Sample records for taurine-conjugated bile salts

  1. Vectorial transport of unconjugated and conjugated bile salts by monolayers of LLC-PK1 cells doubly transfected with human NTCP and BSEP or with rat Ntcp and Bsep.

    PubMed

    Mita, Sachiko; Suzuki, Hiroshi; Akita, Hidetaka; Hayashi, Hisamitsu; Onuki, Reiko; Hofmann, Alan F; Sugiyama, Yuichi

    2006-03-01

    Na(+)-taurocholate-cotransporting peptide (NTCP)/SLC10A1 and bile salt export pump (BSEP)/ABCB11 synergistically play an important role in the transport of bile salts by the hepatocyte. In this study, we transfected human NTCP and BSEP or rat Ntcp and Bsep into LLC-PK1 cells, a cell line devoid of bile salts transporters. Transport by these cells was characterized with a focus on substrate specificity between rats and humans. The basal to apical flux of taurocholate across NTCP- and BSEP-expressing LLC-PK1 monolayers was 10 times higher than that in the opposite direction, whereas the flux across the monolayer of control and NTCP or BSEP single-expressing cells did not show any vectorial transport. The basal to apical flux of taurocholate was saturated with a K(m) value of 20 microM. Vectorial transcellular transport was also observed for cholate, chenodeoxycholate, ursodeoxycholate, their taurine and glycine conjugates, and taurodeoxycholate and glycodeoxycholate, whereas no transport of lithocholate was detected. To evaluate the respective functions of NTCP and BSEP and to compare them with those of rat Ntcp and Bsep, we calculated the clearance by each transporter in this system. A good correlation in the clearance of the examined bile salts (cholate, chenodeoxycholate, ursodeoxycholate, and their taurine or glycine conjugates) was observed between transport by human and that of rat transporters in terms of their rank order: for NTCP, taurine conjugates > glycine conjugates > unconjugated bile salts, and for BSEP, unconjugated bile salts and glycine conjugates > taurine conjugates. In conclusion, the substrate specificity of human and rat NTCP and BSEP appear to be very similar at least for monovalent bile salts under physiological conditions.

  2. Radiosynthesis of N-¹¹C-Methyl-Taurine-Conjugated Bile Acids and Biodistribution Studies in Pigs by PET/CT.

    PubMed

    Schacht, Anna Christina; Sørensen, Michael; Munk, Ole Lajord; Frisch, Kim

    2016-04-01

    During cholestasis, accumulation of conjugated bile acids may occur in the liver and lead to hepatocellular damage. Inspired by our recent development of N-(11)C-methyl-glycocholic acid-that is, (11)C-cholylsarcosine-a tracer for PET of the endogenous glycine conjugate of cholic acid, we report here a radiosynthesis of N-(11)C-methyl-taurine-conjugated bile acids and biodistribution studies in pigs by PET/CT. A radiosynthesis of N-(11)C-methyl-taurine-conjugated bile acids was developed and used to prepare N-(11)C-methyl-taurine conjugates derived from cholic, chenodeoxycholic, deoxycholic, ursodeoxycholic, and lithocholic acid. The lipophilicity of these new tracers was determined by reversed-phase thin-layer chromatography. The effect of lipophilicity and structure on the biodistribution was investigated in pigs by PET/CT using the tracers derived from cholic acid (3α-OH, 7α-OH, 12α-OH), ursodeoxycholic acid (3α-OH, 7β-OH), and lithocholic acid (3α-OH). The radiosyntheses of the N-(11)C-methyl-taurine-conjugated bile acids proceeded with radiochemical yields of 61% (decay-corrected) or greater and radiochemical purities greater than 99%. PET/CT in pigs revealed that the tracers were rapidly taken up by the liver and secreted into bile. There was no detectable radioactivity in urine. Significant reflux of N-(11)C-methyl-taurolithocholic acid into the stomach was observed. We have successfully developed a radiosynthesis of N-(11)C-methyl-taurine-conjugated bile acids. These tracers behave in a manner similar to endogenous taurine-conjugated bile acids in vivo and are thus promising for functional PET of patients with cholestatic diseases. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  3. Effect of perfusion of bile salts solutions into the oesophagus of hiatal hernia patients and controls.

    PubMed Central

    Bachir, G S; Collis, J L

    1976-01-01

    Tests of the response to perfusion of the oesophagus were made in 54 patients divided into three groups. Group I consisted of patients with symptomatic hiatal hernia, group II hiatal hernia patients with peptic stricture, and group III normal individuals. Each individual oesophagus was perfused at a rate of 45-65 drops per minute over 25 minutes with six solutions: normal saline, N/10 HCl, taurine conjugates of bile salts in normal saline, taurine conjugates of bile salts in N/10 HCl, glycine conjugates of bile salts in normal saline, and taurine and glycine conjugates in a ratio of 1 to 2 in normal saline. It was found that acidified taurine solutions were more irritating than acid alone. With a 2mM/l solution of taurine in acid, symptoms are produced even in controls. With a 1 mM/l solution of the same conjugates, the majority of normal people feel slight heartburn or nothing, and therefore perfusion into the oesophagus of such a solution could be used as a test for oesophagitis. PMID:941112

  4. Effect of supplemental taurine on juvenile channel catfish Ictalurus punctatus growth performance

    USDA-ARS?s Scientific Manuscript database

    Taurine is a beta-amino sulfur amino acid found in most animal tissues that has many important biological functions including bile salt conjugation, cellular osmoregulation, neuromodulation, calcium signaling. The benefits of supplementing diets with taurine are just beginning to be realized in a n...

  5. Assay of free and glycine- and taurine-conjugated bile acids in serum by high-pressure liquid chromatography by using post-column reaction after group separation.

    PubMed Central

    Onishi, S; Itoh, S; Ishida, Y

    1982-01-01

    An accurate and sensitive method that involves the group separations of serum bile acids (i.e. free and glycine- and taurine-conjugated bile acid fractions) by ion-exchange chromatography on piperidinohydroxypropyl-Sephadex LH-20 is described. Each group was then analysed by high-pressure liquid chromatography by using the post-column reaction technique with immobilized 3 alpha-hydroxy steroid dehydrogenase. The bile acid patterns in the umbilical venous serum samples were analysed by this method. Taurochenodeoxycholate predominated in the umbilical blood. PMID:6956336

  6. Fasting Serum Taurine-Conjugated Bile Acids Are Elevated in Type 2 Diabetes and Do Not Change With Intensification of Insulin

    PubMed Central

    Wewalka, Marlene; Patti, Mary-Elizabeth; Barbato, Corinne; Houten, Sander M.

    2014-01-01

    Context: Bile acids (BAs) are newly recognized signaling molecules in glucose and energy homeostasis. Differences in BA profiles with type 2 diabetes mellitus (T2D) remain incompletely understood. Objective: The objective of the study was to assess serum BA composition in impaired glucose-tolerant, T2D, and normal glucose-tolerant persons and to monitor the effects of improving glycemia on serum BA composition in T2D patients. Design and Setting: This was a cross-sectional cohort study in a general population (cohort 1) and nonrandomized intervention (cohort 2). Patients and Interventions: Ninety-nine volunteers underwent oral glucose tolerance testing, and 12 persons with T2D and hyperglycemia underwent 8 weeks of intensification of treatment. Main Outcome Measures: Serum free BA and respective taurine and glycine conjugates were measured by HPLC tandem mass spectrometry. Results: Oral glucose tolerance testing identified 62 normal-, 25 impaired glucose-tolerant, and 12 T2D persons. Concentrations of total taurine-conjugated BA were higher in T2D and intermediate in impaired- compared with normal glucose-tolerant persons (P = .009). Univariate regression revealed a positive association between total taurine-BA and fasting glucose (R = 0.37, P < .001), postload glucose (R = 0.31, P < .002), hemoglobin A1c (R = 0.26, P < .001), fasting insulin (R = 0.21, P = .03), and homeostatic model assessment-estimated insulin resistance (R = 0.26, P = .01) and an inverse association with oral disposition index (R = −0.36, P < .001). Insulin-mediated glycemic improvement in T2D patients did not change fasting serum total BA or BA composition. Conclusion: Fasting taurine-conjugated BA concentrations are higher in T2D and intermediate in impaired compared with normal glucose-tolerant persons and are associated with fasting and postload glucose. Serum BAs are not altered in T2D in response to improved glycemia. Further study may elucidate whether this pattern of taurine

  7. Bile salt induced back diffusion of hydrogen ions across gastric mucosa in man. Fact or fiction?

    PubMed

    Ivey, K J

    1981-01-01

    We studied the effect of 5.5 mM bile salts, consisting of taurine conjugates in 5 normal subjects. Bile salts caused a significant increase in H+ loss from and Na+ movement into the gastric lumen (controls 1.5 mEq H+, 1.5 mEq Na+; bile salts -3.1 mEq H+ (p less than 0.001), Na+ 2.5 mEq (p less than 0.01) per 15 min.) To determine the effect of acid secretion, studies were repeated after i.v. atropine 2 mg/70 kg b.w. Atropine reduced net H+ flux to -0.2 mEq and Na+ gain to 0.9 mEq. When the bile salt studies were repeated after i.v. atropine, net H+ loss was increased to -5.4 mEq H+, significantly greater than with bile salts alone; corresponding Na+ gain was 3.2 mEq/15 min. The volume of fluid secreted was 25.0 ml in the bile salt study compared with 14.0 ml in the atropine and bile salt study. Even if all the additional volume 'secreted' (14 ml) were bicarbonate from the stomach or pancreatic juice with a concentration of 145 mEq/liter, it could account for a loss of only 2.0 mEq H+. In conclusion, atropine with bile salts is associated with a loss of H+ ions too great to be accounted for by bicarbonate neutralization. We conclude that back diffusion of H+ ions is the most likely explanation of H+ loss after bile salts in man.

  8. Bile salt tolerance of Lactococcus lactis is enhanced by expression of bile salt hydrolase thereby producing less bile acid in the cells.

    PubMed

    Bi, Jie; Liu, Song; Du, Guocheng; Chen, Jian

    2016-04-01

    Changes of bile salt tolerance, morphology and amount of bile acid within cells were studied to evaluate the exact effects of bile salt hydrolase (BSH) on bile salt tolerance of microorganism. The effect of BSHs on the bile salt tolerance of Lactococcus lactis was examined by expressing two BSHs (BSH1 and BSH2). Growth of L. lactis expressing BSH1 or BSH2 was better under bile salt stress compared to wild-type L. lactis. As indicated by transmission electron microscopy, bile acids released by the action of BSH induced the formation of micelles around the membrane surface of cells subject to conjugated bile salt stress. A similar micelle containing bile acid was observed in the cytoplasm by liquid chromatography-mass spectrometry. BSH1 produced fewer bile acid micelles in the cytoplasm and achieved better cell growth of L. lactis compared to BSH2. Expression of BSH improved bile salt tolerance of L. lactis but excessive production by BSH of bile acid micelles in the cytoplasm inhibited cell growth.

  9. Preference of Conjugated Bile Acids over Unconjugated Bile Acids as Substrates for OATP1B1 and OATP1B3

    PubMed Central

    Suga, Takahiro; Sato, Toshihiro; Maekawa, Masamitsu; Goto, Junichi; Mano, Nariyasu

    2017-01-01

    Bile acids, the metabolites of cholesterol, are signaling molecules that play critical role in many physiological functions. They undergo enterohepatic circulation through various transporters expressed in intestine and liver. Human organic anion-transporting polypeptides (OATP) 1B1 and OATP1B3 contribute to hepatic uptake of bile acids such as taurocholic acid. However, the transport properties of individual bile acids are not well understood. Therefore, we selected HEK293 cells overexpressing OATP1B1 and OATP1B3 to evaluate the transport of five major human bile acids (cholic acid, chenodeoxycholic acid, deoxycholic acid, ursodeoxycholic acid, lithocholic acid) together withtheir glycine and taurine conjugates via OATP1B1 and OATP1B3. The bile acids were quantified by liquid chromatography-tandem mass spectrometry. The present study revealed that cholic acid, chenodeoxyxcholic acid, and deoxycholic acid were transported by OATP1B1 and OATP1B3, while ursodeoxycholic acid and lithocholic acid were not significantly transported by OATPs. However, all the conjugated bile acids were taken up rapidly by OATP1B1 and OATP1B3. Kinetic analyses revealed the involvement of saturable OATP1B1- and OATP1B3-mediated transport of bile acids. The apparent Km values for OATP1B1 and OATP1B3 of the conjugated bile acids were similar (0.74–14.7 μM for OATP1B1 and 0.47–15.3 μM for OATP1B3). They exhibited higher affinity than cholic acid (47.1 μM for OATP1B1 and 42.2 μM for OATP1B3). Our results suggest that conjugated bile acids (glycine and taurine) are preferred to unconjugated bile acids as substrates for OATP1B1 and OATP1B3. PMID:28060902

  10. Fetal bile salt metabolism

    PubMed Central

    Smallwood, R. A.; Lester, R.; Piasecki, G. J.; Klein, P. D.; Greco, R.; Jackson, B. T.

    1972-01-01

    for less than 5% of the dose. Fetal bile volume increased 15-fold on average, while bile salt concentrations increased two- to threefold. It is concluded that bile salt is taken up, conjugated, and excreted by the fetal liver with remarkable efficiency. The excreted material is either stored and concentrated in the fetal gallbladder or released into the intestine and reabsorbed to be reexcreted in bile. PMID:5063379

  11. [Correlations of bile acids in the bile of rats in conditions of alloxan induced diabetes melitus].

    PubMed

    Danchenko, N M; Vesel'skyĭ, S P; Tsudzevych, B O

    2014-01-01

    The ratio of bile acids in the bile of rats with alloxan diabetes was investigated using the method of thin-layer chromatography. Changes of coefficients of conjugation and hydroxylation of bile acids were calculated and analyzed in half-hour samples of bile obtained during the 3-hour experiment. It has been found that the processes of conjugation of cholic acid with glycine and taurine are inhibited in alloxan diabetes. At the same time a significant increase of free threehydroxycholic and dixydroxycholic bile acids and conjugates of the latter ones with taurine has been registered. Coefficients of hydroxylation in alloxan diabetes show the domination of "acidic" pathway in bile acid biosynthesis that is tightly connected with the activity of mitochondrial enzymes.

  12. Inhibition of bile salt transport by drugs associated with liver injury in primary hepatocytes from human, monkey, dog, rat, and mouse

    PubMed Central

    Zhang, Jie; He, Kan; Cai, Lining; Chen, Yu-Chuan; Yang, Yifan; Shi, Qin; Woolf, Thomas F.; Ge, Weigong; Guo, Lei; Borlak, Jürgen; Tong, Weida

    2018-01-01

    Interference of bile salt transport is one of the underlying mechanisms for drug-induced liver injury (DILI). We developed a novel bile salt transport activity assay involving in situ biosynthesis of bile salts from their precursors in primary human, monkey, dog, rat, and mouse hepatocytes in suspension as well as LC-MS/MS determination of extracellular bile salts transported out of hepatocytes. Glycine- and taurine-conjugated bile acids were rapidly formed in hepatocytes and effectively transported into the extracellular medium. The bile salt formation and transport activities were time– and bile-acid-concentration–dependent in primary human hepatocytes. The transport activity was inhibited by the bile salt export pump (BSEP) inhibitors ketoconazole, saquinavir, cyclosporine, and troglitazone. The assay was used to test 86 drugs for their potential to inhibit bile salt transport activity in human hepatocytes, which included 35 drugs associated with severe DILI (sDILI) and 51 with non-severe DILI (non-sDILI). Approximately 60% of the sDILI drugs showed potent inhibition (with IC50 values <50 μM), but only about 20% of the non-sDILI drugs showed this strength of inhibition in primary human hepatocytes and these drugs are associated only with cholestatic and mixed hepatocellular cholestatic (mixed) injuries. The sDILI drugs, which did not show substantial inhibition of bile salt transport activity, are likely to be associated with immune-mediated liver injury. Twenty-four drugs were also tested in monkey, dog, rat and mouse hepatocytes. Species differences in potency were observed with mouse being less sensitive than other species to inhibition of bile salt transport. In summary, a novel assay has been developed using hepatocytes in suspension from human and animal species that can be used to assess the potential for drugs and/or drug-derived metabolites to inhibit bile salt transport and/or formation activity. Drugs causing sDILI, except those by immune

  13. Inhibition of bile salt transport by drugs associated with liver injury in primary hepatocytes from human, monkey, dog, rat, and mouse.

    PubMed

    Zhang, Jie; He, Kan; Cai, Lining; Chen, Yu-Chuan; Yang, Yifan; Shi, Qin; Woolf, Thomas F; Ge, Weigong; Guo, Lei; Borlak, Jürgen; Tong, Weida

    2016-08-05

    Interference of bile salt transport is one of the underlying mechanisms for drug-induced liver injury (DILI). We developed a novel bile salt transport activity assay involving in situ biosynthesis of bile salts from their precursors in primary human, monkey, dog, rat, and mouse hepatocytes in suspension as well as LC-MS/MS determination of extracellular bile salts transported out of hepatocytes. Glycine- and taurine-conjugated bile acids were rapidly formed in hepatocytes and effectively transported into the extracellular medium. The bile salt formation and transport activities were time‒ and bile-acid-concentration‒dependent in primary human hepatocytes. The transport activity was inhibited by the bile salt export pump (BSEP) inhibitors ketoconazole, saquinavir, cyclosporine, and troglitazone. The assay was used to test 86 drugs for their potential to inhibit bile salt transport activity in human hepatocytes, which included 35 drugs associated with severe DILI (sDILI) and 51 with non-severe DILI (non-sDILI). Approximately 60% of the sDILI drugs showed potent inhibition (with IC50 values <50 μM), but only about 20% of the non-sDILI drugs showed this strength of inhibition in primary human hepatocytes and these drugs are associated only with cholestatic and mixed hepatocellular cholestatic (mixed) injuries. The sDILI drugs, which did not show substantial inhibition of bile salt transport activity, are likely to be associated with immune-mediated liver injury. Twenty-four drugs were also tested in monkey, dog, rat and mouse hepatocytes. Species differences in potency were observed with mouse being less sensitive than other species to inhibition of bile salt transport. In summary, a novel assay has been developed using hepatocytes in suspension from human and animal species that can be used to assess the potential for drugs and/or drug-derived metabolites to inhibit bile salt transport and/or formation activity. Drugs causing sDILI, except those by immune

  14. Crystal structure of bile salt hydrolase from Lactobacillus salivarius.

    PubMed

    Xu, Fuzhou; Guo, Fangfang; Hu, Xiao Jian; Lin, Jun

    2016-05-01

    Bile salt hydrolase (BSH) is a gut-bacterial enzyme that negatively influences host fat digestion and energy harvesting. The BSH enzyme activity functions as a gateway reaction in the small intestine by the deconjugation of glycine-conjugated or taurine-conjugated bile acids. Extensive gut-microbiota studies have suggested that BSH is a key mechanistic microbiome target for the development of novel non-antibiotic food additives to improve animal feed production and for the design of new measures to control obesity in humans. However, research on BSH is still in its infancy, particularly in terms of the structural basis of BSH function, which has hampered the development of BSH-based strategies for improving human and animal health. As an initial step towards the structure-function analysis of BSH, C-terminally His-tagged BSH from Lactobacillus salivarius NRRL B-30514 was crystallized in this study. The 1.90 Å resolution crystal structure of L. salivarius BSH was determined by molecular replacement using the structure of Clostridium perfringens BSH as a starting model. It revealed this BSH to be a member of the N-terminal nucleophile hydrolase superfamily. Crystals of apo BSH belonged to space group P21212, with unit-cell parameters a = 90.79, b = 87.35, c = 86.76 Å (PDB entry 5hke). Two BSH molecules packed perfectly as a dimer in one asymmetric unit. Comparative structural analysis of L. salivarius BSH also identified potential residues that contribute to catalysis and substrate specificity.

  15. Role of taurine in the pathogenesis of obesity.

    PubMed

    Murakami, Shigeru

    2015-07-01

    Taurine is a sulfur-containing amino acid that is present in mammalian tissues in millimolar concentrations. Taurine is involved in a diverse array of biological and physiological functions, including bile salt conjugation, osmoregulation, membrane stabilization, calcium modulation, anti-oxidation, and immunomodulation. The prevalence of obesity and being overweight continues to rise worldwide at an alarming rate. Obesity is associated with a higher risk of metabolic and cardiovascular diseases, cancer, and other clinical conditions. Ingestion of taurine has been shown to alleviate metabolic diseases such as hyperlipidemia, diabetes, hypertension, and obesity in animal models. A global epidemiological survey showed that 24-h urinary taurine excretion, as a marker of dietary taurine intake, was inversely associated with BMI, blood pressure, and plasma cholesterol in humans. In addition, taurine chloramine, an endogenous product derived from activated neutrophils, has been reported to suppress obesity-induced oxidative stress and inflammation in adipocytes. Synthetic activity and concentration of taurine in adipose tissues and plasma have been shown to decrease in humans and animals during the development of obesity, suggesting a relationship between taurine deficiency and obesity. In this review, I summarize the effects of taurine on the progression of obesity in animal models and humans. Furthermore, I discuss possible mechanisms underlying the antiobesity effects of taurine. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. A new high-performance thin-layer chromatographic method for determining bile salt hydrolase activity.

    PubMed

    Rohawi, Nur Syakila; Ramasamy, Kalavathy; Agatonovic-Kustrin, Snezana; Lim, Siong Meng

    2018-06-05

    A quantitative assay using high-performance thin-layer chromatography (HPTLC) was developed to investigate bile salt hydrolase (BSH) activity in Pediococcus pentosaceus LAB6 and Lactobacillus plantarum LAB12 probiotic bacteria isolated from Malaysian fermented food. Lactic acid bacteria (LAB) were cultured in de Man Rogosa and Sharpe (MRS) broth containing 1 mmol/L of sodium-based glyco- and tauro-conjugated bile salts for 24 h. The cultures were centrifuged and the resultant cell free supernatant was subjected to chromatographic separation on a HPTLC plate. Conjugated bile salts were quantified by densitometric scans at 550 nm and results were compared to digital image analysis of chromatographic plates after derivatisation with anisaldehyde/sulfuric acid. Standard curves for bile salts determination with both methods show good linearity with high coefficient of determination (R 2 ) between 0.97 and 0.99. Method validation indicates good sensitivity with low relative standard deviation (RSD) (<10%), low limits of detection (LOD) of 0.4 versus 0.2 μg and limit of quantification (LOQ) of 1.4 versus 0.7 μg, for densitometric vs digital image analysis method, respectively. The bile salt hydrolase activity was found to be higher against glyco- than tauro-conjugated bile salts (LAB6; 100% vs >38%: LAB12; 100% vs >75%). The present findings strongly show that quantitative analysis via digitally-enhanced HPTLC offers a rapid quantitative analysis for deconjugation of bile salts by probiotics. Copyright © 2018. Published by Elsevier B.V.

  17. Molecular cloning, characterization and comparison of bile salt hydrolases from Lactobacillus johnsonii PF01.

    PubMed

    Chae, J P; Valeriano, V D; Kim, G-B; Kang, D-K

    2013-01-01

    To clone, characterize and compare the bile salt hydrolase (BSH) genes of Lactobacillus johnsonii PF01. The BSH genes were amplified by polymerase chain reaction (PCR) using specific oligonucleotide primers, and the products were inserted into the pET21b expression vector. Escherichia coli BLR (DE3) cells were transformed with pET21b vectors containing the BSH genes and induced using 0·1 mmol l(-1) isopropylthiolgalactopyranoside. The overexpressed BSH enzymes were purified using a nickel-nitrilotriacetic acid (Ni(2+) -NTA) agarose column and their activities characterized. BSH A hydrolysed tauro-conjugated bile salts optimally at pH 5·0 and 55°C, whereas BSH C hydrolysed glyco-conjugated bile salts optimally at pH 5·0 and 70°C. The enzymes had no preferential activities towards a specific cholyl moiety. BSH enzymes vary in their substrate specificities and characteristics to broaden its activity. Despite the lack of conservation in their putative substrate-binding sites, these remain functional through motif conservation. This is to our knowledge the first report of isolation of BSH enzymes from a single strain, showing hydrolase activity towards either glyco-conjugated or tauro-conjugated bile salts. Future structural homology studies and site-directed mutagenesis of sites associated with substrate specificity may elucidate specificities of BSH enzymes. © 2012 The Society for Applied Microbiology.

  18. Impact of Gut Microbiota-Mediated Bile Acid Metabolism on the Solubilization Capacity of Bile Salt Micelles and Drug Solubility.

    PubMed

    Enright, Elaine F; Joyce, Susan A; Gahan, Cormac G M; Griffin, Brendan T

    2017-04-03

    In recent years, the gut microbiome has gained increasing appreciation as a determinant of the health status of the human host. Bile salts that are secreted into the intestine may be biotransformed by enzymes produced by the gut bacteria. To date, bile acid research at the host-microbe interface has primarily been directed toward effects on host metabolism. The aim of this work was to investigate the effect of changes in gut microbial bile acid metabolism on the solubilization capacity of bile salt micelles and consequently intraluminal drug solubility. First, the impact of bile acid metabolism, mediated in vivo by the microbial enzymes bile salt hydrolase (BSH) and 7α-dehydroxylase, on drug solubility was assessed by comparing the solubilization capacity of (a) conjugated vs deconjugated and (b) primary vs secondary bile salts. A series of poorly water-soluble drugs (PWSDs) were selected as model solutes on the basis of an increased tendency to associate with bile micelles. Subsequently, PWSD solubility and dissolution was evaluated in conventional biorelevant simulated intestinal fluid containing host-derived bile acids, as well as in media modified to contain microbial bile acid metabolites. The findings suggest that deconjugation of the bile acid steroidal core, as dictated by BSH activity, influences micellar solubilization capacity for some PWSDs; however, these differences appear to be relatively minor. In contrast, the extent of bile acid hydroxylation, regulated by microbial 7α-dehydroxylase, was found to significantly affect the solubilization capacity of bile salt micelles for all nine drugs studied (p < 0.05). Subsequent investigations in biorelevant media containing either the trihydroxy bile salt sodium taurocholate (TCA) or the dihydroxy bile salt sodium taurodeoxycholate (TDCA) revealed altered drug solubility and dissolution. Observed differences in biorelevant media appeared to be both drug- and amphiphile (bile salt/lecithin) concentration

  19. Identification of Genes Encoding Conjugated Bile Salt Hydrolase and Transport in Lactobacillus johnsonii 100-100

    PubMed Central

    Elkins, Christopher A.; Savage, Dwayne C.

    1998-01-01

    Cytosolic extracts of Lactobacillus johnsonii 100-100 (previously reported as Lactobacillus sp. strain 100-100) contain four heterotrimeric isozymes composed of two peptides, α and β, with conjugated bile salt hydrolase (BSH) activity. We now report cloning, from the genome of strain 100-100, a 2,977-bp DNA segment that expresses BSH activity in Escherichia coli. The sequencing of this segment showed that it contained one complete and two partial open reading frames (ORFs). The 3′ partial ORF (927 nucleotides) was predicted by BLAST and confirmed with 5′ and 3′ deletions to be a BSH gene. Thermal asymmetric interlaced PCR was used to extend and complete the 948-nucleotide sequence of the BSH gene 3′ of the cloned segment. The predicted amino acid sequence of the 5′ partial ORF (651 nucleotides) was about 80% similar to the C-terminal half of the largest, complete ORF (1,353 nucleotides), and these two putative proteins were similar to several amine, multidrug resistance, and sugar transport proteins of the major facilitator superfamily. E. coli DH5α cells transformed with a construct containing these ORFs, in concert with an extracellular factor produced by strain 100-100, demonstrated levels of uptake of [14C]taurocholic acid that were increased as much as threefold over control levels. [14C]Cholic acid was taken up in similar amounts by strain DH5α pSportI (control) and DH5α p2000 (transport clones). These findings support a hypothesis that the ORFs are conjugated bile salt transport genes which may be arranged in an operon with BSH genes. PMID:9721268

  20. COMPLEX EVOLUTION OF BILE SALTS IN BIRDS

    PubMed Central

    Hagey, Lee R.; Vidal, Nicolas; Hofmann, Alan F.; Krasowski, Matthew D.

    2010-01-01

    Bile salts are the major end-metabolites of cholesterol and are important in lipid digestion and shaping of the gut microflora. There have been limited studies of bile-salt variation in birds. The purpose of our study was to determine bile-salt variation among birds and relate this variation to current avian phylogenies and hypotheses on the evolution of bile salt pathways. We determined the biliary bile-salt composition of 405 phylogenetically diverse bird species, including 7 paleognath species. Bile salt profiles were generally stable within bird families. Complex bile-salt profiles were more common in omnivores and herbivores than in carnivores. The structural variation of bile salts in birds is extensive and comparable to that seen in surveys of bile salts in reptiles and mammals. Birds produce many of the bile salts found throughout nonavian vertebrates and some previously uncharacterized bile salts. One difference between birds and other vertebrates is extensive hydroxylation of carbon-16 of bile salts in bird species. Comparison of our data set of bird bile salts with that of other vertebrates, especially reptiles, allowed us to infer evolutionary changes in the bile salt synthetic pathway. PMID:21113274

  1. Bile salts as semiochemicals in fish

    USGS Publications Warehouse

    Buchinger, Tyler J.; Li, Weiming; Johnson, Nicholas S.

    2014-01-01

    Bile salts are potent olfactory stimuli in fishes; however the biological functions driving such sensitivity remain poorly understood. We provide an integrative review of bile salts as semiochemicals in fish. First, we present characteristics of bile salt structure, metabolism, and function that are particularly relevant to chemical communication. Bile salts display a systematic pattern of structural variation across taxa, are efficiently synthesized, and are stable in the environment. Bile salts are released into the water via the intestine, urinary tract, or gills, and are highly water soluble. Second, we consider the potential role of bile salts as semiochemicals in the contexts of detecting nearby fish, foraging, assessing risk, migrating, and spawning. Lastly, we suggest future studies on bile salts as semiochemicals further characterize release into the environment, behavioral responses by receivers, and directly test the biological contexts underlying olfactory sensitivity.

  2. [Substrate specificities of bile salt hydrolase 1 and its mutants from Lactobacillus salivarius].

    PubMed

    Bi, Jie; Fang, Fang; Qiu, Yuying; Yang, Qingli; Chen, Jian

    2014-03-01

    In order to analyze the correlation between critical residues in the catalytic centre of BSH and the enzyme substrate specificity, seven mutants of Lactobacillus salivarius bile salt hydrolase (BSH1) were constructed by using the Escherichia coli pET-20b(+) gene expression system, rational design and site-directed mutagenesis. These BSH1 mutants exhibited different hydrolytic activities against various conjugated bile salts through substrate specificities comparison. Among the residues being tested, Cys2 and Thr264 were deduced as key sites for BSH1 to catalyze taurocholic acid and glycocholic acid, respectively. Moreover, Cys2 and Thr264 were important for keeping the catalytic activity of BSH1. The high conservative Cys2 was not the only active site, other mutant amino acid sites were possibly involved in substrate binding. These mutant residues might influence the space and shape of the substrate-binding pockets or the channel size for substrate passing through and entering active site of BSH1, thus, the hydrolytic activity of BSH1 was changed to different conjugated bile salt.

  3. Taurine zinc solid dispersions enhance bile-incubated L02 cell viability and improve liver function by inhibiting ERK2 and JNK phosphorylation during cholestasis.

    PubMed

    Wang, Yu; Mei, Xueting; Yuan, Jingquan; Lai, Xiaofang; Xu, Donghui

    2016-07-29

    Dietary intakes of taurine and zinc are associated with decreased risk of liver disease. In this study, solid dispersions (SDs) of a taurine zinc complex on hepatic injury were examined in vitro using the immortalized human hepatocyte cell line L02 and in a rat model of bile duct ligation. Sham-operated and bile duct ligated Sprague-Dawley rats were treated with the vehicle alone or taurine zinc (40, 80, 160mg/kg) for 17days. Bile duct ligation significantly increased blood lipid levels, and promoted hepatocyte apoptosis, inflammation and compensatory biliary proliferation. In vitro, incubation with bile significantly reduced L02 cell viability; this effect was significantly attenuated by pretreatment with SP600125 (a JNK inhibitor) and enhanced when co-incubated with taurine zinc SDs. In vivo, administration of taurine zinc SDs decreased serum alanine aminotransferase and aspartate aminotransferase activities in a dose-dependent manner and attenuated the increases in serum total bilirubin, total cholesterol and low density lipoprotein cholesterol levels after bile duct ligation. Additionally, taurine zinc SDs downregulated the expression of interleukin-1β and inhibited the phosphorylation of Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase2 (ERK2) in the liver after bile duct ligation. Moreover, taurine zinc SDs had more potent blood lipid regulatory and anti-apoptotic effects than the physical mixture of taurine and zinc acetate. Therefore, we speculate that taurine zinc SDs protect liver function at least in part via a mechanism linked to reduce phosphorylation of JNK and ERK2, which suppresses inflammation, apoptosis and cholangiocyte proliferation during cholestasis. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. Influence of endogenous opiates on the hypotensive action of taurine in DOCA-salt rats.

    PubMed

    Sato, Y; Fujita, T

    1988-12-01

    We studied the role of endogenous opiate activation in the hypotensive action of taurine, a sulphur amino acid, in deoxycorticosterone acetate (DOCA)-salt hypertensive rats. Previous work had shown that supplementation with 1% taurine reduced blood pressure when given after DOCA-salt hypertension had been established. In the present study, in conscious rats, intraperitoneal injection of naloxone, an opiate antagonist, increased blood pressure in taurine-supplemented DOCA-salt rats, but not in DOCA-salt rats or vehicle-treated control rats. These results suggest that activation of an endogenous opiate might contribute to the hypotensive action of taurine in DOCA-salt hypertensive rats.

  5. Pluronic®-bile salt mixed micelles.

    PubMed

    Patel, Vijay; Ray, Debes; Bahadur, Anita; Ma, Junhe; Aswal, V K; Bahadur, Pratap

    2018-06-01

    The present study was aimed to examine the interaction of two bile salts viz. sodium cholate (NaC) and sodium deoxycholate (NaDC) with three ethylene polyoxide-polypropylene polyoxide (PEO-PPO-PEO) triblock copolymers with similar PPO but varying PEO micelles with a focus on the effect of pH on mixed micelles. Mixed micelles of moderately hydrophobic Pluronic ® P123 were examined in the presence of two bile salts and compared with those from very hydrophobic L121 and very hydrophilic F127. Both the bile salts increase the cloud point (CP) of copolymer solution and decreased apparent micelle hydrodynamic diameter (D h ). SANS study revealed that P123 forms small spherical micelles showing a decrease in size on progressive addition of bile salts. The negatively charged mixed micelles contained fewer P123 molecules but progressively rich in bile salt. NaDC being more hydrophobic displays more pronounced effect than NaC. Interestingly, NaC shows micellar growth in acidic media which has been attributed to the formation of bile acids by protonation of carboxylate ion and subsequent solubilization. In contrast, NaDC showed phase separation at higher concentration. Nuclear Overhauser effect spectroscopy (NOESY) experiments provided information on interaction and location of bile salts in micelles. Results are discussed in terms of hydrophobicity of bile salts and Pluronics ® and the site of bile salt in polymer micelles. Proposed molecular interactions are useful to understand more about bile salts which play important role in physiological processes. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Rapid and accurate reversed-phase high-performance liquid chromatographic determination of conjugated bile acids in human bile for routine clinical applications. Therapeutic control during gallstone dissolution therapy.

    PubMed

    Swobodnik, W; Klüppelberg, U; Wechsler, J G; Volz, M; Normandin, G; Ditschuneit, H

    1985-05-03

    This paper introduces a new method to detect the taurine and glycine conjugates of five different bile acids (cholic acid, deoxycholic acid, chenodeoxycholic acid, ursodeoxycholic acid and lithocholic acid) in human bile. Advantages of this method are sufficient separation of compounds within a short period of time and a high rate of reproducibility. Using a mobile phase gradient of acetonitrile and water, modified with tetrabutylammonium hydrogen sulphate (0.0075 mol/l), we were able to maximize the differentiation between ursodeoxycholic acid and lithocholic acid, which is of primary interest during conservative gallstone dissolution therapy. Use of this gradient reduced analysis time to less than 0.5 h. Recovery rates for this modified method ranged from 94% to 100%, and reproducibility was 98%, sufficient for routine clinical applications.

  7. Bile acid patterns in commercially available oxgall powders used for the evaluation of the bile tolerance ability of potential probiotics

    PubMed Central

    Hu, Peng-Li; Yuan, Ya-Hong; Yue, Tian-Li

    2018-01-01

    This study aimed to analyze the bile acid patterns in commercially available oxgall powders used for evaluation of the bile tolerance ability of probiotic bacteria. Qxgall powders purchased from Sigma-Aldrich, Oxoid and BD Difco were dissolved in distilled water, and analyzed. Conjugated bile acids were profiled by ion-pair high-performance liquid chromatography (HPLC), free bile acids were detected as their p-bromophenacyl ester derivatives using reversed-phase HPLC after extraction with acetic ether, and total bile acids were analyzed by enzymatic-colorimetric assay. The results showed that 9 individual bile acids (i.e., taurocholic acid, glycocholic acid, taurodeoxycholic acid, glycodeoxycholic acid, taurochenodeoxycholic acid, glycochenodeoxycholic acid, cholic acid, chenodeoxycholic acid, deoxycholic acid) were present in each of the oxgall powders tested. The content of total bile acid among the three oxgall powders was similar; however, the relative contents of the individual bile acids among these oxgall powders were significantly different (P < 0.001). The oxgall powder from Sigma-Aldrich was closer to human bile in the ratios of glycine-conjugated bile acids to taurine-conjugated bile acids, dihydroxy bile acids to trihydroxy bile acids, and free bile acids to conjugated bile acids than the other powders were. It was concluded that the oxgall powder from Sigma-Aldrich should be used instead of those from Oxoid and BD Difco to evaluate the bile tolerance ability of probiotic bacteria as human bile model. PMID:29494656

  8. Characterization and purification of bile salt hydrolase from Lactobacillus sp. strain 100-100

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lundeen, S.G.; Savage, D.C.

    1990-08-01

    The authors have characterized and purified the bile salt hydrolase from Lactobacillus sp. strain 100-100. Bile salt hydrolase from cells of the strain was purified with column and high-performance liquid chromatography. The activity was assayed in whole cells and cell-free extracts with either a radiochemical assay involving ({sup 14}C)taurocholic acid or a nonradioactive assay involving trinitrobenzene sulfonate. The activity was detectable only in stationary-phase cells. Within 20 min after conjugated bile acids were added to stationary-phase cultures of strain 100-100, the activity in whole cells increased to levels three- to fivefold higher than in cells from cultures grown in mediummore » free of bile salts. In cell-free extracts, however, the activity was about equal whether or not the cells have been grown with bile salts present. When supernatant solutions from cultures grown in medium containing taurocholic acid were used to suspend cells grown in medium free of the bile salt, the bile salt hydrolase activity detected in whole cells increased two- to threefold. Two forms of the hydrolase were purified from the cells and designated hydrolases A and B. They eluted from anion-exchange high-performance liquid chromatography in two sets of fractions, A at 0.15 M NaCl and B at 0.18 M NaCl. Their apparent molecular weights in nondenaturing polyacrylamide gel electrophoresis were 115,000 and 105,000, respectively. However, discrepancies existed in the apparent molecular weights and number of peptides detected in sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the two forms. Whether the enzyme exists in two forms in the cells remains to be determined.« less

  9. Determination of Bile Acids in Piglet Bile by Solid Phase Extraction and Liquid Chromatography-Electrospray Tandem Mass Spectrometry.

    PubMed

    Mi, Si; Lim, David W; Turner, Justine M; Wales, Paul W; Curtis, Jonathan M

    2016-03-01

    An LC/MS/MS-based method was developed for the determination of individual bile acids (BA) and their conjugates in porcine bile samples. The C18-based solid-phase extraction (SPE) procedure was optimized so that all 19 target BA and their glycine and taurine conjugates were collected with high recoveries for standards (89.1-100.2%). Following this, all 19 compounds were separated and quantified in a single 12 min chromatographic run. The method was validated in terms of linearity, sensitivity, accuracy, precision, and recovery. An LOD in the low ppb range with measured precisions in the range of 0.5-9.3% was achieved. The recoveries for all of the 19 analytes in bile samples were all >80%. The validated method was successfully applied to the profiling of BA and their conjugates in the bile from piglets treated with exogenous glucagon-like peptide-2 (GLP-2) in a preclinical model of neonatal parenteral nutrition-associated liver disease (PNALD). The method developed is rapid and could be easily implemented for routine analysis of BA and their conjugates in other biofluids or tissues.

  10. Identification of a novel bile acid in swans, tree ducks, and geese: 3alpha,7alpha,15alpha-trihydroxy-5beta-cholan-24-oic acid.

    PubMed

    Kakiyama, Genta; Iida, Takashi; Goto, Takaaki; Mano, Nariyasu; Goto, Junichi; Nambara, Toshio; Hagey, Lee R; Schteingart, Claudio D; Hofmann, Alan F

    2006-07-01

    By HPLC, a taurine-conjugated bile acid with a retention time different from that of taurocholate was found to be present in the bile of the black-necked swan, Cygnus melanocoryphus. The bile acid was isolated and its structure, established by (1)H and (13)C NMR and mass spectrometry, was that of the taurine N-acyl amidate of 3alpha,7alpha,15alpha-trihydroxy-5beta-cholan-24-oic acid. The compound was shown to have chromatographic and spectroscopic properties that were identical to those of the taurine conjugate of authentic 3alpha,7alpha,15alpha-trihydroxy-5beta-cholan-24-oic acid, previously synthesized by us from ursodeoxycholic acid. By HPLC, the taurine conjugate of 3alpha,7alpha,15alpha-trihydroxy-5beta-cholan-24-oic acid was found to be present in 6 of 6 species in the subfamily Dendrocygninae (tree ducks) and in 10 of 13 species in the subfamily Anserinae (swans and geese) but not in other subfamilies in the Anatidae family. It was also not present in species from the other two families of the order Anseriformes. 3alpha,7alpha,15alpha-Trihydroxy-5beta-cholan-24-oic acid is a new primary bile acid that is present in the biliary bile acids of swans, tree ducks, and geese and may be termed 15alpha-hydroxy-chenodeoxycholic acid.

  11. Rickets in lion cubs at the London Zoo in 1889: some new insights.

    PubMed

    Chesney, Russell W; Hedberg, Gail

    2009-05-01

    In 1889, when Dr John Bland-Sutton, a prominent surgeon in London, England, was consulted concerning fatal rickets in more than 20 successive litters of lion cubs at the London Zoo, he evaluated the role of diet relative to the development of rickets. He prescribed goat meat and bones and cod-liver oil to be added to the lean horse-meat diet of the cubs and their mothers. Rickets reversed, the cubs survived, and litters were reared successfully. In classic controlled studies conducted in puppies and young rats 3 decades later, the crucial role of calcium, phosphate, and vitamin D in both prevention and therapy of rickets was elucidated. Later studies led to the identification of the structural features of vitamin D. Although the Bland-Sutton interventional diet obviously provides calcium and phosphate from bones and vitamin D from cod-liver oil, other benefits of this diet were not initially recognized. Chewing bones promotes tooth and gum health and removes bacteria-laden tartar. Cod-liver oil also contains vitamin A, which is essential for the prevention of infection and for epithelial cell health. Taurine-conjugated bile salts are also necessary for the intestinal absorption of fat-soluble vitamins, including A and D. Moreover, unlike dogs and rats, all feline species are unable to synthesize taurine yet can only conjugate bile acids with taurine. This sulfur-containing beta-amino acid must be provided in the carnivorous diet of a large cat. Taurine-conjugated bile salts were provided in the oil cold-pressed from cod liver. The now famous Bland-Sutton "experiment of nature," namely, fatal rickets in lion cubs, was cured by the addition of minerals and vitamin D. However, gum health and the presence of taurine-conjugated bile salts undoubtedly permitted absorption of vitamin A and D, the latter promoting the cure of rickets.

  12. Conjugated bile acids in gallbladder bile and serum as potential biomarkers for cholesterol polyps and adenomatous polyps.

    PubMed

    Zhao, Mei-Fen; Huang, Peng; Ge, Chun-Lin; Sun, Tao; Ma, Zhi-Gang; Ye, Fei-Fei

    2016-02-28

    To identify conjugated bile acids in gallbladder bile and serum as possible biomarkers for cholesterol polyps (CPs) and adenomatous polyps (APs). Gallbladder bile samples and serum samples were collected from 18 patients with CPs (CP group), 9 patients with APs (AP group), and 20 patients with gallstones (control group) from March to November, 2013. High performance liquid chromatography (HPLC) assay with ultraviolent detection was used to detect the concentration of 8 conjugated bile acids (glycocholic acid, GCA; taurocholic acid, TCA; glycochenodeoxycholic acid, GCDCA; taurochenodeoxycholic acid, TCDCA; glycodeoxycholic acid, GDCA; taurodeoxycholic acid, TDCA; taurolithocholic acid, TLCA; tauroursodeoxycholic acid, TUDCA) in bile samples and serum samples. The diagnostic efficacy of serum GCA, GCDCA and TCDCA was evaluated. These 8 conjugated bile acids in gallbladder bile and serum were completely identified within 10 minutes with good linearity (correlation coefficient: R>0.9900; linearity range: 3.91-500 µg/mL). Among these conjugated bile acids, the levels of gallbladder bile GCDCA and TCDCA in the CP group were significantly higher than those in the AP group (p<0.05). Furthermore, serum GCDCA and TCDCA as well as GCA were significantly higher in the AP group than the CP group (p<0.05). Serum GCDCA alone (≤12 µg/mL) had relatively better diagnostic efficacy than the other conjugated bile acids. The levels of serum GCA, GCDCA and TCDCA may be valuable for differentiation of APs and CPs.

  13. Absorption of Bile Pigments by the Gall Bladder*

    PubMed Central

    Ostrow, J. Donald

    1967-01-01

    A technique is described for preparation in the guinea pig of an in situ, isolated, vascularized gall bladder that exhibits normal absorptive functions. Absorption of labeled bile pigments from the gall bladder was determined by the subsequent excretion of radioactivity in hepatic bile. Over a wide range of concentrations, unconjugated bilirubin-14C was well absorbed, whereas transfer of conjugated bilirubin proceeded slowly. Mesobilirubinogen-3H was absorbed poorly from whole bile, but was absorbed as rapidly as unconjugated bilirubin from a solution of pure conjugated bile salt. Bilirubin absorption was not impaired by iodoacetamide, 1.5 mM, or dinitrophenol, 1.0 mM, even though water transport was affected. This indicated that absorption of bilirubin was not dependent upon water transport, nor upon energy-dependent processes. The linear relationship between absorption and concentration of pigment at low concentrations in bile salt solutions suggested that pigment was transferred by passive diffusion. At higher pigment concentrations or in whole bile, this simple relationship was modified by interactions of pigment with bile salts and other constituents of bile. These interactions did not necessarily involve binding of bilirubin in micelles. The slow absorption of the more polar conjugates and photo-oxidative derivatives of bilirubin suggested that bilirubin was absorbed principally by nonionic, and partially, by ionic diffusion. Concentrations of pure conjugated bile salts above 3.5 mM were found to be injurious to the gall bladder mucosa. This mucosal injury did not affect the kinetics of bilirubin absorption. During in vitro incubation of bile at 37°C, decay of bilirubin and hydrolysis of the conjugate proceeded as first-order reactions. The effects of these processes on the kinetics of bilirubin absorption, and their possible role in the formation of “white bile” and in the demonstrated appearance of unconjugated bilirubin in hepatic bile, are discussed

  14. Cloning and expression of a conjugated bile acid hydrolase gene from Lactobacillus plantarum by using a direct plate assay.

    PubMed

    Christiaens, H; Leer, R J; Pouwels, P H; Verstraete, W

    1992-12-01

    The conjugated bile acid hydrolase gene from the silage isolate Lactobacillus plantarum 80 was cloned and expressed in Escherichia coli MC1061. For the screening of this hydrolase gene within the gene bank, a direct plate assay developed by Dashkevicz and Feighner (M. P. Dashkevicz and S. D. Feighner, Appl. Environ. Microbiol. 53:331-336, 1989) was adapted to the growth requirements of E. coli. Because of hydrolysis and medium acidification, hydrolase-active colonies were surrounded with big halos of precipitated, free bile acids. This phenomenon was also obtained when the gene was cloned into a multicopy shuttle vector and subsequently reintroduced into the parental Lactobacillus strain. The cbh gene and surrounding regions were characterized by nucleotide sequence analysis. The deduced amino acid sequence was shown to have 52% similarity with a penicillin V amidase from Bacillus sphaericus. Preliminary characterization of the gene product showed that it is a cholylglycine hydrolase (EC 3.5.1.24) with only slight activity against taurine conjugates. The optimum pH was between 4.7 and 5.5. Optimum temperature ranged from 30 to 45 degrees C. Southern blot analysis indicated that the cloned gene has similarity with genomic DNA of bile acid hydrolase-active Lactobacillus spp. of intestinal origin.

  15. Evolutionary diversity of bile salts in reptiles and mammals, including analysis of ancient human and extinct giant ground sloth coprolites

    PubMed Central

    2010-01-01

    Background Bile salts are the major end-metabolites of cholesterol and are also important in lipid and protein digestion and in influencing the intestinal microflora. We greatly extend prior surveys of bile salt diversity in both reptiles and mammals, including analysis of 8,000 year old human coprolites and coprolites from the extinct Shasta ground sloth (Nothrotherium shastense). Results While there is significant variation of bile salts across species, bile salt profiles are generally stable within families and often within orders of reptiles and mammals, and do not directly correlate with differences in diet. The variation of bile salts generally accords with current molecular phylogenies of reptiles and mammals, including more recent groupings of squamate reptiles. For mammals, the most unusual finding was that the Paenungulates (elephants, manatees, and the rock hyrax) have a very different bile salt profile from the Rufous sengi and South American aardvark, two other mammals classified with Paenungulates in the cohort Afrotheria in molecular phylogenies. Analyses of the approximately 8,000 year old human coprolites yielded a bile salt profile very similar to that found in modern human feces. Analysis of the Shasta ground sloth coprolites (approximately 12,000 years old) showed the predominant presence of glycine-conjugated bile acids, similar to analyses of bile and feces of living sloths, in addition to a complex mixture of plant sterols and stanols expected from an herbivorous diet. Conclusions The bile salt synthetic pathway has become longer and more complex throughout vertebrate evolution, with some bile salt modifications only found within single groups such as marsupials. Analysis of the evolution of bile salt structures in different species provides a potentially rich model system for the evolution of a complex biochemical pathway in vertebrates. Our results also demonstrate the stability of bile salts in coprolites preserved in arid climates

  16. Biliary Bile Acids in Primary Biliary Cirrhosis: Effect of Ursodeoxycholic Acid

    PubMed Central

    Combes, Burton; Carithers, Robert L.; Maddrey, Willis C.; Munoz, Santiago; Garcia-Tsao, Guadalupe; Bonner, Gregory F.; Boyer, James L.; Luketic, Velimir A.; Shiffman, Mitchell L.; Peters, Marion G.; White, Heather; Zetterman, Rowen K.; Risser, Richard; Rossi, Stephen S.; Hofmann, Alan F.

    2014-01-01

    Bile acid composition in fasting duodenal bile was assessed at entry and at 2 years in patients with primary biliary cirrhosis (PBC) enrolled in a randomized, double-blind, placebo-controlled trial of ursodeoxycholic acid (UDCA) (10–12 mg/kg/d) taken as a single bedtime dose. Specimens were analyzed by a high-pressure liquid chromatography method that had been validated against gas chromatography. Percent composition in bile (mean ± SD) for 98 patients at entry for cholic (CA), chenodeoxycholic (CDCA), deoxycholic (DCA), lithocholic (LCA), and ursodeoxycholic (UDCA) acids, respectively, were 57.4 ± 18.6, 31.5 ± 15.5, 8.0 ± 9.3, 0.3 ± 1.0, and 0.6 ± 0.9. Values for CA were increased, whereas those for CDCA, DCA, LCA, and UDCA were decreased when compared with values in normal persons. Bile acid composition of the major bile acids did not change after 2 years on placebo medication. By contrast, in patients receiving UDCA for 2 years, bile became enriched with UDCA on average to 40.1%, and significant decreases were noted for CA (to 32.2%) and CDCA (to 19.5%). No change in percent composition was observed for DCA and LCA. Percent composition at entry and changes in composition after 2 years on UDCA were similar in patients with varying severity of PBC. In patients whose bile was not enriched in UDCA (entry and placebo-treated specimens), CA, CDCA, DCA, and the small amount of UDCA found in some of these specimens were conjugated to a greater extent with glycine (52%–64%) than with taurine (36%–48%). Treatment with UDCA caused the proportion of all endogenous bile acids conjugated with glycine to increase to 69% to 78%, while the proportion conjugated with taurine (22%–31%) fell (P < .05). Administered UDCA was also conjugated predominantly with glycine (87%). PMID:10347103

  17. Effect of ursodeoxycholic acid on bile acid profiles and intestinal detoxification machinery in primary biliary cirrhosis and health.

    PubMed

    Dilger, Karin; Hohenester, Simon; Winkler-Budenhofer, Ursula; Bastiaansen, Barbara A J; Schaap, Frank G; Rust, Christian; Beuers, Ulrich

    2012-07-01

    Ursodeoxycholic acid (UDCA) exerts anticholestatic, antifibrotic and antiproliferative effects in primary biliary cirrhosis (PBC) via mechanisms not yet fully understood. Its adequate biliary enrichment is considered mandatory for therapeutic efficacy. However, precise determination of biliary enrichment of UDCA is not possible in clinical practice. Therefore, we investigated (i) the relationship between biliary enrichment and plasma pharmacokinetics of UDCA, (ii) the effect of UDCA on plasma and biliary bile acid composition and conjugation patterns, and (iii) on the intestinal detoxification machinery in patients with PBC and healthy controls. In 11 PBC patients and 11 matched healthy subjects, cystic bile and duodenal tissue were collected before and after 3 weeks of administration of UDCA (15 mg/kg/day). Extensive pharmacokinetic profiling of bile acids was performed. The effect of UDCA on the intestinal detoxification machinery was studied by quantitative PCR and Western blotting. The relative fraction of UDCA and its conjugates in plasma at trough level[x] correlated with their biliary enrichment[y] (r=0.73, p=0.0001, y=3.65+0.49x). Taurine conjugates of the major hydrophobic bile acid, chenodeoxycholic acid, were more prominent in bile of PBC patients than in that of healthy controls. Biliary bile acid conjugation patterns normalized after treatment with UDCA. UDCA induced duodenal expression of key export pumps, BCRP and P-glycoprotein. Biliary and trough plasma enrichment of UDCA are closely correlated in PBC and health. Taurine conjugation may represent an adaptive mechanism in PBC against chenodeoxycholic acid-mediated bile duct damage. UDCA may stabilize small intestinal detoxification by upregulation of efflux pumps. Copyright © 2012. Published by Elsevier B.V.

  18. Supramolecular Complexes Formed in Systems Bile Salt-Bilirubin-Silica

    NASA Astrophysics Data System (ADS)

    Vlasova, N. N.; Severinovskaya, O. V.; Golovkova, L. P.

    The formation of supramolecular complexes between bilirubin and primary micelles of bile salts has been studied. The association constants of bile salts and binding of bilirubin with these associates have been determined. The adsorption of bilirubin and bile salts from individual and mixed aqueous solutions onto hydrophobic silica surfaces has been investigated. The interaction of bilirubin with primary bile salt micelles and the strong retention in mixed micelles, which are supramolecular complexes, result in the adsorption of bilirubin in free state only.

  19. Metastable and equilibrium phase diagrams of unconjugated bilirubin IXα as functions of pH in model bile systems: Implications for pigment gallstone formation

    PubMed Central

    Berman, Marvin D.

    2014-01-01

    Metastable and equilibrium phase diagrams for unconjugated bilirubin IXα (UCB) in bile are yet to be determined for understanding the physical chemistry of pigment gallstone formation. Also, UCB is a molecule of considerable biomedical importance because it is a potent antioxidant and an inhibitor of atherogenesis. We employed principally a titrimetric approach to obtain metastable and equilibrium UCB solubilities in model bile systems composed of taurine-conjugated bile salts, egg yolk lecithin (mixed long-chain phosphatidylcholines), and cholesterol as functions of total lipid concentration, biliary pH values, and CaCl2 plus NaCl concentrations. Metastable and equilibrium precipitation pH values were obtained, and average pKa values of the two carboxyl groups of UCB were calculated. Added lecithin and increased temperature decreased UCB solubility markedly, whereas increases in bile salt concentrations and molar levels of urea augmented solubility. A wide range of NaCl and cholesterol concentrations resulted in no specific effects, whereas added CaCl2 produced large decreases in UCB solubilities at alkaline pH values only. UV-visible absorption spectra were consistent with both hydrophobic and hydrophilic interactions between UCB and bile salts that were strongly influenced by pH. Reliable literature values for UCB compositions of native gallbladder biles revealed that biles from hemolytic mice and humans with black pigment gallstones are markedly supersaturated with UCB and exhibit more acidic pH values, whereas biles from nonstone control animals and patients with cholesterol gallstone are unsaturated with UCB. PMID:25359538

  20. Effects of taurodihydrofusidate, a bile salt analogue, on bile formation and biliary lipid secretion in the rhesus monkey.

    PubMed Central

    Beaudoin, M; Carey, M C; Small, D M

    1975-01-01

    Bile salts play a major role in bile formation and biliary lipid secretion. Sodium taurodihydrofusidate (TDHF), a derivative of the antibiotic fusidic acid, closely resembles bile salts in terms of structure, micellar characteristics, and capacity ot solubilize otherwise insolbule lipids. We have therefore studied the biliary secretion of this bile salt analogue and its influence on bile formation and biliary lipid secretion in primates. Alert, unanesthetized female rhesus monkeys prepared with a total biliary fistula were allowed to reach a steady bile salt secretion rate before each study. In three animals (group I),[14C]TDHF was infused intravenously. Most of the compound was secreted rapidly in bile chemically unchanged. The biliary secretion of this drug produced a twofold increase in bile flow; however, the bile salt output was markedly reduced during the infusion. In spite of this reduction, the phospholipid output remained essentially unchanged whereas the cholesterol output increased almost twofold. In five other animals (group II), the effect of TDHF on the bile salt secretion was further investigated by an intravenous infusion of [14C]taurocholate followed by a combined infusion of [14C]taurocholate and TDHF. When TDHF was added to the infusate, a reduction in the [14C]taurocholate output and a progressive rise in the plasma [14C]taurocholate concentration were observed in each animal. An analysis of the data in both groups indicates that (a) the most likely explanation to account for the decreased bile salt output is that the bile salt analogue, TDHF, interfered with bile salt secretion into the biliary canaliculi; (b) TDHF induces a greater secretion of biliary water than was observed with bile salts, an effect consistent with a stimulation of the bile salt-independent canalicular flow; (c) at similar 3alpha-hydroxysteroid secretion rates TDHF caused a significant increase in cholesterol secretion compared to that induced by bile salt. This finding

  1. Functional role of oppA encoding an oligopeptide-binding protein from Lactobacillus salivarius Ren in bile tolerance.

    PubMed

    Wang, Guohong; Li, Dan; Ma, Xiayin; An, Haoran; Zhai, Zhengyuan; Ren, Fazheng; Hao, Yanling

    2015-08-01

    Lactobacillus salivarius is a member of the indigenous microbiota of the human gastrointestinal tract (GIT), and some L. salivarius strains are considered as probiotics. Bile tolerance is a crucial property for probiotic bacteria to survive the transit through the GIT and exert their beneficial effects. In this work, the functional role of oppA encoding an oligopeptide transporter substrate-binding protein from L. salivarius Ren in bile salt tolerance was investigated. In silico analysis revealed that the oppA gene encodes a 61.7-kDa cell surface-anchored hydrophilic protein with a canonical lipoprotein signal peptide. Homologous overexpression of OppA was shown to confer 20-fold higher tolerance to 0.5 % oxgall in L. salivarius Ren. Furthermore, the recombinant strain exhibited 1.8-fold and 3.6-fold higher survival when exposed to the sublethal concentration of sodium taurocholate and sodium taurodeoxycholate, respectively, while no significant change was observed when exposed to sodium glycocholate and sodium glycodeoxycholate (GDCA). Our results indicate that OppA confers specific resistance to taurine-conjugated bile salts in L. salivarius Ren. In addition, the OppA overexpression strain also showed significant increased resistance to heat and salt stresses, suggesting the protective role of OppA against multiple stresses in L. salivarius Ren.

  2. Parenteral nutrition dysregulates bile salt homeostasis in a rat model of parenteral nutrition-associated liver disease.

    PubMed

    Koelfat, Kiran V K; Schaap, Frank G; Hodin, Caroline M J M; Visschers, Ruben G J; Svavarsson, Björn I; Lenicek, Martin; Shiri-Sverdlov, Ronit; Lenaerts, Kaatje; Olde Damink, Steven W M

    2017-10-01

    Parenteral nutrition (PN), a lifesaving therapy in patients with intestinal failure, has been associated with hepatobiliary complications including steatosis, cholestasis and fibrosis, collectively known as parenteral nutrition-associated liver disease (PNALD). To date, the pathogenesis of PNALD is poorly understood and therapeutic options are limited. Impaired bile salt homeostasis has been proposed to contribute PNALD. The objective of this study was to establish a PNALD model in rats and to evaluate the effects of continuous parenteral nutrition (PN) on bile salt homeostasis. Rats received either PN via the jugular vein or received normal diet for 3, 7 or 14 days. Serum biochemistry, hepatic triglycerides, circulating bile salts and C4, IL-6 and TNF-alpha, and lipogenic and bile salt homeostatic gene expression in liver and ileum were assessed. PN increased hepatic triglycerides already after 3 days of administration, and resulted in conjugated bilirubin elevation after 7 or more days. This indicates PN-induced steatosis and impaired canalicular secretion of bilirubin, the latter which is in line with reduced hepatic expression of Mrp2 mRNA. There was no histological evidence for liver inflammation after PN administration, and circulating levels of pro-inflammatory cytokines IL-6 and TNF-α, were comparable in all groups. Hepatic expression of Fxr mRNA was decreased after 7 days of PN, without apparent effect on expression of Fxr targets Bsep and Shp. Nonetheless, Cyp7a1 expression was reduced after 7 days of PN, indicative for lowered bile salt synthesis. Circulating levels of C4 (marker of bile salt synthesis) were also decreased after 3, 7 and 14 days of PN. Levels of circulating bile salts were not affected by PN. This study showed that PN in rats caused early mild steatosis and cholestasis, while hepatic and systemic inflammation were not present. The onset of these abnormalities was associated with alterations in bile salt synthesis and transport. This

  3. Metastable and equilibrium phase diagrams of unconjugated bilirubin IXα as functions of pH in model bile systems: Implications for pigment gallstone formation.

    PubMed

    Berman, Marvin D; Carey, Martin C

    2015-01-01

    Metastable and equilibrium phase diagrams for unconjugated bilirubin IXα (UCB) in bile are yet to be determined for understanding the physical chemistry of pigment gallstone formation. Also, UCB is a molecule of considerable biomedical importance because it is a potent antioxidant and an inhibitor of atherogenesis. We employed principally a titrimetric approach to obtain metastable and equilibrium UCB solubilities in model bile systems composed of taurine-conjugated bile salts, egg yolk lecithin (mixed long-chain phosphatidylcholines), and cholesterol as functions of total lipid concentration, biliary pH values, and CaCl2 plus NaCl concentrations. Metastable and equilibrium precipitation pH values were obtained, and average pKa values of the two carboxyl groups of UCB were calculated. Added lecithin and increased temperature decreased UCB solubility markedly, whereas increases in bile salt concentrations and molar levels of urea augmented solubility. A wide range of NaCl and cholesterol concentrations resulted in no specific effects, whereas added CaCl2 produced large decreases in UCB solubilities at alkaline pH values only. UV-visible absorption spectra were consistent with both hydrophobic and hydrophilic interactions between UCB and bile salts that were strongly influenced by pH. Reliable literature values for UCB compositions of native gallbladder biles revealed that biles from hemolytic mice and humans with black pigment gallstones are markedly supersaturated with UCB and exhibit more acidic pH values, whereas biles from nonstone control animals and patients with cholesterol gallstone are unsaturated with UCB. Copyright © 2015 the American Physiological Society.

  4. Taurine in pediatric nutrition: review and update.

    PubMed

    Gaull, G E

    1989-03-01

    Taurine was long considered an end product of the metabolism of the sulfur-containing amino acids, methionine and cyst(e)ine. Its only clearly recognized biochemical role had been as a substrate in the conjugation of bile acids. Taurine is found free in millimolar concentrations in animal tissues, particularly those that are excitable, rich in membranes, and generate oxidants. Various lines of evidence suggest one major nutritional role as protecting cell membranes by attenuating toxic substances and/or by acting as an osmoregulator. The totality of evidence suggests that taurine is nonessential in the rodent, it is an essential amino acid in the cat, and it is conditionally essential in man and monkey. Absence from the diet of a conditionally essential nutrient does not produce immediate deficiency disease but, in the long term, can cause problems. Taurine is now added to many infant formulas as a measure of prudence to provide improved nourishment with the same margin of safety for its newly identified physiologic functions as that found in human milk. Such supplementation can be justified by the finding of improved fat absorption in preterm infants and in children with cystic fibrosis, as well as by salutary effects on auditory brainstem-evoked responses in preterm infants. Experimental findings in animal models and in human cell models provide further justification for taurine supplementation of infant formulas.

  5. Interactions between Bacteria and Bile Salts in the Gastrointestinal and Hepatobiliary Tracts

    PubMed Central

    Urdaneta, Verónica; Casadesús, Josep

    2017-01-01

    Bile salts and bacteria have intricate relationships. The composition of the intestinal pool of bile salts is shaped by bacterial metabolism. In turn, bile salts play a role in intestinal homeostasis by controlling the size and the composition of the intestinal microbiota. As a consequence, alteration of the microbiome–bile salt homeostasis can play a role in hepatic and gastrointestinal pathological conditions. Intestinal bacteria use bile salts as environmental signals and in certain cases as nutrients and electron acceptors. However, bile salts are antibacterial compounds that disrupt bacterial membranes, denature proteins, chelate iron and calcium, cause oxidative damage to DNA, and control the expression of eukaryotic genes involved in host defense and immunity. Bacterial species adapted to the mammalian gut are able to endure the antibacterial activities of bile salts by multiple physiological adjustments that include remodeling of the cell envelope and activation of efflux systems and stress responses. Resistance to bile salts permits that certain bile-resistant pathogens can colonize the hepatobiliary tract, and an outstanding example is the chronic infection of the gall bladder by Salmonella enterica. A better understanding of the interactions between bacteria and bile salts may inspire novel therapeutic strategies for gastrointestinal and hepatobiliary diseases that involve microbiome alteration, as well as novel schemes against bacterial infections. PMID:29043249

  6. Fatty acid bile acid conjugates (FABACs)—New molecules for the prevention of cholesterol crystallisation in bile

    PubMed Central

    Gilat, T; Somjen, G; Mazur, Y; Leikin-Frenkel, A; Rosenberg, R; Halpern, Z; Konikoff, F.

    2001-01-01

    BACKGROUND—Cholesterol gall stones are a frequent disease for which at present surgery is the usual therapy. Despite the importance of bile acids it has become evident that phospholipids are the main cholesterol solubilisers in bile. Even phospholipid components, such as fatty acids, have anticrystallising activity.
AIM—To synthesise fatty acid bile acid conjugates (FABACs) and study their effects on cholesterol crystallisation in bile in vitro and in vivo.
METHODS—FABACs were prepared by conjugation of cholic acid at position 3 with saturated fatty acids of variable chain length using an amide bond. Cholesterol crystallisation and its kinetics (crystal observation time, crystal mass) were studied in model bile, pooled enriched human bile, and fresh human bile using FABACs with saturated fatty acids of varying chain length (C-6 to C-22). Absorption of FABACs into blood and bile was tested in hamsters. Prevention of biliary cholesterol crystallisation in vivo was tested in hamsters and inbred mice.
RESULTS—FABACs strongly inhibited cholesterol crystallisation in model as well as native bile. The FABACs with longer acyl chains (C-16 to C-22) were more effective. At a concentration of 5 mM, FABACs almost completely inhibited cholesterol crystallisation in fresh human bile for 21 days. FABACs were absorbed and found in both portal and heart blood of hamsters. Levels in bile were 2-3 times higher than in blood, indicating active secretion. Appreciable levels were found in the systemic circulation 24-48 hours after a single administration. Ingested FABACs completely prevented the formation of cholesterol crystals in the gall bladders of hamsters and mice fed a lithogenic diet.
CONCLUSIONS—FABACs are potent inhibitors of cholesterol crystallisation in bile. They are absorbed and secreted into bile and prevent the earliest step of cholesterol gall stone formation in animals. These compounds may be of potential use in cholesterol gall stone disease in

  7. [Research of conjugated bile acids in gallbladder bile of patients with polypoid lesions of gallbladder].

    PubMed

    Ge, Chunlin; Sun, Tao; Meng, Jingjuan; Wang, Kun; Huang, Peng

    2014-02-01

    To investigate the difference in conjugated bile acids in the gallbladder bile between gallbladder cholesterol polyps and adenomatous polyps patients, and screen the differential diagnosis-markers for polypoid lesions of gallbladder (PLG). From January to June 2013, the 20 cholesterol polyps patients, 10 adenomatous polyps patients and 10 patients without gallbladder diseases were enrolled. High performance liquid chromatography assay with ultraviolet detection was used to test 8 conjugated bile acids in gallbladder bile. The 8 conjugated bile acids were completely analyzed in 10 minutes, and the assay was liner in the range 8-500 µg/ml. The correlation coeffients for linear regression was from 0.9996-0.9999 and the detection limits ranged from 3.90-7.81 µg/ml. The level of taurocholic acid (TCA) in adenomatous polyps group ((75 ± 51) µg/ml) was significantly lower than that in the cholesterol polyps ((228 ± 206) µg/ml, q = 3.120, P = 0.014) and control groups ((104 ± 40) µg/ml, q = 2.950, P = 0.027). The level of taurochenodeoxycholic acid (TCDCA) in cholesterol polyps group ((604 ± 444) µg/ml) was significantly higher than that in the adenomatous polyps ((310 ± 182) µg/ml, q = 2.560, P = 0.048) and control groups ((308 ± 21) µg/ml, q = 2.970, P = 0.023). The levels of TCA and TCDCA in the gallbladder biles in cholesterol polyps patients were higher than those in adenomatous polyps patients, which may be the differential diagnosis-markers for PLG.

  8. Ursodeoxycholic Acid and Its Taurine- or Glycine-Conjugated Species Reduce Colitogenic Dysbiosis and Equally Suppress Experimental Colitis in Mice

    PubMed Central

    Van den Bossche, Lien; Hindryckx, Pieter; Devisscher, Lindsey; Devriese, Sarah; Van Welden, Sophie; Holvoet, Tom; Vilchez-Vargas, Ramiro; Vital, Marius; Pieper, Dietmar H.; Vanden Bussche, Julie; Vanhaecke, Lynn; Van de Wiele, Tom; De Vos, Martine

    2017-01-01

    ABSTRACT The promising results seen in studies of secondary bile acids in experimental colitis suggest that they may represent an attractive and safe class of drugs for the treatment of inflammatory bowel diseases (IBD). However, the exact mechanism by which bile acid therapy confers protection from colitogenesis is currently unknown. Since the gut microbiota plays a crucial role in the pathogenesis of IBD, and exogenous bile acid administration may affect the community structure of the microbiota, we examined the impact of the secondary bile acid ursodeoxycholic acid (UDCA) and its taurine or glycine conjugates on the fecal microbial community structure during experimental colitis. Daily oral administration of UDCA, tauroursodeoxycholic acid (TUDCA), or glycoursodeoxycholic acid (GUDCA) equally lowered the severity of dextran sodium sulfate-induced colitis in mice, as evidenced by reduced body weight loss, colonic shortening, and expression of inflammatory cytokines. Illumina sequencing demonstrated that bile acid therapy during colitis did not restore fecal bacterial richness and diversity. However, bile acid therapy normalized the colitis-associated increased ratio of Firmicutes to Bacteroidetes. Interestingly, administration of bile acids prevented the loss of Clostridium cluster XIVa and increased the abundance of Akkermansia muciniphila, bacterial species known to be particularly decreased in IBD patients. We conclude that UDCA, which is an FDA-approved drug for cholestatic liver disorders, could be an attractive treatment option to reduce dysbiosis and ameliorate inflammation in human IBD. IMPORTANCE Secondary bile acids are emerging as attractive candidates for the treatment of inflammatory bowel disease. Although bile acids may affect the intestinal microbial community structure, which significantly contributes to the course of these inflammatory disorders, the impact of bile acid therapy on the fecal microbiota during colitis has not yet been considered

  9. Ursodeoxycholic Acid and Its Taurine- or Glycine-Conjugated Species Reduce Colitogenic Dysbiosis and Equally Suppress Experimental Colitis in Mice.

    PubMed

    Van den Bossche, Lien; Hindryckx, Pieter; Devisscher, Lindsey; Devriese, Sarah; Van Welden, Sophie; Holvoet, Tom; Vilchez-Vargas, Ramiro; Vital, Marius; Pieper, Dietmar H; Vanden Bussche, Julie; Vanhaecke, Lynn; Van de Wiele, Tom; De Vos, Martine; Laukens, Debby

    2017-04-01

    The promising results seen in studies of secondary bile acids in experimental colitis suggest that they may represent an attractive and safe class of drugs for the treatment of inflammatory bowel diseases (IBD). However, the exact mechanism by which bile acid therapy confers protection from colitogenesis is currently unknown. Since the gut microbiota plays a crucial role in the pathogenesis of IBD, and exogenous bile acid administration may affect the community structure of the microbiota, we examined the impact of the secondary bile acid ursodeoxycholic acid (UDCA) and its taurine or glycine conjugates on the fecal microbial community structure during experimental colitis. Daily oral administration of UDCA, tauroursodeoxycholic acid (TUDCA), or glycoursodeoxycholic acid (GUDCA) equally lowered the severity of dextran sodium sulfate-induced colitis in mice, as evidenced by reduced body weight loss, colonic shortening, and expression of inflammatory cytokines. Illumina sequencing demonstrated that bile acid therapy during colitis did not restore fecal bacterial richness and diversity. However, bile acid therapy normalized the colitis-associated increased ratio of Firmicutes to Bacteroidetes Interestingly, administration of bile acids prevented the loss of Clostridium cluster XIVa and increased the abundance of Akkermansia muciniphila , bacterial species known to be particularly decreased in IBD patients. We conclude that UDCA, which is an FDA-approved drug for cholestatic liver disorders, could be an attractive treatment option to reduce dysbiosis and ameliorate inflammation in human IBD. IMPORTANCE Secondary bile acids are emerging as attractive candidates for the treatment of inflammatory bowel disease. Although bile acids may affect the intestinal microbial community structure, which significantly contributes to the course of these inflammatory disorders, the impact of bile acid therapy on the fecal microbiota during colitis has not yet been considered. Here, we

  10. Diversity of bile salts in fish and amphibians: evolution of a complex biochemical pathway.

    PubMed

    Hagey, Lee R; Møller, Peter R; Hofmann, Alan F; Krasowski, Matthew D

    2010-01-01

    Bile salts are the major end metabolites of cholesterol and are also important in lipid and protein digestion, as well as shaping of the gut microflora. Previous studies had demonstrated variation of bile salt structures across vertebrate species. We greatly extend prior surveys of bile salt variation in fish and amphibians, particularly in analysis of the biliary bile salts of Agnatha and Chondrichthyes. While there is significant structural variation of bile salts across all fish orders, bile salt profiles are generally stable within orders of fish and do not correlate with differences in diet. This large data set allowed us to infer evolutionary changes in the bile salt synthetic pathway. The hypothesized ancestral bile salt synthetic pathway, likely exemplified in extant hagfish, is simpler and much shorter than the pathway of most teleost fish and terrestrial vertebrates. Thus, the bile salt synthetic pathway has become longer and more complex throughout vertebrate evolution. Analysis of the evolution of bile salt synthetic pathways provides a rich model system for the molecular evolution of a complex biochemical pathway in vertebrates.

  11. Deconjugated Bile Salts Produced by Extracellular Bile-Salt Hydrolase-Like Activities from the Probiotic Lactobacillus johnsonii La1 Inhibit Giardia duodenalis In vitro Growth.

    PubMed

    Travers, Marie-Agnès; Sow, Cissé; Zirah, Séverine; Deregnaucourt, Christiane; Chaouch, Soraya; Queiroz, Rayner M L; Charneau, Sébastien; Allain, Thibault; Florent, Isabelle; Grellier, Philippe

    2016-01-01

    Giardiasis, currently considered a neglected disease, is caused by the intestinal protozoan parasite Giardia duodenalis and is widely spread in human as well as domestic and wild animals. The lack of appropriate medications and the spread of resistant parasite strains urgently call for the development of novel therapeutic strategies. Host microbiota or certain probiotic strains have the capacity to provide some protection against giardiasis. By combining biological and biochemical approaches, we have been able to decipher a molecular mechanism used by the probiotic strain Lactobacillus johnsonii La1 to prevent Giardia growth in vitro . We provide evidence that the supernatant of this strain contains active principle(s) not directly toxic to Giardia but able to convert non-toxic components of bile into components highly toxic to Giardia . By using bile acid profiling, these components were identified as deconjugated bile-salts. A bacterial bile-salt-hydrolase of commercial origin was able to mimic the properties of the supernatant. Mass spectrometric analysis of the bacterial supernatant identified two of the three bile-salt-hydrolases encoded in the genome of this probiotic strain. These observations document a possible mechanism by which L. johnsonii La1, by secreting, or releasing BSH-like activity(ies) in the vicinity of replicating Giardia in an environment where bile is present and abundant, can fight this parasite. This discovery has both fundamental and applied outcomes to fight giardiasis, based on local delivery of deconjugated bile salts, enzyme deconjugation of bile components, or natural or recombinant probiotic strains that secrete or release such deconjugating activities in a compartment where both bile salts and Giardia are present.

  12. Deconjugated Bile Salts Produced by Extracellular Bile-Salt Hydrolase-Like Activities from the Probiotic Lactobacillus johnsonii La1 Inhibit Giardia duodenalis In vitro Growth

    PubMed Central

    Travers, Marie-Agnès; Sow, Cissé; Zirah, Séverine; Deregnaucourt, Christiane; Chaouch, Soraya; Queiroz, Rayner M. L.; Charneau, Sébastien; Allain, Thibault; Florent, Isabelle; Grellier, Philippe

    2016-01-01

    Giardiasis, currently considered a neglected disease, is caused by the intestinal protozoan parasite Giardia duodenalis and is widely spread in human as well as domestic and wild animals. The lack of appropriate medications and the spread of resistant parasite strains urgently call for the development of novel therapeutic strategies. Host microbiota or certain probiotic strains have the capacity to provide some protection against giardiasis. By combining biological and biochemical approaches, we have been able to decipher a molecular mechanism used by the probiotic strain Lactobacillus johnsonii La1 to prevent Giardia growth in vitro. We provide evidence that the supernatant of this strain contains active principle(s) not directly toxic to Giardia but able to convert non-toxic components of bile into components highly toxic to Giardia. By using bile acid profiling, these components were identified as deconjugated bile-salts. A bacterial bile-salt-hydrolase of commercial origin was able to mimic the properties of the supernatant. Mass spectrometric analysis of the bacterial supernatant identified two of the three bile-salt-hydrolases encoded in the genome of this probiotic strain. These observations document a possible mechanism by which L. johnsonii La1, by secreting, or releasing BSH-like activity(ies) in the vicinity of replicating Giardia in an environment where bile is present and abundant, can fight this parasite. This discovery has both fundamental and applied outcomes to fight giardiasis, based on local delivery of deconjugated bile salts, enzyme deconjugation of bile components, or natural or recombinant probiotic strains that secrete or release such deconjugating activities in a compartment where both bile salts and Giardia are present. PMID:27729900

  13. Rapid analysis of bile acids in different biological matrices using LC-ESI-MS/MS for the investigation of bile acid transformation by mammalian gut bacteria.

    PubMed

    Wegner, Katrin; Just, Sarah; Gau, Laura; Mueller, Henrike; Gérard, Philippe; Lepage, Patricia; Clavel, Thomas; Rohn, Sascha

    2017-02-01

    Bile acids are important signaling molecules that regulate cholesterol, glucose, and energy homoeostasis and have thus been implicated in the development of metabolic disorders. Their bioavailability is strongly modulated by the gut microbiota, which contributes to generation of complex individual-specific bile acid profiles. Hence, it is important to have accurate methods at hand for precise measurement of these important metabolites. Here, a rapid and sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for simultaneous identification and quantitation of primary and secondary bile acids as well as their taurine and glycine conjugates was developed and validated. Applicability of the method was demonstrated for mammalian tissues, biofluids, and cell culture media. The analytical approach mainly consists of a simple and rapid liquid-liquid extraction procedure in presence of deuterium-labeled internal standards. Baseline separation of all isobaric bile acid species was achieved and a linear correlation over a broad concentration range was observed. The method showed acceptable accuracy and precision on intra-day (1.42-11.07 %) and inter-day (2.11-12.71 %) analyses and achieved good recovery rates for representative analytes (83.7-107.1 %). As a proof of concept, the analytical method was applied to mouse tissues and biofluids, but especially to samples from in vitro fermentations with gut bacteria of the family Coriobacteriaceae. The developed method revealed that the species Eggerthella lenta and Collinsella aerofaciens possess bile salt hydrolase activity, and for the first time that the species Enterorhabdus mucosicola is able to deconjugate and dehydrogenate primary bile acids in vitro.

  14. Thin-layer chromatographic separation of conjugates of ursodeoxycholic acid from those of litho-, chenodeoxy-, deoxy-, and cholic acids.

    PubMed

    Batta, A K; Shefer, S; Salen, G

    1981-05-01

    Separation of the glycine and taurine conjugates of ursodeoxycholic acid from those of lithocholic acid, chenodeoxycholic acid, deoxycholic acid, and cholic acid by thin-layer chromatography is described. Thus, on running a silica gel G plate first in a solvent system of n-butanol-water 20:3 and then in a second solvent system of chloroform-isopropanol-acetic acid-water 30:20:4:1, all the above-mentioned conjugated bile acids are separated from one another. The application of this method to study the change in the biliary bile acid conjugation pattern in ursodeoxycholic acid-fed gallstone patients is described.

  15. Solubilization and Interaction Studies of Bile Salts with Surfactants and Drugs: a Review.

    PubMed

    Malik, Nisar Ahmad

    2016-05-01

    In this review, bile salt, bile salt-surfactant, and bile salt-drug interactions and their solubilization studies are mainly focused. Usefulness of bile salts in digestion, absorption, and excretion of various compounds and their rare properties in ordering the shape and size of the micelles owing to the presence of hydrophobic and hydrophilic faces are taken into consideration while compiling this review. Bile salts as potential bio-surfactants to solubilize drugs of interest are also highlighted. This review will give an insight into the selection of drugs in different applications as their properties get modified by interaction with bile salts, thus influencing their solution behavior which, in turn, modifies the phase-forming behavior, microemulsion, and clouding phenomenon, besides solubilization. Finally, their future perspectives are taken into consideration to assess their possible uses as bio-surfactants without side effects to human beings.

  16. Managing bile acid diarrhoea.

    PubMed

    Walters, Julian R F; Pattni, Sanjeev S

    2010-11-01

    Bowel symptoms including diarrhoea can be produced when excess bile acids (BA) are present in the colon. This condition, known as bile acid or bile salt malabsorption, has been under recognized, as the best diagnostic method, the (75)Se-homocholic acid taurine (SeHCAT) test, is not available in many countries and is not fully utilized in others. Reduced SeHCAT retention establishes that this is a complication of many other gastrointestinal diseases. Repeated studies show SeHCAT tests are abnormal in about 30% of patients otherwise diagnosed as diarrhoea-predominant irritable bowel syndrome or functional diarrhoea, with an estimated population prevalence of around 1%. Recent work suggests that the condition previously called idiopathic bile acid malabsorption (BAM) is not in fact due to a defect in absorption, but results from an overproduction of BA because of defective feedback inhibition of hepatic bile acid synthesis, a function of the ileal hormone fibroblast growth factor 19 (FGF19). The approach to treatment currently depends on binding excess BA, to reduce their secretory actions, using colestyramine, colestipol and, most recently, colesevelam. Colesevelam has a number of potential advantages that merit further investigation in trials directed at patients with bile acid diarrhoea.

  17. Evolution of substrate specificity for the bile salt transporter ASBT (SLC10A2)[S

    PubMed Central

    Lionarons, Daniël A.; Boyer, James L.; Cai, Shi-Ying

    2012-01-01

    The apical Na+-dependent bile salt transporter (ASBT/SLC10A2) is essential for maintaining the enterohepatic circulation of bile salts. It is not known when Slc10a2 evolved as a bile salt transporter or how it adapted to substantial changes in bile salt structure during evolution. We characterized ASBT orthologs from two primitive vertebrates, the lamprey that utilizes early 5α-bile alcohols and the skate that utilizes structurally different 5β-bile alcohols, and compared substrate specificity with ASBT from humans who utilize modern 5β-bile acids. Everted gut sacs of skate but not the more primitive lamprey transported 3H-taurocholic acid (TCA), a modern 5β-bile acid. However, molecular cloning identified ASBT orthologs from both species. Cell-based assays using recombinant ASBT/Asbt's indicate that lamprey Asbt has high affinity for 5α-bile alcohols, low affinity for 5β-bile alcohols, and lacks affinity for TCA, whereas skate Asbt showed high affinity for 5α- and 5β-bile alcohols but low affinity for TCA. In contrast, human ASBT demonstrated high affinity for all three bile salt types. These findings suggest that ASBT evolved from the earliest vertebrates by gaining affinity for modern bile salts while retaining affinity for older bile salts. Also, our results indicate that the bile salt enterohepatic circulation is conserved throughout vertebrate evolution. PMID:22669917

  18. Bile salt receptor complex activates a pathogenic type III secretion system

    DOE PAGES

    Li, Peng; Rivera-Cancel, Giomar; Kinch, Lisa N.; ...

    2016-07-05

    Bile is an important component of the human gastrointestinal tract with an essential role in food absorption and antimicrobial activities. Enteric bacterial pathogens have developed strategies to sense bile as an environmental cue to regulate virulence genes during infection. We discovered that Vibrio parahaemolyticus VtrC, along with VtrA and VtrB, are required for activating the virulence type III secretion system 2 in response to bile salts. The VtrA/VtrC complex activates VtrB in the presence of bile salts. The crystal structure of the periplasmic domains of the VtrA/VtrC heterodimer reveals a β-barrel with a hydrophobic inner chamber. A co-crystal structure ofmore » VtrA/VtrC with bile salt, along with biophysical and mutational analysis, demonstrates that the hydrophobic chamber binds bile salts and activates the virulence network. As part of a family of conserved signaling receptors, VtrA/VtrC provides structural and functional insights into the evolutionarily conserved mechanism used by bacteria to sense their environment.« less

  19. Taurocholic acid metabolism by gut microbes and colon cancer

    PubMed Central

    Ridlon, Jason M.; Wolf, Patricia G.; Gaskins, H. Rex

    2016-01-01

    ABSTRACT Colorectal cancer (CRC) is one of the most frequent causes of cancer death worldwide and is associated with adoption of a diet high in animal protein and saturated fat. Saturated fat induces increased bile secretion into the intestine. Increased bile secretion selects for populations of gut microbes capable of altering the bile acid pool, generating tumor-promoting secondary bile acids such as deoxycholic acid and lithocholic acid. Epidemiological evidence suggests CRC is associated with increased levels of DCA in serum, bile, and stool. Mechanisms by which secondary bile acids promote CRC are explored. Furthermore, in humans bile acid conjugation can vary by diet. Vegetarian diets favor glycine conjugation while diets high in animal protein favor taurine conjugation. Metabolism of taurine conjugated bile acids by gut microbes generates hydrogen sulfide, a genotoxic compound. Thus, taurocholic acid has the potential to stimulate intestinal bacteria capable of converting taurine and cholic acid to hydrogen sulfide and deoxycholic acid, a genotoxin and tumor-promoter, respectively. PMID:27003186

  20. Vectorial transport of bile salts across MDCK cells expressing both rat Na+-taurocholate cotransporting polypeptide and rat bile salt export pump.

    PubMed

    Mita, Sachiko; Suzuki, Hiroshi; Akita, Hidetaka; Stieger, Bruno; Meier, Peter J; Hofmann, Alan F; Sugiyama, Yuichi

    2005-01-01

    Bile salts are predominantly taken up by hepatocytes via the basolateral Na(+)-taurocholate cotransporting polypeptide (NTCP/SLC10A1) and secreted into the bile by the bile salt export pump (BSEP/ABCB11). In the present study, we transfected rat Ntcp and rat Bsep into polarized Madin-Darby canine kidney cells and characterized the transport properties of these cells for eight bile salts. Immunohistochemical staining demonstrated that Ntcp was expressed at the basolateral domains, whereas Bsep was expressed at the apical domains. Basal-to-apical transport of taurocholate across the monolayer expressing only Ntcp and that coexpressing Ntcp/Bsep was observed, whereas the flux across the monolayer of control and Bsep-expressing cells was symmetrical. Basal-to-apical transport of taurocholate across Ntcp/Bsep-coexpressing monolayers was significantly higher than that across monolayers expressing only Ntcp. Kinetic analysis of this vectorial transport of taurocholate gave an apparent K(m) value of 13.9 +/- 4.7 microM for cells expressing Ntcp alone, which is comparable with 22.2 +/- 4.5 microM for cells expressing both Ntcp and Bsep and V(max) values of 15.8 +/- 4.2 and 60.8 +/- 9.0 pmol.min(-1).mg protein(-1) for Ntcp alone and Ntcp and Bsep-coexpressing cells, respectively. Transcellular transport of cholate, glycocholate, taurochenodeoxycholate, chenodeoxycholate, glycochenodeoxycholate, tauroursodeoxycholate, ursodeoxycholate, and glycoursodeoxycholate, but not that of lithocholate was also observed across the double transfectant. This double-expressing system can be used as a model to clarify vectorial transport of bile salts across hepatocytes under physiological conditions.

  1. Influence of the amino acid moiety on deconjugation of bile acid amidates by cholylglycine hydrolase or human fecal cultures.

    PubMed

    Huijghebaert, S M; Hofmann, A F

    1986-07-01

    The influence of the chemical structure of the amino acid (or amino acid analogue) moiety of a number of synthetic cholyl amidates on deconjugation by cholylglycine hydrolase from Clostridium perfringens was studied in vitro at pH 5.4. Conjugates with alkyl homologues of glycine were hydrolyzed more slowly as the number of methylene units increased (cholylglycine greater than cholyl-beta-alanine greater than cholyl-gamma-aminobutyrate). In contrast, for conjugates with the alkyl homologues of taurine, cholylaminopropane sulfonate was hydrolyzed slightly faster than cholyltaurine, whereas cholylaminomethane sulfonate was hydrolyzed much more slowly. When glycine was replaced by other neutral alpha-amino acids, rates of hydrolysis decreased with increasing steric hindrance near the amide bond (cholyl-L-alpha-alanine much much greater than cholyl-L-leucine much greater than cholyl-L-valine greater than cholyl-L-tyrosine much greater than cholyl-D-valine). Conjugation with acidic or basic amino acids also greatly reduced the rates of hydrolysis, as cholyl-L-aspartate, cholyl-L-cysteate, cholyl-L-lysine, and cholyl-L-histidine were all hydrolyzed at a rate less than one-tenth that of cholylglycine. Methyl esterification of the carboxylic group of the amino acid moiety reduced the hydrolysis, but such substrates (cholylglycine methyl ester and cholyl-beta-alanine methyl ester) were completely hydrolyzed after overnight incubation with excess of enzyme. In contrast, cholyl-cholamine was not hydrolyzed at all, suggesting that a negative charge at the end of the side chain is required for optimal hydrolysis. Despite the lack of specificity for the amino acid moiety, a bile salt moiety was required, as the cholylglycine hydrolase did not display general carboxypeptidase activity for other non-bile acid substrates containing a terminal amide bond: hippuryl-L-phenylalanine and hippuryl-L-arginine, as well as oleyltaurine and oleylglycine, were not hydrolyzed. Fecal bacterial

  2. Use of D(acid)-, D(bile)-, z(acid)-, and z(bile)-values in evaluating Bifidobacteria with regard to stomach pH and bile salt sensitivity.

    PubMed

    Jia, Li; Shigwedha, Nditange; Mwandemele, Osmund D

    2010-01-01

    The survival of bifidobacteria in simulated conditions of the gastrointestinal (GI) tract was studied based on the D- and z-value concept. Some Bifidobacterium spp. are probiotics that improve microbial balance in the human GI tract. Because they are sensitive to low pH and bile salt concentrations, their viability in the GI tract is limited. The D- and z-value approach was therefore adopted as a result of observing constant log-cell reduction (90%) when Bifidobacterium spp. were exposed to these 2 different stressing factors. Survivals of one strain each or 4 species of Bifidobacterium was studied at pH between 3.0 and 4.5 and in ox-bile between 0.15% and 0.60% for times up to 41 h. From the D(acid)- and D(bile)-values, the order of resistance to acid and bile was B. bifidum > B. infantis > B. longum > B. adolescentis. While the former 3 strains retained high cell viability at pH 3.5 (>5.5 log CFU/mL after 5 h) and at elevated bile salt concentration of 0.6% (>4.5 log CFU/mL after 3 h), B. adolescentis was less resistant (<3.4 log CFU/mL). The z(acid)- and z(bile)-values calculated from the D(acid)- and D(bile)-values ranged from 1.11 to 1.55 pH units and 0.40% to 0.49%, respectively. The results suggest that the D(acid)-, D(bile)-, z(acid)-, and z(bile)-value approach could be more appropriate than the screening and selection method in evaluating survival of probiotic bacteria, and in measuring their tolerance or resistance to gastric acidity and the associated bile salt concentration in the small intestine. The evaluation of the tolerance of bifidobacteria to bile salts and low pH has been made possible by use of D- and z-value concept. The calculated z(acid)- and z(bile)-values were all fairly similar for the strains used and suggest the effect of increasing the bile salt concentration or decreasing the pH on the D(acid)- and D(bile)-values. This approach would be useful for predicting the suitability of bifidobacteria and other lactic acid bacteria (LAB) as

  3. Managing bile acid diarrhoea

    PubMed Central

    Walters, Julian R. F.; Pattni, Sanjeev S.

