Sample records for taurocholate cotransporting polypeptide

  1. A Substrate Pharmacophore for the Human Sodium Taurocholate Co-transporting Polypeptide

    PubMed Central

    Dong, Zhongqi; Ekins, Sean; Polli, James E.

    2014-01-01

    Human Sodium Taurocholate Co-transporting Polypeptide (NTCP) is the main bile acid uptake transporter in the liver with the capability to translocate xenobiotics. While its inhibitor requirements have been recently characterized, its substrate requirements have not. The objectives of this study were a) to elucidate NTCP substrate requirements using native bile acids and bile acid analogs, b) to develop the first pharmacophore for NTCP substrates and compare it with the inhibitor pharmacophores, and c) to identify additional NTCP novel substrates. Thus, 18 native bile acids and two bile acid conjugates were initially assessed for NTCP inhibition and/or uptake, which suggested a role of hydroxyl pattern and steric interaction in NTCP binding and translocation. A common feature pharmacophore for NTCP substrate uptake was developed, using 14 native bile acids and bile acid conjugates, yielding a model which featured three hydrophobes, one hydrogen bond donor, one negative ionizable feature and three excluded volumes. This model was used to search a database of FDA approved drugs and retrieved the majority of the known NTCP substrates. Among the retrieved drugs, irbesartan and losartan were identified as novel NTCP substrates, suggesting a potential role of NTCP in drug disposition. PMID:25448570

  2. Interaction of fluvastatin with the liver-specific Na+ -dependent taurocholate cotransporting polypeptide (NTCP).

    PubMed

    Greupink, Rick; Dillen, Lieve; Monshouwer, Mario; Huisman, Maarten T; Russel, Frans G M

    2011-11-20

    It has been reported that polymorphisms in the organic anion transporting polypeptide 1B1 (OATP1B1, SLCO1B1) result in decreased hepatic uptake of simvastatin carboxy acid, the active metabolite of simvastatin. This is not the case for fluvastatin and it has been hypothesized that for this drug other hepatic uptake pathways exist. Here, we studied whether Na(+)-dependent taurocholate co-transporting polypeptide (NTCP, SLC10A1) can be an alternative hepatic uptake route for fluvastatin. Chinese Hamster Ovary cells transfected with human NTCP (CHO-NTCP) were used to investigate the inhibitory effect of fluvastatin and other statins on [(3)H]-taurocholic acid uptake ([(3)H]-TCA). Statin uptake by CHO-NTCP and cryopreserved human hepatocytes was assessed via LC-MS/MS. Fluvastatin appeared to be a potent and competitive inhibitor of [(3)H]-TCA uptake (IC(50) of 40μM), pointing to an interaction at the level of the bile acid binding pocket of NTCP. The inhibitory action of other statins was also studied, which revealed that statin inhibitory potency increased with molecular descriptors of lipophilicity: calculated logP (r(2)=0.82, p=0.034), logD(7.4) (r(2)=0.77, p=0.0001). Studies in CHO-NTCP cells showed that fluvastatin was indeed an NTCP substrate (K(m) 250±30μM, V(max) 1340±50ng/mg total cell protein/min). However, subsequent studies revealed that at clinically relevant plasma concentrations, NTCP contributed minimally to overall accumulation in human hepatocytes. In conclusion, fluvastatin interacts with NTCP at the level of the bile acid binding pocket and is an NTCP substrate. However, under normal conditions, NTCP-mediated uptake of this drug seems not to be a significant hepatocellular uptake pathway. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Viral Entry of Hepatitis B and D Viruses and Bile Salts Transportation Share Common Molecular Determinants on Sodium Taurocholate Cotransporting Polypeptide

    PubMed Central

    Yan, Huan; Peng, Bo; Liu, Yang; Xu, Guangwei; He, Wenhui; Ren, Bijie; Jing, Zhiyi; Sui, Jianhua

    2014-01-01

    ABSTRACT The liver bile acids transporter sodium taurocholate cotransporting polypeptide (NTCP) is responsible for the majority of sodium-dependent bile salts uptake by hepatocytes. NTCP also functions as a cellular receptor for viral entry of hepatitis B virus (HBV) and hepatitis D virus (HDV) through a specific interaction between NTCP and the pre-S1 domain of HBV large envelope protein. However, it remains unknown if these two functions of NTCP are independent or if they interfere with each other. Here we show that binding of the pre-S1 domain to human NTCP blocks taurocholate uptake by the receptor; conversely, some bile acid substrates of NTCP inhibit HBV and HDV entry. Mutations of NTCP residues critical for bile salts binding severely impair viral infection by HDV and HBV; to a lesser extent, the residues important for sodium binding also inhibit viral infection. The mutation S267F, corresponding to a single nucleotide polymorphism (SNP) found in about 9% of the East Asian population, renders NTCP without either taurocholate transporting activity or the ability to support HBV or HDV infection in cell culture. These results demonstrate that molecular determinants critical for HBV and HDV entry overlap with that for bile salts uptake by NTCP, indicating that viral infection may interfere with the normal function of NTCP, and bile acids and their derivatives hold the potential for further development into antiviral drugs. IMPORTANCE Human hepatitis B virus (HBV) and its satellite virus, hepatitis D virus (HDV), are important human pathogens. Available therapeutics against HBV are limited, and there is no drug that is clinically available for HDV infection. A liver bile acids transporter (sodium taurocholate cotransporting polypeptide [NTCP]) critical for maintaining homeostasis of bile acids serves as a functional receptor for HBV and HDV. We report here that the NTCP-binding lipopeptide that originates from the first 47 amino acids of the pre-S1 domain of the

  4. The Na+-Taurocholate Cotransporting Polypeptide Traffics with the Epidermal Growth Factor Receptor

    PubMed Central

    Wang, Xintao; Wang, Pijun; Wang, Wenjun; Murray, John W.; Wolkoff, Allan W.

    2015-01-01

    Na+-taurocholate cotransporting polypeptide (ntcp) mediates uptake of bile acids as well as serving as the receptor for hepatitis B virus in human liver. Previous studies showed that ntcp traffics on microtubules between the cell surface and endocytic vesicles. Specific inhibition of protein kinase C (PKC)ζ resulted in loss of microtubule-based motility of these vesicles in vitro and in living cells. The aim of the present study was to characterize the PKCζ target. Incubation of ntcp-containing endocytic vesicles with γ-32P-ATP revealed a 180 kDa phosphoglycoprotein that was identified as the EGF receptor (EGFR). Surface biotinylation of HuH7 cells expressing GFP-ntcp revealed substantially reduced trafficking of ntcp to the cell surface with EGFR knockdown. Microtubule-based motility of ntcp-containing endocytic vesicles was also significantly reduced when they were not associated with EGFR. Ntcp was also found to undergo cellular redistribution upon stimulation of cells with EGF, consistent with a model in which ntcp and EGF-EGFR internalize into common endocytic vesicles from which they segregate, trafficking EGF-EGFR to lysosomes and recycling ntcp to the plasma membrane. EGF regulation of ntcp trafficking may play a heretofore unanticipated role in subcellular targeting of ntcp ligands such as hepatitis B. PMID:26650232

  5. Unusual Features of Sodium Taurocholate Cotransporting Polypeptide as a Hepatitis B Virus Receptor

    PubMed Central

    Zong, Li; Sureau, Camille; Barker, Luke; Wands, Jack R.; Tong, Shuping

    2016-01-01

    ABSTRACT Cell culture (cc)-derived hepatitis B virus (HBV) can infect differentiated HepaRG cells, but efficient infection requires addition of polyethylene glycol (PEG) during inoculation. Identification of sodium taurocholate cotransporting polypeptide (NTCP) as an HBV receptor enabled ccHBV infection of NTCP reconstituted HepG2 cells, although very little hepatitis B surface antigen (HBsAg) is produced. We found infection by patient serum-derived HBV (sHBV), which required purification of viral particles through ultracentrifugation or PEG precipitation, was PEG independent and much more efficient in HepaRG cells than in HepG2/NTCP cells. In contrast to hepatitis B e antigen (HBeAg), HBsAg was not a reliable marker of productive sHBV infection at early time points. A low HBsAg/HBeAg ratio by ccHBV-infected HepG2/NTCP cells was attributable to dimethyl sulfoxide (DMSO) in culture medium, NTCP overexpression, and HBV genotype D. HepG2/NTCP cells released more viral antigens than HepG2 cells after HBV genome delivery by adeno-associated virus, and stable expression of NTCP in a ccHBV producing cell line increased viral mRNAs, proteins, replicative DNA, and covalently closed circular DNA. NTCP protein expression in HepG2/NTCP cells, despite being driven by the cytomegalovirus promoter, was markedly increased by DMSO treatment. This at least partly explains ability of DMSO to promote ccHBV infection in such cell lines. In conclusion, NTCP appeared inefficient to mediate infection by serum-derived HBV. It could promote HBV RNA transcription while inhibiting HBsAg secretion. Efficient PEG-independent sHBV infection of HepaRG cells permits comparative studies of diverse clinical HBV isolates and will help identify additional factors on virion surface promoting attachment to hepatocytes. IMPORTANCE Currently in vitro infection with hepatitis B virus (HBV) depends on cell culture-derived HBV inoculated in the presence of polyethylene glycol. We found patient serum

  6. Sodium taurocholate cotransporting polypeptide is a functional receptor for human hepatitis B and D virus

    PubMed Central

    Yan, Huan; Zhong, Guocai; Xu, Guangwei; He, Wenhui; Jing, Zhiyi; Gao, Zhenchao; Huang, Yi; Qi, Yonghe; Peng, Bo; Wang, Haimin; Fu, Liran; Song, Mei; Chen, Pan; Gao, Wenqing; Ren, Bijie; Sun, Yinyan; Cai, Tao; Feng, Xiaofeng; Sui, Jianhua; Li, Wenhui

    2012-01-01

    Human hepatitis B virus (HBV) infection and HBV-related diseases remain a major public health problem. Individuals coinfected with its satellite hepatitis D virus (HDV) have more severe disease. Cellular entry of both viruses is mediated by HBV envelope proteins. The pre-S1 domain of the large envelope protein is a key determinant for receptor(s) binding. However, the identity of the receptor(s) is unknown. Here, by using near zero distance photo-cross-linking and tandem affinity purification, we revealed that the receptor-binding region of pre-S1 specifically interacts with sodium taurocholate cotransporting polypeptide (NTCP), a multiple transmembrane transporter predominantly expressed in the liver. Silencing NTCP inhibited HBV and HDV infection, while exogenous NTCP expression rendered nonsusceptible hepatocarcinoma cells susceptible to these viral infections. Moreover, replacing amino acids 157–165 of nonfunctional monkey NTCP with the human counterpart conferred its ability in supporting both viral infections. Our results demonstrate that NTCP is a functional receptor for HBV and HDV. DOI: http://dx.doi.org/10.7554/eLife.00049.001 PMID:23150796

  7. Molecular Determinants of Hepatitis B and D Virus Entry Restriction in Mouse Sodium Taurocholate Cotransporting Polypeptide

    PubMed Central

    Yan, Huan; Peng, Bo; He, Wenhui; Zhong, Guocai; Qi, Yonghe; Ren, Bijie; Gao, Zhenchao; Jing, Zhiyi; Song, Mei; Xu, Guangwei; Sui, Jianhua

    2013-01-01

    Human hepatitis B virus (HBV) and its satellite virus, hepatitis D virus (HDV), primarily infect humans, chimpanzees, or tree shrews (Tupaia belangeri). Viral infections in other species are known to be mainly restricted at the entry level since viral replication can be achieved in the cells by transfection of the viral genome. Sodium taurocholate cotransporting polypeptide (NTCP) is a functional receptor for HBV and HDV, and amino acids 157 to 165 of NTCP are critical for viral entry and likely limit viral infection of macaques. However, the molecular determinants for viral entry restriction in mouse NTCP (mNTCP) remain unclear. In this study, mNTCP was found to be unable to support either HBV or HDV infection, although it can bind to pre-S1 of HBV L protein and is functional in transporting substrate taurocholate; comprehensive swapping and point mutations of human NTCP (hNTCP) and mNTCP revealed molecular determinants restricting mNTCP for viral entry of HBV and HDV. Remarkably, when mNTCP residues 84 to 87 were substituted by human counterparts, mNTCP can effectively support viral infections. In addition, a number of cell lines, regardless of their species or tissue origin, supported HDV infection when transfected with hNTCP or mNTCP with residues 84 to 87 replaced by human counterparts, highlighting the central role of NTCP for viral infections mediated by HBV envelope proteins. These studies advance our understanding of NTCP-mediated viral entry of HBV and HDV and have important implications for developing the mouse model for their infections. PMID:23678176

  8. Vectorial transport of bile salts across MDCK cells expressing both rat Na+-taurocholate cotransporting polypeptide and rat bile salt export pump.

    PubMed

    Mita, Sachiko; Suzuki, Hiroshi; Akita, Hidetaka; Stieger, Bruno; Meier, Peter J; Hofmann, Alan F; Sugiyama, Yuichi

    2005-01-01

    Bile salts are predominantly taken up by hepatocytes via the basolateral Na(+)-taurocholate cotransporting polypeptide (NTCP/SLC10A1) and secreted into the bile by the bile salt export pump (BSEP/ABCB11). In the present study, we transfected rat Ntcp and rat Bsep into polarized Madin-Darby canine kidney cells and characterized the transport properties of these cells for eight bile salts. Immunohistochemical staining demonstrated that Ntcp was expressed at the basolateral domains, whereas Bsep was expressed at the apical domains. Basal-to-apical transport of taurocholate across the monolayer expressing only Ntcp and that coexpressing Ntcp/Bsep was observed, whereas the flux across the monolayer of control and Bsep-expressing cells was symmetrical. Basal-to-apical transport of taurocholate across Ntcp/Bsep-coexpressing monolayers was significantly higher than that across monolayers expressing only Ntcp. Kinetic analysis of this vectorial transport of taurocholate gave an apparent K(m) value of 13.9 +/- 4.7 microM for cells expressing Ntcp alone, which is comparable with 22.2 +/- 4.5 microM for cells expressing both Ntcp and Bsep and V(max) values of 15.8 +/- 4.2 and 60.8 +/- 9.0 pmol.min(-1).mg protein(-1) for Ntcp alone and Ntcp and Bsep-coexpressing cells, respectively. Transcellular transport of cholate, glycocholate, taurochenodeoxycholate, chenodeoxycholate, glycochenodeoxycholate, tauroursodeoxycholate, ursodeoxycholate, and glycoursodeoxycholate, but not that of lithocholate was also observed across the double transfectant. This double-expressing system can be used as a model to clarify vectorial transport of bile salts across hepatocytes under physiological conditions.

  9. A dileucine motif is involved in plasma membrane expression and endocytosis of rat sodium taurocholate cotransporting polypeptide (Ntcp).

    PubMed

    Stross, Claudia; Kluge, Stefanie; Weissenberger, Katrin; Winands, Elisabeth; Häussinger, Dieter; Kubitz, Ralf

    2013-11-15

    The sodium taurocholate cotransporting polypeptide (Ntcp) is the major uptake transporter for bile salts into liver parenchymal cells, and PKC-mediated endocytosis was shown to regulate the number of Ntcp molecules at the plasma membrane. In this study, mechanisms of Ntcp internalization were analyzed by flow cytometry, immunofluorescence, and Western blot analyses in HepG2 cells. PKC activation induced endocytosis of Ntcp from the plasma membrane by ~30%. Endocytosis of Ntcp was clathrin dependent and was followed by lysosomal degradation. A dileucine motif located in the third intracellular loop of Ntcp was essential for endocytosis but also for processing and plasma membrane targeting, suggesting a dual function of this motif for intracellular trafficking of Ntcp. Mutation of two of five potential phosphorylation sites surrounding the dileucine motif (Thr225 and Ser226) inhibited PKC-mediated endocytosis. In conclusion, we could identify a motif, which is critical for Ntcp plasma membrane localization. Endocytic retrieval protects hepatocytes from elevated bile salt concentrations and is of special interest, because NTCP has been identified as a receptor for the hepatitis B and D virus.

  10. Structure-activity relationship for FDA approved drugs as inhibitors of the human sodium taurocholate cotransporting polypeptide (NTCP).

    PubMed

    Dong, Zhongqi; Ekins, Sean; Polli, James E

    2013-03-04

    The hepatic bile acid uptake transporter sodium taurocholate cotransporting polypeptide (NTCP) is less well characterized than its ileal paralog, the apical sodium dependent bile acid transporter (ASBT), in terms of drug inhibition requirements. The objectives of this study were (a) to identify FDA approved drugs that inhibit human NTCP, (b) to develop pharmacophore and Bayesian computational models for NTCP inhibition, and (c) to compare NTCP and ASBT transport inhibition requirements. A series of NTCP inhibition studies were performed using FDA approved drugs, in concert with iterative computational model development. Screening studies identified 27 drugs as novel NTCP inhibitors, including irbesartan (Ki = 11.9 μM) and ezetimibe (Ki = 25.0 μM). The common feature pharmacophore indicated that two hydrophobes and one hydrogen bond acceptor were important for inhibition of NTCP. From 72 drugs screened in vitro, a total of 31 drugs inhibited NTCP, while 51 drugs (i.e., more than half) inhibited ASBT. Hence, while there was inhibitor overlap, ASBT unexpectedly was more permissive to drug inhibition than was NTCP, and this may be related to NTCP possessing fewer pharmacophore features. Findings reflected that a combination of computational and in vitro approaches enriched the understanding of these poorly characterized transporters and yielded additional chemical probes for possible drug-transporter interaction determinations.

  11. Differential effect of genetic variants of Na(+)-taurocholate co-transporting polypeptide (NTCP) and organic anion-transporting polypeptide 1B1 (OATP1B1) on the uptake of HMG-CoA reductase inhibitors.

    PubMed

    Choi, Min-Koo; Shin, Ho Jung; Choi, Young-Lim; Deng, Jian-Wei; Shin, Jae-Gook; Song, Im-Sook

    2011-01-01

    The purpose of this study was to investigate the effect of genetic variations in organic anion-transporting polypeptide 1B1 (OATP1B1) and Na(+)/taurocholate co-transporting polypeptide (NTCP) on the uptake of various statins having different affinities for these transporters. The functional activities and simultaneous expression of NTCP and OATP1B1 were confirmed by the uptake of taurocholate and estrone-3-sulphate as representative substrates for NTCP and OATP1B1, respectively, and by an immunofluorescence analysis. The substrate specificities of NTCP and OATP1B1 for statins and the effects of genetic variations on the uptake of rosuvastatin, pitavastatin, and atorvastatin were measured. Based on the K(m) values and intrinsic clearances of the three statins, pitavastatin was taken up more efficiently than rosuvastatin and atorvastatin by OATP1B1. Consequently, the cellular accumulation of pitavastatin was modulated according to the genetic variation of OATP1B1 (OATP1B1*15), rather than NTCP*2. In contrast, NTCP*2 displayed greater transport of atorvastatin and rosuvastatin, compared with NTCP wild type. Thus, the measurements of decreased rosuvastatin and atorvastatin transport by OATP1B1*15 were confounded by the presence of NTCP and its genetic variant, NTCP*2. In conclusion, the functional consequences of genetic variants of NTCP and OATP1B1 may be different for various statins, depending on the substrate specificity of the OATP1B1 and NTCP transporters.

  12. Structure Activity Relationship for FDA Approved Drugs as Inhibitors of the Human Sodium Taurocholate Co-transporting Polypeptide (NTCP)

    PubMed Central

    Dong, Zhongqi; Ekins, Sean; Polli, James E.

    2013-01-01

    The hepatic bile acid uptake transporter Sodium Taurocholate Cotransporting Polypeptide (NTCP) is less well characterized than its ileal paralog, the Apical Sodium Dependent Bile Acid Transporter (ASBT), in terms of drug inhibition requirements. The objectives of this study were a) to identify FDA approved drugs that inhibit human NTCP, b) to develop pharmacophore and Bayesian computational models for NTCP inhibition, and c) to compare NTCP and ASBT transport inhibition requirements. A series of NTCP inhibition studies were performed using FDA approved drugs, in concert with iterative computational model development. Screening studies identified 27 drugs as novel NTCP inhibitors, including irbesartan (Ki =11.9 μM) and ezetimibe (Ki = 25.0 μM). The common feature pharmacophore indicated that two hydrophobes and one hydrogen bond acceptor were important for inhibition of NTCP. From 72 drugs screened in vitro, a total of 31 drugs inhibited NTCP, while 51 drugs (i.e. more than half) inhibited ASBT. Hence, while there was inhibitor overlap, ASBT unexpectedly was more permissive to drug inhibition than was NTCP, and this may be related to NTCP’s possessing fewer pharmacophore features. Findings reflected that a combination of computational and in vitro approaches enriched the understanding of these poorly characterized transporters and yielded additional chemical probes for possible drug-transporter interaction determinations. PMID:23339484

  13. Absolute measurement of species differences in sodium taurocholate cotransporting polypeptide (NTCP/Ntcp) and its modulation in cultured hepatocytes.

    PubMed

    Qiu, Xi; Bi, Yi-An; Balogh, Larissa M; Lai, Yurong

    2013-09-01

    Species differences among membrane transporters can be remarkable and difficult to properly assess by conventional methods. Herein, we employed the first use of stable isotope labeling in mammals or stable isotope-labeled peptides combined with mass spectrometry to identify species differences in sodium taurocholate cotransporting polypeptide (NTCP/Ntcp) protein expression in liver tissue and to characterize the modulation of protein expression in sandwich-cultured human (SCHH) and rat hepatocytes (SCRH). The lower limit of quantification was established to be 5 fmol on column with a standard curve that was linear up to 2000 fmol. The accuracy and precision were evaluated with three quality control samples and known amounts of synthetic proteotypic peptides that were spiked into the membrane protein extracts. The overall relative error and coefficient of variation were less than 10%. The expression of Ntcp in mouse and rat was significant higher than that in human (five-fold) and monkey (two-fold) and ranked as mouse > rat > monkey > human. In the cultured hepatocytes, although significant downregulation of Ntcp expression in SCRH at day 5 after the culture was detected, NTCP expression in SCHH was comparable to the suspension hepatocytes. The results suggested that NTCP/Ntcp modulation in cultured hepatocytes is species specific. Copyright © 2013 Wiley Periodicals, Inc.

  14. Sodium taurocholate cotransporting polypeptide inhibition efficiently blocks hepatitis B virus spread in mice with a humanized liver

    PubMed Central

    Nakabori, Tasuku; Hikita, Hayato; Murai, Kazuhiro; Nozaki, Yasutoshi; Kai, Yugo; Makino, Yuki; Saito, Yoshinobu; Tanaka, Satoshi; Wada, Hiroshi; Eguchi, Hidetoshi; Takahashi, Takeshi; Suemizu, Hiroshi; Sakamori, Ryotaro; Hiramatsu, Naoki; Tatsumi, Tomohide; Takehara, Tetsuo

    2016-01-01

    Sodium taurocholate cotransporting polypeptide (NTCP) is a recently discovered hepatitis B virus (HBV) receptor. In the present study, we used TK-NOG mice with a humanized liver to examine the impact of endogenous NTCP expression on HBV infection. Upon inoculation with HBV, these mice exhibited clear viremia in 2 weeks, and serum HBV DNA levels gradually increased. The frequency of HBsAg-positive hepatocytes in the liver was 5.1 ± 0.6% at 2 weeks and increased with increasing HBV DNA levels, reaching 92.9 ± 2.8% at 10 to 12 weeks. In vivo siRNA-mediated NTCP knockdown before and after HBV inoculation significantly suppressed the levels of HBV replication and the frequency of HBsAg-positive hepatocytes at 2 weeks, whereas NTCP knockdown 13 weeks after infection did not affect these parameters. Similar to the humanized mouse livers in the early phase of HBV infection, human liver samples from chronic hepatitis B patients, especially those treated with nucleos(t)ide analogues, contained a considerable number of hepatocytes that were negative for the anti-HBs antibody. In conclusion, NTCP inhibition prevents the spread of HBV-infected hepatocytes in mice with a humanized liver. NTCP-targeted therapy has potential for regulating HBV infection in patients with chronic hepatitis B. PMID:27278060

  15. Differential inhibition of rat and human Na+-dependent taurocholate cotransporting polypeptide (NTCP/SLC10A1)by bosentan: a mechanism for species differences in hepatotoxicity.

    PubMed

    Leslie, Elaine M; Watkins, Paul B; Kim, Richard B; Brouwer, Kim L R

    2007-06-01

    Bile acid accumulation in hepatocytes due to inhibition of the canalicular bile salt export pump (BSEP/ABCB11) has been proposed as a mechanism for bosentan-induced hepatotoxicity. The observation that bosentan does not induce hepatotoxicity in rats, although bosentan has been reported to inhibit rat Bsep and cause elevated serum bile acids, challenges this mechanism. The lack of hepatotoxicity could be explained if bosentan inhibited hepatocyte uptake as well as canalicular efflux of bile acids. In the current study, bosentan was found to be a more potent inhibitor of Na(+)-dependent taurocholate uptake in rat (IC(50) 5.4 microM) than human (IC(50) 30 microM) suspended hepatocytes. In addition, bosentan was a more potent inhibitor of taurocholate uptake by rat Na(+)-dependent taurocholate co-transporting polypeptide (Ntcp/Slc10a1) (IC(50) 0.71 microM) than human NTCP (SLC10A1) (IC(50) 24 microM) expressed in HEK293 cells. Thus, bosentan is a more potent inhibitor of Ntcp than NTCP, and this should result in less intrahepatocyte accumulation of bile acids in rats during bosentan treatment. To begin characterization of this species difference, two chimeric molecules were generated and expressed in HEK293 cells; NTCP(1-140)/Ntcp(141-362) and Ntcp(1-140)/NTCP(141-349). The mode of bosentan inhibition was noncompetitive for Ntcp, and competitive for NTCP (K(i) 18 microM) and NTCP(1-140)/Ntcp(141-362) (K(i) 1.7 microM); bosentan affected both the K(m) and V(max) of Ntcp(1-140)/NTCP(141-349) (K(i) 7.0 microM). The carboxyl portions of NTCP and Ntcp were found to confer species differences in basal taurocholate transport V(max). In conclusion, differential inhibition of Ntcp and NTCP may represent a novel mechanism for species differences in bosentan-induced hepatotoxicity.

  16. Primary biliary acids inhibit hepatitis D virus (HDV) entry into human hepatoma cells expressing the sodium-taurocholate cotransporting polypeptide (NTCP).

    PubMed

    Veloso Alves Pereira, Isabel; Buchmann, Bettina; Sandmann, Lisa; Sprinzl, Kathrin; Schlaphoff, Verena; Döhner, Katinka; Vondran, Florian; Sarrazin, Christoph; Manns, Michael P; Pinto Marques Souza de Oliveira, Cláudia; Sodeik, Beate; Ciesek, Sandra; von Hahn, Thomas

    2015-01-01

    The sodium-taurocholate cotransporting polypeptide (NTCP) is both a key bile acid (BA) transporter mediating uptake of BA into hepatocytes and an essential receptor for hepatitis B virus (HBV) and hepatitis D virus (HDV). In this study we aimed to characterize to what extent and through what mechanism BA affect HDV cell entry. HuH-7 cells stably expressing NTCP (HuH-7/NTCP) and primary human hepatocytes (PHH) were infected with in vitro generated HDV particles. Infectivity in the absence or presence of compounds was assessed using immunofluorescence staining for HDV antigen, standard 50% tissue culture infectious dose (TCID50) assays and quantitative PCR. Addition of primary conjugated and unconjugated BA resulted in a dose dependent reduction in the number of infected cells while secondary, tertiary and synthetic BA had a lesser effect. This effect was observed both in HuH-7/NTCP and in PHH. Other replication cycle steps such as replication and particle assembly and release were unaffected. Moreover, inhibitory BA competed with a fragment from the large HBV envelope protein for binding to NTCP-expressing cells. Conversely, the sodium/BA-cotransporter function of NTCP seemed not to be required for HDV infection since infection was similar in the presence or absence of a sodium gradient across the plasma membrane. When chenodeoxycolic acid (15 mg per kg body weight) was administered to three chronically HDV infected individuals over a period of up to 16 days there was no change in serum HDV RNA. Primary BA inhibit NTCP-mediated HDV entry into hepatocytes suggesting that modulation of the BA pool may affect HDV infection of hepatocytes.

  17. In silico analysis and experimental validation of azelastine hydrochloride (N4) targeting sodium taurocholate co-transporting polypeptide (NTCP) in HBV therapy.

    PubMed

    Fu, L-L; Liu, J; Chen, Y; Wang, F-T; Wen, X; Liu, H-Q; Wang, M-Y; Ouyang, L; Huang, J; Bao, J-K; Wei, Y-Q

    2014-08-01

    The aim of this study was to explore sodium taurocholate co-transporting polypeptide (NTCP) exerting its function with hepatitis B virus (HBV) and its targeted candidate compounds, in HBV therapy. Identification of NTCP as a novel HBV target for screening candidate small molecules, was used by phylogenetic analysis, network construction, molecular modelling, molecular docking and molecular dynamics (MD) simulation. In vitro virological examination, q-PCR, western blotting and cytotoxicity studies were used for validating efficacy of the candidate compound. We used the phylogenetic analysis of NTCP and constructed its protein-protein network. Also, we screened compounds from Drugbank and ZINC, among which five were validated for their authentication in HepG 2.2.15 cells. Then, we selected compound N4 (azelastine hydrochloride) as the most potent of them. This showed good inhibitory activity against HBsAg (IC50 = 7.5 μm) and HBeAg (IC50 = 3.7 μm), as well as high SI value (SI = 4.68). Further MD simulation results supported good interaction between compound N4 and NTCP. In silico analysis and experimental validation together demonstrated that compound N4 can target NTCP in HepG2.2.15 cells, which may shed light on exploring it as a potential anti-HBV drug. © 2014 John Wiley & Sons Ltd.

  18. Regulation of Plasma Membrane Localization of the Na+-Taurocholate Cotransporting Polypeptide (Ntcp) by Hyperosmolarity and Tauroursodeoxycholate*

    PubMed Central

    Sommerfeld, Annika; Mayer, Patrick G. K.; Cantore, Miriam; Häussinger, Dieter

    2015-01-01

    In perfused rat liver, hepatocyte shrinkage induces a Fyn-dependent retrieval of the bile salt export pump (Bsep) and multidrug resistance-associated protein 2 (Mrp2) from the canalicular membrane (Cantore, M., Reinehr, R., Sommerfeld, A., Becker, M., and Häussinger, D. (2011) J. Biol. Chem. 286, 45014–45029) leading to cholestasis. However little is known about the effects of hyperosmolarity on short term regulation of the Na+-taurocholate cotransporting polypeptide (Ntcp), the major bile salt uptake system at the sinusoidal membrane of hepatocytes. The aim of this study was to analyze hyperosmotic Ntcp regulation and the underlying signaling events. Hyperosmolarity induced a significant retrieval of Ntcp from the basolateral membrane, which was accompanied by an activating phosphorylation of the Src kinases Fyn and Yes but not of c-Src. Hyperosmotic internalization of Ntcp was sensitive to SU6656 and PP-2, suggesting that Fyn mediates Ntcp retrieval from the basolateral membrane. Hyperosmotic internalization of Ntcp was also found in livers from wild-type mice but not in p47phox knock-out mice. Tauroursodeoxycholate (TUDC) and cAMP reversed hyperosmolarity-induced Fyn activation and triggered re-insertion of the hyperosmotically retrieved Ntcp into the membrane. This was associated with dephosphorylation of the Ntcp on serine residues. Insertion of Ntcp by TUDC was sensitive to the integrin inhibitory hexapeptide GRGDSP and inhibition of protein kinase A. TUDC also reversed the hyperosmolarity-induced retrieval of bile salt export pump from the canalicular membrane. These findings suggest a coordinated and oxidative stress- and Fyn-dependent retrieval of sinusoidal and canalicular bile salt transport systems from the corresponding membranes. Ntcp insertion was also identified as a novel target of β1-integrin-dependent TUDC action, which is frequently used in the treatment of cholestatic liver disease. PMID:26306036

  19. Regulation of plasma membrane localization of the Na+-taurocholate cotransporting polypeptide (Ntcp) by hyperosmolarity and tauroursodeoxycholate.

    PubMed

    Sommerfeld, Annika; Mayer, Patrick G K; Cantore, Miriam; Häussinger, Dieter

    2015-10-02

    In perfused rat liver, hepatocyte shrinkage induces a Fyn-dependent retrieval of the bile salt export pump (Bsep) and multidrug resistance-associated protein 2 (Mrp2) from the canalicular membrane (Cantore, M., Reinehr, R., Sommerfeld, A., Becker, M., and Häussinger, D. (2011) J. Biol. Chem. 286, 45014-45029) leading to cholestasis. However little is known about the effects of hyperosmolarity on short term regulation of the Na(+)-taurocholate cotransporting polypeptide (Ntcp), the major bile salt uptake system at the sinusoidal membrane of hepatocytes. The aim of this study was to analyze hyperosmotic Ntcp regulation and the underlying signaling events. Hyperosmolarity induced a significant retrieval of Ntcp from the basolateral membrane, which was accompanied by an activating phosphorylation of the Src kinases Fyn and Yes but not of c-Src. Hyperosmotic internalization of Ntcp was sensitive to SU6656 and PP-2, suggesting that Fyn mediates Ntcp retrieval from the basolateral membrane. Hyperosmotic internalization of Ntcp was also found in livers from wild-type mice but not in p47(phox) knock-out mice. Tauroursodeoxycholate (TUDC) and cAMP reversed hyperosmolarity-induced Fyn activation and triggered re-insertion of the hyperosmotically retrieved Ntcp into the membrane. This was associated with dephosphorylation of the Ntcp on serine residues. Insertion of Ntcp by TUDC was sensitive to the integrin inhibitory hexapeptide GRGDSP and inhibition of protein kinase A. TUDC also reversed the hyperosmolarity-induced retrieval of bile salt export pump from the canalicular membrane. These findings suggest a coordinated and oxidative stress- and Fyn-dependent retrieval of sinusoidal and canalicular bile salt transport systems from the corresponding membranes. Ntcp insertion was also identified as a novel target of β1-integrin-dependent TUDC action, which is frequently used in the treatment of cholestatic liver disease. © 2015 by The American Society for Biochemistry and

  20. Cyclosporin A and its analogs inhibit hepatitis B virus entry into cultured hepatocytes through targeting a membrane transporter, sodium taurocholate cotransporting polypeptide (NTCP)

    PubMed Central

    Watashi, Koichi; Sluder, Ann; Daito, Takuji; Matsunaga, Satoko; Ryo, Akihide; Nagamori, Shushi; Iwamoto, Masashi; Nakajima, Syo; Tsukuda, Senko; Borroto-Esoda, Katyna; Sugiyama, Masaya; Tanaka, Yasuhito; Kanai, Yoshikatsu; Kusuhara, Hiroyuki; Mizokami, Masashi; Wakita, Takaji

    2014-01-01

    Chronic hepatitis B virus (HBV) infection is a major public health problem worldwide. Although nucleos(t)ide analogs inhibiting viral reverse transcriptase are clinically available as anti-HBV agents, emergence of drug-resistant viruses highlights the need for new anti-HBV agents interfering with other targets. Here we report that cyclosporin A (CsA) can inhibit HBV entry into cultured hepatocytes. The anti-HBV effect of CsA was independent of binding to cyclophilin and calcineurin. Rather, blockade of HBV infection correlated with the ability to inhibit the transporter activity of sodium taurocholate cotransporting polypeptide (NTCP). We also found that HBV infection-susceptible cells, differentiated HepaRG cells and primary human hepatocytes expressed NTCP, while nonsusceptible cell lines did not. A series of compounds targeting NTCP could inhibit HBV infection. CsA inhibited the binding between NTCP and large envelope protein in vitro. Evaluation of CsA analogs identified a compound with higher anti-HBV potency, having a median inhibitory concentration <0.2 μM. Conclusion: This study provides a proof of concept for the novel strategy to identify anti-HBV agents by targeting the candidate HBV receptor, NTCP, using CsA as a structural platform. (Hepatology 2014;59:1726–1737) PMID:24375637

  1. Genetic polymorphisms in Na+-taurocholate co-transporting polypeptide (NTCP) and ileal apical sodium-dependent bile acid transporter (ASBT) and ethnic comparisons of functional variants of NTCP among Asian populations.

    PubMed

    Pan, Wei; Song, Im-Sook; Shin, Ho-Jung; Kim, Min-Hye; Choi, Yeong-Lim; Lim, Su-Jeong; Kim, Woo-Young; Lee, Sang-Seop; Shin, Jae-Gook

    2011-06-01

    Genetic variants of Na(+)-taurocholate co-transporting polypeptide (NTCP; SLC10A1) and ileal apical sodium-dependent bile acid transporter (ASBT; SLC10A2), which greatly contribute to bile acid homeostasis, were extensively explored in the Korean population and functional variants of NTCP were compared among Asian populations. From direct DNA sequencing, six SNPs were identified in the SLC10A1 gene and 14 SNPs in the SLC10A2 gene. Three of seven coding variants were non-synonymous SNPs: two variants from SLC10A1 (A64T, S267F) and one from SLC10A2 (A171S). No linkage was analysed in the SLC10A1 gene because of low frequencies of genetic variants, and the SLC10A2 gene was composed of two separated linkage disequilibrium blocks contrary to the white population. The stably transfected NTCP-A64T variant showed significantly decreased uptakes of taurocholate and rosuvastatin compared with wild-type NTCP. The decreased taurocholate uptake and increased rosuvastatin uptake were shown in the NTCP-S267F variant. The allele frequencies of these functional variants were 1.0% and 3.1%, respectively, in a Korean population. However, NTCP-A64T was not found in Chinese and Vietnamese subjects. The frequency distribution of NTCP-S267F in Koreans was significantly lower than those in Chinese and Vietnamese populations. Our data suggest that NTCP-A64T and -S267F variants cause substrate-dependent functional change in vitro, and show ethnic difference in their allelic frequencies among Asian populations although the clinical relevance of these variants is remained to be evaluated.

  2. Design and synthesis of a novel candidate compound NTI-007 targeting sodium taurocholate cotransporting polypeptide [NTCP]-APOA1-HBx-Beclin1-mediated autophagic pathway in HBV therapy.

    PubMed

    Zhang, Jin; Fu, Lei-Lei; Tian, Mao; Liu, Hao-Qiu; Li, Jing-Jing; Li, Yan; He, Jun; Huang, Jian; Ouyang, Liang; Gao, Hui-Yuan; Wang, Jin-Hui

    2015-03-01

    Sodium taurocholate cotransporting polypeptide (NTCP) is a multiple transmembrane transporter predominantly expressed in the liver, functioning as a functional receptor for HBV. Through our continuous efforts to identify NTCP as a novel HBV target, we designed and synthesized a series of new compounds based on the structure of our previous compound NT-5. Molecular docking and MD simulation validated that a new compound named NTI-007 can tightly bind to NTCP, whose efficacy was also measured in vitro virological examination and cytotoxicity studies. Furthermore, autophagy was observed in NTI-007 incubated HepG2.2.15 cells, and results of q-PCR and Western blotting revealed that NTI-007 induced autophagy through NTCP-APOA1-HBx-Beclin1-mediated pathway. Taken together, considering crucial role of NTCP in HBV infection, NTCP-mediated autophagic pathway may provide a promising strategy of HBV therapy and given efficacy of NTI-007 triggering autophagy. Our study suggests pre-clinical potential of this compound as a novel anti-HBV drug candidate. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Quantitative assessment of the contribution of sodium-dependent taurocholate co-transporting polypeptide (NTCP) to the hepatic uptake of rosuvastatin, pitavastatin and fluvastatin.

    PubMed

    Bi, Yi-an; Qiu, Xi; Rotter, Charles J; Kimoto, Emi; Piotrowski, Mary; Varma, Manthena V; Ei-Kattan, Ayman F; Lai, Yurong

    2013-11-01

    Hepatic uptake transport is often the rate-determining step in the systemic clearance of drugs. The ability to predict uptake clearance and to determine the contribution of individual transporters to overall hepatic uptake is therefore critical in assessing the potential pharmacokinetic and pharmacodynamic variability associated with drug-drug interactions and pharmacogenetics. The present study revisited the interaction of statin drugs, including pitavastatin, fluvastatin and rosuvastatin, with the sodium-dependent taurocholate co-transporting polypeptide (NTCP) using gene transfected cell models. In addition, the uptake clearance and the contribution of NTCP to the overall hepatic uptake were assessed using in vitro hepatocyte models. Then NTCP protein expression was measured by a targeted proteomics transporter quantification method to confirm the presence and stability of NTCP expression in suspended and cultured hepatocyte models. It was concluded that NTCP-mediated uptake contributed significantly to active hepatic uptake in hepatocyte models for all three statins. However, the contribution of NTCP-mediated uptake to the overall active hepatic uptake was compound-dependent and varied from about 24% to 45%. Understanding the contribution of individual transporter proteins to the overall hepatic uptake and its functional variability when other active hepatic uptake pathways are interrupted could improve the current prediction practice used to assess the pharmacokinetic variability due to drug-drug interactions, pharmacogenetics and physiopathological conditions in humans. Copyright © 2013 John Wiley & Sons, Ltd.

  4. Kinetics of the bile acid transporter and hepatitis B virus receptor Na+/taurocholate cotransporting polypeptide (NTCP) in hepatocytes.

    PubMed

    König, Alexander; Döring, Barbara; Mohr, Christina; Geipel, Andreas; Geyer, Joachim; Glebe, Dieter

    2014-10-01

    The human liver bile acid transporter Na(+)/taurocholate cotransporting polypeptide (NTCP) has recently been identified as liver-specific receptor for infection of hepatitis B virus (HBV), which attaches via the myristoylated preS1 (myr-preS1) peptide domain of its large surface protein to NTCP. Since binding of the myr-preS1 peptide to NTCP is an initiating step of HBV infection, we investigated if this process interferes with the physiological bile acid transport function of NTCP. HBV infection, myr-preS1 peptide binding, and bile acid transport assays were performed with primary Tupaia belangeri (PTH) and human (PHH) hepatocytes as well as NTCP-transfected human hepatoma HepG2 cells allowing regulated NTCP expression, in the presence of various bile acids, ezetimibe, and myr-preS1 peptides. The myr-preS1 peptide of HBV inhibited bile acid transport in PTH and PHH as well as in NTCP-expressing HEK293 and HepG2 cells. Inversely, HBV infection of PTH, PHH, and NTCP-transfected HepG2 cells was inhibited in a concentration-dependent manner by taurine and glycine conjugates of cholic acid and ursodeoxycholic acid as well as by ezetimibe. In NTCP-HepG2 cells and PTH, NTCP expression, NTCP transport function, myr-preS1 peptide binding, and HBV infection followed comparable kinetics. Myr-preS1 virus binding to NTCP, necessary for productive HBV infection, interferes with the physiological bile acid transport function of NTCP. Therefore, HBV infection via NTCP may be lockable by NTCP substrates and NTCP-inhibiting drugs. This opens a completely new way for an efficient management of HBV infection by the use of NTCP-directed drugs. Copyright © 2014 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  5. Interaction of human organic anion transporter 2 (OAT2) and sodium taurocholate cotransporting polypeptide (NTCP) with antineoplastic drugs.

    PubMed

    Marada, Venkata V V R; Flörl, Saskia; Kühne, Annett; Müller, Judith; Burckhardt, Gerhard; Hagos, Yohannes

    2015-01-01

    The ability of an antineoplastic drug to exert its cytostatic effect depends largely on the balance between its uptake into and extrusion from the cancer cells. ATP driven efflux transporter proteins drive the export of antineoplastic drugs and play a pivotal role in the development of chemoresistance. As regards uptake transporters, comparably less is known on their impact in drug action. In the current study, we characterized the interactions of two uptake transporter proteins, expressed mainly in the liver; the organic anion transporter 2 (OAT2, encoded by the SLC22A7 gene) and the sodium taurocholate cotransporting polypeptide (NTCP, encoded by the SLC10A1 gene), stably transfected in human embryonic kidney cells, with some antineoplastic agents that are routinely being used in cancer chemotherapy. Whereas NTCP did not show any strong interactions with the cytostatics tested, we observed a very strong inhibition of OAT2 mediated [(3)H] cGMP uptake in the presence of bendamustine, irinotecan and paclitaxel. The Ki values of OAT2 for bendamustine, irinotecan and paclitaxel were determined to be 43.3±4.33μM, 26.4±2.34μM and 10.4±0.45μM, respectively. Incubation of bendamustine with OAT2 expressing cells increased the caspase-3 activity, and this increase was inhibited by simultaneous incubation with bendamustine and probenecid, a well-known inhibitor of OATs, suggesting that bendamustine is a substrate of OAT2. A higher accumulation of irinotecan was observed in OAT2 expressing cells compared to control pcDNA cells by HPLC analysis of cell lysates. The accumulation was diminished in the presence of cGMP, the substrate we used to functionally characterize OAT2, suggesting specificity of this uptake and the fact that OAT2 mediates uptake of irinotecan. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Cyclosporin A and its analogs inhibit hepatitis B virus entry into cultured hepatocytes through targeting a membrane transporter, sodium taurocholate cotransporting polypeptide (NTCP).

    PubMed

    Watashi, Koichi; Sluder, Ann; Daito, Takuji; Matsunaga, Satoko; Ryo, Akihide; Nagamori, Shushi; Iwamoto, Masashi; Nakajima, Syo; Tsukuda, Senko; Borroto-Esoda, Katyna; Sugiyama, Masaya; Tanaka, Yasuhito; Kanai, Yoshikatsu; Kusuhara, Hiroyuki; Mizokami, Masashi; Wakita, Takaji

    2014-05-01

    Chronic hepatitis B virus (HBV) infection is a major public health problem worldwide. Although nucleos(t)ide analogs inhibiting viral reverse transcriptase are clinically available as anti-HBV agents, emergence of drug-resistant viruses highlights the need for new anti-HBV agents interfering with other targets. Here we report that cyclosporin A (CsA) can inhibit HBV entry into cultured hepatocytes. The anti-HBV effect of CsA was independent of binding to cyclophilin and calcineurin. Rather, blockade of HBV infection correlated with the ability to inhibit the transporter activity of sodium taurocholate cotransporting polypeptide (NTCP). We also found that HBV infection-susceptible cells, differentiated HepaRG cells and primary human hepatocytes expressed NTCP, while nonsusceptible cell lines did not. A series of compounds targeting NTCP could inhibit HBV infection. CsA inhibited the binding between NTCP and large envelope protein in vitro. Evaluation of CsA analogs identified a compound with higher anti-HBV potency, having a median inhibitory concentration <0.2 μM. This study provides a proof of concept for the novel strategy to identify anti-HBV agents by targeting the candidate HBV receptor, NTCP, using CsA as a structural platform. Copyright © 2014 The Authors. Hepatology published by Wiley on behalf of the American Association for the Study of Liver Diseases.

  7. Na+-taurocholate cotransporting polypeptide (NTCP/SLC10A1) ortholog in the marine skate Leucoraja erinacea is not a physiological bile salt transporter

    PubMed Central

    Yu, Dongke; Zhang, Han; Lionarons, Daniel A.; Boyer, James L.

    2017-01-01

    The Na+-dependent taurocholate cotransporting polypeptide (NTCP/SLC10A1) is a hepatocyte-specific solute carrier, which plays an important role in maintaining bile salt homeostasis in mammals. The absence of a hepatic Na+-dependent bile salt transport system in marine skate and rainbow trout raises a question regarding the function of the Slc10a1 gene in these species. Here, we have characterized the Slc10a1 gene in the marine skate, Leucoraja erinacea. The transcript of skate Slc10a1 (skSlc10a1) encodes 319 amino acids and shares 46% identity to human NTCP (hNTCP) with similar topology to mammalian NTCP. SkSlc10a1 mRNA was mostly confined to the brain and testes with minimal expression in the liver. An FXR-bile salt reporter assay indicated that skSlc10a1 transported taurocholic acid (TCA) and scymnol sulfate, but not as effectively as hNTCP. An [3H]TCA uptake assay revealed that skSlc10a1 functioned as a Na+-dependent transporter, but with low affinity for TCA (Km = 92.4 µM) and scymnol sulfate (Ki = 31 µM), compared with hNTCP (TCA, Km = 5.4 µM; Scymnol sulfate, Ki = 3.5 µM). In contrast, the bile salt concentration in skate plasma was 2 µM, similar to levels seen in mammals. Interestingly, skSlc10a1 demonstrated transport activity for the neurosteroids dehydroepiandrosterone sulfate and estrone-3-sulfate at physiological concentration, similar to hNTCP. Together, our findings indicate that skSlc10a1 is not a physiological bile salt transporter, providing a molecular explanation for the absence of a hepatic Na+-dependent bile salt uptake system in skate. We speculate that Slc10a1 is a neurosteroid transporter in skate that gained its substrate specificity for bile salts later in vertebrate evolution. PMID:28077388

  8. Na+-taurocholate cotransporting polypeptide (NTCP/SLC10A1) ortholog in the marine skate Leucoraja erinacea is not a physiological bile salt transporter.

    PubMed

    Yu, Dongke; Zhang, Han; Lionarons, Daniel A; Boyer, James L; Cai, Shi-Ying

    2017-04-01

    The Na + -dependent taurocholate cotransporting polypeptide (NTCP/SLC10A1) is a hepatocyte-specific solute carrier, which plays an important role in maintaining bile salt homeostasis in mammals. The absence of a hepatic Na + -dependent bile salt transport system in marine skate and rainbow trout raises a question regarding the function of the Slc10a1 gene in these species. Here, we have characterized the Slc10a1 gene in the marine skate, Leucoraja erinacea The transcript of skate Slc10a1 (skSlc10a1) encodes 319 amino acids and shares 46% identity to human NTCP (hNTCP) with similar topology to mammalian NTCP. SkSlc10a1 mRNA was mostly confined to the brain and testes with minimal expression in the liver. An FXR-bile salt reporter assay indicated that skSlc10a1 transported taurocholic acid (TCA) and scymnol sulfate, but not as effectively as hNTCP. An [ 3 H]TCA uptake assay revealed that skSlc10a1 functioned as a Na + -dependent transporter, but with low affinity for TCA ( K m = 92.4 µM) and scymnol sulfate ( K i = 31 µM), compared with hNTCP (TCA, K m = 5.4 µM; Scymnol sulfate, K i = 3.5 µM). In contrast, the bile salt concentration in skate plasma was 2 µM, similar to levels seen in mammals. Interestingly, skSlc10a1 demonstrated transport activity for the neurosteroids dehydroepiandrosterone sulfate and estrone-3-sulfate at physiological concentration, similar to hNTCP. Together, our findings indicate that skSlc10a1 is not a physiological bile salt transporter, providing a molecular explanation for the absence of a hepatic Na + -dependent bile salt uptake system in skate. We speculate that Slc10a1 is a neurosteroid transporter in skate that gained its substrate specificity for bile salts later in vertebrate evolution. Copyright © 2017 the American Physiological Society.

  9. Na+/Taurocholate Cotransporting Polypeptide and Apical Sodium-Dependent Bile Acid Transporter Are Involved in the Disposition of Perfluoroalkyl Sulfonates in Humans and Rats

    PubMed Central

    Zhao, Wen; Zitzow, Jeremiah D.; Ehresman, David J.; Chang, Shu-Ching; Butenhoff, John L.; Forster, Jameson; Hagenbuch, Bruno

    2015-01-01

    Among the perfluoroalkyl sulfonates (PFASs), perfluorohexane sulfonate (PFHxS), and perfluorooctane sulfonate (PFOS) have half-lives of several years in humans, mainly due to slow renal clearance and potential hepatic accumulation. Both compounds undergo enterohepatic circulation. To determine whether transporters involved in the enterohepatic circulation of bile acids are also involved in the disposition of PFASs, uptake of perfluorobutane sulfonate (PFBS), PFHxS, and PFOS was measured using freshly isolated human and rat hepatocytes in the absence or presence of sodium. The results demonstrated sodium-dependent uptake for all 3 PFASs. Given that the Na+/taurocholate cotransporting polypeptide (NTCP) and the apical sodium-dependent bile salt transporter (ASBT) are essential for the enterohepatic circulation of bile acids, transport of PFASs was investigated in stable CHO Flp-In cells for human NTCP or HEK293 cells transiently expressing rat NTCP, human ASBT, and rat ASBT. The results demonstrated that both human and rat NTCP can transport PFBS, PFHxS, and PFOS. Kinetics with human NTCP revealed Km values of 39.6, 112, and 130 µM for PFBS, PFHxS, and PFOS, respectively. For rat NTCP Km values were 76.2 and 294 µM for PFBS and PFHxS, respectively. Only PFOS was transported by human ASBT whereas rat ASBT did not transport any of the tested PFASs. Human OSTα/β was also able to transport all 3 PFASs. In conclusion, these results suggest that the long half-live and the hepatic accumulation of PFOS in humans are at least, in part, due to transport by NTCP and ASBT. PMID:26001962

  10. Dysregulation of retinoic acid receptor diminishes hepatocyte permissiveness to hepatitis B virus infection through modulation of sodium taurocholate cotransporting polypeptide (NTCP) expression.

    PubMed

    Tsukuda, Senko; Watashi, Koichi; Iwamoto, Masashi; Suzuki, Ryosuke; Aizaki, Hideki; Okada, Maiko; Sugiyama, Masaya; Kojima, Soichi; Tanaka, Yasuhito; Mizokami, Masashi; Li, Jisu; Tong, Shuping; Wakita, Takaji

    2015-02-27

    Sodium taurocholate cotransporting polypeptide (NTCP) is an entry receptor for hepatitis B virus (HBV) and is regarded as one of the determinants that confer HBV permissiveness to host cells. However, how host factors regulate the ability of NTCP to support HBV infection is largely unknown. We aimed to identify the host signaling that regulated NTCP expression and thereby permissiveness to HBV. Here, a cell-based chemical screening method identified that Ro41-5253 decreased host susceptibility to HBV infection. Pretreatment with Ro41-5253 inhibited the viral entry process without affecting HBV replication. Intriguingly, Ro41-5253 reduced expression of both NTCP mRNA and protein. We found that retinoic acid receptor (RAR) regulated the promoter activity of the human NTCP (hNTCP) gene and that Ro41-5253 repressed the hNTCP promoter by antagonizing RAR. RAR recruited to the hNTCP promoter region, and nucleotides -112 to -96 of the hNTCP was suggested to be critical for RAR-mediated transcriptional activation. HBV susceptibility was decreased in pharmacologically RAR-inactivated cells. CD2665 showed a stronger anti-HBV potential and disrupted the spread of HBV infection that was achieved by continuous reproduction of the whole HBV life cycle. In addition, this mechanism was significant for drug development, as antagonization of RAR blocked infection of multiple HBV genotypes and also a clinically relevant HBV mutant that was resistant to nucleoside analogs. Thus, RAR is crucial for regulating NTCP expression that determines permissiveness to HBV infection. This is the first demonstration showing host regulation of NTCP to support HBV infection. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Dysregulation of Retinoic Acid Receptor Diminishes Hepatocyte Permissiveness to Hepatitis B Virus Infection through Modulation of Sodium Taurocholate Cotransporting Polypeptide (NTCP) Expression*

    PubMed Central

    Tsukuda, Senko; Watashi, Koichi; Iwamoto, Masashi; Suzuki, Ryosuke; Aizaki, Hideki; Okada, Maiko; Sugiyama, Masaya; Kojima, Soichi; Tanaka, Yasuhito; Mizokami, Masashi; Li, Jisu; Tong, Shuping; Wakita, Takaji

    2015-01-01

    Sodium taurocholate cotransporting polypeptide (NTCP) is an entry receptor for hepatitis B virus (HBV) and is regarded as one of the determinants that confer HBV permissiveness to host cells. However, how host factors regulate the ability of NTCP to support HBV infection is largely unknown. We aimed to identify the host signaling that regulated NTCP expression and thereby permissiveness to HBV. Here, a cell-based chemical screening method identified that Ro41-5253 decreased host susceptibility to HBV infection. Pretreatment with Ro41-5253 inhibited the viral entry process without affecting HBV replication. Intriguingly, Ro41-5253 reduced expression of both NTCP mRNA and protein. We found that retinoic acid receptor (RAR) regulated the promoter activity of the human NTCP (hNTCP) gene and that Ro41-5253 repressed the hNTCP promoter by antagonizing RAR. RAR recruited to the hNTCP promoter region, and nucleotides −112 to −96 of the hNTCP was suggested to be critical for RAR-mediated transcriptional activation. HBV susceptibility was decreased in pharmacologically RAR-inactivated cells. CD2665 showed a stronger anti-HBV potential and disrupted the spread of HBV infection that was achieved by continuous reproduction of the whole HBV life cycle. In addition, this mechanism was significant for drug development, as antagonization of RAR blocked infection of multiple HBV genotypes and also a clinically relevant HBV mutant that was resistant to nucleoside analogs. Thus, RAR is crucial for regulating NTCP expression that determines permissiveness to HBV infection. This is the first demonstration showing host regulation of NTCP to support HBV infection. PMID:25550158

  12. Modification of Three Amino Acids in Sodium Taurocholate Cotransporting Polypeptide Renders Mice Susceptible to Infection with Hepatitis D Virus In Vivo

    PubMed Central

    He, Wenhui; Cao, Zhiliang; Mao, Fengfeng; Ren, Bijie; Li, Yunfei; Li, Dan; Li, Huiyu; Peng, Bo; Yan, Huan; Qi, Yonghe; Sun, Yinyan; Wang, Fengchao

    2016-01-01

    ABSTRACT Sodium taurocholate cotransporting polypeptide (NTCP) was identified as a functional receptor for hepatitis D virus (HDV) and its helper hepatitis B virus (HBV). In cultured cell lines, HDV infection through mouse NTCP is restricted by residues 84 to 87 of the receptor. This study shows that mice with these three amino acids altered their corresponding human residues (H84R, T86K, and S87N) in endogenous mouse NTCP support de novo HDV infection in vivo. HDV infection was documented by the presence of replicative forms of HDV RNA and HDV proteins in liver cells at day 6 after viral inoculation. Monoclonal antibody specifically binding to the motif centered on K86 in NTCP partially inhibited HDV infection. These studies demonstrated specific interaction between the receptor and the viral envelopes in vivo and established a novel mouse model with minimal genetic manipulation for studying HDV infection. The model will also be useful for evaluating entry inhibitors against HDV and its helper HBV. IMPORTANCE NTCP was identified as a functional receptor for both HDV and HBV in cell cultures. We recently showed that neonatal C57BL/6 transgenic (Tg) mice exogenously expressing human NTCP (hNTCP-Tg) in liver support transient HDV infection. In this study, we introduced alterations of three amino acids in the endogenous NTCP of FVB mice through genome editing. The mice with the humanized NTCP residues (H84R, T86K, and S87N) are susceptible to HDV infection, and the infection can be established in both neonatal and adult mice with this editing. We also developed a monoclonal antibody specifically targeting the region of NTCP centered on lysine residue 86, and it can differentiate the modified mouse NTCP from that of the wild type and partially inhibited HDV infection. These studies shed new light on NTCP-mediated HDV infection in vivo, and the NTCP-modified mice provide a useful animal model for studying HDV infection and evaluating antivirals against the infection

  13. Sodium taurocholate cotransporting polypeptide (NTCP) deficiency: Identification of a novel SLC10A1 mutation in two unrelated infants presenting with neonatal indirect hyperbilirubinemia and remarkable hypercholanemia

    PubMed Central

    Qiu, Jian-Wu; Deng, Mei; Cheng, Ying; Atif, Raza-Muhammad; Lin, Wei-Xia; Guo, Li; Li, Hua; Song, Yuan-Zong

    2017-01-01

    Sodium taurocholate cotransporting polypeptide (NTCP) is encoded by the gene SLC10A1 and expressed in the basolateral membrane of the hepatocyte, functioning to uptake bile acids from plasma. Although SLC10A1 has been cloned and NTCP function studied intensively for years, clinical description of NTCP deficiency remains rather limited. This study reported the genotypic and phenotypic features of two neonatal patients with NTCP deficiency. They both presented with neonatal indirect hyperbilirubinemia and remarkable hypercholanemia, and harbored the SLC10A1 variants c.800C>T (p.S267F) and c.263T>C (p.I88T). On genetic analysis of the two family trios, the latter missense variant was detected in trans with the former, a reported loss-of-function variant. Having not been reported in any databases, the c.263T>C (p.I88T) variant demonstrated an allele frequency of 0.67% (1/150) in healthy controls. Moreover, this variant involved a relatively conservative amino acid, and was predicted to be pathogenic or deleterious by changing the conformation of the NTCP molecule. In conclusion, the novel variant c.263T>C (p.I88T) in this study enriched the SLC10A1 mutation spectrum; the clinical findings lent support to the primary role of NTCP in hepatic bile acid clearance, and suggested that NTCP deficiency might be a contributing factor for the development of neonatal indirect hyperbilirubinemia. PMID:29290974

  14. Sodium taurocholate cotransporting polypeptide (NTCP) deficiency: Identification of a novel SLC10A1 mutation in two unrelated infants presenting with neonatal indirect hyperbilirubinemia and remarkable hypercholanemia.

    PubMed

    Qiu, Jian-Wu; Deng, Mei; Cheng, Ying; Atif, Raza-Muhammad; Lin, Wei-Xia; Guo, Li; Li, Hua; Song, Yuan-Zong

    2017-12-05

    Sodium taurocholate cotransporting polypeptide (NTCP) is encoded by the gene SLC10A1 and expressed in the basolateral membrane of the hepatocyte, functioning to uptake bile acids from plasma. Although SLC10A1 has been cloned and NTCP function studied intensively for years, clinical description of NTCP deficiency remains rather limited. This study reported the genotypic and phenotypic features of two neonatal patients with NTCP deficiency. They both presented with neonatal indirect hyperbilirubinemia and remarkable hypercholanemia, and harbored the SLC10A1 variants c.800C>T (p.S267F) and c.263T>C (p.I88T). On genetic analysis of the two family trios, the latter missense variant was detected in trans with the former, a reported loss-of-function variant. Having not been reported in any databases, the c.263T>C (p.I88T) variant demonstrated an allele frequency of 0.67% (1/150) in healthy controls. Moreover, this variant involved a relatively conservative amino acid, and was predicted to be pathogenic or deleterious by changing the conformation of the NTCP molecule. In conclusion, the novel variant c.263T>C (p.I88T) in this study enriched the SLC10A1 mutation spectrum; the clinical findings lent support to the primary role of NTCP in hepatic bile acid clearance, and suggested that NTCP deficiency might be a contributing factor for the development of neonatal indirect hyperbilirubinemia.

  15. Characterisation of the hepatitis B virus cross-species transmission pattern via Na+/taurocholate co-transporting polypeptides from 11 New World and Old World primate species.

    PubMed

    Müller, Simon F; König, Alexander; Döring, Barbara; Glebe, Dieter; Geyer, Joachim

    2018-01-01

    The hepatic Na+/taurocholate co-transporting polypeptide (NTCP in man, Ntcp in animals) is the high-affinity receptor for the hepatitis B (HBV) and hepatitis D (HDV) viruses. Species barriers for human HBV/HDV within the order Primates were previously attributed to Ntcp sequence variations that disable virus-receptor interaction. However, only a limited number of primate Ntcps have been analysed so far. In the present study, a total of 11 Ntcps from apes, Old and New World monkeys were cloned and expressed in vitro to characterise their interaction with HBV and HDV. All Ntcps showed intact bile salt transport. Human NTCP as well as the Ntcps from the great apes chimpanzee and orangutan showed transport-competing binding of HBV derived myr-preS1-peptides. In contrast, all six Ntcps from the group of Old World monkeys were insensitive to HBV myr-preS1-peptide binding and HBV/HDV infection. This is basically predetermined by the amino acid arginine at position 158 of all studied Old World monkey Ntcps. An exchange from arginine to glycine (as present in humans and great apes) at this position (R158G) alone was sufficient to achieve full transport-competing HBV myr-preS1-peptide binding and susceptibility for HBV/HDV infection. New World monkey Ntcps showed higher sequence heterogeneity, but in two cases with 158G showed transport-competing HBV myr-preS1-peptide binding, and in one case (Saimiri sciureus) even susceptibility for HBV/HDV infection. In conclusion, amino acid position 158 of NTCP/Ntcp is sufficient to discriminate between the HBV/HDV susceptible group of humans and great apes (158G) and the non-susceptible group of Old World monkeys (158R). In the case of the phylogenetically more distant New World monkey Ntcps amino acid 158 plays a significant, but not exclusive role.

  16. Nitric oxide-mediated inhibition of taurocholate uptake involves S-nitrosylation of NTCP.

    PubMed

    Schonhoff, Christopher M; Ramasamy, Umadevi; Anwer, M Sawkat

    2011-02-01

    The sodium-taurocholate (TC) cotransporting polypeptide (NTCP) facilitates bile formation by mediating sinusoidal Na(+)-TC cotransport. During sepsis-induced cholestasis, there is a decrease in NTCP-dependent uptake of bile acids and an increase in nitric oxide (NO) levels in hepatocytes. In rat hepatocytes NO inhibits Na(+)-dependent uptake of taurocholate. The aim of this study was to extend these findings to human NTCP and to further investigate the mechanism by which NO inhibits TC uptake. Using a human hepatoma cell line stably expressing NTCP (HuH-NTCP), we performed experiments with the NO donors sodium nitroprusside and S-nitrosocysteine and demonstrated that NO inhibits TC uptake in these cells. Kinetic analyses revealed that NO significantly decreased the V(max) but not the K(m) of TC uptake by NTCP, indicating noncompetitive inhibition. NO decreased the amount of NTCP in the plasma membrane, providing a molecular mechanism for the noncompetitive inhibition of TC uptake. One way that NO can modify protein function is through a posttranslational modification known as S-nitrosylation: the binding of NO to cysteine thiols. Using a biotin switch technique we observed that NTCP is S-nitrosylated under conditions in which NO inhibits TC uptake. Moreover, dithiothreitol reversed NO-mediated inhibition of TC uptake and S-nitrosylation of NTCP, indicating that NO inhibits TC uptake via modification of cysteine thiols. In addition, NO treatment led to a decrease in Ntcp phosphorylation. Taken together these results indicate that the inhibition of TC uptake by NO involves S-nitrosylation of NTCP.

  17. Cysteine 96 of Ntcp is responsible for NO-mediated inhibition of taurocholate uptake.

    PubMed

    Ramasamy, Umadevi; Anwer, M Sawkat; Schonhoff, Christopher M

    2013-10-01

    The Na(+) taurocholate (TC) cotransporting polypeptide Ntcp/NTCP mediates TC uptake across the sinusoidal membrane of hepatocytes. Previously, we demonstrated that nitric oxide (NO) inhibits TC uptake through S-nitrosylation of a cysteine residue. Our current aim was to determine which of the eight cysteine residues of Ntcp is responsible for NO-mediated S-nitrosylation and inhibition of TC uptake. Thus, we tested the effect of NO on TC uptake in HuH-7 cells transiently transfected with cysteine-to-alanine mutant Ntcp constructs. Of the eight mutants tested, only C44A Ntcp displayed decreased total and plasma membrane (PM) levels that were also reflected in decreased TC uptake. C266A Ntcp showed a decrease in TC uptake that was not explained by a decrease in total expression or PM localization, indicating that C266 is required for optimal uptake. We speculated that NO would target C266 since a previous report had shown the thiol reactive compound [2-(trimethylammonium) ethyl] methanethiosulfonate bromide (MTSET) inhibits TC uptake by wild-type NTCP but not by C266A NTCP. We confirmed that MTSET targets C266 of Ntcp, but, surprisingly, we found that C266 was not responsible for NO-mediated inhibition of TC uptake. Instead, we found that C96 was targeted by NO since C96A Ntcp was insensitive to NO-mediated inhibition of TC uptake. We also found that wild-type but not C96A Ntcp is S-nitrosylated by NO, suggesting that C96 is important in regulating Ntcp function in response to elevated levels of NO.

  18. Cysteine 96 of Ntcp is responsible for NO-mediated inhibition of taurocholate uptake

    PubMed Central

    Ramasamy, Umadevi; Anwer, M. Sawkat

    2013-01-01

    The Na+ taurocholate (TC) cotransporting polypeptide Ntcp/NTCP mediates TC uptake across the sinusoidal membrane of hepatocytes. Previously, we demonstrated that nitric oxide (NO) inhibits TC uptake through S-nitrosylation of a cysteine residue. Our current aim was to determine which of the eight cysteine residues of Ntcp is responsible for NO-mediated S-nitrosylation and inhibition of TC uptake. Thus, we tested the effect of NO on TC uptake in HuH-7 cells transiently transfected with cysteine-to-alanine mutant Ntcp constructs. Of the eight mutants tested, only C44A Ntcp displayed decreased total and plasma membrane (PM) levels that were also reflected in decreased TC uptake. C266A Ntcp showed a decrease in TC uptake that was not explained by a decrease in total expression or PM localization, indicating that C266 is required for optimal uptake. We speculated that NO would target C266 since a previous report had shown the thiol reactive compound [2-(trimethylammonium) ethyl] methanethiosulfonate bromide (MTSET) inhibits TC uptake by wild-type NTCP but not by C266A NTCP. We confirmed that MTSET targets C266 of Ntcp, but, surprisingly, we found that C266 was not responsible for NO-mediated inhibition of TC uptake. Instead, we found that C96 was targeted by NO since C96A Ntcp was insensitive to NO-mediated inhibition of TC uptake. We also found that wild-type but not C96A Ntcp is S-nitrosylated by NO, suggesting that C96 is important in regulating Ntcp function in response to elevated levels of NO. PMID:23886862

  19. Taurocholate pool size and distribution in the fetal rat.

    PubMed Central

    Little, J M; Richey, J E; Van Thiel, D H; Lester, R

    1979-01-01

    Taurocholate concentrations in fetal and neonatal rats were determined by radioimmunoassay. Total body taurocholate pool size varied from 0.0049 +/- 0.0008 to 203 +/- 8 nmol/g body weight from day 5 of gestation to 5 d after birth. A 50-fold increase in taurocholate pool size was observed between days 15 and 19 of gestation. The distribution of taurocholate between liver, intestine, and the remainder of the carcass was determined for rats of gestational age 19 d to 5 d after birth. The major fraction of total body taurocholate was in the liver and intestine, with less than 15% in the remainder of the carcass. The ratio of taurocholate in intestine to taurocholate in liver, which was 1:17 at 19 d of gestation, had altered substantially to a ratio of 6:1 by 5 d after birth. Treatment of pregnant rats with 60 microgram/d of dexamethasone from gestational day 9 until sacrifice increased fetal taurocholate pool size by 80% at 15 d, 40% at 19 d, and 16% at 1 d after birth. Administration of dexamethasone to the mother also changed the ratio of taurocholate in intestine to taurocholate in liver. At 19 d of gestation, dexamethasone-treated mothers had fetuses with approximately equal amounts of taurocholate in intestine and liver. This suggested that adrenocorticosteroids stimulate the early maturation of factors controlling taurocholate pool size and tissue distribution in the rat fetus. PMID:447826

  20. N-Glycosylation of the Na+-Taurocholate Cotransporting Polypeptide (NTCP) Determines Its Trafficking and Stability and Is Required for Hepatitis B Virus Infection.

    PubMed

    Appelman, Monique D; Chakraborty, Anindita; Protzer, Ulrike; McKeating, Jane A; van de Graaf, Stan F J

    2017-01-01

    The sodium/bile acid cotransporter NTCP was recently identified as a receptor for hepatitis B virus (HBV). NTCP is glycosylated and the role of glycans in protein trafficking or viral receptor activity is not known. NTCP contains two N-linked glycosylation sites and asparagine amino acid residues N5 and N11 were mutated to a glutamine to generate NTCP with a single glycan (NTCP-N5Q or NTCP- N11Q) or no glycans (NTCP- N5,11Q). HepG2 cells expressing NTCP with a single glycan supported HBV infection at a comparable level to NTCP-WT. The physiological function of NTCP, the uptake of bile acids, was also not affected in cells expressing these single glycosylation variants, consistent with their trafficking to the plasma membrane. However, glycosylation-deficient NTCP (NTCP-N5,11Q) failed to support HBV infection, showed minimal cellular expression and was degraded in the lysosome. This affected the physiological bile acid transporter function of NTCP-N5,11Q in a similar fashion. In conclusion, N-glycosylation is required for efficient NTCP localization at the plasma membrane and subsequent HBV infection and these characteristics are preserved in NTCP carrying a single carbohydrate moiety.

  1. N-Glycosylation of the Na+-Taurocholate Cotransporting Polypeptide (NTCP) Determines Its Trafficking and Stability and Is Required for Hepatitis B Virus Infection

    PubMed Central

    Appelman, Monique D.; Chakraborty, Anindita; Protzer, Ulrike; McKeating, Jane A.

    2017-01-01

    The sodium/bile acid cotransporter NTCP was recently identified as a receptor for hepatitis B virus (HBV). NTCP is glycosylated and the role of glycans in protein trafficking or viral receptor activity is not known. NTCP contains two N-linked glycosylation sites and asparagine amino acid residues N5 and N11 were mutated to a glutamine to generate NTCP with a single glycan (NTCP-N5Q or NTCP- N11Q) or no glycans (NTCP- N5,11Q). HepG2 cells expressing NTCP with a single glycan supported HBV infection at a comparable level to NTCP-WT. The physiological function of NTCP, the uptake of bile acids, was also not affected in cells expressing these single glycosylation variants, consistent with their trafficking to the plasma membrane. However, glycosylation-deficient NTCP (NTCP-N5,11Q) failed to support HBV infection, showed minimal cellular expression and was degraded in the lysosome. This affected the physiological bile acid transporter function of NTCP-N5,11Q in a similar fashion. In conclusion, N-glycosylation is required for efficient NTCP localization at the plasma membrane and subsequent HBV infection and these characteristics are preserved in NTCP carrying a single carbohydrate moiety. PMID:28125599

  2. Cyclosporin A inhibits hepatitis B and hepatitis D virus entry by cyclophilin-independent interference with the NTCP receptor.

    PubMed

    Nkongolo, Shirin; Ni, Yi; Lempp, Florian A; Kaufman, Christina; Lindner, Thomas; Esser-Nobis, Katharina; Lohmann, Volker; Mier, Walter; Mehrle, Stefan; Urban, Stephan

    2014-04-01

    Chronic hepatitis B and hepatitis D are global health problems caused by the human hepatitis B and hepatitis D virus. The myristoylated preS1 domain of the large envelope protein mediates specific binding to hepatocytes by sodium taurocholate co-transporting polypeptide (NTCP). NTCP is a bile salt transporter known to be inhibited by cyclosporin A. This study aimed to characterize the effect of cyclosporin A on HBV/HDV infection. HepaRG cells, primary human hepatocytes, and susceptible NTCP-expressing hepatoma cell lines were applied for infection experiments. The mode of action of cyclosporin A was studied by comparing the effect of different inhibitors, cyclophilin A/B/C-silenced cell lines as well as NTCP variants and mutants. Bile salt transporter and HBV receptor functions were investigated by taurocholate uptake and quantification of HBVpreS binding. Cyclosporin A inhibited hepatitis B and D virus infections during and--less pronounced--prior to virus inoculation. Binding of HBVpreS to NTCP was blocked by cyclosporin A concentrations at 8 μM. An NTCP variant deficient in HBVpreS binding but competent for bile salt transport showed resistance to cyclosporin A. Silencing of cyclophilins A/B/C did not abrogate transporter and receptor inhibition. In contrast, tacrolimus, a cyclophilin-independent calcineurin inhibitor, was inactive. HBV and HDV entry via sodium taurocholate co-transporting polypeptide is inhibited by cyclosporin A. The interaction between the drug and the viral receptor is direct and overlaps with a functional binding site of the preS1 domain, which mediates viral entry. Copyright © 2013 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  3. Organic Anion Transporting Polypeptides Contribute to the Disposition of Perfluoroalkyl Acids in Humans and Rats.

    PubMed

    Zhao, Wen; Zitzow, Jeremiah D; Weaver, Yi; Ehresman, David J; Chang, Shu-Ching; Butenhoff, John L; Hagenbuch, Bruno

    2017-03-01

    Perfluoroalkyl sulfonates (PFSAs) such as perfluorohexane sulfonate (PFHxS) and perfluorooctane sulfonate (PFOS) have very long serum elimination half-lives in humans, and preferentially distribute to serum and liver. The enterohepatic circulation of PFHxS and PFOS likely contributes to their extended elimination half-lives. We previously demonstrated that perfluorobutane sulfonate (PFBS), PFHxS, and PFOS are transported into hepatocytes both in a sodium-dependent and a sodium-independent manner. We identified Na+/taurocholate cotransporting polypeptide (NTCP) as the responsible sodium-dependent transporter. Furthermore, we demonstrated that the human apical sodium-dependent bile salt transporter (ASBT) contributes to the intestinal reabsorption of PFOS. However, so far no sodium-independent uptake transporters for PFSAs have been identified in human hepatocytes or enterocytes. In addition, perfluoroalkyl carboxylates (PFCAs) with 8 and 9 carbons were shown to preferentially distribute to the liver of rodents; however, no rat or human liver uptake transporters are known to transport these PFCAs. Therefore, we tested whether PFBS, PFHxS, PFOS, and PFCAs with 7-10 carbons are substrates of organic anion transporting polypeptides (OATPs). We used CHO and HEK293 cells to demonstrate that human OATP1B1, OATP1B3, and OATP2B1 can transport PFBS, PFHxS, PFOS, and the 2 PFCAs (C8 and C9). In addition, we show that rat OATP1A1, OATP1A5, OATP1B2, and OATP2B1 transport all 3 PFSAs. In conclusion, our results suggest that besides NTCP and ASBT, OATPs also are capable of contributing to the enterohepatic circulation and extended human serum elimination half-lives of the tested perfluoroalkyl acids. © The Author 2016. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  4. Interleukin 6 inhibits HBV entry through NTCP down regulation.

