes mellitus (DM) mice. In addition, PP2A methylation and DNMT1 mRNA expression were significantly increased in DM mice post folic acid treatment. GSK-3β phosphorylation was not regulated by folic acid administration. Folic acid can reduce tau phosphorylation by regulating PP2A methylation in diabetic mice. These results support that folic acid can serve as a multitarget neuronal therapeutic agent for treating diabetes-associated cognitive dysfunction. PMID:28422052

  12. The Brainstem Tau Cytoskeletal Pathology of Alzheimer's Disease: A Brief Historical Overview and Description of its Anatomical Distribution Pattern, Evolutional Features, Pathogenetic and Clinical Relevance.

    PubMed

    Rüb, Udo; Stratmann, Katharina; Heinsen, Helmut; Turco, Domenico Del; Seidel, Kay; Dunnen, Wilfred den; Korf, Horst-Werner

    2016-01-01

    The human brainstem is involved in the regulation of the sleep/waking cycle and normal sleep architectonics and is crucial for the performance of a variety of somatomotor, vital autonomic, oculomotor, vestibular, auditory, ingestive and somatosensory functions. It harbors the origins of the ascending dopaminergic, cholinergic, noradrenergic, serotonergic systems, as well the home base of the descending serotonergic system. In contrast to the cerebral cortex the affection of the brainstem in Alzheimer's disease (AD) by the neurofibrillary or tau cytoskeletal pathology was recognized only approximately fourty years ago in initial brainstem studies. Detailed pathoanatomical investigations of silver stained or tau immunostained brainstem tissue sections revealed nerve cell loss and prominent ADrelated cytoskeletal changes in the raphe nuclei, locus coeruleus, and in the compact parts of the substantia nigra and pedunculopontine nucleus. An additional conspicuous AD-related cytoskeletal pathology was also detected in the auditory brainstem system of AD patients (i.e. inferior colliculus, superior olive, dorsal cochlear nucleus), in the oculomotor brainstem network (i.e. rostral interstitial nucleus of the medial longitudinal fascicle, Edinger-Westphal nucleus, reticulotegmental nucleus of pons), autonomic system (i.e. central and periaqueductal grays, parabrachial nuclei, gigantocellular reticular nucleus, dorsal motor vagal and solitary nuclei, intermediate reticular zone). The alterations in these brainstem nuclei offered for the first time adequate explanations for a variety of less understood disease symptoms of AD patients: Parkinsonian extrapyramidal motor signs, depression, hallucinations, dysfunctions of the sleep/wake cycle, changes in sleeping patterns, attentional deficits, exaggerated pupil dilatation, autonomic dysfunctions, impairments of horizontal and vertical saccades, dysfunctional smooth pursuits. The very early occurrence of the AD

  13. A novel ALS-associated variant in UBQLN4 regulates motor axon morphogenesis.

    PubMed

    Edens, Brittany M; Yan, Jianhua; Miller, Nimrod; Deng, Han-Xiang; Siddique, Teepu; Ma, Yongchao C

    2017-05-02

    The etiological underpinnings of amyotrophic lateral sclerosis (ALS) are complex and incompletely understood, although contributions to pathogenesis by regulators of proteolytic pathways have become increasingly apparent. Here, we present a novel variant in UBQLN4 that is associated with ALS and show that its expression compromises motor axon morphogenesis in mouse motor neurons and in zebrafish. We further demonstrate that the ALS-associated UBQLN4 variant impairs proteasomal function, and identify the Wnt signaling pathway effector beta-catenin as a UBQLN4 substrate. Inhibition of beta-catenin function rescues the UBQLN4 variant-induced motor axon phenotypes. These findings provide a strong link between the regulation of axonal morphogenesis and a new ALS-associated gene variant mediated by protein degradation pathways.

  14. Development of fine motor skills in preterm infants.

    PubMed

    Bos, Arend F; Van Braeckel, Koenraad N J A; Hitzert, Marrit M; Tanis, Jozien C; Roze, Elise

    2013-11-01

    Fine motor skills are related to functioning in daily life and at school. We reviewed the status of knowledge, in preterm children, on the development of fine motor skills, the relation with gross motor skills, and risk factors for impaired fine motor skills. We searched the past 15 years in PubMed, using ['motor skills' or 'fine motor function' and 'preterm infant'] as the search string. Impaired gross and fine motor skills are among the most frequently occurring problems encountered by preterm children who do not develop cerebral palsy. The prevalence is around 40% for mild to moderate impairment and 20% for moderate impairment. Fine motor skill scores on the Movement Assessment Battery for Children are about 0.62 of a standard deviation lower compared with term children. Risk factors for fine motor impairments include moderately preterm birth (odds ratio [OR] 2.0) and, among very preterm children (<32 wk gestation), intra-uterine growth restriction (ORs 2-3), inflammatory conditions (late-onset sepsis and necrotizing enterocolitis, ORs 3-5), and dexamethasone therapy for bronchopulmonary dysplasia (OR 2.7). A better understanding of factors that play a role in the development of and recovery from brain injury could guide future intervention attempts aimed at improving fine motor skills of preterm children. © The Authors. Developmental Medicine & Child Neurology © 2013 Mac Keith Press.

  15. Non-invasive brain stimulation for fine motor improvement after stroke: a meta-analysis.

    PubMed

    O'Brien, A T; Bertolucci, F; Torrealba-Acosta, G; Huerta, R; Fregni, F; Thibaut, A

    2018-05-09

    The aim of this study was to determine whether non-invasive brain stimulation (NIBS) techniques improve fine motor performance in stroke. We searched PubMed, EMBASE, Web of Science, SciELO and OpenGrey for randomized clinical trials on NIBS for fine motor performance in stroke patients and healthy participants. We computed Hedges' g for active and sham groups, pooled data as random-effects models and performed sensitivity analysis on chronicity, montage, frequency of stimulation and risk of bias. Twenty-nine studies (351 patients and 152 healthy subjects) were reviewed. Effect sizes in stroke populations for transcranial direct current stimulation and repeated transcranial magnetic stimulation were 0.31 [95% confidence interval (CI), 0.08-0.55; P = 0.010; Tau 2 , 0.09; I 2 , 34%; Q, 18.23; P = 0.110] and 0.46 (95% CI, 0.00-0.92; P = 0.05; Tau 2 , 0.38; I 2 , 67%; Q, 30.45; P = 0.007). The effect size of non-dominant healthy hemisphere transcranial direct current stimulation on non-dominant hand function was 1.25 (95% CI, 0.09-2.41; P = 0.04; Tau 2 , 1.26; I 2 , 93%; Q, 40.27; P < 0.001). Our results show that NIBS is associated with gains in fine motor performance in chronic stroke patients and healthy subjects. This supports the effects of NIBS on motor learning and encourages investigation to optimize their effects in clinical and research settings. © 2018 EAN.

  16. Childhood Social Withdrawal, Interpersonal Impairment, and Young Adult Depression: A Mediational Model

    ERIC Educational Resources Information Center

    Katz, Shaina J.; Conway, Christopher C.; Hammen, Constance L.; Brennan, Patricia A.; Najmanm, Jake M.

    2011-01-01

    Building on interpersonal theories of depression, the current study sought to explore whether early childhood social withdrawal serves as a risk factor for depressive symptoms and diagnoses in young adulthood. The researchers hypothesized that social impairment at age 15 would mediate the association between social withdrawal at age 5 and…

  17. Combining afferent stimulation and mirror therapy for rehabilitating motor function, motor control, ambulation, and daily functions after stroke.

    PubMed

    Lin, Keh-chung; Huang, Pai-chuan; Chen, Yu-ting; Wu, Ching-yi; Huang, Wen-ling

    2014-02-01

    Mirror therapy (MT) and mesh glove (MG) afferent stimulation may be effective in reducing motor impairment after stroke. A hybrid intervention of MT combined with MG (MT + MG) may broaden aspects of treatment benefits. To demonstrate the comparative effects of MG + MT, MT, and a control treatment (CT) on the outcomes of motor impairments, manual dexterity, ambulation function, motor control, and daily function. Forty-three chronic stroke patients with mild to moderate upper extremity impairment were randomly assigned to receive MT + MG, MT, or CT for 1.5 hours/day, 5 days/week for 4 weeks. Outcome measures were the Fugl-Meyer Assessment (FMA) and muscle tone measured by Myoton-3 for motor impairment and the Box and Block Test (BBT) and 10-Meter Walk Test (10 MWT) for motor function. Secondary outcomes included kinematic parameters for motor control and the Motor Activity Log and ABILHAND Questionnaire for daily function. FMA total scores were significantly higher and synergistic shoulder abduction during reach was less in the MT + MG and MT groups compared with the CT group. Performance on the BBT and the 10 MWT (velocity and stride length in self-paced task and velocity in as-quickly-as-possible task) were improved after MT + MG compared with MT. MT + MG improved manual dexterity and ambulation. MT + MG and MT reduced motor impairment and synergistic shoulder abduction more than CT. Future studies may integrate functional task practice into treatments to enhance functional outcomes in patients with various levels of motor severity. The long-term effects of MG + MT remain to be evaluated.

  18. Methylene blue upregulates Nrf2/ARE genes and prevents tau-related neurotoxicity.

    PubMed

    Stack, Cliona; Jainuddin, Shari; Elipenahli, Ceyhan; Gerges, Meri; Starkova, Natalia; Starkov, Anatoly A; Jové, Mariona; Portero-Otin, Manuel; Launay, Nathalie; Pujol, Aurora; Kaidery, Navneet Ammal; Thomas, Bobby; Tampellini, Davide; Beal, M Flint; Dumont, Magali

    2014-07-15

    Methylene blue (MB, methylthioninium chloride) is a phenothiazine that crosses the blood brain barrier and acts as a redox cycler. Among its beneficial properties are its abilities to act as an antioxidant, to reduce tau protein aggregation and to improve energy metabolism. These actions are of particular interest for the treatment of neurodegenerative diseases with tau protein aggregates known as tauopathies. The present study examined the effects of MB in the P301S mouse model of tauopathy. Both 4 mg/kg MB (low dose) and 40 mg/kg MB (high dose) were administered in the diet ad libitum from 1 to 10 months of age. We assessed behavior, tau pathology, oxidative damage, inflammation and numbers of mitochondria. MB improved the behavioral abnormalities and reduced tau pathology, inflammation and oxidative damage in the P301S mice. These beneficial effects were associated with increased expression of genes regulated by NF-E2-related factor 2 (Nrf2)/antioxidant response element (ARE), which play an important role in antioxidant defenses, preventing protein aggregation, and reducing inflammation. The activation of Nrf2/ARE genes is neuroprotective in other transgenic mouse models of neurodegenerative diseases and it appears to be an important mediator of the neuroprotective effects of MB in P301S mice. Moreover, we used Nrf2 knock out fibroblasts to show that the upregulation of Nrf2/ARE genes by MB is Nrf2 dependent and not due to secondary effects of the compound. These findings provide further evidence that MB has important neuroprotective effects that may be beneficial in the treatment of human neurodegenerative diseases with tau pathology. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Tau-imaging in neurodegeneration.

    PubMed

    Bischof, Gérard N; Endepols, Heike; van Eimeren, Thilo; Drzezga, Alexander

    2017-11-01

    Pathological cerebral aggregations of proteins are suggested to play a crucial role in the development of neurodegenerative disorders. For example, aggregation of the protein ß-amyloid in form of extracellular amyloid-plaques as well as intraneuronal depositions of the protein tau in form of neurofibrillary tangles represent hallmarks of Alzheimer's disease (AD). Recently, novel tracers for in vivo molecular imaging of tau-aggregates in the brain have been introduced, complementing existing tracers for imaging amyloid-plaques. Available data on these novel tracers indicate that the subject of Tau-PET may be of considerable complexity. On the one hand this refers to the various forms of appearance of tau-pathology in different types of neurodegenerative disorders. On the other hand, a number of hurdles regarding validation of these tracers still need to be overcome with regard to comparability and standardization of the different tracers, observed off-target/non-specific binding and quantitative interpretation of the signal. These issues will have to be clarified before systematic clinical application of this exciting new methodological approach may become possible. Potential applications refer to early detection of neurodegeneration, differential diagnosis between tauopathies and non-tauopathies and specific patient selection and follow-up in therapy trials. Copyright © 2017. Published by Elsevier Inc.

  20. Physiological demands of therapeutic horseback riding in children with moderate to severe motor impairments: an exploratory study.

    PubMed

    Bongers, Bart C; Takken, Tim

    2012-01-01

    To examine energy expenditure at rest and during a single therapeutic horseback riding (THR) session in children with moderate to severe motor impairments. Heart rate (HR), oxygen uptake (.VO2), and minute ventilation (.VE) were measured continuously during a 10-minute rest period and during a typical THR session. Seven children (4 males, mean age 12.3 ± 3.5 years) completed the protocol. Significant increases from rest were seen for mean HR, .VO2, .VE, and energy expenditure. Based on .VO2, 43.3 ± 24.3% of the THR session consisted of sedentary, 44.4 ± 13.4% of light, and 12.3 ± 21.8% of moderate to vigorous activity intensity, with large interindividual differences. The physiological demands of THR in children with moderate to severe motor impairments are moderate. However, considering the short duration of maintaining moderate to vigorous exercise activity during THR in combination with the low training frequency, group data indicate that it is unlikely that THR will improve cardiopulmonary fitness in these children.

  1. Hyperphosphorylated tau in patients with refractory epilepsy correlates with cognitive decline: a study of temporal lobe resections

    PubMed Central

    Tai, Xin You; Koepp, Matthias; Duncan, John S.; Fox, Nick; Thompson, Pamela; Baxendale, Sallie; Liu, Joan Y. W.; Reeves, Cheryl; Michalak, Zuzanna

    2016-01-01

    Abstract See Bernasconi (doi:10.1093/aww202) for a scientific commentary on this article. Temporal lobe epilepsy, the most prevalent form of chronic focal epilepsy, is associated with a high prevalence of cognitive impairment but the responsible underlying pathological mechanisms are unknown. Tau, the microtubule-associated protein, is a hallmark of several neurodegenerative diseases including Alzheimer’s disease and chronic traumatic encephalopathy. We hypothesized that hyperphosphorylated tau pathology is associated with cognitive decline in temporal lobe epilepsy and explored this through clinico-pathological study. We first performed pathological examination on tissue from 33 patients who had undergone temporal lobe resection between ages 50 and 65 years to treat drug-refractory temporal lobe epilepsy. We identified hyperphosphorylated tau protein using AT8 immunohistochemistry and compared this distribution to Braak patterns of Alzheimer’s disease and patterns of chronic traumatic encephalopathy. We quantified tau pathology using a modified tau score created specifically for analysis of temporal lobectomy tissue and the Braak staging, which was limited without extra-temporal brain areas available. Next, we correlated tau pathology with pre- and postoperative cognitive test scores and clinical risk factors including age at time of surgery, duration of epilepsy, history of secondary generalized seizures, history of head injury, handedness and side of surgery. Thirty-one of 33 cases (94%) showed hyperphosphorylated tau pathology in the form of neuropil threads and neurofibrillary tangles and pre-tangles. Braak stage analysis showed 12% of our epilepsy cohort had a Braak staging III-IV compared to an age-matched non-epilepsy control group from the literature (8%). We identified a mixture of tau pathology patterns characteristic of Alzheimer’s disease and chronic traumatic encephalopathy. We also found unusual patterns of subpial tau deposition, sparing of

  2. Review: Tau in biofluids - relation to pathology, imaging and clinical features.

    PubMed

    Zetterberg, H

    2017-04-01

    Tau is a microtubule-binding protein that is important for the stability of neuronal axons. It is normally expressed within neurons and is also secreted into the brain interstitial fluid that communicates freely with cerebrospinal fluid (CSF) and, in a more restricted manner, blood via the glymphatic clearance system of the brain. In Alzheimer's disease (AD), neuroaxonal degeneration results in increased release of tau from neurons. Furthermore, tau is truncated and phosphorylated, which leads to aggregation of tau in neurofibrillary tangles of the proximal axoplasm. Neuroaxonal degeneration and tangle formation are reflected by increased concentrations of total tau (T-tau, measured using assays that detect most forms of tau) and phospho-tau (P-tau, measured using assays with antibodies specific to phosphorylated forms of tau). In AD CSF, both T-tau and P-tau concentrations are increased. In stroke and other CNS disorders with neuroaxonal injury but without tangles, T-tau is selectively increased, whereas P-tau concentration often stays normal. In tauopathies (diseases with both neurodegeneration and neurofibrillary tangles) other than AD, CSF T-tau and P-tau concentrations are typically unaltered, which is a puzzling result that warrants further investigation. In the current review, I discuss the association of T-tau and P-tau concentrations in body fluids with neuropathological changes, imaging findings and clinical features in AD and other CNS diseases. © 2017 British Neuropathological Society.

  3. The Effects of Home-Based Literacy Activities on the Communication of Students with Severe Speech and Motor Impairments

    ERIC Educational Resources Information Center

    Cox, Amy Swartz; Clark, Denise M.; Skoning, Stacey N.; Wegner, Theresa M.; Muwana, Florence C.