    2010-01-01

    Bowel symptoms including diarrhoea can be produced when excess bile acids (BA) are present in the colon. This condition, known as bile acid or bile salt malabsorption, has been under recognized, as the best diagnostic method, the 75Se-homocholic acid taurine (SeHCAT) test, is not available in many countries and is not fully utilized in others. Reduced SeHCAT retention establishes that this is a complication of many other gastrointestinal diseases. Repeated studies show SeHCAT tests are abnormal in about 30% of patients otherwise diagnosed as diarrhoea-predominant irritable bowel syndrome or functional diarrhoea, with an estimated population prevalence of around 1%. Recent work suggests that the condition previously called idiopathic bile acid malabsorption (BAM) is not in fact due to a defect in absorption, but results from an overproduction of BA because of defective feedback inhibition of hepatic bile acid synthesis, a function of the ileal hormone fibroblast growth factor 19 (FGF19). The approach to treatment currently depends on binding excess BA, to reduce their secretory actions, using colestyramine, colestipol and, most recently, colesevelam. Colesevelam has a number of potential advantages that merit further investigation in trials directed at patients with bile acid diarrhoea. PMID:21180614

  4. Analysis of Shigella flexneri Resistance, Biofilm Formation, and Transcriptional Profile in Response to Bile Salts

    PubMed Central

    Nickerson, Kourtney P.; Chanin, Rachael B.; Sistrunk, Jeticia R.; Fink, Peter J.; Barry, Eileen M.; Nataro, James P.

    2017-01-01

    ABSTRACT The Shigella species cause millions of cases of watery or bloody diarrhea each year, mostly in children in developing countries. While many aspects of Shigella colonic cell invasion are known, crucial gaps in knowledge regarding how the bacteria survive, transit, and regulate gene expression prior to infection remain. In this study, we define mechanisms of resistance to bile salts and build on previous research highlighting induced virulence in Shigella flexneri strain 2457T following exposure to bile salts. Typical growth patterns were observed within the physiological range of bile salts; however, growth was inhibited at higher concentrations. Interestingly, extended periods of exposure to bile salts led to biofilm formation, a conserved phenotype that we observed among members of the Enterobacteriaceae. Characterization of S. flexneri 2457T biofilms determined that both bile salts and glucose were required for formation, dispersion was dependent upon bile salts depletion, and recovered bacteria displayed induced adherence to HT-29 cells. RNA-sequencing analysis verified an important bile salt transcriptional profile in S. flexneri 2457T, including induced drug resistance and virulence gene expression. Finally, functional mutagenesis identified the importance of the AcrAB efflux pump and lipopolysaccharide O-antigen synthesis for bile salt resistance. Our data demonstrate that S. flexneri 2457T employs multiple mechanisms to survive exposure to bile salts, which may have important implications for multidrug resistance. Furthermore, our work confirms that bile salts are important physiological signals to activate S. flexneri 2457T virulence. This work provides insights into how exposure to bile likely regulates Shigella survival and virulence during host transit and subsequent colonic infection. PMID:28348056

  5. Possible Correlation Between Bile Salt Hydrolysis and AHL Deamidation: Staphylococcus epidermidis RM1, a Potent Quorum Quencher and Bile Salt Hydrolase Producer.

    PubMed

    Mukherji, Ruchira; Prabhune, Asmita

    2015-05-01

    The aim of the present work was to isolate a bile salt hydrolase (BSH) producer from fermented soy curd and explore the ability of the BSH produced to cleave bacterial quorum sensing signals. Bacterial isolates with possible ability to deconjugate bile salts were enriched and isolated on De Man, Rogosa and Sharpe (MRS) medium containing 0.2% bile salts. BSH-producing positive isolate with orange-pink-pigmented colonies was isolated and was identified as a strain of Staphylococcus epidermidis using biochemical and phylogenetic tools. S. epidermidis RM1 was shown to possess both potent BSH and N-acyl homoserine lactone (AHL) cleavage activity. Genetic basis of this dual-enzyme activity was explored by means of specific primers designed using S. epidermidis ATCC 12228 genome as template. It was observed that a single enzyme was not responsible for both the activity. Two different genetic elements corresponding to each of the enzymatic activity were successfully amplified from the genomic DNA of the isolate.

  6. Role of taurine in the vasculature: an overview of experimental and human studies

    PubMed Central

    Abebe, Worku; Mozaffari, Mahmood S

    2011-01-01

    Taurine is a sulfur-containing amino acid-like endogenous compound found in substantial amounts in mammalian tissues. It exerts a diverse array of biological effects, including cardiovascular regulation, antioxidation, modulation of ion transport, membrane stabilization, osmoregulation, modulation of neurotransmission, bile acid conjugation, hypolipidemia, antiplatelet activity and modulation of fetal development. This brief review summarizes the role of taurine in the vasculature and modulation of blood pressure, based on experimental and human studies. Oral supplementation of taurine induces antihypertensive effects in various animal models of hypertension. These effects of taurine have been shown to be both centrally and peripherally mediated. Consistent with this, taurine produces endothelium-dependent and independent relaxant effects in isolated vascular tissue preparations. Oral administration of taurine also ameliorates impairment of vascular reactivity, intimal thickening, arteriosclerosis, endothelial apoptosis, oxidative stress and inflammation, associated primarily with diabetes and, to a lesser extent with obesity, hypertension and nicotine-induced vascular adverse events. In rat aortic vascular smooth muscle cells (VSMCs), taurine acts as an antiproliferative and antioxidant agent. In endothelial cells, taurine inhibits apoptosis, inflammation, oxidative stress and cell death while increasing NO generation. Oral taurine in hypertensive human patients alleviates the symptoms of hypertension and also reverses arterial stiffness and brachial artery reactivity in type 1 diabetic patients. However, despite these favorable findings, there is a need to further establish certain aspects of the reported results and also consider addressing unresolved related issues. In addition, the molecular mechanism (s) involved in the vascular effects of taurine is largely unknown and requires further investigations. Elucidation of the mechanisms through which taurine

  7. Altered intestinal bile salt biotransformation in a cystic fibrosis (Cftr-/-) mouse model with hepato-biliary pathology.

    PubMed

    Bodewes, Frank A J A; van der Wulp, Mariëtte Y M; Beharry, Satti; Doktorova, Marcela; Havinga, Rick; Boverhof, Renze; James Phillips, M; Durie, Peter R; Verkade, Henkjan J

    2015-07-01

    Cftr(-/-tm1Unc) mice develop progressive hepato-biliary pathology. We hypothesize that this liver pathology is related to alterations in biliary bile hydrophobicity and bile salt metabolism in Cftr(-/-tm1Unc) mice. We determined bile production, biliary and fecal bile salt- and lipid compositions and fecal bacterial composition of C57BL/6J Cftr(-/-tm1Unc) and control mice. We found no differences between the total biliary bile salt or lipid concentrations of Cftr(-/-) and controls. Compared to controls, Cftr(-/-) mice had a ~30% higher bile production and a low bile hydrophobicity, related to a ~7 fold higher concentration of the choleretic and hydrophilic bile salt ursocholate. These findings coexisted with a significantly smaller quantity of fecal Bacteroides bacteria. Liver pathology in Cftr(-/-tm1Unc) is not related to increased bile hydrophobicity. Cftr(-/-) mice do however display a biliary phenotype characterized by increased bile production and decreased biliary hydrophobicity. Our findings suggest Cftr dependent, alterations in intestinal bacterial biotransformation of bile salts. Copyright © 2014. Published by Elsevier B.V.

  8. Impact of beta-cyclodextrin and resistant starch on bile acid metabolism and fecal steroid excretion in regard to their hypolipidemic action in hamsters.

    PubMed

    Trautwein, E A; Forgbert, K; Rieckhoff, D; Erbersdobler, H F

    1999-01-29

    To examine the impact on bile acid metabolism and fecal steroid excretion as a mechanism involved in the lipid-lowering action of beta-cyclodextrin and resistant starch in comparison to cholestyramine, male golden Syrian hamsters were fed 0% (control), 8% or 12% of beta-cyclodextrin or resistant starch or 1% cholestyramine. Resistant starch, beta-cyclodextrin and cholestyramine significantly lowered plasma total cholesterol and triacylglycerol concentrations compared to control. Distinct changes in the bile acid profile of gallbladder bile were caused by resistant starch, beta-cyclodextrin and cholestyramine. While cholestyramine significantly reduced chenodeoxycholate independently of its taurine-glycine conjugation, beta-cyclodextrin and resistant starch decreased especially the percentage of taurochenodeoxycholate by -75% and -44%, respectively. As a result, the cholate:chenodeoxycholate ratio was significantly increased by 100% with beta-cyclodextrin and by 550% with cholestyramine while resistant starch revealed no effect on this ratio. beta-Cyclodextrin and resistant starch, not cholestyramine, significantly increased the glycine:taurine conjugation ratio demonstrating the predominance of glycine conjugated bile acids. Daily fecal excretion of bile acids was 4-times higher with 8% beta-cyclodextrin and 19-times with 1% cholestyramine compared to control. beta-Cyclodextrin and cholestyramine also induced a 2-fold increase in fecal neutral sterol excretion, demonstrating the sterol binding capacity of these two compounds. Resistant starch had only a modest effect on fecal bile acid excretion (80% increase) and no effect on excretion of neutral sterols, suggesting a weak interaction with intestinal steroid absorption. These data demonstrate the lipid-lowering potential of beta-cyclodextrin and resistant starch. An impaired reabsorption of circulating bile acids and intestinal cholesterol absorption leading to an increase in fecal bile acid and neutral sterol

  9. Bile Salt-induced Biofilm Formation in Enteric Pathogens: Techniques for Identification and Quantification.

    PubMed

    Nickerson, Kourtney P; Faherty, Christina S

    2018-05-06

    Biofilm formation is a dynamic, multistage process that occurs in bacteria under harsh environmental conditions or times of stress. For enteric pathogens, a significant stress response is induced during gastrointestinal transit and upon bile exposure, a normal component of human digestion. To overcome the bactericidal effects of bile, many enteric pathogens form a biofilm hypothesized to permit survival when transiting through the small intestine. Here we present methodologies to define biofilm formation through solid-phase adherence assays as well as extracellular polymeric substance (EPS) matrix detection and visualization. Furthermore, biofilm dispersion assessment is presented to mimic the analysis of events triggering release of bacteria during the infection process. Crystal violet staining is used to detect adherent bacteria in a high-throughput 96-well plate adherence assay. EPS production assessment is determined by two assays, namely microscopy staining of the EPS matrix and semi-quantitative analysis with a fluorescently-conjugated polysaccharide binding lectin. Finally, biofilm dispersion is measured through colony counts and plating. Positive data from multiple assays support the characterization of biofilms and can be utilized to identify bile salt-induced biofilm formation in other bacterial strains.

  10. A new, major C27 biliary bile acid in the Red-winged tinamou (Rhynchotus rufescens):(25R)-1β,3α,7α-trihydroxy-5β-cholestan-27-oic acid*

    PubMed Central

    Hagey, Lee R.; Kakiyama, Genta; Muto, Akina; Iida, Takashi; Mushiake, Kumiko; Goto, Takaaki; Mano, Nariyasu; Goto, Junichi; Oliveira, Cleida A.; Hofmann, Alan F.

    2009-01-01

    The chemical structures of the three major bile acids present in the gallbladder bile of the Red-winged tinamou (Rhynchotus rufescens), an early evolving, ground-living bird related to ratites, were determined. Bile acids were isolated by preparative reversed-phase HPLC. Two of the compounds were identified as the taurine N-acylamidates of (25R)-3α,7α-dihydroxy-5β-cholestan-27-oic acid (constituting 22% of biliary bile acids) and (25R)-3α,7α,12α-trihydroxy-5β-cholestan-27-oic acid (constituting 51%). The remaining compound, constituting 21% of biliary bile acids, was an unknown C27 bile acid. Its structure was elucidated by LC/ESI-MS/MS and NMR and shown to be the taurine conjugate of (25R)-1β,3α,7α-trihydroxy-5β-cholestan-27-oic acid, a C27 trihydroxy bile acid not previously reported. Although C27 bile acids with a 1β-hydroxyl group have been identified as trace bile acids in the alligator, this is the first report of a major biliary C27 bile acid possessing a 1β-hydroxyl group. PMID:19011113

  11. Self-assembly of micelles in organic solutions of lecithin and bile salt: Mesoscale computer simulation

    NASA Astrophysics Data System (ADS)

    Markina, A.; Ivanov, V.; Komarov, P.; Khokhlov, A.; Tung, S.-H.

    2016-11-01

    We propose a coarse-grained model for studying the effects of adding bile salt to lecithin organosols by means of computer simulation. This model allows us to reveal the mechanisms of experimentally observed increasing of viscosity upon increasing the bile salt concentration. We show that increasing the bile salt to lecithin molar ratio induces the growth of elongated micelles of ellipsoidal and cylindrical shape due to incorporation of disklike bile salt molecules. These wormlike micelles can entangle into transient network displaying perceptible viscoelastic properties.

  12. Changes in the faecal bile acid profile in dogs fed dry food vs high content of beef: a pilot study.

    PubMed

    Herstad, Kristin Marie Valand; Rønning, Helene Thorsen; Bakke, Anne Marie; Moe, Lars; Skancke, Ellen

    2018-05-11

    Dogs are fed various diets, which also include components of animal origin. In humans, a high-fat/low-fibre diet is associated with higher faecal levels of bile acids, which can influence intestinal health. It is unknown how an animal-based diet high in fat and low in fibre influences the faecal bile acid levels and intestinal health in dogs. This study investigated the effects of high intake of minced beef on the faecal bile acid profile in healthy, adult, client-owned dogs (n = 8) in a 7-week trial. Dogs were initially adapted to the same commercial dry food. Thereafter, incremental substitution of the dry food by boiled minced beef over 3 weeks resulted in a diet in which 75% of each dog's total energy requirement was provided as minced beef during week 5. Dogs were subsequently reintroduced to the dry food for the last 2 weeks of the study. The total taurine and glycine-conjugated bile acids, the primary bile acids chenodeoxycholic acid and cholic acid, and the secondary bile acids lithocholic acid, deoxycholic acid (DCA) and ursodeoxycholic acid (UDCA) were analysed, using liquid chromatography-tandem mass spectrometry. The faecal quantities of DCA were significantly higher in dogs fed the high minced beef diet. These levels reversed when dogs were reintroduced to the dry food diet. The faecal levels of UDCA and taurine-conjugated bile acids had also increased in response to the beef diet, but this was only significant when compared to the last dry food period. These results suggest that an animal-based diet with high-fat/low-fibre content can influence the faecal bile acids levels. The consequences of this for canine colonic health will require further investigation.

  13. Cytoprotection by fructose and other ketohexoses during bile salt-induced apoptosis of hepatocytes.

    PubMed

    Zeid, I M; Bronk, S F; Fesmier, P J; Gores, G J

    1997-01-01

    Toxic bile salts cause hepatocyte necrosis at high concentrations and apoptosis at lower concentrations. Although fructose prevents bile salt-induced necrosis, the effect of fructose on bile salt-induced apoptosis is unclear. Our aim was to determine if fructose also protects against bile salt-induced apoptosis. Fructose inhibited glycochenodeoxycholate (GCDC)-induced apoptosis in a concentration-dependent manner with a maximum inhibition of 72% +/- 10% at 10 mmol/L. First, we determined if fructose inhibited apoptosis by decreasing adenosine triphosphate (ATP) and intracellular pH (pHi). Although fructose decreased ATP to <25% of basal values, oligomycin (an ATP synthase inhibitor) did not inhibit apoptosis despite decreasing ATP to similar values. Fructose (10 mmol/L) decreased intracellular pH (pHi) by 0.2 U. However, extracellular acidification (pH 6.8), which decreased hepatocyte pHi 0.35 U and is known to inhibit necrosis, actually potentiated apoptosis 1.6-fold. Fructose cytoprotection also could not be explained by induction of bcl-2 transcription or metal chelation. Because we could not attribute fructose cytoprotection to metabolic effects, alterations in the expression of bcl-2, or metal chelation, we next determined if the poorly metabolized ketohexoses, tagatose and sorbose, also inhibited apoptosis; unexpectedly, both ketohexoses inhibited apoptosis. Because bile salt-induced apoptosis and necrosis are inhibited by fructose, these data suggest that similar processes initiate bile salt-induced hepatocyte necrosis and apoptosis. In contrast, acidosis, which inhibits necrosis, potentiates apoptosis. Thus, ketohexose-sensitive pathways appear to initiate both bile salt-induced cell apoptosis and necrosis, whereas dissimilar, pH-sensitive, effector mechanisms execute these two different cell death processes.

  14. Vesicle solubilization by bile salts: comparison of macroscopic theory and simulation.

    PubMed

    Haustein, M; Wahab, M; Mögel, H-J; Schiller, P

    2015-04-14

    Lipid metabolism is accompanied by the solubilization of lipid bilayer membranes by bile salts. We use Brownian dynamics simulations to study the solubilization of model membranes and vesicles by sodium cholate. The solubilization pathways of small and large vesicles are found to be different. Both results for small and large vesicles can be compared with predictions of a macroscopic theoretical description. The line tension of bilayer edges is an important parameter in the solubilization process. We propose a simple method to determine the line tension by analyzing the shape fluctuations of planar membrane patches. Macroscopic mechanical models provide a reasonable explanation for processes observed when a spherical vesicle consisting of lipids and adsorbed bile salt molecules is transformed into mixed lipid-bile salt micelles.

  15. Does taurine deficiency cause metabolic bone disease and rickets in polar bear cubs raised in captivity?

    PubMed

    Chesney, Russell W; Hedberg, Gail E; Rogers, Quinton R; Dierenfeld, Ellen S; Hollis, Bruce E; Derocher, Andrew; Andersen, Magnus

    2009-01-01

    Rickets and fractures have been reported in captive polar bears. Taurine (TAU) is key for the conjugation of ursodeoxycholic acid (UDCA), a bile acid unique to bears. Since TAU-conjugated UDCA optimizes fat and fat-soluble vitamin absorption, we asked if TAU deficiency could cause vitamin D malabsorption and lead to metabolic bone disease in captive polar bears. We measured TAU levels in plasma (P) and whole blood (WB) from captive and free-ranging cubs and adults, and vitamin D3 and TAU concentrations in milk samples from lactating sows. Plasma and WB TAU levels were significantly higher in cubs vs captive and free-ranging adult bears. Vitamin D in polar bear milk was 649.2 +/- 569.2 IU/L, similar to that found in formula. The amount of TAU in polar bear milk is 3166.4 +/- 771 nmol/ml, 26-fold higher than in formula. Levels of vitamin D in bear milk and formula as well as in plasma do not indicate classical nutritional vitamin D deficiency. Higher dietary intake of TAU by free-ranging cubs may influence bile acid conjugation and improve vitamin D absorption.

  16. A new insight into the physiological role of bile salt hydrolase among intestinal bacteria from the genus Bifidobacterium.

    PubMed

    Jarocki, Piotr; Podleśny, Marcin; Glibowski, Paweł; Targoński, Zdzisław

    2014-01-01

    This study analyzes the occurrence of bile salt hydrolase in fourteen strains belonging to the genus Bifidobacterium. Deconjugation activity was detected using a plate test, two-step enzymatic reaction and activity staining on a native polyacrylamide gel. Subsequently, bile salt hydrolases from B. pseudocatenulatum and B. longum subsp. suis were purified using a two-step chromatographic procedure. Biochemical characterization of the bile salt hydrolases showed that the purified enzymes hydrolyzed all of the six major human bile salts under the pH and temperature conditions commonly found in the human gastrointestinal tract. Next, the dynamic rheometry was applied to monitor the gelation process of deoxycholic acid under different conditions. The results showed that bile acids displayed aqueous media gelating properties. Finally, gel-forming abilities of bifidobacteria exhibiting bile salt hydrolase activity were analyzed. Our investigations have demonstrated that the release of deconjugated bile acids led to the gelation phenomenon of the enzymatic reaction solution containing purified BSH. The presented results suggest that bile salt hydrolase activity commonly found among intestinal microbiota increases hydrogel-forming abilities of certain bile salts. To our knowledge, this is the first report showing that bile salt hydrolase activity among Bifidobacterium is directly connected with the gelation process of bile salts. In our opinion, if such a phenomenon occurs in physiological conditions of human gut, it may improve bacterial ability to colonize the gastrointestinal tract and their survival in this specific ecological niche.

  17. Alterations in nanoparticle protein corona by biological surfactants: impact of bile salts on β-lactoglobulin-coated gold nanoparticles.

    PubMed

    Winuprasith, Thunnalin; Chantarak, Sirinya; Suphantharika, Manop; He, Lili; McClements, David Julian

    2014-07-15

    The impact of biological surfactants (bile salts) on the protein (β-lactoglobulin) corona surrounding gold nanoparticles (200 nm) was studied using a variety of analytical techniques at pH 7: dynamic light scattering (DLS); particle electrophoresis (ζ-potential); UV-visible (UV) spectroscopy; transmission electron microscopy (TEM); and surface-enhanced Raman scattering (SERS). The bile salts adsorbed to the protein-coated nanoparticle surfaces and altered their interfacial composition, charge, and structure. SERS spectra of protein-coated nanoparticles after bile salt addition contained bands from both protein and bile salts, indicating that the protein was not fully displaced by the bile salts. UV, DLS and TEM techniques also indicated that the protein coating was not fully displaced from the nanoparticle surfaces. The impact of bile salts could be described by an orogenic mechanism: mixed interfaces were formed that consisted of islands of aggregated proteins surrounded by a sea of bile salts. This knowledge is useful for understanding the interactions of bile salts with protein-coated colloidal particles, which may be important for controlling the fate of colloidal delivery systems in the human gastrointestinal tract, or the gastrointestinal fate of ingested inorganic nanoparticles. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Bile salt incorporated polypyrrole thin film for ethanol sensing.

    PubMed

    Sharma, Partha P D; Sarkar, D

    2015-04-01

    Polypyrrole (PPy)-bile salt composite was used for sensing ethanol vapor. PPy was synthesized by interface polymerization for subsequent fabrication of thin film of its composite with bile salt, by in-situ co-dispersion method and then exposed to ethanol vapour. Sensing was visualized through changes in morphological, structural and optical characterizations. The ethanol exposed film showed larger agglomeration as revealed in its surface morphology on scanning electron microscope (SEM) and greater crystallinity as seen through X-Ray diffraction (XRD). Fourier transform infra red (FTIR) and nuclear magnetic resonance spectroscopy (NMR) of the ethanol incorporated film also gave signature of the presence of bile salt and alcohol. Alcohol incorporation pattern resulted in increase in electrical conductance from 7.08539 x 10(-5) mA/V to 8.0356 x 10(-5) mA/V, as determined from current voltage characterizations. Average molecular weight (M(n)) obtained from gel permeation chromatography changed from 6160 to 10300 on ethanol intake. Photoluminescence (PL) intensity was quenched and the PL peak shifted from 430 to 409 on ethanol exposure. Changes in morphological, structural, optical and electrical properties of the composite on ethanol exposure showed its prospective application for sensing ethanol.

  19. Structure based classification for bile salt export pump (BSEP) inhibitors using comparative structural modeling of human BSEP

    NASA Astrophysics Data System (ADS)

    Jain, Sankalp; Grandits, Melanie; Richter, Lars; Ecker, Gerhard F.

    2017-06-01

    The bile salt export pump (BSEP) actively transports conjugated monovalent bile acids from the hepatocytes into the bile. This facilitates the formation of micelles and promotes digestion and absorption of dietary fat. Inhibition of BSEP leads to decreased bile flow and accumulation of cytotoxic bile salts in the liver. A number of compounds have been identified to interact with BSEP, which results in drug-induced cholestasis or liver injury. Therefore, in silico approaches for flagging compounds as potential BSEP inhibitors would be of high value in the early stage of the drug discovery pipeline. Up to now, due to the lack of a high-resolution X-ray structure of BSEP, in silico based identification of BSEP inhibitors focused on ligand-based approaches. In this study, we provide a homology model for BSEP, developed using the corrected mouse P-glycoprotein structure (PDB ID: 4M1M). Subsequently, the model was used for docking-based classification of a set of 1212 compounds (405 BSEP inhibitors, 807 non-inhibitors). Using the scoring function ChemScore, a prediction accuracy of 81% on the training set and 73% on two external test sets could be obtained. In addition, the applicability domain of the models was assessed based on Euclidean distance. Further, analysis of the protein-ligand interaction fingerprints revealed certain functional group-amino acid residue interactions that could play a key role for ligand binding. Though ligand-based models, due to their high speed and accuracy, remain the method of choice for classification of BSEP inhibitors, structure-assisted docking models demonstrate reasonably good prediction accuracies while additionally providing information about putative protein-ligand interactions.

  20. Molecular interactions between lecithin and bile salts/acids in oils and their effects on reverse micellization.

    PubMed

    Njauw, Ching-Wei; Cheng, Chih-Yang; Ivanov, Viktor A; Khokhlov, Alexei R; Tung, Shih-Huang

    2013-03-26

    It has been known that the addition of bile salts to lecithin organosols induces the formation of reverse wormlike micelles and that the worms are similar to long polymer chains that entangle each other to form viscoelastic solutions. In this study, we further investigated the effects of different bile salts and bile acids on the growth of lecithin reverse worms in cyclohexane and n-decane. We utilized rheological and small-angle scattering techniques to analyze the properties and structures of the reverse micelles. All of the bile salts can transform the originally spherical lecithin reverse micelles into wormlike micelles and their rheological behaviors can be described by the single-relaxation-time Maxwell model. However, their efficiencies to induce the worms are different. In contrast, before phase separation, bile acids can induce only short cylindrical micelles that are not long enough to impart viscoelasticity. We used Fourier transform infrared spectroscopy to investigate the interactions between lecithin and bile salts/acids and found that different bile salts/acids employ different functional groups to form hydrogen bonds with lecithin. Such effects determine the relative positions of the bile salts/acids in the headgroups of lecithin, thus resulting in varying efficiencies to alter the effective critical packing parameter for the formation of wormlike micelles. This work highlights the importance of intermolecular interactions in molecular self-assembly.

  1. Retention of bile salts in micellar electrokinetic chromatography: relation of capacity factor to octanol-water partition coefficient and critical micellar concentration.

    PubMed

    Lucangioli, S E; Carducci, C N; Tripodi, V P; Kenndler, E

    2001-12-25

    The capacity factors of 16 anionic cholates (from six bile salts, including their glyco- and tauro-conjugates) were determined in a micellar electrokinetic chromatography (MEKC) system consisting of buffer, pH 7.5 (phosphate-boric acid; 20 mmol/l) with 50 mmol/l sodium dodecyl sulfate (SDS) as micelle former and 10% acetonitrile as organic modifier. The capacity factors of the fully dissociated, negatively charged analytes (ranging between 0.2 and 60) were calculated from their mobilities, with a reference background electrolyte (BGE) without SDS representing "free" solution. For comparison, the capacity factors were derived for a second reference BGE where the SDS concentration (5 mmol/l) is close to the critical micellar concentration (CMC). The capacity factors are compared with the logarithm of the octanol-water partition coefficient, log Pow, as measure for lipophilicity. Clear disagreement between these two parameters is found especially for epimeric cholates with the hydroxy group in position 7. In contrast, fair relation between the capacity factor of the analytes and their CMC is observed both depending strongly on the orientation of the OH groups, and tauro-conjugation as well. In this respect the retention behaviour of the bile salts in MEKC seems to reflect their role as detergents in living systems, and might serve as model parameter beyond lipophilicity.

  2. Bile Salt Mediated Growth of Reverse Wormlike Micelles in Nonpolar Liquids

    NASA Astrophysics Data System (ADS)

    Tung, Shih-Huang; Huang, Yi-En; Raghavan, Srinivasa

    2006-03-01

    We report the growth of reverse wormlike micelles induced by the addition of a bile salt in trace amounts to solutions of the phospholipid, lecithin in nonpolar organic solvents. Previous recipes for reverse wormlike micelles have usually required the addition of water to induce reverse micellar growth; here, we show that bile salts, due to their unique ``facially amphiphilic'' structure, can play a role analogous to water and promote the longitudinal aggregation of lecithin molecules into reverse micellar chains. The formation of transient entangled networks of these reverse micelles transforms low-viscosity lecithin organosols into strongly viscoelastic fluids. The zero-shear viscosity increases by more than five orders of magnitude, and it is the molar ratio of bile salt to lecithin that controls this viscosity enhancement. The growth of reverse wormlike micelles is also confirmed by small-angle neutron scattering (SANS) experiments on these fluids.

  3. Mixtures of lecithin and bile salt can form highly viscous wormlike micellar solutions in water.

    PubMed

    Cheng, Chih-Yang; Oh, Hyuntaek; Wang, Ting-Yu; Raghavan, Srinivasa R; Tung, Shih-Huang

    2014-09-02

    The self-assembly of biological surfactants in water is an important topic for study because of its relevance to physiological processes. Two common types of biosurfactants are lecithin (phosphatidylcholine) and bile salts, which are both present in bile and involved in digestion. Previous studies on lecithin-bile salt mixtures have reported the formation of short, rodlike micelles. Here, we show that lecithin-bile salt micelles can be further induced to grow into long, flexible wormlike structures. The formation of long worms and their resultant entanglement into transient networks is reflected in the rheology: the fluids become viscoelastic and exhibit Maxwellian behavior, and their zero-shear viscosity can be up to a 1000-fold higher than that of water. The presence of worms is further confirmed by data from small-angle neutron and X-ray scattering and from cryo-transmission electron microscopy (cryo-TEM). We find that micellar growth peaks at a specific molar ratio (near equimolar) of bile salt:lecithin, which suggests a strong binding interaction between the two species. In addition, micellar growth also requires a sufficient concentration of background electrolyte such as NaCl or sodium citrate that serves to screen the electrostatic repulsion of the amphiphiles and to "salt out" the amphiphiles. We postulate a mechanism based on changes in the molecular geometry caused by bile salts and electrolytes to explain the micellar growth.

  4. Investigations of novel unsaturated bile salts of male sea lamprey as potential chemical cues

    USGS Publications Warehouse

    Johnson, Nicholas S.; Yun, Sang-Seon; Li, Weiming

    2014-01-01

    Sulfated bile salts function as chemical cues that coordinate reproduction in sea lamprey, Petromyzon marinus. 7α, 12α, 24-trihydroxy-5α-cholan-3-one 24-sulfate (3kPZS) is the most abundant known bile salt released by sexually mature male sea lampreys and attracts ovulated females. However, previous studies showed that the male-produced pheromone consists of unidentified components in addition to 3kPZS. Here, analysis of water conditioned with mature male sea lampreys indicated the presence of 4 oxidized, unsaturated compounds with molecular weights of 466 Da, 468 Da, and 2 of 470 Da. These compounds were not detectable in water conditioned with immature male sea lampreys. By using mass spectrometry, 4 A-ring unsaturated sulfated bile salts were tentatively identified from male washings as 2 4-ene, a 1-ene, and a 1,4-diene analogs. These were synthesized to determine if they attracted ovulated female sea lampreys to spawning nests in natural streams. One of the novel synthetic bile salts, 3 keto-1-ene PZS, attracted ovulated females to the point of application at a concentration of 10-12 M. This study reveals the structural diversity of bile salts in sea lamprey, some of which have been demonstrated to be pheromonal cues.

  5. Quercetin solubilisation in bile salts: A comparison with sodium dodecyl sulphate.

    PubMed

    Buchweitz, Maria; Kroon, Paul A; Rich, Gillian T; Wilde, Peter J

    2016-11-15

    To understand the bioaccessibility of the flavonoid quercetin we studied its interaction with bile salt micelles. The environmental sensitivity of quercetin's UV-visible absorption spectrum gave information about quercetin partitioning. Two quercetin absorption peaks gave complementary information: Peak A (240-280nm) on the intermicellar phase and Peak B (340-440nm) on the micellar phase. Thus, by altering pH, we showed that only non-ionised quercetin partitions into micelles. We validated our interpretation by studying quercetin's interaction with SDS micelles. Pyrene fluorescence and the quercetin UV-visible spectra show that the adsorption site for pyrene and quercetin in bile salt micelles is more hydrophobic than that for SDS micelles. Also, both quercetin and pyrene reported a higher critical micelle concentration for bile salts than for SDS. Our method of using a flavonoid as an intrinsic probe, is generally applicable to other lipophilic bioactives, whenever they have observable environmental dependent properties. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Differentiation of various traditional Chinese medicines derived from animal bile and gallstone: simultaneous determination of bile acids by liquid chromatography coupled with triple quadrupole mass spectrometry.

    PubMed

    Qiao, Xue; Ye, Min; Pan, De-lin; Miao, Wen-juan; Xiang, Cheng; Han, Jian; Guo, De-an

    2011-01-07

    Animal biles and gallstones are popularly used in traditional Chinese medicines, and bile acids are their major bioactive constituents. Some of these medicines, like cow-bezoar, are very expensive, and may be adulterated or even replaced by less expensive but similar species. Due to poor ultraviolet absorbance and structural similarity of bile acids, effective technology for species differentiation and quality control of bile-based Chinese medicines is still lacking. In this study, a rapid and reliable method was established for the simultaneous qualitative and quantitative analysis of 18 bile acids, including 6 free steroids (cholic acid, chenodeoxycholic acid, deoxycholic acid, lithocholic acid, hyodeoxycholic acid, and ursodeoxycholic acid) and their corresponding glycine conjugates and taurine conjugates, by using liquid chromatography coupled with tandem mass spectrometry (LC/MS/MS). This method was used to analyze six bile-based Chinese medicines: bear bile, cattle bile, pig bile, snake bile, cow-bezoar, and artificial cow-bezoar. Samples were separated on an Atlantis dC₁₈ column and were eluted with methanol-acetonitrile-water containing ammonium acetate. The mass spectrometer was monitored in the negative electrospray ionization mode. Total ion currents of the samples were compared for species differentiation, and the contents of bile acids were determined by monitoring specific ion pairs in a selected reaction monitoring program. All 18 bile acids showed good linearity (r² > 0.993) in a wide dynamic range of up to 2000-fold, using dehydrocholic acid as the internal standard. Different animal biles could be explicitly distinguished by their major characteristic bile acids: tauroursodeoxycholic acid and taurochenodeoxycholic acid for bear bile, glycocholic acid, cholic acid and taurocholic acid for cattle bile, glycohyodeoxycholic acid and glycochenodeoxycholic acid for pig bile, and taurocholic acid for snake bile. Furthermore, cattle bile, cow

  7. Effects of clofibric acid on the biliary excretion of benoxaprofen glucuronide and taurine conjugate in rats.

    PubMed

    Okada, K; Kanoh, H; Mohri, K

    2011-10-01

    Benoxaprofen (BOP) is a 2-methyl propionic acid derivative with anti-inflammatory activity. BOP has an asymmetric carbon, and receives chiral inversion from R to S in vivo. BOP is metabolized to glucuronide (BOP-G) and taurine conjugate (BOP-T). The configuration of BOP-G is mainly S, and that of BOP-T is R. Chiral inversion of R to S of the propionic acid moiety and amino acid conjugation of carboxyl compounds proceed via an acyl CoA intermediate. It is known that fibrates, used in hyperlipidemia, induce acyl CoA synthetase and increase CoA concentration. We administered racemic BOP (10 mg/kg body weight) to rats (CFA+) pre-administered clofibric acid (CFA, 280 mg/kg/day), and studied BOP, BOP-G, and BOP-T enantiomer concentrations in plasma and bile up to 12 h after administration. The findings were compared with those in rats (CFA-) that had not received CFA. Furthermore, we studied the amounts of BOP-G enantiomer produced by glucuronidation in vitro using microsomes pretreated with CFA. The amounts of (S)-BOP-G in CFA+ rats were 2.7-fold larger than that in CFA- rats. Although (R)-BOP-T was excreted in CFA- rats, BOP-T could not be detected in CFA+ rats. Plasma clearance values of racemic BOP and (S)-BOP in CFA+ rats were 5-fold and 6-fold larger than those in CFA- rats, respectively. (S)-BOP-G formation activities were higher than (R)-BOP-G formation activities in both CFA+and CFA- microsomes. These findings suggest that CFA increases biliary excretion of (S)-BOP-G and facilitates plasma elimination of BOP, and further suggests that CFA predominantly induces chiral inversion to S rather than metabolic reaction to (R)-BOP-T, resulting in an increase of (S)-BOP-G.

  8. Lecithin inhibits fatty acid and bile salt absorption from rat small intestine in vivo.

    PubMed

    Saunders, D R; Sillery, J

    1976-12-01

    During digestion of a fatty meal, long chain free fatty acids (FFA) and lecithin are among the lipids solubilized in intestinal contents as mixed micelles with bile salts. We hypothesized that if lecithin were not hydrolyzed, the mixed micelles would be abnormal, and absorption of FFA and bile salts would be depressed. To test this hypothesis, isolated segments of rat small intestine were infused in vivo with micellar solutions of 2 mMolar linoleic acid and 10 mMolar taurocholate to which was added 3 mMolar 1-palmitoyl, 2-oleoyl lecithin (a common lecithin in bile and food), or 1-palmitoyl lysolecithin (the hydrolytic product of lecithin). Absorption of FFA and bile salt was measured under steady state conditions using a single-pass technique. Lecithin depressed the rate of FFA absorption by 40% (p less than 0.025) in jejunal and ileal segments whereas lysolecithin was associated with normal rates of FFA absorption. Lecithin also reduced taurocholate absorption from the ileum by 30% (p less than 0.05). These data support the idea that lecithin may depress FFA and bile salt absorption from the small intestine in pancreatic insufficiency.

  9. Decreased hepatotoxic bile acid composition and altered synthesis in progressive human nonalcoholic fatty liver disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lake, April D.; Novak, Petr; Shipkova, Petia

    2013-04-15

    Bile acids (BAs) have many physiological roles and exhibit both toxic and protective influences within the liver. Alterations in the BA profile may be the result of disease induced liver injury. Nonalcoholic fatty liver disease (NAFLD) is a prevalent form of chronic liver disease characterized by the pathophysiological progression from simple steatosis to nonalcoholic steatohepatitis (NASH). The hypothesis of this study is that the ‘classical’ (neutral) and ‘alternative’ (acidic) BA synthesis pathways are altered together with hepatic BA composition during progression of human NAFLD. This study employed the use of transcriptomic and metabolomic assays to study the hepatic toxicologic BAmore » profile in progressive human NAFLD. Individual human liver samples diagnosed as normal, steatosis, and NASH were utilized in the assays. The transcriptomic analysis of 70 BA genes revealed an enrichment of downregulated BA metabolism and transcription factor/receptor genes in livers diagnosed as NASH. Increased mRNA expression of BAAT and CYP7B1 was observed in contrast to decreased CYP8B1 expression in NASH samples. The BA metabolomic profile of NASH livers exhibited an increase in taurine together with elevated levels of conjugated BA species, taurocholic acid (TCA) and taurodeoxycholic acid (TDCA). Conversely, cholic acid (CA) and glycodeoxycholic acid (GDCA) were decreased in NASH liver. These findings reveal a potential shift toward the alternative pathway of BA synthesis during NASH, mediated by increased mRNA and protein expression of CYP7B1. Overall, the transcriptomic changes of BA synthesis pathway enzymes together with altered hepatic BA composition signify an attempt by the liver to reduce hepatotoxicity during disease progression to NASH. - Highlights: ► Altered hepatic bile acid composition is observed in progressive NAFLD. ► Bile acid synthesis enzymes are transcriptionally altered in NASH livers. ► Increased levels of taurine and conjugated bile

  10. Biochemical basis for activation of virulence genes by bile salts in Vibrio parahaemolyticus.

    PubMed

    Rivera-Cancel, Giomar; Orth, Kim

    2017-07-04

    Bile salts act as a stressor to bacteria that transit the intestinal tract. Enteric pathogens have hijacked bile as an intestinal signal to regulate virulence factors. We recently demonstrated that Vibrio parahemolyticus senses bile salts via a heterodimeric receptor formed by the periplasmic domains of inner-membrane proteins VtrA and VtrC. Crystal structures of the periplasmic complex reveal that VtrA and VtrC form a β-barrel that binds bile salts in its hydrophobic interior to activate the VtrA cytoplasmic DNA-binding domain. Proteins with the same domain arrangement as VtrA and VtrC are widespread in Vibrio and related bacteria, where they are involved in regulating virulence and other unknown functions. Here we discuss our findings and review current knowledge on VtrA and VtrC homologs. We propose that signaling by these membrane-bound transcription factors can be advantageous for the regulation of membrane and secretory proteins.

  11. Biochemical basis for activation of virulence genes by bile salts in Vibrio parahaemolyticus

    PubMed Central

    2017-01-01

    ABSTRACT Bile salts act as a stressor to bacteria that transit the intestinal tract. Enteric pathogens have hijacked bile as an intestinal signal to regulate virulence factors. We recently demonstrated that Vibrio parahemolyticus senses bile salts via a heterodimeric receptor formed by the periplasmic domains of inner-membrane proteins VtrA and VtrC. Crystal structures of the periplasmic complex reveal that VtrA and VtrC form a β-barrel that binds bile salts in its hydrophobic interior to activate the VtrA cytoplasmic DNA-binding domain. Proteins with the same domain arrangement as VtrA and VtrC are widespread in Vibrio and related bacteria, where they are involved in regulating virulence and other unknown functions. Here we discuss our findings and review current knowledge on VtrA and VtrC homologs. We propose that signaling by these membrane-bound transcription factors can be advantageous for the regulation of membrane and secretory proteins. PMID:28129014

  12. Impact of bile salt adaptation of Lactobacillus delbrueckii subsp. lactis 200 on its interaction capacity with the gut.

    PubMed

    Burns, Patricia; Reinheimer, Jorge; Vinderola, Gabriel

    2011-10-01

    In a previous work, bile-salt-resistant derivatives were obtained from non-intestinal lactobacilli. The aim of this work was to investigate the impact of bile adaptation of Lactobacillus delbrueckii subsp. lactis 200 on morphology, surface properties, in vivo interaction capacity with the gut and ability to activate the gut immune response. Electron microscopy studies, growth kinetics in the presence of bovine and porcine bile, the capacity to deconjugate bile acids, hydrophobicity, autoaggregation and co-aggregation capacities were studied for the parental strain and its bile-resistant derivative in vitro. Additionally, survival in intestinal fluid, the interaction with the gut and the immunomodulating capacities were studied in mice. Bile salt adaptation conferred upon the adapted strain a higher capacity to withstand physiological concentrations of bile salts and greater survival capacity in intestinal fluid. However, bile salt exposure reduced cell hydrophobicity, autoaggregation and adhesion capacities, resulting in reduced persistence in the intestinal lumen and delayed capacity to activate the gut immune response. Insight into the effects of bile salts upon the interaction and immunomodulating capacity of lactobacilli with the gut is provided, relating in vitro and in vivo results. Copyright © 2011 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  13. Bile

    MedlinePlus

    ... the digestive tract. Bile contains: Mostly cholesterol Bile acids (also called bile salts) Bilirubin (a breakdown product or red blood cells) It also contains: Water Body salts (such as potassium and sodium) Copper and other metals

  14. Altered Bile Acid Metabolome in Patients with Nonalcoholic Steatohepatitis.

    PubMed

    Ferslew, Brian C; Xie, Guoxiang; Johnston, Curtis K; Su, Mingming; Stewart, Paul W; Jia, Wei; Brouwer, Kim L R; Barritt, A Sidney

    2015-11-01

    The prevalence of nonalcoholic fatty liver disease (NAFLD) and steatohepatitis (NASH) is increasing at an alarming rate. The role of bile acids in the development and progression of NAFLD to NASH and cirrhosis is poorly understood. This study aimed to quantify the bile acid metabolome in healthy subjects and patients with non-cirrhotic NASH under fasting conditions and after a standardized meal. Liquid chromatography tandem mass spectroscopy was used to quantify 30 serum and 16 urinary bile acids from 15 healthy volunteers and 7 patients with biopsy-confirmed NASH. Bile acid concentrations were measured at two fasting and four post-prandial time points following a high-fat meal to induce gallbladder contraction and bile acid reabsorption from the intestine. Patients with NASH had significantly higher total serum bile acid concentrations than healthy subjects under fasting conditions (2.2- to 2.4-fold increase in NASH; NASH 2595-3549 µM and healthy 1171-1458 µM) and at all post-prandial time points (1.7- to 2.2-fold increase in NASH; NASH 4444-5898 µM and healthy 2634-2829 µM). These changes were driven by increased taurine- and glycine-conjugated primary and secondary bile acids. Patients with NASH exhibited greater variability in their fasting and post-prandial bile acid profile. Results indicate that patients with NASH have higher fasting and post-prandial exposure to bile acids, including the more hydrophobic and cytotoxic secondary species. Increased bile acid exposure may be involved in liver injury and the pathogenesis of NAFLD and NASH.

  15. Bile acids: regulation of apoptosis by ursodeoxycholic acid

    PubMed Central

    Amaral, Joana D.; Viana, Ricardo J. S.; Ramalho, Rita M.; Steer, Clifford J.; Rodrigues, Cecília M. P.

    2009-01-01

    Bile acids are a group of molecular species of acidic steroids with peculiar physical-chemical and biological characteristics. At high concentrations they become toxic to mammalian cells, and their presence is pertinent in the pathogenesis of several liver diseases and colon cancer. Bile acid cytoxicity has been related to membrane damage, but also to nondetergent effects, such as oxidative stress and apoptosis. Strikingly, hydrophilic ursodeoxycholic acid (UDCA), and its taurine-conjugated form (TUDCA), show profound cytoprotective properties. Indeed, these molecules have been described as potent inhibitors of classic pathways of apoptosis, although their precise mode of action remains to be clarified. UDCA, originally used for cholesterol gallstone dissolution, is currently considered the first choice therapy for several forms of cholestatic syndromes. However, the beneficial effects of both UDCA and TUDCA have been tested in other experimental pathological conditions with deregulated levels of apoptosis, including neurological disorders, such as Alzheimer's, Parkinson's, and Huntington's diseases. Here, we review the role of bile acids in modulating the apoptosis process, emphasizing the anti-apoptotic effects of UDCA and TUDCA, as well as their potential use as novel and alternate therapeutic agents for the treatment of apoptosis-related diseases. PMID:19417220

  16. Bile acids: regulation of apoptosis by ursodeoxycholic acid.

    PubMed

    Amaral, Joana D; Viana, Ricardo J S; Ramalho, Rita M; Steer, Clifford J; Rodrigues, Cecília M P

    2009-09-01

    Bile acids are a group of molecular species of acidic steroids with peculiar physical-chemical and biological characteristics. At high concentrations they become toxic to mammalian cells, and their presence is pertinent in the pathogenesis of several liver diseases and colon cancer. Bile acid cytoxicity has been related to membrane damage, but also to nondetergent effects, such as oxidative stress and apoptosis. Strikingly, hydrophilic ursodeoxycholic acid (UDCA), and its taurine-conjugated form (TUDCA), show profound cytoprotective properties. Indeed, these molecules have been described as potent inhibitors of classic pathways of apoptosis, although their precise mode of action remains to be clarified. UDCA, originally used for cholesterol gallstone dissolution, is currently considered the first choice therapy for several forms of cholestatic syndromes. However, the beneficial effects of both UDCA and TUDCA have been tested in other experimental pathological conditions with deregulated levels of apoptosis, including neurological disorders, such as Alzheimer's, Parkinson's, and Huntington's diseases. Here, we review the role of bile acids in modulating the apoptosis process, emphasizing the anti-apoptotic effects of UDCA and TUDCA, as well as their potential use as novel and alternate therapeutic agents for the treatment of apoptosis-related diseases.

  17. Isolation, Identification and Partial Characterization of a Lactobacillus casei Strain with Bile Salt Hydrolase Activity from Pulque.

    PubMed

    González-Vázquez, R; Azaola-Espinosa, A; Mayorga-Reyes, L; Reyes-Nava, L A; Shah, N P; Rivera-Espinoza, Y

    2015-12-01

    The aim of this study was to isolate, from pulque, Lactobacillus spp. capable of survival in simulated gastrointestinal stress conditions. Nine Gram-positive rods were isolated; however, only one strain (J57) shared identity with Lactobacillus and was registered as Lactobacillus casei J57 (GenBank accession: JN182264). The other strains were identified as Bacillus spp. The most significant observation during the test of tolerance to simulated gastrointestinal conditions (acidity, gastric juice and bile salts) was that L. casei J57 showed a rapid decrease (p ≤ 0.05) in the viable population at 0 h. Bile salts were the stress condition that most affected its survival, from which deoxycholic acid and the mix of bile salts (oxgall) were the most toxic. L. casei J57 showed bile salt hydrolase activity over primary and secondary bile salts as follows: 44.91, 671.72, 45.27 and 61.57 U/mg to glycocholate, taurocholate, glycodeoxycholate and taurodeoxycholate. In contrast, the control strain (L. casei Shirota) only showed activity over tauroconjugates. These results suggest that L. casei J57 shows potential for probiotic applications.

  18. Bile salts stimulate mucin secretion by cultured dog gallbladder epithelial cells independent of their detergent effect.

    PubMed

    Klinkspoor, J H; Yoshida, T; Lee, S P

    1998-05-15

    1. Bile salts stimulate mucin secretion by the gallbladder epithelium. We have investigated whether this stimulatory effect is due to a detergent effect of bile salts. 2. The bile salts taurocholic acid (TC) and tauroursodeoxycholic acid (TUDC) and the detergents Triton X-100 (12.5-400 microM) and Tween-20 (0.1-3.2 mM) were applied to monolayers of cultured dog gallbladder epithelial cells. Mucin secretion was studied by measuring the secretion of [3H]N-acetyl-d-glucosamine-labelled glycoproteins. We also attempted to alter the fluidity of the apical membrane of the cells through extraction of cholesterol with beta-cyclodextrin (2.5-15 mM). The effect on TUDC-induced mucin secretion was studied. Cell viability was assessed by measuring lactate dehydrogenase (LDH) leakage or 51Cr release. 3. In contrast with the bile salts, the detergents were not able to cause an increase in mucin secretion without causing concomitant cell lysis. Concentrations of detergent that increased mucin release (>100 microM Triton X-100, >0.8 mM Tween-20), caused increased LDH release. Incubation with beta-cyclodextrin resulted in effective extraction of cholesterol without causing an increase in 51Cr release. However, no effect of the presumed altered membrane fluidity on TUDC (10 mM)-induced mucin secretion was observed. 4. The stimulatory effect of bile salts on mucin secretion by gallbladder epithelial cells is not affected by the fluidity of the apical membrane of the cells and also cannot be mimicked by other detergents. We conclude that the ability of bile salts to cause mucin secretion by the gallbladder epithelium is not determined by their detergent properties.

  19. Transgenic Overexpression of Abcb11 Enhances Biliary Bile Salt Outputs, But Does Not Affect Cholesterol Cholelithogenesis in Mice

    PubMed Central

    Wang, Helen H.; Lammert, Frank; Schmitz, Anne; Wang, David Q.-H.

    2010-01-01

    Background Cholesterol gallstone disease is a complex genetic trait and induced by multiple but as yet unknown genes. A major Lith gene, Lith1 was first identified on chromosome 2 in gallstone-susceptible C57L mice compared with resistant AKR mice. Abcb11, encoding the canalicular bile salt export pump in the hepatocyte, co-localizes with the Lith1 QTL region and its hepatic expression is significantly higher in C57L mice than in AKR mice. Material and methods To investigate whether Abcb11 influences cholesterol gallstone formation, we created an Abcb11 transgenic strain on the AKR genetic background and fed these mice with a lithogenic diet for 56 days. Result We excluded functionally relevant polymorphisms of the Abcb11 gene and its promoter region between C57L and AKR mice. Overexpression of Abcb11 significantly promoted biliary bile salt secretion and increased circulating bile salt pool size and bile salt-dependent bile flow rate. However, biliary cholesterol and phospholipid secretion, as well as gallbladder size and contractility were comparable in transgenic and wild-type mice. At 56 days on the lithogenic diet, cholesterol saturation indexes of gallbladder biles and gallstone prevalence rates were essentially similar in these two groups of mice. Conclusion Overexpression of Abcb11 augments biliary bile salt secretion, but does not affect cholelithogenesis in mice. PMID:20456485

  20. Synthesis of the 3-sulfates of S-acyl glutathione conjugated bile acids and their biotransformation by a rat liver cytosolic fraction.

    PubMed

    Mitamura, Kuniko; Hori, Naohiro; Mino, Shiori; Iida, Takashi; Hofmann, Alan F; Ikegawa, Shigeo

    2012-04-01

    The 3-sulfates of the S-acyl glutathione (GSH) conjugates of five natural bile acids (cholic, chenodeoxycholic, deoxycholic, ursodeoxycholic, and lithocholic) were synthesized as reference standards in order to investigate their possible formation by a rat liver cytosolic fraction. Their structures were confirmed by proton nuclear magnetic resonance, as well as by means of electrospray ionization-linear ion-trap mass spectrometry with negative-ion detection. Upon collision-induced dissociation, structurally informative product ions were observed. Using a triple-stage quadrupole instrument, selected reaction monitoring analyses by monitoring characteristic transition ions allowed the achievement of a highly sensitive and specific assay. This method was used to determine whether the 3-sulfates of the bile acid-GSH conjugates (BA-GSH) were formed when BA-GSH were incubated with a rat liver cytosolic fraction to which 3'-phosphoadenosine 5'-phosphosulfate had been added. The S-acyl linkage was rapidly hydrolyzed to form the unconjugated bile acid. A little sulfation of the GSH conjugates occurred, but greater sulfation at C-3 of the liberated bile acid occurred. Sulfation was proportional to the hydrophobicity of the unconjugated bile acid. Thus GSH conjugates of bile acids as well as their C-3 sulfates if formed in vivo are rapidly hydrolyzed by cytosolic enzymes. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  1. Allelic Variation of Bile Salt Hydrolase Genes in Lactobacillus salivarius Does Not Determine Bile Resistance Levels▿ †

    PubMed Central

    Fang, Fang; Li, Yin; Bumann, Mario; Raftis, Emma J.; Casey, Pat G.; Cooney, Jakki C.; Walsh, Martin A.; O'Toole, Paul W.

    2009-01-01

    Commensal lactobacilli frequently produce bile salt hydrolase (Bsh) enzymes whose roles in intestinal survival are unclear. Twenty-six Lactobacillus salivarius strains from different sources all harbored a bsh1 allele on their respective megaplasmids. This allele was related to the plasmid-borne bsh1 gene of the probiotic strain UCC118. A second locus (bsh2) was found in the chromosomes of two strains that had higher bile resistance levels. Four Bsh1-encoding allele groups were identified, defined by truncations or deletions involving a conserved residue. In vitro analyses showed that this allelic variation was correlated with widely varying bile deconjugation phenotypes. Despite very low activity of the UCC118 Bsh1 enzyme, a mutant lacking this protein had significantly lower bile resistance, both in vitro and during intestinal transit in mice. However, the overall bile resistance phenotype of this and other strains was independent of the bsh1 allele type. Analysis of the L. salivarius transcriptome upon exposure to bile and cholate identified a multiplicity of stress response proteins and putative efflux proteins that appear to broadly compensate for, or mask, the effects of allelic variation of bsh genes. Bsh enzymes with different bile-degrading kinetics, though apparently not the primary determinants of bile resistance in L. salivarius, may have additional biological importance because of varying effects upon bile as a signaling molecule in the host. PMID:19592587

  2. The influence of bile salts on the distribution of simvastatin in the octanol/buffer system.

    PubMed

    Đanić, Maja; Pavlović, Nebojša; Stanimirov, Bojan; Vukmirović, Saša; Nikolić, Katarina; Agbaba, Danica; Mikov, Momir

    2016-01-01

    Distribution coefficient (D) is useful parameter for evaluating drugs permeability properties across biological membranes, which are of importance for drugs bioavailability. Given that bile acids are intensively studied as drug permeation-modifying and -solubilizing agents, the aim of this study was to estimate the influence of sodium salts of cholic (CA), deoxycholic (DCA) and 12-monoketocholic acids (MKC) on distribution coefficient of simvastatin (SV) (lactone [SVL] and acid form [SVA]) which is a highly lipophilic compound with extremely low water solubility and bioavailability. LogD values of SVA and SVL with or without bile salts were measured by liquid-liquid extraction in n-octanol/buffer systems at pH 5 and 7.4. SV concentrations in aqueous phase were determined by HPLC-DAD. Chem3D Ultra program was applied for computation of physico-chemical properties of analyzed compounds and their complexes. Statistically significant decrease in both SVA and SVL logD was observed for all three studied bile salts at both selected pH. MKC exerted the most pronounced effect in the case of SVA while there were no statistically significant differences between observed bile salts for SVL. The calculated physico-chemical properties of analyzed compounds and their complexes supported experimental results. Our data indicate that the addition of bile salts into the n-octanol/buffer system decreases the values of SV distribution coefficient at both studied pH values. This may be the result of the formation of hydrophilic complexes increasing the solubility of SV that could consequently impact the pharmacokinetic parameters of SV and the final drug response in patients.

  3. Sodium-dependent bile salt transporters of the SCL10A Transporter Family: More than solute transporters

    PubMed Central

    Anwer, M. Sawkat; Stieger, Bruno

    2013-01-01

    Summary The SLC10A transporter gene family consists of seven members and substrates transported by three members (SLC10A1, SLC10A2 and SLC10A6) are Na+-dependent. SLC10A1 (sodium taurocholate cotransporting polypeptide or NTCP) and SLC10A2 (apical sodium-dependent bile salt transporter or ASBT) transport bile salts and play an important role in maintaining enterohepatic circulation of bile salts. Solutes other than bile salts are also transported by NTCP. However, ASBT has not been shown to be a transporter for non-bile salt substrates. While the transport function of NTCP can potentially be used as liver function test, interpretation of such a test may be complicated by altered expression of NTCP in diseases and presence of drugs that may inhibit NTCP function. Transport of bile salts by NTCP and ASBT is inhibited by a number of drugs and it appears that ASBT is more permissive to drug inhibition than NTCP. The clinical significance of this inhibition in drug disposition and drug-drug interaction remains to be determined. Both NCTP and ASBT undergo post-translational regulations that involve phosphorylation/dephosphorylation, translocation to and retrieval from the plasma membrane and degradation by the ubiquitin-proteasome system. These posttranslational regulations are mediated via signaling pathways involving cAMP, calcium, nitric oxide, phosphoinositide-3-kinase (PI3K), protein kinase C (PKC) and protein phosphatases. There appears to be species difference in the substrate specificity and the regulation of plasma membrane localization of human and rodent NTCP. These differences should be taken into account when extrapolating rodent data for human clinical relevance and developing novel therapies. NTCP has recently been shown to play an important role in HBV and HDV infection by serving as a receptor for entry of these viruses into hepatocytes. PMID:24196564

  4. The influence of bile salt on the chemotherapeutic response of docetaxel-loaded thermosensitive nanomicelles.

    PubMed

    Kim, Dong Wuk; Ramasamy, Thiruganesh; Choi, Ju Yeon; Kim, Jeong Hwan; Yong, Chul Soon; Kim, Jong Oh; Choi, Han-Gon

    2014-01-01

    The primary aim of this work was to investigate the potential of bile salt, sodium taurocholate (NaTC), in improving the bioavailability and anti-tumor efficacy of docetaxel (DCT) upon rectal administration. Poloxamer-based nanomicelles with thermosensitive and mucoadhesive properties were prepared using the cold method. The optimized nanomicellar formulation was evaluated in terms of physicochemical and viscoelastic parameters. Nanomicelles containing bile salt maintained sufficient gelation strength (234×10(2) mPa·s) and mucoadhesive force (17.3×10(2) dyne/cm(2)) to be retained in the upper part of the rectum. They significantly enhanced the DCT internalization across the rectal mucosa and showed a high plasma level during the first 4 hours of the study period, compared to nanomicelles with no bile salt. As a result, a slightly higher rectal bioavailability of ~33% was observed in nanomicelles containing bile salt, compared to ~28% from the latter system. The higher pharmacokinetic parameters for rectally administered DCT/P407/P188/Tween 80/NaTC (0.25%/11%/15%/10%/0.1% by weight, respectively) resulted in significant anti-tumor efficacy. However, the tumor regression rate for the NaTC group was not statistically different from that for nanomicelles without NaTC. Therefore, overall results suggest that thermosensitive nanomicelles could be a potential dosage form for improvement of the bioavailability and chemotherapeutic profile of DCT.

  5. The influence of bile salt on the chemotherapeutic response of docetaxel-loaded thermosensitive nanomicelles

    PubMed Central

    Kim, Dong Wuk; Ramasamy, Thiruganesh; Choi, Ju Yeon; Kim, Jeong Hwan; Yong, Chul Soon; Kim, Jong Oh; Choi, Han-Gon

    2014-01-01

    The primary aim of this work was to investigate the potential of bile salt, sodium taurocholate (NaTC), in improving the bioavailability and anti-tumor efficacy of docetaxel (DCT) upon rectal administration. Poloxamer-based nanomicelles with thermosensitive and mucoadhesive properties were prepared using the cold method. The optimized nanomicellar formulation was evaluated in terms of physicochemical and viscoelastic parameters. Nanomicelles containing bile salt maintained sufficient gelation strength (234×102 mPa·s) and mucoadhesive force (17.3×102 dyne/cm2) to be retained in the upper part of the rectum. They significantly enhanced the DCT internalization across the rectal mucosa and showed a high plasma level during the first 4 hours of the study period, compared to nanomicelles with no bile salt. As a result, a slightly higher rectal bioavailability of ~33% was observed in nanomicelles containing bile salt, compared to ~28% from the latter system. The higher pharmacokinetic parameters for rectally administered DCT/P407/P188/Tween 80/NaTC (0.25%/11%/15%/10%/0.1% by weight, respectively) resulted in significant anti-tumor efficacy. However, the tumor regression rate for the NaTC group was not statistically different from that for nanomicelles without NaTC. Therefore, overall results suggest that thermosensitive nanomicelles could be a potential dosage form for improvement of the bioavailability and chemotherapeutic profile of DCT. PMID:25143730

  6. Kinetic characterization of bile salt transport by human NTCP (SLC10A1).

    PubMed

    Jani, Márton; Beéry, Erzsébet; Heslop, Teresa; Tóth, Beáta; Jagota, Bhavana; Kis, Emese; Kevin Park, B; Krajcsi, Peter; Weaver, Richard J

    2018-02-01

    The transport of bile acids facilitated by NTCP is an important factor in establishing bile flow. In this study, we examine the kinetics associated with human NTCP-dependent transport of two quantitatively important bile acids comprising the human bile acid pool, chenodeoxycholic acid and glycine-chenodeoxycholate, and secondary bile salt, 3-sulfo-glycolithocholate of potential toxicological significance. The study employed human NTCP overexpressing Chinese Hamster Ovary cells and results compared with taurocholate, a prototypical bile salt commonly used in transporter studies. GCDC and 3S-GLC but not CDCA were transported by NTCP. The efficient uptake of GCDC, TCA and 3S-GLC by NTCP enabled the determination of kinetics. GCDC displayed a lower K M (0.569±0.318μM) than TCA (6.44±3.83μM) and 3S-GLC (3.78±1.17μM). The apparent CL int value for GCDC was 20-fold greater (153±53μl/mg protein/min) than the apparent CL int for TCA (6.92±4.72μl/mg protein/min) and apparent CL int for 3S-GLC (8.05±1.33μl/mg protein/min). These kinetic results provide important complementary data on the substrate selectivity and specificity of NTCP to transport bile acids. NTCP transports GCDC with greater efficiency than TCA and has the same efficacy for 3S-GLC and TCA. Copyright © 2017. Published by Elsevier Ltd.

  7. Detection of pentachlorophenol and its glucuronide and sulfate conjugates in fish bile and exposure water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stehly, G.R.; Hayton, W.L.

    1988-08-01

    The glucuronide and sulfate conjugates of pentachlorophenol (PCP) that were present in the bile and exposure water of goldfish (Carassius auratus) were used to develop methodology to quantify PCP and its metabolites. Reverse phase HPLC with radioactivity detection separated PCP and its metabolites, and was used to verify a method of quantification that used differential extraction and scintillation counting. Extractions of aqueous phase at pH 2 or 8, with butanol, ethyl acetate, or ether indicated that ether at pH 8 best separated PCP from its metabolites. The sulfate conjugate of PCP was the major metabolite produced when goldfish were exposedmore » to 125 micrograms UC-PCP/l. It was present primarily in the exposure water, but also appeared in the bile.« less

  8. Metabolism of Oxo-Bile Acids and Characterization of Recombinant 12α-Hydroxysteroid Dehydrogenases from Bile Acid 7α-Dehydroxylating Human Gut Bacteria.

    PubMed

    Doden, Heidi; Sallam, Lina A; Devendran, Saravanan; Ly, Lindsey; Doden, Greta; Daniel, Steven L; Alves, João M P; Ridlon, Jason M

    2018-05-15

    Bile acids are important cholesterol-derived nutrient signaling hormones, synthesized in the liver, that act as detergents to solubilize dietary lipids. Bile acid 7α-dehydroxylating gut bacteria generate the toxic bile acids deoxycholic acid and lithocholic acid from host bile acids. The ability of these bacteria to remove the 7-hydroxyl group is partially dependent on 7α-hydroxysteroid dehydrogenase (HSDH) activity, which reduces 7-oxo-bile acids generated by other gut bacteria. 3α-HSDH has an important enzymatic activity in the bile acid 7α-dehydroxylation pathway. 12α-HSDH activity has been reported for the low-activity bile acid 7α-dehydroxylating bacterium Clostridium leptum ; however, this activity has not been reported for high-activity bile acid 7α-dehydroxylating bacteria, such as Clostridium scindens , Clostridium hylemonae , and Clostridium hiranonis Here, we demonstrate that these strains express bile acid 12α-HSDH. The recombinant enzymes were characterized from each species and shown to preferentially reduce 12-oxolithocholic acid to deoxycholic acid, with low activity against 12-oxochenodeoxycholic acid and reduced activity when bile acids were conjugated to taurine or glycine. Phylogenetic analysis suggests that 12α-HSDH is widespread among Firmicutes , Actinobacteria in the Coriobacteriaceae family, and human gut Archaea IMPORTANCE 12α-HSDH activity has been established in the medically important bile acid 7α-dehydroxylating bacteria C. scindens , C. hiranonis , and C. hylemonae Experiments with recombinant 12α-HSDHs from these strains are consistent with culture-based experiments that show a robust preference for 12-oxolithocholic acid over 12-oxochenodeoxycholic acid. Phylogenetic analysis identified novel members of the gut microbiome encoding 12α-HSDH. Future reengineering of 12α-HSDH enzymes to preferentially oxidize cholic acid may provide a means to industrially produce the therapeutic bile acid ursodeoxycholic acid. In

  9. Biliary excretion of pravastatin and taurocholate in rats with bile salt export pump (Bsep) impairment.

    PubMed

    Cheng, Yaofeng; Freeden, Chris; Zhang, Yueping; Abraham, Pamela; Shen, Hong; Wescott, Debra; Humphreys, W Griffith; Gan, Jinping; Lai, Yurong

    2016-07-01

    The bile salt export pump (BSEP) is expressed on the canalicular membrane of hepatocytes regulating liver bile salt excretion, and impairment of BSEP function may lead to cholestasis in humans. This study explored drug biliary excretion, as well as serum chemistry, individual bile acid concentrations and liver transporter expressions, in the SAGE Bsep knockout (KO) rat model. It was observed that the Bsep protein in KO rats was decreased to 15% of that in the wild type (WT), as quantified using LC-MS/MS. While the levels of Ntcp and Mrp2 were not significantly altered, Mrp3 expression increased and Oatp1a1 decreased in KO animals. Compared with the WT rats, the KO rats had similar serum chemistry and showed normal liver transaminases. Although the total plasma bile salts and bile flow were not significantly changed in Bsep KO rats, individual bile acids in plasma and liver demonstrated variable changes, indicating the impact of Bsep KO. Following an intravenous dose of deuterium labeled taurocholic acid (D4-TCA, 2 mg/kg), the D4-TCA plasma exposure was higher and bile excretion was delayed by approximately 0.5 h in the KO rats. No differences were observed for the pravastatin plasma concentration-time profile or the biliary excretion after intravenous administration (1 mg/kg). Collectively, the results revealed that these rats have significantly lower Bsep expression, therefore affecting the biliary excretion of endogenous bile acids and Bsep substrates. However, these rats are able to maintain a relatively normal liver function through the remaining Bsep protein and via the regulation of other transporters. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  10. Inhibition of buckwheat starch digestion by the formation of starch/bile salt complexes: possibility of its occurrence in the intestine.

    PubMed

    Takahama, Umeo; Hirota, Sachiko

    2011-06-08

    During the digestion of starch in foods, starch is mixed with bile in the duodenum. Because fatty acids and some kinds of polyphenols could bind to starch, it was postulated that bile salts might also bind to starch. The purpose of this paper is to study the effects of bile and bile salts on starch/iodine complex formation and pancreatin-induced starch digestion. Bile suppressed starch/iodine complex formation and inhibited pancreatin-induced starch digestion slightly in control buckwheat starch, but did so significantly in buckwheat starch from which fatty acids and polyphenols had been extracted. Such significant suppression and inhibition by bile were also observed in a reagent soluble starch. The effects of cholate and taurocholate on the starch/iodine complex formation and the pancreatin-induced starch digestion were essentially the same as those of bile. Bile, cholate, and taurocholate suppressed amylose/iodine complex formation more significantly than amylopectin/iodine complex formation and inhibited pancreatin-induced amylose digestion more effectively than the digestion of amylopectin. It is concluded from the results that bile salts could bind to starch, especially amylose, the helical structures of which were not occupied by other molecules such as fatty acids and polyphenols, and that the binding resulted in the inhibition of starch digestion by pancreatin. The conclusion suggests that the function of bile salts can be discussed from the point of not only lipid digestion but also starch digestion.

  11. Physiological roles of taurine in heart and muscle

    PubMed Central

    2010-01-01

    Taurine (aminoethane sulfonic acid) is an ubiquitous compound, found in very high concentrations in heart and muscle. Although taurine is classified as an amino acid, it does not participate in peptide bond formation. Nonetheless, the amino group of taurine is involved in a number of important conjugation reactions as well as in the scavenging of hypochlorous acid. Because taurine is a fairly inert compound, it is an ideal modulator of basic processes, such as osmotic pressure, cation homeostasis, enzyme activity, receptor regulation, cell development and cell signalling. The present review discusses several physiological functions of taurine. First, the observation that taurine depletion leads to the development of a cardiomyopathy indicates a role for taurine in the maintenance of normal contractile function. Evidence is provided that this function of taurine is mediated by changes in the activity of key Ca2+ transporters and the modulation Ca2+ sensitivity of the myofibrils. Second, in some species, taurine is an established osmoregulator, however, in mammalian heart the osmoregulatory function of taurine has recently been questioned. Third, taurine functions as an indirect regulator of oxidative stress. Although this action of taurine has been widely discussed, its mechanism of action is unclear. A potential mechanism for the antioxidant activity of taurine is discussed. Fourth, taurine stabilizes membranes through direct interactions with phospholipids. However, its inhibition of the enzyme, phospholipid N-methyltransferase, alters the phosphatidylcholine and phosphatidylethanolamine content of membranes, which in turn affects the function of key proteins within the membrane. Finally, taurine serves as a modulator of protein kinases and phosphatases within the cardiomyocyte. The mechanism of this action has not been studied. Taurine is a chemically simple compound, but it has profound effects on cells. This has led to the suggestion that taurine is an

  12. Physiological roles of taurine in heart and muscle.

    PubMed

    Schaffer, Stephen W; Jong, Chian Ju; Ramila, K C; Azuma, Junichi

    2010-08-24

    Taurine (aminoethane sulfonic acid) is an ubiquitous compound, found in very high concentrations in heart and muscle. Although taurine is classified as an amino acid, it does not participate in peptide bond formation. Nonetheless, the amino group of taurine is involved in a number of important conjugation reactions as well as in the scavenging of hypochlorous acid. Because taurine is a fairly inert compound, it is an ideal modulator of basic processes, such as osmotic pressure, cation homeostasis, enzyme activity, receptor regulation, cell development and cell signalling. The present review discusses several physiological functions of taurine. First, the observation that taurine depletion leads to the development of a cardiomyopathy indicates a role for taurine in the maintenance of normal contractile function. Evidence is provided that this function of taurine is mediated by changes in the activity of key Ca2+ transporters and the modulation Ca2+ sensitivity of the myofibrils. Second, in some species, taurine is an established osmoregulator, however, in mammalian heart the osmoregulatory function of taurine has recently been questioned. Third, taurine functions as an indirect regulator of oxidative stress. Although this action of taurine has been widely discussed, its mechanism of action is unclear. A potential mechanism for the antioxidant activity of taurine is discussed. Fourth, taurine stabilizes membranes through direct interactions with phospholipids. However, its inhibition of the enzyme, phospholipid N-methyltransferase, alters the phosphatidylcholine and phosphatidylethanolamine content of membranes, which in turn affects the function of key proteins within the membrane. Finally, taurine serves as a modulator of protein kinases and phosphatases within the cardiomyocyte. The mechanism of this action has not been studied. Taurine is a chemically simple compound, but it has profound effects on cells. This has led to the suggestion that taurine is an

  13. Two Major Bile Acids in the Hornbills, (24R,25S)-3α,7α,24-Trihydroxy-5β-cholestan-27-oyl Taurine and Its 12α-Hydroxy Derivative.

    PubMed

    Satoh, Rika; Ogata, Hiroaki; Saito, Tetsuya; Zhou, Biao; Omura, Kaoru; Kurabuchi, Satoshi; Mitamura, Kuniko; Ikegawa, Shigeo; Hagey, Lee R; Hofmann, Alan F; Iida, Takashi

    2016-06-01

    Two major bile acids were isolated from the gallbladder bile of two hornbill species from the Bucerotidae family of the avian order Bucerotiformes Buceros bicornis (great hornbill) and Penelopides panini (Visayan tarictic hornbill). Their structures were determined to be 3α,7α,24-dihydroxy-5β-cholestan-27-oic acid and its 12α-hydroxy derivative, 3α,7α,12α,24-tetrahydroxy-5β-cholestan-27-oic acid (varanic acid, VA), both present in bile as their corresponding taurine amidates. The four diastereomers of varanic acid were synthesized and their assigned structures were confirmed by X-ray crystallographic analysis. VA and its 12-deoxy derivative were found to have a (24R,25S)-configuration. 13 additional hornbill species were also analyzed by HPLC and showed similar bile acid patterns to B. bicornis and P. panini. The previous stereochemical assignment for (24R,25S)-VA isolated from the bile of varanid lizards and the Gila monster should now be revised to the (24S,25S)-configuration.

  14. Effects of bile salts on glucosylceramide containing membranes.

    PubMed

    Halin, Josefin; Mattjus, Peter

    2011-12-01

    The glycolipid transfer protein (GLTP) is capable of transporting glycolipids from a donor membrane, through the aqueous environment, to an acceptor membrane. The GLTP mediated glycolipid transfer from sphingomyelin membranes is very slow. In contrast, the transfer is fast from membranes composed of phosphatidylcholine. The lateral glycolipid membrane organization is known to be driven by their tendency to mix non-randomly with different membrane lipids. Consequently, the properties of the membrane lipids surrounding the glycolipids play an important role in the ability of GLTP to bind and transfer its substrates. Since GLTP transfer of glycolipids is almost nonexistent from sphingomyelin membranes, we have used this exceptionality to investigate if membrane intercalators can alter the membrane packing and induce glycolipid transfer. We found that the bile salts cholate, deoxycholate, taurocholate and taurodeoxycholate, cause glucosylceramide to become transferrable by GLTP. Other compounds, such as single chain lipids, ceramide and nonionic surfactants, that have membrane-perturbing effects, did not affect the transfer capability of GLTP. We speculate that the strong hydrogen bonding network formed in the interfacial region of glycosphingolipid-sphingomyelin membranes is disrupted by the membrane partition of the bile salts causing the glycosphingolipid to become transferrable. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Effect of bile salt binding or protease inactivation on plasma cholecystokinin and gallbladder responses to bombesin.

    PubMed

    Thimister, P W; Hopman, W P; Sloots, C E; Rosenbusch, G; Tangerman, A; Willems, H L; Lamers, C B; Jansen, J B

    1994-12-01

    Bombesin-stimulated plasma cholecystokinin levels decrease after an initial increase despite continuous infusion of bombesin. The aim of this study was to determine if a feedback mechanism, mediated by bile salts or proteolytic enzymes, is responsible for this decline. Bombesin (1.0 ng.kg-1.min-1) was infused into volunteers for 180 minutes on separate occasions. Cholestyramine, colestipol, camostate, or saline were perfused intraduodenally during the second hour of the tests. Cholestyramine was also administered without infusion of bombesin. Colestipol and cholestyramine, dependent on their bile salt-binding capacity, markedly enhanced (P < 0.05) bombesin-stimulated plasma cholecystokinin from 2.1 +/- 0.5 pmol/L to 6.4 +/- 2.2 pmol/L and 12.1 +/- 3.3 pmol/L (P < 0.05 vs. colestipol), respectively, and further decreased gallbladder volume (P < 0.05) from 9.4 +/- 1.6 mL to 2.0 +/- 0.4 mL and 2.2 +/- 0.5 mL, respectively. The protease inhibitor camostate had no effect. Bile salt precipitation also enhanced plasma pancreatic polypeptide responses (P < 0.01) but did not alter gastrin responses. Plasma cholecystokinin responses to cholestyramine without bombesin infusion varied considerably, but increments were highly correlated to decreases in gallbladder volume (r = 0.91; P < 0.005). Bile salt sequestration but not protease inactivation enhances plasma cholecystokinin and gallbladder responses to bombesin infusion in humans.

  16. Response to Bile Salts in Clinical Strains of Acinetobacter baumannii Lacking the AdeABC Efflux Pump: Virulence Associated with Quorum Sensing

    PubMed Central

    López, Maria; Blasco, Lucia; Gato, Eva; Perez, Astrid; Fernández-Garcia, Laura; Martínez-Martinez, Luis; Fernández-Cuenca, Felipe; Rodríguez-Baño, Jesús; Pascual, Alvaro; Bou, German; Tomás, Maria

    2017-01-01

    Introduction: Acinetobacter baumannii is an opportunistic nosocomial pathogen associated with multiple infections. This pathogen usually colonizes (first stage of microbial infection) host tissues that are in contact with the external environment. As one of the sites of entry in human hosts is the gastrointestinal tract, the pathogen must be capable of tolerating bile salts. However, studies analyzing the molecular characteristics involved in the response to bile salts in clinical strains of A. baumannii are scarce. Material and Methods: Microbiological and transcriptional studies (arrays and RT-PCR) in the response to bile salts were carried out in isogenic (A. baumanni ΔadeB ATCC 17978 and A. baumannii ΔadeL ATCC 17978) and clinical strains from clone ST79/PFGE-HUI-1 which is characterized by lacking the AdeABC efflux pump and by overexpression the AdeFGH efflux pump. Results and Discussion: In presence of bile salts, in addition to the glutamate/aspartate transporter were found overexpressed in A. baumannii ΔadeB ATCC 17978, the virulence factors (surface motility, biofilm, and Type VI Secretion System) which are associated with activation of the Quorum Sensing system. Overexpression of these factors was confirmed in clinical strains of clone ST79/PFGE-HUI-1. Conclusions: This the first study about the adaptive response to bile salts investigating the molecular and microbiological characteristics in response to bile salts of an isogenic model of A. baumannii ATCC 17978 and clinical isolates of A. baumannii (clinical strains of ST79/PFGE-HUI-1) lacking the main RND efflux pump (AdeABC). Clinical isolates of A. baumannii lacking the AdeABC efflux pump (clone ST79/PFGE-HUI-1) displayed a new clinical profile (increased invasiveness) possibly associated with the response to stress conditions (such as the presence of bile salts). PMID:28536672

  17. Bile components and lecithin supplemented to plant based diets do not diminish diet related intestinal inflammation in Atlantic salmon.

    PubMed

    Kortner, Trond M; Penn, Michael H; Bjӧrkhem, Ingemar; Måsøval, Kjell; Krogdahl, Åshild

    2016-09-07

    The present study was undertaken to gain knowledge on the role of bile components and lecithin on development of aberrations in digestive functions which seemingly have increased in Atlantic salmon in parallel with the increased use of plant ingredients in fish feed. Post smolt Atlantic salmon were fed for 77 days one of three basal diets: a high fish meal diet (HFM), a low fishmeal diet (LFM), or a diet with high protein soybean meal (HPS). Five additional diets were made from the LFM diet by supplementing with: purified taurocholate (1.8 %), bovine bile salt (1.8 %), taurine (0.4 %), lecithin (1.5 %), or a mix of supplements (suppl mix) containing taurocholate (1.8 %), cholesterol (1.5 %) and lecithin (0.4 %). Two additional diets were made from the HPS diet by supplementing with: bovine bile salt (1.8 %) or the suppl mix. Body and intestinal weights were recorded, and blood, bile, intestinal tissues and digesta were sampled for evaluation of growth, nutrient metabolism and intestinal structure and function. In comparison with fish fed the HFM diet fish fed the LFM and HPS diets grew less and showed reduced plasma bile salt and cholesterol levels. Histological examination of the distal intestine showed signs of enteritis in both LFM and HPS diet groups, though more pronounced in the HPS diet group. The HPS diet reduced digesta dry matter and capacity of leucine amino peptidase in the distal intestine. None of the dietary supplements improved endpoints regarding fish performance, gut function or inflammation in the distal intestine. Some endpoints rather indicated negative effects. Dietary supplementation with bile components or lecithin in general did not improve endpoints regarding performance or gut health in Atlantic salmon, in clear contrast to what has been previously reported for rainbow trout. Follow-up studies are needed to clarify if lower levels of bile salts and cholesterol may give different and beneficial effects, or if other supplements

  18. MALDI Mass Spectral Imaging of Bile Acids Observed as Deprotonated Molecules and Proton-Bound Dimers from Mouse Liver Sections

    NASA Astrophysics Data System (ADS)

    Rzagalinski, Ignacy; Hainz, Nadine; Meier, Carola; Tschernig, Thomas; Volmer, Dietrich A.

    2018-02-01

    Bile acids (BAs) play two vital roles in living organisms, as they are involved in (1) the secretion of cholesterol from liver, and (2) the lipid digestion/absorption in the intestine. Abnormal bile acid synthesis or secretion can lead to severe liver disorders. Even though there is extensive literature on the mass spectrometric determination of BAs in biofluids and tissue homogenates, there are no reports on the spatial distribution in the biliary network of the liver. Here, we demonstrate the application of high mass resolution/mass accuracy matrix-assisted laser desorption/ionization (MALDI)-Fourier-transform ion cyclotron resonance (FTICR) to MS imaging (MSI) of BAs at high spatial resolutions (pixel size, 25 μm). The results show chemical heterogeneity of the mouse liver sections with a number of branching biliary and blood ducts. In addition to ion signals from deprotonation of the BA molecules, MALDI-MSI generated several further intense signals at larger m/z for the BAs. These signals were spatially co-localized with the deprotonated molecules and easily misinterpreted as additional products of BA biotransformations. In-depth analysis of accurate mass shifts and additional electrospray ionization and MALDI-FTICR experiments, however, confirmed them as proton-bound dimers. Interestingly, dimers of bile acids, but also unusual mixed dimers of different taurine-conjugated bile acids and free taurine, were identified. Since formation of these complexes will negatively influence signal intensities of the desired [M - H]- ions and significantly complicate mass spectral interpretations, two simple broadband techniques were proposed for non-selective dissociation of dimers that lead to increased signals for the deprotonated BAs. [Figure not available: see fulltext.

  19. Interactions between selected bile salts and Triton X-100 or sodium lauryl ether sulfate.

    PubMed

    Cirin, Dejan M; Poša, Mihalj M; Krstonošić, Veljko S

    2011-12-29

    In order to develop colloidal drug carriers with desired properties, it is important to determine physico-chemical characteristics of these systems. Bile salt mixed micelles are extensively studied as novel drug delivery systems. The objective of the present investigation is to develop and characterize mixed micelles of nonionic (Triton X-100) or anionic (sodium lauryl ether sulfate) surfactant having oxyethylene groups in the polar head and following bile salts: cholate, deoxycholate and 7-oxodeoxycholate. The micellization behaviour of binary anionic-nonionic and anionic-anionic surfactant mixtures was investigated by conductivity and surface tension measurements. The results of the study have been analyzed using Clint's, Rubingh's, and Motomura's theories for mixed binary systems. The negative values of the interaction parameter indicate synergism between micelle building units. It was noticed that Triton X-100 and sodium lauryl ether sulfate generate the weakest synergistic interactions with sodium deoxycholate, while 7-oxodeoxycholate creates the strongest attractive interaction with investigated co-surfactants. It was concluded that increased synergistic interactions can be attributed to the larger number of hydrophilic groups at α side of the bile salts. Additionally, 7-oxo group of 7-oxodeoxycholate enhance attractive interactions with selected co-surfactants more than 7-hydroxyl group of sodium cholate.

  20. Interactions between selected bile salts and Triton X-100 or sodium lauryl ether sulfate

    PubMed Central

    2011-01-01

    Background In order to develop colloidal drug carriers with desired properties, it is important to determine physico-chemical characteristics of these systems. Bile salt mixed micelles are extensively studied as novel drug delivery systems. The objective of the present investigation is to develop and characterize mixed micelles of nonionic (Triton X-100) or anionic (sodium lauryl ether sulfate) surfactant having oxyethylene groups in the polar head and following bile salts: cholate, deoxycholate and 7-oxodeoxycholate. Results The micellization behaviour of binary anionic-nonionic and anionic-anionic surfactant mixtures was investigated by conductivity and surface tension measurements. The results of the study have been analyzed using Clint's, Rubingh's, and Motomura's theories for mixed binary systems. The negative values of the interaction parameter indicate synergism between micelle building units. It was noticed that Triton X-100 and sodium lauryl ether sulfate generate the weakest synergistic interactions with sodium deoxycholate, while 7-oxodeoxycholate creates the strongest attractive interaction with investigated co-surfactants. Conclusion It was concluded that increased synergistic interactions can be attributed to the larger number of hydrophilic groups at α side of the bile salts. Additionally, 7-oxo group of 7-oxodeoxycholate enhance attractive interactions with selected co-surfactants more than 7-hydroxyl group of sodium cholate. PMID:22206681

  1. Bile salt-stimulated lipase of human milk: characterization of the enzyme from preterm and term milk

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freed, L.M.; Hamosh, P.; Hamosh, M.

    1986-03-01

    The bile salt-stimulated lipase (BSSL) of human milk is an important digestive enzyme in the newborn whose pancreatic function is immature. Milk from mothers delivering premature infants (preterm milk) has similar levels of BSSL activity to that of mothers of term infants (term milk). This study has determined whether the BSSL in preterm milk has the same characteristics as that in term milk. Milk samples were collected during the first 12 wk of lactation from seven mothers of infants born at 26-30 wk (very preterm, VPT), 31-37 wk (preterm, PT) and 37-42 wk (term, T) gestation. BSSL activity was measuredmore » using /sup 3/H-triolein emulsion as substrate. Time course, bile salt and enzyme concentration, pH and pH stability were studied, as well as inhibition of BSSL by eserine. The characteristics of BSSL from preterm and term milk were identical as were comparisons between colostrum and mature milk BSSL. BSSL from all milk sources had a neutral-to-alkaline pH optimum (pH 7.3-8.9), was stable at low pH for 60 min, and was 95-100% inhibited by eserine (greater than or equal to 0.6 mM). BSSL activity, regardless of enzyme source, was bile-salt dependent and was stimulated only by primary bile salts (taurocholate, glycocholate). The data indicate that the BSSL in milks of mothers delivering as early as 26 wk gestation is identical to that in term milk.« less

  2. Proteomic and transcriptional analysis of Lactobacillus johnsonii PF01 during bile salt exposure by iTRAQ shotgun proteomics and quantitative RT-PCR.

    PubMed

    Lee, Ji Yoon; Pajarillo, Edward Alain B; Kim, Min Jeong; Chae, Jong Pyo; Kang, Dae-Kyung

    2013-01-04

    Lactobacillus johnsonii PF01 has been reported to be highly resistant to bile, a key property of probiotic microorganisms. Here, we examine the nature of the bile-salt tolerance of L. johnsonii PF01. Growth inhibition and surface morphology and physiology aberrations were observed after overnight exposure to bile stress. Quantitative proteomic profiles using iTRAQ-LC-MS/MS technology identified 8307 peptides from both untreated PF01 cells and those exposed to 0.1%, 0.2%, and 0.3% bile salts. Some 215 proteins exhibited changed levels in response to bile stress; of these, levels of 94 peptides increased while those of 121 decreased. These were classified into the following categories: stress responses, cell division, transcription, translation, nucleotide metabolism, carbohydrate transport and metabolism, cell wall biosynthesis, and amino acid biosynthesis, and 16 of unidentified function. Analysis of the mRNA expression of selected genes by quantitative reverse transcriptase-PCR verified the proteomic data. Both proteomic and mRNA data provided evidence for increased phosphotransferase activity and cell wall biosynthesis. In addition, three bile salt hydrolases were significantly upregulated by bile exposure. These findings provide a basis for future evaluations of the tolerance of potential probiotic strains toward the various gastrointestinal challenges, including bile stress.

  3. Stabilization of photosystem II reaction centers: influence of bile salt detergents and low pH.

    PubMed

    Gall, B; Scheer, H

    1998-07-17

    Rapid deterioration of samples is a major obstacle in research on the isolated reaction center of photosystem II. Its stability was tested systematically using a wide range of detergents, varying pH and temperature. Stability and activity did not depend on ionic properties of detergents or on critical micellar concentration. However, both were significantly increased by bile salt detergents in the dark as well as in the light. Low pH (5.5) and low temperature further improved stability. The results suggest that in particular the zwitterionic bile salt detergent, CHAPS, in pH 5.5 buffers is a very useful detergent and even superior to dodecylmaltoside for work with photosystem II reaction centers.

  4. Bile Formation and Secretion

    PubMed Central

    Boyer, James L.

    2014-01-01

    Bile is a unique and vital aqueous secretion of the liver that is formed by the hepatocyte and modified down stream by absorptive and secretory properties of the bile duct epithelium. Approximately 5% of bile consists of organic and inorganic solutes of considerable complexity. The bile-secretory unit consists of a canalicular network which is formed by the apical membrane of adjacent hepatocytes and sealed by tight junctions. The bile canaliculi (~1 μm in diameter) conduct the flow of bile countercurrent to the direction of portal blood flow and connect with the canal of Hering and bile ducts which progressively increase in diameter and complexity prior to the entry of bile into the gallbladder, common bile duct, and intestine. Canalicular bile secretion is determined by both bile salt-dependent and independent transport systems which are localized at the apical membrane of the hepatocyte and largely consist of a series of adenosine triphosphate-binding cassette transport proteins that function as export pumps for bile salts and other organic solutes. These transporters create osmotic gradients within the bile canalicular lumen that provide the driving force for movement of fluid into the lumen via aquaporins. Species vary with respect to the relative amounts of bile salt-dependent and independent canalicular flow and cholangiocyte secretion which is highly regulated by hormones, second messengers, and signal transduction pathways. Most determinants of bile secretion are now characterized at the molecular level in animal models and in man. Genetic mutations serve to illuminate many of their functions. PMID:23897680

  5. Computational investigation of enthalpy-entropy compensation in complexation of glycoconjugated bile salts with β-cyclodextrin and analogs.

    PubMed

    Tidemand, Kasper D; Schönbeck, Christian; Holm, René; Westh, Peter; Peters, Günther H

    2014-09-18

    The inclusion complexes of glycoconjugated bile salts with β-cyclodextrin (β-CD) and 2-hydroxypropyl-β-cyclodextrins (HP-β-CD) in aqueous solution were investigated by molecular dynamics simulations to provide a molecular explanation of the experimentally observed destabilizing effect of the HP substituents. Good agreement with experimental data was found with respect to penetration depths of CDs. An increased degree of HP substitution (DS) resulted in an increased probability of blocking the cavity opening, thereby hindering the bile salt from entering CD. Further, the residence time of water molecules in the cavity increased with the DS. Release of water from the cavity resulted in a positive enthalpy change, which correlates qualitatively with the experimentally determined increase in complexation enthalpy and contributes to the enthalpy-entropy compensation. The positive change in complexation entropy with DS was not able to compensate for this unfavorable change in enthalpy induced by the HP substituents, resulting in a destabilizing effect. This was found to originate from fixation of the HP substituents and decreased free rotation of the bile salts within the CD cavities.

  6. Normal or increased bile acid uptake in isolated mucosa from patients with bile acid malabsorption.

    PubMed

    Bajor, Antal; Kilander, Anders; Fae, Anita; Gälman, Cecilia; Jonsson, Olof; Ohman, Lena; Rudling, Mats; Sjövall, Henrik; Stotzer, Per-Ove; Ung, Kjell-Arne

    2006-04-01

    Bile acid malabsorption as reflected by an abnormal Se-labelled homocholic acid-taurine (SeHCAT) test is associated with diarrhoea, but the mechanisms and cause-and-effect relations are unclear. Primarily, to determine whether there is a reduced active bile acid uptake in the terminal ileum in patients with bile acid malabsorption. Secondarily, to study the linkage between bile acid malabsorption and hepatic bile acid synthesis. Ileal biopsies were taken from patients with diarrhoea and from controls with normal bowel habits. Maximal active bile acid uptake was assessed in ileal biopsies using a previously validated technique based on uptake of C-labelled taurocholate. To monitor the hepatic synthesis, 7alpha-hydroxy-4-cholesten-3-one, a bile acid precursor, was assayed in blood. The SeHCAT-retention test was used to diagnose bile acid malabsorption. The taurocholate uptake in specimens from diarrhoea patients was higher compared with the controls [median, 7.7 (n=53) vs 6.1 micromol/g per min (n=17)] (P<0.01) but no difference was seen between those with bile acid malabsorption (n=18) versus diarrhoea with a normal SeHCAT test (n=23). The SeHCAT values and 7alpha-hydroxy-4-cholesten-3-one were inversely correlated. The data do not support bile acid malabsorption being due to a reduced active bile acid uptake capacity in the terminal ileum.