    PubMed

    Bouezzedine, Fidaa; Fardel, Olivier; Gripon, Philippe

    2015-07-01

    Hepatitis B virus (HBV) infection is a major public health problem. Recently, the human liver bile acid transporter Na(+)/taurocholate cotransporting polypeptide (NTCP) has been identified as an HBV specific receptor. NTCP expression is known to be strongly regulated by IL-6. This study was aimed at characterizing the effect of IL-6 on HBV entry. HBV entry was inhibited by up to 90% when cells were pretreated with IL-6 as shown by a strong inhibition of long term HBsAg secretion. This effect was confirmed by showing a severe reduction of intracellular HBV cccDNA. In parallel, we observed a 98% decrease in NTCP mRNA steady state level and an 80% reduction in NTCP-mediated taurocholate uptake. IL-6-mediated inhibition of NTCP-mediated taurocholate uptake and viral entry exhibited similar dose-dependence and kinetics while restoration of NTCP expression suppressed the inhibitory effect of IL-6. NTCP-mediated HBV entry is therefore markedly inhibited by IL-6. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Effects of Trichostatin A on drug uptake transporters in primary rat hepatocyte cultures

    PubMed Central

    Ramboer, Eva; Rogiers, Vera; Vanhaecke, Tamara; Vinken, Mathieu

    2015-01-01

    The present study was set up to investigate the effects of Trichostatin A (TSA), a prototypical epigenetic modifier, on the expression and activity of hepatic drug uptake transporters in primary cultured rat hepatocytes. To this end, the expression of the sinusoidal transporters sodium-dependent taurocholate cotransporting polypeptide (Ntcp) and organic anion transporting polypeptide 4 (Oatp4) was monitored by real-time quantitative reverse transcriptase polymerase chain reaction analysis and immunoblotting. The activity of the uptake transporters was analyzed using radiolabeled substrates and chemical inhibitors. Downregulation of the expression and activity of Oatp4 and Ntcp was observed as a function of the cultivation time and could not be counteracted by TSA. In conclusion, the epigenetic modifier TSA does not seem to exert a positive effect on the expression and activity of the investigated uptake transporters in primary rat hepatocyte cultures. PMID:26648816

  6. Natural history of chronic hepatitis B virus infection.

    PubMed

    Busch, Katrin; Thimme, Robert

    2015-02-01

    Hepatitis B virus infection represents a major global health problem. Currently, there are more than 240 million chronically infected people worldwide. The development of chronic hepatitis B virus-mediated liver disease may lead to liver fibrosis, cirrhosis and eventually hepatocellular carcinoma. Recently, the discovery of the viral entry receptor sodium taurocholate cotransporting polypeptide has facilitated new approaches for a better understanding of viral physiopathology. Hopefully, these novel insights may give rise to the development of more effective antiviral therapy concepts during the next years. In this review, we will discuss the natural history of hepatitis B virus infection including the viral biology, the clinical course of infection and the role of the immune response.

  7. Organic Anion Transporting Polypeptide 1a1 Null Mice Are Sensitive to Cholestatic Liver Injury

    PubMed Central

    Zhang, Youcai; Csanaky, Iván L.; Cheng, Xingguo; Lehman-McKeeman, Lois D.; Klaassen, Curtis D.

    2012-01-01

    Organic anion transporting polypeptide 1a1 (Oatp1a1) is predominantly expressed in livers of mice and is thought to transport bile acids (BAs) from blood into liver. Because Oatp1a1 expression is markedly decreased in mice after bile duct ligation (BDL). We hypothesized that Oatp1a1-null mice would be protected against liver injury during BDL-induced cholestasis due largely to reduced hepatic uptake of BAs. To evaluate this hypothesis, BDL surgeries were performed in both male wild-type (WT) and Oatp1a1-null mice. At 24 h after BDL, Oatp1a1-null mice showed higher serum alanine aminotransferase levels and more severe liver injury than WT mice, and all Oatp1a1-null mice died within 4 days after BDL, whereas all WT mice survived. At 24 h after BDL, surprisingly Oatp1a1-null mice had higher total BA concentrations in livers than WT mice, suggesting that loss of Oatp1a1 did not prevent BA accumulation in the liver. In addition, secondary BAs dramatically increased in serum of Oatp1a1-null BDL mice but not in WT BDL mice. Oatp1a1-null BDL mice had similar basolateral BA uptake (Na+-taurocholate cotransporting polypeptide and Oatp1b2) and BA-efflux (multidrug resistance–associated protein [Mrp]-3, Mrp4, and organic solute transporter α/β) transporters, as well as BA-synthetic enzyme (Cyp7a1) in livers as WT BDL mice. Hepatic expression of small heterodimer partner Cyp3a11, Cyp4a14, and Nqo1, which are target genes of farnesoid X receptor, pregnane X receptor, peroxisome proliferator-activated receptor alpha, and NF-E2-related factor 2, respectively, were increased in WT BDL mice but not in Oatp1a1-null BDL mice. These results demonstrate that loss of Oatp1a1 function exacerbates cholestatic liver injury in mice and suggest that Oatp1a1 plays a unique role in liver adaptive responses to obstructive cholestasis. PMID:22461449

  8. Direct determination of the driving forces for taurocholate uptake into rat liver plasma membrane vesicles.

    PubMed

    Duffy, M C; Blitzer, B L; Boyer, J L

    1983-10-01

    To determine directly the driving forces for bile acid entry into the hepatocyte, the uptake of [3H]taurocholic acid into rat liver plasma membrane vesicles was studied. The membrane preparation contained predominantly right-side-out vesicles, and was highly enriched in plasma membrane marker enzymes. The uptake of taurocholate at equilibrium was inversely related to medium osmolarity, indicating transport into an osmotically sensitive space. In the presence of an inwardly directed sodium gradient (NaCl or sodium gluconate), the initial rate of uptake was rapid and taurocholate was transiently accumulated at a concentration twice that at equilibrium (overshoot). Other inwardly directed cation gradients (K+, Li+, choline+) or the presence of sodium in the absence of a gradient (Na+ equilibrated) resulted in a slower initial uptake rate and did not sustain an overshoot. Bile acids inhibited sodium-dependent taurocholate uptake, whereas bromsulphthalein inhibited both sodium-dependent and sodium-independent uptake and D-glucose had no effect on uptake. Uptake was temperature dependent, with maximal overshoots occurring at 25 degrees C. Imposition of a proton gradient across the vesicle (pHo less than pHi) in the absence of a sodium gradient failed to enhance taurocholate uptake, indicating that double ion exchange (Na+-H+, OH- -anion) is unlikely. Creation of a negative intravesicular potential by altering accompanying anions or by valinomycin-induced K+-diffusion potentials did not enhance taurocholate uptake, suggesting an electroneutral transport mechanism. The kinetics of taurocholate uptake demonstrated saturability with a Michaelis constant at 52 microM and maximum velocity of 4.5 nmol X mg-1 X protein X min-1. These studies provide definitive evidence for a sodium gradient-dependent, carrier-mediated, electrically neutral transport mechanism for hepatic taurocholate uptake. These findings are consistent with a model for bile secretion in which the basolateral

  9. NTCP opens the door for hepatitis B virus infection.

    PubMed

    Yan, Huan; Liu, Yang; Sui, Jianhua; Li, Wenhui

    2015-09-01

    A liver bile acids transporter, sodium taurocholate cotransporting polypeptide (NTCP, encoded by SLC10A1) was recently identified as a functional receptor for hepatitis B virus (HBV) and its satellite hepatitis D virus (HDV). NTCP-complemented human hepatoma HepG2 cells (HepG2-NTCP) were shown to support infection of HBV and HDV in vitro, providing a much-needed and convenient cell culture system for the viruses. Identification of NTCP as a functional receptor for HBV has significantly advanced our understanding of the viral life cycle and opened new opportunities for developing anti-HBV interventions. This article forms part of a symposium in Antiviral Research on "An unfinished story: from the discovery of the Australia antigen to the development of new curative therapies for hepatitis B". Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Heterogeneous accumulation of fluorescent bile acids in primary rat hepatocytes does not correlate with their homogenous expression of ntcp.

    PubMed

    Murray, John W; Thosani, Amar J; Wang, Pijun; Wolkoff, Allan W

    2011-07-01

    Sodium taurocholate-cotransporting polypeptide (ntcp) is considered to be a major determinant of bile acid uptake into hepatocytes. However, the regulation of ntcp and the degree that it participates in the accumulation of specific substrates are not well understood. We utilized fluorescent bile acid derivatives and direct quantitation of fluorescent microscopy images to examine the regulation of ntcp and its role in the cell-to-cell variability of fluorescent bile acid accumulation. Primary-cultured rat hepatocytes rapidly accumulated the fluorescent bile acids, chenodeoxycholylglycylamidofluorescein (CDCGamF), 7-β- nitrobenzoxadiazole 3-α hydroxy 5-β cholan-24-oic acid (NBD-CA), and cholyl-glycylamido-fluorescein (CGamF). However, in stably transfected HeLa cells, ntcp preferred CDCGamF, whereas the organic anion transporter, organic anion transporting polypeptide 1 (oatp1a1), preferred NBD-CA, and neither ntcp nor oatp1a1 showed strong accumulation of CGamF by these methods. Ntcp-mediated transport of CDCGamF was inhibited by taurocholate, cyclosporin, actin depolymerization, and an inhibitor of atypical PKC-ζ. The latter two agents altered the cellular distribution of ntcp as visualized in ntcp-green fluorescent protein-transfected cells. Although fluorescent bile acid accumulation was reproducible by the imaging assays, individual cells showed variable accumulation that was not attributable to changes in membrane permeability or cell viability. In HeLa cells, this was accounted for by variable levels of ntcp, whereas, in hepatocytes, ntcp expression was uniform, and low accumulation was seen in a large portion of cells despite the presence of ntcp. These studies indicate that single-cell imaging can provide insight into previously unrecognized details of anion transport in the complex environment of polarized hepatocytes.

  11. Age-dependent activity of the uptake transporters Ntcp and Oatp1b2 in male rat hepatocytes: from birth till adulthood.

    PubMed

    Fattah, Sarinj; Augustijns, Patrick; Annaert, Pieter

    2015-01-01

    Recognition of the role of hepatic drug transporters in elimination of xenobiotics continues to grow. Hepatic uptake transporters, such as hepatic isoforms of the organic anion-transporting polypeptide (Oatp) family as well as the bile acid transporter Na(+)-taurocholate cotransporting polypeptide (Ntcp) have been studied extensively both at the mRNA and protein expression levels in adults. However, in pediatric/juvenile populations, there continues to be a knowledge gap about the functional activity of these transporters. Therefore, the aim of this study was to examine the functional maturation of Ntcp and Oatp isoforms as major hepatic transporters. Hepatocytes were freshly isolated from rats aged between birth and 8 weeks. Transporter activities were assessed by measuring the initial uptake rates of known substrates: taurocholate (TCA) for Ntcp and sodium fluorescein (NaFluo) for Oatp. Relative to adult values, uptake clearance of TCA in hepatocytes from rats aged 0, 1, 2, 3, and 4 weeks reached 19, 43, 22, 46, and 63%, respectively. In contrast, Oatp-mediated NaFluo uptake showed a considerably slower developmental pattern: uptake clearance of NaFluo in hepatocytes from rats aged 0, 1, 2, 3, 4, and 6 weeks were 24, 20, 19, 8, 19, and 64%, respectively. Maturation of NaFluo uptake activity correlated with the previously reported ontogeny of Oatp1b2 mRNA expression, confirming the role of Oatp1b2 for NaFluo uptake in rat liver. The outcome of this project will help in understanding and predicting age-dependent drug exposure in juvenile animals and will eventually support safe and more effective drug therapies for children. Copyright © 2014 by The American Society for Pharmacology and Experimental Therapeutics.

  12. Heterogeneous accumulation of fluorescent bile acids in primary rat hepatocytes does not correlate with their homogenous expression of ntcp

    PubMed Central

    Thosani, Amar J.; Wang, Pijun; Wolkoff, Allan W.

    2011-01-01

    Sodium taurocholate-cotransporting polypeptide (ntcp) is considered to be a major determinant of bile acid uptake into hepatocytes. However, the regulation of ntcp and the degree that it participates in the accumulation of specific substrates are not well understood. We utilized fluorescent bile acid derivatives and direct quantitation of fluorescent microscopy images to examine the regulation of ntcp and its role in the cell-to-cell variability of fluorescent bile acid accumulation. Primary-cultured rat hepatocytes rapidly accumulated the fluorescent bile acids, chenodeoxycholylglycylamidofluorescein (CDCGamF), 7-β- nitrobenzoxadiazole 3-α hydroxy 5-β cholan-24-oic acid (NBD-CA), and cholyl-glycylamido-fluorescein (CGamF). However, in stably transfected HeLa cells, ntcp preferred CDCGamF, whereas the organic anion transporter, organic anion transporting polypeptide 1 (oatp1a1), preferred NBD-CA, and neither ntcp nor oatp1a1 showed strong accumulation of CGamF by these methods. Ntcp-mediated transport of CDCGamF was inhibited by taurocholate, cyclosporin, actin depolymerization, and an inhibitor of atypical PKC-ζ. The latter two agents altered the cellular distribution of ntcp as visualized in ntcp-green fluorescent protein-transfected cells. Although fluorescent bile acid accumulation was reproducible by the imaging assays, individual cells showed variable accumulation that was not attributable to changes in membrane permeability or cell viability. In HeLa cells, this was accounted for by variable levels of ntcp, whereas, in hepatocytes, ntcp expression was uniform, and low accumulation was seen in a large portion of cells despite the presence of ntcp. These studies indicate that single-cell imaging can provide insight into previously unrecognized details of anion transport in the complex environment of polarized hepatocytes. PMID:21474652

  13. The Thiazide-sensitive NaCl Cotransporter Is Targeted for Chaperone-dependent Endoplasmic Reticulum-associated Degradation*

    PubMed Central

    Needham, Patrick G.; Mikoluk, Kasia; Dhakarwal, Pradeep; Khadem, Shaheen; Snyder, Avin C.; Subramanya, Arohan R.; Brodsky, Jeffrey L.

    2011-01-01

    The thiazide-sensitive NaCl cotransporter (NCC, SLC12A3) mediates salt reabsorption in the distal nephron of the kidney and is the target of thiazide diuretics, which are commonly prescribed to treat hypertension. Mutations in NCC also give rise to Gitelman syndrome, a hereditary salt-wasting disorder thought in most cases to arise from impaired NCC biogenesis through enhanced endoplasmic reticulum-associated degradation (ERAD). Because the machinery that mediates NCC quality control is completely undefined, we employed yeast as a model heterologous expression system to identify factors involved in NCC degradation. We confirmed that NCC was a bona fide ERAD substrate in yeast, as the majority of NCC polypeptide was integrated into ER membranes, and its turnover rate was sensitive to proteasome inhibition. NCC degradation was primarily dependent on the ER membrane-associated E3 ubiquitin ligase Hrd1. Whereas several ER luminal chaperones were dispensable for NCC ERAD, NCC ubiquitination and degradation required the activity of Ssa1, a cytoplasmic Hsp70 chaperone. Compatible findings were observed when NCC was expressed in mammalian kidney cells, as the cotransporter was polyubiquitinated and degraded by the proteasome, and mammalian cytoplasmic Hsp70 (Hsp72) coexpression stimulated the degradation of newly synthesized NCC. Hsp70 also preferentially associated with the ER-localized NCC glycosylated species, indicating that cytoplasmic Hsp70 plays a critical role in selecting immature forms of NCC for ERAD. Together, these results provide the first survey of components involved in the ERAD of a mammalian SLC12 cation chloride cotransporter and provide a framework for future studies on NCC ER quality control. PMID:22027832

  14. Urea inhibits NaK2Cl cotransport in human erythrocytes.

    PubMed Central

    Lim, J; Gasson, C; Kaji, D M

    1995-01-01

    We examined the effect of urea on NaK2Cl cotransport in human erythrocytes. In erythrocytes from nine normal subjects, the addition of 45 mM urea, a concentration commonly encountered in uremic subjects, inhibited NaK2Cl cotransport by 33 +/- 7%. Urea inhibited NaK2Cl cotransport reversibly, and in a concentration-dependent fashion with half-maximal inhibition at 63 +/- 10 mM. Acute cell shrinkage increased, and acute cell swelling decreased NaK2Cl cotransport in human erythrocytes. Okadaic acid (OA), a specific inhibitor of protein phosphatase 1 and 2A, increased NaK2Cl cotransport by nearly 80%, suggesting an important role for these phosphatases in the regulation of NaK2Cl cotransport. Urea inhibited bumetanide-sensitive K influx even when protein phosphatases were inhibited with OA, suggesting that urea acted by inhibiting a kinase. In cells subjected to shrinking and OA pretreatment, maneuvers expected to increase the net phosphorylation, urea inhibited cotransport only minimally, suggesting that urea acted by causing a net dephosphorylation of the cotransport protein, or some key regulatory protein. The finding that concentrations of urea found in uremic subjects inhibited NaK2Cl cotransport, a widespread transport pathway with important physiological functions, suggests that urea is not only a marker for accumulation of other uremic toxins, but may be a significant uremic toxin itself. PMID:7593597

  15. Berberine-induced Inactivation of Signal Transducer and Activator of Transcription 5 Signaling Promotes Male-specific Expression of a Bile Acid Uptake Transporter*

    PubMed Central

    Bu, Pengli; Le, Yuan; Zhang, Yue; Zhang, Youcai; Cheng, Xingguo

    2017-01-01

    Sodium-taurocholate co-transporting polypeptide (Ntcp/NTCP) is the major uptake transporter of bile salts in mouse and human livers. In certain diseases, including endotoxemia, cholestasis, diabetes, and hepatocarcinoma, Ntcp/NTCP expression is markedly reduced, which interferes with enterohepatic circulation of bile salts, impairing the absorption of lipophilic compounds. Therefore, normal Ntcp/NTCP expression in the liver is physiologically important. Berberine is an herbal medicine used historically to improve liver function and has recently been shown to repress STAT signaling. However, berberine effects on Ntcp/NTCP expression are unknown, prompting use to investigate this possible connection. Our results showed that berberine dose-dependently increased Ntcp expression in male mouse liver and decreased taurocholic acid levels in serum but increased them in the liver. In mouse and human hepatoma cells, berberine induced Ntcp/NTCP mRNA and protein expression and increased cellular uptake of [3H] taurocholate. Mechanistically, berberine decreased nuclear protein levels of phospho-JAK2 and phospho-STAT5, thus disrupting the JAK2-STAT5 signaling. Moreover, berberine stimulated luciferase reporter expression from the mouse Ntcp promoter when one putative STAT5 response element (RE) (−1137 bp) was deleted and from the human NTCP promoter when three putative STAT5REs (−2898, −2164, and −691 bp) were deleted. Chromatin immunoprecipitation demonstrated that berberine decreased binding of phospho-STAT5 protein to the−2164 and −691 bp STAT5REs in the human NTCP promoter. In summary, berberine-disrupted STAT5 signaling promoted mouse and human Ntcp/NTCP expression, resulting in enhanced bile acid uptake. Therefore, berberine may be a therapeutic candidate compound for maintaining bile acid homeostasis. PMID:28154180

  16. Elastomeric Polypeptides

    PubMed Central

    van Eldijk, Mark B.; McGann, Christopher L.

    2013-01-01

    Elastomeric polypeptides are very interesting biopolymers and are characterized by rubber-like elasticity, large extensibility before rupture, reversible deformation without loss of energy, and high resilience upon stretching. Their useful properties have motivated their use in a wide variety of materials and biological applications. This chapter focuses on elastin and resilin – two elastomeric biopolymers – and the recombinant polypeptides derived from them (elastin-like polypeptides and resilin-like polypeptides). This chapter also discusses the applications of these recombinant polypeptides in the fields of purification, drug delivery, and tissue engineering. PMID:21826606

  17. Targeted polypeptide degradation

    DOEpatents

    Church, George M [Brookline, MA; Janse, Daniel M [Brookline, MA

    2008-05-13

    This invention pertains to compositions, methods, cells and organisms useful for selectively localizing polypeptides to the proteasome for degradation. Therapeutic methods and pharmaceutical compositions for treating disorders associated with the expression and/or activity of a polypeptide by targeting these polypeptides for degradation, as well as methods for targeting therapeutic polypeptides for degradation and/or activating therapeutic polypeptides by degradation are provided. The invention provides methods for identifying compounds that mediate proteasome localization and/or polypeptide degradation. The invention also provides research tools for the study of protein function.

  18. Berberine-induced Inactivation of Signal Transducer and Activator of Transcription 5 Signaling Promotes Male-specific Expression of a Bile Acid Uptake Transporter.

    PubMed

    Bu, Pengli; Le, Yuan; Zhang, Yue; Zhang, Youcai; Cheng, Xingguo

    2017-03-17

    Sodium-taurocholate co-transporting polypeptide (Ntcp/NTCP) is the major uptake transporter of bile salts in mouse and human livers. In certain diseases, including endotoxemia, cholestasis, diabetes, and hepatocarcinoma, Ntcp/NTCP expression is markedly reduced, which interferes with enterohepatic circulation of bile salts, impairing the absorption of lipophilic compounds. Therefore, normal Ntcp/NTCP expression in the liver is physiologically important. Berberine is an herbal medicine used historically to improve liver function and has recently been shown to repress STAT signaling. However, berberine effects on Ntcp/NTCP expression are unknown, prompting use to investigate this possible connection. Our results showed that berberine dose-dependently increased Ntcp expression in male mouse liver and decreased taurocholic acid levels in serum but increased them in the liver. In mouse and human hepatoma cells, berberine induced Ntcp/NTCP mRNA and protein expression and increased cellular uptake of [3H] taurocholate. Mechanistically, berberine decreased nuclear protein levels of phospho-JAK2 and phospho-STAT5, thus disrupting the JAK2-STAT5 signaling. Moreover, berberine stimulated luciferase reporter expression from the mouse Ntcp promoter when one putative STAT5 response element (RE) (-1137 bp) was deleted and from the human NTCP promoter when three putative STAT5REs (-2898, -2164, and -691 bp) were deleted. Chromatin immunoprecipitation demonstrated that berberine decreased binding of phospho-STAT5 protein to the-2164 and -691 bp STAT5REs in the human NTCP promoter. In summary, berberine-disrupted STAT5 signaling promoted mouse and human Ntcp/NTCP expression, resulting in enhanced bile acid uptake. Therefore, berberine may be a therapeutic candidate compound for maintaining bile acid homeostasis. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. The effect of Na+/taurocholate cotransporting polypeptide (NTCP) c.800C > T polymorphism on rosuvastatin pharmacokinetics in Chinese healthy males.

    PubMed

    Lou, Xiao-Ya; Zhang, Wei; Wang, Guo; Hu, Dong-Li; Guo, Dong; Tan, Zhi-Rong; Zhou, Hong-Hao; Chen, Yao; Bao, Hei-Hua

    2014-10-01

    This study was designed to investigate the potential association between NTCP c.800C >T polymorphism and rosuvastatin pharmacokinetics in Chinese healthy males. 305 individuals were enrolled to identify NTCP c.800C > T, OATP1B1 c.521T > C and BCRP c.421C > A genotypes by direct sequencing and pyrosequencing methods, respectively. 17 healthy volunteers who were OATP1B1 c.521TT and BCRP c.421CC wild-type homozygotes with different NTCP c.800C > T genotype were selected to participate in this pharmacokinetic study. Nine were NTCP c.800CC wild-type homozygotes and the other eight subjects were carriers with at least one c.800T variant allele (seven subjects with c.800CT genotype and one was homozygote of c.800TT). All the subjects received a single oral dose of 10 mg rosuvastatin. The plasma concentrations of rosuvastatin were measured up to 72 h by a LC-MS method. NTCP c.800C > T genetic polymorphism markedly effected rosuvastatin pharmacokinetics. The AUC(o-72) and AUC(0 --> ∞) in subjects with NTCP c.800CT + TT genotype were 56% (162.64 ± 37.55 vs. 103.99 ± 28.15 ng x h/ml, P = 0.016) and 57% greater (178.51 ± 42.75 vs. 113.60 ± 33.73 ng x h/ml, P = 0.020) than those in the c.800CC wild-type subjects, respectively. In the c.800CT + TT mutant group, the C(max) was about 78% higher than those in c.800CC genotype (14.31 ± 3.63 vs. 8.04 ± 1.72 ng x h/ml, P = 0.004). The oral clearance (CL/F) of rosuvastatin in subjects with the c.800CT+TT genotype was only 63% of those in the c.800CC genotype (58.32 ± 12.16 vs. 93.04 ± 20.61 ng x h/ml, P = 0.009). The half-time (T1/2) and the T(max) had no significant difference between two groups (p = 0.466 and 0.713, respectively). NTCP c.800C > T polymorphism play a critical role in the individual variability of rosuvastatin pharmacokinetics in Chinese healthy males after excluding the impact of OATP1B1 c.521T > C and BCRP c.421C > A polymorphisms.

  20. Antifungal polypeptides

    DOEpatents

    Altier, Daniel J.; Dahlbacka, Glen; Ellanskaya, legal representative, Natalia; Herrmann, Rafael; Hunter-Cevera, Jennie; McCutchen, Billy F.; Presnail, James K.; Rice, Janet A.; Schepers, Eric; Simmons, Carl R.; Torok, Tamas; Yalpani, Nasser; Ellanskaya, deceased, Irina

    2007-12-11

    Compositions and methods for protecting a plant from a pathogen, particularly a fungal pathogen, are provided. Compositions include novel amino acid sequences, and variants and fragments thereof, for antipathogenic polypeptides that were isolated from microbial fermentation broths. Nucleic acid molecules comprising nucleotide sequences that encode the antipathogenic polypeptides of the invention are also provided. A method for inducing pathogen resistance in a plant using the nucleotide sequences disclosed herein is further provided. The method comprises introducing into a plant an expression cassette comprising a promoter operably linked to a nucleotide sequence that encodes an antipathogenic polypeptide of the invention. Compositions comprising an antipathogenic polypeptide or a transformed microorganism comprising a nucleic acid of the invention in combination with a carrier and methods of using these compositions to protect a plant from a pathogen are further provided. Transformed plants, plant cells, seeds, and microorganisms comprising a nucleotide sequence that encodes an antipathogenic polypeptide of the invention, or variant or fragment thereof, are also disclosed.

  1. Antifungal polypeptides

    DOEpatents

    Altier, Daniel J.; Dahlbacka, Glen; Elleskaya, Irina; Ellanskaya, legal representative; Natalia; Herrmann, Rafael; Hunter-Cevera, Jennie; McCutchen, Billy F.; Presnail, James K.; Rice, Janet A.; Schepers, Eric; Simmons, Carl R.; Torok, Tamas; Yalpani, Nasser

    2010-08-10

    Compositions and methods for protecting a plant from a pathogen, particularly a fungal pathogen, are provided. Compositions include novel amino acid sequences, and variants and fragments thereof, for antipathogenic polypeptides that were isolated from microbial fermentation broths. Nucleic acid molecules comprising nucleotide sequences that encode the antipathogenic polypeptides of the invention are also provided. A method for inducing pathogen resistance in a plant using the nucleotide sequences disclosed herein is further provided. The method comprises introducing into a plant an expression cassette comprising a promoter operably linked to a nucleotide sequence that encodes an antipathogenic polypeptide of the invention. Compositions comprising an antipathogenic polypeptide or a transformed microorganism comprising a nucleic acid of the invention in combination with a carrier and methods of using these compositions to protect a plant from a pathogen are further provided. Transformed plants, plant cells, seeds, and microorganisms comprising a nucleotide sequence that encodes an antipathogenic polypeptide of the invention, or variant or fragment thereof, are also disclosed.

  2. Antifungal polypeptides

    DOEpatents

    Altier, Daniel J [Waukee, IA; Dahlbacka, Glen [Oakland, CA; Elleskaya, Irina [Kyiv, UA; Ellanskaya, legal representative, Natalia; Herrmann, Rafael [Wilmington, DE; Hunter-Cevera, Jennie [Elliott City, MD; McCutchen, Billy F [College Station, IA; Presnail, James K [Avondale, PA; Rice, Janet A [Wilmington, DE; Schepers, Eric [Port Deposit, MD; Simmons, Carl R [Des Moines, IA; Torok, Tamas [Richmond, CA; Yalpani, Nasser [Johnston, IA

    2011-04-12

    Compositions and methods for protecting a plant from a pathogen, particularly a fungal pathogen, are provided. Compositions include novel amino acid sequences, and variants and fragments thereof, for antipathogenic polypeptides that were isolated from microbial fermentation broths. Nucleic acid molecules comprising nucleotide sequences that encode the antipathogenic polypeptides of the invention are also provided. A method for inducing pathogen resistance in a plant using the nucleotide sequences disclosed herein is further provided. The method comprises introducing into a plant an expression cassette comprising a promoter operably linked to a nucleotide sequence that encodes an antipathogenic polypeptide of the invention. Compositions comprising an antipathogenic polypeptide or a transformed microorganism comprising a nucleic acid of the invention in combination with a carrier and methods of using these compositions to protect a plant from a pathogen are further provided. Transformed plants, plant cells, seeds, and microorganisms comprising a nucleotide sequence that encodes an antipathogenic polypeptide of the invention, or variant or fragment thereof, are also disclosed.

  3. Antifungal polypeptides

    DOEpatents

    Altier, Daniel J [Granger, IA; Dahlbacka, Glen [Oakland, CA; Ellanskaya, Irina [Kyiv, UA; Ellanskaya, legal representative, Natalia; Herrmann, Rafael [Wilmington, DE; Hunter-Cevera, Jennie [Elliott City, MD; McCutchen, Billy F [College Station, TX; Presnail, James K [Avondale, PA; Rice, Janet A [Wilmington, DE; Schepers, Eric [Port Deposit, MD; Simmons, Carl R [Des Moines, IA; Torok, Tamas [Richmond, CA; Yalpani, Nasser [Johnston, IA

    2012-04-03

    Compositions and methods for protecting a plant from a pathogen, particularly a fungal pathogen, are provided. Compositions include novel amino acid sequences, and variants and fragments thereof, for antipathogenic polypeptides that were isolated from microbial fermentation broths. Nucleic acid molecules comprising nucleotide sequences that encode the antipathogenic polypeptides of the invention are also provided. A method for inducing pathogen resistance in a plant using the nucleotide sequences disclosed herein is further provided. The method comprises introducing into a plant an expression cassette comprising a promoter operably linked to a nucleotide sequence that encodes an antipathogenic polypeptide of the invention. Compositions comprising an antipathogenic polypeptide or a transformed microorganism comprising a nucleic acid of the invention in combination with a carrier and methods of using these compositions to protect a plant from a pathogen are further provided. Transformed plants, plant cells, seeds, and microorganisms comprising a nucleotide sequence that encodes an antipathogenic polypeptide of the invention, or variant or fragment thereof, are also disclosed.

  4. KCl cotransport regulation and protein kinase G in cultured vascular smooth muscle cells.

    PubMed

    Adragna, N C; Zhang, J; Di Fulvio, M; Lincoln, T M; Lauf, P K

    2002-05-15

    K-Cl cotransport is activated by vasodilators in erythrocytes and vascular smooth muscle cells and its regulation involves putative kinase/phosphatase cascades. N-ethylmaleimide (NEM) activates the system presumably by inhibiting a protein kinase. Nitrovasodilators relax smooth muscle via cGMP-dependent activation of protein kinase G (PKG), a regulator of membrane channels and transporters. We investigated whether PKG regulates K-Cl cotransport activity or mRNA expression in normal, PKG-deficient-vector-only-transfected (PKG-) and PKG-catalytic-domain-transfected (PKG+) rat aortic smooth muscle cells. K-Cl cotransport was calculated as the Cl-dependent Rb influx, and mRNA was determined by semiquantitative RT-PCR. Baseline K-Cl cotransport was higher in PKG+ than in PKG- cells (p <0.01). At 0.5 mM, NEM stimulated K-Cl cotransport by 5-fold in PKG- but not in PKG+ cells. However, NEM was more potent although less effective to activate K-Cl cotransport in normal (passage 1-3) and PKG+ than in PKG- cells. In PKG- cells, [(dihydroindenyl) oxy] alkanoic acid (300 mM) but not furosemide (1 mM) inhibited K-Cl cotransport. Furthermore, no difference in K-Cl cotransport mRNA expression was observed between these cells. In conclusion, this study shows that manipulation of PKG expression in vascular smooth muscle cells affects K-Cl cotransport activity and its activation by NEM.

  5. Live Cell Imaging Confocal Microscopy Analysis of HBV Myr-PreS1 Peptide Binding and Uptake in NTCP-GFP Expressing HepG2 Cells.

    PubMed

    König, Alexander; Glebe, Dieter

    2017-01-01

    To obtain basic knowledge about specific molecular mechanisms involved in the entry of pathogens into cells is the basis for establishing pharmacologic substances blocking initial viral binding, infection, and subsequent viral spread. Lack of information about key cellular factors involved in the initial steps of HBV infection has hampered the characterization of HBV binding and entry for decades. However, recently, the liver-specific sodium-dependent taurocholate cotransporting polypeptide (NTCP) has been discovered as a functional receptor for HBV and HDV, thus opening the field for new concepts of basic binding and entry of HBV and HDV. Here, we describe practical issues of a basic in vitro assay system to examine kinetics and mechanisms of receptor-dependent HBV binding, uptake, and intracellular trafficking by live-cell imaging confocal microscopy. The assay system is comprised of HepG2 cells expressing a NTCP-GFP fusion-protein and chemically synthesized, fluorophore-labeled part of HBV surface protein, spanning the first N-terminal 48 amino acids of preS1 of the large hepatitis B virus surface protein.

  6. NTCP and Beyond: Opening the Door to Unveil Hepatitis B Virus Entry

    PubMed Central

    Watashi, Koichi; Urban, Stephan; Li, Wenhui; Wakita, Takaji

    2014-01-01

    Chronic hepatitis B virus (HBV) infection, affecting approximately 240 million people worldwide, is a major public health problem that elevates the risk of developing liver cirrhosis and hepatocellular carcinoma. Given that current anti-HBV drugs are limited to interferon-based regimens and nucleos(t)ide analogs, the development of new anti-HBV agents is urgently needed. The viral entry process is generally an attractive target implicated in antiviral strategies. Using primary cells from humans and Tupaia belangeri, as well as HepaRG cells, important determinants of viral entry have been achieved. Recently, sodium taurocholate cotransporting polypeptide (NTCP) was identified as an HBV entry receptor and enabled the establishment of a susceptible cell line that can efficiently support HBV infection. This finding will allow a deeper understanding of the requirements for efficient HBV infection, including the elucidation of the molecular entry mechanism. In addition, pharmacological studies suggest that NTCP is able to serve as a therapeutic target. This article summarizes our current knowledge on the mechanisms of HBV entry and the role of NTCP in this process. PMID:24557582

  7. NTCP and beyond: opening the door to unveil hepatitis B virus entry.

    PubMed

    Watashi, Koichi; Urban, Stephan; Li, Wenhui; Wakita, Takaji

    2014-02-19

    Chronic hepatitis B virus (HBV) infection, affecting approximately 240 million people worldwide, is a major public health problem that elevates the risk of developing liver cirrhosis and hepatocellular carcinoma. Given that current anti-HBV drugs are limited to interferon-based regimens and nucleos(t)ide analogs, the development of new anti-HBV agents is urgently needed. The viral entry process is generally an attractive target implicated in antiviral strategies. Using primary cells from humans and Tupaia belangeri, as well as HepaRG cells, important determinants of viral entry have been achieved. Recently, sodium taurocholate cotransporting polypeptide (NTCP) was identified as an HBV entry receptor and enabled the establishment of a susceptible cell line that can efficiently support HBV infection. This finding will allow a deeper understanding of the requirements for efficient HBV infection, including the elucidation of the molecular entry mechanism. In addition, pharmacological studies suggest that NTCP is able to serve as a therapeutic target. This article summarizes our current knowledge on the mechanisms of HBV entry and the role of NTCP in this process.

  8. Water Permeation through the Sodium-Dependent Galactose Cotransporter vSGLT

    PubMed Central

    Choe, Seungho; Rosenberg, John M.; Abramson, Jeff; Wright, Ernest M.; Grabe, Michael

    2010-01-01

    It is well accepted that cotransporters facilitate water movement by two independent mechanisms: osmotic flow through a water channel in the protein and flow driven by ion/substrate cotransport. However, the molecular mechanism of transport-linked water flow is controversial. Some researchers believe that it occurs via cotransport, in which water is pumped along with the transported cargo, while others believe that flow is osmotic in response to an increase in intracellular osmolarity. In this letter, we report the results of a 200-ns molecular dynamics simulation of the sodium-dependent galactose cotransporter vSGLT. Our simulation shows that a significant number of water molecules cross the protein through the sugar-binding site in the presence as well as the absence of galactose, and 70–80 water molecules accompany galactose as it moves from the binding site into the intracellular space. During this event, the majority of water molecules in the pathway are unable to diffuse around the galactose, resulting in water in the inner half of the transporter being pushed into the intracellular space and replaced by extracellular water. Thus, our simulation supports the notion that cotransporters act as both passive water channels and active water pumps with the transported substrate acting as a piston to rectify the motion of water. PMID:20923633

  9. Transport of estradiol-17β-glucuronide, estrone-3-sulfate and taurocholate across the endoplasmic reticulum membrane: evidence for different transport systems☆

    PubMed Central

    Wlcek, Katrin; Hofstetter, Lia; Stieger, Bruno

    2014-01-01

    Important reactions of drug metabolism, including UGT mediated glucuronidation and steroidsulfatase mediated hydrolysis of sulfates, take place in the endoplasmic reticulum (ER) of hepatocytes. Consequently, UGT generated glucuronides, like estradiol-17β-glucuronide, have to be translocated back into the cytoplasm to reach their site of excretion. Also steroidsulfatase substrates, including estrone-3-sulfate, have to cross the ER membrane to reach their site of hydrolysis. Based on their physicochemical properties such compounds are not favored for passive diffusion and therefore likely necessitate transport system(s) to cross the ER membrane in either direction. The current study aims to investigate the transport of taurocholate, estradiol-17β-glucuronide, and estrone-3-sulfate in smooth (SER) and rough (RER) endoplasmic reticulum membrane vesicles isolated from Wistar and TR− rat liver. Time-dependent and bidirectional transport was demonstrated for taurocholate, showing higher uptake rates in SER than RER vesicles. For estradiol-17β-glucuronide a fast time-dependent efflux with similar efficiencies from SER and RER but no clear protein-mediated uptake was shown, indicating an asymmetric transport system for this substrate. Estrone-3-sulfate uptake was time-dependent and higher in SER than in RER vesicles. Inhibition of steroidsulfatase mediated estrone-3-sulfate hydrolysis decreased estrone-3-sulfate uptake but had no effect on taurocholate or estradiol-17β-glucuronide transport. Based on inhibition studies and transport characteristics, three different transport mechanisms are suggested to be involved in the transport of taurocholate, estrone-3-sulfate and estradiol-17β-glucuronide across the ER membrane. PMID:24406246

  10. Water permeation through the sodium-dependent galactose cotransporter vSGLT.

    PubMed

    Choe, Seungho; Rosenberg, John M; Abramson, Jeff; Wright, Ernest M; Grabe, Michael

    2010-10-06

    It is well accepted that cotransporters facilitate water movement by two independent mechanisms: osmotic flow through a water channel in the protein and flow driven by ion/substrate cotransport. However, the molecular mechanism of transport-linked water flow is controversial. Some researchers believe that it occurs via cotransport, in which water is pumped along with the transported cargo, while others believe that flow is osmotic in response to an increase in intracellular osmolarity. In this letter, we report the results of a 200-ns molecular dynamics simulation of the sodium-dependent galactose cotransporter vSGLT. Our simulation shows that a significant number of water molecules cross the protein through the sugar-binding site in the presence as well as the absence of galactose, and 70-80 water molecules accompany galactose as it moves from the binding site into the intracellular space. During this event, the majority of water molecules in the pathway are unable to diffuse around the galactose, resulting in water in the inner half of the transporter being pushed into the intracellular space and replaced by extracellular water. Thus, our simulation supports the notion that cotransporters act as both passive water channels and active water pumps with the transported substrate acting as a piston to rectify the motion of water. Copyright © 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  11. Methods for engineering polypeptide variants via somatic hypermutation and polypeptide made thereby

    DOEpatents

    Tsien, Roger Y; Wang, Lei

    2015-01-13

    Methods using somatic hypermutation (SHM) for producing polypeptide and nucleic acid variants, and nucleic acids encoding such polypeptide variants are disclosed. Such variants may have desired properties. Also disclosed are novel polypeptides, such as improved fluorescent proteins, produced by the novel methods, and nucleic acids, vectors, and host cells comprising such vectors.

  12. Reduced hepatitis B and D viral entry using clinically applied drugs as novel inhibitors of the bile acid transporter NTCP.

    PubMed

    Donkers, Joanne M; Zehnder, Benno; van Westen, Gerard J P; Kwakkenbos, Mark J; IJzerman, Adriaan P; Oude Elferink, Ronald P J; Beuers, Ulrich; Urban, Stephan; van de Graaf, Stan F J

    2017-11-10

    The sodium taurocholate co-transporting polypeptide (NTCP, SLC10A1) is the main hepatic transporter of conjugated bile acids, and the entry receptor for hepatitis B virus (HBV) and hepatitis delta virus (HDV). Myrcludex B, a synthetic peptide mimicking the NTCP-binding domain of HBV, effectively blocks HBV and HDV infection. In addition, Myrcludex B inhibits NTCP-mediated bile acid uptake, suggesting that also other NTCP inhibitors could potentially be a novel treatment of HBV/HDV infection. This study aims to identify clinically-applied compounds intervening with NTCP-mediated bile acid transport and HBV/HDV infection. 1280 FDA/EMA-approved drugs were screened to identify compounds that reduce uptake of taurocholic acid and lower Myrcludex B-binding in U2OS cells stably expressing human NTCP. HBV/HDV viral entry inhibition was studied in HepaRG cells. The four most potent inhibitors of human NTCP were rosiglitazone (IC 50 5.1 µM), zafirlukast (IC 50 6.5 µM), TRIAC (IC 50 6.9 µM), and sulfasalazine (IC 50 9.6 µM). Chicago sky blue 6B (IC 50 7.1 µM) inhibited both NTCP and ASBT, a distinct though related bile acid transporter. Rosiglitazone, zafirlukast, TRIAC, sulfasalazine, and chicago sky blue 6B reduced HBV/HDV infection in HepaRG cells in a dose-dependent manner. Five out of 1280 clinically approved drugs were identified that inhibit NTCP-mediated bile acid uptake and HBV/HDV infection in vitro.

  13. Transport of estradiol-17β-glucuronide, estrone-3-sulfate and taurocholate across the endoplasmic reticulum membrane: evidence for different transport systems.

    PubMed

    Wlcek, Katrin; Hofstetter, Lia; Stieger, Bruno

    2014-03-01

    Important reactions of drug metabolism, including UGT mediated glucuronidation and steroidsulfatase mediated hydrolysis of sulfates, take place in the endoplasmic reticulum (ER) of hepatocytes. Consequently, UGT generated glucuronides, like estradiol-17β-glucuronide, have to be translocated back into the cytoplasm to reach their site of excretion. Also steroidsulfatase substrates, including estrone-3-sulfate, have to cross the ER membrane to reach their site of hydrolysis. Based on their physicochemical properties such compounds are not favored for passive diffusion and therefore likely necessitate transport system(s) to cross the ER membrane in either direction. The current study aims to investigate the transport of taurocholate, estradiol-17β-glucuronide, and estrone-3-sulfate in smooth (SER) and rough (RER) endoplasmic reticulum membrane vesicles isolated from Wistar and TR(-) rat liver. Time-dependent and bidirectional transport was demonstrated for taurocholate, showing higher uptake rates in SER than RER vesicles. For estradiol-17β-glucuronide a fast time-dependent efflux with similar efficiencies from SER and RER but no clear protein-mediated uptake was shown, indicating an asymmetric transport system for this substrate. Estrone-3-sulfate uptake was time-dependent and higher in SER than in RER vesicles. Inhibition of steroidsulfatase mediated estrone-3-sulfate hydrolysis decreased estrone-3-sulfate uptake but had no effect on taurocholate or estradiol-17β-glucuronide transport. Based on inhibition studies and transport characteristics, three different transport mechanisms are suggested to be involved in the transport of taurocholate, estrone-3-sulfate and estradiol-17β-glucuronide across the ER membrane. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Relative hypoglycemia of rectal insulin suppositories containing deoxycholic acid, sodium taurocholate, polycarbophil, and their combinations in diabetic rabbits.

    PubMed

    Hosny, E A

    1999-06-01

    In this study, insulin suppositories containing 50 U insulin incorporated with 50 mg of deoxycholic acid, sodium taurocholate, or both were placed in the rectum of alloxan-induced hyperglycemic rabbits. A large decrease in plasma glucose concentrations was observed, and the relative hypoglycemias were calculated to be 38.0%, 34.9%, and 44.4%, respectively, compared with insulin subcutaneous (s.c.) injection (40 U). Insulin suppositories containing 50 mg polycarbophil alone or mixed with 50 mg deoxycholic acid produced relative hypoglycemia of 43.1% and 42.2%, respectively. The most pronounced effect was observed with the addition of polycarbophil to the suppository formulation containing a combination of deoxycholic acid and sodium taurocholate, which produced a 56% relative hypoglycemia compared with subcutaneous injection. These suppository formulations could be very promising alternatives to the current insulin injections, being roughly half as efficacious as subcutaneous injection.

  15. Expression and role of the genes involved in the transport of bile acids in the liver and kidneys in mice.

    PubMed

    Attakpa, Eugène S; Djibril, Naguibou M; Baba-Moussa, Farid; Yessoufou, Ganiou; Sezan, Alphonse

    2013-01-01

    Bile acids are synthesized in the liver from cholesterol. This study investigated the impact and expression of different carriers of bile acid in the liver and kidneys. Eight-week-old male mice were used, which were fed for 15 days and divided into two groups: 15 mice fed with standard diet (control group) and another 15 mice fed with a rich diet of 5% cholesterol (second group). Bile acid dosage was based on their oxidation by 7α hydroxyl-steroid dehydrogenize. The mRNA expression was quantitatively analyzed by the real time of polymerase chain reaction (RT-PCR), and the expression of the renal carrier bile acid protein was analyzed by Western blot. The expression of bile salt export pump involved in the uptake of bile acids in the basolateral membrane of hepatocytes revealed no differences between the two groups of mice. However, the expression of multidrug resistance-associated protein 2 was reduced in mice of the second group. Moreover, the expressions of organic anion transporting polypeptide 4, organic anion transporting polypeptide 1, and sodium taurocholate co-transporting polypeptide (Ntcp) involved in the uptake of bile acids in the apical pole of hepatocytes are suppressed in mice of the second group. The expression of multidrug resistance-associated protein 3 involved in the secretion of bile acids in the apical membrane of hepatocytes revealed no significant differences between the two groups. In mice of the second group, blood concentration of bile acids on the last day was increased. In those mice, the expression of intestinal bile acid transporter was reduced in the kidneys compared with the control mice.

  16. Hydrogenase polypeptide and methods of use

    DOEpatents

    Adams, Michael W.W.; Hopkins, Robert C.; Jenney, JR, Francis E.; Sun, Junsong

    2016-02-02

    Provided herein are polypeptides having hydrogenase activity. The polypeptide may be multimeric, and may have hydrogenase activity of at least 0.05 micromoles H.sub.2 produced min.sup.-1 mg protein.sup.-1. Also provided herein are polynucleotides encoding the polypeptides, genetically modified microbes that include polynucleotides encoding one or more subunits of the multimeric polypeptide, and methods for making and using the polypeptides.

  17. Gill Na+-K+-2Cl- cotransporter abundance and location in Atlantic salmon: Effects of seawater and smolting

    USGS Publications Warehouse

    Pelis, Ryan M.; Zydlewski, Joseph D.; McCormick, Stephen D.

    2001-01-01

    Na+-K+-2Cl−cotransporter abundance and location was examined in the gills of Atlantic salmon (Salmo salar) during seawater acclimation and smolting. Western blots revealed three bands centered at 285, 160, and 120 kDa. The Na+-K+-2Cl−cotransporter was colocalized with Na+-K+-ATPase to chloride cells on both the primary filament and secondary lamellae. Parr acclimated to 30 parts per thousand seawater had increased gill Na+-K+-2Cl− cotransporter abundance, large and numerous Na+-K+-2Cl− cotransporter immunoreactive chloride cells on the primary filament, and reduced numbers on the secondary lamellae. Gill Na+-K+-2Cl− cotransporter levels were low in presmolts (February) and increased 3.3-fold in smolts (May), coincident with elevated seawater tolerance. Cotransporter levels decreased below presmolt values in postsmolts in freshwater (June). The size and number of immunoreactive chloride cells on the primary filament increased threefold during smolting and decreased in postsmolts. Gill Na+-K+-ATPase activity and Na+-K+-2Cl− cotransporter abundance increased in parallel during both seawater acclimation and smolting. These data indicate a direct role of the Na+-K+-2Cl− cotransporter in salt secretion by gill chloride cells of teleost fish.

  18. K-Cl cotransport function and its potential contribution to cardiovascular disease.

    PubMed

    Adragna, Norma C; Lauf, Peter K

    2007-12-01

    K-Cl cotransport is the coupled electroneutral movement of K and Cl ions carried out by at least four protein isoforms, KCC1-4. These transporters belong to the SLC12A family of coupled cotransporters and, due to their multiple functions, play an important role in the maintenance of cellular homeostasis. Significant information exists on the overall function of these transporters, but less is known about the role of the specific isoforms. Most functional studies were done on K-Cl cotransport fluxes without knowing the molecular details, and only recently attention has been paid to the isoforms and their individual contribution to the fluxes. This review summarizes briefly and updates the information on the overall functions of this transporter, and offers some ideas on its potential contribution to the pathophysiological basis of cardiovascular disease. By virtue of its properties and the cellular ionic distribution, K-Cl cotransport participates in volume regulation of the nucleated and some enucleated cells studied thus far. One of the hallmarks in cardiovascular disease is the inability of the organism to maintain water and electrolyte balance in effectors and/or target tissues. Oxidative stress is another compounding factor in cardiovascular disease and of great significance in our modern life styles. Several functions of the transporter are modulated by oxidative stress, which in turn may cause the transporter to operate in either "overdrive" with the purpose to counteract homeostatic changes, or not to respond at all, again setting the stage for pathological changes leading to cardiovascular disease. Intracellular Mg, a second messenger, acts as an inhibitor of K-Cl cotransport and plays a crucial role in regulating the activity of protein kinases and phosphatases, which, in turn, regulate a myriad of cellular functions. Although the role of Mg in cardiovascular disease has been dealt with for several decades, this chapter is evolving nowadays at a faster

  19. Impacts of sodium-glucose co-transporter type 2 inhibitors on central blood pressure.

    PubMed

    Takenaka, Tsuneo; Ohno, Yoichi; Suzuki, Hiromichi

    2018-03-01

    To assess the effects of sodium-glucose co-transporter type 2 inhibitors on central blood pressure, an important determinant of cardiovascular events. Canagliflozin, Empagliflozin or Luseogliflozin was given for 102 type 2 diabetic patients with hypertension and nephropathy. Central blood pressure was evaluated by radial tonometry. Clinical parameters were followed for 6 months. Three differing sodium-glucose co-transporter type 2 inhibitors similarly reduced brachial and central blood pressures, casual blood sugar, haemoglobin A1c, estimated glomerular filtration rate and albuminuria without significant changes in pulse rate and lipid profiles. Central systolic blood pressure was associated with the decreases in albuminuria by sodium-glucose co-transporter type 2 inhibitors. Comparable influences of various sodium-glucose co-transporter type 2 inhibitors on central blood pressure suggest class effects.

  20. Mosaic HIV envelope immunogenic polypeptides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korber, Bette T. M.; Gnanakaran, S.; Perkins, Simon

    Disclosed herein are mosaic HIV envelope (Env) polypeptides that can elicit an immune response to HIV (such as cytotoxic T cell (CTL), helper T cell, and/or humoral responses). Also disclosed are sets of the disclosed mosaic Env polypeptides, which include two or more (for example, three) of the polypeptides. Also disclosed herein are methods for treating or inhibiting HIV in a subject including administering one or more of the disclosed immunogenic polypeptides or compositions to a subject infected with HIV or at risk of HIV infection. In some embodiments, the methods include inducing an immune response to HIV in amore » subject comprising administering to the subject at least one (such as two, three, or more) of the immunogenic polypeptides or at least one (such as two, three, or more) nucleic acids encoding at least one of the immunogenic polypeptides disclosed herein.« less

  1. Sodium-bicarbonate cotransport in retinal Müller (glial) cells of the salamander.

    PubMed

    Newman, E A

    1991-12-01

    An electrogenic Na+/HCO3- cotransport system was studied in freshly dissociated Müller cells of the salamander retina. Cotransporter currents were recorded from isolated cells using the whole-cell, voltage-clamp technique following the block of K+ conductance with external Ba2+ and internal Cs+. At constant pHo, an outward current was evoked when extracellular HCO3- concentration was raised by pressure ejecting a HCO3(-)-buffered solution onto the surface of cells bathed in nominally HCO3(-)-free solution. The HCO3(-)-evoked outward current was reduced to 4.4% of control by 0.5 mM DIDS (4,4'-diisothiocyanatostilbene-2,2'-disulfonate), to 28.8% of control by 2 mM DNDS (4,4'-dinitrostilbene-2,2'-disulfonate), and to 28.4% of control by 2 mM harmaline. Substitution of choline for Na+ in bath and ejection solutions reduced the response to 1.3% of control. Bicarbonate-evoked currents of normal magnitude were recorded when methane sulfonate was substituted for Cl- in bath, ejection, and intracellular solutions. Similarly, an outward current was evoked when extracellular Na+ concentration was raised in the presence of HCO3-. The Na(+)-evoked response was reduced to 16.2% of control by 2 mM DNDS and was abolished by removal of HCO3- from bath and ejection solutions. Taken together, these results (block by stilbenes and harmaline, HCO3- and Na+ dependence, Cl- independence) indicate that salamander Müller cells possess an electrogenic Na+/HCO3- cotransport system. Na+/HCO3- cotransporter sites were localized primarily at the endfoot region of Müller cells. Ejection of HCO3- onto the endfoot evoked outward currents 10 times larger than currents evoked by ejections onto the opposite (distal) end of the cell. The reversal potential of the cotransporter was determined by DNDS block of cotransport current. In the absence of a transmembrane HCO3- gradient, the reversal potential varied systematically as a function of the transmembrane Na+ gradient. The reversal potential was

  2. Characterization of glial cell K-Cl cotransport.

    PubMed

    Gagnon, Kenneth B E; Adragna, Norma C; Fyffe, Robert E W; Lauf, Peter K

    2007-01-01

    The molecular mechanism of K-Cl cotransport (KCC) consists of at least 4 isoforms, KCC 1, 2, 3, and 4 which, in multiple combinations, exist in most cells, including erythrocytes and neuronal cells. We utilized reverse-transcriptase-polymerase chain reaction (RT-PCR) and ion flux studies to characterize KCC activity in an immortalized in vitro cell model for fibrous astrocytes, the rat C6 glioblastoma cell. Isoform-specific sets of oligonucleotide primers were synthesized for NKCC1, KCC1, KCC2, KCC3, KCC4, and also for NKCC1 and actin. K-Cl cotransport activity was determined by measuring either the furosemide-sensitive, or the Cl(-)-dependent bumetanide-insensitive Rb(+) (a K(+) congener) influx in the presence of the Na/K pump inhibitor ouabain. Rb(+) influx was measured at a fixed external Cl concentrations, [Cl(-)](e), as a function of varying external Rb concentrations, [Rb(+)](e), and at a fixed [Rb(+)](e) as a function of varying [Cl(-)](e), and with equimolar Cl replacement by anions of the chaotropic series. RT-PCR of C6 glioblastoma (C6) cells identified mRNA for three KCC isoforms (1, 3, and 4). NKCC1 mRNA was also detected. The apparent K(m) for KCC-mediated Rb(+) influx was 15 mM [Rb(+)](e), and V(max) 12.5 nmol Rb(+) * mg protein(-1) * minute(-1). The calculated apparent K(m) for external Cl(-) was 13 mM and V(max) 14.4 nmol Rb(+) * mg protein(-1) * minute(-1). The anion selectivity sequence of the furosemide-sensitive Rb(+) influx was Cl(-)>Br-=NO(3)(-)>I(-)=SCN(-)>Sfm(-) (sulfamate). Established activators of K-Cl cotransport, hyposmotic shock and N-ethylmaleimide (NEM) pretreatment, stimulated furosemide-sensitive Rb(+) influx. A ñ50% NEM-induced loss of intracellular K(+) was prevented by furosemide. We have identified by RT-PCR the presence of three distinct KCC isoforms (1, 3, and 4) in rat C6 glioblastoma cells, and functionally characterized the anion selectivity and kinetics of their collective sodium-independent cation-chloride cotransport

  3. NTCP-Reconstituted In Vitro HBV Infection System.

    PubMed

    Sun, Yinyan; Qi, Yonghe; Peng, Bo; Li, Wenhui

    2017-01-01

    Sodium taurocholate cotransporting polypeptide (NTCP) has been identified as a functional receptor for hepatitis B virus (HBV). Expressing human NTCP in human hepatoma HepG2 cells (HepG2-NTCP) renders these cells susceptible for HBV infection. The HepG2-NTCP stably transfected cell line provides a much-needed and easily accessible platform for studying the virus. HepG2-NTCP cells could also be used to identify chemicals targeting key steps of the virus life cycle including HBV covalent closed circular (ccc) DNA, and enable the development of novel antivirals against the infection.Many factors may contribute to the efficiency of HBV infection on HepG2-NTCP cells, with clonal differences among cell line isolates, the source of viral inoculum, and infection medium among the most critical ones. Here, we provide detailed protocols for efficient HBV infection of HepG2-NTCP cells in culture; generation and selection of single cell clones of HepG2-NTCP; production of infectious HBV virion stock through DNA transfection of recombinant plasmid that enables studying primary clinical HBV isolates; and assessing the infection with immunostaining of HBV antigens and Southern blot analysis of HBV cccDNA.

  4. A Study on Pharmacokinetics of Bosentan with Systems Modeling, Part 1: Translating Systemic Plasma Concentration to Liver Exposure in Healthy Subjects.

    PubMed

    Li, Rui; Niosi, Mark; Johnson, Nathaniel; Tess, David A; Kimoto, Emi; Lin, Jian; Yang, Xin; Riccardi, Keith A; Ryu, Sangwoo; El-Kattan, Ayman F; Maurer, Tristan S; Tremaine, Larry M; Di, Li

    2018-04-01

    Understanding liver exposure of hepatic transporter substrates in clinical studies is often critical, as it typically governs pharmacodynamics, drug-drug interactions, and toxicity for certain drugs. However, this is a challenging task since there is currently no easy method to directly measure drug concentration in the human liver. Using bosentan as an example, we demonstrate a new approach to estimate liver exposure based on observed systemic pharmacokinetics from clinical studies using physiologically based pharmacokinetic modeling. The prediction was verified to be both accurate and precise using sensitivity analysis. For bosentan, the predicted pseudo steady-state unbound liver-to-unbound systemic plasma concentration ratio was 34.9 (95% confidence interval: 4.2, 50). Drug-drug interaction (i.e., CYP3A and CYP2B6 induction) and inhibition of hepatic transporters (i.e., bile salt export pump, multidrug resistance-associated proteins, and sodium-taurocholate cotransporting polypeptide) were predicted based on the estimated unbound liver tissue or plasma concentrations. With further validation and refinement, we conclude that this approach may serve to predict human liver exposure and complement other methods involving tissue biopsy and imaging. Copyright © 2018 by The American Society for Pharmacology and Experimental Therapeutics.

  5. Cloning and expression of sheep renal K-CI cotransporter-1.

    PubMed

    Zhang, Jin J; Misri, Sandeep; Adragna, Norma C; Gagnon, Kenneth B E; Fyffe, Robert E W; Lauf, Peter K

    2005-01-01

    Sheep K-Cl cotransporter-1(shKCC1) cDNA was cloned from kidney by RT-PCR with an open reading frame of 3258 base pairs exhibiting 92%, 90%, 88% and 87% identity with pig, rabbit and human, rat and mouse KCC1 cDNAs, respectively, encoding an approximately 122 kDa polypeptide of 1086-amino acids. Hydropathy analysis reveals the familiar KCC1 topology with 12 transmembrane domains (TMDs) and the hydrophilic NH2-terminal (NTD) and COOH-terminal (CTD) domains both at the cytoplasmic membrane face. However, shKCC1 has two rather than one large extracellular loops (ECL): ECL3 between TMDs 5 and 6, and ECL6, between TMDs 11 and 12. The translated shKCC1 protein differs in 12 amino acid residues from other KCC1s, mainly within the NTD, ECL3, ICL4, ECL6, and CTD. Notably, a tyrosine residue at position 996 replaces aspartic acid conserved in all other species. Human embryonic kidney (HEK293) cells and mouse NIH/3T3 fibroblasts, transiently transfected with shKCCI-cDNA, revealed the glycosylated approximately 150 kDa proteins by Western blots and positive immunofluorescence-staining with polyclonal rabbit anti-ratKCC1 antibodies. ShKCC1 was functionally expressed in NIH/3T3 cells by an elevated basal Cl-dependent K influx measured with Rb as K-congener that was stimulated three-fold by the KCC-activator N-ethylmaleimide. Copyright (c) 2005 S. Karger AG, Basel.

  6. Aqueous cholesteric liquid crystals using uncharged rodlike polypeptides. Polypeptide vesicles by conformation-specific assembly. Ordered chiral macroporous hybrid silica-polypeptide composites

    NASA Astrophysics Data System (ADS)

    Bellomo, Enrico Giuseppe

    2005-07-01

    Aqueous cholesteric liquid crystals using uncharged rodlike polypeptides . The aqueous, lyotropic liquid-crystalline phase behavior of an alpha helical polypeptide, has been studied using optical microscopy and X-ray scattering. Solutions of optically pure polypeptide were found to form cholesteric liquid crystals at volume fractions that decreased with increasing average chain length. At very high volume fractions, the formation of a hexagonal mesophase was observed. The pitch of the cholesteric phase could be varied by a mixture of enantiomeric samples, where the pitch increased as the mixture approached equimolar. The cholesteric phases could be untwisted, using either magnetic field or shear flow, into nematic phases, which relaxed into cholesterics upon removal of field or shear. We have found that the phase diagram of this polypeptide in aqueous solution parallels that of poly(gamma-benzyl glutamate) in organic solvents, thus providing a useful system for liquid-crystal applications requiring water as solvent. Polypeptide vesicles by conformation-specific assembly. We have found that block copolymers composed of polypeptide segments provide significant advantages in controlling both the function and supramolecular structure of bioinspired self-assemblies. Incorporation of the stable chain conformations found in proteins into block copolymers was found to provide an additional element of control, beyond amphiphilicity and composition that defines self-assembled architecture. The abundance of functionality present in amino acids, and the ease by which they can be incorporated into these materials, also provides a powerful mechanism to impart block copolypeptides with function. This combination of structure and function work synergistically to enable significant advantages in the preparation of therapeutic agents as well as provide insight into design of self-assemblies beginning to approach the complexity of natural structures such as virus capsids. Ordered

  7. Isotonic transport by the Na+-glucose cotransporter SGLT1 from humans and rabbit

    PubMed Central

    Zeuthen, T; Meinild, A-K; Loo, D D F; Wright, E M; Klaerke, D A

    2001-01-01

    In order to study its role in steady state water transport, the Na+-glucose cotransporter (SGLT1) was expressed in Xenopus laevis oocytes; both the human and the rabbit clones were tested. The transport activity was monitored as a clamp current and the flux of water followed optically as the change in oocyte volume. SGLT1 has two modes of water transport. First, it acts as a molecular water pump: for each 2 Na+ and 1 sugar molecule 264 water molecules were cotransported in the human SGLT1 (hSGLT1), 424 for the rabbit SGLT1 (rSGLT1). Second, it acts as a water channel. The cotransport of water was tightly coupled to the sugar-induced clamp current. Instantaneous changes in clamp current induced by changes in clamp voltage were accompanied by instantaneous changes in the rate of water transport. The cotransported solution was predicted to be hypertonic, and an osmotic gradient built up across the oocyte membrane with continued transport; this resulted in an additional osmotic influx of water. After 5-10 min a steady state was achieved in which the total influx was predicted to be isotonic with the intracellular solution. With the given expression levels, the steady state water transport was divided about equally between cotransport, osmosis across the SGLT1 and osmosis across the native oocyte membrane. Coexpression of AQP1 with the SGLT1 increased the water permeability more than 10-fold and steady state isotonic transport was achieved after less than 2 s of sugar activation. One-third of the water was cotransported, and the remainder was osmotically driven through the AQP1. The data suggest that SGLT1 has three roles in isotonic water transport: it cotransports water directly, it supplies a passive pathway for osmotic water transport, and it generates an osmotic driving force that can be employed by other pathways, for example aquaporins. PMID:11251046

  8. Exploring the intricate regulatory network controlling the thiazide-sensitive NaCl cotransporter (NCC).

    PubMed

    Dimke, Henrik

    2011-12-01

    The thiazide-sensitive NaCl cotransporter (NCC) plays key roles in renal electrolyte transport and blood pressure maintenance. Regulation of this cotransporter has received increased attention recently, prompted by the discovery that mutations in the with-no-lysine (WNK) kinases are the molecular explanation for pseudohypoaldosteronism type II (PHAII). Studies suggest that WNK4 regulates NCC via two distinct pathways, depending on its state of activation. Furthermore, an intact STE20-related proline-alanine-rich kinase (SPAK)/oxidative stress response 1 kinase (OSR1) pathway was found to be necessary for a WNK4 PHAII mutation to increase NCC phosphorylation and blood pressure in mice. The mouse protein 25α is a novel regulator of the SPAK/OSR1 kinase family, which greatly increases their activity. The phosphorylation status of NCC and the WNK is regulated by the serum- and glucocorticoid-inducible kinase 1, suggesting novel mechanisms whereby aldosterone modulates NCC activity. Dephosphorylation of NCC by protein phosphatase 4 strongly influences the activity of the cotransporter, confirming an important role for NCC phosphorylation. Finally, γ-adducin increases NCC activity. This stimulatory effect is dependent on the phosphorylation status of the cotransporter. γ-Adducin only binds the dephosphorylated cotransporter, suggesting that phosphorylation of NCC causes the dissociation of γ-adducin. Since γ-adducin is not a kinase, it is tempting to speculate that the protein exerts its function by acting as a scaffold between the dephosphorylated cotransporter and the regulatory kinase. As more molecular regulators of NCC are identified, the system-controlling NCC activity is becoming increasingly complex. This intricacy confers an ability to integrate a variety of stimuli, thereby regulating NCC transport activity and ultimately blood pressure.

  9. Polypeptide Synthesis in Simian Virus 5-Infected Cells

    PubMed Central

    Peluso, Richard W.; Lamb, Robert A.; Choppin, Purnell W.

    1977-01-01

    Polypeptide synthesis in three different cell types infected with simian virus 5 has been examined using high-resolution polyacrylamide slab gel electrophoresis, and all of the known viral polypeptides have been identified above the host cell background. The polypeptides were synthesized in infected cells in unequal proportions, which are approximately the same as they are found in virions, suggesting that their relative rates of synthesis are controlled. The nucleocapsid polypeptide (NP) was the first to be detected in infected cells, and by 12 to 14 h the other virion structural polypeptides were identified, except for the polypeptides comprising the smaller glycoprotein (F). However, a glycosylated precursor (F0) with a molecular weight of 66,000 was found in each cell type, and pulse-chase experiments suggested that this precursor was cleaved to yield polypeptides F1 and F2. No other proteolytic processing was found. In addition to the structural polypeptides, the synthesis of five other polypeptides, designated I through V, has been observed in simian virus 5-infected cells. One of these (V), with a molecular weight of 24,000, was found in all cells examined and may be a nonstructural viral polypeptide. In contrast, there are polypeptides present in uninfected cells that correspond in size to polypeptides I through IV, and similar polypeptides have also been detected in increased amounts in cells infected with Sendai virus. These findings, and the fact that the synthesis of all four of these polypeptides is not increased in every cell type, suggest that they represent host polypeptides whose synthesis may be enhanced upon infection. When a high salt concentration was used to decrease host cell protein synthesis in infected cells, polypeptides IV and (to a lesser extent) I were synthesized in relatively greater amounts than other cellular polypeptides, as were the viral polypeptides. The possibility that these polypeptides may play some role in virus

  10. Taurocholic acid metabolism by gut microbes and colon cancer

    PubMed Central

    Ridlon, Jason M.; Wolf, Patricia G.; Gaskins, H. Rex

    2016-01-01

    ABSTRACT Colorectal cancer (CRC) is one of the most frequent causes of cancer death worldwide and is associated with adoption of a diet high in animal protein and saturated fat. Saturated fat induces increased bile secretion into the intestine. Increased bile secretion selects for populations of gut microbes capable of altering the bile acid pool, generating tumor-promoting secondary bile acids such as deoxycholic acid and lithocholic acid. Epidemiological evidence suggests CRC is associated with increased levels of DCA in serum, bile, and stool. Mechanisms by which secondary bile acids promote CRC are explored. Furthermore, in humans bile acid conjugation can vary by diet. Vegetarian diets favor glycine conjugation while diets high in animal protein favor taurine conjugation. Metabolism of taurine conjugated bile acids by gut microbes generates hydrogen sulfide, a genotoxic compound. Thus, taurocholic acid has the potential to stimulate intestinal bacteria capable of converting taurine and cholic acid to hydrogen sulfide and deoxycholic acid, a genotoxin and tumor-promoter, respectively. PMID:27003186

  11. Activation of ferret erythrocyte Na+–K+–2Cl− cotransport by deoxygenation

    PubMed Central

    Flatman, Peter W

    2005-01-01

    Deoxygenation of ferret erythrocytes stimulates Na+–K+–2Cl− cotransport by 111% (s.d., 46) compared to controls in air. Half-maximal activation occurs at a PO2 of 24 mmHg (s.d., 2) indicating that physiological changes in oxygen tension can influence cotransport function. Approximately 25–35% of this stimulation can be attributed to the rise of intracellular free magnesium concentration that occurs on deoxygenation (from 0.82 (s.d., 0.07) to 1.40 mm (s.d., 0.17)). Most of the stimulation is probably caused by activation of a kinase which can be prevented or reversed by treating cells with the kinase inhibitors PP1 or staurosporine, or by reducing cell magnesium content to submicromolar levels. Stimulation by deoxygenation is comparable with that caused by calyculin A or sodium arsenite, compounds that cause a 2- to 3-fold increase in threonine phosphorylation of the cotransporter which can be detected with phospho-specific antibodies. However, the same approach failed to detect significant changes in threonine phosphorylation following deoxygenation. The results suggest that deoxygenation causes activation of a kinase that either phosphorylates the transporter, but probably not on threonine, or phosphorylates another protein that in turn influences cotransporter behaviour. They also indicate that more than one kinase and phosphatase are involved in cotransporter phosphorylation. PMID:15618270

  12. Molecular cloning and biochemical characterization of two cation chloride cotransporter subfamily members of Hydra vulgaris.

    PubMed

    Hartmann, Anna-Maria; Pisella, Lucie I; Medina, Igor; Nothwang, Hans Gerd

    2017-01-01

    Cation Chloride Cotransporters (CCCs) comprise secondary active membrane proteins mainly mediating the symport of cations (Na+, K+) coupled with chloride (Cl-). They are divided into K+-Cl- outward transporters (KCCs), the Na+-K+-Cl- (NKCCs) and Na+-Cl- (NCCs) inward transporters, the cation chloride cotransporter interacting protein CIP1, and the polyamine transporter CCC9. KCCs and N(K)CCs are established in the genome since eukaryotes and metazoans, respectively. Most of the physiological and functional data were obtained from vertebrate species. To get insights into the basal functional properties of KCCs and N(K)CCs in the metazoan lineage, we cloned and characterized KCC and N(K)CC from the cnidarian Hydra vulgaris. HvKCC is composed of 1,032 amino-acid residues. Functional analyses revealed that hvKCC mediates a Na+-independent, Cl- and K+ (Tl+)-dependent cotransport. The classification of hvKCC as a functional K-Cl cotransporter is furthermore supported by phylogenetic analyses and a similar structural organization. Interestingly, recently obtained physiological analyses indicate a role of cnidarian KCCs in hyposmotic volume regulation of nematocytes. HvN(K)CC is composed of 965 amino-acid residues. Phylogenetic analyses and structural organization suggest that hvN(K)CC is a member of the N(K)CC subfamily. However, no inorganic ion cotransport function could be detected using different buffer conditions. Thus, hvN(K)CC is a N(K)CC subfamily member without a detectable inorganic ion cotransporter function. Taken together, the data identify two non-bilaterian solute carrier 12 (SLC12) gene family members, thereby paving the way for a better understanding of the evolutionary paths of this important cotransporter family.

  13. A novel hepatitis B virus species discovered in capuchin monkeys sheds new light on the evolution of primate hepadnaviruses.

    PubMed

    de Carvalho Dominguez Souza, Breno Frederico; König, Alexander; Rasche, Andrea; de Oliveira Carneiro, Ianei; Stephan, Nora; Corman, Victor Max; Roppert, Pia Luise; Goldmann, Nora; Kepper, Ramona; Müller, Simon Franz; Völker, Christof; de Souza, Alex Junior Souza; Gomes-Gouvêa, Michele Soares; Moreira-Soto, Andrés; Stöcker, Andreas; Nassal, Michael; Franke, Carlos Roberto; Rebello Pinho, João Renato; Soares, Manoel do Carmo Pereira; Geyer, Joachim; Lemey, Philippe; Drosten, Christian; Netto, Eduardo Martins; Glebe, Dieter; Drexler, Jan Felix

    2018-06-01

    All known hepatitis B virus (HBV) genotypes occur in humans and hominoid Old World non-human primates (NHPs). The divergent woolly monkey HBV (WMHBV) forms another orthohepadnavirus species. The evolutionary origins of HBV are unclear. We analysed sera from 124 Brazilian monkeys collected during 2012-2016 for hepadnaviruses using molecular and serological tools, and conducted evolutionary analyses. We identified a novel orthohepadnavirus species in capuchin monkeys (capuchin monkey hepatitis B virus [CMHBV]). We found CMHBV-specific antibodies in five animals and high CMHBV concentrations in one animal. Non-inflammatory, probably chronic infection was consistent with an intact preCore domain, low genetic variability, core deletions in deep sequencing, and no elevated liver enzymes. Cross-reactivity of antisera against surface antigens suggested antigenic relatedness of HBV, CMHBV, and WMHBV. Infection-determining CMHBV surface peptides bound to the human HBV receptor (human sodium taurocholate co-transporting polypeptide), but preferentially interacted with the capuchin monkey receptor homologue. CMHBV and WMHBV pseudotypes infected human hepatoma cells via the human sodium taurocholate co-transporting polypeptide, and were poorly neutralised by HBV vaccine-derived antibodies, suggesting that cross-species infections may be possible. Ancestral state reconstructions and sequence distance comparisons associated HBV with humans, whereas primate hepadnaviruses as a whole were projected to NHP ancestors. Co-phylogenetic analyses yielded evidence for co-speciation of hepadnaviruses and New World NHP. Bayesian hypothesis testing yielded strong support for an association of the HBV stem lineage with hominoid ancestors. Neither CMHBV nor WMHBV was likely the ancestor of the divergent human HBV genotypes F/H found in American natives. Our data suggest ancestral co-speciation of hepadnaviruses and NHP, and an Old World origin of the divergent HBV genotypes F/H. The

  14. Human NKCC2 cation–Cl– co-transporter complements lack of Vhc1 transporter in yeast vacuolar membranes.

    PubMed

    Petrezselyova, Silvia; Dominguez, Angel; Herynkova, Pavla; Macias, Juan F; Sychrova, Hana

    2013-10-01

    Cation–chloride co-transporters serve to transport Cl– and alkali metal cations. Whereas a large family of these exists in higher eukaryotes, yeasts only possess one cation–chloride co-transporter, Vhc1, localized to the vacuolar membrane. In this study, the human cation–chloride co-transporter NKCC2 complemented the phenotype of VHC1 deletion in Saccharomyces cerevisiae and its activity controlled the growth of salt-sensitive yeast cells in the presence of high KCl, NaCl and LiCl. A S. cerevisiae mutant lacking plasma-membrane alkali–metal cation exporters Nha1 and Ena1-5 and the vacuolar cation–chloride co-transporter Vhc1 is highly sensitive to increased concentrations of alkali–metal cations, and it proved to be a suitable model for characterizing the substrate specificity and transport activity of human wild-type and mutated cation–chloride co-transporters. Copyright © 2013 John Wiley & Sons, Ltd.

  15. Agouti polypeptide compositions

    DOEpatents

    Woychik, Richard P.; Bultman, Scott J.; Michaud, Edward J.

    2001-10-30

    Disclosed are methods and compositions comprising novel agouti polypeptides and the polynucleotides which encode them. Also disclosed are DNA segments encoding these proteins derived from human and murine cell lines, and the use of these polynucleotides and polypeptides in a variety of diagnostic and therapeutic applications. Methods, compositions, kits, and devices are also provided for identifying compounds which are inhibitors of agouti activity, and for altering fatty acid synthetase activity and intracellular calcium levels in transformed cells.

  16. Atorvastatin induces bile acid-synthetic enzyme Cyp7a1 by suppressing FXR signaling in both liver and intestine in mice[S

    PubMed Central

    Fu, Zidong Donna; Cui, Julia Yue; Klaassen, Curtis D.

    2014-01-01

    Statins are effective cholesterol-lowering drugs to treat CVDs. Bile acids (BAs), the end products of cholesterol metabolism in the liver, are important nutrient and energy regulators. The present study aims to investigate how statins affect BA homeostasis in the enterohepatic circulation. Male C57BL/6 mice were treated with atorvastatin (100 mg/kg/day po) for 1 week, followed by BA profiling by ultra-performance LC-MS/MS. Atorvastatin decreased BA pool size, mainly due to less BA in the intestine. Surprisingly, atorvastatin did not alter total BAs in the serum or liver. Atorvastatin increased the ratio of 12α-OH/non12α-OH BAs. Atorvastatin increased the mRNAs of the BA-synthetic enzymes cholesterol 7α-hydroxylase (Cyp7a1) (over 10-fold) and cytochrome P450 27a1, the BA uptake transporters Na+/taurocholate cotransporting polypeptide and organic anion transporting polypeptide 1b2, and the efflux transporter multidrug resistance-associated protein 2 in the liver. Noticeably, atorvastatin suppressed the expression of BA nuclear receptor farnesoid X receptor (FXR) target genes, namely small heterodimer partner (liver) and fibroblast growth factor 15 (ileum). Furthermore, atorvastatin increased the mRNAs of the organic cation uptake transporter 1 and cholesterol efflux transporters Abcg5 and Abcg8 in the liver. The increased expression of BA-synthetic enzymes and BA transporters appear to be a compensatory response to maintain BA homeostasis after atorvastatin treatment. The Cyp7a1 induction by atorvastatin appears to be due to suppressed FXR signaling in both the liver and intestine. PMID:25278499

  17. Nano polypeptide particles reinforced polymer composite fibers.

    PubMed

    Li, Jiashen; Li, Yi; Zhang, Jing; Li, Gang; Liu, Xuan; Li, Zhi; Liu, Xuqing; Han, Yanxia; Zhao, Zheng

    2015-02-25

    Because of the intensified competition of land resources for growing food and natural textile fibers, there is an urgent need to reuse and recycle the consumed/wasted natural fibers as regenerated green materials. Although polypeptide was extracted from wool by alkaline hydrolysis, the size of the polypeptide fragments could be reduced to nanoscale. The wool polypeptide particles were fragile and could be crushed down to nano size again and dispersed evenly among polymer matrix under melt extrusion condition. The nano polypeptide particles could reinforce antiultraviolet capability, moisture regain, and mechanical properties of the polymer-polypeptide composite fibers.