    2015-01-01

    This study examined the effects of using sensory, augmentative, and alternative communication (AAC), and supportive communication strategies on the rate and type of communication used by three students with severe speech and motor impairments (SSMI). Using a multiple baseline across behaviour design with sensory and AAC intervention phases,…

  4. Impaired Retention of Motor Learning of Writing Skills in Patients with Parkinson’s Disease with Freezing of Gait

    PubMed Central

    Heremans, Elke; Nackaerts, Evelien; Vervoort, Griet; Broeder, Sanne; Swinnen, Stephan P.; Nieuwboer, Alice

    2016-01-01

    Background Patients with Parkinson’s disease (PD) and freezing of gait (FOG) suffer from more impaired motor and cognitive functioning than their non-freezing counterparts. This underlies an even higher need for targeted rehabilitation programs in this group. However, so far it is unclear whether FOG affects the ability for consolidation and generalization of motor learning and thus the efficacy of rehabilitation. Objective To investigate the hallmarks of motor learning in people with FOG compared to those without by comparing the effects of an intensive motor learning program to improve handwriting. Methods Thirty five patients with PD, including 19 without and 16 with FOG received six weeks of handwriting training consisting of exercises provided on paper and on a touch-sensitive writing tablet. Writing training was based on single- and dual-task writing and was supported by means of visual target zones. To investigate automatization, generalization and retention of learning, writing performance was assessed before and after training in the presence and absence of cues and dual tasking and after a six-week retention period. Writing amplitude was measured as primary outcome measure and variability of writing and dual-task accuracy as secondary outcomes. Results Significant learning effects were present on all outcome measures in both groups, both for writing under single- and dual-task conditions. However, the gains in writing amplitude were not retained after a retention period of six weeks without training in the patient group without FOG. Furthermore, patients with FOG were highly dependent on the visual target zones, reflecting reduced generalization of learning in this group. Conclusions Although short-term learning effects were present in both groups, generalization and retention of motor learning were specifically impaired in patients with PD and FOG. The results of this study underscore the importance of individualized rehabilitation protocols. PMID

  5. Evaluation of chromatic cues for trapping Bactrocera tau.

    PubMed

    Li, Lei; Ma, Huabo; Niu, Liming; Han, Dongyin; Zhang, Fangping; Chen, Junyu; Fu, Yueguan

    2017-01-01

    Trapping technology based on chromatic cues is an important strategy in controlling Tephritidae (fruit flies). The objectives of this present study were to evaluate the preference of Bactrocera tau for different chromatic cues, and to explore an easy method to print and reproduce coloured paper. Chromatic cues significantly affected the preference of adult B. tau. Wavelengths in the 515-604 nm range were the suitable wavelengths for trapping B. tau. Different-day-old B. tau had different colour preferences. Virtual wavelengths of 595 nm (yellow) and 568 nm (yellowish green) were the optimum wavelengths for trapping 5-7-day-old B. tau and 30-32-day-old B. tau respectively. The trap type and height significantly influenced B. tau attraction efficiency. The number of B. tau on coloured traps hung perpendicular to plant rows was not significantly higher than the number on traps hung parallel to plant rows. The quantisation of colour on the basis of Bruton's wavelength to RGB function can serve as an alternative method for printing and reproducing coloured paper, but a corrected equation should be established between the theoretical wavelength and actual wavelength of coloured paper. Results show that a compound paper coloured yellow (595 nm) and yellowish green (568 nm) installed at 60 and 90 cm above the ground shows the maximum effect for trapping B. tau. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  6. Methylglyoxal induces tau hyperphosphorylation via promoting AGEs formation.

    PubMed

    Li, Xiao-Hong; Xie, Jia-Zhao; Jiang, Xia; Lv, Bing-Ling; Cheng, Xiang-Shu; Du, Lai-Ling; Zhang, Jia-Yu; Wang, Jian-Zhi; Zhou, Xin-Wen

    2012-12-01

    The hyperphosphorylated tau is a major protein component of neurofibrillary tangle, which is one of hallmarks of Alzheimer's disease (AD). While the level of methylglyoxal (MG) is significantly increased in the AD brains, the role of MG in tau phosphorylation is still not reported. Here, we found that MG could induce tau hyperphosphorylation at multiple AD-related sites in neuroblastoma 2a cells under maintaining normal cell viability. MG treatment increased the level of advanced glycation end products (AGEs) and the receptor of AGEs (RAGE). Glycogen synthesis kinase-3β (GSK-3β) and p38 MAPK were activated, whereas the level and activity of JNK, Erk1/2, cdk5, and PP2A were not altered after MG treatment. Simultaneous inhibition of GSK-3β or p38 attenuated the MG-induced tau hyperphosphorylation. Aminoguanidine, a blocker of AGEs formation, could effectively reverse the MG-induced tau hyperphosphorylation. These data suggest that MG induces AD-like tau hyperphosphorylation through AGEs formation involving RAGE up-regulation and GSK-3β activation and p38 activation is also partially involved in MG-induced tau hyperphosphorylation. Thus, targeting MG may be a promising therapeutic strategy to prevent AD-like tau hyperphosphorylation.

  7. Proteopathic tau seeding predicts tauopathy in vivo

    PubMed Central

    Holmes, Brandon B.; Furman, Jennifer L.; Mahan, Thomas E.; Yamasaki, Tritia R.; Mirbaha, Hilda; Eades, William C.; Belaygorod, Larisa; Cairns, Nigel J.; Holtzman, David M.; Diamond, Marc I.

    2014-01-01

    Transcellular propagation of protein aggregates, or proteopathic seeds, may drive the progression of neurodegenerative diseases in a prion-like manner. In tauopathies such as Alzheimer’s disease, this model predicts that tau seeds propagate pathology through the brain via cell–cell transfer in neural networks. The critical role of tau seeding activity is untested, however. It is unknown whether seeding anticipates and correlates with subsequent development of pathology as predicted for a causal agent. One major limitation has been the lack of a robust assay to measure proteopathic seeding activity in biological specimens. We engineered an ultrasensitive, specific, and facile FRET-based flow cytometry biosensor assay based on expression of tau or synuclein fusions to CFP and YFP, and confirmed its sensitivity and specificity to tau (∼300 fM) and synuclein (∼300 pM) fibrils. This assay readily discriminates Alzheimer’s disease vs. Huntington's disease and aged control brains. We then carried out a detailed time-course study in P301S tauopathy mice, comparing seeding activity versus histological markers of tau pathology, including MC1, AT8, PG5, and Thioflavin S. We detected robust seeding activity at 1.5 mo, >1 mo before the earliest histopathological stain. Proteopathic tau seeding is thus an early and robust marker of tauopathy, suggesting a proximal role for tau seeds in neurodegeneration. PMID:25261551

  8. Synaptic Contacts Enhance Cell-to-Cell Tau Pathology Propagation.

    PubMed

    Calafate, Sara; Buist, Arjan; Miskiewicz, Katarzyna; Vijayan, Vinoy; Daneels, Guy; de Strooper, Bart; de Wit, Joris; Verstreken, Patrik; Moechars, Diederik

    2015-05-26

    Accumulation of insoluble Tau protein aggregates and stereotypical propagation of Tau pathology through the brain are common hallmarks of tauopathies, including Alzheimer's disease (AD). Propagation of Tau pathology appears to occur along connected neurons, but whether synaptic contacts between neurons are facilitating propagation has not been demonstrated. Using quantitative in vitro models, we demonstrate that, in parallel to non-synaptic mechanisms, synapses, but not merely the close distance between the cells, enhance the propagation of Tau pathology between acceptor hippocampal neurons and Tau donor cells. Similarly, in an artificial neuronal network using microfluidic devices, synapses and synaptic activity are promoting neuronal Tau pathology propagation in parallel to the non-synaptic mechanisms. Our work indicates that the physical presence of synaptic contacts between neurons facilitate Tau pathology propagation. These findings can have implications for synaptic repair therapies, which may turn out to have adverse effects by promoting propagation of Tau pathology. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Measurement of the absolute branching fraction of Ds+ --> tau+ nutau decay.

    PubMed

    Ecklund, K M; Love, W; Savinov, V; Lopez, A; Mendez, H; Ramirez, J; Ge, J Y; Miller, D H; Shipsey, I P J; Xin, B; Adams, G S; Anderson, M; Cummings, J P; Danko, I; Hu, D; Moziak, B; Napolitano, J; He, Q; Insler, J; Muramatsu, H; Park, C S; Thorndike, E H; Yang, F; Artuso, M; Blusk, S; Khalil, S; Li, J; Mountain, R; Nisar, S; Randrianarivony, K; Sultana, N; Skwarnicki, T; Stone, S; Wang, J C; Zhang, L M; Bonvicini, G; Cinabro, D; Dubrovin, M; Lincoln, A; Rademacker, J; Asner, D M; Edwards, K W; Naik, P; Reed, J; Briere, R A; Ferguson, T; Tatishvili, G; Vogel, H; Watkins, M E; Rosner, J L; Alexander, J P; Cassel, D G; Duboscq, J E; Ehrlich, R; Fields, L; Gibbons, L; Gray, R; Gray, S W; Hartill, D L; Heltsley, B K; Hertz, D; Jones, C D; Kandaswamy, J; Kreinick, D L; Kuznetsov, V E; Mahlke-Krüger, H; Mohapatra, D; Onyisi, P U E; Patterson, J R; Peterson, D; Riley, D; Ryd, A; Sadoff, A J; Shi, X; Stroiney, S; Sun, W M; Wilksen, T; Athar, S B; Patel, R; Yelton, J; Rubin, P; Eisenstein, B I; Karliner, I; Mehrabyan, S; Lowrey, N; Selen, M; White, E J; Wiss, J; Mitchell, R E; Shepherd, M R; Besson, D; Pedlar, T K; Cronin-Hennessy, D; Gao, K Y; Hietala, J; Kubota, Y; Klein, T; Lang, B W; Poling, R; Scott, A W; Zweber, P; Dobbs, S; Metreveli, Z; Seth, K K; Tomaradze, A; Libby, J; Powell, A; Wilkinson, G

    2008-04-25

    Using a sample of tagged D(s)(+) decays collected near the D(s)(*+/-)D(s)(-/+) peak production energy in e(+)e(-) collisions with the CLEO-c detector, we study the leptonic decay D(s)(+)-->tau(+)nu(tau) via the decay channel tau(+)-->e(+)nu(e)nu(tau). We measure B(D(s)(+)-->tau(+)nu(tau))=(6.17+/-0.71+/-0.34)%, where the first error is statistical and the second systematic. Combining this result with our measurements of D(s)(+)-->mu(+)nu(mu) and D(s)(+)-->tau(+)nu(tau) (via tau(+)-->pi(+)nu(tau)), we determine f(D(s))=(274+/-10+/-5) MeV.

  10. A cognitive therapy program for hearing-impaired employees suffering from mental distress

    PubMed Central

    Falkum, Erik; Martinsen, Egil Wilhelm

    2015-01-01

    Objective: To develop a cognitive therapy program to reduce mental distress among hearing-impaired employees. Design: In a pilot study we measured the development of mental distress and avoidant coping among hearing-impaired employees. Levels of mental distress were assessed using the hospital anxiety and depression scale (HAD), and the extent of avoidance with conversation tactics checklist CONV(AVOID). The findings were compared with the development in a treatment as usual (TAU) sample. Study sample: Fifteen participants with an equal distribution of male and female participants (M = 49.2 years) took part. The majority had mild to moderate hearing impairment. Results: The program appeared to be feasible and the adherence was good. The mean depression score was identical at pre- and post-intervention in the intervention group, and increased from 2.9 (SD 2.1) to 3.1 (SD 2.0) in the TAU group. Symptoms of anxiety (p < 0.01, 95 % CI (.82, 3.98)) and avoidant communication (p < 0.05, 95% CI (.5, 4.61)) decreased significantly in the intervention group, while an opposite pattern was observed during the TAU program. Conclusions: The program showed promising results. However, the preliminary results should be further investigated in a randomized controlled trial using a larger sample. PMID:25328031

  11. Within-session and one-week practice effects on a motor task in amnestic mild cognitive impairment.

    PubMed

    Schaefer, Sydney Y; Duff, Kevin

    2017-06-01

    Practice effects on neuropsychological tests, which are improvements in test scores due to repeated exposure to testing materials, are robust in healthy elders, but muted in older adults with cognitive disorders. Conversely, few studies have investigated practice effects on motor tasks involving procedural memory, particularly across test-retest periods exceeding 24 hours. The current study examined one-week practice effects on a novel upper extremity motor task in 54 older adults with amnestic mild cognitive impairment. Results indicate that these individuals with primary memory deficits did improve on this motor task within a brief training session as well as across one week. These practice effects were unrelated to demographic characteristics or global cognition. One-week practice effects were, however, negatively related to delayed memory function, with larger practice effects being associated with poorer delayed memory and potentially better visuospatial ability. The presence of longer term practice effects on a procedural motor task not only has implications for how longitudinal assessments with similar measures involving implicit memory might be interpreted, but may also inform future rehabilitative strategies for patients with more severe declarative memory deficits.

  12. Hierarchical Distribution of the Tau Cytoskeletal Pathology in the Thalamus of Alzheimer's Disease Patients.

    PubMed

    Rüb, Udo; Stratmann, Katharina; Heinsen, Helmut; Del Turco, Domenico; Ghebremedhin, Estifanos; Seidel, Kay; den Dunnen, Wilfred; Korf, Horst-Werner

    2016-01-01

    In spite of considerable progress in neuropathological research on Alzheimer's disease (AD), knowledge regarding the exact pathoanatomical distribution of the tau cytoskeletal pathology in the thalamus of AD patients in the advanced Braak and Braak AD stages V or VI of the cortical cytoskeletal pathology is still fragmentary. Investigation of serial 100 μm-thick brain tissue sections through the thalamus of clinically diagnosed AD patients with Braak and Braak AD stage V or VI cytoskeletal pathologies immunostained with the anti-tau AT8 antibody, along with the affection of the extraterritorial reticular nucleus of the thalamus, reveals a consistent and severe tau immunoreactive cytoskeletal pathology in the limbic nuclei of the thalamus (e.g., paraventricular, anterodorsal and laterodorsal nuclei, limitans-suprageniculate complex). The thalamic nuclei integrated into the associative networks of the human brain (e.g., ventral anterior and mediodorsal nuclei) are only mildly affected, while its motor precerebellar (ventral lateral nucleus) and sensory nuclei (e.g., lateral and medial geniculate bodies, ventral posterior medial and lateral nuclei, parvocellular part of the ventral posterior medial nucleus) are more or less spared. The highly stereotypical and characteristic thalamic distribution pattern of the AD-related tau cytoskeletal pathology represents an anatomical mirror of the hierarchical topographic distribution of the cytoskeletal pathology in the interconnected regions of the cerebral cortex of AD patients. These pathoanatomical parallels support the pathophysiological concept of a transneuronal spread of the disease process of AD along anatomical pathways. The AD-related tau cytoskeletal pathology in the thalamus most likely contributes substantially to the neuropsychiatric disease symptoms (e.g., dementia), attention deficits, oculomotor dysfunctions, altered non-discriminative aspects of pain experience of AD patients, and the disruption of their

  13. Action observation and mirror neuron network: a tool for motor stroke rehabilitation.

    PubMed

    Sale, P; Franceschini, M

    2012-06-01

    Mirror neurons are a specific class of neurons that are activated and discharge both during observation of the same or similar motor act performed by another individual and during the execution of a motor act. Different studies based on non invasive neuroelectrophysiological assessment or functional brain imaging techniques have demonstrated the presence of the mirror neuron and their mechanism in humans. Various authors have demonstrated that in the human these networks are activated when individuals learn motor actions via execution (as in traditional motor learning), imitation, observation (as in observational learning) and motor imagery. Activation of these brain areas (inferior parietal lobe and the ventral premotor cortex, as well as the caudal part of the inferior frontal gyrus [IFG]) following observation or motor imagery may thereby facilitate subsequent movement execution by directly matching the observed or imagined action to the internal simulation of that action. It is therefore believed that this multi-sensory action-observation system enables individuals to (re) learn impaired motor functions through the activation of these internal action-related representations. In humans, the mirror mechanism is also located in various brain segment: in Broca's area, which is involved in language processing and speech production and not only in centres that mediate voluntary movement, but also in cortical areas that mediate visceromotor emotion-related behaviours. On basis of this finding, during the last 10 years various studies were carry out regarding the clinical use of action observation for motor rehabilitation of sub-acute and chronic stroke patients.

  14. High-fat, high-sugar, and high-cholesterol consumption does not impact tau pathogenesis in a mouse model of Alzheimer's disease-like tau pathology.

    PubMed

    Gratuze, Maud; Julien, Jacinthe; Morin, Françoise; Calon, Frédéric; Hébert, Sébastien S; Marette, André; Planel, Emmanuel

    2016-11-01

    Aggregates of hyperphosphorylated tau protein are a pathological hallmark of Alzheimer's disease (AD). The origin of AD is multifactorial, and many metabolic disorders originating from overconsumption of fat, cholesterol, and sugar are associated with higher risk of AD later in life. However, the effects of fat, cholesterol, and sugar overconsumption on tau pathology in AD remain controversial. Using the hTau mice, a model of AD-like tau pathology, we assessed the effects of high-fat, high-cholesterol, and/or high-sugar diets on tau pathogenesis. Surprisingly, we found no effects of these compounds, even combined, on tau phosphorylation, O-GlcNAcylation, splicing, cleavage, and aggregation, suggesting that their overconsumption does not seem to worsen tau pathology in these mice. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.

  15. Neuroinflammation increases GABAergic tone and impairs cognitive and motor function in hyperammonemia by increasing GAT-3 membrane expression. Reversal by sulforaphane by promoting M2 polarization of microglia.