  7. Comparison of bile salt/phosphatidylcholine mixed micelles in solubilization to sterols and stability.

    PubMed

    Guo, Qin; Cai, Jie; Li, Pengyu; Xu, Dongling; Ni, Xiaomin; Wen, Hui; Liu, Dan; Lin, Suizhen; Hu, Haiyan

    2016-01-01

    Androst-3β,5α,6β-triol (Triol) is a promising neuroprotective agent, but its poor solubility restricts its development into parenteral preparations. In this study, Triol is significantly solubilized by bile salt/phosphatidylcholine mixed micelles (BS/PC-MM). All BS/PC-MM systems are tested to remarkably improve the drug solubility with various stabilities after drug loading. Among them, the sodium glycocholate (SGC)/egg phosphatidylcholine (EPC) system with 2:1 ratio in weight and the total concentration of SGC and EPC of 100 mg/mL is proved to produce stable mixed micelles with high drug loading. It is found that the stability of drug-loaded mixed micelles is quite different, which might be related to the change in critical micelle concentration (CMC) after incorporating drugs. SGC/EPC and SGC/soya phosphatidylcholine (SPC) remain transparent under accelerated conditions and manifest a decreased CMC (dropping from 0.105 to 0.056 mg/mL and from 0.067 to 0.024 mg/mL, respectively). In contrast, swine bile acid-sodium salt (SBA-Na)/PC and sodium deoxycholate (SDC)/PC are accompanied by drug precipitation and reached the maximum CMC on the first and the third days, respectively. Interestingly, the variation of CMC under accelerated testing conditions highly matches the drug-precipitating event in the primary stability experiment. In brief, the bile salt/phosphatidylcholine system exists as a potential strategy of improving sterol drug solubility. CMC variation under accelerated testing conditions might be a simple and easy method to predict the stability of drug-loaded mixed micelles.

  8. Contribution of Three Bile-Associated Loci, bsh, pva, and btlB, to Gastrointestinal Persistence and Bile Tolerance of Listeria monocytogenes

    PubMed Central

    Begley, Máire; Sleator, Roy D.; Gahan, Cormac G. M.; Hill, Colin

    2005-01-01

    Listeria monocytogenes must resist the deleterious actions of bile in order to infect and subsequently colonize the human gastrointestinal tract. The molecular mechanisms used by the bacterium to resist bile and the influence of bile on pathogenesis are as yet largely unexplored. This study describes the analysis of three genes—bsh, pva, and btlB—previously annotated as bile-associated loci in the sequenced L. monocytogenes EGDe genome (lmo2067, lmo0446, and lmo0754, respectively). Analysis of deletion mutants revealed a role for all three genes in resisting the acute toxicity of bile and bile salts, particularly glycoconjugated bile salts at low pH. Mutants were unaffected in the other stress responses examined (acid, salt, and detergents). Bile hydrolysis assays demonstrate that L. monocytogenes possesses only one bile salt hydrolase gene, namely, bsh. Transcriptional analyses and activity assays revealed that, although it is regulated by both PrfA and σB, the latter appears to play the greater role in modulating bsh expression. In addition to being incapable of bile hydrolysis, a sigB mutant was shown to be exquisitely sensitive to bile salts. Furthermore, increased expression of sigB was detected under anaerobic conditions and during murine infection. A gene previously annotated as a possible penicillin V amidase (pva) or bile salt hydrolase was shown to be required for resistance to penicillin V but not penicillin G but did not demonstrate a role in bile hydrolysis. Finally, animal (murine) studies revealed an important role for both bsh and btlB in the intestinal persistence of L. monocytogenes. PMID:15664931

  9. Na+-taurocholate cotransporting polypeptide (NTCP/SLC10A1) ortholog in the marine skate Leucoraja erinacea is not a physiological bile salt transporter

    PubMed Central

    Yu, Dongke; Zhang, Han; Lionarons, Daniel A.; Boyer, James L.

    2017-01-01

    The Na+-dependent taurocholate cotransporting polypeptide (NTCP/SLC10A1) is a hepatocyte-specific solute carrier, which plays an important role in maintaining bile salt homeostasis in mammals. The absence of a hepatic Na+-dependent bile salt transport system in marine skate and rainbow trout raises a question regarding the function of the Slc10a1 gene in these species. Here, we have characterized the Slc10a1 gene in the marine skate, Leucoraja erinacea. The transcript of skate Slc10a1 (skSlc10a1) encodes 319 amino acids and shares 46% identity to human NTCP (hNTCP) with similar topology to mammalian NTCP. SkSlc10a1 mRNA was mostly confined to the brain and testes with minimal expression in the liver. An FXR-bile salt reporter assay indicated that skSlc10a1 transported taurocholic acid (TCA) and scymnol sulfate, but not as effectively as hNTCP. An [3H]TCA uptake assay revealed that skSlc10a1 functioned as a Na+-dependent transporter, but with low affinity for TCA (Km = 92.4 µM) and scymnol sulfate (Ki = 31 µM), compared with hNTCP (TCA, Km = 5.4 µM; Scymnol sulfate, Ki = 3.5 µM). In contrast, the bile salt concentration in skate plasma was 2 µM, similar to levels seen in mammals. Interestingly, skSlc10a1 demonstrated transport activity for the neurosteroids dehydroepiandrosterone sulfate and estrone-3-sulfate at physiological concentration, similar to hNTCP. Together, our findings indicate that skSlc10a1 is not a physiological bile salt transporter, providing a molecular explanation for the absence of a hepatic Na+-dependent bile salt uptake system in skate. We speculate that Slc10a1 is a neurosteroid transporter in skate that gained its substrate specificity for bile salts later in vertebrate evolution. PMID:28077388

  10. Na+-taurocholate cotransporting polypeptide (NTCP/SLC10A1) ortholog in the marine skate Leucoraja erinacea is not a physiological bile salt transporter.

    PubMed

    Yu, Dongke; Zhang, Han; Lionarons, Daniel A; Boyer, James L; Cai, Shi-Ying

    2017-04-01

    The Na + -dependent taurocholate cotransporting polypeptide (NTCP/SLC10A1) is a hepatocyte-specific solute carrier, which plays an important role in maintaining bile salt homeostasis in mammals. The absence of a hepatic Na + -dependent bile salt transport system in marine skate and rainbow trout raises a question regarding the function of the Slc10a1 gene in these species. Here, we have characterized the Slc10a1 gene in the marine skate, Leucoraja erinacea The transcript of skate Slc10a1 (skSlc10a1) encodes 319 amino acids and shares 46% identity to human NTCP (hNTCP) with similar topology to mammalian NTCP. SkSlc10a1 mRNA was mostly confined to the brain and testes with minimal expression in the liver. An FXR-bile salt reporter assay indicated that skSlc10a1 transported taurocholic acid (TCA) and scymnol sulfate, but not as effectively as hNTCP. An [ 3 H]TCA uptake assay revealed that skSlc10a1 functioned as a Na + -dependent transporter, but with low affinity for TCA ( K m = 92.4 µM) and scymnol sulfate ( K i = 31 µM), compared with hNTCP (TCA, K m = 5.4 µM; Scymnol sulfate, K i = 3.5 µM). In contrast, the bile salt concentration in skate plasma was 2 µM, similar to levels seen in mammals. Interestingly, skSlc10a1 demonstrated transport activity for the neurosteroids dehydroepiandrosterone sulfate and estrone-3-sulfate at physiological concentration, similar to hNTCP. Together, our findings indicate that skSlc10a1 is not a physiological bile salt transporter, providing a molecular explanation for the absence of a hepatic Na + -dependent bile salt uptake system in skate. We speculate that Slc10a1 is a neurosteroid transporter in skate that gained its substrate specificity for bile salts later in vertebrate evolution. Copyright © 2017 the American Physiological Society.

  11. Intestinal absorption of the bile acid analogue 75Se-homocholic acid-taurine is increased in primary biliary cirrhosis, and reverts to normal during ursodeoxycholic acid administration

    PubMed Central

    Lanzini, A; De Tavonatti, M G; Panarotto, B; Scalia, S; Mora, A; Benini, F; Baisini, O; Lanzarotto, F

    2003-01-01

    Background: Whether ileal absorption of bile acid is up or downregulated in chronic cholestasis is still debated, and most evidence has come from animal studies. Aims: To compare ileal bile acid absorption in patients with primary biliary cirrhosis (PBC) and in healthy control subjects, and to assess the effect of ursodeoxycholic acid (UDCA). Patients: We studied 14 PBC patients before and during (n=11) UDCA administration, 14 healthy control subjects, and 14 Crohn’s disease patients (as disease controls). Methods: We used cholescintigraphy to measure retention in the enterohepatic circulation over five successive days of the bile acid analogue 75Se-homocholic acid-taurine (75SeHCAT) as an index of ileal bile acid absorption. Results were expressed as 75SeHCAT fractional turnover rate (FTR) and t½12. Results: 75SeHCAT FTR was 0.19 (0.11)/day, 0.34 (0.11)/day (p<0.001), and 0.83 (0.32)/day in PBC patients, healthy controls (p<0.0001), and Crohn’s patients (p<0.001), respectively, which increased to 0.36 (0.16)/day in PBC patients during UDCA treatment (p<0.005). 75SeHCAT t½12 was 4.8 (2.1) days in PBC patients, 2.2 (0.5) days (p<0.001) in healthy controls, and 1.0 (0.5) days (p<0.001) in Crohn’s disease patients. 75SeHCAT t½12 decreased to 2.2 (0.93) days (p< 0.001) in PBC patients during UDCA treatment. Conclusions: Our results support the concept that ileal bile acid absorption is upregulated in PBC patients, and that this effect may contribute towards damaging the cholestatic liver. This upregulation of bile acid absorption is abolished by UDCA. PMID:12912872

  12. Intestinal absorption of the bile acid analogue 75Se-homocholic acid-taurine is increased in primary biliary cirrhosis, and reverts to normal during ursodeoxycholic acid administration.

    PubMed

    Lanzini, A; De Tavonatti, M G; Panarotto, B; Scalia, S; Mora, A; Benini, F; Baisini, O; Lanzarotto, F

    2003-09-01

    Whether ileal absorption of bile acid is up or downregulated in chronic cholestasis is still debated, and most evidence has come from animal studies. To compare ileal bile acid absorption in patients with primary biliary cirrhosis (PBC) and in healthy control subjects, and to assess the effect of ursodeoxycholic acid (UDCA). We studied 14 PBC patients before and during (n=11) UDCA administration, 14 healthy control subjects, and 14 Crohn's disease patients (as disease controls). We used cholescintigraphy to measure retention in the enterohepatic circulation over five successive days of the bile acid analogue (75)Se-homocholic acid-taurine ((75)SeHCAT) as an index of ileal bile acid absorption. Results were expressed as (75)SeHCAT fractional turnover rate (FTR) and t(1/2)12. (75)SeHCAT FTR was 0.19 (0.11)/day, 0.34 (0.11)/day (p<0.001), and 0.83 (0.32)/day in PBC patients, healthy controls (p<0.0001), and Crohn's patients (p<0.001), respectively, which increased to 0.36 (0.16)/day in PBC patients during UDCA treatment (p<0.005). (75)SeHCAT t(1/2)12 was 4.8 (2.1) days in PBC patients, 2.2 (0.5) days (p<0.001) in healthy controls, and 1.0 (0.5) days (p<0.001) in Crohn's disease patients. (75)SeHCAT t(1/2)12 decreased to 2.2 (0.93) days (p< 0.001) in PBC patients during UDCA treatment. Our results support the concept that ileal bile acid absorption is upregulated in PBC patients, and that this effect may contribute towards damaging the cholestatic liver. This upregulation of bile acid absorption is abolished by UDCA.

  13. Potential mechanism of corpus-predominant gastritis after PPI therapy in Helicobacter pylori-positive patients with GERD.

    PubMed

    Mukaisho, Ken-ichi; Hagiwara, Tadashi; Nakayama, Takahisa; Hattori, Takanori; Sugihara, Hiroyuki

    2014-09-14

    The long-term use of proton pump inhibitors (PPIs) exacerbates corpus atrophic gastritis in patients with Helicobacter pylori (H. pylori) infection. To identify a potential mechanism for this change, we discuss interactions between pH, bile acids, and H. pylori. Duodenogastric reflux, which includes bile, occurs in healthy individuals, and bile reflux is increased in patients with gastroesophageal reflux disease (GERD). Diluted human plasma and bile acids have been found to be significant chemoattractants and chemorepellents, respectively, for the bacillus H. pylori. Although only taurine conjugates, with a pKa of 1.8-1.9, are soluble in an acidic environment, glycine conjugates, with a pKa of 4.3-5.2, as well as taurine-conjugated bile acids are soluble in the presence of PPI therapy. Thus, the soluble bile acid concentrations in the gastric contents of patients with GERD after continuous PPI therapy are considerably higher than that in those with intact acid production. In the distal stomach, the high concentration of soluble bile acids is likely to act as a bactericide or chemorepellent for H. pylori. In contrast, the mucous layer in the proximal stomach has an optimal bile concentration that forms chemotactic gradients with plasma components required to direct H. pylori to the epithelial surface. H. pylori may then colonize in the stomach body rather than in the pyloric antrum, which may explain the occurrence of corpus-predominant gastritis after PPI therapy in H. pylori-positive patients with GERD.

  14. [Differential concentrations of conjugated bile acids in sera of patients with polypoid lesions of gallbladder].

    PubMed

    Huang, Peng; Zhao, Meifen; Meng, Fanbin; Sun, Tao; He, Chunxu; Chen, Jingyu; Zhang, Jiali; Huang, Jiapeng; Ge, Chunlin

    2014-11-04

    To explore the concentration differences of eight conjugated bile acids between patients of cholesterol polyps and adenomatous polyps and determine the differential diagnosis markers for polypoid lesions of gallbladder (PLG). During the period of March 2013 to November, 18 cholesterol polyps patients, 9 adenomatous polyps ones and 20 simple gallstone disease ones were enrolled. High performance liquid chromatography with ultraviolet detection was used to test 8 conjugated bile acids in sera. A total of 8 conjugated bile acids were completely dissociated within 10 minutes and the assay was liner in the range of 3.91 to 500.00 mg/L. The correlation coefficients for linear regression were from 0.995 to 0.999 and the detection limits ranged from 3.91 to 7.81 mg/L. The serum level of glycocholic acid (GCA) in adenomatous polyps group (3.48 ± 1.66) mg/L was significantly higher than that in cholesterol polyps group ((2.16 ± 0.71) mg/L, q = 5.182, P = 0.001) and control group ((2.15 ± 0.45) mg/L, q = 5.313, P = 0.001). The serum level of glycochenodeoxycholic acid (GCDCA) in adenomatous polyps group (12.67 ± 1.74) mg/L was significantly higher than that in cholesterol polyps group ((10.53 ± 3.04) mg/L, q = 3.253, P = 0.026) and control group ((10.72 ± 1.58) mg/L, q = 3.015, P = 0.038). The serum level of taurochenodeoxycholic acid (TCDCA) in adenomatous polyps group ((6.79 ± 2.90) mg/L) was significantly higher than that in cholesterol polyps group ((4.47 ± 2.35) mg/L, q = 3.412, P = 0.020) and control group ((4.72 ± 2.11) mg/L q = 3.091, P = 0.034). The serum levels of GCA, GCDCA and TCDCA in adenomatous polyps patients are higher than those in cholesterol polyps counterparts. And these markers may aid the differential diagnosis of PLG.

  15. Viral Entry of Hepatitis B and D Viruses and Bile Salts Transportation Share Common Molecular Determinants on Sodium Taurocholate Cotransporting Polypeptide

    PubMed Central

    Yan, Huan; Peng, Bo; Liu, Yang; Xu, Guangwei; He, Wenhui; Ren, Bijie; Jing, Zhiyi; Sui, Jianhua

    2014-01-01

    ABSTRACT The liver bile acids transporter sodium taurocholate cotransporting polypeptide (NTCP) is responsible for the majority of sodium-dependent bile salts uptake by hepatocytes. NTCP also functions as a cellular receptor for viral entry of hepatitis B virus (HBV) and hepatitis D virus (HDV) through a specific interaction between NTCP and the pre-S1 domain of HBV large envelope protein. However, it remains unknown if these two functions of NTCP are independent or if they interfere with each other. Here we show that binding of the pre-S1 domain to human NTCP blocks taurocholate uptake by the receptor; conversely, some bile acid substrates of NTCP inhibit HBV and HDV entry. Mutations of NTCP residues critical for bile salts binding severely impair viral infection by HDV and HBV; to a lesser extent, the residues important for sodium binding also inhibit viral infection. The mutation S267F, corresponding to a single nucleotide polymorphism (SNP) found in about 9% of the East Asian population, renders NTCP without either taurocholate transporting activity or the ability to support HBV or HDV infection in cell culture. These results demonstrate that molecular determinants critical for HBV and HDV entry overlap with that for bile salts uptake by NTCP, indicating that viral infection may interfere with the normal function of NTCP, and bile acids and their derivatives hold the potential for further development into antiviral drugs. IMPORTANCE Human hepatitis B virus (HBV) and its satellite virus, hepatitis D virus (HDV), are important human pathogens. Available therapeutics against HBV are limited, and there is no drug that is clinically available for HDV infection. A liver bile acids transporter (sodium taurocholate cotransporting polypeptide [NTCP]) critical for maintaining homeostasis of bile acids serves as a functional receptor for HBV and HDV. We report here that the NTCP-binding lipopeptide that originates from the first 47 amino acids of the pre-S1 domain of the

  16. Role of bile acids and bile acid binding agents in patients with collagenous colitis.

    PubMed

    Ung, K A; Gillberg, R; Kilander, A; Abrahamsson, H

    2000-02-01

    In a retrospective study bile acid malabsorption was observed in patients with collagenous colitis. To study the occurrence of bile acid malabsorption and the effect of bile acid binders prospectively in patients with chronic diarrhoea and collagenous colitis. Over 36 months all patients referred because of chronic diarrhoea completed a diagnostic programme, including gastroscopy with duodenal biopsy, colonoscopy with biopsies, and the (75)Se-homocholic acid taurine ((75)SeHCAT) test for bile acid malabsorption. Treatment with a bile acid binder (cholestyramine in 24, colestipol in three) was given, irrespective of the results of the (75)SeHCAT test. Collagenous colitis was found in 28 patients (six men, 22 women), 27 of whom had persistent symptoms and completed the programme. Four patients had had a previous cholecystectomy or a distal gastric resection. The (75)SeHCAT test was abnormal in 12/27 (44%) of the collagenous colitis patients with (75)SeHCAT values 0.5-9.7%, and normal in 15 patients (56%). Bile acid binding treatment was followed by a rapid, marked, or complete improvement in 21/27 (78%) of the collagenous colitis patients. Rapid improvement occurred in 11/12 (92%) of the patients with bile acid malabsorption compared with 10/15 (67%) of the patients with normal (75)SeHCAT tests. Bile acid malabsorption is common in patients with collagenous colitis and is probably an important pathophysiological factor. Because of a high response rate without serious side effects, bile acid binding treatment should be considered for collagenous colitis, particularly patients with bile acid malabsorption.

  17. Bile salt-stimulated lipase: an animal model for human lactation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamosh, M.; Freed, L.M.; York, C.M.

    1986-03-01

    To date, bile salt-stimulated lipase (BSSL), an important digestive enzyme for the newborn, has only been described in the milk of primates - human and gorilla. The authors report the presence of BSSL in milks of dog and cat. Serial collections from two dogs (day 1-49) and cats (day 5-57) were analyzed for BSSL activity using a /sup 3/H-triolein emulsion as substrate. Comparable analyses of pooled, term human milk were made for comparison. BSSL activity in individual dog milks (x = 32.0; range: 4.8-107.4 U/ml) was similar, while that in cat milk (x = 6.6; range: 2.2-16.9 U/ml) was lowermore » than in human milk (x = 37.0; range: 10-80 U/ml; n = 35). Longitudinal patterns for BSSL differed depending upon the enzyme source. Dog, cat and human milk BSSL all showed a neutral to alkaline pH optimum (pH 7.0-8.4), stability at low pH, and 95-100% inhibition (at concentrations of 0.6 mM) by NaCl and eserine. BSSL activity from all sources had an obligate requirement for primary bile salts. These data are the first to show BSSL activity in milk from mammals other than human and gorilla. Presence of BSSL in nonprimate milk will permit the careful study of BSSL biology in the mammary gland as well as its role in neonatal fat digestion.« less

  18. Ca2+-Dependent Cytoprotective Effects of Ursodeoxycholic and Tauroursodeoxycholic Acid on the Biliary Epithelium in a Rat Model of Cholestasis and Loss of Bile Ducts

    PubMed Central

    Marzioni, Marco; Francis, Heather; Benedetti, Antonio; Ueno, Yoshiyuki; Fava, Giammarco; Venter, Juliet; Reichenbach, Ramona; Mancino, Maria Grazia; Summers, Ryun; Alpini, Gianfranco; Glaser, Shannon

    2006-01-01

    Chronic cholestatic liver diseases are characterized by impaired balance between proliferation and death of cholangiocytes, as well as vanishing of bile ducts and liver failure. Ursodeoxycholic acid (UDCA) is a bile acid widely used for the therapy of cholangiopathies. However, little is known of the cytoprotective effects of UDCA on cholangiocytes. Therefore, UDCA and its taurine conjugate tauroursodeoxycholic acid (TUDCA) were administered in vivo to rats simultaneously subjected to bile duct ligation and vagotomy, a model that induces cholestasis and loss of bile ducts by apoptosis of cholangiocytes. Because these two bile acids act through Ca2+ signaling, animals were also treated with BAPTA/AM (an intracellular Ca2+ chelator) or Gö6976 (a Ca2+-dependent protein kinase C-α inhibitor). The administration of UDCA or TUDCA prevented the induction of apoptosis and the loss of proliferative and functional responses observed in the bile duct ligation-vagotomized rats. These effects were neutralized by the simultaneous administration of BAPTA/AM or Gö6976. UDCA and TUDCA enhanced intracellular Ca2+ and IP3 levels, together with increased phosphorylation of protein kinase C-α. Parallel changes were observed regarding the activation of the MAPK and PI3K pathways, changes that were abolished by addition of BAPTA/AM or Gö6976. These studies provide information that may improve the response of cholangiopathies to medical therapy. PMID:16436655

  19. Taurine and taurine-deficiency in the perinatal period.

    PubMed

    Aerts, Leona; Van Assche, Frans André

    2002-01-01

    Taurine, a non-protein sulfur amino-acid, is the most abundant free amino-acid in the body and plays an important role in several essential biological processes. Apart from its role in cholesterol degradation, it acts as neurotransmitter, and has a function as osmoregulator and antioxidant in most body tissues. During pregnancy, taurine accumulates in the maternal tissues, to be released in the perinatal period to the fetus via the placenta and to the newborn via the maternal milk. It is accumulated especially in the fetal and neonatal brain. Low maternal taurine levels result in low fetal taurine levels. Taurine-deficiency in the mother leads to growth retardation of the offspring, and to impaired perinatal development of the central nervous system and of the endocrine pancreas. The adult offspring of taurine-deficient mothers display signs of impaired neurological function, impaired glucose tolerance and vascular dysfunction; they may develop gestational diabetes and transmit the effects to the next generation. This transgeneration effect of taurine-deficiency in the perinatal period fits into the concept of fetal origin of adult disease.

  20. Metabolite profiling of carbamazepine and ibuprofen in Solea senegalensis bile using high-resolution mass spectrometry.

    PubMed

    Aceña, Jaume; Pérez, Sandra; Eichhorn, Peter; Solé, Montserrat; Barceló, Damià

    2017-09-01

    The widespread occurrence of pharmaceuticals in the aquatic environment has raised concerns about potential adverse effects on exposed wildlife. Very little is currently known on exposure levels and clearance mechanisms of drugs in marine fish. Within this context, our research was focused on the identification of main metabolic reactions, generated metabolites, and caused effects after exposure of fish to carbamazepine (CBZ) and ibuprofen (IBU). To this end, juveniles of Solea senegalensis acclimated to two temperature regimes of 15 and 20 °C for 60 days received a single intraperitoneal dose of these drugs. A control group was administered the vehicle (sunflower oil). Bile samples were analyzed by ultra-high-performance liquid chromatography-high-resolution mass spectrometry on a Q Exactive (Orbitrap) system, allowing to propose plausible identities for 11 metabolites of CBZ and 13 metabolites of IBU in fish bile. In case of CBZ metabolites originated from aromatic and benzylic hydroxylation, epoxidation, and ensuing O-glucuronidation, O-methylation of a catechol-like metabolite was also postulated. Ibuprofen, in turn, formed multiple hydroxyl metabolites, O-glucuronides, and (hydroxyl)-acyl glucuronides, in addition to several taurine conjugates. Enzymatic responses after drug exposures revealed a water temperature-dependent induction of microsomal carboxylesterases. The metabolite profiling in fish bile provides an important tool for pharmaceutical exposure assessment. Graphical abstract Studies of metabolism of carbamazepine and ibuprofen in fish.

  1. IR spectroscopy analysis of pancreatic lipase-related protein 2 interaction with phospholipids: 2. Discriminative recognition of various micellar systems and characterization of PLRP2-DPPC-bile salt complexes.

    PubMed

    Mateos-Diaz, Eduardo; Sutto-Ortiz, Priscila; Sahaka, Moulay; Byrne, Deborah; Gaussier, Hélène; Carrière, Frédéric

    2018-03-01

    The interaction of pancreatic lipase-related protein 2 (PLRP2) with various micelles containing phospholipids was investigated using pHstat enzyme activity measurements, differential light scattering, size exclusion chromatography (SEC) and transmission IR spectroscopy. Various micelles of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and lysophosphatidylcholine were prepared with either bile salts (sodium taurodeoxycholate or glycodeoxycholate) or Triton X-100, which are substrate-dispersing agents commonly used for measuring phospholipase activities. PLRP2 displayed a high activity on all phospholipid-bile salt micelles, but was totally inactive on phospholipid-Triton X-100 micelles. These findings clearly differentiate PLRP2 from secreted pancreatic phospholipase A2 which is highly active on both types of micelles. Using an inactive variant of PLRP2, SEC experiments allowed identifying two populations of PLRP2-DPPC-bile salt complexes corresponding to a high molecular weight 1:1 PLRP2-micelle association and to a low molecular weight association of PLRP2 with few monomers of DPPC/bile salts. IR spectroscopy analysis showed how DPPC-bile salt micelles differ from DPPC-Triton X-100 micelles by a higher fluidity of acyl chains and higher hydration/H-bonding of the interfacial carbonyl region. The presence of bile salts allowed observing changes in the IR spectrum of DPPC upon addition of PLRP2 (higher rigidity of acyl chains, dehydration of the interfacial carbonyl region), while no change was observed with Triton X-100. The differences between these surfactants and their impact on substrate recognition by PLRP2 are discussed, as well as the mechanism by which high and low molecular weight PLRP2-DPPC-bile salt complexes may be involved in the overall process of DPPC hydrolysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Role of bile acids and bile acid binding agents in patients with collagenous colitis

    PubMed Central

    Ung, K; Gillberg, R; Kilander, A; Abrahamsson, H

    2000-01-01

    BACKGROUND—In a retrospective study bile acid malabsorption was observed in patients with collagenous colitis.
AIMS—To study the occurrence of bile acid malabsorption and the effect of bile acid binders prospectively in patients with chronic diarrhoea and collagenous colitis.
METHODS—Over 36 months all patients referred because of chronic diarrhoea completed a diagnostic programme, including gastroscopy with duodenal biopsy, colonoscopy with biopsies, and the 75Se-homocholic acid taurine (75SeHCAT) test for bile acid malabsorption. Treatment with a bile acid binder (cholestyramine in 24, colestipol in three) was given, irrespective of the results of the 75SeHCAT test.
RESULTS—Collagenous colitis was found in 28 patients (six men, 22 women), 27 of whom had persistent symptoms and completed the programme. Four patients had had a previous cholecystectomy or a distal gastric resection. The 75SeHCAT test was abnormal in 12/27 (44%) of the collagenous colitis patients with 75SeHCAT values 0.5-9.7%, and normal in 15 patients (56%). Bile acid binding treatment was followed by a rapid, marked, or complete improvement in 21/27 (78%) of the collagenous colitis patients. Rapid improvement occurred in 11/12 (92%) of the patients with bile acid malabsorption compared with 10/15 (67%) of the patients with normal 75SeHCAT tests.
CONCLUSION—Bile acid malabsorption is common in patients with collagenous colitis and is probably an important pathophysiological factor. Because of a high response rate without serious side effects, bile acid binding treatment should be considered for collagenous colitis, particularly patients with bile acid malabsorption.


Keywords: bile acid malabsorption; collagenous colitis; diarrhoea; cholestyramine; colestipol PMID:10644309

  3. Bile salts and alkaline pH reciprocally modulate the interaction between the periplasmic domains of Vibrio cholerae ToxR and ToxS.

    PubMed

    Midgett, Charles R; Almagro-Moreno, Salvador; Pellegrini, Maria; Taylor, Ronald K; Skorupski, Karen; Kull, F Jon

    2017-07-01

    ToxR is a transmembrane transcription factor that is essential for virulence gene expression and human colonization by Vibrio cholerae. ToxR requires its operon partner ToxS, a periplasmic integral membrane protein, for full activity. These two proteins are thought to interact through their respective periplasmic domains, ToxRp and ToxSp. In addition, ToxR is thought to be responsive to various environmental cues, such as bile salts and alkaline pH, but how these factors influence ToxR is not yet understood. Using NMR and reciprocal pull down assays, we present the first direct evidence that ToxR and ToxS physically interact. Furthermore, using NMR and DSF, it was shown that the bile salts cholate and chenodeoxycholate interact with purified ToxRp and destabilize it. Surprisingly, bile salt destabilization of ToxRp enhanced the interaction between ToxRp and ToxSp. In contrast, alkaline pH, which is one of the factors that leads to ToxR proteolysis, decreased the interaction between ToxRp and ToxSp. Taken together, these data suggest a model whereby bile salts or other detergents destabilize ToxR, increasing its interaction with ToxS to promote full ToxR activity. Subsequently, as V. cholerae alkalinizes its environment in late stationary phase, the interaction between the two proteins decreases, allowing ToxR proteolysis to proceed. © 2017 John Wiley & Sons Ltd.

  4. Niosomal carriers enhance oral bioavailability of carvedilol: effects of bile salt-enriched vesicles and carrier surface charge.

    PubMed

    Arzani, Gelareh; Haeri, Azadeh; Daeihamed, Marjan; Bakhtiari-Kaboutaraki, Hamid; Dadashzadeh, Simin

    2015-01-01

    Carvedilol (CRV) is an antihypertensive drug with both alpha and beta receptor blocking activity used to preclude angina and cardiac arrhythmias. To overcome the low, variable oral bioavailability of CRV, niosomal formulations were prepared and characterized: plain niosomes (without bile salts), bile salt-enriched niosomes (bilosomes containing various percentages of sodium cholate or sodium taurocholate), and charged niosomes (negative, containing dicetyl phosphate and positive, containing hexadecyl trimethyl ammonium bromide). All formulations were characterized in terms of encapsulation efficiency, size, zeta potential, release profile, stability, and morphology. Various formulations were administered orally to ten groups of Wistar rats (n=6 per group). The plasma levels of CRV were measured by a validated high-performance liquid chromatography (HPLC) method and pharmacokinetic properties of different formulations were characterized. Contribution of lymphatic transport to the oral bioavailability of niosomes was also investigated using a chylomicron flow-blocking approach. Of the bile salt-enriched vesicles examined, bilosomes containing 20% sodium cholate (F2) and 30% sodium taurocholate (F5) appeared to give the greatest enhancement of intestinal absorption. The relative bioavailability of F2 and F5 formulations to the suspension was estimated to be 1.84 and 1.64, respectively. With regard to charged niosomes, the peak plasma concentrations (Cmax) of CRV for positively (F7) and negatively charged formulations (F10) were approximately 2.3- and 1.7-fold higher than after a suspension. Bioavailability studies also revealed a significant increase in extent of drug absorption from charged vesicles. Tissue histology revealed no signs of inflammation or damage. The study proved that the type and concentration of bile salts as well as carrier surface charge had great influences on oral bioavailability of niosomes. Blocking the lymphatic absorption pathway

  5. A new mechanism for bile acid diarrhea: defective feedback inhibition of bile acid biosynthesis.

    PubMed

    Walters, Julian R F; Tasleem, Ali M; Omer, Omer S; Brydon, W Gordon; Dew, Tracy; le Roux, Carel W

    2009-11-01

    Primary (idiopathic) bile acid malabsorption (BAM) is a common, yet underrecognized, chronic diarrheal syndrome. Diagnosis is difficult without selenium homocholic acid taurine (SeHCAT) testing. The diarrhea results from excess colonic bile acids, but the pathogenesis is unclear. Fibroblast growth factor 19 (FGF19), produced in the ileum in response to bile acid absorption, regulates hepatic bile acid synthesis. We proposed that FGF19 is involved in bile acid diarrhea and measured its levels in patients with BAM. Blood was collected from fasting patients with chronic diarrhea; BAM was diagnosed by SeHCAT. Serum FGF19 was measured by enzyme-linked immunosorbent assay. Serum 7alpha-hydroxy-4-cholesten-3-one (C4) was determined using high-performance liquid chromatography, to quantify bile acid synthesis. Data were compared between patients and subjects without diarrhea (controls). Samples were taken repeatedly after meals from several subjects. The median C4 level was significantly higher in patients with primary BAM than in controls (51 vs 18 ng/mL; P < .0001). The median FGF19 level was significantly lower in patients with BAM (120 vs 231 pg/mL; P < .0005). There was a significant inverse relationship between FGF19 and C4 levels (P < .0004). Low levels of FGF19 were also found in patients with postcholecystectomy and secondary bile acid diarrhea. Abnormal patterns of FGF19 levels were observed throughout the day in some patients with primary BAM. Patients with BAM have reduced serum FGF19 which may be useful in diagnosis. We propose a mechanism whereby impaired FGF19 feedback inhibition causes excessive bile acid synthesis that exceeds the normal capacity for ileal reabsorption, producing bile acid diarrhea.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jazrawi, R.P.; Ferraris, R.; Bridges, C.

    The apparent fractional turnover rate of the gamma-labeled bile acid analogue 75-selenohomocholic acid-taurine (75-SeHCAT) was assessed from decline in radioactivity over the gallbladder area on 4 successive days using a gamma-camera, and was compared in the same subjects with the fractional turnover rate of the corresponding natural bile acid, cholic acid-taurine, labeled with 14C ((14C)CAT) using the classical Lindstedt technique. Very similar results were obtained in 5 healthy individuals (coefficient of variation 4.8%, medians 0.35 and 0.34, respectively). By contrast, the fractional deconjugation rate assessed from zonal scanning of glycine- and taurine-conjugated bile acids on thin-layer chromatography was much lessmore » for 75-SeHCAT than for (14C)CAT (0.02 and 0.13, respectively; p less than 0.05). The fractional rate for deconjugation plus dehydroxylation was also determined by zonal scanning, and gave lower values for 75-SeHCAT than for (14C)CAT (0.02 and 0.12, respectively; p less than 0.05). There was a striking similarity between the fractional rate for deconjugation alone and that for deconjugation plus dehydroxylation for both bile acids in individual samples (r = 0.999, p less than 0.001), suggesting that these two processes might occur simultaneously and probably involve the same bacteria. We conclude that our scintiscanning technique provides an accurate, noninvasive method of measuring fractional turnover rate of a bile acid in humans, and that the finding that 75SeHCAT remains conjugated with taurine during enterohepatic recycling means that absorption should be specific for the ileal active transport site, thus rendering it an ideal substance for assessing ileal function.« less

  7. Recent advances in the understanding of bile acid malabsorption.

    PubMed

    Pattni, Sanjeev; Walters, Julian R F

    2009-01-01

    Bile acid malabsorption (BAM) is a syndrome of chronic watery diarrhoea with excess faecal bile acids. Disruption of the enterohepatic circulation of bile acids following surgical resection is a common cause of BAM. The condition is easily diagnosed by the selenium homocholic acid taurine (SeHCAT) test and responds to bile acid sequestrants. Idiopathic BAM (IBAM, primary bile acid diarrhoea) is the condition where no definitive cause for low SeHCAT retention can be identified. Review of PubMed and major journals. Evidence is accumulating that BAM is more prevalent than first thought. Management of chronic diarrhoea involves excluding secondary causes. Treatment of the condition is with bile acid binders. SeHCAT testing is not widely performed, limiting awareness of how common this condition can be. The underlying mechanism for IBAM has been unclear. Increasing awareness of the condition is important. Alternative mechanisms of IBAM have been suggested which involve an increased bile acid pool size and reduced negative feedback regulation of bile acid synthesis by FGF19. New sequestrants are available. Further research into the precise mechanism of IBAM is needed. Improvements in the recognition of the condition and optimization of treatment are required.

  8. Bile acids induce arrhythmias in human atrial myocardium--implications for altered serum bile acid composition in patients with atrial fibrillation.

    PubMed

    Rainer, Peter P; Primessnig, Uwe; Harenkamp, Sandra; Doleschal, Bernhard; Wallner, Markus; Fauler, Guenter; Stojakovic, Tatjana; Wachter, Rolf; Yates, Ameli; Groschner, Klaus; Trauner, Michael; Pieske, Burkert M; von Lewinski, Dirk

    2013-11-01

    High bile acid serum concentrations have been implicated in cardiac disease, particularly in arrhythmias. Most data originate from in vitro studies and animal models. We tested the hypotheses that (1) high bile acid concentrations are arrhythmogenic in adult human myocardium, (2) serum bile acid concentrations and composition are altered in patients with atrial fibrillation (AF) and (3) the therapeutically used ursodeoxycholic acid has different effects than other potentially toxic bile acids. Multicellular human atrial preparations ('trabeculae') were exposed to primary bile acids and the incidence of arrhythmic events was assessed. Bile acid concentrations were measured in serum samples from 250 patients and their association with AF and ECG parameters analysed. Additionally, we conducted electrophysiological studies in murine myocytes. Taurocholic acid (TCA) concentration-dependently induced arrhythmias in atrial trabeculae (14/28 at 300 µM TCA, p<0.01) while ursodeoxycholic acid did not. Patients with AF had significantly decreased serum levels of ursodeoxycholic acid conjugates and increased levels of non-ursodeoxycholic bile acids. In isolated myocytes, TCA depolarised the resting membrane potential, enhanced Na(+)/Ca(2+) exchanger (NCX) tail current density and induced afterdepolarisations. Inhibition of NCX prevented arrhythmias in atrial trabeculae. High TCA concentrations induce arrhythmias in adult human atria while ursodeoxycholic acid does not. AF is associated with higher serum levels of non-ursodeoxycholic bile acid conjugates and low levels of ursodeoxycholic acid conjugates. These data suggest that higher levels of toxic (arrhythmogenic) and low levels of protective bile acids create a milieu with a decreased arrhythmic threshold and thus may facilitate arrhythmic events.

  9. Consequences of bile salt biotransformations by intestinal bacteria

    PubMed Central

    Ridlon, Jason M.; Harris, Spencer C.; Bhowmik, Shiva; Kang, Dae-Joong; Hylemon, Phillip B.

    2016-01-01

    ABSTRACT Emerging evidence strongly suggest that the human “microbiome” plays an important role in both health and disease. Bile acids function both as detergents molecules promoting nutrient absorption in the intestines and as hormones regulating nutrient metabolism. Bile acids regulate metabolism via activation of specific nuclear receptors (NR) and G-protein coupled receptors (GPCRs). The circulating bile acid pool composition consists of primary bile acids produced from cholesterol in the liver, and secondary bile acids formed by specific gut bacteria. The various biotransformation of bile acids carried out by gut bacteria appear to regulate the structure of the gut microbiome and host physiology. Increased levels of secondary bile acids are associated with specific diseases of the GI system. Elucidating methods to control the gut microbiome and bile acid pool composition in humans may lead to a reduction in some of the major diseases of the liver, gall bladder and colon. PMID:26939849

  10. How bad is bile acid diarrhoea: an online survey of patient-reported symptoms and outcomes

    PubMed Central

    Bannaga, Ayman; Kelman, Lawrence; O'Connor, Michelle; Pitchford, Claire; Walters, Julian R F; Arasaradnam, Ramesh P

    2017-01-01

    Objectives Bile acid diarrhoea (BAD) is an underdiagnosed condition producing diarrhoea, urgency and fear of faecal incontinence. How patients experience these symptoms has not previously been studied. Bile Acid Malabsorption (BAM) Support UK was established in 2015 as a national charity with objectives including to provide details regarding how BAD affects patients, to improve earlier recognition and clinical management. Design, setting and main outcome A questionnaire was collected anonymously by BAM Support UK and the Bile Salt Malabsorption Facebook group over 4 weeks at the end of 2015. It comprised 56 questions and aimed to inform patients and clinicians about how BAD affects the respondents. Results The first 100 responses were analysed. 91% of the respondents reported a diagnosis of BAD. 58% of total respondents diagnosed following a Selenium-homocholic acid taurine scan, 69% were diagnosed by a gastroenterologist, with type 2 and 3 BAD comprising 38% and 37%, respectively, of total respondents. Symptoms had been experienced for more than 5 years before diagnosis in 44% of respondents. Following treatment, usually with bile acid sequestrants, 60% of participants reported improvement of diarrhoea and most reported their mental health has been positively impacted. Just over half of the cohort felt as though their symptoms had been dismissed during clinical consultations and 28% felt their GPs were unaware of BAD. Conclusions BAD requires more recognition by clinicians to address the current delays in diagnosis. Treatment improves physical and mental symptoms in the majority of participants. PMID:28123771

  11. How bad is bile acid diarrhoea: an online survey of patient-reported symptoms and outcomes.

    PubMed

    Bannaga, Ayman; Kelman, Lawrence; O'Connor, Michelle; Pitchford, Claire; Walters, Julian R F; Arasaradnam, Ramesh P

    2017-01-01

    Bile acid diarrhoea (BAD) is an underdiagnosed condition producing diarrhoea, urgency and fear of faecal incontinence. How patients experience these symptoms has not previously been studied. Bile Acid Malabsorption (BAM) Support UK was established in 2015 as a national charity with objectives including to provide details regarding how BAD affects patients, to improve earlier recognition and clinical management. A questionnaire was collected anonymously by BAM Support UK and the Bile Salt Malabsorption Facebook group over 4 weeks at the end of 2015. It comprised 56 questions and aimed to inform patients and clinicians about how BAD affects the respondents. The first 100 responses were analysed. 91% of the respondents reported a diagnosis of BAD. 58% of total respondents diagnosed following a Selenium-homocholic acid taurine scan, 69% were diagnosed by a gastroenterologist, with type 2 and 3 BAD comprising 38% and 37%, respectively, of total respondents. Symptoms had been experienced for more than 5 years before diagnosis in 44% of respondents. Following treatment, usually with bile acid sequestrants, 60% of participants reported improvement of diarrhoea and most reported their mental health has been positively impacted. Just over half of the cohort felt as though their symptoms had been dismissed during clinical consultations and 28% felt their GPs were unaware of BAD. BAD requires more recognition by clinicians to address the current delays in diagnosis. Treatment improves physical and mental symptoms in the majority of participants.

  12. A single-component multidrug transporter of the major facilitator superfamily is part of a network that protects E scherichia coli from bile salt stress

    PubMed Central

    Paul, Stephanie; Alegre, Kamela O; Holdsworth, Scarlett R; Rice, Matthew; Brown, James A; McVeigh, Paul; Kelly, Sharon M; Law, Christopher J

    2014-01-01

    Resistance to high concentrations of bile salts in the human intestinal tract is vital for the survival of enteric bacteria such as E scherichia coli. Although the tripartite AcrAB–TolC efflux system plays a significant role in this resistance, it is purported that other efflux pumps must also be involved. We provide evidence from a comprehensive suite of experiments performed at two different pH values (7.2 and 6.0) that reflect pH conditions that E . coli may encounter in human gut that MdtM, a single-component multidrug resistance transporter of the major facilitator superfamily, functions in bile salt resistance in E . coli by catalysing secondary active transport of bile salts out of the cell cytoplasm. Furthermore, assays performed on a chromosomal ΔacrB mutant transformed with multicopy plasmid encoding MdtM suggested a functional synergism between the single-component MdtM transporter and the tripartite AcrAB–TolC system that results in a multiplicative effect on resistance. Substrate binding experiments performed on purified MdtM demonstrated that the transporter binds to cholate and deoxycholate with micromolar affinity, and transport assays performed on inverted vesicles confirmed the capacity of MdtM to catalyse electrogenic bile salt/H+ antiport. PMID:24684269

  13. Hepatobiliary transport kinetics of the conjugated bile acid tracer 11C-CSar quantified in healthy humans and patients by positron emission tomography.

    PubMed

    Ørntoft, Nikolaj Worm; Munk, Ole Lajord; Frisch, Kim; Ott, Peter; Keiding, Susanne; Sørensen, Michael

    2017-08-01

    Hepatobiliary secretion of bile acids is an important liver function. Here, we quantified the hepatic transport kinetics of conjugated bile acids using the bile acid tracer [N-methyl- 11 C]cholylsarcosine ( 11 C-CSar) and positron emission tomography (PET). Nine healthy participants and eight patients with varying degrees of cholestasis were examined with 11 C-CSar PET and measurement of arterial and hepatic venous blood concentrations of 11 C-CSar. Results are presented as median (range). The hepatic intrinsic clearance was 1.50 (1.20-1.76) ml blood/min/ml liver tissue in healthy participants and 0.46 (0.13-0.91) in patients. In healthy participants, the rate constant for secretion of 11 C-CSar from hepatocytes to bile was 0.36 (0.30-0.62)min -1 , 20 times higher than the rate constant for backflux from hepatocytes to blood (0.02, 0.005-0.07min -1 ). In the patients, rate constant for transport from hepatocyte to bile was reduced to 0.12 (0.006-0.27)min -1 , 2.3times higher than the rate constant for backflux to blood (0.05, 0.04-0.09). The increased backflux did not fully normalize exposure of the hepatocyte to bile acids as mean hepatocyte residence time of 11 C-CSar was 2.5 (1.6-3.1)min in healthy participants and 6.4 (3.1-23.7)min in patients. The rate constant for transport of 11 C-CSar from intrahepatic to extrahepatic bile was 0.057 (0.023-0.11)min -1 in healthy participants and only slightly reduced in patients 0.039 (0.017-0.066). This first in vivo quantification of individual steps involved in the hepatobiliary secretion of a conjugated bile acid in humans provided new insight into cholestatic disease. Positron emission tomography (PET) using the radiolabelled bile acid ( 11 C-CSar) enabled quantification of the individual steps of the hepatic transport of bile acids from blood to bile in man. Cholestasis reduced uptake and secretion and increased backflux to blood. These findings improve our understanding of cholestatic liver diseases and may support

  14. Quantification of 15 bile acids in lake charr feces by ultra-high performance liquid chromatography–tandem mass spectrometry

    USGS Publications Warehouse

    Li, Ke; Buchinger, Tyler J.; Bussy, Ugo; Fissette, Skye D.; Johnson, Nicholas; Li, Weiming

    2015-01-01

    Many fishes are hypothesized to use bile acids (BAs) as chemical cues, yet quantification of BAs in biological samples and the required methods remain limited. Here, we present an UHPLC–MS/MS method for simultaneous, sensitive, and rapid quantification of 15 BAs, including free, taurine, and glycine conjugated BAs, and application of the method to fecal samples from lake charr (Salvelinus namaycush). The analytes were separated on a C18 column with acetonitrile–water (containing 7.5 mM ammonium acetate and 0.1% formic acid) as mobile phase at a flow rate of 0.25 mL/min for 12 min. BAs were monitored with a negative electrospray triple quadrupole mass spectrometer (Xevo TQ-S™). Calibration curves of 15 BAs were linear over the concentration range of 1.00–5,000 ng/mL. Validation revealed that the method was specific, accurate, and precise. The method was applied to quantitative analysis of feces extract of fry lake charr and the food they were eating. The concentrations of analytes CA, TCDCA, TCA, and CDCA were 242.3, 81.2, 60.7, and 36.2 ng/mg, respectively. However, other taurine conjugated BAs, TUDCA, TDCA, and THDCA, were not detected in feces of lake charr. Interestingly, TCA and TCDCA were detected at high concentrations in food pellets, at 71.9 and 38.2 ng/mg, respectively. Application of the method to feces samples from lake charr supported a role of BAs as chemical cues, and will enhance further investigation of BAs as chemical cues in other fish species.

  15. Physiological and molecular biochemical mechanisms of bile formation

    PubMed Central

    Reshetnyak, Vasiliy Ivanovich

    2013-01-01

    This review considers the physiological and molecular biochemical mechanisms of bile formation. The composition of bile and structure of a bile canaliculus, biosynthesis and conjugation of bile acids, bile phospholipids, formation of bile micellar structures, and enterohepatic circulation of bile acids are described. In general, the review focuses on the molecular physiology of the transporting systems of the hepatocyte sinusoidal and apical membranes. Knowledge of physiological and biochemical basis of bile formation has implications for understanding the mechanisms of development of pathological processes, associated with diseases of the liver and biliary tract. PMID:24259965

  16. Relative gene expression of bile salt hydrolase and surface proteins in two putative indigenous Lactobacillus plantarum strains under in vitro gut conditions.

    PubMed

    Duary, Raj Kumar; Batish, Virender Kumar; Grover, Sunita

    2012-03-01

    Probiotic bacteria must overcome the toxicity of bile salts secreted in the gut and adhere to the epithelial cells to enable their better colonization with extended transit time. Expression of bile salt hydrolase and other proteins on the surface of probiotic bacteria can help in better survivability and optimal functionality in the gut. Two putative Lactobacillus plantarum isolates i.e., Lp9 and Lp91 along with standard strain CSCC5276 were used. A battery of six housekeeping genes viz. gapB, dnaG, gyrA, ldhD, rpoD and 16S rRNA were evaluated by using geNorm 3.4 excel based application for normalizing the expression of bile salt hydrolase (bsh), mucus-binding protein (mub), mucus adhesion promoting protein (mapA), and elongation factor thermo unstable (EF-Tu) in Lp9 and Lp91. The maximal level of relative bsh gene expression was recorded in Lp91 with 2.89 ± 0.14, 4.57 ± 0.37 and 6.38 ± 0.19 fold increase at 2% bile salt concentration after 1, 2 and 3 h, respectively. Similarly, mub and mapA genes were maximally expressed in Lp9 at the level of 20.07 ± 1.28 and 30.92 ± 1.51 fold, when MRS was supplemented with 0.05% mucin and 1% each of bile and pancreatin (pH 6.5). However, in case of EF-Tu, the maximal expression of 42.84 ± 5.64 fold was recorded in Lp91 in the presence of mucin alone (0.05%). Hence, the expression of bsh, mub, mapA and EF-Tu could be considered as prospective biomarkers for screening of novel probiotic lactobacillus strains for optimal functionality in the gut.

  17. The ulcerogenic effect of bile and bile acid in rats during immobilization stress

    NASA Technical Reports Server (NTRS)

    Weisener, J.

    1980-01-01

    The effect of different concentrations of oxen bile and individual bile acids or their sodium salts on the gastric mucosa of rats was investigated in combination with immobilization stress. A statistically significant higher frequency of ulcers was only determined in the application of 10% oxen bile. Dosages on 10% sodium glycocholic acid demonstrated strong toxic damage with atonic dilation of the stomach and extensive mucosal bleeding.

  18. Enterohepatic circulation in man of a gamma-emitting bile-acid conjugate, 23-selena-25-homotaurocholic acid (SeHCAT).

    PubMed

    Merrick, M V; Eastwood, M A; Anderson, J R; Ross, H M

    1982-02-01

    A conjugated bile acid, 23-selena-25-homotaurocholic acid (SeHCAT), labeled with the gamma emitter Se-75, has been evaluated in man. Absorption and excretion were compared with that of simultaneously administered [23-14C]cholic acid. SeHCAT is absorbed quantitatively following oral administration, secreted into the bile at the same rate as cholic acid, reabsorbed from the small intestine, and resecreted. It is not absorbed when the terminal ileum has been excised or bypassed. SeHCAT is therefore the first of a new class of radiopharmaceuticals, namely, gamma-emitting tracers of the complete cycle of the enterohepatic circulation. Its use will simplify investigation of the functional state of the terminal ileum by eliminating the need to collect and process feces.

  19. Kinetics of the bile acid transporter and hepatitis B virus receptor Na+/taurocholate cotransporting polypeptide (NTCP) in hepatocytes.

    PubMed

    König, Alexander; Döring, Barbara; Mohr, Christina; Geipel, Andreas; Geyer, Joachim; Glebe, Dieter

    2014-10-01

    The human liver bile acid transporter Na(+)/taurocholate cotransporting polypeptide (NTCP) has recently been identified as liver-specific receptor for infection of hepatitis B virus (HBV), which attaches via the myristoylated preS1 (myr-preS1) peptide domain of its large surface protein to NTCP. Since binding of the myr-preS1 peptide to NTCP is an initiating step of HBV infection, we investigated if this process interferes with the physiological bile acid transport function of NTCP. HBV infection, myr-preS1 peptide binding, and bile acid transport assays were performed with primary Tupaia belangeri (PTH) and human (PHH) hepatocytes as well as NTCP-transfected human hepatoma HepG2 cells allowing regulated NTCP expression, in the presence of various bile acids, ezetimibe, and myr-preS1 peptides. The myr-preS1 peptide of HBV inhibited bile acid transport in PTH and PHH as well as in NTCP-expressing HEK293 and HepG2 cells. Inversely, HBV infection of PTH, PHH, and NTCP-transfected HepG2 cells was inhibited in a concentration-dependent manner by taurine and glycine conjugates of cholic acid and ursodeoxycholic acid as well as by ezetimibe. In NTCP-HepG2 cells and PTH, NTCP expression, NTCP transport function, myr-preS1 peptide binding, and HBV infection followed comparable kinetics. Myr-preS1 virus binding to NTCP, necessary for productive HBV infection, interferes with the physiological bile acid transport function of NTCP. Therefore, HBV infection via NTCP may be lockable by NTCP substrates and NTCP-inhibiting drugs. This opens a completely new way for an efficient management of HBV infection by the use of NTCP-directed drugs. Copyright © 2014 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  20. Identification and differentiation of bear bile used in medicinal products in Taiwan.

    PubMed

    Lin, D L; Chang, H C; Chang, C P; Chen, C Y

    1997-09-01

    One hundred eighty-three suspect bear bile used in medicinal products, collected in Taiwan as gall bladders or dried powder forms, were analyzed using FTIR, HPTLC, and HPLC techniques to identify whether they are indeed bear bile. Those confirmed were further examined to determine whether the observed analytical parameters can be reliably used for source inference, i.e., differentiating products among North American black bear, farmed Asiatic black bear, polar bear, etc. Our data suggested that North American and polar bears contain a higher concentration of TC (relative to TUDC and TCDC), whereas the relative concentration of TC in Asiatic bears (wild or farmed) is much lower. Thus, the relative concentration of TC can potentially be used for differentiating Asiatic bear bile from North American and polar bear products, but it cannot be used for the differentiation of wild and farmed bear bile as suggested in an earlier report by Espinoza et al. The origin of the 183 samples analyzed were found to be as follows: 118 (64%), bile salts, or gall bladders were of domestic pig; 56 (31%), bile products of Asiatic bear; 4 (2.2%), Asiatic bear mixed with pig bile salts; 3 (1.6%) goat gall bladders; 1 (0.55%) water buffalo bile salts; and 1 (0.55%), pig bile salts mixed with water buffalo bile salts.

  1. An unexplored pathway for degradation of cholate requires a 7α-hydroxysteroid dehydratase and contributes to a broad metabolic repertoire for the utilization of bile salts in Novosphingobium sp. strain Chol11.

    PubMed

    Yücel, Onur; Drees, Steffen; Jagmann, Nina; Patschkowski, Thomas; Philipp, Bodo

    2016-12-01

    Bile salts such as cholate are surface-active steroid compounds with functions for digestion and signaling in vertebrates. Upon excretion into soil and water bile salts are an electron- and carbon-rich growth substrate for environmental bacteria. Degradation of bile salts proceeds via intermediates with a 3-keto-Δ 1,4 -diene structure of the steroid skeleton as shown for e.g. Pseudomonas spp. Recently, we isolated bacteria degrading cholate via intermediates with a 3-keto-7-deoxy-Δ 4,6 -structure of the steroid skeleton suggesting the existence of a second pathway for cholate degradation. This potential new pathway was investigated with Novosphingobium sp. strain Chol11. A 7α-hydroxysteroid dehydratase encoded by hsh2 was identified, which was required for the formation of 3-keto-7-deoxy-Δ 4,6 -metabolites. A hsh2 deletion mutant could still grow with cholate but showed impaired growth. Cholate degradation of this mutant proceeded via 3-keto-Δ 1,4 -diene metabolites. Heterologous expression of Hsh2 in the bile salt-degrading Pseudomonas sp. strain Chol1 led to the formation of a dead-end steroid with a 3-keto-7-deoxy-Δ 4,6 -diene structure. Hsh2 is the first steroid dehydratase with an important function in a metabolic pathway of bacteria that use bile salts as growth substrates. This pathway contributes to a broad metabolic repertoire of Novosphingobium strain Chol11 that may be advantageous in competition with other bile salt-degrading bacteria. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  2. Development and validation of a sensitive LC-MS-MS method for the simultaneous determination of multicomponent contents in artificial Calculus Bovis.

    PubMed

    Peng, Can; Tian, Jixin; Lv, Mengying; Huang, Yin; Tian, Yuan; Zhang, Zunjian

    2014-02-01

    Artificial Calculus Bovis is a major substitute in clinical treatment for Niuhuang, a widely used, efficacious but rare traditional Chinese medicine. However, its chemical structures and the physicochemical properties of its components are complicated, which causes difficulty in establishing a set of effective and comprehensive methods for its identification and quality control. In this study, a simple, sensitive and reliable liquid chromatography-tandem mass spectrometry method was successfully developed and validated for the simultaneous determination of bilirubin, taurine and major bile acids (including six unconjugated bile acids, two glycine-conjugated bile acids and three taurine-conjugated bile acids) in artificial Calculus Bovis using a Zorbax SB-C18 column with a gradient elution of methanol and 10 mmol/L ammonium acetate in aqueous solution (adjusted to pH 3.0 with formic acid). The mass spectra were obtained in the negative ion mode using dehydrocholic acid as the internal standard. The content of each analyte in artificial Calculus Bovis was determined by monitoring specific ion pairs in the selected reaction monitoring mode. All analytes demonstrated perfect linearity (r(2) > 0.994) in a wide dynamic range, and 10 batches of samples from different sources were further analyzed. This study provided a comprehensive method for the quality control of artificial Calculus Bovis.

  3. Taurine flux in chicken erythrocytes.

    PubMed

    Porter, D W; Martin, W G

    1992-05-01

    1. The intracellular taurine concentration in chick erythrocytes increased with age. 2. Erythrocyte taurine influx and efflux rates increased with age. 3. Erythrocyte taurine influx decreased when the extracellular sodium concentration was below normal physiological concentrations. 4. Under hypo-osmotic conditions, taurine efflux from erythrocytes increased. 5. The data suggest that chick erythrocyte taurine metabolism changes during early post-hatch development and that one taurine function may be as an osmoregulator.

  4. Bile Acid Responses in Methane and Non-Methane Producers to Standard Breakfast Meals

    USDA-ARS?s Scientific Manuscript database

    Bile acids and their conjugates are important regulators of glucose homeostasis. Previous research has revealed the ratio of cholic acid to deoxycholic acid to affect insulin resistance in humans. Bile acid de-conjugation and intestinal metabolism depend on gut microbes which may be affected by hos...

  5. Intestinal calcium and bile salts facilitate germination of Clostridium difficile spores

    PubMed Central

    Kochan, Travis J.; Kaiser, Alyssa M.; Hastie, Jessica L.; Giordano, Nicole P.; Smith, Ashley D.

    2017-01-01

    Clostridium difficile (C. difficile) is an anaerobic gram-positive pathogen that is the leading cause of nosocomial bacterial infection globally. C. difficile infection (CDI) typically occurs after ingestion of infectious spores by a patient that has been treated with broad-spectrum antibiotics. While CDI is a toxin-mediated disease, transmission and pathogenesis are dependent on the ability to produce viable spores. These spores must become metabolically active (germinate) in order to cause disease. C. difficile spore germination occurs when spores encounter bile salts and other co-germinants within the small intestine, however, the germination signaling cascade is unclear. Here we describe a signaling role for Ca2+ during C. difficile spore germination and provide direct evidence that intestinal Ca2+ coordinates with bile salts to stimulate germination. Endogenous Ca2+ (released from within the spore) and a putative AAA+ ATPase, encoded by Cd630_32980, are both essential for taurocholate-glycine induced germination in the absence of exogenous Ca2+. However, environmental Ca2+ replaces glycine as a co-germinant and circumvents the need for endogenous Ca2+ fluxes. Cd630_32980 is dispensable for colonization in a murine model of C. difficile infection and ex vivo germination in mouse ileal contents. Calcium-depletion of the ileal contents prevented mutant spore germination and reduced WT spore germination by 90%, indicating that Ca2+ present within the gastrointestinal tract plays a critical role in C. difficile germination, colonization, and pathogenesis. These data provide a biological mechanism that may explain why individuals with inefficient intestinal calcium absorption (e.g., vitamin D deficiency, proton pump inhibitor use) are more prone to CDI and suggest that modulating free intestinal calcium is a potential strategy to curb the incidence of CDI. PMID:28704538

  6. Thermodynamic study on competitive solubilization of cholesterol and beta-sitosterol in bile salt micelles.

    PubMed

    Matsuoka, Keisuke; Hirosawa, Takashi; Honda, Chikako; Endo, Kazutoyo; Moroi, Yoshikiyo; Shibata, Osamu

    2007-07-01

    Differences in the preferential solubilization of cholesterol and competitive solubilizates (beta-sitosterol and aromatic compounds) in bile salt micelles was systematically studied by changing the molar ratio of cholesterol to competitive solubilizates. The cholesterol solubility in a mixed binary system (cholesterol and beta-sitosterol) was almost half that of the cholesterol alone system, regardless of the excess beta-sitosterol quantity added. On the other hand, the mutual solubilities of cholesterol and pyrene were not inhibited by their presence in binary mixed crystals. Finally, the cholesterol solubility was measured by changing the alkyl chain length of n-alkylbenzenes. When tetradecylbenzene was added to the bile solution, the cholesterol solubility decreased slightly and was below the original cholesterol solubility. Based on Gibbs energy change (DeltaG degrees ) for solubilization, chemicals that inhibit cholesterol solubility in their combined crystal systems showed a larger negative DeltaG degrees value than cholesterol alone.

  7. Lecithin in mixed micelles attenuates the cytotoxicity of bile salts in Caco-2 cells.

    PubMed

    Tan, Ya'nan; Qi, Jianping; Lu, Yi; Hu, Fuqiang; Yin, Zongning; Wu, Wei

    2013-03-01

    This study was designed to investigate the cytotoxicity of bile salt-lecithin mixed micelles on the Caco-2 cell model. Cell viability and proliferation after mixed micelles treatments were evaluated with the MTT assay, and the integrity of Caco-2 cell monolayer was determined by quantitating the transepithelial electrical resistance and the flux of tracer, FITC-dextran 4400. The apoptosis induced by mixed micelles treatments was investigated with the annexin V/PI protocol. The particle size of mixed micelles was all smaller than 100 nm. The mixed micelles with lower than 0.2mM sodium deoxycholate (SDC) had no significant effects on cell viability and proliferation. When the level of SDC was higher than 0.4mM and the lecithin/SDC ratio was lower than 2:1, the mixed micelles caused significant changes in cell viability and proliferation. Furthermore, the mixed micelles affected tight junctions in a composition-dependent manner. Specifically, the tight junctions were transiently opened rather than damaged by the mixed micelles with SDC of between 0.2 and 0.6mM. The mixed micelles with more lecithin also induced less apoptosis. These results demonstrate that relatively higher concentrations of mixed micelles are toxic to Caco-2 cells, while phospholipids can attenuate the toxicity of the bile salts. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  8. Bile salts-containing vesicles: promising pharmaceutical carriers for oral delivery of poorly water-soluble drugs and peptide/protein-based therapeutics or vaccines.

    PubMed

    Aburahma, Mona Hassan

    2016-07-01

    Most of the new drugs, biological therapeutics (proteins/peptides) and vaccines have poor performance after oral administration due to poor solubility or degradation in the gastrointestinal tract (GIT). Though, vesicular carriers exemplified by liposomes or niosomes can protect the entrapped agent to a certain extent from degradation. Nevertheless, the harsh GIT environment exemplified by low pH, presence of bile salts and enzymes limits their capabilities by destabilizing them. In response to that, more resistant bile salts-containing vesicles (BS-vesicles) were developed by inclusion of bile salts into lipid bilayers constructs. The effectiveness of orally administrated BS-vesicles in improving the performance of vesicles has been demonstrated in researches. Yet, these attempts did not gain considerable attention. This is the first review that provides a comprehensive overview of utilizing BS-vesicles as a promising pharmaceutical carrier with a special focus on their successful applications in oral delivery of therapeutic macromolecules and vaccines. Insights on the possible mechanisms by which BS-vesicles improve the oral bioavailability of the encapsulated drug or immunological response of entrapped vaccine are explained. In addition, methods adopted to prepare and characterize BS-vesicles are described. Finally, the gap in the scientific researches tackling BS-vesicles that needs to be addressed is highlighted.

  9. Brucella abortus Choloylglycine Hydrolase Affects Cell Envelope Composition and Host Cell Internalization

    PubMed Central

    Marchesini, María Inés; Connolly, Joseph; Delpino, María Victoria; Baldi, Pablo C.; Mujer, Cesar V.; DelVecchio, Vito G.; Comerci, Diego J.

    2011-01-01

    Choloylglycine hydrolase (CGH, E.C. 3.5.1.24) is a conjugated bile salt hydrolase that catalyses the hydrolysis of the amide bond in conjugated bile acids. Bile salt hydrolases are expressed by gastrointestinal bacteria, and they presumably decrease the toxicity of host's conjugated bile salts. Brucella species are the causative agents of brucellosis, a disease affecting livestock and humans. CGH confers Brucella the ability to deconjugate and resist the antimicrobial action of bile salts, contributing to the establishment of a successful infection through the oral route in mice. Additionally, cgh-deletion mutant was also attenuated in intraperitoneally inoculated mice, which suggests that CGH may play a role during systemic infection other than hydrolyzing conjugated bile acids. To understand the role CGH plays in B. abortus virulence, we infected phagocytic and epithelial cells with a cgh-deletion mutant (Δcgh) and found that it is defective in the internalization process. This defect along with the increased resistance of Δcgh to the antimicrobial action of polymyxin B, prompted an analysis of the cell envelope of this mutant. Two-dimensional electrophoretic profiles of Δcgh cell envelope-associated proteins showed an altered expression of Omp2b and different members of the Omp25/31 family. These results were confirmed by Western blot analysis with monoclonal antibodies. Altogether, the results indicate that Brucella CGH not only participates in deconjugation of bile salts but also affects overall membrane composition and host cell internalization. PMID:22174816

  10. Brucella abortus choloylglycine hydrolase affects cell envelope composition and host cell internalization.

    PubMed

    Marchesini, María Inés; Connolly, Joseph; Delpino, María Victoria; Baldi, Pablo C; Mujer, Cesar V; DelVecchio, Vito G; Comerci, Diego J

    2011-01-01

    Choloylglycine hydrolase (CGH, E.C. 3.5.1.24) is a conjugated bile salt hydrolase that catalyses the hydrolysis of the amide bond in conjugated bile acids. Bile salt hydrolases are expressed by gastrointestinal bacteria, and they presumably decrease the toxicity of host's conjugated bile salts. Brucella species are the causative agents of brucellosis, a disease affecting livestock and humans. CGH confers Brucella the ability to deconjugate and resist the antimicrobial action of bile salts, contributing to the establishment of a successful infection through the oral route in mice. Additionally, cgh-deletion mutant was also attenuated in intraperitoneally inoculated mice, which suggests that CGH may play a role during systemic infection other than hydrolyzing conjugated bile acids. To understand the role CGH plays in B. abortus virulence, we infected phagocytic and epithelial cells with a cgh-deletion mutant (Δcgh) and found that it is defective in the internalization process. This defect along with the increased resistance of Δcgh to the antimicrobial action of polymyxin B, prompted an analysis of the cell envelope of this mutant. Two-dimensional electrophoretic profiles of Δcgh cell envelope-associated proteins showed an altered expression of Omp2b and different members of the Omp25/31 family. These results were confirmed by Western blot analysis with monoclonal antibodies. Altogether, the results indicate that Brucella CGH not only participates in deconjugation of bile salts but also affects overall membrane composition and host cell internalization.

  11. Bile Salt Homeostasis in Normal and Bsep Gene Knockout Rats with Single and Repeated Doses of Troglitazone.

    PubMed

    Cheng, Yaofeng; Chen, Shenjue; Freeden, Chris; Chen, Weiqi; Zhang, Yueping; Abraham, Pamela; Nelson, David M; Humphreys, W Griffith; Gan, Jinping; Lai, Yurong

    2017-09-01

    The interference of bile acid secretion through bile salt export pump (BSEP) inhibition is one of the mechanisms for troglitazone (TGZ)-induced hepatotoxicity. Here, we investigated the impact of single or repeated oral doses of TGZ (200 mg/kg/day, 7 days) on bile acid homoeostasis in wild-type (WT) and Bsep knockout (KO) rats. Following oral doses, plasma exposures of TGZ were not different between WT and KO rats, and were similar on day 1 and day 7. However, plasma exposures of the major metabolite, troglitazone sulfate (TS), in KO rats were 7.6- and 9.3-fold lower than in WT on day 1 and day 7, respectively, due to increased TS biliary excretion. With Bsep KO, the mRNA levels of multidrug resistance-associated protein 2 (Mrp2), Mrp3, Mrp4, Mdr1, breast cancer resistance protein (Bcrp), sodium taurocholate cotransporting polypeptide, small heterodimer partner, and Sult2A1 were significantly altered in KO rats. Following seven daily TGZ treatments, Cyp7A1 was significantly increased in both WT and KO rats. In the vehicle groups, plasma exposures of individual bile acids demonstrated variable changes in KO rats as compared with WT. WT rats dosed with TGZ showed an increase of many bile acid species in plasma on day 1, suggesting the inhibition of Bsep. Conversely, these changes returned to base levels on day 7. In KO rats, alterations of most bile acids were observed after seven doses of TGZ. Collectively, bile acid homeostasis in rats was regulated through bile acid synthesis and transport in response to Bsep deficiency and TGZ inhibition. Additionally, our study is the first to demonstrate that repeated TGZ doses can upregulate Cyp7A1 in rats. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  12. Bile Salt Hydrolase Activities: A Novel Target to Screen Anti-Giardia Lactobacilli?

    PubMed Central

    Allain, Thibault; Chaouch, Soraya; Thomas, Myriam; Travers, Marie-Agnès; Valle, Isabelle; Langella, Philippe; Grellier, Philippe; Polack, Bruno; Florent, Isabelle; Bermúdez-Humarán, Luis G.

    2018-01-01

    Giardia duodenalis is a protozoan parasite responsible for giardiasis, a disease characterized by intestinal malabsorption, diarrhea and abdominal pain in a large number of mammal species. Giardiasis is one of the most common intestinal parasitic diseases in the world and thus a high veterinary, and public health concern. It is well-established that some probiotic bacteria may confer protection against this parasite in vitro and in vivo and we recently documented the implication of bile-salt hydrolase (BSH)-like activities from strain La1 of Lactobacillus johnsonii as mediators of these effects in vitro. We showed that these activities were able to generate deconjugated bile salts that were toxic to the parasite. In the present study, a wide collection of lactobacilli strains from different ecological origins was screened to assay their anti-giardial effects. Our results revealed that the anti-parasitic effects of some of the strains tested were well-correlated with the expression of BSH-like activities. The two most active strains in vitro, La1 and Lactobacillus gasseri CNCM I-4884, were then tested for their capacity to influence G. duodenalis infection in a suckling mice model. Strikingly, only L. gasseri CNCM I-4884 strain was able to significantly antagonize parasite growth with a dramatic reduction of the trophozoites load in the small intestine. Moreover, this strain also significantly reduced the fecal excretion of Giardia cysts after 5 days of treatment, which could contribute to blocking the transmission of the parasite, in contrast of La1 where no effect was observed. This study represents a step toward the development of new prophylactic strategies to combat G. duodenalis infection in both humans and animals. PMID:29472903

  13. Analysis of ileal sodium/bile acid cotransporter and related nuclear receptor genes in a family with multiple cases of idiopathic bile acid malabsorption

    PubMed Central

    Montagnani, Marco; Abrahamsson, Anna; Gälman, Cecilia; Eggertsen, Gösta; Marschall, Hanns-Ulrich; Ravaioli, Elisa; Einarsson, Curt; Dawson, Paul A

    2006-01-01

    The etiology of most cases of idiopathic bile acid malabsorption (IBAM) is unknown. In this study, a Swedish family with bile acid malabsorption in three consecutive generations was screened for mutations in the ileal apical sodium-bile acid cotransporter gene (ASBT; gene symbol, SLC10A2) and in the genes for several of the nuclear receptors known to be important for ASBT expression: the farnesoid X receptor (FXR) and peroxisome proliferator activated receptor alpha (PPARα). The patients presented with a clinical history of idiopathic chronic watery diarrhea, which was responsive to cholestyramine treatment and consistent with IBAM. Bile acid absorption was determined using 75Se-homocholic acid taurine (SeHCAT); bile acid synthesis was estimated by measuring the plasma levels of 7α-hydroxy-4-cholesten-3-one (C4). The ASBT, FXR, and PPARα genes in the affected and unaffected family members were analyzed using single stranded conformation polymorphism (SSCP), denaturing HPLC, and direct sequencing. No ASBT mutations were identified and the ASBT gene did not segregate with the bile acid malabsorption phenotype. Similarly, no mutations or polymorphisms were identified in the FXR or PPARα genes associated with the bile acid malabsorption phenotype. These studies indicate that the intestinal bile acid malabsorption in these patients cannot be attributed to defects in ASBT. In the absence of apparent ileal disease, alternative explanations such as accelerated transit through the small intestine may be responsible for the IBAM. PMID:17171805

  14. [Taurine as a regulator of fluid-electrolyte balance and arterial pressure].

    PubMed

    Ciechanowska, B

    1997-01-01

    myocardium taurine and plasma ANP was found. The animals with taurine depletion had significantly lower (about 30%) plasma ANP concentration (Tab. 3), higher natremia (Tab. 4) and their arterial pressure increased due to sodium load. Systolic pressure was 11 mm Hg higher in that group in comparison to control and other groups (Tab. 1). However, the sodium-loading of the rats that drank taurine solution led to an increase of hematocrit, plasma osmolity, urea concentration and body mass gain as compared to control group, but without any arterial pressure increase. The sodium-loaded rats with normal plasma and myocardium taurine concentration were affected in a similar manner. The rats with higher myocardium taurine concentration had lower heart mass index. Results of this work lead to the following conclusions: 1. Depletion of taurine in hearts of examined rats leads to a decrease of plasma atrial natriuretic peptide (ANP) concentration in plasma. 2. ANP secretion caused by salt loading is lower in animals with taurine depletion than in normal animals. 3. Sodium-loading of animals with taurine depletion leads to hypernatremia and to an increase of arterial pressure. 4. Addition of taurine to animals loaded with sodium may lead to their dehydration.

  15. Taurine alleviates malathion induced lipid peroxidation, oxidative stress, and proinflammatory cytokine gene expressions in rats.

    PubMed

    Ince, Sinan; Arslan-Acaroz, Damla; Demirel, Hasan Huseyin; Varol, Nuray; Ozyurek, Hatice Arzu; Zemheri, Fahriye; Kucukkurt, Ismail

    2017-12-01

    The present study was considered to evaluate the protective effect of taurine on malathion-induced toxicity in rats. Totally, 48 male rats were divided into 6 equal groups: 0.5ml physiological salt solution was given orally to control rats. 0.5ml corn oil was given orally to rats in corn oil group. Malathion at dose of 27mg/kg (1/50 of LD 50 ) was dissolved in 0.5ml corn oil and given to orally rats in malathion group. The other groups; malathion (27mg/kg) and taurine (dissolved in 0.5ml physiological salt solution) at dose of 50, 100, and 200mg/kg were given orally to rats for 30days, respectively. Malathion treatment decreased acetylcholinesterase levels in serum (30%) and liver (25%) compared to the control group. Malathion resulted in a significant increase in malondialdehyde levels whereas decreased glutathione levels, superoxide dismutase, and catalase activities in rats. Also, IF-γ, IL1-β, TNF-α, and NFĸB mRNA expression levels were found to be increased 5, 1.7, 2.3, and 2.5 fold in malathion treated rats compared to control, respectively. However, treatment of taurine, in a dose-dependent manner, resulted in a reversal of malathion-induced lipid peroxidation, antioxidant enzyme activities, and mRNA expression levels of proinflammatory cytokines. Moreover, taurine demonstrated preventive action against malathion-induced histopathological changes in rat tissues. In conclusion, taurine exhibited a protective effect in rats against malathion-induced lipid peroxidation, besides it ameliorated antioxidant status, decreased mRNA expression levels of proinflammatory cytokine and repaired rat tissues. Copyright © 2017. Published by Elsevier Masson SAS.

  16. Quantifying bile acid malabsorption helps predict response and tailor sequestrant therapy.

    PubMed

    Orekoya, Oluwafikunayo; McLaughlin, John; Leitao, Eugenia; Johns, Wendy; Lal, Simon; Paine, Peter

    2015-06-01

    Although recognised as a cause of chronic diarrhoea for over forty years, diagnostic tests and treatments for bile acid malabsorption (BAM) remain controversial. Recent National Institute for Health and Care Excellence (NICE) guidelines highlighted the lack of evidence in the field, and called for further research. This retrospective study explores the BAM subtype and severity, the use and response to bile acid sequestrants (BAS) and the prevalence of abnormal colonic histology. 264 selenium-75-labelled homocholic acid conjugated taurine (SeHCAT)-tested patient records were reviewed and the severity and subtype of BAM, presence of colonic histopathology and response to BAS were recorded. 53% of patients tested had BAM, with type-2 BAM in 45% of patients with presumed irritable bowel syndrome. Colonic histological abnormalities were similar overall between patients with (29%) or without (23%) BAM (p = 0.46) and between BAM subtypes, with no significant presence of inflammatory changes. 63% of patients with BAM had a successful BAS response which showed a trend to decreased response with reduced severity. Colestyramine was unsuccessful in 44% (38/87) and 45% of these (17/38) were related to medication intolerance, despite a positive SeHCAT. 47% (7/15) of colestyramine failures had a successful colesevelam response. No patient reported colesevelam intolerance. Quantifying severity of BAM appears to be useful in predicting BAS response. Colesevelam was better tolerated than colestyramine and showed some efficacy in colestyramine failures. Colestyramine failure should not be used to exclude BAM. Colonic histology is of no relevance. © Royal College of Physicians 2015. All rights reserved.

  17. Transport characteristics of three fluorescent conjugated bile acid analogs in isolated rat hepatocytes and couplets.

    PubMed

    Maglova, L M; Jackson, A M; Meng, X J; Carruth, M W; Schteingart, C D; Ton-Nu, H T; Hofmann, A F; Weinman, S A

    1995-08-01

    The transport properties of three different synthetically prepared fluorescent conjugated bile acid analogs (FBA), all with the fluorophore on the side chain, were determined using isolated rat hepatocytes and hepatocyte couplets. The compounds studied were cholylglycylamidofluorescein (CGamF), cholyl(N epsilon-nitrobenzoxadiazolyl [NBD])-lysine (C-NBD-L), and chenodeoxycholyl-(N epsilon-NBD)-lysine (CDC-NBD-L). When hepatocytes were incubated at 37 degrees C with 0.3 mumol/L of FBA and 0.15 mol/L of Na+, cell fluorescence increased linearly with time at a rate (U/min) of 7.8 +/- 0.5 for CGamF, 7.2 +/- 0.3 for C-NBD-L, and 13.7 +/- 1.0 for CDC-NBD-L (mean, +/- SE; n = 40 to 90). Uptake was concentration dependent for concentrations less than 20 mumol/L and was saturable. The Michaelis constant (Km) value (mumol/L) for CGamF was 10.8, for C-NBD-L was 3.8, and for CDC-NBD-L was 3.0. In the absence of Na+, the uptake rate was decreased by 50% for CGamF and by 38% for C-NBD-L; but uptake of CDC-NBD-L was unchanged and thus Na+ independent. Cellular uptake of all three derivatives was specific to hepatocytes and was absent in several nonhepatocyte cell lines. For CGamF and C-NBD-L, both Na(+)-dependent and Na(+)-independent uptake was inhibited by 200-fold excess concentrations of cholyltaurine, dehydrocholyltaurine, and cholate, but for CDC-NBD-L, these nonfluorescent bile acids did not inhibit initial uptake. The intracellular fluorescence of CGamF was strongly pH dependent at an excitation wavelength of 495 nm, but pH independent at 440 nm excitation. In contrast, intracellular fluorescence of C-NBD-L and CDC-NBD-L was pH independent. All three FBA were secreted into the canalicular space of approximately 50% to 60% of couplets. Cellular adenosine triphosphate (ATP) depletion with either CN- or atractyloside inhibited secretion of all three FBA. The multispecific organic anion transporter (MOAT) inhibitor, chlorodinitrobenzene, blocked secretion of fluorescent MOAT

  18. H. pylori in the pathogenesis of duodenal ulcer: interaction between duodenal acid load, bile, and H. pylori.

    PubMed

    Graham, D Y; Osato, M S

    2000-01-01

    Helicobacter pylori (H. pylori) growth is inhibited by bile yet it can grow in the duodenal bulb and cause ulcer disease. The aim of this study was to test the effect of bile on H. pylori viability and growth and to determine whether acidification of bile reduces its inhibitory activity. Fresh human bile was collected at laparotomy and tested for inhibitory activity of H. pylori using broth dilution assays. Six clinical isolates of H. pylori obtained from patients with duodenal ulcer were used for each experiment. The bile was diluted from 1:3 to 1:192; its inhibitory effect on H. pylori was tested before and after acidification, treatment with cholestyramine, or chloroform. Bile was acidified to a pH of 2-6, centrifuged at 8000 rpm for 20 min to remove precipitated bile acids, and the supernatant pH readjusted. Controls included BHI broth without bile (positive control) and bile that was acidified to pH 2 and neutralized without centrifugation. Human bile inhibited H. pylori growth in a dose dependent manner. Growth of all strains was supported for all strains only at a dilution of 1:192. In contrast, after acidification to pH < or =5 and centrifugation to remove precipitated bile acids, all strains grew at a bile dilution of 1:12. Neither chloroform extraction of lipids, nor acidification without centrifugation removed the inhibitory action of bile. In contrast, cholestyramine sequestration of bile acids completely removed all inhibitory activity. The duodenal acid load may be the critical factor to explain the ability of H. pylori to colonize the duodenal bulb by precipitating glycine-conjugated bile salts. The combination of a high duodenal acid load and H. pylori infection is likely the critical event in the pathogenesis of H. pylori-related duodenal ulcer disease.

  19. Digestion of phospholipids after secretion of bile into the duodenum changes the phase behavior of bile components.

    PubMed

    Birru, Woldeamanuel A; Warren, Dallas B; Ibrahim, Ahmed; Williams, Hywel D; Benameur, Hassan; Porter, Christopher J H; Chalmers, David K; Pouton, Colin W

    2014-08-04

    Bile components play a significant role in the absorption of dietary fat, by solubilizing the products of fat digestion. The absorption of poorly water-soluble drugs from the gastrointestinal tract is often enhanced by interaction with the pathways of fat digestion and absorption. These processes can enhance drug absorption. Thus, the phase behavior of bile components and digested lipids is of great interest to pharmaceutical scientists who seek to optimize drug solubilization in the gut lumen. This can be achieved by dosing drugs after food or preferably by formulating the drug in a lipid-based delivery system. Phase diagrams of bile salts, lecithin, and water have been available for many years, but here we investigate the association structures that occur in dilute aqueous solution, in concentrations that are present in the gut lumen. More importantly, we have compared these structures with those that would be expected to be present in the intestine soon after secretion of bile. Phosphatidylcholines are rapidly hydrolyzed by pancreatic enzymes to yield equimolar mixtures of their monoacyl equivalents and fatty acids. We constructed phase diagrams that model the association structures formed by the products of digestion of biliary phospholipids. The micelle-vesicle phase boundary was clearly identifiable by dynamic light scattering and nephelometry. These data indicate that a significantly higher molar ratio of lipid to bile salt is required to cause a transition to lamellar phase (i.e., liposomes in dilute solution). Mixed micelles of digested bile have a higher capacity for solubilization of lipids and fat digestion products and can be expected to have a different capacity to solubilize lipophilic drugs. We suggest that mixtures of lysolecithin, fatty acid, and bile salts are a better model of molecular associations in the gut lumen, and such mixtures could be used to better understand the interaction of drugs with the fat digestion and absorption pathway.

  20. Therapeutic Mechanisms of Bile Acids and Nor-Ursodeoxycholic Acid in Non-Alcoholic Fatty Liver Disease.

    PubMed

    Steinacher, Daniel; Claudel, Thierry; Trauner, Michael

    2017-01-01

    Non-alcoholic fatty liver disease is one of the most rapidly rising clinical problems in the 21st century. So far no effective drug treatment has been established to cure this disease. Bile acids (BAs) have a variety of signaling properties, which can be used therapeutically for modulating hepatic metabolism and inflammation. A side-chain shorted derivative of ursodeoxycholic acid (UDCA) is 24 nor-ursodeoxycholic acid (NorUDCA) and it represents a new class of drugs for treatment of liver diseases. NorUDCA has unique biochemical and therapeutic properties, since it is relatively resistant to conjugation with glycine or taurine compared to UDCA. NorUDCA undergoes cholehepatic shunting, resulting in ductular targeting, bicarbonate-rich hypercholeresis, and cholangiocyte protection. Furthermore, it showed anti-fibrotic, anti-inflammatory, and anti-lipotoxic properties in several animal models. As such, NorUDCA is a promising new approach in the treatment of cholestatic and metabolic liver diseases. This review is a summary of current BA-based therapeutic approaches in the treatment of the fatty liver disease. © 2017 S. Karger AG, Basel.

  1. Effects of conventional and a novel colonic-release bile acid sequestrant, A3384, on fibroblast growth factor 19 and bile acid metabolism in healthy volunteers and patients with bile acid diarrhoea.

    PubMed

    Appleby, R N; Bajor, A; Gillberg, P-G; Graffner, H; Simrén, M; Ung, K A; Walters, Jrf

    2017-04-01

    Primary bile acid diarrhoea (BAD) is associated with increased bile acid synthesis and low fibroblast growth factor 19 (FGF19). Bile acid sequestrants are used as therapy, but are poorly tolerated and may exacerbate FGF19 deficiency. The purpose of this study was to evaluate the pharmacological effects of conventional sequestrants and a colonic-release formulation preparation of colestyramine (A3384) on bile acid metabolism and bowel function in patients with BAD. Patients with seven-day 75 selenium-homocholic acid taurine (SeHCAT) scan retention <10% were randomised in a double-blind protocol to two weeks treatment with twice-daily A3384 250 mg ( n  = 6), 1 g ( n  = 7) or placebo ( n  = 6). Thirteen patients were taking conventional sequestrants at the start of the study. Symptoms were recorded and serum FGF19 and 7α-hydroxy-4-cholesten-3-one (C4) measured. Median serum FGF19 on conventional sequestrant treatment was 28% lower than baseline values in BAD ( p  < 0.05). C4 on conventional sequestrant treatment was 58% higher in BAD ( p  < 0.001). No changes were seen on starting or withdrawing A3384. A3384 improved diarrhoeal symptoms, with a median reduction of 2.2 points on a 0-10 Likert scale compared to placebo, p  < 0.05. Serum FGF19 was suppressed and bile acid production up-regulated on conventional bile acid sequestrants, but not with A3384. This colonic-release formulation of colestyramine produced symptomatic benefit in patients with BAD.

  2. Effects of conventional and a novel colonic-release bile acid sequestrant, A3384, on fibroblast growth factor 19 and bile acid metabolism in healthy volunteers and patients with bile acid diarrhoea

    PubMed Central

    Bajor, A; Gillberg, P-G; Graffner, H; Simrén, M; Ung, KA; Walters, JRF

    2016-01-01

    Background Primary bile acid diarrhoea (BAD) is associated with increased bile acid synthesis and low fibroblast growth factor 19 (FGF19). Bile acid sequestrants are used as therapy, but are poorly tolerated and may exacerbate FGF19 deficiency. Aim The purpose of this study was to evaluate the pharmacological effects of conventional sequestrants and a colonic-release formulation preparation of colestyramine (A3384) on bile acid metabolism and bowel function in patients with BAD. Methods Patients with seven-day 75selenium-homocholic acid taurine (SeHCAT) scan retention <10% were randomised in a double-blind protocol to two weeks treatment with twice-daily A3384 250 mg (n = 6), 1 g (n = 7) or placebo (n = 6). Thirteen patients were taking conventional sequestrants at the start of the study. Symptoms were recorded and serum FGF19 and 7α-hydroxy-4-cholesten-3-one (C4) measured. Results Median serum FGF19 on conventional sequestrant treatment was 28% lower than baseline values in BAD (p < 0.05). C4 on conventional sequestrant treatment was 58% higher in BAD (p < 0.001). No changes were seen on starting or withdrawing A3384. A3384 improved diarrhoeal symptoms, with a median reduction of 2.2 points on a 0–10 Likert scale compared to placebo, p < 0.05. Conclusions Serum FGF19 was suppressed and bile acid production up-regulated on conventional bile acid sequestrants, but not with A3384. This colonic-release formulation of colestyramine produced symptomatic benefit in patients with BAD. PMID:28507750

  3. Taurine and neural cell damage.

    PubMed

    Saransaari, P; Oja, S S

    2000-01-01

    The inhibitory amino acid taurine is an osmoregulator and neuromodulator, also exerting neuroprotective actions in neural tissue. We review now the involvement of taurine in neuron-damaging conditions, including hypoxia, hypoglycemia, ischemia, oxidative stress, and the presence of free radicals, metabolic poisons and an excess of ammonia. The brain concentration of taurine is increased in several models of ischemic injury in vivo. Cell-damaging conditions which perturb the oxidative metabolism needed for active transport across cell membranes generally reduce taurine uptake in vitro, immature brain tissue being more tolerant to the lack of oxygen. In ischemia nonsaturable diffusion increases considerably. Both basal and K+-stimulated release of taurine in the hippocampus in vitro is markedly enhanced under cell-damaging conditions, ischemia, free radicals and metabolic poisons being the most potent. Hypoxia, hypoglycemia, ischemia, free radicals and oxidative stress also increase the initial basal release of taurine in cerebellar granule neurons, while the release is only moderately enhanced in hypoxia and ischemia in cerebral cortical astrocytes. The taurine release induced by ischemia is for the most part Ca2+-independent, a Ca2+-dependent mechanism being discernible only in hippocampal slices from developing mice. Moreover, a considerable portion of hippocampal taurine release in ischemia is mediated by the reversal of Na+-dependent transporters. The enhanced release in adults may comprise a swelling-induced component through Cl- channels, which is not discernible in developing mice. Excitotoxic concentrations of glutamate also potentiate taurine release in mouse hippocampal slices. The ability of ionotropic glutamate receptor agonists to evoke taurine release varies under different cell-damaging conditions, the N-methyl-D-aspartate-evoked release being clearly receptor-mediated in ischemia. Neurotoxic ammonia has been shown to provoke taurine release from

  4. Adaptation and Preadaptation of Salmonella enterica to Bile

    PubMed Central

    Hernández, Sara B.; Cota, Ignacio; Ducret, Adrien; Aussel, Laurent; Casadesús, Josep

    2012-01-01

    Bile possesses antibacterial activity because bile salts disrupt membranes, denature proteins, and damage DNA. This study describes mechanisms employed by the bacterium Salmonella enterica to survive bile. Sublethal concentrations of the bile salt sodium deoxycholate (DOC) adapt Salmonella to survive lethal concentrations of bile. Adaptation seems to be associated to multiple changes in gene expression, which include upregulation of the RpoS-dependent general stress response and other stress responses. The crucial role of the general stress response in adaptation to bile is supported by the observation that RpoS− mutants are bile-sensitive. While adaptation to bile involves a response by the bacterial population, individual cells can become bile-resistant without adaptation: plating of a non-adapted S. enterica culture on medium containing a lethal concentration of bile yields bile-resistant colonies at frequencies between 10−6 and 10−7 per cell and generation. Fluctuation analysis indicates that such colonies derive from bile-resistant cells present in the previous culture. A fraction of such isolates are stable, indicating that bile resistance can be acquired by mutation. Full genome sequencing of bile-resistant mutants shows that alteration of the lipopolysaccharide transport machinery is a frequent cause of mutational bile resistance. However, selection on lethal concentrations of bile also provides bile-resistant isolates that are not mutants. We propose that such isolates derive from rare cells whose physiological state permitted survival upon encountering bile. This view is supported by single cell analysis of gene expression using a microscope fluidic system: batch cultures of Salmonella contain cells that activate stress response genes in the absence of DOC. This phenomenon underscores the existence of phenotypic heterogeneity in clonal populations of bacteria and may illustrate the adaptive value of gene expression fluctuations. PMID:22275872

  5. Defective canalicular transport and toxicity of dietary ursodeoxycholic acid in the abcb11-/- mouse: transport and gene expression studies.

    PubMed

    Wang, Renxue; Liu, Lin; Sheps, Jonathan A; Forrest, Dana; Hofmann, Alan F; Hagey, Lee R; Ling, Victor

    2013-08-15

    The bile salt export pump (BSEP), encoded by the abcb11 gene, is the major canalicular transporter of bile acids from the hepatocyte. BSEP malfunction in humans causes bile acid retention and progressive liver injury, ultimately leading to end-stage liver failure. The natural, hydrophilic, bile acid ursodeoxycholic acid (UDCA) is efficacious in the treatment of cholestatic conditions, such as primary biliary cirrhosis and cholestasis of pregnancy. The beneficial effects of UDCA include promoting bile flow, reducing hepatic inflammation, preventing apoptosis, and maintaining mitochondrial integrity in hepatocytes. However, the role of BSEP in mediating UDCA efficacy is not known. Here, we used abcb11 knockout mice (abcb11-/-) to test the effects of acute and chronic UDCA administration on biliary secretion, bile acid composition, liver histology, and liver gene expression. Acutely infused UDCA, or its taurine conjugate (TUDC), was taken up by the liver but retained, with negligible biliary output, in abcb11-/- mice. Feeding UDCA to abcb11-/- mice led to weight loss, retention of bile acids, elevated liver enzymes, and histological damage to the liver. Semiquantitative RT-PCR showed that genes encoding Mdr1a and Mdr1b (canalicular) as well as Mrp4 (basolateral) transporters were upregulated in abcb11-/- mice. We concluded that infusion of UDCA and TUDC failed to induce bile flow in abcb11-/- mice. UDCA fed to abcb11-/- mice caused liver damage and the appearance of biliary tetra- and penta-hydroxy bile acids. Supplementation with UDCA in the absence of Bsep caused adverse effects in abcb11-/- mice.