  18. Polypeptides having laccase activity and polynucleotides encoding same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ye; Tang, Lan; Duan, Junxin

    The present invention relates to isolated polypeptides having laccase activity and polynucleotides encoding the polypeptides and polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  19. Methods for using polypeptides having cellobiohydrolase activity

    DOEpatents

    Morant, Marc D; Harris, Paul

    2016-08-23

    The present invention relates to isolated polypeptides having cellobiohydrolase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  20. Antifungal polypeptides

    DOEpatents

    Altier, Daniel J [Waukee, IA; Ellanskaya, Irina [Kyiv, UA; Ellanskaya, legal representative, Natalia; Gilliam, Jacob T [Norwalk, IA; Hunter-Cevera, Jennie [Elliott City, MD; Presnail, James K [Avondale, PA; Schepers, Eric [Port Deposit, MD; Simmons, Carl R [Des Moines, IA; Torok, Tamas [Richmond, CA; Yalpani, Nasser [Johnston, IA

    2009-09-15

    The invention relates to antifungal compositions and methods for protecting a plant from a fungal pathogen. Compositions including antifungal polypeptides isolated from a fungal fermentation broth are provided.

  1. Polynucleotides encoding polypeptides having beta-glucosidase activity

    DOEpatents

    Harris, Paul; Golightly, Elizabeth

    2010-03-02

    The present invention relates to isolated polypeptides having beta-glucosidase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods for producing and using the polypeptides.

  2. Mistargeting of a truncated Na-K-2Cl cotransporter in epithelial cells.

    PubMed

    Koumangoye, Rainelli; Omer, Salma; Delpire, Eric

    2018-05-02

    We recently reported the case of a young patient with multi-system failure carrying a de novo mutation in SLC12A2, the gene encoding the Na-K-2Cl cotransporter-1. Heterologous expression studies in non-epithelial cells failed to demonstrate dominant-negative effects. In this study, we examined expression of the mutant cotransporter in epithelial cells. Using MDCK cells grown on glass coverslips, permeabilized support, and matrigel, we show that the fluorescently-tagged mutant cotransporter is expressed in cytoplasm and at the apical membrane and affects epithelium integrity. Expression of the mutant transporter at the apical membrane also results in the mislocalization of some of the wild-type transporter to the apical membrane. This mistargeting is specific to NKCC1 as the Na + /K + -ATPase remains localized on the basolateral membrane. To assess transporter localization in vivo, we created a mouse model using CRISPR/cas9 that reproduces the 11 bp deletion in exon 22 of Slc12a2. While the mice do not display an overt phenotype, we show that the colon and salivary gland expresses wild-type NKCC1 abundantly at the apical pole, confirming the data obtained in cultured epithelial cells. Enough cotransporter must remain, however, on the basolateral membrane to participate in saliva secretion, as no significant decrease in saliva production was observed in the mutant mice.

  3. Carbohydrate degrading polypeptide and uses thereof

    DOEpatents

    Sagt, Cornelis Maria Jacobus; Schooneveld-Bergmans, Margot Elisabeth Francoise; Roubos, Johannes Andries; Los, Alrik Pieter

    2015-10-20

    The invention relates to a polypeptide having carbohydrate material degrading activity which comprises the amino acid sequence set out in SEQ ID NO: 2 or an amino acid sequence encoded by the nucleotide sequence of SEQ ID NO: 1 or SEQ ID NO: 4, or a variant polypeptide or variant polynucleotide thereof, wherein the variant polypeptide has at least 96% sequence identity with the sequence set out in SEQ ID NO: 2 or the variant polynucleotide encodes a polypeptide that has at least 96% sequence identity with the sequence set out in SEQ ID NO: 2. The invention features the full length coding sequence of the novel gene as well as the amino acid sequence of the full-length functional protein and functional equivalents of the gene or the amino acid sequence. The invention also relates to methods for using the polypeptide in industrial processes. Also included in the invention are cells transformed with a polynucleotide according to the invention suitable for producing these proteins.

  4. Polypeptide having swollenin activity and uses thereof

    DOEpatents

    Schoonneveld-Bergmans, Margot Elizabeth Francoise; Heijne, Wilbert Herman Marie; Vlasie, Monica D; Damveld, Robbertus Antonius

    2015-11-04

    The invention relates to a polypeptide comprising the amino acid sequence set out in SEQ ID NO: 2 or an amino acid sequence encoded by the nucleotide sequence of SEQ ID NO: 1, or a variant polypeptide or variant polynucleotide thereof, wherein the variant polypeptide has at least 73% sequence identity with the sequence set out in SEQ ID NO: 2 or the variant polynucleotide encodes a polypeptide that has at least 73% sequence identity with the sequence set out in SEQ ID NO: 2. The invention features the full length coding sequence of the novel gene as well as the amino acid sequence of the full-length functional polypeptide and functional equivalents of the gene or the amino acid sequence. The invention also relates to methods for using the polypeptide in industrial processes. Also included in the invention are cells transformed with a polynucleotide according to the invention suitable for producing these proteins.

  5. Polypeptide having cellobiohydrolase activity and uses thereof

    DOEpatents

    Sagt, Cornelis Maria Jacobus; Schooneveld-Bergmans, Margot Elisabeth Francoise; Roubos, Johannes Andries; Los, Alrik Pieter

    2015-09-15

    The invention relates to a polypeptide comprising the amino acid sequence set out in SEQ ID NO: 2 or an amino acid sequence encoded by the nucleotide sequence of SEQ ID NO: 1, or a variant polypeptide or variant polynucleotide thereof, wherein the variant polypeptide has at least 93% sequence identity with the sequence set out in SEQ ID NO: 2 or the variant polynucleotide encodes a polypeptide that has at least 93% sequence identity with the sequence set out in SEQ ID NO: 2. The invention features the full length coding sequence of the novel gene as well as the amino acid sequence of the full-length functional polypeptide and functional equivalents of the gene or the amino acid sequence. The invention also relates to methods for using the polypeptide in industrial processes. Also included in the invention are cells transformed with a polynucleotide according to the invention suitable for producing these proteins.

  6. Sodium-glucose co-transporter type 2 inhibitors reduce evening home blood pressure in type 2 diabetes with nephropathy.

    PubMed

    Takenaka, Tsuneo; Kishimoto, Miyako; Ohta, Mari; Tomonaga, Osamu; Suzuki, Hiromichi

    2017-05-01

    The effects of sodium-glucose co-transporter type 2 inhibitors on home blood pressure were examined in type 2 diabetes with nephropathy. The patients with diabetic nephropathy were screened from medical records in our hospitals. Among them, 52 patients who measured home blood pressure and started to take sodium-glucose co-transporter type 2 inhibitors were selected. Clinical parameters including estimated glomerular filtration rate, albuminuria and home blood pressure for 6 months were analysed. Sodium-glucose co-transporter type 2 inhibitors (luseogliflozin 5 mg/day or canagliflozin 100 mg/day) reduced body weight, HbA1c, albuminuria, estimated glomerular filtration rate and office blood pressure. Although sodium-glucose co-transporter type 2 inhibitors did not alter morning blood pressure, it reduced evening systolic blood pressure. Regression analyses revealed that decreases in evening blood pressure predicted decrements in albuminuria. The present data suggest that sodium-glucose co-transporter type 2 inhibitors suppress sodium overload during daytime to reduce evening blood pressure and albuminuria.

  7. Chemical determination of polypeptide hormones.

    PubMed Central

    Tatemoto, K; Mutt, V

    1978-01-01

    The presence or absence of peptide hormones in tissue extracts may in certain cases be demonstrated by exposing the extracts to conditions under which characteristic fragments of the polypeptide molecule in question are formed and then analyzing for such fragments. An approximate quantitation of the hormones may also be achieved thereby. In the present work the COOH-terminal fragments of polypeptides containing characteristic alpha-amide groups were released enzymatically and then converted into the fluorescent dansyl derivatives, which were identified by thin-layer chromatography. In this way the presence of secretin, cholecystokinin, and the vasoactive intestinal peptide in concentrates of porcine intestinal extracts were demonstrated by their COOH-terminal amide fragments: valine (or leucylvaline) amide, phenylalanine amide, and asparagine (or leucylasparagine) amide, respectively. The analytical methodology used in the present study may also be useful in devising simple and reliable chemical assay methods for the isolation of already known polypeptides and in the isolation of previously uncharacterized polypeptides from natural sources. Images PMID:279902

  8. Mini-review: regulation of the renal NaCl cotransporter by hormones.

    PubMed

    Rojas-Vega, Lorena; Gamba, Gerardo

    2016-01-01

    The renal thiazide-sensitive NaCl cotransporter, NCC, is the major pathway for salt reabsorption in the distal convoluted tubule. The activity of this cotransporter is critical for regulation of several physiological variables such as blood pressure, serum potassium, acid base metabolism, and urinary calcium excretion. Therefore, it is not surprising that numerous hormone-signaling pathways regulate NCC activity to maintain homeostasis. In this review, we will provide an overview of the most recent evidence on NCC modulation by aldosterone, angiotensin II, vasopressin, glucocorticoids, insulin, norepinephrine, estradiol, progesterone, prolactin, and parathyroid hormone. Copyright © 2016 the American Physiological Society.

  9. Hepatitis B virus infection in Taiwan: The role of NTCP rs2296651 variant in relation to sex.

    PubMed

    Nfor, O N; Wu, M-F; Debnath, T; Lee, C-T; Lee, W; Liu, W-H; Tantoh, D M; Hsu, S-Y; Liaw, Y-P

    2018-04-16

    Sodium taurocholate cotransporting polypeptide (NTCP) is a functional receptor for hepatitis B virus (HBV) infection. NTCP rs2296651 is believed to be an Asian-specific variant responsible for HBV susceptibility. We investigated the relationship between rs2296651 and HBV infection in Taiwan based on stratification by gender and menopausal status. We recruited 10 017 Taiwan Biobank participants aged 30-70 years with complete genetic data and sociodemographic information. Gender-stratified multivariate logistic regression models were used to determine the relationship between NTCP variant and HBV infection. Among individuals with HBV infection, the genotype frequencies of GG, AG and AA in women were 0.85, 0.15 and 0 while those in men were 0.82, 0.18 and 0, respectively. The multivariate-adjusted odds ratios (OR) of HBV infection were 0.77 (95% CI 0.59-0.10) in women and 0.98 (95% CI 0.79-1.20) in men. The adjusted OR was 0.87 (CI 0.63-1.19) in premenopausal and 0.59 (0.36-0.97) in postmenopausal women. We found that genetic variation in the HBV receptor gene (NTCP) was significantly associated with a decreased risk of HBV infection in Taiwanese women. © 2018 The Authors. Journal of Viral Hepatitis Published by John Wiley & Sons Ltd.

  10. PKCzeta is required for microtubule-based motility of vesicles containing the ntcp transporter.

    PubMed

    Sarkar, Souvik; Bananis, Eustratios; Nath, Sangeeta; Anwer, M Sawkat; Wolkoff, Allan W; Murray, John W

    2006-08-01

    Intracellular trafficking regulates the abundance and therefore activity of transporters present at the plasma membrane. The transporter, Na+-taurocholate co-transporting polypeptide (ntcp), is increased at the plasma membrane upon treatment of cells with cAMP, for which microtubules (MTs) are required and the PI3K pathway and PKCzeta have been implicated. However, trafficking of ntcp on MTs has not been demonstrated directly and the regulation and intracellular localization of ntcp is not well understood. Here, we utilize in vitro and whole-cell immunofluorescence microscopy assays to demonstrate that ntcp is present on intracellular vesicles that bind MTs and move bidirectionally, using kinesin-1 and dynein. These vesicles co-localize with markers for recycling endosomes and early but not late endosomes. They frequently undergo fission, providing a mechanism for the exclusion of ntcp from late endosomes. PI(3,4,5)P3 activates PKCzeta and enhances motility of the ntcp vesicles and overcomes the partial inhibition produced by a PI3-kinase inhibitor. Specific inhibition of PKCzeta blocks the motility of ntcp-containing vesicles but has no effect on late vesicles as shown both in vitro and in living cells transfected with ntcp-GFP. These data indicate that PKCzeta is required specifically for the intracellular movement of vesicles that contain the ntcp transporter.

  11. Single Vesicle Analysis of Endocytic Fission on Microtubules In Vitro

    PubMed Central

    Wolkoff, Allan W.

    2016-01-01

    Following endocytosis, internalized molecules are found within intracellular vesicles and tubules that move along the cytoskeleton and undergo fission, as demonstrated here using primary cultured rat hepatocytes. Although the use of depolymerizing drugs has shown that the cytoskeleton is not required to segregate endocytic protein, many studies suggest that the cytoskeleton is involved in the segregation of protein in normal cells. To investigate whether cytoskeletal-based movement results in the segregation of protein, we tracked the contents of vesicles during in vitro microscopy assays. These studies showed that the addition of ATP causes fission of endocytic contents along microtubules, resulting in the segregation of proteins that are targeted for different cellular compartments. The plasma membrane proteins, sodium (Na+) taurocholate cotransporting polypeptide (ntcp) and transferrin receptor, segregated from asialoorosomucoid (ASOR), an endocytic ligand that is targeted for degradation. Epidermal growth factor receptor, which is degraded, and the asialoglycoprotein receptor, which remains partially bound to ASOR, segregated less efficiently from ASOR. Vesicles containing ntcp and transferrin receptor had reduced fission in the absence of ASOR, suggesting that fission is regulated to allow proteins to segregate. A single round of fission resulted in 6.5-fold purification of ntcp from ASOR, and 25% of the resulting vesicles were completely depleted of the endocytic ligand. PMID:18284582

  12. Polypeptides having catalase activity and polynucleotides encoding same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ye; Duan, Junxin; Zhang, Yu

    Provided are isolated polypeptides having catalase activity and polynucleotides encoding the polypeptides. Also provided are nucleic acid constructs, vectors and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  13. Polypeptide having an amino acid replaced with N-benzylglycine

    DOEpatents

    Mitchell, Alexander R.; Young, Janis D.

    1996-01-01

    The present invention relates to one or more polypeptides having useful biological activity in a mammal, which comprise: a polypeptide related to bradykinin of four to ten amino acid residues wherein one or more specific amino acids in the polypeptide chain are replaced with achiral N-benzylglycine. These polypeptide analogues have useful potent agonist or antagonist pharmacological properties depending upon the structure. A preferred polypeptide is (N-benzylglycine.sup.7)-bradykinin.

  14. Polypeptides having endoglucanase activity and polynucleotides encoding same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yu; Liu, Ye; Duan, Junxin

    Provided are isolated polypeptides having endoglucanase activity and isolated polynucleotides encoding the polypeptides. Also provided are nucleic acid constructs, vectors and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  15. Restriction/modification polypeptides, polynucleotides, and methods

    DOEpatents

    Westpheling, Janet; Chung, DaeHwan; Huddleston, Jennifer; Farkas, Joel A

    2015-02-24

    The present invention relates to the discovery of a novel restriction/modification system in Caldicellulosiruptor bescii. The discovered restriction enzyme is a HaeIII-like restriction enzyme that possesses a thermophilic activity profile. The restriction/modification system also includes a methyltransferase, M.CbeI, that methylates at least one cytosine residue in the CbeI recognition sequence to m.sup.4C. Thus, the invention provides, in various aspects, isolated CbeI or M.CbeI polypeptides, or biologically active fragments thereof; isolated polynucleotides that encode the CbeI or M.CbeI polypeptides or biologically active fragments thereof, including expression vectors that include such polynucleotide sequences; methods of digesting DNA using a CbeI polypeptide; methods of treating a DNA molecule using a M.CbeI polypeptide; and methods of transforming a Caldicellulosiruptor cell.

  16. Evidence for an apical Na-Cl cotransporter involved in ion uptake in a teleost fish

    USGS Publications Warehouse

    Hiroi, J.; Yasumasu, S.; McCormick, S.D.; Hwang, P.-P.; Kaneko, T.

    2008-01-01

    Cation-chloride cotransporters, such as the Na+/K +/2Cl- cotransporter (NKCC) and Na+/Cl - cotransporter (NCC), are localized to the apical or basolateral plasma membranes of epithelial cells and are involved in active ion absorption or secretion. The objectives of this study were to clone and identify 'freshwater-type' and 'seawater-type' cation-chloride cotransporters of euryhaline Mozambique tilapia (Oreochromis mossambicus) and to determine their intracellular localization patterns within mitochondria-rich cells (MRCs). From tilapia gills, we cloned four full-length cDNAs homologous to human cation-chloride cotransporters and designated them as tilapia NKCC1a, NKCC1b, NKCC2 and NCC. Out of the four candidates, the mRNA encoding NKCC1a was highly expressed in the yolk-sac membrane and gills (sites of the MRC localization) of seawater-acclimatized fish, whereas the mRNA encoding NCC was exclusively expressed in the yolk-sac membrane and gills of freshwater-acclimatized fish. We then generated antibodies specific for tilapia NKCC1a and NCC and conducted whole-mount immunofluorescence staining for NKCC1a and NCC, together with Na+/K+-ATPase, cystic fibrosis transmembrane conductance regulator (CFTR) and Na+/H+ exchanger 3 (NHE3), on the yolk-sac membrane of tilapia embryos acclimatized to freshwater or seawater. The simultaneous quintuple-color immunofluorescence staining allowed us to classify MRCs clearly into four types: types I, II, III and IV. The NKCC1a immunoreactivity was localized to the basolateral membrane of seawater-specific type-IV MRCs, whereas the NCC immunoreactivity was restricted to the apical membrane of freshwater-specific type-II MRCs. Taking account of these data at the level of both mRNA and protein, we deduce that NKCC1a is the seawater-type cotransporter involved in ion secretion by type-IV MRCs and that NCC is the freshwater-type cotransporter involved in ion absorption by type-II MRCs. We propose a novel ion-uptake model by MRCs in

  17. Polypeptides having endoglucanase activity and polynucleotides encoding same

    DOEpatents

    Liu, Ye; Duan, Junxin; Tang, Lan

    2015-09-22

    The present invention provides isolated polypeptides having endoglucanase activity and isolated polynucleotides encoding the polypeptides. The invention also provides nucleic acid constructs, vectors, and host cell comprising the polynucleotides as well as methods of producing and using the polypeptides.

  18. Polypeptides having cellobiohydrolase activitiy and polynucleotides encoding same

    DOEpatents

    Liu, Ye; Tang, Lan; Duan, Junxin

    2015-12-15

    The present invention provides isolated polypeptides having cellobiohydrolase activity and isolated polynucleotides encoding the polypeptides. The invention also provides nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  19. Polypeptides having cellobiohydrolase activity and polynucleotides encoding same

    DOEpatents

    Liu, Ye; Tang, Lan

    2015-07-14

    The present invention provides isolated polypeptides having cellobiohydrolase activity and isolated polynucleotides encoding the polypeptides. The invention also provides nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  20. Polypeptides having cellobiohydrolase activity and polynucleotides encoding same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ye; Tang, Lan; Duan, Junxin

    The present invention relates to isolated polypeptides having cellobiohydrolase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  1. Polypeptides having xylanase activity and polynucleotides encoding same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spodsberg, Nikolaj

    The present invention relates to isolated polypeptides having xylanase activity and polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  2. Polypeptides having xylanase activity and polynucleotides encoding same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopez de Leon, Alfredo; Rey, Michael

    The present invention relates to isolated polypeptides having xylanase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  3. Polypeptides having cellobiohydrolase activity and polynucleotides encoding same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spodsberg, Nikolaj

    The present invention relates to isolated polypeptides having cellobiohydrolase activity and polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  4. Polypeptides having endoglucanase activity and polynucleotides encoding same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yu; Liu, Ye; Duan, Junxin

    The present invention relates to isolated polypeptides having endoglucanase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  5. Polypeptides having endoglucanase activity and polynucleotides encoding same

    DOEpatents

    Lopez de Leon, Alfredo; Rey, Michael

    2012-09-18

    The present invention relates to isolated polypeptides having endoglucanase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  6. Polypeptides having xylanase activity and polynucleotides encoding same

    DOEpatents

    Lopez de Leon, Alfredo; Rey, Michael

    2010-12-14

    The present invention relates to isolated polypeptides having xylanase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  7. Polypeptides having endoglucanase activity and polynucleotides encoding same

    DOEpatents

    Harris, Paul [Carnation, WA; Lopez de Leon, Alfredo [Davis, CA; Rey, Micheal [Davis, CA; Ding, Hanshu [Davis, CA; Vlasenko, Elena [Davis, CA

    2012-02-21

    The present invention relates to isolated polypeptides having endoglucanase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods for producing and using the polypeptides.

  8. Polypeptides having cellobiohydrolase activity and polynucleotides encoding same

    DOEpatents

    Spodsberg, Nikolaj

    2016-06-28

    The present invention relates to isolated polypeptides having cellobiohydrolase activity and polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  9. Polypeptides having xylanase activity and polynucleotides encoding same

    DOEpatents

    Lopez de Leon, Alfredo; Rey, Michael

    2016-05-31

    The present invention relates to isolated polypeptides having xylanase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  10. Polypeptides having endoglucanase activity and polynucleotides encoding same

    DOEpatents

    Spodsberg, Nikolaj

    2015-02-10

    The present invention relates to isolated polypeptides having endoglucanase activity and polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  11. Polypeptides having endoglucanase activity and polynucleotides encoding same

    DOEpatents

    Spodsberg, Nikolaj

    2016-02-23

    The present invention relates to isolated polypeptides having endoglucanase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  12. Polypeptides having xylanase activity and polynucleotides encoding same

    DOEpatents

    Tang, Lan; Liu, Ye; Duan, Junxin; Ding, Hanshu

    2013-04-30

    The present invention relates to isolated polypeptides having xylanase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  13. Polypeptides having xylanase activity and polynucleotides encoding same

    DOEpatents

    Tang, Lan; Liu, Ye; Duan, Junxin; Hanshu, Ding

    2012-10-30

    The present invention relates to isolated polypeptides having xylanase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  14. Polypeptides having cellobiohydrolase activity and polynucleotides encoding same

    DOEpatents

    Liu, Ye; Tang, Lan

    2015-11-20

    The present invention relates to isolated polypeptides having cellobiohydrolase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  15. Polypeptides having xylanase activity and polynucleotides encoding same

    DOEpatents

    Lopez de Leon, Alfredo; Rey, Michael

    2015-01-27

    The present invention relates to isolated polypeptides having xylanase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  16. Polypeptides having xylanase activity and polynucleotides encoding same

    DOEpatents

    Spodsberg, Nikolaj

    2014-10-21

    The present invention relates to isolated polypeptides having xylanase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  17. Polypeptides having endoglucanase activity and polynucleotides encoding same

    DOEpatents

    Lopez de Leon, Alfredo; Rey, Michael

    2015-03-10

    The present invention relates to isolated polypeptides having endoglucanase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  18. Polypeptides having xylanase activity and polynucleotides encoding same

    DOEpatents

    Spodsberg, Nikolaj

    2017-05-02

    The present invention relates to isolated polypeptides having xylanase activity and polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  19. Polypeptides having cellobiohydrolase activity and polynucleotides encoding same

    DOEpatents

    Spodsberg, Nikolaj

    2015-03-31

    The present invention relates to isolated polypeptides having cellobiohydrolase activity and polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  20. Polypeptides having cellobiohydrolase activity and polynucleotides encoding same

    DOEpatents

    Brown, Kimberly [Elk Grove, CA; Harris, Paul [Carnation, WA; Lopez De Leon, Alfredo [Davis, CA; Merino, Sandra [West Sacremento, CA

    2007-05-22

    The present invention relates to isolated polypeptides having cellobiohydrolase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods for producing and using the polypeptides.

  1. Polypeptides having cellobiohydrolase activity and polynucleotides encoding same

    DOEpatents

    Liu, Ye; Harris, Paul; Tang, Lan; Wu, Wenping

    2013-11-19

    The present invention relates to isolated polypeptides having cellobiohydrolase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  2. Polypeptides having cellobiohydrolase activity and polynucleotides encoding same

    DOEpatents

    Morant, Marc D.; Harris, Paul

    2015-10-13

    The present invention relates to isolated polypeptides having cellobiohydrolase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  3. Polypeptides having cellobiohydrolase activity and polynucleotides encoding same

    DOEpatents

    Liu, Ye; Tang, Lan; Harris, Paul; Wu, Wenping

    2012-10-02

    The present invention relates to isolated polypeptides having cellobiohydrolase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  4. Polypeptides having endoglucanase activity and polynucleotides encoding same

    DOEpatents

    Lopez de Leon, Alfredo; Rey, Michael

    2013-06-18

    The present invention relates to isolated polypeptides having endoglucanase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  5. Polypeptides having cellobiohydrolase activity and polynucleotides encoding same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spodsberg, Nikolaj

    2016-12-13

    The present invention relates to isolated polypeptides having cellobiohydrolase activity and polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  6. Polypeptides having xylanase activity and polynucleotides encoding same

    DOEpatents

    Spodsberg, Nikolaj

    2014-10-14

    The present invention relates to isolated polypeptides having xylanase activity and polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  7. Polypeptides having cellobiohydrolase activity and polynucleotides encoding same

    DOEpatents

    Spodsberg, Nikolaj

    2015-07-14

    The present invention relates to isolated polypeptides having cellobiohydrolase activity and polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  8. Polypeptide having beta-glucosidase activity and uses thereof

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schoonneveld-Bergmans, Margot Elisabeth Francoise; Heijne, Wilbert Herman Marie; De Jong, Rene Marcel

    The invention relates to a polypeptide comprising the amino acid sequence set out in SEQ ID NO: 2 or an amino acid sequence encoded by the nucleotide sequence of SEQ ID NO: 1, or a variant polypeptide or variant polynucleotide thereof, wherein the variant polypeptide has at least 96% sequence identity with the sequence set out in SEQ ID NO: 2 or the variant polynucleotide encodes a polypeptide that has at least 96% sequence identity with the sequence set out in SEQ ID NO: 2. The invention features the full length coding sequence of the novel gene as well asmore » the amino acid sequence of the full-length functional polypeptide and functional equivalents of the gene or the amino acid sequence. The invention also relates to methods for using the polypeptide in industrial processes. Also included in the invention are cells transformed with a polynucleotide according to the invention suitable for producing these proteins.« less

  9. Polypeptide having beta-glucosidase activity and uses thereof

    DOEpatents

    Schooneveld-Bergmans, Margot Elisabeth Francoise; Heijne, Wilbert Herman Marie; De Jong, Rene Marcel; Damveld, Robbertus Antonius

    2015-09-01

    The invention relates to a polypeptide comprising the amino acid sequence set out in SEQ ID NO: 2 or an amino acid sequence encoded by the nucleotide sequence of SEQ ID NO: 1, or a variant polypeptide or variant polynucleotide thereof, wherein the variant polypeptide has at least 70% sequence identity with the sequence set out in SEQ ID NO: 2 or the variant polynucleotide encodes a polypeptide that has at least 70% sequence identity with the sequence set out in SEQ ID NO: 2. The invention features the full length coding sequence of the novel gene as well as the amino acid sequence of the full-length functional polypeptide and functional equivalents of the gene or the amino acid sequence. The invention also relates to methods for using the polypeptide in industrial processes. Also included in the invention are cells transformed with a polynucleotide according to the invention suitable for producing these proteins.

  10. Polypeptide having carbohydrate degrading activity and uses thereof

    DOEpatents

    Schooneveld-Bergmans, Margot Elisabeth Francoise; Heijne, Wilbert Herman Marie; Vlasie, Monica Diana; Damveld, Robbertus Antonius

    2015-08-18

    The invention relates to a polypeptide comprising the amino acid sequence set out in SEQ ID NO: 2 or an amino acid sequence encoded by the nucleotide sequence of SEQ ID NO: 1, or a variant polypeptide or variant polynucleotide thereof, wherein the variant polypeptide has at least 73% sequence identity with the sequence set out in SEQ ID NO: 2 or the variant polynucleotide encodes a polypeptide that has at least 73% sequence identity with the sequence set out in SEQ ID NO: 2. The invention features the full length coding sequence of the novel gene as well as the amino acid sequence of the full-length functional polypeptide and functional equivalents of the gene or the amino acid sequence. The invention also relates to methods for using the polypeptide in industrial processes. Also included in the invention are cells transformed with a polynucleotide according to the invention suitable for producing these proteins.

  11. Toxicity study of isolated polypeptide from wool hydrolysate.

    PubMed

    Li, Jiashen; Li, Yi; Zhang, Yu; Liu, Xuan; Zhao, Zheng; Zhang, Jing; Han, Yanxia; Zhou, Dangxia

    2013-07-01

    The cytotoxicity of wool polypeptide has been evaluated by both cell and animal models. Wool was dissolved in sodium hydroxide solution, the pH value of the solution was adjusted to 5.55 and the precipitate was harvested as wool polypeptide. The spray-dried polypeptide was collected as powders and characterized by SEM, FTIR and TG-DSC. The cell culturing results showed that wool polypeptide had no obvious negative effect on cell viability in vitro. Both acute oral toxicity and subacute 30-day oral toxicology studies showed that wool polypeptide had no influence on body weight, feed consumption, blood chemistry, and hematology at any dose levels. There were no treatment related findings on gross or detailed necroscopy, organ weights, organ/body weight ratios and histology. Our study indicated the absence of toxicity in wool polypeptide and supported its safe use as a food ingredient or drug carrier. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Effect of Yin-Zhi-Huang on up-regulation of Oatp2, Ntcp, and Mrp2 proteins in estrogen-induced rat cholestasis.

    PubMed

    Zhang, Guoqiang; Zhou, Yan; Rao, Zhi; Qin, Hongyan; Wei, Yuhui; Ren, Jiangxia; Zhou, Liting; Wu, Xin'an

    2015-03-01

    Yin-Zhi-Huang (YZH), a prescription of traditional Chinese medicine, is widely used to treat neonatal jaundice or cholestasis. This study investigates the regulatory effect of YZH on the localization and expression of organic anion transporting polypeptides 2 (Oatp2), Na(+)-taurocholate co-transporting polypeptide (Ntcp), multidrug-resistance-associated protein 2 (Mrp2), and bile salt export pump (Bsep) in estrogen-induced cholestasis rats. Cholestasis model rats were induced via subcutaneous injection of estradiol benzoate (EB, 5 mg/kg/d) for 5 d. Other EB-induced rats were treated with saline (2 ml) or YZH (1.5 g/kg, two times a day) for 7, 14, and 21 d. The biochemical and pathologic examinations were performed. Moreover, the localization and expression of Oatp2, Ntcp, Mrp2, and Bsep were determined by immunohistochemisty and Western blotting, respectively. YZH treatment could significantly decrease the serum total bile acids (TBA) (4.9 ± 0.6-2.8 ± 0.8) and direct bilirubin (DBIL) (2.6 ± 0.7-1.0 ± 0.1) levels, improve the histological disorganization, and, respectively, increase the expression of Oatp2 and Ntcp by 46% and 28% compared with saline-treated (p < 0.05) rats at 14 d. The expression of Mrp2 increased by 45% was observed in YZH treated compared with saline-treated (p < 0.05) rats at 7 d. However, there was a little change in the expression of Bsep (p > 0.05) after YZH treatment for 7, 14, and 21 d. In conclusion, the therapeutic effect of YZH to cholestasis could be attributed to the regulation of Oatp2, Ntcp, Mrp2, and Bsep.

  13. Mechanistic background and clinical applications of indocyanine green fluorescence imaging of hepatocellular carcinoma.

    PubMed

    Ishizawa, Takeaki; Masuda, Koichi; Urano, Yasuteru; Kawaguchi, Yoshikuni; Satou, Shouichi; Kaneko, Junichi; Hasegawa, Kiyoshi; Shibahara, Junji; Fukayama, Masashi; Tsuji, Shingo; Midorikawa, Yutaka; Aburatani, Hiroyuki; Kokudo, Norihiro

    2014-02-01

    Although clinical applications of intraoperative fluorescence imaging of liver cancer using indocyanine green (ICG) have begun, the mechanistic background of ICG accumulation in the cancerous tissues remains unclear. In 170 patients with hepatocellular carcinoma cells (HCC), the liver surfaces and resected specimens were intraoperatively examined by using a near-infrared fluorescence imaging system after preoperative administration of ICG (0.5 mg/kg i.v.). Microscopic examinations, gene expression profile analysis, and immunohistochemical staining were performed for HCCs, which showed ICG fluorescence in the cancerous tissues (cancerous-type fluorescence), and HCCs showed fluorescence only in the surrounding non-cancerous liver parenchyma (rim-type fluorescence). ICG fluorescence imaging enabled identification of 273 of 276 (99%) HCCs in the resected specimens. HCCs showed that cancerous-type fluorescence was associated with higher cancer cell differentiation as compared with rim-type HCCs (P < 0.001). Fluorescence microscopy identified the presence of ICG in the canalicular side of the cancer cell cytoplasm, and pseudoglands of the HCCs showed a cancerous-type fluorescence pattern. The ratio of the gene and protein expression levels in the cancerous to non-cancerous tissues for Na(+)/taurocholate cotransporting polypeptide (NTCP) and organic anion-transporting polypeptide 8 (OATP8), which are associated with portal uptake of ICG by hepatocytes that tended to be higher in the HCCs that showed cancerous-type fluorescence than in those that showed rim-type fluorescence. Preserved portal uptake of ICG in differentiated HCC cells by NTCP and OATP8 with concomitant biliary excretion disorders causes accumulation of ICG in the cancerous tissues after preoperative intravenous administration. This enables highly sensitive identification of HCC by intraoperative ICG fluorescence imaging.

  14. Cardiovascular effects of sodium glucose cotransporter 2 inhibitors

    PubMed Central

    Cavaiola, Tricia Santos; Pettus, Jeremy

    2018-01-01

    As the first cardiovascular (CV) outcome trial of a glucose-lowering agent to demonstrate a reduction in the risk of CV events in patients with type 2 diabetes mellitus (T2DM), the EMPAgliflozin Removal of Excess Glucose: Cardiovascular OUTCOME Event Trial in Type 2 Diabetes Mellitus Patients (EMPA-REG OUTCOME®) trial, which investigated the sodium glucose cotransporter 2 (SGLT2) inhibitor empagliflozin, has generated great interest among health care professionals. CV outcomes data for another SGLT2 inhibitor, canagliflozin, have been published recently in the CANagliflozin CardioVascular Assessment Study (CANVAS) Program, as have CV data from the retrospective real-world study Comparative Effectiveness of Cardiovascular Outcomes in New Users of Sodium-Glucose Cotransporter-2 Inhibitors (CVD-REAL), which compared SGLT2 inhibitors with other classes of glucose-lowering drugs. This review discusses the results of these three studies and, with a focus on EMPA-REG OUTCOME, examines the possible mechanisms by which SGLT2 inhibitors may reduce CV risk in patients with T2DM. PMID:29695924

  15. Cardiovascular effects of sodium glucose cotransporter 2 inhibitors.

    PubMed

    Cavaiola, Tricia Santos; Pettus, Jeremy

    2018-01-01

    As the first cardiovascular (CV) outcome trial of a glucose-lowering agent to demonstrate a reduction in the risk of CV events in patients with type 2 diabetes mellitus (T2DM), the EMPAgliflozin Removal of Excess Glucose: Cardiovascular OUTCOME Event Trial in Type 2 Diabetes Mellitus Patients (EMPA-REG OUTCOME ® ) trial, which investigated the sodium glucose cotransporter 2 (SGLT2) inhibitor empagliflozin, has generated great interest among health care professionals. CV outcomes data for another SGLT2 inhibitor, canagliflozin, have been published recently in the CANagliflozin CardioVascular Assessment Study (CANVAS) Program, as have CV data from the retrospective real-world study Comparative Effectiveness of Cardiovascular Outcomes in New Users of Sodium-Glucose Cotransporter-2 Inhibitors (CVD-REAL), which compared SGLT2 inhibitors with other classes of glucose-lowering drugs. This review discusses the results of these three studies and, with a focus on EMPA-REG OUTCOME, examines the possible mechanisms by which SGLT2 inhibitors may reduce CV risk in patients with T2DM.

  16. Water transport by Na+-coupled cotransporters of glucose (SGLT1) and of iodide (NIS). The dependence of substrate size studied at high resolution

    PubMed Central

    Zeuthen*, Thomas; Belhage, Bo; Zeuthen, Emil

    2006-01-01

    The relation between substrate and water transport was studied in Na+-coupled cotransporters of glucose (SGLT1) and of iodide (NIS) expressed in Xenopus oocytes. The water transport was monitored from changes in oocyte volume at a resolution of 20 pl, more than one order of magnitude better than previous investigations. The rate of cotransport was monitored as the clamp current obtained from two-electrode voltage clamp. The high resolution data demonstrated a fixed ratio between the turn-over of the cotransporter and the rate of water transport. This applied to experiments in which the rate of cotransport was changed by isosmotic application of substrate, by rapid changes in clamp voltage, or by poisoning. Transport of larger substrates gave rise to less water transport. For the rabbit SGLT1, 378 ± 20 (n = 18 oocytes) water molecules were cotransported along with the 2 Na+ ions and the glucose-analogue α-MDG (MW 194); using the larger sugar arbutin (MW 272) this number was reduced by a factor of at least 0.86 ± 0.03 (15). For the human SGLT1 the respective numbers were 234 ± 12 (18) and 0.85 ± 0.8 (7). For NIS, 253 ± 16 (12) water molecules were cotransported for each 2 Na+ and 1 thiocyanate (SCN−, MW 58), with I− as anion (MW 127) only 162 ± 11 (19) water molecules were cotransported. The effect of substrate size suggests a molecular mechanism for water cotransport and is opposite to what would be expected from unstirred layer effects. Data were analysed by a model which combined cotransport and osmosis at the membrane with diffusion in the cytoplasm. The combination of high resolution measurements and precise modelling showed that water transport across the membrane can be explained by cotransport of water in the membrane proteins and that intracellular unstirred layers effects are minute. PMID:16322051

  17. The solute carrier family 10 (SLC10): beyond bile acid transport

    PubMed Central

    da Silva, Tatiana Claro; Polli, James E.; Swaan, Peter W.

    2012-01-01

    The solute carrier (SLC) family 10 (SLC10) comprises influx transporters of bile acids, steroidal hormones, various drugs, and several other substrates. Because the seminal transporters of this family, namely, sodium/taurocholate cotransporting polypeptide (NTCP; SLC10A1) and the apical sodium-dependent bile acid transporter (ASBT; SLC10A2), were primarily bile acid transporters, the term “sodium bile salt cotransporting family” was used for the SLC10 family. However, this notion became obsolete with the finding of other SLC10 members that do not transport bile acids. For example, the sodium-dependent organic anion transporter (SOAT; SLC10A6) transports primarily sulfated steroids. Moreover, NTCP was shown to also transport steroids and xenobiotics, including HMG-CoA inhibitors (statins). The SLC10 family contains four additional members, namely, P3 (SLC10A3; SLC10A3), P4 (SLC10A4; SLC10A4), P5 (SLC10A5; SLC10A5) and SLC10A7 (SLC10A7), several of which were unknown or considered hypothetical until approximately a decade ago. While their substrate specificity remains undetermined, great progress has been made towards their characterization in recent years. SLC10A4 may participate in vesicular storage or exocytosis of neurotransmitters or mastocyte mediators, whereas SLC10A5 and SLC10A7 may be involved in solute transport and SLC10A3 may have a role as a housekeeping protein. Finally, the newly found role of bile acids in glucose and energy homeostasis, via the TGR5 receptor, sheds new light on the clinical relevance of ASBT and NTCP. The present mini-review provides a brief summary of recent progress on members of the SLC10 family. PMID:23506869

  18. Polypeptides having beta-glucosidase activity and polynucleotides encoding same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ye; Duan, Junxin; Zhang, Yu

    Provided are isolated polypeptides having beta-glucosidase activity and polynucleotides encoding the polypeptides. Also provided are nucleic acid constructs, vectors and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  19. Polypeptides having beta-xylosidase activity and polynucleotides encoding same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ye; Tang, Lan; Zhang, Yu

    Provided are isolated polypeptides having beta-xylosidase activity and polynucleotides encoding the polypeptides. Also provided are nucleic acid constructs, vectors and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  20. Hybrid polypeptides having cellobiohydrolase activity and polynucleotides encoding same

    DOEpatents

    Liu, Ye; Shaghasi, Tarana

    2016-11-01

    The present invention provides hybrid polypeptides having cellobiohydrolase activity. The present invention also provides polynucleotides encoding the hybrid polypeptides; nucleic acid constructs, vectors and host cells comprising the polynucleotides; and processes of using the hybrid polypeptides.

  1. Polypeptides having xylanase activity and polynucleotides encoding same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spodsberg, Nikolaj; Shaghasi, Tarana

    The present invention relates to polypeptides having xylanase activity, catalytic domains, and carbohydrate binding domains, and polynucleotides encoding the polypeptides, catalytic domains, and carbohydrate binding domains. The present invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides, catalytic domains, and carbohydrate binding domains.

  2. Polypeptides having endoglucanase activity and polynucleotides encoding same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spodsberg, Nikolaj; Shagasi, Tarana

    The present invention relates to isolated polypeptides having endoglucanase activity, catalytic domains, cellulose binding domains and polynucleotides encoding the polypeptides, catalytic domains or cellulose binding domains. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides, catalytic domains or cellulose binding domains.

  3. Polypeptides having cellobiohydrolase activity and polynucleotides encoding same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stringer, Mary Ann; McBrayer, Brett

    2016-11-29

    The present invention relates to isolated polypeptides having cellobiohydrolase activity, catalytic domains, and cellulose binding domains and polynucleotides encoding the polypeptides, catalytic domains, and cellulose binding domains. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides, catalytic domains, or cellulose binding domains.

  4. Polypeptides having endoglucanase activity and polynucleotides encoding same

    DOEpatents

    Spodsberg, Nikolaj; Shagasi, Tarana

    2015-06-30

    The present invention relates to isolated polypeptides having endoglucanase activity, catalytic domains, cellulose binding domains and polynucleotides encoding the polypeptides, catalytic domains or cellulose binding domains. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides, catalytic domains or cellulose binding domains.

  5. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    DOEpatents

    Zhang, Yu; Duan, Junxin; Tang, Lan; Wu, Wenping

    2015-06-09

    Provided are isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. Also provided are nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  6. Hybrid polypeptides having cellobiohydrolase activity and polynucleotides encoding same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ye; Shaghasi, Tarana

    The present invention relates to hybrid polypeptides having cellobiohydrolase activity. The present invention also relates to polynucleotides encoding the hybrid polypeptides; nucleic acid constructs, vectors, and host cells comprising the polynucleotides; and processes of using the hybrid polypeptides.

  7. Isolation of Polypeptide Sample and Measurement of Its Concentration.

    ERIC Educational Resources Information Center

    Beanan, Maureen J.

    2000-01-01

    Introduces a laboratory experiment that isolates a bacterial polypeptide sample and measures the concentration of polypeptides in the sample. Uses Escherichia coli strain MM294 and performs a bio-rad assay to determine the concentration of polypeptides. (YDS)

  8. Internal magnesium, 2,3-diphosphoglycerate, and the regulation of the steady-state volume of human red blood cells by the Na/K/2Cl cotransport system

    PubMed Central

    1992-01-01

    This study is concerned with the relationship between the Na/K/Cl cotransport system and the steady-state volume (MCV) of red blood cells. Cotransport rate was determined in unfractionated and density- separated red cells of different MCV from different donors to see whether cotransport differences contribute to the difference in the distribution of MCVs. Cotransport, studied in cells at their original MCVs, was determined as the bumetanide (10 microM)-sensitive 22Na efflux in the presence of ouabain (50 microM) after adjusting cellular Na (Nai) and Ki to achieve near maximal transport rates. This condition was chosen to rule out MCV-related differences in Nai and Ki that might contribute to differences in the net chemical driving force for cotransport. We found that in both unfractionated and density-separated red cells the cotransport rate was inversely correlated with MCV. MCV was correlated directly with red cell 2,3-diphosphoglycerate (DPG), whereas total red cell Mg was only slightly elevated in cells with high MCV. Thus intracellular free Mg (Mgifree) is evidently lower in red cells with high 2,3-DPG (i.e., high MCV) and vice versa. Results from flux measurements at their original MCVs, after altering Mgifree with the ionophore A23187, indicated a high Mgi sensitivity of cotransport: depletion of Mgifree inhibited and an elevation of Mgifree increased the cotransport rate. The apparent K0.5 for Mgifree was approximately 0.4 mM. Maximizing Mgifree at optimum Nai and Ki minimized the differences in cotransport rates among the different donors. It is concluded that the relative cotransport rate is regulated for cells in the steady state at their original cell volume, not by the number of copies of the cotransporter but by differences in Mgifree. The interindividual differences in Mgifree, determined primarily by differences in the 2,3-DPG content, are responsible for the differences in the relative cotransport activity that results in an inverse relationship

  9. Polypeptides having beta-xylosidase activity and polynucleotides encoding same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yu; Liu, Ye; Duan, Junxin

    The present invention relates to isolated polypeptides having beta-xylosidase activity and polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  10. Polypeptides having xylanase activity and polynucleotides encoding the same

    DOEpatents

    Spodsberg, Nikolaj [Bagsvaed, DK

    2014-01-07

    The present invention relates to isolated polypeptides having xylanase activity and isolated polynucleotides encoding the polypeptides. The inventino also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  11. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    DOEpatents

    Zhang, Yu; Tang, Lan; Henriksen, Svend Hostgaard Bang

    2016-05-17

    The present invention provides isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also provides nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  12. Secretion of pancreatic polypeptide in patients with pancreatic endocrine tumors.

    PubMed

    Adrian, T E; Uttenthal, L O; Williams, S J; Bloom, S R

    1986-07-31

    Pancreatic polypeptide is often secreted by pancreatic endocrine tumors and is considered a marker for such tumors. To investigate the diagnostic value of this marker, we studied 323 patients with proved pancreatic endocrine tumors. We found plasma concentrations of pancreatic polypeptide to be elevated (more than 300 pmol per liter) in 144 patients (diagnostic sensitivity, 45 percent). However, plasma levels of pancreatic polypeptide can also be elevated in the absence of a pancreatic tumor. To ascertain whether the administration of atropine could distinguish between normal and tumor-associated polypeptide secretion, we studied 30 patients with pancreatic tumors and high plasma levels of pancreatic polypeptide, 18 patients without tumors who had elevated levels of pancreatic polypeptide, and eight normal controls. Polypeptide levels in the 18 patients without tumors were substantially lower than in the 30 patients with tumors. Atropine (1 mg intramuscularly) did not suppress polypeptide levels in patients with tumors, but did suppress plasma levels by more than 50 percent in all subjects without tumors. Thus, although its diagnostic sensitivity is low, pancreatic polypeptide appears to be a useful adjunctive marker of many pancreatic endocrine tumors, and the atropine suppression test can be used to distinguish normal from tumor-related secretion of the polypeptide. Identification of the type of pancreatic endocrine tumor still requires measurement of the hormone that is specific for the tumor.

  13. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schnorr, Kirk; Kramer, Randall

    2017-08-08

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  14. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Lan; Liu, Ye; Duan, Junxin

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  15. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    DOEpatents

    Lopez de Leon, Alfredo [Davis, CA; Ding, Hanshu [Davis, CA; Brown, Kimberly [Elk Grove, CA

    2011-10-25

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  16. Polypeptides having beta-glucosidase activity and polynucleotides encoding same

    DOEpatents

    Harris, Paul; Golightly, Elizabeth

    2012-11-27

    The present invention relates to isolated polypeptides having beta-glucosidase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods for producing and using the polypeptides.

  17. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    DOEpatents

    Zhang, Yu; Duan, Junxin; Tang, Lan; Wu, Wenping

    2016-06-14

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  18. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    DOEpatents

    Zhang, Yu; Duan, Junxin; Tang, Lan; Wu, Wenping

    2016-11-22

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  19. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    DOEpatents

    Tang, Lan [Beijing, CN; Liu, Ye [Beijing, CN; Duan, Junxin [Beijing, CN; Zhang, Yu [Beijing, CN; Jorgensen, Christian Isak [Bagsvaerd, DK; Kramer, Randall [Lincoln, CA

    2012-04-03

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  20. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    DOEpatents

    Duan, Junxin [Beijing, CN; Liu, Ye [Beijing, CN; Tang, Lan [Beijing, CN; Wu, Wenping [Beijing, CN; Quinlan, Jason [Albany, CA; Kramer, Randall [Lincoln, CA

    2012-03-27

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  1. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    DOEpatents

    Tang, Lan; Liu, Ye; Duan, Junxin; Zhang, Yu; Joergensen, Christian; Kramer, Randall

    2016-11-29

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  2. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    DOEpatents

    Tang, Lan; Liu, Ye; Duan, Junxin; Zhang, Yu; Joergensen, Christian; Kramer, Randall

    2014-09-16

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  3. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    DOEpatents

    Tang, Lan; Liu, Ye; Duan, Junxin; Wu, Wenping; Kramer, Randall

    2014-10-21

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  4. Polypeptides having beta-glucosidase activity and polynucleotides encoding same

    DOEpatents

    Harris, Paul [Carnation, WA; Golightly, Elizabeth [Reno, NV

    2007-07-17

    The present invention relates to isolated polypeptides having beta-glucosidase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods for producing and using the polypeptides.

  5. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    DOEpatents

    Maiyuran, Suchindra; Kramer, Randall; Harris, Paul

    2013-10-29

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  6. Polypeptides having beta-glucosidase activity and polynucleotides encoding same

    DOEpatents

    Harris, Paul [Carnation, WA; Golightly, Elizabeth [Reno, NV

    2011-06-14

    The present invention relates to isolated polypeptides having beta-glucosidase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods for producing and using the polypeptides.

  7. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    DOEpatents

    Tang, Lan; Liu, Ye; Duan, Junxin; Zhang, Yu; Jorgensen, Christian Isak; Kramer, Randall

    2013-04-16

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  8. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    DOEpatents

    Duan, Junxin; Tang, Lan; Liu, Ye; Wu, Wenping; Quinlan, Jason; Kramer, Randall

    2013-06-18

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  9. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    DOEpatents

    Schnorr, Kirk; Kramer, Randall

    2016-08-09

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  10. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    DOEpatents

    Schnorr, Kirk; Kramer, Randall

    2016-04-05

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  11. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    DOEpatents

    Dotson, William D.; Greenier, Jennifer; Ding, Hanshu

    2007-09-18

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated nucleic acids encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the nucleic acids as well as methods for producing and using the polypeptides.

  12. Polypeptides having beta-glucosidase activity and polynucleotides encoding same

    DOEpatents

    Morant, Marc

    2014-01-14

    The present invention relates to isolated polypeptides having beta-glucosidase activity, beta-xylosidase, or beta-glucosidase activity and isolated polynucleotides encoding polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  13. Polypeptide having acetyl xylan esterase activity and uses thereof

    DOEpatents

    Schoonneveld-Bergmans, Margot Elisabeth Francoise; Heijne, Wilbert Herman Marie; Los, Alrik Pieter

    2015-10-20

    The invention relates to a polypeptide comprising the amino acid sequence set out in SEQ ID NO: 2 or an amino acid sequence encoded by the nucleotide sequence of SEQ ID NO: 1, or a variant polypeptide or variant polynucleotide thereof, wherein the variant polypeptide has at least 82% sequence identity with the sequence set out in SEQ ID NO: 2 or the variant polynucleotide encodes a polypeptide that has at least 82% sequence identity with the sequence set out in SEQ ID NO: 2. The invention features the full length coding sequence of the novel gene as well as the amino acid sequence of the full-length functional polypeptide and functional equivalents of the gene or the amino acid sequence. The invention also relates to methods for using the polypeptide in industrial processes. Also included in the invention are cells transformed with a polynucleotide according to the invention suitable for producing these proteins.

  14. Positioning of sodium-glucose cotransporter-2 inhibitors in national and international guidelines.

    PubMed

    Morillas, Carlos

    2016-11-01

    Sodium-glucose cotransporter-2 inhibitors (SGLT2-i) selectively and reversibly inhibit sodium-glucose cotransporter-2 (SGLT2), promoting renal glucose excretion and reducing plasma glycaemia. By increasing renal glucose excretion, these drugs favour a negative energy balance, leading to weight loss. Their glucoselowering effect is independent of insulin. Although these drugs have only recently been developed, they have been included in all the main national and international guidelines since 2014. The present review summarises the most important recommendations on the use of SGLT2 in patients with DM2 contained in the most recently published guidelines and consensus statements. Copyright © 2016 Elsevier España, S.L.U. All rights reserved.

  15. Ordered biological nanostructures formed from chaperonin polypeptides

    NASA Technical Reports Server (NTRS)

    Trent, Jonathan D. (Inventor); McMillan, R. Andrew (Inventor); Paavola, Chad D. (Inventor); Kagawa, Hiromi (Inventor)

    2010-01-01

    The following application relates to nanotemplates, nanostructures, nanoarrays and nanodevices formed from wild-type and mutated chaperonin polypeptides, methods of producing such compositions, methods of using such compositions and particular chaperonin polypeptides that can be utilized in producing such compositions.

  16. Nucleic acids encoding antifungal polypeptides and uses thereof

    DOEpatents

    Altier, Daniel J.; Ellanskaya, I. A.; Gilliam, Jacob T.; Hunter-Cevera, Jennie; Presnail, James K; Schepers, Eric; Simmons, Carl R.; Torok, Tamas; Yalpani, Nasser

    2010-11-02

    Compositions and methods for protecting a plant from a pathogen, particularly a fungal pathogen, are provided. Compositions include an amino acid sequence, and variants and fragments thereof, for an antipathogenic polypeptide that was isolated from a fungal fermentation broth. Nucleic acid molecules that encode the antipathogenic polypeptides of the invention, and antipathogenic domains thereof, are also provided. A method for inducing pathogen resistance in a plant using the nucleotide sequences disclosed herein is further provided. The method comprises introducing into a plant an expression cassette comprising a promoter operably linked to a nucleotide sequence that encodes an antipathogenic polypeptide of the invention. Compositions comprising an antipathogenic polypeptide or a transformed microorganism comprising a nucleic acid of the invention in combination with a carrier and methods of using these compositions to protect a plant from a pathogen are further provided. Transformed plants, plant cells, seeds, and microorganisms comprising a nucleotide sequence that encodes an antipathogenic polypeptide of the invention are also disclosed.

  17. Chirality-selected phase behaviour in ionic polypeptide complexes

    DOE PAGES

    Perry, Sarah L.; Leon, Lorraine; Hoffmann, Kyle Q.; ...

    2015-01-14

    In this study, polyelectrolyte complexes present new opportunities for self-assembled soft matter. Factors determining whether the phase of the complex is solid or liquid remain unclear. Ionic polypeptides enable examination of the effects of stereochemistry on complex formation. Here we demonstrate that chirality determines the state of polyelectrolyte complexes, formed from mixing dilute solutions of oppositely charged polypeptides, via a combination of electrostatic and hydrogen-bonding interactions. Fluid complexes occur when at least one of the polypeptides in the mixture is racemic, which disrupts backbone hydrogen-bonding networks. Pairs of purely chiral polypeptides, of any sense, form compact, fibrillar solids with amore » β-sheet structure. Analogous behaviour occurs in micelles formed from polypeptide block copolymers with polyethylene oxide, where assembly into aggregates with either solid or fluid cores, and eventually into ordered phases at high concentrations, is possible. Chirality is an exploitable tool for manipulating material properties in polyelectrolyte complexation.« less

  18. Modeling glial contributions to seizures and epileptogenesis: cation-chloride cotransporters in Drosophila melanogaster.

    PubMed

    Rusan, Zeid M; Kingsford, Olivia A; Tanouye, Mark A

    2014-01-01

    Flies carrying a kcc loss-of-function mutation are more seizure-susceptible than wild-type flies. The kcc gene is the highly conserved Drosophila melanogaster ortholog of K+/Cl- cotransporter genes thought to be expressed in all animal cell types. Here, we examined the spatial and temporal requirements for kcc loss-of-function to modify seizure-susceptibility in flies. Targeted RNA interference (RNAi) of kcc in various sets of neurons was sufficient to induce severe seizure-sensitivity. Interestingly, kcc RNAi in glia was particularly effective in causing seizure-sensitivity. Knockdown of kcc in glia or neurons during development caused a reduction in seizure induction threshold, cell swelling, and brain volume increase in 24-48 hour old adult flies. Third instar larval peripheral nerves were enlarged when kcc RNAi was expressed in neurons or glia. Results suggest that a threshold of K+/Cl- cotransport dysfunction in the nervous system during development is an important determinant of seizure-susceptibility in Drosophila. The findings presented are the first attributing a causative role for glial cation-chloride cotransporters in seizures and epileptogenesis. The importance of elucidating glial cell contributions to seizure disorders and the utility of Drosophila models is discussed.

  19. Polypeptides having beta-glucosidase activity and polynucleotides encoding same

    DOEpatents

    Morant, Marc Dominique

    2014-10-14

    The present invention relates to isolated polypeptides having beta-glucosidase activity, beta-xylosidase activity, or beta-glucosidase and beta-xylosidase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  20. Caffeine-water-polypeptide interaction in aqueous solution

    NASA Astrophysics Data System (ADS)

    Ghabi, Habib; Dhahbi, Mahmoud

    1999-04-01

    The interaction of caffeine monomer with the synthetic polypeptides polyasparagine (pAg) and polyaspartic acid (pAsp) was studied by UV spectrophotometry. The results show that different types of interactions are possible depending on the nature of polypeptide. The form of the complex was discussed.

  1. Selective posttranslational modification of phage-displayed polypeptides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsao, Meng-Lin; Tian, Feng; Schultz, Peter

    The invention relates to posttranslational modification of phage-displayed polypeptides. These displayed polypeptides comprise at least one unnatural amino acid, e.g., an aryl-azide amino acid such as p-azido-L-phenylalanine, or an alkynyl-amino acid such as para-propargyloxyphenylalanine, which are incorporated into the phage-displayed fusion polypeptide at a selected position by using an in vivo orthogonal translation system comprising a suitable orthogonal aminoacyl-tRNA synthetase and a suitable orthogonal tRNA species. These unnatural amino acids advantageously provide targets for posttranslational modifications such as azide-alkyne [3+2] cycloaddition reactions and Staudinger modifications.

  2. Selective posttranslational modification of phage-displayed polypeptides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsao, Meng-Lin; Tian, Feng; Schultz, Peter

    The invention relates to posttranslational modification of phage-displayed polypeptides. These displayed polypeptides comprise at least one unnatural amino acid, e.g., an aryl-azide amino acid such as p-azido-L-phenylalanine, or an alkynyl-amino acid such as para-propargyloxyphenylalanine, which are incorporated into the phage-displayed fusion polypeptide at a selected position by using an in vivo orthogonal translation system comprising a suitable orthogonal aminoacyl-tRNA synthetase and a suitable orthogonal tRNA species. These unnatural amino acids advantageously provide targets for posttranslational modifications such as azide-alkyne [3+2]cycloaddition reactions and Staudinger modifications.

  3. Polypeptides and polyaminoacids in drug delivery.

    PubMed

    González-Aramundiz, José Vicente; Lozano, María Victoria; Sousa-Herves, Ana; Fernandez-Megia, Eduardo; Csaba, Noemi

    2012-02-01

    Advances achieved over the last few years in drug delivery have provided novel and versatile possibilities for the treatment of various diseases. Among the biomaterials applied in this field, it is worth highlighting the increasing importance of polyaminoacids and polypeptides. The appealing properties of these polymers are very promising for the design of novel compositions in a variety of drug delivery applications. This review provides an overview on the general characteristics of polyaminoacids and polypeptides and briefly discusses different synthetic pathways for their production. This is followed by a detailed description of different drug delivery applications of these polymers, emphasizing those examples that already reached advanced preclinical development or have entered clinical trials. Polyaminoacids and polypeptides are gaining much attention in drug delivery due to their exceptional properties. Their application as polymers for drug delivery purposes has been sped up by the significant achievements related to their synthesis. Certainly, cancer therapy has benefited the most from these advances, although other fields such as vaccine delivery and alternative administration routes are also being successfully explored. The design of new entities based on polyaminoacids and polypeptides and the improved insight gained in drug delivery guarantee exciting findings in the near future.

  4. Spinoculation Enhances HBV Infection in NTCP-Reconstituted Hepatocytes.

    PubMed

    Yan, Ran; Zhang, Yongmei; Cai, Dawei; Liu, Yuanjie; Cuconati, Andrea; Guo, Haitao

    2015-01-01

    Hepatitis B virus (HBV) infection and its sequelae remain a major public health burden, but both HBV basic research and the development of antiviral therapeutics have been hindered by the lack of an efficient in vitro infection system. Recently, sodium taurocholate cotransporting polypeptide (NTCP) has been identified as the HBV receptor. We herein report that we established a NTCP-complemented HepG2 cell line (HepG2-NTCP12) that supports HBV infection, albeit at a low infectivity level following the reported infection procedures. In our attempts to optimize the infection conditions, we found that the centrifugation of HepG2-NTCP12 cells during HBV inoculation (termed "spinoculation") significantly enhanced the virus infectivity. Moreover, the infection level gradually increased with accelerated speed of spinoculation up to 1,000g tested. However, the enhancement of HBV infection was not significantly dependent upon the duration of centrifugation. Furthermore, covalently closed circular (ccc) DNA was detected in infected cells under optimized infection condition by conventional Southern blot, suggesting a successful establishment of HBV infection after spinoculation. Finally, the parental HepG2 cells remained uninfected under HBV spinoculation, and HBV entry inhibitors targeting NTCP blocked HBV infection when cells were spinoculated, suggesting the authentic virus entry mechanism is unaltered under centrifugal inoculation. Our data suggest that spinoculation could serve as a standard protocol for enhancing the efficiency of HBV infection in vitro.

  5. Homologue gene of bile acid transporters ntcp, asbt, and ost-alpha in rainbow trout Oncorhynchus mykiss: tissue expression, effect of fasting, and response to bile acid administration.

    PubMed

    Murashita, Koji; Yoshiura, Yasutoshi; Chisada, Shin-Ichi; Furuita, Hirofumi; Sugita, Tsuyoshi; Matsunari, Hiroyuki; Iwashita, Yasuro; Yamamoto, Takeshi

    2014-04-01

    Bile acid transporters belonging to the SLC10A protein family, Na+ taurocholate cotransporting polypeptide (NTCP or SLC10A1), apical sodium-dependent bile salt transporter (ASBT or SLC10A2), and organic solute transporter alpha (Ost-alpha) have been known to play critical roles in the enterohepatic circulation of bile acids in mammals. In this study, ntcp, asbt, and ost-alpha-1/-2 cDNA were cloned, their tissue distributions were characterized, and the effects of fasting and bile acid administration on their expression were examined in rainbow trout Oncorhynchus mykiss. The structural characteristics of Ntcp, Asbt, and Ost-alpha were well conserved in trout, and three-dimensional structure analysis showed that Ntcp and Asbt were similar to each other. Tissue distribution analysis revealed that trout asbt was primarily expressed in the hindgut, while ntcp expression occurred in the brain, and ost-alpha-1/-2 was mainly expressed in the liver or ovary. Although asbt and ost-alpha-1 mRNA levels in the gut increased in response to fasting for 4 days, ost-alpha-1 expression in the liver decreased. Similarly, bile acid administration increased asbt and ost-alpha-1 expression levels in the gut, while those of ntcp and ost-alpha-2 in the liver decreased. These results suggested that the genes asbt, ntcp, and ost-alpha are involved in bile acid transport in rainbow trout.

  6. Effect of S267F variant of NTCP on the patients with chronic hepatitis B.

    PubMed

    Lee, Hye Won; Park, Hye Jung; Jin, Bora; Dezhbord, Mehrangiz; Kim, Do Young; Han, Kwang-Hyub; Ryu, Wang-Shick; Kim, Seungtaek; Ahn, Sang Hoon

    2017-12-15

    Sodium taurocholate cotransporting polypeptide (NTCP) was identified as an entry receptor for hepatitis B virus (HBV) infection. The substitution of serine at position 267 of NTCP with phenylalanine (S267F) is an Asian-specific variation that hampers HBV entry in vitro. In this study, we aimed to evaluate the prevalence of S267F polymorphism in Korean patients with chronic hepatitis B (CHB) and its association with disease progression and potential viral evolution in the preS1 domain of HBV. We found that the frequency of the S267F variant of NTCP in CHB patients and controls was 2.7% and 5.7% (P = 0.031), respectively, and that those who had S267F variant were less susceptible to chronic HBV infection. The frequency of the S267F variant in CHB, cirrhosis and hepatocellular carcinoma (HCC) patients was 3.3%, 0.9%, and 3.5%, respectively. Thus, the S267F variant correlated significantly with a lower risk for cirrhosis (P = 0.036). Sequencing preS1 domain of HBV from the patients who had S267F variant revealed no significant sequence change compared to the wild type. In conclusion, the S267F variant of NTCP is clinically associated with a lower risk of chronic HBV infection and cirrhosis development, which implicates suppressing HBV entry could reduce the disease burden.

  7. Regulation of hepatic bile acid transporters Ntcp and Bsep expression.

    PubMed

    Cheng, Xingguo; Buckley, David; Klaassen, Curtis D

    2007-12-03

    Sodium-taurocholate cotransporting polypeptide (Ntcp) and bile salt export pump (Bsep) are two key transporters for hepatic bile acid uptake and excretion. Alterations in Ntcp and Bsep expression have been reported in pathophysiological conditions. In the present study, the effects of age, gender, and various chemicals on the regulation of these two transporters were characterized in mice. Ntcp and Bsep mRNA levels in mouse liver were low in the fetus, but increased to its highest expression at parturition. After birth, mouse Ntcp and Bsep mRNA decreased by more than 50%, and then gradually increased to adult levels by day 30. Expression of mouse Ntcp mRNA and protein exhibit higher levels in female than male livers. No gender difference exists in BSEP/Bsep expression in human and mouse livers. Hormone replacements conducted in gonadectomized, hypophysectomized, and lit/lit mice indicate that female-predominant Ntcp expression in mouse liver is due to the inhibitory effect of male-pattern GH secretion, but not sex hormones. Ntcp and Bsep expression are in general resistant to induction by a large battery of microsomal enzyme inducers. Administration of cholestyramine increased Ntcp, whereas chenodeoxycholic acid (CDCA) increased Bsep mRNA expression. In conclusion, mouse Ntcp and Bsep are regulated by age, gender, cholestyramine, and bile acid, but resistant to induction by most microsomal enzyme inducers.

  8. Quantitative NTCP Pharmacophore and Lack of Association between DILI and NTCP Inhibition

    PubMed Central

    Dong, Zhongqi; Ekins, Sean; Polli, James E.

    2014-01-01

    The human sodium taurocholate cotransporting polypeptide (NTCP) is a hepatic bile acid transporter. Inhibition of NTCP uptake may potentially also prevent hepatitis B virus (HBV) infection. The first objective was to develop a quantitative pharmacophore for NTCP inhibition. Recent studies showed that hepatotoxic drugs could inhibit bile acid uptake into hepatocytes, without inhibiting canalicular efflux, and cause bile acid elevation in plasma. Hence, a second objective was to examine whether NTCP inhibition is associated with drug induced liver injury (DILI). Twenty-seven drugs from our previous study were used as the training set to develop a quantitative pharmacophore. From secondary screening from a drug database, six retrieved drugs and three drugs not retrieved by the model were tested for NTCP inhibition. Tertiary screening involved drugs known to cause DILI and not cause DILI. Overall, ninety-four drugs were assessed for hepatotoxicity and were assessed relative to NTCP inhibition. The quantitative pharmacophore possessed one hydrogen bond acceptor, one hydrogen bond donor, a hydrophobic feature, and excluded volumes. From 94 drugs, NTCP inhibitors and non-inhibitors were approximately equally distributed across the drugs of most DILI concern, less DILI concern, and no DILI concern, indicating no relationship between NTCP inhibition and DILI risk. Hence, an approach to treat HBV via NTCP inhibition is not expected to be associated with DILI. PMID:25220493

  9. Quantitative NTCP pharmacophore and lack of association between DILI and NTCP Inhibition.

    PubMed

    Dong, Zhongqi; Ekins, Sean; Polli, James E

    2015-01-23

    The human sodium taurocholate cotransporting polypeptide (NTCP) is a hepatic bile acid transporter. Inhibition of NTCP uptake may potentially also prevent hepatitis B virus (HBV) infection. The first objective was to develop a quantitative pharmacophore for NTCP inhibition. Recent studies showed that hepatotoxic drugs could inhibit bile acid uptake into hepatocytes, without inhibiting canalicular efflux, and cause bile acid elevation in plasma. Hence, a second objective was to examine whether NTCP inhibition is associated with drug induced liver injury (DILI). Twenty-seven drugs from our previous study were used as the training set to develop a quantitative pharmacophore. From secondary screening from a drug database, six retrieved drugs and three drugs not retrieved by the model were tested for NTCP inhibition. Tertiary screening involved drugs known to cause DILI and not cause DILI. Overall, ninety-four drugs were assessed for hepatotoxicity and were assessed relative to NTCP inhibition. The quantitative pharmacophore possessed one hydrogen bond acceptor, one hydrogen bond donor, a hydrophobic feature, and excluded volumes. From 94 drugs, NTCP inhibitors and non-inhibitors were approximately equally distributed across the drugs of most DILI concern, less DILI concern, and no DILI concern, indicating no relationship between NTCP inhibition and DILI risk. Hence, an approach to treat HBV via NTCP inhibition is not expected to be associated with DILI. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Human induced pluripotent stem cell-derived hepatic cell lines as a new model for host interaction with hepatitis B virus

    PubMed Central

    Kaneko, Shun; Kakinuma, Sei; Asahina, Yasuhiro; Kamiya, Akihide; Miyoshi, Masato; Tsunoda, Tomoyuki; Nitta, Sayuri; Asano, Yu; Nagata, Hiroko; Otani, Satoshi; Kawai-Kitahata, Fukiko; Murakawa, Miyako; Itsui, Yasuhiro; Nakagawa, Mina; Azuma, Seishin; Nakauchi, Hiromitsu; Nishitsuji, Hironori; Ujino, Saneyuki; Shimotohno, Kunitada; Iwamoto, Masashi; Watashi, Koichi; Wakita, Takaji; Watanabe, Mamoru

    2016-01-01

    Hepatitis B virus (HBV) is not eradicated by current antiviral therapies due to persistence of HBV covalently closed circular DNA (cccDNA) in host cells, and thus development of novel culture models for productive HBV infection is urgently needed, which will allow the study of HBV cccDNA eradication. To meet this need, we developed culture models of HBV infection using human induced pluripotent stem cell-derived hepatocyte lineages, including immature proliferating hepatic progenitor-like cell lines (iPS-HPCs) and differentiated hepatocyte-like cells (iPS-Heps). These cells were susceptible to HBV infection, produced HBV particles, and maintained innate immune responses. The infection efficiency of HBV in iPS-HPCs predominantly depended on the expression levels of sodium taurocholate cotransporting polypeptide (NTCP), and was low relative to iPS-Heps: however, long-term culture of iPS-Heps was difficult. To provide a model for HBV persistence, iPS-HPCs overexpressing NTCP were established. The long-term persistence of HBV cccDNA was detected in iPS-HPCs overexpressing NTCP, and depended on the inhibition of the Janus-kinase signaling pathway. In conclusion, this study provides evidence that iPS-derived hepatic cell lines can be utilized for novel HBV culture models with genetic variation to investigate the interactions between HBV and host cells and the development of anti-HBV strategies. PMID:27386799

  11. A new strategy to identify hepatitis B virus entry inhibitors by AlphaScreen technology targeting the envelope-receptor interaction.

    PubMed

    Saso, Wakana; Tsukuda, Senko; Ohashi, Hirofumi; Fukano, Kento; Morishita, Ryo; Matsunaga, Satoko; Ohki, Mio; Ryo, Akihide; Park, Sam-Yong; Suzuki, Ryosuke; Aizaki, Hideki; Muramatsu, Masamichi; Sureau, Camille; Wakita, Takaji; Matano, Tetsuro; Watashi, Koichi

    2018-06-22

    Current anti-hepatitis B virus (HBV) agents have limited effect in curing HBV infection, and thus novel anti-HBV agents with different modes of action are in demand. In this study, we applied AlphaScreen assay to high-throughput screening of small molecules inhibiting the interaction between HBV large surface antigen (LHBs) and the HBV entry receptor, sodium taurocholate cotransporting polypeptide (NTCP). From the chemical screening, we identified that rapamycin, an immunosuppressant, strongly inhibited the LHBs-NTCP interaction. Rapamycin inhibited hepatocyte infection with HBV without significant cytotoxicity. This activity was due to impaired attachment of the LHBs preS1 domain to cell surface. Pretreatment of target cells with rapamycin remarkably reduced their susceptibility to preS1 attachment, while rapamycin pretreatment to preS1 did not affect its attachment activity, suggesting that rapamycin targets the host side. In support of this, a surface plasmon resonance analysis showed a direct interaction of rapamycin with NTCP. Consistently, rapamycin also prevented hepatitis D virus infection, whose entry into cells is also mediated by NTCP. We also identified two rapamycin derivatives, everolimus and temsirolimus, which possessed higher anti-HBV potencies than rapamycin. Thus, this is the first report for application of AlphaScreen technology that monitors a viral envelope-receptor interaction to identify viral entry inhibitors. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Three polypeptides screened from phage display random peptide library may be the receptor polypeptide of Mycoplasma genitalium adhesion protein.

    PubMed

    Deng, Xiangying; Zhu, Youcong; Dai, Pei; Yu, Minjun; Chen, Liesong; Zhu, Cuiming; You, Xiaoxing; Li, Lingling; Zeng, Yanhua

    2018-04-28

    Mycoplasma genitalium adhesion protein (MgPa) is a major adhesin of M. genitalium, a human pathogen associated with a series of genitourinary tract diseases. MgPa plays a very important role in M. genitalium adhering to the host cells. However, the exact receptor peptides or proteins of MgPa are still poorly understood so far. Three polypeptides (V-H-W-D-F-R-Q-W-W-Q-P-S), (D-W-S-S-W-V -Y-R-D-P-Q-T) and (H-Y-I-D-F-R-W) were previously screened from a phage display random peptide library using recombinant MgPa (rMgPa) as a target molecule. In this study, three polypeptides were artificially synthesized and investigated as to whether they are potential receptors of MgPa. We found that rMgPa specifically bound to three synthesized polypeptides as determined via an indirect enzyme-linked immunosorbent assay (ELISA). Moreover, three polypeptides were further identified by indirect immunofluorescence microscopy (IFM). We confirmed that rMgPa and M. genitalium can adhere to SV-HUC-1 cells in vitro and that anti-rMgPa antibody and three synthesized polypeptides can partially inhibit the adherence of rMgPa and M. genitalium to SV-HUC-1 cells. In summary, these three polypeptides may be the essential receptor peptides of MgPa, and may aid in enhancing the understanding of biological function of MgPa and the possible pathogenic mechanism of M. genitalium. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Plasmodium falciparum polypeptides released during in vitro cultivation*

    PubMed Central

    Da Silva, L. Rodriguez; Loche, M.; Dayal, R.; Perrin, L. H.

    1983-01-01

    Synchronous cultures of Plasmodium falciparum were successively labelled with (35S)-methionine and both the supernatants and the pellets of infected red blood cells were collected. The release of TCA-precipitable material in the culture supernatants was low during the development of ring forms and trophozoites, increased during schizogony, and was maximum at the time of schizont rupture and merozoite reinvasion. Analysis of the supernatants by SDS — PAGE and autoradiography showed that both polypeptides common to the various developmental stages of the parasite and schizont/merozoite-specific polypeptides were released. Polypeptides of relative molecular mass 140 000, 82 000 and, to a lower degree, 41 000 were present in high amounts in the culture supernatants. These polypeptides have been shown to be the target of monoclonal antibodies that are able to inhibit the growth of P. falciparum cultures, and may be involved in protective immunity. The released polypeptides may also be used as target antigens in immunodiagnostic tests aiming at the detection of malaria infection. ImagesFig. 2AFig. 2BFig. 3 PMID:6340846

  14. Polypeptides having cellulolytic enhancing activity and nucleic acids encoding same

    DOEpatents

    Brown, Kimberly; Harris, Paul; Zaretsky, Elizabeth; Re, Edward; Vlasenko, Elena; McFarland, Keith; Lopez de Leon, Alfredo

    2012-10-16

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods for producing and using the polypeptides.

  15. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding the same

    DOEpatents

    Tang, Lan; Liu, Ye; Duan, Junxin; Wu, Wenping; Kramer, Randall

    2013-11-19

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  16. Polypeptides having cellulolytic enhancing activity and nucleic acids encoding same

    DOEpatents

    Brown, Kimberly; Harris, Paul; Zaretsky, Elizabeth; Re, Edward; Vlasenko, Elena; McFarland, Keith; Lopez de Leon, Alfredo

    2014-09-30

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods for producing and using the polypeptides.

  17. Polypeptides having cellulolytic enhancing activity and nucleic acids encoding same

    DOEpatents

    Brown, Kimberly; Harris, Paul; Zaretsky, Elizabeth; Re, Edward; Vlasenko, Elena; McFarland, Keith; Lopez de Leon, Alfredo

    2017-09-05

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods for producing and using the polypeptides.

  18. Polypeptides having cellulolytic enhancing activity and nucleic acids encoding same

    DOEpatents

    Brown, Kimberly; Harris, Paul; Zaretsky, Elizabeth; Re, Edward; Vlasenko, Elena; McFarland, Keith; Lopez de Leon, Alfredo

    2010-06-22

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods for producing and using the polypeptides.

  19. Polypeptides having beta-glucosidase activity and polynucleotides encoding the same

    DOEpatents

    Brown, Kimberly; Harris, Paul

    2013-12-17

    The present invention relates to isolated polypeptides having beta-glucosidase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  20. Polypeptides having cellulolytic enhancing activity and nucleic acids encoding same

    DOEpatents

    Brown, Kimberly; Harris, Paul; Zaretsky, Elizabeth; Re, Edward; Vlasenko, Elena; McFarland, Keith; Lopez de Leon, Alfredo

    2016-08-09

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods for producing and using the polypeptides.