    PubMed

    Hernandez-Rabaza, Vicente; Cabrera-Pastor, Andrea; Taoro-Gonzalez, Lucas; Gonzalez-Usano, Alba; Agusti, Ana; Balzano, Tiziano; Llansola, Marta; Felipo, Vicente

    2016-04-18

    Hyperammonemia induces neuroinflammation and increases GABAergic tone in the cerebellum which contributes to cognitive and motor impairment in hepatic encephalopathy (HE). The link between neuroinflammation and GABAergic tone remains unknown. New treatments reducing neuroinflammation and GABAergic tone could improve neurological impairment. The aims were, in hyperammonemic rats, to assess whether: (a) Enhancing endogenous anti-inflammatory mechanisms by sulforaphane treatment reduces neuroinflammation and restores learning and motor coordination. (b) Reduction of neuroinflammation by sulforaphane normalizes extracellular GABA and glutamate-NO-cGMP pathway and identify underlying mechanisms. (c) Identify steps by which hyperammonemia-induced microglial activation impairs cognitive and motor function and how sulforaphane restores them. We analyzed in control and hyperammonemic rats, treated or not with sulforaphane, (a) learning in the Y maze; (b) motor coordination in the beam walking; (c) glutamate-NO-cGMP pathway and extracellular GABA by microdialysis; (d) microglial activation, by analyzing by immunohistochemistry or Western blot markers of pro-inflammatory (M1) (IL-1b, Iba-1) and anti-inflammatory (M2) microglia (Iba1, IL-4, IL-10, Arg1, YM-1); and (e) membrane expression of the GABA transporter GAT-3. Hyperammonemia induces activation of astrocytes and microglia in the cerebellum as assessed by immunohistochemistry. Hyperammonemia-induced neuroinflammation is associated with increased membrane expression of the GABA transporter GAT-3, mainly in activated astrocytes. This is also associated with increased extracellular GABA in the cerebellum and with motor in-coordination and impaired learning ability in the Y maze. Sulforaphane promotes polarization of microglia from the M1 to the M2 phenotype, reducing IL-1b and increasing IL-4, IL-10, Arg1, and YM-1 in the cerebellum. This is associated with astrocytes deactivation and normalization of GAT-3 membrane

  16. Tau and Amyloid Positron Emission Tomography Imaging Predict Driving Performance Among Older Adults with and without Preclinical Alzheimer's Disease.

    PubMed

    Roe, Catherine M; Babulal, Ganesh M; Mishra, Shruti; Gordon, Brian A; Stout, Sarah H; Ott, Brian R; Carr, David B; Ances, Beau M; Morris, John C; Benzinger, Tammie L S

    2018-01-01

    Abnormal levels of Alzheimer's disease (AD) biomarkers, measured by positron emission tomography imaging using amyloid-based radiotracers and cerebrospinal fluid, are associated with impaired driving performance in older adults. We examined whether preclinical AD staging, defined using amyloid imaging and tau imaging using the radiotracer T807 (AKA flortaucipir or AV-1451), was associated with receiving a marginal/fail rating on a standardized road test (n = 42). Participants at Stage 2 (positive amyloid and tau scans) of preclinical AD were more likely to receive a marginal/fail rating compared to participants at Stage 0 or 1. Stage 2 preclinical AD may manifest in worse driving performance.

  17. Involvement of GSK3 and PP2A in ginsenoside Rb1's attenuation of aluminum-induced tau hyperphosphorylation.

    PubMed

    Zhao, Hai-hua; Di, Jing; Liu, Wen-su; Liu, Hui-li; Lai, Hong; Lü, Yong-li

    2013-03-15

    Environmental agent aluminum, a well-known neurotoxin, has been proposed to play a role in the development of Alzheimer's disease (AD), and produced clinical and pathological features which were strikingly similar to those seen in AD brain, such as neurofibrillary tangles. Ginsenoside Rb1, highly abundant active component of ginseng, has been demonstrated to be neuroprotective against various neurotoxins. In this study we investigated the effect of Rb1 on aluminum-induced tau hyperphosphorylation in ICR mice. Mice were exposed to aluminum chloride (200 mg/kg/day) for 6 months followed by a post treatment of Rb1 (20 mg/kg/day) for another 4 months. Aluminum exposure induced the cognitive ability by Morris water maze, and upregulated the tau phosphorylation level at Ser396 accompanied by increasing p-GSK and decreasing PP2A level in motor, sensory cortex and hippocampal formation. Post treatment of Rb1 significantly improved the learning and memory and reduced the tau phosphorylation by reversing the p-GSK3 and PP2A level. Our results indicate that ginsenoside Rb1 protected mice against Al-induced toxicity. The possible mechanism may be its role in preventing tau hyperphosphorylation by regulating p-GSK3 and PP2A level, which implicate Rb1 as the potential preventive drug candidate for AD and other tau pathology-related neuronal degenerative diseases. Copyright © 2013. Published by Elsevier B.V.

  18. Aminothienopyridazines and Methylene Blue Affect Tau Fibrillization via Cysteine Oxidation*

    PubMed Central

    Crowe, Alex; James, Michael J.; Lee, Virginia M.-Y.; Smith, Amos B.; Trojanowski, John Q.; Ballatore, Carlo; Brunden, Kurt R.

    2013-01-01

    Alzheimer disease and several other neurodegenerative disorders are characterized by the accumulation of intraneuronal fibrils comprised of the protein Tau. Tau is normally a soluble protein that stabilizes microtubules, with splice isoforms that contain either three (3-R) or four (4-R) microtubule binding repeats. The formation of Tau fibrils is thought to result in neuronal damage, and inhibitors of Tau fibrillization may hold promise as therapeutic agents. The process of Tau fibrillization can be replicated in vitro, and a number of small molecules have been identified that inhibit Tau fibril formation. However, little is known about how these molecules affect Tau fibrillization. Here, we examined the mechanism by which the previously described aminothieno pyridazine (ATPZ) series of compounds inhibit Tau fibrillization. Active ATPZs were found to promote the oxidation of the two cysteine residues within 4-R Tau by a redox cycling mechanism, resulting in the formation of a disulfide-containing compact monomer that was refractory to fibrillization. Moreover, the ATPZs facilitated intermolecular disulfide formation between 3-R Tau monomers, leading to dimers that were capable of fibrillization. The ATPZs also caused cysteine oxidation in molecules unrelated to Tau. Interestingly, methylene blue, an inhibitor of Tau fibrillization under evaluation in Alzheimer disease clinical trials, caused a similar oxidation of cysteines in Tau and other molecules. These findings reveal that the ATPZs and methylene blue act by a mechanism that may affect their viability as potential therapeutic agents. PMID:23443659

  19. INVESTIGATING PLANET FORMATION IN CIRCUMSTELLAR DISKS: CARMA OBSERVATIONS OF RY Tau AND DG Tau

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isella, Andrea; Carpenter, John M.; Sargent, Anneila I., E-mail: isella@astro.caltech.ed

    2010-05-10

    We present CARMA observations of the thermal dust emission from the circumstellar disks around the young stars RY Tau and DG Tau at wavelengths of 1.3 mm and 2.8 mm. The angular resolution of the maps is as high as 0.''15, or 20 AU at the distance of the Taurus cloud, which is a factor of 2 higher than has been achieved to date at these wavelengths. The unprecedented detail of the resulting disk images enables us to address three important questions related to the formation of planets. (1) What is the radial distribution of the circumstellar dust? (2) Doesmore » the dust emission show any indication of gaps that might signify the presence of (proto-)planets? (3) Do the dust properties depend on the orbital radius? We find that modeling the disk surface density in terms of either a classical power law or the similarity solution for viscous disk evolution reproduces the observations well. Both models constrain the surface density between 15 and 50 AU to within 30% for a given dust opacity. Outside this range, the densities inferred from the two models differ by almost an order of magnitude. The 1.3 mm image from RY Tau shows two peaks separated by 0.''2 with a decline in the dust emission toward the stellar position, which is significant at about 2{sigma}-4{sigma}. For both RY Tau and DG Tau, the dust emission at radii larger than 15 AU displays no significant deviation from an unperturbed viscous disk model. In particular, no radial gaps in the dust distribution are detected. Under reasonable assumptions, we exclude the presence of planets more massive than 5 M{sub J} orbiting either star at distances between about 10 and 60 AU, unless such a planet is so young that there has been insufficient time to open a gap in the disk surface density. The radial variation of the dust opacity slope, {beta}, was investigated by comparing the 1.3 mm and 2.8 mm observations. We find mean values of {beta} of 0.5 and 0.7 for DG Tau and RY Tau, respectively. Variations in {beta

  20. A novel ALS-associated variant in UBQLN4 regulates motor axon morphogenesis

    PubMed Central

    Edens, Brittany M; Yan, Jianhua; Miller, Nimrod; Deng, Han-Xiang; Siddique, Teepu; Ma, Yongchao C

    2017-01-01

    The etiological underpinnings of amyotrophic lateral sclerosis (ALS) are complex and incompletely understood, although contributions to pathogenesis by regulators of proteolytic pathways have become increasingly apparent. Here, we present a novel variant in UBQLN4 that is associated with ALS and show that its expression compromises motor axon morphogenesis in mouse motor neurons and in zebrafish. We further demonstrate that the ALS-associated UBQLN4 variant impairs proteasomal function, and identify the Wnt signaling pathway effector beta-catenin as a UBQLN4 substrate. Inhibition of beta-catenin function rescues the UBQLN4 variant-induced motor axon phenotypes. These findings provide a strong link between the regulation of axonal morphogenesis and a new ALS-associated gene variant mediated by protein degradation pathways. DOI: http://dx.doi.org/10.7554/eLife.25453.001 PMID:28463112

  1. Activating transcription factor 4 underlies the pathogenesis of arsenic trioxide-mediated impairment of macrophage innate immune functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Srivastava, Ritesh K.; Li, Changzhao

    Chronic arsenic exposure to humans is considered immunosuppressive with augmented susceptibility to several infectious diseases. The exact molecular mechanisms, however, remain unknown. Earlier, we showed the involvement of unfolded protein response (UPR) signaling in arsenic-mediated impairment of macrophage functions. Here, we show that activating transcription factor 4 (ATF4), a UPR transcription factor, regulates arsenic trioxide (ATO)-mediated dysregulation of macrophage functions. In ATO-treated ATF4{sup +/+} wild-type mice, a significant down-regulation of CD11b expression was associated with the reduced phagocytic functions of peritoneal and lung macrophages. This severe immuno-toxicity phenotype was not observed in ATO-treated ATF4{sup +/−} heterozygous mice. To confirm thesemore » observations, we demonstrated in Raw 264.7 cells that ATF4 knock-down rescues ATO-mediated impairment of macrophage functions including cytokine production, bacterial engulfment and clearance of engulfed bacteria. Sustained activation of ATF4 by ATO in macrophages induces apoptosis, while diminution of ATF4 expression protects against ATO-induced apoptotic cell death. Raw 264.7 cells treated with ATO also manifest dysregulated Ca{sup ++} homeostasis. ATO induces Ca{sup ++}-dependent calpain-1 and caspase-12 expression which together regulated macrophage apoptosis. Additionally, apoptosis was also induced by mitochondria-regulated pathway. Restoring ATO-impaired Ca{sup ++} homeostasis in ER/mitochondria by treatments with the inhibitors of inositol 1,4,5-trisphosphate receptor (IP3R) and voltage-dependent anion channel (VDAC) attenuate innate immune functions of macrophages. These studies identify a novel role for ATF4 in underlying pathogenesis of macrophage dysregulation and immuno-toxicity of arsenic. - Highlights: • ATF4 regulates arsenic-mediated impairment in macrophage functions. • Arsenic-mediated alterations in pulmonary macrophage are diminished in ATF4{sup +/

  2. Tau Phosphorylation by GSK3 in Different Conditions

    PubMed Central

    Avila, Jesús; León-Espinosa, Gonzalo; García, Esther; García-Escudero, Vega; Hernández, Félix; DeFelipe, Javier

    2012-01-01

    Almost a 20% of the residues of tau protein are phosphorylatable amino acids: serine, threonine, and tyrosine. In this paper we comment on the consequences for tau of being a phosphoprotein. We will focus on serine/threonine phosphorylation. It will be discussed that, depending on the modified residue in tau molecule, phosphorylation could be protective, in processes like hibernation, or toxic like in development of those diseases known as tauopathies, which are characterized by an hyperphosphorylation and aggregation of tau. PMID:22675648

  3. Chronic ethanol exposure during adolescence in rats induces motor impairments and cerebral cortex damage associated with oxidative stress.

    PubMed

    Teixeira, Francisco Bruno; Santana, Luana Nazaré da Silva; Bezerra, Fernando Romualdo; De Carvalho, Sabrina; Fontes-Júnior, Enéas Andrade; Prediger, Rui Daniel; Crespo-López, Maria Elena; Maia, Cristiane Socorro Ferraz; Lima, Rafael Rodrigues

    2014-01-01

    Binge drinking is common among adolescents, and this type of ethanol exposure may lead to long-term nervous system damage. In the current study, we evaluated motor performance and tissue alterations in the cerebral cortex of rats subjected to intermittent intoxication with ethanol from adolescence to adulthood. Adolescent male Wistar rats (35 days old) were treated with distilled water or ethanol (6.5 g/kg/day, 22.5% w/v) during 55 days by gavage to complete 90 days of age. The open field, inclined plane and the rotarod tests were used to assess the spontaneous locomotor activity and motor coordination performance in adult animals. Following completion of behavioral tests, half of animals were submitted to immunohistochemical evaluation of NeuN (marker of neuronal bodies), GFAP (a marker of astrocytes) and Iba1 (microglia marker) in the cerebral cortex while the other half of the animals were subjected to analysis of oxidative stress markers by biochemical assays. Chronic ethanol intoxication in rats from adolescence to adulthood induced significant motor deficits including impaired spontaneous locomotion, coordination and muscle strength. These behavioral impairments were accompanied by marked changes in all cellular populations evaluated as well as increased levels of nitrite and lipid peroxidation in the cerebral cortex. These findings indicate that continuous ethanol intoxication from adolescence to adulthood is able to provide neurobehavioral and neurodegenerative damage to cerebral cortex.

  4. Are behaviour and motor performances of rheumatoid arthritis patients influenced by subclinical cognitive impairments? A clinical and neuroimaging study.

    PubMed

    Bartolini, M; Candela, M; Brugni, M; Catena, L; Mari, F; Pomponio, G; Provinciali, L; Danieli, G

    2002-01-01

    To determine whether some behavioural manifestations and poor motor performances in patients affected by rheumatoid arthritis (RA) are due to subclinical cognitive defects. We performed a psychometric assessment of 30 patients affected by RA exploring several cognitive domains such as memory, visual-spatial integration, motor planning, mental flexibility, relating performances with morphological and functional neuroimaging (MRI and SPECT). We also related the cognitive data with the Ritchie and Lee indexes and other clinical parameters. We found an impairment in visual-spatial tasks in 71% of patients with a high correlation to activity and disease severity as expressed by the Ritchie and Lee indexes (p < 0.005; p < 0.01). Furthermore, we detected in 38% of patients some difficulties in mental flexibility related to the Lee Index (p < 0.05). These poor performances are related to hypoperfusion of the frontal and parietal lobes as detected by brain SPECT; this finding is more evident in patients with brain white matter alterations on MRI. Our data allow us to hypothesize that manual dexterity could be due to a disconnection between subcortical white matter and parietal-frontal lobes because of microangiopathy; furthermore, a chronic reduction in sensorial stimuli by impaired joints could lead to produce an alteration in motor planning cognitive processes.

  5. Compromised Motor Planning and Motor Imagery in Right Hemiparetic Cerebral Palsy

    ERIC Educational Resources Information Center

    Craje, Celine; van Elk, Michiel; Beeren, Manuela; van Schie, Hein T.; Bekkering, Harold; Steenbergen, Bert

    2010-01-01

    We investigated whether motor planning problems in people with Hemiparetic Cerebral Palsy (HCP) are paralleled by impaired ability to use Motor Imagery (MI). While some studies have shown that individuals with HCP can solve a mental rotation task, it was not clear if they used MI or Visual Imagery (VI). In the present study, motor planning and MI…

  6. Using Human iPSC-Derived Neurons to Model TAU Aggregation

    PubMed Central

    Verheyen, An; Diels, Annick; Dijkmans, Joyce; Oyelami, Tutu; Meneghello, Giulia; Mertens, Liesbeth; Versweyveld, Sofie; Borgers, Marianne; Buist, Arjan; Peeters, Pieter; Cik, Miroslav

    2015-01-01

    Alzheimer’s disease and frontotemporal dementia are amongst the most common forms of dementia characterized by the formation and deposition of abnormal TAU in the brain. In order to develop a translational human TAU aggregation model suitable for screening, we transduced TAU harboring the pro-aggregating P301L mutation into control hiPSC-derived neural progenitor cells followed by differentiation into cortical neurons. TAU aggregation and phosphorylation was quantified using AlphaLISA technology. Although no spontaneous aggregation was observed upon expressing TAU-P301L in neurons, seeding with preformed aggregates consisting of the TAU-microtubule binding repeat domain triggered robust TAU aggregation and hyperphosphorylation already after 2 weeks, without affecting general cell health. To validate our model, activity of two autophagy inducers was tested. Both rapamycin and trehalose significantly reduced TAU aggregation levels suggesting that iPSC-derived neurons allow for the generation of a biologically relevant human Tauopathy model, highly suitable to screen for compounds that modulate TAU aggregation. PMID:26720731

  7. Mechanism of tau-induced neurodegeneration in Alzheimer disease and related tauopathies.

    PubMed

    Alonso, Alejandra del C; Li, Ben; Grundke-Iqbal, Inge; Iqbal, Khalid

    2008-08-01

    The accumulation of hyperphosphorylated tau is a common feature of several dementias. Tau is one of the brain microtubule-associated proteins. Here we discuss tau's function in microtubule assembly and stabilization and with regards to tau's interactions with other proteins, membranes, and DNA. We describe and analyze important posttranslational modifications: hyperphosphorylation, glycosylation, ubiquitination, glycation, polyamination, nitration, and truncation. We discuss how these post-translational modifications can alter tau's biological function and what is known about tau self-assembly, and we propose a mechanism of tau polymerization. We analyze the impact of natural mutations on tau that cause fronto-temporal dementia associated with chromosome 17 (FTDP-1 7). Finally, we consider whether tau accumulation or its conformational change is related to tau-induced neurodegeneration, and we propose a mechanism of neurodegeneration.