  6. Human beta-glucuronidase. Measurement of its activity in gallbladder bile devoid of intrinsic interference.

    PubMed

    Ho, Y C; Ho, K J

    1988-04-01

    Our purpose is to develop a standard method for preparing the bile for beta-glucuronidase determination by removal of bile acids and conjugated bilirubin which interfere with its activity. The bile acids and conjugated bilirubin in their purified solutions and in the diluted gallbladder biles could be extracted completely with cholestyramine in powder form or tetrahexylammonium chloride (THAC) in chloroform or ethyl acetate. The enzyme was, however, partially precipitated with cholestyramine and denatured by chloroform but not by ethyl acetate. A standard procedure, therefore, includes extraction of the diluted gallbladder bile with THAC in ethyl acetate, followed by determination of the maximal velocity (Vmax) of the enzyme by a kinetic method employing phenolphthalein glucuronide as the substrate. The average Vmax of beta-glucuronidase in the 20 normal gallbladder biles was 165 +/- 86 nmol/min/ml (mean +/- SD), a 23.5-fold increase over the activity before extraction. The measured activity represented the true activity of the enzyme in the bile for recovery of activity of the enzyme added to the bile was practically complete.

  7. Nuclear receptors in bile acid metabolism

    PubMed Central

    Li, Tiangang; Chiang, John Y. L.

    2013-01-01

    Bile acids are signaling molecules that activate nuclear receptors, such as farnesoid X receptor, pregnane X receptor, constitutive androstane receptor, and vitamin D receptor, and play a critical role in the regulation of lipid, glucose, energy, and drug metabolism. These xenobiotic/endobiotic-sensing nuclear receptors regulate phase I oxidation, phase II conjugation, and phase III transport in bile acid and drug metabolism in the digestive system. Integration of bile acid metabolism with drug metabolism controls absorption, transport, and metabolism of nutrients and drugs to maintain metabolic homeostasis and also protects against liver injury, inflammation, and related metabolic diseases, such as nonalcoholic fatty liver disease, diabetes, and obesity. Bile-acid–based drugs targeting nuclear receptors are in clinical trials for treating cholestatic liver diseases and fatty liver disease. PMID:23330546

  8. Bile-Esculin Test for Presumptive Identification of Enterococci and Streptococci: Effects of Bile Concentration, Inoculation Technique, and Incubation Time

    PubMed Central

    Chuard, C.; Reller, L. B.

    1998-01-01

    The bile-esculin test is used to differentiate enterococci and group D streptococci from non-group D viridans group streptococci. The effects on test performance of the concentration of bile salts, inoculum, and duration of incubation were examined with 110 strains of enterococci, 30 strains of Streptococcus bovis, and 110 strains of non-group D viridans group streptococci. Optimal sensitivity (>99%) and specificity (97%) of the bile-esculin test can be obtained with a bile concentration of 40%, a standardized inoculum of 106 CFU, and incubation for 24 h. PMID:9542954

  9. Bile-esculin test for presumptive identification of enterococci and streptococci: effects of bile concentration, inoculation technique, and incubation time.

    PubMed

    Chuard, C; Reller, L B

    1998-04-01

    The bile-esculin test is used to differentiate enterococci and group D streptococci from non-group D viridans group streptococci. The effects on test performance of the concentration of bile salts, inoculum, and duration of incubation were examined with 110 strains of enterococci, 30 strains of Streptococcus bovis, and 110 strains of non-group D viridans group streptococci. Optimal sensitivity (> 99%) and specificity (97%) of the bile-esculin test can be obtained with a bile concentration of 40%, a standardized inoculum of 10(6) CFU, and incubation for 24 h.

  10. Effects of heat, cold, acid and bile salt adaptations on the stress tolerance and protein expression of kefir-isolated probiotic Lactobacillus kefiranofaciens M1.

    PubMed

    Chen, Ming-Ju; Tang, Hsin-Yu; Chiang, Ming-Lun

    2017-09-01

    Lactobacillus kefiranofaciens M1 is a probiotic strain isolated from Taiwanese kefir grains. The present study evaluated the effects of heat, cold, acid and bile salt adaptations on the stress tolerance of L. kefiranofaciens M1. The regulation of protein expression of L. kefiranofaciens M1 under these adaptation conditions was also investigated. The results showed that adaptation of L. kefiranofaciens M1 to heat, cold, acid and bile salts induced homologous tolerance and cross-protection against heterologous challenge. The extent of induced tolerance varied depending on the type and condition of stress. Proteomic analysis revealed that 27 proteins exhibited differences in expression between non-adapted and stress-adapted L. kefiranofaciens M1 cells. Among these proteins, three proteins involved in carbohydrate metabolism (triosephosphate isomerase, enolase and NAD-dependent glycerol-3-phosphate dehydrogenase), two proteins involved in pH homeostasis (ATP synthase subunits AtpA and AtpB), two stress response proteins (chaperones DnaK and GroEL) and one translation-related protein (30S ribosomal protein S2) were up-regulated by three of the four adaptation treatments examined. The increased synthesis of these stress proteins might play a critical protective role in the cellular defense against heat, cold, acid and bile salt stresses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. 21 CFR 573.980 - Taurine.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ..., AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.980 Taurine. The food additive taurine (2-amino-ethanesulfonic acid) may be safely used in... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Taurine. 573.980 Section 573.980 Food and Drugs...

  12. 21 CFR 573.980 - Taurine.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ..., AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.980 Taurine. The food additive taurine (2-amino-ethanesulfonic acid) may be safely used in... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Taurine. 573.980 Section 573.980 Food and Drugs...

  13. 21 CFR 573.980 - Taurine.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ..., AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.980 Taurine. The food additive taurine (2-amino-ethanesulfonic acid) may be safely used in... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Taurine. 573.980 Section 573.980 Food and Drugs...

  14. 21 CFR 573.980 - Taurine.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ..., AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.980 Taurine. The food additive taurine (2-amino-ethanesulfonic acid) may be safely used in... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Taurine. 573.980 Section 573.980 Food and Drugs...

  15. 21 CFR 573.980 - Taurine.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ..., AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.980 Taurine. The food additive taurine (2-amino-ethanesulfonic acid) may be safely used in... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Taurine. 573.980 Section 573.980 Food and Drugs...

  16. Microbiota transplantation restores normal fecal bile acid composition in recurrent Clostridium difficile infection.

    PubMed

    Weingarden, Alexa R; Chen, Chi; Bobr, Aleh; Yao, Dan; Lu, Yuwei; Nelson, Valerie M; Sadowsky, Michael J; Khoruts, Alexander

    2014-02-15

    Fecal microbiota transplantation (FMT) has emerged as a highly effective therapy for refractory, recurrent Clostridium difficile infection (CDI), which develops following antibiotic treatments. Intestinal microbiota play a critical role in the metabolism of bile acids in the colon, which in turn have major effects on the lifecycle of C. difficile bacteria. We hypothesized that fecal bile acid composition is altered in patients with recurrent CDI and that FMT results in its normalization. General metabolomics and targeted bile acid analyses were performed on fecal extracts from patients with recurrent CDI treated with FMT and their donors. In addition, 16S rRNA gene sequencing was used to determine the bacterial composition of pre- and post-FMT fecal samples. Taxonomic bacterial composition of fecal samples from FMT recipients showed rapid change and became similar to the donor after the procedure. Pre-FMT fecal samples contained high concentrations of primary bile acids and bile salts, while secondary bile acids were nearly undetectable. In contrast, post-FMT fecal samples contained mostly secondary bile acids, as did non-CDI donor samples. Therefore, our analysis showed that FMT resulted in normalization of fecal bacterial community structure and metabolic composition. Importantly, metabolism of bile salts and primary bile acids to secondary bile acids is disrupted in patients with recurrent CDI, and FMT corrects this abnormality. Since individual bile salts and bile acids have pro-germinant and inhibitory activities, the changes suggest that correction of bile acid metabolism is likely a major mechanism by which FMT results in a cure and prevents recurrence of CDI.

  17. Identification and characterization of a bile salt hydrolase from Lactobacillus salivarius for development of novel alternatives to antibiotic growth promoters.

    PubMed

    Wang, Zhong; Zeng, Ximin; Mo, Yiming; Smith, Katie; Guo, Yuming; Lin, Jun

    2012-12-01

    Antibiotic growth promoters (AGPs) have been used as feed additives to improve average body weight gain and feed efficiency in food animals for more than 5 decades. However, there is a worldwide trend to limit AGP use to protect food safety and public health, which raises an urgent need to discover effective alternatives to AGPs. The growth-promoting effect of AGPs has been shown to be highly correlated with the decreased activity of intestinal bile salt hydrolase (BSH), an enzyme that is produced by various gut microflora and involved in host lipid metabolism. Thus, BSH inhibitors are likely promising feed additives to AGPs to improve animal growth performance. In this study, the genome of Lactobacillus salivarius NRRL B-30514, a BSH-producing strain isolated from chicken, was sequenced by a 454 GS FLX sequencer. A BSH gene identified by genome analysis was cloned and expressed in an Escherichia coli expression system for enzymatic analyses. The BSH displayed efficient hydrolysis activity for both glycoconjugated and tauroconjugated bile salts, with slightly higher catalytic efficiencies (k(cat)/K(m)) on glycoconjugated bile salts. The optimal pH and temperature for the BSH activity were 5.5 and 41°C, respectively. Examination of a panel of dietary compounds using the purified BSH identified some potent BSH inhibitors, in which copper and zinc have been recently demonstrated to promote feed digestion and body weight gain in different food animals. In sum, this study identified and characterized a BSH with broad substrate specificity from a chicken L. salivarius strain and established a solid platform for us to discover novel BSH inhibitors, the promising feed additives to replace AGPs for enhancing the productivity and sustainability of food animals.

  18. Composition of gallbladder bile in healthy individuals and patients with gallstone disease from north and South India.

    PubMed

    Jayanthi, V; Sarika, S; Varghese, Joy; Vaithiswaran, V; Sharma, Malay; Reddy, Mettu Srinivas; Srinivasan, Vijaya; Reddy, G M M; Rela, Mohamed; Kalkura, S

    2016-09-01

    Gallstones (GS) in south India (SI) are predominantly pure pigment or mixed, while in North India (NI), these are either pure cholesterol or mixed. While cholesterol rich gallbladder (GB) bile predicts cholesterol GS, constituent of bile in primary pigment GS is not known. We compared the composition of GB bile from healthy liver donors and patients with GS from north and south India. Gallbladder bile from healthy liver donors from north (10) and south India (8) served as controls. Cases were patients from north (21) and south India (17) who underwent cholecystectomy for GS disease. Gallbladder bile from both cases and controls was analyzed for cholesterol, lecithin (phospholipid), and bile salts. Gallstones were classified as cholesterol, mixed, and pigment based on morphology and biochemical analysis. The median cholesterol concentration in control bile from north was significantly high compared to south (p<0.001) with no difference in lecithin and bile salts (p NS). Except for one sample each from north and south, the cholesterol solubility of controls was within the critical micellar zone. Mixed GS were most frequent in north India (61.9 %) while pigment GS dominated in south (61.9 %). The median cholesterol concentration in bile samples of cholecystectomy patients from north India was significantly high GS (p < 0.00001) with significant lowering of bile salts and lecithin (p < 0.00001). In south India, patients with mixed GS had high cholesterol content in bile compared to controls and patients with pigment GS; bile in latter had significantly higher concentration of bile salt compared to controls and mixed GS. The ternary plot confirmed the composition of GB bile from north and south India. Gallbladder bile in controls and patients with GS from north India had significantly high cholesterol concentration. In south India, patients with mixed GS had cholesterol rich bile while pigment GS had higher concentrations of bile salts.

  19. Transport of bile acids in multidrug-resistance-protein 3-overexpressing cells co-transfected with the ileal Na+-dependent bile-acid transporter.

    PubMed Central

    Zelcer, Noam; Saeki, Tohru; Bot, Ilse; Kuil, Annemieke; Borst, Piet

    2003-01-01

    Many of the transporters involved in the transport of bile acids in the enterohepatic circulation have been characterized. The basolateral bile-acid transporter of ileocytes and cholangiocytes remains an exception. It has been suggested that rat multidrug resistance protein 3 (Mrp3) fulfills this function. Here we analyse bile-salt transport by human MRP3. Membrane vesicles from insect ( Spodoptera frugiperda ) cells expressing MRP3 show time-dependent uptake of glycocholate and taurocholate. Furthermore, sulphated bile salts were high-affinity competitive inhibitors of etoposide glucuronide transport by MRP3 (IC50 approximately 10 microM). Taurochenodeoxycholate, taurocholate and glycocholate inhibited transport at higher concentrations (IC50 approximately 100, 250 and 500 microM respectively). We used mouse fibroblast-like cell lines derived from mice with disrupted Mdr1a, Mdr1b and Mrp1 genes to generate transfectants that express the murine apical Na+-dependent bile-salt transporter (Asbt) and MRP3. Uptake of glycocholate by these cells is Na+-dependent, with a K(m) and V(max) of 29+/-7 microM and 660 +/- 63 pmol/min per mg of protein respectively and is inhibited by several organic-aniontransport inhibitors. Expression of MRP3 in these cells limits the accumulation of glycocholate and increases the efflux from cells preloaded with taurocholate or glycocholate. In conclusion, we find that MRP3 transports both taurocholate and glycocholate, albeit with low affinity, in contrast with the high-affinity transport by rat Mrp3. Our results suggest that MRP3 is unlikely to be the principal basolateral bile-acid transporter of ileocytes and cholangiocytes, but that it may have a role in the removal of bile acids from the liver in cholestasis. PMID:12220224

  20. Effect of taurine on ischemia-reperfusion injury.

    PubMed

    Schaffer, Stephen W; Jong, Chian Ju; Ito, Takashi; Azuma, Junichi

    2014-01-01

    Taurine is an abundant β-amino acid that regulates several events that dramatically influence the development of ischemia-reperfusion injury. One of these events is the extrusion of taurine and Na+ from the cell via the taurine/Na+ symport. The loss of Na+ during the ischemia-reperfusion insult limits the amount of available Na+ for Na+/Ca2+ exchange, an important process in the development of Ca2+ overload and the activation of the mitochondrial permeability transition, a key process in ischemia-reperfusion mediated cell death. Taurine also prevents excessive generation of reactive oxygen species by the respiratory chain, an event that also limits the activation of the MPT. Because taurine is an osmoregulator, changes in taurine concentration trigger "osmotic preconditioning," a process that activates an Akt-dependent cytoprotective signaling pathway that inhibits MPT pore formation. These effects of taurine have clinical implications, as experimental evidence reveals potential promise of taurine therapy in preventing cardiac damage during bypass surgery, heart transplantation and myocardial infarction. Moreover, severe loss of taurine from the heart during an ischemia-reperfusion insult may increase the risk of ventricular remodeling and development of heart failure.

  1. Taurine and its neuroprotective role.

    PubMed

    Kumari, Neeta; Prentice, Howard; Wu, Jang-Yen

    2013-01-01

    Taurine plays multiple roles in the CNS including acting as a -neuro-modulator, an osmoregulator, a regulator of cytoplasmic calcium levels, a trophic factor in development, and a neuroprotectant. In neurons taurine has been shown to prevent mitochondrial dysfunction and to protect against endoplasmic reticulum (ER) stress associated with neurological disorders. In cortical neurons in culture taurine protects against excitotoxicity through reversing an increase in levels of key ER signaling components including eIF-2-alpha and cleaved ATF6. The role of communication between the ER and mitochondrion is also important and examples are presented of protection by taurine against ER stress together with prevention of subsequent mitochondrial initiated apoptosis.

  2. Increasing taurine intake and taurine synthesis improves skeletal muscle function in the mdx mouse model for Duchenne muscular dystrophy

    PubMed Central

    Pinniger, Gavin J.; Graves, Jamie A.; Grounds, Miranda D.; Arthur, Peter G.

    2016-01-01

    Key points Duchenne muscular dystrophy (DMD) is a fatal muscle wasting disease associated with increased inflammation, oxidative stress and myofibre necrosis.Cysteine precursor antioxidants such as N‐acetyl cysteine (NAC) and l‐2‐oxothiazolidine‐4‐carboxylate (OTC) reduce dystropathology in the mdx mouse model for DMD, and we propose this is via increased synthesis of the amino acid taurine.We compared the capacity of OTC and taurine treatment to increase taurine content of mdx muscle, as well as effects on in vivo and ex vivo muscle function, inflammation and oxidative stress.Both treatments increased taurine in muscles, and improved many aspects of muscle function and reduced inflammation. Taurine treatment also reduced protein thiol oxidation and was overall more effective, as OTC treatment reduced body and muscle weight, suggesting some adverse effects of this drug.These data suggest that increasing dietary taurine is a better candidate for a therapeutic intervention for DMD. Abstract Duchenne muscular dystrophy (DMD) is a fatal muscle wasting disease for which there is no widely available cure. Whilst the mechanism of loss of muscle function in DMD and the mdx mouse model are not fully understood, disruptions in intracellular calcium homeostasis, inflammation and oxidative stress are implicated. We have shown that protein thiol oxidation is increased in mdx muscle, and that the indirect thiol antioxidant l‐2‐oxothiazolidine‐4‐carboxylate (OTC), which increases cysteine availability, decreases pathology and increases in vivo strength. We propose that the protective effects of OTC are a consequence of conversion of cysteine to taurine, which has itself been shown to be beneficial to mdx pathology. This study compares the efficacy of taurine with OTC in decreasing dystropathology in mdx mice by measuring in vivo and ex vivo contractile function and measurements of inflammation and protein thiol oxidation. Increasing the taurine content of mdx

  3. Enhanced oral bioavailability of silymarin using liposomes containing a bile salt: preparation by supercritical fluid technology and evaluation in vitro and in vivo

    PubMed Central

    Yang, Gang; Zhao, Yaping; Zhang, Yongtai; Dang, Beilei; Liu, Ying; Feng, Nianping

    2015-01-01

    The aim of this investigation was to develop a procedure to improve the dissolution and bioavailability of silymarin (SM) by using bile salt-containing liposomes that were prepared by supercritical fluid technology (ie, solution-enhanced dispersion by supercritical fluids [SEDS]). The process for the preparation of SM-loaded liposomes containing a bile salt (SM-Lip-SEDS) was optimized using a central composite design of response surface methodology with the ratio of SM to phospholipids (w/w), flow rate of solution (mL/min), and pressure (MPa) as independent variables. Particle size, entrapment efficiency (EE), and drug loading (DL) were dependent variables for optimization of the process and formulation variables. The particle size, zeta potential, EE, and DL of the optimized SM-Lip-SEDS were 160.5 nm, −62.3 mV, 91.4%, and 4.73%, respectively. Two other methods to produce SM liposomes were compared to the SEDS method. The liposomes obtained by the SEDS method exhibited the highest EE and DL, smallest particle size, and best stability compared to liposomes produced by the thin-film dispersion and reversed-phase evaporation methods. Compared to the SM powder, SM-Lip-SEDS showed increased in vitro drug release. The in vivo AUC0−t of SM-Lip-SEDS was 4.8-fold higher than that of the SM powder. These results illustrate that liposomes containing a bile salt can be used to enhance the oral bioavailability of SM and that supercritical fluid technology is suitable for the preparation of liposomes. PMID:26543366

  4. Structural alterations in lecithin-cholesterol vesicles following interactions with monomeric and micellar bile salts: physical-chemical basis for subselection of biliary lecithin species and aggregative states of biliary lipids during bile formation.

    PubMed

    Cohen, D E; Angelico, M; Carey, M C

    1990-01-01

    Using complementary physical-chemical methods including turbidimetry, quasielastic light scattering, gel filtration, and phase analysis, we examined the interactions between dilute concentrations of the common bile salt, taurochenodeoxycholate (TCDC), and uni- and multilamellar vesicles (MLVs) composed of defined molecular species of lecithin (L) and varying contents of cholesterol (Ch). Dissolution rates of MLVs with micellar TCDC, as assessed by turbidimetry, were more rapid with vesicles composed of sn-1 palmitoyl species, typical of biliary L, compared with those composed of the more hydrophobic sn-1 stearoyl species. Incorporation of Ch retarded MLV dissolution rates in proportion to the Ch content, and only at high Ch contents were dissolution rates appreciably influenced by the sn-2 fatty acid composition of L. When MLVs contained Ch in amounts characteristic of intracellular membranes (Ch/L approximately 0.1), the dissolution rates of the individual L species by TCDC accurately predicted the steady state L composition of human bile. TCDC interacted with small unilamellar L/Ch vesicles (SUVs) at concentrations well below, as well as appreciably above, its critical micellar concentration. In accordance with the TCDC-egg yolk L-H2O phase diagram, perimicellar concentrations of TCDC interacted with SUVs to form aggregates that were approximately twice the size of the SUVs. These were consistent with the formation of a dispersed hexagonal (rod-like) phase, which co-existed with aqueous bile salt (BS) monomers and either micellar or unilamellar SUV phases. Micellar TCDC completely solubilized SUVs as mixed micelles, putatively via this transient hexagonal phase. With modest Ch-supersaturation, dissolution was followed by the reemergence of a new vesicle population that coexisted metastably with mixed micelles. With high Ch supersaturation, TCDC extracted L and Ch molecules from SUVs in different proportions to form Ch-supersaturated mixed micelles and Ch

  5. [The 75-seleno-homocholic acid-taurine test (SeHCAT). A useful method for detecting the idiopathic malabsorption of bile salts in chronic functional diarrhea].

    PubMed

    D'Arienzo, A; Maurelli, L; Di Siervi, P; Panarese, A; Giannattasio, F; Scuotto, A; Squame, G; Mazzacca, G

    1989-07-15

    The 75-SeHCAT test has been used for identifying, within a group of patients with chronic functional diarrhea, a subgroup of cases with ileal bile acid malabsorption. Thirty-four subjects were studied: 10 healthy subjects and 24 patients with chronic functional diarrhea. Findings are expressed as percentage of basal abdominal radioactivity after 7 days. Normal values in our control subjects were: over 25% on day 4 and over 10% on day 7. Pathological results were found in 9 of 24 patients (37.5%) on day 4 and of 24 patients (41.7%) on day 7. A significant correlation was found between the percentages of retention on days 4 and 7 (p less than 0.001). In SeHCAT-positive patients cholestyramine administration led to clinical improvement. According to our experience, the SeHCAT test is a useful tool for the evaluation of bile acid malabsorption in the differential diagnosis of chronic functional diarrhea.

  6. Increasing taurine intake and taurine synthesis improves skeletal muscle function in the mdx mouse model for Duchenne muscular dystrophy.

    PubMed

    Terrill, Jessica R; Pinniger, Gavin J; Graves, Jamie A; Grounds, Miranda D; Arthur, Peter G

    2016-06-01

    Duchenne muscular dystrophy (DMD) is a fatal muscle wasting disease associated with increased inflammation, oxidative stress and myofibre necrosis. Cysteine precursor antioxidants such as N-acetyl cysteine (NAC) and l-2-oxothiazolidine-4-carboxylate (OTC) reduce dystropathology in the mdx mouse model for DMD, and we propose this is via increased synthesis of the amino acid taurine. We compared the capacity of OTC and taurine treatment to increase taurine content of mdx muscle, as well as effects on in vivo and ex vivo muscle function, inflammation and oxidative stress. Both treatments increased taurine in muscles, and improved many aspects of muscle function and reduced inflammation. Taurine treatment also reduced protein thiol oxidation and was overall more effective, as OTC treatment reduced body and muscle weight, suggesting some adverse effects of this drug. These data suggest that increasing dietary taurine is a better candidate for a therapeutic intervention for DMD. Duchenne muscular dystrophy (DMD) is a fatal muscle wasting disease for which there is no widely available cure. Whilst the mechanism of loss of muscle function in DMD and the mdx mouse model are not fully understood, disruptions in intracellular calcium homeostasis, inflammation and oxidative stress are implicated. We have shown that protein thiol oxidation is increased in mdx muscle, and that the indirect thiol antioxidant l-2-oxothiazolidine-4-carboxylate (OTC), which increases cysteine availability, decreases pathology and increases in vivo strength. We propose that the protective effects of OTC are a consequence of conversion of cysteine to taurine, which has itself been shown to be beneficial to mdx pathology. This study compares the efficacy of taurine with OTC in decreasing dystropathology in mdx mice by measuring in vivo and ex vivo contractile function and measurements of inflammation and protein thiol oxidation. Increasing the taurine content of mdx muscle improved both in vivo and ex

  7. Conversion of taurine into N-chlorotaurine (taurine chloramine) and sulphoacetaldehyde in response to oxidative stress.

    PubMed

    Cunningham, C; Tipton, K F; Dixon, H B

    1998-03-01

    N-Chlorotaurine (taurine chloramine), formed by treating taurine with hypochlorous acid, was shown to decompose to sulphoacetaldehyde with a first-order rate constant of 9.9+/-0.5 x 10(-4).h-1 at 37 degrees C in 0.1 M phosphate buffer, pH 7.4. Rat liver homogenates accelerated this decay in a process that was proportional to tissue-protein concentration and saturable, with maximum velocity (Vmax) and Km values of 0.28+/-0.01 nmol/min per mg of protein and 37+/-9 microM respectively. This activity was found to be lost on heat denaturation, but retained after dialysis. There was no detectable formation of sulphoacetaldehyde when taurine itself was incubated with the tissue homogenates under the same conditions. Activation of human neutrophils (1.67 x 10(6) cells/ml) with latex beads resulted in a respiratory burst of oxygen-radical production, the products of which were partially sequestered by 12.5 mM taurine. Under these conditions sulphoacetaldehyde was generated at a constant rate of 637+/-18 pmol/h per ml for over 7 h. A non-activated neutrophil suspension contained constant levels of 1.42+/-0.02 nmol/ml sulphoacetaldehyde, as did activated cells incubated in the absence of taurine, a basal level which may indicate a steady turnover of taurine in these cells. Such formation of chlorotaurine and its decay to the aldehyde may be the first steps in the metabolism of taurine to isethionate (2-hydroxyethanesulphonate) that has been demonstrated by various authors to occur in vivo.

  8. Downregulation of hepatic betaine:homocysteine methyltransferase (BHMT) expression in taurine-deficient mice is reversed by taurine supplementation in vivo

    PubMed Central

    Jurkowska, Halina; Niewiadomski, Julie; Hirschberger, Lawrence L.; Roman, Heather B.; Mazor, Kevin M.; Liu, Xiaojing; Locasale, Jason W.; Park, Eunkyue

    2016-01-01

    The cysteine dioxygenase (Cdo1)-null and the cysteine sulfinic acid decarboxylase (Csad)-null mouse are not able to synthesize hypotaurine/taurine by the cysteine/cysteine sulfinate pathway and have very low tissue taurine levels. These mice provide excellent models for studying the effects of taurine on biological processes. Using these mouse models, we identified betaine:homocysteine methyltransferase (BHMT) as a protein whose in vivo expression is robustly regulated by taurine. BHMT levels are low in liver of both Cdo1-null and Csad-null mice, but are restored to wild-type levels by dietary taurine supplementation. A lack of BHMT activity was indicated by an increase in the hepatic betaine level. In contrast to observations in liver of Cdo1-null and Csad-null mice, BHMT was not affected by taurine supplementation of primary hepatocytes from these mice. Likewise, CSAD abundance was not affected by taurine supplementation of primary hepatocytes, although it was robustly upregulated in liver of Cdo1-null and Csad-null mice and lowered to wild-type levels by dietary taurine supplementation. The mechanism by which taurine status affects hepatic CSAD and BHMT expression appears to be complex and to require factors outside of hepatocytes. Within the liver, mRNA abundance for both CSAD and BHMT was upregulated in parallel with protein levels, indicating regulation of BHMT and CSAD mRNA synthesis or degradation. PMID:26481005

  9. Transporter-targeted cholic acid-cytarabine conjugates for improved oral absorption.

    PubMed

    Zhang, Dong; Li, Dongpo; Shang, Lei; He, Zhonggui; Sun, Jin

    2016-09-10

    Cytarabine has a poor oral absorption due to its rapid deamination and poor membrane permeability. Bile acid transporters are highly expressed both in enterocytes and hepatocytes and to increase the oral bioavailability and investigate the potential application of cytarabine for liver cancers, a transporter- recognizing prodrug strategy was applied to design and synthesize four conjugates of cytarabine with cholic acid (CA), chenodeoxycholic acid (CDCA), hyodeoxycholic acid (HDCA) and ursodeoxycholic acid (UDCA). The anticancer activities against HepG2 cells were evaluated by MTT assay and the role of bile acid transporters during cellular transport was investigated in a competitive inhibition experiment. The in vitro and in vivo metabolic stabilities of these conjugates were studied in rat plasma and liver homogenates. Finally, an oral bioavailability study was conducted in rats. All the cholic acid-cytarabine conjugates (40μM) showed potent antiproliferative activities (up to 70%) against HepG2 cells after incubation for 48h. The addition of bile acids could markedly reduce the antitumor activities of these conjugates. The N(4)-ursodeoxycholic acid conjugate of cytarabine (compound 5) exhibited optimal stability (t1/2=90min) in vitro and a 3.9-fold prolonged half-life of cytarabine in vivo. More importantly, compound 5 increased the oral bioavailability 2-fold compared with cytarabine. The results of the present study suggest that the prodrug strategy based on the bile acid transporters is suitable for improving the oral absorption and the clinical application of cytarabine. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Synthesis of the 3-sulfates of N-acetylcysteine conjugated bile acids (BA-NACs) and their transient formation from BA-NACs and subsequent hydrolysis by a rat liver cytosolic fraction as shown by liquid chromatography/electrospray ionization-mass spectrometry.

    PubMed

    Mitamura, Kuniko; Sakai, Toshihiro; Nakai, Risa; Wakamiya, Tateaki; Iida, Takashi; Hofmann, Alan F; Ikegawa, Shigeo

    2011-06-01

    Previous work from this laboratory has reported the chemical synthesis of N-acetylcysteine (NAC) conjugates of natural bile acids (BAs) and shown that such novel conjugates can be formed in vivo in rats to which NAC has been administered. The subsequent fate of such novel conjugates is not known. One possible biotransformation is sulfation, a major pathway for BAs N-acylamidates in patients with cholestatic liver disease. Here, we report the chemical synthesis of the 3-sulfates of the S-acyl NAC conjugates of five natural BAs (cholic, chenodeoxycholic, deoxycholic, ursodeoxycholic, and lithocholic). We also measured the sulfation of N-acetylcysteine-natural bile acid (BA-NAC) conjugates when they were incubated with a rat liver cytosolic fraction. The chemical structures of the BA-NAC 3-sulfates were confirmed by proton nuclear magnetic resonance, as well as by means of electrospray ionization-linear ion trap mass spectrometry with negative-ion detection. Upon collision-induced dissociation of singly and doubly charged deprotonated molecules, structurally informative product ions were observed. Using a triple-stage quadrupole instrument, selected reaction monitoring analyses by monitoring characteristic transition ions allowed the achievement of a highly sensitive and specific assay. When BA-NACs were incubated with a rat liver cytosolic fraction to which 3'-phosphoadenosine 5'-phosphosulfate was added, sulfation occurred, but the dominant reaction was hydrolysis of the S-acyl linkage to form the unconjugated BAs. Subsequent sulfation occurred at C-3 on the unconjugated BAs that had been formed from the BA-NACs. Such sulfation was proportional to the hydrophobicity of the unconjugated bile acid. Thus, NAC conjugates of BAs as well as their C-3 sulfates if formed in vivo are rapidly hydrolyzed by cytosolic enzymes.

  11. Bile salt kinetics in cystic fibrosis: influence of pancreatic enzyme replacement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watkins, J.B.; Tercyak, A.M.; Szczepanik, P.

    1977-01-01

    Bile acid kinetics was investigated by stable isotope dilution technique in 6 children (ages 3/sup 1///sub 2/ months to 4/sup 1///sub 2/ years) with previously untreated cystic fibrosis. All of the patients had clinical and laboratory evidence of malabsorption, normal intestinal mucosal function, as judged by glucose absorption, intestinal histology, disaccharidase levels, and normally functioning gallbladders. The children were maintained on a constant diet throughout the study period; fat intake averaged 4.2 g per kg per day. Before administration of pancreatic enzyme replacement, fat excretion equalled 50 +- 4% (mean +- SE) of intake and was reduced to 20 +-more » 1.0% of intake after therapy. Total bile acid pool size nearly doubled during enzyme replacement from 379 +- 32 ..mu..moles per kg to 620 +- 36 ..mu..moles per kg with secondary bile acids comprising 57% of the total pool before therapy and 40% after therapy. The data indicate that both primary and secondary bile acids are conserved within the enterohepatic circulation during enzyme therapy, and that the mechanism for the regulation of hepatic bile acid synthesis is intact in cystic fibrosis. However, the demonstration that large amounts of bile acid continue to be excreted during therapy suggests that interruption of the enterohepatic circulation continues and that deficiencies of the intraluminal phase may persist during enzyme therapy in this disease.« less

  12. Characterization of biliary conjugates of 4,4'-methylenedianiline in male versus female rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Kan; Cole, Richard B.; Santa Cruz, Vicente

    2008-10-15

    4,4'-Methylenedianiline (4,4'-diaminodiphenylmethane; DAPM) is an aromatic diamine used in the production of numerous polyurethane foams and epoxy resins. Previous studies in rats revealed that DAPM initially injures biliary epithelial cells of the liver, that the toxicity is greater in female than in male rats, and that the toxic metabolites of DAPM are excreted into bile. Since male and female rats exhibit differences in the expression of both phase I and phase II enzymes, our hypothesis was that female rats either metabolize DAPM to more toxic metabolites or have a decreased capacity to conjugate metabolites to less toxic intermediates. Our objectivemore » was thus to isolate, characterize, and quantify DAPM metabolites excreted into bile in both male and female bile duct-cannulated Sprague Dawley rats. The rats were gavaged with [{sup 14}C]-DAPM, and the collected bile was subjected to reversed-phase HPLC with radioisotope detection. Peaks eluting from HPLC were collected and analyzed using electrospray MS and NMR spectroscopy. HPLC analysis indicated numerous metabolites in both sexes, but male rats excreted greater amounts of glutathione and glucuronide conjugates than females. Electrospray MS and NMR spectra of HPLC fractions revealed that the most prominent metabolite found in bile of both sexes was a glutathione conjugate of an imine metabolite of a 4'-nitroso-DAPM. Seven other metabolites were identified, including acetylated, cysteinyl-glycine, glutamyl-cysteine, glycine, and glucuronide conjugates. While our prior studies demonstrated increased covalent binding of DAPM in the liver and bile of female compared to male rats, in these studies, SDS-PAGE with autoradiography revealed 4-5 radiolabeled protein bands in the bile of rats treated with [{sup 14}C]-DAPM. In addition, these bands were much more prominent in female than in male rats. These studies thus suggest that a plausible mechanism for the increased sensitivity of female rats to DAPM toxicity

  13. SeHCAT absorption: a simple test of ileal dysfunction.

    PubMed

    Fagan, E A; Chadwick, V S; Baird, I M

    1983-01-01

    A new selenium-labelled synthetic bile salt SeHCAT (taurine conjugate of 23-[75Se]-25-homocholic acid) was assessed as a test of ileal dysfunction in 20 patients with inflammatory bowel disease (IBD). Whole body retention of SeHCAT was compared with tests of vitamin B12 absorption (Schilling test and whole body retention) and the cholylglycine-1-14C breath test and faecal isotope excretion. Clear differentiation, with no overlap was obtained between 10 normal subjects and patients with ileal disease/resection in the SeHCAT 7-day retention results. The Schilling test was more sensitive; enabling discrimination between patients with limited and extensive ileal disease/resection. An unexpected rise in SeHCAT retention was observed in patients with colonic IBD. The 7-day SeHCAT retention is a safe, simple screening test for ileal dysfunction and has practical advantages compared with the Schilling test.

  14. Characterization of taurine as inhibitor of sodium glucose transporter.

    PubMed

    Kim, Ha Won; Lee, Alexander John; You, Seungkwon; Park, Taesun; Lee, Dong Hee

    2006-01-01

    The most characterized roles of taurine include osmoregulator and membrane-stabilizing activities. However, much remains to be understood about its role in human physiology concerning its anti-hyperglycemic effect. Studies indicate that taurine-supplemented diet helps alleviate hyperglycemia or insulin resistance. This hypoglycemic effect has been postulated as taurine helping to increase the excretion of cholesterol. Alternatively, this study investigated the effect of taurine on glucose transporter using heterologous expression of sodium-glucose transporter-1 (SGLT-1). SGLT-1 was expressed in Xenopus oocytes and the effect of taurine on the expressed SGLT-1 was analyzed utilizing 2-deoxy-D-glucose (2-DOG) uptake and voltage clamp studies. In the oocytes expressing SGLT-1, taurine was shown to inhibit SGLT-1 activity compared to the non-treated controls in a dose-dependent manner. In the presence of taurine, the glucose uptake was greatly inhibited and the glucose-generated current was significantly inhibited. Synthetic taurine analogs were also shown to be effective in inhibiting SGLT-1 activity in a manner comparable to taurine. These effects might offer a promising opportunity in designing functional foods with anti-hyperglycemic potential by supplementing taurine and its analogs to the diet.

  15. Multifaceted applications of bile salts in pharmacy: an emphasis on nanomedicine

    PubMed Central

    Elnaggar, Yosra SR

    2015-01-01

    The human body has long provided pharmaceutical science with biomaterials of interesting applications. Bile salts (BSs) are biomaterials reminiscent of traditional surfactants with peculiar structure and self-assembled topologies. In the pharmaceutical field, BSs were employed on the basis of two different concepts. The first concept exploited BSs’ metabolic and homeostatic functions in disease modulation, whereas the second one utilized BSs’ potential to modify drug-delivery characteristics, which recently involved nanotechnology. This review is the first to gather major pharmaceutical applications of BSs from endogenous organotropism up to integration into nanomedicine, with a greater focus on the latter domain. Endogenous applications highlighted the role of BS in modulating hypercholesterolemia and cancer therapy in view of enterohepatic circulation. In addition, recent BS-integrated nanomedicines have been surveyed, chiefly size-tunable cholate nanoparticles, BS-lecithin mixed micelles, bilosomes, probilosomes, and surface-engineered bilosomes. A greater emphasis has been laid on nanosystems for vaccine and cancer therapy. The comparative advantages of BS-integrated nanomedicines over conventional nanocarriers have been noted. Paradoxical effects, current pitfalls, future perspectives, and opinions have also been outlined. PMID:26109855

  16. The effect of taurine and β-alanine supplementation on taurine transporter protein and fatigue resistance in skeletal muscle from mdx mice.

    PubMed

    Horvath, Deanna M; Murphy, Robyn M; Mollica, Janelle P; Hayes, Alan; Goodman, Craig A

    2016-11-01

    This study investigated the effect of taurine and β-alanine supplementation on muscle function and muscle taurine transporter (TauT) protein expression in mdx mice. Wild-type (WT) and mdx mice (5 months) were supplemented with taurine or β-alanine for 4 weeks, after which in vitro contractile properties, fatigue resistance and force recovery, and the expression of the TauT protein and proteins involved in excitation-contraction (E-C) coupling were examined in fast-twitch muscle. There was no difference in basal TauT protein expression or basal taurine content between mdx than WT muscle. Supplementation with taurine and β-alanine increased and reduced taurine content, respectively, in muscle from WT and mdx mice but had no effect of TauT protein. Taurine supplementation reduced body and muscle mass, and enhanced fatigue resistance and force recovery in mdx muscle. β-Alanine supplementation enhanced fatigue resistance in WT and mdx muscle. There was no difference in the basal expression of key E-C coupling proteins [ryanodine receptor 1 (RyR1), dihydropyridine receptor (DHPR), sarco(endo)plasmic reticulum Ca 2+ -ATPase 1 (SERCA1) or calsequestrin 1 (CSQ1)] between WT and mdx mice, and the expression of these proteins was not altered by taurine or β-alanine supplementation. These findings suggest that TauT protein expression is relatively insensitive to changes in muscle taurine content in WT and mdx mice, and that taurine and β-alanine supplementation may be viable therapeutic strategies to improve fatigue resistance of dystrophic skeletal muscle.

  17. Development of a Bile Acid-Based Newborn Screen for Niemann-Pick C Disease

    PubMed Central

    Jiang, Xuntian; Sidhu, Rohini; Mydock, Laurel; Hsu, Fong-Fu; Covey, Douglas F.; Scherrer, David E.; Earley, Brian; Gale, Sarah E.; Farhat, Nicole Y.; Porter, Forbes D.; Dietzen, Dennis J.; Orsini, Joseph J.; Berry-Kravis, Elizabeth; Zhang, Xiaokui; Reunert, Janice; Marquardt, Thorsten; Runz, Heiko; Giugliani, Roberto; Schaffer, Jean E.; Ory, Daniel S.

    2017-01-01

    Niemann-Pick disease type C (NPC) is a fatal, neurodegenerative, cholesterol storage disorder. With new therapeutics in clinical trials, it is imperative to improve diagnostics and facilitate early intervention. We used metabolomic profiling to identify potential markers and discovered three unknown bile acids that were increased in plasma from NPC but not control subjects. The bile acids most elevated in the NPC subjects were identified as 3β,5α,6β-trihydroxycholanic acid and its glycine conjugate, both of which were shown to be metabolites of cholestane-3β,5α,6β-triol, an oxysterol elevated in NPC. A high-throughput, mass spectrometry-based method was developed and validated to measure the glycine-conjugated bile acid in dried blood spots. Analysis of dried blood spots from 4992 controls, 134 NPC carriers, and 44 NPC subjects provided 100% sensitivity and specificity in the study samples. Quantification of the bile acid in dried blood spots, therefore, provides the basis for a newborn screen for NPC that is ready for piloting in newborn screening programs. PMID:27147587

  18. Selective detection of carbohydrates and their peptide conjugates by ESI-MS using synthetic quaternary ammonium salt derivatives of phenylboronic acids.

    PubMed

    Kijewska, Monika; Kuc, Adam; Kluczyk, Alicja; Waliczek, Mateusz; Man-Kupisinska, Aleksandra; Lukasiewicz, Jolanta; Stefanowicz, Piotr; Szewczuk, Zbigniew

    2014-06-01

    We present new tags based on the derivatives of phenylboronic acid and apply them for the selective detection of sugars and peptide-sugar conjugates in mass spectrometry. We investigated the binding of phenylboronic acid and its quaternary ammonium salt (QAS) derivatives to carbohydrates and peptide-derived Amadori products by HR-MS and MS/MS experiments. The formation of complexes between sugar or sugar-peptide conjugates and synthetic tags was confirmed on the basis of the unique isotopic distribution resulting from the presence of boron atom. Moreover, incorporation of a quaternary ammonium salt dramatically improved the efficiency of ionization in mass spectrometry. It was found that the formation of a complex with phenylboronic acid stabilizes the sugar moiety in glycated peptides, resulting in simplification of the fragmentation pattern of peptide-derived Amadori products. The obtained results suggest that derivatization of phenylboronic acid as QAS is a promising method for sensitive ESI-MS detection of carbohydrates and their conjugates formed by non-enzymatic glycation or glycosylation.

  19. Selective Detection of Carbohydrates and Their Peptide Conjugates by ESI-MS Using Synthetic Quaternary Ammonium Salt Derivatives of Phenylboronic Acids

    NASA Astrophysics Data System (ADS)

    Kijewska, Monika; Kuc, Adam; Kluczyk, Alicja; Waliczek, Mateusz; Man-Kupisinska, Aleksandra; Lukasiewicz, Jolanta; Stefanowicz, Piotr; Szewczuk, Zbigniew

    2014-06-01

    We present new tags based on the derivatives of phenylboronic acid and apply them for the selective detection of sugars and peptide-sugar conjugates in mass spectrometry. We investigated the binding of phenylboronic acid and its quaternary ammonium salt (QAS) derivatives to carbohydrates and peptide-derived Amadori products by HR-MS and MS/MS experiments. The formation of complexes between sugar or sugar-peptide conjugates and synthetic tags was confirmed on the basis of the unique isotopic distribution resulting from the presence of boron atom. Moreover, incorporation of a quaternary ammonium salt dramatically improved the efficiency of ionization in mass spectrometry. It was found that the formation of a complex with phenylboronic acid stabilizes the sugar moiety in glycated peptides, resulting in simplification of the fragmentation pattern of peptide-derived Amadori products. The obtained results suggest that derivatization of phenylboronic acid as QAS is a promising method for sensitive ESI-MS detection of carbohydrates and their conjugates formed by non-enzymatic glycation or glycosylation.

  20. Bile acid metabolism and signaling in cholestasis, inflammation and cancer

    PubMed Central

    Apte, Udayan

    2015-01-01

    Bile acids are synthesized from cholesterol in the liver. Some cytochrome P450 (CYP) enzymes play key roles in bile acid synthesis. Bile acids are physiological detergent molecules, so are highly cytotoxic. They undergo enterohepatic circulation and play important roles in generating bile flow and facilitating biliary secretion of endogenous metabolites and xenobiotics and intestinal absorption of dietary fats and lipid soluble vitamins. Bile acid synthesis, transport and pool size are therefore tightly regulated under physiological conditions. In cholestasis, impaired bile flow leads to accumulation of bile acids in the liver, causing hepatocyte and biliary injury and inflammation. Chronic cholestasis is associated with fibrosis, cirrhosis and eventually liver failure. Chronic cholestasis also increases the risk of developing hepatocellular or cholangiocellular carcinomas. Extensive research in the last two decades has shown that bile acids act as signaling molecules that regulate various cellular processes. The bile acid-activated nuclear receptors are ligand-activated transcriptional factors that play critical roles in the regulation of bile acid, drug and xenobiotic metabolism. In cholestasis, these bile acid-activated receptors regulate a network of genes involved in bile acid synthesis, conjugation, transport and metabolism to alleviate bile acid-induced inflammation and injury. Additionally, bile acids are known to regulate cell growth and proliferation, and altered bile acid levels in diseased conditions have been implicated in liver injury/regeneration and tumorigenesis. We will cover the mechanisms that regulate bile acid homeostasis and detoxification during cholestasis, and the roles of bile acids in the initiation and regulation of hepatic inflammation, regeneration and carcinogenesis. PMID:26233910

  1. Association between bile acid turnover and osteoporosis in postmenopausal women.

    PubMed

    Hanly, Ruth; Ryan, Nicola; Snelling, Hayley; Walker-Bone, Karen; Dizdarevic, Sabina; Peters, A Michael

    2013-06-01

    The intestinal absorption of vitamin D is linked to bile acid absorption. This link may be abnormal in patients with osteoporosis. The aim of this study was to investigate a possible relation between osteoporosis and bile acid turnover, measured as whole-body Se-75-HCAT retention (WBR), in postmenopausal women. Whole-body counts were recorded using an uncollimated gamma camera 3 h and 7 days after oral administration of Se-75-homocholic acid taurine (Se-75-HCAT) in 16 women aged 58-85 years with dual-photon X-ray absorptiometry (DEXA)-proven osteoporosis. WBR was expressed as physical decay-corrected counts at 7 days as a percentage of the counts at 3 h. Seven patients had unexplained diarrhoea. Six patients (five with diarrhoea) had WBR less than 19%. There was a significant difference in DEXA t-score between women with and without diarrhoea (P<0.02). There was a significant negative correlation (R s=-0.58; P<0.02) between WBR and alcohol consumption rated on a three-point scale: <1, 2-7 and >7 U/week. Our results indicate an association between osteoporosis and diarrhoea that may be the result of abnormal bile acid turnover. The role of alcohol requires further investigation.

  2. Two complementary liquid chromatography-tandem mass spectrometry (LC-MS/MS) methods to study the excretion and metabolic interaction of edaravone and taurine in rats.

    PubMed

    Tang, Dao-quan; Zheng, Xiao-xiao; Li, Yin-jie; Bian, Ting-ting; Yu, Yan-yan; Du, Qian; Yang, Dong-zhi; Jiang, Shui-shi

    2014-11-01

    In this study, two independent and complementary liquid chromatography-tandem mass spectrometry (LC-MS/MS) methods were respectively developed and validated for the determination of edaravone or taurine in rat urine, feces and bile after intravenous administration, using 3-methyl-l-p-tolyl-5-pyrazolone and sulfanilic acid as the internal standards (IS). Edaravone was separated on an Agilent Eclipse Plus C18 column (100×2.1 mm, 3.5 μm) using methanol and water (containing 5 mM ammonium formate and 0.02% formic acid) as mobile phase, while taurine was performed on a Waters Atlantis HILIC Silica column (150×2.1 mm, 3 μm) using acetonitrile and water (containing 5mM ammonium formate and 0.2% formic acid) as mobile phase. The mass analysis was performed in a Triple Quadrupole mass spectrometer via multiple reaction monitoring (MRM) with negative ionization mode. The optimized mass transition ion pairs (m/z) for quantification were 173.1→92.2 and 187.2→106.0 for edaravone and its IS, 124.1→80.0 and 172.0→80.0 for taurine and its IS, respectively. The validated methods have been successfully applied to the excretion and metabolism interaction study of edaravone and taurine in rats after independent intravenous administration and co-administration with a single dose. The results demonstrated that there were no significant alternations on the metabolism and cumulative excretion rate of edaravone and taurine, implying that the proposed combination therapy was pharmacologically viable. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Taurine chloramine: a possible oxidant reservoir.

    PubMed

    Ogino, Tetsuya; Than, Tin Aung; Hosako, Mutsumi; Ozaki, Michitaka; Omori, Masako; Okada, Shigeru

    2009-01-01

    Taurine is abundant in polymorphonuclear leukocytes (PMNs) where it reacts with PMN-derived hypochlorous acid to form taurine chloramine (Tau-NHCl), a substance that does not readily cross the cell membrane. When PMNs were stimulated in PBS lacking taurine, extracellular oxidant concentration was low, but the concentration increased 3-4 fold when 15 mM taurine was added, indicating that taurine lowers oxidant levels inside the cell. When Tau-NHCl was added to Jurkat cells in suspension, its half life was about 75 min. In contrast, membrane-permeable ammonia mono-chloramine (NH2Cl) has a half life of only 6 min. Accordingly, NH2Cl oxidizes cytosolic proteins, such as IkappaB, and inhibits NF-kappaB activation, whereas Tau-NHCl exhibits no comparable effect. However, when NH4+ was added to the medium, Tau-NHCl oxidizes IkappaB and inhibits NF-kappaB activation, probably through oxidant transfer to NH4+ leading to NH2Cl formation. These results indicate that Tau-NHCl can serve as an oxidant reservoir, exhibiting either delayed oxidant effects or acting as an oxidant at a distant site.

  4. Effects of graded taurine levels on juvenile cobia

    USDA-ARS?s Scientific Manuscript database

    Taurine, which has multiple important physiological roles in teleost fish and mammals, is an amino acid not found in alternative protein sources not derived from animals. Although taurine is found in fish-meal-based feeds, its high water solubility leads to lower taurine levels in reduction-process-...

  5. Increased expression of clp genes in Lactobacillus delbrueckii UFV H2b20 exposed to acid stress and bile salts.

    PubMed

    Ferreira, A B; De Oliveira, M N V; Freitas, F S; Alfenas-Zerbini, P; Da Silva, D F; De Queiroz, M V; Borges, A C; De Moraes, C A

    2013-12-01

    The ability to survive in harsh environments is an important criterion to select potential probiotics strains. The objective of this study was to identify and carry out phylogenetic and expression analysis by quantitative real-time PCR of the clpP, clpE, clpL and clpX genes in the probiotic strain Lactobacillus delbrueckii UFV H2b20 exposed to the conditions prevailing in the gastrointestinal tract (GIT). Phylogenetic trees reconstructed by Bayesian inference showed that the L. delbrueckii UFV H2b20 clpP, clpL and clpE genes and the ones from L. delbrueckii ATCC 11842 were grouped. The exposure of cells to MRS broth of pH 3.5 for 30 and 60 min resulted in an increased expression of the four genes. Exposure of the L. delbrueckii UFV H2b20 cells for 30 and 60 min to MRS broth containing 0.1% bile salts increased the expression of the clpP and clpE genes, while the expression level of the clpL and clpX genes increased only after 30 min of exposure. The involvement of the studied genes in the responses to acid stress and bile salts suggests a possible central role of these genes in the survival of L. delbrueckii UFV H2b20 during the passage through the GIT, a characteristic necessary for probiotic strains.

  6. In Vitro Modeling of Bile Acid Processing by the Human Fecal Microbiota.

    PubMed

    Martin, Glynn; Kolida, Sofia; Marchesi, Julian R; Want, Elizabeth; Sidaway, James E; Swann, Jonathan R

    2018-01-01

    Bile acids, the products of concerted host and gut bacterial metabolism, have important signaling functions within the mammalian metabolic system and a key role in digestion. Given the complexity of the mega-variate bacterial community residing in the gastrointestinal tract, studying associations between individual bacterial genera and bile acid processing remains a challenge. Here, we present a novel in vitro approach to determine the bacterial genera associated with the metabolism of different primary bile acids and their potential to contribute to inter-individual variation in this processing. Anaerobic, pH-controlled batch cultures were inoculated with human fecal microbiota and treated with individual conjugated primary bile acids (500 μg/ml) to serve as the sole substrate for 24 h. Samples were collected throughout the experiment (0, 5, 10, and 24 h) and the bacterial composition was determined by 16S rRNA gene sequencing and the bile acid signatures were characterized using a targeted ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) approach. Data fusion techniques were used to identify statistical bacterial-metabolic linkages. An increase in gut bacteria associated bile acids was observed over 24 h with variation in the rate of bile acid metabolism across the volunteers ( n = 7). Correlation analysis identified a significant association between the Gemmiger genus and the deconjugation of glycine conjugated bile acids while the deconjugation of taurocholic acid was associated with bacteria from the Eubacterium and Ruminococcus genera. A positive correlation between Dorea and deoxycholic acid production suggest a potential role for this genus in cholic acid dehydroxylation. A slower deconjugation of taurocholic acid was observed in individuals with a greater abundance of Parasutterella and Akkermansia . This work demonstrates the utility of integrating compositional (metataxonomics) and functional (metabonomics) systems biology approaches

  7. Content and traffic of taurine in hippocampal reactive astrocytes.

    PubMed

    Junyent, Fèlix; De Lemos, Luisa; Utrera, Juana; Paco, Sonia; Aguado, Fernando; Camins, Antoni; Pallàs, Mercè; Romero, Rafael; Auladell, Carme

    2011-02-01

    Taurine is one of the most abundant free amino acids in the mammalian central nervous system, where it is crucial to proper development. Moreover, taurine acts as a neuroprotectant in various diseases; in epilepsy, for example, it has the capacity to reduce or abolish seizures. In the present study, taurine levels has been determine in mice treated with Kainic Acid (KA) and results showed an increase of this amino acid in hippocampus but not in whole brain after 3 and 7 days of KA treatment. This increase occurs when gliosis was observed. Moreover, taurine transporter (TAUT) was found in astrocytes 3 and 7 days after KA treatment, together with an increase in cysteine sulfinic acid decarboxylase (csd) mRNA, that codifies for the rate-limiting enzyme of taurine synthesis, in the hippocampus at the same times after KA treatment. Glial cultures enriched in astrocytes were developed to demonstrate that these cells are responsible for changes in taurine levels after an injury to the brain. The cultures were treated with proinflammatory cytokines to reproduce gliosis. In this experimental model, an increase in the immunoreactivity of GFAP was observed, together with an increase in CSD and taurine levels. Moreover, an alteration in the taurine uptake-release kinetics was detected in glial cells treated with cytokine. All data obtained indicate that astrocytes could play a key role in taurine level changes induced by neuronal damage. More studies are, therefore, needed to clarify the role taurine has in relation to neuronal death and repair. Copyright © 2009 Wiley-Liss, Inc.

  8. Novel type of ornithine-glutathione double conjugate excreted as a major metabolite into the bile of rats administered clebopride.

    PubMed

    Ishizuka, T; Komiya, I; Hiratsuka, A; Watabe, T

    1990-06-01

    Rats orally given radioactive Clebopride [[14C]CP; N-(1'-benzyl-4'-piperidyl)-2-[14C]methoxy-4-amino-5-chlorobenzamide++ +], an antiulcer agent, excreted a novel type of ornithine (Orn)-GSH double conjugate in the bile as a major metabolite [( 14C]BMCP), corresponding to 18% of the dose. The present study provides the first evidence for Orn conjugation of a xenobiotic in mammals and demonstrates that the structure of the radioactive conjugate differs fundamentally from those known in birds and reptiles. The structure of the biliary metabolite, [14C]BMCP, purified to homogeneity by silica gel thin layer and reverse phase high pressure liquid chromatography, was elucidated as S-[2-ornithylamino-4-[14C]methoxy-5-(1'-methyl-4'-piperidylamin o) carboxyphenyl]glutathione, based mainly on the following facts: 1) BMCP showed a protonated molecular ion (M + H)+ peak at m/z 683 in the secondary ion mass spectrum and 2) [14C]BMCP afforded Orn, glutamic acid, glycine, S-(2-amino-4-[14C]methoxy-5-carboxyphenyl)cysteine [( 14C]AMCC), and 1-methyl-4-aminopiperidine (MAP) quantitatively, in an equal molar ratio, by complete hydrolysis with peptidase. Thus, BMCP was a metabolite with three enzymatically hydrolyzable amide bonds in addition to the one existing originally in the parent structure of the drug, which produces MAP by peptic digestion. Of the three additional amide bonds of BMCP, one was a novel type of bond formed by condensation of the alpha-carboxylic acid group of Orn with the primary aromatic amino group of the drug and the other two were in the S-glutathionyl residue, substituted for the chlorine atom vicinal to the Orn-conjugating primary amino group in the aromatic ring and affording glutamic acid, glycine, and the S-cysteine conjugate AMCC by hydrolysis of BMCP with the peptidase. Substitution of a methyl group for the benzyl group at the piperidine ring nitrogen atom, leading to the formation of MAP by peptic digestion, also occurred during metabolism of CP to

  9. Structural determinants of ligand binding in the ternary complex of human ileal bile acid binding protein with glycocholate and glycochenodeoxycholate obtained from solution NMR.

    PubMed

    Horváth, Gergő; Bencsura, Ákos; Simon, Ágnes; Tochtrop, Gregory P; DeKoster, Gregory T; Covey, Douglas F; Cistola, David P; Toke, Orsolya

    2016-02-01

    Besides aiding digestion, bile salts are important signal molecules exhibiting a regulatory role in metabolic processes. Human ileal bile acid binding protein (I-BABP) is an intracellular carrier of bile salts in the epithelial cells of the distal small intestine and has a key role in the enterohepatic circulation of bile salts. Positive binding cooperativity combined with site selectivity of glycocholate and glycochenodeoxycholate, the two most abundant bile salts in the human body, make human I-BABP a unique member of the family of intracellular lipid binding proteins. Solution NMR structure of the ternary complex of human I-BABP with glycocholate and glycochenodeoxycholate reveals an extensive network of hydrogen bonds and hydrophobic interactions stabilizing the bound bile salts. Conformational changes accompanying bile salt binding affects four major regions in the protein including the C/D, E/F and G/H loops as well as the helical segment. Most of these protein regions coincide with a previously described network of millisecond time scale fluctuations in the apo protein, a motion absent in the bound state. Comparison of the heterotypic doubly ligated complex with the unligated form provides further evidence of a conformation selection mechanism of ligand entry. Structural and dynamic aspects of human I-BABP-bile salt interaction are discussed and compared with characteristics of ligand binding in other members of the intracellular lipid binding protein family. The coordinates of the 10 lowest energy structures of the human I-BABP : GCDA : GCA complex as well as the distance restraints used to calculate the final ensemble have been deposited in the Brookhaven Protein Data Bank with accession number 2MM3. © 2015 FEBS.

  10. Taurine as osmoregulator and neuromodulator in the brain.

    PubMed

    Oja, S S; Saransaari, P

    1996-06-01

    Taurine has been assumed to function as an osmoregulator and neuromodulator in the brain. The pertinent studies are now reviewed in an attempt to formulate a unifying hypothesis as to how taurine could simultaneously act in both roles. Neuromodulatory actions of taurine may also underlie its protective effects against neuronal overexcitation and glutamate agonist-induced neurotoxicity.

  11. Effects of Taurine Supplementation on Neuronal Excitability and Glucose Homeostasis.

    PubMed

    El Idrissi, Abdeslem; El Hilali, Fatiha; Rotondo, Salvatore; Sidime, Francoise

    2017-01-01

    In this study we examined the role of chronic taurine supplementation on plasma glucose homeostasis and brain excitability through activation of the insulin receptor. FVB/NJ male mice were supplemented with taurine in drinking water (0.05% w/v) for 4 weeks and subjected to a glucose tolerance test (7.5 mg/kg BW) after 12 h fasting. We found that taurine-fed mice were slightly hypoglycemic prior to glucose injection and showed significantly reduced plasma glucose at 30 and 60 min post-glucose injection when compared to control mice. Previously, we reported that taurine supplementation induces biochemical changes that target the GABAergic system. Those studies show that taurine-fed mice are hyperexcitable, have reduced GABA A receptors expression and increased GAD and somatostatin expression in the brain. In this study, we found that taurine-fed mice had a significant increase in insulin receptor (IR) immuno-reactivity in the pancreas and all brain regions examined. At the mRNA level, we found that the IR showed differential regional expression. Surprisingly, we found that neurons express the gene for insulin and that taurine had a significant role in regulating insulin gene expression. We propose that increased insulin production and secretion in taurine-fed mice cause an increase activation of the central IR and may be partially responsible for the increased neuronal excitability observed in taurine supplemented mice. Furthermore, the high levels of neuronal insulin expression and its regulation by taurine implicates taurine in the regulation of metabolic homeostasis.

  12. [The clinical importance of physiopathological studies of the bile salts performed using the gamma-emitting bile acid SeHCAT].

    PubMed

    Ferraris, R; Fracchia, M; Galatola, G

    1992-01-01

    The availability of the gamma-labelled bile acid 75SeHCAT, that allows a non-invasive assessment of the enterohepatic circulation of bile acids, has prompted in the last 10 years the implementation of several studies involving wide series of normal subjects and patients with various organic and functional bowel disorders. The clinical indications for performing a SeHCAT test have been clearly defined: the test can identify with high accuracy, in the setting of the irritable bowel syndrome, the patients with bile acid malabsorption that can be confidently and successfully treated with cholestyramine; it can also assess whether, and to what extent, the diarrhoea presenting in patients with intestinal organic disorders is due to bile acid malabsorption, permitting an optimal therapeutic strategy to be designed. The parameters of the hepatic handling of SeHCAT after bolus intravenous administration have been characterized in normals, and studies on various chronic hepatic disorders are now in progress. Interesting results are emerging from studies performed in patients with chronic non-obstructive cholestatic disease, where a specific defect in the excretion rate of SeHCAT is present: these studies may cast more light on the abnormalities of bile secretion and on the mechanism of action of drugs used to treat this condition, forming the rationale for the use of intravenous SeHCAT for hepatobiliary dynamic scintigraphy as a sophisticated liver function test. In conclusion, the SeHCAT test has become an important diagnostic tool for the gastroenterologist studying the diarrhoea, and awaits more studies to be used also by the hepatologist. The relatively long physical half-life of 75Se (180 days), preventing a wider use of the test, could theoretically be overcome by the synthesis of a similar gamma-labelled bile acid with a shorter half-life.

  13. Intracerebroventricular administration of taurine impairs learning and memory in rats.

    PubMed

    Ito, Koichi; Arko, Matevž; Kawaguchi, Tomohiro; Kikusui, Takefumi; Kuwahara, Masayoshi; Tsubone, Hirokazu

    2012-03-01

    Taurine is a semi-essential amino acid widely distributed in the body and we take in it from a wide range of nutritive-tonic drinks to improve health. To date, we have elucidated that oral supplementation of taurine does not affect learning and memory in the rat. However, there are few studies concerning the direct effects of taurine in the brain at the behavior level. In this study, we intracerebroventricularly administered taurine to rats and aimed to elucidate the acute effects on learning and memory using the Morris water maze method. Escape latency, swim distance, and distance to zone, which is the integral of the distance between the rats and the platform for every 0.16 seconds, were adopted as parameters of the ability of learning and memory. We also tried to evaluate the effect of intraperitoneal taurine administration. Escape latency, swim distance, and distance to zone were significantly longer in the intracerebroventricularly taurine-administered rats than in the saline-administered rats. Mean swimming velocity was comparable between these two groups, although the physical performance was improved by taurine administration. Probe trials showed that the manner of the rats in finding the platform was comparable. In contrast, no significant differences were found between the intraperitoneally taurine-administered rats and the saline-administered rats. These results indicate that taurine administered directly into the brain ventricle suppresses and delays the ability of learning and memory in rats. In contrast, it is implied that taurine administered peripherally was not involved in learning and memory.

  14. Interactions between gut bacteria and bile in health and disease.

    PubMed

    Long, Sarah L; Gahan, Cormac G M; Joyce, Susan A

    2017-08-01

    Bile acids are synthesized from cholesterol in the liver and released into the intestine to aid the digestion of dietary lipids. The host enzymes that contribute to bile acid synthesis in the liver and the regulatory pathways that influence the composition of the total bile acid pool in the host have been well established. In addition, the gut microbiota provides unique contributions to the diversity of bile acids in the bile acid pool. Gut microbial enzymes contribute significantly to bile acid metabolism through deconjugation and dehydroxylation reactions to generate unconjugated bile acids and secondary bile acids. These microbial enzymes (which include bile salt hydrolase (BSH) and bile acid-inducible (BAI) enzymes) are essential for bile acid homeostasis in the host and represent a vital contribution of the gut microbiome to host health. Perturbation of the gut microbiota in disease states may therefore significantly influence bile acid signatures in the host, especially in the context of gastrointestinal or systemic disease. Given that bile acids are ligands for host cell receptors (including the FXR, TGR5 and Vitamin D Receptor) alterations to microbial enzymes and associated changes to bile acid signatures have significant consequences for the host. In this review we examine the contribution of microbial enzymes to the process of bile acid metabolism in the host and discuss the implications for microbe-host signalling in the context of C. difficile infection, inflammatory bowel disease and other disease states. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Taurine reduces inflammatory responses after spinal cord injury.

    PubMed

    Nakajima, Yasuhiro; Osuka, Koji; Seki, Yukio; Gupta, Ramesh C; Hara, Masahito; Takayasu, Masakazu; Wakabayashi, Toshihiko

    2010-02-01

    Taurine has multiple functions in the central nervous system (CNS), serving as an osmoregulator, antioxidant, inhibitory neuromodulator, and regulator of intracellular Ca(2+) flux. Since the role of taurine in traumatic spinal cord injury (SCI) is not fully understood, the present study was conducted with C57 black/6 mice (18-20 g) who underwent severe SCI at the Th-8 level using a weight compression device. Taurine was injected intraperitoneally at doses of 25, 80, 250, and 800 mg/kg within 30 min after SCI. Controls were injected with saline. The contusional cord segments were removed 6 h after SCI, and concentrations of interleukin-6 (IL-6) and myeloperoxidase (MPO) were measured using ELISA kits. Phosphorylation of STAT3, which is activated by IL-6, and expression of inducible cyclooxygenase-2 (COX-2) were also compared between the taurine treatment group (250 mg/kg) and the control group by Western blot analysis. Morphological changes were evaluated with H&E-stained sections. Taurine significantly decreased IL-6 and MPO levels in a dose-dependent manner, significantly reducing the phosphorylation of STAT3 and expression of COX-2 after SCI compared to controls. A reduced accumulation of neutrophils, especially in the subarachnoid spaces, and secondary degenerative changes in gray matter were also noted, and motor disturbances were significantly attenuated with taurine treatment (250 mg/kg). These findings indicate that taurine has anti-inflammatory effects against SCI, and may play a neuroprotective role against secondary damage, and thus it may have therapeutic potential.

  16. Bile Salt-like Dienones Having a Novel Skeleton or a Rare Substitution Pattern Function as Chemical Cues in Adult Sea Lamprey.

    PubMed

    Li, Ke; Scott, Anne M; Brant, Cory O; Fissette, Skye D; Riedy, Joseph J; Hoye, Thomas R; Li, Weiming

    2017-09-01

    Two novel sulfated bile salt-like dienones, featuring either a unique, rearranged side chain or a rare cis-11,12-diol on the steroidal C-ring, herein named petromyzene A (1) and B (2), respectively, were isolated from water conditioned with spawning male sea lamprey (Petromyzon marinus; a jawless vertebrate animal). The structures of these natural products were elucidated by mass spectrometry and NMR spectroscopy. Petromyzenes A and B exhibited high olfactory potency for adult sea lamprey and strong behavioral attraction for spawning females.

  17. EXOCRINE FUNCTION OF THE LIVER IN RATS WITH EXPOSURE TO CОRVITIN.

    PubMed

    Vovkun, T V; Yanchuk, P I; Shtanova, L Y; Vesеlskyу, S P; Shalamaу, A S

    In acute experiments on rats with cannulated bile duct we studied the effect of Corvitin, water-soluble analogue of quercetin, on secretion of bile. Intraportal administration of the test compound at doses of 2,5; 5 and 10 mg/kg resulted in a significant increase in the volume of secreted bile by 20,9, 31,2 and 20,4%, respectively, as compared with the control. Using the method of thin layer chromatography it was established the mild stimulating effect of Corvitin on the processes of bile acids conjugation with taurine and glycine, especially when administered at a dose of 5 mg/kg. This flavonoid did not affect the concentration of glycocholic acid, however increased the content of glycochenodeoxycholic and glycodeoxycholic acids in the mixture between 15 to 35,1%. Regarding free bile acids, the concentration of cholic acid, chenodeoxycholic and deoxycholic acids in the mixture was increased significantly relative to control only after Corvitin application at dose 10 mg/ kg. In the first case – from 17,9 to 29,8%, in the second – from 25 to 65,4%. At the dose of 5 mg/kg, Corvitin significantly increased the ratio of bile cholates conjugation (maximum by 23,2%), whereas 10 mg/kg of the drug decreased this index by 27,0%. After administration of Corvitin, the hydroxylation ratio in all experimental groups differed little from the control: at the dose of 5 and 10 mg/kg this parameter decreased by 14%. Thus, Corvitin modulates exocrine function of the liver, causing an increase in bile secretion and concentration of different cholates, dose-dependently increasing or decreasing the effectiveness of multienzyme systems providing processes of bile acids conjugation in rats.

  18. Characteristics of basal taurine release in the rat striatum measured by microdialysis.

    PubMed

    Molchanova, S; Oja, S S; Saransaari, P

    2004-12-01

    Taurine is a sulfur-containing amino acid thought to be an osmoregulator, neurotransmitter or neuromodulator in the brain. Our objective was to establish how much taurine is released in the striatum and examine the mechanisms controlling extracellular taurine concentrations under resting conditions. The experiments were made on rats by microdialysis in vivo. Changes in taurine were compared with those in glutamate, glycine and the non-neuroactive amino acid threonine. Using the zero net flux approach we showed the extracellular concentration of taurine to be 25.2 +/- 5.1 muM. Glutamate was increased by tetrodotoxin and decreased by Ca2+ omission, glycine and threonine were not affected and both treatments increased extracellular taurine. The basal taurine release was increased by the taurine transport inhibitor guanidinoethanesulfonate and reduced by the anion channel blocker 4-acetamido-4'-isothiocyanatostilbene-2,2'-disulfonic acid.

  19. Taurine protects methamphetamine-induced developmental angiogenesis defect through antioxidant mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shao, Xue; Hu, Zhengtao; Hu, Chunyan

    Investigations have characterized addictive drug-induced developmental cardiovascular malformation in human, non-human primate and rodent. However, the underlying mechanism of malformation caused by drugs during pregnancy is still largely unknown, and preventive and therapeutic measures have been lacking. Using {sup 1}H NMR spectroscopy, we profiled the metabolites from human embryo endothelial cells exposed to methamphetamine (METH) and quantified a total of 226 peaks. We identified 11 metabolites modified robustly and found that taurine markedly increased. We then validated the hypothesis that this dramatic increase in taurine could attribute to its effect in inhibiting METH-induced developmental angiogenesis defect. Taurine supplement showed amore » more significant potential than other metabolites in protecting against METH-induced injury in endothelial cells. Taurine strongly attenuated METH-induced inhibition of proliferation and migration in endothelial cells. Furthermore, death rate and vessel abnormality of zebrafish embryos treated with METH were greatly reversed by taurine. In addition, taurine supplement caused a rapid decrease in reactive oxygen species generation and strongly attenuated the excitable arise of antioxidase activities in the beginning of METH exposure prophase. Dysregulations of NF-κB, p-ERK as well as Bax, which reflect apoptosis, cell cycle arrest and oxidative stress in vascular endothelium, were blocked by taurine. Our results provide the first evidence that taurine prevents METH-caused developmental angiogenesis defect through antioxidant mechanism. Taurine could serve as a potential therapeutic or preventive intervention of developmental vascular malformation for the pregnant women with drug use. Highlights: ► Metabonomics findings. ► Abnormal development. ► Dysregulations of key proteins.« less

  20. AP2 adaptor complex mediates bile salt export pump internalization and modulates its hepatocanalicular expression and transport function.

    PubMed

    Hayashi, Hisamitsu; Inamura, Kaori; Aida, Kensuke; Naoi, Sotaro; Horikawa, Reiko; Nagasaka, Hironori; Takatani, Tomozumi; Fukushima, Tamio; Hattori, Asami; Yabuki, Takashi; Horii, Ikuo; Sugiyama, Yuichi

    2012-06-01

    The bile salt export pump (BSEP) mediates the biliary excretion of bile salts and its dysfunction induces intrahepatic cholestasis. Reduced canalicular expression of BSEP resulting from the promotion of its internalization is one of the causes of this disease state. However, the molecular mechanism underlying BSEP internalization from the canalicular membrane (CM) remains unknown. We have shown previously that 4-phenylbutyrate (4PBA), a drug used for ornithine transcarbamylase deficiency (OTCD), inhibited internalization and subsequent degradation of cell-surface-resident BSEP. The current study found that 4PBA treatment decreased significantly the expression of α- and μ2-adaptin, both of which are subunits of the AP2 adaptor complex (AP2) that mediates clathrin-dependent endocytosis, in liver specimens from rats and patients with OTCD, and that BSEP has potential AP2 recognition motifs in its cytosolic region. Based on this, the role of AP2 in BSEP internalization was explored further. In vitro analysis with 3×FLAG-human BSEP-expressing HeLa cells and human sandwich-culture hepatocytes indicates that the impairment of AP2 function by RNA interference targeting of α-adaptin inhibits BSEP internalization from the plasma membrane and increases its cell-surface expression and transport function. Studies using immunostaining, coimmunoprecipitation, glutathione S-transferase pulldown assay, and time-lapse imaging show that AP2 interacts with BSEP at the CM through a tyrosine motif at the carboxyl terminus of BSEP and mediates BSEP internalization from the CM of hepatocytes. AP2 mediates the internalization and subsequent degradation of CM-resident BSEP through direct interaction with BSEP and thereby modulates the canalicular expression and transport function of BSEP. This information should be useful for understanding the pathogenesis of severe liver diseases associated with intrahepatic cholestasis. Copyright © 2012 American Association for the Study of Liver

  1. Microbiome-mediated bile acid modification: Role in intestinal drug absorption and metabolism.

    PubMed

    Enright, Elaine F; Griffin, Brendan T; Gahan, Cormac G M; Joyce, Susan A

    2018-04-13

    Once regarded obscure and underappreciated, the gut microbiota (the microbial communities colonizing the gastrointestinal tract) is gaining recognition as an influencer of many aspects of human health. Also increasingly apparent is the breadth of interindividual variation in these co-evolved microbial-gut associations, presenting novel quests to explore implications for disease and therapeutic response. In this respect, the unearthing of the drug-metabolizing capacity of the microbiota has provided impetus for the integration of microbiological and pharmacological research. This review considers a potential mechanism, 'microbial bile acid metabolism', by which the intricate interplay between the host and gut bacteria may influence drug pharmacokinetics. Bile salts traditionally regarded as biological surfactants, synthesized by the host and biotransformed by gut bacteria, are now also recognized as signalling molecules that affect diverse physiological processes. Accumulating data indicate that bile salts are not equivalent with respect to their physicochemical properties, micellar solubilization capacities for poorly water-soluble drugs, crystallization inhibition tendencies nor potencies for bile acid receptor activation. Herein, the origin, physicochemical properties, physiological functions, plasticity and pharmaceutical significance of the human bile acid pool are discussed. Microbial dependant differences in the composition of the human bile acid pool, simulated intestinal media and commonly used preclinical species is highlighted to better understand in vivo performance predictiveness. While the precise impact of an altered gut microbiome, and consequently bile acid pool, in the biopharmaceutical setting remains largely elusive, the objective of this article is to aid knowledge acquisition through a detailed review of the literature. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Bile Stress Response in Listeria monocytogenes LO28: Adaptation, Cross-Protection, and Identification of Genetic Loci Involved in Bile Resistance

    PubMed Central

    Begley, Máire; Gahan, Cormac G. M.; Hill, Colin

    2002-01-01

    Bile is one of many barriers that Listeria monocytogenes must overcome in the human gastrointestinal tract in order to infect and cause disease. We demonstrated that stationary-phase cultures of L. monocytogenes LO28 were able to tolerate concentrations of bovine, porcine, and human bile and bile acids well in excess of those encountered in vivo. Strain LO28 was relatively bile resistant compared with other clinical isolates of L. monocytogenes, as well as with Listeria innocua, Salmonella enterica serovar Typhimurium LT2, and Lactobacillus sakei. While exponential-phase L. monocytogenes LO28 cells were exquisitely sensitive to unconjugated bile acids, prior adaptation to sublethal levels of bile acids or heterologous stresses, such as acid, heat, salt, or sodium dodecyl sulfate (SDS), significantly enhanced bile resistance. This adaptive response was independent of protein synthesis, and in the cases of bile and SDS adaptation, occurred in seconds. In order to identify genetic loci involved in the bile tolerance phenotype of L. monocytogenes LO28, transposon (Tn917) and plasmid (pORI19) integration banks were screened for bile-sensitive mutants. The disrupted genes included a homologue of the capA locus required for capsule formation in Bacillus anthracis; a gene encoding the transcriptional regulator ZurR; a homologue of an Escherichia coli gene, lytB, involved in isoprenoid biosynthesis; a gene encoding a homologue of the Bacillus subtilis membrane protein YxiO; and a gene encoding an amino acid transporter with a putative role in pH homeostasis, gadE. Interestingly, all of the identified loci play putative roles in maintenance of the cell envelope or in stress responses. PMID:12450822

  3. Discovering Novel Bile Protection Systems in Bifidobacterium breve UCC2003 through Functional Genomics

    PubMed Central

    Ruiz, Lorena; Zomer, Aldert; O'Connell-Motherway, Mary; van Sinderen, Douwe

    2012-01-01

    Tolerance of gut commensals to bile salt exposure is an important feature for their survival in and colonization of the intestinal environment. A transcriptomic approach was employed to study the response of Bifidobacterium breve UCC2003 to bile, allowing the identification of a number of bile-induced genes with a range of predicted functions. The potential roles of a selection of these bile-inducible genes in bile protection were analyzed following heterologous expression in Lactococcus lactis. Genes encoding three transport systems belonging to the major facilitator superfamily (MFS), Bbr_0838, Bbr_0832, and Bbr_1756, and three ABC-type transporters, Bbr_0406-0407, Bbr_1804-1805, and Bbr_1826-1827, were thus investigated and shown to provide enhanced resistance and survival to bile exposure. This work significantly improves our understanding as to how bifidobacteria respond to and survive bile exposure. PMID:22156415

  4. Taurine deficiency, synthesis and transport in the mdx mouse model for Duchenne Muscular Dystrophy.

    PubMed

    Terrill, Jessica R; Grounds, Miranda D; Arthur, Peter G

    2015-09-01

    The amino acid taurine is essential for the function of skeletal muscle and administration is proposed as a treatment for Duchenne Muscular Dystrophy (DMD). Taurine homeostasis is dependent on multiple processes including absorption of taurine from food, endogenous synthesis from cysteine and reabsorption in the kidney. This study investigates the cause of reported taurine deficiency in the dystrophic mdx mouse model of DMD. Levels of metabolites (taurine, cysteine, cysteine sulfinate and hypotaurine) and proteins (taurine transporter [TauT], cysteine deoxygenase and cysteine sulfinate dehydrogenase) were quantified in juvenile control C57 and dystrophic mdx mice aged 18 days, 4 and 6 weeks. In C57 mice, taurine content was much higher in both liver and plasma at 18 days, and both cysteine and cysteine deoxygenase were increased. As taurine levels decreased in maturing C57 mice, there was increased transport (reabsorption) of taurine in the kidney and muscle. In mdx mice, taurine and cysteine levels were much lower in liver and plasma at 18 days, and in muscle cysteine was low at 18 days, whereas taurine was lower at 4: these changes were associated with perturbations in taurine transport in liver, kidney and muscle and altered metabolism in liver and kidney. These data suggest that the maintenance of adequate body taurine relies on sufficient dietary intake of taurine and cysteine availability and metabolism, as well as retention of taurine by the kidney. This research indicates dystrophin deficiency not only perturbs taurine metabolism in the muscle but also affects taurine metabolism in the liver and kidney, and supports targeting cysteine and taurine deficiency as a potential therapy for DMD. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  5. Isolation and Total Synthesis of Stolonines A–C, Unique Taurine Amides from the Australian Marine Tunicate Cnemidocarpa stolonifera

    PubMed Central

    Tran, Trong D.; Pham, Ngoc B.; Ekins, Merrick; Hooper, John N. A.; Quinn, Ronald J.

    2015-01-01

    Cnemidocarpa stolonifera is an underexplored marine tunicate that only occurs on the tropical to subtropical East Coast of Australia, with only two pyridoacridine compounds reported previously. Qualitative analysis of the lead-like enhanced fractions of C. stolonifera by LC-MS dual electrospray ionization coupled with PDA and ELSD detectors led to the identification of three new natural products, stolonines A–C (1–3), belonging to the taurine amide structure class. Structures of the new compounds were determined by NMR and MS analyses and later verified by total synthesis. This is the first time that the conjugates of taurine with 3-indoleglyoxylic acid, quinoline-2-carboxylic acid and β-carboline-3-carboxylic acid present in stolonines A–C (1–3), respectively, have been reported. An immunofluorescence assay on PC3 cells indicated that compounds 1 and 3 increased cell size, induced mitochondrial texture elongation, and caused apoptosis in PC3 cells. PMID:26204949

  6. Modulation of taurine release by glutamate receptors and nitric oxide.

    PubMed

    Oja, S S; Saransaari, P

    2000-11-01

    Taurine is held to function as a modulator and osmoregulator in the central nervous system, being of particular importance in the immature brain. In view of the possible involvement of excitatory pathways in the regulation of taurine function in the brain, the interference of glutamate receptors with taurine release from different tissue preparations in vitro and from the brain in vivo is of special interest. The release of taurine from the brain is enhanced by glutamate receptor agonists. This enhancement is inhibited by the respective receptor antagonists both in vitro and in vivo. The ionotropic N-methyl-D-aspartate (NMDA) and 2-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptor agonists appear to be the most effective in enhancing taurine release, their effects being receptor-mediated. Kainate is less effective, particularly in adults. Of the glutamate receptors, the NMDA class seems to be the most susceptible to modulation by nitric oxide. Nitric oxide also modulates taurine release, enhancing the basal release in both immature and mature hippocampus, whereas the K(+)-stimulated release is generally inhibited. Metabotropic glutamate receptors also participate in the regulation of taurine release, group I metabotropic glutamate receptors potentiating the release in the developing hippocampus, while group III receptors may be involved in the adult. Under various cell-damaging conditions, including ischemia, hypoxia and hypoglycemia, taurine release is enhanced, together with an enhanced release of excitatory amino acids. The increase in extracellular taurine upon excessive stimulation of glutamate receptors and under cell-damaging conditions may serve as an important protective mechanism against excitotoxicity, being particularly effective in the immature brain.

  7. K(+)- and temperature-evoked taurine efflux from hypothalamic astrocytes.

    PubMed

    Tigges, G A; Philibert, R A; Dutton, G R

    1990-10-30

    Hypothalamic astrocytes in culture released taurine, a suspected inhibitory amino acid neurotransmitter/neuromodulator/osmoregulator, in response to isoosmotically increasing extracellular K+ in a dose-dependent fashion. In the absence of added Ca2+, basal release levels rose to approach those obtained after exposure to 60 mM K+ in the presence of 2.5 mM Ca2+, and were only partially lowered by the addition of 10 mM Mg2+. Stimulation with K+ (60 mM) did not further increase taurine efflux above the high basal levels seen in the absence of Ca2+. Under standard conditions complete replacement of Na+ with choline Cl had little effect on basal taurine release, but reduced K(+)-evoked (60 mM) efflux by 60%. The temperature dependence of the basal levels of taurine released from hypothalamic astrocytes was similar to that seen for cultured cerebellar astrocytes and neurons over the range 5-50 degrees C. Taurine release increased from 5 to 15 degrees C, remained constant between 15 and 33 degrees C, decreased between 33 and 37 degrees C and increased thereafter. The infection point of increased basal taurine release seen around 37 degrees C (most prominent in astrocytes), may be of physiological significance. Results presented also show that the ion (Na+, Ca2+ and K+) sensitivities of taurine efflux for cultured hypothalamic astrocytes are similar to those previously reported for cultured astrocytes from the cerebellum.

  8. Bile Cast Nephropathy in Cirrhotic Patients: Effects of Chronic Hyperbilirubinemia.

    PubMed

    Foshat, Michelle; Ruff, Heather M; Fischer, Wayne G; Beach, Robert E; Fowler, Mark R; Ju, Hyunsu; Aronson, Judith F; Afrouzian, Marjan

    2017-05-01

    The aim of this study was to determine the prevalence of bile cast nephropathy (BCN) in autopsied cirrhotic patients and to correlate BCN with clinical and laboratory data to direct attention to this underrecognized renal complication of liver failure. We assessed 114 autopsy cases of cirrhosis for the presence of renal intratubular bile casts using Hall stain for bile. Presence of bile casts was correlated with etiology of cirrhosis, clinical and laboratory data, and histologic findings. Bile casts were identified in 55% of cases. The most common etiology of cirrhosis was hepatitis C virus (HCV) infection (52%), and serum creatinine ( P  = .02) and serum urea nitrogen ( P  = .01) were significantly higher in the Hall-positive group. Conjugated bilirubin was below 20 mg/dL in 90%, and levels below 10 mg/dL were noted in 80% of cases. To our knowledge, this is the largest study of BCN in human subjects and a first report describing the association of BCN with HCV-related cirrhosis. We demonstrated that in the face of protracted chronic hyperbilirubinemia, bile casts are formed at much lower bilirubin levels than previously thought. Furthermore, we proposed an algorithm to assist in better identification of bile casts. © American Society for Clinical Pathology, 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  9. Taurine Biosynthesis in a Fish Liver Cell Line (ZFL) Adapted to a Serum-Free Medium

    PubMed Central

    Liu, Chieh-Lun; Watson, Aaron M.; Place, Allen R.; Jagus, Rosemary

    2017-01-01

    Although taurine has been shown to play multiple important physiological roles in teleosts, little is known about the molecular mechanisms underlying dietary requirements. Cell lines can provide useful tools for deciphering biosynthetic pathways and their regulation. However, culture media and sera contain variable taurine levels. To provide a useful cell line for the investigation of taurine homeostasis, an adult zebrafish liver cell line (ZFL) has been adapted to a taurine-free medium by gradual accommodation to a commercially available synthetic medium, UltraMEM™-ITES. Here we show that ZFL cells are able to synthesize taurine and be maintained in medium without taurine. This has allowed for the investigation of the effects of taurine supplementation on cell growth, cellular amino acid pools, as well as the expression of the taurine biosynthetic pathway and taurine transporter genes in a defined fish cell type. After taurine supplementation, cellular taurine levels increase but hypotaurine levels stay constant, suggesting little suppression of taurine biosynthesis. Cellular methionine levels do not change after taurine addition, consistent with maintenance of taurine biosynthesis. The addition of taurine to cells grown in taurine-free medium has little effect on transcript levels of the biosynthetic pathway genes for cysteine dioxygenase (CDO), cysteine sulfinate decarboxylase (CSAD), or cysteamine dioxygenase (ADO). In contrast, supplementation with taurine causes a 30% reduction in transcript levels of the taurine transporter, TauT. This experimental approach can be tailored for the development of cell lines from aquaculture species for the elucidation of their taurine biosynthetic capacity. PMID:28587087

  10. Taurine protects against methotrexate-induced toxicity and inhibits leukocyte death

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cetiner, Mustafa; Sener, Goeksel; Sehirli, A. Ozer

    2005-11-15

    The efficacy of methotrexate (MTX), a widely used cytotoxic chemotherapeutic agent, is often limited by severe side effects and toxic sequelae. Regarding the mechanisms of these side effects, several hypotheses have been put forward, among which oxidative stress is noticeable. The present study was undertaken to determine whether taurine, a potent free radical scavenger, could ameliorate MTX-induced oxidative injury and modulate immune response. Following a single dose of methotrexate (20 mg/kg), either saline or taurine (50 mg/kg) was administered for 5 days. After decapitation of the rats, trunk blood was obtained and the ileum, liver, and kidney were removed tomore » measure malondialdehyde (MDA) and glutathione (GSH) levels, myeloperoxidase (MPO) activity, and collagen content, as well as histological examination. Our results showed that MTX administration increased the MDA, MPO activity, and collagen contents and decreased GSH levels in all tissues (P < 0.001), while these alterations were reversed in taurine-treated group (P < 0.05-0.01). Elevated (P < 0.001) TNF-{alpha} level observed following MTX treatment was depressed with taurine (P < 0.01). Oxidative burst of neutrophils stimulated by phorbol myristate acetate was reduced in saline-treated MTX group (P < 0.001), while taurine abolished this effect. Similarly, flow cytometric measurements revealed that leukocyte apoptosis and cell death were increased in MTX-treated animals, while taurine reversed these effects (P < 0.05). Reduced cellularity in bone marrow samples of MTX-treated group (P < 0.01) was reversed back to control levels in taurine-treated rats. Severe degeneration of the intestinal mucosa, liver parenchyma, glomerular, and tubular epithelium observed in saline-treated group was improved by taurine treatment. In conclusion, it appears that taurine protects against methotrexate-induced oxidant organ injury and inhibits leukocyte apoptosis and may be of therapeutic potential in alleviating

  11. Guar gum and bile: effects on postprandial gallbladder contraction and on serum bile acids in man.

    PubMed

    Hansen, W E; Maurer, H; Vollmar, J; Bräuning, C

    1983-08-01

    In a randomized cross-over study, 10 healthy volunteers received a fiber-depleted liquid mixed meal alone and, exactly 7 days apart, a combination with 15 g guar gum. Addition of the dietary fiber inhibited emptying of the gall bladder after 30 min to 7 (5-10) ml instead of 4 (3-6) ml (p less than 0.05) and delayed its refilling. Also the postprandial increase in conjugated serum bile acids was prevented by guar gum. The maximal postprandial blood glucose 30 min after ingestion of the meal was reduced from 120 (117-135) mg/dl to 110 (105-119) mg/dl (p less than or equal to 0.05) by guar gum. Serum insulin levels were unaffected by guar gum.--Our data suggest that the addition of guar gum to meals affects enterohepatic circulation of bile acids as well as digestion of carbohydrates.

  12. Taurine zinc solid dispersions attenuate doxorubicin-induced hepatotoxicity and cardiotoxicity in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yu; Mei, Xueting; Yuan, Jingquan

    2015-11-15

    The clinical efficacy of anthracycline anti-neoplastic agents is limited by cardiac and hepatic toxicities. The aim of this study was to assess the hepatoprotective and cardioprotective effects of taurine zinc solid dispersions, which is a newly-synthesized taurine zinc compound, against doxorubicin-induced toxicity in Sprague–Dawley rats intraperitoneally injected with doxorubicin hydrochloride (3 mg/kg) three times a week (seven injections) over 28 days. Hemodynamic parameters, levels of liver toxicity markers and oxidative stress were assessed. Taurine zinc significantly attenuated the reductions in blood pressure, left ventricular pressure and ± dp/dtmax, increases in serum alanine aminotransferase and aspartate aminotransferase activities, and reductions inmore » serum Zn{sup 2+} and albumin levels (P < 0.05 or 0.01) induced by doxorubicin. In rats treated with doxorubicin, taurine zinc dose-dependently increased liver superoxide dismutase activity and glutathione concentration, and decreased malondialdehyde level (P < 0.01). qBase{sup +} was used to evaluate the stability of eight candidate reference genes for real-time quantitative reverse-transcription PCR. Taurine zinc dose-dependently increased liver heme oxygenase-1 and UDP-glucuronyl transferase mRNA and protein expression (P < 0.01). Western blotting demonstrated that taurine zinc inhibited c-Jun N-terminal kinase phosphorylation by upregulating dual-specificity phosphoprotein phosphatase-1. Additionally, taurine zinc inhibited cardiomyocyte apoptosis as there was decreased TUNEL/DAPI positivity and protein expression of caspase-3. These results indicate that taurine zinc solid dispersions prevent the side-effects of anthracycline-based anticancer therapy. The mechanisms might be associated with the enhancement of antioxidant defense system partly through activating transcription to synthesize endogenous phase II medicine enzymes and anti-apoptosis through inhibiting JNK phosphorylation

  13. Use of liquid chromatography hybrid triple-quadrupole mass spectrometry for the detection of emodin metabolites in rat bile and urine.