  1. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding the same

    DOEpatents

    Tang, Lan; Liu, Ye; Duan, Junxin; Zhang, Yu; Jorgensen, Christian Isak; Kramer, Randall

    2013-12-24

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  2. The European Eel NCCβ Gene Encodes a Thiazide-resistant Na-Cl Cotransporter*

    PubMed Central

    Moreno, Erika; Plata, Consuelo; Rodríguez-Gama, Alejandro; Argaiz, Eduardo R.; Vázquez, Norma; Leyva-Ríos, Karla; Islas, León; Cutler, Christopher; Pacheco-Alvarez, Diana; Mercado, Adriana; Cariño-Cortés, Raquel; Castañeda-Bueno, María; Gamba, Gerardo

    2016-01-01

    The thiazide-sensitive Na-Cl cotransporter (NCC) is the major pathway for salt reabsorption in the mammalian distal convoluted tubule. NCC plays a key role in the regulation of blood pressure. Its inhibition with thiazides constitutes the primary baseline therapy for arterial hypertension. However, the thiazide-binding site in NCC is unknown. Mammals have only one gene encoding for NCC. The eel, however, contains a duplicate gene. NCCα is an ortholog of mammalian NCC and is expressed in the kidney. NCCβ is present in the apical membrane of the rectum. Here we cloned and functionally characterized NCCβ from the European eel. The cRNA encodes a 1043-amino acid membrane protein that, when expressed in Xenopus oocytes, functions as an Na-Cl cotransporter with two major characteristics, making it different from other known NCCs. First, eel NCCβ is resistant to thiazides. Single-point mutagenesis supports that the absence of thiazide inhibition is, at least in part, due to the substitution of a conserved serine for a cysteine at position 379. Second, NCCβ is not activated by low-chloride hypotonic stress, although the unique Ste20-related proline alanine-rich kinase (SPAK) binding site in the amino-terminal domain is conserved. Thus, NCCβ exhibits significant functional differences from NCCs that could be helpful in defining several aspects of the structure-function relationship of this important cotransporter. PMID:27587391

  3. Transport of the soy isoflavone daidzein and its conjugative metabolites by the carriers SOAT, NTCP, OAT4, and OATP2B1.

    PubMed

    Grosser, Gary; Döring, Barbara; Ugele, Bernhard; Geyer, Joachim; Kulling, Sabine E; Soukup, Sebastian T

    2015-12-01

    Soy isoflavones (IF) are phytoestrogens, which interact with estrogen receptors. They are extensively metabolized by glucuronosyltransferases and sulfotransferases, leading to the modulation of their estrogenic activity. It can be assumed that this biotransformation also has a crucial impact on the uptake of IF by active or passive cellular transport mechanisms, but little is known about the transport of IF phase II metabolites into the cell. Therefore, transport assays for phase II metabolites of daidzein (DAI) were carried out using HEK293 cell lines transfected with five human candidate carriers, i.e., organic anion transporter OAT4, sodium-dependent organic anion transporter (SOAT), Na(+)-taurocholate cotransporting polypeptide (NTCP), apical sodium-dependent bile acid transporter ASBT, and organic anion transporting polypeptide OATP2B1. Cellular uptake was monitored by UHPLC-DAD. DAI monosulfates were transported by the carriers NTCP and SOAT in a sodium-dependent manner, while OAT4-HEK293 cells revealed a partly sodium-dependent transport for these compounds. In contrast, DAI-7,4'-disulfate was only taken up by NTCP-HEK293 cells. DAI-7-glucuronide, but not DAI-4'-glucuronide, was transported exclusively by OATP2B1 in a sodium-independent manner. DAI-7-glucuronide-4'-sulfate, DAI-7-glucoside, and DAI were no substrate of any of the tested carriers. In addition, the inhibitory potency of the DAI metabolites toward estrone-sulfate (E1S) uptake of the above-mentioned carriers was determined. In conclusion, human SOAT, NTCP, OATP2B1, and OAT4 were identified as carriers for the DAI metabolites. Several metabolites were able to inhibit carrier-dependent E1S uptake. These findings might contribute to a better understanding of the bioactivity of IF especially in case of hormone-related cancers.

  4. Liver Zonation Index of Drug Transporter and Metabolizing Enzyme Protein Expressions in Mouse Liver Acinus.

    PubMed

    Tachikawa, Masanori; Sumiyoshiya, Yuna; Saigusa, Daisuke; Sasaki, Kazunari; Watanabe, Michitoshi; Uchida, Yasuo; Terasaki, Tetsuya

    2018-05-01

    The purpose of the present study was to clarify the molecular basis of zonated drug distributions in mouse liver based on the protein expression levels of transporters and metabolizing enzymes in periportal (PP) and pericentral (PC) vein regions of mouse hepatic lobules. The distributions of sulforhodamine 101 (SR-101), a substrate of organic anion transporting polypeptides (Oatps), and ribavirin, a substrate of equilibrative nucleoside transporter 1 (Ent1), were elucidated in frozen liver sections of mice, to which each compound had been intravenously administered. Regions strongly positive for SR-101 (SR-101 + ) and regions weakly positive or negative for SR-101 (SR-101 - ) were separated by laser microdissection. The zonated distribution of protein expression was quantified in terms of the liver zonation index. Quantitative targeted absolute proteomics revealed the selective expression of glutamine synthetase in the SR-101 + region, indicating predominant distribution of SR-101 in hepatocytes of the PC vein region. The protein levels of Oatp1a1, Oatp1b2, organic cation transporter 1 (Oct1), and cytochrome P450 (P450) 2e1 were greater in the PC vein regions, whereas the level of organic anion transporter 2 (Oat2) was greater in the PP vein regions. Mouse Oatp1a1 mediated SR-101 transport. On the other hand, there were no statistically significant differences in expression of Ent1, Na + -taurocholate cotransporting polypeptide, several canalicular transporters, P450 enzymes, and UDP-glucuronosyltransferases between the PP and PC vein regions. This is consistent with the almost uniform distribution of ribavirin in the liver. In conclusion, sinusoidal membrane transporters such as Oatp1a1, Oatp1b2, Oct1, and Oat2 appear to be determinants of the zonated distribution of drugs in the liver. Copyright © 2018 by The American Society for Pharmacology and Experimental Therapeutics.

  5. Chimeric polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wogulis, Mark; Sweeney, Matthew; Heu, Tia

    The present invention relates to chimeric GH61 polypeptides having cellulolytic enhancing activity. The present invention also relates to polynucleotides encoding the chimeric GH61 polypeptides; nucleic acid constructs, vectors, and host cells comprising the polynucleotides; and methods of using the chimeric GH61 polypeptides.

  6. Isolated nucleic acids encoding antipathogenic polypeptides and uses thereof

    DOEpatents

    Altier, Daniel J.; Crane, Virginia C.; Ellanskaya, Irina; Ellanskaya, Natalia; Gilliam, Jacob T.; Hunter-Cevera, Jennie; Presnail, James K.; Schepers, Eric J.; Simmons, Carl R.; Torok, Tamas; Yalpani, Nasser

    2010-04-20

    Compositions and methods for protecting a plant from a pathogen, particularly a fungal pathogen, are provided. Compositions include amino acid sequences, and variants and fragments thereof, for antipathogenic polypeptides that were isolated from fungal fermentation broths. Nucleic acids that encode the antipathogenic polypeptides are also provided. A method for inducing pathogen resistance in a plant using the nucleotide sequences disclosed herein is further provided. The method comprises introducing into a plant an expression cassette comprising a promoter operably linked to a nucleotide sequence that encodes an antipathogenic polypeptide of the invention. Compositions comprising an antipathogenic polypeptide or a transformed microorganism comprising a nucleic acid of the invention in combination with a carrier and methods of using these compositions to protect a plant from a pathogen are further provided. Transformed plants, plant cells, seeds, and microorganisms comprising a nucleotide sequence that encodes an antipathogenic polypeptide of the invention are also disclosed.

  7. Structural basis of the alternating-access mechanism in a bile acid transporter

    NASA Astrophysics Data System (ADS)

    Zhou, Xiaoming; Levin, Elena J.; Pan, Yaping; McCoy, Jason G.; Sharma, Ruchika; Kloss, Brian; Bruni, Renato; Quick, Matthias; Zhou, Ming

    2014-01-01

    Bile acids are synthesized from cholesterol in hepatocytes and secreted through the biliary tract into the small intestine, where they aid in absorption of lipids and fat-soluble vitamins. Through a process known as enterohepatic recirculation, more than 90% of secreted bile acids are then retrieved from the intestine and returned to the liver for resecretion. In humans, there are two Na+-dependent bile acid transporters involved in enterohepatic recirculation, the Na+-taurocholate co-transporting polypeptide (NTCP; also known as SLC10A1) expressed in hepatocytes, and the apical sodium-dependent bile acid transporter (ASBT; also known as SLC10A2) expressed on enterocytes in the terminal ileum. In recent years, ASBT has attracted much interest as a potential drug target for treatment of hypercholesterolaemia, because inhibition of ASBT reduces reabsorption of bile acids, thus increasing bile acid synthesis and consequently cholesterol consumption. However, a lack of three-dimensional structures of bile acid transporters hampers our ability to understand the molecular mechanisms of substrate selectivity and transport, and to interpret the wealth of existing functional data. The crystal structure of an ASBT homologue from Neisseria meningitidis (ASBTNM) in detergent was reported recently, showing the protein in an inward-open conformation bound to two Na+ and a taurocholic acid. However, the structural changes that bring bile acid and Na+ across the membrane are difficult to infer from a single structure. To understand the structural changes associated with the coupled transport of Na+ and bile acids, here we solved two structures of an ASBT homologue from Yersinia frederiksenii (ASBTYf) in a lipid environment, which reveal that a large rigid-body rotation of a substrate-binding domain gives the conserved `crossover' region, where two discontinuous helices cross each other, alternating accessibility from either side of the cell membrane. This result has implications

  8. Structural basis of the alternating-access mechanism in a bile acid transporter

    PubMed Central

    Zhou, Xiaoming; Levin, Elena J.; Pan, Yaping; McCoy, Jason G.; Sharma, Ruchika; Kloss, Brian; Bruni, Renato; Quick, Matthias; Zhou, Ming

    2014-01-01

    Bile acids are synthesized from cholesterol in hepatocytes and secreted via the biliary tract into the small intestine, where they aid in absorption of lipids and fat-soluble vitamins. Through a process known as enterohepatic recirculation, more than 90% of secreted bile acids are then retrieved from the intestine and returned to the liver for re-secretion1. In humans, there are two Na+-dependent bile acid transporters involved in enterohepatic recirculation, the Na+-taurocholate co-transporting polypeptide (NTCP or SLC10A1) expressed in hepatocytes, and the apical sodium-dependent bile acid transporter (ASBT or SLC10A2) expressed on enterocytes in the terminal ileum2. In recent years, ASBT has attracted much interest as a potential drug target for treatment of hypercholesterolemia, because inhibition of ASBT reduces reabsorption of bile acids, thus increasing bile acid synthesis and consequently cholesterol consumption3,4. However, a lack of 3-dimensional structures of bile acid transporters hampers our ability to understand the molecular mechanisms of substrate selectivity and transport, and to interpret the wealth of existing functional data2,5-8. The crystal structure of an ASBT homolog from Neisseria meningitidis (ASBTNM) in detergent was reported recently9, showing the protein in an inward-open conformation bound to two Na+ and a taurocholic acid. However, the structural changes that bring bile acid and Na+ across the membrane are difficult to infer from a single structure. To understand better the structural changes associated with the coupled transport of Na+ and bile acids, we crystallized and solved two structures of a ASBT homolog from Yersinia frederiksenii (ASBTYf) in a lipid environment, which reveal that a large rigid-body rotation of a substrate-binding domain gives alternate accessibility to the highly conserved “crossover” region, where two discontinuous transmembrane helices cross each other. This result has implications for the location and

  9. Design of a single-chain polypeptide tetrahedron assembled from coiled-coil segments.

    PubMed

    Gradišar, Helena; Božič, Sabina; Doles, Tibor; Vengust, Damjan; Hafner-Bratkovič, Iva; Mertelj, Alenka; Webb, Ben; Šali, Andrej; Klavžar, Sandi; Jerala, Roman

    2013-06-01

    Protein structures evolved through a complex interplay of cooperative interactions, and it is still very challenging to design new protein folds de novo. Here we present a strategy to design self-assembling polypeptide nanostructured polyhedra based on modularization using orthogonal dimerizing segments. We designed and experimentally demonstrated the formation of the tetrahedron that self-assembles from a single polypeptide chain comprising 12 concatenated coiled coil-forming segments separated by flexible peptide hinges. The path of the polypeptide chain is guided by a defined order of segments that traverse each of the six edges of the tetrahedron exactly twice, forming coiled-coil dimers with their corresponding partners. The coincidence of the polypeptide termini in the same vertex is demonstrated by reconstituting a split fluorescent protein in the polypeptide with the correct tetrahedral topology. Polypeptides with a deleted or scrambled segment order fail to self-assemble correctly. This design platform provides a foundation for constructing new topological polypeptide folds based on the set of orthogonal interacting polypeptide segments.

  10. Tunable drug loading and release from polypeptide multilayer nanofilms

    PubMed Central

    Jiang, Bingbing; Li, Bingyun

    2009-01-01

    Polypeptide multilayer nanofilms were prepared using electrostatic layer-by-layer self-assembly nanotechnology. Small charged drug molecules (eg, cefazolin, gentamicin, and methylene blue) were loaded in polypeptide multilayer nanofilms. Their loading and release were found to be pH-dependent and could also be controlled by changing the number of film layers and drug incubation time, and applying heat-treatment after film formation. Antibioticloaded polypeptide multilayer nanofilms showed controllable antibacterial properties against Staphylococcus aureus. The developed biodegradable polypeptide multilayer nanofilms are capable of loading both positively- and negatively-charged drug molecules and promise to serve as drug delivery systems on biomedical devices for preventing biomedical device-associated infection, which is a significant clinical complication for both civilian and military patients. PMID:19421369

  11. Polypeptide synthesis induced in Nicotiana clevelandii protoplasts by infection with raspberry ringspot nepovirus.

    PubMed

    Acosta, O; Mayo, M A

    1993-01-01

    Infection of Nicotiana clevelandii protoplasts by raspberry ringspot nepovirus resulted in the accumulation of about 24 polypeptides that differed in M(r) and pI from polypeptides accumulating in mock-inoculated protoplasts. Similar polypeptides accumulated in protoplasts infected with the S and E strains of RRV but different infection-specific polypeptides were detected in protoplasts infected with tobacco ringspot nepovirus. The M(r) of RRV-specific polypeptides ranged from 210,000 to 18,000 and most are presumed to be derived from others by proteolytic cleavage. No evidence was found for marked changes in polypeptide abundance with time after inoculation or for any virus-specific polypeptide becoming disproportionately abundant in the medium during culture.

  12. Multifunctional quantum dot-polypeptide hybrid nanogel for targeted imaging and drug delivery

    NASA Astrophysics Data System (ADS)

    Yang, Jie; Yao, Ming-Hao; Wen, Lang; Song, Ji-Tao; Zhang, Ming-Zhen; Zhao, Yuan-Di; Liu, Bo

    2014-09-01

    A new type of multifunctional quantum dot (QD)-polypeptide hybrid nanogel with targeted imaging and drug delivery properties has been developed by metal-affinity driven self-assembly between artificial polypeptides and CdSe-ZnS core-shell QDs. On the surface of QDs, a tunable sandwich-like microstructure consisting of two hydrophobic layers and one hydrophilic layer between them was verified by capillary electrophoresis, transmission electron microscopy, and dynamic light scattering measurements. Hydrophobic and hydrophilic drugs can be simultaneously loaded in a QD-polypeptide nanogel. In vitro drug release of drug-loaded QD-polypeptide nanogels varies strongly with temperature, pH, and competitors. A drug-loaded QD-polypeptide nanogel with an arginine-glycine-aspartic acid (RGD) motif exhibited efficient receptor-mediated endocytosis in αvβ3 overexpressing HeLa cells but not in the control MCF-7 cells as analyzed by confocal microscopy and flow cytometry. In contrast, non-targeted QD-polypeptide nanogels revealed minimal binding and uptake in HeLa cells. Compared with the original QDs, the QD-polypeptide nanogels showed lower in vitro cytotoxicity for both HeLa cells and NIH 3T3 cells. Furthermore, the cytotoxicity of the targeted QD-polypeptide nanogel was lower for normal NIH 3T3 cells than that for HeLa cancer cells. These results demonstrate that the integration of imaging and drug delivery functions in a single QD-polypeptide nanogel has the potential for application in cancer diagnosis, imaging, and therapy.A new type of multifunctional quantum dot (QD)-polypeptide hybrid nanogel with targeted imaging and drug delivery properties has been developed by metal-affinity driven self-assembly between artificial polypeptides and CdSe-ZnS core-shell QDs. On the surface of QDs, a tunable sandwich-like microstructure consisting of two hydrophobic layers and one hydrophilic layer between them was verified by capillary electrophoresis, transmission electron

  13. Tyrosine kinase inhibitors and immunosuppressants perturb the myo-inositol but not the betaine cotransporter in isotonic and hypertonic MDCK cells

    PubMed Central

    Atta, Mohamed G.; Dahl, Stephen C.; Kwon, H. Moo; Handler, Joseph S.

    2008-01-01

    Background The sodium/myo-inositol cotransporter (SMIT) and the betaine cotransporter (BGT1) are essential for the accumulation of myo-inositol and betaine, and hence cell survival in a hypertonic environment. The underlying molecular mechanism involves an increase in transcription of the SMIT and BGT1 genes through binding of a trans-acting factor to enhancer elements in the 5′ flanking region of both genes, resulting in increased mRNA abundance and increased activity of the cotransporters. Current evidence regarding transcriptional and post-transcriptional regulation indicates that both cotransporters are regulated in parallel. Methods To investigate the signal transduction of hypertonic stress, we examined the effect of tyrosine kinase inhibitors and immunosuppressants on the hypertonicity-induced activity of the two cotransporters in Madin-Darby canine kidney (MDCK) cells. Results None of the agents studied affected BGT1 activity in isotonic or hypertonic conditions. Treatment of MDCK cells with genistein, a tyrosine kinase inhibitor, increased SMIT activity in hypertonic but not isotonic conditions. The stimulation of SMIT by genistein was accompanied by a parallel increase in mRNA abundance. In contrast, treating cells with tyrphostin A23, another tyrosine kinase inhibitor, or cyclosporine A, an immunosuppressant, inhibited SMIT activity in hypertonic cells. FK506, another immunosuppressant, increased SMIT activity, but only in isotonic conditions. Conclusions These results provide the first evidence of divergent regulatory pathways modulating SMIT and BGT activity. PMID:10027932

  14. Peppytides: Interactive Models of Polypeptide Chains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zuckermann, Ron; Chakraborty, Promita; Derisi, Joe

    2014-01-21

    Peppytides are scaled, 3D-printed models of polypeptide chains that can be folded into accurate protein structures. Designed and created by Berkeley Lab Researcher, Promita Chakraborty, and Berkeley Lab Senior Scientist, Dr. Ron Zuckermann, Peppytides are accurate physical models of polypeptide chains that anyone can interact with and fold intro various protein structures - proving to be a great educational tool, resulting in a deeper understanding of these fascinating structures and how they function. Build your own Peppytide model and learn about how nature's machines fold into their intricate architectures!

  15. Peppytides: Interactive Models of Polypeptide Chains

    ScienceCinema

    Zuckermann, Ron; Chakraborty, Promita; Derisi, Joe

    2018-06-08

    Peppytides are scaled, 3D-printed models of polypeptide chains that can be folded into accurate protein structures. Designed and created by Berkeley Lab Researcher, Promita Chakraborty, and Berkeley Lab Senior Scientist, Dr. Ron Zuckermann, Peppytides are accurate physical models of polypeptide chains that anyone can interact with and fold intro various protein structures - proving to be a great educational tool, resulting in a deeper understanding of these fascinating structures and how they function. Build your own Peppytide model and learn about how nature's machines fold into their intricate architectures!

  16. Auxin-Regulated Polypeptide Changes at Different Stages of Strawberry Fruit Development 1

    PubMed Central

    Veluthambi, K.; Poovaiah, B. W.

    1984-01-01

    The pattern of polypeptides at different stages of strawberry (Fragaria ananassa Duch. cv Ozark Beauty) fruit development was studied by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. An 81,000-dalton polypeptide appeared between 5 and 10 days after pollination. Polypeptides with molecular weights of 76,000 and 37,000 daltons were formed after 10 days. The control exerted by auxin in the stage-specific formation of polypeptides was investigated by stopping fruit growth after removing the achenes and reinitiating fruit growth by the application of a synthetic auxin, α-naphthaleneacetic acid (NAA). When the achenes were removed from the 5- and 10-day-old fruits, the fruits failed to grow, the 81,000 dalton polypeptide was not formed between 5 and 10 days, and the 76,000- and 37,000-dalton polypeptides were not formed between 10 and 20 days. Application of NAA to fruits deprived of auxin by removal of achenes resulted in the resumption of growth and also in the appearance of these polypeptides. Removal of achenes of the 5- or 10-day-old fruits and growing them without auxin resulted in the formation of 52,000- and 57,000-dalton polypeptides. These two polypeptides were not formed when NAA was applied to fruits after removal of achenes. Supply of NAA to auxin-deprived fruits 5 days after removal of achenes resulted in resumption of growth and also in the disappearance of these two polypeptides, pointing out their possible relation to the inhibition of fruit growth. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:16663624

  17. Polypeptide profiles of human oocytes and preimplantation embryos.

    PubMed

    Capmany, G; Bolton, V N

    1993-11-01

    The polypeptides that direct fertilization and early development until activation of the embryonic genome occurs, at the 4-8 cell stage in the human, are exclusively maternal in origin, and are either synthesized during oogenesis or translated later from maternal mRNA. Using sodium dodecyl sulphate-polyacrylamide gel electrophoresis and silver stain, we have visualized and compared the polypeptides present in different populations of human oocytes and cleavage stage embryos obtained after superovulation and insemination in vitro. Two polypeptide patterns were resolved, differing in the region of mol. wt 69 kDa. The distribution of these patterns showed no correlation with the ability of individual oocytes to achieve fertilization and develop normally to the 8-cell stage.

  18. cGMP stimulates bile acid-independent bile formation and biliary bicarbonate excretion.

    PubMed

    Myers, N C; Grune, S; Jameson, H L; Sawkat-Anwer, M

    1996-03-01

    The effect of guanosine 3',5'-cyclic monophosphate (cGMP) on hepatic bile formation was studied in isolated perfused rat livers and rat hepatocytes. Studies in isolated perfused rat livers showed that infusion of 8-bromoguanosine 3',5'-cyclic monophosphate (8-BrcGMP, 3 micromol/min or 100 microM) 1) increased bile flow without affecting biliary excretion of simultaneously infused taurocholate, 2) increased biliary concentration and excretion of HCO3(-) but did not affect biliary excretion of glutathione, and 3) increased net perfusate H+ efflux without affecting hepatic O2 uptake. Studies in isolated rat hepatocytes showed that 1) 8-BrcGMP increased intracellular pH in the presence (but not in the absence) of extracellular HCO-3, and effect inhibited by 4,4' -diisothiocyanostilbene-2,2'-disulfonic acid and Na+ replacement, 2) 8-BrcGMP did not affect taurocholate uptake and intracellular [Ca2+], and 3) bile acids, like ursodeoxycholate and cholate, did not increase cellular cGMP. Taken together, these results indicate that cGMP stimulates bile acid-independent bile formation, in part by stimulating biliary HCO3- excretion. cGMP may increase HCO3- excretion by stimulating sinusoidal Na+ - HCO3- cotransport, but not Na+/H+ exchange. cGMP, unlike adenosine 3',5'-cyclic monophosphate, may not regulate hepatic taurocholate transport, and bile acid-induced HCO3- rich choleresis may not be mediated via cGMP.

  19. Ice Growth Inhibition in Antifreeze Polypeptide Solution by Short-Time Solution Preheating.

    PubMed

    Nishi, Naoto; Miyamoto, Takuya; Waku, Tomonori; Tanaka, Naoki; Hagiwara, Yoshimichi

    2016-01-01

    The objective of this study is to enhance the inhibition of ice growth in the aqueous solution of a polypeptide, which is inspired by winter flounder antifreeze protein. We carried out measurements on unidirectional freezing of the polypeptide solution. The thickness of the solution was 0.02 mm, and the concentration of polypeptide was varied from 0 to 2 mg/mL. We captured successive microscopic images of ice/solution interfaces, and measured the interface velocity from the locations of tips of the pectinate interface in the images. We also simultaneously measured the temperature by using a small thermocouple. The ice/solution interface temperature was defined by the temperature at the tips. It was found that the interface temperature was decreased with an increasing concentration of polypeptide. To try varying the activity of the polypeptide, we preheated the polypeptide solution and cooled it before carrying out the measurements. Preheating for 1-5 hours was found to cause a further decrease in the interface temperature. Furthermore, wider regions of solution and ice with inclined interfaces in the pectinate interface structure were observed, compared with the case where the solution was not preheated. Thus, the ice growth inhibition was enhanced by this preheating. To investigate the reason for this enhancement, we measured the conformation and aggregates of polypeptide in the solution. We also measured the local concentration of polypeptide. It was found that the polypeptide aggregates became larger as a result of preheating, although the polypeptide conformation was unchanged. These large aggregates caused both adsorption to the interface and the wide regions of supercooled solution in the pectinate interface structure.

  20. Pituitary adenylate cyclase-activating polypeptide: a novel peptide with protean implications.

    PubMed

    Pisegna, Joseph R; Oh, David S

    2007-02-01

    The purpose of this review is to highlight the importance of pituitary adenylate cyclase-activating polypeptide in physiological processes and to describe how this peptide is becoming increasingly recognized as having a major role in the body. Since its discovery in 1989, investigators have sought to determine the site of biological activity and the function of pituitary adenylate cyclase-activating polypeptide in maintaining homeostasis. Since its discovery, pituitary adenylate cyclase-activating polypeptide appears to play an important role in the regulation of processes within the central nervous system and gastrointestinal tract, as well in reproductive biology. Pituitary adenylate cyclase-activating polypeptide has been shown to regulate tumor cell growth and to regulate immune function through its effects on T lympocytes. These discoveries suggest the importance of pituitary adenylate cyclase-activating polypeptide in neuronal development, neuronal function, gastrointestinal tract function and reproduction. Future studies will examine more closely the role of pituitary adenylate cyclase-activating polypeptide in regulation of malignantly transformed cells, as well as in regulation of immune function.

  1. Surface active complexes formed between keratin polypeptides and ionic surfactants.

    PubMed

    Pan, Fang; Lu, Zhiming; Tucker, Ian; Hosking, Sarah; Petkov, Jordan; Lu, Jian R

    2016-12-15

    Keratins are a group of important proteins in skin and hair and as biomaterials they can provide desirable properties such as strength, biocompatibility, and moisture regaining and retaining. The aim of this work is to develop water-soluble keratin polypeptides from sheep wool and then explore how their surface adsorption behaves with and without surfactants. Successful preparation of keratin samples was demonstrated by identification of the key components from gel electrophoresis and the reproducible production of gram scale samples with and without SDS (sodium dodecylsulphate) during wool fibre dissolution. SDS micelles could reduce the formation of disulphide bonds between keratins during extraction, reducing inter-molecular crosslinking and improving keratin polypeptide solubility. However, Zeta potential measurements of the two polypeptide batches demonstrated almost identical pH dependent surface charge distributions with isoelectric points around pH 3.5, showing complete removal of SDS during purification by dialysis. In spite of different solubility from the two batches of keratin samples prepared, very similar adsorption and aggregation behavior was revealed from surface tension measurements and dynamic light scattering. Mixing of keratin polypeptides with SDS and C 12 TAB (dodecyltrimethylammonium bromide) led to the formation of keratin-surfactant complexes that were substantially more effective at reducing surface tension than the polypeptides alone, showing great promise in the delivery of keratin polypeptides via the surface active complexes. Neutron reflection measurements revealed the coexistence of surfactant and keratin polypeptides at the interface, thus providing the structural support to the observed surface tension changes associated with the formation of the surface active complexes. Copyright © 2016. Published by Elsevier Inc.

  2. Expression of the sodium potassium chloride cotransporter (NKCC1) and sodium chloride cotransporter (NCC) and their effects on rat lens transparency.

    PubMed

    Chee, K N; Vorontsova, I; Lim, J C; Kistler, J; Donaldson, P J

    2010-05-04

    To characterize the expression patterns of the Na+-K+-Cl(-) cotransporter (NKCC) 1 and NKCC2, and the Na+-Cl(-) cotransporter (NCC) in the rat lens and to determine if they play a role in regulating lens volume and transparency. RT-PCR was performed on RNA extracted from fiber cells to identify sodium dependent cotransporters expressed in the rat lens. Western blotting and immunohistochemistry, using NKCC1, NKCC2, and NCC antibodies, were used to verify expression at the protein level and to localize transporter expression. Organ cultured rat lenses were incubated in Artificial Aqueous Humor (AAH) of varying osmolarities or isotonic AAH that contained either the NKCC specific inhibitor bumetanide, or the NCC specific inhibitor thiazide for up to 18 h. Lens transparency was monitored with dark field microscopy, while tissue morphology and antibody labeling patterns were recorded using a confocal microscope. Molecular experiments showed that NKCC1 and NCC were expressed in the lens at both the transcript and protein levels, but NKCC2 was not. Immunohistochemistry showed that both NKCC1 and NCC were expressed in the lens cortex, but NCC expression was also found in the lens core. In the lens cortex the majority of labeling for both transporters was cytoplasmic in nature, while in the lens core, NCC labeling was associated with the membrane. Exposure of lenses to either hypotonic or hypertonic AAH had no noticeable effects on the predominantly cytoplasmic location of either transporter in the lens cortex. Incubation of lenses in isotonic AAH plus the NKCC inhibitor bumetanide for 18 h induced a cortical opacity that was initiated by a shrinkage of peripheral fiber cells and the dilation of the extracellular space between fiber cells in a deeper zone located some approximately 150 microm in from the capsule. In contrast, lenses incubated in isotonic AAH and the NCC inhibitor thiazide maintained both their transparency and their regular fiber cell morphology. We have

  3. Cotransport of hydroxyapatite nanoparticles and hematite colloids in saturated porous media: Mechanistic insights from mathematical modeling and phosphate oxygen isotope fractionation

    NASA Astrophysics Data System (ADS)

    Wang, Dengjun; Jin, Yan; Jaisi, Deb P.

    2015-11-01

    The fate and transport of individual type of engineered nanoparticles (ENPs) in porous media have been studied intensively and the corresponding mechanisms controlling ENPs transport and deposition are well-documented. However, investigations regarding the mobility of ENPs in the concurrent presence of another mobile colloidal phase such as naturally occurring colloids (colloid-mediated transport of ENPs) are largely lacking. Here, we investigated the cotransport and retention of engineered hydroxyapatite nanoparticles (HANPs) with naturally occurring hematite colloids in water-saturated sand columns under environmentally relevant transport conditions, i.e., pH, ionic strength (IS), and flow rate. Particularly, phosphate oxygen isotope fractionation of HANPs during cotransport was explored at various ISs and flow rates to examine the mechanisms controlling the isotope fractionation of HANPs in abiotic transport processes (physical transport). During cotransport, greater mobility of both HANPs and hematite occurred at higher pHs and flow rates, but at lower ISs. Intriguingly, the mobility of both HANPs and hematite was substantially lower during cotransport than the individual transport of either, attributed primarily to greater homo- and hetero-aggregation when both particles are copresent in the suspension. The shapes of breakthrough curves (BTCs) and retention profiles (RPs) during cotransport for both particles evolved from blocking to ripening with time and from flat to hyperexponential with depth, respectively, in response to decreases in pH and flow rate, and increases in IS. The blocking BTCs and RPs that are flat or hyperexponential can be well-approximated by a one-site kinetic attachment model. Conversely, a ripening model that incorporates attractive particle-particle interaction has to be employed to capture the ripening BTCs that are impacted by particle aggregation during cotransport. A small phosphate oxygen isotope fractionation (≤ 1.8

  4. Expression of apical Na(+)-L-glutamine co-transport activity, B(0)-system neutral amino acid co-transporter (B(0)AT1) and angiotensin-converting enzyme 2 along the jejunal crypt-villus axis in young pigs fed a liquid formula.

    PubMed

    Yang, Chengbo; Yang, Xiaojian; Lackeyram, Dale; Rideout, Todd C; Wang, Zirong; Stoll, Barbara; Yin, Yulong; Burrin, Douglas G; Fan, Ming Z

    2016-06-01

    Gut apical amino acid (AA) transport activity is high at birth and during suckling, thus being essential to maintain luminal nutrient-dependent mucosal growth through providing AA as essential metabolic fuel, substrates and nutrient stimuli for cellular growth. Because system-B(0) Na(+)-neutral AA co-transporter (B(0)AT1, encoded by the SLC6A19 gene) plays a dominant role for apical uptake of large neutral AA including L-Gln, we hypothesized that high apical Na(+)-Gln co-transport activity, and B(0)AT1 (SLC6A19) in co-expression with angiotensin-converting enzyme 2 (ACE2) were expressed along the entire small intestinal crypt-villus axis in young animals via unique control mechanisms. Kinetics of Na(+)-Gln co-transport activity in the apical membrane vesicles, prepared from epithelial cells sequentially isolated along the jejunal crypt-villus axis from liquid formula-fed young pigs, were measured with the membrane potential being clamped to zero using thiocyanate. Apical maximal Na(+)-Gln co-transport activity was much higher (p < 0.05) in the upper villus cells than in the middle villus (by 29 %) and the crypt (by 30 %) cells, whereas Na(+)-Gln co-transport affinity was lower (p < 0.05) in the upper villus cells than in the middle villus and the crypt cells. The B(0)AT1 (SLC6A19) mRNA abundance was lower (p < 0.05) in the crypt (by 40-47 %) than in the villus cells. There were no significant differences in B(0)AT1 and ACE2 protein abundances on the apical membrane among the upper villus, the middle villus and the crypt cells. Our study suggests that piglet fast growth is associated with very high intestinal apical Na(+)-neutral AA uptake activities via abundantly co-expressing B(0)AT1 and ACE2 proteins in the apical membrane and by transcribing the B(0)AT1 (SLC6A19) gene in the epithelia along the entire crypt-villus axis.

  5. Genetic variations of NTCP are associated with susceptibility to HBV infection and related hepatocellular carcinoma.

    PubMed

    Wang, Peng; Mo, Ruidong; Lai, Rongtao; Xu, Yumin; Lu, Jie; Zhao, Gangde; Liu, Yuhan; Cao, Zhujun; Wang, Xiaolin; Li, Ziqiang; Lin, Lanyi; Zhou, Huijuan; Cai, Wei; Wang, Hui; Bao, Shisan; Xiang, Xiaogang; Xie, Qing

    2017-12-01

    Sodium taurocholate cotransporting polypeptide (NTCP), encoded by gene SLC10A1, is a receptor for hepatitis B virus (HBV). The aim of the current study was to investigate the role of NTCP polymorphisms in HBV susceptibility, cirrhosis and hepatocarcinogenesis. A total 1221 cases [including 866 chronic hepatitis B (CHB), 238 liver cirrhosis (LC), 117 hepatocellular carcinoma (HCC) patients] and 1232 healthy controls (HCs) were recruited, and 6 single nucleotide polymorphisms (SNPs) were genotyped. Meta-analysis was executed among 14591 CHBs and 12396 HCs to determine the association between NTCP polymorphisms and HBV infection, cirrhosis or hepatocarcinogenesis. The frequency of rs2296651-GA was inversely correlated with CHB, LC or HCC patients [adjusted OR(95%CI)=0.16(0.11-0.23), p <0.001; 0.34(0.21-0.55), p =0.001; or 0.46(0.25-0.83), p =0.008], respectively, compared with HCs. Meta-analysis also showed that NTCP rs2296651-GA was inversely associated with HBV infection [OR(95%CI)=0.532(0.287-0.986), p =0.028, codominant] or HBV-related HCC [OR(95%CI)=0.701(0.564-0.872), p =0.001, recessive]. Furthermore, the frequency of rs943277-GA was positively correlated with HBV infection [adjusted OR(95%CI)=2.42(1.05-5.54), p =0.032, codominant]. Our data suggest that NTCP mutants contribute to the susceptibility of HBV infection or HBV-related HCC.

  6. Down-regulation of NTCP expression by cyclin D1 in hepatitis B virus-related hepatocellular carcinoma has clinical significance

    PubMed Central

    Kang, Jingting; Wang, Jie; Cheng, Jin; Cao, Zhiliang; Chen, Ran; Li, Huiyu; Liu, Shuang; Chen, Xiangmei; Sui, Jianhua; Lu, Fengmin

    2017-01-01

    The sodium-dependent taurocholate cotransporter polypeptide (NTCP) has been identified as a liver specific functional receptor for the hepatitis B virus (HBV). Previous studies indicated that the expression of NTCP may be associated with the proliferation status of hepatocytes. However, the involvement of NTCP in hepatocellular carcinoma (HCC) cells proliferation remains unclear. In this study, we confirmed that NTCP was down-regulated in HCC tumor tissues compared with that in the adjacent non-tumor tissues (P < 0.0001). Clinically, lower expression of NTCP was correlated with poor post-surgery survival rate (P = 0.0009) and larger tumor tissue mass (P = 0.003) of HCC patients. This was supported by the finding that ectopic expression of NTCP in both HepG2 and Huh-7 cells could significantly suppress hepatocytes growth by arresting cells in G0/G1 phase. We also discovered that cyclin D1 could transcriptionally suppress NTCP expression by inhibiting the activity of NTCP promoter, while arresting HCC cells in G0/G1 phase by serum starvation could upregulate NTCP mRNA levels. This is the first study to report that the transcriptional inhibition of NTCP expression during cell cycle progression was mediated by cyclin D1. The down-regulated NTCP expression was associated with poor prognosis and lower HBV cccDNA level in HCC patients. Therefore, NTCP expression levels might serve as a novel prognostic predictive marker for post-surgery survival rate of HCC patients. PMID:28915572

  7. Down-regulation of NTCP expression by cyclin D1 in hepatitis B virus-related hepatocellular carcinoma has clinical significance.

    PubMed

    Kang, Jingting; Wang, Jie; Cheng, Jin; Cao, Zhiliang; Chen, Ran; Li, Huiyu; Liu, Shuang; Chen, Xiangmei; Sui, Jianhua; Lu, Fengmin

    2017-08-22

    The sodium-dependent taurocholate cotransporter polypeptide (NTCP) has been identified as a liver specific functional receptor for the hepatitis B virus (HBV). Previous studies indicated that the expression of NTCP may be associated with the proliferation status of hepatocytes. However, the involvement of NTCP in hepatocellular carcinoma (HCC) cells proliferation remains unclear. In this study, we confirmed that NTCP was down-regulated in HCC tumor tissues compared with that in the adjacent non-tumor tissues ( P < 0.0001). Clinically, lower expression of NTCP was correlated with poor post-surgery survival rate ( P = 0.0009) and larger tumor tissue mass ( P = 0.003) of HCC patients. This was supported by the finding that ectopic expression of NTCP in both HepG2 and Huh-7 cells could significantly suppress hepatocytes growth by arresting cells in G0/G1 phase. We also discovered that cyclin D1 could transcriptionally suppress NTCP expression by inhibiting the activity of NTCP promoter, while arresting HCC cells in G0/G1 phase by serum starvation could upregulate NTCP mRNA levels. This is the first study to report that the transcriptional inhibition of NTCP expression during cell cycle progression was mediated by cyclin D1. The down-regulated NTCP expression was associated with poor prognosis and lower HBV cccDNA level in HCC patients. Therefore, NTCP expression levels might serve as a novel prognostic predictive marker for post-surgery survival rate of HCC patients.

  8. Genetic variations of NTCP are associated with susceptibility to HBV infection and related hepatocellular carcinoma

    PubMed Central

    Xu, Yumin; Lu, Jie; Zhao, Gangde; Liu, Yuhan; Cao, Zhujun; Wang, Xiaolin; Li, Ziqiang; Lin, Lanyi; Zhou, Huijuan; Cai, Wei; Wang, Hui; Bao, Shisan; Xiang, Xiaogang; Xie, Qing

    2017-01-01

    Sodium taurocholate cotransporting polypeptide (NTCP), encoded by gene SLC10A1, is a receptor for hepatitis B virus (HBV). The aim of the current study was to investigate the role of NTCP polymorphisms in HBV susceptibility, cirrhosis and hepatocarcinogenesis. A total 1221 cases [including 866 chronic hepatitis B (CHB), 238 liver cirrhosis (LC), 117 hepatocellular carcinoma (HCC) patients] and 1232 healthy controls (HCs) were recruited, and 6 single nucleotide polymorphisms (SNPs) were genotyped. Meta-analysis was executed among 14591 CHBs and 12396 HCs to determine the association between NTCP polymorphisms and HBV infection, cirrhosis or hepatocarcinogenesis. The frequency of rs2296651-GA was inversely correlated with CHB, LC or HCC patients [adjusted OR(95%CI)=0.16(0.11-0.23), p<0.001; 0.34(0.21-0.55), p=0.001; or 0.46(0.25-0.83), p=0.008], respectively, compared with HCs. Meta-analysis also showed that NTCP rs2296651-GA was inversely associated with HBV infection [OR(95%CI)=0.532(0.287-0.986), p=0.028, codominant] or HBV-related HCC [OR(95%CI)=0.701(0.564-0.872), p=0.001, recessive]. Furthermore, the frequency of rs943277-GA was positively correlated with HBV infection [adjusted OR(95%CI)=2.42(1.05-5.54), p=0.032, codominant]. Our data suggest that NTCP mutants contribute to the susceptibility of HBV infection or HBV-related HCC. PMID:29285260

  9. Evaluation and identification of hepatitis B virus entry inhibitors using HepG2 cells overexpressing a membrane transporter NTCP.

    PubMed

    Iwamoto, Masashi; Watashi, Koichi; Tsukuda, Senko; Aly, Hussein Hassan; Fukasawa, Masayoshi; Fujimoto, Akira; Suzuki, Ryosuke; Aizaki, Hideki; Ito, Takayoshi; Koiwai, Osamu; Kusuhara, Hiroyuki; Wakita, Takaji

    2014-01-17

    Hepatitis B virus (HBV) entry has been analyzed using infection-susceptible cells, including primary human hepatocytes, primary tupaia hepatocytes, and HepaRG cells. Recently, the sodium taurocholate cotransporting polypeptide (NTCP) membrane transporter was reported as an HBV entry receptor. In this study, we established a strain of HepG2 cells engineered to overexpress the human NTCP gene (HepG2-hNTCP-C4 cells). HepG2-hNTCP-C4 cells were shown to be susceptible to infection by blood-borne and cell culture-derived HBV. HBV infection was facilitated by pretreating cells with 3% dimethyl sulfoxide permitting nearly 50% of the cells to be infected with HBV. Knockdown analysis suggested that HBV infection of HepG2-hNTCP-C4 cells was mediated by NTCP. HBV infection was blocked by an anti-HBV surface protein neutralizing antibody, by compounds known to inhibit NTCP transporter activity, and by cyclosporin A and its derivatives. The infection assay suggested that cyclosporin B was a more potent inhibitor of HBV entry than was cyclosporin A. Further chemical screening identified oxysterols, oxidized derivatives of cholesterol, as inhibitors of HBV infection. Thus, the HepG2-hNTCP-C4 cell line established in this study is a useful tool for the identification of inhibitors of HBV infection as well as for the analysis of the molecular mechanisms of HBV infection. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Spinoculation Enhances HBV Infection in NTCP-Reconstituted Hepatocytes

    PubMed Central

    Yan, Ran; Zhang, Yongmei; Cai, Dawei; Liu, Yuanjie; Cuconati, Andrea; Guo, Haitao

    2015-01-01

    Hepatitis B virus (HBV) infection and its sequelae remain a major public health burden, but both HBV basic research and the development of antiviral therapeutics have been hindered by the lack of an efficient in vitro infection system. Recently, sodium taurocholate cotransporting polypeptide (NTCP) has been identified as the HBV receptor. We herein report that we established a NTCP-complemented HepG2 cell line (HepG2-NTCP12) that supports HBV infection, albeit at a low infectivity level following the reported infection procedures. In our attempts to optimize the infection conditions, we found that the centrifugation of HepG2-NTCP12 cells during HBV inoculation (termed “spinoculation”) significantly enhanced the virus infectivity. Moreover, the infection level gradually increased with accelerated speed of spinoculation up to 1,000g tested. However, the enhancement of HBV infection was not significantly dependent upon the duration of centrifugation. Furthermore, covalently closed circular (ccc) DNA was detected in infected cells under optimized infection condition by conventional Southern blot, suggesting a successful establishment of HBV infection after spinoculation. Finally, the parental HepG2 cells remained uninfected under HBV spinoculation, and HBV entry inhibitors targeting NTCP blocked HBV infection when cells were spinoculated, suggesting the authentic virus entry mechanism is unaltered under centrifugal inoculation. Our data suggest that spinoculation could serve as a standard protocol for enhancing the efficiency of HBV infection in vitro. PMID:26070202

  11. Competition between surface adsorption and folding of fibril-forming polypeptides

    NASA Astrophysics Data System (ADS)

    Ni, Ran; Kleijn, J. Mieke; Abeln, Sanne; Cohen Stuart, Martien A.; Bolhuis, Peter G.

    2015-02-01

    Self-assembly of polypeptides into fibrillar structures can be initiated by planar surfaces that interact favorably with certain residues. Using a coarse-grained model, we systematically studied the folding and adsorption behavior of a β -roll forming polypeptide. We find that there are two different folding pathways depending on the temperature: (i) at low temperature, the polypeptide folds in solution into a β -roll before adsorbing onto the attractive surface; (ii) at higher temperature, the polypeptide first adsorbs in a disordered state and folds while on the surface. The folding temperature increases with increasing attraction as the folded β -roll is stabilized by the surface. Surprisingly, further increasing the attraction lowers the folding temperature again, as strong attraction also stabilizes the adsorbed disordered state, which competes with folding of the polypeptide. Our results suggest that to enhance the folding, one should use a weakly attractive surface. They also explain the recent experimental observation of the nonmonotonic effect of charge on the fibril formation on an oppositely charged surface [C. Charbonneau et al., ACS Nano 8, 2328 (2014), 10.1021/nn405799t].

  12. Straightforward and effective protein encapsulation in polypeptide-based artificial cells.

    PubMed

    Zhi, Zheng-Liang; Haynie, Donald T

    2006-01-01

    A simple and straightforward approach to encapsulating an enzyme and preserving its function in polypeptide-based artificial cells is demonstrated. A model enzyme, glucose oxidase (GOx), was encapsulated by repeated stepwise adsorption of poly(L-lysine) and poly(L-glutamic acid) onto GOx-coated CaCO3 templates. These polypeptides are known from previous research to exhibit nanometer-scale organization in multilayer films. Templates were dissolved by ethylenediaminetetraacetic acid (EDTA) at neutral pH. Addition of polyethylene glycol (PEG) to the polypeptide assembly solutions greatly increased enzyme retention on the templates, resulting in high-capacity, high-activity loading of the enzyme into artificial cells. Assay of enzyme activity showed that over 80 mg-mL(-1) GOx was retained in artificial cells after polypeptide multilayer film formation and template dissolution in the presence of PEG, but only one-fifth as much was retained in the absence of PEG. Encapsulation is a means of improving the availability of therapeutic macromolecules in biomedicine. This work therefore represents a means of developing polypeptide-based artificial cells for use as therapeutic biomacromolecule delivery vehicles.

  13. Atomic Layer Deposition of L-Alanine Polypeptide

    DOE PAGES

    Fu, Yaqin; Li, Binsong; Jiang, Ying-Bing; ...

    2014-10-30

    L-Alanine polypeptide thin films were synthesized via atomic layer deposition (ALD). Rather, instead of using an amino acid monomer as the precursor, an L-alanine amino acid derivatized with a protecting group was used to prevent self-polymerization, increase the vapor pressure, and allow linear cycle-by-cycle growth emblematic of ALD. Moreover, the successful deposition of a conformal polypeptide film has been confirmed by FTIR, TEM, and Mass Spectrometry, and the ALD process has been extended to polyvaline.

  14. Polypeptide having or assisting in carbohydrate material degrading activity and uses thereof

    DOEpatents

    Schooneveld-Bergmans, Margot Elisabeth Francoise; Heijne, Wilbert Herman Marie; Los, Alrik Pieter

    2016-02-16

    The invention relates to a polypeptide which comprises the amino acid sequence set out in SEQ ID NO: 2 or an amino acid sequence encoded by the nucleotide sequence of SEQ ID NO: 1, or a variant polypeptide or variant polynucleotide thereof, wherein the variant polypeptide has at least 76% sequence identity with the sequence set out in SEQ ID NO: 2 or the variant polynucleotide encodes a polypeptide that has at least 76% sequence identity with the sequence set out in SEQ ID NO: 2. The invention features the full length coding sequence of the novel gene as well as the amino acid sequence of the full-length functional polypeptide and functional equivalents of the gene or the amino acid sequence. The invention also relates to methods for using the polypeptide in industrial processes. Also included in the invention are cells transformed with a polynucleotide according to the invention suitable for producing these proteins.

  15. Design and preparation of beta-sheet forming repetitive and block-copolymerized polypeptides.

    PubMed

    Higashiya, Seiichiro; Topilina, Natalya I; Ngo, Silvana C; Zagorevskii, Dmitri; Welch, John T

    2007-05-01

    The design and rapid construction of libraries of genes coding beta-sheet forming repetitive and block-copolymerized polypeptides bearing various C- and N-terminal sequences are described. The design was based on the assembly of DNA cassettes coding for the (GA)3GX amino acid sequence where the (GAGAGA) sequences would constitute the beta-strand units of a larger beta-sheet assembly. The edges of this beta-sheet would be functionalized by the turn-inducing amino acids (GX). The polypeptides were expressed in Escherichia coli using conventional vectors and were purified by Ni-nitriloacetic acid (NTA) chromatography. The correlation of polymer structure with molecular weight was investigated by gel electrophoresis and mass spectrometry. The monomer sequences and post-translational chemical modifications were found to influence the mobility of the polypeptides over the full range of polypeptide molecular weights while the electrophoretic mobility of lower molecular weight polypeptides was more susceptible to C- and N-termini polypeptide modifications.

  16. Bone Fractures with Sodium-Glucose Co-transporter-2 Inhibitors: How Real is the Risk?

    PubMed

    Mannucci, Edoardo; Monami, Matteo

    2017-02-01

    This article succinctly summarizes the available evidence on the risk of bone fractures with sodium-glucose co-transporter-2 inhibitors. The US Food and Drug Administration has strengthened the warning for canagliflozin related to the increased risk of bone fractures, and added new information about decreased bone mineral density. The agency has also said that it will evaluate the risk of bone fractures with other drugs in the sodium-glucose co-transporter-2 inhibitor class. Increases in parathyroid hormone levels and decreases in 1,25-dihydroxyvitamin D levels have been postulated as possible mechanisms. In contrast, some studies with dapagliflozin have shown no effects on bone health. Because a consensus has not been reached, we believe that an expert opinion on how to interpret the available evidence would be of great benefit for clinicians.

  17. Xenobiotic, Bile Acid, and Cholesterol Transporters: Function and Regulation

    PubMed Central

    Aleksunes, Lauren M.

    2010-01-01

    Transporters influence the disposition of chemicals within the body by participating in absorption, distribution, and elimination. Transporters of the solute carrier family (SLC) comprise a variety of proteins, including organic cation transporters (OCT) 1 to 3, organic cation/carnitine transporters (OCTN) 1 to 3, organic anion transporters (OAT) 1 to 7, various organic anion transporting polypeptide isoforms, sodium taurocholate cotransporting polypeptide, apical sodium-dependent bile acid transporter, peptide transporters (PEPT) 1 and 2, concentrative nucleoside transporters (CNT) 1 to 3, equilibrative nucleoside transporter (ENT) 1 to 3, and multidrug and toxin extrusion transporters (MATE) 1 and 2, which mediate the uptake (except MATEs) of organic anions and cations as well as peptides and nucleosides. Efflux transporters of the ATP-binding cassette superfamily, such as ATP-binding cassette transporter A1 (ABCA1), multidrug resistance proteins (MDR) 1 and 2, bile salt export pump, multidrug resistance-associated proteins (MRP) 1 to 9, breast cancer resistance protein, and ATP-binding cassette subfamily G members 5 and 8, are responsible for the unidirectional export of endogenous and exogenous substances. Other efflux transporters [ATPase copper-transporting β polypeptide (ATP7B) and ATPase class I type 8B member 1 (ATP8B1) as well as organic solute transporters (OST) α and β] also play major roles in the transport of some endogenous chemicals across biological membranes. This review article provides a comprehensive overview of these transporters (both rodent and human) with regard to tissue distribution, subcellular localization, and substrate preferences. Because uptake and efflux transporters are expressed in multiple cell types, the roles of transporters in a variety of tissues, including the liver, kidneys, intestine, brain, heart, placenta, mammary glands, immune cells, and testes are discussed. Attention is also placed upon a variety of regulatory

  18. A thermodynamic study of electroneutral K-Cl cotransport in pH- and volume-clamped low K sheep erythrocytes with normal and low internal magnesium.

    PubMed

    Lauf, P K; Adragna, N C

    1996-10-01

    Swelling-induced human erythrocyte K-Cl cotransport is membrane potential independent and capable of uphill transport. However, a complete thermodynamic analysis of basal and stimulated K-Cl cotransport, at constant cell volume, is missing. This study was performed in low K sheep red blood cells before and after reducing cellular free Mg into the nanomolar range with the divalent cation ionophore A23187 and a chelator, an intervention known to stimulate K-Cl cotransport. The anion exchange inhibitor 4,4'diisothiocyanato-2,2'disulfonic stilbene was used to clamp intracellular pH and Cl or NO3 concentrations. Cell volume was maintained constant as external and internal pH differed by more than two units. K-Cl cotransport was calculated from the K effluxes and Rb (as K congener) influxes measured in Cl and NO3, at constant internal K and external anions, and variable concentrations of extracellular Rb and internal anions, respectively. The external Rb concentration at which net K-Cl cotransport is zero was defined as flux reversal point which changed with internal pH and hence Cl. Plots of the ratio of external Rb concentrations corresponding to the flux reversal points and the internal K concentration versus the ratio of the internal and external Cl concentrations (i.e., the Donnan ratio of the transported ions) yielded slopes near unity for both control and low internal Mg cells. Thus, basal as well as low internal Mg-stimulated net K-Cl cotransport depends on the electrochemical potential gradient of KCl.

  19. A thermodynamic study of electroneutral K-Cl cotransport in pH- and volume-clamped low K sheep erythrocytes with normal and low internal magnesium

    PubMed Central

    1996-01-01

    Swelling-induced human erythrocyte K-Cl cotransport is membrane potential independent and capable of uphill transport. However, a complete thermodynamic analysis of basal and stimulated K-Cl cotransport, at constant cell volume, is missing. This study was performed in low K sheep red blood cells before and after reducing cellular free Mg into the nanomolar range with the divalent cation ionophore A23187 and a chelator, an intervention known to stimulate K- Cl cotransport. The anion exchange inhibitor 4,4'diisothiocyanato- 2,2'disulfonic stilbene was used to clamp intracellular pH and Cl or NO3 concentrations. Cell volume was maintained constant as external and internal pH differed by more than two units. K-Cl cotransport was calculated from the K effluxes and Rb (as K congener) influxes measured in Cl and NO3, at constant internal K and external anions, and variable concentrations of extracellular Rb and internal anions, respectively. The external Rb concentration at which net K-Cl cotransport is zero was defined as flux reversal point which changed with internal pH and hence Cl. Plots of the ratio of external Rb concentrations corresponding to the flux reversal points and the internal K concentration versus the ratio of the internal and external Cl concentrations (i.e., the Donnan ratio of the transported ions) yielded slopes near unity for both control and low internal Mg cells. Thus, basal as well as low internal Mg-stimulated net K-Cl cotransport depends on the electrochemical potential gradient of KCl. PMID:8894982

  20. Excimer-based peptide beacons: a convenient experimental approach for monitoring polypeptide-protein and polypeptide-oligonucleotide interactions.

    PubMed

    Oh, Kenneth J; Cash, Kevin J; Plaxco, Kevin W

    2006-11-01

    While protein-polypeptide and nucleic acid-polypeptide interactions are of significant experimental interest, quantitative methods for the characterization of such interactions are often cumbersome. Here we described a relatively simple means of optically monitoring such interactions using excimer-based peptide beacons (PBs). The design of PBs is based on the observation that, whereas short peptides are almost invariably unfolded and highly dynamic, they become rigid when complexed with macromolecular targets. Using this binding-induced folding to segregate two pyrene moieties and therefore inhibit excimer formation, we have produced PBs directed against both anti-HIV antibodies and the retroviral transactive response (TAR) RNA hairpin. For both polypeptides, target recognition is accompanied by a roughly 2-fold decrease in excimer emission, thus allowing the detection of their respective targets at concentrations of a few nanomolar. Because excimer emission requires the formation of a tight, precisely oriented pyrene dimer, even relatively trivial binding-induced segregation reduces fluorescence significantly. This suggests that the PB approach will be suitable for monitoring a wide range of peptide-macromolecule recognition events. Moreover, the synthesis of excimer-based PBs utilizes commercially available modified pyrenes in a simple and well-established protocol, making the approach well suited for routine laboratory applications.

  1. Rapid increase in red blood cell density driven by K:Cl cotransport in a subset of sickle cell anemia reticulocytes and discocytes.

    PubMed

    Fabry, M E; Romero, J R; Buchanan, I D; Suzuka, S M; Stamatoyannopoulos, G; Nagel, R L; Canessa, M

    1991-07-01

    We have previously demonstrated that young normal (AA) and sickle cell anemia (SS) red blood cells are capable of a volume regulatory decrease response (VRD) driven by a K:Cl cotransporter that is activated by low pH or hypotonic conditions. We now report on the characteristics of young SS cells (SS2, discocytes) capable of rapid increase in density in response to swelling. We have isolated cells with high VRD response (H-VRD) and low VRD response (L-VRD) cells by incubation and density-gradient centrifugation under hypotonic conditions. Comparison of these cells in patients homozygous for hemoglobin (Hb)S indicated that H-VRD cells have 91% more reticulocytes (P less than 9 x 10(-9) than L-VRD cells, 25% less HbF (P less than 5.5 x 10(-5), 106% more NEM (N-methylmaleimide)-stimulated K:Cl cotransport activity (P less than 2 x 10(-4), and 86% more volume-stimulated K:Cl cotransport activity (P less than 1.8 x 10(-3). H-VRD and L-VRD cells have similar G-6-PD and Na+/H+ antiport activity. In agreement with the reduced percent HbF in H-VRD cells, F cells (red blood cells that contain fetal Hb) are depleted from the H-VRD population; however, F reticulocytes are enriched in the H-VRD population to the same extent as non-F reticulocytes, which suggests that both F and non-F reticulocytes have a similar initial distribution of volume-sensitive K:Cl cotransport activity but that it may be more rapidly inactivated in F than in S reticulocytes. We find that H-VRD cells consist of 20% reticulocytes (or 79% of all reticulocytes in SS2) and 80% more mature cells. This study demonstrates the role of K:Cl cotransport in determining red blood cell density, the heterogeneity of K:Cl cotransport activity in reticulocytes, and the capacity for rapid change in the density of reticulocytes with high K:Cl cotransport activity. We speculate that the H-VRD population may be more susceptible to generation of dense and irreversibly sickled cells.

  2. Proteolytic processing of poliovirus polypeptides: antibodies to polypeptide P3-7c inhibit cleavage at glutamine-glycine pairs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanecak, R.; Semler, B.L.; Anderson, C.W.

    1982-07-01

    Proteolytic processing of poliovirus polypeptides was examined by the addition of antibodies directed against the viral proteins P3-7c and P2-X to a cell-free translation extract prepared from infected HeLa cells. Antisera to P3-7c specifically inhibited in vitro processing at Gln-Gly pairs. Partial amino acid sequence analysis revealed a second Tyr-Gly pair that is utilized in protein processing. Neither Tyr-Gly cleavage is affected by antibody to P3-7C. Anti-P3-7c antibodies react not only with P3-7c but also with P3-6a and P3-2, two viral polypeptides NH/sub 2/-coterminal with P3-7c. Preimmune and anti-P2-X antibodies had no effect on the processing of poliovirus proteins inmore » vitro. The authors conclude that the activity responsible for processing poliovirus polypeptides at Gln-Gly pairs resides in the primary structure of P3-7c and not in P2-X.« less

  3. Polypeptides having beta-glucosidase and beta-xylosidase activity and polynucleotides encoding same

    DOEpatents

    Morant, Marc Dominique

    2014-05-06

    The present invention relates to isolated polypeptides having beta-glucosidase activity, beta-xylosidase activity, or beta-glucosidase and beta-xylosidase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  4. Bile acids induce necrosis in pancreatic stellate cells dependent on calcium entry and sodium-driven bile uptake.

    PubMed

    Ferdek, Pawel E; Jakubowska, Monika A; Gerasimenko, Julia V; Gerasimenko, Oleg V; Petersen, Ole H

    2016-11-01

    Acute biliary pancreatitis is a sudden and severe condition initiated by bile reflux into the pancreas. Bile acids are known to induce Ca 2+ signals and necrosis in isolated pancreatic acinar cells but the effects of bile acids on stellate cells are unexplored. Here we show that cholate and taurocholate elicit more dramatic Ca 2+ signals and necrosis in stellate cells compared to the adjacent acinar cells in pancreatic lobules; whereas taurolithocholic acid 3-sulfate primarily affects acinar cells. Ca 2+ signals and necrosis are strongly dependent on extracellular Ca 2+ as well as Na + ; and Na + -dependent transport plays an important role in the overall bile acid uptake in pancreatic stellate cells. Bile acid-mediated pancreatic damage can be further escalated by bradykinin-induced signals in stellate cells and thus killing of stellate cells by bile acids might have important implications in acute biliary pancreatitis. Acute biliary pancreatitis, caused by bile reflux into the pancreas, is a serious condition characterised by premature activation of digestive enzymes within acinar cells, followed by necrosis and inflammation. Bile acids are known to induce pathological Ca 2+ signals and necrosis in acinar cells. However, bile acid-elicited signalling events in stellate cells remain unexplored. This is the first study to demonstrate the pathophysiological effects of bile acids on stellate cells in two experimental models: ex vivo (mouse pancreatic lobules) and in vitro (human cells). Sodium cholate and taurocholate induced cytosolic Ca 2+ elevations in stellate cells, larger than those elicited simultaneously in the neighbouring acinar cells. In contrast, taurolithocholic acid 3-sulfate (TLC-S), known to induce Ca 2+ oscillations in acinar cells, had only minor effects on stellate cells in lobules. The dependence of the Ca 2+ signals on extracellular Na + and the presence of sodium-taurocholate cotransporting polypeptide (NTCP) indicate a Na + -dependent bile acid

  5. Bile acids induce necrosis in pancreatic stellate cells dependent on calcium entry and sodium‐driven bile uptake

    PubMed Central

    Jakubowska, Monika A.; Gerasimenko, Julia V.; Gerasimenko, Oleg V.; Petersen, Ole H.

    2016-01-01

    Key points Acute biliary pancreatitis is a sudden and severe condition initiated by bile reflux into the pancreas.Bile acids are known to induce Ca2+ signals and necrosis in isolated pancreatic acinar cells but the effects of bile acids on stellate cells are unexplored.Here we show that cholate and taurocholate elicit more dramatic Ca2+ signals and necrosis in stellate cells compared to the adjacent acinar cells in pancreatic lobules; whereas taurolithocholic acid 3‐sulfate primarily affects acinar cells.Ca2+ signals and necrosis are strongly dependent on extracellular Ca2+ as well as Na+; and Na+‐dependent transport plays an important role in the overall bile acid uptake in pancreatic stellate cells.Bile acid‐mediated pancreatic damage can be further escalated by bradykinin‐induced signals in stellate cells and thus killing of stellate cells by bile acids might have important implications in acute biliary pancreatitis. Abstract Acute biliary pancreatitis, caused by bile reflux into the pancreas, is a serious condition characterised by premature activation of digestive enzymes within acinar cells, followed by necrosis and inflammation. Bile acids are known to induce pathological Ca2+ signals and necrosis in acinar cells. However, bile acid‐elicited signalling events in stellate cells remain unexplored. This is the first study to demonstrate the pathophysiological effects of bile acids on stellate cells in two experimental models: ex vivo (mouse pancreatic lobules) and in vitro (human cells). Sodium cholate and taurocholate induced cytosolic Ca2+ elevations in stellate cells, larger than those elicited simultaneously in the neighbouring acinar cells. In contrast, taurolithocholic acid 3‐sulfate (TLC‐S), known to induce Ca2+ oscillations in acinar cells, had only minor effects on stellate cells in lobules. The dependence of the Ca2+ signals on extracellular Na+ and the presence of sodium–taurocholate cotransporting polypeptide (NTCP) indicate a Na

  6. Recombinant host cells and nucleic acid constructs encoding polypeptides having cellulolytic enhancing activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schnorr, Kirk; Kramer, Randall

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  7. With no lysine L-WNK1 isoforms are negative regulators of the K+-Cl- cotransporters.

    PubMed

    Mercado, Adriana; de Los Heros, Paola; Melo, Zesergio; Chávez-Canales, María; Murillo-de-Ozores, Adrián R; Moreno, Erika; Bazúa-Valenti, Silvana; Vázquez, Norma; Hadchouel, Juliette; Gamba, Gerardo

    2016-07-01

    The K(+)-Cl(-) cotransporters (KCC1-KCC4) encompass a branch of the SLC12 family of electroneutral cation-coupled chloride cotransporters that translocate ions out of the cell to regulate various factors, including cell volume and intracellular chloride concentration, among others. L-WNK1 is an ubiquitously expressed kinase that is activated in response to osmotic stress and intracellular chloride depletion, and it is implicated in two distinct hereditary syndromes: the renal disease pseudohypoaldosteronism type II (PHAII) and the neurological disease hereditary sensory neuropathy 2 (HSN2). The effect of L-WNK1 on KCC activity is unknown. Using Xenopus laevis oocytes and HEK-293 cells, we show that the activation of KCCs by cell swelling was prevented by L-WNK1 coexpression. In contrast, the activity of the Na(+)-K(+)-2Cl(-) cotransporter NKCC1 was remarkably increased with L-WNK1 coexpression. The negative effect of L-WNK1 on the KCCs is kinase dependent. Elimination of the STE20 proline-alanine rich kinase (SPAK)/oxidative stress-responsive kinase (OSR1) binding site or the HQ motif required for the WNK-WNK interaction prevented the effect of L-WNK1 on KCCs, suggesting a required interaction between L-WNK1 molecules and SPAK. Together, our data support that NKCC1 and KCCs are coordinately regulated by L-WNK1 isoforms. Copyright © 2016 the American Physiological Society.

  8. With no lysine L-WNK1 isoforms are negative regulators of the K+-Cl− cotransporters

    PubMed Central

    Mercado, Adriana; de los Heros, Paola; Melo, Zesergio; Chávez-Canales, María; Murillo-de-Ozores, Adrián R.; Moreno, Erika; Bazúa-Valenti, Silvana; Vázquez, Norma; Hadchouel, Juliette

    2016-01-01

    The K+-Cl− cotransporters (KCC1-KCC4) encompass a branch of the SLC12 family of electroneutral cation-coupled chloride cotransporters that translocate ions out of the cell to regulate various factors, including cell volume and intracellular chloride concentration, among others. L-WNK1 is an ubiquitously expressed kinase that is activated in response to osmotic stress and intracellular chloride depletion, and it is implicated in two distinct hereditary syndromes: the renal disease pseudohypoaldosteronism type II (PHAII) and the neurological disease hereditary sensory neuropathy 2 (HSN2). The effect of L-WNK1 on KCC activity is unknown. Using Xenopus laevis oocytes and HEK-293 cells, we show that the activation of KCCs by cell swelling was prevented by L-WNK1 coexpression. In contrast, the activity of the Na+-K+-2Cl− cotransporter NKCC1 was remarkably increased with L-WNK1 coexpression. The negative effect of L-WNK1 on the KCCs is kinase dependent. Elimination of the STE20 proline-alanine rich kinase (SPAK)/oxidative stress-responsive kinase (OSR1) binding site or the HQ motif required for the WNK-WNK interaction prevented the effect of L-WNK1 on KCCs, suggesting a required interaction between L-WNK1 molecules and SPAK. Together, our data support that NKCC1 and KCCs are coordinately regulated by L-WNK1 isoforms. PMID:27170636

  9. Expression of Na+-glucose cotransporter (SGLT1) in visceral and parietal mesothelium of rabbit pleura.

    PubMed

    Sironi, Chiara; Bodega, Francesca; Porta, Cristina; Zocchi, Luciano; Agostoni, Emilio

    2007-10-15

    Indirect evidence for a solute-coupled liquid absorption from rabbit pleural space indicated that it should be caused by a Na(+)/H(+)-Cl(-)/HCO(3)(-) double exchanger and a Na(+)-glucose cotransporter [Agostoni, E., Zocchi, L., 1998. Mechanical coupling and liquid exchanges in the pleural space. In: Antony, V.B. (Ed.), Clinics in Chest Medicine: Diseases of the Pleura, vol. 19. Saunders, Philadelphia, pp. 241-260]. In this research we tried to obtain molecular evidence for Na(+)-glucose cotransporter (SGLT1) in visceral and parietal mesothelium of rabbit pleura. To this end we performed immunoblot assays on total protein extracts of scraped visceral or parietal mesothelium of rabbits. These showed two bands: one at 72kDa (m.w. of SGLT1), and one at 55kDa (which should also provide Na(+)-glucose cotransport). Both bands disappeared in assays in which SGLT1 antibody was preadsorbed with specific antigen. Molecular evidence for Na(+)/K(+) ATPase (alpha1 subunit) was also provided. Immunoblot assays for SGLT1 on cultured mesothelial cells of rabbit pleura showed a band at 72kDa, and in some cases also at 55kDa, irrespectively of treatment with a differentiating agent. Solute-coupled liquid absorption hinders liquid filtration through parietal mesothelium caused by Starling forces, and favours liquid absorption through visceral mesothelium caused by these forces.

  10. Simultaneous Polymerization and Polypeptide Particle Production via Reactive Spray-Drying.

    PubMed

    Glavas, Lidija; Odelius, Karin; Albertsson, Ann-Christine

    2016-09-12

    A method for producing polypeptide particles via in situ polymerization of N-carboxyanhydrides during spray-drying has been developed. This method was enabled by the development of a fast and robust synthetic pathway to polypeptides using 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) as an initiator for the ring-opening polymerization of N-carboxyanhydrides. The polymerizations finished within 5 s and proved to be very tolerant toward impurities such as amino acid salts and water. The formed particles were prepared by mixing the monomer, N-carboxyanhydride of l-glutamic acid benzyl ester (NCAGlu) and the initiator (DBU) during the atomization process in the spray-dryer and were spherical with a size of ∼1 μm. This method combines two steps; making it a straightforward process that facilitates the production of polypeptide particles. Hence, it furthers the use of spray-drying and polypeptide particles in the pharmaceutical industry.

  11. Taste-independent nutrient selection is mediated by a brain-specific Na+/solute cotransporter in Drosophila

    PubMed Central

    Dus, Monica; Ai, Minrong; Suh, Greg S. B.

    2013-01-01

    Animals can determine the nutritional value of sugar without the influence of taste. Here, we describe a Drosophila mutant that is insensitive to the nutritional value of sugars, but responds only to the concentration (i.e. sweetness). The affected gene encodes a sodium/solute cotransporter-like protein, designated dSLC5A11 (or cupcake), which is structurally similar to mammalian sodium/glucose cotransporters (SGLTs) that transport sugar across the intestinal and renal lumen. However, dSLC5A11 is prominently expressed in 10-13 pairs of R4 neurons of the ellipsoid body (EB) in the brain and functions in these neurons for selecting appropriate foods. We propose that dSLC5A11 and EB R4 neurons carry out a critical signaling function in responding to internal glycemic levels. PMID:23542692

  12. Regulation of Na+-K+-2Cl− cotransport by protein phosphorylation in ferret erythrocytes

    PubMed Central

    Flatman, Peter W; Creanor, James

    1999-01-01

    Na+-K+-2Cl− cotransport in ferret erythrocytes was measured as the bumetanide-sensitive uptake of 86Rb. The resting cotransport rate was high but could be increased threefold by treating erythrocytes with calyculin A, a potent inhibitor of serine/threonine phosphatases. Twenty nanomolar was sufficient to maximally and rapidly (within 4 min) stimulate transport. The effects of several kinase inhibitors were tested. High concentrations of K-252a, K-252b, calphostin C and hypericin caused less than 20 % inhibition. Staurosporine (IC50, 0.06 μm) and 4-amino-5-(4-methylphenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP1; IC50, 2.5 μm) were more potent but still only partially (40–50 %) inhibited transport, an effect mimicked by reducing ionized intracellular Mg2+ concentration to submicromolar levels. Genistein may inhibit all transport at a sufficiently high dose (IC50, 0.36 mM) perhaps by directly inhibiting the transporter. Staurosporine, PP1 and the removal of Mg2+ all prevented subsequent stimulation by calyculin A, and all inhibited calyculin-stimulated transport by 20–30 %. The effects of staurosporine, PP1 and Mg2+ removal were not additive. The phosphatase that dephosphorylates the cotransporter is probably Mg2+ (or possibly Ca2+ or Mn2+) sensitive and not the target for calyculin A. The data suggest that this phosphatase is inhibited by phosphorylation, and that it is the regulation of this process which is affected by calyculin A and the kinase inhibitors tested here. Phosphorylation of the phosphatase is probably regulated by members of the Src family of tyrosine kinases. PMID:10358111

  13. Simultaneous Polymerization and Polypeptide Particle Production via Reactive Spray-Drying

    PubMed Central

    2016-01-01

    A method for producing polypeptide particles via in situ polymerization of N-carboxyanhydrides during spray-drying has been developed. This method was enabled by the development of a fast and robust synthetic pathway to polypeptides using 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) as an initiator for the ring-opening polymerization of N-carboxyanhydrides. The polymerizations finished within 5 s and proved to be very tolerant toward impurities such as amino acid salts and water. The formed particles were prepared by mixing the monomer, N-carboxyanhydride of l-glutamic acid benzyl ester (NCAGlu) and the initiator (DBU) during the atomization process in the spray-dryer and were spherical with a size of ∼1 μm. This method combines two steps; making it a straightforward process that facilitates the production of polypeptide particles. Hence, it furthers the use of spray-drying and polypeptide particles in the pharmaceutical industry. PMID:27445061

  14. Analysis of polypeptide composition and antigenic components of Rickettsia tsutsugamushi by polyacrylamide gel electrophoresis and immunoblotting.

    PubMed Central

    Tamura, A; Ohashi, N; Urakami, H; Takahashi, K; Oyanagi, M

    1985-01-01

    Polyacrylamide gel electrophoresis of lysates of purified Rickettsia tsutsugamushi revealed as many as 30 polypeptide bands, including major bands corresponding to molecular sizes of 70, 60, 54 to 56, and 46 to 47 kilodaltons. Compared with the polypeptide composition of the rickettsiae of Gilliam, Karp, and Kato strains and a newly isolated Shimokoshi strain, the major polypeptide in the Kato strain (54-56K) and in the Karp strain (46-47K) migrated a little faster and slower, respectively, than the corresponding polypeptides in the other strains. The largest major polypeptide (54-56K) was digestible by the treatment of intact rickettsiae with trypsin and variable in content in separate preparations, suggesting that the polypeptide exists on the rickettsial surface and is easily degraded during the handling of these microorganisms. Several surface polypeptides of rickettsiae, including the 54-56K and 46-47K polypeptides, were detected by radioiodination of intact rickettsiae followed by polyacrylamide gel electrophoresis of the lysate; however, the 70K and 60K polypeptides were not labeled. Immunoblotting experiments with hyperimmune sera prepared in guinea pigs against each strain demonstrated that the 70K, 54-56K, and 46-47K polypeptides showed antigenic activities. The 54-56K polypeptide appeared to be strain specific, whereas the 70K and 46-47K polypeptides cross-reacted with the heterologous antisera. Images PMID:3922893

  15. Catalytic and reactive polypeptides and methods for their preparation and use

    DOEpatents

    Schultz, Peter

    1993-01-01

    Catalytic and reactive polypeptides include a binding site specific for a reactant or reactive intermediate involved in a chemical reaction of interest. The polypeptides further include at least one active functionality proximate the bi.

  16. The influence of the side-chain sequence on the structure-activity correlations of immunomodulatory branched polypeptides. Synthesis and conformational analysis of new model polypeptides.

    PubMed

    Mezö, G; Hudecz, F; Kajtár, J; Szókán, G; Szekerke, M

    1989-10-01

    New branched polypeptides were synthesized for a detailed study of the influence of the side-chain structure on the conformation and biological properties. The first subset of polypeptides were prepared by coupling of tetrapeptides to poly[L-Lys]. These polymers contain either DL-Ala3-X [poly[Lys-(X-DL-Ala3)n

  17. Biomimetic assembly of polypeptide-stabilized CaCO(3) nanoparticles.

    PubMed

    Zhang, Zhongping; Gao, Daming; Zhao, Hui; Xie, Chenggen; Guan, Guijian; Wang, Dapeng; Yu, Shu-Hong

    2006-05-04

    In this paper, we report a simple polypeptide-directed strategy for fabricating large spherical assembly of CaCO(3) nanoparticles. Stepwise growth and assembly of a large number of nanoparticles have been observed, from the formation of an amorphous liquidlike CaCO(3)-polypeptide precursor, to the crystallization and stabilization of polypeptide-capped nanoparticles, and eventually, the spherical assembly of nanoparticles. The "soft" poly(aspartate)-capping layer binding on a nanoparticle surface resulted in the unusual soft nature of nanoparticle assembly, providing a reservoir of primary nanoparticles with a moderate mobility, which is the basis of a new strategy for reconstructing nanoparticle assembly into complex nanoparticle architectures. Moreover, the findings of the secondary assembly of nanoparticle microspheres and the morphology transformation of nanoparticle assembly demonstrate a flexible and controllable pathway for manipulating the shapes and structures of nanoparticle assembly. In addition, the combination of the polypeptide with a double hydrophilic block copolymer (DHBC) allows it to possibly further control the shape and complexity of the nanoparticle assembly. A clear perspective is shown here that more complex nanoparticle materials could be created by using "soft" biological proteins or peptides as a mediating template at the organic-inorganic interface.