  8. Accuracy of Two Motor Assessments during the First Year of Life in Preterm Infants for Predicting Motor Outcome at Preschool Age

    PubMed Central

    Spittle, Alicia J.; Lee, Katherine J.; Spencer-Smith, Megan; Lorefice, Lucy E.; Anderson, Peter J.; Doyle, Lex W.

    2015-01-01

    Aim The primary aim of this study was to investigate the accuracy of the Alberta Infant Motor Scale (AIMS) and Neuro-Sensory Motor Developmental Assessment (NSMDA) over the first year of life for predicting motor impairment at 4 years in preterm children. The secondary aims were to assess the predictive value of serial assessments over the first year and when using a combination of these two assessment tools in follow-up. Method Children born <30 weeks’ gestation were prospectively recruited and assessed at 4, 8 and 12 months’ corrected age using the AIMS and NSMDA. At 4 years’ corrected age children were assessed for cerebral palsy (CP) and motor impairment using the Movement Assessment Battery for Children 2nd-edition (MABC-2). We calculated accuracy of the AIMS and NSMDA for predicting CP and MABC-2 scores ≤15th (at-risk of motor difficulty) and ≤5th centile (significant motor difficulty) for each test (AIMS and NSMDA) at 4, 8 and 12 months, for delay on one, two or all three of the time points over the first year, and finally for delay on both tests at each time point. Results Accuracy for predicting motor impairment was good for each test at each age, although false positives were common. Motor impairment on the MABC-2 (scores ≤5th and ≤15th) was most accurately predicted by the AIMS at 4 months, whereas CP was most accurately predicted by the NSMDA at 12 months. In regards to serial assessments, the likelihood ratio for motor impairment increased with the number of delayed assessments. When combining both the NSMDA and AIMS the best accuracy was achieved at 4 months, although results were similar at 8 and 12 months. Interpretation Motor development during the first year of life in preterm infants assessed with the AIMS and NSMDA is predictive of later motor impairment at preschool age. However, false positives are common and therefore it is beneficial to follow-up children at high risk of motor impairment at more than one time point, or to use a

  9. Accuracy of Two Motor Assessments during the First Year of Life in Preterm Infants for Predicting Motor Outcome at Preschool Age.

    PubMed

    Spittle, Alicia J; Lee, Katherine J; Spencer-Smith, Megan; Lorefice, Lucy E; Anderson, Peter J; Doyle, Lex W

    2015-01-01

    The primary aim of this study was to investigate the accuracy of the Alberta Infant Motor Scale (AIMS) and Neuro-Sensory Motor Developmental Assessment (NSMDA) over the first year of life for predicting motor impairment at 4 years in preterm children. The secondary aims were to assess the predictive value of serial assessments over the first year and when using a combination of these two assessment tools in follow-up. Children born <30 weeks' gestation were prospectively recruited and assessed at 4, 8 and 12 months' corrected age using the AIMS and NSMDA. At 4 years' corrected age children were assessed for cerebral palsy (CP) and motor impairment using the Movement Assessment Battery for Children 2nd-edition (MABC-2). We calculated accuracy of the AIMS and NSMDA for predicting CP and MABC-2 scores ≤15th (at-risk of motor difficulty) and ≤5th centile (significant motor difficulty) for each test (AIMS and NSMDA) at 4, 8 and 12 months, for delay on one, two or all three of the time points over the first year, and finally for delay on both tests at each time point. Accuracy for predicting motor impairment was good for each test at each age, although false positives were common. Motor impairment on the MABC-2 (scores ≤5th and ≤15th) was most accurately predicted by the AIMS at 4 months, whereas CP was most accurately predicted by the NSMDA at 12 months. In regards to serial assessments, the likelihood ratio for motor impairment increased with the number of delayed assessments. When combining both the NSMDA and AIMS the best accuracy was achieved at 4 months, although results were similar at 8 and 12 months. Motor development during the first year of life in preterm infants assessed with the AIMS and NSMDA is predictive of later motor impairment at preschool age. However, false positives are common and therefore it is beneficial to follow-up children at high risk of motor impairment at more than one time point, or to use a combination of assessment tools. ACTR

  10. IGF-1 delivery to CNS attenuates motor neuron cell death but does not improve motor function in type III SMA mice.

    PubMed

    Tsai, Li-Kai; Chen, Yi-Chun; Cheng, Wei-Cheng; Ting, Chen-Hung; Dodge, James C; Hwu, Wuh-Liang; Cheng, Seng H; Passini, Marco A

    2012-01-01

    The efficacy of administering a recombinant adeno-associated virus (AAV) vector encoding human IGF-1 (AAV2/1-hIGF-1) into the deep cerebellar nucleus (DCN) of a type III SMA mouse model was evaluated. High levels of IGF-1 transcripts and protein were detected in the spinal cord at 2 months post-injection demonstrating that axonal connections between the cerebellum and spinal cord were able to act as conduits for the viral vector and protein to the spinal cord. Mice treated with AAV2/1-hIGF-1 and analyzed 8 months later showed changes in endogenous Bax and Bcl-xl levels in spinal cord motor neurons that were consistent with IGF-1-mediated anti-apoptotic effects on motor neurons. However, although AAV2/1-hIGF-1 treatment reduced the extent of motor neuron cell death, the majority of rescued motor neurons were non-functional, as they lacked axons that innervated the muscles. Furthermore, treated SMA mice exhibited abnormal muscle fibers, aberrant neuromuscular junction structure, and impaired performance on motor function tests. These data indicate that although CNS-directed expression of IGF-1 could reduce motor neuron cell death, this did not translate to improvements in motor function in an adult mouse model of type III SMA. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Hyperphosphorylated tau in patients with refractory epilepsy correlates with cognitive decline: a study of temporal lobe resections.

    PubMed

    Tai, Xin You; Koepp, Matthias; Duncan, John S; Fox, Nick; Thompson, Pamela; Baxendale, Sallie; Liu, Joan Y W; Reeves, Cheryl; Michalak, Zuzanna; Thom, Maria

    2016-09-01

    SEE BERNASCONI DOI101093/AWW202 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE: Temporal lobe epilepsy, the most prevalent form of chronic focal epilepsy, is associated with a high prevalence of cognitive impairment but the responsible underlying pathological mechanisms are unknown. Tau, the microtubule-associated protein, is a hallmark of several neurodegenerative diseases including Alzheimer's disease and chronic traumatic encephalopathy. We hypothesized that hyperphosphorylated tau pathology is associated with cognitive decline in temporal lobe epilepsy and explored this through clinico-pathological study. We first performed pathological examination on tissue from 33 patients who had undergone temporal lobe resection between ages 50 and 65 years to treat drug-refractory temporal lobe epilepsy. We identified hyperphosphorylated tau protein using AT8 immunohistochemistry and compared this distribution to Braak patterns of Alzheimer's disease and patterns of chronic traumatic encephalopathy. We quantified tau pathology using a modified tau score created specifically for analysis of temporal lobectomy tissue and the Braak staging, which was limited without extra-temporal brain areas available. Next, we correlated tau pathology with pre- and postoperative cognitive test scores and clinical risk factors including age at time of surgery, duration of epilepsy, history of secondary generalized seizures, history of head injury, handedness and side of surgery. Thirty-one of 33 cases (94%) showed hyperphosphorylated tau pathology in the form of neuropil threads and neurofibrillary tangles and pre-tangles. Braak stage analysis showed 12% of our epilepsy cohort had a Braak staging III-IV compared to an age-matched non-epilepsy control group from the literature (8%). We identified a mixture of tau pathology patterns characteristic of Alzheimer's disease and chronic traumatic encephalopathy. We also found unusual patterns of subpial tau deposition, sparing of the hippocampus and

  12. Manipulability impairs association-memory: revisiting effects of incidental motor processing on verbal paired-associates.

    PubMed

    Madan, Christopher R

    2014-06-01

    Imageability is known to enhance association-memory for verbal paired-associates. High-imageability words can be further subdivided by manipulability, the ease by which the named object can be functionally interacted with. Prior studies suggest that motor processing enhances item-memory, but impairs association-memory. However, these studies used action verbs and concrete nouns as the high- and low-manipulability words, respectively, confounding manipulability with word class. Recent findings demonstrated that nouns can serve as both high- and low-manipulability words (e.g., CAMERA and TABLE, respectively), allowing us to avoid this confound. Here participants studied pairs of words that consisted of all possible pairings of high- and low-manipulability words and were tested with immediate cued recall. Recall was worse for pairs that contained high-manipulability words. In free recall, participants recalled more high- than low-manipulability words. Our results provide further evidence that manipulability influences memory, likely occurring through automatic motor imagery. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Dimer model for Tau proteins bound in microtubule bundles

    NASA Astrophysics Data System (ADS)

    Hall, Natalie; Kluber, Alexander; Hayre, N. Robert; Singh, Rajiv; Cox, Daniel

    2013-03-01

    The microtubule associated protein tau is important in nucleating and maintaining microtubule spacing and structure in neuronal axons. Modification of tau is implicated as a later stage process in Alzheimer's disease, but little is known about the structure of tau in microtubule bundles. We present preliminary work on a proposed model for tau dimers in microtubule bundles (dimers are the minimal units since there is one microtubule binding domain per tau). First, a model of tau monomer was created and its characteristics explored using implicit solvent molecular dynamics simulation. Multiple simulations yield a partially collapsed form with separate positively/negatively charged clumps, but which are a factor of two smaller than required by observed microtubule spacing. We argue that this will elongate in dimer form to lower electrostatic energy at a cost of entropic ``spring'' energy. We will present preliminary results on steered molecular dynamics runs on tau dimers to estimate the actual force constant. Supported by US NSF Grant DMR 1207624.

  14. The effect of motor control and tactile acuity training on patients with non-specific low back pain and movement control impairment.

    PubMed

    Gutknecht, Magdalena; Mannig, Angelika; Waldvogel, Anja; Wand, Benedict M; Luomajoki, Hannu

    2015-10-01

    Movement control impairment is a clinical subgroup of non-specific low back pain which can be assessed reliably. There is a strong correlation between tactile acuity and movement control suggesting these two treatments might have additive effects. The first research aim was to determine if patients with a motor control impairment demonstrated improvement in outcome with combined tactile acuity and motor control training. The second aim was to determine if tactile acuity training enhanced the effect of motor control training. The primary study was a single-arm cohort study conducted in three physiotherapy practices in the German-speaking part of Switzerland. 40 patients (23 males and 17 females) suffering from non-specific low back pain (NSLBP) and movement control impairment were treated. Patients were assessed at baseline and immediately post treatment. Treatment included exercises to lumbopelvic control and graphesthesia training to improve tactile acuity. Treatment effects were evaluated using the Roland Morris disability questionnaire (RMQ) and the patient-specific functional scale (PSFS). The performance on a set of six movement control tests and lumbar two-point discrimination were also assessed. The results of this cohort study were compared with a historic control group which was comparable with the primary study but included only motor control exercises. All the outcomes improved significantly with the combined training (RMQ - 2.2 pts., PSFS - 2.8 pts.; MCTB - 2.02 pts. & TPD - 17.07 mm; all p < 0.05). In comparison to the outcomes of the historic control, there was no significant differences in movement control, patient-specific functional complaints or disability between the groups. The results of this study, based on a before and after intervention comparison, showed that outcome improved significantly following combined tactile acuity and motor control training. However, compared to an earlier study, the tactile acuity training did not have an

  15. Central apelin mediates stress-induced gastrointestinal motor dysfunction in rats.

    PubMed

    Bülbül, Mehmet; İzgüt-Uysal, V Nimet; Sinen, Osman; Birsen, İlknur; Tanrıöver, Gamze

    2016-02-15

    Apelin, an endogenous ligand for APJ receptor, has been reported to be upregulated in paraventricular nucleus (PVN) following stress. Central apelin is known to stimulate release of corticotropin-releasing factor (CRF) via APJ receptor. We tested the hypothesis that stress-induced gastrointestinal (GI) dysfunction is mediated by central apelin. We also assessed the effect of exogenous apelin on GI motility under nonstressed (NS) conditions in conscious rats. Prior to solid gastric emptying (GE) and colon transit (CT) measurements, APJ receptor antagonist F13A was centrally administered under NS conditions and following acute stress (AS), chronic homotypic stress (CHS), and chronic heterotypic stress (CHeS). Plasma corticosterone was assayed. Strain gage transducers were implanted on serosal surfaces of antrum and distal colon to record postprandial motility. Stress exposure induced coexpression of c-Fos and apelin in hypothalamic PVN. Enhanced hypothalamic apelin and CRF levels in microdialysates were detected following AS and CHeS, which were negatively and positively correlated with GE and CT, respectively. Central F13A administration abolished delayed GE and accelerated CT induced by AS and CHeS. Central apelin-13 administration increased the plasma corticosterone and inhibited GE and CT by attenuating antral and colonic contractions. The inhibitory effect elicited by apelin-13 was abolished by central pretreatment of CRF antagonist CRF9-41 in antrum, but not in distal colon. Central endogenous apelin mediates stress-induced changes in gastric and colonic motor functions through APJ receptor. The inhibitory effects of central exogenous apelin-13 on GI motility appear to be partly CRF dependent. Apelin-13 inhibits colon motor functions through a CRF-independent pathway. Copyright © 2016 the American Physiological Society.

  16. Hispidulin, a constituent of Clerodendrum inerme that remitted motor tics, alleviated methamphetamine-induced hyperlocomotion without motor impairment in mice.

    PubMed

    Huang, Wei-Jan; Lee, Hsin-Jung; Chen, Hon-Lie; Fan, Pi-Chuan; Ku, Yuan-Ling; Chiou, Lih-Chu

    2015-05-26

    Previously, we found a patient with an intractable motor tic disorder that could be ameliorated by the ground leaf juice of Clerodendrum inerme (CI). Furthermore, the ethanol extract of CI leaves effectively ameliorated methamphetamine-induced hyperlocomotion (MIH) in mice, an animal model mimicking the hyper-dopaminergic status of tic disorders/Tourette syndrome, schizophrenia, or obsessive-compulsive disorder. Here, we for the first time identified a constituent able to reduce MIH from the CI ethanol extract that might represent a novel lead for the treatment of such disorders. The ethanol extract of CI was sub-divided into n-hexane, dichloromethane, n-butanol and water fractions. Using MIH alleviation as a bioassay, active compounds were identified in these fractions using silica gel chromatography, recrystallization and proton NMR spectroscopy. The dichloromethane and n-hexane fractions were active in the bioassay. Further subfractionation and re-crystallization resulted in an active compound that was identified to be hispidulin by proton NMR spectroscopy. Hispidulin significantly alleviated MIH in mice at doses that did not affect their spontaneous locomotor activity or performance in the rotarod test, a measure for motor coordination. Hispidulin is a flavonoid that has been isolated from several plants and reported to have anti-oxidative, anti-inflammatory and anti-cancer activities. Here, we for the very first time found that hispidulin can also alleviate MIH at doses that did not impair motor activity, suggesting a therapeutic potential of hispidulin in hyper-dopaminergic disorders. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  17. Mild cognitive impairment: loss of linguistic task-induced changes in motor cortex excitability.

    PubMed

    Bracco, L; Giovannelli, F; Bessi, V; Borgheresi, A; Di Tullio, A; Sorbi, S; Zaccara, G; Cincotta, M

    2009-03-10

    In amnestic mild cognitive impairment (aMCI), functional neuronal connectivity may be altered, as suggested by quantitative EEG and neuroimaging data. In young healthy humans, the execution of linguistic tasks modifies the excitability of the hand area of the dominant primary motor cortex (M1(hand)), as tested by transcranial magnetic stimulation (TMS). We used TMS to investigate functional connectivity between language-related cortical areas and M1(hand) in aMCI. Ten elderly women with aMCI and 10 age-matched women were recruited. All participants were right handed and underwent a neuropsychological evaluation. In the first TMS experiment, participants performed three different tasks: reading aloud, viewing of non-letter strings (baseline), and nonverbal oral movements. The second experiment included the baseline condition and three visual searching/matching tasks using letters, geometric shapes, or digits as target stimuli. In controls, motor evoked potentials (MEP) elicited by suprathreshold TMS of the left M1(hand) were significantly larger during reading aloud (170% baseline) than during nonverbal oral movements, whereas no difference was seen for right M1(hand) stimulation. Similarly, MEP elicited by left M1(hand) stimulation during letter and shape searching/matching tasks were significantly larger compared to digit task. In contrast, linguistic task performance did not produce any significant MEP modulation in patients with aMCI, although neuropsychological evaluation showed normal language abilities. Findings suggest that functional connectivity between the language-related brain regions and the dominant M1(hand) may be altered in amnestic mild cognitive impairment. Follow-up studies will reveal whether transcranial magnetic stimulation application during linguistic tasks may contribute to characterize the risk of conversion to Alzheimer disease.