    PubMed

    Wu, Songyan; Zhang, Yaqing; Zhang, Zunjian; Song, Rui

    2017-10-01

    Emodin is the representative form of rhubarb, which is widely used in traditional Chinese medicine for the treatment of purgative, anti-inflammatory, antioxidative and antiviral, etc. Previous reports demonstrated that emodin glucuronide was the major metabolite in plasma. Owing to the extensive conjugation reactions of polyphenols, the aim of this study was to identify the metabolites of emodin in rat bile and urine. Neutral loss and precursor ion scan methods of triple-quadrupole mass spectrometer revealed 13 conjugated metabolites in rat bile and 22 metabolites in rat urine, which included four phase I and 18 phase II metabolites. The major metabolites in rat biosamples were emodin glucuronoconjugates. Moreover, rhein monoglucuronide, chrysophanol monoglucuronide and rhein sulfate were proposed for the first time after oral administration of emodin. Overall, liquid chromatography hybrid triple-quadrupole mass spectrometry analysis leads to the discovery of several novel emodin metabolites in rat bile and urine and underscores that conjugated with glucuronic acid is the main metabolic pathway. Copyright © 2017 John Wiley & Sons, Ltd.

  14. Taurine decreased uric acid levels in hyperuricemic rats and alleviated kidney injury.

    PubMed

    Feng, Ying; Sun, Fang; Gao, Yongchao; Yang, Jiancheng; Wu, Gaofeng; Lin, Shumei; Hu, Jianmin

    2017-07-29

    Hyperuricemia can lead to direct kidney damage. Taurine participates in several renal physiological processes and has been shown as a renoprotective agent. It has been reported that taurine could reduce uric acid levels in diabetic rats, but to date there was no research on the effects of taurine on hyperuricemic rats with kidney injury. In present study, hyperuricemic rat models were induced by intragastric administration of adenine and ethambutol hydrochloride for 10 days, and taurine (1% or 2%) were added in the drinking water 7 days in advance for consecutively 17 days. The results showed that taurine alleviated renal morphological and pathological changes as well as kidney dysfunction in hyperuricemic rats. Taurine could efficiently decrease the elevated xanthine oxidase activities in hyperuricemic rats, indicating its effect on the regulation of uric acid formation. The reabsorption and secretion of uric acid are dependent on a number of urate transporters. Expressions of three urate transporters were significantly down-regulated in hyperuricemic rats, while taurine prevented the decrease of mRNA and protein expression levels of these urate transporters. The results indicate that taurine might play a role in the regulation of renal uric acid excretion. Therefore, taurine could be a promising agent for the treatment of hyperuricemia. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Evaluation of taurine as an osmotic agent for peritoneal dialysis solution.

    PubMed

    Nishimura, Hideki; Ikehara, Osamu; Naito, Takashi; Higuchi, Chieko; Sanaka, Tsutomu

    2009-01-01

    The development of a glucose-free peritoneal dialysis (PD) solution is important because glucose has been associated with functional and morphological damage to the peritoneal membrane. The ultrafiltration (UF) and biocompatibility of new PD solutions containing taurine (PD-taurine) instead of glucose as an osmolite were tested in a rat PD model. To determine the solution's UF ability, different concentrations of taurine in PD solutions were compared to glucose-based PD solutions (PD-glucose) by giving single intraperitoneal injections for 2, 4, and 6 hours. To examine the biocompatibility of PD-taurine, the rats were divided into 3 groups: a 3.86% PD-glucose group, a 3.5% PD-taurine group and a not dialyzed group. The rats were given 10-mL injections of PD fluids intraperitoneally 3 times daily for 7 days. A peritoneal equilibration test (PET) was performed using a 1.9% xylitol solution at the time the rats were sacrificed. Mesothelial cell monolayers were obtained from the animals and studied based on a population analysis. The net UF of PD-taurine increased in a dose-dependent manner; the 3.5% PD-taurine solution was equivalent to the 3.86% PD-glucose solution after 4 hours. The PET showed that the drainage volume and the D(4)/D(0) ratio for xylitol after 4 hours with PD-taurine solution were significantly greater than with the PD-glucose solution (p < 0.001 and p < 0.001 respectively). Mesothelial and fibroblast-like cell proliferation was significantly less with PD-taurine than with PD-glucose (p < 0.01). These results indicate that PD-taurine resulted in net UF equivalent to that of PD-glucose and was more biocompatible than PD-glucose with respect to the peritoneal membrane.

  16. Bile salts at the air-water interface: adsorption and desorption.

    PubMed

    Maldonado-Valderrama, J; Muros-Cobos, J L; Holgado-Terriza, J A; Cabrerizo-Vílchez, M A

    2014-08-01

    Bile salts (BS) are bio-surfactants which constitute a vital component in the process of fat digestion. Despite the importance of the interfacial properties in their biological role, these have been scarcely studied in the literature. In this work, we present the adsorption-desorption profiles of two BS (NaTC and NaGDC) including dilatational rheology. Findings from this study reveal very different surface properties of NaTC and NaGDC which originate from different complexation properties relevant to the digestion process. Dynamic adsorption curves show higher adsorption rates for NaTC and suggest the existence of various conformational regimes in contrast to NaGDC which presents only one conformational regime. This is corroborated by analysis of the adsorption isotherms and more in detail by the rheological behaviour. Accordingly, the dilatational response at 1Hz displays two maxima of the dilatational modulus for NaTC as a function of bulk concentration, in contrast to NaGDC which displays only one maximum. The desorption profiles reveal that NaTC adopts an irreversibly adsorbed form at high surface coverage whereas NaGDC fully desorbs from the surface within the whole range of concentrations used. Analysis of the adsorption-desorption profiles provides new insight into the surface properties of BS, suggesting a surface complexation of NaTC. This knowledge can be useful since through interfacial engineering we might control the extent of lipolysis providing the basis for the rational design of food products with tailored digestibility. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Neuroprotective Mechanisms of Taurine against Ischemic Stroke.

    PubMed

    Menzie, Janet; Prentice, Howard; Wu, Jang-Yen

    2013-06-03

    Ischemic stroke exhibits a multiplicity of pathophysiological mechanisms. To address the diverse pathophysiological mechanisms observed in ischemic stroke investigators seek to find therapeutic strategies that are multifaceted in their action by either investigating multipotential compounds or by using a combination of compounds. Taurine, an endogenous amino acid, exhibits a plethora of physiological functions. It exhibits antioxidative properties, stabilizes membrane, functions as an osmoregulator, modulates ionic movements, reduces the level of pro-inflammators, regulates intracellular calcium concentration; all of which contributes to its neuroprotective effect. Data are accumulating that show the neuroprotective mechanisms of taurine against stroke pathophysiology. In this review, we describe the neuroprotective mechanisms employed by taurine against ischemic stroke and its use in clinical trial for ischemic stroke.

  18. Neuroprotective Mechanisms of Taurine against Ischemic Stroke

    PubMed Central

    Menzie, Janet; Prentice, Howard; Wu, Jang-Yen

    2013-01-01

    Ischemic stroke exhibits a multiplicity of pathophysiological mechanisms. To address the diverse pathophysiological mechanisms observed in ischemic stroke investigators seek to find therapeutic strategies that are multifaceted in their action by either investigating multipotential compounds or by using a combination of compounds. Taurine, an endogenous amino acid, exhibits a plethora of physiological functions. It exhibits antioxidative properties, stabilizes membrane, functions as an osmoregulator, modulates ionic movements, reduces the level of pro-inflammators, regulates intracellular calcium concentration; all of which contributes to its neuroprotective effect. Data are accumulating that show the neuroprotective mechanisms of taurine against stroke pathophysiology. In this review, we describe the neuroprotective mechanisms employed by taurine against ischemic stroke and its use in clinical trial for ischemic stroke. PMID:24961429

  19. N-(4-[18F]fluorobenzyl)cholylglycine, a novel tracer for PET of enterohepatic circulation of bile acids: Radiosynthesis and proof-of-concept studies in rats.

    PubMed

    Frisch, Kim; Stimson, Damion H R; Venkatachalam, Taracad; Pierens, Gregory K; Keiding, Susanne; Reutens, David; Bhalla, Rajiv

    2018-05-04

    Enterohepatic circulation (EHC) of conjugated bile acids is an important physiological process crucial for regulation of intracellular concentrations of bile acids and their function as detergents and signal carriers. Only few bile acid-derived imaging agents have been synthesized and hitherto none have been evaluated for studies of EHC. We hypothesized that N-(4-[ 18 F]fluorobenzyl)cholylglycine ([ 18 F]FBCGly), a novel fluorine-18 labeled derivative of endogenous cholylglycine, would be a suitable tracer for PET of the EHC of conjugated bile acids, and we report here a radiosynthesis of [ 18 F]FBCGly and a proof-of-concept study by PET/MR in rats. A radiosynthesis of [ 18 F]FBCGly was developed based on reductive alkylation of glycine with 4-[ 18 F]fluorobenzaldehyde followed by coupling to cholic acid. [ 18 F]FBCGly was investigated in vivo by dynamic PET/MR in anesthetized rats; untreated or treated with cholyltaurine or rifampicin. Possible in vivo metabolites of [ 18 F]FBCGly were investigated by analysis of blood and bile samples, and the stability of [ 18 F]FBCGly towards enzymatic de-conjugation by Cholylglycine Hydrolase was tested in vitro. [ 18 F]FBCGly was produced with a radiochemical purity of 96% ± 1% and a non-decay corrected radiochemical yield of 1.0% ± 0.3% (mean ± SD; n = 12). PET/MR studies showed that i.v.-administrated [ 18 F]FBCGly underwent EHC within 40-60 min with a rapid transhepatic transport from blood to bile. In untreated rats, the radioactivity concentration of [ 18 F]FBCGly was approximately 15 times higher in bile than in liver tissue. Cholyltaurine and rifampicin inhibited the biliary secretion of [ 18 F]FBCGly. No fluorine-18 metabolites of [ 18 F]FBCGly were observed. We have developed a radiosynthesis of a novel fluorine-18 labeled bile acid derivative, [ 18 F]FBCGly, and shown by PET/MR that [ 18 F]FBCGly undergoes continuous EHC in rats without metabolizing. This novel tracer may prove useful in PET

  20. Towards the elucidation of molecular determinants of cooperativity in the liver bile acid binding protein.

    PubMed

    Pedò, Massimo; D'Onofrio, Mariapina; Ferranti, Pasquale; Molinari, Henriette; Assfalg, Michael

    2009-11-15

    Bile acid binding proteins (BABPs) are cytosolic lipid chaperones contributing to the maintenance of bile acid homeostasis and functional distribution within the cell. Liver BABPs act in parallel with ileal transporters to ensure vectorial transport of bile salts in hepatocytes and enterocytes, respectively. We describe the investigation of ligand binding to liver BABP, an essential step in the understanding of intracellular bile salt transport. Binding site occupancies were monitored in NMR titration experiments using (15)N-labelled ligand, while the relative populations of differently bound BABP forms were assessed by mass spectrometry. This site-specific information allowed the determination of intrinsic thermodynamic parameters and the identification of an extremely high cooperativity between two binding sites. Protein-observed NMR experiments revealed a global structural rearrangement which suggests an allosteric mechanism at the basis of the observed cooperativity. The view of a molecular tool capable of buffering against significant concentrations of free bile salts in a large range of solution conditions emerges from the observed pH-dependence of binding. We set to determine the molecular determinants of cooperativity by analysing the binding properties of a protein containing a mutated internal histidine. Both mass spectrometry and NMR experiments are consistent with an overall decreased binding affinity of the mutant, while the measured diffusion coefficients of ligand species reveal that the affinity loss concerns essentially one of the two binding sites. We therefore identified a mutation able to disrupt energetic communication functional to efficient binding and conclude that the buried histidine establishes contacts that stabilize the ternary complex. 2009 Wiley-Liss, Inc.

  1. Protective role of taurine in developing offspring affected by maternal alcohol consumption

    PubMed Central

    Ananchaipatana-Auitragoon, Pilant; Ananchaipatana-Auitragoon, Yutthana; Siripornpanich, Vorasith; Kotchabhakdi, Naiphinich

    2015-01-01

    Maternal alcohol consumption is known to affect offspring growth and development, including growth deficits, physical anomalies, impaired brain functions and behavioral disturbances. Taurine, a sulfur-containing amino acid, is essential during development, and continually found to be protective against neurotoxicity and various tissue damages including those from alcohol exposure. However, it is still unknown whether taurine can exert its protection during development of central nervous system and whether it can reverse alcohol damages on developed brain later in life. This study aims to investigate protective roles of taurine against maternal alcohol consumption on growth and development of offspring. The experimental protocol was conducted using ICR-outbred pregnant mice given 10 % alcohol, with or without maternal taurine supplementation during gestation and lactation. Pregnancy outcomes, offspring mortality and successive bodyweight until adult were monitored. Adult offspring is supplemented taurine to verify its ability to reverse damages on learning and memory through a water maze task performance. Our results demonstrate that offspring of maternal alcohol exposure, together with maternal taurine supplementation show conserved learning and memory, while that of offspring treated taurine later in life are disturbed. Taurine provides neuroprotective effects and preserves learning and memory processes when given together with maternal alcohol consumption, but not shown such effects when given exclusively in offspring. PMID:26648819

  2. Osmoregulated taurine transport in H4IIE hepatoma cells and perfused rat liver.

    PubMed Central

    Warskulat, U; Wettstein, M; Häussinger, D

    1997-01-01

    The effects of aniso-osmotic exposure on taurine transport were studied in H4IIE rat hepatoma cells. Hyperosmotic (405 mosmol/l) exposure of H4IIE cells stimulated Na+-dependent taurine uptake and led to an increase in taurine transporter (TAUT) mRNA levels, whereas hypo-osmotic (205 mosmol/l) exposure diminished both taurine uptake and TAUT mRNA levels when compared with normo-osmotic (305 mosmol/l) control incubations. Taurine uptake increased 30-40-fold upon raising the ambient osmolarity from 205 to 405 mosmol/l. When H4IIE cells and perfused livers were preloaded with taurine, hypo-osmotic cell swelling led to a rapid release of taurine from the cells. The taurine efflux, but not taurine uptake, was sensitive to 4,4'-di-isothiocyanatostilbene-2,2'-disulphonic acid (DIDS), suggestive of an involvement of DIDS-sensitive channels in mediating volume-regulatory taurine efflux. Whereas in both H4IIE rat hepatoma cells and primary hepatocytes TAUT mRNA levels were strongly dependent upon ambient osmolarity, mRNAs for other osmolyte transporters, i.e. the betaine transporter BGT-1 and the Na+/myo-inositol transporter SMIT, were not detectable. In line with this, myo-inositol uptake by H4IIE hepatoma cells was low and was not stimulated by hyperosmolarity. However, despite the absence of BGT-1 mRNA, a slight osmosensitive uptake of betaine was observed, but the rate was less than 10% of that of taurine transport. This study identifies a constitutively expressed and osmosensitive TAUT in H4IIE cells and the use of taurine as a main osmolyte, whereas betaine and myo-inositol play little or no role in the osmolyte strategy in these cells. This is in contrast with rat liver macrophages, in which betaine has been shown to be a major osmolyte. PMID:9032454

  3. Individual bile acids have differential effects on bile acid signaling in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Peizhen, E-mail: songacad@gmail.com; Rockwell, Cheryl E., E-mail: rockwelc@msu.edu; Cui, Julia Yue, E-mail: juliacui@uw.edu

    2015-02-15

    Bile acids (BAs) are known to regulate BA synthesis and transport by the farnesoid X receptor in the liver (FXR-SHP) and intestine (FXR-Fgf15). However, the relative importance of individual BAs in regulating these processes is not known. Therefore, mice were fed various doses of five individual BAs, including cholic acid (CA), chenodeoxycholic acid (CDCA), deoxoycholic acid (DCA), lithocholic acid (LCA), and ursodeoxycholic acid (UDCA) in their diets at various concentrations for one week to increase the concentration of one BA in the enterohepatic circulation. The mRNA of BA synthesis and transporting genes in liver and ileum were quantified. In themore » liver, the mRNA of SHP, which is the prototypical target gene of FXR, increased in mice fed all concentrations of BAs. In the ileum, the mRNA of the intestinal FXR target gene Fgf15 was increased at lower doses and to a higher extent by CA and DCA than by CDCA and LCA. Cyp7a1, the rate-limiting enzyme in BA synthesis, was decreased more by CA and DCA than CDCA and LCA. Cyp8b1, the enzyme that 12-hydroxylates BAs and is thus responsible for the synthesis of CA, was decreased much more by CA and DCA than CDCA and LCA. Surprisingly, neither a decrease in the conjugated BA uptake transporter (Ntcp) nor increase in BA efflux transporter (Bsep) was observed by FXR activation, but an increase in the cholesterol efflux transporter (Abcg5/Abcg8) was observed with FXR activation. Thus in conclusion, CA and DCA are more potent FXR activators than CDCA and LCA when fed to mice, and thus they are more effective in decreasing the expression of the rate limiting gene in BA synthesis Cyp7a1 and the 12-hydroxylation of BAs Cyp8b1, and are also more effective in increasing the expression of Abcg5/Abcg8, which is responsible for biliary cholesterol excretion. However, feeding BAs do not alter the mRNA or protein levels of Ntcp or Bsep, suggesting that the uptake or efflux of BAs is not regulated by FXR at physiological and

  4. Quantification of taurine in energy drinks using ¹H NMR.

    PubMed

    Hohmann, Monika; Felbinger, Christine; Christoph, Norbert; Wachter, Helmut; Wiest, Johannes; Holzgrabe, Ulrike

    2014-05-01

    The consumption of so called energy drinks is increasing, especially among adolescents. These beverages commonly contain considerable amounts of the amino sulfonic acid taurine, which is related to a magnitude of various physiological effects. The customary method to control the legal limit of taurine in energy drinks is LC-UV/vis with postcolumn derivatization using ninhydrin. In this paper we describe the quantification of taurine in energy drinks by (1)H NMR as an alternative to existing methods of quantification. Variation of pH values revealed the separation of a distinct taurine signal in (1)H NMR spectra, which was applied for integration and quantification. Quantification was performed using external calibration (R(2)>0.9999; linearity verified by Mandel's fitting test with a 95% confidence level) and PULCON. Taurine concentrations in 20 different energy drinks were analyzed by both using (1)H NMR and LC-UV/vis. The deviation between (1)H NMR and LC-UV/vis results was always below the expanded measurement uncertainty of 12.2% for the LC-UV/vis method (95% confidence level) and at worst 10.4%. Due to the high accordance to LC-UV/vis data and adequate recovery rates (ranging between 97.1% and 108.2%), (1)H NMR measurement presents a suitable method to quantify taurine in energy drinks. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Integrated transcriptomic and proteomic analysis of the bile stress response in probiotic Lactobacillus salivarius LI01.

    PubMed

    Lv, Long-Xian; Yan, Ren; Shi, Hai-Yan; Shi, Ding; Fang, Dai-Qiong; Jiang, Hui-Yong; Wu, Wen-Rui; Guo, Fei-Fei; Jiang, Xia-Wei; Gu, Si-Lan; Chen, Yun-Bo; Yao, Jian; Li, Lan-Juan

    2017-01-06

    Lactobacillus salivarius LI01, isolated from healthy humans, has demonstrated probiotic properties in the prevention and treatment of liver failure. Tolerance to bile stress is crucial to allow lactobacilli to survive in the gastrointestinal tract and exert their benefits. In this work, we used a Digital Gene Expression transcriptomic and iTRAQ LC-MS/MS proteomic approach to examine the characteristics of LI01 in response to bile stress. Using culture medium with or without 0.15% ox bile, 591 differentially transcribed genes and 347 differentially expressed proteins were detected in LI01. Overall, we found the bile resistance of LI01 to be based on a highly remodeled cell envelope and a reinforced bile efflux system rather than on the activity of bile salt hydrolases. Additionally, some differentially expressed genes related to regulatory systems, the general stress response and central metabolism processes, also play roles in stress sensing, bile-induced damage prevention and energy efficiency. Moreover, bile salts appear to enhance proteolysis and amino acid uptake (especially aromatic amino acids) by LI01, which may support the liver protection properties of this strain. Altogether, this study establishes a model of global response mechanism to bile stress in L. salivarius LI01. L. salivarius strain LI01 exhibits not only antibacterial and antifungal properties but also exerts a good health-promoting effect in acute liver failure. As a potential probiotic strain, the bile-tolerance trait of strain LI01 is important, though this has not yet been explored. In this study, an analysis based on DGE and iTRAQ was performed to investigate the gene expression in strain LI01 under bile stress at the mRNA and protein levels, respectively. To our knowledge, this work also represents the first combined transcriptomic and proteomic analysis of the bile stress response mechanism in L. salivarius. Copyright © 2016. Published by Elsevier B.V.

  6. Mobilization of PCBs and lindane from soil during in vitro digestion and their distribution among bile salt micelles and proteins of human digestive fluid and the soil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oomen, A.G.; Sips, A.J.A.M.; Groten, J.P.

    2000-01-15

    Children can take up contaminated soil via hand-to-mouth behavior. The contaminants can be mobilized from the soil by digestive juices and thus become available for intestinal absorption. In the present study components of an in vitro digestion model were varied to study their effect on the mobilization of several PCBs and lindane from surrogate soil (OECD-medium). Approximately 35% of the PCBs and 57% of lindane were bioaccessible after a default digestion. Since the mobilization was independent of the spiking level, a partitioning-based model could describe the distribution of the test compounds. Fitting the data to the model yielded a ratiomore » of partitioning coefficients that indicated that approximately 60% of the PCBs were sorbed to the OECD-medium, 25% to bile salt micelles, and 15% to proteins. The respective values for lindane were 40%, 23%, and 32%. The relatively large fraction of the mobilized compounds that was sorbed to bile salt micelles indicates that micelles play a central role in making hydrophobic compounds bioaccessible. The distribution model is suitable for explaining the results reported in several literature studies and can be used to extrapolate the physiological parameters for the worst case situation and trends in the bioaccessible fraction.« less

  7. Taurine transport across hepatocyte plasma membranes: analysis in isolated rat liver sinusoidal plasma membrane vesicles.

    PubMed

    Inoue, M; Arias, I M

    1988-07-01

    To elucidate the mechanism of taurine transport across the hepatic plasma membranes, rat liver sinusoidal plasma membrane vesicles were isolated and the transport process was analyzed. In the presence of a sodium gradient across the membranes (vesicle inside less than vesicle outside), an overshooting uptake of taurine occurred. In the presence of other ion gradients (K+, Li+, and choline+), taurine uptake was very small and no such overshoot was observed. Sodium-dependent uptake of taurine occurred into an osmotically active intravesicular space. Taurine uptake was stimulated by preloading vesicles with unlabeled taurine (transstimulation) in the presence of NaCl, but not in the presence of KCl. Sodium-dependent transport followed saturation kinetics with respect to taurine concentration; double-reciprocal plots of uptake versus taurine concentration gave a straight line from which an apparent Km value of 0.38 mM and Vmax of 0.27 nmol/20 s x mg of protein were obtained. Valinomycin-induced K+-diffusion potential failed to enhance the rate of taurine uptake, suggesting that taurine transport does not depend on membrane potential. Taurine transport was inhibited by structurally related omega-amino acids, such as beta-alanine and gamma-aminobutyric acid, but not by glycine, epsilon-aminocaproic acid, or other alpha-amino acids, such as L-alanine. These results suggest that Na+-dependent uptake of taurine might occur across the hepatic sinusoidal plasma membranes via a transport system that is specific for omega-amino acids having 2-3 carbon chain length.

  8. Stimulation of glucose utilization and inhibition of protein glycation and AGE products by taurine.

    PubMed

    Nandhini, A T A; Thirunavukkarasu, V; Anuradha, C V

    2004-07-01

    Pathological effects of the process of non-enzymatic glycation of proteins are reflected in chronic complications of diabetes mellitus. We investigated the antiglycating effect of taurine in high fructose fed rats in vivo and the inhibiting potency of taurine in the process of in vitro glycation. Additionally, we investigated whether taurine enhances glucose utilization in the rat diaphragm. Rats fed a high fructose diet (60% total calories) were provided 2% taurine solution for 30 days. The effects of taurine on plasma glucose, fructosamine, protein glycation and glycosylated haemoglobin in high fructose rats were determined. For in vitro glycation a mixture of 25 mm glucose and 25 mm fructose was used as glycating agent, bovine serum albumin as the model protein and taurine as the inhibitor. Incubations were carried out in a constant temperature bath at 37 degrees C for 3-30 days. Amadori products and advanced glycation end products (AGEs) formed were measured. In vitro utilization of glucose was carried out in the rat diaphragm in the presence and absence of insulin in which taurine was used as an additive. The contents of glucose, glycated protein, glycosylated haemoglobin and fructosamine were significantly lowered by taurine treatment to high fructose rats. Taurine prevented in vitro glycation and the accumulation of AGEs. Furthermore, taurine enhanced glucose utilization in the rat diaphragm. This effect was additive to that of insulin and did not interfere with the action of insulin. These results underline the potential use of taurine as a therapeutic supplement for the prevention of diabetic pathology.

  9. Effect of medium osmolarity and taurine on neuritic outgrowth from goldfish retinal explants.

    PubMed

    Cubillán, Lisbeth; Obregón, Francisco; Lima, Lucimey

    2009-01-01

    Taurine stimulates outgrowth of goldfish retinal explants in a concentration- and time-dependent manner, an effect related to calcium movement and protein phosphorylation. Since taurine is an osmoregulator in the central nervous system, and osmolality might influence regeneration, the purpose of this work was to evaluate the possible effect of hypo-osmolality on basal outgrowth and on the trophic action of the amino acid. Accordingly, goldfish retinal explants obtained after crushing the optic nerve were cultured in iso- and hypo-osmotic medium, the latter achieved by diluting the medium 10% 24 and 72 h after plating. The length and density of the neurites, measured after 5 days in culture, were significantly lower in the hypo- than in the iso-osmotic medium. Taurine stimulated the outgrowth under both conditions, but the percentage of increase was greater in iso-osmotic medium. Taurine concentration, determined by HPLC, did not significantly change in explants. Co-administration of beta-alanine and taurine impaired the trophic effect of taurine to a greater extent in the iso- than in hypo-osmotic medium, indicating a possible differential interaction with the taurine transporter which could be altered by osmotic stress. The exact mechanism of outgrowth regulation by hypotonicity requires further clarification, taking into considering possible modification of the taurine transporter.

  10. Taurine activates delayed rectifier KV channels via a metabotropic pathway in retinal neurons

    PubMed Central

    Bulley, Simon; Liu, Yufei; Ripps, Harris; Shen, Wen

    2013-01-01

    Taurine is one of the most abundant amino acids in the retina, throughout the CNS, and in heart and muscle cells. In keeping with its broad tissue distribution, taurine serves as a modulator of numerous basic processes, such as enzyme activity, cell development, myocardial function and cytoprotection. Despite this multitude of functional roles, the precise mechanism underlying taurine's actions has not yet been identified. In this study we report findings that indicate a novel role for taurine in the regulation of voltage-gated delayed rectifier potassium (KV) channels in retinal neurons by means of a metabotropic receptor pathway. The metabotropic taurine response was insensitive to the Cl− channel blockers, picrotoxin and strychnine, but it was inhibited by a specific serotonin 5-HT2A receptor antagonist, MDL11939. Moreover, we found that taurine enhanced KV channels via intracellular protein kinase C-mediated pathways. When 5-HT2A receptors were expressed in human embryonic kidney cells, taurine and AL34662, a non-specific 5-HT2 receptor activator, produced a similar regulation of KIR channels. In sum, this study provides new evidence that taurine activates a serotonin system, apparently via 5-HT2A receptors and related intracellular pathways. PMID:23045337

  11. The physiological and pathophysiological roles of taurine in adipose tissue in relation to obesity.

    PubMed

    Murakami, Shigeru

    2017-10-01

    Obesity is caused by an imbalance between energy intake and energy expenditure. It is established that obesity is a state of low-grade chronic inflammation, which is characterized by enlarged hypertrophied adipocytes, increased infiltration by macrophages and marked changes in the secretion of adipokines and free fatty acids. The effects of taurine on the pathogenesis of obesity have been reported in animals and humans. Although the mechanisms underlying the anti-obesity action of taurine remain to be defined, taurine seems to ameliorate obesity through stimulation of energy expenditure, modulation of lipid metabolism, anorexic effect, anti-inflammatory and anti-oxidative effects. Recent studies revealed that taurine supplementation reduces the infiltration of macrophages and modulates the polarization of adipose tissue macrophages in high-fat diet-induced obese mice. In addition, taurine downregulates the production of pro-inflammatory cytokines by adipocytes, suggesting that taurine plays an anti-inflammatory role in adipose tissue. This article reviews the effects and mechanisms of taurine on the development of obesity, focusing on the role of taurine in white adipose tissue. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Mice with chimeric livers are an improved model for human lipoprotein metabolism.

    PubMed

    Ellis, Ewa C S; Naugler, Willscott Edward; Nauglers, Scott; Parini, Paolo; Mörk, Lisa-Mari; Jorns, Carl; Zemack, Helen; Sandblom, Anita Lövgren; Björkhem, Ingemar; Ericzon, Bo-Göran; Wilson, Elizabeth M; Strom, Stephen C; Grompe, Markus

    2013-01-01

    Rodents are poor model for human hyperlipidemias because total cholesterol and low density lipoprotein levels are very low on a normal diet. Lipoprotein metabolism is primarily regulated by hepatocytes and we therefore assessed whether chimeric mice extensively repopulated with human cells can model human lipid and bile acid metabolism. FRG [ F ah(-/-) R ag2(-/-)Il2r g (-/-)]) mice were repopulated with primary human hepatocytes. Serum lipoprotein lipid composition and distribution (VLDL, LDL, and HDL) was analyzed by size exclusion chromatography. Bile was analyzed by LC-MS or by GC-MS. RNA expression levels were measured by quantitative RT-PCR. Chimeric mice displayed increased LDL and VLDL fractions and a lower HDL fraction compared to wild type, thus significantly shifting the ratio of LDL/HDL towards a human profile. Bile acid analysis revealed a human-like pattern with high amounts of cholic acid and deoxycholic acid (DCA). Control mice had only taurine-conjugated bile acids as expcted, but highly repopulated mice had glycine-conjugated cholic acid as found in human bile. RNA levels of human genes involved in bile acid synthesis including CYP7A1, and CYP27A1 were significantly upregulated as compared to human control liver. However, administration of recombinant hFGF19 restored human CYP7A1 levels to normal. Humanized-liver mice showed a typical human lipoprotein profile with LDL as the predominant lipoprotein fraction even on a normal diet. The bile acid profile confirmed presence of an intact enterohepatic circulation. Although bile acid synthesis was deregulated in this model, this could be fully normalized by FGF19 administration. Taken together these data indicate that chimeric FRG-mice are a useful new model for human lipoprotein and bile-acid metabolism.

  13. The Vibrio cholerae Mrp system: cation/proton antiport properties and enhancement of bile salt resistance in a heterologous host.

    PubMed

    Dzioba-Winogrodzki, Judith; Winogrodzki, Olga; Krulwich, Terry A; Boin, Markus A; Häse, Claudia C; Dibrov, Pavel

    2009-01-01

    The mrp operon from Vibrio cholerae encoding a putative multisubunit Na(+)/H(+) antiporter was cloned and functionally expressed in the antiporter-deficient strain of Escherichia coli EP432. Cells of EP432 expressing Vc-Mrp exhibited resistance to Na(+) and Li(+) as well as to natural bile salts such as sodium cholate and taurocholate. When assayed in everted membrane vesicles of the E. coli EP432 host, Vc-Mrp had sufficiently high antiport activity to facilitate the first extensive analysis of Mrp system from a Gram-negative bacterium encoded by a group 2 mrp operon. Vc-Mrp was found to exchange protons for Li(+), Na(+), and K(+) ions in pH-dependent manner with maximal activity at pH 9.0-9.5. Exchange was electrogenic (more than one H(+) translocated per cation moved in opposite direction). The apparent K(m) at pH 9.0 was 1.08, 1.30, and 68.5 mM for Li(+), Na(+), and K(+), respectively. Kinetic analyses suggested that Vc-Mrp operates in a binding exchange mode with all cations and protons competing for binding to the antiporter. The robust ion antiport activity of Vc-Mrp in sub-bacterial vesicles and its effect on bile resistance of the heterologous host make Vc-Mrp an attractive experimental model for the further studies of biochemistry and physiology of Mrp systems. Copyright 2008 S. Karger AG, Basel.

  14. Potential of nor-Ursodeoxycholic Acid in Cholestatic and Metabolic Disorders.

    PubMed

    Trauner, Michael; Halilbasic, Emina; Claudel, Thierry; Steinacher, Daniel; Fuchs, Claudia; Moustafa, Tarek; Pollheimer, Marion; Krones, Elisabeth; Kienbacher, Christian; Traussnigg, Stefan; Kazemi-Shirazi, Lili; Munda, Petra; Hofer, Harald; Fickert, Peter; Paumgartner, Gustav

    2015-01-01

    24-nor-ursodeoxycholic acid (norUDCA) is a side-chain shortened derivate of ursodeoxycholic acid (UDCA). Since norUDCA is only ineffectively conjugated with glycine or taurine, it has specific physicochemical and therapeutic properties distinct from UDCA. Nonamidated norUDCA undergoes cholehepatic shunting enabling 'ductular targeting' and inducing a bicarbonate-rich hypercholeresis, with cholangioprotective effects. At the same time it has direct anti-inflammatory, antilipotoxic, anti fibrotic, and antiproliferative properties targeting various liver cell populations. norUDCA appears to be one of the most promising novel treatment approaches targeting the liver and the bile duct system at multifactorial and multicellular levels. This review article is a summary of a lecture given at the XXIII International Bile Acid Meeting (Falk Symposium 194) on 'Bile Acids as Signal Integrators and Metabolic Modulators' held in Freiburg, October 8-9, 2014, and summarizes the recent progress with norUDCA as a novel therapeutic approach in cholestatic and metabolic (liver) disorders. 2015 S. Karger AG, Basel.

  15. Fibroblast growth factor 19 in patients with bile acid diarrhoea: a prospective comparison of FGF19 serum assay and SeHCAT retention.

    PubMed

    Pattni, S S; Brydon, W G; Dew, T; Johnston, I M; Nolan, J D; Srinivas, M; Basumani, P; Bardhan, K D; Walters, J R F

    2013-10-01

    Bile acid diarrhoea is a common, under-diagnosed cause of chronic watery diarrhoea, responding to specific treatment with bile acid sequestrants. We previously showed patients with bile acid diarrhoea have lower median levels compared with healthy controls, of the ileal hormone fibroblast growth factor 19 (FGF19), which regulates bile acid synthesis. To measure serum FGF19 and SeHCAT retention prospectively in patients with chronic diarrhoea. One hundred and fifty-two consecutive patients were grouped according to (75) Se-homocholic acid taurine (SeHCAT) 7-day retention: normal (>15%) in 72 (47%) diarrhoea controls; ≤15% in 54 (36%) with primary bile acid diarrhoea, and in 26 (17%) with secondary bile acid diarrhoea. Fasting blood was assayed for FGF19, 7α-hydroxy-4-cholesten-3-one (C4) and total bile acids. FGF19 was significantly lower in the primary bile acid diarrhoea group compared with the diarrhoea control group (median 147 vs. 225 pg/mL, P < 0.001), and also in the secondary group (P < 0.006). FGF19 and SeHCAT values were positively correlated (rs = 0.44, P < 0.001); both were inversely related to C4. Other significant relationships included SeHCAT and body mass index (BMI)(P = 0.02), and FGF19 with age (P < 0.01). The negative and positive predictive values of FGF19 ≤ 145 pg/mL for a SeHCAT <10% were 82% and 61%, respectively, and were generally improved in an index including BMI, age and C4. In a subset of 28 primary patients, limited data suggested that FGF19 could predict response to sequestrant therapy. Reduced fibroblast growth factor 19 is a feature of bile acid diarrhoea. Further studies will fully define its role in predicting the response of these patients to therapy. © 2013 John Wiley & Sons Ltd.

  16. Recirculation and reutilization of micellar bile lecithin.

    PubMed

    Robins, S J

    1975-09-01

    Bile lecithins, solubilized in micellar bile salt and radiolabeled in the 1-acyl fatty acid, phosphorus, and choline positions, were infused in the small bowel of fasted rats. Absorption of each label was virtually complete after 24 h. However, these lecithins were extensively hydrolyzed in the bowel lumen as well as after absorption, and neither the fatty acid nor phosphorus was significantly retained in the enterohepatic circulation or reutilized for biliary lecithin synthesis. In contrast, while choline was also dissociated from absorbed lecithin, choline was instead retained in the liver, reincorporated into newly synthesized hepatic lecithin, and sercreted in biliary lecithin in 10-fold greater amounts than either the fatty acid or phosphorus. However, the extent of choline incorporation into bile lecithin was limited and was not further increased when free choline was directly injected into the portal vein. The data therefore suggest that although only choline of absorbed lecithin is retained in the enterohepatic circulation and preserved for new biliary lecithin synthesis, exogenous choline utilization is regulated by the size of the available hepatic pool.

  17. Taurine induces anti-anxiety by activating strychnine-sensitive glycine receptor in vivo.

    PubMed

    Zhang, Cheng Gao; Kim, Sung-Jin

    2007-01-01

    Taurine has a variety of actions in the body such as cardiotonic, host-defensive, radioprotective and glucose-regulatory effects. However, its action in the central nervous system remains to be characterized. In the present study, we tested to see whether taurine exerts anti-anxiety effects and to explore its mechanism of anti-anxiety activity in vivo. The staircase test and elevated plus maze test were performed to test the anti-anxiety action of taurine. Convulsions induced by strychnine, picrotoxin, yohimbine and isoniazid were tested to explore the mechanism of anti-anxiety activity of taurine. The Rotarod test was performed to test muscle relaxant activity and the passive avoidance test was carried out to test memory activity in response to taurine. Taurine (200 mg/kg, p.o.) significantly reduced rearing numbers in the staircase test while it increased the time spent in the open arms as well as the number of entries to the open arms in the elevated plus maze test, suggesting that it has a significant anti-anxiety activity. Taurine's action could be due to its binding to and activating of strychnine-sensitive glycine receptor in vivo as it inhibited convulsion caused by strychnine; however, it has little effect on picrotoxin-induced convulsion, suggesting its anti-anxiety activity may not be linked to GABA receptor. It did not alter memory function and muscle activity. Taken together, these results suggest that taurine could be beneficial for the control of anxiety in the clinical situations. Copyright (c) 2007 S. Karger AG, Basel.

  18. Key discoveries in bile acid chemistry and biology and their clinical applications: history of the last eight decades.

    PubMed

    Hofmann, Alan F; Hagey, Lee R

    2014-08-01

    During the last 80 years there have been extraordinary advances in our knowledge of the chemistry and biology of bile acids. We present here a brief history of the major achievements as we perceive them. Bernal, a physicist, determined the X-ray structure of cholesterol crystals, and his data together with the vast chemical studies of Wieland and Windaus enabled the correct structure of the steroid nucleus to be deduced. Today, C24 and C27 bile acids together with C27 bile alcohols constitute most of the bile acid "family". Patterns of bile acid hydroxylation and conjugation are summarized. Bile acid measurement encompasses the techniques of GC, HPLC, and MS, as well as enzymatic, bioluminescent, and competitive binding methods. The enterohepatic circulation of bile acids results from vectorial transport of bile acids by the ileal enterocyte and hepatocyte; the key transporters have been cloned. Bile acids are amphipathic, self-associate in solution, and form mixed micelles with polar lipids, phosphatidylcholine in bile, and fatty acids in intestinal content during triglyceride digestion. The rise and decline of dissolution of cholesterol gallstones by the ingestion of 3,7-dihydroxy bile acids is chronicled. Scientists from throughout the world have contributed to these achievements. Copyright © 2014 by the American Society for Biochemistry and Molecular Biology, Inc.

  19. Key discoveries in bile acid chemistry and biology and their clinical applications: history of the last eight decades

    PubMed Central

    Hofmann, Alan F.; Hagey, Lee R.

    2014-01-01

    During the last 80 years there have been extraordinary advances in our knowledge of the chemistry and biology of bile acids. We present here a brief history of the major achievements as we perceive them. Bernal, a physicist, determined the X-ray structure of cholesterol crystals, and his data together with the vast chemical studies of Wieland and Windaus enabled the correct structure of the steroid nucleus to be deduced. Today, C24 and C27 bile acids together with C27 bile alcohols constitute most of the bile acid “family”. Patterns of bile acid hydroxylation and conjugation are summarized. Bile acid measurement encompasses the techniques of GC, HPLC, and MS, as well as enzymatic, bioluminescent, and competitive binding methods. The enterohepatic circulation of bile acids results from vectorial transport of bile acids by the ileal enterocyte and hepatocyte; the key transporters have been cloned. Bile acids are amphipathic, self-associate in solution, and form mixed micelles with polar lipids, phosphatidylcholine in bile, and fatty acids in intestinal content during triglyceride digestion. The rise and decline of dissolution of cholesterol gallstones by the ingestion of 3,7-dihydroxy bile acids is chronicled. Scientists from throughout the world have contributed to these achievements. PMID:24838141

  20. Organochloride pesticides modulated gut microbiota and influenced bile acid metabolism in mice.

    PubMed

    Liu, Qian; Shao, Wentao; Zhang, Chunlan; Xu, Cheng; Wang, Qihan; Liu, Hui; Sun, Haidong; Jiang, Zhaoyan; Gu, Aihua

    2017-07-01

    Organochlorine pesticides (OCPs) can persistently accumulate in body and threaten human health. Bile acids and intestinal microbial metabolism have emerged as important signaling molecules in the host. However, knowledge on which intestinal microbiota and bile acids are modified by OCPs remains unclear. In this study, adult male C57BL/6 mice were exposed to p, p'-dichlorodiphenyldichloroethylene (p, p'-DDE) and β-hexachlorocyclohexane (β-HCH) for 8 weeks. The relative abundance and composition of various bacterial species were analyzed by 16S rRNA gene sequencing. Bile acid composition was analyzed by metabolomic analysis using UPLC-MS. The expression of genes involved in hepatic and enteric bile acids metabolism was measured by real-time PCR. Expression of genes in bile acids synthesis and transportation were measured in HepG2 cells incubated with p, p'-DDE and β-HCH. Our findings showed OCPs changed relative abundance and composition of intestinal microbiota, especially in enhanced Lactobacillus with bile salt hydrolase (BSH) activity. OCPs affected bile acid composition, enhanced hydrophobicity, decreased expression of genes on bile acid reabsorption in the terminal ileum and compensatory increased expression of genes on synthesis of bile acids in the liver. We demonstrated that chronic exposure of OCPs could impair intestinal microbiota; as a result, hepatic and enteric bile acid profiles and metabolism were influenced. The findings in this study draw our attention to the hazards of chronic OCPs exposure in modulating bile acid metabolism that might cause metabolic disorders and their potential to cause related diseases in human. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Taurine Ameliorates Renal Oxidative Damage and Thyroid Dysfunction in Rats Chronically Exposed to Fluoride.

    PubMed

    Adedara, Isaac A; Ojuade, Temini Jesu D; Olabiyi, Bolanle F; Idris, Umar F; Onibiyo, Esther M; Ajeigbe, Olufunke F; Farombi, Ebenezer O

    2017-02-01

    Excessive exposure to fluoride poses several detrimental effects to human health particularly the kidney which is a major organ involved in its elimination from the body. The influence of taurine on fluoride-induced renal toxicity was investigated in a co-exposure paradigm for 45 days using five groups of eight rats each. Group I rats received normal drinking water alone, group II rats were exposed to sodium fluoride (NaF) in drinking water at 15 mg/L alone, group III received taurine alone at a dose of 200 mg/kg group IV rats were co-administered with NaF and taurine (100 mg/kg), while group V rats were co-administered with NaF and taurine (200 mg/kg). Administration of taurine significantly reversed the fluoride-mediated decrease in absolute weight and organo-somatic index of the kidney in the exposed rats. Taurine significantly prevented fluoride-induced elevation in plasma urea and creatinine levels in the exposed rats. Moreover, taurine restored fluoride-mediated decrease in the circulatory concentrations of triiodothyronine, thyroxine, and the ratio of triiodothyronine to thyroxine. Taurine ameliorated fluoride-mediated decrease in renal antioxidant status by significantly enhancing the antioxidant enzyme activities as well as glutathione level in the exposed rats. Additionally, taurine inhibited fluoride-induced renal oxidative damage by markedly decreasing the hydrogen peroxide and malondialdehyde levels as well as improved the kidney architecture in the treated rats. Collectively, taurine protected against fluoride-induced renal toxicity via enhancement of thyroid gland function, renal antioxidant status, and histology in rats.

  2. Bile acid malabsorption investigated by selenium-75-homocholic acid taurine ((75)SeHCAT) scans: causes and treatment responses to cholestyramine in 298 patients with chronic watery diarrhoea.

    PubMed

    Borghede, Märta K; Schlütter, Jacob M; Agnholt, Jørgen S; Christensen, Lisbet A; Gormsen, Lars C; Dahlerup, Jens F

    2011-12-01

    The liver produces and secretes bile acids into the small intestine. In the small intestine, most of the bile acids are absorbed in the distal ileum with portal vein transportation back to the liver and resecretion (enterohepatic recycling). Increased spillover of bile acids from the small intestine into the colon (bile acid malabsorption) may affect the secretion of colonic water and electrolytes and result in watery diarrhoea. The aim of this study was to investigate the frequency of bile acid malabsorption and treatment responses to cholestyramine with (75)SeHCAT scanning among patients suffering from chronic watery diarrhoea. This was a retrospective study that included all patients who received a (75)SeHCAT scan over a five-year period (2004-2009). In total, 298 patients (198 females, 100 men) with a median age of 42 years (range 16-82 years) were investigated. Bile acid malabsorption ((75)SeHCAT retention<15% after seven days) was identified in 201 patients (68%, 95% confidence interval (CI): 62%-73%). Bile acid malabsorption due to ileal dysfunction (Type I) was found in 77 patients, idiopathic bile acid malabsorption (Type II) was found in 68 patients and 56 patients with other conditions had bile acid malabsorption (Type III). Of the 150 patients who were able to take cholestyramine continuously, 108 patients (71%, CI: 63%-78%) reported a positive effect on their bowel habits. Bile acid malabsorption is a frequent problem in patients with chronic watery diarrhoea. Treatment with bile acid binders was effective regardless of type and severity. Copyright © 2011 European Federation of Internal Medicine. Published by Elsevier B.V. All rights reserved.

  3. Effect of taurine feeding on bone mineral density and bone markers in rats.

    PubMed

    Choi, Mi-Ja; Seo, Ji-Na

    2013-01-01

    The purpose of this study was to investigate the effect of dietary taurine supplementation on bone mineral density (BMD) and bone mineral content (BMC) in rats. Twenty Sprague-Dawley male rats (body weight 200 ± 10 g) were divided into two groups, control and taurine group (2% taurine-supplemented diet). All rats were fed on experimental diet and deionized water and libitum for 6 weeks. Serum alkaline phosphatase (ALP) activity, osteocalcin, PTH, and urinary deoxypyridinoline cross-links value were measured as markers of bone formation and resorption. BMD and BMC were measured using PIXImus (GE Lunar Co., Wisconsin) in spine and femur. The effect of diet on ALP, osteocalcine, and PTH was not significant. There were no significant differences in ALP, osteocalcine, and PTH concentration. Urinary calcium excretion was lower in taurine group than in control group. Femur BMC/weight of taurine group was significantly higher than control group. The results of this study showed the possible role of taurine in bone metabolism in male rats.

  4. Generation of a bile salt export pump deficiency model using patient-specific induced pluripotent stem cell-derived hepatocyte-like cells.

    PubMed

    Imagawa, Kazuo; Takayama, Kazuo; Isoyama, Shigemi; Tanikawa, Ken; Shinkai, Masato; Harada, Kazuo; Tachibana, Masashi; Sakurai, Fuminori; Noguchi, Emiko; Hirata, Kazumasa; Kage, Masayoshi; Kawabata, Kenji; Sumazaki, Ryo; Mizuguchi, Hiroyuki

    2017-02-02

    Bile salt export pump (BSEP) plays an important role in hepatic secretion of bile acids and its deficiency results in severe cholestasis and liver failure. Mutation of the ABCB11 gene encoding BSEP induces BSEP deficiency and progressive familial intrahepatic cholestasis type 2 (PFIC2). Because liver transplantation remains standard treatment for PFIC2, the development of a novel therapeutic option is desired. However, a well reproducible model, which is essential for the new drug development for PFIC2, has not been established. Therefore, we attempted to establish a PFIC2 model by using iPSC technology. Human iPSCs were generated from patients with BSEP-deficiency (BD-iPSC), and were differentiated into hepatocyte-like cells (HLCs). In the BD-iPSC derived HLCs (BD-HLCs), BSEP was not expressed on the cell surface and the biliary excretion capacity was significantly impaired. We also identified a novel mutation in the 5'-untranslated region of the ABCB11 gene that led to aberrant RNA splicing in BD-HLCs. Furthermore, to evaluate the drug efficacy, BD-HLCs were treated with 4-phenylbutyrate (4PBA). The membrane BSEP expression level and the biliary excretion capacity in BD-HLCs were rescued by 4PBA treatment. In summary, we succeeded in establishing a PFIC2 model, which may be useful for its pathophysiological analysis and drug development.

  5. Generation of a bile salt export pump deficiency model using patient-specific induced pluripotent stem cell-derived hepatocyte-like cells

    PubMed Central

    Imagawa, Kazuo; Takayama, Kazuo; Isoyama, Shigemi; Tanikawa, Ken; Shinkai, Masato; Harada, Kazuo; Tachibana, Masashi; Sakurai, Fuminori; Noguchi, Emiko; Hirata, Kazumasa; Kage, Masayoshi; Kawabata, Kenji; Sumazaki, Ryo; Mizuguchi, Hiroyuki

    2017-01-01

    Bile salt export pump (BSEP) plays an important role in hepatic secretion of bile acids and its deficiency results in severe cholestasis and liver failure. Mutation of the ABCB11 gene encoding BSEP induces BSEP deficiency and progressive familial intrahepatic cholestasis type 2 (PFIC2). Because liver transplantation remains standard treatment for PFIC2, the development of a novel therapeutic option is desired. However, a well reproducible model, which is essential for the new drug development for PFIC2, has not been established. Therefore, we attempted to establish a PFIC2 model by using iPSC technology. Human iPSCs were generated from patients with BSEP-deficiency (BD-iPSC), and were differentiated into hepatocyte-like cells (HLCs). In the BD-iPSC derived HLCs (BD-HLCs), BSEP was not expressed on the cell surface and the biliary excretion capacity was significantly impaired. We also identified a novel mutation in the 5′-untranslated region of the ABCB11 gene that led to aberrant RNA splicing in BD-HLCs. Furthermore, to evaluate the drug efficacy, BD-HLCs were treated with 4-phenylbutyrate (4PBA). The membrane BSEP expression level and the biliary excretion capacity in BD-HLCs were rescued by 4PBA treatment. In summary, we succeeded in establishing a PFIC2 model, which may be useful for its pathophysiological analysis and drug development. PMID:28150711

  6. Taurine zinc solid dispersions attenuate doxorubicin-induced hepatotoxicity and cardiotoxicity in rats.

    PubMed

    Wang, Yu; Mei, Xueting; Yuan, Jingquan; Lu, Wenping; Li, Binglong; Xu, Donghui

    2015-11-15

    The clinical efficacy of anthracycline anti-neoplastic agents is limited by cardiac and hepatic toxicities. The aim of this study was to assess the hepatoprotective and cardioprotective effects of taurine zinc solid dispersions, which is a newly-synthesized taurine zinc compound, against doxorubicin-induced toxicity in Sprague-Dawley rats intraperitoneally injected with doxorubicin hydrochloride (3mg/kg) three times a week (seven injections) over 28 days. Hemodynamic parameters, levels of liver toxicity markers and oxidative stress were assessed. Taurine zinc significantly attenuated the reductions in blood pressure, left ventricular pressure and ± dp/dtmax, increases in serum alanine aminotransferase and aspartate aminotransferase activities, and reductions in serum Zn(2+) and albumin levels (P<0.05 or 0.01) induced by doxorubicin. In rats treated with doxorubicin, taurine zinc dose-dependently increased liver superoxide dismutase activity and glutathione concentration, and decreased malondialdehyde level (P<0.01). qBase(+) was used to evaluate the stability of eight candidate reference genes for real-time quantitative reverse-transcription PCR. Taurine zinc dose-dependently increased liver heme oxygenase-1 and UDP-glucuronyl transferase mRNA and protein expression (P<0.01). Western blotting demonstrated that taurine zinc inhibited c-Jun N-terminal kinase phosphorylation by upregulating dual-specificity phosphoprotein phosphatase-1. Additionally, taurine zinc inhibited cardiomyocyte apoptosis as there was decreased TUNEL/DAPI positivity and protein expression of caspase-3. These results indicate that taurine zinc solid dispersions prevent the side-effects of anthracycline-based anticancer therapy. The mechanisms might be associated with the enhancement of antioxidant defense system partly through activating transcription to synthesize endogenous phase II medicine enzymes and anti-apoptosis through inhibiting JNK phosphorylation. Copyright © 2015 Elsevier Inc

  7. The roles of bile acids and sphingosine-1-phosphate signaling in the hepatobiliary diseases

    PubMed Central

    Nagahashi, Masayuki; Yuza, Kizuki; Hirose, Yuki; Nakajima, Masato; Ramanathan, Rajesh; Hait, Nitai C.; Hylemon, Phillip B.; Zhou, Huiping; Takabe, Kazuaki; Wakai, Toshifumi

    2016-01-01

    Based on research carried out over the last decade, it has become increasingly evident that bile acids act not only as detergents, but also as important signaling molecules that exert various biological effects via activation of specific nuclear receptors and cell signaling pathways. Bile acids also regulate the expression of numerous genes encoding enzymes and proteins involved in the synthesis and metabolism of bile acids, glucose, fatty acids, and lipoproteins, as well as energy metabolism. Receptors activated by bile acids include, farnesoid X receptor α, pregnane X receptor, vitamin D receptor, and G protein-coupled receptors, TGR5, muscarinic receptor 2, and sphingosine-1-phosphate receptor (S1PR)2. The ligand of S1PR2, sphingosine-1-phosphate (S1P), is a bioactive lipid mediator that regulates various physiological and pathophysiological cellular processes. We have recently reported that conjugated bile acids, via S1PR2, activate and upregulate nuclear sphingosine kinase 2, increase nuclear S1P, and induce genes encoding enzymes and transporters involved in lipid and sterol metabolism in the liver. Here, we discuss the role of bile acids and S1P signaling in the regulation of hepatic lipid metabolism and in hepatobiliary diseases. PMID:27459945

  8. Past Taurine Intake Has a Positive Effect on Present Cognitive Function in the Elderly.

    PubMed

    Bae, Mi Ae; Gao, Ranran; Kim, Sung Hoon; Chang, Kyung Ja

    2017-01-01

    This study investigated the associations between dietary history of past taurine intake and cognitive function in the elderly. Subjects of this study were 40 elderly persons with dementia (men 14, women 26) and 37 normal elderly persons (men 5, women 32). Data were collected using questionnaires by investigator-based interview to the elderly and family caregivers. We examined their general characteristics, anthropometric data, cognitive function, and taurine index. Cognitive function was measured using MMSE-DS and higher score means better cognitive function. As dietary history of past taurine intake, taurine index was evaluated by scoring the intake frequency of 41 kinds of taurine-containing foods. Part correlation analysis (sex, age, and school educational period correction) was used to analyze associations between taurine index and cognitive function. The analysis of all data was carried out by the SPSS 20.0 program for windows. The age, height, weight, and BMI of elderly with dementia showed no statistical significance compared to normal elderly. The elderly with dementia had significantly higher school education period (7.4 years) than the normal elderly (4.8 years) (p < 0.01). Nevertheless, the average total score of cognitive function (MMSE-DS) of the elderly with dementia (18.1 points) was significantly lower than score of the normal elderly (21.7 points) (p < 0.05). The average taurine index of the elderly with dementia (104.7 points) was significantly lower than average taurine index of the normal elderly (123.7 points) (p < 0.01). There were positive correlations between total taurine index and total score of cognitive function in all the elderly subjects (p < 0.05). In particular, as taurine index was higher, there were significantly higher scores of cognitive function such as 'time orientation' and 'judgement and abstract thinking' (p < 0.01). In conclusion, these results suggest that past taurine intake may have a positive effect on present

  9. Effects of taurine on plasma glucose concentration and active glucose transport in the small intestine.

    PubMed

    Tsuchiya, Yo; Kawamata, Koichi

    2017-11-01

    Taurine lowers blood glucose levels and improves hyperglycemia. However, its effects on glucose transport in the small intestine have not been investigated. Here, we elucidated the effect of taurine on glucose absorption in the small intestine. In the oral glucose tolerance test, addition of 10 mmol/L taurine suppressed the increase in hepatic portal glucose concentrations. To investigate whether the suppressive effect of taurine occurs via down-regulation of active glucose transport in the small intestine, we performed an assay using the everted sac of the rat jejunum. Addition of taurine to the mucosal side of the jejunum suppressed active glucose transport via sodium-glucose cotransporter 1 (SGLT1). After elimination of chloride ions from the mucosal solution, taurine did not show suppressive effects on active glucose transport. These results suggest that taurine suppressed the increase in hepatic portal glucose concentrations via suppression of SGLT1 activity in the rat jejunum, depending on chloride ions. © 2017 Japanese Society of Animal Science.

  10. Taurine Supplementation Improves Functional Capacity, Myocardial Oxygen Consumption, and Electrical Activity in Heart Failure.

    PubMed

    Ahmadian, Mehdi; Dabidi Roshan, Valiollah; Ashourpore, Eadeh

    2017-07-04

    Taurine is an amino acid found abundantly in the heart in very high concentrations. It is assumed that taurine contributes to several physiological functions of mammalian cells, such as osmoregulation, anti-inflammation, membrane stabilization, ion transport modulation, and regulation of oxidative stress and mitochondrial protein synthesis. The objective of the current study was to evaluate the effectiveness of taurine supplementation on functional capacity, myocardial oxygen consumption, and electrical activity in patients with heart failure. In a double-blind and randomly designed study, 16 patients with heart failure were assigned to two groups: taurine (TG, n = 8) and placebo (PG, n = 8). TG received 500-mg taurine supplementation three times per day for two weeks. Significant decrease in the values of Q-T segments (p < 0.01) and significant increase in the values of P-R segments (p < 0.01) were detected following exercise post-supplementation in TG rather than in PG. Significantly higher values of taurine concentration, T wave, Q-T segment, physical capacities, and lower values of cardiovascular capacities were detected post-supplementation in TG as compared with PG (all p values <0.01). Taurine significantly enhanced the physical function and significantly reduced the cardiovascular function parameters following exercise. Our results also suggest that the short-term taurine supplementation is an effective strategy for improving some selected hemodynamic parameters in heart failure patients. Together, these findings support the view that taurine improves cardiac function and functional capacity in patients with heart failure. This idea warrants further study.

  11. Composition, disintegrative properties, and labeling compliance of commercially available taurine and carnitine dietary products.

    PubMed

    Bragg, Rebecca R; Freeman, Lisa M; Fascetti, Andrea J; Yu, Zengshou

    2009-01-15

    To test the quality, disintegration properties, and compliance with labeling regulations for representative commercially available taurine and carnitine dietary products. Evaluation study. 11 commercially available taurine and 10 commercially available carnitine products. For each product, the amount of taurine or carnitine was determined and compared with the label claim. All products were evaluated for concentrations of mercury, arsenic, and selenium. Disintegration properties of 5 taurine and 8 carnitine products were determined in vitro. Labels were evaluated for compliance with FDA guidelines. 10 of 11 taurine and 10 of 10 carnitine products were within 10% of the stated label claim. Three of 11 taurine and 6 of 10 carnitine products were within 5% of the stated label claim. The median percentage difference between laboratory analysis and label claim was -5.7% (range, -26.3% to 2.5%) for taurine and 3.6% (range, -2.6% to 8.8%) for carnitine. No substantial amount of contamination with mercury, arsenic, or selenium was found in any of the products. During disintegration testing, 1 of 5 taurine products and 5 of 8 carnitine products did not disintegrate within 45 minutes during at least 1 test. Disintegration time for those that did disintegrate ranged from 1.7 to 37.0 minutes. All product labels conformed with FDA regulations. Taurine and carnitine products evaluated in this study closely adhered to manufacturer claims and labeling guidelines. However, disintegration testing suggested high variability in some products, possibly limiting uptake and use by animals that receive them.

  12. Bile acid-induced necrosis in primary human hepatocytes and in patients with obstructive cholestasis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woolbright, Benjamin L.; Dorko, Kenneth; Antoine, Daniel J.

    Accumulation of bile acids is a major mediator of cholestatic liver injury. Recent studies indicate bile acid composition between humans and rodents is dramatically different, as humans have a higher percent of glycine conjugated bile acids and increased chenodeoxycholate content, which increases the hydrophobicity index of bile acids. This increase may lead to direct toxicity that kills hepatocytes, and promotes inflammation. To address this issue, this study assessed how pathophysiological concentrations of bile acids measured in cholestatic patients affected primary human hepatocytes. Individual bile acid levels were determined in serum and bile by UPLC/QTOFMS in patients with extrahepatic cholestasis with,more » or without, concurrent increases in serum transaminases. Bile acid levels increased in serum of patients with liver injury, while biliary levels decreased, implicating infarction of the biliary tracts. To assess bile acid-induced toxicity in man, primary human hepatocytes were treated with relevant concentrations, derived from patient data, of the model bile acid glycochenodeoxycholic acid (GCDC). Treatment with GCDC resulted in necrosis with no increase in apoptotic parameters. This was recapitulated by treatment with biliary bile acid concentrations, but not serum concentrations. Marked elevations in serum full-length cytokeratin-18, high mobility group box 1 protein (HMGB1), and acetylated HMGB1 confirmed inflammatory necrosis in injured patients; only modest elevations in caspase-cleaved cytokeratin-18 were observed. These data suggest human hepatocytes are more resistant to human-relevant bile acids than rodent hepatocytes, and die through necrosis when exposed to bile acids. These mechanisms of cholestasis in humans are fundamentally different to mechanisms observed in rodent models. - Highlights: • Cholestatic liver injury is due to cytoplasmic bile acid accumulation in hepatocytes. • Primary human hepatocytes are resistant to BA

  13. Reciprocal regulation between taurine and glutamate response via Ca2+- dependent pathways in retinal third-order neurons

    PubMed Central

    2010-01-01

    Although taurine and glutamate are the most abundant amino acids conducting neural signals in the central nervous system, the communication between these two neurotransmitters is largely unknown. This study explores the interaction of taurine and glutamate in the retinal third-order neurons. Using specific antibodies, both taurine and taurine transporters were localized in photoreceptors and Off-bipolar cells, glutamatergic neurons in retinas. It is possible that Off-bipolar cells release juxtaposed glutamate and taurine to activate the third-order neurons in retina. The interaction of taurine and glutamate was studied in acutely dissociated third-order neurons in whole-cell patch-clamp recording and Ca2+ imaging. We find that taurine effectively reduces glutamate-induced Ca2+ influx via ionotropic glutamate receptors and voltage-dependent Ca2+ channels in the neurons, and the effect of taurine was selectively inhibited by strychnine and picrotoxin, but not GABA receptor antagonists, although GABA receptors are present in the neurons. A CaMKII inhibitor partially reversed the effect of taurine, suggesting that a Ca2+/calmodulin-dependent pathway is involved in taurine regulation. On the other hand, a rapid influx of Ca2+ through ionotropic glutamate receptors could inhibit the amplitude and kinetics of taurine-elicited currents in the third-order neurons, which could be controlled with intracellular application of BAPTA a fast Ca2+ chelator. This study indicates that taurine is a potential neuromodulator in glutamate transmission. The reciprocal inhibition between taurine and glutamate in the postsynaptic neurons contributes to computation of visual signals in the retinal neurons. PMID:20804625

  14. Ethanol induces taurine release in the amygdala: an in vivo microdialysis study.

    PubMed

    Quertemont, E; Dahchour, A; Ward, R J; Witte, P

    1999-01-01

    The effect of acute IP ethanol injections on the extracellular aspartate, glutamate, taurine and GABA content of the basolateral amygdala microdialysate was investigated in relationship with total brain ethanol. Each acute intraperitoneal injection of ethanol, 0.5, 1.0, 2.0 and 3.0 g/kg body weight, induced an immediate increase in microdialysate taurine; both 0.5 and 1.0 g/kg ethanol evoked an increase during the first 20 minutes following injection which returned to baseline value by 40 minutes, despite the fact that ethanol was detectable in the brain until 60 or 120 minutes, respectively. After either 2.0 or 3.0 g/kg ethanol there was an increase in taurine of gradual intensity which gradually declined to reach baseline values by 100 minutes. In contrast, the ethanol concentration for 2.0 g/kg remained elevated at the end of the 120 minutes; approximately 25 mg ethanol/mg protein. The stimulated release of taurine within the amygdala could participate in the regulation of ethanoli-nduced changes in osmolarity, since taurine is postulated to act as an osmoregulator in the brain. Taurine could also mediate or interact with ethanol-induced central nervous system effects, as it exerts a modulatory action on cell excitability and neurotransmitter processes.

  15. Protective and therapeutic effectiveness of taurine in diabetes mellitus: a rationale for antioxidant supplementation.

    PubMed

    Sirdah, Mahmoud M

    2015-01-01

    Taurine, 2-amino ethanesulfonic acid, is a conditionally essential β amino acid which is not utilized in protein synthesis. Taurine is one of the most abundant free amino acids in mammals tissues and is one of the three well-known sulfur-containing amino acids; the others are methionine and cysteine which are considered as the precursors for taurine synthesis. Different scientific studies emphasize on the cytoprotective properties of taurine which included antioxidation, antiapoptosis, membrane stabilization, osmoregulation, and neurotransmission. Protective and therapeutic ameliorations of oxidative stress-induced pathologies were also attributed to taurine both in experimental and human models. Data demonstrating the beneficial effectiveness of taurine against type 1 and type 2 diabetes mellitus and their complications are growing and providing a better understanding of the underlying molecular mechanisms. Although the clinical studies are limited compared to the experimental ones, the present updated systematic review of the literature is set up to provide experimental and clinical evidences regarding the effectiveness of taurine in the context of diabetes mellitus and its complications. Gathering these scientific effects of taurine on diabetes mellitus could provide the physicians and specially the endocrinologists with a comprehensive overview on possible trends in the prevention and management of the disease and its complications through antioxidant supplementation. Copyright © 2014 Diabetes India. Published by Elsevier Ltd. All rights reserved.

  16. Effect of supplemental taurine on juvenile channel catfish Ictalurus punctatus growth

    USDA-ARS?s Scientific Manuscript database

    Taurine is a beta-amino sulfur amino acid found in most animal tissues. It has many important biological functions in mammals including membrane stabilization, antioxidation, cellular osmoregulation, detoxification, neuromodulation, and brain and eye development. Taurine supplementation in juvenil...

  17. The bile acid composition of crane gallbladder bile

    USGS Publications Warehouse

    Serafin, J.A.

    1983-01-01

    1. The biliary bile acids of the whooping crane (Grus americana) and the Florida sandhill crane (G. canadensis pratensis) have been examined.2. Cholic acid (CA), chenodeoxycholic acid (CDOCA) and lithocholic acid were found in bile from both species of these North American cranes.3. CDOCA and CA were the primary bile acids in both species, together constituting 70% or more of the bile acids by weight.4. The primary bile acids of cranes appear to be the same as those that have been identified in other avian species.

  18. Farnesoid X Receptor Agonist Treatment Alters Bile Acid Metabolism but Exacerbates Liver Damage in a Piglet Model of Short-Bowel Syndrome.

    PubMed

    Pereira-Fantini, Prue M; Lapthorne, Susan; Gahan, Cormac G M; Joyce, Susan A; Charles, Jenny; Fuller, Peter J; Bines, Julie E

    2017-07-01

    Options for the prevention of short-bowel syndrome-associated liver disease (SBS-ALDs) are limited and often ineffective. The farnesoid X receptor (FXR) is a newly emerging pharmaceutical target and FXR agonists have been shown to ameliorate cholestasis and metabolic disorders. The aim of this study was to assess the efficacy of obeticholic acid (OCA) treatment in preventing SBS-ALDs. Piglets underwent 75% small-bowel resection (SBS) or sham surgery (sham) and were assigned to either a daily dose of OCA (2.4 mg/kg/day) or were untreated. Clinical measures included weight gain and stool studies. Histologic features were assessed. Ultraperformance liquid chromatography tandem mass spectrometry was used to determine bile acid composition in end point bile and portal serum samples. Gene expression of key FXR targets was assessed in intestinal and hepatic tissues via quantitative polymerase chain reaction. OCA-treated SBS piglets showed decreased stool fat and altered liver histology when compared with nontreated SBS piglets. OCA prevented SBS-associated taurine depletion, however, further analysis of bile and portal serum samples indicated that OCA did not prevent SBS-associated alterations in bile acid composition. The expression of FXR target genes involved in bile acid transport and synthesis increased within the liver of SBS piglets after OCA administration whereas, paradoxically, intestinal expression of FXR target genes were decreased by OCA administration. Administration of OCA in SBS reduced fat malabsorption and altered bile acid composition, but did not prevent the development of SBS-ALDs. We postulate that extensive small resection impacts the ability of the remnant intestine to respond to FXR activation.

  19. Bile tolerance and its effect on antibiotic susceptibility of probiotic Lactobacillus candidates.

    PubMed

    Hyacinta, Májeková; Hana, Kiňová Sepová; Andrea, Bilková; Barbora, Čisárová

    2015-05-01

    Before use in practice, it is necessary to precisely identify and characterize a new probiotic candidate. Eight animal lactobacilli and collection strain Lactobacillus reuteri CCM 3625 were studied from the point of saccharide fermentation profiles, bile salt resistance, antibiogram profiles, and influence of bile on sensitivity to antibiotics. Studied lactobacilli differed in their sugar fermentation ability determined by API 50CHL and their identification based on these profiles did not correspond with molecular-biological one in most cases. Survival of strains Lactobacillus murinus C and L. reuteri KO4b was not affected by presence of bile. The resistance of genus Lactobacillus to vancomycin and quinolones (ofloxacin, ciprofloxacin) was confirmed in all strains tested. This study provides the new information about oxgall (0.5 and 1 %) effect on the lactobacilli antibiotic susceptibility. Antibiotic profiles were not noticeably affected, and both bile concentrations tested had comparable impact on the lactobacilli antibiotic sensitivity. Interesting change was noticed in L. murinus C, where the resistance to cephalosporins was reverted to susceptibility. Similarly, susceptibility of L. reuteri E to ceftazidime arose after incubation in both concentration of bile. After influence of 1 % bile, Lactobacillus mucosae D lost its resistance to gentamicin. On the base of gained outcomes, the best probiotic properties manifested L. reuteri KO4b, Lactobacillus plantarum KG4, and L. reuteri E due to their survival in the presence of bile.

  20. Cholesterol-Lowering Potentials of Lactic Acid Bacteria Based on Bile-Salt Hydrolase Activity and Effect of Potent Strains on Cholesterol Metabolism In Vitro and In Vivo

    PubMed Central

    Lin, Pei-Pei; Hsieh, You-Miin; Zhang, Zi-yi; Wu, Hui-Ching; Huang, Chun-Chih

    2014-01-01

    This study collected different probiotic isolates from animal and plant sources to evaluate the bile-salt hydrolase activity of probiotics in vitro. The deconjugation potential of bile acid was determined using high-performance liquid chromatography. HepG2 cells were cultured with probiotic strains with high BSH activity. The triglyceride (TG) and apolipoprotein B (apo B) secretion by HepG2 cells were evaluated. Our results show that the BSH activity and bile-acid deconjugation abilities of Pediococcus acidilactici NBHK002, Bifidobacterium adolescentis NBHK006, Lactobacillus rhamnosus NBHK007, and Lactobacillus acidophilus NBHK008 were higher than those of the other probiotic strains. The cholesterol concentration in cholesterol micelles was reduced within 24 h. NBHK007 reduced the TG secretion by 100% after 48 h of incubation. NBHK002, NBHK006, and NBHK007 could reduce apo B secretion by 33%, 38%, and 39%, respectively, after 24 h of incubation. The product PROBIO S-23 produced a greater decrease in the total concentration of cholesterol, low-density lipoprotein, TG, and thiobarbituric acid reactive substance in the serum or livers of hamsters with hypercholesterolemia compared with that of hamsters fed with a high-fat and high-cholesterol diet. These results show that the three probiotic strains of lactic acid bacteria are better candidates for reducing the risk of cardiovascular disease. PMID:25538960

  1. A Surgical Model in Male Obese Rats Uncovers Protective Effects of Bile Acids Post-Bariatric Surgery

    PubMed Central

    Setchell, Kenneth DR; Kirby, Michelle; Myronovych, Andriy; Ryan, Karen K.; Ibrahim, Samar H.; Berger, Jose; Smith, Kathi; Toure, Mouhamadoul; Woods, Stephen C.; Seeley, Randy J.

    2013-01-01

    Bariatric surgery elevates serum bile acids. Conjugated bile acid administration, such as tauroursodeoxycholic acid (TUDCA), improves insulin sensitivity, whereas short-circuiting bile acid circulation through ileal interposition surgery in rats raises TUDCA levels. We hypothesized that bariatric surgery outcomes could be recapitulated by short circuiting the normal enterohepatic bile circulation. We established a model wherein male obese rats underwent either bile diversion (BD) or Sham (SH) surgery. The BD group had a catheter inserted into the common bile duct and its distal end anchored into the middistal jejunum for 4–5 weeks. Glucose tolerance, insulin and glucagon-like peptide-1 (GLP-1) response, hepatic steatosis, and endoplasmic reticulum (ER) stress were measured. Rats post-BD lost significantly more weight than the SH rats. BD rats gained less fat mass after surgery. BD rats had improved glucose tolerance, increased higher postprandial glucagon-like peptide-1 response and serum bile acids but less liver steatosis. Serum bile acid levels including TUDCA concentrations were higher in BD compared to SH pair-fed rats. Fecal bile acid levels were not different. Liver ER stress (C/EBP homologous protein mRNA and pJNK protein) was decreased in BD rats. Bile acid gavage (TUDCA/ursodeoxycholic acid [UDCA]) in diet-induced obese rats, elevated serum TUDCA and concomitantly reduced hepatic steatosis and ER stress (C/EBP homologous protein mRNA). These data demonstrate the ability of alterations in bile acids to recapitulate important metabolic improvements seen after bariatric surgery. Further, our work establishes a model for focused study of bile acids in the context of bariatric surgery that may lead to the identification of therapeutics for metabolic disease. PMID:23592746

  2. Homologue gene of bile acid transporters ntcp, asbt, and ost-alpha in rainbow trout Oncorhynchus mykiss: tissue expression, effect of fasting, and response to bile acid administration.

    PubMed

    Murashita, Koji; Yoshiura, Yasutoshi; Chisada, Shin-Ichi; Furuita, Hirofumi; Sugita, Tsuyoshi; Matsunari, Hiroyuki; Iwashita, Yasuro; Yamamoto, Takeshi

    2014-04-01

    Bile acid transporters belonging to the SLC10A protein family, Na+ taurocholate cotransporting polypeptide (NTCP or SLC10A1), apical sodium-dependent bile salt transporter (ASBT or SLC10A2), and organic solute transporter alpha (Ost-alpha) have been known to play critical roles in the enterohepatic circulation of bile acids in mammals. In this study, ntcp, asbt, and ost-alpha-1/-2 cDNA were cloned, their tissue distributions were characterized, and the effects of fasting and bile acid administration on their expression were examined in rainbow trout Oncorhynchus mykiss. The structural characteristics of Ntcp, Asbt, and Ost-alpha were well conserved in trout, and three-dimensional structure analysis showed that Ntcp and Asbt were similar to each other. Tissue distribution analysis revealed that trout asbt was primarily expressed in the hindgut, while ntcp expression occurred in the brain, and ost-alpha-1/-2 was mainly expressed in the liver or ovary. Although asbt and ost-alpha-1 mRNA levels in the gut increased in response to fasting for 4 days, ost-alpha-1 expression in the liver decreased. Similarly, bile acid administration increased asbt and ost-alpha-1 expression levels in the gut, while those of ntcp and ost-alpha-2 in the liver decreased. These results suggested that the genes asbt, ntcp, and ost-alpha are involved in bile acid transport in rainbow trout.

  3. Taurine ameliorated thyroid function in rats co-administered with chlorpyrifos and lead.

    PubMed

    Akande, Motunrayo Ganiyat; Shittu, Muftau; Uchendu, Chidiebere; Yaqub, Lukuman Surakat

    2016-12-01

    Chlorpyrifos is a widely used organophosphate insecticide for domestic, agricultural and industrial purposes. Lead is a toxic heavy metal and it is used for domestic and industrial purposes. Taurine is a semi essential amino acid with bioprotective properties. The aim of this study was to investigate the effects of taurine on thyroid function in Wistar rats co-administered with chlorpyrifos and lead. The rats were divided into 5 groups of 10 rats each. The first two groups were administered with distilled water and soya oil (1 ml/kg) respectively. The other groups received taurine (50 mg/kg), chlorpyrifos + lead [chlorpyrifos (4.25 mg/kg, 1/20 median lethal dose] and lead (233.25 mg/kg, 1/20 median lethal dose) and taurine + chlorpyrifos + lead respectively. The treatments were administered once daily by oral gavage for 16 weeks. The rats were euthanized after the completion of the study and the thyroid function and thyroid histoarchitecture were evaluated. The results revealed that co-administration of chlorpyrifos and lead to the rats induced perturbations in thyroid function and this was manifested by reductions in the concentrations of triiodothyronine and thyroxine, increased thyroid stimulating hormone concentration and degeneration of the follicular epithelia of the thyroid gland. Taurine alleviated the perturbations in thyroid function and improved thyroid gland histoarchitecture. The beneficial effects of taurine may be attributed to its ability to protect the body from toxicity and oxidative stress. Taurine may be useful for prophylaxis against disruptions in thyroid function in animals that are exposed to environmental chlorpyrifos and lead.

  4. Comparison of Bile Acids and Acetaminophen Protein Adducts in Children and Adolescents with Acetaminophen Toxicity.

    PubMed

    James, Laura; Yan, Ke; Pence, Lisa; Simpson, Pippa; Bhattacharyya, Sudeepa; Gill, Pritmohinder; Letzig, Lynda; Kearns, Gregory; Beger, Richard

    2015-01-01

    Metabolomics approaches have enabled the study of new mechanisms of liver injury in experimental models of drug toxicity. Disruption of bile acid homeostasis is a known mechanism of drug induced liver injury. The relationship of individual bile acids to indicators of oxidative drug metabolism (acetaminophen protein adducts) and liver injury was examined in children with acetaminophen overdose, hospitalized children with low dose exposure to acetaminophen, and children with no recent exposure to acetaminophen. Nine bile acids were quantified through targeted metabolomic analysis in the serum samples of the three groups. Bile acids were compared to serum levels of acetaminophen protein adducts and alanine aminotransferase. Glycodeoxycholic acid, taurodeoxycholic acid, and glycochenodeoxycholic acid were significantly increased in children with acetaminophen overdose compared to healthy controls. Among patients with acetaminophen overdose, bile acids were higher in subjects with acetaminophen protein adduct values > 1.0 nmol/mL and modest correlations were noted for three bile acids and acetaminophen protein adducts as follows: taurodeoxycholic acid (R=0.604; p<0.001), glycodeoxycholic acid (R=0.581; p<0.001), and glycochenodeoxycholic acid (R=0.571; p<0.001). Variability in bile acids was greater among hospitalized children receiving low doses of acetaminophen than in healthy children with no recent acetaminophen exposure. Compared to bile acids, acetaminophen protein adducts more accurately discriminated among children with acetaminophen overdose, children with low dose exposure to acetaminophen, and healthy control subjects. In children with acetaminophen overdose, elevations of conjugated bile acids were associated with specific indicators of acetaminophen metabolism and non-specific indicators of liver injury.

  5. Conformation Control of a Conjugated Polymer through Complexation with Bile Acids Generates Its Novel Spectral and Morphological Properties.

    PubMed

    Tsuchiya, Youichi; Noguchi, Takao; Yoshihara, Daisuke; Roy, Bappaditya; Yamamoto, Tatsuhiro; Shinkai, Seiji

    2016-11-29

    Control of higher-order polymer structures attracts a great deal of interest for many researchers when they lead to the development of materials having various advanced functions. Among them, conjugated polymers that are useful as starting materials in the design of molecular wires are particularly attractive. However, an equilibrium existing between isolated chains and bundled aggregates is inevitable and has made their physical properties very complicated. As an attempt to simplify this situation, we previously reported that a polymer chain of a water-soluble polythiophene could be isolated through complexation with a helix-forming polysaccharide. More recently, a covalently self-threading polythiophene was reported, the main chain of which was physically protected from self-folding and chain-chain π-stacking. In this report, we wish to report a new strategy to isolate a water-soluble polythiophene and to control its higher-order structure by a supramolecular approach: that is, among a few bile acids, lithocholate can form stoichiometric complexes with cationic polythiophene to isolate the polymer chain, and the higher-order structure is changeable by the molar ratio. The optical and morphological studies have been thoroughly performed, and the resultant complex has been applied to the selective recognition of two AMP structural isomers.

  6. Lipoamidase activity in normal and mutagenized pancreatic cholesterol esterase (bile salt-stimulated lipase).

    PubMed Central

    Hui, D Y; Hayakawa, K; Oizumi, J

    1993-01-01

    Purified human milk lipoamidase was digested with endoproteinase Lys-C and the digested peptides were subjected to gasphase microsequence analysis. The sequencing of three isolated peptides of human milk lipoamidase revealed the identity of this protein with human milk bile salt-stimulated lipase (pancreatic cholesterol esterase). The identity of the cholesterol esterase with lipoamidase was confirmed by expressing a recombinant form of rat pancreatic cholesterol esterase and testing for lipoamidase activity of the recombinant protein. The results showed that the recombinant cholesterol esterase displayed both lipolytic and lipoamidase activities and was capable of hydrolysing triacetin and lipoyl-4-aminobenzoate (LPAB). The mechanisms of the esterase and amidase activities of the enzyme were further tested by determining enzyme activity in a mutagenized cholesterol esterase with a His435-->Gln435 substitution. This mutation has been shown previously to abolish enzyme activity against esterase substrates [DiPersio, Fontaine and Hui (1991) J. Biol. Chem. 266, 4033-4036]. We showed that the mutagenized protein was effective in hydrolysing the amidase substrate LPAB and displayed similar enzyme kinetics to those of the native enzyme. These data indicate that the mechanism for the cholesterol esterase hydrolysis of lipoamides is different from that of the hydrolysis of substrates with an ester linkage. The presence of an enzyme in the gastrointestinal tract capable of both ester and amide hydrolysis suggests an important role for this protein in the digestion and absorption processes. PMID:8471055

  7. Bipolar and Related Disorders Induced by Sodium 4-Phenylbutyrate in a Male Adolescent with Bile Salt Export Pump Deficiency Disease.

    PubMed

    Vitale, Giovanni; Simonetti, Giulia; Pirillo, Martina; Taruschio, Gianfranco; Andreone, Pietro

    2016-09-01

    Bile Salt Export Pump (BSEP) Deficiency disease, including Progressive Familial Intrahepatic Cholestasis type 2 (PFIC2), is a rare disease, usually leading within the first ten years to portal hypertension, liver failure, hepatocellular carcinoma. Often liver transplantation is needed. Sodium 4-phenylbutyrate (4-PB) seems to be a potential therapeutic compound for PFIC2. Psychiatric side effects in the adolescent population are little known and little studied since the drug used to treat children and infants. So we described a case of Caucasian boy, suffering from a late onset PFIC2, listed for a liver transplant when he was sixteen and treated with 4-FB (200 mg per kilogram of body weight per day). The drug was discontinued for the onset of bipolar and related disorders. This case illustrates possible psychiatric side effects of the drug.

  8. Effect of Cordyceps sinensis and taurine either alone or in combination on streptozotocin induced diabetes.

    PubMed

    El Zahraa Z El Ashry, Fatma; Mahmoud, Mona F; El Maraghy, Nabila N; Ahmed, Ahmed F

    2012-03-01

    The present study aimed to investigate the antidiabetic effects of Cordyceps sinensis, taurine and their combination in comparison with glibenclamide both in vivo and in vitro using streptozotocin rat model. The diabetic rats were orally given glibenclamide, C. sinensis, taurine or Cordyceps and taurine combination for 21 days. Their effects were studied both in vivo and in vitro. Oral administration of Cordyceps, taurine and their combination decreased serum glucose, fructosamine, total cholesterol, triglycerides levels, insulin resistance index and pancreatic malondialdehyde content. Cordyceps significantly increased serum insulin, HDL-cholesterol, total antioxidant capacity levels, β cell function percent, and pancreatic reduced glutathione (GSH) content. However, taurine was unable to elevate pancreatic GSH level to a significant level. These natural products and their combinations were more effective than glibenclamide in reducing insulin resistance index and they had stronger antioxidant properties. Cordyceps and taurine significantly enhanced glucose uptake by diaphragms of normal and diabetic rats in absence and presence of insulin. In conclusion, Cordyceps and taurine either alone or in combination have less potent hypoglycemic effects than glibenclamide; however, they have more ability to reduce insulin resistance and stronger antioxidant properties. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Changes in the absorption of bile acids after total colectomy in patients with an ileostomy or pouch-anal anastomosis.

    PubMed

    Nasmyth, D G; Johnston, D; Williams, N S; King, R F; Burkinshaw, L; Brooks, K

    1989-03-01

    Bile acid absorption was investigated using 75Se Taurohomocholate (SeHCAT) in controls and patients who had undergone total colectomy with either conventional ileostomy or pouch-anal anastomosis for ulcerative colitis or adenomatous polyposis. Whole-body retention of SeHCAT after 168 hours was greater in the controls than the patients who had undergone colectomy (P less than .05). Retention of SeHCAT did not differ significantly between patients with an ileostomy and patients with pouch-anal anastomosis, but patients with an ileostomy and ileal resection of more than 20 cm retained less SeHCAT than patients with a pouch-anal anastomosis (P less than .01). Analysis of fecal bile acids from ileostomies and pouches showed that bacterial metabolism of primary conjugated bile acids was greater in patients with a pouch. It was concluded that bile acid absorption was not significantly impaired by construction of a pouch compared with conventional ileostomy, but bacterial metabolism of bile acids was greater in the pouches.

  10. Protein malnutrition blunts the increment of taurine transporter expression by a high-fat diet and impairs taurine reestablishment of insulin secretion.

    PubMed

    Branco, Renato Chaves Souto; Camargo, Rafael Ludemann; Batista, Thiago Martins; Vettorazzi, Jean Franciesco; Borck, Patrícia Cristine; Dos Santos-Silva, Junia Carolina Rebelo; Boschero, Antonio Carlos; Zoppi, Cláudio Cesar; Carneiro, Everardo Magalhães

    2017-09-01

    Taurine (Tau) restores β-cell function in obesity; however, its action is lost in malnourished obese rodents. Here, we investigated the mechanisms involved in the lack of effects of Tau in this model. C57BL/6 mice were fed a control diet (CD) (14% protein) or a protein-restricted diet (RD) (6% protein) for 6 wk. Afterward, mice received a high-fat diet (HFD) for 8 wk [CD + HFD (CH) and RD + HFD (RH)] with or without 5% Tau supplementation after weaning on their drinking water [CH + Tau (CHT) and RH + Tau (RHT)]. The HFD increased insulin secretion through mitochondrial metabolism in CH and RH. Tau prevented all those alterations in CHT only. The expression of the taurine transporter (Tau-T), as well as Tau content in pancreatic islets, was increased in CH but had no effect on RH. Protein malnutrition programs β cells and impairs Tau-induced restoration of mitochondrial metabolism and biogenesis. This may be associated with modulation of the expression of Tau-T in pancreatic islets, which may be responsible for the absence of effect of Tau in protein-malnourished obese mice.-Branco, R. C. S., Camargo, R. L., Batista, T. M., Vettorazzi, J. F., Borck, P. C., dos Santos-Silva, J. C. R., Boschero, A. C., Zoppi, C. C., Carneiro, E. M. Protein malnutrition blunts the increment of taurine transporter expression by a high-fat diet and impairs taurine reestablishment of insulin secretion. © FASEB.

  11. Dietary taurine alters ascorbic acid metabolism in rats fed diets containing polychlorinated biphenyls.

    PubMed

    Mochizuki, H; Oda, H; Yokogoshi, H

    2000-04-01

    The effect of dietary taurine on ascorbic acid metabolism and hepatic drug-metabolizing enzymes was investigated in rats fed diets containing polychlorinated biphenyls (PCB) to determine whether taurine has an adaptive and protective function in xenobiotic-treated animals. Young male Wistar rats (60 g) were fed diets containing 0 or 0.2 g/kg diet PCB with or without 30 g/kg diet of taurine for 14 d. The rats fed the PCB-containing diets had greater liver weight, higher ascorbic acid concentrations in the liver and spleen and greater hepatic cytochrome P-450 contents than control rats that were not treated with PCB (P < 0.01). In PCB-fed rats, urinary ascorbic acid excretion was enhanced, and serum cholesterol concentration (especially HDL-cholesterol) was significantly elevated compared with those in control rats. Dietary taurine significantly potentiated the increases in the urinary excretion of ascorbic acid and the rise in the levels of cytochrome P-450 which were caused by PCB treatment. On the other hand, the supplementation of taurine to control diet did not alter these variables. Taurine may enhance the hepatic drug-metabolizing systems, leading to the stimulation of the ascorbic acid metabolism in rats fed diets containing PCB.

  12. Taurine transport into fetal cord blood cells: inhibition by cyclosporine A.

    PubMed

    Speake, Paul F; Zipitis, Christos S; Houston, Angela; D'Souza, Stephen

    2004-10-01

    Pregnant women undergoing long-term organ transplant treatment have an increased incidence of delivering infants with intrauterine growth restriction (IUGR). Cyclosporine A is used as an immunosuppressant in such women and indirect evidence suggests that IUGR might result from an effect of cyclosporine A on amino acid transport by the placenta. In this study we tested the hypothesis that the transport of an essential amino acid, taurine, by fetal tissue other than the placenta is modulated by cyclosporine A. Cord blood cells (CBCs) were used to test this hypothesis as an easily obtainable fetal tissue. Transport of taurine into CBCs was measured using standard tracer flux assays. Uptake of [(3)H] taurine by CBCs was linear over 15 minutes (76.2 +/- 16.6 fmol/10(6) cells/min, mean +/- SEM, n = 6) and inhibitable by 10 mM beta-alanine, a substrate of the system-beta taurine transport protein (6.7 +/- 1.0 fmol/10(6) cells/min, n = 6, P <.05, paired Student t test). Pre-incubation with cyclosporine A (5 microM) inhibited [(3)H] taurine uptake by 29.3%-5.3% (n = 8, P <.05, paired Student t test). These data show that amino acid transport via system-beta can be measured in CBCs and may be a useful model for amino acid transport studies in fetal cells. We also show that system-beta was inhibited by the immunosuppressant, cyclosporine A. This suggests that the increased incidence of IUGR reported in mothers treated with cyclosporine A may be due partially to effects on taurine uptake into fetal cells outside the placenta.

  13. Impact of taurine depletion on glucose control and insulin secretion in mice.

    PubMed

    Ito, Takashi; Yoshikawa, Natsumi; Ito, Hiromi; Schaffer, Stephen W

    2015-09-01

    Taurine, an endogenous sulfur-containing amino acid, is found in millimolar concentrations in mammalian tissue, and its tissue content is altered by diet, disease and aging. The effectiveness of taurine administration against obesity and its related diseases, including type 2 diabetes, has been well documented. However, the impact of taurine depletion on glucose metabolism and fat deposition has not been elucidated. In this study, we investigated the effect of taurine depletion (in the taurine transporter (TauT) knockout mouse model) on blood glucose control and high fat diet-induced obesity. TauT-knockout (TauTKO) mice exhibited lower body weight and abdominal fat mass when maintained on normal chow than wild-type (WT) mice. Blood glucose disposal after an intraperitoneal glucose injection was faster in TauTKO mice than in WT mice despite lower serum insulin levels. Islet beta-cells (insulin positive area) were also decreased in TauTKO mice compared to WT mice. Meanwhile, overnutrition by high fat (60% fat)-diet could lead to obesity in TauTKO mice despite lower body weight under normal chow diet condition, indicating nutrition in normal diet is not enough for TauTKO mice to maintain body weight comparable to WT mice. In conclusion, taurine depletion causes enhanced glucose disposal despite lowering insulin levels and lower body weight, implying deterioration in tissue energy metabolism. Copyright © 2015 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  14. Effect of taurine supplementation on fat and energy absorption in cystic fibrosis.

    PubMed

    De Curtis, M; Santamaria, F; Ercolini, P; Vittoria, L; De Ritis, G; Garofalo, V; Ciccimarra, F

    1992-09-01

    In 10 children with cystic fibrosis and persisting steatorrhoea, supplementation with taurine (30-40 mg/kg/day) was given for two months as an adjunct to the usual pancreatic enzyme treatment. A three day fat and energy balance was performed in patients with cystic fibrosis, before and after the supplementation, and in seven healthy controls who did not receive taurine. Faecal fat was measured by a gravimetric method and stool energy was determined using a bomb calorimeter. Patients with cystic fibrosis, before and after taurine, and healthy controls received the same fat and energy intake (calculated by a dietitian). In patients with cystic fibrosis taurine did not produce any improvement of steatorrhoea (mean (SD) faecal fat 8.7 (3.3) v 11.2 (7.0) g/day, respectively before and after the supplementation), of faecal energy loss (0.978 (0.468) v 1.133 (0.539) MJ/day), of faecal fat expressed as percent of fat intake (13.4 (5.6) v 15.1 (9.8)%), and of faecal energy expressed as percent of energy intake (9.9 (3.6) v 11.2 (5.7)%). Healthy controls had significant lower fat (3.5 (2.3) g/day) and energy 0.576 (0.355) MJ/day faecal losses. In conclusion, taurine failed to decrease significantly fat and energy losses. Our study does not support the use of taurine supplementation in the nutritional management of cystic fibrosis.