  18. Renal Na+-K+-Cl− cotransporter activity and vasopressin-induced trafficking are lipid raft-dependent

    PubMed Central

    Welker, Pia; Böhlick, Alexandra; Mutig, Kerim; Salanova, Michele; Kahl, Thomas; Schlüter, Hartmut; Blottner, Dieter; Ponce-Coria, Jose; Gamba, Gerardo; Bachmann, Sebastian

    2008-01-01

    Apical bumetanide-sensitive Na+-K+-2Cl− cotransporter (NKCC2), the kidney-specific member of a cation-chloride cotransporter superfamily, is an integral membrane protein responsible for the transepithelial reabsorption of NaCl. The role of NKCC2 is essential for renal volume regulation. Vasopressin (AVP) controls NKCC2 surface expression in cells of the thick ascending limb of the loop of Henle (TAL). We found that 40–70% of Triton X-100-insoluble NKCC2 was present in cholesterol-enriched lipid rafts (LR) in rat kidney and cultured TAL cells. The related Na+-Cl− cotransporter (NCC) from rat kidney was distributed in LR as well. NKCC2-containing LR were detected both intracellularly and in the plasma membrane. Bumetanide-sensitive transport of NKCC2 as analyzed by 86Rb+ influx in Xenopus laevis oocytes was markedly reduced by methyl-β-cyclodextrin (MβCD)-induced cholesterol depletion. In TAL, short-term AVP application induced apical vesicular trafficking along with a shift of NKCC2 from non-raft to LR fractions. In parallel, increased colocalization of NKCC2 with the LR ganglioside GM1 and their polar translocation were assessed by confocal analysis. Apical biotinylation showed twofold increases in NKCC2 surface expression. These effects were blunted by mevalonate-lovastatin/MβCD-induced cholesterol deprivation. Collectively, these findings demonstrate that a pool of NKCC2 distributes in rafts. Results are consistent with a model in which LR mediate polar insertion, activity, and AVP-induced trafficking of NKCC2 in the control of transepithelial NaCl transport. PMID:18579701

  19. Polypeptides having beta-glucosidase activity and beta-xylosidase activity and polynucleotides encoding same

    DOEpatents

    Morant, Marc Dominique

    2014-05-06

    The present invention relates to isolated polypeptides having beta-glucosidase activity, beta-xylosidase activity, or beta-glucosidase and beta-xylosidase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  20. Polypeptides having beta-glucosidase activity and beta-xylosidase activity and polynucleotides encoding same

    DOEpatents

    Morant, Marc Dominique

    2014-04-29

    The present invention relates to isolated polypeptides having beta-glucosidase activity, beta-xylosidase activity, or beta-glucosidase and beta-xylosidase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  1. New Kunitz-Type HCRG Polypeptides from the Sea Anemone Heteractis crispa

    PubMed Central

    Gladkikh, Irina; Monastyrnaya, Margarita; Zelepuga, Elena; Sintsova, Oksana; Tabakmakher, Valentin; Gnedenko, Oksana; Ivanov, Alexis; Hua, Kuo-Feng; Kozlovskaya, Emma

    2015-01-01

    Sea anemones are a rich source of Kunitz-type polypeptides that possess not only protease inhibitor activity, but also Kv channels toxicity, analgesic, antihistamine, and anti-inflammatory activities. Two Kunitz-type inhibitors belonging to a new Heteractis crispa RG (HCRG) polypeptide subfamily have been isolated from the sea anemone Heteractis crispa. The amino acid sequences of HCRG1 and HCRG2 identified using the Edman degradation method share up to 95% of their identity with the representatives of the HCGS polypeptide multigene subfamily derived from H. crispa cDNA. Polypeptides are characterized by positively charged Arg at the N-terminus as well as P1 Lys residue at their canonical binding loop, identical to those of bovine pancreatic trypsin inhibitor (BPTI). These polypeptides are shown by our current evidence to be more potent inhibitors of trypsin than the known representatives of the HCGS subfamily with P1Thr. The kinetic and thermodynamic characteristics of the intermolecular interactions between inhibitors and serine proteases were determined by the surface plasmon resonance (SPR) method. Residues functionally important for polypeptide binding to trypsin were revealed using molecular modeling methods. Furthermore, HCRG1 and HCRG2 possess anti-inflammatory activity, reducing tumor necrosis factor-α (TNF-α) and interleukin 6 (IL-6) secretions, as well as proIL-1β expression in lipopolysaccharide (LPS)-activated macrophages. However, there was no effect on nitric oxide (NO) generation. PMID:26404319

  2. Unimpaired postprandial pancreatic polypeptide secretion in Parkinson's disease and REM sleep behavior disorder.

    PubMed

    Unger, Marcus M; Ekman, Rolf; Björklund, Anna-Karin; Karlsson, Gösta; Andersson, Chatarina; Mankel, Katharina; Bohne, Katharina; Tebbe, Johannes J; Stiasny-Kolster, Karin; Möller, Jens C; Mayer, Geert; Kann, Peter H; Oertel, Wolfgang H

    2013-04-01

    Pancreatic polypeptide is released immediately after food ingestion. The release is operated by vagal-abdominal projections and has therefore been suggested as a test for vagal nerve integrity. Pathoanatomical and clinical studies indicate vagal dysfunction in early Parkinson's disease (PD). We assessed the postprandial secretion of pancreatic polypeptide and motilin in healthy controls (n = 18) and patients with idiopathic rapid-eye-movement sleep behavior disorder (iRBD, n = 10), a potential premotor stage of PD, as well as in drug-naive (n = 19) and treated (n = 19) PD patients. The postprandial pancreatic polypeptide secretion showed a physiological pattern in all groups and even an enhanced response in drug-naive PD and iRBD. Motilin concentrations correlated with pancreatic polypeptide concentrations. Postprandial pancreatic polypeptide secretion is not a suitable test for vagal nerve integrity in PD. The unimpaired pancreatic polypeptide response in iRBD and PD might be explained by partially intact vagal-abdominal projections or compensatory mechanisms substituting a defective neuronal brain-gut axis. Copyright © 2012 Movement Disorders Society.

  3. Hsp70 and Hsp90 Multichaperone Complexes Sequentially Regulate Thiazide-sensitive Cotransporter Endoplasmic Reticulum-associated Degradation and Biogenesis*

    PubMed Central

    Donnelly, Bridget F.; Needham, Patrick G.; Snyder, Avin C.; Roy, Ankita; Khadem, Shaheen; Brodsky, Jeffrey L.; Subramanya, Arohan R.

    2013-01-01

    The thiazide-sensitive NaCl cotransporter (NCC) is the primary mediator of salt reabsorption in the distal convoluted tubule and is a key determinant of the blood pressure set point. Given its complex topology, NCC is inefficiently processed and prone to endoplasmic reticulum (ER)-associated degradation (ERAD), although the mechanisms governing this process remain obscure. Here, we identify factors that impact the ER quality control of NCC. Analyses of NCC immunoprecipitates revealed that the cotransporter formed complexes with the core chaperones Hsp90, Hsp70, and Hsp40. Disruption of Hsp90 function accelerated NCC degradation, suggesting that Hsp90 promotes NCC folding. In addition, two cochaperones, the C terminus of Hsp70-interacting protein (CHIP) and the Hsp70/Hsp90 organizer protein, were associated with NCC. Although CHIP, an E3 ubiquitin ligase, promoted NCC ubiquitination and ERAD, the Hsp70/Hsp90 organizer protein stabilized NCC turnover, indicating that these two proteins differentially remodel the core chaperone systems to favor cotransporter degradation and biogenesis, respectively. Adjusting the folding environment in mammalian cells via reduced temperature enhanced NCC biosynthetic trafficking, increased Hsp90-NCC interaction, and diminished binding to Hsp70. In contrast, cotransporters harboring disease-causing mutations that impair NCC biogenesis failed to escape ERAD as efficiently as the wild type protein when cells were incubated at a lower temperature. Instead, these mutants interacted more strongly with Hsp70, Hsp40, and CHIP, consistent with a role for the Hsp70/Hsp40 system in selecting misfolded NCC for ERAD. Collectively, these observations indicate that Hsp70 and Hsp90 comprise two functionally distinct ER quality control checkpoints that sequentially monitor NCC biogenesis. PMID:23482560

  4. Identification of polypeptides necessary for chemotaxis in Escherichia coli.

    PubMed Central

    Silverman, M; Simon, M

    1977-01-01

    Molecular cloning techniques were used to construct Escherichia coli-lambda hybrids that contained many of the genes necessary for flagellar rotation and chemotaxis. The properties of specific hybrids that carried the classical "cheA" and "cheB" loci were examined by genetic complementation and by measuring the capacity of the hybrids to direct the synthesis of specific polypeptides. The results of these tests with lambda hybrids and with a series of deletion mutations derived from the hybrids redefined the "cheA" and "cheB" regions. Six genes were resolved: cheA, cheW, cheX, cheB, cheY, and cheZ. They directed the synthesis of specific polypeptides with the following apparent molecular weights: cheA, 76,000 and 66,000; cheW, 12,000; cheX, 28,000; cheB, 38,000; cheY, 8,000; and cheZ, 24,000. The presence of another gene, cheM, was inferred from the protein synthesis experiments. The cheM gene directed the synthesis of polypeptides with apparent molecular weights of 63,000, 61,000, and 60,000. The synthesis of all of these polypeptides is regulated by the same mechanisms that regulate the synthesis of flagellar-related structural components. Images PMID:324984

  5. Transport of the placental estriol precursor 16α-hydroxy-dehydroepiandrosterone sulfate (16α-OH-DHEAS) by stably transfected OAT4-, SOAT-, and NTCP-HEK293 cells.

    PubMed

    Schweigmann, H; Sánchez-Guijo, A; Ugele, B; Hartmann, K; Hartmann, M F; Bergmann, M; Pfarrer, C; Döring, B; Wudy, S A; Petzinger, E; Geyer, J; Grosser, G

    2014-09-01

    16α-Hydroxy-dehydroepiandrosterone sulfate (16α-OH-DHEAS) mainly originates from the fetus and serves as precursor for placental estriol biosynthesis. For conversion of 16α-OH-DHEAS to estriol several intracellular enzymes are required. However, prior to enzymatic conversion, 16α-OH-DHEAS must enter the cells by carrier mediated transport. To identify these carriers, uptake of 16α-OH-DHEAS by the candidate carriers organic anion transporter OAT4, sodium-dependent organic anion transporter SOAT, Na(+)-taurocholate cotransporting polypeptide NTCP, and organic anion transporting polypeptide OATP2B1 was measured in stably transfected HEK293 cells by LC-MS-MS. Furthermore, the study aimed to localize SOAT in the human placenta. Stably transfected OAT4-HEK293 cells revealed a partly sodium-dependent transport for 16α-OH-DHEAS with an apparent Km of 23.1 ± 5.1 μM and Vmax of 485.0 ± 39.1 pmol/mg protein/min, while stably transfected SOAT- and NTCP-HEK293 cells showed uptake only under sodium conditions with Km of 319.0 ± 59.5 μM and Vmax of 1465.8 ± 118.8 pmol/mg protein/min for SOAT and Km of 51.4 ± 9.9 μM and Vmax of 1423.3 ± 109.6 pmol/mg protein/min for NTCP. In contrast, stably transfected OATP2B1-HEK293 cells did not transport 16α-OH-DHEAS at all. Immunohistochemical studies and in situ hybridization of formalin fixed and paraffin embedded sections of human late term placenta showed expression of SOAT in syncytiotrophoblasts, predominantly at the apical membrane as well as in the vessel endothelium. In conclusion, OAT4, SOAT, and NTCP were identified as carriers for the estriol precursor 16α-OH-DHEAS. At least SOAT and OAT4 seem to play a functional role for the placental estriol synthesis as both are expressed in the syncytiotrophoblast of human placenta. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Critical Role of PPAR-α in Perfluorooctanoic Acid– and Perfluorodecanoic Acid–Induced Downregulation of Oatp Uptake Transporters in Mouse Livers

    PubMed Central

    Cheng, Xingguo; Klaassen, Curtis D.

    2008-01-01

    Perfluorooctanoic acid (PFOA) and perfluorodecanoic acid (PFDA) have been detected globally in wildlife and humans. Data from a gene array indicate that PFOA decreases organic anion transporting polypeptides (Oatps) in liver. Na+-taurocholate cotransporting polypeptide (Ntcp) and Oatp1a1, 1a4, and 1b2 are major transporters responsible for uptake of bile acids (BAs) and other organic compounds into liver. The purpose of the present study was to determine the effects of two perfluorinated fatty acids, PFOA and PFDA, on mRNA and protein expression of hepatic uptake transporters Oatps and Ntcp, and to determine the underlying regulatory mechanisms by using peroxisome proliferator-activated receptor alpha (PPAR-α), constitutive androstane receptor, pregnane-X receptor, NF-E2–related factor 2, and farnesoid X receptor-null mouse models. After 2 days following a single i.p. administration, PFOA did not alter serum BA concentrations, but PFDA increased serum BA concentrations 300%. Furthermore, PFOA decreased mRNA and protein expression of Oatp1a1, 1a4, and 1b2, but not Ntcp in mouse liver. In contrast, PFDA decreased mRNA and protein expression of all four transporters, and decreased the mRNA expression in a dose-dependent manner, with the decrease of Oatp1a4 occurring at lower doses than the other three transporters. Multiple mechanisms are likely involved in the down-regulation of mouse Oatps and Ntcp by PFDA. By using the various transcription factor-null mice, PPAR-α was shown to play a central role in the down-regulation of Oatp1a1, 1a4, 1b2, and Ntcp by PFDA. The current studies provide important insight into understanding the mechanisms by which PFDA regulate the expression of hepatic uptake transporters. In conclusion, PFOA and PFDA decrease mouse liver uptake transporters primarily via activation of PPAR-α. PMID:18703564

  7. moxFG region encodes four polypeptides in the methanol-oxidizing bacterium Methylobacterium sp. strain AM1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, D.J.; Lidstrom, M.E.

    The polypeptides encoded by a putative methanol oxidation (mox) operon of Methylobacterium sp. strain AM1 were expressed in Escherichia coli, using a coupled in vivo T7 RNA polymerase/promoter gene expression system. Two mox genes had been previously mapped to this region: moxF, the gene encoding the methanol dehydrogenase (MeDH) polypeptide; and moxG, a gene believed to encode a soluble type c cytochrome, cytochrome c/sub L/. In this study, four polypeptides of M/sub r/, 60,000, 30,000, 20,000, and 12,000 were found to be encoded by the moxFG region and were tentatively designated moxF, -J, -G, and -I, respectively. The arrangement ofmore » the genes (5' to 3') was found to be moxFJGI. The identities of three of the four polypeptides were determined by protein immunoblot analysis. The product of moxF, the M/sub r/-60,000 polypeptide, was confirmed to be the MeDH polypeptide. The product of moxG, the M/sub r/-20,000 polypeptide, was identified as mature cytochrome c/sub L/, and the product of moxI, the M/sub r/-12,000 polypeptide, was identified as a MeDH-associated polypeptide that copurifies with the holoenzyme. The identity of the M/sub r/-30,000 polypeptide (the moxJ gene product) could not be determined. The function of the M/sub r/-12,000 MeDH-associated polypeptide is not yet clear. However, it is not present in mutants that lack the M/sub r/-60,000 MeDH subunit, and it appears that the stability of the MeDH-associated polypeptide is dependent on the presence of the M/sub r/-60,000 MeDH polypeptide. Our data suggest that both the M/sub r/-30,000 and -12,000 polypeptides are involved in methanol oxidation, which would bring to 12 the number of mox genes in Methylobacterium sp. strain AM1.« less

  8. Structural Polypeptides of the Granulosis Virus of Plodia interpunctella†

    PubMed Central

    Tweeten, Kathleen A.; Bulla, Lee A.; Consigli, Richard A.

    1980-01-01

    Techniques were developed for the isolation and purification of three structural components of Plodia interpunctella granulosis virus: granulin, enveloped nucleocapsids, and nucleocapsids. The polypeptide composition and distribution of protein in each viral component were determined by sodium dodecyl sulfate discontinuous and gradient polyacrylamide slab gel electrophoresis. Enveloped nucleocapsids consisted of 15 structural proteins ranging in molecular weight from 12,600 to 97,300. Five of these proteins, having approximate molecular weights of 17,800, 39,700, 42,400, 48,200, and 97,300, were identified as envelope proteins by surface radioiodination of the enveloped nucleocapsids. Present in purified nucleocapsids were eight polypeptides. The predominant proteins in this structural component had molecular weights of 12,500 and 31,000. Whereas no evidence of polypeptide glycosylation was obtained, six of the viral proteins were observed to be phosphorylated. Images PMID:16789191

  9. A de novo designed 11 kDa polypeptide: model for amyloidogenic intrinsically disordered proteins.

    PubMed

    Topilina, Natalya I; Ermolenkov, Vladimir V; Sikirzhytski, Vitali; Higashiya, Seiichiro; Lednev, Igor K; Welch, John T

    2010-07-01

    A de novo polypeptide GH(6)[(GA)(3)GY(GA)(3)GE](8)GAH(6) (YE8) has a significant number of identical weakly interacting beta-strands with the turns and termini functionalized by charged amino acids to control polypeptide folding and aggregation. YE8 exists in a soluble, disordered form at neutral pH but is responsive to changes in pH and ionic strength. The evolution of YE8 secondary structure has been successfully quantified during all stages of polypeptide fibrillation by deep UV resonance Raman (DUVRR) spectroscopy combined with other morphological, structural, spectral, and tinctorial characterization. The YE8 folding kinetics at pH 3.5 are strongly dependent on polypeptide concentration with a lag phase that can be eliminated by seeding with a solution of folded fibrillar YE8. The lag phase of polypeptide folding is concentration dependent leading to the conclusion that beta-sheet folding of the 11-kDa amyloidogenic polypeptide is completely aggregation driven.

  10. Characterization of a novel isoform of alpha-nascent polypeptide-associated complex as IgE-defined autoantigen.

    PubMed

    Mossabeb, Roschanak; Seiberler, Susanne; Mittermann, Irene; Reininger, Renate; Spitzauer, Susanne; Natter, Susanne; Verdino, Petra; Keller, Walter; Kraft, Dietrich; Valenta, Rudolf

    2002-10-01

    The nascent polypeptide-associated complex is required for intracellular translocation of newly synthesized polypeptides in eukaryotic cells. It may also act as a transcriptional coactivator in humans and various eukaryotic organisms and binds to nucleic acids. Recently, we provided evidence that a component of nascent polypeptide-associated complex, alpha-nascent polypeptide-associated complex, represents an IgE-reactive autoantigen for atopic dermatitis patients. By oligonucleotide screening we isolated a complete cDNA coding for a so far unknown alpha-nascent polypeptide-associated complex isoform from a human epithelial cDNA library. Southern blot hybridization experiments provided further evidence that alpha-nascent polypeptide-associated complex is encoded by a gene family. Recombinant alpha-nascent polypeptide-associated complex was expressed in Escherichia coli as a soluble, His-tagged protein, and purified via nickel affinity chromatography. By circular dichroism analysis it is demonstrated that purified recombinant alpha-nascent polypeptide-associated complex represents a folded protein of mixed alpha-helical and beta-sheet conformation with unusual high thermal stability and remarkable refolding capacity. Complete recombinant alpha-nascent polypeptide-associated complex (215 amino acids) and its 86 amino acid C-terminal fragment specifically bound IgE autoantibodies. Recombinant alpha-nascent polypeptide-associated complex also inhibited IgE binding to natural alpha-nascent polypeptide-associated complex, demonstrating the presence of common IgE epitopes between the recombinant and natural protein. Furthermore, recombinant alpha-nascent polypeptide-associated complex induced specific lymphoproliferative responses in peripheral blood mononuclear cells of a sensitized atopic dermatitis patient. As has been proposed for environmental allergens it is possible that T cell responses to IgE-defined autoantigens may contribute to the chronic skin manifestations

  11. Thymus Polypeptide Preparation Tactivin Restores Learning and Memory in Thymectomied Rats.

    PubMed

    Novoseletskaya, A V; Kiseleva, N M; Zimina, I V; Bystrova, O V; Belova, O V; Inozemtsev, A N; Arion, V Ya; Sergienko, V I

    2015-09-01

    We studied the effects of tactivin and splenic polypeptides on learning and memory of thymectomized animals. In 3-week rats, thymectomy blocked active avoidance conditioning. Injections of tactivin (0.5 mg/kg) during 1 month after surgery restored learning capacity; splenic polypeptides were ineffective.

  12. A versatile expression vector for the growth and amplification of unmodified phage display polypeptides.

    PubMed

    Winton, Alexander J; Baptiste, Janae L; Allen, Mark A

    2018-09-01

    Proteins and polypeptides represent nature's most complex and versatile polymer. They provide complicated shapes, diverse chemical functionalities, and tightly regulated and controlled sizes. Several disease states are related to the misfolding or overproduction of polypeptides and yet polypeptides are present in several therapeutic molecules. In addition to biological roles; short chain polypeptides have been shown to interact with and drive the bio-inspired synthesis or modification of inorganic materials. This paper outlines the development of a versatile cloning vector which allows for the expression of a short polypeptide by controlling the incorporation of a desired DNA coding insert. As a demonstration of the efficacy of the expression system, a solid binding polypeptide identified from M13 phage display was expressed and purified. The solid binding polypeptide was expressed as a soluble 6xHis-SUMO tagged construct. Expression was performed in E. coli using auto-induction followed by Ni-NTA affinity chromatography and ULP1 protease cleavage. Methodology demonstrates the production of greater than 8 mg of purified polypeptide per liter of E. coli culture. Isotopic labeling of the peptide is also demonstrated. The versatility of the designed cloning vector, use of the 6xHis-SUMO solubility partner, bacterial expression in auto-inducing media and the purification methodology make this expressionun vector a readily scalable and user-friendly system for the creation of desired peptide domains. Copyright © 2018. Published by Elsevier Inc.

  13. Polypeptide formation on polar mineral surfaces: possibility of complete chirality

    NASA Astrophysics Data System (ADS)

    Schrader, Malcolm E.

    2017-01-01

    In the present work, it is shown that thermodynamically feasible polymerization of cyanomethanol, which can be formed from formaldehyde and hydrogen cyanide, can lead to synthesis of polypeptides as well as to the previously reported synthesis of RNA. If the polymerization takes place on a one-dimensional feature of a mineral, such as for example a crack on its surface, the concept of quasi-chirality is introduced to describe the adsorbed polypeptide. This, in principle, would lead to formation of proteins that are completely homochiral in their alpha carbon groups. The concept of quasi-chirality can also be introduced in the condensation of glycine under similar conditions to form a polypeptide. This again leads to proteins completely chiral in their alpha carbon groups.

  14. Combined Effects and Cross-Interactions of Different Antibiotics and Polypeptides in Salmonella bredeney.

    PubMed

    Ju, Xiangyu; Zhu, Mengjiao; Han, Jinzhi; Lu, Zhaoxin; Zhao, Haizhen; Bie, Xiaomei

    2018-05-24

    Salmonella spp. are health-threatening foodborne pathogens. The increasingly common spread of antibiotic-resistant Salmonella spp. is a major public healthcare issue worldwide. In this study, we wished to explore (1) antibiotic or polypeptide combinations to inhibit multidrug-resistant Salmonella bredeney and (2) the regulation of cross-resistance and collateral sensitivity of antibiotics and polypeptides. We undertook a study to select antibiotic combinations. Then, we promoted drug-resistant strains of S. bredeney after 15 types of antibiotic treatment. From each evolving population, the S. bredeney strain was exposed to a particular single drug. Then, we analyzed how the evolved S. bredeney strains acquired resistance or susceptibility to other drugs. A total of 105 combinations were tested against S. bredeney following the protocols of CLSI-2016 and EUCAST-2017. The synergistic interactions between drug pairings were diverse. Notably, polypeptides were more likely to be linked to synergistic combinations: 56% (19/34) of the synergistic pairings were relevant to polypeptides. Simultaneously, macrolides demonstrated antagonism toward polypeptides. The latter were more frequently related to collateral sensitivity than the other drugs because the other 13 drugs sensitized S. bredeney to polypeptides. In an experimental evolution involving 15 drugs, single drug-evolved strains were examined against the other 14 drugs, and the results were compared with the minimal inhibitory concentration of the ancestral strain. Single drug-evolved S. bredeney strains could alter the sensitivity to other drugs, and S. bredeney evolution against antibiotics could sensitize it to polypeptides.

  15. Unique regulation of Na-glutamine cotransporter SN2/SNAT5 in rabbit intestinal crypt cells during chronic enteritis.

    PubMed

    Singh, Soudamani; Arthur, Subha; Sundaram, Uma

    2018-03-01

    The only Na-nutrient cotransporter described in mammalian small intestinal crypt cells is SN2/SNAT5, which facilitates glutamine uptake. In a rabbit model of chronic intestinal inflammation, SN2 stimulation is secondary to an increase in affinity of the cotransporter for glutamine. However, the immune regulation of SN2 in the crypt cells during chronic intestinal inflammation is unknown. We sought to determine the mechanism of regulation of Na-nutrient cotransporter SN2 by arachidonic acid metabolites in crypt cells. The small intestines of New Zealand white male rabbits were inflamed via inoculation with Eimeria magna oocytes. After 2-week incubation, control and inflamed rabbits were subjected to intramuscular injections of arachidonyl trifluoromethyl ketone (ATK), piroxicam and MK886 for 48 hrs. After injections, the rabbits were euthanized and crypt cells from small intestines were harvested and used. Treatment of rabbits with ATK prevented the release of AA and reversed stimulation of SN2. Inhibition of cyclooxygenase (COX) with piroxicam did not affect stimulation of SN2. However, inhibition of lipoxygenase (LOX) with MK886, thus reducing leukotriene formation during chronic enteritis, reversed the stimulation of SN2. Kinetic studies showed that the mechanism of restoration of SN2 by ATK or MK886 was secondary to the restoration of the affinity of the cotransporter for glutamine. For all treatment conditions, Western blot analysis revealed no change in SN2 protein levels. COX inhibition proved ineffective at reversing the stimulation of SN2. Thus, this study provides evidence that SN2 stimulation in crypt cells is mediated by the leukotriene pathway during chronic intestinal inflammation. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  16. Methods of increasing secretion of polypeptides having biological activity

    DOEpatents

    Merino, Sandra

    2014-05-27

    The present invention relates to methods for producing a secreted polypeptide having biological activity, comprising: (a) transforming a fungal host cell with a fusion protein construct encoding a fusion protein, which comprises: (i) a first polynucleotide encoding a signal peptide; (ii) a second polynucleotide encoding at least a catalytic domain of an endoglucanase or a portion thereof; and (iii) a third polynucleotide encoding at least a catalytic domain of a polypeptide having biological activity; wherein the signal peptide and at least the catalytic domain of the endoglucanase increases secretion of the polypeptide having biological activity compared to the absence of at least the catalytic domain of the endoglucanase; (b) cultivating the transformed fungal host cell under conditions suitable for production of the fusion protein; and (c) recovering the fusion protein, a component thereof, or a combination thereof, having biological activity, from the cultivation medium.

  17. Methods of increasing secretion of polypeptides having biological activity

    DOEpatents

    Merino, Sandra

    2014-10-28

    The present invention relates to methods for producing a secreted polypeptide having biological activity, comprising: (a) transforming a fungal host cell with a fusion protein construct encoding a fusion protein, which comprises: (i) a first polynucleotide encoding a signal peptide; (ii) a second polynucleotide encoding at least a catalytic domain of an endoglucanase or a portion thereof; and (iii) a third polynucleotide encoding at least a catalytic domain of a polypeptide having biological activity; wherein the signal peptide and at least the catalytic domain of the endoglucanase increases secretion of the polypeptide having biological activity compared to the absence of at least the catalytic domain of the endoglucanase; (b) cultivating the transformed fungal host cell under conditions suitable for production of the fusion protein; and (c) recovering the fusion protein, a component thereof, or a combination thereof, having biological activity, from the cultivation medium.

  18. Methods of increasing secretion of polypeptides having biological activity

    DOEpatents

    Merino, Sandra

    2015-04-14

    The present invention relates to methods for producing a secreted polypeptide having biological activity, comprising: (a) transforming a fungal host cell with a fusion protein construct encoding a fusion protein, which comprises: (i) a first polynucleotide encoding a signal peptide; (ii) a second polynucleotide encoding at least a catalytic domain of an endoglucanase or a portion thereof; and (iii) a third polynucleotide encoding at least a catalytic domain of a polypeptide having biological activity; wherein the signal peptide and at least the catalytic domain of the endoglucanase increases secretion of the polypeptide having biological activity compared to the absence of at least the catalytic domain of the endoglucanase; (b) cultivating the transformed fungal host cell under conditions suitable for production of the fusion protein; and (c) recovering the fusion protein, a component thereof, or a combination thereof, having biological activity, from the cultivation medium.

  19. Methods of increasing secretion of polypeptides having biological activity

    DOEpatents

    Merino, Sandra

    2013-10-01

    The present invention relates to methods for producing a secreted polypeptide having biological activity, comprising: (a) transforming a fungal host cell with a fusion protein construct encoding a fusion protein, which comprises: (i) a first polynucleotide encoding a signal peptide; (ii) a second polynucleotide encoding at least a catalytic domain of an endoglucanase or a portion thereof; and (iii) a third polynucleotide encoding at least a catalytic domain of a polypeptide having biological activity; wherein the signal peptide and at least the catalytic domain of the endoglucanase increases secretion of the polypeptide having biological activity compared to the absence of at least the catalytic domain of the endoglucanase; (b) cultivating the transformed fungal host cell under conditions suitable for production of the fusion protein; and (c) recovering the fusion protein, a component thereof, or a combination thereof, having biological activity, from the cultivation medium.

  20. Na-glutamine co-transporters B(0)AT1 in villus and SN2 in crypts are differentially altered in chronically inflamed rabbit intestine.

    PubMed

    Saha, Prosenjit; Arthur, Subha; Kekuda, Ramesh; Sundaram, Uma

    2012-03-01

    Glutamine is a major nutrient utilized by the intestinal epithelium and is primarily assimilated via Na-glutamine co-transport (NGcT) on the brush border membrane (BBM) of enterocytes. Recently we reported that B(0)AT1 (SLC6A19) mediates glutamine absorption in villus while SN2 (SLC38A5) does the same in crypt cells. However, how B(0)AT1 and SN2 are affected during intestinal inflammation is unknown. In the present study it was shown that during chronic enteritis NGcT was inhibited in villus cells, however, it was stimulated in crypt cells. Our studies also demonstrated that the mechanism of inhibition of NGcT during chronic enteritis was secondary to a reduction in the number of B(0)AT1 co-transporters in the villus cell BBM without a change in the affinity of the co-transporter. In contrast, stimulation of NGcT in crypt cells was secondary to an increase in the affinity of SN2 for glutamine without an alteration in the number of co-transporters. Thus, glutamine assimilation which occurs via distinct transporters in crypt and villus cells is altered in the chronically inflamed intestine. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. The inhibition of hepatic bile acids transporters Ntcp and Bsep is involved in the pathogenesis of isoniazid/rifampicin-induced hepatotoxicity.

    PubMed

    Guo, Yao Xue; Xu, Xue Fei; Zhang, Qi Zhi; Li, Chun; Deng, Ye; Jiang, Pei; He, Lei Yan; Peng, Wen Xing

    2015-01-01

    Co-treatment of isoniazid (INH) and rifampicin (RFP) is well known for clinically apparent liver injury. However, the mechanism of INH/RFP-induced liver injury is controversial. Emerging evidence shows links between inhibition of bile acids transporters and drug-induced liver injury (DILI). The present study investigates whether sodium taurocholate cotransporting polypeptide (NTCP/Ntcp; SLC10A1) and bile salt export pump (BSEP/Bsep; ABCB11) are involved in the anti-tuberculosis medicines induced liver injury. ICR female mice were intragastrically treated with INH (50 or 100 mg/kg), RFP (100 or 200 mg/kg), or the combination of INH/RFP (50 + 100 mg/kg or 100 + 200 mg/kg) for 14 consecutive days. Liver histopathological examination, serum biochemical and liver malondialdehyde tests were evaluated. Apparent histopathological alterations and hepatic oxidative stress showed in INH (100 mg/kg), RFP (200 mg/kg) and their combination group. The hepatoxic effect was also indicated by increased serum biomarkers, such as aspartate transaminase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), direct bilirubin (DBil), total bilirubin (TBil) and total bile acids (TBA). Both doses of INH/RFP administration significantly down-regulated the expression of Ntcp and Bsep in liver. Furthermore, the combination of INH and RFP displayed stronger effect on the expression of Ntcp compared with the corresponding dose of INH or RFP alone. In conclusion, down-regulated expression of hepatic Ntcp and Bsep might play an important role in the development of INH and RFP induced liver injury.

  2. Sustained repression and translocation of Ntcp and expression of Mrp4 for cholestasis after rat 90% partial hepatectomy.

    PubMed

    Miura, Takuya; Kimura, Norihisa; Yamada, Toshiyuki; Shimizu, Takeshi; Nanashima, Naoki; Yamana, Daisuke; Hakamada, Kenichi; Tsuchida, Shigeki

    2011-08-01

    To clarify the mechanism of persistent cholestasis after massive hepatectomy, the relationship between such cholestasis and the expression and localization of organic anion transporters for bile acids was examined in a rat model. Male Sprague-Dawley rats were subjected to 90% hepatectomy, and tissues were harvested at 0, 1, 3, and 7 days for microarray analysis, quantitative real-time polymerase chain reaction (RT-PCR), Western blotting, and immunohistochemistry to examine the expression of multidrug resistance protein 4 (Mrp4), bile salt export pump (Bsep), and sodium-dependent taurocholate cotransporting polypeptide (Ntcp). Persistently elevated levels of serum bile acids were observed at days 3 and 7. RT-PCR and Western blotting indicated that the expression of Mrp4, a bile acid export pump located in the basolateral membrane, was increased at day 3. The expression of Ntcp, a transporter used to uptake bile acids from the sinusoids, was significantly decreased throughout the period. The levels of Bsep, an export pump localized to the canalicular membrane, were unchanged. Immunohistochemistry revealed the localization of Mrp4 and Bsep in the basolateral and canalicular membranes, respectively. On the other hand, at days 3 and 7, Ntcp was localized in the cytoplasm and was hardly detected in the basolateral membrane. These results suggested that the sustained repression and translocation of Ntcp and the expression of Mrp4 at the basolateral membrane seem to be responsible for the high blood bile acids levels after massive hepatectomy. Copyright © 2010 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  3. From DCPD to NTCP: The long journey towards identifying a functional hepatitis B virus receptor

    PubMed Central

    2015-01-01

    Hepatitis B virus (HBV) is the prototype of hepatotropic DNA viruses (hepadnaviruses) infecting a wide range of human and non-human hosts. Previous studies with duck hepatitis B virus (DHBV) identified duck carboxypeptidase D (dCPD) as a host specific binding partner for full-length large envelope protein, and p120 as a binding partner for several truncated versions of the large envelope protein. p120 is the P protein of duck glycine decarboxylase (dGLDC) with restricted expression in DHBV infectible tissues. Several lines of evidence suggest the importance of dCPD, and especially p120, in productive DHBV infection, although neither dCPD nor p120 cDNA could confer susceptibility to DHBV infection in any cell line. Recently, sodium taurocholate cotransporting polypeptide (NTCP) has been identified as a binding partner for the N-terminus of HBV large envelope protein. Importantly, knock down and reconstitution experiments unequivocally demonstrated that NTCP is both necessary and sufficient for in vitro infection by HBV and hepatitis delta virus (HDV), an RNA virus using HBV envelope proteins for its transmission. What remains unclear is whether NTCP is the major HBV receptor in vivo. The fact that some HBV patients are homozygous with an NTCP mutation known to abolish its receptor function suggests the existence of NTCP-independent pathways of HBV entry. Also, NTCP very likely mediates just one step of the HBV entry process, with additional co-factors for productive HBV infection still to be discovered. NTCP offers a novel therapeutic target for the control of chronic HBV infection. PMID:26523264

  4. From DCPD to NTCP: the long journey towards identifying a functional hepatitis B virus receptor.

    PubMed

    Li, Jisu; Tong, Shuping

    2015-09-01

    Hepatitis B virus (HBV) is the prototype of hepatotropic DNA viruses (hepadnaviruses) infecting a wide range of human and non-human hosts. Previous studies with duck hepatitis B virus (DHBV) identified duck carboxypeptidase D (dCPD) as a host specific binding partner for full-length large envelope protein, and p120 as a binding partner for several truncated versions of the large envelope protein. p120 is the P protein of duck glycine decarboxylase (dGLDC) with restricted expression in DHBV infectible tissues. Several lines of evidence suggest the importance of dCPD, and especially p120, in productive DHBV infection, although neither dCPD nor p120 cDNA could confer susceptibility to DHBV infection in any cell line. Recently, sodium taurocholate cotransporting polypeptide (NTCP) has been identified as a binding partner for the N-terminus of HBV large envelope protein. Importantly, knock down and reconstitution experiments unequivocally demonstrated that NTCP is both necessary and sufficient for in vitro infection by HBV and hepatitis delta virus (HDV), an RNA virus using HBV envelope proteins for its transmission. What remains unclear is whether NTCP is the major HBV receptor in vivo. The fact that some HBV patients are homozygous with an NTCP mutation known to abolish its receptor function suggests the existence of NTCP-independent pathways of HBV entry. Also, NTCP very likely mediates just one step of the HBV entry process, with additional co-factors for productive HBV infection still to be discovered. NTCP offers a novel therapeutic target for the control of chronic HBV infection.

  5. Hepatocyte nuclear factor-4alpha is a central transactivator of the mouse Ntcp gene.

    PubMed

    Geier, Andreas; Martin, Ina V; Dietrich, Christoph G; Balasubramaniyan, Natarajan; Strauch, Sonja; Suchy, Frederick J; Gartung, Carsten; Trautwein, Christian; Ananthanarayanan, Meenakshisundaram

    2008-08-01

    Sodium taurocholate cotransporting polypeptide (Ntcp) is the major uptake system for conjugated bile acids. Deletions of hepatocyte nuclear factor (HNF)-1alpha and retinoid X receptor-alpha:retinoic acid receptor-alpha binding sites in the mouse 5'-flanking region corresponding to putatively central regulatory elements of rat Ntcp do not significantly reduce promoter activity. We hypothesized that HNF-4alpha, which is increasingly recognized as a central regulator of hepatocyte function, may directly transactivate mouse (mNtcp). A 1.1-kb 5'-upstream region including the mouse Ntcp promoter was cloned and compared with the rat promoter. In contrast to a moderate 3.5-fold activation of mNtcp by HNF-1alpha, HNF-4alpha cotransfection led to a robust 20-fold activation. Deletion analysis of mouse and rat Ntcp promoters mapped a conserved HNF-4alpha consensus site at -345/-326 and -335/-316 bp, respectively. p-475bpmNtcpLUC is not transactivated by HNF-1alpha but shows a 50-fold enhanced activity upon cotransfection with HNF-4alpha. Gel mobility shift assays demonstrated a complex of the HNF-4alpha-element formed with liver nuclear extracts that was blocked by an HNF-4alpha specific antibody. HNF-4alpha binding was confirmed by chromatin immunoprecipitation. Using Hepa 1-6 cells, HNF-4alpha-knockdown resulted in a significant 95% reduction in NTCP mRNA. In conclusion, mouse Ntcp is regulated by HNF-4alpha via a conserved distal cis-element independently of HNF-1alpha.

  6. Molecular description of the LCST behavior of an elastin-like polypeptide.

    PubMed

    Li, Nan K; García Quiroz, Felipe; Hall, Carol K; Chilkoti, Ashutosh; Yingling, Yaroslava G

    2014-10-13

    Elastin-like polypeptides (ELPs) with the repeat sequence of VPGVG are widely used as a model system for investigation of lower critical solution temperature (LCST) transition behavior. In this paper, the effect of temperature on the structure, dynamics and association of (VPGVG)18 in aqueous solution is investigated using atomistic molecular dynamics simulations. Our simulations show that as the temperature increases the ELP backbones undergo gradual conformational changes, which are attributed to the formation of more ordered secondary structures such as β-strands. In addition, increasing temperature changes the hydrophobicity of the ELP by exposure of hydrophobic valine-side chains to the solvent and hiding of proline residues. Based on our simulations, we conclude that the transition behavior of (VPGVG)18 can be attributed to a combination of thermal disruption of the water network that surrounds the polypeptide, reduction of solvent accessible surface area of the polypeptide, and increase in its hydrophobicity. Simulations of the association of two (VPGVG)18 molecules demonstrated that the observed gradual changes in the structural properties of the single polypeptide chain are enough to cause the aggregation of polypeptides above the LCST. These results lead us to propose that the LCST phase behavior of poly(VPGVG) is a collective phenomenon that originates from the correlated gradual changes in single polypeptide structure and the abrupt change in properties of hydration water around the peptide and is a result of a competition between peptide-peptide and peptide-water interactions. This is a computational study of an important intrinsically disordered peptide system that provides an atomic-level description of structural features and interactions that are relevant in the LCST phase behavior.

  7. The Research on the Impact of Maca Polypeptide on Sport Fatigue.

    PubMed

    Miao, Hua

    2015-01-01

    In order to study the effect of maca polypeptide on sport fatigue, this paper selected 40 male mice, and they were randomly divided into group A, B, C and D. group A, B and C were fed food with different concentrations of maca polypeptide, and group D was control group. After two weeks of feeding, measured physiological indexes of mice, including blood glucose, urea nitrogen and creatinine. At last gived the experimental results, as well as the analysis. Experimental results show that maca polypeptide can improve the ability of anti-fatigue mice, and in a certain concentration range, the higher the concentration, the better the resistance to fatigue.

  8. Identification of a major polypeptide of the nuclear pore complex

    PubMed Central

    1982-01-01

    The nuclear pore complex is a prominent structural component of the nuclear envelope that appears to regulate nucleoplasmic molecular movement. Up to now, none of its polypeptides have been defined. To identify possible pore complex proteins, we fractionated rat liver nuclear envelopes and microsomal membranes with strong protein perturbants into peripheral and intrinsic membrane proteins, and compared these fractions on SDS gels. From this analysis, we identified a prominent 190-kilodalton intrinsic membrane polypeptide that occurs specifically in nuclear envelopes. Lectin binding studies indicate that this polypeptide (gp 190) is the major nuclear envelope glycoprotein. Upon treatment of nuclear envelopes with Triton X-100, gp 190 remains associated with a protein substructure of the nuclear envelope consisting of pore complexes and nuclear lamina. We prepared monospecific antibodies to gp 190 for immunocytochemical localization. Immunofluorescence staining of tissue culture cells suggests that gp 190 occurs exclusively in the nucleus during interphase. This polypeptide becomes dispersed throughout the cell in mitotic prophase when the nuclear envelope is disassembled, and subsequently returns to the nuclear surfaces during telophase when the nuclear envelope is reconstructed. Immunoferritin labeling of Triton-treated rat liver nuclei demonstrates that gp 190 occurs exclusively in the nuclear pore complex, in the regions of the cytoplasmic (and possibly nucleoplasmic) pore complex annuli. A polypeptide that cross-reacts with gp 190 is present in diverse vertebrate species, as shown by antibody labeling of nitrocellulose SDS gel transfers. On the basis of its biochemical characteristics, we suggest that gp 190 may be involved in anchoring the pore complex to nuclear envelope membranes. PMID:7153248

  9. The antihypertensive effect of calorie restriction in obese adolescents: dissociation of effects on erythrocyte countertransport and cotransport.

    PubMed

    Weder, A B; Torretti, B A; Katch, V L; Rocchini, A P

    1984-10-01

    Measures of maximal rates of lithium-sodium countertransport and frusemide-sensitive sodium and potassium cotransport have been proposed as biochemical markers for human essential hypertension. The stability of these functions over time within the same individuals has led to the suggestion that maximal transport capacities are genetically determined. The present study confirms the reproducibility of functional assays of countertransport and cotransport in human erythrocytes after overnight storage and over a six-month period in normal volunteers and provides estimates of the magnitude of technical error for each assay. A long-term dietary intervention study in a group of obese adolescents demonstrated marked increases in erythrocyte sodium levels and maximal frusemide-sensitive sodium and potassium fluxes but no changes in cell potassium or water and no effect on lithium-sodium countertransport. A correlation between the decrease in percentage of body fat and the increase in cell sodium content suggests a link between the metabolic effects of dieting and control of erythrocyte cation handling. Although the mechanism linking dietary calorie restriction and changes in erythrocyte cation metabolism is unknown, evaluation of body weight, and especially recent weight loss, is important in studies of erythrocyte transport. Conclusions regarding genetic contributions to the activities of lithium-sodium countertransport and sodium-potassium cotransport systems will be strengthened by clarification of environmental regulators.

  10. Interaction of digitalis-like compounds with liver uptake transporters NTCP, OATP1B1, and OATP1B3.

    PubMed

    Gozalpour, Elnaz; Greupink, Rick; Wortelboer, Heleen M; Bilos, Albert; Schreurs, Marieke; Russel, Frans G M; Koenderink, Jan B

    2014-06-02

    Digitalis-like compounds (DLCs) such as digoxin, digitoxin, and ouabain, also known as cardiac glycosides, are among the oldest pharmacological treatments for heart failure. The compounds have a narrow therapeutic window, while at the same time, DLC pharmacokinetics is prone to drug-drug interactions at the transport level. Hepatic transporters organic anion transporting polypeptide (OATP) 1B1, OATP1B3, and Na(+)-dependent taurocholate co-transporting polypeptide (NTCP) influence the disposition of a variety of drugs by mediating their uptake from blood into hepatocytes. The interaction of digoxin, digitoxin, and ouabain with hepatic uptake transporters has been studied before. However, here, we systematically investigated a much wider range of structurally related DLCs for their capability to inhibit or to be transported by these transporters in order to better understand the relation between the activity and chemical structure of this compound type. We studied the uptake and inhibitory potency of a series of 14 structurally related DLCs in Chinese hamster ovary cells expressing NTCP (CHO-NTCP) and human embryonic kidney cells expressing OATP1B1 and OATP1B3 (HEK-OATP1B1 and HEK-OATP1B3). The inhibitory effect of the DLCs was measured against taurocholic acid (TCA) uptake in CHO-NTCP cells and against uptake of β-estradiol 17-β-d-glucuronide (E217βG) in HEK-OATP1B1 and HEK-OATP1B3 cells. Proscillaridin A was the most effective inhibitor of NTCP-mediated TCA transport (IC50 = 22 μM), whereas digitoxin and digitoxigenin were the most potent inhibitors of OATP1B1 and OAPTP1B3, with IC50 values of 14.2 and 36 μM, respectively. Additionally, we found that the sugar moiety and hydroxyl groups of the DLCs play different roles in their interaction with NTCP, OATP1B1, and OATP1B3. The sugar moiety decreases the inhibition of NTCP and OATP1B3 transport activity, whereas it enhances the inhibitory potency against OATP1B1. Moreover, the hydroxyl group at position 12

  11. Beta structures of alternating polypeptides and their possible prebiotic significance

    NASA Technical Reports Server (NTRS)

    Brack, A.; Orgel, L. E.

    1975-01-01

    A survey of the commonest amino acids formed in prebiotic conditions suggests that the earliest form of genetic coding may have specified polypeptides with a strong tendency to form stable beta-sheet structures. Poly(Val-Lys), like other polypeptides in which hydrophobic and hydrophilic residues alternate, tends to form beta structures. It is shown that bilayers with a hydrophobic interior and a hydrophilic exterior may be present in aqueous solution.

  12. Polypeptide multilayer film co-delivers oppositely-charged drug molecules in sustained manners.

    PubMed

    Jiang, Bingbing; Defusco, Elizabeth; Li, Bingyun

    2010-12-13

    The current state-of-the-art for drug-carrying biomedical devices is mostly limited to those that release a single drug. Yet there are many situations in which more than one therapeutic agent is needed. Also, most polyelectrolyte multilayer films intended for drug delivery are loaded with active molecules only during multilayer film preparation. In this paper, we present the integration of capsules as vehicles within polypeptide multilayer films for sustained release of multiple oppositely charged drug molecules using layer-by-layer nanoassembly technology. Calcium carbonate (CaCO(3)) particles were impregnated with polyelectrolytes, shelled with polyelectrolyte multilayers, and then assembled onto polypeptide multilayer films using glutaraldehyde. Capsule-integrated polypeptide multilayer films were obtained after decomposition of CaCO(3) templates. Two oppositely charged drugs were loaded into capsules within polypeptide multilayer films postpreparation based on electrostatic interactions between the drugs and the polyelectrolytes impregnated within capsules. We determined that the developed innovative capsule-integrated polypeptide multilayer films could be used to load multiple drugs of very different properties (e.g., opposite charges) any time postpreparation (e.g., minutes before surgical implantation inside an operating room), and such capsule-integrated films allowed simultaneous delivery of two oppositely charged drug molecules and a sustained (up to two weeks or longer) and sequential release was achieved.

  13. Deficiency of electroneutral K+-Cl- cotransporter 3 causes a disruption in impulse propagation along peripheral nerves.

    PubMed

    Sun, Yuan-Ting; Lin, Thy-Sheng; Tzeng, Shun-Fen; Delpire, Eric; Shen, Meng-Ru

    2010-10-01

    Nerve conduction requires the fine tuning of ionic currents through delicate interactions between axons and Schwann cells. The K(+)-Cl(-) cotransporter (KCC) family includes four isoforms (KCC1-4) that play an important role in the maintenance of cellular osmotic homeostasis via the coupled electroneutral movement of K(+) and Cl(-) with concurrent water flux. Mutation in SLC12A6 gene encoding KCC3 results in an autosomal recessive disease, known as agenesis of the corpus callosum associated with peripheral neuropathy. Nevertheless, the role of KCC3 in nerve function remains a puzzle. In this study, the microscopic examination of KCC isoforms expressed in peripheral nerves showed high expression of KCC2-4 in nodal segments of the axons and in the perinucleus and microvilli of Schwann cells. The KCC inhibitor [[(dihydroindenyl)oxy]alkanoic acid] but not the Na(+)-K(+)-2Cl(-)-cotransport inhibitor (bumetanide) dose-dependently suppressed the amplitude and area of compound muscle action potential, indicating the involvement of KCC activity in peripheral nerve conduction. Furthermore, the amplitude and area under the curve were smaller, and the nerve conduction velocity was slower in nerves from KCC3(-/-) mice than in nerves from wild-type mice, while the expression pattern of KCC2 and KCC4 was similar in KCC3 kockout and wild-type strains. KCC3(-/-) mice also manifested a prominent motor deficit in the beam-walking test. This is the first study to demonstrate that the K(+)-Cl(-) cotransporter activity of KCC3 contributes to the propagation of action potentials along peripheral nerves. (c) 2010 Wiley-Liss, Inc.

  14. Changes in the Polypeptide Patterns of Barley Seedlings Exposed to Jasmonic Acid and Salinity 1

    PubMed Central

    Maslenkova, Liliana Todorova; Miteva, Tania Simeonova; Popova, Losanka P.

    1992-01-01

    Soluble and thylakoid membrane proteins of jasmonic acid (JA)-treated and salt-stressed barley (Hordeum vulgare L.) seedlings were investigated using 15% sodium dodecyl sulfate-polyacrylamide slab gel electrophoresis. High JA concentrations induced marked quantitative and qualitative changes in polypeptide profiles concerning mainly the proteins with approximately equal mobility, as in NaCl-stressed plants. The most obvious increase in thylakoid polypeptide band intensity was at 55 to 57 kilodaltons (kD). The relative share of some polypeptides with apparent molecular masses above 66 kD and of polypeptides with lower molecular masses in the region of 20.5 to 15 kD was enhanced. At the same time, one new band at 31 to 31.5 kD was well expressed at 25 and 250 micromolar JA concentrations and became discernible in the 100 micromolar NaCl-treated plants. The intensity of some polypeptides of soluble proteins (molecular masses of 60, 47, 37, 30, and 23.4 kD) increased with increasing JA concentration, whereas the intensities of other polypeptide bands (55, 21.4, and 15 kD) decreased. Enhanced levels of 60-, 47-, 34-, and 30-kD polypeptides and reduced levels of 55- and 15-kD polypeptides were present in NaCl-treated plants. The appearance of one new polypeptide, of 25.1 kD, was observed only in NaCl-treated plants. At 100 millimolar NaCl, an eightfold increase in proline content was observed while at 250 micromolar JA, the proline content was threefold over the control. It is hypothesized that exogenously applied jasmonates act as stress agents. As such, they provoke alterations in the proline content and they can modulate typical stress responses by induction of stress proteins. ImagesFigure 1Figure 4Figure 5 PMID:16668698

  15. Bioresorbable polypeptide-based comb-polymers efficiently improves the stability and pharmacokinetics of proteins in vivo.

    PubMed

    Turabee, Md Hasan; Thambi, Thavasyappan; Lym, Jae Seung; Lee, Doo Sung

    2017-03-28

    Stimuli-responsive polypeptides are a promising class of biomaterials due to their tunable physicochemical and biological properties. Herein, a series of novel pH- and thermo-responsive block copolymers based on polypeptides were synthesized by ring-opening polymerization of γ-benzyl-l-glutamate-N-carboxyanhydride in the presence of poly(ethylene glycol)-diamine macroinitiator followed by aminolysis. The resulting polypeptide-based triblock copolymer, poly[(2-(dibutylamino)ethyl-l-glutamate)-co-(γ-benzyl-l-glutamate)]-poly(ethylene glycol)-b-poly[(2-(dibutylamino)ethyl-l-glutamate)-co-(γ-benzyl-l-glutamate)] (PNLG-co-PBLG-b-PEG-b-PBLG-co-PNLG), exists as a low viscous sol at low pH and temperature (≤pH 6.4, 25 °C) but it transforms to a soft gel under physiological conditions (pH 7.4 and 37 °C). The physical properties of the polypeptide gel can be tuned by controlling the ratio between hydrophobic PBLG and pH-sensitive PNLG blocks. The polypeptide-based copolymer did not show any noticeable cytotoxicity to fibroblast cells in vitro. It was found that subcutaneous injection of the polypeptide copolymer solution into the dorsal region of Sprague-Dawley (SD) rats formed a gel instantly without major inflammation. The gels were completely biodegraded in six weeks and found to be bioresorbable. Human growth hormone (hGH)-loaded polypeptide-based biodegradable copolymer sols readily formed a viscoelastic gel that inhibited an initial burst and prolonged the hGH release for one week. Overall, due to their bioresorbable and sustained release protein characteristics, polypeptide hydrogels may serve as viable platforms for therapeutic protein delivery and the surface tunable properties of polypeptide hydrogels can be exploited for other potential therapeutic proteins.

  16. Regulation of the sodium bicarbonate cotransporter kNBC1 function: role of Asp(986), Asp(988) and kNBC1-carbonic anhydrase II binding.

    PubMed

    Gross, Eitan; Pushkin, Alexander; Abuladze, Natalia; Fedotoff, Olga; Kurtz, Ira

    2002-11-01

    The HCO(3)(-) : Na(+) cotransport stoichiometry of the electrogenic sodium bicarbonate cotransporter kNBC1 determines the reversal potential (E(rev)) and thus the net direction of transport of these ions through the cotransporter. Previously, we showed that phosphorylation of kNBC1-Ser(982) in the carboxy-terminus of kNBC1 (kNBC1-Ct), by cAMP-protein kinase A (PKA), shifts the stoichiometry from 3 : 1 to 2 : 1 and that binding of bicarbonate to the cotransporter is electrostaticaly modulated. These results raise the possibility that phosphorylated kNBC1-Ser(982), or other nearby negatively charged residues shift the stoichiometry by blocking a bicarbonate-binding site. In the current study, we examined the role of the negative charge on Ser(982)-phosphate and three aspartate residues in a D986NDD custer in altering the stoichiometry of kNBC1. mPCT cells expressing kNBC1 mutants were grown on filters and mounted in an Ussing chamber for electrophysiological studies. Enhanced green fluorescence protein (EGFP)-tagged mutant constructs expressed in the same cells were used to determine the phosphorylation status of kNBC1-Ser(982). The data indicate that both kNBC1-Asp(986) and kNBC1-Asp(988), but not kNBC1-Asp(989), are required for the phosphorylation-induced shift in stoichiometry. A homologous motif (D887ADD) in the carboxy-terminus of the anion exchanger AE1 binds to carbonic anhydrase II (CAII). In isothermal titration calorimetry experiments, CAII was found to bind to kNBC1-Ct with a K(D) of 160 +/- 10 nM. Acetazolamide inhibited the short-circuit current through the cotransporter by 65 % when the latter operated in the 3 : 1 mode, but had no effect on the current in the 2 : 1 mode. Acetazolamide did not affect the cotransport stoichiometry or the ability of 8-Br-cAMP to shift the stoichiometry. Although CAII does not affect the transport stoichiometry, it may play an important role in enhancing the flux through the transporter when kNBC1-Ser(982) is

  17. Mast cell regulation of Na-glutamine co-transporters B0AT1 in villus and SN2 in crypt cells during chronic intestinal inflammation.

    PubMed

    Singh, Soudamani; Arthur, Subha; Talukder, Jamilur; Palaniappan, Balasubramanian; Coon, Steven; Sundaram, Uma

    2015-04-15

    In the chronically inflamed rabbit small intestine, brush border membrane (BBM) Na-glutamine co-transport is inhibited in villus cells (mediated by B0AT1), while it is stimulated in crypt cells (mediated by SN2/SNAT5). How mast cells, known to be enhanced in the chronically inflamed intestine, may regulate B0AT1 in villus and SN2/SNAT5 in crypt cell is unknown. Thus, the aim of the present study is to determine the regulation of B0AT1 and SN2/SNAT5 by mast cells during chronic enteritis. Chronic intestinal inflammation was induced in male rabbits with intra-gastric inoculation of Eimeria magna oocytes. Rabbits with chronic inflammation were treated with ketotifen (10 mg/day) or saline (Placebo) for 2 days. Villus and crypts cells were isolated from the rabbit intestine using the Ca++ chelation technique. Na/K-ATPase activity was measured as Pi from cellular homogenate. BBM vesicles (BBMV) were prepared from villus and crypt cells and uptake studies were performed using rapid filtration technique with (3)H-Glutamine. Western blot analyses were done using B0AT1 and SN2 specific antibodies. In villus cells, Na-glutamine co-transport inhibition observed during inflammation was completely reversed by ketotifen, a mast cell stabilizer. In contrast, in crypt cells, Na-glutamine co-transport stimulation was reversed to normal levels by ketotifen. Kinetic studies demonstrated that ketotifen reversed the inhibition of B0AT1 in villus cells by restoring co-transporter numbers in the BBM, whereas the stimulation of SN2/SNAT5 in crypts cells was reversed secondary to restoration of affinity of the co-transporter. Western blot analysis showed that ketotifen restored immune-reactive levels of B0AT1 in villus cells, while SN2/SNAT5 levels from crypts cell remained unchanged. In the present study we demonstrate that mast cells likely function as a common upstream immune pathway regulator of the Na-dependent glutamine co-transporters, B0AT1 in villus cells and SN2 in crypts cells

  18. Separation and nanoencapsulation of antitumor polypeptide from Spirulina platensis.

    PubMed

    Zhang, Bochao; Zhang, Xuewu

    2013-01-01

    Spirulina platensis is a multicellular edible blue-green alga with abundant proteins (∼ 60%). No report is available on the antitumor polypeptides from the whole proteins of S. platensis. In this study, for the first time, an antitumor polypeptide Y2 from trypsin digest of S. platensis proteins was obtained by using freeze-thawing plus ultrasonication extraction, hydrolysis with four enzymes (trypsin, alcalase, papain, and pepsin), and gel filtration chromatography. The results showed that the degree of hydrolysis can be ordered as: trypsin (38.5%) > alcalase (31.2%) > papain (27.8%) > pepsin (7.1%). For MCF-7 and HepG2 cells, at 250 µg/mL, the maximum inhibitory rate of Y2 was 97%, while standard drug 5-FU was 55 and 97%, respectively. Furthermore, the nanoencapsulation of Y2 with chitosan (CS) was also investigated. After nanoencapsulation, the maximum encapsulation efficiency and polypeptides contents are 49 and 15%, respectively; and the antitumor activity is basically not lost. These data demonstrated the potential of nanopolypeptides (Y2-CS) in food and pharmaceutical applications. © 2013 American Institute of Chemical Engineers.

  19. Human jagged polypeptide, encoding nucleic acids and methods of use

    DOEpatents

    Li, Linheng; Hood, Leroy

    2000-01-01

    The present invention provides an isolated polypeptide exhibiting substantially the same amino acid sequence as JAGGED, or an active fragment thereof, provided that the polypeptide does not have the amino acid sequence of SEQ ID NO:5 or SEQ ID NO:6. The invention further provides an isolated nucleic acid molecule containing a nucleotide sequence encoding substantially the same amino acid sequence as JAGGED, or an active fragment thereof, provided that the nucleotide sequence does not encode the amino acid sequence of SEQ ID NO:5 or SEQ ID NO:6. Also provided herein is a method of inhibiting differentiation of hematopoietic progenitor cells by contacting the progenitor cells with an isolated JAGGED polypeptide, or active fragment thereof. The invention additionally provides a method of diagnosing Alagille Syndrome in an individual. The method consists of detecting an Alagille Syndrome disease-associated mutation linked to a JAGGED locus.

  20. Compositions and methods for making selenocysteine containing polypeptides

    DOEpatents

    Soll, Dieter; Aldag, Caroline; Hohn, Michael

    2016-10-11

    Non-naturally occurring tRNA.sup.Sec and methods of using them for recombinant expression of proteins engineered to include one or more selenocysteine residues are disclosed. The non-naturally occurring tRNA.sup.Sec can be used for recombinant manufacture of selenocysteine containing polypeptides encoded by mRNA without the requirement of an SECIS element. In some embodiments, selenocysteine containing polypeptides are manufactured by co-expressing a non-naturally occurring tRNA.sup.Sec a recombinant expression system, such as E. coli, with SerRS, EF-Tu, SelA, or PSTK and SepSecS, and an mRNA with at least one codon that recognizes the anticodon of the non-naturally occurring tRNA.sup.Sec.

  1. Polypeptide Multilayer Film Co-Delivers Oppositely-Charged Drug Molecules in Sustained Manners

    PubMed Central

    Jiang, Bingbing; DeFusco, Elizabeth; Li, Bingyun

    2010-01-01

    The current state-of-the-art for drug-carrying biomedical devices is mostly limited to those that release a single drug. Yet there are many situations in which more than one therapeutic agent is needed. Also, most polyelectrolyte multilayer films intending for drug delivery are loaded with active molecules only during multilayer film preparation. In this paper, we present the integration of capsules as vehicles within polypeptide multilayer films for sustained release of multiple oppositely-charged drug molecules using layer-by-layer nanoassembly technology. Calcium carbonate (CaCO3) particles were impregnated with polyelectrolytes, shelled with polyelectrolyte multilayers, and then assembled onto polypeptide multilayer films using glutaraldehyde. Capsule-integrated polypeptide multilayer films were obtained after decomposition of CaCO3 templates. Two oppositely-charged drugs were loaded into capsules within polypeptide multilayer films post-preparation based on electrostatic interactions between the drugs and the polyelectrolytes impregnated within capsules. We determined that the developed innovative capsule-integrated polypeptide multilayer films could be used to load multiple drugs of very different properties (e.g. opposite charges) any time post-preparation (e.g. minutes before surgical implantation inside an operating room), and such capsule-integrated films allowed simultaneous delivery of two oppositely-charged drug molecules and a sustained (up to two weeks or longer) and sequential release was achieved. PMID:21058719

  2. Fluorescence probe of polypeptide conformational dynamics in gas phase and in solution

    NASA Astrophysics Data System (ADS)

    Iavarone, Anthony T.; Meinen, Jan; Schulze, Susanne; Parks, Joel H.

    2006-07-01

    Fluorescence measurements of polypeptides derivatized with the fluorescent dye BODIPY TMR have been used to probe the polypeptide conformational dynamics as a function of temperature and charge state. Measurements of (BODIPY TMR)-[Pro]n-Arg-Trp and (BODIPY TMR)-[Gly-Ser]m-Arg-Trp have been performed for charge states 1+ and 2+ of n = 4 and 10 and m = 2 and 5. The 2+ charge states of both of these polypeptides exhibit similar temperature dependences for equal chain lengths (n = 4, m = 2 and n = 10, m = 5) and suggest conformations dominated by Coulomb repulsion. In the absence of such Coulomb repulsion, the 1+ charge state conformations appear to be characterized by the flexibility of the polypeptide chain for which [Gly-Ser]m > [Pro]n. Comparisons of these gas phase polypeptide measurements with corresponding measurements in solution provide a direct measure of the effects of solvent on the conformational dynamics. The change in fluorescence as a function of temperature in the gas phase is two orders of magnitude greater than that in solution, a dramatic result we attribute to the restrictions on intramolecular dynamics imposed by diffusion-limited kinetics and the lack of shielding by solvent. Measurements were also made of unsolvated Pron peptides without the tryptophan (Trp) residue to isolate the interaction of the fluorescent dye with charges.

  3. Vasoconstriction triggered by hydrogen sulfide: Evidence for Na+,K+,2Cl-cotransport and L-type Ca2+ channel-mediated pathway.

    PubMed

    Orlov, Sergei N; Gusakova, Svetlana V; Smaglii, Liudmila V; Koltsova, Svetlana V; Sidorenko, Svetalana V

    2017-12-01

    This study examined the dose-dependent actions of hydrogen sulfide donor sodium hydrosulphide (NaHS) on isometric contractions and ion transport in rat aorta smooth muscle cells (SMC). Isometric contraction was measured in ring aortas segments from male Wistar rats. Activity of Na + /K + -pump and Na + ,K + ,2Cl - cotransport was measured in cultured endothelial and smooth muscle cells from the rat aorta as ouabain-sensitive and ouabain-resistant, bumetanide-sensitive components of the 86 Rb influx, respectively. NaHS exhibited the bimodal action on contractions triggered by modest depolarization ([K + ] o =30 mM). At 10 -4 M, NaHS augmented contractions of intact and endothelium-denuded strips by ~ 15% and 25%, respectively, whereas at concentration of 10 -3  M it decreased contractile responses by more than two-fold. Contractions evoked by 10 -4  M NaHS were completely abolished by bumetanide, a potent inhibitor of Na + ,K + ,2Cl - cotransport, whereas the inhibition seen at 10 -3  M NaHS was suppressed in the presence of K + channel blocker TEA. In cultured SMC, 5×10 -5  M NaHS increased Na + ,K + ,2Cl - - cotransport without any effect on the activity of this carrier in endothelial cells. In depolarized SMC, 45 Ca influx was enhanced in the presence of 10 -4  M NaHS and suppressed under elevation of [NaHS] up to 10 -3  M. 45 Ca influx triggered by 10 -4  M NaHS was abolished by bumetanide and L-type Ca 2+ channel blocker nicardipine. Our results strongly suggest that contractions of rat aortic rings triggered by low doses of NaHS are mediated by activation of Na + ,K + ,2Cl - cotransport and Ca 2+ influx via L-type channels.

  4. Recovery of Na-glucose cotransport activity after renal ischemia is impaired in mice lacking vimentin.

    PubMed

    Runembert, Isabelle; Couette, Sylviane; Federici, Pierre; Colucci-Guyon, Emma; Babinet, Charles; Briand, Pascale; Friedlander, Gérard; Terzi, Fabiola

    2004-11-01

    Vimentin, an intermediate filament protein mainly expressed in mesenchyma-derived cells, is reexpressed in renal tubular epithelial cells under many pathological conditions, characterized by intense cell proliferation. Whether vimentin reexpression is only a marker of cell dedifferentiation or is instrumental in the maintenance of cell structure and/or function is still unknown. Here, we used vimentin knockout mice (Vim(-/-)) and an experimental model of acute renal injury (30-min bilateral renal ischemia) to explore the role of vimentin. Bilateral renal ischemia induced an initial phase of acute tubular necrosis that did not require vimentin and was similar, in terms of morphological and functional changes, in Vim(+/+) and Vim(-/-) mice. However, vimentin was essential to favor Na-glucose cotransporter 1 localization to brush-border membranes and to restore Na-glucose cotransport activity in regenerating tubular cells. We show that the effect of vimentin inactivation is specific and results in persistent glucosuria. We propose that vimentin is part of a structural network that favors carrier localization to plasma membranes to restore transport activity in injured kidneys.

  5. Urine concentrating mechanism: impact of vascular and tubular architecture and a proposed descending limb urea-Na+ cotransporter

    PubMed Central

    Dantzler, William H.; Pannabecker, Thomas L.

    2012-01-01

    We extended a region-based mathematical model of the renal medulla of the rat kidney, previously developed by us, to represent new anatomic findings on the vascular architecture in the rat inner medulla (IM). In the outer medulla (OM), tubules and vessels are organized around tightly packed vascular bundles; in the IM, the organization is centered around collecting duct clusters. In particular, the model represents the separation of descending vasa recta from the descending limbs of loops of Henle, and the model represents a papillary segment of the descending thin limb that is water impermeable and highly urea permeable. Model results suggest that, despite the compartmentalization of IM blood flow, IM interstitial fluid composition is substantially more homogeneous compared with OM. We used the model to study medullary blood flow in antidiuresis and the effects of vascular countercurrent exchange. We also hypothesize that the terminal aquaporin-1 null segment of the long descending thin limbs may express a urea-Na+ or urea-Cl− cotransporter. As urea diffuses from the urea-rich papillary interstitium into the descending thin limb luminal fluid, NaCl is secreted via the cotransporter against its concentration gradient. That NaCl is then reabsorbed near the loop bend, raising the interstitial fluid osmolality and promoting water reabsorption from the IM collecting ducts. Indeed, the model predicts that the presence of the urea-Na+ or urea- Cl− cotransporter facilitates the cycling of NaCl within the IM and yields a loop-bend fluid composition consistent with experimental data. PMID:22088433

  6. Urine concentrating mechanism: impact of vascular and tubular architecture and a proposed descending limb urea-Na+ cotransporter.

    PubMed

    Layton, Anita T; Dantzler, William H; Pannabecker, Thomas L

    2012-03-01

    We extended a region-based mathematical model of the renal medulla of the rat kidney, previously developed by us, to represent new anatomic findings on the vascular architecture in the rat inner medulla (IM). In the outer medulla (OM), tubules and vessels are organized around tightly packed vascular bundles; in the IM, the organization is centered around collecting duct clusters. In particular, the model represents the separation of descending vasa recta from the descending limbs of loops of Henle, and the model represents a papillary segment of the descending thin limb that is water impermeable and highly urea permeable. Model results suggest that, despite the compartmentalization of IM blood flow, IM interstitial fluid composition is substantially more homogeneous compared with OM. We used the model to study medullary blood flow in antidiuresis and the effects of vascular countercurrent exchange. We also hypothesize that the terminal aquaporin-1 null segment of the long descending thin limbs may express a urea-Na(+) or urea-Cl(-) cotransporter. As urea diffuses from the urea-rich papillary interstitium into the descending thin limb luminal fluid, NaCl is secreted via the cotransporter against its concentration gradient. That NaCl is then reabsorbed near the loop bend, raising the interstitial fluid osmolality and promoting water reabsorption from the IM collecting ducts. Indeed, the model predicts that the presence of the urea-Na(+) or urea- Cl(-) cotransporter facilitates the cycling of NaCl within the IM and yields a loop-bend fluid composition consistent with experimental data.

  7. Fabrication of genetically engineered polypeptide@quantum dots hybrid nanogels for targeted imaging

    NASA Astrophysics Data System (ADS)

    Yang, Jie; Yao, Ming-Hao; Zhao, Dong-Hui; Zhang, Xiao-Shuai; Jin, Rui-Mei; Zhao, Yuan-Di; Liu, Bo

    2017-08-01

    Nanogels have been widely used as multifunctional drug delivery carriers because of high water content, biocompatibility, and high loading capability. We designed and biosynthesized two triblock artificial polypeptides PC10A and PC10ARGD as vehicles for encapsulating hydrophobic materials. These polypeptides can form nanogels by self-assembly when the concentration is below 2% ( w/ v). The physical properties of nanogels, including size, surface potential, and targeting domain, are able to be tuned. Hydrophobic materials from molecular size to nano-size can be loaded into the polypeptide nanogels to form hybrid nanogels. Hydrophobic quantum dots CdSe@ZnS below 10 nM were loaded into the polypeptide nanogels by ultrasonic treatment. Encapsulation endows hydrophobic QDs with good tunability of size, water solubility, stability, targeting, and biocompatibility. PC10ARGD nanogels and PC10ARGD@QDs hybrid nanogels showed excellent biocompatibility, which the cellular viabilities of HeLa and MCF-7 cells treated with 1% PC10ARGD nanogels and PC10ARGD@QDs hybrid nanogels contained 20 nM QDs were above 90 and 80%, respectively. PC10ARGD@QDs hybrid nanogels with an arginine-glycine-aspartic acid motif present efficient receptor-mediated endocytosis in α v β 3 overexpressing HeLa cells but not in the control MCF-7 cells as analyzed by confocal microscopy. These results demonstrate that such polypeptide nanogels as nanocarriers are expected to have great potential applications in biomedicine.

  8. Purification and characterization of human pancreatic polypeptide expressed in E. coli.

    PubMed

    Griko, Y V; Kapanadze, M D

    1995-08-04

    The region of cDNA encoding human pancreatic polypeptide (hPP) was obtained by polymerase chain reaction (PCR) and subcloned into an expression vector. The pancreatic polypeptide gene was expressed in Escherichia coli in two versions: as a cleavable fusion protein with IgG-binding synthetic ZZ domains of protein A from Staphylococcus aureus or with the 1-48 fragment of lambda Cro repressor. Site-specific hydrolysis by hydroxylamine was used to cleave the fusion protein, releasing the human polypeptide. The structure of the obtained hPP has been studied by scanning microcalorimetry and circular dichroism spectrometry. It has been shown that hPP in solutions close to neutral has a compact and unique spatial structure with an extended hydrophobic core. This structure is stable at 20 degrees C and co-operatively breaks down upon heating from this temperature.

  9. Ordered Nanostructures Made Using Chaperonin Polypeptides

    NASA Technical Reports Server (NTRS)

    Trent, Jonathan; McMillan, Robert; Paavola, Chad; Mogul, Rakesh; Kagawa, Hiromi

    2004-01-01

    A recently invented method of fabricating periodic or otherwise ordered nanostructures involves the use of chaperonin polypeptides. The method is intended to serve as a potentially superior and less expensive alternative to conventional lithographic methods for use in the patterning steps of the fabrication of diverse objects characterized by features of the order of nanometers. Typical examples of such objects include arrays of quantum dots that would serve as the functional building blocks of future advanced electronic and photonic devices. A chaperonin is a double-ring protein structure having a molecular weight of about 60 plus or minus 5 kilodaltons. In nature, chaperonins are ubiquitous, essential, subcellular structures. Each natural chaperonin molecule comprises 14, 16, or 18 protein subunits, arranged as two stacked rings approximately 16 to 18 nm tall by approximately 15 to 17 nm wide, the exact dimensions depending on the biological species in which it originates. The natural role of chaperonins is unknown, but they are believed to aid in the correct folding of other proteins, by enclosing unfolded proteins and preventing nonspecific aggregation during assembly. What makes chaperonins useful for the purpose of the present method is that under the proper conditions, chaperonin rings assemble themselves into higher-order structures. This method exploits such higher-order structures to define nanoscale devices. The higher-order structures are tailored partly by choice of chemical and physical conditions for assembly and partly by using chaperonins that have been mutated. The mutations are made by established biochemical techniques. The assembly of chaperonin polypeptides into such structures as rings, tubes, filaments, and sheets (two-dimensional crystals) can be regulated chemically. Rings, tubes, and filaments of some chaperonin polypeptides can, for example, function as nano vessels if they are able to absorb, retain, protect, and release gases or

  10. Improving intestinal absorption and oral bioavailability of curcumin via taurocholic acid-modified nanostructured lipid carriers.

    PubMed

    Tian, Cihui; Asghar, Sajid; Wu, Yifan; Chen, Zhipeng; Jin, Xin; Yin, Lining; Huang, Lin; Ping, Qineng; Xiao, Yanyu

    2017-01-01

    The expression of multiple receptors on intestinal epithelial cells enables an actively targeted carrier to significantly enhance the oral delivery of payloads. Conjugating the receptors' ligands on the surfaces of a particulate-delivery system allows site-specific targeting. Here, we used taurocholic acid (TCA) as a ligand for uptake of nanostructured lipid carriers (NLCs) mediated by a bile-acid transporter to improve oral bioavailability of curcumin (Cur). First, synthesis of TCA-polyethylene glycol 100-monostearate (S100-TCA) was carried out. Then, the physical and chemical properties of S100-TCA-modified Cur-loaded NLCs (Cur-TCA NLCs) with varying levels of S100-TCA modifications were investigated. Small particle size (<150 nm), high drug encapsulation (>90%), drug loading (about 3%), negative ζ-potential (-7 to -3 mV), and sustained release were obtained. In situ intestinal perfusion studies demonstrated improved absorption rate and permeability coefficient of Cur-TCA NLCs. Depending on the degree of modification, Cur-TCA NLCs displayed about a five- to 15-fold higher area under the curve in rats after oral administration than unmodified Cur NLCs, which established that the addition of S100-TCA to the NLCs boosted absorption of Cur. Further investigations of TCA NLCs might reveal a bright future for effective oral delivery of poorly bioavailable drugs.

  11. Brachytherapy Using Elastin-Like Polypeptides with (131)I Inhibit Tumor Growth in Rabbits with VX2 Liver Tumor.

    PubMed

    Liu, Xinpei; Shen, Yiming; Zhang, Xuqian; Lin, Rui; Jia, Qiang; Chang, Yixiang; Liu, Wenge; Liu, Wentian

    2016-10-01

    Brachytherapy is a targeted type of radiotherapy utilized in the treatment of cancers. Elastin-like polypeptides are a unique class of genetically engineered peptide polymers that have several attractive properties for brachytherapy. To explore the feasibility and application of brachytherapy for VX2 liver tumor using elastin-like polypeptides with (131)I so as to provide reliable experimental evidence for a new promising treatment of liver cancer. Elastin-like polypeptide as carrier was labeled with (131)I using the iodogen method. Ten eligible rabbits with VX2 liver tumor were randomly divided into the treatment group (n = 5) and control group (n = 5). The treatment group received brachytherapy using elastin-like polypeptide with (131)I, and in the control group, elastin-like polypeptide was injected into the VX2 liver tumor as a control. Periodic biochemical and imaging surveillances were required to assess treatment efficacy. The stability of elastin-like polypeptide with (131)I in vitro was maintained at over 96.8 % for 96 h. Biochemistry and imaging indicated brachytherapy using elastin-like polypeptide with (131)I for liver tumor can improve liver function and inhibit tumor growth (P < 0.05). Elastin-like polypeptide can be an ideal carrier of (131)I and have high labeling efficiency, radiochemical purity and stability. Brachytherapy using elastin-like polypeptide with (131)I for liver tumor is a useful therapy that possesses high antitumor efficacy advantages.