  18. Alzheimer Aβ disrupts the mitotic spindle and directly inhibits mitotic microtubule motors

    PubMed Central

    Borysov, Sergiy I; Granic, Antoneta; Padmanabhan, Jaya; Walczak, Claire E

    2011-01-01

    Chromosome mis-segregation and aneuploidy are greatly induced in Alzheimer disease and models thereof by mutant forms of the APP and PS proteins and by their product, the Aβ peptide. Here we employ human somatic cells and Xenopus egg extracts to show that Aβ impairs the assembly and maintenance of the mitotic spindle. Mechanistically, these defects result from Aβ's inhibition of mitotic motor kinesins, including Eg5, KIF4A and MCAK. In vitro studies show that oligomeric Aβ directly inhibits recombinant MCAK by a noncompetitive mechanism. In contrast, inhibition of Eg5 and KIF4A is competitive with respect to both ATP and microtubules, indicating that Aβ interferes with their interactions with the microtubules of the mitotic spindle. Consistently, increased levels of polymerized microtubules or of the microtubule stabilizing protein Tau significantly decrease the inhibitory effect of Aβ on Eg5 and KIF4A. Together, these results indicate that by disrupting the interaction between specific kinesins and microtubules and by exerting a direct inhibitory effect on the motor activity, excess Aβ deregulates the mechanical forces that govern the spindle and thereby leads to the generation of defective mitotic structures. The resulting defect in neurogenesis can account for the over 30% aneuploid/hyperploid, degeneration-prone neurons observed in Alzheimer disease brain. The finding of mitotic motors including Eg5 in mature post-mitotic neurons implies that their inhibition by Aβ may also disrupt neuronal function and plasticity. PMID:21566458

  19. Designed to deter. Community barriers to physical activity for people with visual or motor impairments.

    PubMed

    Kirchner, Corinne E; Gerber, Elaine G; Smith, Brooke C

    2008-04-01

    People with disabilities are more likely to be obese, in poor health, and get less physical activity than the general population. However, research on community factors for physical activity has generally either excluded most people with disabilities, or overlooked relevant factors of community accessibility. This exploratory study investigated environmental factors affecting people with motor impairments and people with visual impairments in urban neighborhoods. Quantitative and qualitative methods were used with a nonrandom sample (n=134) of users of four types of assistive mobility technologies: guide dogs, long canes, and motorized and manual wheelchairs. From July 2005 to August 2006, the sample participated in two telephone surveys. Between the surveys, a stratified random subsample (n =32) engaged in an ethnographic phase of observation and interviews. Most participants in all groups using assistive mobility technologies rated their neighborhoods as accessible, although they also reported many specific barriers. Users of assistive mobility technologies differed in the amount of reported physical activity and on specific barriers. Problems with sidewalk pavement and puddles/poor drainage were the most frequently mentioned environmental barriers, by 90% and 80%, respectively. Users of assistive mobility technologies were more similar on main strategies for dealing with barriers. All groups reported having to plan routes for outings, to alter planned routes, to go more slowly than planned, or to wait for a different time. Despite legislative requirements for accommodation, people with disabilities face barriers to physical activity, both in the built and social environments. Determined people with disabilities were able to overcome barriers, but required additional expenditure of resources to do so. Community design that can include people with disabilities requires detailed understanding of barriers specific both to types of impairments and to different types

  20. Prediction of recovery of motor function after stroke.

    PubMed

    Stinear, Cathy

    2010-12-01

    Stroke is a leading cause of disability. The ability to live independently after stroke depends largely on the reduction of motor impairment and the recovery of motor function. Accurate prediction of motor recovery assists rehabilitation planning and supports realistic goal setting by clinicians and patients. Initial impairment is negatively related to degree of recovery, but inter-individual variability makes accurate prediction difficult. Neuroimaging and neurophysiological assessments can be used to measure the extent of stroke damage to the motor system and predict subsequent recovery of function, but these techniques are not yet used routinely. The use of motor impairment scores and neuroimaging has been refined by two recent studies in which these investigations were used at multiple time points early after stroke. Voluntary finger extension and shoulder abduction within 5 days of stroke predicted subsequent recovery of upper-limb function. Diffusion-weighted imaging within 7 days detected the effects of stroke on caudal motor pathways and was predictive of lasting motor impairment. Thus, investigations done soon after stroke had good prognostic value. The potential prognostic value of cortical activation and neural plasticity has been explored for the first time by two recent studies. Functional MRI detected a pattern of cortical activation at the acute stage that was related to subsequent reduction in motor impairment. Transcranial magnetic stimulation enabled measurement of neural plasticity in the primary motor cortex, which was related to subsequent disability. These studies open interesting new lines of enquiry. WHERE NEXT?: The accuracy of prediction might be increased by taking into account the motor system's capacity for functional reorganisation in response to therapy, in addition to the extent of stroke-related damage. Improved prognostic accuracy could also be gained by combining simple tests of motor impairment with neuroimaging, genotyping, and

  1. Multiple factors, including non-motor impairments, influence decision making with regard to exercise participation in Parkinson's disease: a qualitative enquiry.

    PubMed

    O'Brien, Christine; Clemson, Lindy; Canning, Colleen G

    2016-01-01

    To explore how the meaning of exercise and other factors interact and influence the exercise behaviour of individuals with Parkinson's disease (PD) enrolled in a 6-month minimally supervised exercise program to prevent falls, regardless of whether they completed the prescribed exercise or not. This qualitative study utilised in-depth semi-structured interviews analysed using grounded theory methodology. Four main themes were constructed from the data: adapting to change and loss, the influence of others, making sense of the exercise experience and hope for a more active future. Participation in the PD-specific physiotherapy program involving group exercise provided an opportunity for participants to reframe their identity of their "active" self. Three new influences on exercise participation were identified and explored: non-motor impairments of apathy and fatigue, the belief in a finite energy quota, and the importance of feedback. A model was developed incorporating the themes and influences to explain decision-making for exercise participation in this group. Complex and interacting issues, including non-motor impairments, need to be considered in order to enhance the development and ongoing implementation of effective exercise programmes for people with PD. Exercise participation can assist individuals to reframe their identity as they are faced with losses associated with Parkinson's disease and ageing. Non-motor impairments of apathy and fatigue may influence exercise participation in people with Parkinson's disease. Particular attention needs to be paid to the provision of feedback in exercise programs for people with Parkinson's disease as it important for their decision-making about continuing exercise.

  2. Children with Specific Language Impairment are not impaired in the acquisition and retention of Pavlovian delay and trace conditioning of the eyeblink response☆

    PubMed Central

    Hardiman, Mervyn J.; Hsu, Hsin-jen; Bishop, Dorothy V.M.

    2013-01-01

    Three converging lines of evidence have suggested that cerebellar abnormality is implicated in developmental language and literacy problems. First, some brain imaging studies have linked abnormalities in cerebellar grey matter to dyslexia and specific language impairment (SLI). Second, theoretical accounts of both dyslexia and SLI have postulated impairments of procedural learning and automatisation of skills, functions that are known to be mediated by the cerebellum. Third, motor learning has been shown to be abnormal in some studies of both disorders. We assessed the integrity of face related regions of the cerebellum using Pavlovian eyeblink conditioning in 7–11 year-old children with SLI. We found no relationship between oral language skills or literacy skills with either delay or trace conditioning in the children. We conclude that this elementary form of associative learning is intact in children with impaired language or literacy development. PMID:24139661

  3. Muscle contraction and the elasticity-mediated crosstalk effect

    NASA Astrophysics Data System (ADS)

    Dharan, Nadiv; Farago, Oded

    2013-05-01

    Cooperative action of molecular motors is essential for many cellular processes. One possible regulator of motor coordination is the elasticity-mediated crosstalk (EMC) coupling between myosin II motors whose origin is the tensile stress that they collectively generate in actin filaments. Here, we use a statistical mechanical analysis to investigate the influence of the EMC effect on the sarcomere — the basic contractile unit of skeletal muscles. We demonstrate that the EMC effect leads to an increase in the attachment probability of motors located near the end of the sarcomere while simultaneously decreasing the attachment probability of the motors in the central part. Such a polarized attachment probability would impair the motors' ability to cooperate efficiently. Interestingly, this undesired phenomenon becomes significant only when the system size exceeds that of the sarcomere in skeletal muscles, which provides an explanation for the remarkable lack of sarcomere variability in vertebrates. Another phenomenon that we investigate is the recently observed increase in the duty ratio of the motors with the tension in muscle. We reveal that the celebrated Hill's equation for muscle contraction is very closely related to this observation.

  4. Tyrosine Nitration within the Proline-Rich Region of Tau in Alzheimer's Disease

    PubMed Central

    Reyes, Juan F.; Fu, Yifan; Vana, Laurel; Kanaan, Nicholas M.; Binder, Lester I.

    2011-01-01

    A substantial body of evidence suggests that nitrative injury contributes to neurodegeneration in Alzheimer's disease (AD) and other neurodegenerative disorders. Previously, we showed in vitro that within the tau protein the N-terminal tyrosine residues (Y18 and Y29) are more susceptible to nitrative modifications than other tyrosine sites (Y197 and Y394). Using site-specific antibodies to nitrated tau at Y18 and Y29, we identified tau nitrated in both glial (Y18) and neuronal (Y29) tau pathologies. In this study, we report the characterization of two novel monoclonal antibodies, Tau-nY197 and Tau-nY394, recognizing tau nitrated at Y197 and Y394, respectively. By Western blot analysis, Tau-nY197 labeled soluble tau and insoluble paired helical filament proteins (PHF-tau) nitrated at Y197 from control and AD brain samples. Tau-nY394 failed to label soluble tau isolated from control or severe AD samples, but labeled insoluble PHF-tau to a limited extent. Immunohistochemical analysis using Tau-nY197 revealed the hallmark tau pathology associated with AD; Tau-nY394 did not detect any pathological lesions characteristic of the disorder. These data suggest that a subset of the hallmark pathological inclusions of AD contain tau nitrated at Y197. However, nitration at Y197 was also identified in soluble tau from all control samples, including those at Braak stage 0, suggesting that nitration at this site in the proline-rich region of tau may have normal biological functions in the human brain. PMID:21514440

  5. Complete mitochondrial genome of Zeugodacus tau (Insecta: Tephritidae) and differentiation of Z. tau species complex by mitochondrial cytochrome c oxidase subunit I gene

    PubMed Central

    Yong, Hoi-Sen; Lim, Phaik-Eem; Eamsobhana, Praphathip

    2017-01-01

    The tephritid fruit fly Zeugodacus tau (Walker) is a polyphagous fruit pest of economic importance in Asia. Studies based on genetic markers indicate that it forms a species complex. We report here (1) the complete mitogenome of Z. tau from Malaysia and comparison with that of China as well as the mitogenome of other congeners, and (2) the relationship of Z. tau taxa from different geographical regions based on sequences of cytochrome c oxidase subunit I gene. The complete mitogenome of Z. tau had a total length of 15631 bp for the Malaysian specimen (ZT3) and 15835 bp for the China specimen (ZT1), with similar gene order comprising 37 genes (13 protein-coding genes—PCGs, 2 rRNA genes, and 22 tRNA genes) and a non-coding A + T-rich control region (D-loop). Based on 13 PCGs and 15 mt-genes, Z. tau NC_027290 (China) and Z. tau ZT1 (China) formed a sister group in the lineage containing also Z. tau ZT3 (Malaysia). Phylogenetic analysis based on partial sequences of cox1 gene indicates that the taxa from China, Japan, Laos, Malaysia, Bangladesh, India, Sri Lanka, and Z. tau sp. A from Thailand belong to Z. tau sensu stricto. A complete cox1 gene (or 13 PCGs or 15 mt-genes) instead of partial sequence is more appropriate for determining phylogenetic relationship. PMID:29216281

  6. Aging-related tau astrogliopathy (ARTAG): harmonized evaluation strategy.

    PubMed

    Kovacs, Gabor G; Ferrer, Isidro; Grinberg, Lea T; Alafuzoff, Irina; Attems, Johannes; Budka, Herbert; Cairns, Nigel J; Crary, John F; Duyckaerts, Charles; Ghetti, Bernardino; Halliday, Glenda M; Ironside, James W; Love, Seth; Mackenzie, Ian R; Munoz, David G; Murray, Melissa E; Nelson, Peter T; Takahashi, Hitoshi; Trojanowski, John Q; Ansorge, Olaf; Arzberger, Thomas; Baborie, Atik; Beach, Thomas G; Bieniek, Kevin F; Bigio, Eileen H; Bodi, Istvan; Dugger, Brittany N; Feany, Mel; Gelpi, Ellen; Gentleman, Stephen M; Giaccone, Giorgio; Hatanpaa, Kimmo J; Heale, Richard; Hof, Patrick R; Hofer, Monika; Hortobágyi, Tibor; Jellinger, Kurt; Jicha, Gregory A; Ince, Paul; Kofler, Julia; Kövari, Enikö; Kril, Jillian J; Mann, David M; Matej, Radoslav; McKee, Ann C; McLean, Catriona; Milenkovic, Ivan; Montine, Thomas J; Murayama, Shigeo; Lee, Edward B; Rahimi, Jasmin; Rodriguez, Roberta D; Rozemüller, Annemieke; Schneider, Julie A; Schultz, Christian; Seeley, William; Seilhean, Danielle; Smith, Colin; Tagliavini, Fabrizio; Takao, Masaki; Thal, Dietmar Rudolf; Toledo, Jon B; Tolnay, Markus; Troncoso, Juan C; Vinters, Harry V; Weis, Serge; Wharton, Stephen B; White, Charles L; Wisniewski, Thomas; Woulfe, John M; Yamada, Masahito; Dickson, Dennis W

    2016-01-01

    Pathological accumulation of abnormally phosphorylated tau protein in astrocytes is a frequent, but poorly characterized feature of the aging brain. Its etiology is uncertain, but its presence is sufficiently ubiquitous to merit further characterization and classification, which may stimulate clinicopathological studies and research into its pathobiology. This paper aims to harmonize evaluation and nomenclature of aging-related tau astrogliopathy (ARTAG), a term that refers to a morphological spectrum of astroglial pathology detected by tau immunohistochemistry, especially with phosphorylation-dependent and 4R isoform-specific antibodies. ARTAG occurs mainly, but not exclusively, in individuals over 60 years of age. Tau-immunoreactive astrocytes in ARTAG include thorn-shaped astrocytes at the glia limitans and in white matter, as well as solitary or clustered astrocytes with perinuclear cytoplasmic tau immunoreactivity that extends into the astroglial processes as fine fibrillar or granular immunopositivity, typically in gray matter. Various forms of ARTAG may coexist in the same brain and might reflect different pathogenic processes. Based on morphology and anatomical distribution, ARTAG can be distinguished from primary tauopathies, but may be concurrent with primary tauopathies or other disorders. We recommend four steps for evaluation of ARTAG: (1) identification of five types based on the location of either morphologies of tau astrogliopathy: subpial, subependymal, perivascular, white matter, gray matter; (2) documentation of the regional involvement: medial temporal lobe, lobar (frontal, parietal, occipital, lateral temporal), subcortical, brainstem; (3) documentation of the severity of tau astrogliopathy; and (4) description of subregional involvement. Some types of ARTAG may underlie neurological symptoms; however, the clinical significance of ARTAG is currently uncertain and awaits further studies. The goal of this proposal is to raise awareness of

  7. Aging-related tau astrogliopathy (ARTAG): harmonized evaluation strategy

    PubMed Central

    Ferrer, Isidro; Grinberg, Lea T.; Alafuzoff, Irina; Attems, Johannes; Budka, Herbert; Cairns, Nigel J.; Crary, John F.; Duyckaerts, Charles; Ghetti, Bernardino; Halliday, Glenda M.; Ironside, James W.; Love, Seth; Mackenzie, Ian R.; Munoz, David G.; Murray, Melissa E.; Nelson, Peter T.; Takahashi, Hitoshi; Trojanowski, John Q.; Ansorge, Olaf; Arzberger, Thomas; Baborie, Atik; Beach, Thomas G.; Bieniek, Kevin F.; Bigio, Eileen H.; Bodi, Istvan; Dugger, Brittany N.; Feany, Mel; Gelpi, Ellen; Gentleman, Stephen M.; Giaccone, Giorgio; Hatanpaa, Kimmo J.; Heale, Richard; Hof, Patrick R.; Hofer, Monika; Hortobágyi, Tibor; Jellinger, Kurt; Jicha, Gregory A.; Ince, Paul; Kofler, Julia; Kövari, Enikö; Kril, Jillian J.; Mann, David M.; Matej, Radoslav; McKee, Ann C.; McLean, Catriona; Milenkovic, Ivan; Montine, Thomas J.; Murayama, Shigeo; Lee, Edward B.; Rahimi, Jasmin; Rodriguez, Roberta D.; Rozemüller, Annemieke; Schneider, Julie A.; Schultz, Christian; Seeley, William; Seilhean, Danielle; Smith, Colin; Tagliavini, Fabrizio; Takao, Masaki; Thal, Dietmar Rudolf; Toledo, Jon B.; Tolnay, Markus; Troncoso, Juan C.; Vinters, Harry V.; Weis, Serge; Wharton, Stephen B.; White, Charles L.; Wisniewski, Thomas; Woulfe, John M.; Yamada, Masahito

    2016-01-01

    Pathological accumulation of abnormally phosphorylated tau protein in astrocytes is a frequent, but poorly characterized feature of the aging brain. Its etiology is uncertain, but its presence is sufficiently ubiquitous to merit further characterization and classification, which may stimulate clinicopathological studies and research into its pathobiology. This paper aims to harmonize evaluation and nomenclature of aging-related tau astrogliopathy (ARTAG), a term that refers to a morphological spectrum of astroglial pathology detected by tau immunohistochemistry, especially with phosphorylation-dependent and 4R isoform-specific antibodies. ARTAG occurs mainly, but not exclusively, in individuals over 60 years of age. Tau-immunoreactive astrocytes in ARTAG include thorn-shaped astrocytes at the glia limitans and in white matter, as well as solitary or clustered astrocytes with perinuclear cytoplasmic tau immunoreactivity that extends into the astroglial processes as fine fibrillar or granular immunopositivity, typically in gray matter. Various forms of ARTAG may coexist in the same brain and might reflect different pathogenic processes. Based on morphology and anatomical distribution, ARTAG can be distinguished from primary tauopathies, but may be concurrent with primary tauopathies or other disorders. We recommend four steps for evaluation of ARTAG: (1) identification of five types based on the location of either morphologies of tau astrogliopathy: subpial, subependymal, perivascular, white matter, gray matter; (2) documentation of the regional involvement: medial temporal lobe, lobar (frontal, parietal, occipital, lateral temporal), subcortical, brainstem; (3) documentation of the severity of tau astrogliopathy; and (4) description of subregional involvement. Some types of ARTAG may underlie neurological symptoms; however, the clinical significance of ARTAG is currently uncertain and awaits further studies. The goal of this proposal is to raise awareness of

  8. TBI-Induced Formation of Toxic Tau and Its Biochemical Similarities to Tau in AD Brains

    DTIC Science & Technology

    2016-10-01

    onto wild-type mice markedly reduces 1) memory including contextual fear memory and spatial memory, and 2) long-term potentiation, a type of...TERMS Tau, contextual fear memory, spatial memory, synaptic plasticity, traumatic brain injury, Alzheimer’s disease 16. SECURITY CLASSIFICATION OF: 17...mechanism leading to TBI and AD. 2 KEYWORDS Tau, contextual fear memory, spatial memory, synaptic plasticity, traumatic brain injury, Alzheimer’s

  9. Bacterial co-expression of human Tau protein with protein kinase A and 14-3-3 for studies of 14-3-3/phospho-Tau interaction

    PubMed Central

    Tugaeva, Kristina V.; Tsvetkov, Philipp O.