  15. Effect of taurine supplementation on fat and energy absorption in cystic fibrosis.

    PubMed Central

    De Curtis, M; Santamaria, F; Ercolini, P; Vittoria, L; De Ritis, G; Garofalo, V; Ciccimarra, F

    1992-01-01

    In 10 children with cystic fibrosis and persisting steatorrhoea, supplementation with taurine (30-40 mg/kg/day) was given for two months as an adjunct to the usual pancreatic enzyme treatment. A three day fat and energy balance was performed in patients with cystic fibrosis, before and after the supplementation, and in seven healthy controls who did not receive taurine. Faecal fat was measured by a gravimetric method and stool energy was determined using a bomb calorimeter. Patients with cystic fibrosis, before and after taurine, and healthy controls received the same fat and energy intake (calculated by a dietitian). In patients with cystic fibrosis taurine did not produce any improvement of steatorrhoea (mean (SD) faecal fat 8.7 (3.3) v 11.2 (7.0) g/day, respectively before and after the supplementation), of faecal energy loss (0.978 (0.468) v 1.133 (0.539) MJ/day), of faecal fat expressed as percent of fat intake (13.4 (5.6) v 15.1 (9.8)%), and of faecal energy expressed as percent of energy intake (9.9 (3.6) v 11.2 (5.7)%). Healthy controls had significant lower fat (3.5 (2.3) g/day) and energy 0.576 (0.355) MJ/day faecal losses. In conclusion, taurine failed to decrease significantly fat and energy losses. Our study does not support the use of taurine supplementation in the nutritional management of cystic fibrosis. PMID:1417050

  16. The Cholangiocyte Glycocalyx Stabilizes the 'Biliary HCO3 Umbrella': An Integrated Line of Defense against Toxic Bile Acids.

    PubMed

    Maillette de Buy Wenniger, Lucas J; Hohenester, Simon; Maroni, Luca; van Vliet, Sandra J; Oude Elferink, Ronald P; Beuers, Ulrich

    2015-01-01

    Destruction of cholangiocytes is the hallmark of chronic cholangiopathies such as primary biliary cirrhosis. Under physiologic conditions, cholangiocytes display a striking resistance to the high, millimolar concentrations of toxic bile salts present in bile. We recently showed that a 'biliary HCO3(-) umbrella', i.e. apical cholangiocellular HCO3(-) secretion, prevents cholangiotoxicity of bile acids, and speculated on a role for extracellular membrane-bound glycans in the stabilization of this protective layer. This paper summarizes published and thus far unpublished evidence supporting the role of the glycocalyx in stabilizing the 'biliary HCO3(-) umbrella' and thus preventing cholangiotoxicity of bile acids. The apical glycocalyx of a human cholangiocyte cell line and mouse liver sections were visualized by electron microscopy. FACS analysis was used to characterize the surface glycan profile of cultured human cholangiocytes. Using enzymatic digestion with neuraminidase the cholangiocyte glycocalyx was desialylated to test its protective function. Using lectin assays, we demonstrated that the main N-glycans in human and mouse cholangiocytes were sialylated biantennary structures, accompanied by high expression of the H-antigen (α1-2 fucose). Apical neuraminidase treatment induced desialylation without affecting cell viability, but lowered cholangiocellular resistance to bile acid-induced toxicity: both glycochenodeoxycholate and chenodeoxycholate (pKa ≥4), but not taurochenodeoxycholate (pKa <2), displayed cholangiotoxic effects after desialylation. A 24-hour reconstitution period allowed cholangiocytes to recover to a pretreatment bile salt susceptibility pattern. Experimental evidence indicates that an apical cholangiocyte glycocalyx with glycosylated mucins and other glycan-bearing membrane glycoproteins stabilizes the 'biliary HCO3(-) umbrella', thus aiding in the protection of human cholangiocytes against bile acid toxicity. 2015 S. Karger AG, Basel.

  17. Cytosol-nucleus traffic and colocalization with FXR of conjugated bile acids in rat hepatocytes.

    PubMed

    Monte, Maria J; Rosales, Ruben; Macias, Rocio I R; Iannota, Valeria; Martinez-Fernandez, Almudena; Romero, Marta R; Hofmann, Alan F; Marin, Jose J G

    2008-07-01

    Bile acids (BAs) are natural ligands of nuclear receptors, in particular farnesoid X receptor (FXR). Whether, in addition to protein-mediated cytosolic-nuclear BA translocation, other mechanisms are involved in the access of BAs to nuclear FXR was investigated. When rat hepatocytes were incubated with radiolabeled taurocholic acid, taurodeoxycholic acid, taurochenodeoxycholic acid, and tauroursodeoxycholic acid, their nuclear accumulation was proportional to their intracellular levels. With the use of flow cytometry analysis, the accumulation by nuclei isolated from rat liver cells was found to differ for several fluorescent compounds of similar molecular weight and different charge, including fluorescein-tagged BAs [cholylglycyl amidofluorescein (CGamF), ursodeoxycholylglycyl amidofluorescein, or chenodeoxycholylglycyl amidofluorescein]. When we varied nuclear volume by incubation with different sucrose concentrations, a similar relationship between nuclear volume and content of FITC and 4-kDa FITC-dextran was found. In contrast, this relationship was markedly lower for CGamF. Confocal microscopy studies revealed that fluorescein-tagged BAs, but also FITC or 10-kDa FITC-dextran were found in the nuclear envelope and concentrated in regions where DNA was less densely packed. In contrast to the cytosolic subcellular localization of peroxisome proliferator-activated receptor-alpha, FXR and nucleolin (a marker of transcriptional active chromatin) were also localized by immunoreactivity in these intranuclear regions. In conclusion, although intranuclear levels of small organic molecules including conjugated BAs depend on their concentrations in the extranuclear space, the existence of certain molecular selectivity (not strictly dependent on molecular weight or charge) suggests that, in addition to simple diffusional exchange, other mechanisms may be also involved in determining their overall nuclear content in regions where these compounds coincide and may interact

  18. Effect of taurine on advanced glycation end products-induced hypertrophy in renal tubular epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, J.-S.; Chuang, L.-Y.; Guh, J.-Y.

    2008-12-01

    Mounting evidence indicates that advanced glycation end products (AGE) play a major role in the development of diabetic nephropathy (DN). Taurine is a well documented antioxidant agent. To explore whether taurine was linked to altered AGE-mediated renal tubulointerstitial fibrosis in DN, we examined the molecular mechanisms of taurine responsible for inhibition of AGE-induced hypertrophy in renal tubular epithelial cells. We found that AGE (but not non-glycated BSA) caused inhibition of cellular mitogenesis rather than cell death by either necrosis or apoptosis. There were no changes in caspase 3 activity, bcl-2 protein expression, and mitochondrial cytochrome c release in BSA, AGE,more » or the antioxidant taurine treatments in these cells. AGE-induced the Raf-1/extracellular signal-regulated kinase (ERK) activation was markedly blocked by taurine. Furthermore, taurine, the Raf-1 kinase inhibitor GW5074, and the ERK kinase inhibitor PD98059 may have the ability to induce cellular proliferation and cell cycle progression from AGE-treated cells. The ability of taurine, GW5074, or PD98059 to inhibit AGE-induced hypertrophy was verified by the observation that it significantly decreased cell size, cellular hypertrophy index, and protein levels of RAGE, p27{sup Kip1}, collagen IV, and fibronectin. The results obtained in this study suggest that taurine may serve as the potential anti-fibrotic activity in DN through mechanism dependent of its Raf-1/ERK inactivation in AGE-induced hypertrophy in renal tubular epithelial cells.« less

  19. Enhanced taurine release in cell-damaging conditions in the developing and ageing mouse hippocampus.

    PubMed

    Saransaari, P; Oja, S S

    1997-08-01

    Taurine has been shown to be essential for neuronal development and survival in the central nervous system. The release of preloaded [3H]taurine was studied in hippocampal slices from seven-day-, three-month- and 18-22-month-old mice in cell-damaging conditions. The slices were superfused in hypoxic, hypoglycemic and ischemic conditions and exposed to free radicals and oxidative stress. The release of taurine was greatly enhanced in the above conditions in all age groups, except in oxidative stress. The release was large in ischemia, particularly in the hippocampus of aged mice. Potassium stimulation was still able to release taurine in cell-damaging conditions in immature mice, whereas in adult and aged animals the release was so substantial that this additional stimulus failed to work. Taurine release was partially Ca2+-dependent in all cases. The massive release of the inhibitory amino acid taurine in ischemic conditions could act neuroprotectively, counteracting in several ways the effects of simultaneous release of excitatory amino acids. This protection could be of great importance in developing brain tissue, while also having an effect in aged brains.

  20. Val-407 and Ile-408 in the β5′-Loop of Pancreatic Lipase Mediate Lipase-Colipase Interactions in the Presence of Bile Salt Micelles*

    PubMed Central

    Freie, Angela Bourbon; Ferrato, Francine; Carrière, Frédéric; Lowe, Mark E.

    2013-01-01

    In a previous study, we demonstrated that the β5′-loop in the C-terminal domain of human pancreatic triglyceride lipase (hPTL) makes a major contribution in the function of hPTL (Chahinian et al. (2002) Biochemistry 41, 13725–13735). In the present study, we characterized the contribution of three residues in the β5′-loop, Val-407, Ile-408, and Leu-412, to the function of hPTL. By substituting charged residues, aspartate or lysine, in these positions, we altered the hydrophilic to lipophilic ratio of the β5′-loop. Each of the mutants was expressed, purified, and characterized for activity and binding with both monolayers and emulsions and for binding to colipase. Experiments with monolayers and with emulsions suggested that the interaction of hPTL with a phospholipid monolayer differs from the interaction of the hPTL-colipase complex with a dicaprin monolayer or a triglyceride emulsion (i.e. neutral lipids). Val-407, Ile-408, and Leu-412 make major contributions to interactions with monolayers, whereas only Val-407 and Ile-408 appear essential for activity on triglyceride emulsions in the presence of bile salt micelles. In solutions of taurodeoxycholate at micellar concentrations, a major effect of the β5′-loop mutations is to change the interaction between hPTL and colipase. These observations support a major contribution of residues in the β5′-loop in the function of hPTL and suggest that a third partner, bile salt micelles or the lipid interface or both, influence the binding of colipase and hPTL through interactions with the β5′-loop. PMID:16431912

  1. Effects of taurine and housing density on renal function in laying hens*

    PubMed Central

    Ma, Zi-li; Gao, Yang; Ma, Hai-tian; Zheng, Liu-hai; Dai, Bin; Miao, Jin-feng; Zhang, Yuan-shu

    2016-01-01

    This study investigated the putative protective effects of supplemental 2-aminoethane sulfonic acid (taurine) and reduced housing density on renal function in laying hens. We randomly assigned fifteen thousand green-shell laying hens into three groups: a free range group, a low-density caged group, and a high-density caged group. Each group was further divided equally into a control group (C) and a taurine treatment group (T). After 15 d, we analyzed histological changes in kidney cells, inflammatory mediator levels, oxidation and anti-oxidation levels. Experimental data revealed taurine supplementation, and rearing free range or in low-density housing can lessen morphological renal damage, inflammatory mediator levels, and oxidation levels and increase anti-oxidation levels. Our data demonstrate that taurine supplementation and a reduction in housing density can ameliorate renal impairment, increase productivity, enhance health, and promote welfare in laying hens. PMID:27921400

  2. Effects of glutamine, taurine and their association on inflammatory pathway markers in macrophages.

    PubMed

    Sartori, Talita; Galvão Dos Santos, Guilherme; Nogueira-Pedro, Amanda; Makiyama, Edson; Rogero, Marcelo Macedo; Borelli, Primavera; Fock, Ricardo Ambrósio

    2018-06-01

    The immune system is essential for the control and elimination of infections, and macrophages are cells that act as important players in orchestrating the various parts of the inflammatory/immune response. Amino acids play important role in mediating functionality of the inflammatory response, especially mediating macrophages functions and cytokines production. We investigated the influence of glutamine, taurine and their association on the modulation of inflammatory pathway markers in macrophages. The RAW 264.7 macrophage cell line was cultivated in the presence of glutamine and taurine and proliferation rates, cell viability, cell cycle phases, IL-1α, IL-6, IL-10 and TNF-α as well as H 2 O 2 production and the expression of the transcription factor, NFκB, and its inhibitor, IκBα, were evaluated. Our results showed an increase in viable cells and increased proliferation rates of cells treated with glutamine concentrations over 2 mM, as well as cells treated with both glutamine and taurine. The cell cycle showed a higher percentage of cells in the phases S, G2 and M when they were treated with 2 or 10 mM glutamine, or with glutamine and taurine in cells stimulated with lipopolysaccharide. The pNFκB/NFκB showed reduced ratio expression when cells were treated with 10 mM of glutamine or with glutamine in association with taurine. These conditions also resulted in reduced TNF-α, IL-1α and H 2 O 2 production, and higher production of IL-10. These findings demonstrate that glutamine and taurine are able to modulate macrophages inflammatory pathways, and that taurine can potentiate the effects of glutamine, illustrating their immunomodulatory properties.

  3. Enhancement of bile resistance in Lactobacillus plantarum strains by soy lecithin.

    PubMed

    Hu, B; Tian, F; Wang, G; Zhang, Q; Zhao, J; Zhang, H; Chen, W

    2015-07-01

    This study evaluated the effect of soy lecithin on the bile resistance of Lactobacillus plantarum. Six strains were cultured in MRS broth supplemented with soy lecithin at different concentrations. The strains incubated in MRS broth with 1·0% soy lecithin showed no inhibitory effect on cell growth. After culturing in MRS broth with 0·2-1·0% soy lecithin, the survival rate of harvested cells increased significantly (P < 0·05) in the 0·3% bile challenge compared with the no added soy lecithin group. The cells incubated with 0·6% soy lecithin were able to grow in an MRS broth with a higher bile salt content. The surface hydrophobicity and cell leakage in the bile challenge were assessed to reveal the physical changes caused by the addition of soy lecithin. The cell surface hydrophobicity was enhanced and the membrane integrity in the bile challenge increased after culturing with soy lecithin. A shift in the fatty acid composition was also observed, illustrating the cell membrane change in the soy lecithin culture. In this study, we report for the first time the beneficial effect of adding soy lecithin to an MRS broth on subsequent bile tolerance of Lactobacillus plantarum. Soy lecithin had no inhibitory effect on strain viability but significantly enhanced bile resistance. Surface hydrophobicity and cell integrity increased in strains cultured with soy lecithin. The observed shift in the cell fatty acid composition indicated changes to the cell membrane. As soy lecithin is safe for use in the food industry, its protective effects can be harnessed for the development of bile-sensitive strains with health-benefit functions for use in probiotic products. © 2015 The Society for Applied Microbiology.

  4. Advances in understanding of bile acid diarrhea

    PubMed Central

    Camilleri, Michael

    2014-01-01

    Bile acids (BA) are actively reabsorbed in the terminal ileum by the apical Na+-dependent bile salt transporter. This review addresses the epidemiology, pathophysiology, diagnosis and treatment of BA diarrhea (BAD). BAD is typically caused by ileal resection or disease; 25–33% of patients with chronic functional diarrhea or irritable bowel syndrome-diarrhea (IBS-D) have BAD, possibly from deficiency in the ileal hormone, FGF-19, which normally provides feedback inhibition of BA synthesis. Diagnosis of BAD is typically based on reduced BA retention of radiolabeled BA (75SeHCAT), increased BA synthesis (serum C4) or increased fecal BA loss. In clinical practice, diagnosis is often based on response to BA sequestrants (e.g., cholestyramine or colesevelam). Diagnostic tests for BA malabsorption (BAM) need to be used more extensively in clinical practice. In the future, farnesoid X receptor agonists that stimulate ileal production of FGF-19 may be alternative treatments of BAD. PMID:24410472

  5. Absence of histopathological changes of ileum and colon in functional chronic diarrhea associated with bile acid malabsorption, assessed by SeHCAT test: a prospective study.

    PubMed

    Sciarretta, G; Furno, A; Morrone, B; Malaguti, P

    1994-07-01

    Chronic diarrhea of unknown origin is often associated with bile acid malabsorption, the pathogenetic role of which is uncertain. The aim of this study was to identify morphological abnormalities in the ileal and colonic mucosa in patients with this disorder. We performed a prospective and blinded histopathological study (between June 1991 and November 1992) of endoscopic biopsies of the distal ileum and colon of 23 patients suffering from chronic diarrhea of unknown origin. In 14, the SeHCAT (75-selena-homo-cholic acid taurine) test was abnormal owing to bile acid malabsorption; in the other nine, the diarrhea control group, the test results were normal. A detailed evaluation of surface epithelium, immune response and inflammatory changes was made. in two patients and two controls, mild villous atrophy was observed; there was also slight inflammation of the ileal and colonic mucosa occurring with the same frequency in both groups. A slight replacement of goblet cells was more evident in the diarrhea control group. Chronic diarrhea of unknown origin associated with bile acid malabsorption does not involve specific morphological changes of ileal or colonic mucosa, and its pathogenesis must be looked for in dysfunction of the ileum and/or colon.

  6. Beneficial effects of high dose taurine treatment in juvenile dystrophic mdx mice are offset by growth restriction.

    PubMed

    Terrill, Jessica R; Pinniger, Gavin J; Nair, Keshav V; Grounds, Miranda D; Arthur, Peter G

    2017-01-01

    Duchenne Muscular Dystrophy (DMD) is a fatal muscle wasting disease manifested in young boys, for which there is no current cure. We have shown that the amino acid taurine is safe and effective at preventing dystropathology in the mdx mouse model for DMD. This study aimed to establish if treating growing mdx mice with a higher dose of taurine was more effective at improving strength and reducing inflammation and oxidative stress. Mice were treated with a dose of taurine estimated to be 16 g/kg/day, in drinking water from 1-6 weeks of age, after which in vivo and ex vivo muscle strength was assessed, as were measures of inflammation, oxidative stress and taurine metabolism. While the dose did decrease inflammation and protein oxidation in dystrophic muscles, there was no improvement in muscle strength (in contrast with benefits observed with the lower dose) and growth of the young mice was significantly restricted. We present novel data that a high taurine dose increases the cysteine content of both mdx liver and plasma, a possible result of down regulation of the taurine synthesis pathway in the liver (which functions to dispose of excess cysteine, which is toxic). These data caution that a high dose of taurine can have adverse effects and may be less efficacious than lower taurine doses. Therefore, monitoring of taurine dosage needs to be considered in future pre-clinical trials, in anticipation of using taurine as a clinical therapy for growing DMD boys (and other conditions).

  7. Beneficial effects of high dose taurine treatment in juvenile dystrophic mdx mice are offset by growth restriction

    PubMed Central

    Pinniger, Gavin J.; Nair, Keshav V.; Grounds, Miranda D.; Arthur, Peter G.

    2017-01-01

    Duchenne Muscular Dystrophy (DMD) is a fatal muscle wasting disease manifested in young boys, for which there is no current cure. We have shown that the amino acid taurine is safe and effective at preventing dystropathology in the mdx mouse model for DMD. This study aimed to establish if treating growing mdx mice with a higher dose of taurine was more effective at improving strength and reducing inflammation and oxidative stress. Mice were treated with a dose of taurine estimated to be 16 g/kg/day, in drinking water from 1–6 weeks of age, after which in vivo and ex vivo muscle strength was assessed, as were measures of inflammation, oxidative stress and taurine metabolism. While the dose did decrease inflammation and protein oxidation in dystrophic muscles, there was no improvement in muscle strength (in contrast with benefits observed with the lower dose) and growth of the young mice was significantly restricted. We present novel data that a high taurine dose increases the cysteine content of both mdx liver and plasma, a possible result of down regulation of the taurine synthesis pathway in the liver (which functions to dispose of excess cysteine, which is toxic). These data caution that a high dose of taurine can have adverse effects and may be less efficacious than lower taurine doses. Therefore, monitoring of taurine dosage needs to be considered in future pre-clinical trials, in anticipation of using taurine as a clinical therapy for growing DMD boys (and other conditions). PMID:29095865

  8. Revisiting AFLP fingerprinting for an unbiased assessment of genetic structure and differentiation of taurine and zebu cattle

    PubMed Central

    2014-01-01

    Background Descendants from the extinct aurochs (Bos primigenius), taurine (Bos taurus) and zebu cattle (Bos indicus) were domesticated 10,000 years ago in Southwestern and Southern Asia, respectively, and colonized the world undergoing complex events of admixture and selection. Molecular data, in particular genome-wide single nucleotide polymorphism (SNP) markers, can complement historic and archaeological records to elucidate these past events. However, SNP ascertainment in cattle has been optimized for taurine breeds, imposing limitations to the study of diversity in zebu cattle. As amplified fragment length polymorphism (AFLP) markers are discovered and genotyped as the samples are assayed, this type of marker is free of ascertainment bias. In order to obtain unbiased assessments of genetic differentiation and structure in taurine and zebu cattle, we analyzed a dataset of 135 AFLP markers in 1,593 samples from 13 zebu and 58 taurine breeds, representing nine continental areas. Results We found a geographical pattern of expected heterozygosity in European taurine breeds decreasing with the distance from the domestication centre, arguing against a large-scale introgression from European or African aurochs. Zebu cattle were found to be at least as diverse as taurine cattle. Western African zebu cattle were found to have diverged more from Indian zebu than South American zebu. Model-based clustering and ancestry informative markers analyses suggested that this is due to taurine introgression. Although a large part of South American zebu cattle also descend from taurine cows, we did not detect significant levels of taurine ancestry in these breeds, probably because of systematic backcrossing with zebu bulls. Furthermore, limited zebu introgression was found in Podolian taurine breeds in Italy. Conclusions The assessment of cattle diversity reported here contributes an unbiased global view to genetic differentiation and structure of taurine and zebu cattle

  9. The effects of bisphosphonates on taurine transport in retinal capillary endothelial cells under high glucose conditions.

    PubMed

    Lee, Na-Young; Kang, Young-Sook

    2013-01-01

    Diabetic retinopathy (DR) is a major cause of blindness in diabetic patients. Elevated glucose and vascular endothelial growth factor (VEGF) in retina can trigger many of the retinal vascular changes caused by diabetes and DR. Recently, bisphosphonates, antiosteoporosis drugs, have been reported to have anti-angiogenic effect by decreasing VEGF. Taurine has several biological processes such as osmoregulation and antioxidation in retina. Therefore, the purpose of this study is to clarify the regulation of taurine transport activity by high glucose concentration and the effect of inhibitors for VEGF function, bisphosphonates, on taurine transport under high glucose condition using TR-iBRB cell lines as an in vitro model of inner blood-retinal barrier (iBRB). As a result, by exposing TR-iBRB cells to high glucose for 48 h, [(3)H]taurine uptake was decreased continuously. [(3)H]Taurine uptake was increased significantly by pretreatment of alendronate and pamidronate compared with the values for high glucose. Increased [(3)H]taurine uptake by pretreatment of alendronate and pamidronate was significantly reduced by mevalonate pathway intermediates, geranylgeraniol (GGOH). In conclusion, taurine transport through the iBRB under high glucose condition can be regulated by bisphosphonates via mevalonate pathway. Therefore, we suggest that bisphosphonates could have the beneficial effects on DR by regulation of taurine contents in retina.

  10. Characterizing Factors Associated With Differences in FGF19 Blood Levels and Synthesis in Patients With Primary Bile Acid Diarrhea.

    PubMed

    Johnston, Ian M; Nolan, Jonathan D; Pattni, Sanjeev S; Appleby, Richard N; Zhang, Justine H; Kennie, Sarah L; Madhan, Gaganjit K; Jameie-Oskooei, Sina; Pathmasrirengam, Shivani; Lin, Jeremy; Hong, Albert; Dixon, Peter H; Williamson, Catherine; Walters, Julian R F

    2016-03-01

    Chronic diarrhea caused by primary bile acid diarrhea (PBAD) is a common condition. We have previously shown PBAD is associated with low fasting serum levels of the ileal hormone, fibroblast growth factor 19 (FGF19). FGF19 is a negative regulator of hepatic bile acid synthesis and is stimulated by farnesoid X receptor agonists, which produce symptomatic improvement in PBAD. We aimed to assess possible causes for low serum FGF19 in patients with PBAD. Patients with PBAD, defined by reduced (75)Se-labelled homocholic acid taurine (SeHCAT) retention, and idiopathic diarrhea controls had measurements of fasting lipids and fasting/post-prandial FGF19 serum profiles. Specific functional variants in candidate genes were investigated in exploratory studies. In further groups, basal and bile acid-stimulated transcript expression was determined in ileal biopsies and explant cultures by quantitative PCR. FGF19 profiles in PBAD patients included low fasting and meal-stimulated responses, which were both strongly correlated with SeHCAT. A subgroup of 30% of PBAD patients had fasting hypertriglyceridemia and higher FGF19. No clear significant differences were found for any genetic variant but there were borderline associations with FGFR4 and KLB. SeHCAT retention significantly correlated with the basal ileal transcript expression of FGF19 (rs=0.59, P=0.03) and apical sodium-dependent bile acid transporter (ASBT) (rs=0.49, P=0.04), and also with the degree of stimulation by chenodeoxycholic acid at 6 h for transcripts of FGF19 (median 184-fold, rs=0.50, P=0.02) and ileal bile acid binding protein (IBABP) (median 2.2-fold, rs=0.47, P=0.04). Median stimulation of FGF19 was lower in patients with SeHCAT retention <10% (P=0.01). These studies demonstrate a complex, multifactorial etiology of PBAD, including impairments in ileal FGF19 expression and responsiveness.

  11. The efficacy of a low-fat diet to manage the symptoms of bile acid malabsorption - outcomes in patients previously treated for cancer.

    PubMed

    Jackson, Amy; Lalji, Amyn; Kabir, Mohammed; Muls, Ann; Gee, Caroline; Vyoral, Susan; Shaw, Clare; Andreyev, H Jervoise N

    2017-10-01

    Dietary fat ingestion triggers bile secretion into the gastrointestinal tract. Bile acid malabsorption affects >1% of the population, causing loose stool and other gastrointestinal symptoms. The diagnosis is frequently missed. Treatments are often considered ineffective. We evaluated low-fat diets for managing gastrointestinal symptoms in these patients. All patients reporting type 6 or 7 stool were offered a selenium-75 homocholic acid taurine (SeHCAT) scan. Prospective data in patients with 7-day scan retention <20% were analysed. -Patients requiring a bile acid sequestrant were given this before receiving dietary advice. Patients completed a 7-day food diary before dietetic consultations. Personalised dietary interventions, providing 20% of daily energy from fat, were prescribed. Symptoms were assessed using a modified gastrointestinal symptom rating scale questionnaire before and 4-12 weeks after dietary intervention. A total of 114 patients (49 male, median age 64 years, median body mass index 27 kg/m 2 ) were evaluated. 44% of these patients were taking colesevelam. After dietary intervention, there was statistically significant improvement in abdominal pain and nocturnal defecation (0.2% alpha, p=0.001). Improvement in bowel frequency, urgency, flatulence, belching, borborygmi and stool consistency were seen, but did not reach statistical significance (p≤0.004-0.031). Dietary intervention is an effective treatment option for patients with symptomatic bile acid malabsorption and should be routinely considered. © Royal College of Physicians 2017. All rights reserved.

  12. Magnesium affects spinach carotenoid bioaccessibility in vitro depending on intestinal bile and pancreatic enzyme concentrations.

    PubMed

    Corte-Real, Joana; Desmarchelier, Charles; Borel, Patrick; Richling, Elke; Hoffmann, Lucien; Bohn, Torsten

    2018-01-15

    Magnesium may reduce carotenoid bioavailability by forming insoluble complexes with bile salts/fatty acids, inhibiting micelle formation. Here, we investigated whether altering bile/pancreatin concentration influenced potential negative effects of magnesium on carotenoid bioaccessibility. Spinach (4g) was digested in vitro with added magnesium (0, 200, 400mg/L) and canola oil/coffee creamer, at varying bile extract (1 or 8mM) and pancreatin (100 or 990mg/L) concentrations. Bioaccessibility was determined for β-carotene, lutein, and total carotenoids via HPLC. Additionally, lipolysis, particle size, and zeta potential of the micellar fractions were investigated. Increasing magnesium concentrations negatively affected carotenoid bioaccessibility (p<0.001), lipolysis, particle size and zeta potential. The impact of magnesium on carotenoid bioaccessibility was modulated mainly by bile concentration, with samples digested with 1mM of bile being more susceptible to inhibitory effects of magnesium than those digested with 8mM (p<0.001). Thus, magnesium was found to potentially interfere with carotenoid bioaccessibility at various physiologically plausible conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Protection of dried probiotic bacteria from bile using bile adsorbent resins.

    PubMed

    Mahbubani, Krishnaa T; Slater, Nigel K H; Edwards, Alexander D

    2014-01-25

    Enteric coated oral tablets or capsules can deliver dried live cells directly into the intestine. Previously, we found that a live attenuated bacterial vaccine acquired sensitivity to intestinal bile when dried, raising the possibility that although gastric acid can be bypassed, significant loss of viability might occur on release from an enteric coated oral formulations. Here we demonstrate that some food-grade lyophilised preparations of Lactobacillus casei and Lactobacillus salivarius also show temporary bile sensitivity that can be rapidly reversed by rehydration. To protect dried bacterial cells from temporary bile sensitivity, we propose using bile acid adsorbing resins, such as cholestyramine, which are bile acid binding agents, historically used to lower cholesterol levels. Vcaps™ HPMC capsules alone provided up to 830-fold protection from bile. The inclusion of 50% w/w cholestyramine in Vcaps™ HPMC capsules resulted in release of up to 1700-fold more live Lactobacillus casei into simulated intestinal fluid containing 1% bile, when compared to dried cells added directly to bile. We conclude that delivery of dried live probiotic organisms to the intestine may be improved by providing protection from bile by addition of bile adsorbing resins and the use of HPMC capsules. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Characteristics of taurine release in slices from adult and developing mouse brain stem.

    PubMed

    Saransaari, P; Oja, S S

    2006-07-01

    Taurine has been thought to function as a regulator of neuronal activity, neuromodulator and osmoregulator. Moreover, it is essential for the development and survival of neural cells and protects them under cell-damaging conditions. Taurine is also involved in many vital functions regulated by the brain stem, including cardiovascular control and arterial blood pressure. The release of taurine has been studied both in vivo and in vitro in higher brain areas, whereas the mechanisms of release have not been systematically characterized in the brain stem. The properties of release of preloaded [(3)H]taurine were now characterized in slices prepared from the mouse brain stem from developing (7-day-old) and young adult (3-month-old) mice, using a superfusion system. In general, taurine release was found to be similar to that in other brain areas, consisting of both Ca(2+)-dependent and Ca(2+)-independent components. Moreover, the release was mediated by Na(+)-, Cl(-)-dependent transporters operating outwards, as both Na(+)-free and Cl(-) -free conditions greatly enhanced it. Cl(-) channel antagonists and a Cl(-) transport inhibitor reduced the release at both ages, indicating that a part of the release occurs through ion channels. Protein kinases appeared not to be involved in taurine release in the brain stem, since substances affecting the activity of protein kinase C or tyrosine kinase had no significant effects. The release was modulated by cAMP second messenger systems and phospholipases at both ages. Furthermore, the metabotropic glutamate receptor agonists likewise suppressed the K(+)-stimulated release at both ages. In the immature brain stem, the ionotropic glutamate receptor agonists N-methyl-D-aspartate (NMDA) and 2-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) potentiated taurine release in a receptor-mediated manner. This could constitute an important mechanism against excitotoxicity, protecting the brain stem under cell-damaging conditions.

  15. Bile Duct Exploration

    MedlinePlus

    ... Patients & Visitors Health Library Institutes & Departments Home / Health Library / Diagnostics & Testing / Bile Duct Exploration Advertising Policy Bile Duct Exploration Common bile duct exploration is ...

  16. Purification and characterization of recombinant human bile salt-stimulated lipase expressed in milk of transgenic cloned cows.

    PubMed

    Wang, Yuhang; Ding, Fangrong; Wang, Tao; Liu, Wenjie; Lindquist, Susanne; Hernell, Olle; Wang, Jianwu; Li, Jing; Li, Ling; Zhao, Yaofeng; Dai, Yunping; Li, Ning

    2017-01-01

    Bile salt-stimulated lipase (BSSL) is a lipolytic digestive enzyme with broad substrate specificity secreted from exocrine pancreas into the intestinal lumen in all species and from the lactating mammary gland into the milk of some species, notably humans but not cows. BSSL in breast milk facilitates digestion and absorption of milk fat and promotes growth of small for gestational age preterm infants. Thus, purified recombinant human BSSL (rhBSSL) can be used for treatment of patients with fat malabsorption and expressing rhBSSL in the milk of transgenic cloned cows would therefore be a mean to meet a medical need. In the present study, a vector pBAC-hLF-hBSSL was constructed, which efficiently expressed active rhBSSL in milk of transgenic cloned cows to a concentration of 9.8 mg/ml. The rhBSSL purified from cow milk had the same enzymatic activity, N-terminal amino acid sequence, amino acid composition and isoelectric point and similar physicochemical characteristics as human native BSSL. Our study supports the use of transgenic cattle for the cost-competitive, large-scale production of therapeutic rhBSSL.

  17. Purification and characterization of recombinant human bile salt-stimulated lipase expressed in milk of transgenic cloned cows

    PubMed Central

    Ding, Fangrong; Wang, Tao; Liu, Wenjie; Lindquist, Susanne; Hernell, Olle; Wang, Jianwu; Li, Jing; Li, Ling; Zhao, Yaofeng; Dai, Yunping; Li, Ning

    2017-01-01

    Bile salt-stimulated lipase (BSSL) is a lipolytic digestive enzyme with broad substrate specificity secreted from exocrine pancreas into the intestinal lumen in all species and from the lactating mammary gland into the milk of some species, notably humans but not cows. BSSL in breast milk facilitates digestion and absorption of milk fat and promotes growth of small for gestational age preterm infants. Thus, purified recombinant human BSSL (rhBSSL) can be used for treatment of patients with fat malabsorption and expressing rhBSSL in the milk of transgenic cloned cows would therefore be a mean to meet a medical need. In the present study, a vector pBAC-hLF-hBSSL was constructed, which efficiently expressed active rhBSSL in milk of transgenic cloned cows to a concentration of 9.8 mg/ml. The rhBSSL purified from cow milk had the same enzymatic activity, N-terminal amino acid sequence, amino acid composition and isoelectric point and similar physicochemical characteristics as human native BSSL. Our study supports the use of transgenic cattle for the cost-competitive, large-scale production of therapeutic rhBSSL. PMID:28475629

  18. Taurine, caffeine, and energy drinks: Reviewing the risks to the adolescent brain.

    PubMed

    Curran, Christine Perdan; Marczinski, Cecile A

    2017-12-01

    Energy drinks are emerging as a major component of the beverage market with sales projected to top $60 billion globally in the next five years. Energy drinks contain a variety of ingredients, but many of the top-selling brands include high doses of caffeine and the amino acid taurine. Energy drink consumption by children has raised concerns, due to potential caffeine toxicity. An additional risk has been noted among college-aged consumers of energy drinks who appear at higher risk of over-consumption of alcohol when the two drinks are consumed together. The differential and combinatorial effects of caffeine and taurine on the developing brain are reviewed here with an emphasis on the adolescent brain, which is still maturing. Key data from animal studies are summarized to highlight both reported benefits and adverse effects reported following acute and chronic exposures. The data suggest that age is an important factor in both caffeine and taurine toxicity. Although the aged or diseased brain might benefit from taurine or caffeine supplementation, it appears that adolescents are not likely to benefit from supplementation and may, in fact, suffer ill effects from chronic ingestion of high doses. Additional work is needed though to address gaps in our understanding of how taurine affects females, since the majority of animal studies focused exclusively on male subjects. © 2017 Wiley Periodicals, Inc.

  19. A Molecular Dynamics Study of Single-Walled Carbon Nanotubes (SWCNTs) Dispersed in Bile Salt Surfactants

    NASA Astrophysics Data System (ADS)

    Phelan, Frederick, Jr.; Sun, Huai

    2014-03-01

    Single-walled carbon nanotubes (SWNCTs) are materials with structural, electronic and optical properties that make them attractive for a myriad of advanced technology applications. A practical barrier to their use is that SWCNT synthesis techniques produce heterogeneous mixtures of varying lengths and chirality, whereas applications generally require tubes with narrow size distributions and individual type. Most separation techniques currently in use to obtain monodisperse tube fractions rely on dispersion of these materials in aqueous solution using surfactants. The dispersion process results in a mixture of colloidal structures in which individual tubes are dispersed and contained in a surfactant shell. Understanding the structure and properties of the SWCNT-surfactant complex at the molecular level, and how this is affected by chirality, is key to understanding and improving separations processes. In this study, we use molecular dynamics (MD) simulations to study the structure and properties of SWCNT-surfactant colloidal complexes. We tested a number of methods and protocols in order to build an accurate model for simulating SWCNT systems for a variety of bile salt surfactants as well as anionic co-surfactants, components that are widely used and important in experimental separation studies at NIST. The custom force field parameters used here will be stored in WebFF, a Web-hosted smart force-field repository for polymeric and organic materials being developed at NIST for the Materials Genome Initiative.

  20. Long-term outcomes in patients diagnosed with bile-acid diarrhoea.

    PubMed

    Lin, Simeng; Sanders, David S; Gleeson, Joseph T; Osborne, Christopher; Messham, Louise; Kurien, Matthew

    2016-02-01

    Bile-acid diarrhoea (BAD) is a recognized cause of chronic diarrhoea; however, its detection remains suboptimal. Currently, there is a paucity of follow-up studies evaluating BAD. This work evaluates the natural history of BAD by examining individuals diagnosed with BAD [7 days of Se-homocholic acid taurine (SeHCAT) retention<10%] and determining the use of and response to bile-acid sequestrants (BAS). Of the 515 patients, 40% (207/515) who underwent an SeHCAT test at Sheffield Teaching Hospitals (2001-2012) for chronic diarrhoea had BAD. Of the 207 (51%) patients, 107 were diagnosed between 2001 and 2009. In accordance with the guidelines, all of these patients were commenced on BAS. In March 2013, these individuals were reassessed either in the clinic or over the telephone as part of a local service evaluation project. Comparisons were made of both pretreatment and post-treatment variables using a Wilcoxon rank test. Of the 107 patients, 54% (58/107) were followed up, with a median time since diagnosis of 6 years. Among them, 38% were still using BAS at follow-up, with 28% using alternative antidiarrhoeals. The median stool frequency decreased from seven stools per day to three (P=0.0008) in those using BAS. The 34% of patients not receiving treatment had no change in their daily bowel frequency. The main reason for discontinuing treatment was poor tolerability of the BAS (colestyramine/colestipol). Our findings indicate that BAD is a chronic condition that best improves with BAS. Consideration should be given to therapeutic options that have a better tolerability profile.

  1. Taurine Protects Mouse Spermatocytes from Ionizing Radiation-Induced Damage Through Activation of Nrf2/HO-1 Signaling.

    PubMed

    Yang, Wenjun; Huang, Jinfeng; Xiao, Bang; Liu, Yan; Zhu, Yiqing; Wang, Fang; Sun, Shuhan

    2017-01-01

    The increasing prevalence of ionizing radiation exposure has inevitably raised public concern over the potential detrimental effects of ionizing radiation on male reproductive system function. The detection of drug candidates to prevent reproductive system from damage caused by ionizing radiation is urgent. We aimed to investigate the protective role of taurine on the injury of mouse spermatocyte-derived cells (GC-2) subjected to ionizing radiation. mouse spermatocytes (GC-2 cells) were exposed to ionizing radiation with or without treatment of Taurine. The effect of ionizing radiation and Taurine treatment on GC-2 cells were evaluated by cell viability assay (CCK8), cell cycle and apoptosis. The relative protein abundance change was determined by Western blotting. The siRNA was used to explore whether Nrf2 signaling was involved in the cytoprotection of Taurine. Taurine significantly inhibited the decrease of cell viability, percentage of apoptotic cells and cell cycle arrest induced by ionizing radiation. Western blot analysis showed that taurine significantly limited the ionizing radiation-induced down-regulation of CyclinB1 and CDK1, and suppressed activation of Fas/FasL system pathway. In addition, taurine treatment significantly increased the expression of Nrf2 and HO-1 in GC-2 cells exposed to ionizing radiation, two components in antioxidant pathway. The above cytoprotection of Taurine was blocked by siNrf2. Our results demonstrate that taurine has the potential to effectively protect GC-2 cells from ionizing radiation- triggered damage via upregulation of Nrf2/HO-1 signaling. © 2017 The Author(s). Published by S. Karger AG, Basel.

  2. Detection of boldenone, its conjugates and androstadienedione, as well as five corticosteroids in bovine bile through a unique immunoaffinity column clean-up and two validated liquid chromatography-tandem mass spectrometry analyses.

    PubMed

    Chiesa, L; Nobile, M; Panseri, S; Sgoifo Rossi, C A; Pavlovic, R; Arioli, F

    2014-12-10

    The presence of β-boldenone II phase metabolites and prednisolone in urine samples, owing to endogenous or natural origin or illicit treatment, is under debate within the European Union. The detection of β-boldenone conjugates, α-boldenone conjugates at concentrations higher than 2 ng mL(-1) and prednisolone above the cut-off level of 5 ng mL(-1) in urine have been, until now, critical in deciding if illegal drug use has occurred. The use of urine sometimes is not entirely satisfactory, especially when the drug is administrated at low doses or when its metabolic conversion is very fast. This subsequently would hamper its detection in urine. The introduction of a new, advantageous matrix where the illicit treatment can be investigated would be highly appreciated. In this study, we have developed and validated a simple and unique immunoaffinity clean-up procedure, which was applied to bovine bile samples, followed by two different analytical liquid chromatography-electrospray-tandem mass spectrometry methods. The first method tests androstadienedione, α- and β-boldenone sulphate, glucuronate and related free forms, while the other method assays prednisolone, prednisone, dexamethasone, cortisone, and cortisol. The methods were validated according to European Commission Decision 2002/657/EC. The evaluated parameters were linearity, specificity, precision (repeatability and intra-laboratory reproducibility), recovery, decision limit and detection capability. The decision limits (CCα) were between 0.38 and 0.45 ng mL(-1) for anabolic steroids, and 0.13 and 0.15 ng mL(-1) as far as corticosteroids were concerned. Intra- and inter-day repeatability was below 15.8 and 19.9% for all analytes, respectively. The methods were applied to the analysis of some bile samples collected from untreated young bulls in order to investigate the presence of the studied steroids in this matrix. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Effect of taurine on the concentrations of glutamate, GABA, glutamine and alanine in the rat striatum and hippocampus.

    PubMed

    Molchanova, Svetlana M; Oja, Simos S; Saransaari, Pirjo

    2007-01-01

    Taurine, a non-protein amino acid, acts as an osmoregulator and inhibitory neuromodulator in the brain. Here we studied the effects of intraperitoneal injections of taurine on the concentrations of glutamate and GABA, and their precursors, glutamine and alanine, in the rat striatum and hippocampus. Injections of 0.25, 0.5 and 1 g/kg taurine led to a gradual increase in taurine tissue concentrations in both hippocampus and striatum. Glutamate and GABA also increased in the hippocampus, but not in the striatum. Glutamine increased and alanine decreased markedly in both brain structures. The results corroborate the neuromodulatory role of taurine in the brain. Taurine administration results in an imbalance in inhibitory and excitatory neurotransmission in the glutamatergic (hippocampus) and GABAergic (striatum) brain structures, affecting more markedly the neurotransmitter precursors.

  4. Concentrations in beef and lamb of taurine, carnosine, coenzyme Q(10), and creatine.

    PubMed

    Purchas, R W; Rutherfurd, S M; Pearce, P D; Vather, R; Wilkinson, B H P

    2004-03-01

    Levels of taurine, carnosine, coenzyme Q(10), and creatine were measured in beef liver and several muscles of beef and lamb and in cooked and uncooked meat. The amino acid taurine has numerous biological functions, the dipeptide carnosine is a buffer as well as an antioxidant, coenzyme Q(10) is also an antioxidant present within mitochondria, and creatine along with creatine phosphate is involved with energy metabolism in muscle. Large differences were shown for all compounds between beef cheek muscle (predominantly red fibres) and beef semitendinosus muscle (mainly white fibres), with cheek muscle containing 9.9 times as much taurine, and 3.2 times as much coenzyme Q(10), but only 65% as much creatine and 9% as much carnosine. Levels in lamb relative to beef semitendinosus muscles were higher for taurine but slightly lower for carnosine, coenzyme Q(10) and creatine. Values for all the compounds varied significantly between eight lamb muscles, possibly due in part to differences in the proportion of muscle fibre types. Slow cooking (90 min at 70 °C) of lamb longissimus and semimembranosus muscles led to significant reductions in the content of taurine, carnosine, and creatine (P<0.001), but a slight increase in coenzyme Q(10). There was also a four-fold increase in creatinine, presumably due to its formation from creatine. It is concluded that biologically, and possibly nutritionally, significant levels of taurine, carnosine, coenzyme Q(10), and creatine are present in beef and lamb, but that these levels vary between muscles, between animals, and with cooking.

  5. Molecular cloning and expression of rat liver bile acid CoA ligase.

    PubMed

    Falany, Charles N; Xie, Xiaowei; Wheeler, James B; Wang, Jin; Smith, Michelle; He, Dongning; Barnes, Stephen

    2002-12-01

    Bile acid CoA ligase (BAL) is responsible for catalyzing the first step in the conjugation of bile acids with amino acids. Sequencing of putative rat liver BAL cDNAs identified a cDNA (rBAL-1) possessing a 51 nucleotide 5'-untranslated region, an open reading frame of 2,070 bases encoding a 690 aa protein with a molecular mass of 75,960 Da, and a 138 nucleotide 3'-nontranslated region followed by a poly(A) tail. Identity of the cDNA was established by: 1) the rBAL-1 open reading frame encoded peptides obtained by chemical sequencing of the purified rBAL protein; 2) expressed rBAL-1 protein comigrated with purified rBAL during SDS-polyacrylamide gel electrophoresis; and 3) rBAL-1 expressed in insect Sf9 cells had enzymatic properties that were comparable to the enzyme isolated from rat liver. Evidence for a relationship between fatty acid and bile acid metabolism is suggested by specific inhibition of rBAL-1 by cis-unsaturated fatty acids and its high homology to a human very long chain fatty acid CoA ligase. In summary, these results indicate that the cDNA for rat liver BAL has been isolated and expression of the rBAL cDNA in insect Sf9 cells results in a catalytically active enzyme capable of utilizing several different bile acids as substrates.

  6. Involvement of metabotropic glutamate receptors in taurine release in the adult and developing mouse hippocampus.

    PubMed

    Saransaari, P; Oja, S S

    1999-01-01

    The inhibitory amino acid taurine has been held to function as an osmoregulator and modulator of neural activity, being particularly important in the immature brain. Ionotropic glutamate receptor agonists are known markedly to potentiate taurine release. The effects of different metabotropic glutamate receptor (mGluR) agonists and antagonists on the basal and K(+)-stimulated release of [3H]taurine from hippocampal slices from 3-month-old (adult) and 7-day-old mice were now investigated using a superfusion system. Of group I metabotropic glutamate receptor agonists, quisqualate potentiated basal taurine release in both age groups, more markedly in the immature hippocampus. This action was not antagonized by the specific antagonists of group I but by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and 6-nitro-7-sulphamoylbenzo[f]quinoxaline-2,3-dione (NBQX), which would suggest an involvement of ionotropic glutamate receptors. (S)-3,5-dihydroxyphenylglycine (DHPG) potentiated the basal release by a receptor-mediated mechanism in the immature hippocampus. The group II agonist (2S, 2'R, 3'R)-2-(2',3'-dicarboxycyclopropyl)glycine (DCG IV) markedly potentiated basal taurine release at both ages. These effects were antagonized by dizocilpine, indicating again the participation of ionotropic receptors. Group III agonists slightly potentiated basal taurine release, as did several antagonists of the three metabotropic receptor groups. Potassium-stimulated (50 mM K+) taurine release was generally significantly reduced by mGluR agents, mainly by group I and II compounds. This may be harmful to neurons in hyperexcitatory states. On the other hand, the potentiation by mGluRs of basal taurine release, particularly in the immature hippocampus, together with the earlier demonstrated pronounced enhancement by activation of ionotropic glutamate receptors, may protect neurons against excitotoxicity.

  7. Vitamin B12–dependent taurine synthesis regulates growth and bone mass

    PubMed Central

    Roman-Garcia, Pablo; Quiros-Gonzalez, Isabel; Mottram, Lynda; Lieben, Liesbet; Sharan, Kunal; Wangwiwatsin, Arporn; Tubio, Jose; Lewis, Kirsty; Wilkinson, Debbie; Santhanam, Balaji; Sarper, Nazan; Clare, Simon; Vassiliou, George S.; Velagapudi, Vidya R.; Dougan, Gordon; Yadav, Vijay K.

    2014-01-01

    Both maternal and offspring-derived factors contribute to lifelong growth and bone mass accrual, although the specific role of maternal deficiencies in the growth and bone mass of offspring is poorly understood. In the present study, we have shown that vitamin B12 (B12) deficiency in a murine genetic model results in severe postweaning growth retardation and osteoporosis, and the severity and time of onset of this phenotype in the offspring depends on the maternal genotype. Using integrated physiological and metabolomic analysis, we determined that B12 deficiency in the offspring decreases liver taurine production and associates with abrogation of a growth hormone/insulin-like growth factor 1 (GH/IGF1) axis. Taurine increased GH-dependent IGF1 synthesis in the liver, which subsequently enhanced osteoblast function, and in B12-deficient offspring, oral administration of taurine rescued their growth retardation and osteoporosis phenotypes. These results identify B12 as an essential vitamin that positively regulates postweaning growth and bone formation through taurine synthesis and suggests potential therapies to increase bone mass. PMID:24911144

  8. Effect of dietary taurine supplementation on growth, feed efficiency, and nutrient composition of juvenile sablefish (Anoplopoma fimbria)

    USDA-ARS?s Scientific Manuscript database

    Juvenile sablefish were fed a low taurine, basal feed with seven graded levels of supplemental taurine to determine taurine requirements for growth and feed efficiency. The basal feed was plant based, formulated primarily with soy and corn proteins with a minimal (9%) amount of fishmeal. The unsuppl...

  9. Central effect of taurine and its analogues on fever caused by intravenous leukocytic pyrogen in the rabbit.

    PubMed Central

    Lipton, J M; Ticknor, C B

    1979-01-01

    1. Taurine infused I.C.V. after I.V. injection of leukocytic pyrogen (LP) inhibited the initial rise in body temperature and prolonged fever when infusion was stopped. 2. Similar infusion of taurine also inhibited the hypertermic effect of I.C.V. PGE2 (0.5 microgram) but did not cause prolonged hyperthermia. 3. I.C.V. administration of the taurine analogues hypotaurine and beta-alanine, compounds which have been shown previously to compete with taurine for facilitated transport in C.N.S. tissue, also inhibited the initial increase in body temperature and prolonged LP fever. 4. These results suggest that taurine prolongs LP fever by preferentially occupying a carrier system normally required for termination of the effects of endogenous pyrogens or related central mediators of fever. There was no evidence that taurine prolongs fever by blocking inactivation of central PGE2, a substance proposed previously to be a central mediator of fever. PMID:107309

  10. Prospective evaluation of ursodeoxycholic acid withdrawal in patients with primary sclerosing cholangitis.

    PubMed

    Wunsch, Ewa; Trottier, Jocelyn; Milkiewicz, Malgorzata; Raszeja-Wyszomirska, Joanna; Hirschfield, Gideon M; Barbier, Olivier; Milkiewicz, Piotr

    2014-09-01

    Ursodeoxycholic acid (UDCA) is no longer recommended for management of adult patients with primary sclerosing cholangitis (PSC). We undertook a prospective evaluation of UDCA withdrawal in a group of consecutive patients with PSC. Twenty six patients, all treated with UDCA (dose range: 10-15 mg/kg/day) were included. Paired blood samples for liver biochemistry, bile acids, and fibroblast growth factor 19 (FGF19) were collected before UDCA withdrawal and 3 months later. Liquid chromatography/tandem mass spectrometry was used for quantification of 29 plasma bile acid metabolites. Pruritus and health-related quality of life (HRQoL) were assessed with a 10-point numeric rating scale, the Medical Outcomes Study Short Form-36 (SF-36), and PBC-40 questionnaires. UDCA withdrawal resulted in a significant deterioration in liver biochemistry (increase of alkaline phosphatase of 75.6%; P<0.0001; gamma-glutamyl transpeptidase of 117.9%, P<0.0001; bilirubin of 50.0%, P<0.001; alanine aminotransferase of 63.9%, P<0.005; and aspartate aminotransferase of 45.0%, P<0.005) and increase of Mayo Risk Score for PSC (change from baseline of +0.5 point; P<0.003). Bile acid analysis revealed a significant decrease in lithocholic acid and its derivatives after UDCA withdrawal, but no effect on concentrations of primary bile acids aside from an increased accumulation of their taurine conjugates. After UDCA removal cholestatic parameters, taurine species of cholic acid and chenodeoxycholic acid correlated with serum FGF19 levels. No significant effect on HRQoL after UDCA withdrawal was observed; however, 42% of patients reported a deterioration in their pruritus. At 3 months, discontinuation of UDCA in patients with PSC causes significant deterioration in liver biochemistry and influences concentrations of bile acid metabolites. A proportion of patients report increased pruritus, but other short-term markers of quality of life are unaffected. © 2014 by the American Association for the Study

  11. Overexpression of the Transcriptional Regulator WOR1 Increases Susceptibility to Bile Salts and Adhesion to the Mouse Gut Mucosa in Candida albicans

    PubMed Central

    Prieto, Daniel; Román, Elvira; Alonso-Monge, Rebeca; Pla, Jesús

    2017-01-01

    The transcriptional regulator Wor1 has been shown to induce the GUT transition, an environmentally triggered process that increases the fitness of Candida albicans in the mouse gastrointestinal tract. We have developed strains where the expression of this gene is driven from the strong and tightly regulated tetracycline promoter. These cells retain the main characteristics reported for GUT cells albeit they show defects in the initial stages of colonization. They also show a differential colonization along the gastrointestinal tract compared to isogenic strains, which is probably caused by their susceptibility to bile salts. We also show that WOR1 overexpressing cells have an altered metabolic activity, as revealed by a different susceptibility to inhibitors of respiration, and an enhanced adhesion to the mouse mucosa. We propose that this may contribute to their long-term favored ability to colonize the gastrointestinal tract. PMID:28955659

  12. Overexpression of the Transcriptional Regulator WOR1 Increases Susceptibility to Bile Salts and Adhesion to the Mouse Gut Mucosa in Candida albicans.

    PubMed

    Prieto, Daniel; Román, Elvira; Alonso-Monge, Rebeca; Pla, Jesús

    2017-01-01

    The transcriptional regulator Wor1 has been shown to induce the GUT transition, an environmentally triggered process that increases the fitness of Candida albicans in the mouse gastrointestinal tract. We have developed strains where the expression of this gene is driven from the strong and tightly regulated tetracycline promoter. These cells retain the main characteristics reported for GUT cells albeit they show defects in the initial stages of colonization. They also show a differential colonization along the gastrointestinal tract compared to isogenic strains, which is probably caused by their susceptibility to bile salts. We also show that WOR1 overexpressing cells have an altered metabolic activity, as revealed by a different susceptibility to inhibitors of respiration, and an enhanced adhesion to the mouse mucosa. We propose that this may contribute to their long-term favored ability to colonize the gastrointestinal tract.

  13. The Reversed Feto-Maternal Bile Acid Gradient in Intrahepatic Cholestasis of Pregnancy Is Corrected by Ursodeoxycholic Acid

    PubMed Central

    Geenes, Victoria; Lövgren-Sandblom, Anita; Benthin, Lisbet; Lawrance, Dominic; Chambers, Jenny; Gurung, Vinita; Thornton, Jim; Chappell, Lucy; Khan, Erum; Dixon, Peter; Marschall, Hanns-Ulrich; Williamson, Catherine

    2014-01-01

    Intrahepatic cholestasis of pregnancy (ICP) is a pregnancy-specific liver disorder associated with an increased risk of adverse fetal outcomes. It is characterised by raised maternal serum bile acids, which are believed to cause the adverse outcomes. ICP is commonly treated with ursodeoxycholic acid (UDCA). This study aimed to determine the fetal and maternal bile acid profiles in normal and ICP pregnancies, and to examine the effect of UDCA treatment. Matched maternal and umbilical cord serum samples were collected from untreated ICP (n = 18), UDCA-treated ICP (n = 46) and uncomplicated pregnancy (n = 15) cases at the time of delivery. Nineteen individual bile acids were measured using HPLC-MS/MS. Maternal and fetal serum bile acids are significantly raised in ICP compared with normal pregnancy (p = <0.0001 and <0.05, respectively), predominantly due to increased levels of conjugated cholic and chenodeoxycholic acid. There are no differences between the umbilical cord artery and cord vein levels of the major bile acid species. The feto-maternal gradient of bile acids is reversed in ICP. Treatment with UDCA significantly reduces serum bile acids in the maternal compartment (p = <0.0001), thereby reducing the feto-maternal transplacental gradient. UDCA-treatment does not cause a clinically important increase in lithocholic acid (LCA) concentrations. ICP is associated with significant quantitative and qualitative changes in the maternal and fetal bile acid pools. Treatment with UDCA reduces the level of bile acids in both compartments and reverses the qualitative changes. We have not found evidence to support the suggestion that UDCA treatment increases fetal LCA concentrations to deleterious levels. PMID:24421907

  14. The reversed feto-maternal bile acid gradient in intrahepatic cholestasis of pregnancy is corrected by ursodeoxycholic acid.

    PubMed

    Geenes, Victoria; Lövgren-Sandblom, Anita; Benthin, Lisbet; Lawrance, Dominic; Chambers, Jenny; Gurung, Vinita; Thornton, Jim; Chappell, Lucy; Khan, Erum; Dixon, Peter; Marschall, Hanns-Ulrich; Williamson, Catherine

    2014-01-01

    Intrahepatic cholestasis of pregnancy (ICP) is a pregnancy-specific liver disorder associated with an increased risk of adverse fetal outcomes. It is characterised by raised maternal serum bile acids, which are believed to cause the adverse outcomes. ICP is commonly treated with ursodeoxycholic acid (UDCA). This study aimed to determine the fetal and maternal bile acid profiles in normal and ICP pregnancies, and to examine the effect of UDCA treatment. Matched maternal and umbilical cord serum samples were collected from untreated ICP (n = 18), UDCA-treated ICP (n = 46) and uncomplicated pregnancy (n = 15) cases at the time of delivery. Nineteen individual bile acids were measured using HPLC-MS/MS. Maternal and fetal serum bile acids are significantly raised in ICP compared with normal pregnancy (p = <0.0001 and <0.05, respectively), predominantly due to increased levels of conjugated cholic and chenodeoxycholic acid. There are no differences between the umbilical cord artery and cord vein levels of the major bile acid species. The feto-maternal gradient of bile acids is reversed in ICP. Treatment with UDCA significantly reduces serum bile acids in the maternal compartment (p = <0.0001), thereby reducing the feto-maternal transplacental gradient. UDCA-treatment does not cause a clinically important increase in lithocholic acid (LCA) concentrations. ICP is associated with significant quantitative and qualitative changes in the maternal and fetal bile acid pools. Treatment with UDCA reduces the level of bile acids in both compartments and reverses the qualitative changes. We have not found evidence to support the suggestion that UDCA treatment increases fetal LCA concentrations to deleterious levels.

  15. Taurine supplementation has anti-atherogenic and anti-inflammatory effects before and after incremental exercise in heart failure.

    PubMed

    Ahmadian, Mehdi; Roshan, Valiollah Dabidi; Aslani, Elaheh; Stannard, Stephen R

    2017-07-01

    The purpose of this study was to examine the anti-atherogenic and anti-inflammatory effect of supplemental taurine prior to and following incremental exercise in patients with heart failure (HF). Patients with HF and left ventricle ejection fraction less than 50%, and placed in functional class II or III according to the New York Heart Association classification, were randomly assigned to two groups: (1) taurine supplementation; or (2) placebo. The taurine group received oral taurine (500 mg) 3 times a day for 2 weeks, and performed exercise before and after the supplementation period. The placebo group followed the same protocol, but with a starch supplement (500 mg) rather than taurine. The incremental multilevel treadmill test was done using a modified Bruce protocol. Our results indicate that inflammatory indices [C-reactive protein (CRP), platelets] decreased in the taurine group in pre-exercise, post-supplementation and post-exercise, post-supplementation as compared with pre-exercise, pre-supplementation ( p < 0.05) whereas these indices increased in pre-exercise, post-supplementation and post-exercise, post-supplementation as compared with pre-exercise, pre-supplementation in the placebo group ( p < 0.05). Our results also show that atherogenic indices [Castelli's Risk Index-I (CRI-I), Castelli's Risk Index-II (CRI-II) and Atherogenic Coefficient (AC)] decreased in the taurine group in pre-exercise, post-supplementation and post-exercise, post-supplementation as compared with pre-exercise, pre-supplementation ( p < 0.05). No such changes were noted in the placebo group ( p > 0.05). our results suggest that 2 weeks of oral taurine supplementation increases the taurine levels and has anti-atherogenic and anti-inflammatory effects prior to and following incremental exercise in HF patients.

  16. Distinct signatures of host–microbial meta-metabolome and gut microbiome in two C57BL/6 strains under high-fat diet

    PubMed Central

    Walker, Alesia; Pfitzner, Barbara; Neschen, Susanne; Kahle, Melanie; Harir, Mourad; Lucio, Marianna; Moritz, Franco; Tziotis, Dimitrios; Witting, Michael; Rothballer, Michael; Engel, Marion; Schmid, Michael; Endesfelder, David; Klingenspor, Martin; Rattei, Thomas; Castell, Wolfgang zu; de Angelis, Martin Hrabé; Hartmann, Anton; Schmitt-Kopplin, Philippe

    2014-01-01

    A combinatory approach using metabolomics and gut microbiome analysis techniques was performed to unravel the nature and specificity of metabolic profiles related to gut ecology in obesity. This study focused on gut and liver metabolomics of two different mouse strains, the C57BL/6J (C57J) and the C57BL/6N (C57N) fed with high-fat diet (HFD) for 3 weeks, causing diet-induced obesity in C57N, but not in C57J mice. Furthermore, a 16S-ribosomal RNA comparative sequence analysis using 454 pyrosequencing detected significant differences between the microbiome of the two strains on phylum level for Firmicutes, Deferribacteres and Proteobacteria that propose an essential role of the microbiome in obesity susceptibility. Gut microbial and liver metabolomics were followed by a combinatory approach using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) and ultra performance liquid chromatography time of tlight MS/MS with subsequent multivariate statistical analysis, revealing distinctive host and microbial metabolome patterns between the C57J and the C57N strain. Many taurine-conjugated bile acids (TBAs) were significantly elevated in the cecum and decreased in liver samples from the C57J phenotype likely displaying different energy utilization behavior by the bacterial community and the host. Furthermore, several metabolite groups could specifically be associated with the C57N phenotype involving fatty acids, eicosanoids and urobilinoids. The mass differences based metabolite network approach enabled to extend the range of known metabolites to important bile acids (BAs) and novel taurine conjugates specific for both strains. In summary, our study showed clear alterations of the metabolome in the gastrointestinal tract and liver within a HFD-induced obesity mouse model in relation to the host–microbial nutritional adaptation. PMID:24906017

  17. Acute intraperitoneal administration of taurine decreases the glycemia and reduces food intake in type 1 diabetic rats.

    PubMed

    Gomez, Rosane; Caletti, Greice; Arbo, Bruno Dutra; Hoefel, Ana Lúcia; Schneider, Ricardo; Hansen, Alana Witt; Pulcinelli, Rianne Remus; Freese, Luana; Bandiera, Solange; Kucharski, Luiz Carlos; Barros, Helena Maria Tanhauser

    2018-07-01

    Taurine, an amino acid with antioxidant and osmoregulatory properties, has been studied for its possible antidiabetic properties in type 1 and type 2 diabetic animals. In type 2 diabetic mice, taurine decreases blood glucose through increased insulin secretion and insulin receptor sensitization. However, insulin is absent in type 1 diabetic individuals. The aim of this study was to evaluate the effects of taurine on parameters related to the energy balance that could explain the metabolic action of this amino acid in type 1 diabetic rats. Control and streptozotocin-induced diabetic rats received saline or taurine (100 mg/kg/day), intraperitoneally, for 30 days. Parameters such as palatable food intake, gastrointestinal transit rate, serum glucose, insulin, leptin, and glucagon levels were measured 60 min after the last taurine administration. Liver, kidneys, heart, and retroperitoneal fat were dissected and weighted. Glycogen levels were measured in the liver and soleus muscle. Our results showed that acute taurine administration decreased glycemia. It also decreased food intake in diabetic rats, without affecting other metabolic parameters. Altogether, our results suggest that in type 1 diabetic rats, taurine decreases blood glucose by a non-insulin-dependent mechanism. Due to the safety profile of taurine, and its effect on glycemia, this amino acid may help to design new drugs to add benefit to insulin therapy in type 1 diabetic individuals. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  18. Comparison of taurine, GABA, Glu, and Asp as scavengers of malondialdehyde in vitro and in vivo

    NASA Astrophysics Data System (ADS)

    Deng, Yan; Wang, Wei; Yu, Pingfeng; Xi, Zhijiang; Xu, Lijian; Li, Xiaolong; He, Nongyue

    2013-04-01

    The purpose of this study is to determine if amino acid neurotransmitters such as gamma-aminobutyric acid (GABA), taurine, glutamate (Glu), and aspartate (Asp) can scavenge activated carbonyl toxicants. In vitro, direct reaction between malondialdehyde (MDA) and amino acids was researched using different analytical methods. The results indicated that scavenging activated carbonyl function of taurine and GABA is very strong and that of Glu and Asp is very weak in pathophysiological situations. The results provided perspective into the reaction mechanism of taurine and GABA as targets of activated carbonyl such as MDA in protecting nerve terminals. In vivo, we studied the effect of taurine and GABA as antioxidants by detecting MDA concentration and superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities. It was shown that MDA concentration was decreased significantly, and the activities of SOD and GSH-Px were increased significantly in the cerebral cortex and hippocampus of acute epileptic state rats, after the administration of taurine and GABA. The results indicated that the peripherally administered taurine and GABA can scavenge free radicals and protect the tissue against activated carbonyl in vivo and in vitro.

  19. Physiology of bile secretion.

    PubMed

    Esteller, Alejandro

    2008-10-07

    The formation of bile depends on the structural and functional integrity of the bile-secretory apparatus and its impairment, in different situations, results in the syndrome of cholestasis. The structural bases that permit bile secretion as well as various aspects related with its composition and flow rate in physiological conditions will first be reviewed. Canalicular bile is produced by polarized hepatocytes that hold transporters in their basolateral (sinusoidal) and apical (canalicular) plasma membrane. This review summarizes recent data on the molecular determinants of this primary bile formation. The major function of the biliary tree is modification of canalicular bile by secretory and reabsorptive processes in bile-duct epithelial cells (cholangiocytes) as bile passes through bile ducts. The mechanisms of fluid and solute transport in cholangiocytes will also be discussed. In contrast to hepatocytes where secretion is constant and poorly controlled, cholangiocyte secretion is regulated by hormones and nerves. A short section dedicated to these regulatory mechanisms of bile secretion has been included. The aim of this revision was to set the bases for other reviews in this series that will be devoted to specific issues related with biliary physiology and pathology.

  20. Bile duct stricture

    MedlinePlus

    ... duct, the tube that moves bile from the liver to the small intestine. Bile is a substance that helps with digestion. ... causes of this condition include: Cancer of the bile duct, liver or pancreas Damage and scarring due to a ...

  1. Effect of different bile salts on the relative hypoglycemia of witepsol W35 suppositories containing insulin in diabetic Beagle dogs.

    PubMed

    Hosny, E A; Al-Shora, H I; Elmazar, M M

    2001-09-01

    Insulin suppositories were formulated using Witepsol W35 as a base to investigate the effect of various bile salts/acids on the plasma glucose concentration of diabetic beagle dogs. Comparison of the effect of these formulations was made with that produced by insulin subcutaneous injections. Of the bile salts/acids studied, incorporation of 100 mg of deoxycholic acid (DCA), sodium cholate (NaC), or sodium deoxycholate (NaDC) with insulin (10 U/Kg) showed that suppositories containing NaDC produced the highest area under the curve (AUC) and relative hypoglycemia (RH) of 290 +/- 83 mg%h and 28% +/- 8.1%, respectively. To study the optimum amount of NaDC in insulin suppositories to produce the highest RH, 50-200 mg/suppository were used, and we found that 150 mg NaDC produced 35% +/- 13% RH. We also studied the influence of different doses of insulin (5-20 U/kg) in the presence of NaDC (100 mg). It was found that increase of the insulin dose was accompanied by an increase in AUC and maximum reduction in plasma glucose level Cmax. A combination of NaDC (100 mg) and NaC (50 mg) produced an AUC of 252 +/- 13mg%h and an RH of 49% +/- 2.6%, which were higher than produced by either of its individual components (NaC 50 mg or NaDC 100 mg) when used alone or when compared with an equivalent amount of NaDC (150 mg). When the effect of sodium taurocholate (NaTC) and sodium taurodeoxycholate (NaTDC) was studied, it was found that an insulin suppository containing 100 mg of either NaTC or NaTDC produced an RH equivalent to that produced previouslY with a mixture of NaDC (100 mg) and NaC (50 mg). On the other hand, NaC (50 mg) did not improve the hypoglycemic effect of NaTC any further. In conclusion, a relative hYpoglycemia of about 50% can be reached using insulin suppositories containing Witepsol W35 as a base and NaDC plus NaC (100 mg plus 50 mg, respectively), NaTDC (100mg), or NaTC (100 mg) as rectal absorption enhancers of insulin. A desirable hypoglycemia, expressed as

  2. Investigations into the absorption of insulin and insulin derivatives from the small intestine of the anaesthetised rat.

    PubMed

    McGinn, B J; Morrison, J D

    2016-06-28

    Experiments have been undertaken to determine the extent to which cholic acid conjugates of insulin were absorbed from the small intestine of anaesthetised rats by means of the bile salt transporters of the ileum. The measure used to assess the absorption of the cholyl-insulins was the amount of hypoglycaemia following infusion into the small intestine. Control experiments involving infusion of natural insulin into the ileum showed either nil absorption or absorption of a small amount of insulin as indicated by transient dip in the blood glucose concentration. However, when insulin was co-infused with the bile salt taurocholate, this was followed by a marked hypoglycaemic response which was specific to the ileum and did not occur on infusion into the jejunum. When the two cholyl conjugates of insulin were tested viz. B(29)-Lys-cholyl-insulin and B(1)-Phe-cholyl-insulin, both were biologically active as indicated by hypoglycaemic responses on systemic injection, though their potency was about 40% of that of natural insulin. While there was no evidence for the absorption of B(29)-Lys-cholyl-insulin when infused into the ileum, B(1)-Phe-cholyl-insulin did cause a long lasting hypoglycaemic response, indicating that absorption had occurred. Since the hypoglycaemic response was blocked on co-infusion with taurocholate and was absent for infusion of the conjugate into the jejunum, these results were taken as evidence that B(1)-Phe-cholyl-insulin had been taken up by the ileal bile salt transporters. This would indicate that B(1)-Phe-cholyl-insulin is worthy of further investigation for use in an oral insulin formulation. Copyright © 2016. Published by Elsevier B.V.

  3. Clinical Study of Ursodeoxycholic Acid in Barrett’s Esophagus Patients

    PubMed Central

    Banerjee, Bhaskar; Shaheen, Nicholas J.; Martinez, Jessica A.; Hsu, Chiu-Hsieh; Trowers, Eugene; Gibson, Blake A.; Della’Zanna, Gary; Richmond, Ellen; Chow, H-H. Sherry

    2016-01-01

    Prior research strongly implicates gastric acid and bile acids, two major components of the gastroesophageal refluxate, in the development of Barrett’s esophagus (BE) and its pathogenesis. Ursodeoxycholic acid (UDCA), a hydrophilic bile acid, has been shown to protect esophageal cells against oxidative stress induced by cytotoxic bile acids. We conducted a pilot clinical study to evaluate the clinical activity of UDCA in patients with BE. Twenty-nine BE patients received UDCA treatment at a daily dose of 13–15 mg/kg/day for six months. The clinical activity of UDCA was assessed by evaluating changes in gastric bile acid composition and markers of oxidative DNA damage (8-hydroxydeoxyguanosine, 8OHdG), cell proliferation (Ki67), and apoptosis (cleaved caspase 3, CC3) in BE epithelium. The bile acid concentrations in gastric fluid were measured by liquid chromatography-mass spectrometry. At baseline, UDCA (sum of unchanged and glycine/taurine conjugates) accounted for 18.2% of total gastric bile acids. Post UDCA intervention, UDCA increased significantly to account for 93.39% of total gastric bile acids (p<0.0001). The expression of markers of oxidative DNA damage, cell proliferation, and apoptosis was assessed in the BE biopsies by immunohistochemistry. The selected tissue biomarkers were unchanged after 6 months of UDCA intervention. We conclude that high dose UDCA supplementation for six months resulted in favorable changes in gastric bile acid composition but did not modulate selected markers of oxidative DNA damage, cell proliferation, and apoptosis in the BE epithelium. PMID:26908564

  4. The effects of taurine on repeat sprint cycling after low or high cadence exhaustive exercise in females.

    PubMed

    Waldron, Mark; Knight, Francesca; Tallent, Jamie; Patterson, Stephen; Jeffries, Owen

    2018-06-01

    This study investigated the effects of taurine on repeated sprint exercise, performed after fixed incremental ramp exercise to exhaustion at isokinetic high (90 r/min) or low (50 r/min) cadences. In a double-blind, repeated measures design, nine females completed an incremental ramp test to volitional exhaustion, followed by 2 min active recovery and 6 × 10 s sprints on a cycle ergometer, in one of four conditions: high cadence (90 r/min) + taurine (50 mg/kg body mass); high cadence + placebo (3 mg/kg body mass maltodextrin); low cadence (50 r/min) + taurine; low cadence + placebo. Heart rate (HR) and blood lactate concentration B[La] were measured before and after the ramp test and after the sprints. Taurine lowered HR vs. placebo prior to the ramp test (P = 0.004; d = 2.1). There was an effect of condition on ramp performance (P < 0.001), with higher end-test power (d = 3.7) in taurine conditions. During repeated sprints, there was a condition × time interaction (P = 0.002), with higher peak sprint power in the placebo conditions compared to taurine (sprint 2-6; P < 0.05). B[La] was higher in taurine compared to placebo post-ramp (P = 0.004; d = 4.7). Taurine-lowered pre-exercise HR and improved incremental end-test power output, with subsequent detrimental effects on sprint performance, independent of cadence. Short endurance performance can be acutely enhanced after taurine ingestion but this effect might not be maintained across longer periods of exercise or induce the need for longer recovery periods.

  5. Lithium salt doped conjugated polymers as electron transporting materials for highly efficient blue polymer light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Huang, Fei; Shih, Ping-I.; Liu, Michelle S.; Shu, Ching-Fong; Jen, Alex K.-Y.

    2008-12-01

    Highly efficient blue polymer light-emitting diodes (PLEDs) are fabricated using a conjugated polymer, poly[9,9-bis(2-(2-(2-diethanol-amino-ethoxy) ethoxy) ethyl) fluorene-alt-4, 4'-phenylether] as an electron transporting layer (ETL). It was found that the performance of these blue-emitting devices could be greatly improved if the ETL was doped with LiF or Li2CO3 salts. A bis[(4,6-di-fluorophenyl)-pyridinato-N, C2] (picolinate) Ir(III) (FIrpic) complex based blue phosphorescent PLED exhibited a maximum luminance efficiency of 20.3 cd/A with a luminance of 1600 cd/m2 at the current density of 7.9 mA/cm2 and drive voltage of 8.0 V.

  6. Dietary fish oil regulates gene expression of cholesterol and bile acid transporters in mice.

    PubMed

    Kamisako, Toshinori; Tanaka, Yuji; Ikeda, Takanori; Yamamoto, Kazuo; Ogawa, Hiroshi

    2012-03-01

      Fish oil rich in n-3 polyunsaturated fatty acids is known to affect hepatic lipid metabolism. Several studies have demonstrated that fish oil may affect the bile acid metabolism as well as lipid metabolism, whereas only scarce data are available. The aim of this study was to investigate the effect of fish oil on the gene expression of the transporters and enzymes related to bile acid as well as lipid metabolism in the liver and small intestine.   Seven-week old male C57BL/6 mice were fed diets enriched in 10% soybean oil or 10% fish oil for 4 weeks. After 4 weeks, blood, liver and small intestine were obtained.   Hepatic mRNA expression of lipids (Abcg5/8, multidrug resistance gene product 2) and bile acids transporters (bile salt export pump, multidrug resistance associated protein 2 and 3, organic solute transporter α) was induced in fish oil-fed mice. Hepatic Cyp8b1, Cyp27a1 and bile acid CoA : amino acid N-acyltransferase were increased in fish oil-fed mice compared with soybean-oil fed mice. Besides, intestinal cholesterol (Abcg5/8) and bile acid transporters (multidrug resistance associated protein 2 and organic solute transporter α) were induced in fish oil-fed mice.   Fish oil induced the expression of cholesterol and bile acid transporters not only in liver but in intestine. The upregulation of Abcg5/g8 by fish oil is caused by an increase in cellular 27-HOC through Cyp27a1 induction. The hepatic induction of bile acid synthesis through Cyp27a1 may upregulate expression of bile acid transporters in both organs. © 2012 The Japan Society of Hepatology.

  7. NMR studies reveal the role of biomembranes in modulating ligand binding and release by intracellular bile acid binding proteins.

    PubMed

    Pedò, Massimo; Löhr, Frank; D'Onofrio, Mariapina; Assfalg, Michael; Dötsch, Volker; Molinari, Henriette

    2009-12-18

    Bile acid molecules are transferred vectorially between basolateral and apical membranes of hepatocytes and enterocytes in the context of the enterohepatic circulation, a process regulating whole body lipid homeostasis. This work addresses the role of the cytosolic lipid binding proteins in the intracellular transfer of bile acids between different membrane compartments. We present nuclear magnetic resonance (NMR) data describing the ternary system composed of the bile acid binding protein, bile acids, and membrane mimetic systems, such as anionic liposomes. This work provides evidence that the investigated liver bile acid binding protein undergoes association with the anionic membrane and binding-induced partial unfolding. The addition of the physiological ligand to the protein-liposome mixture is capable of modulating this interaction, shifting the equilibrium towards the free folded holo protein. An ensemble of NMR titration experiments, based on nitrogen-15 protein and ligand observation, confirm that the membrane and the ligand establish competing binding equilibria, modulating the cytoplasmic permeability of bile acids. These results support a mechanism of ligand binding and release controlled by the onset of a bile salt concentration gradient within the polarized cell. The location of a specific protein region interacting with liposomes is highlighted.

  8. Correlation between chemical components of billary calculi and bile & sera and bile of gallstone patients.

    PubMed

    Chandran, Prasheeda; Garg, Pradeep; Pundir, Chandra S

    2005-07-01

    Total cholesterol, total bilirubin, calcium, oxalate, inorganic phosphate, magnesium, iron, copper, sodium and potassium were analyzed quantitatively in gallstones, bile of gall bladder and sera of 200 patients of cholelithiasis (52 cholesterol, 76 mixed and 72 pigment stone patients) and their contents were correlated between calculi and bile and sera and bile in these three type of stone patients. A significant positive correlation was observed between total cholesterol, total bilirubin of calculi and bile, copper of bile and sera of cholesterol stone patients, copper of calculi and bile, total bilirubin, oxalate, magnesium, potassium of sera and bile of pigment stone patients and oxalate and iron of stone and bile, total bilirubin, oxalate, sodium of sera and bile of mixed stone patients. A significant negative correlation was found between magnesium of serum and bile of cholesterol stone patients, oxalate of calculi and bile of pigment stone patients and magnesium of serum and bile of mixed stone patients.

  9. Cerebral taurine release mechanisms in vivo: pharmacological investigations in rats using microdialysis for proof of principle.

    PubMed

    Scheller, D; Korte, M; Szathmary, S; Tegtmeier, F

    2000-06-01

    Cerebral taurine acts as neurotransmitter, as neuromodulator, or as osmoregulator. To investigate its release mechanisms in vivo, we combined the microdialysis technique with a variety of experimental paradigms. Taurine release was stimulated by either NMDA, NO or a hypotonic solution locally with or without the addition of the NMDA antagonists APV or Ketamine, or the NO synthase inhibitor L-NAME. Alternatively, the neuroprotective drug lubeluzole was applied i.v. NMDA, NO or the hypotonic solution stimulated the release of taurine. NMDA-mediated taurine release was inhibited by either APV, Ketamine or the NO synthase inhibitor L-NAME. Lubeluzole had no effect. Under the hypotonic conditions only lubeluzole was effective. These data confirm in vivo that the NMDA-induced taurine release is mediated via the NO cascade. By contrast, the release after a hypotonic stimulus is not related to the NO cascade. Instead, Na(+)- and/or Ca(2+)-mediated events might have been attenuated by lubeluzole.

  10. The analogy in the formation of hardness salts and gallstones according to the EPR study

    NASA Astrophysics Data System (ADS)

    Pichugina, Alina; Tsyro, Larisa; Unger, Felix

    2017-11-01

    The article shows that the hardness salts contain the same crystalline phases as the bile stone pigment. The identity of EPR spectra of hardness salts and pigment of gallstones containing calcium carbonate was established. An analogy between the processes of formation of hardness salts and gallstones is played, in which particles with open spin-orbitals (fermions) play a decisive role.

  11. The role of bile salt export pump mutations in progressive familial intrahepatic cholestasis type II

    PubMed Central

    Wang, Lin; Soroka, Carol J.; Boyer, James L.

    2002-01-01

    PFIC II is a subtype of progressive familial intrahepatic cholestasis (PFIC) that is associated with mutations in the ABCB11 gene encoding the bile salt export pump (BSEP). However it is not known how these mutations cause this disease. To evaluate these mechanisms, we introduced seven PFIC II–associated missense mutations into rat Bsep and assessed their effects on Bsep membrane localization and transport function in MDCK and Sf9 cells, respectively. Five mutations, G238V, E297G, G982R, R1153C, and R1268Q, prevented the protein from trafficking to the apical membrane, and E297G, G982R, R1153C, and R1268Q also abolished taurocholate transport activity, possibly by causing Bsep to misfold. Mutation C336S affected neither Bsep transport activity nor the apical trafficking of Bsep, suggesting that this mutation alone may not cause this disease. D482G did not affect the apical expression but partially decreased the transport activity of Bsep. Mutant G238V was rapidly degraded in both MDCK and Sf9 cells, and proteasome inhibitor resulted in intracellular accumulation of this and other mutants, suggesting proteasome-mediated degradation plays an important role in expression of these PFIC II mutants. Our studies highlight the heterogeneous nature of PFIC II mutations and illustrate the significance of these mutations in the function and expression of Bsep. PMID:12370274

  12. Imaging Taurine in the Central Nervous System Using Chemically Specific X-ray Fluorescence Imaging at the Sulfur K-Edge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hackett, Mark J.; Paterson, Phyllis G.; Pickering, Ingrid J.

    A method to image taurine distributions within the central nervous system and other organs has long been sought. Since taurine is small and mobile, it cannot be chemically “tagged” and imaged using conventional immuno-histochemistry methods. Combining numerous indirect measurements, taurine is known to play critical roles in brain function during health and disease and is proposed to act as a neuro-osmolyte, neuro-modulator, and possibly a neuro-transmitter. Elucidation of taurine’s neurochemical roles and importance would be substantially enhanced by a direct method to visualize alterations, due to physiological and pathological events in the brain, in the local concentration of taurine atmore » or near cellular spatial resolution in vivo or in situ in tissue sections. We thus have developed chemically specific X-ray fluorescence imaging (XFI) at the sulfur K-edge to image the sulfonate group in taurine in situ in ex vivo tissue sections. To our knowledge, this represents the first undistorted imaging of taurine distribution in brain at 20 μm resolution. We report quantitative technique validation by imaging taurine in the cerebellum and hippocampus regions of the rat brain. Further, we apply the technique to image taurine loss from the vulnerable CA1 (cornus ammonis 1) sector of the rat hippocampus following global brain ischemia. The location-specific loss of taurine from CA1 but not CA3 neurons following ischemia reveals osmotic stress may be a key factor in delayed neurodegeneration after a cerebral ischemic insult and highlights the significant potential of chemically specific XFI to study the role of taurine in brain disease.« less

  13. Taurine-induced attenuation of MPP+ neurotoxicity in vitro: a possible role for the GABA(A) subclass of GABA receptors.

    PubMed

    O'Byrne, M B; Tipton, K F

    2000-05-01

    Taurine is a sulphur-containing beta-amino acid found in high (millimolar) concentrations in excitable tissues such as brain and heart. Its suggested roles include osmoregulator, thermoregulator, neuromodulator, and potential neurotransmitter. This amino acid has also been shown to be released in large concentrations during ischaemia and excitotoxin-induced neuronal damage. Here we report a protective effect of taurine against MPP(+)-induced neurotoxicity in coronal slices from rat brain. Significant protective effects were observed at taurine concentrations of 20 and 1 mM, suggesting a potential role for taurine in cases of neuronal insult. Studies with the synthetic taurine analogues taurine phosphonate, guanidinoethane sulphonate, and trimethyltaurine suggested the observed effect to be mediated via an extracellular mechanism. The use of GABA receptor ligands muscimol and bicuculline indicated the effect to be mediated through activation of GABA(A) receptors.

  14. Integrity and stability of oral liposomes containing bile salts studied in simulated and ex vivo gastrointestinal media.

    PubMed

    Hu, Shunwen; Niu, Mengmeng; Hu, Fuqiang; Lu, Yi; Qi, Jianping; Yin, Zongning; Wu, Wei

    2013-01-30

    The objective of this study was to investigate the integrtity and stability of oral liposomes containing glycocholate (SGC-Lip) in simulated gastrointestinal (GI) media and ex vivo GI media from rats in comparison with conventional liposomes (CH-Lip) composed of soybean phosphatidylcholine and cholesterol. Membrane integrity of liposomes was evaluated by monitoring calcein release, particle size and distribution in different simulated GI media. The stability of liposomes encapsulating insulin was investigated in simulated GI fluids containing pepsin or pancreatin and ex vivo GI enzyme fluids. Simulated GI media with low pH or physiological bile salts resulted in significant increase in calcein release, but dynamic laser scattering data showed that the size and distribution were generally stable. SGC-Lip retained the major amount of the initially encapsulated insulin as compared with CH-Lip in simulated GI fluids (SGF, FaSSGF, SIF and FeSSIF-V2). SGC-Lip retained respectively 17.1% and 20.5% of the initially encapsulated insulin in ex vivo GI fluid, which were also significantly more than CH-Lip. These results suggested that SGC-Lip could protect insulin from degradation to some degree during their transit through the gastrointestinal tract and contributed to enhanced oral absorption. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Assessment of taurine bioavailability in pelleted and extruded diets with red drum Sciaenops ocellatus

    USDA-ARS?s Scientific Manuscript database

    Taurine has been reported to be efficacious in supporting growth of carnivorous fish species, particularly when supplemented to diets primarily containing plant feedstuffs. Although taurine may become unavailable to some extent by heat and moisture, and is susceptible to the Maillard reaction with r...

  16. Increased serum bile acid concentration following low-dose chronic administration of thioacetamide in rats, as evidenced by metabolomic analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeong, Eun Sook; Kim, Gabin; Shin, Ho Jung

    A liquid chromatography/time-of-flight mass spectrometry (LC/TOF-MS)-based metabolomics approach was employed to identify endogenous metabolites as potential biomarkers for thioacetamide (TAA)-induced liver injury. TAA (10 and 30 mg/kg), a well-known hepatotoxic agent, was administered daily to male Sprague–Dawley (SD) rats for 28 days. We then conducted untargeted analyses of endogenous serum and liver metabolites. Partial least squares discriminant analysis (PLS-DA) was performed on serum and liver samples to evaluate metabolites associated with TAA-induced perturbation. TAA administration resulted in altered levels of bile acids, acyl carnitines, and phospholipids in serum and in the liver. We subsequently demonstrated and confirmed the occurrence ofmore » compromised bile acid homeostasis. TAA treatment significantly increased serum levels of conjugated bile acids in a dose-dependent manner, which correlated well with toxicity. However, hepatic levels of these metabolites were not substantially changed. Gene expression profiling showed that the hepatic mRNA levels of Ntcp, Bsep, and Oatp1b2 were significantly suppressed, whereas those of basolateral Mrp3 and Mrp4 were increased. Decreased levels of Ntcp, Oatp1b2, and Ostα proteins in the liver were confirmed by western blot analysis. These results suggest that serum bile acids might be increased due to the inhibition of bile acid enterohepatic circulation rather than increased endogenous bile acid synthesis. Moreover, serum bile acids are a good indicator of TAA-induced hepatotoxicity. - Highlights: • Endogenous metabolic profiles were assessed in rat after treatment of thioacetamide. • It significantly increased the levels of bile acids in serum but not in the liver. • Expression of the genes related to bile acid secretion and reuptake was decreased. • Increased serum bile acids result from block of enterohepatic circulation of bile acids.« less

  17. Swertianlarin, an Herbal Agent Derived from Swertia mussotii Franch, Attenuates Liver Injury, Inflammation, and Cholestasis in Common Bile Duct-Ligated Rats

    PubMed Central

    Zhang, Liangjun; Cheng, Ying; Du, Xiaohuang; Chen, Sheng; Feng, Xinchan; Gao, Yu; Li, Shaoxue; Liu, Li; Yang, Mei; Chen, Lei; Peng, Zhihong; Yang, Yong; Luo, Weizao; Wang, Rongquan; Chen, Wensheng

    2015-01-01

    Swertianlarin is an herbal agent abundantly distributed in Swertia mussotii Franch, a Chinese traditional herb used for treatment of jaundice. To study the therapeutic effect of swertianlarin on cholestasis, liver injury, serum proinflammatory cytokines, and bile salt concentrations were measured by comparing rats treated with swertianlarin 100 mg/kg/d or saline for 3, 7, or 14 days after bile duct ligation (BDL). Serum alanine aminotransferase (ATL) and aspartate aminotransferase (AST) levels were significantly decreased in BDL rats treated with swertianlarin for 14 days (P < 0.05). The reduced liver injury in BDL rats by swertianlarin treatment for 14 days was further confirmed by liver histopathology. Levels of serum tumor necrosis factor alpha (TNFα) were decreased by swertianlarin in BDL rats for 3 and 7 days (P < 0.05). Moreover, reductions in serum interleukins IL-1β and IL-6 levels were also observed in BDL rats treated with swertianlarin (P < 0.05). In addition, most of serum toxic bile salt concentrations (e.g., chenodeoxycholic acid (CDCA) and deoxycholic acid (DCA)) in cholestatic rats were decreased by swertianlarin (P < 0.05). In conclusion, the data suggest that swertianlarin derived from Swertia mussotii Franch attenuates liver injury, inflammation, and cholestasis in bile duct-ligated rats. PMID:26273316

  18. [Analysis on replacement of traditional Chinese medicine bear bile with bile acids based on drug properties].

    PubMed

    Yuan, Bin; Ren, Ying-Long; Ma, Li; Gu, Hao; Wang, Yun; Qiao, Yan-Jiang

    2014-02-01

    To discuss the rationality of the clinical replacement of traditional Chinese medicine (TCM) bear bile with bile acid constituents, and analyze the difference between these constituents and bear bile in drug properties. Summarizing the drug properties of bear bile by reference to medical literatures for drug properties of TCM bear bile and Science of Traditional Chinese Medicine (China Press of Traditional Chinese Medicine, 2007). Analyzing and summarizing the pharmacological effects of main bile acid constituents according to relevant literatures for studies on pharmacological effects of main bile acid constituents in CNKI database. Predicating the drug properties of these bile acid constituents by using the drug property predication model established by the study group according the pharmacological effects of main bile acid constituents in the paper, and compare the prediction results with the drug properties of bear bile. Bile acid constituents in bear bile were mostly cold in property, bitter in taste, and the combination of their drug properties could reflect the combined drug properties of bear bile. All of these bile acid constituents in bear bile could show part of effects of bear bile. Attention shall be given to regulate the medication scheme in clinical application according to actual conditions.

  19. Characterization of N-methyl-D-aspartate-evoked taurine release in the developing and adult mouse hippocampus.

    PubMed

    Saransaari, P; Oja, S S

    2003-01-01

    Taurine is an inhibitory amino acid acting as an osmoregulator and neuroromodulator in the brain, with neuroprotective properties. The ionotropic glutamate receptor agonist N-methyl-D-aspartate (NMDA) greatly potentiates taurine release from brain preparations in both normal and ischemic conditions, the effect being particularly marked in the developing hippocampus. We now characterized the regulation of NMDA-stimulated taurine release from hippocampal slices from adult (3-month-old) and developing (7-day-old) mouse using a superfusion system. The NMDA-stimulated taurine release was receptor-mediated in both adult and developing mouse hippocampus. In adults, only NO-generating compounds, sodium nitroprusside, S-nitroso-N-acetylpenicillamine and hydroxylamine reduced the release, as did also NO synthase inhibitors, 7-nitroindazole and nitroarginine, indicating that the release is mediated by the NO/cGMP pathway. On the other hand, the regulation of the NMDA-evoked taurine release proved to be somewhat complex in the immature hippocampus. It was not affected by the NOergic compounds, but enhanced by the protein kinase C activator 4 beta-phorbol 12-myristate 13-acetate and adenosine receptor A(1) agonists, N(6)-cyclohexyladenosine and R(-)N(6)-(2-phenylisopropyl)adenosine in a receptor-mediated manner. The activation of both ionotropic 2-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptors and metabotropic glutamate group I receptors also enhanced the evoked release. The NMDA-receptor-stimulated taurine release could be a part of the neuroprotective properties of taurine, being important particularly under cell-damaging conditions in the developing hippocampus and hence preventing excitotoxicity.