  12. Vectorial transport of unconjugated and conjugated bile salts by monolayers of LLC-PK1 cells doubly transfected with human NTCP and BSEP or with rat Ntcp and Bsep.

    PubMed

    Mita, Sachiko; Suzuki, Hiroshi; Akita, Hidetaka; Hayashi, Hisamitsu; Onuki, Reiko; Hofmann, Alan F; Sugiyama, Yuichi

    2006-03-01

    Na(+)-taurocholate-cotransporting peptide (NTCP)/SLC10A1 and bile salt export pump (BSEP)/ABCB11 synergistically play an important role in the transport of bile salts by the hepatocyte. In this study, we transfected human NTCP and BSEP or rat Ntcp and Bsep into LLC-PK1 cells, a cell line devoid of bile salts transporters. Transport by these cells was characterized with a focus on substrate specificity between rats and humans. The basal to apical flux of taurocholate across NTCP- and BSEP-expressing LLC-PK1 monolayers was 10 times higher than that in the opposite direction, whereas the flux across the monolayer of control and NTCP or BSEP single-expressing cells did not show any vectorial transport. The basal to apical flux of taurocholate was saturated with a K(m) value of 20 microM. Vectorial transcellular transport was also observed for cholate, chenodeoxycholate, ursodeoxycholate, their taurine and glycine conjugates, and taurodeoxycholate and glycodeoxycholate, whereas no transport of lithocholate was detected. To evaluate the respective functions of NTCP and BSEP and to compare them with those of rat Ntcp and Bsep, we calculated the clearance by each transporter in this system. A good correlation in the clearance of the examined bile salts (cholate, chenodeoxycholate, ursodeoxycholate, and their taurine or glycine conjugates) was observed between transport by human and that of rat transporters in terms of their rank order: for NTCP, taurine conjugates > glycine conjugates > unconjugated bile salts, and for BSEP, unconjugated bile salts and glycine conjugates > taurine conjugates. In conclusion, the substrate specificity of human and rat NTCP and BSEP appear to be very similar at least for monovalent bile salts under physiological conditions.

  13. HBV life cycle is restricted in mouse hepatocytes expressing human NTCP.

    PubMed

    Li, Hanjie; Zhuang, Qiuyu; Wang, Yuze; Zhang, Tianying; Zhao, Jinghua; Zhang, Yali; Zhang, Junfang; Lin, Yi; Yuan, Quan; Xia, Ningshao; Han, Jiahuai

    2014-03-01

    Recent studies have revealed that human sodium taurocholate cotransporting polypeptide (SLC10A1 or NTCP) is a functional cellular receptor for hepatitis B virus (HBV). However, whether human NTCP can support HBV infection in mouse hepatocyte cell lines has not been clarified. Because an HBV-permissible mouse model would be helpful for the study of HBV pathogenesis, it is necessary to investigate whether human NTCP supports the susceptibility of mouse hepatocyte cell lines to HBV. The results show that exogenous human NTCP expression can render non-susceptible HepG2 (human), Huh7 (human), Hepa1-6 (mouse), AML-12 (mouse) cell lines and primary mouse hepatocyte (PMH) cells susceptible to hepatitis D virus (HDV) which employs HBV envelope proteins. However, human NTCP could only introduce HBV susceptibility in human-derived HepG2 and Huh7 cells, but not in mouse-derived Hepa1-6, AML-12 or PMH cells. These data suggest that although human NTCP is a functional receptor that mediates HBV infection in human cells, it cannot support HBV infection in mouse hepatocytes. Our study indicated that the restriction of HBV in mouse hepatocytes likely occurs after viral entry but prior to viral transcription. We have excluded the role of mouse hepatocyte nuclear factors in the restriction of the HBV life cycle and showed that knockdown or inhibition of Sting, TBK1, IRF3 or IRF7, the components of the anti-viral signaling pathways, had no effect on HBV infection in mouse hepatocytes. Therefore, murine restriction factors that limit HBV infection need to be identified before a HBV-permissible mouse line can be created.

  14. Paeoniflorin ameliorates cholestasis via regulating hepatic transporters and suppressing inflammation in ANIT-fed rats.

    PubMed

    Zhao, Yanling; He, Xuan; Ma, Xiao; Wen, Jianxia; Li, Pengyan; Wang, Jiabo; Li, Ruisheng; Zhu, Yun; Wei, Shizhang; Li, Haotian; Zhou, Xuelin; Li, Kun; Liu, Honghong; Xiao, Xiaohe

    2017-05-01

    Paeoniflorin has shown the obvious effect on cholestasis according to our previous research. However, its mechanism has not been absolutely explored yet. This study aims at evaluating the potential effect of paeoniflorin on alpha-naphthylisothiocyanate (ANIT) -induced cholestasis by inhibiting nuclear factor kappa-B (NF-κB) and simultaneously regulating hepatocyte transporters. Cholestasis was induced by administration of ANIT. The effect of paeoniflorin on serum indices such as total bilirubin (TBIL), direct bilirubin (DBIL), aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), γ-glutamyltranspeptidase (γ-GT), total bile acid (TBA) and histopathology of liver were determined. Liver protein levels of NF-κB, interleukin 1β (IL-1β) and the hepatocyte transporters such as Na + /taurocholate cotransporting polypeptide (NTCP), bile salt export pump (BSEP), multidrug resistance-associated protein 2 (MRP2) and cholesterol 7α-hydroxylase (Cyp7a1) were investigated by western blotting. The results demonstrated that paeoniflorin could decrease serum ALT, AST, ALP, γ-GT, TBIL, DBIL and TBA in ANIT-treated rats. Histological examination revealed that rats treated with paeoniflorin represented fewer neutrophils infiltration, edema and necrosis in liver tissue compared with ANIT rats. Moreover, paeoniflorin significantly reduced the over expressions of NF-κB and IL-1β induced by ANIT in liver tissue. In addition, the relative protein expressions of NTCP, BSEP, MRP2 but not Cyp7a1 were also restored by paeoniflorin. The potential mechanism of paeoniflorin in alleviating ANIT-induced cholestasis seems to be related to reduce the over expressions of NF-κB and hepatocyte transporters such as NTCP, BSEP as well as MRP2. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  15. DNA Polymerase κ Is a Key Cellular Factor for the Formation of Covalently Closed Circular DNA of Hepatitis B Virus.

    PubMed

    Qi, Yonghe; Gao, Zhenchao; Xu, Guangwei; Peng, Bo; Liu, Chenxuan; Yan, Huan; Yao, Qiyan; Sun, Guoliang; Liu, Yang; Tang, Dingbin; Song, Zilin; He, Wenhui; Sun, Yinyan; Guo, Ju-Tao; Li, Wenhui

    2016-10-01

    Hepatitis B virus (HBV) infection of hepatocytes begins by binding to its cellular receptor sodium taurocholate cotransporting polypeptide (NTCP), followed by the internalization of viral nucleocapsid into the cytoplasm. The viral relaxed circular (rc) DNA genome in nucleocapsid is transported into the nucleus and converted into covalently closed circular (ccc) DNA to serve as a viral persistence reservoir that is refractory to current antiviral therapies. Host DNA repair enzymes have been speculated to catalyze the conversion of rcDNA to cccDNA, however, the DNA polymerase(s) that fills the gap in the plus strand of rcDNA remains to be determined. Here we conducted targeted genetic screening in combination with chemical inhibition to identify the cellular DNA polymerase(s) responsible for cccDNA formation, and exploited recombinant HBV with capsid coding deficiency which infects HepG2-NTCP cells with similar efficiency of wild-type HBV to assure cccDNA synthesis is exclusively from de novo HBV infection. We found that DNA polymerase κ (POLK), a Y-family DNA polymerase with maximum activity in non-dividing cells, substantially contributes to cccDNA formation during de novo HBV infection. Depleting gene expression of POLK in HepG2-NTCP cells by either siRNA knockdown or CRISPR/Cas9 knockout inhibited the conversion of rcDNA into cccDNA, while the diminished cccDNA formation in, and hence the viral infection of, the knockout cells could be effectively rescued by ectopic expression of POLK. These studies revealed that POLK is a crucial host factor required for cccDNA formation during a de novo HBV infection and suggest that POLK may be a potential target for developing antivirals against HBV.

  16. Erythropoietin attenuates loss of potassium chloride co-transporters following prenatal brain injury.

    PubMed

    Jantzie, L L; Getsy, P M; Firl, D J; Wilson, C G; Miller, R H; Robinson, S

    2014-07-01

    Therapeutic agents that restore the inhibitory actions of γ-amino butyric acid (GABA) by modulating intracellular chloride concentrations will provide novel avenues to treat stroke, chronic pain, epilepsy, autism, and neurodegenerative and cognitive disorders. During development, upregulation of the potassium-chloride co-transporter KCC2, and the resultant switch from excitatory to inhibitory responses to GABA guide the formation of essential inhibitory circuits. Importantly, maturation of inhibitory mechanisms is also central to the development of excitatory circuits and proper balance between excitatory and inhibitory networks in the developing brain. Loss of KCC2 expression occurs in postmortem samples from human preterm infant brains with white matter lesions. Here we show that late gestation brain injury in a rat model of extreme prematurity impairs the developmental upregulation of potassium chloride co-transporters during a critical postnatal period of circuit maturation in CA3 hippocampus by inducing a sustained loss of oligomeric KCC2 via a calpain-dependent mechanism. Further, administration of erythropoietin (EPO) in a clinically relevant postnatal dosing regimen following the prenatal injury protects the developing brain by reducing calpain activity, restoring oligomeric KCC2 expression and attenuating KCC2 fragmentation, thus providing the first report of a safe therapy to address deficits in KCC2 expression. Together, these data indicate it is possible to reverse abnormalities in KCC2 expression during the postnatal period, and potentially reverse deficits in inhibitory circuit formation central to cognitive impairment and epileptogenesis. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Moisture absorption and retention properties, and activity in alleviating skin photodamage of collagen polypeptide from marine fish skin.

    PubMed

    Hou, Hu; Li, Bafang; Zhang, Zhaohui; Xue, Changhu; Yu, Guangli; Wang, Jingfeng; Bao, Yuming; Bu, Lin; Sun, Jiang; Peng, Zhe; Su, Shiwei

    2012-12-01

    Collagen polypeptides were prepared from cod skin. Moisture absorption and retention properties of collagen polypeptides were determined at different relative humidities. In addition, the protective effects of collagen polypeptide against UV-induced damage to mouse skin were evaluated. Collagen polypeptides had good moisture absorption and retention properties and could alleviate the damage induced by UV radiation. The action mechanisms of collagen polypeptide mainly involved enhancing immunity, reducing the loss of moisture and lipid, promoting anti-oxidative properties, inhibiting the increase of glycosaminoglycans, repairing the endogenous collagen and elastin protein fibres, and maintaining the ratio of type III to type I collagen. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Molecular and functional expression of cation-chloride cotransporters in dorsal root ganglion neurons during postnatal maturation

    PubMed Central

    Mao, Shihong; Garzon-Muvdi, Tomás; Di Fulvio, Mauricio; Chen, Yanfang; Delpire, Eric; Alvarez, Francisco J.

    2012-01-01

    GABA depolarizes and excites central neurons during early development, becoming inhibitory and hyperpolarizing with maturation. This “developmental shift” occurs abruptly, reflecting a decrease in intracellular Cl− concentration ([Cl−]i) and a hyperpolarizing shift in Cl− equilibrium potential due to upregulation of the K+-Cl− cotransporter KCC2b, a neuron-specific Cl− extruder. In contrast, primary afferent neurons (PANs) are depolarized by GABA throughout adulthood because of expression of NKCC1, a Na+-K+-2Cl− cotransporter that accumulates Cl− above equilibrium. The GABAA-mediated depolarization of PANs determines presynaptic inhibition in the spinal cord, a key mechanism gating somatosensory information. Little is known about developmental changes in Cl− transporter expression and Cl− homeostasis in PANs. Whether NKCC1 is expressed in PANs of all phenotypes or is restricted to subpopulations (e.g., nociceptors) is debatable. Likewise, whether PANs express KCC2s is controversial. We investigated NKCC1 and K+-Cl− cotransporter expression in rat and mouse dorsal root ganglion (DRG) neurons with molecular methods. Using fluorescence imaging microscopy, we measured [Cl−]i in acutely dissociated rat DRG neurons (P0–P21) loaded with N-(ethoxycarbonylmethyl)-6-methoxyquinolinium bromide and classified with phenotypic markers. DRG neurons of all sizes express two NKCC1 mRNAs, one full-length and a shorter splice variant lacking exon 21. Immunolabeling with validated antibodies revealed ubiquitous expression of NKCC1 in DRG neurons irrespective of postnatal age and phenotype. As maturation progresses [Cl−]i decreases gradually, persisting above equilibrium in >95% mature neurons. DRG neurons express mRNAs for KCC1, KCC3s, and KCC4, but not for KCC2s. Mechanisms underlying PANs' developmental changes in Cl− homeostasis are discussed and compared with those of central neurons. PMID:22457464

  19. Polycondensation of Asparagine-comprising Dipeptides in Aqueous Media-A Simulation of Polypeptide Formation in Primordial Earth Hydrosphere

    NASA Astrophysics Data System (ADS)

    Munegumi, Toratane; Tanikawa, Naoya

    2017-09-01

    Asparagine and aspartic acid might have mutually transformed in the primordial hydrosphere of the earth, if ammonia and aspartic acid had existed in equilibrium. These amino acids seem to contribute to polypeptides, while the simple amino acids glycine and alanine easily form cyclic dipeptides and do not achieve long peptide chains. Asparagine-comprising dipeptides contribute some kinds of activation forms of dipeptides because these can polymerize faster than asparagine only. The new finding of polypeptide formation suggests a pathway of sequential polypeptides to evolve a diversity of polypeptides.

  20. Polycondensation of Asparagine-comprising Dipeptides in Aqueous Media-A Simulation of Polypeptide Formation in Primordial Earth Hydrosphere.

    PubMed

    Munegumi, Toratane; Tanikawa, Naoya

    2017-09-01

    Asparagine and aspartic acid might have mutually transformed in the primordial hydrosphere of the earth, if ammonia and aspartic acid had existed in equilibrium. These amino acids seem to contribute to polypeptides, while the simple amino acids glycine and alanine easily form cyclic dipeptides and do not achieve long peptide chains. Asparagine-comprising dipeptides contribute some kinds of activation forms of dipeptides because these can polymerize faster than asparagine only. The new finding of polypeptide formation suggests a pathway of sequential polypeptides to evolve a diversity of polypeptides.

  1. Application of Statistical Thermodynamics To Predict the Adsorption Properties of Polypeptides in Reversed-Phase HPLC.

    PubMed

    Tarasova, Irina A; Goloborodko, Anton A; Perlova, Tatyana Y; Pridatchenko, Marina L; Gorshkov, Alexander V; Evreinov, Victor V; Ivanov, Alexander R; Gorshkov, Mikhail V

    2015-07-07

    The theory of critical chromatography for biomacromolecules (BioLCCC) describes polypeptide retention in reversed-phase HPLC using the basic principles of statistical thermodynamics. However, whether this theory correctly depicts a variety of empirical observations and laws introduced for peptide chromatography over the last decades remains to be determined. In this study, by comparing theoretical results with experimental data, we demonstrate that the BioLCCC: (1) fits the empirical dependence of the polypeptide retention on the amino acid sequence length with R(2) > 0.99 and allows in silico determination of the linear regression coefficients of the log-length correction in the additive model for arbitrary sequences and lengths and (2) predicts the distribution coefficients of polypeptides with an accuracy from 0.98 to 0.99 R(2). The latter enables direct calculation of the retention factors for given solvent compositions and modeling of the migration dynamics of polypeptides separated under isocratic or gradient conditions. The obtained results demonstrate that the suggested theory correctly relates the main aspects of polypeptide separation in reversed-phase HPLC.

  2. Importance of inhibiting sodium-glucose cotransporter and its compelling indication in type 2 diabetes: pathophysiological hypothesis.

    PubMed

    Kimura, Genjiro

    2016-03-01

    Primarily the sodium-glucose cotransporter 2 (SGLT2) inhibitors suppress the cotransport of glucose and sodium from the tubular lumen of proximal tubules to the blood and enhance the glucose excretion into urine. Therefore, glucose and caloric balances become negative, making the blood glucose level as well as insulin secretion both reduced. On the other hand, the proximal tubular fluid, constituting with low chloride concentration because of SGLT2 inhibition, is transferred to the loop of Henle. On the low chloride conditions, the reabsorption mechanisms in the loop of Henle do not work, as if loop diuretics are given. Finally, blood pressure is also lowered secondarily due to the loop diuretic action by SGLT2 inhibitions. Thus, the metabolic and hemodynamic combined systems synergistically interact further to suppress the risks leading to atherosclerosis and organs damage. Precise mechanisms for SGLT2 inhibitors to work in various aspects especially in preventing organ damage and cardiovascular events must be clarified further. Copyright © 2016 American Society of Hypertension. Published by Elsevier Inc. All rights reserved.

  3. Effects of side group functionality and molecular weight on the activity of synthetic antimicrobial polypeptides.

    PubMed

    Engler, Amanda C; Shukla, Anita; Puranam, Sravanthi; Buss, Hilda G; Jreige, Nina; Hammond, Paula T

    2011-05-09

    The rapid emergence of antibiotic-resistant bacteria along with increasing difficulty in biofilm treatment has caused an immediate need for the development of new classes of antimicrobial therapeutics. We have developed a library of antimicrobial polypeptides, prepared by the ring-opening polymerization of γ-propargyl-L-glutamate N-carboxyanhydride and the alkyne-azide cycloaddition click reaction, which mimic the favorable characteristics of naturally occurring antimicrobial peptides (AmPs). AmPs are known not to cause drug resistance as well as prevent bacteria attachment on surfaces. The ease and scale of synthesis of the antimicrobial polypeptides developed here are significantly improved over the traditional Merrifield synthetic peptide approaches needed for naturally occurring antimicrobial peptides and avoids the unique challenges of biosynthetic pathways. The polypeptides range in length from 30 to 140 repeat units and can have varied side group functionality, including primary, secondary, tertiary, and quaternary amines with hydrocarbon side chains ranging from 1 to 12 carbons long. Overall, we find these polypeptides to exhibit broad-spectrum activity against both Gram positive and Gram negative bacteria, namely, S. aureus and E. coli , while having very low hemolytic activity. Many of the polypeptides can also be used as surface coatings to prevent bacterial attachment. The polypeptide library developed in this work addresses the need for effective biocompatible therapeutics for drug delivery and medical device coatings.

  4. Self-assemble nanoparticles based on polypeptides containing C-terminal luminescent Pt-cysteine complex

    NASA Astrophysics Data System (ADS)

    Vlakh, E. G.; Grachova, E. V.; Zhukovsky, D. D.; Hubina, A. V.; Mikhailova, A. S.; Shakirova, J. R.; Sharoyko, V. V.; Tunik, S. P.; Tennikova, T. B.

    2017-02-01

    The growing attention to the luminescent nanocarriers is strongly stimulated by their potential application as drug delivery systems and by the necessity to monitor their distribution in cells and tissues. In this communication we report on the synthesis of amphiphilic polypeptides bearing C-terminal phosphorescent label together with preparation of nanoparticles using the polypeptides obtained. The approach suggested is based on a unique and highly technological process where the new phosphorescent Pt-cysteine complex serves as initiator of the ring-opening polymerization of α-amino acid N-carboxyanhydrides to obtain the polypeptides bearing intact the platinum chromophore covalently bound to the polymer chain. It was established that the luminescent label retains unchanged its emission characteristics not only in the polypeptides but also in more complicated nanoaggregates such as the polymer derived amphiphilic block-copolymers and self-assembled nanoparticles. The phosphorescent nanoparticles display no cytotoxicity and hemolytic activity in the tested range of concentrations and easily internalize into living cells that makes possible in vivo cell visualization, including prospective application in time resolved imaging and drug delivery monitoring.

  5. Versatile Synthesis of Stable, Functional Polypeptides via Reaction with Epoxides.

    PubMed

    Gharakhanian, Eric G; Deming, Timothy J

    2015-06-08

    Methodology was developed for efficient alkylation of methionine residues using epoxides as a general strategy to introduce a wide range of functional groups onto polypeptides. Use of a spacer between epoxide and functional groups further allowed addition of sterically demanding functionalities. Contrary to other methods to alkylate methionine residues, epoxide alkylations allow the reactions to be conducted in wet protic media and give sulfonium products that are stable against dealkylation. These functionalizations are notable since they are chemoselective, utilize stable and readily available epoxides, and allow facile incorporation of an unprecedented range of functional groups onto simple polypeptides using stable linkages.

  6. Generation of polypeptide-templated gold nanoparticles using ionizing radiation.

    PubMed

    Walker, Candace Rae; Pushpavanam, Karthik; Nair, Divya Geetha; Potta, Thrimoorthy; Sutiyoso, Caesario; Kodibagkar, Vikram D; Sapareto, Stephen; Chang, John; Rege, Kaushal

    2013-08-13

    Ionizing radiation, including γ rays and X-rays, are high-energy electromagnetic radiation with diverse applications in nuclear energy, astrophysics, and medicine. In this work, we describe the use of ionizing radiation and cysteine-containing elastin-like polypeptides (C(n)ELPs, where n = 2 or 12 cysteines in the polypeptide sequence) for the generation of gold nanoparticles. In the presence of C(n)ELPs, ionizing radiation doses higher than 175 Gy resulted in the formation of maroon-colored gold nanoparticle dispersions, with maximal absorbance at 520 nm, from colorless metal salts. Visible color changes were not observed in any of the control systems, indicating that ionizing radiation, gold salt solution, and C(n)ELPs were all required for nanoparticle formation. The hydrodynamic diameters of nanoparticles, determined using dynamic light scattering, were in the range of 80-150 nm, while TEM imaging indicated the formation of gold cores 10-20 nm in diameter. Interestingly, C2ELPs formed 1-2 nm diameter gold nanoparticles in the absence of radiation. Our results describe a facile method of nanoparticle formation in which nanoparticle size can be tailored based on radiation dose and C(n)ELP type. Further improvements in these polypeptide-based systems can lead to colorimetric detection of ionizing radiation in a variety of applications.

  7. Synthetic profiles of polypeptides of human oocytes and normal and abnormal preimplantation embryos.

    PubMed

    Capmany, G; Bolton, V N

    1999-09-01

    There is considerable variation in the rate of development in vitro of individual preimplantation human embryos. The relationship between the rate of development and patterns of polypeptide synthesis in individual embryos was examined using SDS-PAGE and autoradiography. After incubation in [35S]methionine, 19 polypeptide bands were identified that change between fertilization and the morula stage. Although changes in two of the bands occurred in embryos that were developing normally and in ageing oocytes, and are thus independent of fertilization, the changes identified in the remaining 17 bands occurred only after fertilization. In embryos that were developing abnormally, as assessed by delayed cleavage, cleavage arrest or extensive fragmentation, the alteration in polypeptide synthetic profiles increased with increasing abnormality.

  8. Characterization of an amidated form of pancreatic polypeptide from the daddy sculpin (Cottus scorpius).

    PubMed

    Conlon, J M; Schmidt, W E; Gallwitz, B; Falkmer, S; Thim, L

    1986-12-30

    The primary structure of pancreatic polypeptide from the teleostean fish, Cottus scorpius (daddy sculpin) was established as: YPPQPESPGGNASPEDWAKYHAAVRHYVNLITRQRYNH2 The presence of a COOH-terminally alpha-amidated amino acid was established using an HPLC method of general applicability. Although the peptide shows strong homology towards anglerfish pancreatic polypeptide (86%), homology towards porcine peptide YY (PYY) (61%) and porcine neuropeptide Y (NPY) (61%) was greater than towards porcine pancreatic polypeptide (PP) (47%). This result supports suggestions that the gene duplication events which led to PP, NPY and PYY formation took place after the time of divergence of fish and mammals.

  9. Molecular diversity and hypoglycemic polypeptide-P content of Momordica charantia in different accessions and different seasons.

    PubMed

    Tian, Miao; Zeng, Xiang-Qing; Song, Huan-Lei; Hu, Shan-Xin; Wang, Fu-Jun; Zhao, Jian; Hu, Zhi-Bi

    2015-04-01

    Momordica charantia (MC) has been used for treating diabetes mellitus from ancient times in Asia, Africa and South America. There are many MC accessions in local markets. Polypeptide-P as a main hypoglycemic component in MC was first studied in this experiment to illustrate the different contents in MC of different accessions and different harvesting times. Nineteen MC accessions collected from different regions were clustered into three groups using random amplified polymorphic DNA (RAPD) and inter-simple sequence repeat (ISSR) molecular markers. Content of polypeptide-P in the tested MC accessions was detected by western blot (WB) method. The WB results revealed that polypeptide-P was detected in MC accessions harvested in June and July but not in September and October. Furthermore, Polypeptide-P content corresponded well with the MC accessions. Our results suggest that the MC accessions and the harvesting times or the weather during harvest play significant roles in high content of polypeptide-P. © 2014 Society of Chemical Industry.

  10. Cotranslational structure acquisition of nascent polypeptides monitored by NMR spectroscopy.

    PubMed

    Eichmann, Cédric; Preissler, Steffen; Riek, Roland; Deuerling, Elke

    2010-05-18

    The folding of proteins in living cells may start during their synthesis when the polypeptides emerge gradually at the ribosomal exit tunnel. However, our current understanding of cotranslational folding processes at the atomic level is limited. We employed NMR spectroscopy to monitor the conformation of the SH3 domain from alpha-spectrin at sequential stages of elongation via in vivo ribosome-arrested (15)N,(13)C-labeled nascent polypeptides. These nascent chains exposed either the entire SH3 domain or C-terminally truncated segments thereof, thus providing snapshots of the translation process. We show that nascent SH3 polypeptides remain unstructured during elongation but fold into a compact, native-like beta-sheet assembly when the entire sequence information is available. Moreover, the ribosome neither imposes major conformational constraints nor significantly interacts with exposed unfolded nascent SH3 domain moieties. Our data provide evidence for a domainwise folding of the SH3 domain on ribosomes without significant population of folding intermediates. The domain follows a thermodynamically favorable pathway in which sequential folding units are stabilized, thus avoiding kinetic traps during the process of cotranslational folding.

  11. Catalytic and reactive polypeptides and methods for their preparation and use

    DOEpatents

    Schultz, Peter

    1994-01-01

    Catalytic and reactive polypeptides include a binding site specific for a reactant or reactive intermediate involved in a chemical reaction of interest. The polypeptides further include at least one active functionality proximate the binding site, where the active functionality is capable of catalyzing or chemically participating in the chemical reaction in such a way that the reaction rate is enhanced. Methods for preparing the catalytic peptides include chemical synthesis, site-directed mutagenesis of antibody and enzyme genes, covalent attachment of the functionalities through particular amino acid side chains, and the like.

  12. Lithium fluxes indicate presence of Na-Cl cotransport (NCC) in human lens epithelial cells.

    PubMed

    Lauf, Peter K; Chimote, Ameet A; Adragna, Norma C

    2008-01-01

    During regulatory volume decrease (RVD) of human lens epithelial cells (hLECs) by clotrimazole (CTZ)-sensitive K fluxes, Na-K-2Cl cotransport (NKCC) remains active and K-Cl cotransport (KCC) inactive. To determine whether such an abnormal behavior was caused by RVD-induced cell shrinkage, NKCC was measured in the presence of either CTZ or in high K media to prevent RVD. NKCC transports RbCl + NaCl, and LiCl + KCl; thus ouabain-insensitive, bumetanide-sensitive (BS) or Cl-dependent (ClD) Rb and Li fluxes were determined in hyposmotic high NaCl media with CTZ, or in high KCl media alone, or with sulfamate (Sf) or nitrate as Cl replacement at varying Rb, Li or Cl mol fractions (MF). Unexpectedly, NKCC was inhibited by 80% with CTZ (IC(50) = 31 microM). In isosmotic (300 mOsM) K, Li influx was approximately 1/3 of Rb influx in Na, 50% lower in Sf, and bumetanide-insensitive (BI). In hypotonic (200 mOsM) K, only the ClD but not BS Li fluxes were detected. At Li MFs from 0.1-1, Li fluxes fitted a bell-shaped curve maxing at approximately 0.6 Li MF, with the BS fluxes equaling approximately 1/4 of the ClD-Li influx. The difference, i.e. the BI/ClD Li influx, saturated with increasing Li and Cl MFs, with K(ms) for Li of 11 with, and 7 mM without K, and of approximately 46 mM for Cl. Inhibition of this K-independent Li influx by thiazides was weak whilst furosemide (<100 microM) was ineffective. Reverse transcription polymerase chain reaction and Western blots verified presence of both NKCC1 and Na-Cl cotransport (NCC). In conclusion, in hyposmotic high K media, which prevents CTZ-sensitive K flux-mediated RVD in hLECs, NKCC1, though molecularly expressed, was functionally silent. However, a K-independent and moderately thiazide-sensitive ClD-Li flux, i.e. LiCC, likely occurring through NCC was detected operationally and molecularly. (c) 2008 S. Karger AG, Basel.

  13. Methods of using viral replicase polynucleotides and polypeptides

    DOEpatents

    Gordon-Kamm, William J.; Lowe, Keith S.; Bailey, Matthew A.; Gregory, Carolyn A.; Hoerster, George J.; Larkins, Brian A.; Dilkes, Brian R.; Burnett, Ronald; Woo, Young Min

    2007-12-18

    The invention provides novel methods of using viral replicase polypeptides and polynucleotides. Included are methods for increasing transformation frequencies, increasing crop yield, providing a positive growth advantage, modulating cell division, transiently modulating cell division, and for providing a means of positive selection.

  14. N-terminus conservation in the anchor polypeptide of a prokaryotic and eukaryotic alga. [Nostoc; Porphydium cruentum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gantt, E.; Lipschultz, C.A.; Cunningham, F.X. Jr.

    1987-04-01

    Energy flow between the extrinsic phycobilisomes and the photosystems within thylakoids, is probably mediated by a blue anchor polypeptide. Polypeptides in the 94 kD range, purified by LiDS-PAGE from phycobilisomes of Nostoc and Porphyrdium cruentum, crossreacted with anti-Nostoc-94 (although weakly with the latter). Though rich in ASP and GLU, the polypeptides were very hydrophobic, and low in MET, CYS, and HIS. Partial sequence of the N-terminus shows considerable homology 1 - 5 - 10 - 15 - 20 N: (S)-V-K-A-S-G-G-S-S-V-A-(R)-P-Q-L-Y-Q-(G)-L-(A)-V- P: V-()-K-A-S-G-G-S-P-V-V-K-P-Q-L-Y-(K)-()-A-(S)- between the species. There is a lack of homology when compared with ..cap alpha.. and ..beta.. polypeptides ofmore » allophycocyanin with rod linkers of phycobilisomes and other phycobiliproteins. Polypeptides of 94 and 92 kD from thylakoids of Nostoc, also immunoreactive with anti-94, were blocked at the N-terminus.« less

  15. A mechanistic framework for in vitro-in vivo extrapolation of liver membrane transporters: prediction of drug-drug interaction between rosuvastatin and cyclosporine.

    PubMed

    Jamei, M; Bajot, F; Neuhoff, S; Barter, Z; Yang, J; Rostami-Hodjegan, A; Rowland-Yeo, K

    2014-01-01

    The interplay between liver metabolising enzymes and transporters is a complex process involving system-related parameters such as liver blood perfusion as well as drug attributes including protein and lipid binding, ionisation, relative magnitude of passive and active permeation. Metabolism- and/or transporter-mediated drug-drug interactions (mDDIs and tDDIs) add to the complexity of this interplay. Thus, gaining meaningful insight into the impact of each element on the disposition of a drug and accurately predicting drug-drug interactions becomes very challenging. To address this, an in vitro-in vivo extrapolation (IVIVE)-linked mechanistic physiologically based pharmacokinetic (PBPK) framework for modelling liver transporters and their interplay with liver metabolising enzymes has been developed and implemented within the Simcyp Simulator(®). In this article an IVIVE technique for liver transporters is described and a full-body PBPK model is developed. Passive and active (saturable) transport at both liver sinusoidal and canalicular membranes are accounted for and the impact of binding and ionisation processes is considered. The model also accommodates tDDIs involving inhibition of multiple transporters. Integrating prior in vitro information on the metabolism and transporter kinetics of rosuvastatin (organic-anion transporting polypeptides OATP1B1, OAT1B3 and OATP2B1, sodium-dependent taurocholate co-transporting polypeptide [NTCP] and breast cancer resistance protein [BCRP]) with one clinical dataset, the PBPK model was used to simulate the drug disposition of rosuvastatin for 11 reported studies that had not been used for development of the rosuvastatin model. The simulated area under the plasma concentration-time curve (AUC), maximum concentration (C max) and the time to reach C max (t max) values of rosuvastatin over the dose range of 10-80 mg, were within 2-fold of the observed data. Subsequently, the validated model was used to investigate the impact of

  16. Biosynthesis of reovirus-specified polypeptides: the reovirus s1 mRNA encodes two primary translation products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobs, B.L.; Samuel, C.E.

    1985-05-01

    Reovirus serotypes 1 (Lang strain) and 3 (Dearing strain) code for a hitherto unrecognized low-molecular-weight polypeptide of Mr approximately 12,000. This polypeptide (p12) was synthesized in vitro in L-cell-free protein synthesizing systems programmed with either reovirus serotype 1 mRNA, reovirus serotype 3 mRNA, or with denatured reovirus genome double-stranded RNA, and in vivo in L-cell cultures infected with either reovirus serotype. Pulse-chase experiments in vivo, and the relative kinetics of synthesis of p12 in vitro, indicate that it is a primary translation product. Fractionation of reovirus mRNAs by velocity sedimentation and translation of separated mRNAs in vitro suggests that p12more » is coded for by the s1 mRNA, which also codes for the previously recognized sigma 1 polypeptide. Synthesis of both p12 and sigma 1 in vitro in L-cell-free protein synthesizing systems programmed with denatured reovirus genome double-stranded RNA also suggests that these two polypeptides can be coded by the same mRNA species. It is proposed that the Mr approximately 12,000 polypeptide encoded by the S1 genome segment be designated sigma 1bNS, and that the polypeptide previously designated sigma 1 be renamed sigma 1a.« less

  17. Reversible thermal denaturation of a 60-kDa genetically engineered beta-sheet polypeptide.

    PubMed

    Lednev, Igor K; Ermolenkov, Vladimir V; Higashiya, Seiichiro; Popova, Ludmila A; Topilina, Natalya I; Welch, John T

    2006-11-15

    A de novo 687-amino-acid residue polypeptide with a regular 32-amino-acid repeat sequence, (GA)(3)GY(GA)(3)GE(GA)(3)GH(GA)(3)GK, forms large beta-sheet assemblages that exhibit remarkable folding properties and, as well, form fibrillar structures. This construct is an excellent tool to explore the details of beta-sheet formation yielding intimate folding information that is otherwise difficult to obtain and may inform folding studies of naturally occurring materials. The polypeptide assumes a fully folded antiparallel beta-sheet/turn structure at room temperature, and yet is completely and reversibly denatured at 125 degrees C, adopting a predominant polyproline II conformation. Deep ultraviolet Raman spectroscopy indicated that melting/refolding occurred without any spectroscopically distinct intermediates, yet the relaxation kinetics depend on the initial polypeptide state, as would be indicative of a non-two-state process. Thermal denaturation and refolding on cooling appeared to be monoexponential with characteristic times of approximately 1 and approximately 60 min, respectively, indicating no detectable formation of hairpin-type nuclei in the millisecond timescale that could be attributed to nonlocal "nonnative" interactions. The polypeptide folding dynamics agree with a general property of beta-sheet proteins, i.e., initial collapse precedes secondary structure formation. The observed folding is much faster than expected for a protein of this size and could be attributed to a less frustrated free-energy landscape funnel for folding. The polypeptide sequence suggests an important balance between the absence of strong nonnative contacts (salt bridges or hydrophobic collapse) and limited repulsion of charged side chains.

  18. K-Cl cotransporters, cell volume homeostasis, and neurological disease

    PubMed Central

    Kahle, Kristopher T.; Khanna, Arjun R.; Alper, Seth L.; Adragna, Norma C.; Lauf, Peter K.; Sun, Dandan; Delpire, Eric

    2016-01-01

    K+-Cl− cotransporters (KCCs) were originally characterized as regulators of red blood cell (RBC) volume. Since then, four distinct KCCs have been cloned, and their importance for volume regulation has been demonstrated in other cell types. Genetic models of certain KCCs, such as KCC3, and their inhibitory WNK-STE20/SPS1-related proline/alanine-rich kinase (SPAK) serine-threonine kinases, have demonstrated the evolutionary necessity of these molecules for nervous system cell volume regulation, structure, and function, and their involvement in neurological disease. The recent characterization of a swelling-activated dephosphorylation mechanism that potently stimulates the KCCs has pinpointed a potentially druggable switch of KCC activity. An improved understanding of WNK/SPAK-mediated KCC cell volume regulation in the nervous system might reveal novel avenues for the treatment of multiple neurological diseases. PMID:26142773

  19. K-Cl cotransporters, cell volume homeostasis, and neurological disease.

    PubMed

    Kahle, Kristopher T; Khanna, Arjun R; Alper, Seth L; Adragna, Norma C; Lauf, Peter K; Sun, Dandan; Delpire, Eric

    2015-08-01

    K(+)-Cl(-) cotransporters (KCCs) were originally characterized as regulators of red blood cell (RBC) volume. Since then, four distinct KCCs have been cloned, and their importance for volume regulation has been demonstrated in other cell types. Genetic models of certain KCCs, such as KCC3, and their inhibitory WNK-STE20/SPS1-related proline/alanine-rich kinase (SPAK) serine-threonine kinases, have demonstrated the evolutionary necessity of these molecules for nervous system cell volume regulation, structure, and function, and their involvement in neurological disease. The recent characterization of a swelling-activated dephosphorylation mechanism that potently stimulates the KCCs has pinpointed a potentially druggable switch of KCC activity. An improved understanding of WNK/SPAK-mediated KCC cell volume regulation in the nervous system might reveal novel avenues for the treatment of multiple neurological diseases. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Hydration and conformational mechanics of single, end-tethered elastin-like polypeptides.

    PubMed

    Valiaev, Alexei; Lim, Dong Woo; Schmidler, Scott; Clark, Robert L; Chilkoti, Ashutosh; Zauscher, Stefan

    2008-08-20

    We investigated the effect of temperature, ionic strength, solvent polarity, and type of guest residue on the force-extension behavior of single, end-tethered elastin-like polypeptides (ELPs), using single molecule force spectroscopy (SMFS). ELPs are stimulus-responsive polypeptides that contain repeats of the five amino acids Val-Pro-Gly-Xaa-Gly (VPGXG), where Xaa is a guest residue that can be any amino acid with the exception of proline. We fitted the force-extension data with a freely jointed chain (FJC) model which allowed us to resolve small differences in the effective Kuhn segment length distributions that largely arise from differences in the hydrophobic hydration behavior of ELP. Our results agree qualitatively with predictions from recent molecular dynamics simulations and demonstrate that hydrophobic hydration modulates the molecular elasticity for ELPs. Furthermore, our results show that SMFS, when combined with our approach for data analysis, can be used to study the subtleties of polypeptide-water interactions and thus provides a basis for the study of hydrophobic hydration in intrinsically unstructured biomacromolecules.

  1. Novel molecular variants of the Na-Cl cotransporter gene are responsible for Gitelman syndrome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mastroianni, N.; De Fusco, M.; Casari, G.

    1996-11-01

    A hereditary defect of the distal tubule accounts for the clinical features of Gitelman syndrome (GS), an autosomal recessive disease characterized by hypokalemia, hypomagnesemia, metabolic alkalosis, and hypocalciuria. Recently, we cloned the cDNA coding for the human Na-Cl thiazide-sensitive cotransporter (TSC; also known as {open_quotes}NCCT{close_quotes} or {open_quotes}SLC12A3{close_quotes}) as a possible candidate for GS, and Simon et al., independently, described rotation in patients with GS. Now, we show 12 additional mutations consistent with a loss of function of the Na-Cl cotransporter in GS. Two missense replacements, R09W and P349L, are common to both studies and could represent ancient mutations. The othermore » mutations include three deletions, two insertions, and six missense mutations. When all mutations from both studies are considered, missense mutations seem to be more frequently localized within the intracellular domains of the molecule, rather than in transmembrane or extracellular domains. One family, previously reported as a GS form with dominant inheritance, has proved to be recessive, with the affected child being a compound heterozygote. A highly informative intragenic tetranucleotide marker, useful for molecular diagnostic studies, has been identified at the acceptor splice site of exon 9. 12 refs., 3 figs., 2 tabs.« less

  2. Elevated FGF23 Levels in Mice Lacking the Thiazide-Sensitive NaCl cotransporter (NCC).

    PubMed

    Pathare, Ganesh; Anderegg, Manuel; Albano, Giuseppe; Lang, Florian; Fuster, Daniel G

    2018-02-26

    Fibroblast growth factor 23 (FGF23) participates in the orchestration of mineral metabolism by inducing phosphaturia and decreasing the production of 1,25(OH) 2 D 3 . It is known that FGF23 release is stimulated by aldosterone and extracellular volume depletion. To characterize this effect further in a model of mild hypovolemia, we studied mice lacking the thiazide sensitive NaCl cotransporter (NCC). Our data indicate that NCC knockout mice (KO) have significantly higher FGF23, PTH and aldosterone concentrations than corresponding wild type (WT) mice. However, 1,25(OH) 2 D 3 , fractional phosphate excretion and renal brush border expression of the sodium/phosphate co-transporter 2a were not different between the two genotypes. In addition, renal expression of FGF23 receptor FGFR1 and the co-receptor Klotho were unaltered in NCC KO mice. FGF23 transcript was increased in the bone of NCC KO mice compared to WT mice, but treatment of primary murine osteoblasts with the NCC inhibitor hydrochlorothiazide did not elicit an increase of FGF23 transcription. In contrast, the mineralocorticoid receptor blocker eplerenone reversed excess FGF23 levels in KO mice but not in WT mice, indicating that FGF23 upregulation in NCC KO mice is primarily aldosterone-mediated. Together, our data reveal that lack of renal NCC causes an aldosterone-mediated upregulation of circulating FGF23.

  3. GAWK, a novel human pituitary polypeptide: isolation, immunocytochemical localization and complete amino acid sequence.

    PubMed

    Benjannet, S; Leduc, R; Lazure, C; Seidah, N G; Marcinkiewicz, M; Chrétien, M

    1985-01-16

    During the course of reverse-phase high pressure liquid chromatography (RP-HPLC) purification of a postulated big ACTH (1) from human pituitary gland extracts, a highly purified peptide bearing no resemblance to any known polypeptide was isolated. The complete sequence of this 74 amino acid polypeptide, called GAWK, has been determined. Search on a computer data bank on the possible homology to any known protein or fragment, using a mutation data matrix, failed to reveal any homology greater than 30%. An antibody produced against a synthetic fragment allowed us to detect several immunoreactive forms. The antisera also enabled us to localize the polypeptide, by immunocytochemistry, in the anterior lobe of the pituitary gland.

  4. Tracers for monitoring the activity of sodium/glucose cotransporters in health and disease

    DOEpatents

    Wright, Ernest M; Barrio, Jorge R; Hirayama, Bruce A; Kepe, Vladimir

    2014-09-30

    Radiolabeled tracers for sodium/glucose cotransporters (SGLTs), their synthesis, and their use are provided. The tracers are methyl or ethyl pyranosides having an equatorial hydroxyl group at carbon-2 and a C 1 preferred conformation, radiolabeled with .sup.18F, .sup.123I, or .sup.124I, or free hexoses radiolabeled with .sup.18F, .sup.123I, or .sup.124. Also provided are in vivo and in vitro techniques for using these and other tracers as analytical and diagnostic tools to study glucose transport, in health and disease, and to evaluate therapeutic interventions.

  5. Hydrogen-Bond Driven Loop-Closure Kinetics in Unfolded Polypeptide Chains

    PubMed Central

    Daidone, Isabella; Neuweiler, Hannes; Doose, Sören; Sauer, Markus; Smith, Jeremy C.

    2010-01-01

    Characterization of the length dependence of end-to-end loop-closure kinetics in unfolded polypeptide chains provides an understanding of early steps in protein folding. Here, loop-closure in poly-glycine-serine peptides is investigated by combining single-molecule fluorescence spectroscopy with molecular dynamics simulation. For chains containing more than 10 peptide bonds loop-closing rate constants on the 20–100 nanosecond time range exhibit a power-law length dependence. However, this scaling breaks down for shorter peptides, which exhibit slower kinetics arising from a perturbation induced by the dye reporter system used in the experimental setup. The loop-closure kinetics in the longer peptides is found to be determined by the formation of intra-peptide hydrogen bonds and transient β-sheet structure, that accelerate the search for contacts among residues distant in sequence relative to the case of a polypeptide chain in which hydrogen bonds cannot form. Hydrogen-bond-driven polypeptide-chain collapse in unfolded peptides under physiological conditions found here is not only consistent with hierarchical models of protein folding, that highlights the importance of secondary structure formation early in the folding process, but is also shown to speed up the search for productive folding events. PMID:20098498

  6. Cationic polypeptides contribute to the anti-HIV-1 activity of human seminal plasma

    PubMed Central

    Martellini, Julie A.; Cole, Amy L.; Venkataraman, Nitya; Quinn, Gerry A.; Svoboda, Pavel; Gangrade, Bhushan K.; Pohl, Jan; Sørensen, Ole E.; Cole, Alexander M.

    2009-01-01

    Mucosal surfaces of the reproductive tract as well as their secretions have important roles in preventing sexual transmission of HIV-1. In the current study, the majority of the intrinsic anti-HIV-1 activity of human seminal plasma (SP) was determined to reside in the cationic polypeptide fraction. Antiviral assays utilizing luciferase reporter cells and lymphocytic cells revealed the ability of whole SP to prevent HIV-1 infection, even when SP was diluted 3200-fold. Subsequent fractionation by continuous flow acid-urea (AU)-PAGE and antiviral testing revealed that cationic polypeptides within SP were responsible for the majority of anti-HIV-1 activity. A proteomic approach was utilized to resolve and identify 52 individual cationic polypeptides that contribute to the aggregate anti-HIV-1 activity of SP. One peptide fragment of semenogelin I, termed SG-1, was purified from SP by a multistep chromatographic approach, protein sequenced, and determined to exhibit anti-HIV-1 activity against HIV-1. Anti-HIV-1 activity was transient, as whole SP incubated for prolonged time intervals exhibited a proportional decrease in anti-HIV-1 activity that was directly attributed to the degradation of semenogelin I peptides. Collectively, these results indicate that the cationic polypeptide fraction of SP is active against HIV-1, and that semenogelin-derived peptides contribute to the intrinsic anti-HIV-1 activity of SP.—Martellini, J. A., Cole, A. C., Venkataraman, N., Quinn, G. A., Svoboda, P., Gangrade, B. K., Pohl, J., Sørensen, O. E., Cole, A. M. Cationic polypeptides contribute to the anti-HIV-1 activity of human seminal plasma. PMID:19487309

  7. Identification of immunogenic polypeptides from a Mycoplasma hyopneumoniae genome library by phage display.

    PubMed

    Kügler, Jonas; Nieswandt, Simone; Gerlach, Gerald F; Meens, Jochen; Schirrmann, Thomas; Hust, Michael

    2008-09-01

    The identification of immunogenic polypeptides of pathogens is helpful for the development of diagnostic assays and therapeutic applications like vaccines. Routinely, these proteins are identified by two-dimensional polyacrylamide gel electrophoresis and Western blot using convalescent serum, followed by mass spectrometry. This technology, however, is limited, because low or differentially expressed proteins, e.g. dependent on pathogen-host interaction, cannot be identified. In this work, we developed and improved a M13 genomic phage display-based method for the selection of immunogenic polypeptides of Mycoplasma hyopneumoniae, a pathogen causing porcine enzootic pneumonia. The fragmented genome of M. hyopneumoniae was cloned into a phage display vector, and the genomic library was packaged using the helperphage Hyperphage to enrich open reading frames (ORFs). Afterwards, the phage display library was screened by panning using convalescent serum. The analysis of individual phage clones resulted in the identification of five genes encoding immunogenic proteins, only two of which had been previously identified and described as immunogenic. This M13 genomic phage display, directly combining ORF enrichment and the presentation of the corresponding polypeptide on the phage surface, complements proteome-based methods for the identification of immunogenic polypeptides and is particularly well suited for the use in mycoplasma species.

  8. The Generation of Dehydroalanine Residues in Protonated Polypeptides: Ion/Ion Reactions for Introducing Selective Cleavages

    NASA Astrophysics Data System (ADS)

    Peng, Zhou; Bu, Jiexun; McLuckey, Scott A.

    2017-09-01

    We examine a gas-phase approach for converting a subset of amino acid residues in polypeptide cations to dehydroalanine (Dha). Subsequent activation of the modified polypeptide ions gives rise to specific cleavage N-terminal to the Dha residue. This process allows for the incorporation of selective cleavages in the structural characterization of polypeptide ions. An ion/ion reaction within the mass spectrometer between a multiply protonated polypeptide and the sulfate radical anion introduces a radical site into the multiply protonated polypeptide reactant. Subsequent collisional activation of the polypeptide radical cation gives rise to radical side chain loss from one of several particular amino acid side chains (e.g., leucine, asparagine, lysine, glutamine, and glutamic acid) to yield a Dha residue. The Dha residues facilitate preferential backbone cleavages to produce signature c- and z-ions, demonstrated with cations derived from melittin, mechano growth factor (MGF), and ubiquitin. The efficiencies for radical side chain loss and for subsequent generation of specific c- and z-ions have been examined as functions of precursor ion charge state and activation conditions using cations of ubiquitin as a model for a small protein. It is noted that these efficiencies are not strongly dependent on ion trap collisional activation conditions but are sensitive to precursor ion charge state. Moderate to low charge states show the greatest overall yields for the specific Dha cleavages, whereas small molecule losses (e.g., water/ammonia) dominate at the lowest charge states and proton catalyzed amide bond cleavages that give rise to b- and y-ions tend to dominate at high charge states. [Figure not available: see fulltext.

  9. Pituitary adenylate cyclase activating polypeptide reduces A-type K+ currents and caspase activity in cultured adult mouse olfactory neurons.

    PubMed

    Han, P; Lucero, M T

    2005-01-01

    Pituitary adenylate cyclase activating polypeptide has been shown to reduce apoptosis in neonatal cerebellar and olfactory receptor neurons, however the underlying mechanisms have not been elucidated. In addition, the neuroprotective effects of pituitary adenylate cyclase activating polypeptide have not been examined in adult tissues. To study the effects of pituitary adenylate cyclase activating polypeptide on neurons in apoptosis, we measured caspase activation in adult olfactory receptor neurons in vitro. Interestingly, we found that the protective effects of pituitary adenylate cyclase activating polypeptide were related to the absence of a 4-aminopyridine (IC50=144 microM) sensitive rapidly inactivating potassium current often referred to as A-type current. In the presence of 40 nM pituitary adenylate cyclase activating polypeptide 38, both A-type current and activated caspases were significantly reduced. A-type current reduction by pituitary adenylate cyclase activating polypeptide was blocked by inhibiting the phospholipase C pathway, but not the adenylyl cyclase pathway. Our observation that 5 mM 4-aminopyridine mimicked the caspase inhibiting effects of pituitary adenylate cyclase activating polypeptide indicates that A-type current is involved in apoptosis. This work contributes to our growing understanding that potassium currents are involved with the activation of caspases to affect the balance between cell life and death.

  10. Polypeptides having beta-glucosidase activity, beta-xylosidase activity, or beta-glucosidase and beta-xylosidase activity and polynucleotides encoding same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morant, Marc

    The present invention relates to isolated polypeptides having beta-glucosidase activity, beta-xylosidase activity, or beta-glucosidase and beta-xylosidase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  11. Three-Dimensional Polypeptide Architectures Through Tandem Catalysis and Click Chemistry

    NASA Astrophysics Data System (ADS)

    Rhodes, Allison Jane

    Rapid renal clearance, liver accumulation, proteolytic degradation and non-specificity are challenges small molecule drugs, peptides, proteins and nucleic acid therapeutics encounter en route to their intended destination within the body. Nanocarriers (i.e. dendritric polymers, vesicles, and micelles) of approximately 100 nm in diameter, shuttle small molecule drugs to their desired location through passive (EPR effect) and active (ligand-mediated) targeting, maximizing therapeutic efficiency. Polypeptide-based polymers are water-soluble, biocompatible, non-toxic and are therefore excellent candidates for nanocarriers. Dendritic polymers, including dendrimers, cylindrical brushes, and star polymers, are the newest class of nanomedicine drug delivery vehicles. The synthesis and characterization of dendritic polymers is challenging, with tedious and costly procedures. Dendritic polymers possess peripheral pendent functional groups that can potentially be used in ligand-mediated drug delivery vehicles and bioimaging applications. More specifically, cylindrical brushes are dendritic polymers where a single linear polymer (primary chain) has polymer chains (secondary chains) grafted to it. Recently, research groups have shown that cylindrical brush polymers are capable of nanoparticle and supramolecular structure self-assembly. The facile preparation of high-density brush copolypeptides by the "grafting from" approach will be discussed. This approach utilizes a novel, tandem catalytic methodology where alloc-alpha-aminoamide groups are installed within the side-chains of the alpha-amino-N-carboxyanhydride (NCA) monomer serving as masked initiators. These groups are inert during cobalt initiated NCA polymerization, and give alloc-alpha-aminoamide substituted polypeptide main-chains. The alloc-alpha-aminoamide groups are activated in situ using nickel to generate initiators for growth of side-chain brush segments. This method proves to be efficient, yielding well

  12. Directed evolution methods for improving polypeptide folding and solubility and superfolder fluorescent proteins generated thereby

    DOEpatents

    Waldo, Geoffrey S.

    2007-09-18

    The current invention provides methods of improving folding of polypeptides using a poorly folding domain as a component of a fusion protein comprising the poorly folding domain and a polypeptide of interest to be improved. The invention also provides novel green fluorescent proteins (GFPs) and red fluorescent proteins that have enhanced folding properties.

  13. New Small Polypeptides Associated with DNA-Dependent RNA Polymerase of Escherichia coli after Infection with Bacteriophage T4

    PubMed Central

    Stevens, Audrey

    1972-01-01

    Four new small polypeptides are associated with DNA-dependent RNA polymerase from E. coli after infection with T4 phage. The new polypeptides are easily detected in RNA polymerase from E. coli cells labeled with amino acids after phage infection. Their molecular weights range from 10,000 to 22,000, as detected by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. All four polypeptides are found after infection with either wild-type T4 phage or T4 early amber mutants in genes 44, 42, 47, and 46. None of the polypeptides is labeled significantly before 5 min after infection at 30°. When two maturation-defective amber mutants in gene 55 of T4 phage are used for infection, a polypeptide with a molecular weight of 22,000 is absent. When a maturation-defective amber mutant in gene 33 of T4 phage is used, another small protein is absent. PMID:4551978

  14. Analysis of the internal nuclear matrix. Oligomers of a 38 kD nucleolar polypeptide stabilized by disulfide bonds.

    PubMed

    Fields, A P; Kaufmann, S H; Shaper, J H

    1986-05-01

    When rat liver nuclei are treated with the sulfhydryl cross-linking reagent sodium tetrathionate (NaTT) prior to nuclease treatment and extraction with 1.6 M NaCl, residual nucleoli and an extensive non-chromatin intranuclear network remain associated with the nuclear envelope. Subsequent treatment of this structure with 1 M NaCl containing 20 mM dithiothreitol (DTT) solubilizes the intranuclear material, while the nuclear envelope remains structurally intact. We have isolated and partially characterized a major polypeptide of the disulfide-stabilized internal nuclear matrix. The polypeptide, which has an apparent molecular mass 38 kD and isoelectric point 5.3, has been localized to the nucleolus of rat liver nuclei by indirect immunofluorescence using a specific polyclonal chicken antiserum. Based on its molecular mass, isoelectric point, intracellular localization and amino acid composition, the 38 kD polypeptide appears to be analogous to the nucleolar phosphoprotein B23 described by Prestayko et al. (Biochemistry 13 (1974) 1945) [20]. Immunologically related polypeptides have likewise been localized to the nucleoli of both hamster and human tissue culture cell lines as well as the cellular slime mold Physarum polycephalum. By immunoblotting, a single 38 kD polypeptide is recognized by the antiserum in rat, mouse, hamster and human cell lines. The antiserum has been utilized to investigate the oligomeric structure of the 38 kD polypeptide and the nature of its association with the rat liver nuclear matrix. By introducing varying numbers of disulfide bonds, we have found that the 38 kD polypeptide becomes incorporated into the internal nuclear matrix in a two-step process. Soluble disulfide-bonded homodimers of the polypeptide are first formed and then are rendered salt-insoluble by more extensive disulfide cross-linking.

  15. Efficient copackaging and cotransport yields postsynaptic colocalization of neuromodulators associated with synaptic plasticity.

    PubMed

    Lochner, J E; Spangler, E; Chavarha, M; Jacobs, C; McAllister, K; Schuttner, L C; Scalettar, B A

    2008-09-01

    Recent data suggest that tissue plasminogen activator (tPA) influences long-term plasticity at hippocampal synapses by converting plasminogen into plasmin, which then generates mature brain-derived neurotrophic factor (mBDNF) from its precursor, proBDNF. Motivated by this hypothesis, we used fluorescent chimeras, expressed in hippocampal neurons, to elucidate (1) mechanisms underlying plasminogen secretion from hippocampal neurons, (2) if tPA, plasminogen, and proBDNF are copackaged and cotransported in hippocampal neurons, especially within dendritic spines, and (3) mechanisms mediating the transport of these neuromodulators to sites of release. We find that plasminogen chimeras traffic through the regulated secretory pathway of hippocampal neurons in dense-core granules (DCGs) and that tPA, plasminogen, and proBDNF chimeras are extensively copackaged in DCGs throughout hippocampal neurons. We also find that 80% of spines that contain DCGs contain chimeras of these neuromodulators in the same DCG. Finally, we demonstrate, for the first time, that neuromodulators undergo cotransport along dendrites in rapidly mobile DCGs, indicating that neuromodulators can be efficiently recruited into active spines. These results support the hypothesis that tPA mediates synaptic activation of BDNF by demonstrating that tPA, plasminogen, and proBDNF colocalize in DCGs in spines, where these neuromodulators can undergo activity-dependent release and then interact and/or mediate changes that influence synaptic efficacy. The results also raise the possibility that frequency-dependent changes in extents of neuromodulator release from DCGs influence the direction of plasticity at hippocampal synapses by altering the relative proportions of two proteins, mBDNF and proBDNF, that exert opposing effects on synaptic efficacy.

  16. Immunoassay of serum polypeptide hormones by using 125I-labelled anti(-immunoglobulin G) antibodies.

    PubMed

    Beck, P; Nicholas, H

    1975-03-01

    1. A technique for indirectly labelling antibodies to polypeptide hormones, by combining them with radioactively labelled anti-(immunoglobulin G) is described. (a) 125I-labelled anti-(rabbit immunoglobulin G) and anti-(guinea-pig immunoglobulin G) antibodies with high specific radioactivity were prepared after purification of the antibodies on immunoadsorbents containing the respective antigens. (b) Rabbit immunoglobulin G antibodies to human growth hormone, porcine glucagon and guinea-pig immunoglobulin G antibodies to bovine insulin and bovine parathyroid hormone were combined with immunoadsorbents containing the respective polypeptide hormone antigen. (c) The immunoglobulin G antibodies to the polypeptide hormones were reacted with 125-I-labelled anti-(immunoglobulin G) antibodies directed against the appropriate species of immunoglobulin G,and the anti-hormone antibodies were combined with the hormone-containing immunoadsorbent. (d) 125I-labelled anti-(immunoglobulin G) antibodies and anti-hormone antibodies were simultaneously eluted from the hormone-containing immunoadsorbent by dilute HCl, pH 2.0. After elution the anti-(immunoglobulin G) antibodies and antihormone antibodies were allowed to recombine at pH 8.0 and 4 degrees C. 2. The resultant immunoglobulin G-anti-immunoglobulin G complex was used in immunoradiometric (labelled antibody) and two-site assays of the respective polypeptide hormone. 3. By using these immunoassays, concentrations down to 90pg of human growth hormone/ml, 100 pg of bovine insulin/ml, 80 pg of bovine parathyroid hormone/ml and 150 pg of glucagon/ml were readily detected. Assays of human plasma for growth hormone and insulin by these methods showed good agreement with results obtained by using a directly 125I-labelled anti-hormone antibody in an immunoradiometric assay of human growth hormone or by radioimmunoassay of human insulin. 4. The method described allows immunoradiometric or two-site assays to be performed starting with as

  17. Positive correlation between symptoms and circulating motilin, pancreatic polypeptide and gastrin concentrations in functional bowel disorders.

    PubMed Central

    Preston, D M; Adrian, T E; Christofides, N D; Lennard-Jones, J E; Bloom, S R

    1985-01-01

    Motilin, pancreatic polypeptide and gastrin blood concentrations in response to drinking water have been studied in 40 patients with functional bowel disease and compared with results in two groups of healthy control subjects. Patients with slow transit constipation and idiopathic megacolon showed impaired motilin release. Pancreatic polypeptide release was reduced in patients with slow transit constipation, but increased in those with functional diarrhoea. Gastrin release was impaired in all groups complaining of chronic constipation. Circulating motilin, pancreatic polypeptide and gastrin concentrations appear to bear some relationship to intestinal transit time in patients with functional bowel disorders. PMID:4054704

  18. Positive correlation between symptoms and circulating motilin, pancreatic polypeptide and gastrin concentrations in functional bowel disorders.

    PubMed

    Preston, D M; Adrian, T E; Christofides, N D; Lennard-Jones, J E; Bloom, S R

    1985-10-01

    Motilin, pancreatic polypeptide and gastrin blood concentrations in response to drinking water have been studied in 40 patients with functional bowel disease and compared with results in two groups of healthy control subjects. Patients with slow transit constipation and idiopathic megacolon showed impaired motilin release. Pancreatic polypeptide release was reduced in patients with slow transit constipation, but increased in those with functional diarrhoea. Gastrin release was impaired in all groups complaining of chronic constipation. Circulating motilin, pancreatic polypeptide and gastrin concentrations appear to bear some relationship to intestinal transit time in patients with functional bowel disorders.

  19. Sequence Directionality Dramatically Affects LCST Behavior of Elastin-Like Polypeptides.

    PubMed

    Li, Nan K; Roberts, Stefan; Quiroz, Felipe Garcia; Chilkoti, Ashutosh; Yingling, Yaroslava G

    2018-04-30

    Elastin-like polypeptides (ELP) exhibit an inverse temperature transition or lower critical solution temperature (LCST) transition phase behavior in aqueous solutions. In this paper, the thermal responsive properties of the canonical ELP, poly(VPGVG), and its reverse sequence poly(VGPVG) were investigated by turbidity measurements of the cloud point behavior, circular dichroism (CD) measurements, and all-atom molecular dynamics (MD) simulations to gain a molecular understanding of mechanism that controls hysteretic phase behavior. It was shown experimentally that both poly(VPGVG) and poly(VGPVG) undergo a transition from soluble to insoluble in aqueous solution upon heating above the transition temperature ( T t ). However, poly(VPGVG) resolubilizes upon cooling below its T t , whereas the reverse sequence, poly(VGPVG), remains aggregated despite significant undercooling below the T t . The results from MD simulations indicated that a change in sequence order results in significant differences in the dynamics of the specific residues, especially valines, which lead to extensive changes in the conformations of VPGVG and VGPVG pentamers and, consequently, dissimilar propensities for secondary structure formation and overall structure of polypeptides. These changes affected the relative hydrophilicities of polypeptides above T t , where poly(VGPVG) is more hydrophilic than poly(VPGVG) with more extended conformation and larger surface area, which led to formation of strong interchain hydrogen bonds responsible for stabilization of the aggregated phase and the observed thermal hysteresis for poly(VGPVG).

  20. Chronic changes in pituitary adenylate cyclase-activating polypeptide and related receptors in response to repeated chemical dural stimulation in rats.

    PubMed

    Han, Xun; Ran, Ye; Su, Min; Liu, Yinglu; Tang, Wenjing; Dong, Zhao; Yu, Shengyuan

    2017-01-01

    Background Preclinical experimental studies revealed an acute alteration of pituitary adenylate cyclase-activating polypeptide in response to a single activation of the trigeminovascular system, which suggests a potential role of pituitary adenylate cyclase-activating polypeptide in the pathogenesis of migraine. However, changes in pituitary adenylate cyclase-activating polypeptide after repeated migraine-like attacks in chronic migraine are not clear. Therefore, the present study investigated chronic changes in pituitary adenylate cyclase-activating polypeptide and related receptors in response to repeated chemical dural stimulations in the rat. Methods A rat model of chronic migraine was established by repeated chemical dural stimulations using an inflammatory soup for a different numbers of days. The pituitary adenylate cyclase-activating polypeptide levels were quantified in plasma, the trigeminal ganglia, and the trigeminal nucleus caudalis using radioimmunoassay and Western blotting in trigeminal ganglia and trigeminal nucleus caudalis tissues. Western blot analysis and real-time polymerase chain reaction were used to measure the protein and mRNA expression of pituitary adenylate cyclase-activating polypeptide-related receptors (PAC1, VPAC1, and VPAC2) in the trigeminal ganglia and trigeminal nucleus caudalis to identify changes associated with repetitive applications of chemical dural stimulations. Results All rats exhibited significantly decreased periorbital nociceptive thresholds to repeated inflammatory soup stimulations. Radioimmunoassay and Western blot analysis demonstrated significantly decreased pituitary adenylate cyclase-activating polypeptide levels in plasma and trigeminal ganglia after repetitive chronic inflammatory soup stimulation. Protein and mRNA analyses of pituitary adenylate cyclase-activating polypeptide-related receptors demonstrated significantly increased PAC1 receptor protein and mRNA expression in the trigeminal ganglia, but not

  1. Manipulating the membrane penetration mechanism of helical polypeptides via aromatic modification for efficient gene delivery.

    PubMed

    Zheng, Nan; Song, Ziyuan; Yang, Jiandong; Liu, Yang; Li, Fangfang; Cheng, Jianjun; Yin, Lichen

    2017-08-01

    The delivery performance of non-viral gene vectors is greatly related to their intracellular kinetics. Cationic helical polypeptides with potent membrane penetration properties and gene transfection efficiencies have been recently developed by us. However, they suffer from severe drawbacks in terms of their membrane penetration mechanisms that mainly include endocytosis and pore formation. The endocytosis mechanism leads to endosomal entrapment of gene cargos, while the charge- and helicity-induced pore formation causes appreciable cytotoxicity at high concentrations. With the attempt to overcome such critical challenges, we incorporated aromatic motifs into the design of helical polypeptides to enhance their membrane activities and more importantly, to manipulate their membrane penetration mechanisms. The aromatically modified polypeptides exhibited higher cellular internalization level than the unmodified analogue by up to 2.5 folds. Such improvement is possibly because aromatic domains promoted the polypeptides to penetrate cell membranes via direct transduction, a non-endocytosis and non-pore formation mechanism. As such, gene cargos were more efficiently delivered into cells by bypassing endocytosis and subsequently avoiding endosomal entrapment, and the material toxicity associated with excessive pore formation was also reduced. The top-performing aromatic polypeptide containing naphthyl side chains at the incorporated content of 20mol% revealed notably higher transfection efficiencies than commercial reagents in melanoma cells in vitro (by 11.7 folds) and in vivo (by 9.1 folds), and thus found potential utilities toward topical gene delivery for cancer therapy. Cationic helical polypeptides, as efficient gene delivery materials, suffer from severe drawbacks in terms of their membrane penetration mechanisms. The main cell penetration mechanisms involved are endocytosis and pore formation. However, the endocytosis mechanism has the limitation of endosomal

  2. NONOates regulate KCl cotransporter-1 and -3 mRNA expression in vascular smooth muscle cells.

    PubMed

    Di Fulvio, Mauricio; Lauf, Peter K; Shah, Shalin; Adragna, Norma C

    2003-05-01

    Nitric oxide (NO) donors regulate KCl cotransport (KCC) activity and cotransporter-1 and -3 (KCC1 and KCC3) mRNA expression in sheep erythrocytes and in primary cultures of rat vascular smooth muscle cells (VSMCs), respectively. In this study, we used NONOates as rapid and slow NO releasers to provide direct evidence implicating NO as a regulator of KCC3 gene expression at the mRNA level. In addition, we used the expression of KCC3 mRNA to further investigate the mechanism of action of these NO donors at the cellular level. Treatment of VSMCs with rapid NO releasers, like NOC-5 and NOC-9, as well as with the direct NO-independent soluble guanylyl cyclase (sGC) stimulator YC-1, acutely increased KCC3 mRNA expression in a concentration- and time-dependent manner. The slow NO releaser NOC-18 had no effect on KCC3 gene expression. A specific NO scavenger completely prevented the NONOate-induced KCC3 mRNA expression. Inhibition of sGC with LY-83583 blocked the NONOate- and YC-1-induced KCC3 mRNA expression. This study shows that in primary cultures of rat VSMCs, the fast NO releasers NOC-9 and NOC-5, but not the slow NO releaser NOC-18, acutely upregulate KCC3 mRNA expression in a NO/sGC-dependent manner.

  3. DNA Polymerase κ Is a Key Cellular Factor for the Formation of Covalently Closed Circular DNA of Hepatitis B Virus

    PubMed Central

    Qi, Yonghe; Gao, Zhenchao; Peng, Bo; Yan, Huan; Tang, Dingbin; Song, Zilin; He, Wenhui; Sun, Yinyan; Guo, Ju-Tao; Li, Wenhui

    2016-01-01

    Hepatitis B virus (HBV) infection of hepatocytes begins by binding to its cellular receptor sodium taurocholate cotransporting polypeptide (NTCP), followed by the internalization of viral nucleocapsid into the cytoplasm. The viral relaxed circular (rc) DNA genome in nucleocapsid is transported into the nucleus and converted into covalently closed circular (ccc) DNA to serve as a viral persistence reservoir that is refractory to current antiviral therapies. Host DNA repair enzymes have been speculated to catalyze the conversion of rcDNA to cccDNA, however, the DNA polymerase(s) that fills the gap in the plus strand of rcDNA remains to be determined. Here we conducted targeted genetic screening in combination with chemical inhibition to identify the cellular DNA polymerase(s) responsible for cccDNA formation, and exploited recombinant HBV with capsid coding deficiency which infects HepG2-NTCP cells with similar efficiency of wild-type HBV to assure cccDNA synthesis is exclusively from de novo HBV infection. We found that DNA polymerase κ (POLK), a Y-family DNA polymerase with maximum activity in non-dividing cells, substantially contributes to cccDNA formation during de novo HBV infection. Depleting gene expression of POLK in HepG2-NTCP cells by either siRNA knockdown or CRISPR/Cas9 knockout inhibited the conversion of rcDNA into cccDNA, while the diminished cccDNA formation in, and hence the viral infection of, the knockout cells could be effectively rescued by ectopic expression of POLK. These studies revealed that POLK is a crucial host factor required for cccDNA formation during a de novo HBV infection and suggest that POLK may be a potential target for developing antivirals against HBV. PMID:27783675

  4. Sodium-dependent bile salt transporters of the SCL10A Transporter Family: More than solute transporters

    PubMed Central

    Anwer, M. Sawkat; Stieger, Bruno

    2013-01-01

    Summary The SLC10A transporter gene family consists of seven members and substrates transported by three members (SLC10A1, SLC10A2 and SLC10A6) are Na+-dependent. SLC10A1 (sodium taurocholate cotransporting polypeptide or NTCP) and SLC10A2 (apical sodium-dependent bile salt transporter or ASBT) transport bile salts and play an important role in maintaining enterohepatic circulation of bile salts. Solutes other than bile salts are also transported by NTCP. However, ASBT has not been shown to be a transporter for non-bile salt substrates. While the transport function of NTCP can potentially be used as liver function test, interpretation of such a test may be complicated by altered expression of NTCP in diseases and presence of drugs that may inhibit NTCP function. Transport of bile salts by NTCP and ASBT is inhibited by a number of drugs and it appears that ASBT is more permissive to drug inhibition than NTCP. The clinical significance of this inhibition in drug disposition and drug-drug interaction remains to be determined. Both NCTP and ASBT undergo post-translational regulations that involve phosphorylation/dephosphorylation, translocation to and retrieval from the plasma membrane and degradation by the ubiquitin-proteasome system. These posttranslational regulations are mediated via signaling pathways involving cAMP, calcium, nitric oxide, phosphoinositide-3-kinase (PI3K), protein kinase C (PKC) and protein phosphatases. There appears to be species difference in the substrate specificity and the regulation of plasma membrane localization of human and rodent NTCP. These differences should be taken into account when extrapolating rodent data for human clinical relevance and developing novel therapies. NTCP has recently been shown to play an important role in HBV and HDV infection by serving as a receptor for entry of these viruses into hepatocytes. PMID:24196564

  5. Characterization of ursodeoxycholic and norursodeoxycholic acid as substrates of the hepatic uptake transporters OATP1B1, OATP1B3, OATP2B1 and NTCP.

    PubMed

    König, Jörg; Klatt, Sabine; Dilger, Karin; Fromm, Martin F

    2012-08-01

    Ursodeoxycholic acid (UDCA) is the only approved treatment for primary biliary cirrhosis, and norursodeoxycholic acid (norUDCA) is currently tested in clinical trials for future treatment of primary sclerosing cholangitis because of beneficial effects in cholestatic Mdr2 knock-out mice. Uptake of UDCA and norUDCA into hepatocytes is believed to be a prerequisite for subsequent metabolism and therapeutic action. However, the molecular determinants of hepatocellular uptake of UDCA and norUDCA are poorly understood. We therefore investigated whether UDCA and norUDCA are substrates of the hepatic uptake transporters OATP1B1, OATP1B3, OATP2B1 and Na(+) -taurocholate co-transporting polypeptide (NTCP), which are localized in the basolateral membrane of hepatocytes. Uptake of [(3) H]UDCA and [(14) C]norUDCA into Human embryonic kidney (HEK) cells stably expressing OATP1B1, OATP1B3, OATP2B1 or NTCP was investigated and compared with uptake into vector control cells. Uptake ratios were calculated by dividing uptake into transporter-transfected cells by uptake into respective control cells. Uptake ratios of OATP1B1-, OATP1B3- and OATP2B1-mediated UDCA and norUDCA uptake were at maximum 1.23 and 1.49, respectively. Uptake of UDCA was significantly higher into HEK-NTCP cells only at the lowest tested concentration (1 μM, p < 0.001) compared with the control cells with an uptake ratio of 1.34-fold. NorUDCA was not significantly transported by NTCP. The low uptake rates suggest that OATP1B1, OATP1B3, OATP2B1 and NTCP are not relevant for hepatocellular uptake and effects of UDCA and norUDCA in human beings. © 2012 The Authors Basic & Clinical Pharmacology & Toxicology © 2012 Nordic Pharmacological Society.

  6. Association of the S267F variant on NTCP gene and treatment response to pegylated interferon in patients with chronic hepatitis B: a multicentre study.

    PubMed

    Thanapirom, Kessarin; Suksawatamnuay, Sirinporn; Sukeepaisarnjaroen, Wattana; Treeprasertsuk, Sombat; Tanwandee, Tawesak; Charatcharoenwitthaya, Phunchai; Thongsawat, Satawat; Leerapun, Apinya; Piratvisuth, Teerha; Boonsirichan, Rattana; Bunchorntavakul, Chalermrat; Pattanasirigool, Chaowalit; Pornthisarn, Bubpha; Tuntipanichteerakul, Supoj; Sripariwuth, Ekawee; Jeamsripong, Woramon; Sanpajit, Theeranun; Poovorawan, Yong; Komolmit, Piyawat

    2018-01-01

    Sodium taurocholate co-transporting polypeptide (NTCP) is a cell receptor for HBV. The S267F variant on the NTCP gene is inversely associated with the chronicity of HBV infection, progression to cirrhosis and hepatocellular carcinoma in East Asian populations. The aim of this study was to determine whether the S267F variant was associated with response to pegylated interferon (PEG-IFN) in patients with chronic HBV infection. A total of 257 patients with chronic HBV, treated with PEG-IFN for 48 weeks, were identified from 13 tertiary hospitals included in the hepatitis B database of the Thai Association for the Study of the Liver (THASL). Of these, 202 patients were infected with HBV genotype C (84.9%); 146 patients were hepatitis B e antigen (HBeAg)-positive (56.8%). Genotypic frequencies of the S267F polymorphism were 85.2%, 14.8% and 0% for the GG, GA and AA genotypes, respectively. S267F GA was associated with sustained alanine aminotransferase (ALT) normalization (OR = 3.25, 95% CI 1.23, 8.61; P=0.02) in HBeAg-positive patients. Patients with S267F variant tended to have more virological response, sustained response with hepatitis B surface antigen (HBsAg) loss at 24 weeks following PEG-IFN treatment. There was no association between the S267F variant and improved patient outcomes in HBeAg-negative patients. The S267F variant on the NTCP gene is independently associated with sustained normalization of ALT following treatment with PEG-IFN in patients with HBV infection who are HBeAg-positive. The findings of this study provide additional support for the clinical significance of the S267F variant of NTCP beyond HBV entry.

  7. Bile Salt Homeostasis in Normal and Bsep Gene Knockout Rats with Single and Repeated Doses of Troglitazone.

    PubMed

    Cheng, Yaofeng; Chen, Shenjue; Freeden, Chris; Chen, Weiqi; Zhang, Yueping; Abraham, Pamela; Nelson, David M; Humphreys, W Griffith; Gan, Jinping; Lai, Yurong

    2017-09-01

    The interference of bile acid secretion through bile salt export pump (BSEP) inhibition is one of the mechanisms for troglitazone (TGZ)-induced hepatotoxicity. Here, we investigated the impact of single or repeated oral doses of TGZ (200 mg/kg/day, 7 days) on bile acid homoeostasis in wild-type (WT) and Bsep knockout (KO) rats. Following oral doses, plasma exposures of TGZ were not different between WT and KO rats, and were similar on day 1 and day 7. However, plasma exposures of the major metabolite, troglitazone sulfate (TS), in KO rats were 7.6- and 9.3-fold lower than in WT on day 1 and day 7, respectively, due to increased TS biliary excretion. With Bsep KO, the mRNA levels of multidrug resistance-associated protein 2 (Mrp2), Mrp3, Mrp4, Mdr1, breast cancer resistance protein (Bcrp), sodium taurocholate cotransporting polypeptide, small heterodimer partner, and Sult2A1 were significantly altered in KO rats. Following seven daily TGZ treatments, Cyp7A1 was significantly increased in both WT and KO rats. In the vehicle groups, plasma exposures of individual bile acids demonstrated variable changes in KO rats as compared with WT. WT rats dosed with TGZ showed an increase of many bile acid species in plasma on day 1, suggesting the inhibition of Bsep. Conversely, these changes returned to base levels on day 7. In KO rats, alterations of most bile acids were observed after seven doses of TGZ. Collectively, bile acid homeostasis in rats was regulated through bile acid synthesis and transport in response to Bsep deficiency and TGZ inhibition. Additionally, our study is the first to demonstrate that repeated TGZ doses can upregulate Cyp7A1 in rats. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  8. Interactions of bilastine, a new oral H₁ antihistamine, with human transporter systems.