    2017-01-01

    Abundant regulatory 14-3-3 proteins have an extremely wide interactome and coordinate multiple cellular events via interaction with specifically phosphorylated partner proteins. Notwithstanding the key role of 14-3-3/phosphotarget interactions in many physiological and pathological processes, they are dramatically underexplored. Here, we focused on the 14-3-3 interaction with human Tau protein associated with the development of several neurodegenerative disorders, including Alzheimer’s and Parkinson’s diseases. Among many known phosphorylation sites within Tau, protein kinase A (PKA) phosphorylates several key residues of Tau and induces its tight interaction with 14-3-3 proteins. However, the stoichiometry and mechanism of 14-3-3 interaction with phosphorylated Tau (pTau) are not clearly elucidated. In this work, we describe a simple bacterial co-expression system aimed to facilitate biochemical and structural studies on the 14-3-3/pTau interaction. We show that dual co-expression of human fetal Tau with PKA in Escherichia coli results in multisite Tau phosphorylation including also naturally occurring sites which were not previously considered in the context of 14-3-3 binding. Tau protein co-expressed with PKA displays tight functional interaction with 14-3-3 isoforms of a different type. Upon triple co-expression with 14-3-3 and PKA, Tau protein could be co-purified with 14-3-3 and demonstrates complex which is similar to that formed in vitro between individual 14-3-3 and pTau obtained from dual co-expression. Although used in this study for the specific case of the previously known 14-3-3/pTau interaction, our co-expression system may be useful to study of other selected 14-3-3/phosphotarget interactions and for validations of 14-3-3 complexes identified by other methods. PMID:28575131

  10. Tau Kinetics in Neurons and the Human Central Nervous System.

    PubMed

    Sato, Chihiro; Barthélemy, Nicolas R; Mawuenyega, Kwasi G; Patterson, Bruce W; Gordon, Brian A; Jockel-Balsarotti, Jennifer; Sullivan, Melissa; Crisp, Matthew J; Kasten, Tom; Kirmess, Kristopher M; Kanaan, Nicholas M; Yarasheski, Kevin E; Baker-Nigh, Alaina; Benzinger, Tammie L S; Miller, Timothy M; Karch, Celeste M; Bateman, Randall J

    2018-03-21

    We developed stable isotope labeling and mass spectrometry approaches to measure the kinetics of multiple isoforms and fragments of tau in the human central nervous system (CNS) and in human induced pluripotent stem cell (iPSC)-derived neurons. Newly synthesized tau is truncated and released from human neurons in 3 days. Although most tau proteins have similar turnover, 4R tau isoforms and phosphorylated forms of tau exhibit faster turnover rates, suggesting unique processing of these forms that may have independent biological activities. The half-life of tau in control human iPSC-derived neurons is 6.74 ± 0.45 days and in human CNS is 23 ± 6.4 days. In cognitively normal and Alzheimer's disease participants, the production rate of tau positively correlates with the amount of amyloid plaques, indicating a biological link between amyloid plaques and tau physiology. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Cellular mechanisms underlying behavioral state-dependent bidirectional modulation of motor cortex output.

    PubMed

    Schiemann, Julia; Puggioni, Paolo; Dacre, Joshua; Pelko, Miha; Domanski, Aleksander; van Rossum, Mark C W; Duguid, Ian

    2015-05-26

    Neuronal activity in primary motor cortex (M1) correlates with behavioral state, but the cellular mechanisms underpinning behavioral state-dependent modulation of M1 output remain largely unresolved. Here, we performed in vivo patch-clamp recordings from layer 5B (L5B) pyramidal neurons in awake mice during quiet wakefulness and self-paced, voluntary movement. We show that L5B output neurons display bidirectional (i.e., enhanced or suppressed) firing rate changes during movement, mediated via two opposing subthreshold mechanisms: (1) a global decrease in membrane potential variability that reduced L5B firing rates (L5Bsuppressed neurons), and (2) a coincident noradrenaline-mediated increase in excitatory drive to a subpopulation of L5B neurons (L5Benhanced neurons) that elevated firing rates. Blocking noradrenergic receptors in forelimb M1 abolished the bidirectional modulation of M1 output during movement and selectively impaired contralateral forelimb motor coordination. Together, our results provide a mechanism for how noradrenergic neuromodulation and network-driven input changes bidirectionally modulate M1 output during motor behavior. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Early childhood constraint therapy for sensory/motor impairment in cerebral palsy: a randomised clinical trial protocol

    PubMed Central

    Chorna, Olena; Heathcock, Jill; Key, Alexandra; Noritz, Garey; Carey, Helen; Hamm, Ellyn; Nelin, Mary Ann; Murray, Micah; Needham, Amy; Slaughter, James C; Maitre, Nathalie L

    2015-01-01

    Introduction Cerebral palsy (CP) is the most common physical disability in childhood. It is a disorder resulting from sensory and motor impairments due to perinatal brain injury, with lifetime consequences that range from poor adaptive and social function to communication and emotional disturbances. Infants with CP have a fundamental disadvantage in recovering motor function: they do not receive accurate sensory feedback from their movements, leading to developmental disregard. Constraint-induced movement therapy (CIMT) is one of the few effective neurorehabilitative strategies shown to improve upper extremity motor function in adults and older children with CP, potentially overcoming developmental disregard. Methods and analysis This study is a randomised controlled trial of children 12–24 months corrected age studying the effectiveness of CIMT combined with motor and sensory-motor interventions. The study population will comprise 72 children with CP and 144 typically developing children for a total of N=216 children. All children with CP, regardless of group allocation will continue with their standard of care occupational and physical therapy throughout the study. The research material collected will be in the form of data from high-density array event-related potential scan, standardised assessment scores and motion analysis scores. Ethics and dissemination The study protocol was approved by the Institutional Review Board. The findings of the trial will be disseminated through peer-reviewed journals and scientific conferences. Trial registration number NCT02567630. PMID:26644127

  13. Inflammatory mediators of cognitive impairment in bipolar disorder

    PubMed Central

    Bauer, Isabelle E.; Pascoe, Michaela C.; Wollenhaupt-Aguiar, Bianca; Kapczinski, Flavio; Soares, Jair C.

    2014-01-01

    Objectives Recent studies have pointed to neuroinflammation, oxidative stress and neurotrophic factors as key mediators in the pathophysiology of mood disorders. Little is however known about the cascade of biological episodes underlying the cognitive deficits observed during the acute and euthymic phases of bipolar disorder (BD). The aim of this review is to assess the potential association between cognitive impairment and biomarkers of inflammation, oxidative stress and neurotrophic activity in BD. Methods Scopus (all databases), Pubmed and Ovid Medline were systematically searched with no language or year restrictions, up to November 2013, for human studies that collected both inflammatory markers and cognitive data in BD. Selected search terms were bipolar disorder, depression, mania, psychosis, inflammatory, cognitive and neurotrophic. Results Ten human studies satisfied the criteria for consideration. The findings showed that high levels of peripheral inflammatory-cytokine, oxidative stress and reduced brain derived neurotrophic factor (BDNF) levels were associated with poor cognitive performance. The BDNF val66met polymorphism is a potential vulnerability factor for cognitive impairment in BD. Conclusions Current data provide preliminary evidence of a link between the cognitive decline observed in BD and mechanisms of neuroinflammation and neuroprotection. The identification of BD specific inflammatory markers and polymorphisms in inflammatory response genes may be of assistance for therapeutic intervention. PMID:24862657

  14. Assessment Position Affects Problem-Solving Behaviors in a Child With Motor Impairments.

    PubMed

    OʼGrady, Michael G; Dusing, Stacey C

    2016-01-01

    The purpose of this report was to examine problem-solving behaviors of a child with significant motor impairments in positions she could maintain independently, in supine and prone positions, as well as a position that required support, sitting. The child was a 22-month-old girl who could not sit independently and had limited independent mobility. Her problem-solving behaviors were assessed using the Early Problem Solving Indicator, while she was placed in supine or prone position, and again in manually supported sitting position. In manually supported sitting position, the subject demonstrated a higher frequency of problem-solving behaviors and her most developmentally advanced problem-solving behavior. Because a child's position may affect cognitive test results, position should be documented at the time of testing.

  15. Anesthesia and Tau Pathology

    PubMed Central

    Whittington, Robert A.; Bretteville, Alexis; Dickler, Maya F.; Planel, Emmanuel

    2013-01-01

    Alzheimer’s disease (AD) is the most common form of dementia and remains a growing worldwide health problem. As life expectancy continues to increase, the number of AD patients presenting for surgery and anesthesia will steadily rise. The etiology of sporadic AD is thought to be multifactorial, with environmental, biological and genetic factors interacting together to influence AD pathogenesis. Recent reports suggest that general anesthetics may be such a factor and may contribute to the development and exacerbation of this neurodegenerative disorder. Intra-neuronal neurofibrillary tangles (NFT), composed of hyperphosphorylated and aggregated tau protein are one of the main neuropathological hallmarks of AD. Tau pathology is important in AD as it correlates very well with cognitive dysfunction. Lately, several studies have begun to elucidate the mechanisms by which anesthetic exposure might affect the phosphorylation, aggregation and function of this microtubule-associated protein. Here, we specifically review the literature detailing the impact of anesthetic administration on aberrant tau hyperphosphorylation as well as the subsequent development of neurofibrillary pathology and degeneration. PMID:23535147

  16. Three-Dimensional Kinematic Analysis of Prehension Movements in Young Children with Autism Spectrum Disorder: New Insights on Motor Impairment

    ERIC Educational Resources Information Center

    Campione, Giovanna Cristina; Piazza, Caterina; Villa, Laura; Molteni, Massimo

    2016-01-01

    The study was aimed at better clarifying whether action execution impairment in autism depends mainly on disruptions either in feedforward mechanisms or in feedback-based control processes supporting motor execution. To this purpose, we analyzed prehension movement kinematics in 4- and 5-year-old children with autism and in peers with typical…

  17. Mediators in the Randomized Trial of Child- and Family-Focused Cognitive-Behavioral Therapy for Pediatric Bipolar Disorder

    PubMed Central

    MacPherson, Heather A.; Weinstein, Sally M.; Henry, David B.; West, Amy E.

    2016-01-01

    Mediation analyses can identify mechanisms of change in Cognitive-Behavioral Therapy (CBT). However, few studies have analyzed mediators of CBT for youth internalizing disorders; only one trial evaluated treatment mechanisms for youth with mixed mood diagnoses. This study evaluated mediators in the randomized trial of Child- and Family-Focused CBT (CFF-CBT) versus Treatment As Usual (TAU) for pediatric bipolar disorder (PBD), adjunctive to pharmacotherapy. Sixty-nine children ages 7-13 with PBD were randomly assigned to CFF-CBT or TAU. Primary outcomes (child mood, functioning) and candidate mediators (family functioning, parent/child coping) were assessed at baseline and 4-, 8-, 12- (post-treatment), and 39-weeks (follow-up). Compared with TAU, children receiving CFF-CBT exhibited greater improvement in mania, depression, and global functioning. Several parent and family factors significantly improved in response to CFF-CBT versus TAU, and were associated with the CFF-CBT treatment effect. Specifically, parenting skills and coping, family flexibility, and family positive reframing showed promise as mediators of child mood symptoms and global functioning. Main or mediating effects for youth coping were not significant. CFF-CBT may impact children’s mood and functioning by improving parenting skills and coping, family flexibility, and family positive reframing. Findings highlight the importance of parent coping and family functioning in the treatment of PBD. PMID:27567973

  18. High education may offer protection against tauopathy in patients with mild cognitive impairment.

    PubMed

    Rolstad, Sindre; Nordlund, Arto; Eckerström, Carl; Gustavsson, Marie H; Blennow, Kaj; Olesen, Pernille J; Zetterberg, Henrik; Wallin, Anders

    2010-01-01

    The concepts of brain and cognitive reserve stem from the observation that premorbid factors (e.g., education) result in variation in the response to brain pathology. Potential early influence of reserve on pathology, as assessed using the cerebrospinal fluid biomarkers total tau (t-tau) and amyloid-beta42, and cognition was explored in mild cognitive impairment (MCI) patients who remained stable over a two-year period. A total of 102 patients with stable MCI grouped on the basis of educational level were compared with regard to biomarker concentrations and cognitive performance. Stable MCI patients with higher education had lower concentrations of t-tau as compared to those with lower education. Also, educational level predicted a significant proportion of the total variance in t-tau concentrations. Our results suggest that higher education may offer protection against tauopathy.

  19. Transcriptomics of aged Drosophila motor neurons reveals a matrix metalloproteinase that impairs motor function.

    PubMed

    Azpurua, Jorge; Mahoney, Rebekah E; Eaton, Benjamin A

    2018-04-01

    The neuromuscular junction (NMJ) is responsible for transforming nervous system signals into motor behavior and locomotion. In the fruit fly Drosophila melanogaster, an age-dependent decline in motor function occurs, analogous to the decline experienced in mice, humans, and other mammals. The molecular and cellular underpinnings of this decline are still poorly understood. By specifically profiling the transcriptome of Drosophila motor neurons across age using custom microarrays, we found that the expression of the matrix metalloproteinase 1 (dMMP1) gene reproducibly increased in motor neurons in an age-dependent manner. Modulation of physiological aging also altered the rate of dMMP1 expression, validating dMMP1 expression as a bona fide aging biomarker for motor neurons. Temporally controlled overexpression of dMMP1 specifically in motor neurons was sufficient to induce deficits in climbing behavior and cause a decrease in neurotransmitter release at neuromuscular synapses. These deficits were reversible if the dMMP1 expression was shut off again immediately after the onset of motor dysfunction. Additionally, repression of dMMP1 enzymatic activity via overexpression of a tissue inhibitor of metalloproteinases delayed the onset of age-dependent motor dysfunction. MMPs are required for proper tissue architecture during development. Our results support the idea that matrix metalloproteinase 1 is acting as a downstream effector of antagonistic pleiotropy in motor neurons and is necessary for proper development, but deleterious when reactivated at an advanced age. © 2018 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  20. Dystypia: isolated typing impairment without aphasia, apraxia or visuospatial impairment.

    PubMed

    Otsuki, Mika; Soma, Yoshiaki; Arihiro, Shoji; Watanabe, Yoshimasa; Moriwaki, Hiroshi; Naritomi, Hiroaki

    2002-01-01

    We report a 60-year-old right-handed Japanese man who showed an isolated persistent typing impairment without aphasia, agraphia, apraxia or any other neuropsychological deficit. We coined the term 'dystypia' for this peculiar neuropsychological manifestation. The symptom was caused by an infarction in the left frontal lobe involving the foot of the second frontal convolution and the frontal operculum. The patient's typing impairment was not attributable to a disturbance of the linguistic process, since he had no aphasia or agraphia. The impairment was not attributable to the impairment of the motor execution process either, since he had no apraxia. Thus, his typing impairment was deduced to be based on a disturbance of the intermediate process where the linguistic phonological information is converted into the corresponding performance. We hypothesized that there is a specific process for typing which branches from the motor programming process presented in neurolinguistic models. The foot of the left second frontal convolution and the operculum may play an important role in the manifestation of 'dystypia'. Copyright 2002 S. Karger AG, Basel

  1. Comparing predictors of conversion and decline in mild cognitive impairment(Podcast)(e–Pub ahead of print)

    PubMed Central

    Landau, S.M.; Harvey, D.; Madison, C.M.; Reiman, E.M.; Foster, N.L.; Aisen, P.S.; Petersen, R.C.; Shaw, L.M.; Trojanowski, J.Q.; Jack, C.R.; Weiner, M.W.; Jagust, W.J.