  20. Stability of an aluminum salt-adjuvanted protein D-conjugated pneumococcal vaccine after exposure to subzero temperatures

    PubMed Central

    Fortpied, Juliette; Wauters, Florence; Rochart, Christelle; Hermand, Philippe; Hoet, Bernard; Moniotte, Nicolas; Vojtek, Ivo

    2018-01-01

    ABSTRACT Accidental exposure of a vaccine containing an aluminum-salt adjuvant to temperatures below 0°C in the cold chain can lead to freeze damage. Our study evaluated the potential for freeze damage in a licensed aluminum-salt-containing protein-D-conjugated pneumococcal vaccine (PHiD-CV; Synflorix, GSK) in conditions that included static storage, single subzero-temperature excursions, and simulated air-freight transportation. Several parameters were assessed including freezing at subzero temperatures, aluminum-salt-particle size, antigen integrity and immunogenicity in the mouse. The suitability of the WHO's shake test for identifying freeze-damaged vaccines was also assessed. During subzero-temperature excursions, the mean temperatures at which PHiD-CV froze (−16.7°C to −18.1°C) appeared unaffected by the type of vaccine container (two-dose or four-dose vial, or single-dose syringe), vaccine batch, rotational agitation, or the rate of temperature decline (−0.5 to −10°C/hour). At constant subzero temperature and in simulated air-freight transportation, the freezing of PHiD-CV appeared to be promoted by vibration. At −5°C, no PHiD-CV sample froze in static storage (>1 month), whereas when subjected to vibration, a minority of samples froze (7/21, 33%) within 18 hours. At −8°C with vibration, nearly all (5/6, 83%) samples froze. In these vibration regimes, the shake test identified most samples that froze (10/12, 93%) except two in the −5°C regime. Nevertheless, PHiD-CV-antigen integrity appeared unaffected by freezing up to −20°C or by vibration. And although aluminum-salt-particle size was increased only by freezing at −20°C, PHiD-CV immunogenicity appeared only marginally affected by freezing at −20°C. Therefore, our study supports the use of the shake test to exclude freeze-damaged PHiD-CV in the field. PMID:29337646

  1. The solute carrier family 10 (SLC10): beyond bile acid transport

    PubMed Central

    da Silva, Tatiana Claro; Polli, James E.; Swaan, Peter W.

    2012-01-01

    The solute carrier (SLC) family 10 (SLC10) comprises influx transporters of bile acids, steroidal hormones, various drugs, and several other substrates. Because the seminal transporters of this family, namely, sodium/taurocholate cotransporting polypeptide (NTCP; SLC10A1) and the apical sodium-dependent bile acid transporter (ASBT; SLC10A2), were primarily bile acid transporters, the term “sodium bile salt cotransporting family” was used for the SLC10 family. However, this notion became obsolete with the finding of other SLC10 members that do not transport bile acids. For example, the sodium-dependent organic anion transporter (SOAT; SLC10A6) transports primarily sulfated steroids. Moreover, NTCP was shown to also transport steroids and xenobiotics, including HMG-CoA inhibitors (statins). The SLC10 family contains four additional members, namely, P3 (SLC10A3; SLC10A3), P4 (SLC10A4; SLC10A4), P5 (SLC10A5; SLC10A5) and SLC10A7 (SLC10A7), several of which were unknown or considered hypothetical until approximately a decade ago. While their substrate specificity remains undetermined, great progress has been made towards their characterization in recent years. SLC10A4 may participate in vesicular storage or exocytosis of neurotransmitters or mastocyte mediators, whereas SLC10A5 and SLC10A7 may be involved in solute transport and SLC10A3 may have a role as a housekeeping protein. Finally, the newly found role of bile acids in glucose and energy homeostasis, via the TGR5 receptor, sheds new light on the clinical relevance of ASBT and NTCP. The present mini-review provides a brief summary of recent progress on members of the SLC10 family. PMID:23506869

  2. Taurine release from the developing and ageing hippocampus: stimulation by agonists of ionotropic glutamate receptors.

    PubMed

    Saransaari, P; Oja, S S

    1997-12-30

    The inhibitory amino acid taurine has been held to function as a modulator and osmoregulator in the brain, being of particular importance in the immature brain. The release of preloaded [3H]taurine was now studied in hippocampal slices from developing (7-day-old), adult (3-month-old) and ageing (6-24-month-old) mice focussing on the effects of agonists of ionotropic glutamate receptors. N-methyl-D-aspartate (NMDA), kainate and 2-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) potentiated taurine release concentration-dependently at each age, more so in the immature than in the adult and ageing hippocampus. The effect of kainate was blocked by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) in the developing and aged hippocampus and those of AMPA and NMDA by 6-nitro-7-sulphamoylbenzo[f]quinoxaline-2,3-dione (NBQX) and dizocilpine a(MK-801) at every age studied. This indicates the involvement of NMDA and AMPA receptors in taurine release throughout the life-span of mice, while the kainate-receptor-mediated release does not appear to function in adults. The increased hippocampal taurine release evoked by ionotropic glutamate receptors could act neuroprotectively, counteracting by several mechanisms the harmful effects of the simultaneous release of excitatory amino acids. The substantial release of taurine in the immature hippocampus might be particularly significant in view of the vulnerability of brain tissue to excitotoxicity at early age.

  3. The effect of taurine and enriched environment on behaviour, memory and hippocampus of diabetic rats.

    PubMed

    Rahmeier, Francine Luciano; Zavalhia, Lisiane Silveira; Tortorelli, Lucas Silva; Huf, Fernanda; Géa, Luiza Paul; Meurer, Rosalva Thereza; Machado, Aryadne Cardoso; Gomez, Rosane; Fernandes, Marilda da Cruz

    2016-09-06

    Diabetes mellitus (DM) has been studied recently as a major cause of cognitive deficits, memory and neurodegenerative damage. Taurine and enriched environment have stood out for presenting neuroprotective and stimulating effects that deserve further study. In this paper, we examined the effects of taurine and enriched environment in the context of diabetes, evaluating effects on behaviour, memory, death and cellular activity. Eighty-eight Wistar rats were divided into 2 groups (E=enriched environment; C=standard housing). Some animals (24/group) underwent induction of diabetes, and within each group, some animals (half of diabetics (D) and half of non-diabetics (ND)/group) were treated for 30days with taurine (T). Untreated animals received saline (S). In total, there were eight subgroups: DTC, DSC, NDTC, NDSC, DTE, DSE, NDTE and NDSE. During the experiment, short-term memory was evaluated. After 30th day of experiment, the animals were euthanized and was made removal of brains used to immunohistochemistry procedures for GFAP and cleaved caspase-3. As a result, we observed that animals treated with taurine showed better performance in behavioural and memory tasks, and the enriched environment had positive effects, especially in non-diabetic animals. Furthermore, taurine and enriched environment seemed to be able to interfere with neuronal apoptosis and loss of glial cells, and in some instances, these two factors seemed to have synergistic effects. From these data, taurine and enriched environment may have important neurostimulant and neuroprotective effects. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. Denatured globular protein and bile salt-coated nanoparticles for poorly water-soluble drugs: Penetration across the intestinal epithelial barrier into the circulation system and enhanced oral bioavailability.

    PubMed

    He, Wei; Yang, Ke; Fan, Lifang; Lv, Yaqi; Jin, Zhu; Zhu, Shumin; Qin, Chao; Wang, Yiao; Yin, Lifang

    2015-11-10

    Oral drug delivery is the most preferred route for patients; however, the low solubility of drugs and the resultant poor absorption compromise the benefits of oral administration. On the other hand, for years, the overwhelmingly accepted mechanism for enhanced oral absorption using lipid nanocarriers was based on the process of lipid digestion and drug solubilization in the small intestine. Few reports indicated that other bypass pathways are involved in drug absorption in the gastrointestinal tract (GIT) for oral delivery of nanocarriers. Herein, we report a new nanoemulsion system with a denatured globular protein with a diameter of 30 nm, soybean protein isolates (SPI), and bile salt as emulsifiers, aiming to enhance the absorption of insoluble drugs and explore other pathways for absorption. A BCS class II drug, fenofibrate (FB), was used as the model drug. The SPI and bile salt-coated Ns with a diameter of approximately 150 nm were prepared via a high-pressure homogenizing procedure. Interestingly, the present Ns could be converted to solid dosage form using fluid-bed coating technology, maintaining a nanoscale size. Most importantly, in a model of in situ rat intestinal perfusion, Ns could penetrate across the intestinal epithelial barrier into the systemic circulation and then obtain biodistribution into other tissues. In addition, Ns significantly improved FB oral absorption, exhibited as a greater than 2- and 2.5-fold increase in Cmax and AUC0-t, respectively, compared to the suspension formulation. Overall, the present Ns are promising nanocarriers for the oral delivery of insoluble drugs, and the penetration of intact Ns across the GIT barrier into systemic circulation may be a new strategy for improved drug absorption with the use of nanocarriers. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. 4-phenylbutyrate enhances the cell surface expression and the transport capacity of wild-type and mutated bile salt export pumps.

    PubMed

    Hayashi, Hisamitsu; Sugiyama, Yuichi

    2007-06-01

    Progressive familial intrahepatic cholestasis type 2 (PFIC2) is caused by a mutation in the bile salt export pump (BSEP/ABCB11) gene. We previously reported that E297G and D482G BSEP, which are frequently found mutations in European patients, result in impaired membrane trafficking, whereas both mutants retain their transport function. The dysfunctional localization is probably attributable to the retention of BSEP in endoplasmic reticulum (ER) followed by proteasomal degradation. Because sodium 4-phenylbutyrate (4PBA) has been shown to restore the reduced cell surface expression of mutated plasma membrane proteins, in the current study, we investigated the effect of 4PBA treatment on E297G and D482G BSEP. Transcellular transport and cell surface biotinylation studies using Madin-Darby canine kidney (MDCK) II cells demonstrated that 4PBA treatment increased functional cell surface expression of wild-type (WT), E297G, and D482G BSEP. The prolonged half-life of cell surface-resident BSEP with 4PBA treatment was responsible for this result. Moreover, treatment of Sprague-Dawley rats with 4PBA resulted in an increase in BSEP expression at the canalicular membrane, which was accompanied by an increase in the biliary excretion of [(3)H]taurocholic acid (TC). 4PBA treatment with a clinically achievable concentration enhances the cell surface expression and the transport capacity of WT, E297G, and D482G BSEP in MDCK II cells, and also induces functional BSEP expression at the canalicular membrane and bile acid transport via canalicular membrane in vivo. 4PBA is a potential pharmacological agent for treating not only PFIC2 patients with E297G and D482G mutations but also other cholestatic patients, in whom the BSEP expression at the canalicular membrane is reduced.

  6. Amonia gas: an improved reagent for chemical ionization mass spectrometry of bile acid methyl ester acetates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeMark, B.R.; Klein, P.D.

    1981-01-01

    The ammonia chemical ionization mass spectra of 28 methyl ester acetate derivatives of bile acids and related compounds have been determined by gas-liquid chromatography-mass spectrometry. Advantages of ammonia ionization over the previously studied isobutane ionization include a 130 to 270% enhancement in the sensitivity of base peak monitoring, and direct determination of molecular weight from the base peak (M + NH/sub 4//sup +/) in the mass spectrum of any of the derivatives. Minor ions in the ammonia spectra also allow selective detection of 3-keto compounds and can indicate unsaturation or double bond conjugation in the molecule. The significance of thesemore » studies for the detection and quantitation of bile acids is discussed. 2 tables.« less

  7. Taurine elevates dopamine levels in the rat nucleus accumbens; antagonism by strychnine.

    PubMed

    Ericson, Mia; Molander, Anna; Stomberg, Rosita; Söderpalm, Bo

    2006-06-01

    The mesolimbic dopamine (DA) system, projecting from the ventral tegmental area (VTA) to the nucleus accumbens (nAcc), is involved in reward-related behaviours and addictive processes, such as alcoholism and drug addiction. It was recently suggested that strychnine-sensitive glycine receptors (GlyR) in the nAcc regulate both basal and ethanol-induced mesolimbic DA activity via a neuronal loop involving endogenous activation of nicotinic acetylcholine receptors (nAChR) in the VTA. However, as the nAcc appears to contain few glycine-immunoreactive cell bodies or fibres, the question as to what may be the endogenous ligand for GlyRs in this brain region remains open. Here we have investigated whether the amino acid taurine could serve this purpose using in vivo microdialysis in awake, freely moving male Wistar rats. Local perfusion of taurine (1, 10 or 100 mm in the perfusate) increased DA levels in the nAcc. The taurine (10 mm)-induced DA increase was, similarly to that previously observed after ethanol, completely blocked by (i) perfusion of the competitive GlyR antagonist strychnine in the nAcc, (ii) perfusion of the nAChR antagonist mecamylamine (100 microm) in the VTA, and (iii) systemic administration of the acetylcholine-depleting drug vesamicol (0.4 mg/kg, i.p). The present results suggest that taurine may be an endogenous ligand for GlyRs in the nAcc and that the taurine-induced elevation of DA levels in this area, similarly to that observed after local ethanol, is mediated via a neuronal loop involving endogenous activation of nAChRs in the VTA.

  8. Taurine uptake by human retinal pigment epithelium: implications for the transport of small solutes between the choroid and the outer retina.

    PubMed

    Hillenkamp, Jost; Hussain, Ali A; Jackson, Timothy L; Cunningham, Joanna R; Marshall, John

    2004-12-01

    To characterize the Michaelis-Menten kinetics of the taurine transporter (TT) in retinal pigment epithelium (RPE) freshly isolated from human donor eyes. To identify the rate limiting compartment in the pathway of taurine delivery from the choroidal blood supply to the outer retina composed by Bruch's-choroid (BC) and the RPE in the human older age group. In human donor samples (4 melanoma-affected eyes, and 14 control eyes; age range, 62-93 years), radiochemical techniques were used to determine the RPE taurine accumulation at various exogenous concentrations. The transport capability of human RPE was obtained from a kinetic analysis of the high-affinity carrier over a substrate concentration of 1 to 60 microM taurine. Uptake of taurine into human RPE at a taurine concentration of 1 microM was independent of donor age (P > 0.05) and averaged at 2.83 +/- 0.27 (SEM) pmol/10 minutes per 6-mm trephine. Taurine transport by human RPE was mediated by a high-affinity carrier of K(m) 50 microM and V(max) of 267 pmol/10 minutes per 5-mm disc. In human donor RPE, uptake of taurine remained viable in the age range 62 to 93 years. Taurine transport rates in the RPE were lower than across the isolated BC complex, and thus the data suggest that the former compartment houses the rate-limiting step in the delivery of taurine to the outer retina.

  9. Bile Reflux

    MedlinePlus

    ... medications. But there is little evidence pinpointing the effects of bile reflux in people. Unlike acid reflux, bile reflux usually can't be completely controlled by changes in diet or lifestyle. Treatment involves medications or, in severe cases, surgery. ...

  10. Obeticholic acid, a selective farnesoid X receptor agonist, regulates bile acid homeostasis in sandwich-cultured human hepatocytes.

    PubMed

    Zhang, Yuanyuan; Jackson, Jonathan P; St Claire, Robert L; Freeman, Kimberly; Brouwer, Kenneth R; Edwards, Jeffrey E

    2017-08-01

    Farnesoid X receptor (FXR) is a master regulator of bile acid homeostasis through transcriptional regulation of genes involved in bile acid synthesis and cellular membrane transport. Impairment of bile acid efflux due to cholangiopathies results in chronic cholestasis leading to abnormal elevation of intrahepatic and systemic bile acid levels. Obeticholic acid (OCA) is a potent and selective FXR agonist that is 100-fold more potent than the endogenous ligand chenodeoxycholic acid (CDCA). The effects of OCA on genes involved in bile acid homeostasis were investigated using sandwich-cultured human hepatocytes. Gene expression was determined by measuring mRNA levels. OCA dose-dependently increased fibroblast growth factor-19 (FGF-19) and small heterodimer partner (SHP) which, in turn, suppress mRNA levels of cholesterol 7-alpha-hydroxylase (CYP7A1), the rate-limiting enzyme for de novo synthesis of bile acids. Consistent with CYP7A1 suppression, total bile acid content was decreased by OCA (1 μmol/L) to 42.7 ± 20.5% relative to control. In addition to suppressing de novo bile acids synthesis, OCA significantly increased the mRNA levels of transporters involved in bile acid homeostasis. The bile salt excretory pump (BSEP), a canalicular efflux transporter, increased by 6.4 ± 0.8-fold, and the basolateral efflux heterodimer transporters, organic solute transporter α (OST α ) and OST β increased by 6.4 ± 0.2-fold and 42.9 ± 7.9-fold, respectively. The upregulation of BSEP and OST α and OST β, by OCA reduced the intracellular concentrations of d 8 -TCA, a model bile acid, to 39.6 ± 8.9% relative to control. These data demonstrate that OCA does suppress bile acid synthesis and reduce hepatocellular bile acid levels, supporting the use of OCA to treat bile acid-induced toxicity observed in cholestatic diseases. © 2017 Intercept Pharmaceuticals. Pharmacology Research & Perspectives published by John Wiley & Sons Ltd, British Pharmacological Society and

  11. Bile acids. XLIV, quantitation of bile acids from the bile fistula rat given (4-14C) cholesterol.

    PubMed

    Siegfried, C M; Doisy, E A; Elliott, W H

    1975-01-24

    The bile acids derived from [4-14-C]cholesterol administered intracardially to rats with cannulated bile ducts were identified and quantitated. Over a period of 28 days about 90% of the administered 14-C was found in bile of which 73% was retained in the biliary acid fraction. [7beta-3-H]cholic acid, alpha-muri[3beta-3-H]cholic acid, beta-muri[3beta-3-H]cholic acid and litho[3beta-3-H]cholic acid were prepared with specific activities of about 30 muCi/mg by reduction of appropriate ketonic precursors with NaB3H4 and were added to the biliary acid fraction. After separation and purification of the bile acids, cholic, chenodeoxycholic, alpha- and beta-muricholic acids accounted for 70, 16, 7.5 and 6.1%, respectively, of the 14-C in the biliary acid fraction. The specific activities of these isolated 14-C-labeled acids were almost identical. Lithocholic acid accounted for a maximum of 0.2% and ursodeoxycholic acid and 7-oxolithocholic acid could account for no more than 2% of the biliary 14-C. Gas-liquid chromatography on 3% OV-17 of the trimethylsilyl ether derivatives of the methyl esters of the common bile acids of rat bile results in their complete separation and provides a convenient means of estimating the relative proportions of these acids in rat bile. By this method, the relative amounts of the four major acids, cholic, chenodeoxycholic, alpha- and beta-muricholic acids were 63, 20, 8 and 6%, respectively.

  12. Nuclear factor-E2-related factor 2 is a major determinant of bile acid homeostasis in the liver and intestine

    PubMed Central

    Weerachayaphorn, Jittima; Mennone, Albert; Soroka, Carol J.; Harry, Kathy; Hagey, Lee R.; Kensler, Thomas W.

    2012-01-01

    The transcription factor nuclear factor-E2-related factor 2 (Nrf2) is a key regulator for induction of hepatic detoxification and antioxidant mechanisms, as well as for certain hepatobiliary transporters. To examine the role of Nrf2 in bile acid homeostasis and cholestasis, we assessed the determinants of bile secretion and bile acid synthesis and transport before and after bile duct ligation (BDL) in Nrf2−/− mice. Our findings indicate reduced rates of biliary bile acid and GSH excretion, higher levels of intrahepatic bile acids, and decreased expression of regulators of bile acid synthesis, Cyp7a1 and Cyp8b1, in Nrf2−/− compared with wild-type control mice. The mRNA expression of the bile acid transporters bile salt export pump (Bsep) and organic solute transporter (Ostα) were increased in the face of impaired expression of the multidrug resistance-associated proteins Mrp3 and Mrp4. Deletion of Nrf2 also decreased ileal apical sodium-dependent bile acid transporter (Asbt) expression, leading to reduced bile acid reabsorption and increased loss of bile acid in feces. Finally, when cholestasis is induced by BDL, liver injury was not different from that in wild-type BDL mice. These Nrf2−/− mice also had increased pregnane X receptor (Pxr) and Cyp3a11 mRNA expression in association with enhanced hepatic bile acid hydroxylation. In conclusion, this study finds that Nrf2 plays a major role in the regulation of bile acid homeostasis in the liver and intestine. Deletion of Nrf2 results in a cholestatic phenotype but does not augment liver injury following BDL. PMID:22345550

  13. Taurine Protected Against the Impairments of Neural Stem Cell Differentiated Neurons Induced by Oxygen-Glucose Deprivation.

    PubMed

    Xiao, Bo; Liu, Huazhen; Gu, Zeyun; Liu, Sining; Ji, Cheng

    2015-11-01

    Cell transplantation of neural stem cells (NSCs) is a promising approach for neurological recovery both structurally and functionally. However, one big obstacle is to promote differentiation of NSCs into neurons and the followed maturation. In the present study, we aimed to investigate the protective effect of taurine on the differentiation of NSCs and subsequent maturation of their neuronal lineage, when exposed to oxygen-glucose deprivation (OGD). The results suggested that taurine (5-20 mM) promoted the viability and proliferation of NSCs, and it protected against 8 h of OGD induced impairments. Furthermore, 20 mM taurine promoted NSCs to differentiate into neurons after 7 days of culture, and it also protected against the suppressive impairments of 8 h of OGD. Consistently, taurine (20 mM) promoted the neurite sprouting and outgrowth of the NSC differentiated neurons after 14 days of differentiation, which were significantly inhibited by OGD (8 h). At D21, the mushroom spines and spine density were promoted or restored by 20 mM taurine. Taken together, the enhanced viability and proliferation of NSCs, more differentiated neurons and the promoted maturation of neurons by 20 mM taurine support its therapeutic application during stem cell therapy to enhance neurological recovery. Moreover, it protected against the impairments induced by OGD, which may highlight its role for a more direct therapeutic application especially in an ischemic stroke environment.

  14. RP-HPLC method for simultaneous estimation of vigabatrin, gamma-aminobutyric acid and taurine in biological samples.

    PubMed

    Police, Anitha; Shankar, Vijay Kumar; Narasimha Murthy, S

    2018-02-15

    Vigabatrin is used as first line drug in treatment of infantile spasms for its potential benefit overweighing risk of causing permanent peripheral visual field defects and retinal damage. Chronic administration of vigabatrin in rats has demonstrated these ocular events are result of GABA accumulation and depletion of taurine levels in retinal tissues. In vigabatrin clinical studies taurine plasma level is considered as biomarker for studying structure and function of retina. The analytical method is essential to monitor taurine levels along with vigabatrin and GABA. A RP-HPLC method has been developed and validated for simultaneous estimation of vigabatrin, GABA and taurine using surrogate matrix. Analytes were extracted from human plasma, rat plasma, retina and brain by simple protein precipitation method and derivatized by naphthalene 2, 3‑dicarboxaldehyde to produce stable fluorescent active isoindole derivatives. The chromatographic analysis was performed on Zorbax Eclipse AAA column using gradient elution profile and eluent was monitored using fluorescence detector. A linear plot of calibration curve was observed in concentration range of 64.6 to 6458, 51.5 to 5150 and 62.5 to 6258 ng/mL for vigabatrin, GABA and taurine, respectively with r 2  ≥ 0.997 for all analytes. The method was successfully applied for estimating levels of vigabatrin and its modulator effect on GABA and taurine levels in rat plasma, brain and retinal tissue. This RP-HPLC method can be applied in clinical and preclinical studies to explore the effect of taurine deficiency and to investigate novel approaches for alleviating vigabatrin induced ocular toxicity. Copyright © 2018. Published by Elsevier B.V.

  15. Bile Acid Metabolism in Liver Pathobiology

    PubMed Central

    Chiang, John Y. L.; Ferrell, Jessica M.

    2018-01-01

    Bile acids facilitate intestinal nutrient absorption and biliary cholesterol secretion to maintain bile acid homeostasis, which is essential for protecting liver and other tissues and cells from cholesterol and bile acid toxicity. Bile acid metabolism is tightly regulated by bile acid synthesis in the liver and bile acid biotransformation in the intestine. Bile acids are endogenous ligands that activate a complex network of nuclear receptor farnesoid X receptor and membrane G protein-coupled bile acid receptor-1 to regulate hepatic lipid and glucose metabolic homeostasis and energy metabolism. The gut-to-liver axis plays a critical role in the regulation of enterohepatic circulation of bile acids, bile acid pool size, and bile acid composition. Bile acids control gut bacteria overgrowth, and gut bacteria metabolize bile acids to regulate host metabolism. Alteration of bile acid metabolism by high-fat diets, sleep disruption, alcohol, and drugs reshapes gut microbiome and causes dysbiosis, obesity, and metabolic disorders. Gender differences in bile acid metabolism, FXR signaling, and gut microbiota have been linked to higher prevalence of fatty liver disease and hepatocellular carcinoma in males. Alteration of bile acid homeostasis contributes to cholestatic liver diseases, inflammatory diseases in the digestive system, obesity, and diabetes. Bile acid-activated receptors are potential therapeutic targets for developing drugs to treat metabolic disorders. PMID:29325602

  16. The effect of oral contraceptive steroids on bile secretion and bilirubin Tm in rats

    PubMed Central

    Heikel, T. A. J.; Lathe, G. H.

    1970-01-01

    1. The effect of oestrogens and progestogens and their 17α-ethinyl derivatives on bile flow, maximum rate of bilirubin secretion, serum and liver bilirubin has been studied. 2. Both 17α-ethinyl substituted oestrogens and progestogens greatly reduced the basal bile flow. The parent compounds, oestradiol-17β and 19-nortestosterone had little or no effect. 3. A much larger dose of progestogens (40 mg/kg) than oestrogens (5 mg/kg) was needed. 4. Between 12 and 48 h were required for 17α-ethinyloestradiol to produce the effect. 5. Bilirubin maximum secretion rate (Tm) was little affected, the only significant reduction being produced by the 3-methyl ether of 17α-ethinyloestradiol (mestranol). 6. Rises in serum conjugated bilirubin following infusion of bilirubin were produced by 17α-ethinyloestradiol and mestranol but not by the progestogens. PMID:5441412

  17. Comparative potency of obeticholic acid and natural bile acids on FXR in hepatic and intestinal in vitro cell models.

    PubMed

    Zhang, Yuanyuan; LaCerte, Carl; Kansra, Sanjay; Jackson, Jonathan P; Brouwer, Kenneth R; Edwards, Jeffrey E

    2017-12-01

    Obeticholic acid (OCA) is a semisynthetic farnesoid X receptor (FXR) agonist, an analogue of chenodeoxycholic acid (CDCA) which is indicated for the treatment of primary biliary cholangitis (PBC) in combination with ursodeoxycholic acid (UDCA). OCA efficiently inhibits bile acid synthesis and promotes bile acid efflux via activating FXR-mediated mechanisms in a physiologically relevant in vitro cell system, Sandwich-cultured Transporter Certified ™ human primary hepatocytes (SCHH). The study herein evaluated the effects of UDCA alone or in combination with OCA in SCHH. UDCA (≤100 μmol/L) alone did not inhibit CYP7A1 mRNA, and thus, no reduction in the endogenous bile acid pool observed. UDCA ≤100 μmol/L concomitantly administered with 0.1 μmol/L OCA had no effect on bile acid synthesis beyond what was observed with OCA alone. Furthermore, this study evaluated human Caco-2 cells (clone C2BBe1) as in vitro intestinal models. Glycine conjugate of OCA increased mRNA levels of FXR target genes in Caco-2 cells, FGF-19, SHP, OSTα/β, and IBABP, but not ASBT, in a concentration-dependent manner, while glycine conjugate of UDCA had no effect on the expression of these genes. The results suggested that UDCA ≤100 μmol/L did not activate FXR in human primary hepatocytes or intestinal cell line Caco-2. Thus, co-administration of UDCA with OCA did not affect OCA-dependent pharmacological effects. © 2017 The Authors. Pharmacology Research & Perspectives published by John Wiley & Sons Ltd, British Pharmacological Society and American Society for Pharmacology and Experimental Therapeutics.

  18. Antenatal taurine reduces cerebral cell apoptosis in fetal rats with intrauterine growth restriction.

    PubMed

    Liu, Jing; Wang, Xiaofeng; Liu, Ying; Yang, Na; Xu, Jing; Ren, Xiaotun

    2013-08-15

    From pregnancy to parturition, Sprague-Dawley rats were daily administered a low protein diet to establish a model of intrauterine growth restriction. From the 12(th) day of pregnancy, 300 mg/kg rine was daily added to food until spontaneous delivery occurred. Brain tissues from normal neonatal rats at 6 hours after delivery, neonatal rats with intrauterine growth restriction, and neonatal rats with intrauterine growth restriction undergoing taurine supplement were obtained for further experiments. The terminal deoxyribonucleotidyl transferase (TdT)-mediated biotin-16-dUTP nick-end labeling assay revealed that the number of apoptotic cells in the brain tissue of neonatal rats with intrauterine growth restriction significantly increased. Taurine supplement in pregnant rats reduced cell apoptosis in brain tissue from neonatal rats with intrauterine growth restriction. nohistochemical staining revealed that taurine supplement increased glial cell line-derived neurotrophic factor expression and decreased caspase-3 expression in the cerebral cortex of intrauterine growth-restricted fetal rats. These results indicate that taurine supplement reduces cell apoptosis through the glial cell line-derived neurotrophic factor-caspase-3 signaling pathway, resulting in a protective effect on the intrauterine growth-restricted fetal rat brain.

  19. Antenatal taurine reduces cerebral cell apoptosis in fetal rats with intrauterine growth restriction

    PubMed Central

    Liu, Jing; Wang, Xiaofeng; Liu, Ying; Yang, Na; Xu, Jing; Ren, Xiaotun

    2013-01-01

    From pregnancy to parturition, Sprague-Dawley rats were daily administered a low protein diet to establish a model of intrauterine growth restriction. From the 12th day of pregnancy, 300 mg/kg rine was daily added to food until spontaneous delivery occurred. Brain tissues from normal neonatal rats at 6 hours after delivery, neonatal rats with intrauterine growth restriction, and neonatal rats with intrauterine growth restriction undergoing taurine supplement were obtained for further experiments. The terminal deoxyribonucleotidyl transferase (TdT)-mediated biotin-16-dUTP nick-end labeling assay revealed that the number of apoptotic cells in the brain tissue of neonatal rats with intrauterine growth restriction significantly increased. Taurine supplement in pregnant rats reduced cell apoptosis in brain tissue from neonatal rats with intrauterine growth restriction. nohistochemical staining revealed that taurine supplement increased glial cell line-derived neurotrophic factor expression and decreased caspase-3 expression in the cerebral cortex of intrauterine growth-restricted fetal rats. These results indicate that taurine supplement reduces cell apoptosis through the glial cell line-derived neurotrophic factor-caspase-3 signaling pathway, resulting in a protective effect on the intrauterine growth-restricted fetal rat brain. PMID:25206528

  20. The food-borne pathogen Campylobacter jejuni responds to the bile salt deoxycholate with countermeasures to reactive oxygen species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Negretti, Nicholas M.; Gourley, Christopher R.; Clair, Geremy

    In this study, bile plays an important role in digestion, absorption of fats, and the excretion of waste products, while concurrently providing a critical barrier against colonization by harmful bacteria. Previous studies have demonstrated that gut pathogens react to bile by adapting their protein synthesis. The ability of pathogens to respond to bile is remarkably complex and still incompletely understood. Here we show that Campylobacter jejuni, a leading bacterial cause of human diarrheal illness worldwide, responds to deoxycholate, a component of bile, by altering global gene transcription in a manner consistent with a strategy to mitigate exposure to reactive oxygenmore » stress. More specifically, continuous growth of C. jejuni in deoxycholate was found to: induce the production of reactive oxygen species (ROS); decrease succinate dehydrogenase activity (complex II of the electron transport chain); increase catalase activity that is involved in H 2O 2 breakdown; and result in DNA strand breaks. Congruently, by adding 4-hydroxy-TEMPO (TEMPOL), a superoxide dismutase mimic, that reacts with superoxide to cultures under deoxycholate-mediated ROS stress, C. jejuni growth in the presence of deoxycholate was rescued. We postulate that continuous exposure of a number of enteric pathogens to deoxycholate stimulates a conserved survival response to this stressor.« less

  1. The food-borne pathogen Campylobacter jejuni responds to the bile salt deoxycholate with countermeasures to reactive oxygen species

    DOE PAGES

    Negretti, Nicholas M.; Gourley, Christopher R.; Clair, Geremy; ...

    2017-11-13

    In this study, bile plays an important role in digestion, absorption of fats, and the excretion of waste products, while concurrently providing a critical barrier against colonization by harmful bacteria. Previous studies have demonstrated that gut pathogens react to bile by adapting their protein synthesis. The ability of pathogens to respond to bile is remarkably complex and still incompletely understood. Here we show that Campylobacter jejuni, a leading bacterial cause of human diarrheal illness worldwide, responds to deoxycholate, a component of bile, by altering global gene transcription in a manner consistent with a strategy to mitigate exposure to reactive oxygenmore » stress. More specifically, continuous growth of C. jejuni in deoxycholate was found to: induce the production of reactive oxygen species (ROS); decrease succinate dehydrogenase activity (complex II of the electron transport chain); increase catalase activity that is involved in H 2O 2 breakdown; and result in DNA strand breaks. Congruently, by adding 4-hydroxy-TEMPO (TEMPOL), a superoxide dismutase mimic, that reacts with superoxide to cultures under deoxycholate-mediated ROS stress, C. jejuni growth in the presence of deoxycholate was rescued. We postulate that continuous exposure of a number of enteric pathogens to deoxycholate stimulates a conserved survival response to this stressor.« less

  2. Modelling cortical cataractogenesis 22: is in vitro reduction of damage in model diabetic rat cataract by taurine due to its antioxidant activity?

    PubMed

    Kilic, F; Bhardwaj, R; Caulfeild, J; Trevithick, J R

    1999-09-01

    The protective effect of taurine in model in vitro diabetic cataract and the mechanism of this effect were investigated in isolated rat lenses. Isolated rat lenses were incubated in medium 199 in elevated glucose (55.6 m m) with taurine (5 m m). Taurine concentrations in the lenses were determined by amino acid analysis. Accumulative leakage of the intracellular enzyme lactate dehydrogenase (LDH) was used to estimate damage to the lens, as previously reported. In the clear lenses, prior to vacuole formation, after 1 or 2 days of incubation, the taurine and amino acids in lenses decreased progressively in concentration. In lenses incubated with 5 m m taurine, the level of taurine was increased towards that of control lenses. In taurine-treated lenses LDH leakage was significantly decreased, and lens clarity was maintained, similarly to that found previously for vitamin C and lipoic acid. To test whether taurine has similar antioxidant activity, we tested its ability to decrease luminol luminescence generated by (1) superoxide from hypoxanthine/xanthine oxidase and (2) peroxide from diluted glucose/glucose oxidase. For either superoxide or peroxide, the luminescence was decreased to zero, as a function of increasing taurine concentration, at 30 m m, approximately the physiological concentration of taurine in the lens. Spin trapping confirmed that taurine scavenged superoxide. This is consistent with a role for taurine as an important antioxidant protecting the lens against oxidative insults. Amino acids also had antioxidant activity in this assay, and as a group, when all activities were summed, their loss also contributed significantly to the antioxidant loss. Taken in conjunction with Wolff and Crabbe's observation of increased free radical generation by glucose auto-oxidation in diabetes, this suggests a push-pull mechanism for increased oxidative stress in diabetic cataract, involving both increased free radicals and decreased radical scavenging antioxidants

  3. Bile Acid Metabolism and Signaling

    PubMed Central

    Chiang, John Y. L.

    2015-01-01

    Bile acids are important physiological agents for intestinal nutrient absorption and biliary secretion of lipids, toxic metabolites, and xenobiotics. Bile acids also are signaling molecules and metabolic regulators that activate nuclear receptors and G protein-coupled receptor (GPCR) signaling to regulate hepatic lipid, glucose, and energy homeostasis and maintain metabolic homeostasis. Conversion of cholesterol to bile acids is critical for maintaining cholesterol homeostasis and preventing accumulation of cholesterol, triglycerides, and toxic metabolites, and injury in the liver and other organs. Enterohepatic circulation of bile acids from the liver to intestine and back to the liver plays a central role in nutrient absorption and distribution, and metabolic regulation and homeostasis. This physiological process is regulated by a complex membrane transport system in the liver and intestine regulated by nuclear receptors. Toxic bile acids may cause inflammation, apoptosis, and cell death. On the other hand, bile acid-activated nuclear and GPCR signaling protects against inflammation in liver, intestine, and macrophages. Disorders in bile acid metabolism cause cholestatic liver diseases, dyslipidemia, fatty liver diseases, cardiovascular diseases, and diabetes. Bile acids, bile acid derivatives, and bile acid sequestrants are therapeutic agents for treating chronic liver diseases, obesity, and diabetes in humans. PMID:23897684

  4. The Micellar Sink

    PubMed Central

    Scharschmidt, Bruce F.; Schmid, Rudi

    1978-01-01

    Although the importance of mixed micelles in the solubilization and biliary excretion of lipids is established, little is known about a possible role of mixed micelles in the excretion of other biliary solutes. Ultrafiltration and ultracentrifugation techniques were used to investigate the interaction between substances that are excreted in bile and biliary mixed micelles. Substances (urea, erythritol, sucrose) excreted in bile at concentrations equal to, or less than, that in plasma did not show an association with mixed micelles, whereas substances (indocyanine green, iopanoic acid, rose bengal, unconjugated and conjugated sulfobromophthalein, and conjugated bilirubin) excreted in bile at high concentration relative to plasma did. The percentage of these latter substances in bile associated with micelles varied from 26 to 93% and was relatively independent of concentration. In addition to their association with mixed micelles, these test solutes formed self-aggregates that were stabilized primarily by ionic bonds, and only a small percentage (range = 0-5%) of these solutes were present in bile in the form of monomer or complexes small enough to pass a 5,000-mol wt membrane. These findings offer a possible explanation for the increase in sulfobromophthalein, bilirubin, and indocyanine green maximal biliary excretory rate produced by bile salt infusion, and suggest that the concentrative transport into bile of endogenous compounds and xenobiotics may result from their incorporation into mixed micelles and other macromolecular complexes. PMID:748371

  5. Association of canalicular membrane enzymes with bile acid micelles and lipid aggregates in human and rat bile.

    PubMed

    Accatino, L; Pizarro, M; Solís, N; Koenig, C S

    1995-01-18

    This study was undertaken to gain insights into the characteristics of the polymolecular association between canalicular membrane enzymes, bile acids, cholesterol and phospholipids in bile and into the celular mechanisms whereby the enzymes are secreted into bile. With this purpose, we studied the distribution of bile acids, cholesterol, phospholipids, proteins and representative canalicular membrane enzymes (alkaline phosphatase, 5'-nucleotidase and gamma-glutamyl transpeptidase), which can be considered specific marker constituents, in bile fractions enriched in phospholipid-cholesterol lamellar structures (multilamellar and unilamellar vesicles) and bile acid-mixed micelles. These fractions were isolated by ultracentrifugation from human hepatic bile, normal rat bile and bile of rats treated with diosgenin, a steroid that induces a marked increase in biliary cholesterol secretion, and were characterized by density, lipid composition and transmission electron microscopy. These studies demonstrate that alkaline phosphatase, 5'-nucleotidase and gamma-glutamyl transpeptidase are secreted into both human and rat bile where they are preferentially associated with bile acid-mixed micelles, suggesting a role for bile acids in both release of these enzymes and lipids from the canalicular membrane and solubilization in bile. In addition, heterogeneous association of these enzymes with nonmicellar, lamellar structures in human and rat bile is consistent with the hypothesis that processes independent of the detergent effects of bile acids might also result in the release of specific intrinsic membrane proteins into bile.

  6. Taurine supplementation for prevention of stroke-like episodes in MELAS: a multicentre, open-label, 52-week phase III trial.

    PubMed

    Ohsawa, Yutaka; Hagiwara, Hiroki; Nishimatsu, Shin-Ichiro; Hirakawa, Akihiro; Kamimura, Naomi; Ohtsubo, Hideaki; Fukai, Yuta; Murakami, Tatsufumi; Koga, Yasutoshi; Goto, Yu-Ichi; Ohta, Shigeo; Sunada, Yoshihide

    2018-04-17

    The aim of this study was to evaluate the efficacy and safety of high-dose taurine supplementation for prevention of stroke-like episodes of MELAS (mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes), a rare genetic disorder caused by point mutations in the mitochondrial DNA that lead to a taurine modification defect at the first anticodon nucleotide of mitochondrial tRNA Leu(UUR) , resulting in failure to decode codons accurately. After the nationwide survey of MELAS, we conducted a multicentre, open-label, phase III trial in which 10 patients with recurrent stroke-like episodes received high-dose taurine (9 g or 12 g per day) for 52 weeks. The primary endpoint was the complete prevention of stroke-like episodes during the evaluation period. The taurine modification rate of mitochondrial tRNA Leu(UUR) was measured before and after the trial. The proportion of patients who reached the primary endpoint (100% responder rate) was 60% (95% CI 26.2% to 87.8%). The 50% responder rate, that is, the number of patients achieving a 50% or greater reduction in frequency of stroke-like episodes, was 80% (95% CI 44.4% to 97.5%). Taurine reduced the annual relapse rate of stroke-like episodes from 2.22 to 0.72 (P=0.001). Five patients showed a significant increase in the taurine modification of mitochondrial tRNA Leu(UUR) from peripheral blood leukocytes (P<0.05). No severe adverse events were associated with taurine. The current study demonstrates that oral taurine supplementation can effectively reduce the recurrence of stroke-like episodes and increase taurine modification in mitochondrial tRNA Leu(UUR) in MELAS. UMIN000011908. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  7. Therapeutic targeting of bile acids

    PubMed Central

    Gores, Gregory J.

    2015-01-01

    The first objectives of this article are to review the structure, chemistry, and physiology of bile acids and the types of bile acid malabsorption observed in clinical practice. The second major theme addresses the classical or known properties of bile acids, such as the role of bile acid sequestration in the treatment of hyperlipidemia; the use of ursodeoxycholic acid in therapeutics, from traditional oriental medicine to being, until recently, the drug of choice in cholestatic liver diseases; and the potential for normalizing diverse bowel dysfunctions in irritable bowel syndrome, either by sequestering intraluminal bile acids for diarrhea or by delivering more bile acids to the colon to relieve constipation. The final objective addresses novel concepts and therapeutic opportunities such as the interaction of bile acids and the microbiome to control colonic infections, as in Clostridium difficile-associated colitis, and bile acid targeting of the farnesoid X receptor and G protein-coupled bile acid receptor 1 with consequent effects on energy expenditure, fat metabolism, and glycemic control. PMID:26138466

  8. Hypocholesterolemic effect of emodin by simultaneous determination of in vitro and in vivo bile salts binding.

    PubMed

    Wang, Jiaoying; Ji, Jun; Song, Zijing; Zhang, Wenjun; He, Xin; Li, Fei; Zhang, Chunfeng; Guo, Changrun; Wang, Chongzhi; Yuan, Chunsu

    2016-04-01

    Emodin is an active anthraquinone derivative from Rheum palmatum and some other Chinese herbs and it is traditionally used for treating a variety of diseases. In this study, we investigated the hypocholesterolemic effects and mechanism of emodin on hypercholesterolemia rats. In vitro, capability of emodin binding to sodium deoxycholate which is one kind of bile salts (BAs) was evaluated by detection of surplus content of sodium deoxycholate. In vivo, hypocholesterolemic effects were assessed by determining total cholesterol (TC), triglyceride (TG), low density lipoprotein cholesterol (LDL-C) and high density lipoprotein cholesterol (HDL-C) level of serum and TC, TG level of the liver. Oil red O staining was employed to determine lipid droplet of the liver. The mechanism was explored by BAs in feces, the liver and small intestine. Furthermore, cholesterol 7α-hydroxylase (CYP7A1) activity was measured to evaluate cholesterol's transforming to BAs. The results indicated that TC level of emodin group apparently decreased comparing with model group (p<0.05). Emodin could bind to BAs both in vivo (p<0.05) and in vitro. CYP7A1 activity in emodin group apparently increased comparing with model group (p<0.05). Data suggested that emodin had the potential value for treatment of hypercholesterolemia. The underlying mechanism is probably associated with binding capability to BAs and subsequent increasing expression of CYP7A1. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Computational modeling and molecular imprinting for the development of acrylic polymers with high affinity for bile salts.

    PubMed

    Yañez, Fernando; Chianella, Iva; Piletsky, Sergey A; Concheiro, Angel; Alvarez-Lorenzo, Carmen

    2010-02-05

    This work has focused on the rational development of polymers capable of acting as traps of bile salts. Computational modeling was combined with molecular imprinting technology to obtain networks with high affinity for cholate salts in aqueous medium. The screening of a virtual library of 18 monomers, which are commonly used for imprinted networks, identified N-(3-aminopropyl)-methacrylate hydrochloride (APMA.HCl), N,N-diethylamino ethyl methacrylate (DEAEM) and ethyleneglycol methacrylate phosphate (EGMP) as suitable functional monomers with medium-to-high affinity for cholic acid. The polymers were prepared with a fix cholic acid:functional monomer mole ratio of 1:4, but with various cross-linking densities. Compared to polymers prepared without functional monomer, both imprinted and non-imprinted microparticles showed a high capability to remove sodium cholate from aqueous medium. High affinity APMA-based particles even resembled the performance of commercially available cholesterol-lowering granules. The imprinting effect was evident in most of the networks prepared, showing that computational modeling and molecular imprinting can act synergistically to improve the performance of certain polymers. Nevertheless, both the imprinted and non-imprinted networks prepared with the best monomer (APMA.HCl) identified by the modeling demonstrated such high affinity for the template that the imprinting effect was less important. The fitting of adsorption isotherms to the Freundlich model indicated that, in general, imprinting increases the population of high affinity binding sites, except when the affinity of the functional monomer for the target molecule is already very high. The cross-linking density was confirmed as a key parameter that determines the accessibility of the binding points to sodium cholate. Materials prepared with 9% mol APMA and 91% mol cross-linker showed enough affinity to achieve binding levels of up to 0.4 mmol g(-1) (i.e., 170 mg g(-1)) under flow

  10. Clinical Study of Ursodeoxycholic Acid in Barrett's Esophagus Patients.

    PubMed

    Banerjee, Bhaskar; Shaheen, Nicholas J; Martinez, Jessica A; Hsu, Chiu-Hsieh; Trowers, Eugene; Gibson, Blake A; Della'Zanna, Gary; Richmond, Ellen; Chow, H-H Sherry

    2016-07-01

    Prior research strongly implicates gastric acid and bile acids, two major components of the gastroesophageal refluxate, in the development of Barrett's esophagus and its pathogenesis. Ursodeoxycholic acid (UDCA), a hydrophilic bile acid, has been shown to protect esophageal cells against oxidative stress induced by cytotoxic bile acids. We conducted a pilot clinical study to evaluate the clinical activity of UDCA in patients with Barrett's esophagus. Twenty-nine patients with Barrett's esophagus received UDCA treatment at a daily dose of 13 to 15 mg/kg/day for 6 months. The clinical activity of UDCA was assessed by evaluating changes in gastric bile acid composition and markers of oxidative DNA damage (8-hydroxydeoxyguanosine), cell proliferation (Ki67), and apoptosis (cleaved caspase-3) in Barrett's esophagus epithelium. The bile acid concentrations in gastric fluid were measured by liquid chromatography/mass spectrometry. At baseline, UDCA (sum of unchanged and glycine/taurine conjugates) accounted for 18.2% of total gastric bile acids. After UDCA intervention, UDCA increased significantly to account for 93.4% of total gastric bile acids (P < 0.0001). The expression of markers of oxidative DNA damage, cell proliferation, and apoptosis was assessed in the Barrett's esophagus biopsies by IHC. The selected tissue biomarkers were unchanged after 6 months of UDCA intervention. We conclude that high-dose UDCA supplementation for 6 months resulted in favorable changes in gastric bile acid composition but did not modulate selected markers of oxidative DNA damage, cell proliferation, and apoptosis in the Barrett's esophagus epithelium. Cancer Prev Res; 9(7); 528-33. ©2016 AACRSee related article by Brian J. Reid, p. 512. ©2016 American Association for Cancer Research.

  11. The effect of dietary prebiotics and probiotics on body weight, large intestine indices, and fecal bile acid profile in wild type and IL10-/- mice.

    PubMed

    Kuo, Shiu-Ming; Merhige, Patricia M; Hagey, Lee R

    2013-01-01

    Previous studies have suggested roles of probiotics and prebiotics on body weight management and intestinal function. Here, the effects of a dietary prebiotic, inulin (50 mg/g diet), and probiotic, Bfidobacterium animalis subsp. lactis (Bb12) (final dose verified at 10(5) colony forming unit (cfu)/g diet, comparable to human consumption), were determined separately and in combination in mice using cellulose-based AIN-93G diets under conditions allowed for the growth of commensal bacteria. Continuous consumption of Bb12 and/or inulin did not affect food intake or body, liver, and spleen weights of young and adult mice. Fecal bile acid profiles were determined by nanoESI-MS/MS tandem mass spectrometry. In the presence of inulin, more bacterial deconjugation of taurine from primary bile acids was observed along with an increased cecal weight. Consumption of inulin in the absence or presence of Bb12 also increased the villus cell height in the proximal colon along with a trend of higher bile acid sulfation by intestinal cells. Feeding Bb12 alone at the physiological dose did not affect bile acid deconjugation and had little effect on other intestinal indices. Although interleukin (IL)10-null mice are susceptible to enterocolitis, they maintained the same body weight as the wild type mice under our specific pathogen-free housing condition and showed no signs of inflammation. Nevertheless, they had smaller cecum suggesting a mildly compromised intestinal development even before the disease manifestation. Our results are consistent with the notion that dietary factors such as prebiotics play important roles in the growth of intestinal microbiota and may impact on the intestinal health. In addition, fecal bile acid profiling could potentially be a non-invasive tool in monitoring the intestinal environment.

  12. New insights into bile acid malabsorption.

    PubMed

    Johnston, Ian; Nolan, Jonathan; Pattni, Sanjeev S; Walters, Julian R F

    2011-10-01

    Bile acid malabsorption occurs when there is impaired absorption of bile acids in the terminal ileum, so interrupting the normal enterohepatic circulation. The excess bile acids in the colon cause diarrhea, and treatment with bile acid sequestrants is beneficial. The condition can be diagnosed with difficulty by measuring fecal bile acids, or more easily by retention of selenohomocholyltaurine (SeHCAT), where this is available. Chronic diarrhea caused by primary bile acid diarrhea appears to be common, but is under-recognized where SeHCAT testing is not performed. Measuring excessive bile acid synthesis with 7α-hydroxy-4-cholesten-3-one may be an alternative means of diagnosis. It appears that there is no absorption defect in primary bile acid diarrhea but, instead, an overproduction of bile acids. Fibroblast growth factor 19 (FGF19) inhibits hepatic bile acid synthesis. Defective production of FGF19 from the ileum may be the cause of primary bile acid diarrhea.

  13. Is bile acid malabsorption underdiagnosed? An evaluation of accuracy of diagnosis by measurement of SeHCAT retention.

    PubMed

    Merrick, M V; Eastwood, M A; Ford, M J

    1985-03-02

    The cause of intractable chronic diarrhoea was found to be malabsorption of bile acid in five out of 42 patients thought to have the irritable bowel syndrome, six out of 29 patients with persistent diarrhoea after surgery for peptic ulcer, 23 who had undergone small bowel resection, and two others. Specific treatment brought symptomatic relief. The diagnosis was established by measuring the proportion of SeHCAT, a synthetic bile salt, retained one week after oral administration of a tracer dose of less than 100 micrograms of the compound labelled with 40 kBq (1 microCi) of selenium-75. These results indicate that malabsorption of bile acid is a more common cause of chronic diarrhoea than is generally appreciated. Measurement of retention of SeHCAT is a simple, accurate, and acceptable means of establishing the diagnosis of this debilitating but treatable condition.

  14. Short-chain ubiquitination is associated with the degradation rate of a cell-surface-resident bile salt export pump (BSEP/ABCB11).

    PubMed

    Hayashi, Hisamitsu; Sugiyama, Yuichi

    2009-01-01

    The reduced expression of the bile salt export pump (BSEP/ABCB11) at the canalicular membrane is associated with cholestasis-induced hepatotoxicity due to the accumulation of bile acids in hepatocytes. We demonstrated previously that 4-phenylbutyrate (4PBA) treatment, a U.S. Food and Drug Administration-approved drug for the treatment of urea cycle disorders, induces the cell-surface expression of BSEP by prolonging the degradation rate of cell-surface-resident BSEP. On the other hand, BSEP mutations, E297G and D482G, found in progressive familial intrahepatic cholestasis type 2 (PFIC2), reduced it by shortening the degradation rate of cell-surface-resident BSEP. Therefore, to help the development of the medical treatment of cholestasis, we investigated the underlying mechanism by which 4PBA and PFIC2-type mutations affect the BSEP degradation from cell surface, focusing on short-chain ubiquitination. In Madin-Darby canine kidney II (MDCK II) cells expressing BSEP and rat canalicular membrane vesicles, the molecular mass of the mature form of BSEP/Bsep shifted from 170 to 190 kDa after ubiquitin modification (molecular mass, 8 kDa). Ubiquitination susceptibility of BSEP/Bsep was reduced in vitro and in vivo by 4PBA treatment and, conversely, was enhanced by BSEP mutations E297G and D482G. Moreover, biotin-labeling studies using MDCK II cells demonstrated that the degradation of cell-surface-resident chimeric protein fusing ubiquitin to BSEP was faster than that of BSEP itself. In conclusion, BSEP/Bsep is modified with two to three ubiquitins, and its ubiquitination is modulated by 4PBA treatment and PFIC2-type mutations. Modulation of short-chain ubiquitination can regulate the change in the degradation rate of cell-surface-resident BSEP by 4PBA treatment and PFIC2-type mutations.

  15. Characterization of NADP-dependent 7 beta-hydroxysteroid dehydrogenases from Peptostreptococcus productus and Eubacterium aerofaciens.

    PubMed Central

    Hirano, S; Masuda, N

    1982-01-01

    Peptostreptococcus productus strain b-52 (a human fecal isolate) and Eubacterium aerofaciens ATCC 25986 were found to contain NADP-dependent 7 beta-hydroxysteriod dehydrogenase activity. The enzyme was synthesized constitutively by both organisms, and the enzyme yields were suppressed by the addition of 0.5 mM 7 beta-hydroxy bile acid to the growth medium. Purification of the enzyme by chromatography resulted in preparations with 3.5 (P. productus b-52, on Sephadex G-200) and 1.8 (E. aerofaciens, on Bio-Gel A-1.5 M) times the activity of the crude cell extracts. A pH optimum of 9.8 and a molecular weight of approximately 53,000 were shown for the enzyme of strain b-52, and an optimum pH at 10.5 and a molecular weight of 45,000 was shown for that from strain ATCC 25986. Kinetic studies revealed that both enzyme preparations oxidized the 7 beta-hydroxy group in unconjugated and conjugated bile acids, a lower Km value being demonstrated with free bile acid than with glycine and taurine conjugates. No measureable activity against 3 alpha-, 7 alpha-, or 12 alpha-hydroxy groups was detected in either enzyme preparation. When tested with strain ATCC 25986, little 7 beta-hydroxy-steroid dehydrogenase activity was detected in cells grown in the presence of glucose in excess. The enzyme from strain b-52 was found to be heat labile (90% inactivation at 50 degrees C for 3 min) and highly sensitive to sulfhydryl inhibitors. PMID:6954878

  16. Effects of Taurine Supplementation on Growth in Low Birth Weight Infants: A Systematic Review and Meta-Analysis.

    PubMed

    Cao, Shun-Li; Jiang, Hong; Niu, Shi-Ping; Wang, Xiao-Hu; Du, Shan

    2018-01-25

    To summarize the available randomized controlled trials (RCTs) to evaluate the effect of taurine supplementation on growth in low birth weight infants (LBW). PubMed, EmBase, and Cochrane Library electronic databases were searched for published articles through March 2017. Analysis was done to examine the effect of taurine supplementation on growth, and sensitivity analysis was performed by removing each individual study from meta-analysis. Results of 9 trials totaling 216 LBW infants in the present meta-analysis were collected and analyzed. The conclusion of included studies demonstrated that taurine supplementation significantly reduced length gain (WMD:-0.18; P < 0.001), plasma glycine (WMD:-106.71; P = 0.033), alanine (WMD:-229.30; P = 0.002), leucine (WMD:-64.76; P < 0.001), tyrosine (WMD:-118.11; P < 0.001), histidine (WMD:-52.16; P < 0.001), proline (WMD: -84.29; P = 0.033), and asparagine-glutamine (WMD:-356.30; P < 0.001). However, taurine supplementation was associated with higher levels of acidic sterols (WMD:0.61; P = 0.024), total fatty acids (WMD:7.94; P = 0.050), total saturated fatty acids (WMD:9.70; P < 0.001), and unsaturated fatty acids (WMD:6.63; P < 0.001). Finally, taurine supplementation had little or no significant effect on weight gain, head circumference gain, plasma taurine, threonine, serine, citrulline, valine, methionine, isoleucine, phenylalanine, ornithine, lysine, arginine, glutamate, hydroxyproline, aspartate, dietary cholesterol, endogenous neutral sterols, cholesterol synthesis, and medium-chain triglycerides. The findings suggest that although there are several significant differences in plasma indeces, no significant effect on growth in LBW infants was observed with taurine supplementation.

  17. [Biological and nutritional role of taurine and its derivatives on cellular and organic physiology].

    PubMed

    Cañas, P E; Valenzuela, A

    1991-06-01

    Several aspects about the biological role of taurine and its derivatives has been described in this work, especially in relation to humans. Some aspects related to the structure and function of the molecule in respect to its capacity as an osmoregulator and as an antioxidant are also analyzed. Moreover, the distribution changes on the biosynthesis phenomenon in some development stages as well as changes at the transport level, especially in some tissues where the concentration is increased several times with respect to plasmatic concentrations, are discussed. Some evidences exist as to the possibilities that taurine may be considered as a conditionally essential nutrient, particularly in some cases where it has been demonstrated that taurine and its derivatives have certain clinical and nutritional implications.

  18. Role of the Intestinal Bile Acid Transporters in Bile Acid and Drug Disposition

    PubMed Central

    Dawson, Paul A.

    2011-01-01

    Membrane transporters expressed by the hepatocyte and enterocyte play critical roles in maintaining the enterohepatic circulation of bile acids, an effective recycling and conservation mechanism that largely restricts these potentially cytotoxic detergents to the intestinal and hepatobiliary compartments. In doing so, the hepatic and enterocyte transport systems ensure a continuous supply of bile acids to be used repeatedly during the digestion of multiple meals throughout the day. Absorption of bile acids from the intestinal lumen and export into the portal circulation is mediated by a series of transporters expressed on the enterocyte apical and basolateral membranes. The ileal apical sodium-dependent bile acid cotransporter (abbreviated ASBT; gene symbol, SLC10A2) is responsible for the initial uptake of bile acids across the enterocyte brush border membrane. The bile acids are then efficiently shuttled across the cell and exported across the basolateral membrane by the heteromeric Organic Solute Transporter, OSTα-OSTβ. This chapter briefly reviews the tissue expression, physiology, genetics, pathophysiology, and transport properties of the ASBT and OSTα-OSTα. In addition, the chapter discusses the relationship between the intestinal bile acid transporters and drug metabolism, including development of ASBT inhibitors as novel hypocholesterolemic or hepatoprotective agents, prodrug targeting of the ASBT to increase oral bioavailability, and involvement of the intestinal bile acid transporters in drug absorption and drug-drug interactions. PMID:21103970

  19. Taurine protects HK-2 cells from oxidized LDL-induced cytotoxicity via the ROS-mediated mitochondrial and p53-related apoptotic pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Chun-Yu; Shen, Chao-Yu; Department of Medical Imaging, Chung Shan Medical University Hospital, Taichung, Taiwan

    Oxidized LDL (oxLDL) induces a pro-oxidative environment and promotes apoptosis, causing the progression of renal diseases in humans. Taurine is a semi-essential amino acid in mammals and has been shown to be a potent endogenous antioxidant. The kidney plays a pivotal role in maintaining the balance of taurine. However, the mechanisms underlying the protective effects of taurine against oxLDL-induced injury in renal epithelial cells have not been clarified. In the present study, we investigated the anti-apoptotic effects of taurine on human proximal tubular epithelial (HK-2) cells exposed to oxLDL and explored the related mechanisms. We observed that oxLDL increased themore » contents of ROS and of malondialdehyde (MDA), which is a lipid peroxidation by-product that acts as an indicator of the cellular oxidation status. In addition, oxLDL induced cell death and apoptosis in HK-2 cells. Pretreatment with taurine at 100 μM significantly attenuated the oxLDL-induced cytotoxicity. We determined that oxLDL triggered the phosphorylation of ERK and, in turn, the activation of p53 and other apoptosis-related events, including calcium accumulation, destabilization of the mitochondrial permeability and disruption of the balance between pro-apoptotic Bax and anti-apoptotic Bcl-2 proteins. The malfunctions induced by oxLDL were effectively blocked by taurine. Thus, our results suggested that taurine exhibits potential therapeutic activity by preventing oxLDL-induced nephrotoxicity. The inhibition of oxLDL-induced epithelial apoptosis by taurine was at least partially due to its anti-oxidant activity and its ability to modulate the ERK and p53 apoptotic pathways. - Highlights: • Oxidized LDL induced cytotoxicity and apoptosis in HK-2 cells. • Pretreatment with taurine attenuated oxLDL-induced nephrotoxicity. • Taurine protected against renal damages through inhibition of ROS generation. • Taurine prevented apoptosis through modulation of the p53 phosphorylation.« less

  20. In vivo substitution of choline for sodium evokes a selective osmoinsensitive increase of extracellular taurine in the rat hippocampus.

    PubMed

    Lehmann, A; Sandberg, M

    1990-01-01

    Recent investigations have demonstrated that taurine and phosphoethanolamine (PEA) are the amino acids most sensitive to microdialysis-perfusion with reduced concentrations of NaCl. The aim of the present work was to assess the importance of Na+ deficiency in evoking this response. Further, the previously described selectivity of replacement of Cl- with acetate with respect to amino acid release was reinvestigated. The hippocampus of urethane-anesthetized rats was dialyzed with Krebs-Ringer bicarbonate buffer, and amino acid concentrations of the perfusate were determined. Choline chloride was then stepwise substituted for NaCl, and, in some cases, mannitol (122 mM) was included in low sodium-containing media. In other experiments, NaCl was replaced with sodium acetate. The dialysate levels of taurine increased selectively in response to Na+ substitution. The elevation of taurine was linearly related to the increase in choline chloride, and maximal levels amounted to 335% of basal levels. The increase in extracellular taurine was not inhibited by perfusion with medium made hyperosmotic with mannitol. Replacement of Cl- with acetate stimulated the release of taurine to 652% of resting levels. In addition, PEA levels increased to 250% of control concentration. Other amino acids were unaffected by Cl- substitution. The results show that taurine transport is considerably more sensitive to Na+ depletion than glutamate transport, which also is known to be Na+ dependent. The taurine increase evoked by low Na+ is not caused by cellular swelling as it was unaffected by hyperosmolar medium. Finally, substitution of acetate for Cl- causes a specific elevation of extracellular taurine and PEA, possibly as a result of cytotoxic edema.

  1. Photoactive bile salts with critical micellar concentration in the micromolar range.

    PubMed

    Gomez-Mendoza, Miguel; Marin, M Luisa; Miranda, Miguel A

    2016-05-14

    The aggregation behavior of bile salts is strongly dependent on the number of hydroxyl groups. Thus, cholic acid (CA), with three hydroxyls, starts forming aggregates at 15 mM, while deoxycholic, chenodeoxycholic or ursodeoxycholic acids, with two hydroxyls, start aggregating at 5-10 mM; for lithocholic acid, with only one hydroxyl group, aggregation is observed at lower concentration (2-3 mM). Here, the singular self-assembling properties of dansyl and naproxen derivatives of CA (3β-Dns-CA and 3β-NPX-CA, respectively) have been demonstrated on the basis of their photoactive properties. Thus, the emission spectra of 3β-Dns-CA registered at increasing concentrations (25-140 μM) showed a remarkable non-linear enhancement in the emission intensity accompanied by a hypsochromic shift of the maximum and up to a three-fold increase in the singlet lifetime. The inflection point at around 50-70 μM pointed to the formation of unprecedented assemblies at such low concentrations. In the case of 3β-NPX-CA, when the NPX relative triplet lifetime was plotted against concentration, a marked increase (up to two-fold) was observed at 40-70 μM, indicating the formation of new 3β-NPX-CA assemblies at ca. 50 μM. Additional evidence supporting the formation of new 3β-Dns-CA or 3β-NPX-CA assemblies at 40-70 μM was obtained from singlet excited state quenching experiments using iodide. Moreover, to address the potential formation of hybrid assemblies, 1 : 1 mixtures of 3β-Dns-CA and 3β-NPX-CA (2-60 μM, total concentration) were subjected to steady-state fluorescence experiments, and their behavior was compared to that of the pure photoactive derivatives. A lower increase in the emission was observed for 3β-NPX-CA in the mixture, while a huge increase was experienced by 3β-Dns-CA in the same concentration range (up to 60 μM total). A partial intermolecular energy transfer from NPX to Dns, consistent with their reported singlet energies, was revealed, pointing to the

  2. Role of cholangiocyte bile Acid transporters in large bile duct injury after rat liver transplantation.

    PubMed

    Cheng, Long; Zhao, Lijin; Li, Dajiang; Liu, Zipei; Chen, Geng; Tian, Feng; Li, Xiaowu; Wang, Shuguang

    2010-07-27

    The pathogenesis of nonanastomotic strictures with a patent hepatic artery remains to be investigated. This study focuses on the role of cholangiocyte bile acid transporters in bile duct injury after liver transplantation. Sprague-Dawley rats were divided into three groups (n=20 for each): the sham-operated group (Sham), the transplant group with 1-hr donor liver cold preservation (CP-1h), and the transplant group with 12-hr donor liver cold preservation (CP-12h). Bile was collected for biochemical analysis. The histopathologic evaluation of bile duct injury was performed and the cholangiocyte bile acid transporters apical sodium-dependent bile acid transporter (ASBT), ileal lipid binding protein (ILBP), and Ostalpha/Ostbeta were investigated. RESULTS.: The immunohistochemical assay suggested that ASBT and ILBP were expressed exclusively on large bile duct epithelial cells, whereas Ostalpha and Ostbeta were expressed on both small and large bile ducts. Western blot and quantitative polymerase chain reaction analysis showed that the expression levels of these transporters dramatically decreased after transplantation. It took seven to 14 days for ILBP, Ostalpha, and Ostbeta to recover, whereas ASBT recovered within 3 days and even reached a peak above the normal level seven days after operation. In the CP-12h group, the ratios of the ASBT/ILBP, ASBT/Ostalpha and ASBT/Ostbeta expression levels were correlated with the injury severity scores of large but not small bile ducts. The results suggest that the unparallel alteration of cholangiocyte bile acid transporters may play a potential role in large bile duct injury after liver transplantation with prolonged donor liver preservation.

  3. Disulfide bridge regulates ligand-binding site selectivity in liver bile acid-binding proteins.

    PubMed

    Cogliati, Clelia; Tomaselli, Simona; Assfalg, Michael; Pedò, Massimo; Ferranti, Pasquale; Zetta, Lucia; Molinari, Henriette; Ragona, Laura

    2009-10-01

    Bile acid-binding proteins (BABPs) are cytosolic lipid chaperones that play central roles in driving bile flow, as well as in the adaptation to various pathological conditions, contributing to the maintenance of bile acid homeostasis and functional distribution within the cell. Understanding the mode of binding of bile acids with their cytoplasmic transporters is a key issue in providing a model for the mechanism of their transfer from the cytoplasm to the nucleus, for delivery to nuclear receptors. A number of factors have been shown to modulate bile salt selectivity, stoichiometry, and affinity of binding to BABPs, e.g. chemistry of the ligand, protein plasticity and, possibly, the formation of disulfide bridges. Here, the effects of the presence of a naturally occurring disulfide bridge on liver BABP ligand-binding properties and backbone dynamics have been investigated by NMR. Interestingly, the disulfide bridge does not modify the protein-binding stoichiometry, but has a key role in modulating recognition at both sites, inducing site selectivity for glycocholic and glycochenodeoxycholic acid. Protein conformational changes following the introduction of a disulfide bridge are small and located around the inner binding site, whereas significant changes in backbone motions are observed for several residues distributed over the entire protein, both in the apo form and in the holo form. Site selectivity appears, therefore, to be dependent on protein mobility rather than being governed by steric factors. The detected properties further establish a parallelism with the behaviour of human ileal BABP, substantiating the proposal that BABPs have parallel functions in hepatocytes and enterocytes.

  4. Cerebral Taurine Levels are Associated with Brain Edema and Delayed Cerebral Infarction in Patients with Aneurysmal Subarachnoid Hemorrhage.

    PubMed

    Kofler, Mario; Schiefecker, Alois; Ferger, Boris; Beer, Ronny; Sohm, Florian; Broessner, Gregor; Hackl, Werner; Rhomberg, Paul; Lackner, Peter; Pfausler, Bettina; Thomé, Claudius; Schmutzhard, Erich; Helbok, Raimund

    2015-12-01

    Cerebral edema and delayed cerebral infarction (DCI) are common complications after aneurysmal subarachnoid hemorrhage (aSAH) and associated with poor functional outcome. Experimental data suggest that the amino acid taurine is released into the brain extracellular space secondary to cytotoxic edema and brain tissue hypoxia, and therefore may serve as a biomarker for secondary brain injury after aSAH. On the other hand, neuroprotective mechanisms of taurine treatment have been described in the experimental setting. We analyzed cerebral taurine levels using high-performance liquid chromatography in the brain extracellular fluid of 25 consecutive aSAH patients with multimodal neuromonitoring including cerebral microdialysis (CMD). Patient characteristics and clinical course were prospectively recorded. Associations with CMD-taurine levels were analyzed using generalized estimating equations with an autoregressive process to handle repeated observations within subjects. CMD-taurine levels were highest in the first days after aSAH (11.2 ± 3.2 µM/l) and significantly decreased over time (p < 0.001). Patients with brain edema on admission or during hospitalization (N = 20; 80 %) and patients developing DCI (N = 5; 20 %) had higher brain extracellular taurine levels compared to those without (Wald = 7.3, df = 1, p < 0.01; Wald = 10.1, df = 1, p = 0.001, respectively) even after adjusting for disease severity and CMD-probe location. There was no correlation between parenteral taurine supplementation and brain extracellular taurine (p = 0.6). Moreover, a significant correlation with brain extracellular glutamate (r = 0.82, p < 0.001), lactate (r = 0.56, p < 0.02), pyruvate (r = 0.39, p < 0.01), potassium (r = 0.37, p = 0.01), and lactate-to-pyruvate ratio (r = 0.24, p = 0.02) was found. Significantly higher CMD-taurine levels were found in patients with brain edema or DCI after aneurysmal subarachnoid hemorrhage. Its value as a

  5. Binding of bile acids by pastry products containing bioactive substances during in vitro digestion.

    PubMed

    Dziedzic, Krzysztof; Górecka, Danuta; Szwengiel, Artur; Smoczyńska, Paulina; Czaczyk, Katarzyna; Komolka, Patrycja

    2015-03-01

    The modern day consumer tends to choose products with health enhancing properties, enriched in bioactive substances. One such bioactive food component is dietary fibre, which shows a number of physiological properties including the binding of bile acids. Dietary fibre should be contained in everyday, easily accessible food products. Therefore, the aim of this study was to determine sorption capacities of primary bile acid (cholic acid - CA) and secondary bile acids (deoxycholic - DCA and lithocholic acids - LCA) by muffins (BM) and cookies (BC) with bioactive substances and control muffins (CM) and cookies (CC) in two sections of the in vitro gastrointestinal tract. Variations in gut flora were also analysed in the process of in vitro digestion of pastry products in a bioreactor. Enzymes: pepsin, pancreatin and bile salts: cholic acid, deoxycholic acid and lithocholic acid were added to the culture. Faecal bacteria, isolated from human large intestine, were added in the section of large intestine. The influence of dietary fibre content in cookies and concentration of bile acids in two stages of digestion were analysed. Generally, pastry goods with bioactive substances were characterized by a higher content of total fibre compared with the control samples. These products also differ in the profile of dietary fibre fractions. Principal Component Analysis (PCA) showed that the bile acid profile after two stages of digestion depends on the quality and quantity of fibre. The bile acid profile after digestion of BM and BC forms one cluster, and with the CM and CC forms a separate cluster. High concentration of H (hemicellulose) is positively correlated with LCA (low binding effect) and negatively correlated with CA and DCA contents. The relative content of bile acids in the second stage of digestion was in some cases above the content in the control sample, particularly LCA. This means that the bacteria introduced in the 2nd stage of digestion synthesize the LCA.

  6. Therapeutic uses of animal biles in traditional Chinese medicine: An ethnopharmacological, biophysical chemical and medicinal review

    PubMed Central

    Wang, David Q-H; Carey, Martin C

    2014-01-01

    Forty-four different animal biles obtained from both invertebrates and vertebrates (including human bile) have been used for centuries for a host of maladies in traditional Chinese medicine (TCM) beginning with dog, ox and common carp biles approximately in the Zhou dynasty (c. 1046-256 BCE). Overall, different animal biles were prescribed principally for the treatment of liver, biliary, skin (including burns), gynecological and heart diseases, as well as diseases of the eyes, ears, nose, mouth and throat. We present an informed opinion of the clinical efficacy of the medicinal uses of the different animal biles based on their presently known principal chemical components which are mostly steroidal detergent-like molecules and the membrane lipids such as unesterified cholesterol and mixed phosphatidylcholines and sometimes sphingomyelin, as well as containing lipopigments derived from heme principally bilirubin glucuronides. All of the available information on the ethnopharmacological uses of biles in TCM were collated from the rich collection of ancient Chinese books on materia medica held in libraries in China and United States and the composition of various animal biles was based on rigorous separatory and advanced chemical identification techniques published since the mid-20th century collected via library (Harvard’s Countway Library) and electronic searches (PubMed and Google Scholar). Our analysis of ethnomedical data and information on biliary chemistry shows that specific bile salts, as well as the common bile pigment bilirubin and its glucuronides plus the minor components of bile such as vitamins A, D, E, K, as well as melatonin (N-acetyl-5-methoxytryptamine) are salutary in improving liver function, dissolving gallstones, inhibiting bacterial and viral multiplication, promoting cardiac chronotropsim, as well as exhibiting anti-inflammatory, anti-pyretic, anti-oxidant, sedative, anti-convulsive, anti-allergic, anti-congestive, anti-diabetic and anti

  7. Bile duct hamartomas (von Mayenburg complexes) mimicking liver metastases from bile duct cancer: MRC findings

    PubMed Central

    Nagano, Yasuhiko; Matsuo, Kenichi; Gorai, Katsuya; Sugimori, Kazuya; Kunisaki, Chikara; Ike, Hideyuki; Tanaka, Katsuaki; Imada, Toshio; Shimada, Hiroshi

    2006-01-01

    We present a case of a 72-year-old man with a common bile duct cancer, who was initially believed to have multiple liver metastases based on computed tomography findings, and in whom magnetic resonance cholangiography (MRC) revealed a diagnosis of bile duct hamartomas. At exploration for pancreaticoduodenectomy, liver palpation revealed disseminated nodules at the surface of the liver. These nodules showed gray-white nodular lesions of about 0.5 cm in diameter scattered on the surface of both liver lobes, which were looked like multiple liver metastases from bile duct cancer. Frozen section of the liver biopsy disclosed multiple bile ducts with slightly dilated lumens embedded in the collagenous stroma characteristics of multiple bile duct hamartomas (BDHs). Only two reports have described the MRC features of bile duct hamartomas. Of all imaging procedures, MRC provides the most relevant features for the imaging diagnosis of bile duct hamartomas. PMID:16534895

  8. Anti-inflammatory actions of a taurine analogue, ethane β-sultam, in phagocytic cells, in vivo and in vitro.

    PubMed

    Ward, Roberta J; Lallemand, Frederic; de Witte, Philippe; Crichton, Robert R; Piette, Jacques; Tipton, Keith; Hemmings, Karl; Pitard, Arnaud; Page, Mike; Della Corte, Laura; Taylor, Deanna; Dexter, David

    2011-03-15

    The ability of a taurine prodrug, ethane β-sultam, to reduce cellular inflammation has been investigated, in vitro, in primary cultures of alveolar macrophages and an immortilised N9 microglial cell line and in vivo in an animal model of inflammation and control rats. Ethane β-sultam showed enhanced ability to reduce the inflammatory response in alveolar macrophages, as assayed by the lipopolysaccharide-stimulated-nitric oxide release, (LPS stimulated-NO), in comparison to taurine both in vitro (10 nM, 50 nM) and in vivo (0.15 mmol/kg/day by gavage). In addition, ethane β-sultam, (50, 100 and 1000 nM) significantly reduced LPS-stimulated glutamate release from N9 microglial cells to a greater extent than taurine. The anti-inflammatory response of taurine was shown to be mediated via stabilisation of IkBα. The use of a taurine prodrug as therapeutic agents, for the treatment of neurological conditions, such as Parkinson's and Alzheimer's disease and alcoholic brain damage, where activated phagocytic cells contribute to the pathogenesis, may be of great potential. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Is bile acid malabsorption underdiagnosed? An evaluation of accuracy of diagnosis by measurement of SeHCAT retention.

    PubMed Central

    Merrick, M V; Eastwood, M A; Ford, M J

    1985-01-01

    The cause of intractable chronic diarrhoea was found to be malabsorption of bile acid in five out of 42 patients thought to have the irritable bowel syndrome, six out of 29 patients with persistent diarrhoea after surgery for peptic ulcer, 23 who had undergone small bowel resection, and two others. Specific treatment brought symptomatic relief. The diagnosis was established by measuring the proportion of SeHCAT, a synthetic bile salt, retained one week after oral administration of a tracer dose of less than 100 micrograms of the compound labelled with 40 kBq (1 microCi) of selenium-75. These results indicate that malabsorption of bile acid is a more common cause of chronic diarrhoea than is generally appreciated. Measurement of retention of SeHCAT is a simple, accurate, and acceptable means of establishing the diagnosis of this debilitating but treatable condition. PMID:3918708

  10. Suitability of bovine bile compared to urine for detection of free, sulfate and glucuronate boldenone, androstadienedione, cortisol, cortisone, prednisolone, prednisone and dexamethasone by LC-MS/MS.

    PubMed

    Chiesa, Luca; Nobile, Maria; Panseri, Sara; Vigo, Daniele; Pavlovic, Radmila; Arioli, Francesco

    2015-12-01

    The administration of boldenone and androstadienedione to cattle is forbidden in the European Union, while prednisolone is permitted for therapeutic purposes. They are pseudoendogenous substances (endogenously produced under certain circumstances). The commonly used matrices in control analyses are urine or liver. With the aim of improving the residue controls, we previously validated a method for steroid analysis in bile. We now compare urine (a 'classic' matrix) to bile, both collected at the slaughterhouse, to understand whether the detection of steroids in the latter is easier. With the aim of having clearer results, we tested the presence of the synthetic corticosteroid dexamethasone. The results show that bile does not substantially improve the detection of boldenone, or its conjugates, prednisolone and prednisone. Dexamethasone, instead, was found in 10 out of 53 bovine bile samples, but only in one urine sample from the same animals. Bile could constitute a novel matrix for the analysis of residues in food-producing animals, and possibly not only of synthetic corticosteroids. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Regulation of hepatic bile acid transporters Ntcp and Bsep expression.

    PubMed

    Cheng, Xingguo; Buckley, David; Klaassen, Curtis D

    2007-12-03

    Sodium-taurocholate cotransporting polypeptide (Ntcp) and bile salt export pump (Bsep) are two key transporters for hepatic bile acid uptake and excretion. Alterations in Ntcp and Bsep expression have been reported in pathophysiological conditions. In the present study, the effects of age, gender, and various chemicals on the regulation of these two transporters were characterized in mice. Ntcp and Bsep mRNA levels in mouse liver were low in the fetus, but increased to its highest expression at parturition. After birth, mouse Ntcp and Bsep mRNA decreased by more than 50%, and then gradually increased to adult levels by day 30. Expression of mouse Ntcp mRNA and protein exhibit higher levels in female than male livers. No gender difference exists in BSEP/Bsep expression in human and mouse livers. Hormone replacements conducted in gonadectomized, hypophysectomized, and lit/lit mice indicate that female-predominant Ntcp expression in mouse liver is due to the inhibitory effect of male-pattern GH secretion, but not sex hormones. Ntcp and Bsep expression are in general resistant to induction by a large battery of microsomal enzyme inducers. Administration of cholestyramine increased Ntcp, whereas chenodeoxycholic acid (CDCA) increased Bsep mRNA expression. In conclusion, mouse Ntcp and Bsep are regulated by age, gender, cholestyramine, and bile acid, but resistant to induction by most microsomal enzyme inducers.

  12. Bile Duct Cancer

    MedlinePlus

    ... the liver get rid of toxins and wastes. Bile duct cancer is rare. It can happen in the parts ... Itchy skin Fever Abdominal pain Tests to diagnose bile duct cancer may include a physical exam, imaging tests of ...

  13. Profiling of urinary bile acids in piglets by a combination of enzymatic deconjugation and targeted LC-MRM-MS[S

    PubMed Central

    Fang, Nianbai; Yu, Shanggong; Adams, Sean H.; Ronis, Martin J. J.; Badger, Thomas M.

    2016-01-01

    We present a method using a combination of enzymatic deconjugation and targeted LC-multiple reaction monitoring (MRM)-MS analysis for analyzing all common bile acids (BAs) in piglet urine, and in particular, for detecting conjugated BAs either in the absence of their standards, or when present in low concentrations. Initially, before enzymatic deconjugation, 19 unconjugated BAs (FBAs) were detected where the total concentration of the detected FBAs was 9.90 μmol/l. Sixty-seven conjugated BAs were identified by LC-MRM-MS analysis before and after enzymatic deconjugation. Four enzymatic assays were used to deconjugate the BA conjugates. FBAs in urine after cholylglycine hydrolase/sulfatase treatment were 33.40 μmol/l, indicating the urinary BAs were comprised of 29.75% FBAs and 70.25% conjugated BAs in single and multiple conjugated forms. For the conjugates in single form, released FBAs from cholylglycine hydrolase deconjugation indicated that the conjugates with amino acids were 14.54% of urinary BAs, 16.27% glycosidic conjugates were found by β-glucuronidase treatment, and sulfatase with glucuronidase inhibitor treatment liberated FBAs that constituted 16.67% of urinary BAs. Notably, chenodeoxycholic acid (CDCA) was initially detected only in trace amounts in urine, but was found at significant levels after the enzymatic assays above. These results support that CDCA is a precursor of γ-muricholic acid in BA biosynthesis in piglets. PMID:27538824

  14. Effects of taurine supplementation on hepatic markers of inflammation and lipid metabolism in mothers and offspring in the setting of maternal obesity.

    PubMed

    Li, Minglan; Reynolds, Clare M; Sloboda, Deborah M; Gray, Clint; Vickers, Mark H

    2013-01-01

    Maternal obesity is associated with obesity and metabolic disorders in offspring. However, intervention strategies to reverse or ameliorate the effects of maternal obesity on offspring health are limited. Following maternal undernutrition, taurine supplementation can improve outcomes in offspring, possibly via effects on glucose homeostasis and insulin secretion. The effects of taurine in mediating inflammatory processes as a protective mechanism has not been investigated. Further, the efficacy of taurine supplementation in the setting of maternal obesity is not known. Using a model of maternal obesity, we examined the effects of maternal taurine supplementation on outcomes related to inflammation and lipid metabolism in mothers and neonates. Time-mated Wistar rats were randomised to either: 1) control : control diet during pregnancy and lactation (CON); 2) CON supplemented with 1.5% taurine in drinking water (CT); 3) maternal obesogenic diet (high fat, high fructose) during pregnancy and lactation (MO); or 4) MO supplemented with taurine (MOT). Maternal and neonatal weights, plasma cytokines and hepatic gene expression were analysed. A MO diet resulted in maternal hyperinsulinemia and hyperleptinemia and increased plasma glucose, glutamate and TNF-α concentrations. Taurine normalised maternal plasma TNF-α and glutamate concentrations in MOT animals. Both MO and MOT mothers displayed evidence of fatty liver accompanied by alterations in key markers of hepatic lipid metabolism. MO neonates displayed a pro-inflammatory hepatic profile which was partially rescued in MOT offspring. Conversely, a pro-inflammatory phenotype was observed in MOT mothers suggesting a possible maternal trade-off to protect the neonate. Despite protective effects of taurine in MOT offspring, neonatal mortality was increased in CT neonates, indicating possible adverse effects of taurine in the setting of normal pregnancy. These data suggest that maternal taurine supplementation may

  15. Expression and role of the genes involved in the transport of bile acids in the liver and kidneys in mice.

    PubMed

    Attakpa, Eugène S; Djibril, Naguibou M; Baba-Moussa, Farid; Yessoufou, Ganiou; Sezan, Alphonse

    2013-01-01

    Bile acids are synthesized in the liver from cholesterol. This study investigated the impact and expression of different carriers of bile acid in the liver and kidneys. Eight-week-old male mice were used, which were fed for 15 days and divided into two groups: 15 mice fed with standard diet (control group) and another 15 mice fed with a rich diet of 5% cholesterol (second group). Bile acid dosage was based on their oxidation by 7α hydroxyl-steroid dehydrogenize. The mRNA expression was quantitatively analyzed by the real time of polymerase chain reaction (RT-PCR), and the expression of the renal carrier bile acid protein was analyzed by Western blot. The expression of bile salt export pump involved in the uptake of bile acids in the basolateral membrane of hepatocytes revealed no differences between the two groups of mice. However, the expression of multidrug resistance-associated protein 2 was reduced in mice of the second group. Moreover, the expressions of organic anion transporting polypeptide 4, organic anion transporting polypeptide 1, and sodium taurocholate co-transporting polypeptide (Ntcp) involved in the uptake of bile acids in the apical pole of hepatocytes are suppressed in mice of the second group. The expression of multidrug resistance-associated protein 3 involved in the secretion of bile acids in the apical membrane of hepatocytes revealed no significant differences between the two groups. In mice of the second group, blood concentration of bile acids on the last day was increased. In those mice, the expression of intestinal bile acid transporter was reduced in the kidneys compared with the control mice.

  16. Taurine suppresses osteoblastic differentiation of aortic valve interstitial cells induced by beta-glycerophosphate disodium, dexamethasone and ascorbic acid via the ERK pathway.

    PubMed

    Feng, Xiang; Li, Jian-ming; Liao, Xiao-bo; Hu, Ye-rong; Shang, Bao-peng; Zhang, Zhi-yuan; Yuan, Ling-qing; Xie, Hui; Sheng, Zhi-feng; Tang, Hao; Zhang, Wei; Gu, Lu; Zhou, Xin-min

    2012-10-01

    Aortic valve calcification (AVC) is an active process characterized by osteoblastic differentiation of the aortic valve interstitial cells (AVICs). Taurine is a free β-amino acid and plays important physiological roles including protective effect of cardiovascular events. To evaluate the possible role of taurine in AVC, we isolated human AVICs from patients with type A dissection without leaflet disease. We demonstrated that the cultured AVICs express SM α-actin, vimentin and taurine transporter (TAUT), but not CD31, SM-myosin or desmin. We also established the osteoblastic differentiation model of the AVICs induced by pro-calcific medium (PCM) containing β-glycerophosphate disodium, dexamethasone and ascorbic acid in vitro. The results showed that taurine attenuated the PCM-induced osteoblastic differentiation of AVICs by decreasing the alkaline phosphate (ALP) activity/expression and the expression of the core binding factor α1 (Cbfα1) in a dose-dependent manner (reaching the maximum protective effect at 10 mM), and taurine (10 mM) inhibited the mineralization level of AVICs in the form of calcium content significantly. Furthermore, taurine activated the extracellular signal-regulated protein kinase (ERK) pathway via TAUT, and the inhibitor of ERK (PD98059) abolished the effect of taurine on both ALP activity/expression and Cbfα1 expression. These results suggested that taurine could inhibit osteoblastic differentiation of AVIC via the ERK pathway.

  17. Prolonged cholestasis triggered by hepatitis A virus infection and variants of the hepatocanalicular phospholipid and bile salt transporters.

    PubMed

    Krawczyk, Marcin; Grünhage, Frank; Langhirt, Miriam; Bohle, Raine M; Lammert, Frank

    2012-01-01

    Hepatitis A virus (HAV) infection resolves in most patients uneventfully within weeks from the onset of the disease. In rare cases, however, it may relapse or cause prolonged cholestasis. Here we present a case of a 36-year-old female patient who developed severe pruritus and jaundice three weeks after initially uncomplicated hepatitis A. A relapse of the infection was excluded. Since therapy with colestyramin, antihistaminics, naloxon and ursodeoxycholic acid (UDCA) did not improve symptoms, we decided to perform plasma absorption and to start rifampicin therapy. Under these measures, pruritus and jaundice, as well as serum bilirubin levels improved gradually and after four plasmapheresis sessions we were able to discharge the patient. Genetic testing showed the presence of two procholestatic polymorphisms, the c.3084 [GG] variant within the gene encoding the hepatocanalicular bile salt transporter ABCB11 and the c.711 [AT] variant of the phosphatidylcholine floppase ABCB4. We speculate that this compound ABCB4-ABCB11 genotype led to a severe intrahepatic cholestasis in the setting of HAV infection. In conclusion, our case suggests that polymorphisms within the hepatocanalicular transporters may contribute to a more pronounced course of HAV infection. Although dedicated studies in large cohorts of patients are needed to confirm this observation, we speculate that patients carrying procholestatic hepatobiliary transporter variants may benefit from vaccination against hepatitis A.

  18. Increased colonic bile acid exposure: a relevant factor for symptoms and treatment in IBS.

    PubMed

    Bajor, Antal; Törnblom, Hans; Rudling, Mats; Ung, Kjell-Arne; Simrén, Magnus

    2015-01-01

    Bile acids may play a role in the pathogenesis of IBS. We investigated the potential effects of bile acids entering the colon and its role in the symptom pattern in IBS. We measured 75Se-labelled homocholic acid-taurine (75SeHCAT) retention, and serum levels of 7α-hydroxy-4-cholesten-3-one (C4) and fibroblast growth factor (FGF) 19 in patients with IBS (n=141) and control subjects (75SeHCAT n=29; C4 and FGF19 n=435). In patients with IBS stool frequency and form, as well as GI symptom severity were registered, and in a proportion of patients colonic transit time and rectal sensitivity were measured (n=66). An 8-week open-label treatment with colestipol was offered to patients with 75SeHCAT <20%, and the effect of treatment was evaluated with IBS severity scoring system and adequate relief of IBS symptoms. Compared with controls, patients with IBS had lower 75SeHCAT values (p=0.005), higher C4c levels (C4 corrected for cholesterol) (p<0.001), but similar FGF19 levels. Abnormal 75SeHCAT retention (<10%) was seen in 18% of patients, whereas 23% had elevated C4c levels. Patients with IBS with 75SeHCAT retention <10% had more frequent stools, accelerated colonic transit time, rectal hyposensitivity, a higher body mass index, higher C4c and lower FGF19 levels. Colestipol treatment improved IBS symptoms (IBS severity scoring system 220±109 vs. 277±106; p<0.01), and 15/27 patients fulfilled criteria for treatment response (adequate relief ≥50% of weeks 5-8). Increased colonic bile acid exposure influences bowel habit and colonic transit time in patients with IBS. A high response rate to open label treatment with colestipol supports this, but placebo-controlled studies are warranted. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  19. Na(+)-dependent transport of taurine is found only on the abluminal membrane of the blood-brain barrier.

    PubMed

    Rasgado-Flores, Hector; Mokashi, Ashwini; Hawkins, Richard A

    2012-01-01

    Luminal and abluminal plasma membranes were isolated from bovine brain microvessels and used to identify and characterize Na(+)-dependent and facilitative taurine transport. The calculated transmembrane potential was -59 mV at time 0; external Na(+) (or choline under putative zero-trans conditions) was 126 mM (T=25 °C). The apparent affinity constants of the taurine transporters were determined over a range of taurine concentrations from 0.24 μM to 11.4 μM. Abluminal membranes had both Na(+)-dependent taurine transport as well as facilitative transport while luminal membranes only had facilitative transport. The apparent K(m) for facilitative and Na(+)-dependent taurine transport were 0.06±0.02 μM and 0.7±0.1 μM, respectively. The Na(+)-dependent transport of taurine was voltage dependent over the range of voltages studied (-25 to -101 mV). The transport was over 5 times greater at -101 mV compared to when V(m) was -25 mV. The sensitivity to external osmolality of Na(+)-dependent transport was studied over a range of osmolalities (229 to 398 mOsm/kg H(2)O) using mannitol as the osmotic agent to adjust the osmolality. For these experiments the concentration of Na(+) was maintained constant at 50mM, and the calculated transmembrane potential was -59 mV. The Na(+)-dependent transport system was sensitive to osmolality with the greatest rate observed at 229 mOsm/kg H(2)O. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Apolipoprotein A-V is present in bile and its secretion increases with lipid absorption in Sprague-Dawley rats.

    PubMed

    Zhang, Linda S; Sato, Hirokazu; Yang, Qing; Ryan, Robert O; Wang, David Q-H; Howles, Philip N; Tso, Patrick

    2015-12-01

    Apolipoprotein (apo) A-V is a protein synthesized only in the liver that dramatically modulates plasma triglyceride levels. Recent studies suggest a novel role for hepatic apoA-V in regulating the absorption of dietary triglycerides, but its mode of action on the gut remains unknown. The aim of this study was to test for apoA-V in bile and to determine whether its secretion is regulated by dietary lipids. After an overnight recovery, adult male Sprague-Dawley bile fistula rats indeed secreted apoA-V into bile at a constant rate under fasting conditions. An intraduodenal bolus of intralipid (n = 12) increased the biliary secretion of apoA-V but not of other apolipoproteins, such as A-I, A-IV, B, and E. The lipid-induced increase of biliary apoA-V was abolished under conditions of poor lymphatic lipid transport, suggesting that the stimulation is regulated by the magnitude of lipids associated with chylomicrons transported into lymph. We also studied the secretion of apoA-V into bile immediately following bile duct cannulation. Biliary apoA-V increased over time (∼6-fold increase at hour 16, n = 8) but the secretions of other apolipoproteins remained constant. Replenishing luminal phosphatidylcholine and taurocholate (n = 9) only enhanced apoA-V secretion in bile, suggesting that the increase was not due to depletion of phospholipids or bile salts. This is the first study to demonstrate that apoA-V is secreted into bile, introducing a potential route of delivery of hepatic apoA-V to the gut lumen. Our study also reveals the uniqueness of apoA-V secretion into bile that is regulated by mechanisms different from other apolipoproteins. Copyright © 2015 the American Physiological Society.