    PubMed

    Lucero, Maria Luisa; Gonzalo, Ana; Ganza, Alvaro; Leal, Nerea; Soengas, Itziar; Ioja, Eniko; Gedey, Szilvia; Jahic, Mirza; Bednarczyk, Dallas

    2012-06-01

    Membrane transporters play a significant role in facilitating transmembrane drug movement. For new pharmacological agents, it is important to evaluate potential interactions (e.g., substrate specificity and/or inhibition) with human transporters that may affect their pharmacokinetics, efficacy, or toxicity. Bilastine is a new nonsedating H₁ antihistamine indicated for the treatment of allergic rhinoconjunctivitis and urticaria. The in vitro inhibitory effects of bilastine were assessed on 12 human transporters: four efflux [multidrug resistance protein 1 (MDR1) or P-glycoprotein, breast cancer resistance protein (BCRP), multidrug resistance associated protein 2 (MRP2), and bile salt export pump) and eight uptake transporters (sodium taurocholate cotransporting polypeptide, organic cation transporter (OCT)1, organic anion transporter (OAT)1, OAT3, OCT2, OATP2B1, OATP1B1, and OATP1B3). Only mild inhibition was found for MDR1-, OCT1-, and OATP2B1-mediated transport of probe substrates at the highest bilastine concentration assayed (300 μM; half-maximal inhibitory concentration: ≥300 μM). Bilastine transport by MDR1, BCRP, OAT1, OAT3, and OCT2 was also investigated in vitro. Only MDR1 active transport of bilastine was relevant, whereas it did not appear to be a substrate of OCT2, OAT1, or OAT3, nor was it transported substantially by BCRP. Drug-drug interactions resulting from bilastine inhibition of drug transporters that would be generally regarded as clinically relevant are unlikely. Additionally, bilastine did not appear to be a substrate of human BCRP, OAT1, OAT3, or OCT2 and thus is not a potential victim of inhibitors of these transporters. On the other hand, based on in vitro evaluation, clinically relevant interactions with MDR1 inhibitors are anticipated.

  9. Optimal management of hepatitis B virus infection - EASL Special Conference.

    PubMed

    Lampertico, Pietro; Maini, Mala; Papatheodoridis, George

    2015-11-01

    There have been great strides in the management of chronic hepatitis B virus (HBV) infection, but considerable challenges remain. The European Association for the Study of the Liver (EASL) convened a special conference focusing on all clinical aspects of the management of this disease. Immigration patterns are having a huge effect on the incidence, prevalence and genotype predominance of HBV in many European countries. In recent years there has been significant progress in our understanding of the virology and immunopathology of HBV, particularly the identification of the entry receptor for HBV conferring its hepatotropism, sodium taurocholate co-transporting polypeptide, and a better understanding of the regulation of the covalently closed circular DNA form of HBV - the major barrier to cure. However, more fundamental scientific research is needed. Serum biomarkers and transient elastography offer equivalent performance in the grading of disease stage and progression and monitoring of treatment. Occult HBV infection is often overlooked, but has many important implications for e.g., immuno-suppression, liver transplantation and the progression and severity of liver diseases from other causes. Hepatitis B e antigen positive immunotolerant patients, who are a significant source of horizontal and vertical transmission, are at risk for developing active chronic hepatitis B, but current treatment options are ineffective. Pegylated interferon therapy, given for a finite duration, offers sustained off-treatment responses in a minority of patients. Nucleos(t)ide analogues suppress the virus, improve liver histological lesions, reverse cirrhosis in the majority of cases, and improve survival, but 'cure' cannot be achieved. There is also a pressing need for novel HBV/hepatitis D virus co-infection therapies. Novel therapeutic strategies, e.g. immunomodulation, RNA interference and viral entry inhibition have demonstrated promising early results. Copyright © 2015 European

  10. HBV Bypasses the Innate Immune Response and Does Not Protect HCV From Antiviral Activity of Interferon.

    PubMed

    Mutz, Pascal; Metz, Philippe; Lempp, Florian A; Bender, Silke; Qu, Bingqian; Schöneweis, Katrin; Seitz, Stefan; Tu, Thomas; Restuccia, Agnese; Frankish, Jamie; Dächert, Christopher; Schusser, Benjamin; Koschny, Ronald; Polychronidis, Georgios; Schemmer, Peter; Hoffmann, Katrin; Baumert, Thomas F; Binder, Marco; Urban, Stephan; Bartenschlager, Ralf

    2018-05-01

    Hepatitis C virus (HCV) infection is sensitive to interferon (IFN)-based therapy, whereas hepatitis B virus (HBV) infection is not. It is unclear whether HBV escapes detection by the IFN-mediated immune response or actively suppresses it. Moreover, little is known on how HBV and HCV influence each other in coinfected cells. We investigated interactions between HBV and the IFN-mediated immune response using HepaRG cells and primary human hepatocytes (PHHs). We analyzed the effects of HBV on HCV replication, and vice versa, at the single-cell level. PHHs were isolated from liver resection tissues from HBV-, HCV-, and human immunodeficiency virus-negative patients. Differentiated HepaRG cells overexpressing the HBV receptor sodium taurocholate cotransporting polypeptide (dHepaRGNTCP) and PHHs were infected with HBV. Huh7.5 cells were transfected with circular HBV DNA genomes resembling viral covalently closed circular DNA (cccDNA), and subsequently infected with HCV; this served as a model of HBV and HCV coinfection. Cells were incubated with IFN inducers, or IFNs, and antiviral response and viral replication were analyzed by immune fluorescence, reverse-transcription quantitative polymerase chain reaction, enzyme-linked immunosorbent assays, and flow cytometry. HBV infection of dHepaRGNTCP cells and PHHs neither activated nor inhibited signaling via pattern recognition receptors. Incubation of dHepaRGNTCP cells and PHHs with IFN had little effect on HBV replication or levels of cccDNA. HBV infection of these cells did not inhibit JAK-STAT signaling or up-regulation of IFN-stimulated genes. In coinfected cells, HBV did not prevent IFN-induced suppression of HCV replication. In dHepaRGNTCP cells and PHHs, HBV evades the induction of IFN and IFN-induced antiviral effects. HBV infection does not rescue HCV from the IFN-mediated response. Copyright © 2018 AGA Institute. Published by Elsevier Inc. All rights reserved.

  11. Antipeptide antibodies that can distinguish specific subunit polypeptides of glutamine synthetase from bean (Phaseolus vulgaris L.)

    NASA Technical Reports Server (NTRS)

    Cai, X.; Henry, R. L.; Takemoto, L. J.; Guikema, J. A.; Wong, P. P.; Spooner, B. S. (Principal Investigator)

    1992-01-01

    The amino acid sequences of the beta and gamma subunit polypeptides of glutamine synthetase from bean (Phaseolus vulgaris L.) root nodules are very similar. However, there are small regions within the sequences that are significantly different between the two polypeptides. The sequences between amino acids 2 and 9 and between 264 and 274 are examples. Three peptides (gamma 2-9, gamma 264-274, and beta 264-274) corresponding to these sequences were synthesized. Antibodies against these peptides were raised in rabbits and purified with corresponding peptide-Sepharose affinity chromatography. Western blot analysis of polyacrylamide gel electrophoresis of bean nodule proteins demonstrated that the anti-beta 264-274 antibodies reacted specifically with the beta polypeptide and the anti-gamma 264-274 and anti-gamma 2-9 antibodies reacted specifically with the gamma polypeptide of the native and denatured glutamine synthetase. These results showed the feasibility of using synthetic peptides in developing antibodies that are capable of distinguishing proteins with similar primary structures.

  12. Thrombin specificity. Requirement for apolar amino acids adjacent to the thrombin cleavage site of polypeptide substrate.

    PubMed

    Chang, J Y

    1985-09-02

    alpha-Thrombin cleavage of 30 polypeptide hormones and their derivatives were analysed by quantitative amino-terminal analysis. The polypeptides included secretin, vasoactive intestinal polypeptide, cholecystokinin fragment, dynorphin A, somatostatins, gastrin-releasing peptide, calcitonins and human parathyroid hormone fragment. Most of them were selected mainly on the ground that they contain sequence structures homologous to the well known tripeptide substrates of alpha-thrombin. All selected polypeptides have one single major cleavage site and both Arg-Xaa and Lys-Xaa bonds were found to be selectively cleaved by alpha-thrombin. Under fixed conditions (1 nmol polypeptide/0.5 NIH unit alpha-thrombin in 20 microliters of 50 mM ammonium bicarbonate at 25 degrees C), the time required for 50% cleavage ranges from less than 1 min to longer than 24 h. Heparin invariably enhanced thrombin cleavage on all polypeptide analysed. The optimum cleavage site for alpha-thrombin has the structures of (a) P4-P3-Pro-Arg-P1'-P2', where P3 and P4 are hydrophobic amino acid and P1', P2' are nonacidic amino acids and (b) P2-Arg-P1', where P2 or P1' are Gly. The requirement for hydrophobic P3 and P4 was further demonstrated by the drastic decrease of thrombin cleavage rates in both gastrin-releasing peptide and calcitonins after chemical removal of hydrophobic P3 and P4 residues. The requirement for nonacidic P1' and P2' residues was demonstrated by the drastic increase of thrombin cleavage rates in both calcitonin and parathyroid hormone fragments, after specific chemical modification of acidic P1' and P2' residues. These findings confirm the importance of hydrophobic P2-P4 residues for thrombin specificity and provide new evidence to indicate that apolar P1' and P2' residues are also crucial for thrombin specificity. It is concluded that specific cleavage of polypeptides by alpha-thrombin can be reasonably predicted and that chemical modification can be a useful tool in enhancing

  13. Human pancreatic polypeptide in children and young adults.

    PubMed

    Hanukoglu, A; Chalew, S; Kowarski, A A

    1990-01-01

    Measurement of human pancreatic polypeptide may be useful for assessment of gastrointestinal function, integrity of the parasympathetic nervous system or screening for endocrine neoplasia. In adults hPP levels have been reported to increase with age. However hPP levels throughout childhood have not been well characterized in comparison with the adult range. We studied fasting human pancreatic polypeptide (hPP) from 45 pediatric patients, from infancy - 15 years, and 18 older adolescents and adults aged 16-45 years. The mean hPP level of children (233 +/- 147 pg/ml) was significantly higher than that (113 +/- 35 pg/ml) of adults (P less than .0001). There was no difference in mean hPP levels of children with normal growth hormone secretion compared to growth hormone deficient patients. There was no effect of gender or body mass index on hPP levels. We conclude that fasting hPP levels must be interpreted with respect to the age of the subject, children particularly, in that preteens may have higher fasting levels than older teenagers and adults.

  14. Bumetanide-sensitive ion fluxes in vascular smooth muscle cells: lack of functional Na+, K+, 2 Cl- cotransport.

    PubMed

    Orlov, S N; Tremblay, J; Hamet, P

    1996-09-01

    To examine the involvement of Na+,K+,2Cl- cotransport in monovalent ion fluxes in vascular smooth muscle cells (VSMC), we compared the effect of bumetanide on 86Rb, 36Cl and 22Na uptake by quiescent cultures of VSMC from rat aorta. Under basal conditions, the values of bumetanide-sensitive (BS) inward and outward 86Rb fluxes were not different. Bumetanide decreased basal 86Rb uptake by 70-75% with a Ki of approximately 0.2-0.3 microM. At concentrations ranging up to 1 microM, bumetanide did not affect 36Cl influx and reduced it by 20-30% in the range from 3 to 100 microM. In contrast to 86Rb and 36Cl influx, bumetanide did not inhibit 22Na uptake by VSMC. BS 86Rb uptake was completely abolished in Na(+)- or Cl(-)-free media. In contrast to 86Rb, basal BS 36Cl influx was not affected by Nao+ and Ko+. Hyperosmotic and isosmotic shrinkage of VSMC increased 86Rb and 36Cl influx to the same extent. Shrinkage-induced increments of 86Rb and 36Cl uptake were completely abolished by bumetanide with a Ki or approximately 0.3 microM. Shrinkage did not induce BS 86Rb and 36Cl influx in (Na+ or Cl-)- and (Na+ or K+)-depleted media, respectively. In the presence of an inhibitor of Na+/H+ exchange (EIPA), neither hyperosmotic nor isosmotic shrinkage activated 22Na influx. Bumetanide (1 microM) did not modify basal VSMC volume and intracellular content of sodium, potassium and chloride but abolished the regulatory volume increase in isosmotically-shrunken VSMC. These data demonstrate the absence of the functional Na+,K+,2Cl- cotransporter in VSMC and suggest that in these cells basal and shrinkage-induced BS K+ influx is mediated by (Nao+ + Clo-)-dependent K+/K+ exchange and Nao(+)-dependent K+,Cl- cotransport, respectively.

  15. Specific photoaffinity labeling of two plasma membrane polypeptides with an azido auxin

    NASA Technical Reports Server (NTRS)

    Hicks, G. R.; Rayle, D. L.; Jones, A. M.; Lomax, T. L.

    1989-01-01

    Plasma membrane vesicles were isolated from zucchini (Cucurbita pepo) hypocotyl tissue by aqueous phase partitioning and assessed for homogeneity by the use of membrane-specific enzyme assays. The highly pure (ca. 95%) plasma membrane vesicles maintained a pH differential across the membrane and accumulated a tritiated azido analogue of 3-indoleacetic acid (IAA), 5-azido-[7-3H]IAA ([3H]N3IAA), in a manner similar to the accumulation of [3H]IAA. The association of the [3H]N3IAA with membrane vesicles was saturable and subject to competition by IAA and auxin analogues. Auxin-binding proteins were photoaffinity labeled by addition of [3H]N3IAA to plasma membrane vesicles prior to exposure to UV light (15 sec; 300 nm) and detected by subsequent NaDodSO4/PAGE and fluorography. When the reaction temperature was lowered to -196 degrees C, high-specific-activity labeling of a 40-kDa and a 42-kDa polypeptide was observed. Triton X-100 (0.1%) increased the specific activity of labeling and reduced the background, which suggests that the labeled polypeptides are intrinsic membrane proteins. The labeled polypeptides are of low abundance, as expected for auxin receptors. Further, the addition of IAA and auxin analogues to the photoaffinity reaction mixture resulted in reduced labeling that was qualitatively similar to their effects on the accumulation of radiolabeled IAA in membrane vesicles. Collectively, these results suggest that the radiolabeled polypeptides are auxin receptors. The covalent nature of the label should facilitate purification and further characterization of the receptors.

  16. Specific photoaffinity labeling of two plasma membrane polypeptides with an azido auxin.

    PubMed

    Hicks, G R; Rayle, D L; Jones, A M; Lomax, T L

    1989-07-01

    Plasma membrane vesicles were isolated from zucchini (Cucurbita pepo) hypocotyl tissue by aqueous phase partitioning and assessed for homogeneity by the use of membrane-specific enzyme assays. The highly pure (ca. 95%) plasma membrane vesicles maintained a pH differential across the membrane and accumulated a tritiated azido analogue of 3-indoleacetic acid (IAA), 5-azido-[7-3H]IAA ([3H]N3IAA), in a manner similar to the accumulation of [3H]IAA. The association of the [3H]N3IAA with membrane vesicles was saturable and subject to competition by IAA and auxin analogues. Auxin-binding proteins were photoaffinity labeled by addition of [3H]N3IAA to plasma membrane vesicles prior to exposure to UV light (15 sec; 300 nm) and detected by subsequent NaDodSO4/PAGE and fluorography. When the reaction temperature was lowered to -196 degrees C, high-specific-activity labeling of a 40-kDa and a 42-kDa polypeptide was observed. Triton X-100 (0.1%) increased the specific activity of labeling and reduced the background, which suggests that the labeled polypeptides are intrinsic membrane proteins. The labeled polypeptides are of low abundance, as expected for auxin receptors. Further, the addition of IAA and auxin analogues to the photoaffinity reaction mixture resulted in reduced labeling that was qualitatively similar to their effects on the accumulation of radiolabeled IAA in membrane vesicles. Collectively, these results suggest that the radiolabeled polypeptides are auxin receptors. The covalent nature of the label should facilitate purification and further characterization of the receptors.

  17. BIOLOGICAL SIGNIFICANCE OF HIGH MOLECULAR WEIGHT POLYPEPTIDES.

    DTIC Science & Technology

    A tritium-labeled poly-L-lysine, has been synthesized. Experiments on the inactivation of coliphage T2 with an I131-labeled copolymer of lysine and...capable of injecting its DNA together with the labeled polypeptide into the host cells of Escherichia coli. New techniques for the preparation of water ...insoluble enzyme derivatives have been worked out. Water -insoluble urease and ribonuclease derivatives have been prepared. The mode of action of

  18. High-yield recombinant expression and purification of marginally soluble, short elastin-like polypeptides.

    PubMed

    Bahniuk, Markian S; Alshememry, Abdullah K; Unsworth, Larry D

    2016-12-01

    The protocol described here is designed as an extension of existing techniques for creating elastin-like polypeptides. It allows for the expression and purification of elastin-like polypeptide (ELP) constructs that are poorly expressed or have very low transition temperatures. DNA concatemerization has been modified to reduce issues caused by methylation sensitivity and inefficient cloning. Linearization of the modified expression vector has been altered to greatly increase cleavage efficiency. The purification regimen is based upon using denaturing metal affinity chromatography to fully solubilize and, if necessary, pre-concentrate the target peptide before purification by inverse temperature cycling (ITC). This protocol has been used to express multiple leucine-containing elastin-like polypeptides, with final yields of 250-660 mg per liter of cells, depending on the specific construct. This was considerably greater than previously reported yields for similar ELPs. Due to the relative hydrophobicity of the tested constructs, even compared with commonly employed ELPs, conventional methods would not have been able to be purify these peptides.

  19. Sodium-potassium-activated adenosine triphosphatase of electrophorus electric organ. X. Immunochemical properties of the Lubrol-solubilized enzume and its constituent polypeptides.

    PubMed

    Jean, D H; Albers, R W; Koval, G J

    1975-02-10

    Detergent (Lubrol WX)-solubilized sodium-potassium-activated adenosine triphosphatase ((Na+ + K+)-ATPase) of electrophorus electric organ contains two major constituent polypeptides with molecular weights of 96,000 and 58,000 which can be readily demonstrated by sodium dodecyl sulfate polyacrylamide gel electrophoresis. These two polypeptides can be clearly separated and can be obtained in milligram quantities by preparative sodium dodecyl sulfate gel electrophoresis. The separated polypeptides, after removal of sodium dodecyl sulfate, and Lubrol-solubilized (Na+ + K+)-ATPase activity to some degree. Moreover, the degree of inhibition is directly proportional to the increasing amounts of antisera. The inhibition is maximal 4 weeks after the first injection. Immunodiffusion in 1% agar gel indicated that only Lubrol-solubilized enzyme antiserum, but not 58,000-dalton or 96,00-dalton polypeptide antiserum, gives one major precipitin band. However, specific complex formation between each polypeptide antiserum and Lubrol-solubilized enzyme occurs. This was demonstrated indirectly. After incubating Lubrol-solubilized enzyme with increasing amounts of polypeptide antisera at 37 degrees for 15 min, they were placed in the side wells of an immunodiffusion plate with antiserum against Lubrol-solubilized enzyme in the central well. The intensity of the precipitin band decreased with increasing amounts of polypeptide antisera. Thus, the results indicate that both 96,000-dalton and 58,000-dalton polypeptides are integral subunits of (Na+ + K+)-ATPase.

  20. Induction of salivary polypeptides associated with parotid hypertrophy by gallotannins administered topically into the mouse mouth.

    PubMed

    Gho, Francesca; Peña-Neira, Alvaro; López-Solís, Remigio O

    2007-02-01

    Isoproterenol-induced salivary polypeptides (IISP), a group of proline-rich proteins synthesized by mouse parotids, have been considered as markers for isoproterenol-induced parotid hypertrophy. Rodents fed diets containing high-tannin cereals (sorghum), also develop parotid hypertrophy. To test whether tannins are directly involved in provoking sialotrophic growth, we studied the effect of intraperitoneal and topical oral administrations of tannic acid (TA) on the induction of IISP polypeptides in endogamic mice (A/Snell). TA was characterized by HPLC chromatography and spectral analysis and shown to be composed solely of gallotannins, a complex family of glucose and gallic acid esters. IISP polypeptides were monitored in saliva by SDS-polyacrylamide gel electrophoresis during 36 h after ending TA stimulation. Single daily intraperitoneal administrations of TA for 3 consecutive days (0.033 mg/g bw/day), at variance of parallel administrations of isoproterenol (0.042 mg/g bw/day) failed to induce IISP polypeptides. However, repeated topical applications of TA into the mouse mouths (1.21 mg/g bw divided into three equal doses given at 4-h intervals within a single day) resulted in unequivocal induction of IISP polypeptides. That response was clearly intensified by increasing the stimulation frequency to eight equivalent doses given at 1.5-h intervals within a single day (corresponding to 3.23 mg/g bw) and even further by repeating this protocol for 3 days. Under these productive schemes of stimulations by TA, electrophoretic fractionation of parotid homogenates showed new polypeptide bands migrating in parallel to salivary IISP. These results suggest that topically administered gallotannins are effective inducers of trophic growth in mouse parotids.

  1. Improvement of Learning and Memory Induced by Cordyceps Polypeptide Treatment and the Underlying Mechanism

    PubMed Central

    2018-01-01

    Our previous research revealed that Cordyceps militaris can improve the learning and memory, and although the main active ingredient should be its polypeptide complexes, the underlying mechanism of its activity remains poorly understood. In this study, we explored the mechanisms by which Cordyceps militaris improves learning and memory in a mouse model. Mice were given scopolamine hydrobromide intraperitoneally to establish a mouse model of learning and memory impairment. The effects of Cordyceps polypeptide in this model were tested using the Morris water maze test; serum superoxide dismutase activity; serum malondialdehyde levels; activities of acetyl cholinesterase, Na+-k+-ATPase, and nitric oxide synthase; and gamma aminobutyric acid and glutamate contents in brain tissue. Moreover, differentially expressed genes and the related cellular signaling pathways were screened using an mRNA expression profile chip. The results showed that the genes Pik3r5, Il-1β, and Slc18a2 were involved in the effects of Cordyceps polypeptide on the nervous system of these mice. Our findings suggest that Cordyceps polypeptide may improve learning and memory in the scopolamine-induced mouse model of learning and memory impairment by scavenging oxygen free radicals, preventing oxidative damage, and protecting the nervous system. PMID:29736181

  2. Immune-tolerant elastin-like polypeptides (iTEPs) and their application as CTL vaccine carriers.

    PubMed

    Cho, S; Dong, S; Parent, K N; Chen, M

    2016-01-01

    Cytotoxic T lymphocyte (CTL) vaccine carriers are known to enhance the efficacy of vaccines, but a search for more effective carriers is warranted. Elastin-like polypeptides (ELPs) have been examined for many medical applications but not as CTL vaccine carriers. We aimed to create immune tolerant ELPs using a new polypeptide engineering practice and create CTL vaccine carriers using the ELPs. Four sets of novel ELPs, termed immune-tolerant elastin-like polypeptide (iTEP) were generated according to the principles dictating humoral immunogenicity of polypeptides and phase transition property of ELPs. The iTEPs were non-immunogenic in mice. Their phase transition feature was confirmed through a turbidity assay. An iTEP nanoparticle (NP) was assembled from an amphiphilic iTEP copolymer plus a CTL peptide vaccine, SIINFEKL. The NP facilitated the presentation of the vaccine by dendritic cells (DCs) and enhanced vaccine-induced CTL responses. A new ELP design and development practice was established. The non-canonical motif and the immune tolerant nature of the iTEPs broaden our insights about ELPs. ELPs, for the first time, were successfully used as carriers for CTL vaccines. It is feasible to concurrently engineer both immune-tolerant and functional peptide materials. ELPs are a promising type of CTL vaccine carriers.

  3. Pancreatic polypeptide and calcitonin secretion from a pancreatic tumour-clinical improvement after hepatic artery embolization.

    PubMed

    Manche, A; Wood, S M; Adrian, T E; Welbourn, R B; Bloom, S R

    1983-05-01

    We present a case in which plasma pancreatic polypeptide and calcitonin were found to be raised in association with an islet cell tumour of the pancreas and its hepatic metastases. In this patient, no specific endocrine syndrome was found. Therapeutic hepatic artery embolization improved the general health of the patient with no change in plasma pancreatic polypeptide, but a fall in calcitonin.

  4. The effect of gastric inhibitory polypeptide on intestinal glucose absorption and intestinal motility in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ogawa, Eiichi; Hosokawa, Masaya; Faculty of Human Sciences, Tezukayama Gakuin University, Osaka

    2011-01-07

    Research highlights: {yields} Exogenous GIP inhibits intestinal motility through a somatostatin-mediated pathway. {yields} Exogenous GIP inhibits intestinal glucose absorption by reducing intestinal motility. {yields} The GIP-receptor-mediated action in intestine does not involve in GLP-1-mediated pathway. -- Abstract: Gastric inhibitory polypeptide (GIP) is released from the small intestine upon meal ingestion and increases insulin secretion from pancreatic {beta} cells. Although the GIP receptor is known to be expressed in small intestine, the effects of GIP in small intestine are not fully understood. This study was designed to clarify the effect of GIP on intestinal glucose absorption and intestinal motility. Intestinal glucosemore » absorption in vivo was measured by single-pass perfusion method. Incorporation of [{sup 14}C]-glucose into everted jejunal rings in vitro was used to evaluate the effect of GIP on sodium-glucose co-transporter (SGLT). Motility of small intestine was measured by intestinal transit after oral administration of a non-absorbed marker. Intraperitoneal administration of GIP inhibited glucose absorption in wild-type mice in a concentration-dependent manner, showing maximum decrease at the dosage of 50 nmol/kg body weight. In glucagon-like-peptide-1 (GLP-1) receptor-deficient mice, GIP inhibited glucose absorption as in wild-type mice. In vitro examination of [{sup 14}C]-glucose uptake revealed that 100 nM GIP did not change SGLT-dependent glucose uptake in wild-type mice. After intraperitoneal administration of GIP (50 nmol/kg body weight), small intestinal transit was inhibited to 40% in both wild-type and GLP-1 receptor-deficient mice. Furthermore, a somatostatin receptor antagonist, cyclosomatostatin, reduced the inhibitory effect of GIP on both intestinal transit and glucose absorption in wild-type mice. These results demonstrate that exogenous GIP inhibits intestinal glucose absorption by reducing intestinal motility through a

  5. Kinetics of Internal-Loop Formation in Polypeptide Chains: A Simulation Study

    PubMed Central

    Doucet, Dana; Roitberg, Adrian; Hagen, Stephen J.

    2007-01-01

    The speed of simple diffusional motions, such as the formation of loops in the polypeptide chain, places one physical limit on the speed of protein folding. Many experimental studies have explored the kinetics of formation of end-to-end loops in polypeptide chains; however, protein folding more often requires the formation of contacts between interior points on the chain. One expects that, for loops of fixed contour length, interior loops will form more slowly than end-to-end loops, owing to the additional excluded volume associated with the “tails”. We estimate the magnitude of this effect by generating ensembles of randomly coiled, freely jointed chains, and then using the theory of Szabo, Schulten, and Schulten to calculate the corresponding contact formation rates for these ensembles. Adding just a few residues, to convert an end-to-end loop to an internal loop, sharply decreases the contact rate. Surprisingly, the relative change in rate increases for a longer loop; sufficiently long tails, however, actually reverse the effect and accelerate loop formation slightly. Our results show that excluded volume effects in real, full-length polypeptides may cause the rates of loop formation during folding to depart significantly from the values derived from recent loop-formation experiments on short peptides. PMID:17208979

  6. Hypoxia/reoxygenation stress signals an increase in organic anion transporting polypeptide 1a4 (Oatp1a4) at the blood-brain barrier: relevance to CNS drug delivery.

    PubMed

    Thompson, Brandon J; Sanchez-Covarrubias, Lucy; Slosky, Lauren M; Zhang, Yifeng; Laracuente, Mei-li; Ronaldson, Patrick T

    2014-04-01

    Cerebral hypoxia and subsequent reoxygenation stress (H/R) is a component of several diseases. One approach that may enable neural tissue rescue after H/R is central nervous system (CNS) delivery of drugs with brain protective effects such as 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors (i.e., statins). Our present in vivo data show that atorvastatin, a commonly prescribed statin, attenuates poly (ADP-ribose) polymerase (PARP) cleavage in the brain after H/R, suggesting neuroprotective efficacy. However, atorvastatin use as a CNS therapeutic is limited by poor blood-brain barrier (BBB) penetration. Therefore, we examined regulation and functional expression of the known statin transporter organic anion transporting polypeptide 1a4 (Oatp1a4) at the BBB under H/R conditions. In rat brain microvessels, H/R (6% O2, 60 minutes followed by 21% O2, 10 minutes) increased Oatp1a4 expression. Brain uptake of taurocholate (i.e., Oap1a4 probe substrate) and atorvastatin were reduced by Oatp inhibitors (i.e., estrone-3-sulfate and fexofenadine), suggesting involvement of Oatp1a4 in brain drug delivery. Pharmacological inhibition of transforming growth factor-β (TGF-β)/activin receptor-like kinase 5 (ALK5) signaling with the selective inhibitor SB431542 increased Oatp1a4 functional expression, suggesting a role for TGF-β/ALK5 signaling in Oatp1a4 regulation. Taken together, our novel data show that targeting an endogenous BBB drug uptake transporter (i.e., Oatp1a4) may be a viable approach for optimizing CNS drug delivery for treatment of diseases with an H/R component.

  7. Role of Side-Chain Molecular Features in Tuning Lower Critical Solution Temperatures (LCSTs) of Oligoethylene Glycol Modified Polypeptides.

    PubMed

    Gharakhanian, Eric G; Deming, Timothy J

    2016-07-07

    A series of thermoresponsive polypeptides has been synthesized using a methodology that allowed facile adjustment of side-chain functional groups. The lower critical solution temperature (LCST) properties of these polymers in water were then evaluated relative to systematic molecular modifications in their side-chains. It was found that in addition to the number of ethylene glycol repeats in the side-chains, terminal and linker groups also have substantial and predictable effects on cloud point temperatures (Tcp). In particular, we found that the structure of these polypeptides allowed for inclusion of polar hydroxyl groups, which significantly increased their hydrophilicity and decreased the need to use long oligoethylene glycol repeats to obtain LCSTs. The thioether linkages in these polypeptides were found to provide an additional structural feature for reversible switching of both polypeptide conformation and thermoresponsive properties.

  8. The design and delivery of a PKA inhibitory polypeptide to treat SCA1.

    PubMed

    Hearst, Scoty M; Shao, Qingmei; Lopez, Mariper; Raucher, Drazen; Vig, Parminder J S

    2014-10-01

    Spinocerebellar ataxia-1 (SCA1) is a neurodegenerative disease that primarily targets Purkinje cells (PCs) of the cerebellum. The exact mechanism of PC degeneration is unknown, however, it is widely believed that mutant ataxin-1 becomes toxic because of the phosphorylation of its serine 776 (S776) residue by cAMP-dependent protein kinase A (PKA). Therefore, to directly modulate mutant ATXN1 S776 phosphorylation and aggregation, we designed a therapeutic polypeptide to inhibit PKA. This polypeptide comprised of a thermally responsive elastin-like peptide (ELP) carrier, which increases peptide half-life, a PKA inhibitory peptide (PKI), and a cell-penetrating peptide (Synb1). We observed that our therapeutic polypeptide, Synb1-ELP-PKI, inhibited PKA activity at concentrations similar to the PKI peptide. Additionally, Synb1-ELP-PKI significantly suppressed mutant ATXN1 S776 phosphorylation and intranuclear inclusion formation in cell culture. Further, Synb1-ELP-PKI treatment improved SCA1 PC morphology in cerebellar slice cultures. Furthermore, the Synb1-ELP peptide carrier crossed the blood-brain barrier and localized to the cerebellum via the i.p. or intranasal route. Here, we show the intranasal delivery of ELP-based peptides to the brain as a novel delivery strategy. We also demonstrate that our therapeutic polypeptide has a great potential to target the neurotoxic S776 phosphorylation pathway in the SCA1 disease. © 2014 International Society for Neurochemistry.

  9. Electrophoretic analysis of the major polypeptides of human erythrocyte membranes prepared by low and high osmolarity haemolysis.

    PubMed

    Zail, S S; Hoek, V D

    1975-04-16

    Human erythrocyte membranes were prepared in three ways: washing in hypotonic Tris buffer, pH 7.6, by lysis in isotonic Tris buffer pH 7.6 after incubation at 37 degrees C for 2 hours and by ultrasonication in an isotonic medium, pH 7.6. Analysis of the major polypeptides of the erythrocyte membranes by sodium dodecylsulphate polyacrylamide gel electrophoresis revealed a selective depletion of a major polypeptide representing glyceraldehyde-3-phosphate dehydrogenase in the membranes prepared by high osmolarity lysis. The pattern of seperation of the remaining polypeptides was identical in the 3 different membrane preparations.

  10. Pancreatic polypeptide and calcitonin secretion from a pancreatic tumour-clinical improvement after hepatic artery embolization.

    PubMed Central

    Manche, A.; Wood, S. M.; Adrian, T. E.; Welbourn, R. B.; Bloom, S. R.

    1983-01-01

    We present a case in which plasma pancreatic polypeptide and calcitonin were found to be raised in association with an islet cell tumour of the pancreas and its hepatic metastases. In this patient, no specific endocrine syndrome was found. Therapeutic hepatic artery embolization improved the general health of the patient with no change in plasma pancreatic polypeptide, but a fall in calcitonin. PMID:6308585

  11. Characterization of an extracellular epitope antibody to the neuronal K-Cl cotransporter, KCC2.

    PubMed

    Gagnon, Kenneth Be; Fyffe, Robert Ew; Adragna, Norma C; Lauf, Peter K

    2007-07-01

    1. Ion gradients across the cell membrane are important for proper cellular communication and homeostasis. With the exception of erythrocytes, chloride (Cl), one of the most important free anions in animal cells, is not distributed at thermodynamic equilibrium across the plasma membrane. The K-Cl cotransporter (COT), consisting of at least four isoforms, utilizes the larger outwardly directed chemical driving force of K to expel Cl from the cell against its inwardly directed chemical gradient and has been implicated recently as one of the main Cl extruders in developing neurons. 2. Previous in situ hybridization studies have indicated widespread mRNA distribution of the neuronal-specific K-Cl COT isoform (KCC2) throughout the rat central nervous system (CNS). However, immunohistochemical studies have been limited owing to the availability of a more selective antibody to KCC2. The goal of the present study was to develop a new molecular tool for the immunohistochemical identification and neuronal distribution of KCC2. 3. Herein, we present evidence of immunohistochemical corroboration of the widespread KCC2 mRNA expression using a novel extracellular anti-peptide antibody directed against the second extracellular loop (ECL2) of KCC2. Immunoperoxidase and immunofluorescent labelling revealed widespread post-synaptic somatic and dendritic localization of KCC2 in multiple neuronal populations in the cerebral cortex, hippocampus, brainstem, lumbar spinal cord and cerebellum. We also demonstrate that binding of the antibody to an extracellular epitope within ECL2 does not alter cotransporter function. In essence, the present study reports on a new molecular tool for structural and functional studies of KCC2.

  12. Fabricating and Characterizing Physical Properties of Electrospun Polypeptide-based Nanofibers

    NASA Astrophysics Data System (ADS)

    Khadka, Dhan Bahadur

    This dissertation has aimed to fabricate polypeptide based biomaterial and characterize physical properties. Electrospinning is used as a tool for the sample fabrication. Project focused on determining the feasibility of electrospinning of certain synthetic polypeptides and certain elastin-like peptides from aqueous feedstocks and to characterize physical properties of polymer aqueous solution, cast film and spun fibers and fiber mats. The research involves peptide design, polymer electrospinning, fibers crosslinking, determining the extent of crosslinking, fibers protease degradation study, fibers stability and self-organization analysis, structure and composition determination by various spectroscopy and microscopy techniques and characterization of mechanical properties of individual suspended fibers. Fiber mats of a synthetic cationic polypeptide poly(L-ornithine) (PLO) and an anionic co-polypeptide of L-glutamic acid and L-tyrosine (PLEY) of defined composition have been produced by electrospinning. Fibers were obtained from polymer aqueous solution at concentrations of 20-45% (w/v) in PLO and at concentrations of 20-60% (w/v) in PLEY. Applied voltage and spinneret-collector distance were also found to influence polymer spinnability and fibers morphology. Oriented fibers were obtained by parallel electrodes geometry. Fiber diameter and morphology was analyzed by scanning electron microscopy (SEM) and atomic force microscopy (AFM). PLO fibers exposed on glutaraldehyde (GTA) vapor rendered fiber mats water-insoluble. A common chemical reagent, carbodiimide was used to crosslink PLEY fibers. Fiber solubility in aqueous solution varied as a function of crosslinking time and crosslinker concentration. Crosslink density has been quantified by a visible-wavelength dye-based method. Degradation of crosslinked fibers by different proteases has been demonstrated. Investigation of crosslinked PLEY fibers has provided insight into the mechanisms of stability at different

  13. CDNA encoding a polypeptide including a hevein sequence

    DOEpatents

    Raikhel, Natasha V.; Broekaert, Willem F.; Chua, Nam-Hai; Kush, Anil

    1995-03-21

    A cDNA clone (HEV1) encoding hevein was isolated via polymerase chain reaction (PCR) using mixed oligonucleotides corresponding to two regions of hevein as primers and a Hevea brasiliensis latex cDNA library as a template. HEV1 is 1018 nucleotides long and includes an open reading frame of 204 amino acids. The deduced amino acid sequence contains a putative signal sequence of 17 amino acid residues followed by a 187 amino acid polypeptide. The amino-terminal region (43 amino acids) is identical to hevein and shows homology to several chitin-binding proteins and to the amino-termini of wound-induced genes in potato and poplar. The carboxyl-terminal portion of the polypeptide (144 amino acids) is 74-79% homologous to the carboxyl-terminal region of wound-inducible genes of potato. Wounding, as well as application of the plant hormones abscisic acid and ethylene, resulted in accumulation of hevein transcripts in leaves, stems and latex, but not in roots, as shown by using the cDNA as a probe. A fusion protein was produced in E. coli from the protein of the present invention and maltose binding protein produced by the E. coli.

  14. Imparting large macroscopic changes with small changes in polypeptide composition

    NASA Astrophysics Data System (ADS)

    Sing, Michelle; McKinley, Gareth; Olsen, Bradley

    Block copolymers composed of polypeptides provide an excellent platform for exploring the underlying physics surrounding macroscopic associative network behavior. Previous work in our group has elucidated a difference in the mechanical properties of two nearly identical elastin-like polypeptide (ELP) endblocks. In poly(ELP)s, this substitution is known to result in tighter beta turns. These beta turns exhibit slower responses to changes in temperature within the material. Under shear, the modulus for the alanine-containing ELP triblock is almost three times higher than the glycine-containing ELP. Additionally, preliminary tensile tests show higher stress and strain at break for the alanine ELP triblock. We are able to explain the reasons for this behavior using a variety of spectroscopic and analytical techniques. Small angle neutron and x-ray scattering indicate differences in ordering between the alanine and glycine containing ELP materials both in shear and in stagnant flow.

  15. Folding and self-assembly of polypeptides: Dynamics and thermodynamics from molecular simulation

    NASA Astrophysics Data System (ADS)

    Fluitt, Aaron Michael

    Empowered by their exquisite three-dimensional structures, or "folds," proteins carry out biological tasks with high specificity, efficiency, and fidelity. The fold that optimizes biological function represents a stable configuration of the constituent polypeptide molecule(s) under physiological conditions. Proteins and polypeptides are not static, however: battered by thermal motion, they explore a distribution of folds that is determined by the sequence of amino acids, the presence and identity of other molecules, and the thermodynamic conditions. In this dissertation, we apply molecular simulation techniques to the study of two polypeptides that have unusually diffuse distributions of folds under physiological conditions: polyglutamine (polyQ) and islet amyloid polypeptide (IAPP). Neither polyQ nor IAPP adopts a predominant fold in dilute aqueous solution, but at sufficient concentrations, both are prone to self-assemble into stable, periodic, and highly regular aggregate structures known as amyloid. The appearance of amyloid deposits of polyQ in the brain, and of IAPP in the pancreas, are associated with Huntington's disease and type 2 diabetes, respectively. A molecular view of the mechanism(s) by which polyQ and IAPP fold and self-assemble will enhance our understanding of disease pathogenesis, and it has the potential to accelerate the development of therapeutics that target early-stage aggregates. Using molecular simulations with spatial and temporal resolution on the atomic scale, we present analyses of the structural distributions of polyQ and IAPP under various conditions, both in and out of equilibrium. In particular, we examine amyloid fibers of polyQ, the IAPP dimer in solution, and single IAPP fragments at a lipid bilayer. We also benchmark the molecular models, or "force fields," available for such studies, and we introduce a novel simulation algorithm.

  16. Chemical and quantum simulation of electron transfer through a polypeptide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ungar, L.W.; Voth, G.A.; Newton, M.D.

    1999-08-26

    Quantum rate theory, molecular dynamics simulations, and semiempirical electronic structure calculations are used to fully investigate electron transfer mediated by a solvated polypeptide for the first time. Using a stationary-phase approximation, the nonadiabatic electron-transfer rate constant is calculated from the nuclear free energies and the electronic coupling between the initial and final states. The former are obtained from quantum path integral and classical molecular dynamics simulations; the latter are calculated using semiempirical electronic structure calculations and the generalized Mulliken-Hush method. Importantly, no parameters are fit to kinetic data. The simulated system consists of a solvated four-proline polypeptide with a tris(bipyridine)rutheniummore » donor group and an oxypentamminecobalt acceptor group. From the simulation data entropy and energy contributions to the free energies are distinguished. Quantum suppression of the barrier, including important solvent contributions, is demonstrated. Although free energy profiles along the reaction coordinate are nearly parabolic, pronounced departures from harmonic behavior are found for the separate energy and entropy functions. Harmonic models of the system are compared to simulation results in order to quantify anharmonic effects. Electronic structure calculations show that electronic coupling elements vary considerably with system conformation, even when the effective donor-acceptor separation remains roughly constant. The calculations indicate that electron transfer in a significant range of conformations linking the polypeptide to the acceptor may contribute to the overall rate constant. After correction for limitations of the solvent model, the simulations and calculations agree well with the experimental activation energy and Arrhenius prefactor.« less

  17. Nanoassemblies from homostructured polypeptides as efficient nanoplatforms for oral drug delivery.

    PubMed

    Jia, Yi; Tang, Yuan; He, Hongmei; Li, Shuhui; Che, Ling; Zhou, Xing; Dou, Yin; Zhang, Jianxiang; Li, Xiaohui

    2013-04-01

    The assembly of homostructured polypeptides bearing various side groups into well-defined nanostructures was presented, with their size and topology mainly dominated by the chemical structure and molecular weight of peptides. Pharmacokinetic and pharmacodynamic studies based on rat models suggested these newly constructed nanoassemblies with low cytotoxicity may function as novel nanoplatforms to efficiently and safely deliver therapeutics to achieve better efficacy but lower side effects. Other applications in biomedical fields, such as biotechnology, medical imaging, and tissue engineering, may also be expected. This research team investigated the assembly of homostructured polypeptides bearing various side groups into well-defined nanostructures, and demonstrated low cytotoxicity in rat disease models, suggesting that these novel nanoplatforms may safely and efficiently deliver therapeutics with low side effects. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. A few positively charged residues slow movement of a polypeptide chain across the endoplasmic reticulum membrane.

    PubMed

    Yamagishi, Marifu; Onishi, Yukiko; Yoshimura, Shotaro; Fujita, Hidenobu; Imai, Kenta; Kida, Yuichiro; Sakaguchi, Masao

    2014-08-26

    Many polypeptide chains are translocated across and integrated into the endoplasmic reticulum membrane through protein-conducting channels. During the process, amino acid sequences of translocating polypeptide chains are scanned by the channels and classified to be retained in the membrane or translocated into the lumen. We established an experimental system with which the kinetic effect of each amino acid residue on the polypeptide chain movement can be analyzed with a time resolution of tens of seconds. Positive charges greatly slow movement; only two lysine residues caused a remarkable slow down, and their effects were additive. The lysine residue was more effective than arginine. In contrast, clusters comprising three residues of each of the other 18 amino acids had little effect on chain movement. We also demonstrated that a four lysine cluster can exert the effect after being fully exposed from the ribosome. We concluded that as few as two to three residues of positively charged amino acids can slow the movement of the nascent polypeptide chain across the endoplasmic reticulum membrane. This effect provides a fundamental basis of the topogenic function of positively charged amino acids.

  19. Role of rat sodium/phosphate cotransporters in the cell membrane transport of arsenate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Villa-Bellosta, Ricardo; Sorribas, Victor

    2008-10-01

    Inorganic arsenate (As{sup V}) is a common contaminant of underground water. Following oral exposure, it is assumed that As{sup V} is distributed and crosses cell membranes through inorganic phosphate (Pi) transporters. We have tested this hypothesis by studying the inhibition of rat Na/Pi cotransporters by As{sup V} in Xenopus laevis oocytes and in several rat tissues. The ubiquitously expressed type III Pi transporters (PiT-1 and PiT-2) showed a low affinity for As{sup V} (K{sub i} {approx} 3.8 mM), similar to the Pi transport system in aortic vascular smooth muscle cells (K{sub i} 1.5 mM). The type II renal isoforms, NaPi-IIamore » and NaPi-IIc, were also poorly inhibited by As{sup V} (K{sub i} {approx} 1 mM), similar to the Pi transport from kidney cortex brush-border membrane (BBM) vesicles. Conversely, the high-affinity intestinal transporter, NaPi-IIb, was very efficiently inhibited with a K{sub i} of 51 {mu}M, similar to the Pi transport from intestinal BBM vesicles. Taking into account the 1.1 mM Pi in blood and renal ultrafiltrate, and the nanomolar range of As{sup V} exposures, we have determined that the contribution by Na/Pi cotransporters to As{sup V} membrane transport is negligible, given that 10-15 mM As{sup V} would be necessary in these fluids to be significantly transported. Intestinal transport is an exception, because Pi competition is weak, thereby considering that its concentration in lumen mainly depends on low Pi levels from ingested fresh water, and because As{sup V} very efficiently inhibits Pi intestinal transport. Our data agree with current toxicokinetic knowledge, and they explain the asymmetric excretion of trivalent and pentavalent arsenic species into bile and urine.« less

  20. A simple method to determine IgG light chain to heavy chain polypeptide ratios expressed by CHO cells.

    PubMed

    Gerster, Anja; Wodarczyk, Claas; Reichenbächer, Britta; Köhler, Janet; Schulze, Andreas; Krause, Felix; Müller, Dethardt

    2016-12-01

    To establish a high-throughput method for determination of antibodies intra- and extracellular light chain (LC) to heavy chain (HC) polypeptide ratio as screening parameter during cell line development. Chinese Hamster Ovary (CHO) TurboCell pools containing different designed vectors supposed to result in different LC:HC polypeptide ratios were generated by targeted integration. Cell culture supernatants and cell lysates of a fed batch experiment were purified by combined Protein A and anti-kappa affinity batch purification in 96-well format. Capture of all antibodies and their fragments allowed the determination of the intra- and extracellular LC:HC peptide ratios by reduced SDS capillary electrophoresis. Results demonstrate that the method is suitable to show the significant impact of the vector design on the intra- and extracellular LC:HC polypeptide ratios. Determination of LC:HC polypeptide ratios can give important information in vector design optimization leading to CHO cell lines with optimized antibody assembly and preferred product quality.

  1. A Bio-Inspired Two-Layer Sensing Structure of Polypeptide and Multiple-Walled Carbon Nanotube to Sense Small Molecular Gases

    PubMed Central

    Wang, Li-Chun; Su, Tseng-Hsiung; Ho, Cheng-Long; Yang, Shang-Ren; Chiu, Shih-Wen; Kuo, Han-Wen; Tang, Kea-Tiong

    2015-01-01

    In this paper, we propose a bio-inspired, two-layer, multiple-walled carbon nanotube (MWCNT)-polypeptide composite sensing device. The MWCNT serves as a responsive and conductive layer, and the nonselective polypeptide (40 mer) coating the top of the MWCNT acts as a filter into which small molecular gases pass. Instead of using selective peptides to sense specific odorants, we propose using nonselective, peptide-based sensors to monitor various types of volatile organic compounds. In this study, depending on gas interaction and molecular sizes, the randomly selected polypeptide enabled the recognition of certain polar volatile chemical vapors, such as amines, and the improved discernment of low-concentration gases. The results of our investigation demonstrated that the polypeptide-coated sensors can detect ammonia at a level of several hundred ppm and barely responded to triethylamine. PMID:25751078

  2. Identification of a new membrane-associated polypeptide specified by the coronavirus infectious bronchitis virus.

    PubMed

    Smith, A R; Boursnell, M E; Binns, M M; Brown, T D; Inglis, S C

    1990-01-01

    Nucleotide sequences from the third open reading frame of mRNA D (D3) of infectious bronchitis virus (IBV) were expressed in bacteria as part of a fusion protein with beta-galactosidase. Antiserum raised in rabbits against this fusion protein immunoprecipitated from IBV-infected chick kidney or Vero cells a polypeptide of 12.4K, the size expected for a D3-encoded product. The D3 polypeptide is apparently non-glycosylated, and appears to be associated with the membrane fraction of infected cells, as judged by cell fractionation and immunofluorescence.

  3. Variants of polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sweeney, Matt; Wogulis, Mark

    The present invention relates to polypeptide having cellulolytic enhancing activity variants. The present invention also relates to polynucleotides encoding the variants; nucleic acid constructs, vectors, and host cells comprising the polynucleotides; and methods of using the variants.

  4. In vivo guided vascular regeneration with a non-porous elastin-like polypeptide hydrogel tubular scaffold.

    PubMed

    Mahara, Atsushi; Kiick, Kristi L; Yamaoka, Tetsuji

    2017-06-01

    Herein, we demonstrate a new approach for small-caliber vascular reconstruction using a non-porous elastin-like polypeptide hydrogel tubular scaffold, based on the concept of guided vascular regeneration (GVR). The scaffolds are composed of elastin-like polypeptide, (Val-Pro-Gly-Ile-Gly) n , for compliance matching and antithrombogenicity and an Arg-Gly-Asp (RGD) motif for connective tissue regeneration. When the polypeptide was mixed with an aqueous solution of β-[Tris(hydroxymethyl)phosphino]propionic acid at 37°C, the polypeptide hydrogel was rapidly formed. The elastic modulus of the hydrogel was 4.4 kPa. The hydrogel tubular scaffold was formed in a mold and reinforced with poly(lactic acid) nanofibers. When tubular scaffolds with an inner diameter of 1 mm and length of 5 mm were implanted into rat abdominal aortae, connective tissue grew along the scaffold luminal surface from the flanking native tissues, resulting in new blood vessel tissue with a thickness of 200 μm in 1 month. In contrast, rats implanted with control scaffolds without the RGD motif died. These results indicate that the non-porous hydrogel tubular scaffold containing the RGD motif effectively induced rapid tissue regeneration and that GVR is a promising strategy for the regeneration of small-diameter blood vessels. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1746-1755, 2017. © 2017 Wiley Periodicals, Inc.

  5. HMSN/ACC truncation mutations disrupt brain-type creatine kinase-dependant activation of K+/Cl- co-transporter 3.

    PubMed

    Salin-Cantegrel, Adèle; Shekarabi, Masoud; Holbert, Sébastien; Dion, Patrick; Rochefort, Daniel; Laganière, Janet; Dacal, Sandra; Hince, Pascale; Karemera, Liliane; Gaspar, Claudia; Lapointe, Jean-Yves; Rouleau, Guy A

    2008-09-01

    The potassium-chloride co-transporter 3 (KCC3) is mutated in hereditary motor and sensory neuropathy with agenesis of the corpus callosum (HMSN/ACC); however, the molecular mechanisms of HMSN/ACC pathogenesis and the exact role of KCC3 in the development of the nervous system remain poorly understood. The functional regulation of this transporter by protein partners is also largely unknown. Using a yeast two-hybrid approach, we discovered that the C-terminal domain (CTD) of KCC3, which is lost in most HMSN/ACC-causing mutations, directly interacts with brain-specific creatine kinase (CK-B), an ATP-generating enzyme that is also a partner of KCC2. The interaction of KCC3 with CK-B was further confirmed by in vitro glutathione S-transferase pull-down assay, followed by sequencing of the pulled-down complexes. In transfected cultured cells, immunofluorescence labeling showed that CK-B co-localizes with wild-type KCC3, whereas the kinase fails to interact with the inactive truncated KCC3. Finally, CK-B's inhibition by DNFB results in reduction of activity of KCC3 in functional assays using Xenopus laevis oocytes. This physical and functional association between the co-transporter and CK-B is, therefore, the first protein-protein interaction identified to be potentially involved in the pathophysiology of HMSN/ACC.

  6. Co-transport of chlordecone and sulfadiazine in the presence of functionalized multi-walled carbon nanotubes in soils.

    PubMed

    Zhang, Miaoyue; Engelhardt, Irina; Šimůnek, Jirka; Bradford, Scott A; Kasel, Daniela; Berns, Anne E; Vereecken, Harry; Klumpp, Erwin

    2017-02-01

    Batch and saturated soil column experiments were conducted to investigate sorption and mobility of two 14 C-labeled contaminants, the hydrophobic chlordecone (CLD) and the sulfadiazine (SDZ), in the absence or presence of functionalized multi-walled carbon nanotubes (MWCNTs). The transport behaviors of CLD, SDZ, and MWCNTs were studied at environmentally relevant concentrations (0.1-10 mg L -1 ) and they were applied in the column studies at different times. The breakthrough curves and retention profiles were simulated using a numerical model that accounted for the advective-dispersive transport of all compounds, attachment/detachment of MWCNTs, equilibrium and kinetic sorption of contaminants, and co-transport of contaminants with MWCNTs. The experimental results indicated that the presence of mobile MWCNTs facilitated remobilization of previously deposited CLD and its co-transport into deeper soil layers, while retained MWCNTs enhanced SDZ deposition in the topsoil layers due to the increased adsorption capacity of the soil. The modeling results then demonstrated that the mobility of engineered nanoparticles (ENPs) in the environment and the high affinity and entrapment of contaminants to ENPs were the main reasons for ENP-facilitated contaminant transport. On the other hand, immobile MWCNTs had a less significant impact on the contaminant transport, even though they were still able to enhance the adsorption capacity of the soil. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Homoallylglycine residues are superior precursors to orthogonally modified thioether containing polypeptides.

    PubMed

    Perlin, Pesach; Gharakhanian, Eric G; Deming, Timothy J

    2018-06-12

    Homoallylglycine N-carboxyanhydride, Hag NCA, monomers were synthesized and used to prepare polypeptides containing Hag segments with controllable lengths of up to 245 repeats. Poly(l-homoallylglycine), GHA, was found to adopt an α-helical conformation, which provided good solubility in organic solvents and allowed high yield functionalization of its alkene side-chains via radical promoted addition of thiols. The conformations of these derivatives were shown to be switchable between α-helical and disordered states in aqueous media using thioether alkylation or oxidation reactions. Incorporation of GHA segments into block copolymers with poly(l-methionine), M, segments provided a means to orthogonally modify thioether side-chains different ways in separate copolypeptide domains. This approach allows preparation of functional polypeptides containing discrete domains of oxidized and alkylated thioether containing residues, where chain conformation and functionality of each domain can be independently modified.

  8. Catalytic and reactive polypeptides and methods for their preparation and use

    DOEpatents

    Schultz, Peter

    1994-01-01

    Catalytic and reactive polypeptides include a binding site specific for a reactant or reactive intermediate involved in a chemical reaction of interest. The polypeptides further include at least one active functionality proximate the binding site, where the active functionality is capable of catalyzing or chemically participating in the chemical reaction in such a way that the reaction rate is enhanced. Methods for preparing the catalytic peptides include chemical synthesis, site-directed mutagenesis of antibody and enzyme genes, covalent attachment of the functionalities through particular amino acid side chains, and the like. This invention was made with Government support under Grant Contract No. AI-24695, awarded by the Department of health and Human Services, and under Grant Contract No. N 00014-87-K-0256, awarded by the Office of Naval Research. The Government has certain rights in this invention.

  9. Salt- and pH-Triggered Helix-Coil Transition of Ionic Polypeptides under Physiology Conditions.

    PubMed

    Yuan, Jingsong; Zhang, Yi; Sun, Yue; Cai, Zhicheng; Yang, Lijiang; Lu, Hua

    2018-06-11

    Controlling the helix-coil transition of polypeptides under physiological conditions is an attractive way toward smart functional materials. Here, we report the synthesis of a series of tertiary amine-functionalized ethylene glycol (EG x )-linked polypeptide electrolytes with their secondary structures tunable under physiological conditions. The resultant polymers, denoted as P(EG x DMA-Glu) ( x = 1, 2, and 3), show excellent aqueous solubility (>20 mg/mL) regardless of their charge states. Unlike poly-l-lysine that can form a helix only at pH above 10, P(EG x DMA-Glu) undergo a pH-dependent helix-coil switch with their transition points within the physiological range (pH ∼5.3-6.5). Meanwhile, P(EG x DMA-Glu) exhibit an unusual salt-induced helical conformation presumably owing to the unique properties of EG x linkers. Together, the current work highlights the importance of fine-tuning the linker chemistry in achieving conformation-switchable polypeptides and represents a facile approach toward stimuli-responsive biopolymers for advanced biological applications.

  10. Pharmacokinetics of pancreatic polypeptide in man.

    PubMed

    Adrian, T E; Greenberg, G R; Besterman, H S; Bloom, S R

    1978-10-01

    Pure bovine pancreatic polypeptide (PP) was infused into 23 healthy subjects at doses of 1, 3, and 5 pmol/kg/min over 60 minutes and plasma PP was measured by radioimmunoassay. During the infusions mean plasma levels of 203 +/- 34, 575 +/- 73, and 930 +/- 48 pmol/l respectively were achieved. Mean disappearance half time on stopping the infusion was 6.9 +/- 0.3 min (mean +/- SEM). The metabolic clearance rate was 5.1 +/- 0.2 ml/kg/min (mean +/- SEM) and the apparent volume of distribution was calculated to be 51 +/- 3 ml/kg (mean +/- SEM). This study provides for the first time pharmacokinetic data for PP in man.

  11. Pharmacokinetics of pancreatic polypeptide in man.

    PubMed Central

    Adrian, T E; Greenberg, G R; Besterman, H S; Bloom, S R

    1978-01-01

    Pure bovine pancreatic polypeptide (PP) was infused into 23 healthy subjects at doses of 1, 3, and 5 pmol/kg/min over 60 minutes and plasma PP was measured by radioimmunoassay. During the infusions mean plasma levels of 203 +/- 34, 575 +/- 73, and 930 +/- 48 pmol/l respectively were achieved. Mean disappearance half time on stopping the infusion was 6.9 +/- 0.3 min (mean +/- SEM). The metabolic clearance rate was 5.1 +/- 0.2 ml/kg/min (mean +/- SEM) and the apparent volume of distribution was calculated to be 51 +/- 3 ml/kg (mean +/- SEM). This study provides for the first time pharmacokinetic data for PP in man. PMID:568585

  12. Analysis of urine composition in type Ⅱ diabetic mice after intervention therapy using holothurian polypeptides

    NASA Astrophysics Data System (ADS)

    Li, Yanyan; Xu, Jiajie; Su, Xiurong

    2017-07-01

    Hydrolysates and peptide fractions (PF) obtained from sea cucumber with commercial enzyme were studied on the hpyerglycemic and renal protective effects on db/db rats using urine metabolomics. Compared with the control group the polypeptides from the two species could significantly reduce the urine glucose and urea. We also tried to address the compositions of highly expressed urinary proteins using a proteomics approach. They were serum albumins, AMBP proteins, negative trypsin, elastase and urinary protein, GAPDH, a receptor of urokinase-type plasminogen activator (uPAR), and Ig kappa chain C region. We used the electronic nose to quickly detect changes in the volatile substances in mice urine after holothurian polypeptides fed, and the results show it can identify the difference between treatment groups with the control group without overlapping. The protein express mechanism of holothurian polypeptides treating diabetes was discussed, and we suggested these two peptides with the hypoglycemic and renal protective activity might be utilized as nutraceuticals.

  13. Safety of Lienal Polypeptide Injection Combined with Chemotherapy in Treating Patients with Advanced Cancer.

    PubMed

    Huang, Xin-En; Wang, Lin; Ji, Zhu-Qing; Liu, Meng-Yan; Qian, Ting; Li, Li

    2015-01-01

    To assess the safety of Liena polypeptide injection (produced by JILIN FSENS PHARMACEUTICAL CO.,LTD) combined with chemotherapy in treating patients with advanced cancers. A consecutive cohort of patients with advanced cancers were treated with Liena polypeptide injection combined with chemotherapy. And chemotherapy for patients with advanced cancers were adopted from regimens suggested by NCCN guideline. Liena polypeptide injection was intravenously injected at a dosage of 2 ml plus 100ml normal saline for continuous 7 days during chemotherapy as one course. After at least two courses of treatment, safety and side effects were evaluated. There were 20 female and 14 male patients with advanced cancer recruited into this study, including 10 patients with breast, 8 patients with colorectal, 8 patients with lung, 4 patients with gastric, and 1 patient with esophageal cancer, as well as 1 patient with non-Hodgkin's lymphoma, 1 patient with low pharyngeal and 1 patient with urethral cancer. The median age of patients was 59 (40-82) years. Incidences of Grade 1 to 2 myelosuppression was observed in 5/34 patients, and Grade 1 to 2 elevation of hepatic enzyme was recorded in 3/34 patients. Adverse effects on the gastrointestinal tract were documented in 5/34 patients, and were Grade 1. No Grade 3-4 toxicities were diagnosed. No treatment related death was found. Liena polypeptide injection combined with chemotherapy was safe in treating several sites of tumors, that mainly included lung, colorectal and breast cancer. However, further study should be conducted to clarify the effectiveness of this treatment.

  14. Regulation of the renal Na+-Cl− cotransporter by phosphorylation and ubiquitylation

    PubMed Central

    2012-01-01

    The activity of the renal thiazide-sensitive NaCl cotransporter (NCC) in the distal convoluted tubule plays a key role in defining arterial blood pressure levels. Increased or decreased activity of the NCC is associated with arterial hypertension or hypotension, respectively. Thus it is of major interest to understand the activity of NCC using in vivo models. Phosphorylation of certain residues of the amino-terminal domain of NCC has been shown to be associated with its activation. The development of phospho-specific antibodies against these sites provides a powerful tool that is helping to increase our understanding of the molecular physiology of NCC. Additionally, NCC expression in the plasma membrane is modulated by ubiquitylation, which represents another major mechanism for regulating protein activity. This work presents a review of our current knowledge of the regulation of NCC activity by phosphorylation and ubiquitylation. PMID:23034942

  15. cDNA encoding a polypeptide including a hevein sequence

    DOEpatents

    Raikhel, Natasha V.; Broekaert, Willem F.; Chua, Nam-Hai; Kush, Anil

    1999-05-04

    A cDNA clone (HEV1) encoding hevein was isolated via polymerase chain reaction (PCR) using mixed oligonucleotides corresponding to two regions of hevein as primers and a Hevea brasiliensis latex cDNA library as a template. HEV1 is 1018 nucleotides long and includes an open reading frame of 204 amino acids. The deduced amino acid sequence contains a putative signal sequence of 17 amino acid residues followed by a 187 amino acid polypeptide. The amino-terminal region (43 amino acids) is identical to hevein and shows homology to several chitin-binding proteins and to the amino-termini of wound-induced genes in potato and poplar. The carboxyl-terminal portion of the polypeptide (144 amino acids) is 74-79% homologous to the carboxyl-terminal region of wound-inducible genes of potato. Wounding, as well as application of the plant hormones abscisic acid and ethylene, resulted in accumulation of hevein transcripts in leaves, stems and latex, but not in roots, as shown by using the cDNA as a probe. A fusion protein was produced in E. coli from the protein of the present invention and maltose binding protein produced by the E. coli.

  16. cDNA encoding a polypeptide including a hevein sequence

    DOEpatents

    Raikhel, N.V.; Broekaert, W.F.; Chua, N.H.; Kush, A.

    1999-05-04

    A cDNA clone (HEV1) encoding hevein was isolated via polymerase chain reaction (PCR) using mixed oligonucleotides corresponding to two regions of hevein as primers and a Hevea brasiliensis latex cDNA library as a template. HEV1 is 1018 nucleotides long and includes an open reading frame of 204 amino acids. The deduced amino acid sequence contains a putative signal sequence of 17 amino acid residues followed by a 187 amino acid polypeptide. The amino-terminal region (43 amino acids) is identical to hevein and shows homology to several chitin-binding proteins and to the amino-termini of wound-induced genes in potato and poplar. The carboxyl-terminal portion of the polypeptide (144 amino acids) is 74--79% homologous to the carboxyl-terminal region of wound-inducible genes of potato. Wounding, as well as application of the plant hormones abscisic acid and ethylene, resulted in accumulation of hevein transcripts in leaves, stems and latex, but not in roots, as shown by using the cDNA as a probe. A fusion protein was produced in E. coli from the protein of the present invention and maltose binding protein produced by the E. coli. 12 figs.

  17. cDNA encoding a polypeptide including a hevein sequence

    DOEpatents

    Raikhel, N.V.; Broekaert, W.F.; Chua, N.H.; Kush, A.

    1995-03-21

    A cDNA clone (HEV1) encoding hevein was isolated via polymerase chain reaction (PCR) using mixed oligonucleotides corresponding to two regions of hevein as primers and a Hevea brasiliensis latex cDNA library as a template. HEV1 is 1,018 nucleotides long and includes an open reading frame of 204 amino acids. The deduced amino acid sequence contains a putative signal sequence of 17 amino acid residues followed by a 187 amino acid polypeptide. The amino-terminal region (43 amino acids) is identical to hevein and shows homology to several chitin-binding proteins and to the amino-termini of wound-induced genes in potato and poplar. The carboxyl-terminal portion of the polypeptide (144 amino acids) is 74--79% homologous to the carboxyl-terminal region of wound-inducible genes of potato. Wounding, as well as application of the plant hormones abscisic acid and ethylene, resulted in accumulation of hevein transcripts in leaves, stems and latex, but not in roots, as shown by using the cDNA as a probe. A fusion protein was produced in E. coli from the protein of the present invention and maltose binding protein produced by the E. coli. 11 figures.

  18. Mechanically Controlled Electron Transfer in a Single-Polypeptide Transistor

    NASA Astrophysics Data System (ADS)

    Sheu, Sheh-Yi; Yang, Dah-Yen

    2017-01-01

    Proteins are of interest in nano-bio electronic devices due to their versatile structures, exquisite functionality and specificity. However, quantum transport measurements produce conflicting results due to technical limitations whereby it is difficult to precisely determine molecular orientation, the nature of the moieties, the presence of the surroundings and the temperature; in such circumstances a better understanding of the protein electron transfer (ET) pathway and the mechanism remains a considerable challenge. Here, we report an approach to mechanically drive polypeptide flip-flop motion to achieve a logic gate with ON and OFF states during protein ET. We have calculated the transmission spectra of the peptide-based molecular junctions and observed the hallmarks of electrical current and conductance. The results indicate that peptide ET follows an NC asymmetric process and depends on the amino acid chirality and α-helical handedness. Electron transmission decreases as the number of water molecules increases, and the ET efficiency and its pathway depend on the type of water-bridged H-bonds. Our results provide a rational mechanism for peptide ET and new perspectives on polypeptides as potential candidates in logic nano devices.

  19. Novel antibacterial polypeptide produced by Lactobacillus paracasei strain NRRL B-50314

    USDA-ARS?s Scientific Manuscript database

    This study reports the production and characterization of a novel antibacterial polypeptide, designated as laparaxin, which is secreted by Lactobacillus paracasei NRRL B-50314. The crude laparaxin has antibacterial activity against a range of Gram-positive bacteria including the following: lactic a...

  20. An energy function for dynamics simulations of polypeptides in torsion angle space

    NASA Astrophysics Data System (ADS)

    Sartori, F.; Melchers, B.; Böttcher, H.; Knapp, E. W.

    1998-05-01

    Conventional simulation techniques to model the dynamics of proteins in atomic detail are restricted to short time scales. A simplified molecular description, in which high frequency motions with small amplitudes are ignored, can overcome this problem. In this protein model only the backbone dihedrals φ and ψ and the χi of the side chains serve as degrees of freedom. Bond angles and lengths are fixed at ideal geometry values provided by the standard molecular dynamics (MD) energy function CHARMM. In this work a Monte Carlo (MC) algorithm is used, whose elementary moves employ cooperative rotations in a small window of consecutive amide planes, leaving the polypeptide conformation outside of this window invariant. A single of these window MC moves generates local conformational changes only. But, the application of many such moves at different parts of the polypeptide backbone leads to global conformational changes. To account for the lack of flexibility in the protein model employed, the energy function used to evaluate conformational energies is split into sequentially neighbored and sequentially distant contributions. The sequentially neighbored part is represented by an effective (φ,ψ)-torsion potential. It is derived from MD simulations of a flexible model dipeptide using a conventional MD energy function. To avoid exaggeration of hydrogen bonding strengths, the electrostatic interactions involving hydrogen atoms are scaled down at short distances. With these adjustments of the energy function, the rigid polypeptide model exhibits the same equilibrium distributions as obtained by conventional MD simulation with a fully flexible molecular model. Also, the same temperature dependence of the stability and build-up of α helices of 18-alanine as found in MD simulations is observed using the adapted energy function for MC simulations. Analyses of transition frequencies demonstrate that also dynamical aspects of MD trajectories are faithfully reproduced. Finally

  1. Membrane fractions active in poliovirus RNA replication contain VPg precursor polypeptides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takegami, T.; Semler, B.L.; Anderson, C.W.

    1983-01-01

    The poliovirus specific polypeptide P3-9 is of special interest for studies of viral RNA replication because it contains a hydrophobic region and, separated by only seven amino acids from that region, the amino acid sequence of the genome-linked protein VPg. Membraneous complexes of poliovirus-infected HeLa cells that contain poliovirus RNA replicating proteins have been analyzed for the presence of P3-9 by immunoprecipitation. Incubation of a membrane fraction rich in P3-9 with proteinase leaves the C-terminal 69 amino acids of P3-9 intact, an observation suggesting that this portion is protected by its association with the cellular membrane. These studies have alsomore » revealed two hitherto undescribed viral polypeptides consisting of amino acid sequences of the P2 andf P3 regions of the polyprotein. Sequence analysis by stepwise Edman degradation show that these proteins are 3b/9 (M/sub r/77,000) and X/9 (M/sub r/50,000). 3b/9 and X/9 are membrane bound and are turned over rapidly and may be direct precursors to proteins P2-X and P3-9 of the RNA replication complex. P2-X, a polypeptide void of hydrophobic amino acid sequences but also found associated with membranes, is rapidly degraded when the membraneous complex is treated with trypsin. It is speculated that P2-X is associated with membranes by its affinity to the N-terminus of P3-9.« less

  2. Common spectrum of polypeptides occurs in secretion granule membranes of different exocrine glands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cameron, R.S.; Cameron, P.L.; Castle, J.D.

    1986-10-01

    A highly purified membrane preparation from rat parotid secretion granules has been used as a comparative probe to examine the extent of compositional overlap in granule membranes of three other exocrine secretory tissues - pancreatic, lacrimal, and submandibular - from several standpoints. First, indirect immunofluorescent studies using a polyclonal polyspecific anti-parotid granule membrane antiserum has indicated a selective staining of granule membrane profiles in all acinar cells of all tissues. Second, highly purified granule membrane subfractions have been isolated from each exocrine tissue; comparative two-dimensional (isoelectric focusing; SDS) PAGE of radioiodinated granule membranes has identified 10-15 polypeptides of identical pImore » and apparent molecular mass. These species are likely to be integral membrane components since they are not extracted by either saponin-sodium sulfate or sodium carbonate (pH 11.5) treatments, and they do not have counterparts in the granule content. Finally, the identity among selected parotid and pancreatic radioiodinated granule membrane polypeptides has been documented using two-dimensional peptide mapping of chymotryptic and tryptic digests. These findings clearly indicate that exocrine secretory granules, irrespective of the nature of stored secretion, comprise a type of vesicular carrier with a common (and probably refined) membrane composition. Conceivably, the polypeptides identified carry out general functions related to exocrine secretion.« less

  3. Biliary excretion of pravastatin and taurocholate in rats with bile salt export pump (Bsep) impairment.

    PubMed

    Cheng, Yaofeng; Freeden, Chris; Zhang, Yueping; Abraham, Pamela; Shen, Hong; Wescott, Debra; Humphreys, W Griffith; Gan, Jinping; Lai, Yurong

    2016-07-01

    The bile salt export pump (BSEP) is expressed on the canalicular membrane of hepatocytes regulating liver bile salt excretion, and impairment of BSEP function may lead to cholestasis in humans. This study explored drug biliary excretion, as well as serum chemistry, individual bile acid concentrations and liver transporter expressions, in the SAGE Bsep knockout (KO) rat model. It was observed that the Bsep protein in KO rats was decreased to 15% of that in the wild type (WT), as quantified using LC-MS/MS. While the levels of Ntcp and Mrp2 were not significantly altered, Mrp3 expression increased and Oatp1a1 decreased in KO animals. Compared with the WT rats, the KO rats had similar serum chemistry and showed normal liver transaminases. Although the total plasma bile salts and bile flow were not significantly changed in Bsep KO rats, individual bile acids in plasma and liver demonstrated variable changes, indicating the impact of Bsep KO. Following an intravenous dose of deuterium labeled taurocholic acid (D4-TCA, 2 mg/kg), the D4-TCA plasma exposure was higher and bile excretion was delayed by approximately 0.5 h in the KO rats. No differences were observed for the pravastatin plasma concentration-time profile or the biliary excretion after intravenous administration (1 mg/kg). Collectively, the results revealed that these rats have significantly lower Bsep expression, therefore affecting the biliary excretion of endogenous bile acids and Bsep substrates. However, these rats are able to maintain a relatively normal liver function through the remaining Bsep protein and via the regulation of other transporters. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  4. Peptide Beacons: A New Design for Polypeptide-Based Optical Biosensors

    PubMed Central

    Oh, Kenneth J.; Cash, Kevin J.; Hugenberg, Verena; Plaxco, Kevin W.

    2008-01-01

    Phage display and other in vitro selection techniques produce short polypeptides that tightly and specifically bind to any of a wide range of macromolecular targets. Here we demonstrate a potentially general means of converting such polypeptides into optical biosensors. The sensing architecture we have developed, termed peptide beacons, is based on the observation that, whereas short peptides are almost invariably unfolded and highly dynamic, they become rigid when complexed to their target. Using this effect to segregate a long-lived fluorophore from an electron transfer-based contact quencher, both covalently attached to the peptide, we have produced a robust optical sensor for anti-HIV antibodies. The binding-induced segregation of the fluorophore-quencher pair produces a six-fold increase in sensor emission, thus allowing us to readily detect as low as ∼250 pM of the target antibody. Because the sensor is based on binding-induced folding and a visible-light fluorophore, it is sufficiently selective to work directly in complex, contaminant-ridden samples such as saliva and blood. PMID:17461545

  5. Detection of adenovirus type 2-induced early polypeptides using cycloheximide pretreatment to enhance viral protein synthesis.

    PubMed Central

    Harter, M L; Shanmugam, G; Wold, W S; Green, M

    1976-01-01

    (35S) methionine-labeled polypeptides synthesized by adenovirus type 2-infected cells have been analyzed by polyacrylamide gradient gel electrophoresis and autoradiography. Cycloheximide (CH) was added to infected cultures to accumulate early viral mRNA relative to host cell mRNA. This allowed viral proteins to be synthesized in increased amounts relative to host proteins after removal of CH and pulse-labeling with (35S)methionine. During the labeling period arabinosyl cytosine was added to prevent the synthesis of late viral proteins. This procedure facilitated the detection of six early viral-induced polypeptides, designated EP1 through EP6 (early protein), with apparent molecular weights of 75,000 (75K), 42K, 21K, 18K, 15K, and 11K. Supportive data were obtained by coelectrophoresis of (35S)- and (3H)methionine-labeled polypeptides from infected and uninfected cells, respectively. Three of these early polypeptides have not been previously reported. CH pretreatment enhanced the rates of synthesis of EP4 and EP6 20- to 30-fold and enhanced that of the others approximately twofold. The maximal rates of synthesis of the virus-induced proteins varied, in a different manner, with time postinfection and CH pretreatment. Since CH pretreatment appears to increase the levels of early viral proteins, it may be a useful procedure to assist their isolation and functional characterization. Images PMID:950686

  6. Induction, immunochemical identity and immunofluorescence localization of an 80 000-molecular-weight peroxisome-proliferation-associated polypeptide (polypeptide PPA-80) and peroxisomal enoyl-CoA hydratase of mouse liver and renal cortex.