    2010-01-01

    Objective: A variety of measurements have been individually linked to decline in mild cognitive impairment (MCI), but the identification of optimal markers for predicting disease progression remains unresolved. The goal of this study was to evaluate the prognostic ability of genetic, CSF, neuroimaging, and cognitive measurements obtained in the same participants. Methods: APOE ε4 allele frequency, CSF proteins (Aβ1-42, total tau, hyperphosphorylated tau [p-tau181p]), glucose metabolism (FDG-PET), hippocampal volume, and episodic memory performance were evaluated at baseline in patients with amnestic MCI (n = 85), using data from a large multisite study (Alzheimer's Disease Neuroimaging Initiative). Patients were classified as normal or abnormal on each predictor variable based on externally derived cutoffs, and then variables were evaluated as predictors of subsequent conversion to Alzheimer disease (AD) and cognitive decline (Alzheimer's Disease Assessment Scale–Cognitive Subscale) during a variable follow-up period (1.9 ± 0.4 years). Results: Patients with MCI converted to AD at an annual rate of 17.2%. Subjects with MCI who had abnormal results on both FDG-PET and episodic memory were 11.7 times more likely to convert to AD than subjects who had normal results on both measures (p ≤ 0.02). In addition, the CSF ratio p-tau181p/Aβ1-42 (β = 1.10 ± 0.53; p = 0.04) and, marginally, FDG-PET predicted cognitive decline. Conclusions: Baseline FDG-PET and episodic memory predict conversion to AD, whereas p-tau181p/Aβ1-42 and, marginally, FDG-PET predict longitudinal cognitive decline. Complementary information provided by these biomarkers may aid in future selection of patients for clinical trials or identification of patients likely to benefit from a therapeutic intervention. GLOSSARY AD = Alzheimer disease; ADAS-Cog = Alzheimer's Disease Assessment Scale–Cognitive Subscale; ADNI = Alzheimer's Disease Neuroimaging Initiative; AVLT = Auditory Verbal Learning

  2. Chronic stress exacerbates tau pathology, neurodegeneration, and cognitive performance through a corticotropin-releasing factor receptor-dependent mechanism in a transgenic mouse model of tauopathy

    PubMed Central

    Carroll, Jenna C.; Iba, Michiyo; Bangasser, Debbie A.; Valentino, Rita J.; James, Michael J.; Brunden, Kurt R.; Lee, Virginia M.-Y.; Trojanowski, John Q.

    2011-01-01

    Since over-activation of the hypothalamic-pituitary-adrenal (HPA) axis occurs in Alzheimer’s disease (AD), dysregulation of stress neuromediators may play a mechanistic role in the pathophysiology of AD. However, the effects of stress on tau phosphorylation are poorly understood and the relationship between corticosterone and corticotropin-releasing factor (CRF) on both Aβ and tau pathology remain unclear. Therefore, we first established a model of chronic stress which exacerbates Aβ accumulation in Tg2576 mice and then extended this stress paradigm to a tau transgenic mouse model with the P301S mutation (PS19) which displays tau hyperphosphorylation, insoluble tau inclusions and neurodegeneration. We show for the first time that both Tg2576 and PS19 mice demonstrate a heightened HPA stress profile in the unstressed state. In Tg2576 mice, one month of restraint/isolation (RI) stress increased Aβ levels, suppressed microglial activation, and worsened spatial and fear memory compared to non-stressed mice. In PS19 mice, RI stress promoted tau hyperphosphorylation, insoluble tau aggregation, neurodegeneration and fear-memory impairments. These effects were not mimicked by chronic corticosterone administration but were prevented by pre-stress administration of a CRF receptor type 1 (CRF1) antagonist. The role for a CRF1-dependent mechanism was further supported by the finding that mice over-expressing CRF had increased hyperphosphorylated tau compared to wildtype littermates. Together, these results implicate HPA dysregulation in AD neuropathogenesis and suggest that prolonged stress may increase Aβ and tau hyperphosphorylation. These studies also implicate CRF in AD pathophysiology and suggest that pharmacological manipulation of this neuropeptide may be a potential therapeutic strategy for AD. PMID:21976528

  3. Passive immunization targeting the N-terminal projection domain of tau decreases tau pathology and improves cognition in a transgenic mouse model of Alzheimer disease and tauopathies.

    PubMed

    Dai, Chun-ling; Chen, Xia; Kazim, Syed Faraz; Liu, Fei; Gong, Cheng-Xin; Grundke-Iqbal, Inge; Iqbal, Khalid

    2015-04-01

    Intraneuronal accumulation of abnormally hyperphosphorylated tau in the brain is a histopathological hallmark of Alzheimer's disease and a family of related neurodegenerative disorders collectively called tauopathies. At present there is no effective treatment available for these progressive neurodegenerative diseases which are clinically characterized by dementia in mid to old-age. Here we report the treatment of 14-17-months-old 3xTg-AD mice with tau antibodies 43D (tau 6-18) and 77E9 (tau 184-195) to the N-terminal projection domain of tau or mouse IgG as a control by intraperitoneal injection once a week for 4 weeks, and the effects of the passive immunization on reduction of hyperphosphorylated tau, Aβ accumulation and cognitive performance in these animals. We found that treatment with tau antibodies 43D and 77E9 reduced total tau level, decreased tau hyperphosphorylated at Ser199, Ser202/Thr205 (AT8), Thr205, Ser262/356 (12E8), and Ser396/404 (PHF-1) sites, and a trend to reduce Aβ pathology. Most importantly, targeting N-terminal tau especially by 43D (tau 6-18) improved reference memory in the Morris water maze task in 3xTg-AD mice. We did not observe any abnormality in general physical characteristics of the treated animals with either of the two antibodies during the course of this study. Taken together, our studies demonstrate for the first time (1) that passive immunization targeting normal tau can effectively clear the hyperphosphorylated protein and possibly reduce Aβ pathology from the brain and (2) that targeting N-terminal projection domain of tau containing amino acid 6-18 is especially beneficial. Thus, targeting selective epitopes of N-terminal domain of tau may present a novel effective therapeutic opportunity for Alzheimer disease and other tauopathies.

  4. Deprivation and Recovery of Sleep in Succession Enhances Reflexive Motor Behavior

    PubMed Central

    Sprenger, Andreas; Weber, Frederik D.; Machner, Bjoern; Talamo, Silke; Scheffelmeier, Sabine; Bethke, Judith; Helmchen, Christoph; Gais, Steffen; Kimmig, Hubert; Born, Jan

    2015-01-01

    Sleep deprivation impairs inhibitory control over reflexive behavior, and this impairment is commonly assumed to dissipate after recovery sleep. Contrary to this belief, here we show that fast reflexive behaviors, when practiced during sleep deprivation, is consolidated across recovery sleep and, thereby, becomes preserved. As a model for the study of sleep effects on prefrontal cortex-mediated inhibitory control in humans, we examined reflexive saccadic eye movements (express saccades), as well as speeded 2-choice finger motor responses. Different groups of subjects were trained on a standard prosaccade gap paradigm before periods of nocturnal sleep and sleep deprivation. Saccade performance was retested in the next morning and again 24 h later. The rate of express saccades was not affected by sleep after training, but slightly increased after sleep deprivation. Surprisingly, this increase augmented even further after recovery sleep and was still present 4 weeks later. Additional experiments revealed that the short testing after sleep deprivation was sufficient to increase express saccades across recovery sleep. An increase in speeded responses across recovery sleep was likewise found for finger motor responses. Our findings indicate that recovery sleep can consolidate motor disinhibition for behaviors practiced during prior sleep deprivation, thereby persistently enhancing response automatization. PMID:26048955

  5. Deprivation and Recovery of Sleep in Succession Enhances Reflexive Motor Behavior.

    PubMed

    Sprenger, Andreas; Weber, Frederik D; Machner, Bjoern; Talamo, Silke; Scheffelmeier, Sabine; Bethke, Judith; Helmchen, Christoph; Gais, Steffen; Kimmig, Hubert; Born, Jan

    2015-11-01

    Sleep deprivation impairs inhibitory control over reflexive behavior, and this impairment is commonly assumed to dissipate after recovery sleep. Contrary to this belief, here we show that fast reflexive behaviors, when practiced during sleep deprivation, is consolidated across recovery sleep and, thereby, becomes preserved. As a model for the study of sleep effects on prefrontal cortex-mediated inhibitory control in humans, we examined reflexive saccadic eye movements (express saccades), as well as speeded 2-choice finger motor responses. Different groups of subjects were trained on a standard prosaccade gap paradigm before periods of nocturnal sleep and sleep deprivation. Saccade performance was retested in the next morning and again 24 h later. The rate of express saccades was not affected by sleep after training, but slightly increased after sleep deprivation. Surprisingly, this increase augmented even further after recovery sleep and was still present 4 weeks later. Additional experiments revealed that the short testing after sleep deprivation was sufficient to increase express saccades across recovery sleep. An increase in speeded responses across recovery sleep was likewise found for finger motor responses. Our findings indicate that recovery sleep can consolidate motor disinhibition for behaviors practiced during prior sleep deprivation, thereby persistently enhancing response automatization. © The Author 2015. Published by Oxford University Press.

  6. Inhibition of glycogen synthase kinase-3beta downregulates total tau proteins in cultured neurons and its reversal by the blockade of protein phosphatase-2A.

    PubMed

    Martin, Ludovic; Magnaudeix, Amandine; Esclaire, Françoise; Yardin, Catherine; Terro, Faraj

    2009-02-03

    In tauopathies such as Alzheimer's disease (AD), the molecular mechanisms of tau protein aggregation into neurofibrillary tangles (NFTs) and their contribution to neurodegeneration remain not understood. It was recently demonstrated that tau, regardless of its aggregation, might represent a key mediator of neurodegeneration. Therefore, reduction of tau levels might represent a mechanism of neuroprotection. Glycogen synthase kinase-3beta (GSK3beta) and protein phosphatase-2A (PP2A) are key enzymes involved in the regulation of tau phosphorylation, and have been suggested to be involved in the abnormal tau phosphorylation and aggregation in AD. Connections between PP2A and GSK3beta signaling have been reported. We have previously demonstrated that exposure of cultured cortical neurons to lithium decreased tau protein expression and provided neuroprotection against Abeta. Since lithium is not a specific inhibitor of GSK3beta (ID50=2.0 mM), whether or not the lithium-induced tau decrease involves GSK3beta remained to be determined. For that purpose, cultured cortical neurons were exposed to 6-bromo-indirubin-3'-oxime (6-BIO), a more selective and potent GSK3beta inhibitor (ID50=1.5 microM) or to lithium. Analysis of tau levels and phosphorylation by western-blot assays showed that lithium and 6-BIO dose-dependently decreased both tau protein levels and tau phosphorylation. Conversely, inhibition of cyclin-dependent kinase-5 (CDK5) by roscovitine decreased phosphorylated tau but failed to alter tau protein levels. These data indicate that GSK3beta might be selectively involved in the regulation of tau protein levels. Moreover, inhibition of PP2A by okadaic acid, but not that of PP2B (protein phosphatase-2B)/calcineurin by FK506, dose-dependently reversed lithium-induced tau decrease. These data indicate that GSK3beta regulates both tau phosphorylation and total tau levels through PP2A.

  7. ELISA measurement of specific antibodies to phosphorylated tau in intravenous immunoglobulin products.

    PubMed

    Loeffler, David A; Klaver, Andrea C; Coffey, Mary P

    2015-10-01

    The therapeutic effects of intravenous immunoglobulin (IVIG) products were recently studied in Alzheimer's disease (AD) patients. Pilot studies produced encouraging results but phase II and III trials gave disappointing results; a further study is in progress. IVIG products contain antibodies to tau protein, the main component of neurofibrillary tangles (NFTs). The tau used to detect IVIG's anti-tau antibodies in previous studies was non-phosphorylated recombinant human tau-441, but NFT-associated tau is extensively phosphorylated. The objective of this study was to determine if various IVIG products contain specific antibodies to phosphorylated tau (anti-pTau antibodies). ELISAs were used to evaluate binding of six IVIG products to a 12 amino acid peptide, tau 196-207, which was phosphorylated ("pTau peptide") or non-phosphorylated ("non-pTau peptide") at Serine-199 and Serine-202. Both amino acid residues are phosphorylated in AD NFTs. Each IVIG's "anti-pTau antibody ratio" was calculated by dividing its binding to the pTau peptide by its binding to the non-pTau peptide. Seven experiments were performed and data were pooled, with each experiment contributing one data point from each IVIG product. Mean anti-pTau antibody ratios greater than 1.0, suggesting specific antibodies to phosphorylated tau, were found for three IVIG products. Because administration of antibodies to phosphorylated tau has been found to reduce tau-associated pathology in transgenic mouse models of tauopathy, increasing the levels of anti-pTau antibodies, together with other selected antibodies such as anti-Aβ, in IVIG might increase its ability to slow AD's progression. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Insufficient sleep is associated with impaired nitric oxide-mediated endothelium-dependent vasodilation.

    PubMed

    Bain, Anthony R; Weil, Brian R; Diehl, Kyle J; Greiner, Jared J; Stauffer, Brian L; DeSouza, Christopher A

    2017-10-01

    Habitual short nightly sleep duration is associated with increased atherosclerotic cardiovascular disease risk and morbidity. Vascular endothelial dysfunction represents an important mechanism that may underlie this heightened cardiovascular risk. Impaired endothelium-dependent vasodilation, particularly NO-mediated vasodilation, contributes to the development and progression of atherosclerotic vascular disease and acute vascular events. We tested the hypothesis that chronic insufficient sleep is associated with impaired NO-mediated endothelium-dependent vasodilation in middle-aged adults. Thirty adult men were studied: 15 with normal nightly sleep duration (age: 58 ± 2 y; sleep duration: 7.7 ± 0.2 h/night) and 15 with short nightly sleep duration (55 ± 2 y; 6.1 ± 0.2 h/night). Forearm blood flow (FBF) responses to intra-arterial infusion of acetylcholine, in the absence and presence of the endothelial NO synthase inhibitor N G -monomethyl-L-arginine (L-NMMA), as well as responses to sodium nitroprusside, were determined by strain-gauge venous occlusion plethysmography. The FBF response to acetylcholine was lower (∼20%; p<0.05) in the short sleep duration group (from 4.6 ± 0.3 to 11.7 ± 1.0 ml/100 ml tissue/min) compared with normal sleep duration group (from 4.4 ± 0.3 to 14.5 ± 0.5 ml/100 ml tissue/min). L-NMMA significantly reduced the FBF response to acetylcholine in the normal sleep duration group (∼40%), but not the short sleep duration group. There were no group differences in the vasodilator response to sodium nitroprusside. These data indicate that short nightly sleep duration is associated with endothelial-dependent vasodilator dysfunction due, in part, to diminished NO bioavailability. Impaired NO-mediated endothelium-dependent vasodilation may contribute to the increased cardiovascular risk with insufficient sleep. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Treatment with phosphotidylglycerol-based nanoparticles prevents motor deficits induced by proteasome inhibition: implications for Parkinson's disease.

    PubMed

    Fitzgerald, Patrick; Mandel, Arkady; Bolton, Anthony E; Sullivan, Aideen M; Nolan, Yvonne

    2008-12-22

    Failure of the ubiquitin-proteasome system to degrade abnormal proteins may underlie the accumulation of alpha-synuclein and dopaminergic neuronal degeneration that occurs in Parkinson's disease. Consequently, a reduction of functional proteasome activity has been implicated in Parkinson's disease. VP025 (Vasogen Inc.) is a preparation of phospholipid nanoparticles incorporating phosphatidylglycerol that has been shown to have neuroprotective effects. We show that VP025 prevents the deficits in motor coordination and dopamine observed in a proteasome inhibitor rat model of PD. Thus, VP025 may have a therapeutic effect on the impairment of dopaminergic-mediated motor activity induced by proteasome inhibition.

  10. Imbalance of Hsp70 family variants fosters tau accumulation.

    PubMed

    Jinwal, Umesh K; Akoury, Elias; Abisambra, Jose F; O'Leary, John C; Thompson, Andrea D; Blair, Laura J; Jin, Ying; Bacon, Justin; Nordhues, Bryce A; Cockman, Matthew; Zhang, Juan; Li, Pengfei; Zhang, Bo; Borysov, Sergiy; Uversky, Vladimir N; Biernat, Jacek; Mandelkow, Eckhard; Gestwicki, Jason E; Zweckstetter, Markus; Dickey, Chad A

    2013-04-01

    Dysfunctional tau accumulation is a major contributing factor in tauopathies, and the heat-shock protein 70 (Hsp70) seems to play an important role in this accumulation. Several reports suggest that Hsp70 proteins can cause tau degradation to be accelerated or slowed, but how these opposing activities are controlled is unclear. Here we demonstrate that highly homologous variants in the Hsp70 family can have opposing effects on tau clearance kinetics. When overexpressed in a tetracycline (Tet)-based protein chase model, constitutive heat shock cognate 70 (Hsc70) and inducible Hsp72 slowed or accelerated tau clearance, respectively. Tau synergized with Hsc70, but not Hsp72, to promote microtubule assembly at nearly twice the rate of either Hsp70 homologue in reconstituted, ATP-regenerating Xenopus extracts supplemented with rhodamine-labeled tubulin and human recombinant Hsp72 and Hsc70. Nuclear magnetic resonance spectroscopy with human recombinant protein revealed that Hsp72 had greater affinity for tau than Hsc70 (I/I0 ratio difference of 0.3), but Hsc70 was 30 times more abundant than Hsp72 in human and mouse brain tissue. This indicates that the predominant Hsp70 variant in the brain is Hsc70, suggesting that the brain environment primarily supports slower tau clearance. Despite its capacity to clear tau, Hsp72 was not induced in the Alzheimer's disease brain, suggesting a mechanism for age-associated onset of the disease. Through the use of chimeras that blended the domains of Hsp72 and Hsc70, we determined that the reason for these differences between Hsc70 and Hsp72 with regard to tau clearance kinetics lies within their C-terminal domains, which are essential for their interactions with substrates and cochaperones. Hsp72 but not Hsc70 in the presence of tau was able to recruit the cochaperone ubiquitin ligase CHIP, which is known to facilitate the ubiquitination of tau, describing a possible mechanism of how the C-termini of these homologous Hsp70 variants

  11. Impairments in Motor Neurons, Interneurons and Astrocytes Contribute to Hyperexcitability in ALS: Underlying Mechanisms and Paths to Therapy.