  1. Apolipoprotein A-V is present in bile and its secretion increases with lipid absorption in Sprague-Dawley rats

    PubMed Central

    Sato, Hirokazu; Yang, Qing; Ryan, Robert O.; Wang, David Q.-H.; Howles, Philip N.; Tso, Patrick

    2015-01-01

    Apolipoprotein (apo) A-V is a protein synthesized only in the liver that dramatically modulates plasma triglyceride levels. Recent studies suggest a novel role for hepatic apoA-V in regulating the absorption of dietary triglycerides, but its mode of action on the gut remains unknown. The aim of this study was to test for apoA-V in bile and to determine whether its secretion is regulated by dietary lipids. After an overnight recovery, adult male Sprague-Dawley bile fistula rats indeed secreted apoA-V into bile at a constant rate under fasting conditions. An intraduodenal bolus of intralipid (n = 12) increased the biliary secretion of apoA-V but not of other apolipoproteins, such as A-I, A-IV, B, and E. The lipid-induced increase of biliary apoA-V was abolished under conditions of poor lymphatic lipid transport, suggesting that the stimulation is regulated by the magnitude of lipids associated with chylomicrons transported into lymph. We also studied the secretion of apoA-V into bile immediately following bile duct cannulation. Biliary apoA-V increased over time (∼6-fold increase at hour 16, n = 8) but the secretions of other apolipoproteins remained constant. Replenishing luminal phosphatidylcholine and taurocholate (n = 9) only enhanced apoA-V secretion in bile, suggesting that the increase was not due to depletion of phospholipids or bile salts. This is the first study to demonstrate that apoA-V is secreted into bile, introducing a potential route of delivery of hepatic apoA-V to the gut lumen. Our study also reveals the uniqueness of apoA-V secretion into bile that is regulated by mechanisms different from other apolipoproteins. PMID:26505974

  2. Hydrophilic bile acids protect human blood-brain barrier endothelial cells from disruption by unconjugated bilirubin: an in vitro study

    PubMed Central

    Palmela, Inês; Correia, Leonor; Silva, Rui F. M.; Sasaki, Hiroyuki; Kim, Kwang S.; Brites, Dora; Brito, Maria A.

    2015-01-01

    Ursodeoxycholic acid and its main conjugate glycoursodeoxycholic acid are bile acids with neuroprotective properties. Our previous studies demonstrated their anti-apoptotic, anti-inflammatory, and antioxidant properties in neural cells exposed to elevated levels of unconjugated bilirubin (UCB) as in severe jaundice. In a simplified model of the blood-brain barrier, formed by confluent monolayers of a cell line of human brain microvascular endothelial cells, UCB has shown to induce caspase-3 activation and cell death, as well as interleukin-6 release and a loss of blood-brain barrier integrity. Here, we tested the preventive and restorative effects of these bile acids regarding the disruption of blood-brain barrier properties by UCB in in vitro conditions mimicking severe neonatal hyperbilirubinemia and using the same experimental blood-brain barrier model. Both bile acids reduced the apoptotic cell death induced by UCB, but only glycoursodeoxycholic acid significantly counteracted caspase-3 activation. Bile acids also prevented the upregulation of interleukin-6 mRNA, whereas only ursodeoxycholic acid abrogated cytokine release. Regarding barrier integrity, only ursodeoxycholic acid abrogated UCB-induced barrier permeability. Better protective effects were obtained by bile acid pre-treatment, but a strong efficacy was still observed by their addition after UCB treatment. Finally, both bile acids showed ability to cross confluent monolayers of human brain microvascular endothelial cells in a time-dependent manner. Collectively, data disclose a therapeutic time-window for preventive and restorative effects of ursodeoxycholic acid and glycoursodeoxycholic acid against UCB-induced blood-brain barrier disruption and damage to human brain microvascular endothelial cells. PMID:25821432

  3. Profiling of urinary bile acids in piglets by a combination of enzymatic deconjugation and targeted LC-MRM-MS.

    PubMed

    Fang, Nianbai; Yu, Shanggong; Adams, Sean H; Ronis, Martin J J; Badger, Thomas M

    2016-10-01

    We present a method using a combination of enzymatic deconjugation and targeted LC-multiple reaction monitoring (MRM)-MS analysis for analyzing all common bile acids (BAs) in piglet urine, and in particular, for detecting conjugated BAs either in the absence of their standards, or when present in low concentrations. Initially, before enzymatic deconjugation, 19 unconjugated BAs (FBAs) were detected where the total concentration of the detected FBAs was 9.90 μmol/l. Sixty-seven conjugated BAs were identified by LC-MRM-MS analysis before and after enzymatic deconjugation. Four enzymatic assays were used to deconjugate the BA conjugates. FBAs in urine after cholylglycine hydrolase/sulfatase treatment were 33.40 μmol/l, indicating the urinary BAs were comprised of 29.75% FBAs and 70.25% conjugated BAs in single and multiple conjugated forms. For the conjugates in single form, released FBAs from cholylglycine hydrolase deconjugation indicated that the conjugates with amino acids were 14.54% of urinary BAs, 16.27% glycosidic conjugates were found by β-glucuronidase treatment, and sulfatase with glucuronidase inhibitor treatment liberated FBAs that constituted 16.67% of urinary BAs. Notably, chenodeoxycholic acid (CDCA) was initially detected only in trace amounts in urine, but was found at significant levels after the enzymatic assays above. These results support that CDCA is a precursor of γ-muricholic acid in BA biosynthesis in piglets. Copyright © 2016 by the American Society for Biochemistry and Molecular Biology, Inc.

  4. Amelioration of nandrolone decanoate-induced testicular and sperm toxicity in rats by taurine: Effects on steroidogenesis, redox and inflammatory cascades, and intrinsic apoptotic pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmed, Maha A.E., E-mail: mahapharm@yahoo.com

    The wide abuse of the anabolic steroid nandrolone decanoate by athletes and adolescents for enhancement of sporting performance and physical appearance may be associated with testicular toxicity and infertility. On the other hand, taurine; a free β-amino acid with remarkable antioxidant activity, is used in taurine-enriched beverages to boost the muscular power of athletes. Therefore, the purpose of this study was to investigate the mechanisms of the possible protective effects of taurine on nandrolone decanoate-induced testicular and sperm toxicity in rats. To achieve this aim, male Wistar rats were randomly distributed into four groups and administered either vehicle, nandrolone decanoatemore » (10 mg/kg/week, I.M.), taurine (100 mg/kg/day, p.o.) or combination of taurine and nandrolone decanoate, for 8 successive weeks. Results of the present study showed that taurine reversed nandrolone decanoate-induced perturbations in sperm characteristics, normalized serum testosterone level, and restored the activities of the key steroidogenic enzymes; 3β-HSD, and 17β-HSD. Moreover, taurine prevented nandrolone decanoate-induced testicular toxicity and DNA damage by virtue of its antioxidant, anti-inflammatory, and anti-apoptotic effects. This was evidenced by taurine-induced modulation of testicular LDH-x activity, redox markers (MDA, NO, GSH contents, and SOD activity), inflammatory indices (TNF-α, ICAM-1 levels, and MMP-9 gene expression), intrinsic apoptotic pathway (cytochrome c gene expression and caspase-3 content), and oxidative DNA damage markers (8-OHdG level and comet assay). In conclusion, at the biochemical and histological levels, taurine attenuated nandrolone decanoate-induced poor sperm quality and testicular toxicity in rats. - Highlights: • Nandrolone decanoate (ND) disrupts sperm profile and steroidogenesis in rats. • ND upregulates gene expression of inflammatory and apoptotic markers. • Taurine normalizes sperm profile and serum

  5. Effects of taurine on markers of muscle damage, inflammatory response and physical performance in triathletes.

    PubMed

    Martinez Galan, Bryan S; Giolo de Carvalho, Flavia; Carvalho Santos, Priscila; Bucken Gobbi, Ronaldo; Kalva-Filho, Carlos; Papoti, Marcelo; Sanchez Silva, Adelino; Freitas, Ellen C

    2017-07-25

    The practice of prolonged exercise with high intensity, as seen in triathlon training, can cause physiological imbalances that might result in muscle fatigue, muscle damage and changes in systemic inflammatory response, thus reduce the athletes physical performance, therefore, both adequate total caloric and macronutrient intake also the use of a specific ergogenic aid, as taurine supplementation would be an alternative to prevent inflammation and muscle damage. In order to verify the effects of 8 weeks of taurine and chocolate milk supplementation, markers of muscle damage, inflammation, and aerobic capacity were quantified in triathletes. A double-blind, crossover, randomized study was conducted with 9 male long distance triathletes, aged 25-35 years. Supplementation of 3 g of taurine (TAU) or placebo (PLA) associated with 400 ml low fat chocolate milk was performed during an 8-week period. In order to verify the effects of the supplementation protocol markers of muscle damage as lactate dehydrogenase (LDH) and creatine kinase (CK), and inflammatory markers tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) were quantified, also triathletes performance was evaluated by exhaust test on a treadmill. It was observed a significant increase in taurine and CK plasma levels after TAU supplementation (p=0.02 and p=0.01, respectively). However, LDH concentrations did not differ significantly after the supplementations performed, and there were no changes in physical performance parameters; anaerobic threshold, perceived exertion, heart rate, and the concentrations of IL-6 and TNF-α. Taurine supplementation did not provide benefits on performance and muscle damage in triathletes.

  6. cGMP stimulates bile acid-independent bile formation and biliary bicarbonate excretion.

    PubMed

    Myers, N C; Grune, S; Jameson, H L; Sawkat-Anwer, M

    1996-03-01

    The effect of guanosine 3',5'-cyclic monophosphate (cGMP) on hepatic bile formation was studied in isolated perfused rat livers and rat hepatocytes. Studies in isolated perfused rat livers showed that infusion of 8-bromoguanosine 3',5'-cyclic monophosphate (8-BrcGMP, 3 micromol/min or 100 microM) 1) increased bile flow without affecting biliary excretion of simultaneously infused taurocholate, 2) increased biliary concentration and excretion of HCO3(-) but did not affect biliary excretion of glutathione, and 3) increased net perfusate H+ efflux without affecting hepatic O2 uptake. Studies in isolated rat hepatocytes showed that 1) 8-BrcGMP increased intracellular pH in the presence (but not in the absence) of extracellular HCO-3, and effect inhibited by 4,4' -diisothiocyanostilbene-2,2'-disulfonic acid and Na+ replacement, 2) 8-BrcGMP did not affect taurocholate uptake and intracellular [Ca2+], and 3) bile acids, like ursodeoxycholate and cholate, did not increase cellular cGMP. Taken together, these results indicate that cGMP stimulates bile acid-independent bile formation, in part by stimulating biliary HCO3- excretion. cGMP may increase HCO3- excretion by stimulating sinusoidal Na+ - HCO3- cotransport, but not Na+/H+ exchange. cGMP, unlike adenosine 3',5'-cyclic monophosphate, may not regulate hepatic taurocholate transport, and bile acid-induced HCO3- rich choleresis may not be mediated via cGMP.

  7. Pinelliae Rhizoma Praeparatum Involved in the Regulation of Bile Acids Metabolism in Hepatic Injury.

    PubMed

    Guo, Shun; Zhang, Song; Liu, Linna; Yang, Peng; Dang, Xueliang; Wei, Huamei; Hu, Na; Shi, Lei; Zhang, Yan

    2018-06-01

    Pinelliae Rhizoma Praeparatum (PRP) as traditional Chinese medicine had been used for hepatic diseases in combinative forms. However, the effect of PRP was not clear when used alone. So to explore the hepatoprotective/hepatotoxin of PRP is necessary. The activities of PRP were investigated in acetaminophen-induced hepatic injury mice. Liver function markers, hepatic oxidative stress markers were evaluated. Bile acids metabolic transports and nuclear factor erythroid 2-related factor 2 (Nrf2) were detected. As a drug for the treatment of liver diseases, PRP slightly restored the parameters towards normal in model mice only in low dosage, and also had no antioxidant activity and regulate Nrf2. Cholestasis was significantly elevated in model mice when pretreatment with routine or high dosage of PRP, but had no effect on normal mice. Bile salt export pump (Bsep) and multidrug resistance-associated protein 2 (Mrp2) in model mice were markedly increased when pretreatment with low dose PRP, but significantly decreased when pretreatment in routine or high dosage. Mrp3 was significantly induced in model mice after pretreatment of PRP. But the adjustment effect to bile acids transporters by PRP was not significant in normal mice. These results reveal that PRP has the different effects on bile acids transporter in hepatic injury mice, and therefore, the dosage of PRP need to be paid attention to when it is used in clinical hepatic injury.

  8. INTRACELLULAR SIGNALING BY BILE ACIDS

    PubMed Central

    Anwer, Mohammed Sawkat

    2014-01-01

    Bile acids, synthesized from cholesterol, are known to produce beneficial as well as toxic effects in the liver. The beneficial effects include choleresis, immunomodulation, cell survival, while the toxic effects include cholestasis, apoptosis and cellular toxicity. It is believed that bile acids produce many of these effects by activating intracellular signaling pathways. However, it has been a challenge to relate intracellular signaling to specific and at times opposing effects of bile acids. It is becoming evident that bile acids produce different effects by activating different isoforms of phosphoinositide 3-kinase (PI3K), Protein kinase Cs (PKCs), and mitogen activated protein kinases (MAPK). Thus, the apoptotic effect of bile acids may be mediated via PI3K-110γ, while cytoprotection induce by cAMP-GEF pathway involves activation of PI3K-p110α/β isoforms. Atypical PKCζ may mediate beneficial effects and nPKCε may mediate toxic effects, while cPKCα and nPKCδ may be involved in both beneficial and toxic effects of bile acids. The opposing effects of nPKCδ activation may depend on nPKCδ phosphorylation site(s). Activation of ERK1/2 and JNK1/2 pathway appears to mediate beneficial and toxic effects, respectively, of bile acids. Activation of p38α MAPK and p38β MAPK may mediate choleretic and cholestatic effects, respectively, of bile acids. Future studies clarifying the isoform specific effects on bile formation should allow us to define potential therapeutic targets in the treatment of cholestatic disorders. PMID:25378891

  9. Taurine: a novel tumor marker for enhanced detection of breast cancer among female patients.

    PubMed

    El Agouza, I M; Eissa, S S; El Houseini, M M; El-Nashar, Dalia E; Abd El Hameed, O M

    2011-09-01

    The antioxidant Taurine found to display antineoplastic effect through down regulation of angiogenesis and enhancement of tumor cell apoptosis. It has been found that progressive inhibition of apoptosis and induction of angiogenesis may contribute to tumor initiation, growth and metastasis in the pathogenesis of breast cancer. To correlate taurine level with the levels of some bioomolecules operating in both angiogenesis (VEGF, CD31) and apoptosis (TNF-α and Caspas-3) which could help for breast cancer pronostication and to evaluate a possible role of serum taurine level as an early marker for breast cancer in Egyptian patients. Four groups of a total 85 female candidates were studied in this work. The first group consists of 50 female patients at National Cancer Institute (NCI), Cairo University were diagnosed and undergoing surgery for breast carcinoma. In the second group 10 having benign breast lesions, were included. The third group consists of five cases, with positive family history. Twenty healthy females were also recruited as control. A preoperative blood sample were taken from each patient to measure serum level of VEGF; Taurine; CA15.3 and TNF- α. Sample of fresh tumor and their corresponding safety margins were obtained from the first and second groups, for determination of caspase-3; histopathological examination and immunohistochemical assay of VEGF and CD31. No significant differences in the serum level of CA15.3 between the breast cancer patients, the high risk and the control group. TNF-α (apoptotic biomolecule) level showed a significant difference only between breast cancer group and control group. The VEGF (angiogenic biomarker) showed a highly significant difference between breast cancer patients, the high risk and the control group. Regarding the antioxidant taurine (antiangiogenic biomolecule) serum level in breast cancer group exhibited a value strongly lower than the high risk and control group. Also the correlative ratio between the

  10. Pepsin and bile acid concentrations in sputum of mustard gas exposed patients.

    PubMed

    Karbasi, Ashraf; Goosheh, Hassan; Aliannejad, Rasoul; Saber, Hamid; Salehi, Maryam; Jafari, Mahvash; Imani, Saber; Saburi, Amin; Ghanei, Mostafa

    2013-01-01

    Gastro-esophageal reflux has been suggested to be associated with several pulmonary complications such as asthma, and post-transplant bronchiolitis obliterans (BO). Pepsin or bile salts in the sputum is shown to be an optimal molecular marker of gastric contents macro/micro aspiration. In this study, we investigated sputum pepsin as a marker of micro-aspiration in sulfur mustard (SM) exposed cases compared to healthy controls. In a case controlled study, 26 cases with BO and 12 matched healthy controls were recruited and all cases were symptomatic and their exposure to SM was previously documented during Iran-Iraq conflict. Pepsin levels in sputum and total bile acids were measured using enzymatic assay. The severity of respiratory disorder was categorized based upon the spirometric values. The average concentration of pepsin in sputum was higher in the case group (0.29 ± 0.23) compared with healthy subjects (0.13 ± 0.07; P ± 0.003). Moreover, the average concentration of bile acids in the sputum cases was not significantly different in comparison to the controls ( P = 0.5). Higher pepsin concentrations in sputum of SM exposed patients compared with healthy control subjects indicate the occurrence of significantly more gastric micro-aspiration in SM exposed patients.

  11. Pepsin and Bile Acid Concentrations in Sputum of Mustard Gas Exposed Patients

    PubMed Central

    Karbasi, Ashraf; Goosheh, Hassan; Aliannejad, Rasoul; Saber, Hamid; Salehi, Maryam; Jafari, Mahvash; Imani, Saber; Saburi, Amin; Ghanei, Mostafa

    2013-01-01

    Background/Aim: Gastro-esophageal reflux has been suggested to be associated with several pulmonary complications such as asthma, and post-transplant bronchiolitis obliterans (BO). Pepsin or bile salts in the sputum is shown to be an optimal molecular marker of gastric contents macro/micro aspiration. In this study, we investigated sputum pepsin as a marker of micro-aspiration in sulfur mustard (SM) exposed cases compared to healthy controls. Materials and Methods: In a case controlled study, 26 cases with BO and 12 matched healthy controls were recruited and all cases were symptomatic and their exposure to SM was previously documented during Iran-Iraq conflict. Pepsin levels in sputum and total bile acids were measured using enzymatic assay. The severity of respiratory disorder was categorized based upon the spirometric values. Result: The average concentration of pepsin in sputum was higher in the case group (0.29 ± 0.23) compared with healthy subjects (0.13 ± 0.07; P ± 0.003). Moreover, the average concentration of bile acids in the sputum cases was not significantly different in comparison to the controls (P = 0.5). Conclusion: Higher pepsin concentrations in sputum of SM exposed patients compared with healthy control subjects indicate the occurrence of significantly more gastric micro-aspiration in SM exposed patients. PMID:23680709

  12. Combined administration of taurine and monoisoamyl DMSA protects arsenic induced oxidative injury in rats

    PubMed Central

    Chouhan, Swapnila; Kannan, Gurusamy M; Mittal, Megha; Swarnkar, Harimohan

    2008-01-01

    Arsenic is a naturally occurring element that is ubiquitously present in the environment. High concentration of naturally occurring arsenic in drinking water is a major health problem in different parts of the world. Despite arsenic being a health hazard and a well documented carcinogen, no safe, effective and specific preventive or therapeutic measures are available. Among various recent strategies adopted, administration of an antioxidant has been reported to be the most effective. The present study was designed to evaluate the therapeutic efficacy of monoisoamyl dimercaptosuccinic acid (MiADMSA), administered either individually or in combination with taurine post chronic arsenic exposure in rats. Arsenic exposed male rats (25 ppm, sodium arsenite in drinking water for 24 weeks) were treated with taurine (100 mg/kg, i.p., once daily), monoisoamyl dimercaptosuccinic acid (MiADMSA) (50 mg/kg, oral, once daily) either individually or in combination for 5 consecutive days. Biochemical variables indicative of oxidative stress along-with arsenic concentration in blood, liver and kidney were measured. Arsenic exposure significantly reduced blood δ-aminolevulinic acid dehydratase (ALAD) activity, a key enzyme involved in the heme biosynthesis and enhanced zinc protoporphyrin (ZPP) level. Clinical hematological variables like white blood cells (WBC), mean cell hemoglobin (MCH), and mean cell hemoglobin concentration (MCHC) showed significant decrease with a significant elevation in platelet (PLT) count. These changes were accompanied by significant decrease in superoxide dismutase (SOD) activity and increased catalase activity. Arsenic exposure caused a significant decrease in hepatic and renal glutathione (GSH) level and an increase in oxidized glutathione (GSSG). These biochemical changes were correlated with an increased uptake of arsenic in blood, liver and kidney. Administration of taurine significantly reduced hepatic oxidative stress however co-administration of

  13. Effect of phospholipids and their molecular species on cholesterol solubility and nucleation in human and model biles.

    PubMed Central

    Halpern, Z; Moshkowitz, M; Laufer, H; Peled, Y; Gilat, T

    1993-01-01

    Much research in the pathophysiology of gall stones has been devoted to various molecular species of bile salts. Recent findings have shown the importance of phospholipids in biliary pathophysiology. In the present study the addition of increasing doses of egg lecithin to human and model biles progressively prolonged the nucleation time. Concurrently biliary cholesterol was shifted from the vesicular to the non-vesicular carrier(s) while the cholesterol/phospholipid ratio of the remaining vesicles was progressively lowered. Model bile solutions of identical lipid concentration were prepared using phosphatidylcholine, phosphatidylserine, and phosphatidylethanolamine as the only phospholipid. With phosphatidylethanolamine most of the cholesterol was shifted to the vesicular carrier while phosphatidylserine shifted most of the cholesterol to the non-vesicular carrier(s). With phosphatidylcholine the cholesterol was distributed in both carriers. Phosphatidyl choline species composed of various acyl fatty acids in the sn-1 and sn-2 positions were used as the sole phospholipid in otherwise identical model bile solutions. With palmitic acid in the sn-1 position and arachidonic acid in the sn-2 position most of the cholesterol was found in the non-vesicular carrier. When stearic acid was used in sn-2 position instead of arachidonic acid most of the cholesterol was found in the vesicular carrier. These and other variations in phospholipid molecular species shifted cholesterol among its carriers and also modified the nucleation time of model biles. Most of these effects were also found upon addition of the various phospholipid species to human biles. These findings show the importance of phospholipid species in biliary pathophysiology and may be useful when trying to manipulate cholesterol carriers and solubility in bile. PMID:8432440

  14. Taurine reverses sodium fluoride-mediated increase in inflammation, caspase-3 activity, and oxidative damage along the brain-pituitary-gonadal axis in male rats.

    PubMed

    Adedara, Isaac A; Olabiyi, Bolanle F; Ojuade, TeminiJesu D; Idris, Umar F; Onibiyo, Esther M; Farombi, Ebenezer O

    2017-09-01

    Excessive exposure to fluoride is associated with male reproductive dysfunction in humans and animals. Taurine (2-aminoethane sulfonic acid) is a free intracellular β-amino acid with antioxidant, anti-inflammatory, and neuroprotective properties. However, the effect of taurine on fluoride-induced reproductive toxicity has not been reported. The present study investigated the influence of taurine on sodium fluoride (NaF)-induced functional changes along the brain-pituitary-gonadal axis in male rats. NaF was administered singly in drinking water at 15 mg·L -1 alone or orally co-administered by gavage with taurine at 100 and 200 mg·(kg body mass) -1 for 45 consecutive days. Results showed that taurine significantly prevented NaF-induced increase in oxidative stress indices as well as augmented antioxidant enzymes activities and glutathione level in the brain, testes, and epididymis of the treated rats. Moreover, taurine reversed NaF-induced elevation in inflammatory biomarkers and caspase-3 activity as well as histological damage in the brain, testes, and epididymis of the treated rats. The significant reversal of NaF-induced decreases in testosterone level and testicular activities of acid phosphatase, alkaline phosphatase, and lactate dehydrogenase by taurine was accompanied by enhancement of sperm functional characteristics in the treated rats. Taurine may be a possible chemopreventive candidate against reproductive dysfunction resulting from fluoride exposure.

  15. Genetic characterization of Lophopyrum elongatum salt tolerance and associated ion regulation as expressed in bread wheat. Final technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Lophopyrum elongatum is a highly salt-tolerant relative of wheat. Its salt tolerance is partially expressed in the amphiploid from a cross between wheat cv. Chinese Spring and L. elongatum. Genetic studies showed that the tolerance of gradually imposed salt stress is controlled by L. elongatum chromosomes 3E, 4E, 5E, and 7E and the tolerance of suddenly imposed salt stress by chromosomes 3E, 5E, 6E, and 7E. In wheat, rye, barley, and Dasypyrum, chromosomes of the same homoeologous groups, 3, 5, 6, and 7, were found to control the tolerance of these stress regimes. To gain insight into the physiological mechanismsmore » of salt tolerance by wheat and L. elongatum, accumulation of Na and K, 20 protein amino acids, glycinebetaine, aminobutyrate, all TCA cycle intermediates, oxalate, glycerol-3-P, glyceraldehyde-3-P, pyruvate, lactate, ornithine, taurine, glucose, sucrose and other sugars was examined in the amphiploid and Chinese Spring by gas chromatography and H-NMR.« less

  16. Supplemental effect of different levels of taurine in Modena on boar semen quality during liquid preservation at 17°C.

    PubMed

    Li, Hao; Zhang, Xiao-Gang; Fang, Qian; Liu, Qi; Du, Ren-Rang; Yang, Gong-She; Wang, Li-Qiang; Hu, Jian-Hong

    2017-11-01

    Peroxidation damage induces sublethal injury to boar sperm during the storage process. Taurine has already been demonstrated to protect cells effectively from oxidant-induced injury. This study was aimed to evaluate the effect of different concentrations of taurine (0.5, 1, 5 and 10 mmol/L) in Modena diluent on boar sperm quality during liquid storage at 17°C. Ejaculates from sexually mature Duroc pigs were collected, pooled and preserved in the Modena containing different concentrations of taurine. Sperm motility, plasma membrane integrity, acrosome integrity, total antioxidative capacity (T-AOC) activity and malondialdehyde content (MDA) were examined every 24 h. Modena diluent containing taurine suppressed the reduction in sperm qualities during the process of liquid preservation compared with those of the control group. After 5 days of liquid preservation, the addition of taurine at 5 mmol/L had the optimal effect on survival time as well as maintenance of motility, plasma membrane integrity, acrosomal integrity, T-AOC activity and MDA content. These results may suggest the possibility that the proper addition of taurine to the semen extender improves the swine production system using artificial insemination by the suppressing of sperm damage and subsequent dysfunction during liquid preservation. © 2017 Japanese Society of Animal Science.

  17. Effect of Maillard Reacted Peptides on Human Salt Taste and the Amiloride-Insensitive Salt Taste Receptor (TRPV1t)

    PubMed Central

    Katsumata, Tadayoshi; Nakakuki, Hiroko; Tokunaga, Chikara; Fujii, Noboru; Egi, Makoto; Phan, Tam-Hao T.; Mummalaneni, Shobha; DeSimone, John A.

    2008-01-01

    Maillard reacted peptides (MRPs) were synthesized by conjugating a peptide fraction (1000–5000 Da) purified from soy protein hydrolyzate with galacturonic acid, glucosamine, xylose, fructose, or glucose. The effect of MRPs was investigated on human salt taste and on the chorda tympani (CT) taste nerve responses to NaCl in Sprague–Dawley rats, wild-type, and transient receptor potential vanilloid 1 (TRPV1) knockout mice. MRPs produced a biphasic effect on human salt taste perception and on the CT responses in rats and wild-type mice in the presence of NaCl + benzamil (Bz, a blocker of epithelial Na+ channels), enhancing the NaCl response at low concentrations and suppressing it at high concentrations. The effectiveness of MRPs as salt taste enhancers varied with the conjugated sugar moiety: galacturonic acid = glucosamine > xylose > fructose > glucose. The concentrations at which MRPs enhanced human salt taste were significantly lower than the concentrations of MRPs that produced increase in the NaCl CT response. Elevated temperature, resiniferatoxin, capsaicin, and ethanol produced additive effects on the NaCl CT responses in the presence of MRPs. Elevated temperature and ethanol also enhanced human salt taste perception. N-(3-methoxyphenyl)-4-chlorocinnamid (a blocker of TRPV1t) inhibited the Bz-insensitive NaCl CT responses in the absence and presence of MRPs. TRPV1 knockout mice demonstrated no Bz-insensitive NaCl CT response in the absence or presence of MRPs. The results suggest that MRPs modulate human salt taste and the NaCl + Bz CT responses by interacting with TRPV1t. PMID:18603652

  18. In-vitro examination of the positive inotropic effect of caffeine and taurine, the two most frequent active ingredients of energy drinks.

    PubMed

    Chaban, R; Kornberger, A; Branski, N; Buschmann, K; Stumpf, N; Beiras-Fernandez, A; Vahl, C F

    2017-08-10

    Our study aimed to evaluate changes in the contractile behavior of human myocardium after exposure to caffeine and taurine, the main active ingredients of energy drinks (EDs), and to evaluate whether taurine exhibits any inotropic effect at all in the dosages commonly used in EDs. Myocardial tissue was removed from the right atrial appendages of patients undergoing cardiac surgery and prepared to obtain specimens measuring 4 mm in length. A total of 92 specimens were exposed to electrical impulses at a frequency of 75 bpm for at least 40 min to elicit their maximum contractile force before measuring the isometric contractile force (ICF) and duration of contraction (CD). Following this, each specimen was treated with either taurine (group 1, n = 29), or caffeine (group 2, n = 31) or both (group 3, n = 32). After exposure, ICF and CD measuring were repeated. Post-treatment values were compared with pre-treatments values and indicated as percentages. Exposure to taurine did not alter the contraction behavior of the specimens. Exposure to caffeine, in contrast, led to a significant increase in ICF (118 ± 03%, p < 0.01) und a marginal decrease in CD (95 ± 1.6%, p < 0.01). Exposure to a combination of caffeine and taurine also induced a statistically significant increase in ICF (124 ± 4%, p < 0.01) and a subtle reduction in CD (92 ± 1.4%, p < 0.01). The increase in ICF achieved by administration of caffeine was similar to that achieved by a combination of both caffeine and taurine (p = 0.2). The relative ICF levels achieved by administration of caffeine and a combination of taurine and caffeine, respectively, were both significantly higher (p < 0.01) than the ICF resulting from exposure to taurine only. While caffeine altered the contraction behavior of the specimen significantly in our in-vitro model, taurine did not exhibit a significant effect. Adding taurine to caffeine did not significantly enhance or reduce the effect of caffeine.

  19. Taurine protects HK-2 cells from oxidized LDL-induced cytotoxicity via the ROS-mediated mitochondrial and p53-related apoptotic pathways.

    PubMed

    Chang, Chun-Yu; Shen, Chao-Yu; Kang, Chao-Kai; Sher, Yuh-Pyng; Sheu, Wayne H-H; Chang, Chia-Che; Lee, Tsung-Han

    2014-09-15

    Oxidized LDL (oxLDL) induces a pro-oxidative environment and promotes apoptosis, causing the progression of renal diseases in humans. Taurine is a semi-essential amino acid in mammals and has been shown to be a potent endogenous antioxidant. The kidney plays a pivotal role in maintaining the balance of taurine. However, the mechanisms underlying the protective effects of taurine against oxLDL-induced injury in renal epithelial cells have not been clarified. In the present study, we investigated the anti-apoptotic effects of taurine on human proximal tubular epithelial (HK-2) cells exposed to oxLDL and explored the related mechanisms. We observed that oxLDL increased the contents of ROS and of malondialdehyde (MDA), which is a lipid peroxidation by-product that acts as an indicator of the cellular oxidation status. In addition, oxLDL induced cell death and apoptosis in HK-2 cells. Pretreatment with taurine at 100 μM significantly attenuated the oxLDL-induced cytotoxicity. We determined that oxLDL triggered the phosphorylation of ERK and, in turn, the activation of p53 and other apoptosis-related events, including calcium accumulation, destabilization of the mitochondrial permeability and disruption of the balance between pro-apoptotic Bax and anti-apoptotic Bcl-2 proteins. The malfunctions induced by oxLDL were effectively blocked by taurine. Thus, our results suggested that taurine exhibits potential therapeutic activity by preventing oxLDL-induced nephrotoxicity. The inhibition of oxLDL-induced epithelial apoptosis by taurine was at least partially due to its anti-oxidant activity and its ability to modulate the ERK and p53 apoptotic pathways. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. UV-induced solvent free synthesis of truxillic acid-bile acid conjugates

    NASA Astrophysics Data System (ADS)

    Koivukorpi, Juha; Kolehmainen, Erkki

    2009-07-01

    The solvent free UV-induced [2 + 2] intermolecular cycloaddition of two molecules of 3α-cinnamic acid ester of methyl lithocholate produced in 99% yield of α- and ɛ-truxillic acid-bis(methyl lithocholate) isomers, which possess two structurally different potential binding sites. A prerequisite for this effective solid state reaction is a proper self-assembled crystal structure of the starting conjugate crystallized from acetonitrile. The crystallization of cinnamic acid ester of methyl lithocholate from acetonitrile produces two different crystalline forms (polymorphs), which is the reason for the solid state formation of two isomers of truxillic acid-bis(methyl lithocholate).

  1. Investigation on the adsorption characteristics of sodium benzoate and taurine on gold nanoparticle film by ATR-FTIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Kumar, Naveen; Thomas, S.; Tokas, R. B.; Kshirsagar, R. J.

    2014-01-01

    Fourier transform infrared (FTIR) spectroscopic studies of sodium benzoate and taurine adsorbed on gold nanoparticle (AuNp) film on silanised glass slides have been studied by attenuated total reflection technique (ATR). The surface morphology of the AuNp films has been measured by Atomic Force Microscopy. The ATR spectra of sodium benzoate and taurine deposited on AuNp film are compared with ATR spectra of their powdered bulk samples. A new red-shifted band appeared along with the symmetric and asymmetric stretches of carboxylate group of sodium benzoate leading to a broadening of the above peaks. Similar behavior is also seen in the case of symmetric and asymmetric stretches of sulphonate group of taurine. The results indicate presence of both chemisorbed and physisorbed layers of both sodium benzoate and taurine on the AuNp film with bottom layer chemically bound to AuNp through carboxylate and sulphonate groups respectively.

  2. Short- and medium-chain fatty acids enhance the cell surface expression and transport capacity of the bile salt export pump (BSEP/ABCB11).

    PubMed

    Kato, Takuya; Hayashi, Hisamitsu; Sugiyama, Yuichi

    2010-09-01

    The reduced expression of the bile salt export pump (BSEP/ABCB11) at the canalicular membrane is associated with cholestasis-induced hepatotoxicity due to the accumulation of bile acids in hepatocytes. We previously reported that 4-phenylbutyrate (4PBA), an approved drug for urea cycle disorders, is a promising agent for intrahepatic cholestasis because it increases both the cell surface expression and the transport capacity of BSEP. In the present study, we searched for effective compounds other than 4PBA by focusing on short- and medium-chain fatty acids, which have similar characteristics to 4PBA such as their low-molecular-weight and a carboxyl group. In transcellular transport studies using Madin-Darby canine kidney (MDCK) II cells, all short- and medium-chain fatty acids tested except for formate, acetate, and hexanoic acid showed more potent effects on wild type (WT) BSEP-mediated [3H]taurocholate transport than did 4PBA. The increase in WT BSEP transport with butyrate and octanoic acid treatment correlated with an increase in its expression at the cell surface. Two PFIC2-type variants, E297G and D482G BSEP, were similarly affected with both compounds treatment. The prolonged half-life of cell surface-resident WT BSEP was responsible for this increased octanoic acid-stimulated transport, but not for that of butyrate. In conclusion, short- and medium-chain fatty acids have potent effects on the increase in WT and PFIC2-type BSEP-mediated transport in MDCK II cells. Although both short- and medium-chain fatty acids enhance the transport capacity of WT and PFIC2-type BSEP by inducing those expressions at the cell surface, the underlying mechanism seems to differ between fatty acids. 2010 Elsevier B.V. All rights reserved.

  3. RNAi screening of subtracted transcriptomes reveals tumor suppression by taurine-activated GABAA receptors involved in volume regulation

    PubMed Central

    van Nierop, Pim; Vormer, Tinke L.; Foijer, Floris; Verheij, Joanne; Lodder, Johannes C.; Andersen, Jesper B.; Mansvelder, Huibert D.; te Riele, Hein

    2018-01-01

    To identify coding and non-coding suppressor genes of anchorage-independent proliferation by efficient loss-of-function screening, we have developed a method for enzymatic production of low complexity shRNA libraries from subtracted transcriptomes. We produced and screened two LEGO (Low-complexity by Enrichment for Genes shut Off) shRNA libraries that were enriched for shRNA vectors targeting coding and non-coding polyadenylated transcripts that were reduced in transformed Mouse Embryonic Fibroblasts (MEFs). The LEGO shRNA libraries included ~25 shRNA vectors per transcript which limited off-target artifacts. Our method identified 79 coding and non-coding suppressor transcripts. We found that taurine-responsive GABAA receptor subunits, including GABRA5 and GABRB3, were induced during the arrest of non-transformed anchor-deprived MEFs and prevented anchorless proliferation. We show that taurine activates chloride currents through GABAA receptors on MEFs, causing seclusion of cell volume in large membrane protrusions. Volume seclusion from cells by taurine correlated with reduced proliferation and, conversely, suppression of this pathway allowed anchorage-independent proliferation. In human cholangiocarcinomas, we found that several proteins involved in taurine signaling via GABAA receptors were repressed. Low GABRA5 expression typified hyperproliferative tumors, and loss of taurine signaling correlated with reduced patient survival, suggesting this tumor suppressive mechanism operates in vivo. PMID:29787571

  4. Separation and characterization of gall bladder bile metabolites from speckled trout, Salvelinus fontinalis, exposed to individual polycyclic aromatic compounds.

    PubMed

    Leonard, J D; Hellou, J

    2001-03-01

    Speckled trout, Salvelinus fontinalis, were orally exposed to individual polycyclic aromatic compounds (PACs) represented by benzo[a]pyrene, carbazole, chrysene, dibenzofuran, dibenzothiophene, fluorene, phenanthrene, and pyrene. Fish were sacrificed 7 d after exposure and the gall bladder removed for bile analysis. High pressure liquid chromatography (HPLC) with fluorescence (F) and ultraviolet (UV) detection was used to determine the presence of PAC derivatives in the bile without pretreatment. Glucuronide conjugates were predominant in all exposures with variable amounts (0-53%) of phenols and starting material. Identification of compounds was confirmed by selective extraction of less polar nonconjugated PACs and enzymatic hydrolysis of water-soluble material. This was followed by HPLC and/or gas chromatography-mass spectrometry (GCMS) characterization of the produced phenols. Total metabolite levels varied widely among compounds.

  5. In vitro analysis of protection of the enzyme bile salt hydrolase against enteric conditions by whey protein-gum arabic microencapsulation.

    PubMed

    Lambert, J M; Weinbreck, F; Kleerebezem, M

    2008-09-24

    The interest in efficient intestinal delivery of health-promoting substances is increasing. However, the delivery of vulnerable substances such as enzymes requires specific attention. The transit through the stomach, where the pH is very low, can be detrimental to the enzymatic activity of the protein to be delivered. Here, we describe the microencapsulation of the model enzyme bile salt hydrolase (Bsh) using whey protein-gum arabic microencapsulates for food-grade and targeted enzyme delivery in the proximal region of the small intestine. Furthermore, the efficacy of enteric coating microencapsulates for site-specific enzyme delivery was compared in vitro with living Lactobacillus plantarum WCFS1 bacteria that endogenously produce the Bsh enzyme. Microencapsulates allowed highly effective protection of the enzyme under gastric conditions. Moreover, Bsh release under intestinal conditions appeared to be very efficient, although in the presence of pancreatin, the Bsh activity decreased in time due to proteolytic degradation. In comparison, L. plantarum appeared to be capable to withstand gastric conditions as well as pancreatin challenge. Delivery using encapsulates and live bacteria each have different (dis)advantages that are discussed. In conclusion, live bacteria and food-grade microencapsulates provide alternatives for dedicated enteric delivery of specific enzymes, and the choice of enzyme to be delivered may determine which mode of delivery is most suitable.

  6. Conjugation of silica nanoparticles with cellulose acetate/polyethylene glycol 300 membrane for reverse osmosis using MgSO4 solution.

    PubMed

    Sabir, Aneela; Shafiq, Muhammad; Islam, Atif; Jabeen, Faiza; Shafeeq, Amir; Ahmad, Adnan; Zahid Butt, Muhammad Taqi; Jacob, Karl I; Jamil, Tahir

    2016-01-20

    Thermally-induced phase separation (TIPS) method was used to synthesize polymer matrix (PM) membranes for reverse osmosis from cellulose acetate/polyethylene glycol (CA/PEG300) conjugated with silica nanoparticles (SNPs). Experimental data showed that the conjugation of SNPs changed the surface properties as dense and asymmetric composite structure. The results were explicitly determined by the permeability flux and salt rejection efficiency of the PM-SNPs membranes. The effect of SNPs conjugation on MgSO4 salt rejection was more significant in magnitude than on permeation flux i.e. 2.38 L/m(2)h. FTIR verified that SNPs were successfully conjugated on the surface of PM membrane. DSC of PM-SNPs shows an improved Tg from 76.2 to 101.8 °C for PM and PM-S4 respectively. Thermal stability of the PM-SNPs membranes was observed by TGA which was significantly enhanced with the conjugation of SNPs. The micrographs of SEM and AFM showed the morphological changes and increase in the valley and ridges on membrane surface. Experimental data showed that the PM-S4 (0.4 wt% SNPs) membrane has maximum salt rejection capacity and was selected as an optimal membrane. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Bile alcohols function as the ligands of membrane-type bile acid-activated G protein-coupled receptor

    PubMed Central

    Iguchi, Yusuke; Yamaguchi, Masafumi; Sato, Hiroyuki; Kihira, Kenji; Nishimaki-Mogami, Tomoko; Une, Mizuho

    2010-01-01

    TGR5 is a G protein-coupled receptor that is activated by bile acids, resulting in an increase in cAMP levels and the subsequent modulation of energy expenditure in brown adipose tissue and muscle. Therefore, the development of a TGR5-specific agonist could lead to the prevention and treatment of various metabolic disorders related to obesity. In the present study, we evaluated the ability of bile alcohols, which are structurally and physiologically similar to bile acids and are produced as the end products of cholesterol catabolism in evolutionarily primitive vertebrates, to act as TGR5 agonists. In a cell-based reporter assay and a cAMP production assay performed in vitro, most bile alcohols with a side chain containing hydroxyl group(s) were highly efficacious agonists for TGR5 comparable to its most potent ligand in the naturally occurring bile acid, lithocholic acid. However, the abilities of the bile alcohols to activate TGR5 varied with the position and number of the hydroxyl substituent in the side chain. Additionally, the conformation of the steroidal nucleus of bile alcohols is also important for its activity as a TGR5 agonist. Thus, we have provided new insights into the structure-activity relationships of bile alcohols as TGR5 agonists. PMID:20023205

  8. Simple resection of the lesion bile duct branch for treatment of regional hepatic bile duct stones

    PubMed Central

    Enliang, Li; Rongshou, Wu; Shidai, Shi; Jingling, Zhang; Qian, Feng; Wenjun, Liao; Linquan, Wu

    2017-01-01

    Abstract To evaluate the effectiveness and safety of simple resections of bile duct branch lesions for the treatment of regional hepatic bile duct stones. A retrospective analysis of the clinical data from patients in our hospital from November 2008 to November 2015, who only underwent a simple resection of the lesion bile duct branch. The patients’ clinical characteristics, surgical features, postoperative complications, stone clear rate, residual stone rate, and recurrence stone rate were analyzed. This study of 32 patients included 13 males and 19 females with intrahepatic bile duct stones confined to the right hepatic bile duct branch. The intraoperative blood loss, operation time, and postoperative hospital stay were 478.0 ± 86.5, 210.7 ± 6.6, and 10.8 ± 3.5, respectively. Postoperative complications occurred in 6 patients (18.8%), all of whom recovered with conservative management. There were no deaths during hospitalization. The intraoperative stone clearance rate was 95.8%. Three patients had a recurrence of stones at a mean of 22 months of follow-up (range, 4–36 months). Simple resection of bile duct branch lesions is safe and feasible for patients who have regional hepatic bile duct stones limited to the right hepatic bile duct branches. PMID:28682899

  9. Effect of the type of dietary fat on biliary lipid composition and bile lithogenicity in humans with cholesterol gallstone disease.

    PubMed

    Yago, María Dolores; González, Victoria; Serrano, Pilar; Calpena, Rafael; Martínez, María Alba; Martínez-Victoria, Emilio; Mañas, Mariano

    2005-03-01

    The effect of the type of dietary fat on bile lipids and lithogenicity is unclear. This study compared the effects of two dietary oils that differed in fatty acid profile on biliary lipid composition in humans. Female patients who had cholesterol gallstones and were scheduled for elective cholecystectomy were studied. For 30 d before surgery, subjects were kept on diets that contained olive oil (olive oil group, n = 9) or sunflower oil (sunflower oil group, n = 9) as the main source of fat. Gallbladder bile and stones were sampled at surgery. After cholecystectomy, duodenal samples were collected by nasoduodenal intubation during fasting and after administration of mixed liquid meals that included the corresponding dietary oil. Duodenal and gallbladder bile samples were analyzed for cholesterol, phospholipids, and total bile acids by established methods. Individual bile acid conjugates in gallbladder bile were measured by high-performance liquid chromatography. Gallstones were analyzed by semiquantitative polarizing light microscopy. Despite marked differences in the absolute concentration of biliary lipids and total lipid content, manipulation of dietary fat ingestion did not influence the cholesterol saturation or the profile of individual bile acids in gallbladder bile obtained from patients who had gallstones. All but one subject had mixed cholesterol stones. A cholesterol saturation index of hepatic bile in fasted cholecystectomized patients was similar in both dietary groups and indicative of supersaturation. In response to the test meal, the cholesterol saturation index decreased significantly in patients given the olive oil diet, reaching values lower than one at 120 min postprandially. In contrast, hepatic bile secreted by patients who consumed sunflower oil appeared supersaturated (cholesterol saturation index >1.5) throughout the experiment. Our results suggest that the type of dietary fat habitually consumed can influence bile composition in humans. In

  10. Thyroid hormones and the hepatic handling of bilirubin. I. Effects of hypothyroidism and hyperthyroidism on the hepatic transport of bilirubin mono- and diconjugates in the Wistar rat.

    PubMed

    Van Steenbergen, W; Fevery, J; De Vos, R; Leyten, R; Heirwegh, K P; De Groote, J

    1989-02-01

    The effects of thyroidectomy and of thyroid hormone administration on the hepatic transport of endogenous bilirubin were investigated in the Wistar R/APfd rat. Hypothyroidism resulted in an enhanced hepatic bilirubin UDP-glucuronosyltransferase activity and in a decreased p-nitrophenol transferase activity. It caused a cholestatic condition with a 50% decrease in bile flow and bile salt excretion, and an increased proportion of conjugated bilirubin in serum. The biliary output of unconjugated and monoconjugated bilirubins decreased in parallel by about 65%, whereas the excretion rate of the diconjugate dropped by only 47%, resulting in an increased di- to monoconjugate ratio in bile. Hyperthyroidism was characterized by a decreased bilirubin and an increased p-nitrophenol transferase activity, and by an augmented bilirubin output in bile. The output of unconjugated and monoconjugated bilirubins increased in parallel by about 50 or 100%, whereas the excretion of the diconjugate increased by only 20 to 50%, depending on the dose of thyroxine administered; this resulted in a decreased di- to monoconjugate ratio in bile. A linear positive relationship was found between bilirubin UDP-glucuronosyltransferase activity and the ratio of bilirubin di- to monoconjugates present in bile or formed by in vitro incubation of liver homogenates at low concentration of bilirubin (10 to 15 microM), indicating that bile pigment composition is mainly determined by the conjugation activity in the liver. The inverse relationship observed between hepatic beta-glucuronidase activity and the ratio of di- to monoconjugates in bile warrants further investigation to analyze whether this enzyme activity also plays a possible role in the changes in bile pigment composition in hypo- and hyperthyroid rats.

  11. Aggregation behavior of sodium lauryl ether sulfate with a positively bicharged organic salt and effects of the mixture on fluorescent properties of conjugated polyelectrolytes.

    PubMed

    Tang, Yongqiang; Liu, Zhang; Zhu, Linyi; Han, Yuchun; Wang, Yilin

    2015-02-24

    The aggregation behavior of anionic single-chain surfactant sodium lauryl ether sulfate containing three ether groups (SLE3S) with positively bicharged organic salt 1,2-bis(2-benzylammoniumethoxy)ethane dichloride (BEO) has been investigated in aqueous solution, and the effects of the BEO/SLE3S aggregate transitions on the fluorescent properties of anionic conjugated polyelectrolyte MPS-PPV with a larger molecular weight and cationic conjugated oligoelectrolyte DAB have been evaluated. Without BEO, SLE3S does not affect the fluorescent properties of MPS-PPV and only affects the fluorescent properties of DAB at a higher SLE3S concentration. With the addition of BEO, SLE3S and BEO form gemini-like surfactant (SLE3S)2-BEO. When the BEO/SLE3S molar ratio is fixed at 0.25, with increasing the BEO/SLE3S concentration, the BEO/SLE3S mixture forms large, loosely arranged aggregates and then transforms to closely packed spherical aggregates and finally to long thread-like micelles. The photoluminescence (PL) intensity of MPS-PPV varies with the morphologies of the BEO/SLE3S aggregates, while the PL intensity of DAB is almost independent of the aggregate morphologies. The results demonstrate that gemini-like surfactants formed through intermolecular interactions can effectively adjust the fluorescent properties of conjugated polyelectrolytes.

  12. Direct peptide bioconjugation/PEGylation at tyrosine with linear and branched polymeric diazonium salts.

    PubMed

    Jones, Mathew W; Mantovani, Giuseppe; Blindauer, Claudia A; Ryan, Sinead M; Wang, Xuexuan; Brayden, David J; Haddleton, David M

    2012-05-02

    Direct polymer conjugation at peptide tyrosine residues is described. In this study Tyr residues of both leucine enkephalin and salmon calcitonin (sCT) were targeted using appropriate diazonium salt-terminated linear monomethoxy poly(ethylene glycol)s (mPEGs) and poly(mPEG) methacrylate prepared by atom transfer radical polymerization. Judicious choice of the reaction conditions-pH, stoichiometry, and chemical structure of diazonium salt-led to a high degree of site-specificity in the conjugation reaction, even in the presence of competitive peptide amino acid targets such as histidine, lysines, and N-terminal amine. In vitro studies showed that conjugation of mPEG(2000) to sCT did not affect the peptide's ability to increase intracellular cAMP induced in T47D human breast cancer cells bearing sCT receptors. Preliminary in vivo investigation showed preserved ability to reduce [Ca(2+)] plasma levels by mPEG(2000)-sCT conjugate in rat animal models. © 2012 American Chemical Society

  13. Investigation on the adsorption characteristics of sodium benzoate and taurine on gold nanoparticle film by ATR-FTIR spectroscopy.

    PubMed

    Kumar, Naveen; Thomas, S; Tokas, R B; Kshirsagar, R J

    2014-01-24

    Fourier transform infrared (FTIR) spectroscopic studies of sodium benzoate and taurine adsorbed on gold nanoparticle (AuNp) film on silanised glass slides have been studied by attenuated total reflection technique (ATR). The surface morphology of the AuNp films has been measured by Atomic Force Microscopy. The ATR spectra of sodium benzoate and taurine deposited on AuNp film are compared with ATR spectra of their powdered bulk samples. A new red-shifted band appeared along with the symmetric and asymmetric stretches of carboxylate group of sodium benzoate leading to a broadening of the above peaks. Similar behavior is also seen in the case of symmetric and asymmetric stretches of sulphonate group of taurine. The results indicate presence of both chemisorbed and physisorbed layers of both sodium benzoate and taurine on the AuNp film with bottom layer chemically bound to AuNp through carboxylate and sulphonate groups respectively. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Rapid Determination of Bile Acids in Bile from Various Mammals by Reversed-Phase Ultra-Fast Liquid Chromatography.

    PubMed

    Si, Gu Leng Ri; Yao, Peng; Shi, Luwen

    2015-08-01

    A valid and efficient reversed-phase ultra-fast liquid chromatography method was developed for the simultaneous determination of 13 bile acids in the bile of three mammal species, including rat, pig and human gallstone patients. Chromatographic separation was performed with a Shim-pack XR-ODS column, and the mobile phase consisted of acetonitrile and potassium phosphate buffer (pH 2.6) at a flow rate of 0.5 mL min(-1). The linear detection range of most bile acids ranged from 2 to 600 ng µL(-1) with a good correlation coefficient (>0.9995). The precision of each bile acid was <1.8% for intraday and <4.8% for interday. All bile acids were separated in 15 min with satisfactory resolution, and the total analysis time was 18 min, including equilibration. The method was successfully applied in rapid screening of bile samples from the three mammals. Significant metabolic frameworks of bile acids among various species were observed, whereas considerable quantitative variations in both inter- and intraspecies were also observed, especially for gallstone patients. Our results suggest that detecting the change of bile acid profiles could be applied for the diagnosis of gallstone disease. © Crown copyright 2014.

  15. Amelioration of nandrolone decanoate-induced testicular and sperm toxicity in rats by taurine: effects on steroidogenesis, redox and inflammatory cascades, and intrinsic apoptotic pathway.

    PubMed

    Ahmed, Maha A E

    2015-02-01

    The wide abuse of the anabolic steroid nandrolone decanoate by athletes and adolescents for enhancement of sporting performance and physical appearance may be associated with testicular toxicity and infertility. On the other hand, taurine; a free β-amino acid with remarkable antioxidant activity, is used in taurine-enriched beverages to boost the muscular power of athletes. Therefore, the purpose of this study was to investigate the mechanisms of the possible protective effects of taurine on nandrolone decanoate-induced testicular and sperm toxicity in rats. To achieve this aim, male Wistar rats were randomly distributed into four groups and administered either vehicle, nandrolone decanoate (10mg/kg/week, I.M.), taurine (100mg/kg/day, p.o.) or combination of taurine and nandrolone decanoate, for 8 successive weeks. Results of the present study showed that taurine reversed nandrolone decanoate-induced perturbations in sperm characteristics, normalized serum testosterone level, and restored the activities of the key steroidogenic enzymes; 3β-HSD, and 17β-HSD. Moreover, taurine prevented nandrolone decanoate-induced testicular toxicity and DNA damage by virtue of its antioxidant, anti-inflammatory, and anti-apoptotic effects. This was evidenced by taurine-induced modulation of testicular LDH-x activity, redox markers (MDA, NO, GSH contents, and SOD activity), inflammatory indices (TNF-α, ICAM-1 levels, and MMP-9 gene expression), intrinsic apoptotic pathway (cytochrome c gene expression and caspase-3 content), and oxidative DNA damage markers (8-OHdG level and comet assay). In conclusion, at the biochemical and histological levels, taurine attenuated nandrolone decanoate-induced poor sperm quality and testicular toxicity in rats. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. The protective effects of taurine on acute ammonia toxicity in grass carp Ctenopharynodon idellus.

    PubMed

    Xing, Xiaodan; Li, Ming; Yuan, Lixia; Song, Meize; Ren, Qianyan; Shi, Ge; Meng, Fanxing; Wang, Rixin

    2016-09-01

    The four experimental groups were carried out to test the response of grass carp Ctenopharyngodon idella to ammonia toxicity and taurine: group 1 was injected with NaCl, group 2 was injected with ammonium acetate, group 3 was injected with ammonium acetate and taurine, and group 4 was injected taurine. Fish in group 2 had the highest ammonia content in the liver and brain, and alanine, arginine, glutamine, glutamate and glycine contents in liver. Brain alanine and glutamate of fish in group 2 were significantly higher than those of fish in group 1. Malondialdehyde content of fish in group 2 was the highest, but superoxide dismutase and glutathione activities were the lowest. Although fish in group 2 had the lowest red cell count and hemoglobin, the highest alkaline phosphatase, complement C3, C4 and total immunoglobulin contents appeared in this group. In addition, superoxide dismutase and glutathione activities, red cell count and hemoglobin of fish in group 3 were significantly higher than those of fish in group 2, but malondialdehyde content is the opposite. This study indicates that ammonia exerts its toxic effects by interfering with amino acid transport, inducing reactive oxygen species generation and malondialdehyde accumulation, leading to blood deterioration and over-activation of immune response. The exogenous taurine could mitigate the adverse effect of high ammonia level on fish physiological disorder. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Taurine ameliorated homocysteine-induced H9C2 cardiomyocyte apoptosis by modulating endoplasmic reticulum stress.

    PubMed

    Zhang, Zhimin; Zhao, Lianyou; Zhou, Yanfen; Lu, Xuanhao; Wang, Zhengqiang; Wang, Jipeng; Li, Wei

    2017-05-01

    Homocysteine (Hcy)-triggered endoplasmic reticulum (ER) stress-mediated endothelial cell apoptosis has been suggested as a cause of Hcy-dependent vascular injury. However, whether ER stress is the molecular mechanism linking Hcy and cardiomyocytes death is unclear. Taurine has been reported to exert cardioprotective effects via various mechanisms. However, whether taurine protects against Hcy-induced cardiomyocyte death by attenuating ER stress is unknown. This study aimed to evaluate the opposite effects of taurine on Hcy-induced cardiomyocyte apoptosis and their underlying mechanisms. Our results demonstrated that low-dose or short-term Hcy treatment increased the expression of glucose-regulated protein 78 (GRP78) and activated protein kinase RNA-like ER kinase (PERK), inositol-requiring enzyme 1 (IRE1), and activating transcription factor 6 (ATF6), which in turn prevented apoptotic cell death. High-dose Hcy or prolonged Hcy treatment duration significantly up-regulated levels of C/EBP homologous protein (CHOP), cleaved caspase-12, p-c-Jun N-terminal kinase (JNK), and then triggered apoptotic events. High-dose Hcy also resulted in a decrease in mitochondrial membrane potential (Δψm) and an increase in cytoplasmic cytochrome C and the expression of cleaved caspase-9. Pretreatment of cardiomyocytes with sodium 4-phenylbutyric acid (an ER stress inhibitor) significantly inhibited Hcy-induced apoptosis. Furthermore, blocking the PERK pathway partly alleviated Hcy-induced ER stress-modulated cardiomyocyte apoptosis, and down-regulated the levels of Bax and cleaved caspase-3. Experimental taurine pretreatment inhibited the expression of ER stress-related proteins, and protected against apoptotic events triggered by Hcy-induced ER stress. Taken together, our results suggest that Hcy triggered ER stress in cardiomyocytes, which was the crucial molecular mechanism mediating Hcy-induced cardiomyocyte apoptosis, and the adverse effect of Hcy could be prevented by taurine.

  18. Identification of the anti-oxidant components in a two-step solvent extract of bovine bile lipid: Application of reverse phase HPLC, mass spectrometry and fluorimetric assays.

    PubMed

    Singh, Namrata; Bhattacharyya, Debasish

    2016-04-15

    An ether extract of nine different bacterial metabolites in combination with two solvent extract (ether followed by ethanol) of bile lipids from ox gall bladder is used as an immune stimulator drug. Over the years bile acids are discussed regarding their anti-oxidant and lipid peroxidation properties. Since some of the bile acids are known to be potent antioxidants, presence of similar activity in the solvent extract of ox bile lipid was investigated using TLC and reverse phase HPLC systems. Fractions from HPLC were analyzed with mass spectrometry using electrospray ionization. The presence of twelve different bile acids along with other substances in small proportions including fatty acids, sulfate conjugates and bile pigments were confirmed. The twelve separated peaks had similar retention times as those of tauroursodeoxycholic acid, glycoursodeoxycholic acid, taurocholic acid, glycocholic acid, glycochenodeoxycholic acid, taurochenodeoxycholic acid, taurodeoxycholic acid, cholic acid, ursodeoxycholic acid, chenodeoxycholic acid, deoxycholic acid, and lithocholic acid. Subsequently, all fractions were tested for their anti-oxidative property on HepG2 cells exposed to H2O2 that served as an oxidative injury model. Four fluorescent dyes H2DCF DA, MitoSOX red, Amplex red and DAF-2 DA were used for estimation of reactive radicals in the HepG2 cells. Among the separated bile acids, tauroursodeoxycholic acid, glycoursodeoxycholic acid and ursodeoxycholic acid prevented the HepG2 cells from H2O2-induced oxidative stress. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Restoration of enterohepatic bile acid pathways in pregnant mice following short term activation of Fxr by GW4064

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moscovitz, Jamie E.; Kong, Bo; Buckley, Kyle

    The farnesoid X receptor (Fxr) controls bile acid homeostasis by coordinately regulating the expression of synthesizing enzymes (Cyp7a1, Cyp8b1), conjugating enzymes (Bal, Baat) and transporters in the ileum (Asbt, Ostα/β) and liver (Ntcp, Bsep, Ostβ). Transcriptional regulation by Fxr can be direct, or through the ileal Fgf15/FGF19 and hepatic Shp pathways. Circulating bile acids are increased during pregnancy due to hormone-mediated disruption of Fxr signaling. While this adaptation enhances lipid absorption, elevated bile acids may predispose women to develop maternal cholestasis. The objective of this study was to determine whether short-term treatment of pregnant mice with GW4064 (a potent FXRmore » agonist) restores Fxr signaling to the level observed in virgin mice. Plasma, liver and ilea were collected from virgin and pregnant mice administered vehicle or GW4064 by oral gavage. Treatment of pregnant mice with GW4064 induced ileal Fgf15, Shp and Ostα/β mRNAs, and restored hepatic Shp, Bal, Ntcp, and Bsep back to vehicle-treated virgin levels. Pregnant mice exhibited 2.5-fold increase in Cyp7a1 mRNA compared to virgin controls, which was reduced by GW4064. Similarly treatment of mouse primary hepatocytes with plasma isolated from pregnant mice induced Cyp7a1 mRNA by nearly 3-fold as compared to virgin plasma, which could be attenuated by co-treatment with either GW4064 or recombinant FGF19 protein. Collectively, these data reveal that repressed activity of intestinal and hepatic Fxr in pregnancy, as previously demonstrated, may be restored by pharmacological activation. This study provides the basis for a novel approach to restore bile acid homeostasis in patients with maternal cholestasis. - Highlights: • Ileal bile acid pathways are altered in pregnancy in an Fxr-dependent manner. • Ileal Fxr/Fgf contributes to changes in hepatic bile acid synthesis and transport. • Treatment of pregnant mice with an Fxr agonist restores bile acid homeostasis.« less

  20. Effects of S-Adenosylmethionine and Its Combinations With Taurine and/or Betaine on Glutathione Homeostasis in Ethanol-induced Acute Hepatotoxicity

    PubMed Central

    Lee, Seo Yeon; Ko, Kwang Suk

    2016-01-01

    Background Exposure to ethanol abuse and severe oxidative stress are risk factors for hepatocarcinoma. The aim of this study was to evaluate the effects of S-adenosylmethionine (SAMe) and its combinations with taurine and/or betaine on the level of glutathione (GSH), a powerful antioxidant in the liver, in acute hepatotoxicity induced by ethanol. Methods To examine the effects of SAMe and its combinations with taurine and/or betaine on ethanol-induced hepatotoxicity, AML12 cells and C57BL/6 mice were pretreated with SAMe, taurine, and/or betaine, followed by ethanol challenge. Cell viability was detected with an MTT assay. GSH concentration and mRNA levels of GSH synthetic enzymes were measured using GSH reductase and quantitative real-time reverse transcriptase-PCR. Alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities were measured with commercially available kits. Results Pretreatment of SAMe, with or without taurine and/or betaine, attenuated decreases in GSH levels and mRNA expression of the catalytic subunit of glutamate-cysteine ligase (GCL), the rate-limiting enzyme for GSH synthesis, in ethanol-treated cells and mice. mRNA levels of the modifier subunit of GCL and glutathione synthetase were increased in mice treated with SAMe combinations. SAMe, taurine, and/or betaine pretreatment restored serum ALT and AST levels to control levels in the ethanol-treated group. Conclusions Combinations of SAMe with taurine and/or betaine have a hepatoprotective effect against ethanol-induced liver injury by maintaining GSH homeostasis. PMID:27722142

  1. Maternal and paternal genealogy of Eurasian taurine cattle (Bos taurus).

    PubMed

    Kantanen, J; Edwards, C J; Bradley, D G; Viinalass, H; Thessler, S; Ivanova, Z; Kiselyova, T; Cinkulov, M; Popov, R; Stojanović, S; Ammosov, I; Vilkki, J

    2009-11-01

    Maternally inherited mitochondrial DNA (mtDNA) has been used extensively to determine origin and diversity of taurine cattle (Bos taurus) but global surveys of paternally inherited Y-chromosome diversity are lacking. Here, we provide mtDNA information on previously uncharacterised Eurasian breeds and present the most comprehensive Y-chromosomal microsatellite data on domestic cattle to date. The mitochondrial haplogroup T3 was the most frequent, whereas T4 was detected only in the Yakutian cattle from Siberia. The mtDNA data indicates that the Ukrainian and Central Asian regions are zones where hybrids between taurine and zebu (B. indicus) cattle have existed. This zebu influence appears to have subsequently spread into southern and southeastern European breeds. The most common Y-chromosomal microsatellite haplotype, termed here as H11, showed an elevated frequency in the Eurasian sample set compared with that detected in Near Eastern and Anatolian breeds. The taurine Y-chromosomal microsatellite haplotypes were found to be structured in a network according to the Y-haplogroups Y1 and Y2. These data do not support the recent hypothesis on the origin of Y1 from the local European hybridization of cattle with male aurochsen. Compared with mtDNA, the intensive culling of breeding males and male-mediated crossbreeding of locally raised native breeds has accelerated loss of Y-chromosomal variation in domestic cattle, and affected the contribution of genetic drift to diversity. In conclusion, to maintain diversity, breeds showing rare Y-haplotypes should be prioritised in the conservation of cattle genetic resources.

  2. [Simultaneous determination of eight kinds of conjunct bile acids in human bile by R-HPLC].

    PubMed

    Dai, Z; Tan, G; Qian, K; Chen, X

    1997-01-01

    A method for the simultaneous determination of eight kinds of conjunct bile acids in human bile was developed by HPLC. They were separated on a YWG-C18 (3 microns) column at 30 degrees C, with methanol/water (65/35, V/V, pH3.0) as mobile phase, and detection wavelength at UV 210 nm. The linear ranges were 50-1,000 microns.ml-1, the recoveries were 91.2%-108.6%. The biles of 30 cases with cholelithiasis cholecystolithiasis and 20 cases without gallstone were detected by HPLC. The results showed that the constitution of bile acids was different between patients with cholelithiasis cholecystolithiasis and patients without gallstone.

  3. Bile acids induce necrosis in pancreatic stellate cells dependent on calcium entry and sodium-driven bile uptake.

    PubMed

    Ferdek, Pawel E; Jakubowska, Monika A; Gerasimenko, Julia V; Gerasimenko, Oleg V; Petersen, Ole H

    2016-11-01

    Acute biliary pancreatitis is a sudden and severe condition initiated by bile reflux into the pancreas. Bile acids are known to induce Ca 2+ signals and necrosis in isolated pancreatic acinar cells but the effects of bile acids on stellate cells are unexplored. Here we show that cholate and taurocholate elicit more dramatic Ca 2+ signals and necrosis in stellate cells compared to the adjacent acinar cells in pancreatic lobules; whereas taurolithocholic acid 3-sulfate primarily affects acinar cells. Ca 2+ signals and necrosis are strongly dependent on extracellular Ca 2+ as well as Na + ; and Na + -dependent transport plays an important role in the overall bile acid uptake in pancreatic stellate cells. Bile acid-mediated pancreatic damage can be further escalated by bradykinin-induced signals in stellate cells and thus killing of stellate cells by bile acids might have important implications in acute biliary pancreatitis. Acute biliary pancreatitis, caused by bile reflux into the pancreas, is a serious condition characterised by premature activation of digestive enzymes within acinar cells, followed by necrosis and inflammation. Bile acids are known to induce pathological Ca 2+ signals and necrosis in acinar cells. However, bile acid-elicited signalling events in stellate cells remain unexplored. This is the first study to demonstrate the pathophysiological effects of bile acids on stellate cells in two experimental models: ex vivo (mouse pancreatic lobules) and in vitro (human cells). Sodium cholate and taurocholate induced cytosolic Ca 2+ elevations in stellate cells, larger than those elicited simultaneously in the neighbouring acinar cells. In contrast, taurolithocholic acid 3-sulfate (TLC-S), known to induce Ca 2+ oscillations in acinar cells, had only minor effects on stellate cells in lobules. The dependence of the Ca 2+ signals on extracellular Na + and the presence of sodium-taurocholate cotransporting polypeptide (NTCP) indicate a Na + -dependent bile acid

  4. A novel bile salts-lipase polymeric film-infused minitablet system for enhanced oral delivery of cholecalciferol.

    PubMed

    Braithwaite, Miles C; Choonara, Yahya E; Kumar, Pradeep; Tomar, Lomas K; Du Toit, Lisa C; Pillay, Viness

    2016-11-01

    Few researchers have investigated the use of multiple physiological enhancers combined with synthetic carriers to augment delivery of nutraceuticals. The current work describes the development of an oral delivery system termed a bioactive association platform (BAP) capable of delivering nutraceutical actives from a formulation framework specifically for enhancing the in vitro and in vivo performance of model vitamin, cholecalciferol (Vitamin D 3 ). Synthesis of a novel triple vitamin minitablet and an optimized bile salt/lipase alginate-glycerin film provided unique oral components for inclusion in a BAP capsule. Component validation and physicochemical characterizations included comparative ex vivo permeability, chemical structure mapping, thermodynamic analysis and magnetic resonance imaging. In vitro dissolution studies of the BAP produced an area under the dissolution curve (AUC) for cholecalciferol release that was 28% greater than a conventional comparator product. A total of 84.01% of cholecalciferol was released from the BAP within 3 h versus only 59% from a comparator. Ex vivo permeation studies revealed superior cholecalciferol membrane diffusion from the triple vitamin minitablet BAP component. In vivo performance showed a greater mean change from baseline cholecalciferol to peak plasma levels (C max ) from the BAP compared to the comparator (55.66 versus 46.05 ng/mL). Cholecalciferol bioavailability was improved in vivo with an AUC 0-inf from the BAP that was 3.2× greater than the conventional product. The BAP was also superior at improving and maintaining serum levels of the main metabolite, 25-hydroxyvitamin D 3 , compared to the conventional system. In vitro and in vivo results thus confirmed improvements in cholecalciferol dissolution, membrane permeability and plasma drug levels. The study results position the BAP as an ideal oral vehicle for enhanced delivery of cholecalciferol.

  5. Development of capillary electrophoresis methods for quantitative determination of taurine in vehicle system and biological media.

    PubMed

    da Silva, Dayse L P; Rüttinger, Hans H; Mrestani, Yahia; Baum, Walter F; Neubert, Reinhard H H

    2006-06-01

    CE methods have been developed for the determination of taurine in pharmaceutical formulation (microemulsion) and in biological media such as sweat. The CE system with end-column pulsed amperometric detection has been found to be an interesting method in comparison with UV and fluorescence detection for its simplicity and rapidity. A gold-disk electrode of 100 mm diameter was used as the working electrode. The effects of a field decoupler at the end of the capillary, separation voltage, injection and pressure times were investigated. A detection limit of 4 x 10(-5) mol/L was reached using integrated pulsed amperometric detection, a method successfully applied to taurine analysis of the biological samples such as sweat. For taurine analysis of oil-in-water microemulsion, fluorescence detector was the favored method, the detection limit of which was 4 x 10(-11) mol/L.

  6. Relationship among serum taurine, serum adipokines, and body composition during 8-week human body weight control program.

    PubMed

    You, Jeong Soon; Park, Ji Yeon; Zhao, Xu; Jeong, Jin Seok; Choi, Mi Ja; Chang, Kyung Ja

    2013-01-01

    Human adipose tissue is not only a storage organ but also an active endocrine organ to release adipokines. This study was conducted to investigate the relationship among serum taurine and adipokine levels, and body composition during 8-week human body weight control program in obese female college students. The program consisted of diet therapy, exercise, and behavior modification. After the program, body weight, body fat mass, percent body fat, and body mass index (BMI) were significantly decreased. Serum triglyceride (TG), total cholesterol (TC), and low-density lipoprotein cholesterol (LDL-C) levels were significantly decreased. Also serum adiponectin level was significantly increased and serum leptin level was significantly decreased. There were no differences in serum taurine and homocysteine levels. The change of serum adiponectin level was positively correlated with change of body fat mass and percent body fat. These results may suggest that body fat loss by human body weight control program is associated with an increase in serum adiponectin in obese female college students. Therefore, further study such as taurine intervention study is needed to know more exact correlation between dietary taurine intake and serum adipokines or body composition.

  7. Simultaneous and rapid determination of caffeine and taurine in energy drinks by MEKC in a short capillary with dual contactless conductivity/photometry detection.

    PubMed

    Vochyánová, Blanka; Opekar, František; Tůma, Petr

    2014-06-01

    A method has been developed for the simultaneous determination of taurine and caffeine using a laboratory-made instrument enabling separation analysis in a short 10.5 cm capillary. The substances are detected using a contactless conductometry/ultraviolet (UV) photometry detector that enables recording both signals at one place in the capillary. The separation of caffeine and taurine was performed using the MEKC technique in a BGE with the composition 40 mM CHES, 15 mM NaOH, and 50 mM SDS, pH 9.36. Under these conditions, the migration time of caffeine is 43 s and of taurine 60 s; LOD for caffeine is 4 mg/L using photometric detection and LOD for taurine is 24 mg/L using contactless conductometric detection. The standard addition method was used for determination in Red Bull energy drink of caffeine 317 mg/L and taurine 3860 mg/L; the contents in Kamikaze drink were 468 mg/L caffeine and 4110 mg/L taurine. The determined values are in good agreement with the declared contents of these substances. RSD does not exceed 3%. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Levels of inflammation and oxidative stress, and a role for taurine in dystropathology of the Golden Retriever Muscular Dystrophy dog model for Duchenne Muscular Dystrophy.

    PubMed

    Terrill, Jessica R; Duong, Marisa N; Turner, Rufus; Le Guiner, Caroline; Boyatzis, Amber; Kettle, Anthony J; Grounds, Miranda D; Arthur, Peter G

    2016-10-01

    Duchenne Muscular Dystrophy (DMD) is a fatal skeletal muscle wasting disease presenting with excessive myofibre necrosis and increased inflammation and oxidative stress. In the mdx mouse model of DMD, homeostasis of the amino acid taurine is altered, and taurine administration drastically decreases muscle necrosis, dystropathology, inflammation and protein thiol oxidation. Since the severe pathology of the Golden Retriever Muscular Dystrophy (GRMD) dog model more closely resembles the human DMD condition, we aimed to assess the generation of oxidants by inflammatory cells and taurine metabolism in this species. In muscles of 8 month GRMD dogs there was an increase in the content of neutrophils and macrophages, and an associated increase in elevated myeloperoxidase, a protein secreted by neutrophils that catalyses production of the highly reactive hypochlorous acid (HOCl). There was also increased chlorination of tyrosines, a marker of HOCl generation, increased thiol oxidation of many proteins and irreversible oxidative protein damage. Taurine, which functions as an antioxidant by trapping HOCl, was reduced in GRMD plasma; however taurine was increased in GRMD muscle tissue, potentially due to increased muscle taurine transport and synthesis. These data indicate a role for HOCl generated by neutrophils in the severe dystropathology of GRMD dogs, which may be exacerbated by decreased availability of taurine in the blood. These novel data support continued research into the precise roles of oxidative stress and taurine in DMD and emphasise the value of the GRMD dogs as a suitable pre-clinical model for testing taurine as a therapeutic intervention for DMD boys. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  9. [Advances in studies on bear bile powder].

    PubMed

    Zhou, Chao-fan; Gao, Guo-jian; Liu, Ying

    2015-04-01

    In this paper, a detailed analysis was made on relevant literatures about bear bile powder in terms of chemical component, pharmacological effect and clinical efficacy, indicating bear bile powder's significant pharmacological effects and clinical application in treating various diseases. Due to the complex composition, bear bile powder is relatively toxic. Therefore, efforts shall be made to study bear bile powder's pharmacological effects, clinical application, chemical composition and toxic side-effects, with the aim to provide a scientific basis for widespread reasonable clinical application of bear bile powder.

  10. Food, fibre, bile acids and the pelvic floor: An integrated low risk low cost approach to managing irritable bowel syndrome

    PubMed Central

    Philpott, Hamish; Nandurkar, Sanjay; Lubel, John; Gibson, Peter R

    2015-01-01

    Patients presenting with abdominal pain and diarrhea are often labelled as suffering from irritable bowel syndrome, and medications may be used often without success. Advances in the understanding of the causes of the symptoms (including pelvic floor weakness and incontinence, bile salt malabsorption and food intolerance) mean that effective, safe and well tolerated treatments are now available. PMID:26525925

  11. Chlorine transfer between glycine, taurine, and histamine: reaction rates and impact on cellular reactivity.

    PubMed

    Peskin, Alexander V; Midwinter, Robyn G; Harwood, David T; Winterbourn, Christine C

    2005-02-01

    Hypochlorous acid formed by activated neutrophils reacts with amines to produce chloramines. Chloramines vary in stability, reactivity, and cell permeability. We have examined whether chloramine exchange occurs between physiologically important amines or amino acids and if this affects interactions of chloramines with cells. We have demonstrated transchlorination reactions between histamine, glycine, and taurine chloramines by measuring chloramine decay rates with mixtures as well as by mass spectrometry. Kinetic analysis suggested the formation of an intermediate complex with a high Km. Apparent second-order rate constants, determined for concentrations taurine, Gly-Cl and histamine, histamine chloramine and glycine, and taurine chloramine (Tau-Cl) and glycine, respectively. Thus with 10 mM amine concentrations, half-lives for chloramine exchange are of the order of a few minutes. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) activity in cells was measured as an indicator of permeability of the chloramines. When endothelial or Jurkat cells were treated in Hanks' buffer, Gly-Cl inhibited GAPDH, whereas Tau-Cl, which does not penetrate the cells, did not. Adding glycine to Tau-Cl brought about inhibition, whereas taurine mitigated the effect of Gly-Cl. For cells in full medium, high chloramine concentrations were needed to inhibit GAPDH because of scavenging by methionine and other constituents. In methionine-free medium, chlorine exchange resulted in GAPDH inhibition by Tau-Cl, whereas Gly-Cl was less effective than in Hanks' buffer. Thus interchange between chloramines occurs readily and modulates their cellular effects.

  12. Chlorine transfer between glycine, taurine, and histamine: reaction rates and impact on cellular reactivity.

    PubMed

    Peskin, Alexander V; Midwinter, Robyn G; Harwood, David T; Winterbourn, Christine C

    2004-11-15

    Hypochlorous acid formed by activated neutrophils reacts with amines to produce chloramines. Chloramines vary in stability, reactivity, and cell permeability. We have examined whether chloramine exchange occurs between physiologically important amines or amino acids and if this affects interactions of chloramines with cells. We have demonstrated transchlorination reactions between histamine, glycine, and taurine chloramines by measuring chloramine decay rates with mixtures as well as by mass spectrometry. Kinetic analysis suggested the formation of an intermediate complex with a high K(m). Apparent second-order rate constants, determined for concentrations taurine, Gly-Cl and histamine, histamine chloramine and glycine, and taurine chloramine (Tau-Cl) and glycine, respectively. Thus with 10 mM amine concentrations, half-lives for chloramine exchange are on the order of a few minutes. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) activity in cells was measured as an indicator of permeability of the chloramines. When endothelial or Jurkat cells were treated in Hanks' buffer, Gly-Cl inhibited GAPDH, whereas Tau-Cl, which does not penetrate the cells, did not. Adding glycine to Tau-Cl brought about inhibition, whereas taurine mitigated the effect of Gly-Cl. For cells in full medium, high chloramine concentrations were needed to inhibit GAPDH because of scavenging by methionine and other constituents. In methionine-free medium, chlorine exchange resulted in GAPDH inhibition by Tau-Cl, whereas Gly-Cl was less effective than in Hanks' buffer. Thus interchange between chloramines occurs readily and modulates their cellular effects.

  13. Preclinical manufacture of anti-HER2 liposome-inserting, scFv-PEG-lipid conjugate. 2. Conjugate micelle identity, purity, stability, and potency analysis.

    PubMed

    Nellis, David F; Giardina, Steven L; Janini, George M; Shenoy, Shilpa R; Marks, James D; Tsai, Richard; Drummond, Daryl C; Hong, Keelung; Park, John W; Ouellette, Thomas F; Perkins, Shelley C; Kirpotin, Dmitri B

    2005-01-01

    Analytical methods optimized for micellar F5cys-MP-PEG(2000)-DPSE protein-lipopolymer conjugate are presented. The apparent micelle molecular weight, determined by size exclusion chromatography, ranged from 330 to 960 kDa. The F5cys antibody and conjugate melting points, determined by differential scanning calorimetry, were near 82 degrees C. Traditional methods for characterizing monodisperse protein species were inapplicable to conjugate analysis. The isoelectric point of F5cys (9.2) and the conjugate (8.9) were determined by capillary isoelectric focusing (cIEF) after addition of the zwitterionic detergent CHAPS to the buffer. Conjugate incubation with phospholipase B selectively removed DSPE lipid groups and dispersed the conjugate prior to separation by chromatographic methods. Alternatively, adding 2-propanol (29.4 vol %) and n-butanol (4.5 vol %) to buffers for salt-gradient cation exchange chromatography provided gentler, nonenzymatic dispersion, resulting in well-resolved peaks. This method was used to assess stability, identify contaminants, establish lot-to-lot comparability, and determine the average chromatographic purity (93%) for conjugate lots, described previously. The F5cys amino acid content was confirmed after conjugation. The expected conjugate avidity for immobilized HER-2/neu was measured by bimolecular interaction analysis (BIAcore). Mock therapeutic assemblies were made by conjugate insertion into preformed doxorubicin-encapsulating liposomes for antibody-directed uptake of doxorubicin by HER2-overexpressing cancer cells in vitro. Together these developed assays established that the manufacturing method as described in the first part of this study consistently produced F5cys-MP-PEG(2000)-DSPE having sufficient purity, stability, and functionality for use in preclinical toxicology investigations.

  14. Endoscopic management of bile leakage after liver transplantation.

    PubMed

    Oh, Dong-Wook; Lee, Sung Koo; Song, Tae Jun; Park, Do Hyun; Lee, Sang Soo; Seo, Dong-Wan; Kim, Myung-Hwan

    2015-05-23

    Endoscopic retrograde cholangiopancreatography (ERCP) can be an effective treatment for bile leakage after liver transplantation. We evaluated the efficacy of endoscopic treatment in liver transplantation in patients who developed bile leaks. Forty-two patients who developed bile leaks after liver transplantation were included in the study. If a bile leak was observed on ERCP, a sphincterotomy was performed, and a nasobiliary catheter was then inserted. If a bile leak was accompanied by a bile duct stricture, either the stricture was dilated with balloons, followed by nasobiliary catheter insertion across the bile duct stricture, or endoscopic retrograde biliary drainage was performed. In the bile leakage alone group (22 patients), endoscopic treatment was technically successful in 19 (86.4%) and clinically successful in 17 (77.3%) cases. Among the 20 patients with bile leaks with bile duct strictures, endoscopic treatment was technically successful in 13 (65.0%) and clinically successful in 10 (50.0%) cases. Among the 42 patients who underwent ERCP, technical success was achieved in 32 (76.2%) cases and clinical success was achieved in 27 (64.3%) cases. ERCP is an effective and safe therapeutic modality for bile leaks after liver transplantation. ERCP should be considered as an initial therapeutic modality in post-liver transplantation patients.

  15. Endoscopic Management of Bile Leakage after Liver Transplantation

    PubMed Central

    Oh, Dongwook; Lee, Sung Koo; Song, Tae Jun; Park, Do Hyun; Lee, Sang Soo; Seo, Dong-Wan; Kim, Myung-Hwan

    2015-01-01

    Background/Aims Endoscopic retrograde cholangiopancreatography (ERCP) can be an effective treatment for bile leakage after liver transplantation. We evaluated the efficacy of endoscopic treatment in liver transplantation in patients who developed bile leaks. Methods Forty-two patients who developed bile leaks after liver transplantation were included in the study. If a bile leak was observed on ERCP, a sphincterotomy was performed, and a nasobiliary catheter was then inserted. If a bile leak was accompanied by a bile duct stricture, either the stricture was dilated with balloons, followed by nasobiliary catheter insertion across the bile duct stricture, or endoscopic retrograde biliary drainage was performed. Results In the bile leakage alone group (22 patients), endoscopic treatment was technically successful in 19 (86.4%) and clinically successful in 17 (77.3%) cases. Among the 20 patients with bile leaks with bile duct strictures, endoscopic treatment was technically successful in 13 (65.0%) and clinically successful in 10 (50.0%) cases. Among the 42 patients who underwent ERCP, technical success was achieved in 32 (76.2%) cases and clinical success was achieved in 27 (64.3%) cases. Conclusions ERCP is an effective and safe therapeutic modality for bile leaks after liver transplantation. ERCP should be considered as an initial therapeutic modality in post-liver transplantation patients. PMID:25717048

  16. Taurine exerts hypoglycemic effect in alloxan-induced diabetic rats, improves insulin-mediated glucose transport signaling pathway in heart and ameliorates cardiac oxidative stress and apoptosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, Joydeep; Vasan, Vandana; Sil, Parames C., E-mail: parames@bosemain.boseinst.ac.in

    2012-01-15

    Hyperlipidemia, inflammation and altered antioxidant profiles are the usual complications in diabetes mellitus. In the present study, we investigated the therapeutic potential of taurine in diabetes associated cardiac complications using a rat model. Rats were made diabetic by alloxan (ALX) (single i.p. dose of 120 mg/kg body weight) and left untreated or treated with taurine (1% w/v, orally, in water) for three weeks either from the day of ALX exposure or after the onset of diabetes. Animals were euthanized after three weeks. ALX-induced diabetes decreased body weight, increased glucose level, decreased insulin content, enhanced the levels of cardiac damage markersmore » and altered lipid profile in the plasma. Moreover, it increased oxidative stress (decreased antioxidant enzyme activities and GSH/GSSG ratio, increased xanthine oxidase enzyme activity, lipid peroxidation, protein carbonylation and ROS generation) and enhanced the proinflammatory cytokines levels, activity of myeloperoxidase and nuclear translocation of NFκB in the cardiac tissue of the experimental animals. Taurine treatment could, however, result to a decrease in the elevated blood glucose and proinflammatory cytokine levels, diabetes-evoked oxidative stress, lipid profiles and NFκB translocation. In addition, taurine increased GLUT 4 translocation to the cardiac membrane by enhanced phosphorylation of IR and IRS1 at tyrosine and Akt at serine residue in the heart. Results also suggest that taurine could protect cardiac tissue from ALX induced apoptosis via the regulation of Bcl2 family and caspase 9/3 proteins. Taken together, taurine supplementation in regular diet could play a beneficial role in regulating diabetes and its associated complications in the heart. Highlights: ► Taurine controls blood glucose via protection of pancreatic β cells in diabetic rat. ► Taurine controls blood glucose via increasing the insulin level in diabetic rat. ► Taurine improves cardiac AKT/GLUT4

  17. Bile acids induce necrosis in pancreatic stellate cells dependent on calcium entry and sodium‐driven bile uptake

    PubMed Central

    Jakubowska, Monika A.; Gerasimenko, Julia V.; Gerasimenko, Oleg V.; Petersen, Ole H.

    2016-01-01

    Key points Acute biliary pancreatitis is a sudden and severe condition initiated by bile reflux into the pancreas.Bile acids are known to induce Ca2+ signals and necrosis in isolated pancreatic acinar cells but the effects of bile acids on stellate cells are unexplored.Here we show that cholate and taurocholate elicit more dramatic Ca2+ signals and necrosis in stellate cells compared to the adjacent acinar cells in pancreatic lobules; whereas taurolithocholic acid 3‐sulfate primarily affects acinar cells.Ca2+ signals and necrosis are strongly dependent on extracellular Ca2+ as well as Na+; and Na+‐dependent transport plays an important role in the overall bile acid uptake in pancreatic stellate cells.Bile acid‐mediated pancreatic damage can be further escalated by bradykinin‐induced signals in stellate cells and thus killing of stellate cells by bile acids might have important implications in acute biliary pancreatitis. Abstract Acute biliary pancreatitis, caused by bile reflux into the pancreas, is a serious condition characterised by premature activation of digestive enzymes within acinar cells, followed by necrosis and inflammation. Bile acids are known to induce pathological Ca2+ signals and necrosis in acinar cells. However, bile acid‐elicited signalling events in stellate cells remain unexplored. This is the first study to demonstrate the pathophysiological effects of bile acids on stellate cells in two experimental models: ex vivo (mouse pancreatic lobules) and in vitro (human cells). Sodium cholate and taurocholate induced cytosolic Ca2+ elevations in stellate cells, larger than those elicited simultaneously in the neighbouring acinar cells. In contrast, taurolithocholic acid 3‐sulfate (TLC‐S), known to induce Ca2+ oscillations in acinar cells, had only minor effects on stellate cells in lobules. The dependence of the Ca2+ signals on extracellular Na+ and the presence of sodium–taurocholate cotransporting polypeptide (NTCP) indicate a Na

  18. Berberine-induced Inactivation of Signal Transducer and Activator of Transcription 5 Signaling Promotes Male-specific Expression of a Bile Acid Uptake Transporter*

    PubMed Central

    Bu, Pengli; Le, Yuan; Zhang, Yue; Zhang, Youcai; Cheng, Xingguo

    2017-01-01

    Sodium-taurocholate co-transporting polypeptide (Ntcp/NTCP) is the major uptake transporter of bile salts in mouse and human livers. In certain diseases, including endotoxemia, cholestasis, diabetes, and hepatocarcinoma, Ntcp/NTCP expression is markedly reduced, which interferes with enterohepatic circulation of bile salts, impairing the absorption of lipophilic compounds. Therefore, normal Ntcp/NTCP expression in the liver is physiologically important. Berberine is an herbal medicine used historically to improve liver function and has recently been shown to repress STAT signaling. However, berberine effects on Ntcp/NTCP expression are unknown, prompting use to investigate this possible connection. Our results showed that berberine dose-dependently increased Ntcp expression in male mouse liver and decreased taurocholic acid levels in serum but increased them in the liver. In mouse and human hepatoma cells, berberine induced Ntcp/NTCP mRNA and protein expression and increased cellular uptake of [3H] taurocholate. Mechanistically, berberine decreased nuclear protein levels of phospho-JAK2 and phospho-STAT5, thus disrupting the JAK2-STAT5 signaling. Moreover, berberine stimulated luciferase reporter expression from the mouse Ntcp promoter when one putative STAT5 response element (RE) (−1137 bp) was deleted and from the human NTCP promoter when three putative STAT5REs (−2898, −2164, and −691 bp) were deleted. Chromatin immunoprecipitation demonstrated that berberine decreased binding of phospho-STAT5 protein to the−2164 and −691 bp STAT5REs in the human NTCP promoter. In summary, berberine-disrupted STAT5 signaling promoted mouse and human Ntcp/NTCP expression, resulting in enhanced bile acid uptake. Therefore, berberine may be a therapeutic candidate compound for maintaining bile acid homeostasis. PMID:28154180

  19. Reduced hepatitis B and D viral entry using clinically applied drugs as novel inhibitors of the bile acid transporter NTCP.

    PubMed

    Donkers, Joanne M; Zehnder, Benno; van Westen, Gerard J P; Kwakkenbos, Mark J; IJzerman, Adriaan P; Oude Elferink, Ronald P J; Beuers, Ulrich; Urban, Stephan; van de Graaf, Stan F J

    2017-11-10

    The sodium taurocholate co-transporting polypeptide (NTCP, SLC10A1) is the main hepatic transporter of conjugated bile acids, and the entry receptor for hepatitis B virus (HBV) and hepatitis delta virus (HDV). Myrcludex B, a synthetic peptide mimicking the NTCP-binding domain of HBV, effectively blocks HBV and HDV infection. In addition, Myrcludex B inhibits NTCP-mediated bile acid uptake, suggesting that also other NTCP inhibitors could potentially be a novel treatment of HBV/HDV infection. This study aims to identify clinically-applied compounds intervening with NTCP-mediated bile acid transport and HBV/HDV infection. 1280 FDA/EMA-approved drugs were screened to identify compounds that reduce uptake of taurocholic acid and lower Myrcludex B-binding in U2OS cells stably expressing human NTCP. HBV/HDV viral entry inhibition was studied in HepaRG cells. The four most potent inhibitors of human NTCP were rosiglitazone (IC 50 5.1 µM), zafirlukast (IC 50 6.5 µM), TRIAC (IC 50 6.9 µM), and sulfasalazine (IC 50 9.6 µM). Chicago sky blue 6B (IC 50 7.1 µM) inhibited both NTCP and ASBT, a distinct though related bile acid transporter. Rosiglitazone, zafirlukast, TRIAC, sulfasalazine, and chicago sky blue 6B reduced HBV/HDV infection in HepaRG cells in a dose-dependent manner. Five out of 1280 clinically approved drugs were identified that inhibit NTCP-mediated bile acid uptake and HBV/HDV infection in vitro.

  20. Bile acid disease: the emerging epidemic.

    PubMed

    Oduyebo, Ibironke; Camilleri, Michael

    2017-05-01

    Our objective was to review advances in bile acids in health and disease published in the last 2 years. Bile acid diarrhea (BAD) is recognized as a common cause of chronic diarrhea, and its recognition has been facilitated by development of new screening tests. Primary BAD can account for 30% of cases of chronic diarrhea. The mechanisms leading to BAD include inadequate feedback regulation by fibroblast growth factor 19 (FGF-19) from ileal enterocytes, abnormalities in synthesis or degradation of proteins involved in FGF-19 regulation in hepatocytes and variations as a function of the bile acid receptor, TGR5 (GPBAR1). SeHCAT is the most widely used test for diagnosis of BAD. There has been significant validation of fasting serum FGF-19 and 7 α-hydroxy-cholesten-3-one (C4), a surrogate measure of bile acid synthesis. Bile acid sequestrants are the primary treatments for BAD; the farnesoid X-receptor-FGF-19 pathway provides alternative therapeutic targets for BAD. Bile acid-stimulated intestinal mechanisms contribute to the beneficial effects of bariatric surgery on obesity, glycemic control and the treatment of recurrent Clostridium difficile infection. Renewed interest in the role of bile acids is leading to novel management of diverse diseases besides BAD.