    PubMed

    Lalwani, N D; Reddy, M K; Mangkornkanok-Mark, M; Reddy, J K

    1981-07-15

    The hypolipidaemic drugs methyl clofenapate, BR-931, Wy-14643 and procetofen induced a marked proliferation of peroxisomes in the parenchymal cells of liver and the proximal-convoluted-tubular epithelium of mouse kidney. The proliferation of peroxisomes was associated with 6-12-fold increase in the peroxisomal palmitoyl-CoA oxidizing capacity of the mouse liver. Enhanced activity of the peroxisomal palmitoyl-CoA oxidation system was also found in the renal-cortical homogenates of hypolipidaemic-drug-treated mice. The activity of enoyl-CoA hydratase in the mouse liver increased 30-50-fold and in the kidney cortex 3-5-fold with hypolipidaemic-drug-induced peroxisome proliferation in these tissues, and over 95% of this induced activity was found to be heat-labile peroxisomal enzyme in both organs. Sodium dodecyl sulphate/polyacrylamide-gel-electrophoretic analysis of large-particle and microsomal fractions obtained from the liver and kidney cortex of mice treated with hypolipidaemic peroxisome proliferators demonstrated a substantial increase in the quantity of an 80000-mol.wt. peroxisome-proliferation-associated polypeptide (polypeptide PPA-80). The heat-labile peroxisomal enoyl-CoA hydratase was purified from the livers of mice treated with the hypolipidaemic drug methyl clofenapate; the antibodies raised against this electrophoretically homogeneous protein yielded a single immunoprecipitin band with purified mouse liver enoyl-CoA hydratase and with liver and kidney cortical extracts of normal and hypolipidaemic-drug-treated mice. These anti-(mouse liver enoyl-CoA hydratase) antibodies also cross-reacted with purified rat liver enoyl-CoA hydratase and with the polypeptide PPA-80 obtained from rat and mouse liver. Immunofluorescence studies with anti-(polypeptide PPA-80) and anti-(peroxisomal enoyl-CoA hydratase) provided visual evidence for the localization and induction of polypeptide PPA-80 and peroxisomal enoyl-CoA hydratase in the liver and kidney respectively

  7. Apical Na(+)-D-glucose cotransporter 1 (SGLT1) activity and protein abundance are expressed along the jejunal crypt-villus axis in the neonatal pig

    USDA-ARS?s Scientific Manuscript database

    Gut apical Na(+)-glucose cotransporter 1 (SGLT1) activity is high at the birth and during suckling, thus contributing substantially to neonatal glucose homeostasis. We hypothesize that neonates possess high SGLT1 maximal activity by expressing apical SGLT1 protein along the intestinal crypt-villus a...

  8. [Sodium Glucose Co-transporter Type 2 (SGLT2) Inhibitors in CKD].

    PubMed

    Insalaco, Monica; Zanoli, Luca; Rastelli, Stefania; Lentini, Paolo; Rapisarda, Francesco; Fatuzzo, Pasquale; Castellino, Pietro; Granata, Antonio

    2015-01-01

    Among the new drugs used for the treatment of Diabetes Mellitus type 2, sodium-glucose cotransporter 2 (SGLT2) inhibitors represent a promising therapeutic option. Since their ability to lower glucose is proportional to GFR, their effect is reduced in patients with chronic kidney disease (CKD). The antidiabetic mechanism of these drugs is insulin-independent and, therefore, complimentary to that of others antihyperglicaemic agents. Moreover, SGLT2 inhibitors are able to reduce glomerular hyperfiltration, systemic and intraglomerular pressure and uric acid levels, with consequent beneficial effects on the progression of kidney disease in non diabetic patients as well. Only few studies have been performed to evaluate the effects of SGLT2 inhibitors in patients with CKD. Therefore, safety and efficacy of SGLT2 inhibitors should be better clarified in the setting of CKD. In this paper, we will review the use of SGLT2 inhibitors in diabetic patients, including those with CKD.

  9. Zonadhesin D3-Polypeptides Vary among Species but Are Similar in Equus Species Capable of Interbreeding1

    PubMed Central

    Tardif, Steve; Brady, Heidi A.; Breazeale, Kelly R.; Bi, Ming; Thompson, Leslie D.; Bruemmer, Jason E.; Bailey, Laura B.; Hardy, Daniel M.

    2009-01-01

    Zonadhesin is a rapidly evolving protein in the sperm acrosome that confers species specificity to sperm-zona pellucida adhesion. Though structural variation in zonadhesin likely contributes to its species-specific function, the protein has not previously been characterized in organisms capable of interbreeding. Here we compared properties of zonadhesin in several animals, including the horse (Equus caballus), donkey (E. asinus), and Grevy's zebra (E. grevyi) to determine if variation in zonadhesin correlates with ability of gametes to cross-fertilize. Zonadhesin localized to the apical acrosomes of spermatozoa from all three Equus species, similar to its localization in other animals. Likewise, in horse and donkey testis, zonadhesin was detected only in germ cells, first in the acrosomal granule of round spermatids and then in the developing acrosomes of elongating spermatids. Among non-Equus species, D3-domain polypeptides of mature, processed zonadhesin varied markedly in size and detergent solubility. However, zonadhesin D3-domain polypeptides in horse, donkey, and zebra spermatozoa exhibited identical electrophoretic mobility and detergent solubility. Equus zonadhesin D3-polypeptides (p110/p80 doublet) were most similar in size to porcine and bovine zonadhesin D3-polypeptides (p105). Sequence comparisons revealed that the horse zonadhesin precursor's domain content and arrangement are similar to those of zonadhesin from other large animals. Partial sequences of horse and donkey zonadhesin were much more similar to each other (>99% identity) than they were to orthologous sequences of human, pig, rabbit, and mouse zonadhesin (52%–72% identity). We conclude that conservation of zonadhesin D3-polypeptide properties correlates with ability of Equus species to interbreed. PMID:19794156

  10. Elastin-like polypeptides: Therapeutic applications for an emerging class of nanomedicines.

    PubMed

    Despanie, Jordan; Dhandhukia, Jugal P; Hamm-Alvarez, Sarah F; MacKay, J Andrew

    2016-10-28

    Elastin-like polypeptides (ELPs) constitute a genetically engineered class of 'protein polymers' derived from human tropoelastin. They exhibit a reversible phase separation whereby samples remain soluble below a transition temperature (T t ) but form amorphous coacervates above T t . Their phase behavior has many possible applications in purification, sensing, activation, and nanoassembly. As humanized polypeptides, they are non-immunogenic, substrates for proteolytic biodegradation, and can be decorated with pharmacologically active peptides, proteins, and small molecules. Recombinant synthesis additionally allows precise control over ELP architecture and molecular weight, resulting in protein polymers with uniform physicochemical properties suited to the design of multifunctional biologics. As such, ELPs have been employed for various uses including as anti-cancer agents, ocular drug delivery vehicles, and protein trafficking modulators. This review aims to offer the reader a catalogue of ELPs, their various applications, and potential for commercialization across a broad spectrum of fields. Copyright © 2015. Published by Elsevier B.V.

  11. N-nitrosations of basic amino acid residues in polypeptide.

    PubMed

    Kuo, Wu-Nan; Ivy, Dynisha; Guruvadoo, Luvina; White, Atavia; Graham, Latia

    2004-09-01

    Changes in the electrophoretic pattern were noted in the products of polypeptides of identical basic amino acids preincubated with reactive or degraded PN, suggesting the occurrence of N-nitrosation of the epsilon-amino group of lysine, the guanido group of arginine and the imidazole group of histidine. Additionally, increase in the N-nitroso immunoreactivity of preincubated histones H2A and H2B was detected by Western blot analysis.

  12. Inhibition of ovarian cancer cell proliferation by a cell cycle inhibitory peptide fused to a thermally responsive polypeptide carrier.

    PubMed

    Massodi, Iqbal; Moktan, Shama; Rawat, Aruna; Bidwell, Gene L; Raucher, Drazen

    2010-01-15

    Current treatment of solid tumors is limited by normal tissue tolerance, resulting in a narrow therapeutic index. To increase drug specificity and efficacy and to reduce toxicity in normal tissues, we have developed a polypeptide carrier for a cell cycle inhibitory peptide, which has the potential to be thermally targeted to the tumor site. The design of this polypeptide is based on elastin-like polypeptide (ELP). The coding sequence of ELP was modified by the addition of the cell penetrating peptide Bac-7 at the N-terminus and a 23 amino acid peptide derived from p21 at the C-terminus (Bac-ELP1-p21). Bac-ELP1-p21 is soluble in aqueous solutions below physiological temperature (37 degrees C) but aggregates when the temperature is raised above 39 degrees C, making it a promising thermally responsive therapeutic carrier that may be actively targeted to solid tumors by application of focused hyperthermia. While Bac-ELP1-p21 at 37 degrees C did not have any effect on SKOV-3 cell proliferation, the use of hyperthermia increased the antiproliferative effect of Bac-ELP1-p21 compared with a thermally unresponsive control polypeptide. Bac-ELP1-p21 displayed both a cytoplasmic and nuclear distribution in the SKOV-3 cells, with nuclear-localized polypeptide enriched in the heated cells, as revealed by confocal microscopy. Using Western blotting, we show that Bac-ELP1-p21 caused a decrease in Rb phosphorylation levels in cells treated at 42 degrees C. The polypeptide also induced caspase activation, PARP cleavage, and cell cycle arrest in S-phase and G2/M-phase. These studies indicate that ELP is a promising macromolecular carrier for the delivery of cell cycle inhibitory peptides to solid tumors.

  13. Structural analysis of photosystem I polypeptides using chemical crosslinking

    NASA Technical Reports Server (NTRS)

    Armbrust, T. S.; Odom, W. R.; Guikema, J. A.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    Thylakoid membranes, obtained from leaves of 14 d soybean (Glycine max L. cv. Williams) plants, were treated with the chemical crosslinkers glutaraldehyde or 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC) to investigate the structural organization of photosystem I. Polypeptides were resolved using lithium dodecyl sulfate polyacrylamide gel electrophoresis, and were identified by western blot analysis using a library of polyclonal antibodies specific for photosystem I subunits. An electrophoretic examination of crosslinked thylakoids revealed numerous crosslinked products, using either glutaraldehyde or EDC. However, only a few of these could be identified by western blot analysis using subunit-specific polyclonal antibodies. Several glutaraldehyde dependent crosslinked species were identified. A single band was identified minimally composed of PsaC and PsaD, documenting the close interaction between these two subunits. The most interesting aspect of these studies was a crosslinked species composed of the PsaB subunit observed following EDC treatment of thylakoids. This is either an internally crosslinked species, which will provide structural information concerning the topology of the complex PsaB protein, a linkage with a polypeptide for which we do not yet have an immunological probe, or a masking of epitopes by the EDC linkage at critical locations in the peptide which is linked to PsaB.

  14. Characterization of mutants expressing thermostable D1 and D2 polypeptides of photosystem II in the cyanobacterium Synechococcus elongatus PCC 7942.

    PubMed

    Haraguchi, Norihisa; Kaseda, Jun; Nakayama, Yasumune; Nagahama, Kazuhiro; Ogawa, Takahira; Matsuoka, Masayoshi

    2018-06-08

    Photosystem II complex embedded in thylakoid membrane performs oxygenic photosynthesis where the reaction center D1/D2 heterodimer accommodates all components of the electron transport chain. To express thermostable D1/D2 heterodimer in a cyanobacterium Synechococcus elongatus PCC 7942, we constructed a series of mutant strains whose psbA1 and psbD1 genes encoding, respectively, the most highly expressed D1 and D2 polypeptides were replaced with those of a thermophilic strain, Thermosynechococcus vulcanus. Because the C-terminal 16 amino acid sequences of D1 polypeptides should be processed prior to maturation but diverge from each other, we also constructed the psbA1ΔC-replaced strain expressing a thermostable D1 polypeptide devoid of the C-terminal extension. The psbA1/psbD1-replaced strain showed decreased growth rate and oxygen evolution rate, suggesting inefficient photosystem II. Immunoblot analyses for thermostable D1, D2 polypeptides revealed that the heterologous D1 protein was absent in thylakoid membrane from any mutant strains with psbA1, psbA1ΔC, and psbA1/psbD1-replacements, whereas the heterologous D2 protein was present in thylakoid membrane as well as purified photosystem II complex from the psbA1/psbD1-replaced strain. In the latter strain, the compensatory expression of psbA3 and psbD2 genes was elevated. These data suggest that heterologous D2 polypeptide could be combined with the host D1 polypeptide to form chimeric D1/D2 heterodimer, whereas heterologous D1 polypeptide even without the C-terminal extension was unable to make complex with the host D2 polypeptide. Since the heterologous D1 could not be detected even in the whole cells of psbA1/psbD1-replaced strain, the rapid degradation of unprocessed or unassembled heterologous D1 was implicated. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  15. Postnatal Changes in K+/Cl- Cotransporter-2 Expression in the Forebrain of Mice Bearing a Mutant Nicotinic Subunit Linked to Sleep-Related Epilepsy.

    PubMed

    Amadeo, Alida; Coatti, Aurora; Aracri, Patrizia; Ascagni, Miriam; Iannantuoni, Davide; Modena, Debora; Carraresi, Laura; Brusco, Simone; Meneghini, Simone; Arcangeli, Annarosa; Pasini, Maria Enrica; Becchetti, Andrea

    2018-06-24

    The Na + /K + /Cl - cotransporter-1 (NKCC1) and the K + /Cl - cotransporter-2 (KCC2) set the transmembrane Cl - gradient in the brain, and are implicated in epileptogenesis. We studied the postnatal distribution of NKCC1 and KCC2 in wild-type (WT) mice, and in a mouse model of sleep-related epilepsy, carrying the mutant β2-V287L subunit of the nicotinic acetylcholine receptor (nAChR). In WT neocortex, immunohistochemistry showed a wide distribution of NKCC1 in neurons and astrocytes. At birth, KCC2 was localized in neuronal somata, whereas at subsequent stages it was mainly found in the somatodendritic compartment. The cotransporters' expression was quantified by densitometry in the transgenic strain. KCC2 expression increased during the first postnatal weeks, while the NKCC1 amount remained stable, after birth. In mice expressing β2-V287L, the KCC2 amount in layer V of prefrontal cortex (PFC) was lower than in the control littermates at postnatal day 8 (P8), with no concomitant change in NKCC1. Consistently, the GABAergic excitatory to inhibitory switch was delayed in PFC layer V of mice carrying β2-V287L. At P60, the amount of KCC2 was instead higher in mice bearing the transgene. Irrespective of genotype, NKCC1 and KCC2 were abundantly expressed in the neuropil of most thalamic nuclei since birth. However, KCC2 expression decreased by P60 in the reticular nucleus, and more so in mice expressing β2-V287L. Therefore, a complex regulatory interplay occurs between heteromeric nAChRs and KCC2 in postnatal forebrain. The pathogenetic effect of β2-V287L may depend on altered KCC2 amounts in PFC during synaptogenesis, as well as in mature thalamocortical circuits. Copyright © 2018. Published by Elsevier Ltd.

  16. Double-hydrophobic elastin-like polypeptides with added functional motifs: Self-assembly and cytocompatibility.

    PubMed

    Le, Duc H T; Tsutsui, Yoko; Sugawara-Narutaki, Ayae; Yukawa, Hiroshi; Baba, Yoshinobu; Ohtsuki, Chikara

    2017-09-01

    We have recently developed a novel double-hydrophobic elastin-like triblock polypeptide called GPG, designed after the uneven distribution of two different hydrophobic domains found in elastin, an extracellular matrix protein providing elasticity and resilience to tissues. Upon temperature trigger, GPG undergoes a sequential self-assembling process to form flexible beaded nanofibers with high homogeneity and excellent dispersibility in water. Given that GPG might be a potential elastin-mimetic material, we sought to explore the biological activities of this block polypeptide. Besides GPG, several functionalized derivatives were also constructed by fusing functional motifs such as KAAK or KAAKGRGDS at the C-terminal of GPG. Although the added motifs affected the kinetics of fiber formation and β-sheet contents, all three GPGs assembled into beaded nanofibers at the physiological temperature. The resulting GPG nanofibers preserved their beaded structures in cell culture medium; therefore, they were coated on polystyrene substrates to study their cytocompatibility toward mouse embryonic fibroblasts, NIH-3T3. Among the three polypeptides, GPG having the cell-binding motif GRGDS derived from fibronectin showed excellent cell adhesion and cell proliferation properties compared to other conventional materials, suggesting its promising applications as extracellular matrices for mammalian cells. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2475-2484, 2017. © 2017 Wiley Periodicals, Inc.

  17. Architecture effects on multivalent interactions by polypeptide-based multivalent ligands

    NASA Astrophysics Data System (ADS)

    Liu, Shuang

    protein materials, including structural as well as functional proteins. Therefore, polypeptide-based multivalent scaffolds are used to display ligands to assess the contribution of different architectural parameters to the multivalent binding events. In this work, a family of alanine-rich alpha-helical glycopolypeptides was designed and synthesized by a combination of protein engineering and chemical coupling, to display two types of saccharide ligands for two different multivalent binding systems. The valencies, chain length and spacing between adjacent ligands of these multivalent ligands were designed in order to study architecture effects on multivalent interactions. The polypeptides and their glycoconjugates were characterized via various methods, including SDS-PAGE, NMR, HPLC, amino acid analysis (AAA), MALDI, circular dichroism (CD) and GPC. In the first multivalent binding system, cholera toxin B pentamer (CT B5) was chosen to be the protein receptor due to its well-characterized structure, lack of significant steric interference of binding to multiple binding sites, and requirement of only simple monosaccharide as ligands. Galactopyranoside was incorporated into polypeptide scaffolds through amine-carboxylic acid coupling to the side chains of glutamic acid residues. The inhibition and binding to CT B5 of these glycopolypeptide ligands were evaluated by direct enzyme-linked assay (DELA). As a complement method, weak affinity chromatography (WAC) was also used to evaluate glycopolypeptides binding to a CT B5 immobilized column. The architecture effects on CT B 5 inhibition are discussed. In the second system, cell surface receptor L-selectin was targeted by polypeptide-based multivalent ligands containing disulfated galactopyranoside ligands, due to its important roles in various immunological activities. The effects of glycopolypeptide architectural variables L-selectin shedding were evaluated via ELISA-based assays. These polypeptide-based multivalent ligands

  18. Functional domains of the T lymphocyte plasma membrane: characterization of the polypeptide composition.

    PubMed

    Szamel, M; Kaever, V; Resch, K

    1987-01-01

    Highly purified plasma membranes from calf thymocytes were fractionated by affinity chromatography on Concanavalin A-Sepharose into two subfractions, one eluting freely from the affinity column (MF1) and a second being specifically retained (MF2). SDS-polyacrylamide-gel-electrophoresis revealed different polypeptide patterns of the two plasma membrane subfractions. Polypeptides of apparent molecular weights of 170, 150, 110, 94, 39, and 30 kDa were several-fold enriched in the adherent fraction, MF2. In contrast, several proteins in the 55-65 kDa range were preferentially recovered in the non-adherent fraction. Five Five of the six polypeptides, preferentially recovered in MF2 proved to be glycoproteins, the 39 kDa peptide was non-glycosilated. The differences in the amounts of the polypeptides specifically enriched in the adherent fraction MF2 became even more clear-cut when plasma membranes solubilized with non-ionic detergents (lysolecithin, ET-18-2H, Triton-X-100) were separated by affinity chromatography on Concanavalin A-Sepharose. The non-glycosilated peptide of apparent molecular weight of 39 kDa was recovered together with several glycoproteins in the adherent fraction, MF2, suggesting that not single glycoproteins, but plasma membrane domains were separated by Concanavalin A-Sepharose. Although the glycoproteins of the non-adherent fraction MF1 bound significant amounts of Concanavalin A, the major Concanavalin A binding glycoproteins were recovered in the adherent fraction, MF2. The plasma membrane subfractions showed also different functional properties, the specific activities [Na+ + K+]AT-Pase, Ca2+ ATPase and lysolecithin acyltransferase were several-fold enriched in the adherent fraction, MF2, as compared to MF1. The data suggest the existence of plasma membrane domains in the plasma membranes of thymocytes consisting of a different set of proteins, among others the major Concanavalin A binding glycoproteins with some membrane bound enzymes

  19. A model for the enantiomeric enrichment of polypeptides on the primitive earth

    NASA Technical Reports Server (NTRS)

    Blair, N. E.; Bonner, W. A.

    1981-01-01

    A potential model is presented for the origin of optical activity in polypeptides on the primitive earth due to enantiomeric enrichment in succeeding polymerization-hydrolysis cycles. The model was developed in experiments with the polymerization of a DL-leucine N-carboxyanhydride mixture with a 31.2% enantiomeric excess of the L isomer with sodium methoxide initiator to yield a polyleucine product which was in turn partially hydrolyzed by acid. The polymerization-hydrolysis was found to produce a net 23.8% increase in the enantiomeric excess of the remaining unhydrolyzed polypeptide (14.2% from the polymerization and 9.6% from the partial hydrolysis). On the basis of these results, it is suggested that a slight excess produced by an appropriate chiral physical process may be enhanced by cycles of stereoselective polymerization and hydrolysis driven by fluctuating wet and dry environmental cycles on the primitive earth.

  20. cDNA encoding a polypeptide including a hev ein sequence

    DOEpatents

    Raikhel, Natasha V.; Broekaert, Willem F.; Chua, Nam-Hai; Kush, Anil

    2000-07-04

    A cDNA clone (HEV1) encoding hevein was isolated via polymerase chain reaction (PCR) using mixed oligonucleotides corresponding to two regions of hevein as primers and a Hevea brasiliensis latex cDNA library as a template. HEV1 is 1018 nucleotides long and includes an open reading frame of 204 amino acids. The deduced amino acid sequence contains a putative signal sequence of 17 amino acid residues followed by a 187 amino acid polypeptide. The amino-terminal region (43 amino acids) is identical to hevein and shows homology to several chitin-binding proteins and to the amino-termini of wound-induced genes in potato and poplar. The carboxyl-terminal portion of the polypeptide (144 amino acids) is 74-79% homologous to the carboxyl-terminal region of wound-inducible genes of potato. Wounding, as well as application of the plant hormones abscisic acid and ethylene, resulted in accumulation of hevein transcripts in leaves, stems and latex, but not in roots, as shown by using the cDNA as a probe. A fusion protein was produced in E. coli from the protein of the present invention and maltose binding protein produced by the E. coli.

  1. A pH- and temperature-responsive bioresorbable injectable hydrogel based on polypeptide block copolymers for the sustained delivery of proteins in vivo.

    PubMed

    Turabee, Md Hasan; Thambi, Thavasyappan; Duong, Huu Thuy Trang; Jeong, Ji Hoon; Lee, Doo Sung

    2018-02-27

    Sustained delivery of protein therapeutics is limited owing to the fragile nature of proteins. Despite its great potential, delivery of proteins without any loss of bioactivity remains a challenge in the use of protein therapeutics in the clinic. To surmount this shortcoming, we report a pH- and temperature-responsive in situ-forming injectable hydrogel based on comb-type polypeptide block copolymers for the controlled delivery of proteins. Polypeptide block copolymers, composed of hydrophilic polyethylene glycol (PEG), temperature-responsive poly(γ-benzyl-l-glutamate) (PBLG), and pH-responsive oligo(sulfamethazine) (OSM), exhibit pH- and temperature-induced sol-to-gel transition behavior in aqueous solutions. Polypeptide block copolymers were synthesized by combining N-carboxyanhydride-based ring-opening polymerization and post-functionalization of the chain-end using N-hydroxy succinimide ester activated OSM. The physical properties of polypeptide-based hydrogels were tuned by varying the composition of temperature- and pH-responsive PBLG and OSM in block copolymers. Polypeptide block copolymers were non-toxic to human embryonic kidney cells at high concentrations (2000 μg mL -1 ). Subcutaneous administration of polypeptide block copolymer sols formed viscoelastic gel instantly at the back of Sprague-Dawley (SD) rats. The in vivo gels exhibited sustained degradation and were found to be bioresorbable in 6 weeks without any noticeable inflammation at the injection site. Anionic characteristics of hydrogels allow efficient loading of a cationic model protein, lysozyme, through electrostatic interaction. Lysozyme-loaded polypeptide block copolymer sols readily formed a viscoelastic gel in vivo and sustained lysozyme release for at least a week. Overall, the results demonstrate an elegant approach to control the release of certain charged proteins and open a myriad of therapeutic possibilities in protein therapeutics.

  2. Regulation of the Na+2Cl–K+ cotransporter in in vitro perfused rectal gland tubules of Squalus acanthias.

    PubMed

    Warth, R; Bleich, M; Thiele, I; Lang, F; Greger, R

    1998-07-01

    Previously it has been shown that the Na+2Cl–K+ cotransporter accepts NH4 + at its K+ binding site. This property can be used to estimate its transport rates by adding NH4 + to the bath and measuring the initial furosemide-dependent rates of change in BCECF fluorescence. We have utilized this technique to determine the regulation of the furosemide-inhibitable Na+2Cl–K+ cotransporter in in vitroperfused rectal gland tubules (RGT) of Squalus acanthias. Addition of NH4 + to the bath (20 mmol/l) led to an initial alkalinization, corresponding to NH3 uptake. This was followed by an acidification, corresponding to NH4 + uptake. The rate of this uptake was quantified by exponential curve fitting and is given in arbitrary units (Δfluorescence/time). This acidification could be completely inhibited by furosemide. In the absence of any secretagogue preincubation of RGT in a low Cl– solution (6 mmol/l, low Cl–) for 10 min enhanced the uptake rate significantly from 4.04±0.51 to 12.7±1.30 (n=5). The addition of urea (200 mmol/l) was without effect, but the addition of 300 mmol/l mannitol (+300 mannitol) enhanced the rate significantly from 7.24±1.33 to 14.7±4.6 (n=6). Stimulation of NaCl secretion by a solution maximizing the cytosolic cAMP concentration (Stim) led to a significant increase in NH4 + uptake rate from 5.00±1.33 to 13.3±1.54 (n=6). Similar results were obtained in the additional presence of Ba2+ (1 mmol/l): the uptake rate was increased significantly from 4.23±0.34 to 15.1±1.86 (n=16). In the presence of Stim low Cl– had no additional effect on the uptake rate: 15.1±3.1 versus 15.2±2.8 in high Cl– (n=6). The uptake rate in Stim containing additional +300 mannitol (22.3±4.0, n=5) was not significantly different from that obtained with Stim or +300 mannitol alone. By whatever mechanism the NH4 + uptake rate was increased furosemide (500 µmol/l) always reduced this rate to control values. Hence three manoeuvres enhanced furosemide

  3. γ-Adducin Stimulates the Thiazide-sensitive NaCl Cotransporter

    PubMed Central

    Dimke, Henrik; San-Cristobal, Pedro; de Graaf, Mark; Lenders, Jacques W.; Deinum, Jaap; Hoenderop, Joost G.J.

    2011-01-01

    The thiazide-sensitive NaCl cotransporter (NCC) plays a key role in renal salt reabsorption and the determination of systemic BP, but the molecular mechanisms governing the regulation of NCC are not completely understood. Here, through pull-down experiments coupled to mass spectrometry, we found that γ-adducin interacts with the NCC transporter. γ-Adducin colocalized with NCC to the distal convoluted tubule. 22Na+ uptake experiments in the Xenopus laevis oocyte showed that γ-adducin stimulated NCC activity in a dose-dependent manner, an effect that occurred upstream from With No Lysine (WNK) 4 kinase. The binding site of γ-adducin mapped to the N terminus of NCC and encompassed three previously reported phosphorylation sites. Supporting this site of interaction, competition with the N-terminal domain of NCC abolished the stimulatory effect of γ-adducin on the transporter. γ-Adducin failed to increase NCC activity when these phosphorylation sites were constitutively inactive or active. In addition, γ-adducin bound only to the dephosphorylated N terminus of NCC. Taken together, our observations suggest that γ-adducin dynamically regulates NCC, likely by amending the phosphorylation state, and consequently the activity, of the transporter. These data suggest that γ-adducin may influence BP homeostasis by modulating renal NaCl transport. PMID:21164023

  4. Coenzyme Q supplementation or over-expression of the yeast Coq8 putative kinase stabilizes multi-subunit Coq polypeptide complexes in yeast coq null mutants.

    PubMed

    He, Cuiwen H; Xie, Letian X; Allan, Christopher M; Tran, Uyenphuong C; Clarke, Catherine F

    2014-04-04

    Coenzyme Q biosynthesis in yeast requires a multi-subunit Coq polypeptide complex. Deletion of any one of the COQ genes leads to respiratory deficiency and decreased levels of the Coq4, Coq6, Coq7, and Coq9 polypeptides, suggesting that their association in a high molecular mass complex is required for stability. Over-expression of the putative Coq8 kinase in certain coq null mutants restores steady-state levels of the sensitive Coq polypeptides and promotes the synthesis of late-stage Q-intermediates. Here we show that over-expression of Coq8 in yeast coq null mutants profoundly affects the association of several of the Coq polypeptides in high molecular mass complexes, as assayed by separation of digitonin extracts of mitochondria by two-dimensional blue-native/SDS PAGE. The Coq4 polypeptide persists at high molecular mass with over-expression of Coq8 in coq3, coq5, coq6, coq7, coq9, and coq10 mutants, indicating that Coq4 is a central organizer of the Coq complex. Supplementation with exogenous Q6 increased the steady-state levels of Coq4, Coq7, and Coq9, and several other mitochondrial polypeptides in select coq null mutants, and also promoted the formation of late-stage Q-intermediates. Q supplementation may stabilize this complex by interacting with one or more of the Coq polypeptides. The stabilizing effects of exogenously added Q6 or over-expression of Coq8 depend on Coq1 and Coq2 production of a polyisoprenyl intermediate. Based on the observed interdependence of the Coq polypeptides, the effect of exogenous Q6, and the requirement for an endogenously produced polyisoprenyl intermediate, we propose a new model for the Q-biosynthetic complex, termed the CoQ-synthome. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Coenzyme Q supplementation or over-expression of the yeast Coq8 putative kinase stabilizes multi-subunit Coq polypeptide complexes in yeast coq null mutants*

    PubMed Central

    He, Cuiwen H.; Xie, Letian X.; Allan, Christopher M.; Tran, UyenPhuong C.; Clarke, Catherine F.

    2014-01-01

    Coenzyme Q biosynthesis in yeast requires a multi-subunit Coq polypeptide complex. Deletion of any one of the COQ genes leads to respiratory deficiency and decreased levels of the Coq4, Coq6, Coq7, and Coq9 polypeptides, suggesting that their association in a high molecular mass complex is required for stability. Over-expression of the putative Coq8 kinase in certain coq null mutants restores steady-state levels of the sensitive Coq polypeptides and promotes the synthesis of late-stage Q-intermediates. Here we show that over-expression of Coq8 in yeast coq null mutants profoundly affects the association of several of the Coq polypeptides in high molecular mass complexes, as assayed by separation of digitonin extracts of mitochondria by two-dimensional blue-native/SDS PAGE. The Coq4 polypeptide persists at high molecular mass with over-expression of Coq8 in coq3, coq5, coq6, coq7, coq9, and coq10 mutants, indicating that Coq4 is a central organizer of the Coq complex. Supplementation with exogenous Q6 increased the steady-state levels of Coq4, Coq7, Coq9, and several other mitochondrial polypeptides in select coq null mutants, and also promoted the formation of late-stage Q-intermediates. Q supplementation may stabilize this complex by interacting with one or more of the Coq polypeptides. The stabilizing effects of exogenously added Q6 or over-expression of Coq8 depend on Coq1 and Coq2 production of a polyisoprenyl intermediate. Based on the observed interdependence of the Coq polypeptides, the effect of exogenous Q6, and the requirement for an endogenously produced polyisoprenyl intermediate, we propose a new model for the Q-biosynthetic complex, termed the CoQ-synthome. PMID:24406904

  6. Investigational drugs in development for Hepatitis D.

    PubMed

    Rizzetto, Mario

    2017-09-01

    Treatment of chronic hepatitis D still relies on Interferon. To improve efficacy, new therapeutic strategies are in development which aim to deprive the Hepatitis D Virus (HDV) of functions of the Hepatitis B Virus and of the host required for its life-cycle. Areas covered: The therapeutic options are; 1) The inhibition of the farnesylation of the large HD-protein permissive of virion assembly with Lonafarnib, 2) The blocking of HBsAg entry into cells with Myrcludex B via the inhibition of the Sodium Taurocholate Cotransporting Receptor, to prevent the spreading of HDV to uninfected hepatocytes, 3) The reduction of subviral HBsAg particles by REP 2139, leading to diminished virion morphogenesis . Expert opinion: Lonafarnib and Myrcludex reduced serum HVD-RNA; neither diminished serum HBsAg. NAP REP-2139 diminished both HDV-RNA and HBsAg in serum; a full report is awaited. In combination with Peg-Interferon, these new drugs may provide additional efficacy.

  7. Identification of polypeptides with selective affinity to intact mouse cerebellar granule neurons from a random peptide-presenting phage library.

    PubMed

    Hou, Sheng T; Dove, Mike; Anderson, Erica; Zhang, Jiangbing; MacKenzie, C Roger

    2004-09-30

    Targeting of postmitotic neurons selectively for gene delivery poses a challenge. One way to achieve such a selective targeting is to link the gene delivery vector with small ligand-binding polypeptides which have selective affinity to intact neurons. In order to identify such novel neuron selective polypeptides, we screened a phage-display library displaying random 12-mer polypeptides and subtractively bio-panned for clones having selectivity towards cultured mouse cerebellar granule neurons. The selected phage clones were amplified and sequenced. Affinities of these clones to neurons were determined by the visible presence or absence of fluorescence of phage particles as detected by immunocytochemistry using an antibody to M-13 phage. This affinity was further qualified by how much phage was bound, and where in or on the cell it tended to accumulate. The selectivity of binding to neurons was determined by the negative binding of these clones to several cultured non-neuronal cells, including, primary glial cells, NT2 cells, human embryonic kidney 293 cells, neuroblastoma cells, and mouse 3T3 cells. Among the 46 clones that we have sequenced and characterized, four clones appeared to have excellent selectivity in binding to neurons. Homology comparison of these polypeptides revealed that three of them contained a consensus D(E)-W(F)-I(N)-D-W motif. This motif was also present in the Bdm1 gene product which was predominantly expressed in postnatal brains. Further characterizations of these polypeptides are required to reveal the utilities of these peptides to function as an effective linker to facilitate gene transfer selectively to neurons.

  8. The sodium-bicarbonate cotransporter NBCe2 (slc4a5) expressed in human renal proximal tubules shows increased apical expression under high-salt conditions.

    PubMed

    Gildea, John J; Xu, Peng; Carlson, Julia M; Gaglione, Robert T; Bigler Wang, Dora; Kemp, Brandon A; Reyes, Camellia M; McGrath, Helen E; Carey, Robert M; Jose, Pedro A; Felder, Robin A

    2015-12-01

    The electrogenic sodium bicarbonate cotransporter (NBCe2) is encoded by SLC4A5, variants of which have been associated with salt sensitivity of blood pressure, which affects 25% of the adult population. NBCe2 is thought to mediate sodium bicarbonate cotransport primarily in the renal collecting duct, but NBCe2 mRNA is also found in the rodent renal proximal tubule (RPT). The protein expression or function of NBCe2 has not been demonstrated in the human RPT. We validated an NBCe2 antibody by shRNA and Western blot analysis, as well as overexpression of an epitope-tagged NBCe2 construct in both RPT cells (RPTCs) and human embryonic kidney 293 (HEK293) cells. Using this validated NBCe2 antibody, we found NBCe2 protein expression in the RPT of fresh and frozen human kidney slices, RPTCs isolated from human urine, and isolated RPTC apical membrane. Under basal conditions, NBCe2 was primarily found in the Golgi, while NBCe1 was primarily found at the basolateral membrane. Following an acute short-term increase in intracellular sodium, NBCe2 expression was increased at the apical membrane in cultured slices of human kidney and polarized, immortalized RPTCs. Sodium bicarbonate transport was increased by monensin and overexpression of NBCe2, decreased by NBCe2 shRNA, but not by NBCe1 shRNA, and blocked by 2,2'-(1,2-ethenediyl)bis[5-isothiocyanato-benzenesulfonic acid]. NBCe2 could be important in apical sodium and bicarbonate cotransport under high-salt conditions; the implication of the ex vivo studies to the in vivo situation when salt intake is increased remains unclear. Therefore, future studies will examine the role of NBCe2 in mediating increased renal sodium transport in humans whose blood pressures are elevated by an increase in sodium intake. Copyright © 2015 the American Physiological Society.

  9. UV Spectrophotometric Method for Estimation of Polypeptide-K in Bulk and Tablet Dosage Forms

    NASA Astrophysics Data System (ADS)

    Kaur, P.; Singh, S. Kumar; Gulati, M.; Vaidya, Y.

    2016-01-01

    An analytical method for estimation of polypeptide-k using UV spectrophotometry has been developed and validated for bulk as well as tablet dosage form. The developed method was validated for linearity, precision, accuracy, specificity, robustness, detection, and quantitation limits. The method has shown good linearity over the range from 100.0 to 300.0 μg/ml with a correlation coefficient of 0.9943. The percentage recovery of 99.88% showed that the method was highly accurate. The precision demonstrated relative standard deviation of less than 2.0%. The LOD and LOQ of the method were found to be 4.4 and 13.33, respectively. The study established that the proposed method is reliable, specific, reproducible, and cost-effective for the determination of polypeptide-k.

  10. Thermodynamic Approach to Enhanced Dispersion and Physical Properties in a Carbon Nanotube/Polypeptide Nanocomposite

    NASA Technical Reports Server (NTRS)

    Lovell, Conrad S.; Wise, Kristopher E.; Kim, Jae-Woo; Lillehei, Peter T.; Harrison, Joycelyn S.; Park, Cheol

    2009-01-01

    A high molecular weight synthetic polypeptide has been designed which exhibits favorable interactions with single wall carbon nanotubes (SWCNTs). The enthalpic and entropic penalties of mixing between these two molecules are reduced due to the polypeptide's aromatic sidechains and helical secondary structure, respectively. These enhanced interactions result in a well dispersed SWCNT/Poly (L-Leucine-ran-L-Phenylalanine) nanocomposite with enhanced mechanical and electrical properties using only shear mixing and sonication. At 0.5 wt% loading of SWCNT filler, the nanocomposite exhibits simultaneous increases in the Young's modulus, failure strain, and toughness of 8%, 120%, and 144%, respectively. At one kHz, the same nanotube loading level also enhances the dielectric constant from 2.95 to 22.81, while increasing the conductivity by four orders of magnitude.

  11. DNA Sequence Analysis of a Complementary DNA for Cold-Regulated Arabidopsis Gene cor15 and Characterization of the COR 15 Polypeptide 1

    PubMed Central

    Lin, Chentao; Thomashow, Michael F.

    1992-01-01

    Previous studies have indicated that changes in gene expression occur in Arabidopsis thaliana L. (Heyn) during cold acclimation and that certain of the cor (cold-regulated) genes encode polypeptides that share the unusual property of remaining soluble upon boiling in aqueous solution. Here, we identify a cDNA clone for a cold-regulated gene encoding one of the “boiling-stable” polypeptides, COR15. DNA sequence analysis indicated that the gene, designated cor15, encodes a 14.7-kilodalton hydrophilic polypeptide having an N-terminal amino acid sequence that closely resembles transit peptides that target proteins to the stromal compartment of chloroplasts. Immunological studies indicated that COR15 is processed in vivo and that the mature polypeptide, COR 15m, is present in the soluble fraction of chloroplasts. Possible functions of COR 15m are discussed. ImagesFigure 1Figure 4Figure 5Figure 6Figure 7 PMID:16668917

  12. Regulation of K-Cl cotransport: from function to genes.

    PubMed

    Adragna, N C; Di Fulvio, M; Lauf, P K

    2004-10-01

    This review intends to summarize the vast literature on K-Cl cotransport (COT) regulation from a functional and genetic viewpoint. Special attention has been given to the signaling pathways involved in the transporter's regulation found in several tissues and cell types, and more specifically, in vascular smooth muscle cells (VSMCs). The number of publications on K-Cl COT has been steadily increasing since its discovery at the beginning of the 1980s, with red blood cells (RBCs) from different species (human, sheep, dog, rabbit, guinea pig, turkey, duck, frog, rat, mouse, fish, and lamprey) being the most studied model. Other tissues/cell types under study are brain, kidney, epithelia, muscle/smooth muscle, tumor cells, heart, liver, insect cells, endothelial cells, bone, platelets, thymocytes and Leishmania donovani. One of the salient properties of K-Cl-COT is its activation by cell swelling and its participation in the recovery of cell volume, a process known as regulatory volume decrease (RVD). Activation by thiol modification with N-ethylmaleimide (NEM) has spawned investigations on the redox dependence of K-Cl COT, and is used as a positive control for the operation of the system in many tissues and cells. The most accepted model of K-Cl COT regulation proposes protein kinases and phosphatases linked in a chain of phosphorylation/dephosphorylation events. More recent studies include regulatory pathways involving the phosphatidyl inositol/protein kinase C (PKC)-mediated pathway for regulation by lithium (Li) in low-K sheep red blood cells (LK SRBCs), and the nitric oxide (NO)/cGMP/protein kinase G (PKG) pathway as well as the platelet-derived growth factor (PDGF)-mediated mechanism in VSMCs. Studies on VSM transfected cells containing the PKG catalytic domain demonstrated the participation of this enzyme in K-Cl COT regulation. Commonly used vasodilators activate K-Cl COT in a dose-dependent manner through the NO/cGMP/PKG pathway. Interaction between the

  13. Lowering Plasma Glucose Concentration by Inhibiting Renal Sodium-Glucose Co-Transport

    PubMed Central

    Abdul-Ghani, Muhammad A; DeFronzo, Ralph A

    2017-01-01

    Maintaining normoglycaemia not only reduces the risk of diabetic microvascular complications but also corrects the metabolic abnormalities that contribute to the development and progression of hyperglycaemia (i.e. insulin resistance and beta-cell dysfunction). Progressive beta-cell failure, in addition to the multiple side effects associated with many current antihyperglycaemic agents (e.g., hypoglycaemia and weight gain) presents major obstacle to the achievement of the recommended goal of glycaemic control in patients with diabetes mellitus (DM). Thus, novel effective therapies are needed for optimal glucose control in subjects with DM. Recently, specific inhibitors of renal sodium glucose cotransporter 2 (SGLT2) have been developed to produce glucosuria and lower the plasma glucose concentration. Because of their unique mechanism of action (which is independent of the secretion and action of insulin), these agents are effective in lowering the plasma glucose concentration in all stages of DM and can be combined with all other antidiabetic agents. In this review, we summarize the available data concerning the mechanism of action, efficacy and safety of this novel class of antidiabetic agent. PMID:24690096

  14. Activation of AMPK reduces the co-transporter activity of NKCC1.

    PubMed

    Fraser, Scott A; Davies, Matthew; Katerelos, Marina; Gleich, Kurt; Choy, Suet-Wan; Steel, Rohan; Galic, Sandra; Mount, Peter F; Kemp, Bruce E; Power, David A

    2014-01-01

    The co-transporter activity of Na(+)-K(+)-2Cl(-) 1 (NKCC1) is dependent on phosphorylation. In this study we show the energy-sensing kinase AMPK inhibits NKCC1 activity. Three separate AMPK activators (AICAR, Phenformin and A-769662) inhibited NKCC1 flux in a variety of nucleated cells. Treatment with A-769662 resulted in a reduction of NKCC1(T212/T217) phosphorylation, and this was reversed by treatment with the non-selective AMPK inhibitor Compound C. AMPK dependence was confirmed by treatment of AMPK null mouse embryonic fibroblasts, where A-769662 had no effect on NKCC1 mediated transport. AMPK was found to directly phosphorylate a recombinant human-NKCC1 N-terminal fragment (1-293) with the phosphorylated site identified as S77. Mutation of Serine 77 to Alanine partially prevented the inhibitory effect of A-769662 on NKCC1 activity. In conclusion, AMPK can act to reduce NKCC1-mediated transport. While the exact mechanism is still unclear there is evidence for both a direct effect on phosphorylation of S77 and reduced phosphorylation of T212/217.

  15. Regulated phosphorylation of the K-Cl cotransporter KCC3 is a molecular switch of intracellular potassium content and cell volume homeostasis.

    PubMed

    Adragna, Norma C; Ravilla, Nagendra B; Lauf, Peter K; Begum, Gulnaz; Khanna, Arjun R; Sun, Dandan; Kahle, Kristopher T

    2015-01-01

    The defense of cell volume against excessive shrinkage or swelling is a requirement for cell function and organismal survival. Cell swelling triggers a coordinated homeostatic response termed regulatory volume decrease (RVD), resulting in K(+) and Cl(-) efflux via activation of K(+) channels, volume-regulated anion channels (VRACs), and the K(+)-Cl(-) cotransporters, including KCC3. Here, we show genetic alanine (Ala) substitution at threonines (Thr) 991 and 1048 in the KCC3a isoform carboxyl-terminus, preventing inhibitory phosphorylation at these sites, not only significantly up-regulates KCC3a activity up to 25-fold in normally inhibitory isotonic conditions, but is also accompanied by reversal of activity of the related bumetanide-sensitive Na(+)-K(+)-2Cl(-) cotransporter isoform 1 (NKCC1). This results in a rapid (<10 min) and significant (>90%) reduction in intracellular K(+) content (Ki) via both Cl-dependent (KCC3a + NKCC1) and Cl-independent [DCPIB (VRAC inhibitor)-sensitive] pathways, which collectively renders cells less prone to acute swelling in hypotonic osmotic stress. Together, these data demonstrate the phosphorylation state of Thr991/Thr1048 in KCC3a encodes a potent switch of transporter activity, Ki homeostasis, and cell volume regulation, and reveal novel observations into the functional interaction among ion transport molecules involved in RVD.

  16. Regulated phosphorylation of the K-Cl cotransporter KCC3 is a molecular switch of intracellular potassium content and cell volume homeostasis

    PubMed Central

    Adragna, Norma C.; Ravilla, Nagendra B.; Lauf, Peter K.; Begum, Gulnaz; Khanna, Arjun R.; Sun, Dandan; Kahle, Kristopher T.

    2015-01-01

    The defense of cell volume against excessive shrinkage or swelling is a requirement for cell function and organismal survival. Cell swelling triggers a coordinated homeostatic response termed regulatory volume decrease (RVD), resulting in K+ and Cl− efflux via activation of K+ channels, volume-regulated anion channels (VRACs), and the K+-Cl− cotransporters, including KCC3. Here, we show genetic alanine (Ala) substitution at threonines (Thr) 991 and 1048 in the KCC3a isoform carboxyl-terminus, preventing inhibitory phosphorylation at these sites, not only significantly up-regulates KCC3a activity up to 25-fold in normally inhibitory isotonic conditions, but is also accompanied by reversal of activity of the related bumetanide-sensitive Na+-K+-2Cl− cotransporter isoform 1 (NKCC1). This results in a rapid (<10 min) and significant (>90%) reduction in intracellular K+ content (Ki) via both Cl-dependent (KCC3a + NKCC1) and Cl-independent [DCPIB (VRAC inhibitor)-sensitive] pathways, which collectively renders cells less prone to acute swelling in hypotonic osmotic stress. Together, these data demonstrate the phosphorylation state of Thr991/Thr1048 in KCC3a encodes a potent switch of transporter activity, Ki homeostasis, and cell volume regulation, and reveal novel observations into the functional interaction among ion transport molecules involved in RVD. PMID:26217182

  17. Tracking polypeptide folds on the free energy surface: effects of the chain length and sequence.

    PubMed

    Brukhno, Andrey V; Ricchiuto, Piero; Auer, Stefan

    2012-07-26

    Characterization of the folding transition in polypeptides and assessing the thermodynamic stability of their structured folds are of primary importance for approaching the problem of protein folding. We use molecular dynamics simulations for a coarse grained polypeptide model in order to (1) obtain the equilibrium conformation diagram of homopolypeptides in a broad range of the chain lengths, N = 10, ..., 100, and temperatures, T (in a multicanonical ensemble), and (2) determine free energy profiles (FEPs) projected onto an optimal, so-called "natural", reaction coordinate that preserves the height of barriers and the diffusion coefficients on the underlying free energy hyper-surface. We then address the following fundamental questions. (i) How well does a kinetically determined free energy landscape of a single chain represent the polypeptide equilibrium (ensemble) behavior? In particular, under which conditions might the correspondence be lost, and what are the possible implications for the folding processes? (ii) How does the free energy landscape depend on the chain length (homopolypeptides) and the monomer interaction sequence (heteropolypeptides)? Our data reveal that at low T values equilibrium structures adopted by relatively short homopolypeptides (N < 60) are dominated by α-helical folds which correspond to the primary and secondary minima of the FEP. In contrast, longer homopolypeptides (N > 70), upon quasi-equilibrium cooling, fold preferentially in β-bundles with small helical portions, while the FEPs exhibit no distinct global minima. Moreover, subject to the choice of the initial configuration, at sufficiently low T, essentially metastable structures can be found and prevail far from the true thermodynamic equilibrium. We also show that, by sequence-enabling the polypeptide model, it is possible to restrict the chain to a very specific part of the configuration space, which results in substantial simplification and smoothing of the free energy

  18. Protein kinase Cδ differentially regulates cAMP-dependent translocation of NTCP and MRP2 to the plasma membrane

    PubMed Central

    Park, Se Won; Schonhoff, Christopher M.; Webster, Cynthia R. L.

    2012-01-01

    Cyclic AMP stimulates translocation of Na+/taurocholate cotransporting polypeptide (NTCP) from the cytosol to the sinusoidal membrane and multidrug resistance-associated protein 2 (MRP2) to the canalicular membrane. A recent study suggested that protein kinase Cδ (PKCδ) may mediate cAMP-induced translocation of Ntcp and Mrp2. In addition, cAMP has been shown to stimulate NTCP translocation in part via Rab4. The aim of this study was to determine whether cAMP-induced translocation of NTCP and MRP2 require kinase activity of PKCδ and to test the hypothesis that cAMP-induced activation of Rab4 is mediated via PKCδ. Studies were conducted in HuH-NTCP cells (HuH-7 cells stably transfected with NTCP). Transfection of cells with wild-type PKCδ increased plasma membrane PKCδ and NTCP and increased Rab4 activity. Paradoxically, overexpression of kinase-dead dominant-negative PKCδ also increased plasma membrane PKCδ and NTCP as well as Rab4 activity. Similar results were obtained in PKCδ knockdown experiments, despite a decrease in total PKCδ. These results raised the possibility that plasma membrane localization rather than kinase activity of PKCδ is necessary for NTCP translocation and Rab4 activity. This hypothesis was supported by results showing that rottlerin, which has previously been shown to inhibit cAMP-induced membrane translocation of PKCδ and NTCP, inhibited cAMP-induced Rab4 activity. In addition, LY294002 (a phosphoinositide-3-kinase inhibitor), which has been shown to inhibit cAMP-induced NTCP translocation, also inhibited cAMP-induced PKCδ translocation. In contrast to the results with NTCP, cAMP-induced MRP2 translocation was inhibited in cells transfected with DN-PKCδ and small interfering RNA PKCδ. Taken together, these results suggest that the plasma membrane localization rather than kinase activity of PKCδ plays an important role in cAMP-induced NTCP translocation and Rab4 activity, whereas the kinase activity of PKCδ is necessary for c

  19. The rs2296651 (S267F) variant on NTCP (SLC10A1) is inversely associated with chronic hepatitis B and progression to cirrhosis and hepatocellular carcinoma in patients with chronic hepatitis B.

    PubMed

    Hu, Hui-Han; Liu, Jessica; Lin, Yu-Ling; Luo, Wun-Sheng; Chu, Yu-Ju; Chang, Chia-Lin; Jen, Chin-Lan; Lee, Mei-Hsuan; Lu, Sheng-Nan; Wang, Li-Yu; You, San-Lin; Yang, Hwai-I; Chen, Chien-Jen

    2016-09-01

    The sodium taurocholate co-transporting polypeptide (NTCP), encoded by SLC10A1, was recently identified as a receptor for HBV. We assessed the association of the p.Ser267Phe variant (rs2296651) with chronic hepatitis B (CHB) serostatus, cirrhosis and hepatocellular carcinoma (HCC) in patients with CHB. The variant was genotyped in 3801 patients with CHB and 3801 matched hepatitis B surface antigen (HBsAg) seronegative individuals. ORs with 95% CIs for the variant's association with CHB, cirrhosis and HCC were estimated using logistic regression. In patients with CHB, the S267F variant was observed in 515 (18.5%) controls, 40 (17.2%) cirrhosis only cases, 49 (13.2%) non-cirrhotic HCC cases, and 52 (12.7%) cirrhotic-HCC cases. After adjustment for known risk factors, S267F was significantly associated with decreased risk for cirrhosis (OR 0.65 (95% CI 0.49 to 0.86), p=0.002) and HCC (OR 0.55 (95% CI 0.42 to 0.72), p<0.001). This association persisted for non-cirrhotic and cirrhotic-HCC. Compared with patients with HBV DNA levels greater than 10(5) copies/mL who carried the GG genotype, patients who had undetectable HBV DNA and the GA or AA genotypes had a 25-fold decreased risk of developing HCC (OR 0.04 (95% CI 0.02 to 0.11), p<0.001). The AA genotype was also associated with HBsAg seronegativity (OR 0.13 (95% CI 0.05 to 0.34), p<0.001). The SLC10A1 (NTCP) S267F variant is independently associated with decreased risk of cirrhosis and HCC, and resistance to CHB infection. Together with serum HBV DNA levels, S267F may help to identify patients with CHB with very low risk of HCC. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  20. Protein kinase Cδ differentially regulates cAMP-dependent translocation of NTCP and MRP2 to the plasma membrane.

    PubMed

    Park, Se Won; Schonhoff, Christopher M; Webster, Cynthia R L; Anwer, M Sawkat

    2012-09-01

    Cyclic AMP stimulates translocation of Na(+)/taurocholate cotransporting polypeptide (NTCP) from the cytosol to the sinusoidal membrane and multidrug resistance-associated protein 2 (MRP2) to the canalicular membrane. A recent study suggested that protein kinase Cδ (PKCδ) may mediate cAMP-induced translocation of Ntcp and Mrp2. In addition, cAMP has been shown to stimulate NTCP translocation in part via Rab4. The aim of this study was to determine whether cAMP-induced translocation of NTCP and MRP2 require kinase activity of PKCδ and to test the hypothesis that cAMP-induced activation of Rab4 is mediated via PKCδ. Studies were conducted in HuH-NTCP cells (HuH-7 cells stably transfected with NTCP). Transfection of cells with wild-type PKCδ increased plasma membrane PKCδ and NTCP and increased Rab4 activity. Paradoxically, overexpression of kinase-dead dominant-negative PKCδ also increased plasma membrane PKCδ and NTCP as well as Rab4 activity. Similar results were obtained in PKCδ knockdown experiments, despite a decrease in total PKCδ. These results raised the possibility that plasma membrane localization rather than kinase activity of PKCδ is necessary for NTCP translocation and Rab4 activity. This hypothesis was supported by results showing that rottlerin, which has previously been shown to inhibit cAMP-induced membrane translocation of PKCδ and NTCP, inhibited cAMP-induced Rab4 activity. In addition, LY294002 (a phosphoinositide-3-kinase inhibitor), which has been shown to inhibit cAMP-induced NTCP translocation, also inhibited cAMP-induced PKCδ translocation. In contrast to the results with NTCP, cAMP-induced MRP2 translocation was inhibited in cells transfected with DN-PKCδ and small interfering RNA PKCδ. Taken together, these results suggest that the plasma membrane localization rather than kinase activity of PKCδ plays an important role in cAMP-induced NTCP translocation and Rab4 activity, whereas the kinase activity of PKCδ is necessary for

  1. Taurolithocholate-induced MRP2 retrieval involves MARCKS phosphorylation by protein kinase Cϵ in HUH-NTCP Cells.

    PubMed

    Schonhoff, Christopher M; Webster, Cynthia R L; Anwer, M Sawkat

    2013-07-01

    Taurolithocholate (TLC) acutely inhibits the biliary excretion of multidrug-resistant associated protein 2 (Mrp2) substrates by inducing Mrp2 retrieval from the canalicular membrane, whereas cyclic adenosine monophosphate (cAMP) increases plasma membrane (PM)-MRP2. The effect of TLC may be mediated via protein kinase Cϵ (PKCϵ). Myristoylated alanine-rich C kinase substrate (MARCKS) is a membrane-bound F-actin crosslinking protein and is phosphorylated by PKCs. MARCKS phosphorylation has been implicated in endocytosis, and the underlying mechanism appears to be the detachment of phosphorylated myristoylated alanine-rich C kinase substrate (pMARCKS) from the membrane. The aim of the present study was to test the hypothesis that TLC-induced MRP2 retrieval involves PKCϵ-mediated MARCKS phosphorylation. Studies were conducted in HuH7 cells stably transfected with sodium taurocholate cotransporting polypeptide (HuH-NTCP cells) and in rat hepatocytes. TLC increased PM-PKCϵ and decreased PM-MRP2 in both HuH-NTCP cells and hepatocytes. cAMP did not affect PM-PKCϵ and increased PM-MRP2 in these cells. In HuH-NTCP cells, dominant-negative (DN) PKCϵ reversed TLC-induced decreases in PM-MRP2 without affecting cAMP-induced increases in PM-MRP2. TLC, but not cAMP, increased MARCKS phosphorylation in HuH-NTCP cells and hepatocytes. TLC and phorbol myristate acetate increased cytosolic pMARCKS and decreased PM-MARCKS in HuH-NTCP cells. TLC failed to increase MARCKS phosphorylation in HuH-NTCP cells transfected with DN-PKCϵ, and this suggested PKCϵ-mediated phosphorylation of MARCKS by TLC. In HuH-NTCP cells transfected with phosphorylation-deficient MARCKS, TLC failed to increase MARCKS phosphorylation or decrease PM-MRP2. Taken together, these results support the hypothesis that TLC-induced MRP2 retrieval involves TLC-mediated activation of PKCϵ followed by MARCKS phosphorylation and consequent detachment of MARCKS from the membrane. Copyright © 2013 American Association

  2. Genetic variants in NTCP exon gene are associated with HBV infection status in a Chinese Han population.

    PubMed

    Wu, Wennan; Zeng, Yongbin; Lin, Jinpiao; Wu, Yingying; Chen, Tianbin; Xun, Zhen; Ou, Qishui

    2018-04-01

    Sodium taurocholate co-transporting polypeptide (NTCP) plays an important role in the enterohepatic circulation of bile acids. Recently, NTCP was identified as a hepatitis B virus (HBV) receptor. The aim of this study is to investigate the association of NTCP polymorphisms with HBV clinical outcomes and investigate the relationship between NTCP polymorphisms and the serum bile acid level in a Chinese Han population. The single nucleotide polymorphisms rs2296651 and rs4646285 were genotyped in 1619 Chinese Han individuals. Improved multiple ligase detection reaction was utilized to genotype. The level of bile acids was measured by the enzymatic cycling method. Quantitative polymerase chain reaction analysis was carried out to analyze the potential function. In logistic regression analysis, the frequency of rs2296651 (S267F) CT genotype was higher in HBV immune recovery and healthy control groups than in the chronic HBV infection group (P = 0.001 and P < 0.001, respectively). Patients who carried allele T showed a higher bile acid level than patients who did not carry allele T (P = 0.009). The rs4646285 AA genotype was more common in the immune recovery group than in the chronic HBV infection group (P = 0.011). No difference in serum bile acid was detected between the rs4646285 wild-type patients and mutant-type patients. Quantitative reverse transcription-polymerase chain reaction showed the NTCP mRNA levels were lower in rs4646285 variants than wild types. NTCP gene polymorphisms may be associated with the natural course of HBV infection in a Chinese Han population. The S267F variant may be a protective factor to resist chronic hepatitis B progression which showed a higher bile acid level in Chinese Han chronic HBV infection patients. The rs4646285 variants could influence the expression of NTCP at the level of transcription, and ultimately may be associated with HBV infection immune recovery. © 2017 The Japan Society of Hepatology.

  3. Cyclosporin derivatives inhibit hepatitis B virus entry without interfering with NTCP transporter activity.

    PubMed

    Shimura, Satomi; Watashi, Koichi; Fukano, Kento; Peel, Michael; Sluder, Ann; Kawai, Fumihiro; Iwamoto, Masashi; Tsukuda, Senko; Takeuchi, Junko S; Miyake, Takeshi; Sugiyama, Masaya; Ogasawara, Yuki; Park, Sam-Yong; Tanaka, Yasuhito; Kusuhara, Hiroyuki; Mizokami, Masashi; Sureau, Camille; Wakita, Takaji

    2017-04-01

    The sodium taurocholate co-transporting polypeptide (NTCP) is the main target of most hepatitis B virus (HBV) specific entry inhibitors. Unfortunately, these agents also block NTCP transport of bile acids into hepatocytes, and thus have the potential to cause adverse effects. We aimed to identify small molecules that inhibit HBV entry while maintaining NTCP transporter function. We characterized a series of cyclosporine (CsA) derivatives for their anti-HBV activity and NTCP binding specificity using HepG2 cells overexpressing NTCP and primary human hepatocytes. The four most potent derivatives were tested for their capacity to prevent HBV entry, but maintain NTCP transporter function. Their antiviral activity against different HBV genotypes was analysed. We identified several CsA derivatives that inhibited HBV infection with a sub-micromolar IC 50 . Among them, SCY446 and SCY450 showed low activity against calcineurin (CN) and cyclophilins (CyPs), two major CsA cellular targets. This suggested that instead, these compounds interacted directly with NTCP to inhibit viral attachment to host cells, and have no immunosuppressive function. Importantly, we found that SCY450 and SCY995 did not impair the NTCP-dependent uptake of bile acids, and inhibited multiple HBV genotypes including a clinically relevant nucleoside analog-resistant HBV isolate. This is the first example of small molecule selective inhibition of HBV entry with no decrease in NTCP transporter activity. It suggests that the anti-HBV activity can be functionally separated from bile acid transport. These broadly active anti-HBV molecules are potential candidates for developing new drugs with fewer adverse effects. In this study, we identified new compounds that selectively inhibited hepatitis B virus (HBV) entry, and did not impair bile acid uptake. Our evidence offers a new strategy for developing anti-HBV drugs with fewer side effects. Copyright © 2016 European Association for the Study of the Liver

  4. Discovery and Validation of Pyridoxic Acid and Homovanillic Acid as Novel Endogenous Plasma Biomarkers of Organic Anion Transporter (OAT) 1 and OAT3 in Cynomolgus Monkeys.

    PubMed

    Shen, Hong; Nelson, David M; Oliveira, Regina V; Zhang, Yueping; Mcnaney, Colleen A; Gu, Xiaomei; Chen, Weiqi; Su, Ching; Reily, Michael D; Shipkova, Petia A; Gan, Jinping; Lai, Yurong; Marathe, Punit; Humphreys, W Griffith

    2018-02-01

    Perturbation of organic anion transporter (OAT) 1- and OAT3-mediated transport can alter the exposure, efficacy, and safety of drugs. Although there have been reports of the endogenous biomarkers for OAT1/3, none of these have all of the characteristics required for a clinical useful biomarker. Cynomolgus monkeys were treated with intravenous probenecid (PROB) at a dose of 40 mg/kg in this study. As expected, PROB increased the area under the plasma concentration-time curve (AUC) of coadministered furosemide, a known substrate of OAT1 and OAT3, by 4.1-fold, consistent with the values reported in humans (3.1- to 3.7-fold). Of the 233 plasma metabolites analyzed using a liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based metabolomics method, 29 metabolites, including pyridoxic acid (PDA) and homovanillic acid (HVA), were significantly increased after either 1 or 3 hours in plasma from the monkeys pretreated with PROB compared with the treated animals. The plasma of animals was then subjected to targeted LC-MS/MS analysis, which confirmed that the PDA and HVA AUCs increased by approximately 2- to 3-fold by PROB pretreatments. PROB also increased the plasma concentrations of hexadecanedioic acid (HDA) and tetradecanedioic acid (TDA), although the increases were not statistically significant. Moreover, transporter profiling assessed using stable cell lines constitutively expressing transporters demonstrated that PDA and HVA are substrates for human OAT1, OAT3, OAT2 (HVA), and OAT4 (PDA), but not OCT2, MATE1, MATE2K, OATP1B1, OATP1B3, and sodium taurocholate cotransporting polypeptide. Collectively, these findings suggest that PDA and HVA might serve as blood-based endogenous probes of cynomolgus monkey OAT1 and OAT3, and investigation of PDA and HVA as circulating endogenous biomarkers of human OAT1 and OAT3 function is warranted. Copyright © 2018 by The American Society for Pharmacology and Experimental Therapeutics.

  5. Sodium glucose co-transporter 2 inhibitors: blocking renal tubular reabsorption of glucose to improve glycaemic control in patients with diabetes.

    PubMed

    Jabbour, S A; Goldstein, B J

    2008-08-01

    The kidney plays a central role in the regulation of plasma glucose levels, although until recently this has not been widely appreciated or considered a target for therapeutic intervention. The sodium glucose co-transporter type 2 (SGLT2) located in the plasma membrane of cells lining the proximal tubule mediates the majority of renal glucose reabsorption from the tubular fluid, which normally prevents the loss of glucose in the urine. Competitive inhibitors of SGLT2 that provoke the renal excretion of glucose have been discovered, thereby providing a unique mechanism to potentially lower the elevated blood glucose levels in patients with diabetes. To explore the physiology of SGLT2 action and discuss several SGLT2 inhibitors that have entered early clinical development. All publicly available data were identified by searching the internet for 'SGLT2' and 'SGLT2 inhibitor' through 1 November 2007. Published articles, press releases and abstracts presented at national and international meetings were considered. Sodium glucose co-transporter type 2 inhibition is a novel treatment option for diabetes, which has been studied in preclinical models and a few potent and selective SGLT2 inhibitors have been reported and are currently in clinical development. These agents appear to be safe and generally well tolerated, and will potentially be a beneficial addition to the growing battery of oral antihyperglycaemic agents.

  6. Morphological variation of stimuli-responsive polypeptide at air-water interface

    NASA Astrophysics Data System (ADS)

    Shin, Sungchul; Ahn, Sungmin; Cheng, Jie; Chang, Hyejin; Jung, Dae-Hong; Hyun, Jinho

    2016-12-01

    The morphological variation of stimuli-responsive polypeptide molecules at the air-water interface as a function of temperature and compression was described. The surface pressure-area (π-A) isotherms of an elastin-like polypeptide (ELP) monolayer were obtained under variable external conditions, and Langmuir-Blodgett (LB) monolayers were deposited onto a mica substrate for characterization. As the compression of the ELP monolayer increased, the surface pressure increased gradually, indicating that the ELP monolayer could be prepared with high stability at the air-water interface. The temperature in the subphase of the ELP monolayer was critical in the preparation of LB monolayers. The change in temperature induced a shift in the π-A isotherms as well as a change in ELP secondary structures. Surprisingly, the compression of the ELP monolayer influenced the ELP secondary structure due to the reduction in the phase transition temperature with decreasing temperature. The change in the ELP secondary structure formed at the air-water interface was investigated by surface-enhanced Raman scattering. Moreover, the morphology of the ELP monolayer was subsequently imaged using atomic force microscopy. The temperature responsive behavior resulted in changes in surface morphology from relatively flat structures to rugged labyrinth structures, which suggested conformational changes in the ELP monolayers.

  7. A noninvasive optical approach for assessing chloride extrusion activity of the K-Cl cotransporter KCC2 in neuronal cells.

    PubMed

    Ludwig, Anastasia; Rivera, Claudio; Uvarov, Pavel

    2017-01-31

    Cation-chloride cotransporters (CCCs) are indispensable for maintaining chloride homeostasis in multiple cell types, but K-Cl cotransporter KCC2 is the only CCC member with an exclusively neuronal expression in mammals. KCC2 is critical for rendering fast hyperpolarizing responses of ionotropic γ-aminobutyric acid and glycine receptors in adult neurons, for neuronal migration in the developing central nervous system, and for the formation and maintenance of small dendritic protrusions-dendritic spines. Deficit in KCC2 expression and/or activity is associated with epilepsy and neuropathic pain, and effective strategies are required to search for novel drugs augmenting KCC2 function. We revised current methods to develop a noninvasive optical approach for assessing KCC2 transport activity using a previously characterized genetically encoded chloride sensor. Our protocol directly assesses dynamics of KCC2-mediated chloride efflux and allows measuring genuine KCC2 activity with good spatial and temporal resolution. As a proof of concept, we used this approach to compare transport activities of the two known KCC2 splice isoforms, KCC2a and KCC2b, in mouse neuronal Neuro-2a cells. Our noninvasive optical protocol proved to be efficient for assessment of furosemide-sensitive chloride fluxes. Transport activities of the N-terminal splice isoforms KCC2a and KCC2b obtained by the novel approach matched to those reported previously using standard methods for measuring chloride fluxes.

  8. Isolation and amino acid sequences of opossum vasoactive intestinal polypeptide and cholecystokinin octapeptide.

    PubMed Central

    Eng, J; Yu, J; Rattan, S; Yalow, R S

    1992-01-01

    Evolutionary history suggests that the marsupials entered South America from North America about 75 million years ago and subsequently dispersed into Australia before the separation between South America and Antarctica-Australia. A question of interest is whether marsupial peptides resemble the corresponding peptides of Old or New World mammals. Previous studies had shown that "little" gastrin of the North American marsupial, the opossum, is identical in length to that of the New World mammals, the guinea pig and chinchilla. In this report, we demonstrate that opossum cholecystokinin octapeptide, like that of the Australian marsupials, the Eastern quoll and the Tamar wallaby, is identical to the cholecystokinin octapeptide of Old World mammals and differs from that of the guinea pig and chinchilla. However, opossum vasoactive intestinal polypeptide differs from the usual Old World mammalian vasoactive intestinal polypeptide in five sites: [sequence; see text]. PMID:1542675

  9. Compositions comprising a polypeptide having cellulolytic enhancing activity and a heterocyclic compound and uses thereof

    DOEpatents

    Xu, Feng; Sweeney, Matthew; Quinlan, Jason

    2016-08-02

    The present invention relates to compositions comprising: a polypeptide having cellulolytic enhancing activity and a heterocyclic compound. The present invention also relates to methods of using the compositions.

  10. Compositions comprising a polypeptide having cellulolytic enhancing activity and a bicycle compound and uses thereof

    DOEpatents

    Xu, Feng; Sweeney, Matthew; Quinlan, Jason

    2015-06-16

    The present invention relates to compositions comprising: a polypeptide having cellulolytic enhancing activity and a bicyclic compound. The present invention also relates to methods of using the compositions.

  11. Compositions comprising a polypeptide having cellulolytic enhancing activity and a dioxy compound and uses thereof

    DOEpatents

    Sweeney, Matthew; Xu, Feng; Quinlan, Jason

    2016-07-19

    The present invention relates to compositions comprising: a polypeptide having cellulolytic enhancing activity and a dioxy compound. The present invention also relates to methods of using the compositions.

  12. Compositions comprising a polypeptide having cellulolytic enhancing activity and a bicyclic compound and uses thereof

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quinlan, Jason; Xu, Feng; Sweeney, Matthew

    2016-10-04

    The present invention relates to compositions comprising: a polypeptide having cellulolytic enhancing activity and a bicyclic compound. The present invention also relates to methods of using the compositions.

  13. Compositions comprising a polypeptide having cellulolytic enhancing activity and an organic compound and uses thereof

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quinlan, Jason; Xu, Feng; Sweeney, Matthew

    The present invention relates to compositions comprising: a polypeptide having cellulolytic enhancing activity and an organic compound. The present invention also relates to methods of using the compositions.

  14. Compositions comprising a polypeptide having cellulolytic enhancing activity and a quinone compound and uses thereof

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quinlan, Jason; Xu, Feng; Sweeney, Matthew

    The present invention relates to compositions comprising: a polypeptide having cellulolytic enhancing activity and a quinone compound. The present invention also relates to methods of using the compositions.

  15. Compositions comprising a polypeptide having cellulolytic enhancing activity and a quinone compound and uses thereof

    DOEpatents

    Quinlan, Jason; Xu, Feng; Sweeney, Matthew

    2016-03-01

    The present invention relates to compositions comprising: a polypeptide having cellulolytic enhancing activity and a quinone compound. The present invention also relates to methods of using the compositions.

  16. Chloride Cotransporters as a Molecular Mechanism underlying Spreading Depolarization-Induced Dendritic Beading.

    PubMed

    Steffensen, Annette B; Sword, Jeremy; Croom, Deborah; Kirov, Sergei A; MacAulay, Nanna

    2015-09-02

    Spreading depolarizations (SDs) are waves of sustained neuronal and glial depolarization that propagate massive disruptions of ion gradients through the brain. SD is associated with migraine aura and recently recognized as a novel mechanism of injury in stroke and brain trauma patients. SD leads to neuronal swelling as assessed in real time with two-photon laser scanning microscopy (2PLSM). Pyramidal neurons do not express aquaporins and thus display low inherent water permeability, yet SD rapidly induces focal swelling (beading) along the dendritic shaft by unidentified molecular mechanisms. To address this issue, we induced SD in murine hippocampal slices by focal KCl microinjection and visualized the ensuing beading of dendrites expressing EGFP by 2PLSM. We confirmed that dendritic beading failed to arise during large (100 mOsm) hyposmotic challenges, underscoring that neuronal swelling does not occur as a simple osmotic event. SD-induced dendritic beading was not prevented by pharmacological interference with the cytoskeleton, supporting the notion that dendritic beading may result entirely from excessive water influx. Dendritic beading was strictly dependent on the presence of Cl(-), and, accordingly, combined blockade of Cl(-)-coupled transporters led to a significant reduction in dendritic beading without interfering with SD. Furthermore, our in vivo data showed a strong inhibition of dendritic beading during pharmacological blockage of these cotransporters. We propose that SD-induced dendritic beading takes place as a consequence of the altered driving forces and thus activity for these cotransporters, which by transport of water during their translocation mechanism may generate dendritic beading independently of osmotic forces. Spreading depolarization occurs during pathological conditions such as stroke, brain injury, and migraine and is characterized as a wave of massive ion translocation between intracellular and extracellular space in association with

  17. Serological Reactivity and Identification of IgE-Binding Polypeptides of Ganoderma applanatum Crude Spore Cytoplasmic Extract in Puerto Rican Subjects

    PubMed Central

    Vilá-Héreter, Frances; Rivera-Mariani, Felix E.; Bolaños-Rosero, Benjamín

    2017-01-01

    Background The allergenic potential of Ganoderma applanatum basidiospores has been demonstrated previously in Puerto Rico. However, basidiomycete allergens are not available for inclusion in allergy diagnostic panels. Therefore, we sought to confirm allergic sensitization towards G. applanatum crude spore cytoplasmic extract (CSCE) through reactivity in serological assays and detection of IgE-binding polypeptides. Methods With an indirect ELISA, serological reactivity was compared between groups of individuals with different allergic profiles. Group 1 (n = 51) consisted of individuals with sIgE to allergens included in diagnostic panels; group 2 (n = 14) were individuals with no sIgE to the allergens tested; and group 3 (n = 22) were individuals with no allergic history. To visualize IgE-binding polypeptides, group 1 sera were examined with Western blot (WB). Polypeptide bands with the highest reactivity were analyzed by mass spectrometry (MS) for putative identification. Results Serological reactivity of group 1 was significantly higher than that of group 3 in indirect ELISA (p = 0.03). Sixty five percent of group 1 individuals showed reactivity to polypeptide bands in WB. Bands of 81 and 56 kDa had the highest reactivity proportions among the reactive sera, followed by a 45 kDa band. MS analysis of these three polypeptides suggests they are basidiomycete-derived enzymes with aconitate hydratase, catalase, and enolase functions. Conclusions G. applanatum spores have allergenic components recognized by Puerto Rican individuals, which could eventually be considered as markers in cases of fungal allergy and be included in diagnostic allergen panels in Puerto Rico and tropical regions. PMID:28380479

  18. Efficient co-packaging and co-transport yields post-synaptic co-localization of neuromodulators associated with synaptic plasticity

    PubMed Central

    Lochner, J. E.; Spangler, E.; Chavarha, M.; Jacobs, C.; McAllister, K.; Schuttner, L. C.; Scalettar, B. A.

    2009-01-01

    Recent data suggest that tissue plasminogen activator (tPA) influences long-term plasticity at hippocampal synapses by converting plasminogen into plasmin, which then generates mature brain-derived neurotrophic factor (mBDNF) from its precursor, proBDNF. Motivated by this hypothesis, we used fluorescent chimeras, expressed in hippocampal neurons, to elucidate (1) mechanisms underlying plasminogen secretion from hippocampal neurons, (2) if tPA, plasminogen, and proBDNF are co-packaged and co-transported in hippocampal neurons, especially within dendritic spines, and (3) mechanisms mediating the transport of these neuromodulators to sites of release. We find that plasminogen chimeras traffic through the regulated secretory pathway of hippocampal neurons in dense-core granules (DCGs) and that tPA, plasminogen, and proBDNF chimeras are extensively co-packaged in DCGs throughout hippocampal neurons. We also find that 80% of spines that contain DCGs contain chimeras of these neuromodulators in the same DCG. Finally, we demonstrate, for the first time, that neuromodulators undergo co-transport along dendrites in rapidly mobile DCGs, indicating that neuromodulators can be efficiently recruited into active spines. These results support the hypothesis that tPA mediates synaptic activation of BDNF by demonstrating that tPA, plasminogen, and proBDNF co-localize in DCGs in spines, where these neuromodulators can undergo activity-dependent release and then interact and/or mediate changes that influence synaptic efficacy. The results also raise the possibility that frequency-dependent changes in extents of neuromodulator release from DCGs influence the direction of plasticity at hippocampal synapses by altering the relative proportions of two proteins, mBDNF and proBDNF, that exert opposing effects on synaptic efficacy. PMID:18563704

  19. [Study on fluorescence labeling and determination of polypeptide (PC2~PC6) by high performance liquid chromatography].

    PubMed

    Li, Jing-xi; Gao, Li-jie; Cao, Wei; Zheng, Li; Chen, Jun-hui; Xu, Xiu-li; Wang, Xiao-ru

    2014-12-01

    This study was based on the thiol groups (-SH) of PC2~PC6, which could be reacted with the Monobromobimane (mBBr), in order to get polypeptide derivatives with fluorescent signal. A new method was developed for measuring the Polypeptides by high performance liquid chromatography with fluorescence detector, then the chromatographic conditions of HPLC was optimized; meawhile the reaction proportion of PCs and mBBr was identified by Trap-MS. The results showed that, the reaction proportion of PCs and mBBr was 1:1, the polypeptide derivatives had good stability; the five compounds separation was better, and the peak time focused on the 16.6~22.0 min; the linear correlation coefficient of PC2, PC3, PC4, PC5 and PC6 was >0.9991, and the limits of quantification were 0.3, 0.05, 0.3, 0.5 and 0.8 mg · L(-1) respectively, the recovery rate was 83.0%-102.0%; the method was reproducible, RSD<2%, this method for measuring the peptide compounds was rapid and accurate.

  20. Mining the protein data bank with CReF to predict approximate 3-D structures of polypeptides.

    PubMed

    Dorn, Márcio; de Souza, Osmar Norberto

    2010-01-01

    n this paper we describe CReF, a Central Residue Fragment-based method to predict approximate 3-D structures of polypeptides by mining the Protein Data Bank (PDB). The approximate predicted structures are good enough to be used as starting conformations in refinement procedures employing state-of-the-art molecular mechanics methods such as molecular dynamics simulations. CReF is very fast and we illustrate its efficacy in three case studies of polypeptides whose sizes vary from 34 to 70 amino acids. As indicated by the RMSD values, our initial results show that the predicted structures adopt the expected fold, similar to the experimental ones.