    PubMed

    Do-Ha, Dzung; Buskila, Yossi; Ooi, Lezanne

    2018-02-01

    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterised by the loss of motor neurons leading to progressive paralysis and death. Using transcranial magnetic stimulation (TMS) and nerve excitability tests, several clinical studies have identified that cortical and peripheral hyperexcitability are among the earliest pathologies observed in ALS patients. The changes in the electrophysiological properties of motor neurons have been identified in both sporadic and familial ALS patients, despite the diverse etiology of the disease. The mechanisms behind the change in neuronal signalling are not well understood, though current findings implicate intrinsic changes in motor neurons and dysfunction of cells critical in regulating motor neuronal excitability, such as astrocytes and interneurons. Alterations in ion channel expression and/or function in motor neurons has been associated with changes in cortical and peripheral nerve excitability. In addition to these intrinsic changes in motor neurons, inhibitory signalling through GABAergic interneurons is also impaired in ALS, likely contributing to increased neuronal excitability. Astrocytes have also recently been implicated in increasing neuronal excitability in ALS by failing to adequately regulate glutamate levels and extracellular K + concentration at the synaptic cleft. As hyperexcitability is a common and early feature of ALS, it offers a therapeutic and diagnostic target. Thus, understanding the underlying pathways and mechanisms leading to hyperexcitability in ALS offers crucial insight for future development of ALS treatments.

  12. Fine motor skills in children with prenatal alcohol exposure or fetal alcohol spectrum disorder.

    PubMed

    Doney, Robyn; Lucas, Barbara R; Jones, Taryn; Howat, Peter; Sauer, Kay; Elliott, Elizabeth J

    2014-01-01

    Prenatal alcohol exposure (PAE) can cause fetal alcohol spectrum disorders (FASD) and associated neurodevelopmental impairments. It is uncertain which types of fine motor skills are most likely to be affected after PAE or which assessment tools are most appropriate to use in FASD diagnostic assessments. This systematic review examined which types of fine motor skills are impaired in children with PAE or FASD; which fine motor assessments are appropriate for FASD diagnosis; and whether fine motor impairments are evident at both "low" and "high" PAE levels. A systematic review of relevant databases was undertaken using key terms. Relevant studies were extracted using a standardized form, and methodological quality was rated using a critical appraisal tool. Twenty-four studies met inclusion criteria. Complex fine motor skills, such as visual-motor integration, were more frequently impaired than basic fine motor skills, such as grip strength. Assessment tools that specifically assessed fine motor skills more consistently identified impairments than those which assessed fine motor skills as part of a generalized neurodevelopmental assessment. Fine motor impairments were associated with "moderate" to "high" PAE levels. Few studies reported fine motor skills of children with "low" PAE levels, so the effect of lower PAE levels on fine motor skills remains uncertain. Comprehensive assessment of a range of fine motor skills in children with PAE is important to ensure an accurate FASD diagnosis and develop appropriate therapeutic interventions for children with PAE-related fine motor impairments.

  13. Amyloid and tau cerebrospinal fluid biomarkers in HIV infection.

    PubMed

    Gisslén, Magnus; Krut, Jan; Andreasson, Ulf; Blennow, Kaj; Cinque, Paola; Brew, Bruce J; Spudich, Serena; Hagberg, Lars; Rosengren, Lars; Price, Richard W; Zetterberg, Henrik

    2009-12-22

    Because of the emerging intersections of HIV infection and Alzheimer's disease, we examined cerebrospinal fluid (CSF) biomarkers related of amyloid and tau metabolism in HIV-infected patients. In this cross-sectional study we measured soluble amyloid precursor proteins alpha and beta (sAPPalpha and sAPPbeta), amyloid beta fragment 1-42 (Abeta1-42), and total and hyperphosphorylated tau (t-tau and p-tau) in CSF of 86 HIV-infected (HIV+) subjects, including 21 with AIDS dementia complex (ADC), 25 with central nervous system (CNS) opportunistic infections and 40 without neurological symptoms and signs. We also measured these CSF biomarkers in 64 uninfected (HIV-) subjects, including 21 with Alzheimer's disease, and both younger and older controls without neurological disease. CSF sAPPalpha and sAPPbeta concentrations were highly correlated and reduced in patients with ADC and opportunistic infections compared to the other groups. The opportunistic infection group but not the ADC patients had lower CSF Abeta1-42 in comparison to the other HIV+ subjects. CSF t-tau levels were high in some ADC patients, but did not differ significantly from the HIV+ neuroasymptomatic group, while CSF p-tau was not increased in any of the HIV+ groups. Together, CSF amyloid and tau markers segregated the ADC patients from both HIV+ and HIV- neuroasymptomatics and from Alzheimer's disease patients, but not from those with opportunistic infections. Parallel reductions of CSF sAPPalpha and sAPPbeta in ADC and CNS opportunistic infections suggest an effect of CNS immune activation or inflammation on neuronal amyloid synthesis or processing. Elevation of CSF t-tau in some ADC and CNS infection patients without concomitant increase in p-tau indicates neural injury without preferential accumulation of hyperphosphorylated tau as found in Alzheimer's disease. These biomarker changes define pathogenetic pathways to brain injury in ADC that differ from those of Alzheimer's disease.

  14. March separate, strike together--role of phosphorylated TAU in mitochondrial dysfunction in Alzheimer's disease.

    PubMed

    Eckert, Anne; Nisbet, Rebecca; Grimm, Amandine; Götz, Jürgen

    2014-08-01

    The energy demand and calcium buffering requirements of the brain are met by the high number of mitochondria in neurons and in these, especially at the synapses. Mitochondria are the major producer of reactive oxygen species (ROS); at the same time, they are damaged by ROS that are induced by abnormal protein aggregates that characterize human neurodegenerative diseases such as Alzheimer's disease (AD). Because synaptic mitochondria are long-lived, any damage exerted by these aggregates impacts severely on neuronal function. Here we review how increased TAU, a defining feature of AD and related tauopathies, impairs mitochondrial function by following the principle: 'March separate, strike together!' In the presence of amyloid-β, TAU's toxicity is augmented suggesting synergistic pathomechanisms. In order to restore mitochondrial functions in neurodegeneration as a means of therapeutic intervention it will be important to integrate the various aspects of dysfunction and get a handle on targeting distinct cell types and subcellular compartments. © 2013.

  15. Deficiency of the Survival of Motor Neuron Protein Impairs mRNA Localization and Local Translation in the Growth Cone of Motor Neurons.

    PubMed

    Fallini, Claudia; Donlin-Asp, Paul G; Rouanet, Jeremy P; Bassell, Gary J; Rossoll, Wilfried

    2016-03-30

    Spinal muscular atrophy (SMA) is a neurodegenerative disease primarily affecting spinal motor neurons. It is caused by reduced levels of the survival of motor neuron (SMN) protein, which plays an essential role in the biogenesis of spliceosomal small nuclear ribonucleoproteins in all tissues. The etiology of the specific defects in the motor circuitry in SMA is still unclear, but SMN has also been implicated in mediating the axonal localization of mRNA-protein complexes, which may contribute to the axonal degeneration observed in SMA. Here, we report that SMN deficiency severely disrupts local protein synthesis within neuronal growth cones. We also identify the cytoskeleton-associated growth-associated protein 43 (GAP43) mRNA as a new target of SMN and show that motor neurons from SMA mouse models have reduced levels ofGAP43mRNA and protein in axons and growth cones. Importantly, overexpression of two mRNA-binding proteins, HuD and IMP1, restoresGAP43mRNA and protein levels in growth cones and rescues axon outgrowth defects in SMA neurons. These findings demonstrate that SMN plays an important role in the localization and local translation of mRNAs with important axonal functions and suggest that disruption of this function may contribute to the axonal defects observed in SMA. The motor neuron disease spinal muscular atrophy (SMA) is caused by reduced levels of the survival of motor neuron (SMN) protein, which plays a key role in assembling RNA/protein complexes that are essential for mRNA splicing. It remains unclear whether defects in this well characterized housekeeping function cause the specific degeneration of spinal motor neurons observed in SMA. Here, we describe an additional role of SMN in regulating the axonal localization and local translation of the mRNA encoding growth-associated protein 43 (GAP43). This study supports a model whereby SMN deficiency impedes transport and local translation of mRNAs important for neurite outgrowth and stabilization

  16. Axonal disruption in white matter underlying cortical sulcus tau pathology in chronic traumatic encephalopathy.

    PubMed

    Holleran, Laurena; Kim, Joong Hee; Gangolli, Mihika; Stein, Thor; Alvarez, Victor; McKee, Ann; Brody, David L

    2017-03-01

    Chronic traumatic encephalopathy (CTE) is a progressive degenerative disorder associated with repetitive traumatic brain injury. One of the primary defining neuropathological lesions in CTE, based on the first consensus conference, is the accumulation of hyperphosphorylated tau in gray matter sulcal depths. Post-mortem CTE studies have also reported myelin loss, axonal injury and white matter degeneration. Currently, the diagnosis of CTE is restricted to post-mortem neuropathological analysis. We hypothesized that high spatial resolution advanced diffusion MRI might be useful for detecting white matter microstructural changes directly adjacent to gray matter tau pathology. To test this hypothesis, formalin-fixed post-mortem tissue blocks from the superior frontal cortex of ten individuals with an established diagnosis of CTE were obtained from the Veterans Affairs-Boston University-Concussion Legacy Foundation brain bank. Advanced diffusion MRI data was acquired using an 11.74 T MRI scanner at Washington University with 250 × 250 × 500 µm 3 spatial resolution. Diffusion tensor imaging, diffusion kurtosis imaging and generalized q-sampling imaging analyses were performed in a blinded fashion. Following MRI acquisition, tissue sections were tested for phosphorylated tau immunoreactivity in gray matter sulcal depths. Axonal disruption in underlying white matter was assessed using two-dimensional Fourier transform analysis of myelin black gold staining. A robust image co-registration method was applied to accurately quantify the relationship between diffusion MRI parameters and histopathology. We found that white matter underlying sulci with high levels of tau pathology had substantially impaired myelin black gold Fourier transform power coherence, indicating axonal microstructural disruption (r = -0.55, p = 0.0015). Using diffusion tensor MRI, we found that fractional anisotropy (FA) was modestly (r = 0.53) but significantly (p = 0.0012) correlated

  17. Validity and reliability of the Movement Assessment Battery for Children-2 Checklist for children with and without motor impairments.

    PubMed

    Schoemaker, Marina M; Niemeijer, Anuschka S; Flapper, Boudien C T; Smits-Engelsman, Bouwien C M

    2012-04-01

    The aim of this study was to investigate the validity and reliability of the Movement Assessment Battery for Children-2 Checklist (MABC-2). Teachers completed the Checklist for 383 children (age range 5-8y; mean age 6y 9mo; 190 males; 193 females) and the parents of 130 of these children completed the Developmental Disorder Coordination Questionnaire 2007 (DCDQ'07). All children were assessed with the MABC-2 Test. The internal consistency of the 30 items of the Checklist was determined to measure reliability. Construct validity was investigated using factor analysis and discriminative validity was assessed by comparing the scores of children with and without movement difficulties. Concurrent validity was measured by calculating correlations between the Checklist, Test, and the DCDQ'07. Incremental validity was assessed to determine whether the Checklist was a better predictor of motor impairment than the DCDQ'07. Sensitivity and specificity were investigated using the MABC-2 Test as reference standard (cut-off 15th centile). The Checklist items measure the same construct. Six factors were obtained after factor analysis. This implies that a broad range of functional activities can be assessed with the Checklist, which renders the Checklist useful for assessing criterion B of the diagnostic criteria for DCD. The mean Checklist scores for children with and without motor impairments significantly differed (p<0.001). The scores for the Checklist/Test and DCDQ'07 were significantly correlated (r(S) =-0.38 and p<0.001, and r(S) =-0.36 and p<0.001, respectively). The Checklist better predicted motor impairment than the DCDQ'07. Overall, the sensitivity was low (41%) and the specificity was acceptable (88%). The Checklist meets standards for validity and reliability. © The Authors. Developmental Medicine & Child Neurology © 2012 Mac Keith Press.

  18. Harnessing the immune system for treatment and detection of tau pathology.

    PubMed

    Congdon, Erin E; Krishnaswamy, Senthilkumar; Sigurdsson, Einar M

    2014-01-01

    The tau protein is an attractive target for therapy and diagnosis. We started a tau immunotherapy program about 13 years ago and have since demonstrated that active and passive immunotherapies diminish tau pathology and improve function, including cognition, in different mouse models. These findings have been confirmed and extended by several groups. We routinely detect neuronal, and to a lesser extent microglial, antibody uptake correlating with tau pathology. Antibodies bind tau aggregates in the endosomal/lysosomal system, enhancing clearance presumably by promoting their disassembly. Extracellular clearance has recently been shown by others, using antibodies that apparently are not internalized. As most pathological tau is neuronal, intracellular targeting may be more efficacious. However, extracellular tau may be more accessible to antibodies, with tau-antibody complexes a target for microglial phagocytosis. The extent of involvement of each pathway may depend on numerous factors including antibody properties, degree of pathology, and experimental model. On the imaging front, multiple tau ligands derived from β-sheet dyes have been developed by several groups, some with promising results in clinical PET tests. Postmortem analysis should clarify their tau specificity, as in theory and based on histological staining, those are likely to have some affinity for various amyloids. We are developing antibody-derived tau probes that should be more specific, and have in mouse models shown in vivo detection and binding to pathological tau after peripheral injection. These are exciting times for research on tau therapies and diagnostic agents that hopefully can be applied to humans in the near future.

  19. The ELISA-measured increase in cerebrospinal fluid tau that discriminates Alzheimer's disease from other neurodegenerative disorders is not attributable to differential recognition of tau assembly forms.

    PubMed

    O'Dowd, Seán T; Ardah, Mustafa T; Johansson, Per; Lomakin, Aleksey; Benedek, George B; Roberts, Kinley A; Cummins, Gemma; El Agnaf, Omar M; Svensson, Johan; Zetterberg, Henrik; Lynch, Timothy; Walsh, Dominic M

    2013-01-01

    Elevated cerebrospinal fluid concentrations of tau discriminate Alzheimer's disease from other neurodegenerative conditions. The reasons for this are unclear. While commercial assay kits are widely used to determine total-tau concentrations, little is known about their ability to detect different aggregation states of tau. We demonstrate that the leading commercial enzyme-linked immunosorbent assay reliably detects aggregated and monomeric tau and evinces good recovery of both species when added into cerebrospinal fluid. Hence, the disparity between total-tau levels encountered in Alzheimer's disease and other neurodegenerative conditions is not due to differential recognition of tau assembly forms or the extent of degeneration.

  20. UX Tau A

    NASA Technical Reports Server (NTRS)

    2007-01-01

    This is an artist's rendition of the one-million-year-old star system called UX Tau A, located approximately 450 light-years away. Observations from NASA's Spitzer Space Telescope showed a gap in the dusty planet-forming disk swirling around the system's central sun-like star.

    Spitzer saw a gap in UX Tau A's disk that extends from 0.2 to 56 astronomical units (an astronomical unit is the distance between the sun and Earth). The gap extends from the equivalent of Mercury to Pluto in our solar system, and is sandwiched between thick inner and outer disks on either side. Astronomers suspect that the gap was carved out by one or more forming planets.

    Such dusty disks are where planets are thought to be born. Dust grains clump together like snowballs to form larger rocks, and then the bigger rocks collide to form the cores of planets. When rocks revolve around their central star, they act like cosmic vacuum cleaners, picking up all the gas and dust in their path and creating gaps.

    Although gaps have been detected in disks swirling around young stars before, UX Tau A is special because the gap is sandwiched between two thick disks of dust. An inner thick dusty disk hugs the central star, then, moving outward, there is a gap, followed by another thick doughnut-shaped disk. Other systems with gaps contain very little to no dust near the central star. In other words, those gaps are more like big holes in the centers of disks.

    Some scientists suspect that these holes could have been carved out by a process called photoevaporation. Photoevaporation occurs when radiation from the central star heats up the gas and dust around it to the point where it evaporates away. The fact that there is thick disk swirling extremely close to UX Tau A's central star rules out the photoevaporation scenario. If photoevaporation from the star played a role, then large amounts of dust would not be floating so close to the star.